

The following HOL-62-24.75 Safety Study was completed in 2021.

As Part 1 of the HOL-62-24.75, PID 120127 project, the District would like the consultant to complete a new feasibility study. The new feasibility study is expected to evaluate multiple alternatives that reduce congestion and mitigate crashes at the intersections of US 62/SR 39 and SR 557, and US 62/SR39 and CR 201, in Holmes County. Upon completion of the feasibility study, a preferred alternative for this project will be selected.

Part 2 of this project will be to complete construction plans for this preferred alternative.

330 | 339 6633 transportation.ohio.gov

The Ohio Department of Transportation

HOL-62-24.75, US 62 at SR 557

Safety Study

July 2021

HOL-62-24.75, US 62 at SR 557

Safety Study

July 2021

Prepared By:

Arcadis U.S., Inc. 1300 Superior Avenue, Suite 1300 Cleveland Ohio 44114 Phone: 216 298 5239 Fax: 216 781 6177

Our Ref:

30062568

Prepared For:

Jeremy Thompson, El Local Safety and Active Transportation The Ohio Department of Transportation 1980 West Broad Street Columbus Ohio 43223

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

Ex	ecuti	ve Summary	1				
1	Introduction1						
2	Pu	rpose and Need	1				
3	Exi	sting Conditions	2				
4	Cra	ash Data	5				
5	Exi	sting Conditions Capacity Analysis	7				
ę	5.1	Data Collection and Design Hourly Traffic Volumes	8				
Ę	5.2	Existing Conditions Capacity Analysis Results	8				
Ę	5.3	No-Build Conditions Capacity Analysis Results	9				
Ę	5.4	Turn Lane Warrants1	1				
Ę	5.5	Traffic Signal Warrant Analysis1	1				
6	Cra	ash Probable Causes	2				
7	Pro	posed Countermeasures 1	3				
7	7.1	Short Term1	4				
7	7.2	Medium Term 1	4				
7	7.3	Long Term1	5				
8	Co	nceptual Estimate of Probable Cost1	6				
9	Sat	ety Benefits1	6				
ę	9.1	Short Term1	7				
ę	9.2	Medium Term 1	8				
ę	9.3	Long Term1	9				
10	Co	nclusions and Recommendations2	:0				

Tables

Table 1. Study Area Crash Statistics (2017 to 2019)	6
Table 2. Level of Service Criteria for Signalized and Unsignalized Intersections	8
Table 3. Existing Conditions (2020) Capacity Analysis Results	9
Table 4. No-Build Conditions (2024) Capacity Analysis Results	10
Table 5. No-Build Conditions (2044) Capacity Analysis Results	10
Table 6. Turn Lane Warrants	11
Table 7. Level of Service Criteria for Signalized and Unsignalized Intersections	12

Table 8. Medium-Term Proposed Improvements (2044) Capacity Analysis Results	15
Table 9. Long-Term Proposed Improvements (2044) Capacity Analysis Results	16
Table 10. Short-Term Countermeasure ECAT Analysis Results Summary	18
Table 11. Short-Term Countermeasure Benefit-Cost Summary	18
Table 12. Medium-Term Countermeasure ECAT Analysis Results Summary	19
Table 13. Medium-Term Countermeasure Benefit-Cost Summary	19
Table 14. Long-Term Countermeasure ECAT Analysis Results Summary	19
Table 15. Long-Term Countermeasure Benefit-Cost Summary	20
Table 16. Short-, Medium-, and Long-Term Countermeasure Benefit-Cost Summary	20

Figures

Figure 1. Study Area Map	. 3
Figure 2. Crash History Compared to Statewide Averages	. 5

Appendices

Appendix A Crash Analysis Module Tool Results
Appendix B Crash Diagrams
Appendix C Design Hourly Volumes
Appendix D HCS and Highway Capacity Software Output
Appendix E Turn Lane Warrants
Appendix F Traffic Signal Warrant Analysis Results
Appendix G Conceptual Schematics of Short-, Medium-, and Long-Term Improvements
Appendix H Cost Estimate
Appendix I Economic Crash Analysis Tool Results

Executive Summary

The Ohio Department of Transportation (ODOT) retained Arcadis U.S., Inc. (Arcadis) to study safety and traffic operations at the intersections of US Route 62 (US 62) with State Route (SR) 557 and US 62 with County Route (CR) 201 in Holmes County, Ohio. These intersections are located 5.2 miles east of the Village of Millersburg. US 62 is a major east-west corridor crossing Holmes County from the southwest to the northeast connecting the City of Columbus to the City of Canton. SR 557 is a north-south corridor connecting the Village Fredericksburg to US 62. The purpose of this safety study is to analyze existing safety conditions, predict safety conditions in the future, and develop safety improvements that will promote safe and efficient traffic operation now and in the future.

ODOT District 11 has been monitoring the crash history and traffic operation at the intersection of US 62 and SR 557 for several years. The segment of SR 557 from its terminus at US 62 to Township Route 354 appears on Holmes County's high crash segment list. In general, traffic volumes are steady throughout the day with no significant spike during the a.m. and p.m. peak hours. On US 62 it is common to see a three to four vehicle queue develop when a westbound vehicle is stopped to turn left. On SR 557 it is common to see a three to four vehicle queue at the stop sign however, queues extend south to the Keim Lumber billboard located approximately 700 feet south of the intersection at various times during the day. Given that the segment of SR 557 from US 62 south to Township Route 354 appears on Holmes County's high crash segment list and given that queueing is routinely observed at this intersection ODOT District 11 proactively performed a traffic signal warrant analysis to address congestion in 2017. However, a traffic signal was not constructed because a predictive crash analysis indicated it may increase the crash frequency on US 62. At that time District 11 made signage improvements in an effort to reduce crash frequency by increasing the visibility of the intersection to unfamiliar drivers.

The Holmes County Engineer has been monitoring the crash history and traffic operation at the intersection of US 62 and CR 201 for several years. The intersection appears on Holmes County's high crash intersection list. In general, traffic volumes are steady throughout the day with no significant spike during the a.m. and p.m. peak hours. On US 62 it is common to see a three to four vehicle queue develop when an eastbound vehicle is stopped to turn left. On CR 201 it is common to see a three to four vehicle queue at the stop sign however, queues extend north 500 feet to the top of the hill at various times during the day.

These three roads provide residents of Holmes County and a growing Amish community with regional access to nearby villages, the City of Columbus, and the City of Canton. These three roads also provide industries in Holmes County with access to Interstate 77 and promote tourism by providing access to the Villages of Berlin and Charm. Each road must accommodate familiar and unfamiliar drivers and a mix of local and tourist passenger vehicles, local trucks, semi-trucks, bicycles, motorcycles, Amish buggies, and tractors. Traffic congestion within the study area is a daily, ongoing issue at both intersections. It is anticipated that if the population of Holmes County rises, local industry expands, and tourism grows the volume of unfamiliar drivers, semi-trucks, bicycles and pedestrians passing through these two intersections may increase exacerbating an existing congestion and safety problem.

ODOT's Crash Analysis Module (CAM) Tool and Economic Crash Analysis Tool (ECAT) were used to analyze existing and future safety conditions and examine the feasibility of implementing safety improvements that will promote safe and efficient traffic operation now and in the future. Between 2017 and 2019 twenty-one crashes and eight injuries occurred at these two intersections. Rear-end crashes were the most common crash type with 14 of the 21 crashes and five of the eight injuries being rear end crashes. Six occurred on US 62 when a westbound vehicle was stopped and waiting to turn left onto SR 557 and five occurred on US 62 when an

eastbound vehicle was stopped and waiting to turn left onto CR 201. ECAT shows that these two intersections perform slightly better than their peers by approximately 0.7 crashes per year. It also shows that there is potential for safety improvement in non-incapacitating (B category) crashes. Given that most of the crashes were rear-end crashes three sets of proposed countermeasures that focus on mitigating this type of crash were analyzed:

- Short Term The goal of the short-term countermeasures is to improve the visibility of these two intersections through the following:
 - Replace 4 existing intersection-ahead advanced warning signs and the two existing stop-ahead advanced warning signs on the right side of each approach, at both intersections, with flashing LED advanced warning signs. This countermeasure will erect 4 new LED intersection ahead advanced warning signs on US 62, 1 new stop-ahead advanced warning sign on SR 557, and 1 new stop-ahead advanced warning sign on CR 201.
 - Place 2 new intersection-ahead advanced warning signs on the left side of US 62 at CR 201 on both approaches to provide dual advanced warning signs.
 - Replace the stop sign on the right side of each approach at both intersections with a flashing LED stop sign.
 - Add a second stop sign on the left side of CR 201.
- Medium Term There are three goals of the medium-term countermeasures. The first is to provide storage on US 62 for vehicles turning left to allow through movements to continue under free-flow conditions. The second is to provide a northbound right turn lane on SR 557 so northbound right turning vehicles can bypass the queue of northbound left turning vehicles. The third is to improve the visibility of the intersection.
 - Construct a westbound left-turn lane on US 62 at SR 557
 - Construct an eastbound left-turn lane on US 62 at CR 201
 - Construct a northbound right turn lane on SR 557 so northbound right turning vehicles can bypass the queue of northbound left turning vehicles. Currently, if a northbound passenger vehicle is stopped while waiting to turn left, northbound vehicles wishing to turn right will use the shoulder to go around the stopped vehicle and turn right.
 - This countermeasure will also include the signing upgrades described above where the Short-Term countermeasures were discussed.
- Long Term The goal of the long-term countermeasure is to reduce delay on SR 557, reduce the number of angle crashes, and slow traffic speeds on US 62 as it passes through the CR 201 intersection. This countermeasure will convert the intersection at SR 557 to a modern single lane roundabout.

The benefit-cost ratios for the short-, medium-, and long-term countermeasures are favorable (i.e., above 1). Therefore, if these countermeasures are implemented, they are predicted to provide a sufficient safety benefit to justify the cost of construction. It is recommended that the short-term countermeasures be constructed. Crashes at both intersections should then be monitored to determine if the crash frequency is reduced before determining whether to construct the medium-term countermeasures.

According to ODOT's ECAT, the short-term countermeasures will reduce crashes by 0.6 per year and the benefitcost ratio is 3.16. The medium-term countermeasures will reduce crashes by 4 per year and the benefit-cost ratio is 1.29. The long-term countermeasure will also reduce crashes by almost 3 per year and the benefit-cost ratio is 1.23.

1 Introduction

The Ohio Department of Transportation (ODOT) retained Arcadis U.S., Inc. (Arcadis) to study the overall safety and traffic operations of two intersections on US Route 62 (US 62) in Holmes County, Ohio. The study area is located 5.2 miles east of the Village of Millersburg and includes the intersections of US 62 with State Route (SR) 557 and with County Route (CR) 201. Arcadis analyzed the existing safety performance of the two intersections, identified potential improvements to reduce crash frequency and improve overall safety, and performed a traffic analysis to predict how the intersections operate now, if no improvements are made, and how they will operate if the proposed improvements are implemented. This report presents the results of the safety study.

2 Purpose and Need

The purpose of this safety study is to analyze existing safety conditions, predict safety conditions in the future, and develop safety improvements that will promote safe and efficient traffic operation now and in the future.

ODOT District 11 and the Holmes County Engineer have been monitoring the crash history and traffic operation at these two intersections for several years. The segment of SR 557 from its terminus at US 62 to Township Route 354 appears on Holmes County's high crash segment list and the intersection of US 62 and CR 201 appears on Holmes County's high crash intersection list. Between 2017 and 2019 twenty-one crashes and eight injuries occurred at these two intersections with rear-end crashes being the most common crash type. Fourteen of the 21 crashes and five of the eight injuries were rear end crashes. Six occurred on US 62 when a westbound vehicle was stopped and waiting to turn left onto SR 557 and five occurred on US 62 when an eastbound vehicle was stopped and waiting to turn left onto CR 201.

Traffic congestion within the study area is a daily, ongoing issue at both intersections. In general, traffic volumes are steady throughout the day with no significant spike during the a.m. and p.m. peak hours. On US 62 it is common to see a three to four vehicle queue develop when either a westbound or eastbound vehicle is stopped to turn left on either SR 557 or CR 201, respectively. On SR 557 it is common to see a three to four vehicle queue at the stop sign however, queues extend south to the Keim Lumber billboard located approximately 700 feet south of the intersection at various times during the day. On CR 201 it is common to see a three to four vehicle queue at the stop sign however, queues extend north 500 feet to the top of the hill at various times during the day.

These three roads provide residents of Holmes County and a growing Amish community with regional access to nearby villages, the City of Columbus and the City of Canton. These three roads also provide industries in Holmes County with access to Interstate 77 and promote tourism by providing access to the Villages of Berlin and Charm. Each road must accommodate familiar and unfamiliar drivers and a mix of local and tourist passenger vehicles, local trucks, semi-trucks, bicycles, motorcycles, Amish buggies, and tractors. It is anticipated that if the population of Holmes County rises, local industry expands, and tourism grows the volume of unfamiliar drivers, semi-trucks, bicycles and pedestrians passing through these two intersections may increase exacerbating an existing congestion and safety problem.

3 Existing Conditions

US 62 is a national truck route. It is an east-west minor arterial with a posted speed limit of 55 miles per hour (mph) and an average daily traffic (ADT) volume of approximately 11,000 vehicles per day (vpd), of which 8 percent is truck traffic. There is one 12-foot-wide lane in each direction, with 4-foot-wide paved shoulders adjacent to the travel lanes. The road is striped with a centerline and edge lines. The intersections with SR 557 and CR 201 are both stop controlled on the minor street. The pavement condition rating (PCR) for US 62 is 80, according to the ODOT Transportation Information Mapping System (TIMS). There is no roadway lighting present along the corridor. Utility poles are present along the south side of the road.

SR 557 is a north-south major collector with a posted speed limit of 55 mph and an ADT volume of 4,000 vpd, of which 9 percent is truck traffic. There is one 12-foot-wide lane in each direction, with a 1-foot-wide paved shoulder adjacent to the travel lanes. The road is striped with a centerline and edge lines. The PCR for SR 557 is 59, according to the ODOT TIMS. Utility poles are present along both sides of the road.

CR 201 is a north-south major collector with a posted speed limit of 45 mph and an ADT volume of 3,500 vpd, of which 8 percent is truck traffic. There is one 12-foot-wide lane in each direction with no shoulder. The road is striped with a centerline but no edge lines. The pavement condition rating for CR 201 is 67, according to the ODOT TIMS. Utility poles are present along the eastern side of the road.

There are no pedestrian facilities (sidewalk, curb ramps, and crosswalks) within the study area.

The study area is illustrated on Figure 1.

Figure 1. Study Area Map

Arcadis conducted a field review of the study area on February 4, 2021 during the a.m. and p.m. peak periods. The a.m. peak hour is estimated to be from 10:45 a.m. to 11:45 a.m. and the p.m. peak hour is estimated to be from 3:30 p.m. to 4:30 p.m. Observations of the study area during the field review are summarized as follows:

Overall

- In general, traffic volumes at both intersections are steady throughout the day:
 - No significant spike in traffic volumes was observed during the a.m. and p.m. peak hours. From noon to 3:30 p.m., long queues were observed on SR 557 and on CR 201.

- The makeup of vehicular traffic is diverse. Passenger vehicles, trucks, semi-trucks, bicycles, motorcycles, Amish buggies, and tractors were observed during the field review. Where possible, Amish buggies, bicycles, and tractors used the shoulder but still impacted vehicular traffic when making turns.
- There are several constraints within the study area that may impact potential countermeasures:
 - There is a stream crossing US 62 east of CR 201.
 - There are two culverts crossing US 62. One is west of SR 557 and one is between SR 557 and CR 201.
 - o There is a gas line on the south side of US 62 running parallel to the edge of pavement.
 - There is a fiber optic line west of SR 557.
 - There is a pond on the north side of US 62 between SR 557 and CR 201.

SR 557 Intersection

- Queuing was observed on US 62 westbound and on SR 557:
 - A typical queue was three to four vehicles on US 62 westbound when a vehicle was stopped to turn left.
 The queued vehicles did not use the shoulder to bypass the left-turning vehicle.
 - A typical queue was three to four cars on SR 557. In the p.m. peak hour, vehicles were observed queueing south to the Keim Lumber billboard located approximately 700 feet south of the intersection. The maximum queue was 12 cars.
 - If a northbound passenger vehicle is stopped while waiting to turn left, a northbound vehicle can use the shoulder to go around the stopped vehicle and turn right. However, if two northbound vehicles are queued or one large northbound vehicle is stopped, a right-turning vehicle does not have sufficient space to go around the stopped vehicles to turn right.
- Sight distance on the eastbound approach is substandard but is close to adequate.
- US 62 west of SR 557 has a 5 percent upgrade slope that impacts the acceleration of heavy vehicles making a left turn from SR 557.
- Large semi-trucks were observed turning left and right from SR 557.

CR 201 Intersection

- Queueing was observed on US 62 eastbound and on CR 201:
 - A typical queue was three to four vehicles on US 62 eastbound when a vehicle was stopped to turn left. The queued vehicles occasionally used the shoulder to bypass the left-turning vehicle.
 - A typical queue was three to four cars on CR 201. Once during the p.m. peak hour, vehicles were observed queueing to the top of the hill approximately 500 feet north of the intersection.
- Sight distance is an issue at all three approaches:
 - o Southbound drivers are not able to see the stop sign until they are 500 feet from the intersection.
 - Eastbound and westbound sight distance is limited by the permanent sign structure in the northeast quadrant and the hill in the northwest quadrant. Eastbound and westbound drivers on US 62 are only able to see the first vehicle queued at the stop sign.

- CR 201 north of US 62 has a 10 percent upgrade slope that impacts heavy vehicles turning onto CR 201 and southbound vehicles that must stop on a downhill grade as they approach the intersection.
- Large semi-trucks were observed turning left onto CR 201.

4 Crash Data

Crash data from 2017 to 2019 were obtained from ODOT's TIMS. A total of 21 crashes occurred within the study area during the three-year period. The OH-1 report for each crash was reviewed to identify the location of each crash. Ten of the crashes occurred at the SR 557 intersection and 11 occurred at the CR 201 intersection.

Crash data for the study area were compared to statewide averages obtained from ODOT's Crash Analysis Module (CAM) Tool. Crash data were also analyzed using ODOT's CAM Tool.

The frequency of crash types in the study area compared to statewide averages for rural roads on the state system are shown on Figure 2. As indicated on the figure, rear-end, angle, bicycle, and other non-collision crashes occur more frequently in the study area compared to statewide averages. Injury crashes also occur more frequently in the study area than statewide averages.

Figure 2. Crash History Compared to Statewide Averages

Additional statistics based on the crash data are summarized in Table 1. The table shows that the two most common crash types that occurred between 2017 and 2019 within the study area are rear-end crashes and angle crashes. None of the crashes resulted in a fatality, and eight crashes resulted in injuries. Five of the injuries occurred as a result of rear-end crashes. Two occurred on SR 557 and three occurred on CR 201. The remaining three injuries occurred on CR 201 in two angle crashes and a bicycle crash. Seventeen crashes occurred on dry pavement, indicating that weather is not typically a contributing factor. Sixteen crashes occurred in the daylight, indicating lighting is not typically a contributing factor. Of the five crashes that occurred in the dark, three were

rear-end, one was angle, and one was the bicycle crash. Thirteen crashes occurred between May and September. More detailed explanations of the crashes are provided below:

- Rear-End Crashes Rear-end crashes accounted for approximately 67 percent of all crashes and 39 percent of all injuries. Of the 14 rear-end crashes, all but three occurred on US 62. Six occurred when a westbound vehicle was stopped while waiting to turn left onto SR 557 and five occurred when an eastbound vehicle was stopped while waiting to turn left onto CR 201. Of these 11 rear-end crashes, five resulted in an injury. Two of the remaining three rear-end crashes occurred on SR 557 and one occurred on CR 201. Of these, none resulted in an injury. Assured clear distance or following too closely was the contributing factor in most of these crashes.
- Angle Crashes Angle crashes accounted for approximately 23 percent of all crashes and 33 percent of all injuries. Two angle crashes occurred on SR 557. The first occurred when an eastbound vehicle turning right slid on snow-covered pavement into a northbound vehicle stopped at the stop sign. The second occurred when a westbound vehicle turning left, in the dark, struck a northbound vehicle stopped at the stop sign. Three angle crashes were identified as occurring on CR 201. However, one that occurred west of the intersection was actually a rear-end crash in which an eastbound vehicle lost control trying to stop behind an eastbound vehicle waiting to turn left onto CR 201 and slid into a westbound vehicle stopped in a queue. The second occurred when a southbound vehicle attempting to turn left onto US 62 stalled and was struck by a westbound vehicle. The third occurred when an eastbound vehicle turned left in front of a westbound vehicle.
- Sideswipe-Passing Crash A crash identified as a sideswipe-passing crash was actually a rear-end crash at the intersection of US 62 and SR 557. A vehicle traveling westbound on US 62 stopped behind a vehicle that was stopped while waiting to turn left onto SR 557 and was rear-ended by another westbound vehicle. The atfault vehicle attempted to steer around the stopped vehicle; therefore, the collision was similar to a sideswipepassing crash. The crash was recorded in the CAM Tool as a rear-end crash.
- Not a Collision Between Two Motor Vehicles The single vehicle crash that occurred at the intersection of US 62 and CR 201 involved a pickup truck with a trailer that exited the roadway, causing the trailer to overturn. The OH-1 report did not indicate whether the vehicle left the roadway in an attempt to avoid a rear-end crash.
- *Bicycle Crashes* The bicycle crash was actually an angle crash that occurred when a bicyclist traveling eastbound on US 62 attempted to turn left onto CR 201 and was struck by a southbound vehicle turning left onto US 62. The bicyclist sustained minor injuries.

Crash Severity	Number	Percentage	Light Condition	Light Condition Number
Fatal Crash	0	0%	Daylight	Daylight 16
Injury Crash	8	38%	Dark – Not Lighted	Dark – Not Lighted 3
Property Damage Only (PDO) Crash	13	62%	Dawn/Dusk	Dawn/Dusk 2

Table 1. Study Area Crash Statistics (2017 to 2019)

Type of Crash	Number	Percentage
Rear-End	14	67%
Angle	5	23%
Other/Non-Collision	1	5%
Pedalcycles	1	5%

Table 1. Study Area Crash Statistics (2017 to 2019) (Continued)

Road Condition	Number	Percentage
Dry	17	80%
Wet	2	10%
Snow	2	10%

Month	Number	Percentage
January	1	5%
February	3	13%
March	1	5%
April	0	0%
May	2	10%
June	1	5%
July	3	13%
August	5	24%
September	2	10%
October	2	10%
November	0	0%
December	1	5%

Contributing Factor	Number	Percentage
Followed too Closely/ACDA	14	67%
Failure to Yield	3	14%
Improper Lane Change/Passing/ Off Road	3	14%
Unsafe Speed	1	5%

A full printout from the ODOT CAM Tool is included in Appendix A. Crash diagrams for the study area are included in Appendix B.

5 Existing Conditions Capacity Analysis

A capacity analysis is the primary method for evaluating the efficiency of a roadway or intersection as it relates to vehicular traffic. The Highway Capacity Manual, published by the Transportation Research Board, outlines capacity analysis procedures and criteria for evaluating the operations of unsignalized and signalized intersections.¹ The criteria for evaluating the operation of an intersection are measured in terms of level of service (LOS), a qualitive measure, and control delay per vehicle. There are six levels of service, designated by the letters A through F. LOS A represents the best operating conditions, and LOS F represents the worst operating conditions. An overall intersection LOS of A through D is generally considered acceptable for ODOT projects. LOS criteria are listed in Table 2.

¹ Transportation Research Board. 2016. Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis.

Level of Service	Signalized Intersection Delay (seconds)	Unsignalized Intersection and Roundabout Delay (seconds)		
А	≤ 10	≤ 10		
В	> 10–20	> 10–15		
С	> 20–35	> 15–25		
D	> 35–55	> 25–35		
E	> 55–80	> 35–60		
F	> 80 or Volume-Capacity Ratio > 1.0	> 60 or Volume-Capacity Ratio > 1.0		

Table 2. Level of Service Criteria for Signalized and Unsignalized Intersections

The existing conditions, no-build conditions, medium-term, and long-term capacity analysis was conducted using Highway Capacity Software (HCS).

5.1 Data Collection and Design Hourly Traffic Volumes

ODOT collected peak hour turning movement counts (TMC) for both intersections in December 2020. ODOT forecasted design hourly traffic volumes (DHVs) using its SHIFT tool. To account for seasonal fluctuations in traffic volumes ODOT developed DHVs for the intersection of US 62 and SR 557 using a historic TMC collected in August 2017. No historic TMC was available for the intersection of US 62 and CR 201 so ODOT developed DHVs using the December 2020 TMC. The DHVs provided by ODOT included a.m. and p.m. peak period traffic volumes for 2024 and 2044. The DHVs used for the capacity analysis are included in Appendix C.

5.2 Existing Conditions Capacity Analysis Results

Arcadis conducted a traffic analysis to evaluate existing operations at both intersections. The results of the existing capacity analysis are presented in Table 3.

As shown in the table, at the intersection of US 62 and SR 557, the westbound movement operates at LOS A in the a.m. and p.m. peak hours. The average queue on US 62 westbound is one car when vehicles are stopped while waiting to make a left-turn maneuver, although the longest queue is five cars. The northbound movement operates at LOS A in the a.m. peak hour and LOS C in the p.m. peak hour. The average queue on SR 557 during the p.m. peak hour is 2.3 cars, although the longest queue is six cars.

At the intersection of US 62 and CR 201, the eastbound movement operates at LOS A in the a.m. and p.m. peak hours. The average queue on US 62 eastbound is one car when vehicles are stopped while waiting to make a left-turn maneuver, although the longest queue is seven cars. The southbound movement operates at LOS C during the a.m. peak hour and LOS D during the p.m. peak hours. The average queue on CR 201 during the p.m. peak hour is 2.5 cars, although the longest queue is three cars.

Outputs from HCS are included in Appendix D.

		АМ			РМ		
Intersection	Movement	LOS	Delay (seconds)	Average Queue Length (veh)	LOS	Delay (seconds)	Average Queue Length (veh)
	Eastbound		N/A*			N/A*	
SR 557	Westbound	Α	8.6	1.0	Α	8.7	1.0
	Northbound	Α	10.0	1.0	С	21.3	2.3
	Eastbound	Α	8.3	1.0	Α	8.8	1.0
CR 201	Westbound		N/A*			N/A*	
	Southbound	С	22.8	1.6	D	30.2	2.5

Table 3. Existing Conditions (2020) Capacity Analysis Results

*This approach has no restricted movements.

5.3 No-Build Conditions Capacity Analysis Results

Arcadis analyzed future traffic operations assuming no improvements are made using traffic volumes forecasted to 2024 and 2044. This is referred to as a no-build condition capacity analysis and was conducted to evaluate intersection operations if no improvements are constructed at either intersection. The results of the no-build capacity analysis are presented in Tables 4 and 5.

As shown in Table 4, in 2024, at the intersection of US 62 and SR 557, the westbound movement operates at LOS A in the a.m. and p.m. peak hours. The average queue on US 62 westbound is one car when vehicles are stopped while waiting to make a left-turn maneuver, although the longest queue is ten cars. The northbound movement operates at LOS C in the a.m. peak hour and LOS E in the p.m. peak hour. The average queue on SR 557 during the p.m. peak hour is 4.4 cars, although the longest queue is six cars.

As shown in Table 4, in 2024, at the intersection of US 62 and CR 201, the eastbound movement operates at LOS A in the a.m. and p.m. peak hours. The average queue on US 62 eastbound is one car when vehicles are stopped while waiting to make a left-turn maneuver, although the maximum longest is ten cars. The southbound movement operates at LOS F during the a.m. and p.m. peak hours. The queue on CR 201 during the a.m. peak hour is 10.5 cars.

As shown in Table 4, overall, traffic operations will deteriorate slightly as traffic volumes in the study area increase.

Intersection Movem		АМ			РМ			
	Movement	LOS	Delay (seconds)	Average Queue Length (veh)	LOS	Delay (seconds)	Average Queue Length (veh)	
	Eastbound	N/A*			N/A*			
SR 557	Westbound	Α	9.2	1.0	Α	9.0	1.0	
	Northbound	С	19.6	2.0	Е	39.2	4.4	
CR 201	Eastbound	Α	8.8	1.0	Α	9.6	1.0	
	Westbound	N/A*			N/A*			
	Southbound	F	161.5	10.5	F	140.2	8.6	

Table 4. No-Build Conditions (2024) Capacity Analysis Results

*This approach has no restricted movements.

As shown in Table 5, in 2044, at the intersection of US 62 and SR 557, the westbound movement operates at LOS A in the a.m. and p.m. peak hour. The average queue on US 62 westbound is one car when vehicles are stopped while waiting to make a left-turn maneuver, although the longest queue is sixteen cars. The northbound movement operates at LOS D in the a.m. peak hour and LOS F in the p.m. peak hour. The queue on SR 557 during the p.m. peak hour is 11.7 cars.

As shown in Table 5, in 2044, at the intersection of US 62 and CR 201, the eastbound movement operates at LOS A in the a.m. and p.m. peak hours. The average queue on US 62 eastbound is one car when vehicles are stopped while waiting to make a left-turn maneuver, although the longest queue is sixteen cars. The southbound movement operates at LOS F during the a.m. and p.m. peak hours. The queue on CR 201 during the a.m. peak hour is 17.8 cars.

		АМ			РМ			
Intersection	Movement	LOS	Delay (seconds)	Average Queue Length (veh)	LOS	Delay (seconds)	Average Queue Length (veh)	
	Eastbound	N/A*			N/A*			
SR 557	Westbound	Α	9.4	1.0	Α	9.4	1.0	
	Northbound	D	28.9	3.2	F	172.6	11.7	
CR 201	Eastbound	Α	9.0	1.0	Α	10.0	1.0	
	Westbound	N/A*			N/A*			
	Southbound	F	381.5	17.8	F	392.3	15.3	

*This approach has no restricted movements.

Note: Table 4 and Table 5 show that delay on CR 201 may indicate adding a southbound right turn lane may be an appropriate countermeasure. However, a southbound right turn lane on CR 201 was not included as a potential countermeasure because only one crash occurred on CR 201. A southbound right turn lane may be an appropriate capacity improvement to reduce delay and it may also provide a safety benefit. However, the presence of only one crash on CR 201 does not provide an evidenced safety need to include this countermeasure.

The HCS analysis results for 2024 and 2044 are included in Appendix D.

5.4 Turn Lane Warrants

Turn lane warrants on free-flow approaches were checked according to Figures 401-5b and 401-6b in ODOT's Location and Design Manual. Table 6 identifies locations that warrant left or right turn lanes on US 62.

Intersection	Turn Lane	Turn Lane Warranted
Eastbound Right Turn		Yes
SR 557	Westbound Left Turn	Yes
CD 201	Eastbound Left Turn	Yes
CR 201	Westbound Right Turn	Yes

Table 6. Turn Lane Warrants

The table shows that left and right turn lanes are warranted on US 62 at the intersection of SR 557 and CR 201. The turn lane warrant analysis results are included in Appendix E.

Note: Adding an eastbound right turn lane at SR 557 or a westbound right turn lane at CR 201 may be an appropriate capacity improvement that may also provide a safety benefit. However, the crash analysis discussed in Section 4 indicates no crashes occurred on the west approach at SR 557 or on the east approach at CR 201. Therefore, even though these two right turn lanes are warranted they are not included in the proposed countermeasures discussed in Section 7 because there is no evidenced safety need.

5.5 Traffic Signal Warrant Analysis

A traffic signal warrant analysis was conducted for both intersections using ODOT's Office of Traffic Operations (OTO) Signal Warrant spreadsheet following ODOT's Traffic Engineering Manual (TEM) Section 402-3. The signal warrant spreadsheet requires 24 hours of raw turning movement counts. However, the peak-hour turning movement counts collected by ODOT in December 2020 included data for the peak 12 hours of the day. Therefore, 12 hours of TMC data were input into the spreadsheet. Neither intersection met the requirements for a traffic signal. Traffic signal warrants were also evaluated using Highway Capacity Software (HCS). Traffic signal warrants 1a, 1b, 1c, 2, 3a, and 3b, which compare peak-hour volumes to certain thresholds, were analyzed. The traffic signal warrant analysis results from HCS are summarized in Table 7 and indicate that both intersections met the requirements for a traffic signal.

Intersection	Eight-Ho	Warrant 1 ur Vehicular \	/olumes	Warrant 2 Four-Hour	Warrant 3 Peak-Hour Volumes	
	1A	1B	1C	Volumes	3A	3B
SR 557	N	Y	Y	Y	N	Y
CR 201	N	Y	Y	Y	N	Y

shla 7 I aval of Sanvice	Critoria for Signaliza	hazilennian I hac he	Intercections
1016 1. LEVEI UI GEIVILE			111101300110113

Installation of a traffic signal at either intersection may help to reduce peak-hour side road delay and make it easier for side street traffic to find gaps to enter US 62. However, given that traffic signals statistically increase the frequency and severity of rear-end crashes, installation of a traffic signal may negatively impact overall intersection safety. Other intersection control options may be considered to improve the performance of the side street without negatively impacting the safety of the major road. ODOT's Economic Crash Analysis Tool (ECAT) predicts that installing traffic signals at SR 557 and at CR 201 may lead to seven additional crashes per year within the study area.

The traffic signal warrant analysis results using ODOT's OTO Signal Warrant spreadsheet and using HCS are included in Appendix F.

6 Crash Probable Causes

As indicated in Section 4, rear-end crashes and angle crashes accounted for a majority of the crashes that occurred in the study area between 2017 and 2019. Probable causes and additional details regarding these crash types are summarized below:

- Rear-End Crashes This is the predominant crash type at both intersections. Six westbound rear-end crashes occurred at the intersection of SR 557 and five eastbound rear-end crashes occurred at the intersection of CR 201. Two occurred on SR 557 and one occurred on CR 201. Assured clear distance or following too closely was the contributing factor in most of these crashes according to the OH-1 reports, indicating that inattentive driving may be a common contributing factor. In addition, the study area experiences a spike in seasonal tourist traffic during the summer months. Although not specifically stated in the OH-1 reports, some of the crashes may occur because drivers are not local to the area, may be unfamiliar with these two intersections, and may be surprised when vehicles are stopped on US 62 waiting to turn left.
- Angle Crashes Angle crashes are the second most predominant crash type within the study area. Two
 angle crashes occurred at the intersection of US 62 at SR 557 and three angle crashes occurred at the
 intersection of US 62 at CR 201. Failure to yield was the contributing factor cited in the OH-1 reports.
 Although not specifically stated in the OH-1 reports, some of the crashes may occur because sight distance is
 limited at both intersections. As stated in Section 3, sight distance on the eastbound approach at SR 557 is
 slightly substandard, and eastbound and westbound sight distance at CR 201 is limited by the permanent sign
 structure in the northeast quadrant and the hill in the northwest quadrant, making it difficult for eastbound and
 westbound drivers on US 62 to see vehicles queued on CR 201.
- *Sideswipe-Passing Crashes* The crash identified as a sideswipe-passing crash was actually a rear-end crash at the SR 557 intersection caused by a vehicle attempting to avoid a rear-end crash.

• Not a Collision Between Two Motor Vehicles – The single vehicle crash that occurred at CR 201 involved a pickup truck with a trailer that overturned while the truck was exiting the roadway. The OH-1 report did not indicate whether the vehicle was attempting to avoid a rear-end crash.

Two crashes, one of the angle crashes and the sideswipe-passing crash summarized above, were recoded as rear-end crashes after reviewing the OH-1 reports.

7 Proposed Countermeasures

Given that the majority of crashes in the study area were rear-end crashes, the proposed countermeasures focus on mitigating this type of crash:

- Short Term The goal of the short-term countermeasures is to improve the visibility of the two intersections:
 - The intersection of US 62 at SR 557 has dual intersection-ahead advanced warning signs on both US 62 approaches, a stop-ahead advanced warning sign on the right side of SR 557, and dual stop signs at the intersection. The existing intersection-ahead advanced warning signs on the right side of each approach will be replaced with flashing LED intersection ahead advanced warning signs. The existing stop sign on the right side of SR 557 will be replaced with a flashing LED stop sign and the existing stop-ahead advanced warning sign on the right side of SR 557 will be replaced with a flashing LED stop-ahead advanced warning sign.
 - The intersection of US 62 at CR 201 has intersection-ahead advanced intersection ahead warning signs on the right side of US 62 on both approaches, a single stop-ahead advanced warning sign on the right side of CR 201, and a single stop sign at the intersection. The existing intersection-ahead advanced warning signs on the right side of each approach on US 62 will be replaced with flashing LED intersection ahead advanced warning signs. Two new intersection-ahead advanced warning signs will be placed on the left side of US 62 at CR 201 on both approaches to provide dual advanced warning signs. The existing stop sign on the right side of CR 201 will be replaced with a flashing LED stop sign and the existing stop-ahead advanced warning sign on the right side of CR 201 will be replaced with a flashing LED stop sign and the EXISTING stop ahead advanced warning sign. A second stop sign on the left side of CR 201.
- Medium Term There are three goals of the medium-term countermeasures. The first is to provide storage on US 62 for vehicles turning left to allow through movements to continue under free-flow conditions. The second is to provide a northbound right turn lane on SR 557 so northbound right turning vehicles can bypass the queue of northbound left turning vehicles. The third is to improve the visibility of the intersection.
 - o Construct a westbound left-turn lane on US 62 at SR 557
 - o Construct an eastbound left-turn lane on US 62 at CR 201
 - Construct a northbound right turn lane on SR 557 so northbound right turning vehicles can bypass the queue of northbound left turning vehicles. Currently, if a northbound passenger vehicle is stopped while waiting to turn left, northbound vehicles wishing to turn right will use the shoulder to go around the stopped vehicle and turn right.
 - This countermeasure will also include the signing upgrades described above where the Short-Term countermeasures were discussed.
- Long Term The goal of the long-term countermeasure is to convert the intersection at SR 557 to a modern roundabout:

 This countermeasure will reduce delay on SR 557, reduce the number of angle crashes, and slow traffic speeds on US 62 as it passes through the CR 201 intersection.

Note: A southbound right turn lane on CR 201 was not included in the medium-term countermeasures because only one crash occurred on CR 201. A southbound right turn lane may be an appropriate capacity improvement to reduce delay and it may also provide a safety benefit. However, the presence of only one crash on CR 201 does not provide an evidenced safety need. Additionally, adding an eastbound right turn lane at SR 557 or a westbound right turn lane at CR 201 was also not included in the medium-term countermeasures because no crashes occurred on the west approach at SR 557 or on the east approach at CR 201. Therefore, even though these two right turn lanes are warranted they are not included in the proposed countermeasures because there is no evidenced safety need.

Conceptual schematics of the short-, medium-, and long-term improvements are included in Appendix G.

7.1 Short Term

The short-term countermeasures do not include any capacity improvements. Therefore, an HCS capacity analysis was not conducted.

7.2 Medium Term

A HCS capacity analysis was conducted to evaluate traffic operations with construction of a westbound left-turn lane at SR 557, an eastbound left-turn lane at CR 201, and a northbound right turn lane on SR 557. The capacity analysis was conducting using 2044 DHVs, and the results are presented in Table 8.

The addition of a westbound left-turn lane at the US 62 and SR 557 intersection will maintain the LOS of the left turn movement but will remove all delay from the westbound through movement. When compared to Table 5, the LOS on SR 557 will improve in both the a.m. and p.m. peak hours (significantly in the p.m. peak hour) but the LOS in the p.m. peak hour is still LOS F.

The addition of an eastbound left-turn lane at the US 62 and CR 201 intersection will maintain the LOS of the left turn movement but will remove all delay from the eastbound through movement. When compared to Table 5, the LOS on CR 201 improves slightly in the a.m. and p.m. peak hours but remains a LOS F because the lack of evidence of a safety issue on CR 201 did not yield any recommended improvements to the northern leg of the intersection.

		АМ			РМ		
Intersection	Movement	LOS	Delay (seconds)	Average Queue Length (veh)	LOS	Delay (seconds)	Average Queue Length (veh)
	Eastbound	N/A*			N/A*		
SR 557	Westbound	Α	9.4	1.0	Α	9.4	1.0
	Northbound	D	25.7	2.0	F	62.1	5.3
CR 201	Eastbound	Α	9.0	1.0	Α	10.0	1.0
	Westbound	N/A*			N/A*		
	Southbound	F	349.0	17.2	F	353.7	14.7

Table 8. Medium-Term Proposed Improvements (2044) Capacity Analysis Results

*This approach has no restricted movements.

Table 8 indicates that a southbound right turn lane on CR 201 may be an appropriate capacity improvement to reduce southbound delay. However, as discussed in Section 7 this countermeasure was not included because only one crash occurred on CR 201. A southbound right turn lane may be an appropriate capacity improvement to reduce delay and it may also provide a safety benefit. However, the presence of only one crash on CR 201 does not provide an evidenced safety need to include this countermeasure.

The HCS analysis results for 2044 are included in Appendix D.

7.3 Long Term

Table 9 presents the results of an HCS analysis conducted to assess operations if the US 62 and SR 557 intersection is reconfigured into a modern single-lane roundabout. The capacity analysis was conducting using 2044 DHVs.

The table shows that in 2044, a roundabout at the SR 557 intersection operates at an overall LOS A in the a.m. peak hour and LOS B in the p.m. peak hour. The long-term countermeasure does not include any capacity improvements at CR 201. The table shows that the long-term countermeasure is expected to have a positive impact on capacity compared to the no-build conditions. The reconfiguration of the intersection into a modern single-lane roundabout is expected to reduce delay on US 62.

Intersection		АМ			РМ			
	Movement	LOS	Delay (seconds)	Average Queue Length (veh)	LOS	Delay (seconds)	Average Queue Length (veh)	
	Eastbound	Α	9.9	3.4	Α	9.6	3.1	
SR 557	Westbound	Α	8.4	2.8	В	13.4	6.0	
	Northbound	Α	8.2	1.0	Α	8.7	8.7	

Table 9. Long-Term Proposed Improvements (2044) Capacity Analysis Results

The HCS analysis results for 2044 are included in Appendix D.

8 Conceptual Estimate of Probable Cost

A conceptual estimate of probable cost to implement the short-, medium-, and long-term countermeasures was prepared using ODOT historical bid prices. The estimates include the cost for design, right-of-way, and construction. Estimated construction costs were developed using estimated quantities for items that would be needed for or impacted by implementation of the recommended improvements.

The following assumptions were utilized in developing the conceptual estimate of probable cost:

- Unit prices for all items were estimated based on ODOT's Summary of Contracts Awarded for 2020, Procedures for Budget Estimating, and prior bid tabs.
- A 25 percent contingency was selected based on the Procedures for Budget Estimating.
- A 25 percent design engineering fee was applied to each countermeasure.
- The rate of inflation was calculated using the ODOT Office of Estimating Fiscal Year 2021–2025 Business Plan Inflation Calculator. Based on a construction midpoint of June 2023, a 12.4 percent rate of inflation (to the assumed midpoint of construction) was assumed.

The total 2025 conceptual estimate of probable cost (with inflation) is \$57,217 for the short-term countermeasures, \$2,047,410 for the medium-term countermeasure, and \$2,053,030 for the long-term countermeasure. A detailed cost estimate is included in Appendix H.

9 Safety Benefits

The safety benefit associated with each of the three improvements discussed in Section 8 was analyzed.

The American Association of State Highway and Transportation Officials (AASHTO) Highway Safety Manual (HSM) is used to determine how a corridor, or intersection, is performing compared to similar locations.² It is also used to assess the safety benefits of proposed countermeasures. The HSM Part C discusses use of a predictive model for this type of analysis. The predictive method estimates the predicted crash frequency (N_{predicted}) together

² AASHTO. 2010. Highway Safety Manual. First Edition.

with observed crash frequency to estimate the expected crash frequency (N_{expected}). The difference between predicted and expected crash frequency is explained below.

N_{predicted} is the anticipated (predicted) crash frequency, which describes how a location is expected to perform relative to similar sites. The calculation of N_{predicted} uses Safety Performance Functions to determine a base condition and applies crash modification factors (CMFs) to account for site-specific features that are different from the base condition. The final value is multiplied by a calibration factor specific to Ohio to normalize the base condition.

 $N_{expected}$ is the estimated expected average crash frequency at a site for a given time period. The calculation of $N_{expected}$ uses the Empirical Bayes method to combine actual crash frequency with $N_{predicted}$.

The difference between $N_{\text{predicted}}$ and N_{expected} is the "expected excess crashes." If N_{expected} is greater than $N_{\text{predicted}}$, the location may benefit from a safety improvement. If N_{expected} is less than $N_{\text{predicted}}$, the site is experiencing fewer crashes than similar sites.

ODOT's ECAT was used to calculate N_{predicted} and N_{expected}. The existing conditions (traffic control, presence of a median, number of lanes, intersection control, lighting, presence of driveways) of the study area were input into ECAT. CMFs were used in ECAT to calculate the reduction in crashes that can be expected if a particular improvement is implemented. ODOT's ECAT was also used to perform a benefit-cost analysis for the recommended improvements. The CMF values used to predict the safety benefit of the short-, medium-, and long-term countermeasures are listed below:

- Short-Term
 - Installation of flashing LED stop signs at stop-controlled intersections CMF = 0.59, and flashing stopahead warning signs before stop signs at stop-controlled intersections/intersection ahead warning signs – CMF = 0.919.
- Medium-Term
 - Installation of flashing LED stop signs at stop-controlled intersections CMF = 0.59, and flashing stopahead warning signs before stop signs at stop-controlled intersections/intersection ahead warning signs – CMF = 0.919. Addition of left-turn lanes at the SR 557 and CR 201 intersections along with a northbound right turn lane on SR 557.
- Long-Term
 - Conversion of a stop-controlled intersection into a single-lane roundabout at US 62 and SR 557 CMF = 0.13 (for KA, B, and C) and CMF = 0.29 (for O).

Complete ECAT results are included in Appendix I.

9.1 Short Term

Table 10 presents a comparison of existing intersections (N_{expected existing}) to similar intersections (N_{predicted existing}) and the proposed conditions if the short-term countermeasures are implemented (N_{predicted proposed}). The table shows that overall, the two intersections are functioning slightly better than their peers by 0.7 crashes per year. However, the third column in table 10 shows that there is potential for safety improvement in non-incapacitating (B category) crashes. The table also shows that if the short-term countermeasures are implemented, the frequency of injury and PDO crashes is predicted to decrease, these two intersections are predicted to operate better than their peers, and the overall crash frequency may decrease by 0.63 per year.

Crashes	КА	в	с	о	Total
N _{predicted} (Existing Conditions)	0.46	0.46	1.83	5.71	8.46
N _{expected} (Existing Conditions)	0.38	1.09	0.79	5.49	7.75
NPotential for Improvement (Existing Conditions)	-0.08	0.63	-1.04	-0.23	-0.71
N _{predicted} (Proposed Conditions)	0.35	1.01	0.72	5.04	7.12

Table 10. Short-Term Countermeasure ECAT Analysis Results Summary

ODOT's ECAT was also used to compare the cost to construct the short-term countermeasures to the anticipated safety benefit. The results of the benefit-cost analysis are shown in Table 11.

Table 11. Short-Term Countermeasure Benefit-Cost Summary

Value	Result		
Expected Annual Crash Adjustment	0.63		
Net Present Value of the Build Alternative	\$57,217		
Net Present Value of Safety Benefit	\$180,724		
Benefit-Cost Ratio	3.16		

The short-term countermeasures show a benefit-cost ratio greater than 1, which indicates a positive return on investment.

9.2 Medium Term

Table 12 presents the same comparison of the existing intersections (N_{expected existing}) to similar intersections (N_{predicted existing}) and the proposed conditions if the medium-term countermeasure is implemented (N_{predicted proposed}). The table shows that the two intersections are functioning slightly better than their peers by 0.7 crashes per year. However, the third column in table 10 shows that there is potential for safety improvement in non-incapacitating (B category) crashes. The table also shows that if the medium-term countermeasure is implemented, the intersections are predicted to operate better than their peers and crashes may decrease by four per year.

Crashes	KA	В	С	ο	Total
N _{predicted} (Existing Conditions)	0.46	0.46	1.83	5.71	8.46
N _{expected} (Existing Conditions)	0.38	1.09	0.79	5.49	7.75
NPotential for Improvement (Existing Conditions)	-0.08	0.63	-1.04	-0.23	-0.71
N _{predicted} (Proposed Conditions)	0.23	0.24	0.97	2.91	4.34

Table 12. Medium-Term Countermeasure ECAT Analysis Results Summary

ODOT's ECAT was also used to compare the cost to construct the medium-term countermeasure to the anticipated safety benefit. The results of the benefit-cost analysis are shown in Table 13.

Table 13. Medium-Term Countermeasure Benefit-Cost Summary

Value	Result		
Expected Annual Crash Adjustment	4.11		
Net Present Value of the Build Alternative	\$2,047,410		
Net Present Value of Safety Benefit	\$2,632,103		
Benefit-Cost Ratio	1.29		

The medium-term countermeasure shows a benefit-cost ratio greater than 1, which indicates a positive return on investment.

9.3 Long Term

Table 14 presents the same comparison of the existing intersections (N_{expected existing}) to similar intersections (N_{predicted existing}) and the proposed conditions if the long-term countermeasure is implemented (N_{predicted proposed}). The table shows that the two intersections are functioning slightly better than their peers by 0.7 crashes per year. However, the third column in table 10 shows that there is potential for safety improvement in non-incapacitating (B category) crashes. The table also shows that if the long-term countermeasure is implemented, the intersection is predicted to operate better than its peers and crashes may decrease by almost three per year.

Table 14. Long-Term Countermeasure ECAT Analysis Results Summary

Crashes	KA	В	с	ο	Total
N _{predicted} (Existing Conditions)	0.46	0.46	1.83	5.71	8.46
N _{expected} (Existing Conditions)	0.38	1.09	0.79	5.49	7.75
NPotential for Improvement (Existing Conditions)	-0.08	0.63	-1.04	-0.23	-0.71
N _{predicted} (Proposed Conditions)	0.24	0.24	0.96	3.51	4.95

ODOT's ECAT was also used to compare the cost to construct the long-term countermeasure to the anticipated safety benefit. The results of the benefit-cost analysis are shown in Table 15.

Table 15. Long-Term Countermeasure Benefit-Cost Summary

Value	Result	
Expected Annual Crash Adjustment	3.50	
Net Present Value of the Build Alternative	\$2,053,030	
Net Present Value of Safety Benefit \$2,524,020		
Benefit-Cost Ratio	1.23	

The long-term countermeasure shows a benefit-cost ratio greater than 1, which indicates a positive return on investment.

When deciding whether to implement the medium-term countermeasure versus the long-term countermeasure it is important to compare the predicted safety benefit to the predicted construction cost. Comparing Table 12 to Table 14 shows that the predicted safety benefit associated with the long-term countermeasure is very similar to the predicted safety benefit associated with the medium-term countermeasure. Comparing Table 13 to Table 15 shows that implementing the long-term countermeasure will cost more than implementing the medium-term countermeasure. Given the similar safety benefit the cost to implement the long-term countermeasure may not be justified from a safety perspective.

10 Conclusions and Recommendations

ODOT's ECAT was used to calculate the reduction in crashes that can be expected if the short-, medium-, and long-term countermeasures are implemented and to perform a benefit-cost analysis for each set of countermeasures based on the safety benefit. A benefit-cost ratio greater than 1 indicates a positive return on investment.

Table 16 presents the results of the benefit-cost analysis for each set of improvements.

Table 16. Short-, Medium-, and Long-Term Countermeasure Benefit-Cost Summary

Value	Short-Term Countermeasures	Medium-Term Countermeasure	Long-Term Countermeasure
Expected Annual Crash Adjustment	0.63	4.11	3.50
Net Present Value of the Build Alternative	\$57,217	\$2,047,410	\$2,053,030
Net Present Value of Safety Benefit	\$180,724	\$2,632,103	\$2,524,020
Benefit-Cost Ratio	3.16	1.29	1.23

The benefit-cost ratios for the short-, medium-, and long-term countermeasures are favorable (i.e., above 1). Therefore, if these countermeasures are implemented, they are predicted to provide a sufficient safety benefit to justify the cost of construction.

It is recommended that the short-term countermeasures be constructed. Crashes at both intersections should then be monitored to determine if the crash frequency is reduced before determining whether to construct the additional countermeasures.

If additional countermeasures are implemented, it is recommended that the medium-term countermeasures be constructed. The predicted safety benefit associated with the long-term countermeasure is very similar to the predicted safety benefit associated with the medium-term countermeasure while the estimated cost to construct the long-term countermeasure is higher than the estimated cost to construct the medium-term countermeasure. Therefore, given the similar safety benefit the cost to implement the long-term countermeasure may not be justified from a safety perspective.

Arcadis U.S., Inc. 1300 Superior Avenue, Suite 1300 Cleveland Ohio 44114 Phone: 216 298 5239 Fax: 216 781 6177 www.arcadis.com

APPENDIX A

Crash Analysis Module Tool Results

Frequency of Crashes by Hour

US 62 at SR 557

Frequency of Crashes by Contributing Factor 1

US 62 at SR 557

US 62 at SR 557

Select Site Type	Seg/Rur; 2-lane

Crach Soverity	Site	Average	Statewide Average			
clash sevency	Total (2017-2019)	Total (%)	Total (%)			
Fatal Crash	0	0.00%	0.93%			
Serious Injury Suspected Crash	1	4.76%	4.50%			
Minor Injury Suspected Crash	4	19.05%	14.06%			
Injury Possible Crash	3	14.29%	7.65%			
Property-Damage-Only	13	61.90%	72.86%			
Total	21					

Crashes by Crash Type													
	То	tal (%)	Fatal & A	ll Injury (%)									
Crash Type	Site Average	Statewide Average	Site Average	Statewide Average									
Unknown	0.00%	0.19%	0.00%	0.12%									
Head On	0.00%	2.86%	0.00%	5.74%									
Rear End	66.67%	10.26%	62.50%	15.40%									
Backing	0.00%	1.12%	0.00%	0.56%									
Sideswipe - Meeting	0.00%	2.30%	0.00%	3.00%									
Sideswipe - Passing	0.00%	3.66%	0.00%	3.92%									
Angle	23.81%	2.36%	25.00%	4.64%									
Parked Vehicle	0.00%	0.81%	0.00%	0.79%									
Pedestrian	0.00%	0.26%	0.00%	0.88%									
Animal	0.00%	33.28%	0.00%	5.60%									
Train	0.00%	0.02%	0.00%	0.03%									
Pedalcycles	4.76%	0.14%	12.50%	0.48%									
Other Non-Vehicle	0.00%	0.01%	0.00%	0.04%									
Fixed Object	0.00%	34.58%	0.00%	47.05%									
Other Object	0.00%	0.92%	0.00%	0.21%									
Falling From Or In Vehicle	0.00%	0.00%	0.00%	0.00%									
Overturning	0.00%	2.75%	0.00%	6.35%									
Other Non-Collision	4.76%	1.30%	0.00%	0.54%									
Left Turn	0.00%	2.66%	0.00%	4.09%									
Right Turn	0.00%	0.52%	0.00%	0.56%									

Crashes by Light Conditions													
	То	tal (%)	Fatal & A	ll Injury (%)									
Light Conditions	Site Average	Statewide Average	Site Average	Statewide Average									
Daylight	76.19%	48.48%	75.00%	63.03%									
Dawn/Dusk	9.52%	6.46%	0.00%	4.79%									
Dark - Lighted Roadway	0.00%	1.78%	0.00%	1.47%									
Dark - Roadway Not Lighted	14.29%	42.57%	25.00%	30.27%									
Dark - Unknown Roadway Lighting	0.00%	0.28%	0.00%	0.16%									
Other / Unknown	0.00%	0.43%	0.00%	0.28%									

Crashes by Road Conditions													
	То	tal (%)	Fatal & A	ll Injury (%)									
Road Conditions	Site Average	Statewide Average	Site Average	Statewide Average									
Dry	80.95%	69.75%	87.50%	69.58%									
Wet	9.52%	18.12%	12.50%	19.13%									
Snow	9.52%	8.08%	0.00%	7.31%									
Ice	0.00%	3.11%	0.00%	3.16%									
Sand, Mud, Dirt, Oil, Gravel	0.00%	0.04%	0.00%	0.06%									
Water (Standing, Moving)	0.00%	0.10%	0.00%	0.08%									
Slush	0.00%	0.54%	0.00%	0.55%									
Other / Unknown	0.01%	0.26%	0.00%	0.13%									

APPENDIX B

Crash Diagrams

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

APPENDIX C

Design Hourly Volumes

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

	US 62	US 62	NA	SR 557	
Location	<i>West Leg</i> SHOL00062R 24.75	East Leg SHOL00062R 24.75	North Leg	South Leg SHOL00557R 8.69	US 62 & SR 557 in Holme
2024 ADT	11,100 *	12,300 *	0 *	4,150 *	
2044 ADT	11,800 *	12,800 *	0 *	4,350 *	
К	0.10	0.10	0.00	0.10	
DHV	1,180	1,280	0	440	
D	0.56	0.56	-1.00	0.51	
T24	0.14	0.14	0.00	0.14	
TD	0.08	0.09	0.00	0.11	

* pivot from turn movmement count ADT

Page 1 of 13

2/9/2021 2:13:49 PM

cvarcoll

Method: IPF

s County

PID Location HOL 62 24.75

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

Page 3 of 13

2/9/2021 2:13:49 PM

PID Location HOL 62 24.75

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

Page 9 of 13

cvarcoll

Pivot Forecast From TurnsCount: Yes

CMS DB VersionApril 2020

#

1

2

3

4

Ver 3.4, 10-26-2018 Modeling & Forecasti

PID Location HOL 62 24.75

Simplified HIghway Forecasting Tool (SHIFT) **Design Designation**

RptIntersectionTbl ID 1 (1-Design Yr, 2-Opening Year) INTERSECTION TABLE VALUES Forecast Year 2044 Target Forecast Volumes Counted ADT ADT Annual Growth Rate Leg 2040 CNT AM Vol. Keyed Car+TK Keyed PM ADT Yr К Street Name Keyed Leg DHV K K Keved Year Yr Keved % ADT Vol Car TRK Route AM Keved PM Keyed ADT Keved US 62 2020 ✓ 11,492 10,400 24.7 31.3 1113 1284 12835 12835 0.10 ✓ 55.9 0.61% SR 557 7.7 377 0.10 2020 3,679 27.8 3,850 20.2 435 4347 4347 ✓ ✓ 0.86% **US 62** 10,449 1022 0.10 2020 🗸 55.9 10,400 25.0 31.0 1179 11792 0.61% 11792 NA 0 0 🗸 0 0 0.00 0 0 0.0 0.00% 0 0.0 0.0 Turning Mvmt Count Year 2017 ✓ Pivot from turnscounts to target volume 1 Rate for all OTH OTHER Keyed CMS SHIFT Data 0 2044 ADT=10580.725 DHV=1058.0725, 2024 ADT=9461.745 DHV=946.1745SHOLUS00062**C, 24.75 |11178,11178,SHOL00062R,24748, 169,0,0,0,0,2008,7360,890,8250,2011,7502,628,8130,2014,7763,896,8659,2016,8051,929,8980,2019,7955,1227,9182,50,2040,8069,1106,7979,1108,8064,1206,7976,1237,8010,1201,0,0,9408,1850,9154,1648,9361,2706,9127,2791,8700,2645 3,5,5,0,0,6278,517,6592,967,467,23,6338,500,6871,1008,517,24,9694,1884,50,53,85,A 0.71,9605,-3688,9775,1.05,9612,9694, RAF,0.94,1858,-77,1898,151,1811,1884, RAF,9294,1971,9129,1766,9252,2726,9105,2780,8644,2670 MODEL,6358,10986,778,3746,8644,9408,1648,2791,7741,7877,1858,1898,6358,10986,778,3746,0.0087,0.0072,0.0084,0.007,0.0078,0.008,0.0071,0.0089,0.0014,-9999,-0.00014,-9999,-0.00014,-9999,-0.00014,-9099,-0.00014,-9099,-0.00014,-0999,-0. Leg1 2044 ADT=3944.24 DHV=394.424, 2024 ADT=3387.248 DHV=338.7248SHOLSR00557**C, 10.19 |11144,11144,SHOL00557R,8694, ,1493,0,0,0,0,2008,1960,200,2160,2011,2973,275,3248,2014,2949,362,3311,2016,3070,377,3447,2019,3056,192,3248,5,0,2040,3269,299,3264,390,3064,263,3073,220,3076,213,0,0,5089,371,5503,947,3345,68,3311,-47,3482,-546,0,0,1059,308,806,74,210,421,158,426,423,449,0,0,3,6,4,5,0,0,1005,42,1254,114,71,2,998,43,1376,102,91,2,3775,298,50,56,8,5,A , 1.48,3899,1057,3687,1.2,3863,3775, RAF,1.54,334,68,284,1.74,312,298, RAF,4876,264,525 566,0,0,0,1,0,0,0,1,0,1, MODEL, AVG ,2616,7207,-1464,1095,329,5503,-565,248,334,2516,7207,-1464,1095,0.0317,0.0345,0.0044,0.0034,0.0349,0.0349,0.0344,0.0037,0.0066,0.0079,0.0055,0.004,0.0069,0.0044,0.0066,0.00444,0.1873,-0.0308,-0.0593,-0.183,-9999,0.0179,0.1881,-0.0662,-0.1882,-9999,0.0263,0.0352,0.0228,0.0228,0.0263,-0.4107,0.224,0.04,2,5294,748,3500,350,3850,0.1,0.55,0.09,0.055,0.59,KH,557,KH,57,KH,56,424,0,55,0.09,0.055,0.59,0.59,0.59,0.055,0.005,0.0352,0.0252,0.0228,0.0253,-0.4107,0.224,0.044,2,5294,748,3500,350,3850,0.1,0.55,0.09,0.055,0.59,KH,57,KH Leg2 2044 ADT=10580.725 DHV=1058.0725, 2024 ADT=9461.745 DHV=946.1745SHOLUS00062**C, 24.75 |11178,11178,SHOL00062R,24748, ,169,0,0,0,2008,7360,890,8250,2011,7502,628,8130,2014,7763,896,8659,2016,8051,929,8980,2019,7955,1227,9182,5,0,2040,8069,1106,7979,1108,8064,1206,7976,1237,8010,1201,0,0,9408,1850,9154,1648,9361,2706,9127,2791,8700,2645 3,5,5,0,0,6278,517,6592,967,467,23,6338,500,6871,1008,517,24,9694,1884,50,53,8,5,a ,0.71,9605,-3688,9775,1.05,9612,9694, RAF ,0.94,1858,-77,1888,1.51,1871,1884, RAF ,9294,1971,9129,1766,9252,2726,9105,2780,8644,2670 MODEL,6358,10386,778,3746,8644,9408,1648,2791,7741,7877,1858,1938,6738,10986,778,3746,0.0087,0.0072,0.0048,0.007,0.0078,0.0070,0.0078,0.0067,0.0017,0.0008,-0.0013,-0.0005,-0.0013,-0.0009,-0.0096,0.0181,0 9999,0.0228,0.021,0.0582,0.0603,0.056,-9999,0.0255,0.0245,0.0255,0.0255,-0.0174,0.0978,0.0255,2,9129,1766,8500,1900,10400,0.1,0.52,0.18,0.1,0.53,S,HOL,62,R,24.748,0.169 Leg3 0 Leg4 http://maps.googleapis.com/maps/api/staticmap?size=360x357&maptype=roadmap&markers=size:mid%7Ccolor:blue%7Clabel:S%7C40.555394,-81.82416&markers=size:mid%7Ccolor:green%7Clabel:E%7C40.555418,-81.820947&sensor=false&path=color:0xff0000ff/w 81.82345|40.555408,-81.82269|40.555414,-81.821931|40.555418,-81.820947 URL1 http://maps.googleapis.com/maps/api/staticmap?size=360x357&maptvpe=roadmap&markers=size:mid%7Ccolor:blue%7Clabel:S%7C40.535718,-81.84645&markers=size:mid%7Ccolor:green%7Clabel:E%7C40.555394,-81.82416&sensor=false&path=color:0xff0000ff/w URL2 81.818798 40.544621, -81.823586 40.549937, -81.823573 40.555394, -81.82416 http://maps.googleapis.com/maps/api/staticmap?size=360x357&maptype=roadmap&markers=size:mid%7Ccolor:blue%7Clabel:S%7C40.555394,-81.82416&markers=size:mid%7Ccolor:green%7Clabel:E%7C40.555418,-81.820947&sensor=false&path=color:0xff0000ff|w 81.82345|40.555408,-81.82269|40.555414,-81.821931|40.555418,-81.820947 URL3 URL4 http://maps.googleapis.com/maps/api/staticmap?size=260x257&maptype=roadmap\&markers=size:mid%7Ccolor:blue%7Clabel:X%7C40.555394,-81.82416&sensor=false&path=color:0xff0000ff|weight:5|40.555418,-81.820947|40.555414,-81.821931|40.555408,-81 81.82416|40.555394,-81.82416|40.555401,-81.82345|40.555408,-81.82269|40.555414,-81.821931|40.555418,-81.820947 URLIX

Page 10 of 13

2/9/2021 2:13:49 PM

,0,0,388,536,176,432,6 ,0,0,0,1,0,0,0,0,0,0, .0031,0.0242,0.0163,0.	56,248,329,1 AVG , 0574,0.0607,
94,748,3336,-3,3293,-7 4,0.0077,0.0066,- R,8.694,1.493	5,3462,-
,0,0,388,536,176,432,6 ,0,0,0,1,0,0,0,0,0,0, .0031,0.0242,0.0163,0.	56,248,329,1 AVG , 0574,0.0607,
eight:5 40.555394,-81.	82416 40.555
eight:5 40.535718,-81.	816445 40.54
eight:5 40.555394,-81.	82416 40.555
.82269 40.555401,-81.8	2345 40.5553

CMS Ver PID	DB VersionApril 20 3.4, 10-26-2018	020 Modeling & F Location		Simplified HIghway Forecasting Tool (SHIFT) Design Designation																			
	2 (1-Design Vr. 2	Opening Vear)									CECTI												
	Eorocast Ve	2024 -							I	NIER	SECII		SLE	VAL	UES			. .					
Leg		root Nama	larget Foreca	ast Volumes	5	ADT			к		Cou	nted A	DT (CNT	ADI Ann	ual G	rowth	PCT	2040	_	_		
++	31		AM Keved	PM Keyed	ADT	Keyed	Leg DHV	К ₃₀	Keve	ed Yea	ar _{Keve}	ed Vol	• К	leyed	Car+TK	Keyed	%	Keved	d ADT Vol	Route	Car	TRK	
		05.62	1016	1172	11716		1172	0.10		202	0	11,4	.92	✓	55.9		0.61%		10,400		24.7	31.3	
2		SR 557	328	379	3790		379	0.10		202	0	3,6	79	✓	27.8		0.86%		3,850		20.2	7.7	
3		US 62	925	1067	10673		1067	0.10		202	0	10,4	49	✓	55.9		0.61%		10,400		25.0	31.0	
4		NA	0	0	0		0	0.00			0		0		0.0		0.00%		0		0.0	0.0	
т	urning Mvmt Count	Year 2017	7 🖌 P	ivot from turn	scounts to	o targe	t volume								🗌 1 Rat	e for	all						
	OTH OTHER Keved	CMS SHIFT	Data																				
Leg1	0	2044 ADT=10580. ,169,0,0,0,0,20 3,5,5,0,0,6278, MODEL,6358,1098 9999,0.0289,0.0	725 DHV=1058.072 008,7360,890,825 517,6592,967,46 36,778,3746,8644, 221,0.0582,0.060	25, 2024 ADT=9 0,2011,7502,622 7,23,6338,500,¢ ,9408,1648,279 3,0.056,-9999,0	461.745 DHV 3,8130,2014 5871,1008,5 1,7741,7877 0.0255,0.02	V=946.1 4,7763, 517,24, 7,1858, 245,0.0	745SHOLUS000 896,8659,2010 9694,1884,50, 1898,6358,109 26,0.025,0.02	52**C, 2 5,8051,9 ,53,8,5, 986,778, 255,-0.0	24.75 29,8 A 3746)174,	1117 980,201 ,0.71 ,0.0087 0.0978,	8,1117 9,7955, ,9605,- ,0.007 0.0255,	3,SHOL000 1227,918 -3688,977 2,0.0084, 2,9129,1	62R,2 2,5,0 5,1.0 0.007 766,8	24748, 0,2040 05,961 7,0.00 8500,1	,8069,1106 2,9694, R 45,-9999,0 900,10400,	,7979, AF ,0. .008,0 0.1,0.	1108,800 94,1858, .007,0.0 52,0.18,	54,120 -77,1 0078,0 0.1,0	6,7976,1237,8 898,1.51,1871 .0069,0.0041, .53,S,HOL,62,	010,1201,0,0, ,1884, RAF, -9999,-0.0009 R,24.748,0.16	9408,1850, 9294,1971, ,-0.0012,- 9	9154,1648 9129,1766 0.0005,-0	.9361,2706,9127,2791,8700,2645, 9252,2726,9105,2780,8644,2670, .0013,-0.0009,-0.0096,0.0181,0
Leg2	0	2044 ADT=3944.2 ,1493,0,0,0,0,2 546,0,0,1059,30 566,0,0,0,1,0,0 0.0069,0.0647,0	4 DHV=394.424, 2 008,1960,200,216 8,806,74,210,421 ,0,1,0,1, MODE .0066,0.0444,0.1	2024 ADT=3387.2 50,2011,2973,27 1,158,426,423,4 EL, AVG ,261 1873,-0.0308,-0	248 DHV=338 5,3248,201 49,0,0,3,6 6,7207,-14 0.0593,-0.1	3.72485 4,2949 5,4,5,0 164,109 .83,-99	HOLSR00557**C ,362,3311,201 ,0,1005,42,12 5,3293,5503,- 99,0.0179,0.1	2, 10.19 6,3070, 254,114, 566,947 .381,-0.	111 377,3 71,2, ,3403 0484,	1144,11 3447,20 ,998,43 3,3565, ,-0.066	144,SHO 19,3056 ,1376,1 284,334 2,-0.18	DL00557R, 5,192,324 .02,91,2,3 1,2616,72 882,-9999	3694, 3,5,0 3775, 07,-1 ,0.02),2040 298,5 1464,1 263,0.	,3269,299,3 0,56,8,5,A 095,0.0317, 0352,0.0228	3264,3 ,0.038 8,0.02	90,3064, 1.48,389 1,0.0045 98,0.026	263,3 9,105 ,0.00 3,-0.	073,220,3076,2 7,3687,1.2,38 4,0.0066,-999 4107,0.224,0.1	213,0,0,5089,3 53,3775, RAF 9,0.0284,0.034 04,2,5294,748,	371,5503,9 ,1.54,334 49,0.0044, ,3500,350,3	17,3345,63 68,284,1 0.0037,0.1 8850,0.1,	,3311,-47,3482,- .74,312,298, RAF,4876,264,523)063,-9999,0.0066,0.0079,0.0054).55,0.09,0.05,0.53,S,HOL,557,1
Leg3	0	2044 ADT=10580. ,169,0,0,0,0,20 3,5,5,0,0,6278, MODEL,6358,1098 9999,0.0289,0.0	725 DHV=1058.072 08,7360,890,8250 517,6592,967,467 6,778,3746,8644, 21,0.0582,0.0603	25, 2024 ADT=94 0,2011,7502,628 7,23,6338,500,6 9408,1648,2791 3,0.056,-9999,0	61.745 DHV ,8130,2014 ,871,1008,5 ,7741,7877 .0255,0.02	7=946.1 ,7763, 517,24, 7,1858, 245,0.0	745SHOLUS0006 896,8659,2016 9694,1884,50, 1898,6358,109 26,0.025,0.02	2**C, 2 ,8051,9 53,8,5, 986,778, 255,-0.0	4.75 29,89 A 3746, 174,0	1117 980,201 ,0.71 ,0.0087 0.0978,	8,11178 9,7955, ,9605,- ,0.0072 0.0255,	8,SHOL000 1227,918 3688,977 2,0.0084, 2,9129,1	52R,2 2,5,0 5,1.0 0.007 766,8	24748,),2040)5,961 7,0.00 3500,1	,8069,1106, 2,9694, Ri 45,-9999,0 900,10400,0	,7979, AF ,0. .008,0 0.1,0.	1108,806 94,1858, .007,0.0 52,0.18,	4,120 -77,1 078,0 0.1,0	6,7976,1237,8 898,1.51,1871, .0069,0.0041, .53,S,HOL,62,1	010,1201,0,0,5 1884, RAF,5 -9999,-0.0009, 8,24.748,0.165	9408,1850,9 9294,1971,9 ,-0.0012,-0	0154,1648 0129,1766 0.0005,-0	9361,2706,9127,2791,8700,2645, 9252,2726,9105,2780,8644,2670, .0013,-0.0009,-0.0096,0.0181,0
Leg4	0																						
URL1	http://maps.goog 81.82345 40.5554	leapis.com/maps	/api/staticmap?s	size=360x357&ma 931 40.555418,-	aptype=road 81.820947	dmap&ma	rkers=size:mi	id%7Ccol	.or:b	lue%7Cl	abel:S	\$7C40.555	394,-	-81.82	416▮	s=size	:mid%7Cc	color:	green%7Clabel	:E%7C40.555418	8,-81.8209	47&sensor	<pre>false&path=color:0xff0000ff we</pre>
URL2	http://maps.goog 81.818798 40.544	1eapis.com/maps 621,-81.823586	<pre>40.549937,-81.82 </pre>	size=360x357&ma 23573 40.555394 size=360x357cm	aptype=road 4,-81.82416 aptype=road	umap&ma 5 Jmap&ma	rkers=size.mi	id%70ccl	or:b.	lue%7Cl	abel:S	\$7040.535	394 -	-81.81	416&marke	rs=sizo	e:mid%70	color	green%7Clabe	·E%7C40 555/1	94,-81.824 881.8200	10úsensor	<pre>*Talse&path=color:UxiiU000ff we =false&path=color:0xff0000fflw</pre>
URL3	81.82345 40.5554	108,-81.82269 40	.555414,-81.8219	931 40.555418,-	-81.820947	mapailla	11 XCI 3-312C.M.		.01.0	106.0101	aner.o.			01.02	-iroamarker	5-5128		.0101:	greens (craber		o, or.o209	1,43611301	Tarscapach-color.oxito00011 We
URLIX	http://maps.goog	leapis.com/maps	/api/staticmap?s	size=260x257&ma	aptype=road	dmap\&m	arkers=size:r	nid%7Cco	lor:	blue%7C	label:	<%7C40.55	5394,	,-81.8	2416&senso	r=fals	e&path=0	color:	0xff0000ff we	ight:5 40.5554	418,-81.82	0947 40.5	55414,-81.821931 40.555408,-81
UNLIN	81.82416 40.5553	94,-81.82416 40	.555401,-81.8234	45 40.555408,-8	81.82269 40	0.55541	4,-81.821931	40.5554	18,-8	81.8209	47												

Page 11 of 13

2/9/2021 2:13:49 PM

CCC),),	000),), 31	3	, e	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	502	3,4	2	,), ,	1000	,	0	5,),)1	4 C	33	22 C	,	6	0	6	, A	2 .V	4	8		3	2	9	,1 7,
4	, 0 8	7	406	809	, 7 4	37,	3	3 0 •	6 4	, 0 9	- 0 3	3	,6	3	2	9	3	,	_	7	5	,	3	4	6	2	,	_			
0000	, 0	0 0 3	, , 1	30,	8	8 1	, 0	5 0 2	3,4	6 0 2	, , , ,	1 0 0	7,	6 0 0	, 1	4 0 6	3	20,	, 0	6	5	6 5	, A 7	2 V 4	4 G	8	,	3,0	2	9	,1 7,
i	ġ	rh	t	:	5)		4	0	•	5)	5	5	3	9	94	'	-	8	1	•	8	2	4	1	6		4	0	•	5	55
i	g	rh:	t	:	5		4	0	•	5	3	5	7	1	. 8	,		- 8	1	•	8	1	6	4	4	5	1	4	0	•	54
i	g	rh:	1t	::	5		4	0	•	5	5	5	3	9	94	'		- 8	1	•	8	2	4	1	6		4	0	•	5	55
8	2	2	: 6	59		4	C		5	5	5	4	C	1	,	-	8	1		8	2	3	4	5		4	0		5	5	53

PID

TurnsCount

Location HOL 62 24.75

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

ž	Turns	Count		Tuesday. Purper													
100										2:13:	53 PM						
ID	LEG NUM	Tm Period	Time	PA LEFT	PAT HRU	PA RIGHT	PA TOTAL	BC LEFT	BC THRU	BC RIGHT	BC TOTAL	TOTAL VEH					
93	1	AM	10:45 AM	23	48	0	71	4	15	0	19	90					
110	1	AM	11:00 AM	23	61	0	84	6	13	0	19	103					
111	1	AM	11:15 AM	27	54	0	81	4	12	0	16	97					
112	1	AM	11:30 AM	32	57	0	89	5	9	0	14	103					
113	2	AM	10:45 AM	10	0	22	32	1	0	4	5	37					
114	2	AM	11:00 AM	9	0	23	32	0	0	7	7	39					
115	2	AM	11:15 AM	12	0	20	32	0	0	4	4	36					
116	2	AM	11:30 AM	7	0	20	27	1	0	3	4	31					
117	3	AM	10:45 AM	0	65	16	81	0	17	1	18	99					
118	3	AM	11:00 AM	0	48	18	66	0	15	1	16	82					
119	3	AM	11:15 AM	0	57	7	64	0	13	1	14	78					
120	3	AM	11:30 AM	0	80	9	89	0	15	0	15	104					
121	4	AM	10:45 AM	0	0	0	0	0	0	0	0	0					
122	4	AM	11:00 AM	0	0	0	0	0	0	0	0	0					
123	4	AM	11:15 AM	0	0	0	0	0	0	0	0	0					
124	4	AM	11:30 AM	0	0	0	0	0	0	0	0	0					
125	0			0	0	0	0	0	0	0	0	0					
126	1	PM	4:15 PM	30	115	0	145	10	7	0	17	162					
127	1	PM	4:30 PM	37	93	0	130	7	10	0	17	147					
128	1	PM	4:45 PM	22	95	0	117	1	8	0	9	126					
129	1	PM	5:00 PM	19	104	0	123	1	8	0	9	132					
130	2	PM	4:15 PM	13	0	24	37	2	0	0	2	39					
131	2	PM	4:30 PM	15	0	21	36	2	0	2	4	40					
132	2	PM	4:45 PM	10	0	22	32	3	0	3	6	38					
133	2	PM	5:00 PM	14	0	30	44	3	0	3	6	50					
134	3	PM	4:15 PM	0	62	18	80	0	7	0	7	87					
135	3	PM	4:30 PM	0	75	11	86	0	7	1	8	94					
136	3	PM	4:45 PM	0	85	7	92	0	4	1	5	97					
137	3	PM	5:00 PM	0	83	13	96	0	8	0	8	104					
138	4	PM	4:15 PM	0	0	0	0	0	0	0	0	0					
139	4	PM	4:30 PM	0	0	0	0	0	0	0	0	0					
140	4	PM	4:45 PM	0	0	0	0	0	0	0	0	0					
141	4	PM	5:00 PM	0	0	0	0	0	0	0	0	0					
142	1	ADT	12:00 AM	1193	4230	0	5,423	195	667	0	862	6,285					
143	2	ADT	12:00 AM	598	0	1152	1,750	89	0	159	248	1,998					
144	3	ADT	12:00 AM	0	4063	635	4,698	0	655	121	776	5,474					
145	4	ADT	12:00 AM	0	0	0	0	0	0	0	0	0					
37																	

▲ ^N

Page 12 of 13

2/9/2021 2:13:49 PM cvarcoll

PID Location

Location HOL 62 24.75

IXRptWarnings

Page 13 of 13 2/9/2021 2:13:49 PM cvarcoll Ver 3.4, 10-26-2018 Modeling & Forecasti

PID NONE Location US 62 and CR 201 in Holmes Cou

)

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

Safety Study - Intersection of US 62 and CR 201 in Holmes County

	US 62 T	US 62	CR 201 1	NA
Location	West Leg SHOL00062R S	East Leg	North Leg SHOL00557R	South Leg
	21.70	21.92	0.03	
2024 ADT	11,800 *	11,100 *	3,400	0
2044 ADT	12,900 *	11,900 *	3,950	0
К	0.10	0.10	0.10	0.00
DHV	1,290	1,190	400	0
D	0.56	0.57	0.52	-1.00
T24	0.10	0.10	0.10	0.00
TD	0.08	0.08	0.08	0.00

* pivot from turn movmement count ADT

Page 1 of 13

1/26/2021 7:46:58 AM

cvarcoll

Method: IPF

PID NONE Location US 62 and CR 201 in Holmes Cou

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

Page 3 of 13

cvarcoll

► N

Location US 62 and CR 201 in Holmes Cou PID NONE

Simplified HIghway Forecasting Tool (SHIFT) **Design Designation**

Page 9 of 13

cvarcoll

Pivot Forecast From TurnsCount: Yes

CMS DB VersionApril 2020

Ver 3.4, 10-26-2018 Modeling & Forecasti

PID NONE Location US 62 and CR 201 in Holmes Cou

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

RptIntersectionTbl

ypu																							
ID	1 (1-Design Yr, 2-	Opening Year)							IN	TERSE	CTIO	N TABLE	VAL	JES									
Leg	Forecast Yea	ar 2044	Target Forec	ast Volumes	5					(Count	ed ADT		ADT Ann	ual G	rowth Ra	te	2040					
#	St	reet Name	AM AM Keved	PM PM Kever	ADT	ADT Keved	Leg DHV	K ₃₀	K Keved	Year	Yr Keved	Vol.	CNT Keyed	Car+TK	G Keved	% ^F	PCT eved	ADT Vol	Route	Car	TRK		
1		US 62	1008	1184	11842		1184	0.10		2020		10,908	✓	38.9		0.39% [10,800		10.9	28.0		
2		NA	0	0	0		0	0.00		0		0		0.0		0.00%		0		0.0	0.0		
3		US 62	1097	1289	12890		1289	0.10		2020	✓	11,547	✓	55.9		0.61%		10,400		25.0	31.0		
4		CR 201	394	394	3944		394	0.10		2019		3,248		27.8		0.86%		3,850	557 R 8.694	20.0	8.0		
Т	Furning Mvmt Count	Year 202	20 🖌 P	ivot from turn	scounts to	o target	volume							🗌 1 Rat	e for	all							
			T Data																				
Δσ1		2044 ADT=10993	3.4925 DHV=1099.3	4925, 2024 ADT=	=10215.4985	DHV=10	021.54985SHO	LUS00062	**C, 2	4.92	11179,1	1179,SHOL(00062R,	24917,									
LCGI		,796,2005,8075 777,748,620,67 ,10444,1088,97	5,1031,9106,2007, 76,1020,1141,43,1 742,1024,10793,10	8052,994,9046,2 273,6,4,5,4,5,4 38,11108,1038,1	2010,7993,1 1,7125,507, L1408,685,1	.000,899 7358,93 .1723,90	93,2013,8352 36,541,22,72 07,1,2,0,1,0	,1404,97 67,502,7 ,0,0,0,	56,201 764,10 AVG	.6,8284, 04,592, , MO	1348,96 24,1045 DEL,811	32,2019,91 4,1499,50, 8,13448,-1	L10,911 52,8,5 L639,36	,10021,6,0, ,A ,0.0 27,8936,11	,2040, 69,103 723,68	8777,1176, 71,-4590,1 5,1354,894	8303 0532 1,89	1096,8840,11 1,1.03,10377,1 999,1372,1563,	.67,9020,1099, .0454, RAF ,0 .8118,13448,-1	8927,1116, .71,1372,- 639,3627,0	9107,1085 377,1563, .0052,-0.	,10111,1354,8936,1209,10524, 1.51,1436,1499, RAF .0009,0.0074,0.01,0.0111,0.01	1:
		0.0006,-0.0007	7,-0.0009,-0.0008	,-0.0052,0.0227	7,0.0012,0.	0232,0.	.0156,0.0201	,0.0165,	-0.001	,0.0089	,0.0093	,0.0059,0.	.0067,0	.0067,-0.03	118,-0	.0002,0.03	07,0	0.0241,0.0341,	0.0274,0.0307	,-0.1333,0	.142,0.03	07,2,9742,1024,9300,1500,108	D
_eg2	0																						
					C4 745								0.45.40										
_eg3	0	2044 ADT=10580 ,169,0,0,0,0,0,2 3,5,5,0,0,6278	0.725 DHV=1058.07. 2008,7360,890,825 8,517,6592,967,46	25, 2024 AD1=94 0,2011,7502,628 7,23,6338,500,6	,8130,2014 871,1008,5	,7763,8 17,24,9	96,8659,2010 9694,1884,50	6,8051,9 53,8,5,	4.75 29,898 A	0,2019, 0,71,9	11178,S 7955,12 605,-36	HOLUUUU62R, 27,9182,5, 88,9775,1.	24/48, 0,2040 05,961	,8069,1106, 2,9694, R#	,7979,1 AF ,0.9	1108,8064, 94,1858,-7	1206, 7,18	,7976,1237,80 98,1.51,1871,	10,1201,0,0,9 1884, RAF ,9	408,1850,9 294,1971,9	154,1648, 129,1766,	9361,2706,9127,2791,8700,264 9252,2726,9105,2780,8644,267	5,
	I	MODEL,6358,109 9999,0.0289,0.	986,778,3746,8644 .021,0.0582,0.060	,9408,1648,2791 3,0.056,-9999,0	,7741,7877 .0255,0.02	,1858,1 45,0.02	898,6358,109 6,0.025,0.02	986,778, 255,-0.0	3746,0 174,0.	.0087,0 0978,0.0	.0072,0 0255,2,	.0084,0.00 9129,1766,	7,0.00 8500,1	45,-9999,0. 900,10400,0	.008,0.	.007,0.007 52,0.18,0.	8,0.0 1,0.9	0069,0.0041,- 53,S,HOL,62,R	9999,-0.0009, ,24.748,0.169	-0.0012,-0	.0005,-0.	0013,-0.0009,-0.0096,0.0181,).
ωσ/Ι		2044 ADT=3944.	.24 DHV=394.424, 2	2024 ADT=3387.2	48 DHV=338	.7248SH	IOLSR00557**(c, 10.09	111	44,1114	4,SHOL0	0557R,8694	,										
_C84		,1493,0,0,0,0,0, 546,0,0,1059,3 566,0,0,0,1,0,	,2008,1960,200,21 308,806,74,210,42 ,0,0,1,0,1, MODI	60,2011,2973,27 1,158,426,423,4 EL, AVG ,261	5,3248,201 49,0,0,3,6 6,7207,-14	4,2949, ,4,5,0, 64,1095	362,3311,201 0,1005,42,12 5,3293,5503,-	16,3070, 254,114, -566,947	377,34 71,2,9 ,3403,	47,2019, 98,43,13 3565,284	,3056,1 376,102 4,334,2	92,3248,5, ,91,2,3775 616,7207,-	0,2040 ,298,5 1464,1	,3269,299,3 0,56,8,5,A 095,0.0317,	3264,39 ,1 ,0.0381	90,3064,26 1.48,3899, 1.0.0045,0	3,30 1057 .004	73,220,3076,2 ,3687,1.2,386 ,0.0066,-9999	13,0,0,5089,3 3,3775, RAF ,0.0284,0.034	71,5503,94 ,1.54,334, 9,0.0044,0	7,3345,68 68,284,1. .0037.0.0	,3311,-47,3482,- 74,312,298, RAF,4876,264,5: 063,-9999,0.0066,0.0079,0.00	29
		0.0069,0.0647,	,0.0066,0.0444,0.	1873,-0.0308,-0	.0593,-0.1	83,-999	9,0.0179,0.1	1381,-0.	0484,-	0.0662,	-0.1882	,-9999,0.0	263,0.	0352,0.0228	8,0.029	98,0.0263,	-0.4	107,0.224,0.0	4,2,5294,748,	3500,350,3	850,0.1,0	.55,0.09,0.05,0.53,S,HOL,557	, I
URL	1 http://maps.goog 81.817166 40.556	leapis.com/map 352,-81.81359	ps/api/staticmap? 40.557973,-81.81	size=360x357&ma 0617 40.559498,	aptype=road -81.807331	lmap&maı	rkers=size:m	id%7Ccol	or:blu	e%7Clab	el:S%7C	40.555418,	-81.82	0947&marke	rs=size	e:mid%7Ccc	lor:	green%7Clabel	:E%7C40.55949	8,-81.8073	31&sensor	=false&path=color:0xff0000ff	ľ
URL	2											10.555004											
URL	<pre>3 http://maps.goog 81.82345 40.5554 http://maps.goog</pre>	1eapis.com/map 08,-81.822694	ps/api/staticmap? 40.555414,-81.821	size=360x357&ma 931 40.555418,-	aptype=road -81.820947	imap&mar	rkers=size:m	id%7Ccol	or:blu	e%/Clab	e1:5%/C	40.555394,	-81.82	416▮:	s=size	:mid%/Ccol	or:g	green%/Clabel:	-F\$7C40.555418	,-81.82094	/&sensor=	false&path=color:0xff0000ff	1.1.
	4 http://maps.goog 81.818798 40.544	621,-81.823586	6 40.549937,-81.8 ps/api/staticmap?	23573 40.555394 size=260x257&ma	,-81.82416 aptype=road	imapemar imap\&ma	arkers=size:	mid%7Cco	lor:bl	ue%7Clai	bel:X%7	c40.555418	3,-81.8	20947&sens	or=fal:	se&path=co	lor:	0xff0000fflwe	ight:5140.559	498,-81.80	7331 40.5	57973,-81.810617140.556352,-	8
UKLIZ	81.820947140.555	418,-81.82094	7 40.555414,-81.8	21931 40.555408	3,-81.82269	40.555	5401,-81.823	45 40.55	5394,-	81.8241	6												

▲ ^N

Page 10 of 13

1/26/2021 7:46:58 AM

295,11019,1227,11225,891,11720,	108
6,0.007,0.0033,0.0088,0.0104,0. 0,0.1,0.52,0.14,0.07,0.53,S,HOI	012
0,0,388,536,176,432,656,248,32	9,1
0031,0.0242,0.0163,0.0574,0.06	07,
44, /48, 3336, -3, 3293, -75, 3462, - 4, 0.0077, 0.0066, - 8, 8.694, 1.493 weight:5 40.555418, -81.820947 4	10.5
eight:5 40.555394,-81.82416 40.	555
eight:5 40.535718,-81.816445 40	.54

CMS DB VersionApril 2020 Ver 3.4, 10-26-2018 Modeling & Forecasti						Simplified HIghway Forecasting Tool (SHIFT)																	
PID	NONE	IE Location US 62 and CR 201 in Holmes Cou							Design Designation														
ID	2 (1-Design Yr, 2	-Opening Year)				INTERSECTION TABLE VALUES																	
Leg	Forecast Ye	ar 2024 T	Target Forecast Volumes					Counted ADT ADT Annual Growth Rate 2040															
#	St	reet Name	AM AM Kanad	PM PM Kanad		, Leg DHV	K 20	^к , Year	Yr	, Vol. ĸ	CNT (eved (Car+TK " ^G	%	PCT	ADT Vol	Route	Car	TRK					
1		US 62	941	1106	11064	1106	0.10	2020	Keved	10,908		38.9	ed 0.39%	Keved	10,800		10.9	28.0					
2		NA	0	0	0	0	0.00			0		0.0	0.00%		0		0.0	0.0					
3		US 62	1002		11771	1177	0.10	2020		11,547		55.9	0.61%		10,400		25.0	31.0					
4		CR 201	339	339	3387	339	0.10	2019		3.248		27.8	0.86%		3.850	557 R 8.694	20.0	8.0					
т	urning Mymt Count	Year 2020	F	Pivot from turns	counts to targe	et volume						1 Rate f	or all										
	OTH OTHER Keved CMS SHIFT Data																						
Leg1	0	2044 ADT=10993. ,796,2005,8075,1 777,748,620,676, ,10444,1088,9742 0.0006,-0.0007,-	4925 DHV=1099.3 1031,9106,2007, ,1020,1141,43,1 2,1024,10793,10 -0.0009,-0.0008	4925, 2024 ADT=1 8052,994,9046,20 273,6,4,5,4,5,4, 38,11108,1038,1: ,-0.0052,0.0227	L0215.4985 DHV= 010,7993,1000,8 7125,507,7358, L408,685,11723, 0.0012,0.0232,	1021.549855HO 993,2013,8352 936,541,22,72 907,1,2,0,1,0 0.0156,0.0201	LUS00062** ,1404,9756 67,502,776 ,0,0,0, ,0.0165,-0	C, 24.92 ,2016,8284, 4,1004,592, AVG , MC .001,0.0089	11179, ,1348,9 ,24,104 DDEL,81 9,0.009	11179,SHOLO 9632,2019,91 154,1499,50,5 118,13448,-1 93,0.0059,0.0	0062R,2 10,911,3 52,8,5,3 639,362 0067,0.0	4917, 10021,6,0,20 A ,0.69,3 7,8936,11723, 0067,-0.0118,	10,8777,11 .0371,-4590 685,1354,8 -0.0002,0	76,8303 0,10532 8941,89 .0307,0	,1096,8840,1 ,1.03,10377, 99,1372,1563 .0241,0.0341	167,9020,1099, 10454, RAF,C ,8118,13448,-1 ,0.0274,0.0307	8927,1116).71,1372, 639,3627, 7,-0.1333,	,9107,1085, -377,1563, 0.0052,-0.1 0.142,0.03	,10111,1354,89 1.51,1436,1499 0009,0.0074,0. 07,2,9742,1024	936,1209,10 9, RAF .01,0.0111, 4,9300,1500	524,1295,1 0.0136,0.0 ,10800,0.1	1019,1227,11 07,0.0033,0. ,0.52,0.14,0	225,891,11720,108 0088,0.0104,0.012 .07,0.53,S,HOL,62
Leg2	0																						
Leg3	0	2044 ADT=10580.7 ,169,0,0,0,0,200 3,5,5,0,0,6278,5 MODEL,6358,10986 9999,0.0289,0.02	725 DHV=1058.07 18,7360,890,825 517,6592,967,46 5,778,3746,8644 11,0.0582,0.060	25, 2024 ADT=946 0,2011,7502,628, 7,23,6338,500,68 ,9408,1648,2791, 3,0.056,-9999,0	51.745 DHV=946. 8130,2014,7763 871,1008,517,24 7741,7877,1858 0255,0.0245,0.0	1745SHOLUS000 ,896,8659,2016 ,9694,1884,50 ,1898,6358,109 026,0.025,0.02	52**C, 24. 5,8051,929 53,8,5,A 986,778,37 255,-0.017	75 11178, ,8980,2019, ,0.71,9 46,0.0087,0 4,0.0978,0.	11178, 7955,1 9605,-3 0.0072,0 .0255,2	SHOL00062R,2 227,9182,5,0 688,9775,1.0 0.0084,0.007 9129,1766,8	24748, 0,2040,8 05,9612, 7,0.0045 8500,190	8069,1106,797 ,9694, RAF, 5,-9999,0.008 00,10400,0.1,	9,1108,806 0.94,1858, ,0.007,0.0 0.52,0.18,	64,1206 ,-77,189 0078,0.0 ,0.1,0.9	,7976,1237,80 98,1.51,1871, 0069,0.0041,- 53,S,HOL,62,H	010,1201,0,0,9 1884, RAF,9 9999,-0.0009, R,24.748,0.169	408,1850, 294,1971, -0.0012,-	9154,1648,9 9129,1766,9 0.0005,-0.0	9361,2706,9127 9252,2726,9105 9013,-0.0009,-	7,2791,8700 5,2780,8644 -0.0096,0.0	,2645,0,0, ,2670,0,0, 181,0.0031	388,536,176, 0,1,0,0,0,0, ,0.0242,0.01	432,656,248,329,1 0,0, AVG , 63,0.0574,0.0607,
Leg4	0	2044 ADT=3944.24 ,1493,0,0,0,0,20 546,0,0,1059,308 566,0,0,0,1,0,0, 0.0069,0.0647,0.	A DHV=394.424, 008,1960,200,21 3,806,74,210,42 0,1,0,1, MOD 0066,0.0444,0.	2024 ADT=3387.24 60,2011,2973,275 1,158,426,423,44 EL, AVG ,2616 1873,-0.0308,-0	<pre>18 DHV=338.7248 3248,2014,294 9,0,0,3,6,4,5,6 5,7207,-1464,10 0593,-0.183,-9 10 10 10 10 10 10 10 10 10 10</pre>	SHOLSR00557**0 9,362,3311,203 0,0,1005,42,12 95,3293,5503,- 999,0.0179,0.3	C, 10.09 L6,3070,37 254,114,71 -566,947,3 L381,-0.04	11144,1114 7,3447,2019 ,2,998,43,1 403,3565,28 84,-0.0662,	4, SHOL 9, 3056, 3 1376, 103 84, 334, 3 -0.188	00557R,8694, 192,3248,5,0 2,91,2,3775, 2616,7207,-1 2,-9999,0.02	, 0,2040,3 ,298,50, 1464,109 263,0.03	3269,299,3264 ,56,8,5,A 95,0.0317,0.0 352,0.0228,0.	,390,3064, ,1.48,389 381,0.0045 0298,0.026	,263,30 99,1057, 5,0.004, 63,-0.4	73,220,3076,2 ,3687,1.2,380 ,0.0066,-9999 107,0.224,0.0	213,0,0,5089,3 53,3775, RAF 9,0.0284,0.034 04,2,5294,748,	71,5503,9 ,1.54,334 9,0.0044, 3500,350,	47,3345,68, 68,284,1.7 0.0037,0.00 3850,0.1,0.	3311,-47,3482 74,312,298, R 063,-9999,0.00 55,0.09,0.05,	2,- RAF ,4876,20 066,0.0079,0 0.53,S,HOL	64,5294,74 0.0054,0.0 ,557,R,8.6	8,3336,-3,32 077,0.0066,- 94,1.493	93,-75,3462,-
URL1	http://maps.goog 81.817166 40.556	gleapis.com/maps/ 6352,-81.81359 40	/api/staticmap?).557973,-81.81	size=360x357&mar 0617 40.559498,	otype=roadmap&m -81.807331	arkers=size:m	id%7Ccolor	:blue%7Clab	pel:S%7	C40.555418,	-81.820	947&markers=	ize:mid%70	Ccolor:	green%7Clabe	l:E%7C40.55949	98,-81.807	331&sensor	=false&path=co	olor:0xff00	00ff weigh	t:5 40.55541	8,-81.820947 40.5
URL2	2																						
URL3	http://maps.goog 81.82345 40.5554	gleapis.com/maps/ 408,-81.82269 40.	<pre>/api/staticmap? .555414,-81.821</pre>	size=360x357↦ 931 40.555418,-{	otype=roadmap&m 31.820947	arkers=size:m	id%7Ccolor	:blue%7Clak	bel:S%7	/C40.555394,-	-81.824	16&markers=s:	ze:mid%7Co	color:g	reen%7Clabel	:E%7C40.555418	3,-81.8209	47&sensor=:	Talse&path=col	Lor:0xff000	Off weight	:5 40.555394	,-81.82416 40.555
URL4	http://maps.good 81.818798 40.544	gleapis.com/maps/ 4621,-81.823586 4	/api/staticmap? 40.549937,-81.8	size=360x357↦ 23573 40.555394	-81.82416	arkers=size:m	id%7Ccolor	:biue%7Clab	pel:S%7	C40.535718,-	-81.816	445&markers=	ize:mid%70	Ccolor:	green%7Clabe	L:E%7C40.55539	94,-81.824	16&sensor=:	talse&path=col	Lor:0xff000	0ff weight	:5 40.535718	,-81.816445 40.54
URLIX	http://maps.good 81.820947 40.555	gleapis.com/maps/ 5418,-81.820947 4	/api/staticmap? 40.555414,-81.8	size=260x257&mar 21931 40.555408	otype=roadmap\& -81.82269 40.5	markers=size: 55401,-81.823	mid%7Ccolo 45 40.5553	r:blue%7Cla 94,-81.8241	abel:X% 16	7C40.555418	,-81.82	0947&sensor=1	alse&path=	=color:	0xff0000ff w	eight:5 40.559	9498,-81.8	07331 40.5	57973,-81.8106	617 40.5563	52,-81.813	59 40.555435	,-81.817166 40.55

Page 11 of 13

1/26/2021 7:46:58 AM

CMS DB VersionApril 2020

Ver 3.4, 10-26-2018 Modeling & Forecasti

PID NONE

Location US 62 and CR 201 in Holmes Cou

TurnsCou	nt											
ž 🗖	Turns	Count							Tuesday,	January 26	, 2021	
201										7:47:0	03 AM	
ID	LEG NUM	Tm Period	Time	PA LEFT	PAT HRU	PA RIGHT	PA TOTAL	BC LEFT	BC THRU	BC RIGHT	BC TOTAL	TOTAL VEH
93	1	AM	10:45 AM	0	58	7	65	0	10	1	11	76
110	1	AM	11:00 AM	0	70	3	73	0	7	1	8	81
111	1	AM	11:15 AM	0	76	8	84	0	11	1	12	96
112	1	AM	11:30 AM	0	75	3	78	0	14	1	15	93
113	2	AM	10:45 AM	0	0	0	0	0	0	0	0	0
114	2	AM	11:00 AM	0	0	0	0	0	0	0	0	0
115	2	AM	11:15 AM	0	0	0	0	0	0	0	0	0
116	2	AM	11:30 AM	0	0	0	0	0	0	0	0	0
117	3	AM	10:45 AM	7	84	0	91	1	14	0	15	106
118	3	AM	11:00 AM	18	67	0	85	3	12	0	15	100
119	3	AM	11:15 AM	15	76	0	91	3	12	0	15	106
120	3	AM	11:30 AM	6	64	0	70	0	12	0	12	82
121	4	AM	10:45 AM	9	0	11	20	2	0	3	5	25
122	4	AM	11:00 AM	10	0	13	23	1	0	2	3	26
123	4	AM	11:15 AM	6	0	20	26	2	0	2	4	30
124	4	AM	11:30 AM	8	0	14	22	0	0	3	3	25
125	0			0	0	0	0	0	0	0	0	0
126	1	PM	3:45 PM	0	78	10	88	0	14	2	16	104
127	1	PM	4:00 PM	0	103	23	126	0	9	1	10	136
128	1	PM	4:15 PM	0	93	15	108	0	5	1	6	114
129	1	PM	4:30 PM	0	112	14	126	0	6	0	6	132
130	2	PM	3:45 PM	0	0	0	0	0	0	0	0	0
131	2	PM	4:00 PM	0	0	0	0	0	0	0	0	0
132	2	PM	4:15 PM	0	0	0	0	0	0	0	0	0
133	2	PM	4:30 PM	0	0	0	0	0	0	0	0	0
134	3	PM	3:45 PM	12	82	0	94	3	4	0	7	101
135	3	PM	4:00 PM	15	83	0	98	2	11	0	13	111
136	3	PM	4:15 PM	17	72	0	89	2	6	0	8	97
137	3	PM	4:30 PM	13	69	0	82	1	6	0	7	89
138	4	PM	3:45 PM	5	0	21	26	1	0	1	2	28
139	4	PM	4:00 PM	7	0	16	23	0	0	1	1	24
140	4	PM	4:15 PM	7	0	19	26	2	0	2	4	30
141	4	PM	4:30 PM	11	0	26	37	0	0	1	1	38
142	1	ADT	12:00 AM	0	4452	554	5,006	0	490	42	532	5,538
143	2	ADT	12:00 AM	0	0	0	0	0	0	0	0	0
144	3	ADT	12:00 AM	773	4230	0	5,003	96	518	0	614	5,617
145	4	ADT	12:00 AM	555	0	894	1,449	67	0	94	161	1,610
37												

Page 12 of 13

1/26/2021 7:46:58 AM

Location US 62 and CR 201 in Holmes Cou PID NONE

Simplified HIghway Forecasting Tool (SHIFT) Design Designation

IXRptWarnings

Page 13 of 13 1/26/2021 7:46:58 AM cvarcoll

APPENDIX D

HCS Capacity Software Output

APPENDIX D

HCS Capacity Analysis - Existing Conditions (2020, 2024 & 2044)

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at SR 557
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2020	North/South Street	SR 557
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at SR 557 Existing Conditions		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westk	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			310	53		124	269			40		103					
Percent Heavy Vehicles (%)						8				11		11					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage	Undivided																
Critical and Follow-up He	adwa	dways															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.18				6.51		6.31					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.27				3.60		3.40					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)						135					155						
Capacity, c (veh/h)						1133					879						
v/c Ratio						0.12					0.18						
95% Queue Length, Q ₉₅ (veh)						0.4					0.6						
Control Delay (s/veh)						8.6					10.0						
Level of Service (LOS)						A					А						
Approach Delay (s/veh)						3	.6			10).0						
Approach LOS										ļ	4						

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at CR 201
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2020	North/South Street	CR 201
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at CR 201 Existing Conditions		
Lanas			

Vehicle Volumes and Adjustments

j-																	
Approach		Eastb	ound			West	bound			North	oound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration		LT						TR							LR		
Volume (veh/h)		53	341				321	25						38		68	
Percent Heavy Vehicles (%)		8												8		3	
Proportion Time Blocked																	
Percent Grade (%)												9					
Right Turn Channelized																	
Median Type Storage	Undivided																
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.18												8.98		7.13	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.27												3.57		3.33	
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)		58													115		
Capacity, c (veh/h)		1151													316		
v/c Ratio		0.05													0.36		
95% Queue Length, Q ₉₅ (veh)		0.2													1.6		
Control Delay (s/veh)		8.3													22.8		
Level of Service (LOS)		А													С		
Approach Delay (s/veh)		1	.6										22.8				
Approach LOS													С				

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at SR 557
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2020	North/South Street	SR 557
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at SR 557 Existing Conditions		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			331	51		127	440			62		105					
Percent Heavy Vehicles (%)						8				11		11					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up He	adwa	dways															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.18				6.51		6.31					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.27				3.60		3.40					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)						138					182						
Capacity, c (veh/h)						1113					400						
v/c Ratio						0.12					0.45						
95% Queue Length, Q ₉₅ (veh)						0.4					2.3						
Control Delay (s/veh)						8.7					21.3						
Level of Service (LOS)						А					С						
Approach Delay (s/veh)						3	.1			21	.3						
Approach LOS										(2						

Copyright © 2021 University of Florida. All Rights Reserved.

HCSTM TWSC Version 7.9 3. 2020 PM Existing - US 62 at SR 557.xtw

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at CR 201
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2020	North/South Street	CR 201
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at CR 201 Existing Conditions		
Lanos			

Vehicle Volumes and Adjustments

	stinents															
Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		65	333				420	66						33		87
Percent Heavy Vehicles (%)		8												8		3
Proportion Time Blocked																
Percent Grade (%)											9					
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.18												8.98		7.13
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.27												3.57		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		71													130	
Capacity, c (veh/h)		1010													270	
v/c Ratio		0.07													0.48	
95% Queue Length, Q ₉₅ (veh)		0.2													2.5	
Control Delay (s/veh)		8.8													30.2	
Level of Service (LOS)		А													D	
Approach Delay (s/veh)		2	.1										30.2			
Approach LOS														[)	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at SR 557
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2024	North/South Street	SR 557
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at SR 557 No-Build Conditions		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	oound			South	oound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0		
Configuration				TR		LT					LR							
Volume (veh/h)			430	70		120	380			50		100						
Percent Heavy Vehicles (%)						8				11		11						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized																		
Median Type Storage		Undivided																
Critical and Follow-up He	adwa	dways																
Base Critical Headway (sec)						4.1				7.1		6.2						
Critical Headway (sec)						4.18				6.51		6.31						
Base Follow-Up Headway (sec)						2.2				3.5		3.3						
Follow-Up Headway (sec)						2.27				3.60		3.40						
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)						130					163							
Capacity, c (veh/h)						997					407							
v/c Ratio						0.13					0.40							
95% Queue Length, Q ₉₅ (veh)						0.4					1.9							
Control Delay (s/veh)						9.2					19.6							
Level of Service (LOS)						А					С							
Approach Delay (s/veh)						3	.4			19	9.6							
Approach LOS										(2							

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at CR 201
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2024	North/South Street	CR 201
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at CR 201 No-Build Conditions		
Lawaa			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westk	ound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		90	410				390	50						80		110
Percent Heavy Vehicles (%)		8												8		3
Proportion Time Blocked																
Percent Grade (%)											9					
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	dways														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.18												8.98		7.13
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.27												3.57		3.33
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)		98													207	
Capacity, c (veh/h)		1054													181	
v/c Ratio		0.09													1.14	
95% Queue Length, Q ₉₅ (veh)		0.3													10.5	
Control Delay (s/veh)		8.8													161.5	
Level of Service (LOS)		А													F	
Approach Delay (s/veh)		2	.5										161.5			
Approach LOS													F			

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at SR 557
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2024	North/South Street	SR 557
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at SR 557 No-Build Conditions		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westk	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			400	60		130	530			70		110					
Percent Heavy Vehicles (%)						8				11		11					
Proportion Time Blocked																	
Percent Grade (%)									()							
Right Turn Channelized																	
Median Type Storage	Undivided																
Critical and Follow-up He	adwa	dways															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.18				6.51		6.31					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.27				3.60		3.40					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)						141					196						
Capacity, c (veh/h)						1035					292						
v/c Ratio						0.14					0.67						
95% Queue Length, Q ₉₅ (veh)						0.5					4.4						
Control Delay (s/veh)						9.0					39.2						
Level of Service (LOS)						А					E						
Approach Delay (s/veh)						3	.3		39.2								
Approach LOS										I	1						

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at CR 201
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2024	North/South Street	CR 201
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at CR 201 No-Build Conditions		
Lawas			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		90	430				540	90						40		120
Percent Heavy Vehicles (%)		8												8		3
Proportion Time Blocked																
Percent Grade (%)														Ģ)	
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.18												8.98		7.13
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.27												3.57		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		98													174	
Capacity, c (veh/h)		882													166	
v/c Ratio		0.11													1.05	
95% Queue Length, Q ₉₅ (veh)		0.4													8.6	
Control Delay (s/veh)		9.6													140.2	
Level of Service (LOS)		А													F	
Approach Delay (s/veh)		2	.9											14	0.2	
Approach LOS															-	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at SR 557
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2044	North/South Street	SR 557
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at SR 557 No Build Conditions		

Vehicle Volumes and Adjustments

	stinents																
Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			470	80		130	410			60		110					
Percent Heavy Vehicles (%)						8				11		11					
Proportion Time Blocked																	
Percent Grade (%)									()							
Right Turn Channelized																	
Median Type Storage	Undivided																
Critical and Follow-up He	adwa	dways															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.18				6.51		6.31					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.27				3.60		3.40					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)						141					185						
Capacity, c (veh/h)						951					330						
v/c Ratio						0.15					0.56						
95% Queue Length, Q ₉₅ (veh)						0.5					3.2						
Control Delay (s/veh)						9.4					28.9						
Level of Service (LOS)						А					D						
Approach Delay (s/veh)						3	.7		28.9								
Approach LOS										[)						

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at CR 201
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2044	North/South Street	CR 201
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at CR 201 No-Build Conditions		
Lanas			

Vehicle Volumes and Adjustments

-																		
Approach		Eastb	ound			Westk	bound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0		
Configuration		LT						TR							LR			
Volume (veh/h)		110	440				420	61						90		140		
Percent Heavy Vehicles (%)		8												8		3		
Proportion Time Blocked																		
Percent Grade (%)														Q)			
Right Turn Channelized																		
Median Type Storage		Undivided																
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)		4.1												7.1		6.2		
Critical Headway (sec)		4.18												8.98		7.13		
Base Follow-Up Headway (sec)		2.2												3.5		3.3		
Follow-Up Headway (sec)		2.27												3.57		3.33		
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)		120													250			
Capacity, c (veh/h)		1015													150			
v/c Ratio		0.12													1.67			
95% Queue Length, Q ₉₅ (veh)		0.4													17.8			
Control Delay (s/veh)		9.0													381.5			
Level of Service (LOS)		А													F			
Approach Delay (s/veh)		3	.0											38	1.5			
Approach LOS														I	-			

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at SR 557
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2044	North/South Street	SR 557
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at SR 557 No Build Conditions		

Approach		Eastb	ound			Westk	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration				TR		LT					LR						
Volume (veh/h)			440	70		150	580			90		120					
Percent Heavy Vehicles (%)						8				11		11					
Proportion Time Blocked																	
Percent Grade (%)									()							
Right Turn Channelized																	
Median Type Storage	Undivided																
Critical and Follow-up He	adwa	dways															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.18				6.51		6.31					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.27				3.60		3.40					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)						163					228						
Capacity, c (veh/h)						987					193						
v/c Ratio						0.17					1.18						
95% Queue Length, Q ₉₅ (veh)						0.6					11.7						
Control Delay (s/veh)						9.4					172.6						
Level of Service (LOS)						А					F						
Approach Delay (s/veh)						3	.8		172.6								
Approach LOS										I	=						

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	JMM	Intersection	US 62 at CR 201
Agency/Co.	Arcadis	Jurisdiction	ODOT
Date Performed	5/6/2021	East/West Street	US 62
Analysis Year	2044	North/South Street	CR 201
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	US 62 at CR 201 No-Build Conditions		
Lamas			

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration		LT						TR							LR	
Volume (veh/h)		110	460				580	100						50		140
Percent Heavy Vehicles (%)		8												8		3
Proportion Time Blocked																
Percent Grade (%)														9)	
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1												7.1		6.2
Critical Headway (sec)		4.18												8.98		7.13
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.27												3.57		3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		120													207	
Capacity, c (veh/h)		841													124	
v/c Ratio		0.14													1.66	
95% Queue Length, Q ₉₅ (veh)		0.5													15.3	
Control Delay (s/veh)		10.0													392.3	
Level of Service (LOS)		А													F	
Approach Delay (s/veh)		3	.5											39	2.3	
Approach LOS															-	

APPENDIX D

HCS Capacity Analysis - Medium Term Countermeasures (2044)

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	JMM	Intersection	US 62 at SR 557						
Agency/Co.	Arcadis	Jurisdiction	ODOT						
Date Performed	5/6/2021	East/West Street	US 62						
Analysis Year	2044	North/South Street	SR 557						
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs) 0.25							
Project Description	Project Description US 62 at SR 557 Medium-Term Improvements								

Approach	Eastbound					West	ound			North	bound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0
Configuration				TR		L	Т			L		R				
Volume (veh/h)			470	80		130	410			60		110				
Percent Heavy Vehicles (%)						8				11		11				
Proportion Time Blocked																
Percent Grade (%)									()						
Right Turn Channelized										Ye	es					
Median Type Storage				Undiv	vided											
Critical and Follow-up He	adways															
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.18				6.51		6.31				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.27				3.60		3.40				
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)						141				65		120				
Capacity, c (veh/h)						951				149		515				
v/c Ratio						0.15				0.44		0.23				
95% Queue Length, Q ₉₅ (veh)						0.5				2.0		0.9				
Control Delay (s/veh)						9.4				46.9		14.1				
Level of Service (LOS)						А				E		В				
Approach Delay (s/veh)	2.3							25	5.7							
Approach LOS									D							

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	JMM	Intersection	US 62 at CR 201					
Agency/Co.	Arcadis	Jurisdiction	ODOT					
Date Performed	5/6/2021	East/West Street	US 62					
Analysis Year	2044	North/South Street	CR 201					
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.92					
Intersection Orientation East-West Analysis Time Period (hrs) 0.25								
Project Description US 62 at CR 201 Medium-Term Improvements								
anes								

Approach		Eastbound				Westk	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration		L	Т					TR							LR		
Volume (veh/h)		110	440				420	60						90		140	
Percent Heavy Vehicles (%)		8												8		3	
Proportion Time Blocked																	
Percent Grade (%)													9				
Right Turn Channelized																	
Median Type Storage	Unc				vided												
Critical and Follow-up He	eadways																
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.18												8.98		7.13	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.27												3.57		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		120													250		
Capacity, c (veh/h)		1015													156		
v/c Ratio		0.12													1.60		
95% Queue Length, Q ₉₅ (veh)		0.4													17.2		
Control Delay (s/veh)		9.0													349.0		
Level of Service (LOS)		A													F		
Approach Delay (s/veh)	1.8												349.0				
Approach LOS													F				

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	JMM	Intersection	US 62 at SR 557					
Agency/Co.	Arcadis	Jurisdiction	ODOT					
Date Performed	5/6/2021	East/West Street	US 62					
Analysis Year	2044	North/South Street	SR 557					
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92					
Intersection Orientation	ntersection Orientation East-West Analysis Time Period (hrs) 0.25							
Project Description	US 62 at SR 557 Medium-Term Improvements							

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	1	1	0		1	0	1		0	0	0	
Configuration				TR		L	Т			L		R					
Volume (veh/h)			440	70		150	580			90		120					
Percent Heavy Vehicles (%)						8				11		11					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized										Ye	es						
Median Type Storage				Undiv	vided				1								
Critical and Follow-up He	adways																
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.18				6.51		6.31					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.27				3.60		3.40					
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)						163				98		130					
Capacity, c (veh/h)						987				111		541					
v/c Ratio						0.17				0.88		0.24					
95% Queue Length, Q ₉₅ (veh)						0.6				5.3		0.9					
Control Delay (s/veh)						9.4				126.7		13.8					
Level of Service (LOS)						A			F B								
Approach Delay (s/veh)						1.9			62.1								
Approach LOS										F							

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	JMM	Intersection	US 62 at CR 201						
Agency/Co.	Arcadis	Jurisdiction	ODOT						
Date Performed	5/6/2021	East/West Street	US 62						
Analysis Year	2044	North/South Street	CR 201						
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.92						
Intersection Orientation	Intersection Orientation East-West Analysis Time Period (hrs) 0.25								
Project Description US 62 at CR 201 Medium-Term Improvements									
Lanes									

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration		L	Т					TR							LR		
Volume (veh/h)		110	460				580	100						50		140	
Percent Heavy Vehicles (%)		8												8		3	
Proportion Time Blocked																	
Percent Grade (%)													9				
Right Turn Channelized																	
Median Type Storage	Und				/ided												
Critical and Follow-up He	adways																
Base Critical Headway (sec)		4.1												7.1		6.2	
Critical Headway (sec)		4.18												8.98		7.13	
Base Follow-Up Headway (sec)		2.2												3.5		3.3	
Follow-Up Headway (sec)		2.27												3.57		3.33	
Delay, Queue Length, and	Leve	of Se	ervice														
Flow Rate, v (veh/h)		120													207		
Capacity, c (veh/h)		841													131		
v/c Ratio		0.14													1.58		
95% Queue Length, Q ₉₅ (veh)		0.5													14.7		
Control Delay (s/veh)		10.0													353.7		
Level of Service (LOS)		A													F		
Approach Delay (s/veh)	1.9											353.7					
Approach LOS												F					

APPENDIX D

HCS Capacity Analysis - Long-Term Countermeasure (2044)

				HC	57 Ro	ound	abc	outs	Re	port								
General Information	General Information									natio	n		_	_		_		
Analyst	Justin	Maderia	a							Inters	ection	_		US	62 and	SR 557		
Agency or Co.	Arcad	lis					+		_	E/W S	Street Na	me		US	62			
Date Performed	4/6/2	021			1				1	N/S S	Street Na	me		SR	557			
Analysis Year	2044				◀ ↓	w	∔ ε s	1		Analy	vsis Time	Period (h	rs)	0.2	5			
Time Analyzed	AM				*					Peak	Hour Fac	tor		0.9	2			
Project Description	HOL-	62-24.75	5, US 62 a	at SR 5			→ ▼ ¥			Juriso	liction			OD	ODOT			
Volume Adjustments	s and a	Site C	harac	teristio	s													
Approach		E	B			V	VB				N	В				SB	_	
Movement	U	L	Т	T R U L				T R			U L T R			U	L		Т	R
Number of Lanes (N)	0	0	1	0	0	0	1		0	0	0	1	0	0	0		D	0
Lane Assignment			Т	R				LT				LR	ĸ					
Volume (V), veh/h	0		470	80	0	130	41(0		0	60		110					
Percent Heavy Vehicles, %	3		8	8	3	8	8			3	11		11					
Flow Rate (VPCE), pc/h	0		552	94	0	153	48	1		0	72		133					
Right-Turn Bypass		No	one			N	one				Nc	ne				None		
Conflicting Lanes			1			1					1							
Pedestrians Crossing, p/h			0			0					()						
Critical and Follow-Up Headway Adjustment																		
Approach EB								WB				NB		Т		SB		
Lane			Left	Right	Вура	iss Li	eft	Righ	it l	Bypass	Left	Right	Вура	ass	Left	Righ	t	Bypass
Critical Headway (s)				4.9763				4.976	53			4.9763					Τ	
Follow-Up Headway (s)				2.6087				2.608	37			2.6087						
Flow Computations,	Сара	city ar	nd v/c	Ratio	S													
Approach				EB				WB	,		NB			Т		SB		
Lane			Left	Right	Вура	iss Li	eft	Righ	it l	Bypass	Left	Right	Вура	ass	Left	Righ	t	Bypass
Entry Flow (ve), pc/h				646				634				205					Τ	
Entry Volume, veh/h				598				587	,			185					Τ	
Circulating Flow (vc), pc/h				153				72				552				706		
Exiting Flow (vex), pc/h				685				553				0				247		
Capacity (c _{pce}), pc/h				1181				1282	2			786						
Capacity (c), veh/h				1093				1187	7			708						
v/c Ratio (x)				0.55				0.49)			0.26						
Delay and Level of S	ervice																	
Approach				EB				WB				NB				SB		
Lane			Left	Right	Вура	iss Li	eft	Righ	it I	Bypass	Left	Right	Вура	ass	Left	Righ	t	Bypass
Lane Control Delay (d), s/veh				9.9				8.4				8.2						
Lane LOS	S A							А				A						
95% Queue, veh	95% Queue, veh 3.4							2.8		1.0								
Approach Delay, s/veh 9.9					8.4			8.2										
Approach LOS				A	AA													
Intersection Delay, s/veh LOS 9.1														А				

				HC	57 Ro	ound	abc	outs	Re	port									
General Information							Sit	e Inf	orn	natio	n			_					
Analyst	Justin	Maderia	<u>а</u>							Inters	ection			US 6	2 and S	R 557			
Agency or Co.	Arcad	lis					+			E/W S	Street Na	me		US 6	2				
Date Performed	4/6/2	021			1					N/S S	Street Na	me		SR 5	57				
Analysis Year	2044				4+	w	A + E S	t		Analy	vsis Time	Period (h	rs)	0.25	0.25				
Time Analyzed	PM				*					Peak	Hour Fac	tor		0.92					
Project Description	HOL-	62-24.75	i, US 62 a	at SR 5			→ ▼ Ý			Jurisc	liction			ODC	ODOT				
Volume Adjustments	s and a	Site C	haract	teristic	s														
Approach		E	B			V	WB			N	В				SB				
Movement	U	L	Т	R	U	UL		I	R		U L		R	U	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	(0	0	0	1	0	0	0	0	0		
Lane Assignment			Т	R							LF	र		-	1				
Volume (V), veh/h	0		440	70	0	150	580	D C		0	90	Т	120		Τ				
Percent Heavy Vehicles, %	3		8	8	3	8	8			3	11		11						
Flow Rate (VPCE), pc/h	0		517	82	0	176	681	1		0	109		145		1				
Right-Turn Bypass		No	one			N	one				Nc	ne			1	lone			
Conflicting Lanes			1				1					1							
Pedestrians Crossing, p/h			0				0				()							
Critical and Follow-Up Headway Adjustment																			
Approach EB								WB				NB		Т		SB			
Lane			Left	Right	Вура	iss Li	eft	Right	: E	Bypass	Left	Right	Вура	ass	Left	Right	Bypass		
Critical Headway (s)				4.9763				4.9763	3			4.9763							
Follow-Up Headway (s)				2.6087				2.6087	7			2.6087	·						
Flow Computations,	Capa	city ar	nd v/c	d v/c Ratios															
Approach				EB				WB			NB			Т		SB			
Lane			Left	Right	Вура	iss L	eft	Right	: E	Bypass	Left	Right	Вура	ass	Left	Right	Bypass		
Entry Flow (v _e), pc/h				599				857				254							
Entry Volume, veh/h				555				794				229							
Circulating Flow (vc), pc/h				176				109				517				966			
Exiting Flow (v _{ex}), pc/h				662				790				0				258			
Capacity (c _{pce}), pc/h				1153				1235				814							
Capacity (c), veh/h				1068				1143				734							
v/c Ratio (x)				0.52				0.69				0.31							
Delay and Level of S	ervice	•																	
Approach				EB				WB				NB				SB			
Lane			Left	Right	Вура	iss L	eft	Right	: E	Bypass	Left	Right	Вура	ass	Left	Right	Bypass		
Lane Control Delay (d), s/veh				9.6				13.4				8.7							
Lane LOS				А				В				А							
95% Queue, veh	95% Queue, veh 3.1							6.0		1.3									
Approach Delay, s/veh 9.6					9.6 13.4			8.7											
Approach LOS A					А В				A										
Intersection Delay, s/veh LOS						11.4					B								

Copyright © 2021 University of Florida. All Rights Reserved.

HCS TW Roundabouts Version 7.9 18. 2044 PM Long-Term - US 62 at SR 557.xro

Generated: 5/10/2021 3:25:49 PM

APPENDIX E

Traffic Signal Warrant Analysis Results

October 2004

2-LANE RIGHT TURN LANE WARRANT (HIGH SPEED)

REFERENCE SECTION 401.6.3

401-6b

October 2004

APPENDIX F

Traffic Signal Warrant Analysis Results

TRAFFIC SIGNAL WARRANT ANALYSIS FINDINGS

		Warrant	
	Applicable?	Satisfied?	Notes and Comments:
Warrant 1, Eight-Hour Vehicular Volume	Yes	No	Condition B (70%) was met.
Warrant 2, Four-Hour Vehicular Volume	Yes	No	Figure 4C-2 (70% Factor)
Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic actuated. Peak Hour 4:15 PM 5:15 PM
For Warrants 1-3, new	ODOT signal	s must be bas	sed off of 100% volume thresholds (TEM 402-3.2)
Warrant 4, Pedestrian Volume	No		If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E of the OMUTCD.
Warrant 5, School Crossing	No		N/A
Warrant 6, Coordinated Signal System	No		(Shall not be used as the sole warrant in the analysis)
Warrant 7, Crash Experience	No		If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection.
Warrant 8, Roadway Network	No		(Shall not be used as the sole warrant in the analysis)
Warrant 9, Intersection Near a Grade Crossing	No		Figure 4C-9
Multi-Way Stop Warrant	No		May be used as an interim measure if traffic signal warrants are satisfied.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

If no warrants are satisfied, additional options may be considered:

1. An engineering study, performed by a firm prequalified by ODOT for signal design, if approved by the ODOT district, may be used to justify a new signal installation or retention of an existing signal that otherwise does not meet the published warrants. An example of such an instance is a traffic signal in proximity to a railroad crossing that serves to reduce queuing across the tracks.

2. According to TEM 402-2, If the actual turning movement counts fail to satisfy a signal warrant, it may be acceptable to use traffic volumes projected to the second year after project completion. The **Modeling and Forecasting Section** should provide the projected traffic volumes.

3. A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C of TEM) or at a location that meets traffic signal warrants under Sections 4C.05 and/or 4C.06 but a decision is made to not install a traffic control signal. **Please fill inputs on PHB Score Sheet and submit to ODOT.**

Considerations such as geometrics and lack of sight distance generally have not been accepted in lieu of satisfying signal warrants. These considerations may allow an otherwise unwarranted traffic signal to be retained at **100 percent** local cost. Please review TEM 402-4 for details.

Conclusion:

Notes:

TRAFFIC SIGNAL WARRANT ANALYSIS FINDINGS

		Warrant	
	Applicable?	Satisfied?	Notes and Comments:
Warrant 1, Eight-Hour Vehicular Volume	Yes	No	Condition B (70%) was met.
Warrant 2, Four-Hour Vehicular Volume	Yes	No	Figure 4C-2 (70% Factor)
Warrant 3, Peak Hour	Yes	No	Signals installed under Warrant 3 should be traffic actuated. Peak Hour 4:30 PM 5:30 PM
For Warrants 1-3, new	ODOT signal	s must be bas	ed off of 100% volume thresholds (TEM 402-3.2)
Warrant 4, Pedestrian Volume	No		If this warrant is met, and a traffic control signal is justified by an engineering study, the traffic control signal shall be equipped with pedestrian signal heads complying with the provisions set forth in Chapter 4E of the OMUTCD.
Warrant 5, School Crossing	No		N/A
Warrant 6, Coordinated Signal System	No		(Shall not be used as the sole warrant in the analysis)
Warrant 7, Crash Experience	No		If this is the sole warrant, signal must be semi-actuated with control devices which provide proper coordination if installed at an intersection within a coordinated system and normally should be fully traffic actuated if installed at an isolated intersection.
Warrant 8, Roadway Network	No		(Shall not be used as the sole warrant in the analysis)
Warrant 9, Intersection Near a Grade Crossing	No		Figure 4C-9
Multi-Way Stop Warrant	No		May be used as an interim measure if traffic signal warrants are satisfied.

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

If no warrants are satisfied, additional options may be considered:

1. An engineering study, performed by a firm prequalified by ODOT for signal design, if approved by the ODOT district, may be used to justify a new signal installation or retention of an existing signal that otherwise does not meet the published warrants. An example of such an instance is a traffic signal in proximity to a railroad crossing that serves to reduce queuing across the tracks.

2. According to TEM 402-2, If the actual turning movement counts fail to satisfy a signal warrant, it may be acceptable to use traffic volumes projected to the second year after project completion. The **Modeling and Forecasting Section** should provide the projected traffic volumes.

3. A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants (see Chapter 4C of TEM) or at a location that meets traffic signal warrants under Sections 4C.05 and/or 4C.06 but a decision is made to not install a traffic control signal. **Please fill inputs on PHB Score Sheet and submit to ODOT.**

Considerations such as geometrics and lack of sight distance generally have not been accepted in lieu of satisfying signal warrants. These considerations may allow an otherwise unwarranted traffic signal to be retained at **100 percent** local cost. Please review TEM 402-4 for details.

Conclusion:

Notes:

Intermation UN Analyst QAi Analyst QAi Agency/Co Arcadis US Inc Date Performed 1/27/2021 Project ID PID # 112364 Eas/West Street US 62 at CR 201 xhy Project Doscription PID # 112364 CR 201 General Roadway Network Major Street Speed 55 Population < 10,000 Two Major Routes Crashes (per year) 4 Coordinated Signal System Weekend Count Cane usage LT TH RT Unbic Volume Averages 56 Street Speed(n)/ Gaps 56 Qaptic Vehicle Volume Averages 56 Adequate Trials of Alternatives Street Speed(n) / Gaps Qaptic Vehicle Volume Averages 56 Path RT LT TH RT Vehicle Volume Averages 56 280 7 17 288 35 7 0 14 40 0 61 Vehicle Volume Averages 56 280 7 17 288 35					Warra	ants S	Summ	ary						
Analyst Apency/Co Aradis US Inc 1/27/2021 Intersection VID # 112364 US 62 at CR 201 Holmes County US 62 at CR 201.xhy File Name 2020 12.Hour Warrants - US 62 at CR 201.xhy US 62 at CR 201.xhy Project ID PID # 112364 US 62 at CR 201.xhy Major Street 2020 12.Hour Warrants - US 62 at CR 201.xhy Two Major Routes General Roadway Network Intersection Major Street Street Street Street Major Street Street Street Street Major Street Street Street Street Major Street Street Street Street Street Carshes (per year) 4 Adequate Trials of Alternatives Street Count It Street Value It TH RT It TH RT Number of lanes, N 0 1 0 0 0 0 0 Vehicle Volume Averages 56 280 7 17 288 35 7 0 14 40 0 61 Peds (pedh) / Gaps 0 / 0 - <td colspan="7">Information</td> <td colspan="7"></td>	Information													
Cos b2 at CR 201:xny Project Description PID # 112364 General Roadway Network Major Street Speed 55 Population < 10,000 Two Major Routes Image: Cost of C	AnalystQAiAgency/CoArcadis US IncDate Performed1/27/2021Project IDPID # 112364East/West StreetUS 62File Name2020 12-Hour Warrants -					S -	Intersection US 62 at CR 201 Jurisdiction Holmes County Units U.S. Customary Time Period Analyzed 12-Hour North/South Street CR 201 Major Street East-West							
Roadway Network General General S5 Population < 10.000 Two Major Routes Image: Signal (th) Nearest Signal (th) 8000 Coordinated Signal System Weekend Count Image: Signal Count Ima	US 62 at CR 201.xhy													
Order an Population < 10,000 Two Major Routes Image: Signal (ft) Bearest Signal System Weekend Court Image: Signal (ft) Second ft Geometry and Traffic EB WB NB SB SB SB Number of lanes, N 0 1 0 0 1 0 <td< td=""><td colspan="9">Project Description PID # 112364</td><td></td></td<>	Project Description PID # 112364													
mph) Status Propulation R 10,000 Two Major Routes Image R Routes Nearest Signal (ft) 8000 Coordinated Signal System S-yr Growth Factor 0 Geometry and Traffic Adequate Trials of Alternatives S-yr Growth Factor 0 Beometry and Traffic LT TH RT RT <td>Major Street Speed</td> <td></td> <td></td> <td colspan="8">Roadway Network</td> <td></td> <td></td>	Major Street Speed			Roadway Network										
Nearest Signal (ft) 8000 Continued Signal System Weekend Count Image: Continued Signal System Weekend Count Image: Count<	(mph)	55		Population < 10,000					TWC	o iviajor	Routes	5		
Crashes (per year) 4 Adequate trais of Atternatives 5-yr Growth Factor 0 Geometry and Traffic EB WB NB SB Number of lanes, N 0 1 0 0 1 0	Nearest Signal (ft)	8000			rainate	a Sign	al Syste	m 	Wee	Weekend Count				
Geometry and Traffic EB WB NB SB Number of lanes, N 0 1 0 1 0 0 1 0	Crashes (per year)	4		Ade	quate I	rials o	fAlterna	atives	5-yr	Growt	h Facto	or		0
Li In Ri Li Ri Li Ri Li Ri Li Ri Ri Li Ri Ri Li Ri Ri Li Ri Ri<	Geometry and Traffic					$\left \right _{1+\frac{1}{2}}$		БТ			БТ			БТ
Number of names, N 0 1 0 0 1 0	Number of lance, N													
Image: Second	Lane usage		U				TR	0	0		0		LR	
Peds (ped/h) / Gaps 0 / 0 <td>Vehicle Volume Averag (vph)</td> <td>es</td> <td>56</td> <td>280</td> <td>7</td> <td>17</td> <td>288</td> <td>35</td> <td>7</td> <td>0</td> <td>14</td> <td>40</td> <td>0</td> <td>61</td>	Vehicle Volume Averag (vph)	es	56	280	7	17	288	35	7	0	14	40	0	61
Delay (s/veh) / (veh-hr) 0 / 0 -	Peds (ped/h) / Gaps (gaps/h)			0/0			0/0			0/0			0/0	
Warrant 1: Eight-Hour Vehicular VolumeImage: Sector of Platooning (Predominant direction or both directions)1 A. Minimum Vehicular Volumes (Both major approachesand higher minor approach)orImage: Sector of Platooning (Predominant direction by signal (12-month period)and1 (56%) Vehicularand Interruption Volumes (Both major approachesand higher minor approach)Image: Sector of Sector of Platooning (Predominant direction by signal (12-month period)or2 A. Four-Hour Vehicular Volumes (Both major approachesand higher minor approach)Image: Sector of Platooning (Predominant direction by signal (12-month period)or3 B. Peak-Hour Conditions (Minor delayand minor volumeand total volume)orImage: Sector of Platooning (Predominant direction by signal (12-month period)and4 B. One-Hour VolumesorImage: Sector of Platooning (Predominant direction by signal (12-month period)and5 B. Reported crashes susceptible to correction by signal (12-month period)andImage: Sector of signal System6 Degree of Platooning (Predominant direction by signal (12-month period)andImage: Sector of signal System7 B. Reported crashes susceptible to correction by signal (12-month period)andImage: Sector of signal System	Delay (s/veh) / (veh-hr)			0/0			0/0 0/0 0/0							
1 A. Minimum Vehicular Volumes (Both major approachesand higher minor approach)or Image: Construct the image: Construct t	Warrant 1: Eight-Hour Vehicular Volume								\checkmark					
1 B. Interruption of Continuous Traffic (Both major approachesand higher minor approach)or I 1 (56%) Vehicularand Interruption Volumes (Both major approachesand higher minor approach) I Warrant 2: Four-Hour Vehicular Volume Image: Control of Continuous (Both major approachesand higher minor approach) Image: Control of Contectic on Control of Control of Control of Control of	1 A. Minimum Vehicular Volumes (Both major approachesand higher minor approach)or													
1 (56%) Vehicularand Interruption Volumes (Both major approachesand higher minor approach) Image: Constraint interruption Volumes (Both major approachesand higher minor approach) Warrant 2: Four-Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Constraint interruption Volumes (Both major approachesand higher minor approach) Warrant 3: Peak Hour Image: Constraint interruption Volumes (Both major approachesand higher minor approach) Image: Constraint interruption Volumeand total volume)or 3 B. Peak-Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Constraint interruption Volumeand total volume)or 3 B. Peak-Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Constraint interruption Volumeand total volume)or 3 B. Peak-Hour Volumes (Both major approachesand higher minor approach) Image: Constraint interruption Volumeand 4 A. Four Hour Volumesor Image: Constraint interruption Volumes Image: Constraint interruption Volumes 4 B. One-Hour Volumesor Image: Constraint interruption Volumesand Image: Constraint interruption Volumes Image: Constraint interruption Volumes 5 Student Volumesand Image: Constraint interction or both directions) Image: Constraint interction or both directions) Image: Constraint interviewed interviewed interviewed interviewed interviewed interuptionand Image: Constraint inte	1 B. Interruption of Continuous Traffic (Both major approachesand higher minor approach)or									\checkmark				
Warrant 2: Four-Hour Vehicular Volume Image: Construct of the system 2 A. Four-Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Construct of the system 3 A. Peak-Hour Conditions (Minor delayand minor volumeand total volume)or Image: Construct of the system 3 B. Peak- Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Construct of the system 3 B. Peak- Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Construct of the system 4 A. Four Hour Volumesor Image: Construct of the system Image: Construct of the system 4 B. One-Hour Volumes Image: Construct of the system Image: Construct of the system 5. Student Volumesand Image: Construct of the system Image: Construct of the system 6. Degree of Platooning (Predominant direction or both directions) Image: Construct of the system Image: Construct of the system 7 A. Adequate trials of alternatives, observance and enforcement failedand Image: Construct of the system Image: Construct of the system 7 B. Reported crashes susceptible to correction by signal (12-month period)and Image: Construct of the system Image: Construct of the system	1 (56%) Vehicularand Interruption Volumes (Both major approachesand higher minor approach)								ach)	\checkmark				
2 A. Four-Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Construct the system of the sy	Warrant 2: Four-Hour	Vehic	ular V	<i>olume</i>										\checkmark
Warrant 3: Peak Hour Image: Second Secon	2 A. Four-Hour Vehicula	ar Volu	umes (Both m	ajor ap	proach	esanc	l highe	er mine	or appr	oach)			\checkmark
3 A. Peak-Hour Conditions (Minor delayand minor volumeand total volume)or Image: Second	Warrant 3: Peak Hour													\checkmark
3 B. Peak- Hour Vehicular Volumes (Both major approachesand higher minor approach) Image: Comparison of the system 4 A. Four Hour Volumesor Image: Comparison of the system Image: Comparison of the system 4 B. One-Hour Volumes Image: Comparison of the system Image: Comparison of the system 5. Student Volumesand Image: Comparison of the system Image: Comparison of the system 6. Degree of Platooning (Predominant direction or both directions) Image: Comparison of the system Image: Comparison of the system 7 A. Adequate trials of alternatives, observance and enforcement failedand Image: Comparison of the system Image: Comparison of the system 7 B. Reported crashes susceptible to correction by signal (12-month period)and Image: Comparison of the system Image: Comparison of the system	3 A. Peak-Hour Condition	ons (N	1inor d	elaya	nd mi	nor vo	lumea	nd tot	al volu	ıme)	or			
Warrant 4: Pedestrian Volume 4 A. Four Hour Volumesor 4 B. One-Hour Volumes Warrant 5: School Crossing 5. Student Volumesand 5. Gaps Same Period Warrant 6: Coordinated Signal System 6. Degree of Platooning (Predominant direction or both directions) Warrant 7: Crash Experience 7 A. Adequate trials of alternatives, observance and enforcement failedand 7 B. Reported crashes susceptible to correction by signal (12-month period)and	3 B. Peak- Hour Vehicu	lar Vo	lumes	(Both n	najor ap	oproac	hesar	d higł	ner mir	nor app	roach)			\checkmark
4 A. Four Hour Volumesor Image: Constant of the second state of the second	Warrant 4: Pedestrian	Volu	me											
4 B. One-Hour Volumes Image: Constant of the second state of	4 A. Four Hour Volumes	sor	-											
Warrant 5: School Crossing	4 B. One-Hour Volumes	;												
5. Student Volumesand	Warrant 5: School Crossing													
5. Gaps Same Period Image: Coordinated Signal System 6. Degree of Platooning (Predominant direction or both directions) Image: Coordinated Signal System 7 A. Adequate trials of alternatives, observance and enforcement failedand Image: Coordinated Signal System 7 B. Reported crashes susceptible to correction by signal (12-month period)and Image: Coordinated Signal System	5. Student Volumesand													
Warrant 6: Coordinated Signal System	5. Gaps Same Period													
6. Degree of Platooning (Predominant direction or both directions) Warrant 7: Crash Experience 7 A. Adequate trials of alternatives, observance and enforcement failedand 7 B. Reported crashes susceptible to correction by signal (12-month period)and	Warrant 6: Coordinated Signal System													
Warrant 7: Crash Experience Image: Crash Experience 7 A. Adequate trials of alternatives, observance and enforcement failedand Image: Crashes susceptible to correction by signal (12-month period)and 7 B. Reported crashes susceptible to correction by signal (12-month period)and Image: Crashes susceptible to correction by signal (12-month period)and	b. Degree of Platooning (Predominant direction or both directions)													
7 A. Adequate trials of alternatives, observance and enforcement failedand Image: Constraint of the servance and enforcement failedand 7 B. Reported crashes susceptible to correction by signal (12-month period)and Image: Constraint of the servance and enforcement failedand	Warrant 7: Crash Expe	erienc	e			_								
/ B. Reported crashes susceptible to correction by signal (12-month period)and	7 A. Adequate trials of a	alterna	tives,	observa	ance an	nd enfo	rcement	failed -	and					
	/ B. Reported crashes s	susce	otible t	o corre	ction by	v signa	I (12-mo	nth per	iod)a	and				

7 C. (56%) Volumes for Warrants 1A, 1Bor 4 are	e satisfied		✓				
Warrant 8: Roadway Network							
8 A. Weekday Volume (Peak hour totaland proje	ected warrants 1, 2 or 3)or						
8 B. Weekend Volume (Five hours total)							
Warrant 9: Grade Crossing							
9 A. Grade Crossing within 140 ftand							
9 B. Peak-Hour Vehicular Volumes							
Copyright © 2017 University of Florida, All Rights Reserved	HCS7 TM Warrants Version 7.3	Generated: 3/2/2021	8:17 AM				

				Warra	ants S	Summ	ary						
Information													
AnalystQAiAgency/CoArcadis US IncDate Performed1/27/2021Project IDPID # 112364East/West StreetUS 62Eile Name2020 12-Hour Warrants -					s -	IntersectionUS 62 at SR 557JurisdictionHolmes CountyUnitsU.S. CustomaryTime Period Analyzed12 HourNorth/South StreetSR 557							
US 62 at SR 557.xhy													
Project Description PID # 112364													
General	1		Roadway Network										
Major Street Speed (mph)	55	~	Pop	Population < 10,000 Two Major Ro						Routes	5		
Nearest Signal (ft)	8000			ordinate	d Sign	al Syste	m	Wee	Weekend Count				
Crashes (per year)	3		Ade	equate 7	Frials o	f Alterna	atives	5-yr	Growt	h Facto	or		0
Geometry and Traffic			EB			WB			NB			SB	
		LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Number of lanes, N		0	1	0	0	1	0	0	0	0	0	0	0
Lane usage	~~												
(vph)	es	0	271	40	68	279	0	37	0	64	0	0	0
Peds (ped/h) / Gaps (gaps/h)			0/0			0/0			0/0			0/0	
Delay (s/veh) / (veh-hr)	elay (s/veh) / (veh-hr) 0 / 0 0 / 0 0 / 0 0 / 0												
Warrant 1: Eight-Hour Vehicular Volume								\checkmark					
1 A. Minimum Vehicular Volumes (Both major approachesand higher minor approach)or													
1 B. Interruption of Continuous Traffic (Both major approachesand higher minor approach)or									\checkmark				
1 (56%) Vehicularand Interruption Volumes (Both major approachesand higher minor approach)								bach)					
Warrant 2: Four-Hour Vehicular Volume													
		umes	ουn m	ajor ap	proach	esand	nigne		or appr	oach)			
2 A Dook Hour Conditie		linord		nd mi	norvo	lumo o	nd tot		(ma)	or			
3 A. Peak-Hour Vehicu			(Both r	maior a		hosar	d biat			vroach)			
Warrant 4: Podostrian	Volu	mo			ppioac		iu nigi			noach)			
4 A Four Hour Volumes	s 0r-	-											
4 B. One-Hour Volumes													
Warrant 5: School Cro	ssinc	x											
5 Student Volumesand													
5. Gaps Same Period													
Warrant 6: Coordinated Signal System													
6. Degree of Platooning (Predominant direction or both directions)													
Warrant 7: Crash Experience													
7 A. Adequate trials of a	alterna	atives,	observa	ance ar	nd enfo	rcemen	t failed -	-and					
7 B. Reported crashes s	susce	ptible t	o corre	ction by	/ signa	l (12-mc	nth per	iod)a	and				

7 C. (56%) Volumes for Warrants 1A, 1Bor 4 are	e satisfied		✓				
Warrant 8: Roadway Network							
8 A. Weekday Volume (Peak hour totaland proje	ected warrants 1, 2 or 3)or						
8 B. Weekend Volume (Five hours total)							
Warrant 9: Grade Crossing							
9 A. Grade Crossing within 140 ftand							
9 B. Peak-Hour Vehicular Volumes							
Copyright © 2017 University of Florida, All Rights Reserved	HCS7 TM Warrants Version 7.3	Generated: 3/2/2021	8:15 AM				

CTY-RTE-SECTION

CTY-RTE-SECTION

APPENDIX H

Cost Estimate

Short Term Countemeasure (LED Signs)						
Item	Unit Cost	Assumed Qty.	Unit	Total		
MOT	\$15,000.00	1	LS	\$7,500.00		
Sign	\$15.00	61	SF	\$915.00		
LED Solar Sign	\$3,000.00	8	EACH	\$24,000.00		
Post	\$9.00	169	FT	\$1,521.00		
Total				\$33,936.00		
25% Contingency				\$8,484.00		
25% Engineering				\$8,484.00		
ROW Cost				\$0.00		
Grand Total				\$50,904.00		
Grand Total with Inflation 2025				\$57,217.00		

Medium Term Countemeasure (Lane Widening)					
Item	Unit Cost	Assumed Qty.	Unit	Total	
Pavement Removed	\$12.00	3852	SY	\$46,222.67	
Pavement Planning, Asphalt Concrete, 3 1/4"	\$2.00	4774	SY	\$9,548.00	
1 1/2 " Asphalt Concrete Surface Course, 12.5mm, Type A	\$215.00	426	CY	\$91,590.00	
1 3/4 " Asphalt Concrete Intermediate Course, 19mm, Type A	\$190.00	497	CY	\$94,430.00	
9" Asphalt Concrete Base, PG64-22	\$160.00	1360	CY	\$217,600.00	
6" Aggregate Base	\$55.00	907	CY	\$49,885.00	
8" Non-Reinforced Concrete	\$90.00	39	SY	\$3,530.00	
Excavation of Subgrade	\$20.00	2720	CY	\$54,400.00	
Granular Material, Type C	\$45.00	2720	CY	\$122,400.00	
Geotextile Fabric	\$2.00	5440	SY	\$10,880.00	
MOT	\$75,000.00	1	LS	\$75,000.00	
Excavation	\$15.00	3174	CY	\$47,610.00	
Embankment	\$12.00	1360	CY	\$16,320.00	
24" Conduit, Type A with Headwall	\$1,000.00	10	FT	\$10,000.00	
6" Shallow Pipe Underdrain with Fabric Wrap	\$12.00	3000	FT	\$36,000.00	
Sign	\$15.00	170	SF	\$2,542.50	
Post	\$10.00	338	FT	\$3,380.00	
Pavement Marking (Prop. And Removals)	\$5.00	2000	FT	\$10,000.00	
Lane Arrow	\$200.00	6	EA	\$1,200.00	
Guardrail, MGS (Prop. And Removals)	\$20.00	1025	FT	\$20,500.00	
Anchor Assembly (Prop. And Removals)	\$1,800.00	10	EACH	\$18,000.00	
Total				\$941,039.00	
25% Contingency				\$235,260.00	
25% Engineering				\$235,260.00	
ROW Cost				\$0.00	
Grand Total				\$1,411,559.00	
Grand Total with Inflation 2025				\$1,586,593.00	

Long Term Countemeasure (Roundabout)					
Item	Unit Cost	Assumed Qty.	Unit	Total	
Pavement Removed	\$12.00	6524	SY	\$78,286.67	
Pavement Planning, Asphalt Concrete, 3 1/4"	\$2.00	942	SY	\$1,884.00	
1 1/2 " Asphalt Concrete Surface Course, 12.5mm, Type A	\$215.00	447	CY	\$96,105.00	
1 3/4 " Asphalt Concrete Intermediate Course, 19mm, Type A	\$190.00	521	CY	\$98,990.00	
9" Asphalt Concrete Base, PG64-22	\$160.00	1446	CY	\$231,360.00	
6" Aggregate Base	\$55.00	1159	CY	\$63,745.00	
8" Non-Reinforced Concrete	\$90.00	1496	SY	\$134,670.00	
Excavation of Subgrade	\$20.00	579	CY	\$11,580.00	
Granular Material, Type C	\$45.00	579	CY	\$26,055.00	
Geotextile Fabric	\$2.00	5784	SY	\$11,568.00	
MOT	\$75,000.00	1	LS	\$75,000.00	
Excavation	\$15.00	4338	CY	\$65,070.00	
Embankment	\$12.00	2410	CY	\$28,920.00	
Curb and Gutter	\$35.00	4573	FT	\$160,055.00	
24" Conduit, Type A with Headwall	\$1,000.00	10	FT	\$10,000.00	
6" Shallow Pipe Underdrain with Fabric Wrap	\$12.00	3000	FT	\$36,000.00	
Sign	\$15.00	172	SF	\$2,580.00	
LED Sign	\$3,000.00	0	EACH	\$0.00	
Post	\$10.00	364	FT	\$3,640.00	
Pavement Marking (Prop. And Removals)	\$5.00	2700	FT	\$13,500.00	
Lane Arrow	\$200.00	3	EA	\$600.00	
Guardrail, MGS (Prop. And Removals)	\$20.00	1138	FT	\$22,750.00	
Anchor Assembly (Prop. And Removals)	\$1,800.00	10	EACH	\$18,000.00	
Total				\$1,190,359.00	
25% Contingency				\$297,590.00	
25% Engineering				\$297,590.00	
ROW Cost				\$41,000.00	
Grand Total				\$1,826,539.00	
Grand Total with Inflation 2025				\$2,053,030.00	

Economic Crash Analysis Tool Results

Economic Crash Analysis Tool Results - Short Term Countermeasures

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool	General				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Project Summary Results (Without Animal Crashes)							
	KA	В	C	0	Total		
N _{predicted} - Existing Conditions	0.4558	0.4558	1.8299	5.7146	8.4561		
N _{expected} - Existing Conditions	0.3760	1.0898	0.7929	5.4870	7.7457		
$N_{\text{potential for improvement}}$ - Existing Conditions	-0.0798	0.6340	-1.0370	-0.2276	-0.7104		
N _{expected} - Proposed Conditions	0.3516	1.0095	0.7151	5.0409	7.1171		

Project Safety Performance Report				
Economic Crash Analysis Tool	General	I Information		
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com	
Project Description	Safety Study	Contact Phone	216-298-5239	
Reference Number	PID #112364	Date Performed	4/14/2021	
Analyst	Justin Maderia	Analysis Year	2024	
Agency/Company	Arcadis			

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Crash Severity Level						
Project Element ID	Common Name	KA	В	C	0	Total
US62; 24.745	SR 557	0.248	0.248	0.9955	3.109	4.6005
US62; 24.915	CR 201	0.2078	0.2078	0.8344	2.6056	3.8556

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool	General				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Crash Severity Level						
Project Element ID	Common Name	KA	В	C	0	Total
<u>US62; 24.745</u>	SR 557	0.1622	0.4703	0.3422	3.0406	4.0153
US62; 24.915	CR 201	0.2138 0.6195 0.4507 2.4464 3.730				

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool	General Ir				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)							
Design Flowment ID Common Name							
Project Element ID	Common Name	KA	В	C	0	Total	
US62; 24.745	SR 557	-0.0858	0.2223	-0.6533	-0.0684	-0.5852	
US62; 24.915	CR 201	0.006 0.4117 -0.3837 -0.1592 -0.1252					

ECAT			
Economic Crash Analysis Tool	General		
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com
Project Description	Safety Study	Contact Phone	216-298-5239
Reference Number	PID #112364	Date Performed	4/14/2021
Analyst	Justin Maderia	Analysis Year	2024
Agency/Company	Arcadis		

Proposed Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Droject Element ID	Common Nome	Crash Severity Level				
Project Element ID	Common Name	KA	В	C	0	Total
US62; 24.745	SR 557	0.1517	0.4356	0.3086	2.7934	3.6893
US62; 24.915	CR 201	0.1999	0.5739	0.4065	2.2475	3.4278

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool					
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Summary by Crash Type						
		Existing		Proposed		
Crash Type	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency		
Unknown	1.4057	0.0320	-1.3737	0.0320		
Head On	0.1004	0.0794	-0.0210	0.0794		
Rear End	1.9138	2.3323	0.4185	2.3323		
Backing	0.2678	0.2671	-0.0007	0.2671		
Sideswipe - Meeting	0.3544	0.3617	0.0073	0.3617		
Sideswipe - Passing	0.3326	0.3401	0.0075	0.3401		
Angle	0.9711	1.0725	0.1014	1.0725		
Parked Vehicle	0.2831	0.2944	0.0113	0.2944		
Pedestrian	0.0493	0.0442	-0.0051	0.0442		
Animal	0.0000	0.0000	0.0000	0.0000		
Train	0.0006	0.0009	0.0003	0.0009		
Pedalcycles	0.0311	0.0397	0.0086	0.0397		
Other Non-Vehicle	0.0017	0.0013	-0.0004	0.0013		
Fixed Object	2.1793	2.3221	0.1428	2.3221		
Other Object	0.0838	0.0862	0.0024	0.0862		
Overturning	0.1724	0.1451	-0.0273	0.1451		
Other Non-Collision	0.1411	0.1417	0.0006	0.1417		
Left Turn	0.1679	0.1850	0.0171	0.1850		
Right Turn	0.0000	0.0000	0.0000	0.0000		

Safety Benefit - Cost Analysis ECAT **General Information** Task 4 - HOL-62-24.75, US 62 at SR 557 Safety Study Contact Email justin.maderia@arcadis.com Project Name Safety Study Contact Phone 216-298-5239 Project Description Reference Number PID #112364 Date Performed 4/14/2021 2024 Analyst Justin Maderia Analysis Year Agency/Company Arcadis

Comments:

Select Site Types to be used in Benefit-Cost Analysis:

All Sites **Countermeasure Service Lives, Costs, and Safety Benefits** Service Annual Net Present Summary of **Initial Cost of** Total Cost of Net Present Value Countermeasures Life Maintenance & Salvage Value Cost of Annual Crash of Safety Benefits Countermeasure Countermeasures (Years) **Energy Costs** Countermeasure Modifications Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Lane widening) Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Lighting) 0.000 \$0 Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Signal Phasing) Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Added Right Turn Lane) CMF 1 - Replace standard stop sign with flashing LED stop sign 10 \$57,217.00 \$0.00 \$0.00 \$57,217.00 \$57,217.00 -0.440 \$136,186 CMF 2 - Implement systemic signing and marking improvements at stop-controlled 10 \$0.00 \$0.00 -0.189 \$44,538 intersections \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 Totals \$57,217.00 \$0.00 \$0.00 \$57,217.00 \$57,217.00 -0.629 \$180,724

ECAT	Safety Bene	efit - Cost Analysis	
Economic Crash Analysis Tool	Gene	ral Information	
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557 Safety Study	Contact Email	justin.maderia@arcadis.com
Project Description	Safety Study	Contact Phone	216-298-5239
Reference Number	PID #112364	Date Performed	4/14/2021
Analyst	Justin Maderia	Analysis Year	2024
Agency/Company	Arcadis		

Economic Crash Analysis Tool Results - Medium Term Countermeasures

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool	General				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Project Summary Results (Without Animal Crashes)							
	KA	В	C	0	Total		
N _{predicted} - Existing Conditions	0.4558	0.4558	1.8299	5.7146	8.4561		
N _{expected} - Existing Conditions	0.3760	1.0898	0.7929	5.4870	7.7457		
$\mathbf{N}_{\text{potential for improvement}}$ - Existing Conditions	-0.0798	0.6340	-1.0370	-0.2276	-0.7104		
N _{predicted} - Proposed Conditions	0.2279	0.2384	0.9707	2.9067	4.3437		

ECAT	ECAT Project Safety Performance Report				
Economic Crash Analysis Tool	General	General Information			
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Broject Element ID	Common Nome	Crash Severity Level				
Project Element ID	Common Name	KA	В	C	0	Total
US62; 24.745	SR 557	0.248	0.248	0.9955	3.109	4.6005
US62; 24.915	CR 201	0.2078	0.2078	0.8344	2.6056	3.8556

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool	General	General Information			
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Droject Element ID	Common Nome	Crash Severity Level				
Project Element ID	Common Name	KA	В	C	0	Total
<u>US62; 24.745</u>	SR 557	0.1622	0.4703	0.3422	3.0406	4.0153
US62; 24.915	CR 201	0.2138	0.6195	0.4507	2.4464	3.7304

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool	General Ir				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2024		
Agency/Company	Arcadis				

Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)						
Broject Element ID	Common Nomo	Crash Severity Level				
Project Element ID	Common Name	KA	В	C	0	Total
US62; 24.745	SR 557	-0.0858	0.2223	-0.6533	-0.0684	-0.5852
US62; 24.915	CR 201	0.006 0.4117 -0.3837 -0.1592 -0.12				

Project Safety Performance Report				
Economic Crash Analysis Tool	General			
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com	
Project Description	Safety Study	Contact Phone	216-298-5239	
Reference Number	PID #112364	Date Performed	4/14/2021	
Analyst	Justin Maderia	Analysis Year	2024	
Agency/Company	Arcadis			

Proposed Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Broject Element ID	Common Nomo	Crash Severity Level				
Project Element ID	Common Name	KA	В	С	0	Total
<u>US62; 24.745</u>	SR 557	0.112	0.1172	0.4772	1.4287	2.1351
US62; 24.915	CR 201	0.1159	0.1212	0.4935	1.478	2.2086

Project Safety Performance Report				
Economic Crash Analysis Tool	General Ir			
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com	
Project Description	Safety Study	Contact Phone	216-298-5239	
Reference Number	PID #112364	Date Performed	4/14/2021	
Analyst	Justin Maderia	Analysis Year	2024	
Agency/Company	Arcadis			

Summary by Crash Type					
		Existing		Proposed	
Crash Type	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency	
Unknown			0.0000		
Head On			0.0000		
Rear End			0.0000		
Backing			0.0000		
Sideswipe - Meeting			0.0000		
Sideswipe - Passing			0.0000		
Angle			0.0000		
Parked Vehicle			0.0000		
Pedestrian			0.0000		
Animal			0.0000		
Train			0.0000		
Pedalcycles			0.0000		
Other Non-Vehicle			0.0000		
Fixed Object			0.0000		
Other Object			0.0000		
Overturning			0.0000		
Other Non-Collision			0.0000		
Left Turn			0.0000		
Right Turn			0.0000		

Safety Benefit - Cost Analysis ECAT **General Information** Task 4 - HOL-62-24.75, US 62 at SR 557 Safety Study Contact Email justin.maderia@arcadis.com Project Name Safety Study Contact Phone 216-298-5239 Project Description Reference Number PID #112364 Date Performed 4/14/2021 2024 Analyst Justin Maderia Analysis Year Agency/Company Arcadis

Comments:

Select Site Types to be used in Benefit-Cost Analysis:

All Sites **Countermeasure Service Lives, Costs, and Safety Benefits** Service Annual Net Present Summary of **Initial Cost of** Total Cost of Net Present Value Countermeasures Life Maintenance & Salvage Value Cost of Annual Crash of Safety Benefits Countermeasure Countermeasures (Years) Energy Costs Countermeasure Modifications Eastbound and Westbound Left Turn Lane on US 62; Northbound Right Turn Lane 25 \$2,047,410.00 \$0.00 \$0.00 \$2,047,410.00 \$2,047,410.00 on SR 557 Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Lighting) -3.943 \$2,502,540 Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Signal Phasing) Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Added Right Turn Lane) CMF 1 - Implement systemic signing and marking improvements at stop-controlled 10 \$0.00 -0.083 \$32,494 \$0.00 intersections CMF 2 - Replace standard stop sign with flashing LED stop sign 10 \$0.00 \$0.00 -0.087 \$97,069 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 Totals \$2,047,410.00 \$0.00 \$0.00 \$2,047,410.00 \$2,047,410.00 -4.112 \$2,632,103

Economic Crash Analysis Tool Results - Long Term Countermeasure

ECAT	Project Safety Performance Report					
Economic Crash Analysis Tool	General					
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com			
Project Description	Safety Study	Contact Phone	216-298-5239			
Reference Number	PID #112364	Date Performed	4/14/2021			
Analyst	Justin Maderia	Analysis Year	2044			
Agency/Company	Arcadis					

Project Summary Results (Without Animal Crashes)							
	KA	В	C	0	Total		
N _{predicted} - Existing Conditions	0.4558	0.4558	1.8299	5.7146	8.4561		
N _{expected} - Existing Conditions	0.3760	1.0898	0.7929	5.4870	7.7457		
$\mathbf{N}_{\text{potential for improvement}}$ - Existing Conditions	-0.0798	0.6340	-1.0370	-0.2276	-0.7104		
N _{predicted} - Proposed Conditions	0.2401	0.2401	0.9640	3.5083	4.9525		

ECAT	CAT Project Safety Performance Report				
Economic Crash Analysis Tool	General				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2044		
Agency/Company	Arcadis				

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Broject Element ID	Common Nome	Crash Severity Level				
Project Element ID	Common Name	KA	В	С	0	Total
<u>US62; 24.745</u>	SR 557	0.248	0.248	0.9955	3.109	4.6005
US62; 24.915	CR 201	0.2078	0.2078	0.8344	2.6056	3.8556

ECAT	CAT Project Safety Performance Report				
Economic Crash Analysis Tool	General				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2044		
Agency/Company	Arcadis				

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Droject Element ID	Common Nome	Crash Severity Level				
Project Element ID	Common Name	KA	В	C	0	Total
<u>US62; 24.745</u>	SR 557	0.1622	0.4703	0.3422	3.0406	4.0153
US62; 24.915	CR 201	0.2138	0.6195	0.4507	2.4464	3.7304

ECAT	Project Safety Performance Report				
Economic Crash Analysis Tool	General I				
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com		
Project Description	Safety Study	Contact Phone	216-298-5239		
Reference Number	PID #112364	Date Performed	4/14/2021		
Analyst	Justin Maderia	Analysis Year	2044		
Agency/Company	Arcadis				

Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)						
Broject Element ID	Common Nomo	Crash Severity Level				
Project Element ID	Common Name	KA	В	C	0	Total
US62; 24.745	SR 557	-0.0858	0.2223	-0.6533	-0.0684	-0.5852
US62; 24.915	CR 201	0.006	0.4117	-0.3837	-0.1592	-0.1252

ECAT	Project Safety Performance Report			
Economic Crash Analysis Tool	General			
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com	
Project Description	Safety Study	Contact Phone	216-298-5239	
Reference Number	PID #112364	Date Performed	4/14/2021	
Analyst	Justin Maderia	Analysis Year	2044	
Agency/Company	Arcadis			

Proposed Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Broject Element ID	Common Name	Crash Severity Level				
Project Element ID		KA	В	С	0	Total
US62; 24.745	SR 557	0.0323	0.0323	0.1296	0.9027	1.0969
US62; 24.915	CR 201	0.2078	0.2078	0.8344	2.6056	3.8556

ECAT	Project Safety Performance Report			
Economic Crash Analysis Tool	General I			
Project Name	Task 4 - HOL-62-24.75, US 62 at SR 557	Contact Email	justin.maderia@arcadis.com	
Project Description	Safety Study	Contact Phone	216-298-5239	
Reference Number	PID #112364	Date Performed	4/14/2021	
Analyst	Justin Maderia	Analysis Year	2044	
Agency/Company	Arcadis			

Summary by Crash Type					
		Proposed			
Crash Type	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency	
Unknown	1.4057	0.0320	-1.3737		
Head On	0.1004	0.0794	-0.0210		
Rear End	1.9138	2.3323	0.4185		
Backing	0.2678	0.2671	-0.0007		
Sideswipe - Meeting	0.3544	0.3617	0.0073		
Sideswipe - Passing	0.3326	0.3401	0.0075		
Angle	0.9711	1.0725	0.1014		
Parked Vehicle	0.2831	0.2944	0.0113		
Pedestrian	0.0493	0.0442	-0.0051		
Animal	0.0000	0.0000	0.0000		
Train	0.0006	0.0009	0.0003		
Pedalcycles	0.0311	0.0397	0.0086		
Other Non-Vehicle	0.0017	0.0013	-0.0004		
Fixed Object	2.1793	2.3221	0.1428		
Other Object	0.0838	0.0862	0.0024		
Overturning	0.1724	0.1451	-0.0273		
Other Non-Collision	0.1411	0.1417	0.0006		
Left Turn	0.1679	0.1850	0.0171		
Right Turn	0.0000	0.0000	0.0000		

Safety Benefit - Cost Analysis EGAT **General Information** Task 4 - HOL-62-24.75, US 62 at SR 557 Safety Study Contact Email justin.maderia@arcadis.com Project Name Safety Study Contact Phone 216-298-5239 Project Description Reference Number PID #112364 Date Performed 4/14/2021 2044 Analyst Justin Maderia Analysis Year Agency/Company Arcadis

Comments:

Select Site Types to be used in Benefit-Cost Analysis:

All Sites **Countermeasure Service Lives, Costs, and Safety Benefits** Service Annual Net Present Summary of **Initial Cost of** Total Cost of Net Present Value Countermeasures Life Maintenance & Salvage Value Cost of Annual Crash of Safety Benefits Countermeasure Countermeasures (Years) **Energy Costs** Countermeasure Modifications Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Lane widening) Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Lighting) 0.005 (\$3,536) Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Signal Phasing) Site Characteristic Improvements (Please add description about improvements i.e. \$0.00 \$0.00 Added Right Turn Lane) CMF 1 - Convert intersection with minor-road stop control to modern roundabout 25 \$2,053,030.00 \$0.00 \$0.00 \$2,053,030.00 \$2,053,030.00 -3.509 \$2,527,556 (Rural) \$0.00 \$0.00 0.000 \$0 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 \$0.00 \$0.00 0.000 \$0 \$0 \$0.00 \$0.00 0.000 \$0.00 \$0.00 0.000 \$0 Totals \$2,053,030.00 \$0.00 \$0.00 \$2,053,030.00 \$2,053,030.00 -3.504 \$2,524,020

