

PREPARED FOR:

Ohio Department of Transportation District 12

5500 Transportation Boulevard Garfield Heights, OH 44125-5396 PREPARED BY:

LJB Inc.

2500 Newmark Drive Miamisburg, OH 45342 (937) 259-5000

• TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
PURPOSE AND BACKGROUND	
EXISTING CONDITIONS	
CRASH ANALYSIS	13
COUNTERMEASURES	
IMPLEMENTATION PLAN	
BENEFIT COST ANALYSIS	
FIGURES	
	,
FIGURE 1: ODOT SAFETY PRIORITY DATA	
FIGURE 2: PROJECT LOCATION MAP	
FIGURE 3: STUDY AREA MAP	
FIGURE 4 – I-480/SR 176 INTERCHANGE RAMPS CRASH SUMMARY	
FIGURE 5 – I-480 MAINLINE CRASH SUMMARY	15
FIGURE 6: DIAMOND PHASING	22
FIGURE 7: CONCEPTUAL PLAN – STATE ROAD	22
FIGURE 8: SR 176 NORTHBOUND - MEDIUM TERM CONCEPT PLAN	25
FIGURE 9: I-480 EB TO SR 176 NB RAMP – LONG TERM CONCEPT PLAN	27
FIGURE 10: I-480 WB AUXILIARY LANE	29
APPENDICES	
PROJECT DOCUMENTATION	
EXISTING CONDITIONS DIAGRAM	E
STATE ROAD CORRIDOR OPERATIONS REVIEW	C
TRAFFIC DATA	Ε
CRASH DIAGRAMS	E
SAMPLE TIGHT DIAMOND INTERCHANGE SIGNAL PLAN	F
SIGNAL WARRANT ANALYSIS	
SYNCHRO INTERSECTIONS CAPACITY ANALYSIS REPORTS	
TECHNICAL ANALYSIS - HCS MAINLINE/RAMPS CAPACITY ANALYSIS REPORTS	
STORAGE LENGTH CALCULATIONS	
DESIGN EXCEPTIONS	
COST ESTIMATE	

DISCLAIMER:

The contents of this report are protected in accordance with 23 USC Section 409: Discovery and Admission as Evidence of Certain Reports and Surveys.

EXECUTIVE SUMMARY

PURPOSE AND NEED

The purpose of the safety study is to evaluate existing safety performance and identify potential countermeasures to reduce congestion and traffic crashes at the I-480 interchange with State Route 94 (State Road) and ramps to State Route 176 (Jennings Freeway) in Cleveland, Ohio.

BACKGROUND

A review of the crash data provided by the Ohio Department of Transportation (ODOT) yielded a total of 384 crashes within the study area during a 3-year period between 2011 and 2013. A thorough review of crash patterns showed that certain crash trends were higher than the statewide averages for similar facilities.

The segment of I- 480 between the State Road interchange ramps (SLM 14.27 to 14.37) was ranked 67 on the ODOT 2013 Urban Freeway Peak Searching Excess Locations list.

BRIEF OVERVIEW OF POSSIBLE CAUSES

Higher than statewide average statistics of rear-end crashes are a sign of congestion. The AM and PM peak hour time periods contribute to a majority (47 percent) of crashes indicate that congestion during peak hours is the primary contributing factor.

Additional contributing factors include:

- 1. Insufficient capacity of the I-480 EB to SR 176 NB ramp that contributes to queue spillback onto mainline I-480 through the State Road interchange during the AM peak hour,
- 2. Insufficient storage on State Road between Brookpark Road and I-480 ramp intersections and
- 3. Poor signal coordination on State Road result in queueing that sometimes spills back onto mainline I-480.

RECOMMENDED COUNTERMEASURES

This safety study has identified short, medium and long term countermeasures to mitigate crashes within the study area.

Short and medium term improvements for State Road corridor and mainline I-480 and I-480/SR 176 interchange include:

Short term countermeasures

- > Perform signal timing improvements on State Road for improved progression and optimized timings at the signalized intersections. Upgrade interchange phasing to a diamond phasing sequence.
- > Perform traffic control improvements along State Road for improved lane channelization within the existing section.
- > Provide a TWLTL or exclusive left turn lanes on State Road at Wetzel/Springdale intersection and Ralph/Burger intersection.

Medium term countermeasures

- > Provide a dedicated right turn lane on the westbound approach of State Road/Brookpark Road intersection
- > Reconfigure the northbound ramp entrance connection to Jennings Freeway/SR 176 to one lane each from Brookpark Road, I-480 EB and I-480 WB.

> Increase storage of turn lanes on the I-480 WB exit ramp approach to State Road from the existing 200 feet to 600 feet.

Long term countermeasures for the study area include:

- > Widen I-480 EB exit ramp to SR 176 NB from a single to two lane configuration. Merge the entrance ramp from SR 17/Brookpark Road with the two lane entrance ramp from I-480 EB.
- > Convert the I-480 WB exit ramp to SR 176 NB from two lanes to a single lane configuration.
- > Add a fifth travel lane (auxiliary lane) on I-480 WB from SR 176 SB entrance ramp to State Road exit ramp.
- > Evaluate reconfiguration of the State Road/I-480 interchange to a Diverging Diamond Interchange (DDI) or a Single Point Urban Interchange (SPUI).

PURPOSE AND BACKGROUND

PURPOSE AND NEED

The purpose of the safety study is to evaluate existing safety performance and identify potential countermeasures to reduce congestion and traffic crashes on Interstate Route 480 (I-480) between State Route 94 (State Road) and the State Route 176 (Jennings Freeway) interchanges in Cleveland, Ohio. A project location map is provided in **Figure 1** with a more detailed study area map shown in **Figure 2**.

The segment of I- 480 between the State Road interchange ramps (SLM 14.27 to 14.37) was ranked #67 on the 2013 Urban Freeway Peak Searching Excess Locations list. The study area was expanded to identify the contributing factors associated with the hot spot location shown in Figure 3. The Brookpark (SR17) and State Route intersection also is ranked #87 on the Urban Intersection Peak Searching Excess Locations list. A review of the ODOT crash data yielded a total of 375 crashes within the study area during a 3-year

FIGURE 1: ODOT SAFETY PRIORITY DATA

period between 2011 and 2013. The following crash types and conditions are overrepresented in the study area compared to statewide averages for state system, freeway locations (statewide averages shown in parenthesis). Note the statewide crash averages are based on 2008-2012 data whereas the project data encompasses years 2011 to 2013.

I-480 and SR176 ramps (Total crashes – 195)

	>	Injury: 57 crashes or 29.2 percent	(23.8 percent)
	>	Fixed Object: 74 crashes or 37.9 percent	(27.1 percent)
	>	Rear end: 66 crashes or 33.8 percent	(29.3 percent)
	>	Sideswipe-passing: 45 crashes or 23.1 percent	(18.7 percent)
Sta	te F	Route 94 (Total crashes – 189)	
	>	Injury: 60 crashes or 31.7 percent	(25.4 percent)
	>	Rear end: 94 crashes or 49.7 percent	(30.9 percent)
	>	Angle: 42 crashes or 22.2 percent	(15.6 percent)
	>	Sideswipe-passing: 24 crashes or 12.7 percent	(8.7 percent)
	>	Left turn: 14 crashes or 7.4 percent	(5.2 percent)

FIGURE 2: PROJECT LOCATION MAP

FIGURE 3: STUDY AREA MAP

BACKGROUND

I-480 is a 42 mile long auxiliary interstate highway that begins at I-80 interchange in Lorain County and reconnects with I-80 in Portage County. I-480 crosses interstates I-71, I-77 and I-271 in addition to Jennings Freeway (SR 176).

State Route 94 (State Road) is a north-south roadway that begins in the City of North Royalton and continues north where it terminates in Cleveland after intersecting with SR 17, I- 480, and US Route 42. The I-480 and State Road interchange has a diamond configuration with ramp terminal intersections controlled by traffic signals.

A number of safety studies adjacent to the study area were completed over the past three years. Excerpts from the safety studies are provided in **Appendix A**. The safety studies and their recommendations and recent safety improvements are briefly described below.

- 1. SR 176 SB ramp to I-480 EB: In 2011, the SR 176 SB ramp to I-480 EB was restriped from two lanes to a single lane ramp. This safety improvement would reduce excess traveling speeds and mitigate crashes on the ramp and improve the operation of the downstream SR17 ramp merge.
- 2. **Brookpark Road/ State Road safety study:** A safety study was conducted in October 2012 for the State Road and Brookpark Road intersection. This intersection was ranked #35 on the 2010 Safety Analyst Fatal and Serious Injury, Non-Freeway list. The following countermeasures were recommended from this safety study::
 - > Review the feasibility of coordinating traffic signals along State Road from Brookpark Road to Burger Avenue /Ralph Avenue, including the I- 480 interchange signals.
 - > Reconfigure the intersection to provide southbound dual left turn lanes.
 - > Add an exclusive right turn lane on the westbound approach of Brookpark Road.

Traffic signal improvements at the Brookpark/State Road intersection converted the southbound left turn phase from a protected only phase to an actuated phase (protected/permissive). Other improvements included the addition of detection of left turn movements and the addition of signal heads on the southbound approach.

- 3. **CUY-176/17-10.13/10.43 safety study**. A safety study was completed January 2012 on SR176 which included the Brookpark Road (SR 17) and SR176 intersection. This segment was ranked #12 on the 2010 Non-Freeway high crash location list. The following countermeasures were recommended from this study:
 - > Install rumble strips and warning signs on SR176 approaching the signalized intersection
 - > Perform ball bank study to establish the advisory speed for curves
 - > Revise the alignment of the southbound right turn lane on SR176 at Brookpark Road to improve intersection sight distance.
- 4. **CUY-480-15.30-15.40 safety study**: A safety study was completed January 2015 for the I-480/SR 176 interchange (SLM 15.30 to 15.40). This location was ranked #74 on the 2012 Urban Freeway Peak Searching Excess Locations list. The proposed countermeasures include an auxiliary lane on westbound I- 480 between the SR 176 SB entrance ramp and the State Road (SR 94) interchange. Additional studies were recommended to determine if the proposed fifth westbound lane on I-480 should be extended west of the SR 94 interchange.

EXISTING CONDITIONS

LAND USE AND PROPERTY ACCESS

Land uses in proximity to the study area include residential neighborhoods, neighborhood shopping centers, and industrial facilities. The study area is located within the City of Cleveland limits. The City of Parma is located south of Brookpark Road.

ROADWAY/INTERCHANGE CONDITIONS

The Interstate Route 480 is also referenced as John Glenn Highway or the Outerbelt South Freeway. I-480 is comprised of an eight lane section within the study area; an auxiliary lane is provided in the eastbound direction between the State Road (SR 94) and the Jennings Freeway (SR 176) interchanges.

I-480 serves commuter traffic and experiences significant inbound (eastbound) traffic during the AM peak and outbound (westbound) traffic during the PM peak. Similarly, SR 176 (Jennings Freeway) experiences heavy inbound (northbound) traffic during the AM peak and outbound (southbound) traffic during the PM peak.

I-480/State Road interchange: The I-480/State Road interchange is a diamond interchange and provides access to the cities of Parma and Cleveland. All entrance and exit ramps at the I-480/State Road interchange are single lane ramps. Additional turn lanes are provided on the State Road approaches.

State Road is a variable width roadway with a lane configuration that varies between 4 and 8 lanes within the study area. Existing roadway conditions are summarized in **Table 1**. An existing conditions diagram is provided in **Appendix B**.

TARIE 1.	EXICTING	DUVUMVA	CONDITIONS
IADIE		RUALIVVAT	

	I-480 (WEST OF STATE RD)	I-480 (EAST OF STATE RD)	STATE RD (N. OF I-480)	STATE RD (S. OF I-480)	SR-176/JENNINGS FWY (N. OF I-480)
ODOT Functional Classification	Urban Interstate	Urban Interstate	Urban Urban Minor Urban Minor Interstate Arterial Arterial		Urban Other Freeway and Expressway
Posted speed limit	imit 60 MPH 60 MPH		35 MPH	35 MPH	60 MPH
Roadway section	5 lanes EB 5 lanes WB	5 lanes EB 4 lanes WB	4-5 lane typical section	7 lane typical section	3 lanes NB 3 lanes SB
2012 ADT (TIMS)	137,400	136,300	18,400	34,900	74,300

I-480/SR 176 (Jennings Freeway) interchange The I-480/SR 176 interchange is a system interchange. SR 176/ Jennings Freeway connects I-480 to I-71 and provides access to downtown Cleveland via I-71 and I-90.

SR 176 is a six lane divided urban expressway. The SR 176 northbound section at I-480 is formed by three ramps. Single lane entrance ramps from SR 17/Brookpark Road and I-480 EB merge into a single northbound lane. A 2-lane ramp from I-480 WB adds to form the three-lane section. Note the combined ramp volume in the single lane (22,600 vpd) is greater than the 2-lane ramp from I-480 WB (16,700 vpd) as shown in Table 2.

TABLE 2: SR 176/I-480 INTERCHANGE RAMP VOLUME DATA

	I-480 EB TO	SR 17 TO	I-480 WB TO	SR 176 SB TO
	SR 176 NB RAMP	SR 176 NB RAMP	SR 176 NB RAMP	I-480 WB RAMP
2014 ADT ¹	17,070	5,550	16,720	16,170

Note 1: Source: Raw counts from the Office of Traffic Information Services (OTS), seasonally adjusted and projected to 2014.

The AM peak is the critical peak for the I-480 EB ramp to SR 176 NB. The existing ramp roadway pavement is in poor condition. (**Photo 1 and 2**). A single curve warning sign with an advisory speed plaque of 45 MPH exists on the ramp.

SR 176 southbound is also a three-lane section. The lane adjacent to the barrier is an exit only lane to SR 17 (Brookpark Road). The center lane is channelized to form a ramp to I-480 EB. The third lane forms a ramp to I-480 WB.

The length of the existing taper for the SR 176 SB ramp to I-480 WB is 875 feet, less than the ODOT

L&D manual (Figure 503-2cE) suggests a preferred length of 1,250 feet.

INTERSECTION CONDITIONS

The overall study area also includes the State Road corridor from Brookpark Road to Burger Avenue/Ralph Avenue. Four signalized intersections exist within this section. All four signals are maintained by the City of Cleveland. A description of existing conditions and traffic operations at these intersections are summarized below.

PHOTO 1 - I-480 EB RAMP TO SR 176 NB

State Road and Brookpark Road intersection

This intersection is the southern terminus of the study area and is located 650 feet south of the I-480 EB ramps intersection. The intersection operates on a four phase sequence: southbound/northbound left turn phase (protected/permissive), northbound/southbound State Road, eastbound/westbound left turn phase (protected/permissive), and eastbound/westbound Brookpark Road. Pedestrian phases are recalled for all pedestrian crossings.

The traffic operations related to congestion that was observed in the field are summarized below:

Site observations showed that the east/west through phases on Brookpark Road served all vehicles while multi-cycle backup occurred on the State Road approaches in the AM peak period.

The southbound left turn queue extends through the I-480 EB ramp intersection (650 feet) in the AM peak period (7:30 to 8:15 AM). The queue spillback in the AM peak is

PHOTO 3: SR 94 AND SR 17 INTERSECTION

attributed to the insufficient capacity of the southbound left turn movement. Queues in the PM peak are attributed to southbound through traffic blocking access to the left turn lane (270 ft length).

- > Brookpark Road through and left turn movements operate with acceptable delay (LOS D or better).
- > The curbside through-right lane on the westbound approach operates as a defacto right turn lane during peak hours.

See **Appendix A** for a signal plan showing recent signal upgrades to the address recommendations from a 2012 safety study. See **Appendix C** for a detailed operations review of the State Road corridor.

State Road and I-480 EB ramp intersection

The intersection provides access from the exit ramp and to the entrance ramp of the eastbound I-480 lanes. This signalized intersection operates on a 3-phase sequence with pedestrian recall: northbound/

southbound State Road, lagging southbound left turn (protected only), and the I-480 EB ramp.

Lane imbalances were noted as part of the field observations. The lane imbalances are attributed to the proximity of adjacent signalized intersections, heavy demand of turning movements exceeding available storage, and/or changes of lane continuity (through lane transitions). Video from a nearby ITS camera was provided by ODOT District 12 from the following dates:October 30, 2014 (AM and PM peaks) October 15, 2014 (PM peak only). The videos were used to document the lane utilization of major movements that are serviced with two or more travel lanes. Table 3 summarizes the lane utilization by movement.

TABLE 3 – LANE UTILIZATION ANALYSIS

INTERSECTION	MOVEMENT	PEAK TIME PERIOD	LANE 1 VOLUME	LANE 2 VOLUME	LANE 3 VOLUME	LANE UTILIZATION FACTOR (F _{LU})	CONTRIBUTING FACTORS
	NB THROUGH	AM	128	78	24	0.60	Vehicles destined
	ND TIROUGH	PM	115	80	14	0.61	to WB Entrance ramp
I-480 EB RAMPS	NB RIGHT	AM	3	128		0.51	Dedicated RT lane is favored to avoid queueing behind a
		PM	0	112		0.50	through veh in TR shared lane
	EB RIGHT	AM	94	75		0.90	Vehicles destined
		PM	98	95		0.98	to EB Brookpark
	NB LEFT	AM	80	92		0.93	Two lane to single lane merge
I-480 WB RAMPS		PM	138	160		0.93	prior to the gore
	WB LEFT	AM	18	65		0.64	
	WPERI	PM	217	225		0.98	

The default lane utilization factor applied by the Highway Capacity Manual (HCM) is 0.97. The lane utilization of multiple through lanes and dual turn lanes within the study area are lower than the default values, adversely affecting intersection capacity.

The lane utilization factor (F_{LU}) is calculated using the following equation:

 $f_{LU} = \frac{Total\ Approach}{(No.\ of\ Lanes)} \frac{Volume}{x}$ (High Lane Vol)

Other factors affect the capacity of the signalized intersection. These factors should be taken into account when analyzing intersection capacity.

Eastbound: The eastbound right turn traffic from the exit ramp is constrained by the southbound queues at the Brookpark Road intersection. Queues extend from the southbound left turn lane at Brookpark Road intersection during the AM peak period (see Photo 5). Queues extend from the southbound through lanes at the Brookpark Road intersection during the PM peak period, indicating the need for better progression in the southbound direction during the PM peak.

PHOTO 5: SOUTHBOUND LEFT TURN QUEUE AT STATE/BROOKPARK INTERSECTION – AM PEAK

Northbound: Northbound left turn queues from the downstream westbound ramp intersection exceed available storage and extend into the inside northbound through lane at the I-480 EB exit ramp intersection (see Photo 6). This queue also causes a startup delay for the SB left turn movements that operate on a protected-only lagging left turn phase.

The radius of the northbound right turn movement at the EB ramp intersection does not accommodate a dual right turn movement, requiring trucks to straddle both lanes. Trucks require a larger turning radius that blocks the second right turn lane.

SR 94 and I-480 WB ramp intersection

The intersection is located 370 feet north of the I-480 eastbound ramps intersection. This signalized intersection operates on a 3-phase sequence: northbound/southbound through, lagging northbound left turn (protected only), and the I-480 westbound ramp.

The lane configuration at the intersection is comprised of four northbound lanes (L-L-T-T), three southbound lanes (T-T-TR), and three westbound lanes (L-L-R).

The traffic operations related to congestion that was observed in the field are summarized below:

- > The entrance ramp receiving lanes include one for the southbound right movement and two for the northbound left turn movement. The southbound right movement onto the I-480 westbound entrance ramp has a yield sign to merge with the two receiving lanes from the northbound left movement. All three receiving lanes merge to a single lane within 400 feet of the intersection.
- > The traffic volume of 865 vph for the westbound left turn movement during PM peak results in queues exceeding 1,200 feet. The queue extends to the gore area on the I-480 mainline (**Photo 8**) due, in part, to the short length of the dual left-turn lanes (200 feet).
- Vehicles turning left from the exit ramp are stored on the State Road bridge deck between the two ramp intersections. By the end of the

WB ramps of the Road

PHOTO 7: SR 94 AND I-480 WB RAMP INTERSECTION

exit ramp green phase, the available storage on the bridge deck is full and any residual vehicles remain behind the stop bar to avoid blocking the intersection. This queue blockage often results in a startup delay for the southbound

PHOTO 8: I-480 WB EXIT RAMP QUEUE TO STATE RD

through phase approaching the bridge.

SR 94 and Burger Avenue / Ralph Avenue Intersection

The State Road at Burger/Ralph intersection is located 550 feet north of the I-480 WB ramp intersection. The signalized intersection operates a 2-phase sequence: northbound/southbound through followed by the eastbound/westbound phase.

Traffic operations observed in the field are documented below:

- > East/west phases are on a max recall (30 seconds) to accommodate peds. This green time is longer than required for vehicular traffic, causing unnecessary vehicle delays on State Road.
- Drivers on the Burger/Ralph Avenue approaches were observed to be stopping forward of the stop lines -left, through, and right turn movements. Stop lines on the side streets are setback 25 feet from the State Road edge of pavement.
- > Mid-block turns occur on State Road between the WB ramps and Burger Avenue/Ralph Avenue.

PHOTO 9: SR 94 AND BURGER / RALPH INTERSECTION

Burger Ave.

Ralph Ave.

DATA COLLECTION

Turning movement counts were collected for the State Road corridor on Thursday, October 30, 2014 from 6:00 AM to 10:00 AM and from 2:00 PM to 6:00 PM. Turning movement data for the Brookpark Road/State Road intersection were obtained from the CUY-17-10.78 safety study that was collected on Wednesday, March 21, 2012 from 7:00 AM to 11:00 AM and from 2:00 PM to 6:00 PM.

The ADT volumes for the I-480 ramps and mainline were obtained from the ODOT's Office of Technical Services. The mainline I-480 volume is established from the permanent count station at SLM 12.21 and the I-480 ramp volume data for the section between the Ridge Road and SR 176/SR 17 interchanges. Weaving exists on the eastbound lanes of I-480 between the State Road and Jennings Freeway. LJB documented the number of vehicles weaving on I-480 eastbound on January 20, 2015 (PM peak hour) and on January 29, 2015 (AM peak hour) based on field observations.

Traffic volumes for the design year 2034 were calculated using growth rates obtained from the NOACA's regional model. No growth is projected for traffic on the State Road corridor, ramps of the I-480/State Road interchange west of State Road, and all ramps at the SR 176/I-480 interchange. The annual growth rate for I-480 west of SR 176 is 0.20%, while the growth rate for the I-480/State Road interchange east of State Road is 0.02%.

The traffic count data, growth rates from NOACA and traffic volume plates for the base year (2014) and design year (2034) are provided in **Appendix D**.

(8.7 percent)

(5.2 percent)

CRASH ANALYSIS

CRASH DATA

Crash data was obtained from the ODOT for the study limits, encompassing a three-year period between 2011 and 2013. The OH-1 crash report for each documented crash was reviewed to confirm accuracy and to locate crashes properly within the study limits. A summary of crashes by location for the I-480/SR 176 interchange ramps and the I-480 mainline and are shown in **Figures 4 and 5**, respectively.

A total of 384 crashes were reported within the study limits during the three-year analysis period. The following crash types and conditions are overrepresented in the study area compared to statewide averages for state system. Crash percentages for I-480, Jennings Freeway and ramps are compared to the freeway statistics while the State Road (SR 94) statistics are compared to the non-freeway location statistics (statewide averages shown in parenthesis). Note that the statewide crash averages are based on 2008-2012 data whereas the project data encompasses years 2011 to 2013.

I-480 and SR176 ramps (Total crashes – 195)

Sideswipe-passing: 24 crashes or 12.7 percent

Left turn: 14 crashes or 7.4 percent

>	Fatal: 1 crash or 0.5 percent	(0.3 percent)				
>	Injury: 57 crashes or 29.2 percent	(23.8 percent)				
>	Fixed object: 74 crashes or 37.9 percent	(27.1 percent)				
>	Rear end: 66 crashes or 33.8 percent	(29.3 percent)				
>	Sideswipe-passing: 45 crashes or 23.1 percent	(18.7 percent)				
State Route 94 (Total crashes – 189)						
>	Injury: 60 crashes or 31.7 percent	(25.4 percent)				
>	Rear end: 94 crashes or 49.7 percent	(30.9 percent)				
>	Angle: 42 crashes or 22.2 percent	(15.6 percent)				

The crash frequency suggests that congestion is a contributing factor to the safety performance of the study area. The AM peak (6-9 am) and PM peak (3-6 pm) periods account for 47 percent of all crashes within the study area as shown in **Graph 1**. Additional analyses by time of day and by location are summarized later in this section.

14

FIGURE 4 - I-480/SR 176 INTERCHANGE RAMPS CRASH SUMMARY

FIGURE 5 - I-480 MAINLINE CRASH SUMMARY

GRAPH 1 – CRASH FREQUENCY BY TIME OF DAY

Rear end, fixed object, sideswipe-passing and angle crashes are the primary crash types accounting for 92 percent of all crashes (**Graph 2**). A contributing factor to the fixed object crashes on the interstate network is vehicles attempting to avoid slowing or stopped traffic in a travel lane.

GRAPH 2 - CRASH FREQUENCY BY CRASH TYPE

Detailed crash diagrams for the study area are provided in **Appendix E**.

CRASH SUMMARY 16

CRASH SUMMARY BY LOCATION

A summary of crashes by location are provided in **Table 4.** Focus areas are highlighted and further discussed below.

TABLE 4: CRASH SUMMARY BY LOCATION

INTERSECTION	TOTAL	REAR END (30.9%) ¹	ANGLE / LT (20.8%) ¹	FIXED OBJECT (14.6%) ¹	SIDESWIPE PASSING (8.7%) ¹	TOD (6-9AM) ²	TOD (3-6PM) ²	ODOT RSI ⁵
SR 94/Brookpark	76	42 (55.3%)	13 (17.1%)	5 (6.6%)	6 (7.9%)	19.7%	32.9%	22,820
SR94/I-480 EB Ramps ³	43	24 (55.8%)	9 (20.9%)	2 (4.7%)	7 (16.3%)	18.6%	18.6%	20,795
SR94/IR-480 WB Ramps ³	36	19 (52.8%)	11 (30.6%)		6 (16.6%)	8.3%	27.8%	22,356
SR94/Ralph/ Burger ³	17	6 (35.3%)	8 (47.1%)		1 (5.9%)	11.8%	29.4%	20,884
INTERSTATE	TOTAL	REAR END (30.9%) ¹	ANGLE / LT (20.8%) ¹	FIXED OBJECT (14.6%) ¹	SIDESWIPE PASSING (8.7%) ¹	TOD (6-9AM) ²	TOD (3-6PM) ²	ODOT RSI⁵
I-480 EB ³ (SR94 to SR 176)	66	23 (34.8%)	-	29 (43.9%)	9 (13.6%)	42.4%	12.1%	25,413
I-480 WB ³ (SR 176 to SR94)	46	19 (41.3%)	-	10 (21.7%)	13 (28.3%)	13.0%	45.7%	23,380
		$(29.3\%)^4$		$(27.1\%)^4$	$(18.7\%)^4$			

- 1 Statewide averages for crashes on state system, non-freeway locations shown in parenthesis
- 2 Time of Day (TOD) crashes stated as percentage of total at each location
- 3 Crash statistics reference total number of crashes and percentage of total at each location
- 4 Statewide averages for crashes on the state system, freeway locations shown in parenthesis
- 5 Relative Safety Index (Source: ODOT CAM Tool Severity Calc Sheet Tab)

SR 94 and I-480 EB ramp intersection crashes

The most prevalent crash type at this intersection was rear end crashes (24 crashes). The crashes are distributed on all legs of the intersection – 11 crashes occurred on the northbound approach and 7 crashes occurred on the eastbound approach.

The second most prevalent crash type was angle or turning angle crashes (9 crashes) of which 5 crashes involved an eastbound left/southbound through vehicles. Of these 5 crashes, 3 crashes were the result of eastbound left turn drivers running red light. Overall, red light running was a contributing factor in 8 of the 9 crashes. The frequency of red light running crashes at the intersection is attributed to the limited sight distance between eastbound traffic on State Road and southbound traffic on the EB ramp approach. Research conducted by Dr. Timothy Gates of Wayne State University indicate that a driver's tendency to run a red light increases when conflicting movements are not apparent such as an opposing left turn movement or traffic on the side street. The sight distance at the subject intersection is limited by the bridge parapet in the northwest quadrant of the intersection.

SR 94 and I-480 WB ramp intersection crashes

The most prevalent crash type at this intersection was rear end crashes. Of the 19 total rear end crashes at this intersection, eleven occurred on the westbound approach and six crashes occurred on the northbound approach. The rear-end crashes on the WB ramp approach extend to the I-480 mainline/ exit ramp diverge area during the PM peak period.

Two crash types involved the northbound left turning movement:

- > Four sideswipe crashes involved dual northbound left turning vehicles. The small radius on the southwest quadrant and the raised island on the north leg of State Road that extends into the intersection cause vehicles to favor the dotted channelizing line separating the dual left turn lanes. Turning vehicles in both turning lanes avoid the obstruction (raised median adjacent to the right lane) or constraint (small radius adjacent to the left lane) thus increasing the frequency of sideswipe crashes.
- > Seven left turn crashes occurred at this intersection. All left turn crashes involved a northbound left turning vehicle and an opposing southbound through vehicle with southbound drivers running a red light in six of the crashes. Southbound vehicles in the curb lane are able to travel through the signalized intersection at the end of the phase whereas traffic in the adjacent lanes are a part of a queue that extends from the left turn lane to access I-480 EB. Southbound vehicles in the curb lane push the clearance interval and do not expect the opposing left turn movement (lagging) to turn through the queue in the adjacent lane.

SR 94 and Ralph Avenue / Burger Avenue intersection crashes

Seven angle crashes occurred at this intersection. Of these, six crashes involved State Road through vehicles and eastbound/westbound vehicles. Five of the seven total angle crashes resulted in injury. Red light running was a contributing factor in three of these crashes. The approach speed on Burger/Ralph Avenue is lower than 25 miles per hour.

I-480 eastbound crashes

Fifty three (53) crashes occurred on the eastbound I-480 between the SR 94 exit ramp gore and the SR 176 NB exit ramp gore; an additional 13 crashes were recorded on the SR 176 NB entrance ramp from I-480 EB. These crashes include 23 rear end crashes, 29 fixed object/out-of-control crashes and 9 sideswipe-passing crashes. Twenty nine of those crashes occurred during wet, snowy, or icy road conditions.

Of the 66 crashes, 28 crashes (42 percent) occurred during AM peak (6-9 am). This crash pattern is consistent with the queueing observed on I-480 EB during the AM peak hour conditions.

A fatal crash occurred on Saturday May 19, 2012 at 2:25 PM on eastbound IR-480, east of the SR 176 NB exit ramp gore. The driver was a 66 year old male. The vehicle was operating in the third lane from the left and for unknown reasons swerved to the left and hit the barrier wall. The vehicle proceeded to crossed all lanes of traffic and hit the impact attenuator between mainline and the ramp to SR-176 north.

I-480 westbound crashes

Forty six (46) crashes were recorded on westbound I-480, 1,000 feet east of SR 176 SB entrance ramp gore (SLM 15.44) to State Road exit ramp gore (SLM 14.55). Of these, the most prevalent crash types are rear end (19 crashes), sideswipe-passing (13 crashes) and fixed object/out-of-control (10 crashes).

The majority of crashes (46 percent) occurred during the PM peak hour (3-6 pm). This crash pattern is consistent with the westbound direction experiencing congestion during the PM peak hour.

Fourteen crashes (30 percent) were recorded near the SR 176 SB entrance ramp area, whereas the remaining 32 crashes (70 percent) were recorded downstream of the SR 176 SB ramp merge to the State Road exit ramp.

18

COUNTERMEASURES

The following section addresses contributing factors associated with the prevalent crash types by identifying countermeasures for the study subsections. Additional countermeasures may be suggested to minimize potential safety issues that may not be directly attributable to historical crash patterns.

SHORT TERM COUNTERMEASURES -- STATE ROAD (56 CRASHES)

The State Road (SR 94) corridor experiences congestion during peak periods. The frequency of angle crashes at the study area intersections is higher than the statewide averages for similar roadway types and is attributed to queues extending through adjacent intersections. The following short term countermeasures are proposed on the State Road corridor to improve safety performance. Capacity analysis of the existing and recommended improvements is included in **Appendix H**.

Medium and long term countermeasures to mitigate crashes at the Brookpark Road (SR 17) and State Road (SR 94) intersection have been identified as part of a separate <u>safety study</u>.

- 1. **Signal timing improvements.** Updates to the signal timing are recommended to address angle and rear end crash types. Both crash types represent 78% or more of the total crashes at the 3 signalized intersections within the study area.
 - a. Upgrade clearance intervals: Modify the yellow clearance and all red clearance times per ODOT Traffic Engineering Manual and ODOT District 12 preferences. Recommended clearance intervals are based on posted speeds (35 MPH) and actual crossing distances. NCHRP Report 731 dated July 2012 confirms that the ITE clearance interval guidelines are used by the highest percentage of state and local agencies resulting in a total crash reduction of 8 to 14 percent an injury reduction of 12 percent also can be expected.
 - The NCHRP Report 731 also recommends using a design speed of 20 MPH for left turning vehicles. This finding is consistent with research conducted by the North Carolina Department of Transportation published by the ITE Journal which determined that the average operating speed for left turning traffic is 17 miles per hour. This methodology helps provide adequate all-red clearance times based on operating speeds and avoids excessively long clearance intervals (yellow + AR).
 - b. *Improve Signal Progression*: The four signals on State Road are closely spaced within a distance of 1,700 feet. The traffic signals are operating different cycle lengths depending upon the time of day. A signal progression study is recommended to optimize traffic progression during the AM and PM peaks and reduce queue lengths.
 - c. *Intersection optimization*. The Brookpark Road (SR 17) and State Road (SR 94) intersection is the critical intersection of the corridor. Capacity improvements that increase throughput in the southbound direction at the I-480 interchange will have limited benefits unless the SB split is increased at the Brookpark Road intersection especially during the PM peak hour.
 - d. *Interchange phasing*: Queues extending from the left turn lanes on State Road between the ramp intersections often block the adjacent intersection. The effective split time programmed in the controller to deliver left turning volumes at the interchange therefore is reduced due to the queue lengths blocking adjacent intersections. Left turn crashes are mitigated by reducing congestion within the intersection boundaries which may contribute to the frequency of red light running.

An alternate signal phasing plan of the EB and WB I-480 ramp intersections is proposed to operate a 4 or 5 phase sequence for a diamond interchange. Features of a diamond phasing sequence include a single controller that operates both ramp intersections, a limited number of vehicles being stored between the ramp intersections, progression of heavy ramp volumes, and ramp spacing less than 400 feet (360 e actual).

Signal phasing for a diamond interchange was first developed by the Texas DOT and refined by TTI. A modified phasing sequence is shown in **Figure 6** that enables a short interval for simultaneous arterial green phases. The WB ramp is assigned Phase 3 and the EB ramp is assigned Phase 4 for the sample phase diagram. **Appendix F** shows a sample signal plan and detection scheme used at another tight diamond intersection.

Another phasing change proposed at the EB ramp intersection is to convert the NB right turn movement to be an overlap with the EB ramp phase. Nearly all vehicles turning right are destine to EB I-480 and are in the exclusive right turn lane – few right turning vehicles use the existing shared through-right turn lane due in part to the small turning radius in the SE quadrant of the intersection. Allowing the right turn movement to overlap with the EB ramp phase will reduce the length of the queue extending from the NB right turn lane during the AM peak period.

FIGURE 6: DIAMOND PHASING

OVLA - 1,2,3,5,6 OVLB - 3,6 OVLC - 1,2,4,5,6 OVLD - 1,4

- 2. **Traffic control improvements.** Minor changes are proposed to the lane configuration, stop line locations, and raised medians to improve safety performance. See **Figure 7** for a conceptual plan of the proposed improvements.
 - a. *EB I-480 intersection*. Revise the lane configuration of the northbound approach from the existing T(L)-T-TR-R configuration to a T(L)-T(L)-T-R configuration. The T(L) lane designation represents a through lane on the northbound approach of the EB I-480 intersection that is aligned with the northbound left turn lanes at the WB I-480 intersection. The lane configuration change is proposed for 3 reasons:
 - > Over 70% of the approach traffic in the through lanes on the northbound approach are destine to the dual NB left turn lanes at the WB ramp intersection 621 vehicles in the AM peak and 571 vehicles in the PM peak.
 - > The remaining vehicles in the through lane can be serviced by a single through lane 191 vehicles in the AM peak and 230 vehicles in the PM peak.
 - > The radius in the SE quadrant can only accommodate a single right turning vehicle. The shared through-right turn lane is challenging if 2 vehicles turn at the same time.

The three (3) northbound lanes originating from the Brookpark Road intersection are to be configured as a 2-lane section. The two NB through lanes are to transition and align with the T(L) and the through (T) lane at the EB I-480 intersection. Revise the overhead lane use signs on the State Road approaches to match the proposed lane changes.

Revise the stop line location on the southbound approach to increase the start up time for vehicles in the through lanes and increase the storage length of the left turn lane. Angle crashes involving EB vehicles on the ramp approach are to be mitigated with the adjustments to the stop line locations.

b. **WB I-480 intersection**. Revise the lane configuration of the southbound approach from the existing T-T-TR configuration to a T(L)-T-T-R configuration. The T(L) lane designation represents a through lane on the southbound approach of the WB I-480 intersection that is aligned with the southbound left turn lane at the EB I-480 intersection.

Two changes are proposed that improve the safety performance of the dual NB left turn lanes:

- > Revise the radius in the SW quadrant. The existing curb is damaged and rutting of the tree lawn indicates that vehicles are hitting the curb as they negotiate the NB left turn (see **Photo 7**).
- Adjust stop line locations. The relocation of the stop lines will increase left turn lane storage and reduce the all-red clearance time.

PHOTO 7: DAMAGED CURB IN SW QUADRANT

Revise the stop line location on the westbound approach to increase the start up time for vehicles in the dual left turn lanes. Angle crashes involving WB vehicles on the ramp approach are to be mitigated with the adjustments to the stop line location.

c. *Ralph/Burger intersection*. Signal warrant analysis indicates that the signal does not meet the 8-hour, 4-hour or peak hour warrant. Sight distance issues are not anticipated as the available sight distance meets the intersection sight distance criteria for a 35 mile per hour design speed on State Road. If the city is to consider signal removal, note that the Burger/Ralph Avenue approaches are expected to experience delays up to 220 seconds with stop control (**Appendix H**). If the signal is removed, periodic review of delays and crash patterns is recommended. **Appendix G** includes detailed signal warrant analysis.

If the signal remains, install push buttons for pedestrians to cross State Road and vehicle detection on the minor street approached to eliminate the need for max/ped recall

d. Wetzel/Springdale intersection. The existing typical section does not include turn lanes on State Road at intersections although pavement width is adequate to accommodate a center turn lane. Crash patterns indicate angle crashes at Wetzel/Springdale intersections and access to the commercial development on the west side between Wetzel Avenue and Burger Avenue. A two way left turn lane (TWLTL) or exclusive left turn lanes at the Ralph/Burger intersection will provide storage for left turning vehicles that would otherwise block through vehicles.

21

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

CORRIDOR FIGURE ROAD C STATE

MEDIUM TERM COUNTERMEASURES

Many components of the interstate system (merge, diverge, basic freeway section) are shown to operate at acceptable levels of service within the study area as shown in **Appendix I**. The methodology applied to develop the volumes is documented in **Appendix D**.

The medium term countermeasures defined herein are based on existing geometric and/or capacity constraints. Capacity related improvements due to a change of traffic volumes attributed to seasonal fluctuations, maintenance of traffic (MOT) plans implemented on the surrounding interstate network in the Cleveland region or the increase of future traffic volumes that cause merge/diverges to fail or operate at unacceptable levels of service (LOS E or worse) are deferred as long term countermeasures.

1. **Brookpark Road (SR 17) at State Road (SR 94) intersection (76 crashes).** The October 2012 safety study recommended the construction of a westbound right turn lane to reduce vehicle delays at the subject intersection. The addition of a WB right turn lane is expected to improve the intersection level of service from an LOS E to LOS D.

The construction of dual southbound left turn lanes were identified as a potential countermeasure but are deferred as a future improvement as part this study. The levels of service expected with the addition of only the WB right turn lane is sufficient to achieve acceptable levels of services (LOS D or better). Signal improvements were already installed as part of a separate construction project in 2014. See **Figure 7** for a conceptual plan of the proposed improvements.

2. **I-480 EB ramp to SR 176 NB (66 crashes).** Field observations confirmed that slow or stopped vehicles exist between the State Road interchange and the SR 176 NB ramp. Crashes were documented within this segment of I-480 that was consistent with congestion on mainline I-480.

Capacity analysis of the merge/diverge, the weaving section, and the basic freeway section showed that all performed at acceptable levels of service (LOS D or better). A capacity constraint does exist on SR 176 at the northbound merge of 2 single lane ramps:

- > I-480 EB ramp to SR 176 NB 1,630 vehicles in the AM peak hour
- > Brookpark Road ramp to SR 176 NB 530 vehicles in the AM peak hour

The combined volumes of these ramps result in a total volume of 2,160 vehicles in the AM peak hour. In comparison, the existing 2-lane ramp volume of the I-480 WB ramp to SR 176 NB has 1,310 vehicles in the AM peak hour. The northbound ramp configuration of SR 176 is proposed to be revised to balance ramp volumes especially in the AM peak hour:

- a. One lane ramp from Brookpark Road to SR 176 NB (530 vehicles)
- b. One lane ramp from I-480 EB to SR 176 NB (1,630 vehicles). Ramp capacity is assumed to be 2,100 vehicles under ideal conditions. The volume/capacity (VC) ratio with this change is expected to be 0.78 which is better than the VC ratio of 1.03 for the existing condition.
- c. One lane ramp from I-480 WB to SR 176 NB (1,310 vehicles). A VC ratio of 0.31 was calculated for the existing 2-lane ramp configuration. The proposed VC ration of 0.62 as a single lane ramp is more compatible with other ramps on the network. Note that the complementary movement (SR 176 SB to I-480 EB) was converted from a 2-lane ramp to a single lane ramp in 2011.

The proposed countermeasure is intended to be limited to pavement markings and signing changes. The lane transition on SR 176 is proposed to start about 150 feet north of the Schaaf Road bridge and meet the existing 3-lane section with a 900 ft taper. Existing trench drains and catch basins are to be avoided in the existing median. The lane reduction on the I-480 EB ramp to SR 176 NB should begin in advance of the Tuxedo Drive/Granger Road bridges.

Other signing improvements on the I-480 EB ramp include a left side mounted curve warning sign (45 MPH advisory plaque) and additional chevron signs on the outside of the horizontal curve to provide positive guidance.

See **Figure 8** for a conceptual plan of the proposed improvements.

- 3. **SR 176 SB ramp to I-480 WB (46 crashes).** Two countermeasures are proposed to mitigate crashes on I-480 westbound within the study area:
 - a. Storage lane lengths. The existing turn lanes at the WB ramp intersection and State Road (SR 94) are 200 feet long. Queues extend beyond the gore of the exit ramp during peak periods and contribute to congestion on mainline I-480. Calculated storage lane lengths of 600 feet are proposed to minimize queues on the exit ramp affecting traffic operations on I-480. Lane sizing calculations are included in **Appendix J.** See **Figure 7** for a conceptual plan of the proposed improvements.
 - b. *Ramp geometry*. Analysis of the ramp merge for the SR 176 SB ramp to I-480 WB is shown to operate at acceptable levels of service. A previous safety study has shown the merge to operate at unacceptable levels of service (LOS E). Differences of traffic volumes used for the 2 studies could be attributed to seasonal fluctuations or variable traffic volumes associated with MOT for the Innerbelt project.

Slow traffic was observed on SR 176 in advance of the I-480 interchange and was attributed to the weaving between the Spring Road and the I-480 interchanges. The crash pattern indicates that most crashes are focused at the merge point of the ramp and west of the SR 176 interchange. The concentration of crashes at the merge point suggests that a contributing factor may be a geometric issue in addition to a capacity related issue.

The length of the existing taper is 875 feet whereas the ODOT L&D manual (Figure 503-2cE) suggests a preferred length of 1,250 feet. Sight distance is also restricted by the Brookpark Road ramp flyover structure upstream of the ramp merge. The preferred length would extend pavement widening west of the Broadview Road bridge. Pavement widening should be designed to accommodate a future auxiliary lane between the SR 176 interchange and the State Road (SR 94) interchange.

TERM MEDIUM

LONG TERM COUNTERMEASURES

The CUY-480 corridor has both safety and capacity issues – these factors are related with the lack of capacity serving as the primary cause for the crashes along I-480. A recent Transportation Research Board study, *Development of Relationships Between Safety and Congestion for Urban Freeways*, listed in the Journal of the Transportation Research Board, No. 2398, documents this safety-congestion relationship. The countermeasures on I-480 were developed from identifying existing capacity constraints and comparing these locations to the documented crashes within the study area.

The following long-term capacity-related improvements are deemed necessary to mitigate an increase of traffic volumes. The traffic volume increases that justify improvements are attributed to three conditions: 1) seasonal fluctuations, 2) diverted traffic associated with the maintenance-of-traffic (MOT) for the Innerbelt project, and 3) future traffic growth. Capacity related improvements are proposed to improve merge/diverges that fail or operate at unacceptable levels of service (LOS E or worse).

- 1. **I-480 EB ramp to SR 176 NB** (**66 crashes**). Field observations confirmed that slow or stopped vehicles exist on I-480 EB between the State Road interchange and the SR 176 NB entrance ramp. Crashes were documented within this segment of I-480 that was consistent with congestion on mainline I-480. Capacity improvements to the I-480 EB ramp to SR 176 NB include the conversion of a single lane ramp to a 2-lane ramp. Two options were evaluated to implement a 2-lane ramp:
 - a. **Option A Retrofit within the existing section:** The existing pavement width on the ramp is 28 feet whereas the bridge width (toe of parapet to toe of parapet) is 30 feet. Retrofitting a two lane section (24 feet wide) results in shoulder widths of 3 feet on the existing bridge deck.
 - This ramp configuration requires four design exceptions for paved shoulder width, bridge width and lateral clearance to the guardrail. This countermeasure is not recommended for further consideration due to the extent of design exceptions required to implement. Additional details on the design exception and conceptual plan are included in **Appendix K**.
 - b. **Option B Reconstruct Ramp**: Reconstruct the existing I-480 EB exit ramp to northbound SR 176 NB including the bridge over I-480 mainline per ODOT's L&D manual design criteria.
 - For both options, to maintain the two lanes from I-480 EB to northbound SR 176 on the receiving end, the following lane configuration (**Figure 9**) is recommended.
 - > Merge the SR 176 entrance ramp from Brookpark Road with the two lane ramp from I-480 EB.
 - > Convert the existing I-480 WB exit ramp from 2 lanes to a single lane configuration. The inside (left) lane is proposed to be merged prior to the RR overpass. The single lane SR 176 NB exit ramp from I-480 EB will be consistent with the complimentary movement (single lane exit ramp) from SR 176 SB to I-480 EB that was implemented in 2011.

The construction cost of Option B is \$11.2 million in 2015 dollars. The detailed cost estimates for Option B is included in **Appendix L**.

LONG LANE RAMP **o** 176 NB TWO I-480 EB TO

TERM LONG LANE RAMP SR 176 NB TWO I-480 EB TO CUY-480-14.10-14.40 SAFETY STUDY 2. **I-480 WB mainline (42 crashes)**. Add an auxiliary lane on westbound I-480 from the SR 176 SB entrance ramp for a distance of 2,800 feet (**Figure 10**). This countermeasure will improve the available distance to merge as intended with the medium term countermeasure. This countermeasure also provides additional capacity for the merge condition that was identified as having poor level of service (LOS E) in a previous safety study.

The cost of this countermeasure is \$3.3 million in 2015 dollars. The detailed cost estimates are included in **Appendix L**.

FIGURE 10: I-480 WB AUXILIARY LANE

The medium and long term countermeasures proposed above are considered to be effective solutions to mitigate safety issues experienced on the interstate and the arterial roadway network within the study area. Additional long term countermeasures that involve the reconstruction of the State Road interchange considered but not evaluated as part of this study are noted below.

1. Convert the I-480/State Road interchange from a diamond configuration to a **Diverging Diamond Interchange (DDI) configuration**. A DDI simplifies the interaction of turn movements at interchange ramp terminals by crossing side street through movements over each other at each of the ramp intersections. Crossing these through movements to the opposite side of the road replaces left turn crossing conflicts with merge/diverge movements and removes signal phases for traffic destined to entrance ramps.

This configuration will provide following benefits:

- > Reduce delays through more efficient signal operation and fewer phases. Left turn movements entering I-480 will be free flow movements on the bridge.
- > Improves safety by reducing conflict points at the ramp intersections.
- 2. Convert the I-480/State Road interchange from a diamond configuration to a **Single point urban interchange (SPUI) configuration**. This configuration will provide following benefits:
 - > Eliminates the need to store vehicles on the bridge deck and minimize overall delay
 - > Reduce ramp intersections/signals from two to one. Allows for right turn overlap with cross street left turns, i.e., right turns from the EB exit ramp overlap with NB left (WB entrance ramp) movements and NB right turn (EB entrance ramp) movement with WB exit ramp left turn.
 - > Increase storage on SR 94 between I-480 ramps and Brookpark Road intersection.

Both changes to the existing interchange configuration are deferred as future improvements. Note that the existing railroad on the south side of I-480 could be a major constraint to ramp realignments on the south side of the interchange.

29

IMPLEMENTATION PLAN

The Relative Safety Index (RSI) was calculated for the subsections of the study area to help prioritize safety improvements by location. The RSI values shown in parenthesis from **Table 4** suggest the following safety ranking starting with the highest priority location:

- 1. I-480 EB from SR 94 to SR 176 (25,413)
- 2. I-480 WB from SR 176 to SR 94 (23,380)
- 3. SR 94 at Brookpark Road intersection (22,820)
- 4. SR 94/I-480 WB ramp intersection (22,356)
- 5. SR 94/ Ralph/Burger intersection (20,884)
- 6. SR 94/I-480 EB ramp intersection (20,795)

A revised ranking of countermeasures by location is proposed to provide the greatest opportunity to improve the safety performance within the study area. The countermeasures are grouped into categories due to different operational characteristics and of different funding sources.

- 1. Service interchange (arterial) countermeasures (65,971)
 - > SR 94 at Brookpark Road intersection (22,820)
 - > SR 94/I-480 WB ramp intersection (22,356)
 - > SR 94/I-480 EB ramp intersection (20,795)
- 2. Interstate system countermeasures (48,793)
 - > I-480 EB from SR 94 to SR 176 (25,413)
 - > I-480 WB from SR 176 to SR 94 (23,380)

SERVICE INTERCHANGE PLAN

ODOT's Ramp Clear program was created to reduce congestion on interchange ramps that experience bottleneck and where traffic frequently backs up onto the freeway. The safety improvements to be eligible under this program are expected to be low cost, with minimum or no right of way acquisition and utilities, constructible in one construction season and capable of design build development.

The State Road (SR 94) interchange experiences daily congestion resulting in queue spillback onto the mainline and safety issues at the Brookpark Road (SR 17) intersection. The countermeasures recommended in this safety study are eligible for ODOT's Ramp Clear Program. The following combination of improvements is recommended for the Ramp Clear Program.

- > Revised signal timing, Buckeye diamond phasing, and lane configuration changes at the I-480 ramp intersections. These countermeasures include concrete median reconstruction, pavement joint repair, and minor radii improvements as described in the Short Term countermeasure section.
- > Auxiliary turn lane installation at the Wetzel/Springdale intersection.
- > Extending storage lane lengths on the I-480 WB ramp at the State Road (SR 94) intersection. Queue blocking of the existing right turn lane results in longer ramp queues that affect mainline I-480 operations.

The study area meets the eligibility criteria of recurring congestion and queue spillback onto the freeway and above improvements can be constructed within the existing Right of way for less than \$2 million. **Table 5** lists the total estimated project cost, crash reduction factors and resulting benefit cost for the countermeasures eligible for the Ramp Clear program.

Additional information about the cost estimates and benefit cost calculations for the improvements are addressed in the Benefit Cost Analysis section of the report.

SYSTEM INTERCHANGE PLAN

Safety funding is proposed to construct improvements to the I-480 and Jennings Freeway (SR 176) interchange. The following combination of improvements is recommended for improve the safety performance of I-480 within the study area:

- > The northbound ramp configuration of SR 176 is proposed to be modified to balance ramp volumes especially in the AM peak hour. The proposed countermeasure is intended to be limited to pavement markings and signing changes. The lane transition on SR 176 is proposed to start about 150 feet north of the Schaaf Road bridge and meet the existing 3-lane section with a 900 ft taper. The lane reduction on the I-480 EB ramp to SR 176 NB should begin in advance of the Tuxedo Drive/Granger Road bridges.
- > Add an auxiliary lane on westbound I-480 from the SR 176 SB entrance ramp for a distance of 2,800 feet. This countermeasure will improve the available distance to merge as intended with the medium term countermeasure (i.e., increase ramp taper length). This countermeasure also provides additional capacity for the merge condition that was identified as having poor level of service (LOS E) as part of a previous safety study (CUY-480-15.30/15.40).

Additional information about the cost estimates and benefit cost calculations for the improvements are addressed in the Benefit Cost Analysis section of the report.

BENEFIT COST ANALYSIS

Benefit cost analysis is a tool to determine the financial benefits of a project by comparing the net present value (NPV) of a project to NPV of the safety benefit provided by that project. Benefit cost values greater than one indicate a positive return on the original investment. Preferred countermeasures are those having the highest NPV of safety benefits.

BENEFIT COST FOR SR 94 IMPROVEMENTS

A benefit cost analysis for short term countermeasures was prepared using the ODOT ECAT analysis tool. Crash modification factors were applied for the following improvements. This does not account for all recommended improvements, rather only those countermeasures that have CMF values.

- > Install right turn lane on a major street approach
- > Four lane to five lane conversion
- > Update clearance intervals to the ITE recommended values
- > Provide left turn lane on one major road approach CMF value 0.94 (This CMF was applied to the SR 94/I-480 WB ramps intersection to replicate the safety benefit of the proposed widening of the existing turn lanes)
- Add a through lane CMF value 0.74 (This CMF was applied to both ramp intersections to replicate the safety benefit of lane channelization improvements on State Road that also increase storage for the downstream left turn lanes. This CMF was only applied to 33 percent of crashes as the improvements are applicable to one approach of a 3-leg intersection)

Project costs were estimated for short term countermeasures including signal timing and traffic control improvements, medium term countermeasures including adding WB right turn lane at SR 94/Brookpark intersection and increasing storage on the WB exit ramp approach. Construction cost estimates assume the following:

- > 10 percent engineering design
- > 35 percent design risk
- > 12.9 percent inflation rate for an estimated 2018 construction year.
- > Right of way impacts are anticipated for the WB right turn lane improvement at Brookpark.

Cost estimates and benefit cost analysis reports from the ECAT tool are included in **Appendix L**. **Table 5** provides summarizes the benefit cost analysis results.

TABLE 5: BENEFIT COST ANALYSIS FOR STATE ROAD IMPROVEMENTS

Countermeasures with CMF values used in ECAT Tool	 Install right turn lane on one major street approach 4 lane to 5 lane conversion Update clearance intervals Provide (extend) left turn lane Add a through lane (improve lane channelization) 			
Expected annual crash adjustment	4.61			
Net present value of project	\$1,595,300			
Net present value of safety benefit	\$2,475,400			
Benefit / Cost Ratio	1.55			

APPENDIX A PROJECT INFORMATION

DLZ Ohio, Inc.

CUY-17-10.78 | SAFETY STUDY

BROOKPARK ROAD AT STATE ROAD
#35 ODOT SAFETYANALYST FATAL & SERIOUS INJURY

Department of Transportation
District 12
5500 Transportation Boulevard
Garfield Heights, OH 44125
216.581.2100

Prepared by:
DLZ Ohio, Inc.
614 West Superior Avenue
Suite 1000
Cleveland, OH 44113-1397
216.771.1090

DLZ Job No.: 1021-1008-16

1.0 Executive Summary

Purpose and Need & Background

The purpose of this Safety Study is to identify crash problems, determine site-specific countermeasures, and set up reasonable time periods to implement the proposed countermeasures at the intersection of Brookpark Road (SR-17) and State Road (SR 94). More specifically, this report is setup to address the recent crash history (46 crashes between 2008 and 2010) and provide recommendations to items associated with the crash history such as alleviating heavy peak hour congestions.

The Ohio Department of Transportation (ODOT) utilizes SafetyAnalyst which is a highway safety management software program developed in conjunction with the Highway Safety Manual through the American Association of State Highway and Transportation Officials (AASHTO) to flag and rank intersections and segments that have higher than predicted crash frequencies. The most recent three years of available crash data (2008 – 2010) were used to compile the SafetyAnalyst rankings and will be used for this report.

The intersection of Brookpark Road and State Road ranked #35 statewide on the 2010 ODOT SafetyAnalyst Fatal and Serious Injury, Non-Freeway list for "higher than predicted crash frequency involving fatal or serious injuries."

Brookpark Road and State Road are both classified as minor urban arterials. All approaches contain exclusive left turn lanes while the southbound approach on State Road also contains an exclusive right turn lane. The posted speed limit on Brookpark Road is 35 MPH. On State Road, the posted speed limit is 35 MPH just north of Brookpark Road and 25 MPH just south of Brookpark Road.

Possible Causes

Based on crash data obtained from ODOT, the most common types of crashes in the study area are left turn and rear end crashes. The majority of left turn crashes are occurring within the intersection in the eastbound and westbound directions along Brookpark Road. Rear end crashes are also occurring primarily in the eastbound and westbound directions.

Both types of crashes can be attributed to congestion and driver frustration/impatience caused by poor level of service and long delays. Observations revealed no visible vehicle detection and an apparent pretimed signal operation. The lack a vehicle actuation is contributing to an inefficient signal operation.

Recommended Countermeasures and Costs

The proposed improvement phases for this study can be categorized into short-term and medium-term phases. General countermeasures are also listed. These recommendations are proven countermeasures that can be applied to the study intersection. See section 8.0 Recommendations for more detailed recommendations.

General recommendations include:

- upgrading all pedestrian signals to countdown LED signals with pushbuttons for all approaches (short term),
- upgrading signs with highly reflective sheeting (short term),

The short-term recommendations include:

- upgrading the traffic controller to add left turn lane stop bar detection,
- adding lane control signs for the northbound approach,
- adding two signal heads for the southbound approach,
- studying the feasibility of coordinating traffic signals along State Road from Burger Avenue, north of I-480, to Brookpark Road.

DLZ estimated construction costs for year 2012 and included a 20% contingency. For the short-term improvements, the estimated cost is \$79,800.

The medium-term recommendations include:

- access management strategies such as eliminating, relocating, or restricting movements for the drives at the northwest and southwest corners,
- reconfiguring the intersection to provide southbound dual left turn lanes and two northbound receiving lanes,
- upgrading the entire intersection with additional signal heads, new mast arms, LED indications, and backplates,
- adding an exclusive right turn lane to Brookpark Road for the westbound approach.

For medium-term improvements, the estimated construction cost is \$485,100 with a 35% rate of return. This includes a 35% contingency. Right of way costs are included in this estimate as are public utility relocation (notably waterwork which includes relocating hydrants). Private utility relocation is not included but several utility poles along the north side of Brookpark Road present an obstacle to widening for a westbound exclusive right lane.

2012 Safety Analyst Safety Study

CUY-480-15.30-15.40 Cuyahoga County, Ohio

2012 Urban Freeway Rank # 74; CUY-480 (15.30-15.40)

Final Report

Submitted To:

Ohio Department of Transportation – District 12 5500 Transportation Boulevard Garfield Heights, Ohio 44125

Prepared By:

Parsons Brinckerhoff
1660 West Second Street, Suite 820
Cleveland, Ohio 44113
&
Hatch Mott MacDonald
18013 Cleveland Parkway Drive
Suite 200
Cleveland, Ohio 44135

January 2015

1.0 Executive Summary

1.1 Purpose and Background

ODOT initiated a Formal Safety Engineering Study to assess crashes and capacity on I-480 at the SR 176 interchange and to recommend countermeasures. Over 100 crashes were reviewed that occurred at the study interchange between 2010 and 2012. Crashes identified occurred on I-480, SR 176, and the interchange ramps.

Raw crashes were supplied by ODOT in CAMTool format. OH-1 police reports were retrieved for each crash. Crashes were then reviewed and analyzed as follows:

- 1) Limits were verified for influence error.
- 2) Crashes captured by spatial query but outside of influence area were removed.
- 3) Each crash report was reviewed to ensure crash details are correct and corrections were made per ODOT "Hand Logged Revisions" instructions for submission to ODOT.

The purpose of this study is to identify high crash locations to assist ODOT in the planning of future construction projects and to determine potential short-term, low-cost improvements at critical crash locations. Locations on the 2012 Safety Priority List are as follows:

- #74 Urban Freeway, CUY-480-15.306-15.406
- #64 Urban Freeway, CUY-480-14.271-14.371 (just west of project area at SR 94)
- #15 Urban Non-Freeway, CUY-176-10.13-10.20 (Southern-most section of SR 176 SB ramp to SR 17 (Brookpark Road)

1.2 Location

The study area is the I-480/SR 176 interchange which is located in the City of Cleveland and the Village of Brooklyn Heights.

The interstate segments under this study are:

I-480 from approximately 15.30 to 15.40

The interchange under this study is:

I-480 at SR 176

2012 Safety Analyst Safety Study CUY-480-15.30-15.40 January 2015

The merge/diverge areas included within the study limits are:

• Merge: SR 176 SB to I-480 WB

To properly analyze the study segments, ramps, and merges, actual limits of the study area on I-480 were from SR 94 (State Road) to the SR 176 SB merge with I-480 EB (approximately logpoint 14.30 to 17.00).

The Build Condition presents a weave condition on I-480 WB from SR 176 to SR 94 (State Road). Traffic impacts given this weave are not covered in this report and should be studied further.

The entire study area was considered an area of interest.

1.3 Results

Crash data for the three year period from 2010-2012 indicates a total of 108 crashes occurred at the I-480/SR 176 interchange. The most common crash type in the interchange area was the rear end crash (38% of all crashes) followed by fixed object crashes (36%).

2012 Safety Analyst Safety Study CUY-480-15.30-15.40 January 2015

To determine if the existing gore spacing is sufficient, a capacity analysis for all elements is required. Further study with inclusive traffic data is required to determine the relationship between capacity and geometrics at this location.

Lane Widths: All lane widths within the interchange meet current L&D design criteria.

3.4 Existing Crash Data

Based on a crash analysis from 2010 through 2012, there were 15 crashes that occurred on the SR 176 SB to I-480 EB systems interchange ramp. This includes both merges with the westbound SR 17 ramp and with the I-480 EB merge. The majority of these crashes occurred near the SR 176 SB split to I-480 EB/WB, north of the SR 17 merge areas. Eleven of the 15 crashes were fixed object, three were sideswipe-passing, and one was a rear end crash.

3.5 Alternatives

The following alternatives were reviewed to improve traffic operations at the I-480 EB / SR 176 SB / SR 17 interchange area:

- 1. Eliminating the SR 17 EB to I-480 EB entrance ramp and combining both SR 17 eastbound and westbound entrance movements to I-480 EB via a reconfiguration of the existing SR 17 WB ramp.
- 2. Eliminating the SR 17 WB to I-480 EB entrance ramp and combining both SR 17 eastbound and westbound entrance movements to I-480 EB via a reconfiguration of the existing SR 17 EB ramp.
- 3. Given option 1 or 2, separate SR 176 from the SR 17 entrance ramp and merge SR 176 SB into I-480 EB first then merge SR 17 into I-480 EB after to improve spacing between the SR 176 merge and the I-77 interchange (see Figure 5)

Based on geometrics and site constraints, we recommend combining movements from SR 17 to I-480 EB by eliminating the SR 17 EB to I-480 EB entrance ramp and then separating the SR 176 SB ramp from the SR 17 ramp to allow SR 176 SB to merge onto I-480 EB further upstream from existing conditions.

To address crashes, the SR 176 SB to I-480 EB system ramp was restriped by ODOT in 2011 from two lanes to a single lane. Crash data does not currently support the need to implement geometric changes at the I-480/SR 17 interchange for safety purposes. We recommend waiting for more up to date crash data in this area to determine whether or not improvements are needed to address safety. Given additional crash and traffic data, we suggest that ODOT

consider further study on the recommended alternative with consideration given to the following:

- If widening or realignment of SR 17 or any of the ramps is needed, the pier locations at the SR 17 Bridge, Tuxedo Avenue Bridge and the overhead sanitary pipe need to be considered as existing piers are located on both sides of the SR 176 SB/SR 17 WB to I-480 EB system ramp.
- If alternative 1 is studied further, the need for a signal as well as a dedicated EB left turn lane should be studied at the SR 17 and I-480 entrance ramp intersection.
- If suggestion 2 is studied further, consider options to accommodate the elimination of this ramp including a signalized loon/bulb-out or a two-lane roundabout on SR 17 (Brookpark Road) to accommodate a U-turn movement for SR 17 WB traffic as well as a widening SR 17 to accommodate a WB left turn lane.
- If suggestion 3 is studied further, perform a capacity and geometric review to determine appropriate spacing between merge points. Also note that this alternative will require modifications to the existing concrete median and drainage system to accommodate a quicker merge.

Note that any alteration to the ramps will require operational analysis in accordance with the Highway Capacity Manual (HCM) and ODOT's guidelines for an Interchange Modification Study (IMS).

Figure 14 - I-480 Proposed Countermeasure

Programmed EPAC Data

Intersection Name: State & Brookpark

Intersection Alias: State & Broo

27.4					- 2100	
Access Code: 9999	Channel: 1	Address: 3	Revision: 3.34g	Access Data	:1200 Baud	
Phase Data					:9600 Baud	

Vehical Ba	sic Timin	igs					Vehical Densit	ty Timings	Time B4	Cars	Time To	
Phase	Min_Grn	Passage	Max1	Max2	Yellow	All Red	Added Initial	Max_Initial	Reduction	Before		Min Gap
SB I LTM	7	3.0	20	0	3.0	2.0	0.0	0	0	0	0	0.0
NB2	27	0.0	27	0	4.0	2.0	0.0	0	0	0	0	0.0
EB 347A	+ 7SBR	TA 3.0	20	0	3.0	2.0	0.0	0	0	0	0	0.0
WB4	7	0.0	40	0	4.0	2.0	0.0	0	0	0	0	0.0
NB SLTA	7	3.0	20	0	3.0	2.0	0.0	0	0	0	0	0.0
SB6	27	0.0	27	0	4.0	2.0	0.0	0	0	0	0	0.0
WB7LTA	7	3.0	20	0	3.0	2.0	0.0	0	0	0	0	0.0
EB8	7	0.0	40	0	4.0	2.0	0.0	0	0	0	0	0.0

Pede	strian	Timin	g E	extended	d Actuated	General (Control				Misce	llaneou	<u>s</u>		No
Phas	eWalk	Ped Clear	Flashing Walk	Ped Clear	Rest in Walk	Initialize	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	INOH		Last Car Passage	Conditional Service	Simultaneous Gap Out
1	0	0	No	0	No	Inactive	None	None	None	0	Yes	No	No	No	No
2	7	20	No	0	Yes	Inactive	NonActI	Min	Ped	0	No	Yes	No	No	No
3	0	0	No	0	No	Inactive	None	None	None	0	Yes	No	No	No	No
4	7	29	No	0	No	Green	None	Max	Ped	0	No	Yes	No	No	No
5	0	0	No	0	No	Inactive	None	None	None	0	Yes	No	No	No	No
6	7	20	No	0	Yes	Inactive	NonActI	Min	Ped	0	No	Yes	No	No	No
7	0	0	No	0	No	Inactive	None	None	None	0	Yes	No	No	No	No
8	7	29	No	0	No	Green	None	Max	Ped	0	No	Yes	No	No	No

Speci	ial Seque	ence		Vehical Detector Phase Assig	nment					
Phase	Phase Omit	Minus Yellow Phase	Omit Call		Assigned Phase	Mode	Switched Phase	Extend	Delay	
1	2	0	0	Vehical Detector Channel :1	5	Veh	0	0.0	0	
2	0	0	0	Vehical Detector Channel :2	5	Veh	0	0.0	0	
3	4	0	0	Vehical Detector Channel :3	1	Veh	0	0.0	0	
4	0	0	0	Vehical Detector Channel :4	1	Veh	0	0.0	0	
5	6	0	0	Vehical Detector Channel :5	3	Veh	0	0.0	0	
6	0	0	0	Vehical Detector Channel :6	3	Veh	0	0.0	0	
7	8	0	0	Vehical Detector Channel :8	7	Veh	0	0.0	0	

Pedestrian Detector						Special Detector Phase Assignment
	Assign Phase		Switched Phase	Extend	Delay	Assign Switched Phase Mode Phase Extend Delay
Pedestrian Detector Channel :1	2	Ped	0	0.0	0	:
Pedestrian Detector Channel:3	4	Ped	0	0.0	0	Default Data
Pedestrian Detector Channel:5	6	Ped	0	0.0	0	
Pedestrian Detector Channel:7	8	Ped	0	0.0	0	
Default Data						

Genera Startui	l Cont		Startuj	n State	· Flac	h	Red R	evert.	4.0sec		2.00	note l		Ç-		(Channe		ish Ior	Flash Alternat
Auto P	ed Clowitch	ear: No S Func: 0:No	top Ti	me Ro		lo A	lterna In	te Seq	uence: Outp	t 0 ut		F	lash	Flash Exit Phase		De	efaul	t Dat	a - No	Flash
ABC o	connec	ctor Input Metor Output Input Mod Output Me	t Moddes: 0	es: 0		1 2 3 4	Rin Rin No No	g 1 g 2 ne	Ring Ring 2 None None	1 2	Defa	ult E)ata	- No	Flash	i				
Overla	ps										— Ov	erlaps	_						1	
		Phase(s)	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	O	P		
			A	В	C	D	E	F	G	Η	I	J	K	L	M	N	0	P		
		Green		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
		Yellow	4.0	2.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Stor	Grn/	Yel Phase	0	0	0	0	0	0	0	0	0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
		een Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Ring													Phas	se(s)						
		Next		1	1	2	3	4	5 (5	7	8	9	10	11	12	13	14	15	16
Phase		Phase	nt		1	2	3	4	1	1	3	3	9	10	11	12	13	14	15	16
1 2	1	2	Concurrent	Phases	5	5	7	7	2 :	2	4	4								
3	1	3	once	Pha	6	6	8	8	5 (6	7	8								
4	1	1	ŏ																	
5	2	6																		
6	2	7																		
7	2	8																		
8	2	5																		
lterna	ite Se	equences																	Data	
No	Altern	ate																	Port	Message
	quence																	Addr	Status	40
Prog	gramm	ied																1	Used	No
																		2	Used Used	No No
																		17	Used	No

				19 Us	ed No
Control Channel	Hardware Pins	Control	Channel	Hardware Pins	
Coordination Data				Dial/Split	Cycle
General Coordination Data				1/1	120
Operation Mode: 1=Auto	Offset Mode: 1=End Grn	Manual Di	al: 1	2/2	150
Coordination Mode: 0=Permissiv	ve Force Mode: 0=Plan	Manual Sp	4.1	3/3	150
Maximun Mode: 0=Inhibit	Max Dwell Time: 20	Manual Of			
Correction Mode: 3=Short Way I	Plus Yield Period: 10				

	es and Phase	e Mode									
Dial 1 / Sp		- 2		6.1.71	6.		6	10.00			
F.37	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.		Ph. Mode	
1 20 5 20	0=Actuated 0=Actuated	2	42 42	1=Coordinate 1=Coordinate	3 7	15 15	0=Actuated 0=Actuated	4	43 43	5=Ped & Max 5=Ped & Max	
Dial 2 / Sp		U	42	1 Coordinate	1	13	0-Actuated	8	43	5-red & Max	
	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	
0.00	0=Actuated	2	57	1=Coordinate	3	25	0=Actuated	4	43	5=Ped & Max	
	0=Actuated	6	57	1=Coordinate	7	25	0=Actuated	8	43	5=Ped & Max	
Dial 3 / Sp		224									
	Ph. Mode	Ph.		Ph. Mode	Ph.		Ph. Mode	Ph.	Splits	Ph. Mode	
1 25 5 25	0=Actuated 0=Actuated	2 6	57 57	1=Coordinate 1=Coordinate	3 7	25 25	0=Actuated 0=Actuated	4	43 43	5=Ped & Max 5=Ped & Max	
Traffic Pl				1 Coordinate		20	o Trotation	0	13	J Ted & Max	
	BC Data							Sc	ource	Equate Day	/S
	aylight Saving		Week		o Refere	enceHou	ırs: 24 Min: 0	I	Day 1	2 3 4 5	6 7
End of Da	aylight Saving	Month: 11	Week	: 1					1 2	3 4 5 6	7 0
Fraffic D	ata						de labore	allata	,		
	an'	DIGIO G				-	PHASE FUNC	CTION		and the same	
Event Day	Y <u>Time</u> 1 0:0	D/S/O fl	<u>ash</u>	$\frac{1}{2}$ $\frac{2}{3}$	4	5 6	<u> 7</u> <u>8</u> <u>9</u>	10	11 1	2 13 14	15 16
				HHF	ᆝ닏				닏닏		
2	1 7:0	2/2/2						! Ц	닏닏	4 44	
3	1 9:0	1/1/1						Ц.	╚		
4	1 15:30	3/3/3									
5	1 18:0	1/1/1									
AUX. E	vents										
				Det. Det. I	Det.				2020		
	ogram	Aux (the state of the s	Diag. Rpt. Mu			Special Fo	unction	Outputs	-	
Event	Day Hour	Min. 1	$\frac{2}{3}$	D1 D2	D3 Di	imming		4 5	$\begin{array}{ccc} 6 & 7 \\ \square & \square \end{array}$	8	
					_						
Default Da	ta - No Special	Day(s) or V	Veek(s)	Programmed							
Special F	unctions										
Function		V 2	SF1	SF2 SF3 SF4	SF5	SF6	SF7 SF8				
Special Fur	ection 1		X								
Special Fun	ection 2	1		х			一一	1			
Special Fun	action 3				i H	Ħ	ΠH				
Special Fun	ection 4	Î	T i				ПП	-			
Special Fun	iction 5	i	T i		х		ПП				
Special Fun	ection 6	i		THE		х	ПП				
Special Fun	ction 7	j	Ti i			T	X				
Special Fun	ction 8	i	Ti i					1			

Phase Function																
Phase Function Map	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Max2	X															
Phase 2 Max2		X														
Phase 3 Max2			X							1						
Phase 4 Max2			1	X												
Phase 5 Max2					X											
Phase 6 Max2						X		111								
Phase 7 Max2							X								Ħ	
Phase 8 Max2	1,							X						П		ī
Phase 1 Phase Omit									Х							
Phase 2 Phase Omit										X						
Phase 3 Phase Omit											X	127	(5)			
Phase 4 Phase Omit											10	X	10,			-
Phase 5 Phase Omit							0 -(7-11	X			
Phase 6 Phase Omit											1			X		
Phase 7 Phase Omit											7.0				X	
Phase 8 Phase Omit																X
Dimming Data												"				
Channel Red Yellow	Green A	lternate	е							4		i.				

Preemption Data

General Preemption Data

Default Data - No Dimming Programmed

Flash > Preepmt 1, Preepmt 1 > Preepmt 2, Preepmt 2 > Preempt 3, Preepmt 3 > Preempt 4, Preepmt 4 > Preempt 5, Preepmt 5 > Preempt 6
Ring 1 Min GRN/WLK = 10 Ring 2 Min GRN/WLK = 10 Ring 3 Min GRN/WLK = 10 Ring 4 Min GRN/WLK = 10

eempt		npt Ti Link to								4.5.5	elect	-	—т	rack			D	- Re	turn '	
Pre				Extend	Duration	MaxCall	Lck-Out	GateExt	Debounce	Ped Clr	Yel	Red	Grn	Ped	Yel	Red	well Grn	Ped Clr	Yel	Red
1	No	0	0	0	0	0	0	0	0.0	8	40	20	10		40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20

Preempt 1 Preempt 2 Preempt 3 Preempt 4 Preempt 5 Preempt 6 Exit Phase Phase Calls Phase Phase Calls

Programmed EPAC Data

Intersection Name: STATE & I 480 S RAMP

Intersection Alias: STATE 1480 S

Access Code: 9999 Channel: 1 Address: 2

Revision: 3.32h

Access Data

:1200 Baud

Phase I	Data
---------	------

Vehical Basic Timings Phase Min_Grn I		Max1	Max2	Yellow	All Red	Vehical Dens Added Initial		Time B4 Reduction	Cars Before	Time To	Min Gap
NB2 4NB21 RTA	0.0	21	0	4.0	2.0	0.0	0	0	0	0	0.0
5B3 LTA 7	0.0	25	0	3.0	2.0	0.0	0	0	0	0	0.0
EB4RAMP7	0.0	30	0	4.0	2.0	0.0	0	0	0	0	0.0
Pedestrian Timing Ped Flas		ended A Ped	ctuated Rest	General (Control Non-Act	Veh Ped		cellaneous	Car Con	ditional S	No

Pedes	strian	Timin:	g l	Extended	l Actuated	General (Control				Miscel	laneou	S		No
Phase	Walk	Ped Clear	Flashing Walk	Ped Clear	Rest in Walk	Initialize	Non-Act Response	Veh Recall	Ped Recall	Recall Delay	Non Lock	Dual Entry	Last Car Passage	Conditional Service	Simultaneous Gap Out
2	0	0	No	0	Yes	Green	NonActI	Min	None	0	No	No	No	No	No
3	0	0	No	0	No	Inactive	None	Max	None	0	No	No	No	No	No
4	7	20	No	0	No	Inactive	None	Max	Ped	0	No	No	No	No	No

Special Sequence **Default Data**

Vehical Detector Phase Assignment

Assigned

4.0sec

Switched

Mode Phase

Phase Extend Delay

Default Data

Pedestrian Detector

Default Data

Special Detector Phase Assignment

Assign

Switched Phase Mode Phase Extend Delay

Default Data

Unit Data

General Control

General Control		
Startup Time: 0sec	Startup State: Flash	Red Revert:

Auto Ped Clear: No Stop Time Reset: No Alternate Sequence: 0 Aux Switch Func: 0:NoFunction Input Output Ring Response Selection

ABC connector Input Modes: 0 Ring 1 Ring 1 ABC connector Output Modes: 0 2 Ring 2 Ring 2 D connector Input Modes: 0 None 3 None

None None D connector Output Modes: 0

Remote Flash Test A = Flash

Flash Flash Channel Color Alternat

Flash Flash Entry Exit Phase Phase Phase

Default Data - No Flash

Default Data - No Flash

Overlaps	SB	_			-	-			- Ov	erlaps	-					
Phase(s)	A	В	C	D	E	F	G	Η	I	J	K	L	M	N	0	P
	3 A	В	C	D	Е	F	G	Н	Í	ĭ	K	T.	M	N	0	D
		D	0	D	L	1	O	11	1	3	17	L	IVI	14	U	Г
Green	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow	4.0	2.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Red	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Stop Grn/Yel Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Strat Green Phase		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Ring												Pha	se(s)						
		Next		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Phase	Ring	Phase	Ħ	1	2	3	4	1	1	3	3	9	10	11	12	13	14	15	16
2	1	3	ırre	5	5	7	7	2	2	4	4								
4	1	1	Concurrent Phases	6	6	8	8	5	6	7	8								

Alternate Sequences

		_		_												
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Phase	1	1	3	1	5	1	3	1	7	1	3	1	5	1	3	1
Pair(s)		2	4	2	6	2	4	2	8	2	4	2	6	2	4	2
	2	0	0	3	0	5	5	3	0	7	7	3	7	5	5	3
		0	0	4	0	6	6	4	0	8	8	4	8	6	6	4
	3	0	0	0	0	0	0	5	0	0	0	7	0	7	7	5
		0	0	0	0	0	0	6	0	0	0	8	0	8	8	6
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	8

Message BIU Port Addr Status

Default Data

Control	Channel	Hardware Pins	Control Cha	annel	Hardware Pins
1 - Veh Phase 1	1	1 - Phase 1 RYG	2 - Veh Phase 2	2	2 - Phase 2 RYG
3 - Veh Phase 3	3	3 - Phase 3 RYG	4 - Veh Phase 4	4	4 - Phase 4 RYG
5 - Veh Phase 5	5	5 - Phase 5 RYG	6 - Veh Phase 6	6	6 - Phase 6 RYG
7 - Veh Phase 7	7	7 - Phase 7 RYG	8 - Veh Phase 8	8	8 - Phase 8 RYG
18 - Ped Phase 2	2 9	10 - Phase 2 DPW	20 - Ped Phase 4	10	12 - Phase 4 DPW
22 - Ped Phase 6	3 11	14 - Phase 6 DPW	24 - Ped Phase 8	12	16 - Phase 8 DPW
33 - Overlap A	13	17 - Overlap A RYG	34 - Overlap B	14	18 - Overlap B RYG
35 - Overlap C	15	19 - Overlap C RYG	36 - Overlap D	16	20 - Overlap D RYG
17 - Ped Phase 1	17	9 - Phase 1 DPW	19 - Ped Phase 3	18	11 - Phase 3 DPW
21 - Ped Phase 5	19	13 - Phase 5 DPW	23 - Ped Phase 7	20	15 - Phase 7 DPW

Coordination Data			Dial/Split	Cycle	
General Coordination Data			1/1	100	
Operation Mode: 1=Auto	Offset Mode: 1=End Grn	Manual Dial: 1	2/2	100	
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	3/3	100	
Maximun Mode: 0=Inhibit	Max Dwell Time: 25	Manual Offset: 1			
Correction Mode: 3=Short Way Plus	Yield Period: 10	Wandar Offset. 1			

-	t Time	s and Phase M	ode:				X.			
Ph.	Splits 40	Ph. Mode 1=Coordinate	Ph.		Ph. Mode 3=Max Recall	Ph. 4	 Ph. Mode 3=Max Recall	Ph.	Splits	Ph. Mode
Ph.		Ph. Mode 1=Coordinate	Ph. 3		Ph. Mode 3=Max Recall	Ph. 4	Ph. Mode 3=Max Recall	Ph.	Splits	Ph. Mode
100	Splits	Ph. Mode 1=Coordinate	Ph. 3	Splits 26	Ph. Mode 3=Max Recall	Ph. 4	 Ph. Mode 3=Max Recall	Ph.	Splits	Ph. Mode

Traffic Plan Data

Local TBC Data

Start of Daylight Saving Month: 3 Week: 2 End of Daylight Saving Month: 11 Week: 1

Cycle Zero ReferenceHours: 24 Min: 0

Equate Days Source 1 2 3 4 5 6 7 Day 3 4 5 6 7 0

Traffi	c Data									— рц	ASE F	INC	LION					
Event 1 2	<u>Day</u> 1	<u>Time</u> 0:0 7:0	D/S/O 1/1/1 2/2/2	flash		2	<u>3</u>		<u>5</u>	6 <u>7</u>	8 	9 			12	13 14	15	<u>16</u>
3	1	9:0	1/1/1			Ī	Ħ		īĒ	īП	П	Ħ	П	Ħ	Ħ		i H	Ħ
4	1	15:30	3/3/3															
5	1	18:0	1/1/1								' -							
Event	K. Even Progra Day	am	Au r Min. 1	x Ouputs 2 3			Mult D	100	mming	1	Speci		onction 5	Outp 6	uts 7 8	s]		1]
Defaul	t Data -	No Speci	al Day(s) c	or Week(s) Progra	mmed												
Function Specia Specia Specia Specia Specia Specia	l Function I Function I Function I Function I Function I Function I Function	on 1 on 2 on 3 on 4 on 5		SF1	SF2 X	SF3	SF4	SF5	SF6	SF7	7 SF8							3 1 3 9
	l Functio							\mathbb{H}		X								
Specia	l Functio	n 8				0.00					X							

Phase Function																
Phase Function Map	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Max2	X															
Phase 2 Max2		X														
Phase 3 Max2			X													
Phase 4 Max2				X												
Phase 5 Max2					X											
Phase 6 Max2						X								百	百	Ħ
Phase 7 Max2							X									Ī
Phase 8 Max2								X						Ī	百	F
Phase 1 Phase Omit									X		同				百	П
Phase 2 Phase Omit										X	一			同	百	Ħ
Phase 3 Phase Omit											X				百	
Phase 4 Phase Omit												X				
Phase 5 Phase Omit												5.4	X	Ē	Ħ	
Phase 6 Phase Omit				1								-	百	X		百
Phase 7 Phase Omit										同				3	Х	1 2
Phase 8 Phase Omit														Ī		X

10	0.		A 140	ernate
low	Gr	een	Alte	rnate
		┙,		7 3 3 6
E	ir	immi	Dimming F	Dimming Progr

Preemption Data

General Preemption Data
Flash > Preepmt 1, Preepmt 1 > Preempt 2, Preepmt 2 > Preempt 3, Preepmt 3 > Preempt 4, Preepmt 4 > Preempt 5, Preepmt 5 > Preempt 6
Ring 1 Min GRN/WLK = 10 Ring 2 Min GRN/WLK = 10 Ring 3 Min GRN/WLK = 10

eempt	Preer Non-	npt Ti Link to	Children of the West							S Ped	elect		—т	rack-			D		turn	
Pre	Locking	Prmpt	Delay	Extend	Duration	MaxCall	Lck-Out	GateExt	Debounce	Clr	Yel	Red	Grn	Ped	Yel	Red	well Grn	Ped Clr	Yel	Red
1	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20

3/17/2015 7:46:34AM

Intersection Name: STATE & I 480 N RAMP Intersection Alias: STATE I 480N Access Code: 9999 Channel: 1 Address: 1 Revision: 3.32d Access Data :1200 Baud IP: Phase Data :9600 Baud Vehical Basic Timings Vehical Density Timings Time B4 Cars Time To Phase Min Grn Passage Max1 Max2 Added Initial Max_Initial Yellow All Red Reduction Before Reduce Min Gap SB2 21 0.0 21 0 4.0 2.0 0.0 0 0 0 0 0.0 NB3LTA 7 0.0 25 0 3.0 2.0 0.0 0 0 0 0 0.0 WB4RAMP 7 0.0 30 0 4.0 2.0 0.0 0 0 0.0 Extended Actuated General Control Pedestrian Timing Miscellaneous No Ped Rest Non-Act Veh Ped Recall Ped Flashing Non Dual Last Car Conditional Simultaneous Phase Walk Clear Clear in Walk Initialize Response Recall Recall Delay Walk Lock Entry Passage Service Gap Out 2 14 No 0 Yes Green NonActI Min Ped 0 No No No No No 3 0 0 No 0 No Inactive None Max None 0 No No No No No 4 0 0 No 0 No Inactive None Max None No No No No No Special Sequence Vehical Detector Phase Assignment **Default Data** Assigned Switched Mode Phase Phase Extend Delay **Default Data** Pedestrian Detector Special Detector Phase Assignment **Default Data** Assign Switched Phase Mode Phase Extend Delay **Default Data Unit Data** General Control Remote Flash Flash Flash Channel Color Alternat Test A = Flash Startup Time: 0sec Startup State: Flash Red Revert: 4.0sec Auto Ped Clear: No Stop Time Reset: No Alternate Sequence: 0 Flash Flash Default Data - No Flash Entry Exit Aux Switch Func: 0:NoFunction Input Output Phase Phase Phase Ring Response Selection ABC connector Input Modes: 0 Ring 1 Ring 1 Default Data - No Flash ABC connector Output Modes: 0 2 Ring 2 Ring 2 D connector Input Modes: 0 3 None None

Overlaps	NB								- ov	erlaps	_					
	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P
Phase(s)	2															
	3															
	A	В	C	D	E	F	G	H	I	J	K	L	M	N	O	P
Green	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow	4.0	2.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Red	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Stop Grn/Yel Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Strat Green Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

None

None

D connector Output Modes: 0

Ring												Pha	ise(s)						
		Next		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Phase	Ring	Phase	Ħ	1	2	3	4	1	1	3	3	9	10	11	12	13	14	15	16
2	1	3	oncurrent Phases	5	5	7	7	2	2	4	4								
3	1	4	oncurr	6	6	0	0	-	6	7	0								
4	1	1	Con	6	0	8	8	3	0	1	8								

Alternate Sequences

Alternate Sequences

Phase Pair(s) Port 1 Data BIU Port Message Addr Status 40

Default Data

Control C	hannel	Hardware Pins	Control C	hannel	Hardware Pins
1 - Veh Phase 1	1	1 - Phase 1 RYG	2 - Veh Phase 2	2	2 - Phase 2 RYG
3 - Veh Phase 3	3	3 - Phase 3 RYG	4 - Veh Phase 4	4	4 - Phase 4 RYG
33 - Overlap A	5	5 - Phase 5 RYG	6 - Veh Phase 6	6	6 - Phase 6 RYG
7 - Veh Phase 7	7	7 - Phase 7 RYG	8 - Veh Phase 8	8	8 - Phase 8 RYG
18 - Ped Phase 2	9	10 - Phase 2 DPW	20 - Ped Phase 4	10	12 - Phase 4 DPW
22 - Ped Phase 6	11	14 - Phase 6 DPW	24 - Ped Phase 8	12	16 - Phase 8 DPW
33 - Overlap A	13	17 - Overlap A RYG	34 - Overlap B	14	18 - Overlap B RYG
35 - Overlap C	15	19 - Overlap C RYG	36 - Overlap D	16	20 - Overlap D RYG
17 - Ped Phase 1	17	9 - Phase 1 DPW	19 - Ped Phase 3	18	11 - Phase 3 DPW
21 - Ped Phase 5	19	13 - Phase 5 DPW	23 - Ped Phase 7	20	15 - Phase 7 DPW

		Dial/Split	Cycle
		1/1	100
Offset Mode: 1=End Grn	Manual Dial: 1	2/2	100
Force Mode: 0=Plan		3/3	100
Max Dwell Time: 25			
Yield Period: 10	THAIRM OTHER !		
	Force Mode: 0=Plan Max Dwell Time: 25	Force Mode: 0=Plan Manual Split: 1 Max Dwell Time: 25 Manual Offset: 1	Offset Mode: 1=End Grn Manual Dial: 1 2/2 Force Mode: 0=Plan Manual Split: 1 3/3 Max Dwell Time: 25 Manual Offset: 1

Spli	t Time	s and Phase M	ode:								
Dial	1 / Spli	t 1									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	40	1=Coordinate	3	26	3=Max Recall	4	34	3=Max Recall			
Dial	2 / Spli	t 2									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	40	1=Coordinate	3	26	3=Max Recall	4	34	3=Max Recall			
Dial	3 / Spli	t 3									
Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode	Ph.	Splits	Ph. Mode
2	40	1=Coordinate	3	26	3=Max Recall	4	34	3=Max Recall			

Traffic Plan Data

Local TBC Data

Start of Daylight Saving Month: 3 Week: 2 End of Daylight Saving Month: 11 Week: 1 Cycle Zero ReferenceHours: 24 Min: 0

Source Equate Days

Day 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

- /	240.0																
Traffi	c Data								— рн.	ASE FU	INCT	ION					
Event 1 2 3 4 5	Day 1 1 1 1 1 1	Time 0:0 7:0 9:0 15:30 18:0	D/S/O 1/1/1 2/2/2 1/1/1 3/3/3 1/1/1	flash				<u>5</u>		8 	9			12 	13 14	15 	
AUX	. Event	S															
Event	Progra Day		Aur Min. 1	Ouputs 2 3	Det. Diag. D1	Det. Rpt. M D2	Det. (ult100 D3 D	imming	1	Specia 2 3	l Fun 4	ction (Outpu	its 7 8]		
Default	t Data - N	No Speci	al Day(s) o	r Week(s)	Program	med			,								
Function Special Special Special Special Special Special	Function Function Function Function Function	n 1 n 2 n 3 n 4 n 5		SF1 X	X	SF3 SF		SF6	SF7	SF8							
	Function								X								
Special	Function	n 8					$I \cup J$			X							

Phase Function														-		
Phase Function Map	PF1	PF2	PF3	PF4	PF5	PF6	PF7	PF8	PF9	PF10	PF11	PF12	PF13	PF14	PF15	PF16
Phase 1 Max2	X				X I											
Phase 2 Max2		X							-							
Phase 3 Max2			X													
Phase 4 Max2				X			-									
Phase 5 Max2					X											
Phase 6 Max2						X										
Phase 7 Max2							X									
Phase 8 Max2								X								
Phase 1 Phase Omit									X							
Phase 2 Phase Omit										X						
Phase 3 Phase Omit											X					
Phase 4 Phase Omit								-	\rightarrow			X				
Phase 5 Phase Omit							0						X			
Phase 6 Phase Omit									10					X		
Phase 7 Phase Omit					A										X	
Phase 8 Phase Omit																X
Dimming Data				1								- 11				
Channel Red Yellow	Green A	Iternat	е													
Default Data - No Dim	ming Pro	gramn	ned													

Preemption Data

General Preemption Data

Flash > Preepmt 1, Preepmt 1 > Preempt 2, Preepmt 2 > Preempt 3, Preepmt 3 > Preempt 4, Preepmt 4 > Preempt 5, Preepmt 5 > Preempt 6

Ring 1 Min GRN/WLK = 10 Ring 2 Min GRN/WLK = 10 Ring 3 Min GRN/WLK = 10 Ring 4 Min GRN/WLK = 10

empt	Preer Non-	npt Ti								177.3	elect	47	—т	rack			D	Re	turn	
				Extend	Duration	MaxCall	Lck-Out	GateExt	Debounce	Ped Clr	Yel	Red	Grn	Ped	Yel	Red	well Grn	Ped Clr	X 7 1	Red
1	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
2	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
3	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
4	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
5	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20
6	No	0	0	0	0	0	0	0	0.0	8	40	20	10	8	40	20	10	8	40	20

Programmed EPAC Data

7:47:17AM Intersection Name: State & Ralph Burger Intersection Alias: State & Ralp Access Code: 9999 Channel: 1 Address: 4 Revision: 2.30 Access Data :1200 Baud IP: Phase Data :9600 Baud Vehical Basic Timings Vehical Density Timings Time B4 Cars Time To Phase Min Grn Passage Max1 Max2 Yellow All Red Added Initial Max Initial Reduction Before Reduce Min Gap NB25B 30 0.0 30 0 4.0 2.0 0.0 0 0 0 0 0.0 EB4WB 7 0.0 30 0 3.0 2.0 0.0 0 0 0 0 0.0 Extended Actuated General Control Pedestrian Timing Miscellaneous No Ped Rest Non-Act Veh Ped Recall Ped Flashing Non Dual Last Car Conditional Simultaneous Initialize Response Recall Recall Delay Phase Walk Clear Clear in Walk Walk Lock Entry Passage Service Gap Out 2 0 0 No 0 No Green NonActI Min None 0 No No No No No 0 No 0 No Inactive None Max None 0 No No No No No Special Sequence Vehical Detector Phase Assignment **Default Data** Assigned Switched Mode Phase Phase Extend Delay **Default Data** Pedestrian Detector Special Detector Phase Assignment **Default Data** Assign Switched Phase Mode Phase Extend Delay **Default Data** Unit Data General Control Remote Flash Flash Flash Channel Color Alternat Startup Time: 7sec Test A = Flash Yes Startup State: Flash Red Revert: 2.0sec Auto Ped Clear: No Stop Time Reset: No Alternate Sequence: 0 Flash Flash Default Data - No Flash Entry Exit Aux Switch Func: 0:NoFunction Output Input Phase Phase Phase Ring Response Selection ABC connector Input Modes: 0 2 No Yes 1 Ring 1 Ring 1 ABC connector Output Modes: 0 4 Yes No 2 Ring 2 Ring 2 D connector Input Modes: 0 None 3 None None Ring 2 D connector Output Modes: 0 Overlaps Overlaps B C H J L D E F G I K M P N 0 Phase(s) A B C D E F G H I J K L N P M 0 Green 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Yellow 4.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 Red 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Stop Grn/Yel Phase 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Strat Green Phase 0 0 0 0 0 0 0 0 Ring Phase(s)

2

2

5

6

1

5

6

Concurrent

3

3

7

8

4

4

7

8

5

1

2

5

6

1

2

6

3

4

7

3

4

8

9

10

10

11

11

12

12

13

13

14

14

15

16

16

Phase Ring

1

2

4

Next

Phase

3

1

Alternate Sequences

Alternate Sequences

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Phase Pair(s)	1	1 2	3 4	1 2	5	1 2	3 4	1 2	7 8	1 2	3 4	1 2	5	1 2	3 4	1 2
	2	0	0	3 4	0	5 6	5	3 4	0	7 8	7 8	3 4	7 8	5	5 6	3
	3	0	0	0	0	0	0	5 6	0	0	0	7 8	0	7 8	7 8	5
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7 8

Port 1 Data
BIU Port Message
Addr Status 40

Default Data

Control C	hannel	Hardware Pins	Control Ch	annel	Hardware Pins
1 - Veh Phase 1	1	1 - Phase 1 RYG	2 - Veh Phase 2	2	2 - Phase 2 RYG
3 - Veh Phase 3	3	3 - Phase 3 RYG	4 - Veh Phase 4	4	4 - Phase 4 RYG
5 - Veh Phase 5	5	5 - Phase 5 RYG	6 - Veh Phase 6	6	6 - Phase 6 RYG
7 - Veh Phase 7	7	7 - Phase 7 RYG	8 - Veh Phase 8	8	8 - Phase 8 RYG
18 - Ped Phase 2	9	10 - Phase 2 DPW	20 - Ped Phase 4	10	12 - Phase 4 DPW
22 - Ped Phase 6	11	14 - Phase 6 DPW	24 - Ped Phase 8	12	16 - Phase 8 DPW
33 - Overlap A	13	17 - Overlap A RYG	34 - Overlap B	14	18 - Overlap B RYG
35 - Overlap C	15	19 - Overlap C RYG	36 - Overlap D	16	20 - Overlap D RYG
17 - Ped Phase 1	17	9 - Phase 1 DPW	19 - Ped Phase 3	18	11 - Phase 3 DPW
21 - Ped Phase 5	19	13 - Phase 5 DPW	23 - Ped Phase 7	20	15 - Phase 7 DPW
37 - Overlap E	21	21 - Phase 1 ONC	38 - Overlap F	22	22 - Phase 2 ONC
39 - Overlap G	23	23 - Phase 3 ONC	40 - Overlap H	24	24 - Phase 4 ONC

Coordination Data			Dial/Split	Cycle
General Coordination Data			1/1	90
Operation Mode: 1=Auto	Offset Mode: 1=End Grn	Manual Dial: 1	2/2	120
Coordination Mode: 0=Permissive	Force Mode: 0=Plan	Manual Split: 1	3/3	120
Maximun Mode: 0=Inhibit	Max Dwell Time: 25	Manual Offset: 1	3/4	100
Correction Mode: 3=Short Way Plus	Yield Period: 10		4/1	100
			4/2	100
			4/3	100
			4/4	100

Start of Daylight Saving Month: 3 Week: 2 Cycle Zero ReferenceHours: 24 Min: 0 Day 1 2 3 4 1 7 0 0 0 2 3 4 5 6													
Ph. Splits Ph. Mode													
Dial 3 / Splits Ph. Mode													
2 90 1=Coordinate													
Ph. Splits Ph. Mode													
Splits Ph. Mode Ph. Spli													
Ph. Splits Ph. Mode													
Spits Ph. Mode Ph. Spits Ph. Mode P													
Dial 4 Split 2													
1 25													
Source S													
Ph. Splits Ph. Mode Ph. Splits Ph. Splits Ph. Mode Ph. Splits Ph. Mode <													
Source Equate Day Time Dis/O flash 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 20 11/1 15 2 15:30 3/3/3													
Ph. Splits Ph. Mode Ph. Splits Ph. Call Ph. Call Ph. Call Ph. Splits Ph. Call													
1													
Traffic Plan Data													
Source Equate													
Start of Daylight Saving Month: 3 Week: 2 Cycle Zero ReferenceHours: 24 Min: 0 Day 1 2 3 4													
Traffic Data PHASE FUNCTION PHASE FUNCTION 2 3 4 5 6 7 8 9 10 11 12 13 14 12 13 14 14 14 15 15 15 15 15	Start of Daylight Saving Month: 3 Week: 2 Cycle Zero ReferenceHours: 24 Min: 0 Day 1 2 3 4 5 6 7												
Event Day Time 1 0:0 1/1/1 D/S/O flash 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0												
1 1 0:0 1/1/1													
2 2 0:0 1/1/1	<u>15</u> <u>16</u>												
4 2 9:0 1/1/1	HH												
5 2 15:30 3/3/3	HH												
	HH												
	TIT												
6 2 18:0 1/1/1													
AUX. Events													
Program Aux Ouputs Diag. Rpt. Mult100 Special Function Outputs Event Day Hour Min. 1 2 3 D1 D2 D3 Dimming 1 2 3 4 5 6 7 8													
Default Data - No Special Day(s) or Week(s) Programmed													

Spe	cial Fu	inction	S									1							
	ction				SF1	SF2 S	F3 SF4	SF5	SF6 SI	F7 S	F8								
Spe	cial Fun	ction 1			X														
Spe	cial Fun	ction 2				х													
Spe	cial Fun	ction 3			Πī					ĪĒ									
Spe	cial Fun	ction 4			Πi		Х			ĪĒ									
Spe	cial Fun	ction 5			Πī			х		īΓ									
Spe	cial Fun	ction 6			ΠĖ	٦F			x	1	=								
Spe	cial Fun	ction 7			ΠĖ	٦F	ĦĦ		X	╡┝	7								
Spec	cial Fun	ction 8				jt] [3	ζ .								
Pha	se Fun	ction																	
Pha	se Func	tion Map)	PF1 PF	2 PF3 1	PF4 PI	F5 PF6	PF7 P	F8 PF9	PF10	PF1	1 P	F12	PF1	3 PF	14	PF15	PF	716
											JE] [
Cha		ed Yello		een Alter															
Pre	eempt	ion D	ata																
Flas	h > Pre	reempt epmt 1, I n GRN/	reepm	t 1 = Pree	empt 2, Pre ing 2 Mi	epmt 2 n GRN/	= Preemp WLK = 5		mt 3 = Pre g 3 Min						ot 5, Pro Min (npt 6
mpt		mpt Tir	ners							S	elect -		—Tr	ack-		, D	- Re	turn -	
Preempt	Locking	Link to Prmpt	Delay 1	Extend 1	Ouration N	/axCall	Lck-Out	GateExt	Debounc	Ped Clr	Yel F	Red			el Rec	well	Ped	Yel	Red
1	No	0	0	0	0	0	0	0	0.0	8	40	20	5		40 20		Clr 0		20
2	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40 20	5	0	40	20
3	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40 20	5	0	40	20

	Preem	5 4 4 4		Preem	15000 44		empt 3		Preempt 4	vit			empt	5 Evit			Pree		6 Evit	
6	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40	20	5	0	40	20
5	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40	20	5	0	40	20
4	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40	20	5	0	40	20
3	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40	20	5	0	40	20
2	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40	20	5	0	40	20
1	No	0	0	0	0	0	0	0	0.0	8	40	20	5	0	40	20	5	0	40	20
Preem	Non- Locking			Extend	Duration	MaxCall	Lck-Out	GateExt	Debounce	Ped Clr	Yel	Red	—T	rack- Ped	Yel	Red	well Grn	Ped Clr	Yel	Red

	Preemp	t l	3	Preemp	t 2		Preemp	t 3		Preemp	t 4	- 1	Preemp	t 5	1	Preemp	6	
Pha	Exit se Phase	Exit Calls	Phase	Exit Phase	Exit Calls													
1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	1	No	Yes	
2	No	Yes	2	No	Yes	2	Yes	Yes										
3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	3	No	Yes	
4	Yes	Yes	4	Yes	Yes	4	No	Yes										
5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	5	No	Yes	
6	No	Yes	6	No	Yes	6	Yes	Yes										
7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	7	No	Yes	
8	Yes	Yes	8	Yes	Yes	8	No	Yes	8	No	Yes	8	No	Ves	8	No	Ves	

CUY

NOTE #3: The contractor shall restripe all pavement markings within 200' of the stop line on all approaches. See Sub-Summary for quantities.

NOTE #2: Contractor to contact OUPS for field location of existing utilities and resolution of potential conflicts. Utilities on plans based on historical information.

NOTE #1: Proposed pedestrian signal heads shall be oriented on the existing poles to match the existing pedestrian signal head orientation, with the exception of PS2.

NOTE #4: The contractor shall relocate the existing stop lines as shown, including removal of existing markings and restriping longitudinal markings

OHIO UTILITIES PROTECTION SERVICE
NON-MEMBERS
MUST BE CALLED DIRECTLY OIL & GAS PRODUCERS PROTECTIVE SERVICE CALL: 1-800-925-0988

CONNECT

TO

ø2&ø5

SIZE

(FT)

TURNS

ø1& ø5

LOOP

ONLY

SHAPE1

LOOP DETECTOR UNIT SUMMARY

PRESENCE/

PULSE

LOOP

UNIT

LOCK/

NON-LOCK

LOOP

CHAN

ø4&ø7

Ø3& Ø8

ø3&ø7

SIGNAL PHASING

*Ped Phases Not Shown

EXTEND

(SEC.)

DELAY

(SEC.)

REMOVAL ITEMS FOR STORAGE

Power Service Messenger Wire/Cable

Vehicular Signal Head Pedestrian Signal Head Cabinet/Controller

ROAD PS7, PS8, AS PER PLAN 747E PROP. 2" PVC CONDUIT PROP. 18" PULLBOX, PB4 SEE NOTE #2

 \widehat{R}

G

PROPOSED

Ν1,

S2, W1, E1

12"

12"

12"

 \bigcirc

 \bigcirc

 \bigcirc

12"

12"

12"

(**∢**¥)

(46)

'(<u>G</u>),

12"

12"

APPENDIX B EXISTING CONDITIONS DIAGRAM

 \bigcirc

 \circ

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

DIAGRAM CONDITIONS EXISTING

 \bigcirc

DIAGRAM CONDITIONS EXISTING

JY-480-14.10-14.40 SAFETY STUDY

DIAGRAM CONDITIONS

EXISTING

DIAGRAM CONDITIONS

EXISTING

CUY-480-14.10-14.40 SAFETY STUDY

APPENDIX C STATE ROAD CORRIDOR OPERATIONS REVIEW

TMS Engineers, Inc.

Transportation Management Services

2112 Case Parkway South, #7 Twinsburg, Ohio 44087 www.TMSEngineers.com

August 18, 2015

Mr. Scott Knebel, P.E. LJB Inc. 6151 Wilson Mills Road Suite 220 Cleveland, Ohio 44143

Re: State Road Operational Study

Dear Mr. Knebel:

TMS Engineers, Incorporated is pleased to prepare the following Operational Study for State Road in the City of Cleveland, Cuyahoga County, Ohio. State Road is primarily a four lane urban roadway which travels from the Pearl Road southward into Summit County. This operational study will focus on the section of State Road from the intersection at Brookpark Road to the intersection at Ralph Avenue / Burger Avenue. This portion of State Road includes the I-480 freeway interchange. **Attachment 1** shows the location of the corridor and the intersections under study. The operational study is described in the following portions of the report.

Traffic Data Review

TMS Engineers received eight-hour manual traffic counts at the two I-480 ramp intersection and the Ralph Avenue intersection which were collected by ODOT on October 30, 2014. A eight-hour manual traffic count was also received for the Brookpark Road intersection which was collected by DLZ Ohio, Inc on March 21st, 2012. TMS Engineers reviewed these counts and did not notice any errors or traffic irregularities. The counts were collected approximately one and a half years apart but the difference in the traffic counts was resolved by smoothing the traffic volumes across the intersections.

Field Inventory of Intersections

A field visit and inventory of the study intersections along State Road was performed by TMS Engineer's staff on June 9th, 2015. Intersection field inspection forms were filled out for each of the approaches of the four study intersections and these field inspection sheets are located in **Appendix A**. Photos of the signal controller cabinets and other locations with issues are shown in **Appendix B**. A summary of items which were noticed during the field visit is listed on the following page:

Phone: (330) 686-6402 Fax: (330) 686-6417 E-Mail: Mail@TMSEngineers.com

Mr. Scott Knebel, P.E. August 18, 2015 Page 2

- 1. It was observed that the signal controller at the Brookpark Road intersection has been recently upgraded to a Siemans M50 controller while the remaining three intersection are currently controlled by the outdated and obsolete Eagle EPAC 300 controller.
- 2. It was observed that the signals along the State Road corridor are interconnected by twisted pair copper wire cables with the master controller located at the I-480 WB Ramp intersection. The master is an obsolete Eagle MARC 300 and the master is accessible via a phone drop. The State Road system is currently running as an interconnected system although the signals are not operating with the same cycle lengths.
- 3. It was observed that there is currently no signal loops at any of the signals along State Road (except on the left-turn lanes at the Brookpark Road intersection). The lack of signal loops requires the intersection to operate with fixed timings where the signal controllers are not responding to changes in traffic volumes on the different approaches but instead are following a fixed set of timing which may or may not be accurate for that particular day or time period.
- 4. It was observed that the traffic signals at the two I-480 ramps and Ralph Road intersection currently have a single span type of signal installation which does not allow the signal heads for the various approaches to be placed in the appropriate locations.
- 5. The signal and pedestrian equipment at the State Road intersections (except at the Brookpark Road intersection which appear to have been upgraded recently) appears to be very worn and at the end of their design life. The existing pushbuttons at the I-480 ramp intersections do not currently work and the pedestrian signal heads do not provide count down displays. The Ralph Road intersection currently has crosswalks and curb ramps but the intersection does not currently have pedestrian pushbuttons or pedestrian signal heads. Any modifications to the curb ramps at the signalized intersections can not be improved without also improving the pedestrian push buttons and pedestrian signal heads. Photos of these intersections are currently shown in **Appendix B**.
- 6. The lengths of the crosswalk at the State Road / Brookpark Road were observed to be at an angle which increases the length which pedestrians have to travel while crossing the roadways. This increased travel length also increases the amount of flashing don't walk time which is required for the pedestrian clearance times.

Mr. Scott Knebel, P.E. August 18, 2015 Page 3

- 7. It was observed that several crosswalks at the I-480 ramp intersections do not currently have pedestrian signal heads or pushbuttons. The crosswalk across the initial portion of the I-480 Westbound On-Ramp does not have pedestrian signal heads which is especially dangerous due to higher speed vehicles turning right on red onto the ramp and the limited sight distance for pedestrians crossing the ramp.
- 8. It was observed that the Ralph Road intersection currently is utilizing incandescent light bulbs which use substantially more energy then LED signal heads.
- 9. It was observed that all of the signal heads along the State Road corridor currently do not have back plates which reduce the likelihood of crashes caused by sun glare.
- 10. It was observed that the traffic volumes on Ralph Road / Burger Road are very low and the intersection may not meet the necessary traffic signal warrants based on current traffic volumes.

Traffic Observation & Assessment

A field observation of traffic operations of the study intersections was performed by TMS Engineers staff. The field observation noticed that during the PM Peak Hour traffic queued at least a thousand feet on the westbound I-480 off ramp and at times queued onto westbound I-480 itself. A typical traffic count collects the number of vehicles turning at an intersection every 15 minutes so a typical count would not be able to count the actual turning demand since vehicles are queued waiting to make the turn.

TMS Engineer's staff performed an unmet demand traffic count at the State Road and I-480 WB Ramp intersection from 2:00 PM to 6:30 PM on June 10th, 2015. During this count the turning vehicles and the queued vehicles on the I-480 westbound off ramp were counted in order to determine how much unmet demand was queued on the ramp each 15 minutes. The queued vehicles for each 15 minute period were added to the actual turning (departure) count and the number of queued vehicles from the previous 15 minutes was subtracted. The results of the unmet demand traffic count is shown in **Attachment 2.** This unmet demand volume on the westbound left movement from the I-480 ramp was used in the Synchro analyses later described in this report.

All of the movements at the Eastbound I-480 Ramp, Brookpark Road and Ralph Road intersections were observed to not queue far enough to cause an unmet demand situation. Queuing was observed on northbound State Road traveling toward the I-480 westbound on-ramp intersection but all queued vehicles were able to make their turn during the peak hour.

Mr. Scott Knebel, P.E. August 18, 2015 Page 4

Vehicle & Pedestrian Clearance Calculations

The yellow and all-red signal clearance timing were calculated for each of the approaches of the four study intersections. The clearance timing was calculated based on the current requirements from the **Ohio Manual of Uniform Traffic Control Devices** and the recommendations from the ODOT's **Traffic Engineering Manual**. In addition, all clearance timings were calculated based on the Standardization of Design of Clearance Intervals document published by ODOT's Traffic Planning.

A comparison of the existing signal clearance timings and the newly calculated clearance timing is shown on the Intersection Field Inspection Forms shown in **Appendix A**. All of the calculated clearance timings were rounded to the nearest second.

The pedestrian clearance timings for each intersection were also calculated based on ODOT requirements and these pedestrian clearance timings are shown in **Appendix C**.

Synchro Modeling and Proposed Signal Timing

A Synchro model of the existing conditions along the State Road corridor was provided to TMS Engineers and we had the following observations of the existing conditions at the intersections:

- 1. The Brookpark Road and Ralph Road intersections are currently operating with a 150 second cycle length during the entire day and the two I-480 ramp intersections are operating with a 100 second cycle length throughout the day. The different cycle lengths along the corridor do not allow the intersections to be coordinated or provide any progression of traffic thru the intersections. It is recommended that all of the four signals be set to one cycle length in order to provide a coordinated signal system.
- 2. Each of the signals currently have several timing plans available but all of the plans have identical splits and offsets so there is no difference between the plans. Due to the variation in traffic volumes along the corridor during the day, it is recommended that at least two different patterns (AM and PM Peaks) be installed at each intersection.
- 3. Based on the SimTraffic outputs, there is currently a maximum queue on the westbound I-480 Off-Ramp of approximately 1,100 feet. This modeled queue corresponds to the queue which was observed during the field visit at the intersection.

Various phasing plans and timing changes for the corridor was analyzed to determine what modifications or improvements would be necessary to provide a coordinated signal system, provide a LOS D or better on all approaches of the study intersection and lastly reduce the queue on the westbound I-480 Off-Ramp.

Mr. Scott Knebel, P.E. August 18, 2015 Page 5

The following immediate changes to the coordination patterns are recommended to improve traffic flow:

- 1. A cycle length of 100 seconds was determined to be the optimum cycle length for all of the study intersections for Pattern 1 (AM Peak) and Pattern 2 (PM Peak). Both of these patterns were determined to require different phasing splits and offsets to provide optimal phasing. These patterns retain the existing phasing sequence. The proposed signal patterns are shown in **Appendix D.**
- 2. The Brookpark Road intersection is currently restricted to a cycle length of 130 seconds or higher due to the pedestrian clearance time necessary to allow pedestrians to cross State Road. It is recommended a minimum green time of less then the pedestrian clearance times be allowed for the east/west Brookpark Road movements at the Brookpark Road / State Road intersection. This will allow the cycle length at this intersection to be reduced to 100 seconds which will correspond to the optimal cycle length of the other three study intersections.

There currently are no pedestrian pushbuttons on any of the four corners at the Brookpark Road intersection and the pedestrian phases are on pedestrian recall. It is recommended that pushbuttons should be installed on all four corners of the intersections so the pedestrian phase can be actuated only when a pedestrian is present. If a pedestrian does press the pushbutton to cross State Road the intersection, the intersection will temporarily drop out of coordination but there does not appear to be a significant number of pedestrians at this intersection to cause a continual disruption to the coordination of the signals.

The following minor (immediate) improvements are recommended at the State Road signals:

- 1. It is recommended that vehicle detection (loops or radar) be installed on all side streets and left turn movements on the mainline State Road to allow for the intersections to become semi-actuated and responsive to changes in traffic volumes. It is also recommended that system loops be installed on mainline State Road to allow the existing master to select various timing patterns based on the traffic volumes on State Road. The signal system currently is operating as an interconnected system but requires detection and a standard cycle length to operate in coordination.
- 2. It is recommended that all of the worn and / or broken pedestrian pushbuttons and pedestrian signal heads be replaced with signal equipment that meets the current ADA standards.

The following short-term improvements are recommended at the State Road signals:

- 1. It is recommended that pedestrian signal heads and pushbuttons be placed on the right-turn movement onto the I-480 westbound on-ramp. Pedestal mounted signal heads may need to be installed to alert motorists to pedestrian traffic.
- 2. All of the traffic signal heads along the State Road corridor should be replaced with signal heads with back plates to reduce the likelihood of crashes causes by sun glare. Signal heads with back plates are heavier so it is recommended that the span wire calculation be checked to insure the existing strain poles can handle the additional weight.
- 3. It is recommended that a warrant analyses be performed at State Road & Ralph Road / Burger Road intersection in order to confirm the signal meets at least one of the necessary signal warrants and is eligible for signal upgrades.
- 4. If the Ralph Road intersection meets at least one of the signal warrants, it is recommended that the incandescent signal heads be replaced by LED signal heads. In addition, pedestrian signal heads and pedestrian push buttons should be installed on all four corners of the intersection in accordance with current ADA requirements.
- 5. The crosswalks at the Brookpark Road intersection should be moved to allow pedestrians to cross perpendicular to the roadway. This will reduce the length pedestrians will have to travel while crossing the roadways which will reduce the amount of necessary pedestrian clearance time for the signal.

Construction Cost Estimate

The immediate cost of revising signal timings, installing vehicle detection, upgrading or installation of pedestrian pushbuttons / signal heads are estimated to cost \$60,000.

The short-term cost of installing signal heads with back plates, updating all curb ramps to meet ADA requirements and the modifications to the crosswalks at the Brookpark Road intersection is estimated to cost \$150,000.

If you need additional information, please do not hesitate to call.

Very truly yours,

Michael W. Schweickart, P.E., PTOE President

Municipalitu:			Cit.	ا م ا تا	City of Cleveland	P P		1	At Intersection of: State I							At Inte	At Intersection of:	n Off		25	State Road	P		and		<u>1</u>	1-480 WB Ramps	Ramp	54	
Dafe:	5/6/2015		Day:	Wed.		Comments:	inte:	1										•						Project:	 #		15-052	- 8		
Weather:	Cloar	1 1		Recorder(s):	<u> </u>	1	AJP / JS	 					D	Data entry by:	-ipi	₽ P	ı		Date	Date entered:		Jen. 1	Jun. 10, 2015			Sta	State 1480 WB Ramps	'B Ramps		
TIME		 n k	State Road FROM NORTH					 ឡ 등	State Road FROM SOUTH			TOTAL	٠,-	-	480 WE FROM	I-480 WB Off Ramp FROM EAST	ءِ ا			<u> </u>	H480 WB On Ramp FROM WEST	n Ramp EST			TOTAL	TOTAL	be.	PEAK HOUR FACTOR	FACT	8
BEGINS	£	ThruRic	Right Total	-	Trk Bus	a fall	推	_	ht Total	fal Trk	k Bus	_	4	Thr		Total	ž	Bus	4	雅	Right	Total	ᆂ	Bus	WEST	DIREC.	North	South	East	West
00:90																														
00:20																														
08:00																														
00:60																														
10:00																														
11:00																														
12:00																														
1:00																														
2:00													612	2	261	875	ω	6							875	875			0.964	
3:00													260	4	286	1050	10	4							1050	1050			0.869	
4:00													792	1	300	1093	8	1							1093	1093			0.774	
5:00													946	1	288	1235	9	0							1235	1235			0.692	
9:00																														
7:00																														
8:00																														
9:00		-		\dashv	\dashv		\square	\dashv	\sqcup	\blacksquare	Щ				Щ															
TOTALS													3110	8	1135	4253	27	4							4253	4253				
ADT													3110	8	1135	4253		1.0%							4253	4253				
	HOURLY	HOURLY FACTOR:	1.00	Q	MONTI	MONTHLY FACTOR:	TOR:	1.00	او ا			COMI	COMBINED FACTOR:	TOR:	1.00															
										1	ΜS	TMS ENGINEERS, INC.	INEE	R	INC	•											L			
										ଷ	999 (OEE)	4547 Hudson Drive Stow. Ohio 44224 686-6402 FAX: (330) 686-6417	4547 Hudson Drive Stow, Ohio 44224 6402 FAX: (330)	Drive 1224 330) 6	96-641;													Figure #: Attachment Page #:	chm	ent
																													2	

APPENDIX D TRAFFIC DATA

614 West Superior Avenue Suite 1000 Cleveland, Ohio 44113 (216) 771-1090

File Name: CUY-17 @ SR 94

Site Code : 00000000 Start Date : 3/21/2012

Page No : 1

Groups Printed- Vehicles - Trucks + Buses

							Gro	oups P	rinted-	 Vehicl 	<u>es - Tı</u>	rucks	+ Buse	es							
		State	e Rd (S	SR 94)		В	rookp	ark Ro	1 (SR 1	7)		State	e Rd (S	SR 94)		В	Brookp	ark Ro	I (SR 1	7)	
			outhbo					estbo		-,			orthbo	•			-	astbou	•	,	
Start Time	Left	Thru	Right	Peds		Left	Thru	Right			Left	Thru	Right			Left	Thru	Right	Peds		
					App. Total					App. Total					App. Total					App. Total	Int. Total
07:00 AM	56	85	30	0	171	11	30	60	1	102	6	252	1	0	259	95	82	7	0	184	716
07:15 AM	60	107	69	0	236	3	44	68	0	115	9	286	5	0	300	116	137	2	0	255	906
07:30 AM	61	103	49	0	213	11	73	74	1	159	11	295	5	0	311	88	146	8	0	242	925
07:45 AM	64	97	45	0	206	11	64	53	0	128	21	210	4	0	235	91	116	11	0	218	787
Total	241	392	193	0	826	36	211	255	2	504	47	1043	15	0	1105	390	481	28	0	899	3334
		00_		Ū	0_0			_00	_					·					ŭ	000	, 000.
08:00 AM	73	128	53	1	255	13	52	67	0	132	10	242	6	0	258	86	101	4	0	191	836
	_						58				_		6	_					-		I
08:15 AM	64	106	41	0	211	12		65	0	135	14	216		1	237	80	71	10	0	161	744
08:30 AM	61	81	49	1	192	10	48	38	1	97	13	186	8	1	208	73	82	13	0	168	665
08:45 AM	74	104	36_	0	214	9	47	57	2	115	18	160	12_	1_	191	76	67	12_	0_	155	675
Total	272	419	179	2	872	44	205	227	3	479	55	804	32	3	894	315	321	39	0	675	2920
09:00 AM	53	72	43	0	168	5	84	56	2	147	19	145	15	0	179	49	74	12	0	135	629
09:15 AM	60	91	51	Ö	202	9	56	49	0	114	25	178	8	Ö	211	54	68	14	0	136	663
	55	78	-	0	179	9	61	59	0				6	0	180	73	70	22	0	165	653
09:30 AM		_	46	-					_	129	18	156		_			_		-		
09:45 AM	59	108	45	0	212	8	67	43	0	118	15	124	9_	1_	149	49	57	15	0	121	600
Total	227	349	185	0	761	31	268	207	2	508	77	603	38	1	719	225	269	63	0	557	2545
10:00 AM	48	75	42	1	166	17	56	49	0	122	16	120	12	4	152	50	56	14	0	120	560
10:15 AM	50	82	37	0	169	15	56	42	0	113	29	126	8	0	163	48	84	13	0	145	590
10:30 AM	39	66	47	2	154	20	66	60	Ö	146	22	116	5	Ö	143	55	57	13	1	126	569
10:45 AM	0	0	0	0	0	0	0	0	0	0	24	126	8	0	158	51	72	16	1	140	298
	_																				
Total	137	223	126	3	489	52	178	151	0	381	91	488	33	4	616	204	269	56	2	531	2017
*** BREAK **	*																				
02:00 PM	63	125	76	1	265	20	90	67	1	178	19	122	4	1	146	59	87	28	1	175	764
02:15 PM	52	181	81	0	314	27	80	56	2	165	21	166	8	0	195	51	63	21	0	135	809
02:30 PM	59	168	75	3	305	37	117	71	0	225	16	115	15	Ō	146	54	110	12	0	176	852
02:45 PM	64	197	102	0	363	24	95	68	2	189	19	176	11	0	206	61	97	20	0	178	936
Total	238	671	334	4	1247	108	382	262	5	757	75	579	38	1	693	225	357	81	1	664	3361
Total	230	071	334	4	1247	100	302	202	5	131	13	319	30	ı	093	223	337	01		004	3301
00 00 014		004	400	_	075	-00	400	70	_	000	4-7	404	_	_	450		00	00	•	470	004
03:00 PM	71	204	100	0	375	32	109	79	0	220	17	131	5	0	153	56	86	32	2	176	924
03:15 PM	64	218	113	0	395	42	109	70	1	222	26	177	8	0	211	44	110	21	0	175	1003
03:30 PM	60	186	118	0	364	41	108	77	0	226	26	179	13	0	218	49	87	24	0	160	968
03:45 PM	72	228	117	0	417	53	112	77	0	242	16	143	12	0	171	59	110	25	5	199	1029
Total	267	836	448	0	1551	168	438	303	1	910	85	630	38	0	753	208	393	102	7	710	3924
04:00 PM	66	229	106	0	401	43	109	92	10	254	22	162	13	0	197	63	88	20	2	173	1025
04:15 PM	81	260	127	0	468	62	119	82	0	263	18	139	10	Ő	167	54	101	27	1	183	1081
	_								-					-					-		I
04:30 PM	71	252	109	4	436	49	125	88	0	262	18	149	18	0	185	69	93	41	1	204	1087
04:45 PM	69	255	125	2	451	66	135	83	0	284	20	156	13	0	189	61	89	30	2	182	1106
Total	287	996	467	6	1756	220	488	345	10	1063	78	606	54	0	738	247	371	118	6	742	4299
05:00 PM	73	275	118	0	466	59	136	105	1	301	26	151	15	0	192	73	117	31	1	222	1181
05:15 PM	61	251	153	0	465	63	133	92	0	288	17	160	11	0	188	61	102	32	2	197	1138
05:30 PM	71	249	131	3	454	64	134	80	1	279	16	129	12	0	157	49	87	22	3	161	1051
05:45 PM	69	228	119	0	416	62	103	73	Ó	238	24	149	12	0	185	65	75	15	1	156	995
Total	274	1003	521	3	1801	248	506	350	2	1106	83	589	50	0	722	248	381	100	7	736	4365
	1010	4000	0.4=0	40	0000	007	0070	0400	0.5	E700	F04	F0 15	000	_	0040		00.10	-03	00	·	00705
Grand Total	1943	4889	2453	18	9303	907	2676	2100	25	5708	591	5342	298	9	6240	2062	2842	587	23	5514	26765
Apprch %	20.9	52.6	26.4	0.2		15.9	46.9	36.8	0.4		9.5	85.6	4.8	0.1		37.4	51.5	10.6	0.4		
Total %	7.3	18.3	9.2	0.1	34.8	3.4	10	7.8	0.1	21.3	2.2	20	1.1	0	23.3	7.7	10.6	2.2	0.1	20.6	
Vehicles	1785	4783	2378	18	8964	886	2548	1929	25	5388	572	5234	280	9	6095	2003	2705	565	23	5296	25743
% Vehicles	91.9	97.8	96.9	100	96.4	97.7	95.2	91.9	100	94.4	96.8	98	94	100	97.7	97.1	95.2	96.3	100	96	96.2
Trucks + Buses	158	106	75	0	339	21	128	171	0	320	19	108	18	0	145	59	137	22	0	218	1022
	8.1	2.2	3.1	0	3.6		4.8	8.1	0	5.6	3.2	2	6	0	2.3	2.9	4.8	3.7	0	4	3.8
% Trucks + Buses	0.1	2.2	J. I	U	3.0	2.3	4.0	0.1	U	3.0	5.2	_	O	U	2.5	2.3	4.0	5.7	U	4	J.0

614 West Superior Avenue Suite 1000 Cleveland, Ohio 44113 (216) 771-1090

File Name: CUY-17 @ SR 94

Site Code : 00000000 Start Date : 3/21/2012

Page No : 2

614 West Superior Avenue Suite 1000 Cleveland, Ohio 44113 (216) 771-1090

File Name: CUY-17 @ SR 94

Site Code : 00000000 Start Date : 3/21/2012

Page No : 3

614 West Superior Avenue Suite 1000 Cleveland, Ohio 44113 (216) 771-1090

File Name: CUY-17 @ SR 94

Site Code : 00000000 Start Date : 3/21/2012

Page No : 4

			Rd (Southbook	,		В		ark Ro	d (SR 1 und	17)			Rd (S	,		В		ark Ro astbou	•	17)	
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From (07:00 A	M to 1	1:45 AM	l - Peal	< 1 of 1														
Peak Hour for	r Entire	Inters	ection	Begins	at 07:15	5 AM															
07:15 AM	60	107	69	0	236	3	44	68	0	115	9	286	5	0	300	116	137	2	0	255	906
07:30 AM	61	103	49	0	213	11	73	74	1	159	11	295	5	0	311	88	146	8	0	242	925
07:45 AM	64	97	45	0	206	11	64	53	0	128	21	210	4	0	235	91	116	11	0	218	787
08:00 AM	73	128	53	1_	255	13	52	67	0	132	10	242	6	0	258	86	101	4	0	191	836_
Total Volume	258	435	216	(1)	910	38	233	262	(1)	534	51	1033	20	0	1104	381	500	25	0	906	3454
% App. Total	28.4	47.8	23.7	0.1		7.1	43.6	49.1	0.2		4.6	93.6	1.8	0		42.1	55.2	2.8	0		
PHF	.884	.850	.783	.250	.892	.731	.798	.885	.250	.840	.607	.875	.833	.000	.887	.821	.856	.568	.000	.888	.934
Peak Hour And Peak Hour for							of 1														
04:30 PM	71	252	109	yırıs at 4	04.30 F	IVI					I		18		ı			41		ļ	1
04:45 PM	69	255	125	2	451	66	135	83	0	284	20	156	13	0	189	61	89	30	2	182	1106
05:00 PM	73	275	118	0	466	59	136	105	1	301	26	151	15	0	192	73	117	31	1	222	1181
05:15 PM	61	251	153	Ö	465	63	133	92	0	288	17	160	11	0	188	61	102	32	2	197	1138
Total Volume	274	1033	505	6	1818	237	529	368	1	1135	81	616	57	0	754	264	401	134	6	805	4512
% App. Total	15.1	56.8	27.8	0.3		20.9	46.6	32.4	0.1		10.7	81.7	7.6	0		32.8	49.8	16.6	0.7	, , ,	
PHF	.938	.939	.825	.375	.975	.898	.972	.876	.250	.943	.779	.963	.792	.000	.982	.904	.857	.817	.750	.907	.955

Count Name: CUY-94 & I-480 EB TMC Site Code: Start Date: 10/30/2014 Page No: 1

Turning Movement Data

			id Approach				d Approach bound				d Approach bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Right	Thru	Left	App. Total	Int. Total
6:00 AM	39	36	0	75	163	65	0	228	43	0	10	53	356
6:15 AM	54	55	0	109	212	136	0	348	68	0	19	87	544
6:30 AM	63	74	0	137	251	153	0	404	108	0	21	129	670
6:45 AM	75	67	0	142	246	152	0	398	91	0	29	120	660
Hourly Total	231	232	0	463	872	506	0	1378	310	0	79	389	2230
7:00 AM	101	66	0	167	256	156	0	412	113	0	41	154	733
7:15 AM	125	58	0	183	231	205	0	436	141	0	66	207	826
7:30 AM	124	56	0	180	187	230	0	417	169	0	104	273	870
7:45 AM	122	38	0	160	180	210	0	390	173	0	80	253	803
Hourly Total	472	218	0	690	854	801	0	1655	596	0	291	887	3232
8:00 AM	115	52	1	168	171	167	0	338	153	0	84	237	743
8:15 AM	84	40	0	124	160	164	0	324	155	0	69	224	672
8:30 AM	104	55	0	159	151	164	0	315	148	0	58	206	680
8:45 AM	98	50	0	148	136	157	0	293	118	0	35	153	594
Hourly Total	401	197	1	599	618	652	0	1270	574	0	246	820	2689
9:00 AM	106	37	0	143	124	140	0	264	99	0	35	134	541
9:15 AM	111	40	0	151	121	165	0	286	103	0	22	125	562
9:30 AM	103	38	0	141	105	134	0	239	92	0	36	128	508
9:45 AM	93	38	0	131	92	138	0	230	99	0	38	137	498
Hourly Total	413	153	0	566	442	577	0	1019	393	0	131	524	2109
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
2:00 PM	145	37	1	183	108	193	0	301	97	0	58	155	639
2:15 PM	200	43	1	244	102	182	0	284	119	0	64	183	711
2:30 PM	231	58	0	289	109	167	0	276	113	0	51	164	729
2:45 PM	199	73	0	272	121	223	0	344	144	0	75	219	835
Hourly Total	775	211	2	988	440	765	0	1205	473	0	248	721	2914
3:00 PM	257	65	0	322	85	196	0	281	139	0	68	207	810
3:15 PM	289	65	0	354	103	188	0	291	159	1	65	225	870
3:30 PM	271	78	0	349	115	223	0	338	165	0	90	255	942
3:45 PM	299	84	0	383	125	198	0	323	150	0	73	223	929
Hourly Total	1116	292	0	1408	428	805	0	1233	613	1	296	910	3551
4:00 PM	262	58	0	320	128	200	0	328	151	0	81	232	880
4:15 PM	279	46	0	325	107	243	0	350	163	0	72	235	910
4:30 PM	295	60	0	355	125	205	0	330	177	0	79	256	941
4:45 PM	301	52	0	353	112	209	0	321	193	0	93	286	960
Hourly Total	1137	216	0	1353	472	857	0	1329	684	0	325	1009	3691
5:00 PM	316	58	0	374	123	212	0	335	152	0	75	227	936

5:15 PM	336	48	0	384	97	175	0	272	192	0	83	275	931
5:30 PM	298	47	0	345	97	176	0	273	189	0	64	253	871
5:45 PM	313	48	0	361	94	182	0	276	158	0	64	222	859
Hourly Total	1263	201	0	1464	411	745	0	1156	691	0	286	977	3597
Grand Total	5808	1720	3	7531	4537	5708	0	10245	4334	1	1902	6237	24013
Approach %	77.1	22.8	0.0	-	44.3	55.7	0.0	-	69.5	0.0	30.5	-	-
Total %	24.2	7.2	0.0	31.4	18.9	23.8	0.0	42.7	18.0	0.0	7.9	26.0	-
Lights	5642	1692	3	7337	4414	5508	0	9922	4150	1	1880	6031	23290
% Lights	97.1	98.4	100.0	97.4	97.3	96.5	<u>-</u>	96.8	95.8	100.0	98.8	96.7	97.0
Mediums	140	23	0	163	98	172	0	270	145	0	22	167	600
% Mediums	2.4	1.3	0.0	2.2	2.2	3.0	-	2.6	3.3	0.0	1.2	2.7	2.5
Articulated Trucks	26	5	0	31	25	28	0	53	39	0	0	39	123
% Articulated Trucks	0.4	0.3	0.0	0.4	0.6	0.5	-	0.5	0.9	0.0	0.0	0.6	0.5

Count Name: CUY-94 & I-480 EB TMC Site Code: Start Date: 10/30/2014 Page No: 3

Turning Movement Data Plot

Count Name: CUY-94 & I-480 EB TMC Site Code: Start Date: 10/30/2014 Page No: 4

Turning Movement Peak Hour Data (7:15 AM)

				running	inionelliel	it i cak i ic	Jui Dala ($I \cdot I \cup AIVI$					
		Southboun	nd Approach			Northboun	d Approach			Eastbound	d Approach		
Start Time		South	nbound			North	bound			Easth	bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Right	Thru	Left	App. Total	Int. Total
7:15 AM	125	58	0	183	231	205	0	436	141	0	66	207	826
7:30 AM	124	56	0	180	187	230	0	417	169	0	104	273	870
7:45 AM	122	38	0	160	180	210	0	390	173	0	80	253	803
8:00 AM	115	52	1	168	171	167	0	338	153	0	84	237	743
Total	486	204	1	691	769	812	0	1581	636	0	334	970	3242
Approach %	70.3	29.5	0.1	-	48.6	51.4	0.0	-	65.6	0.0	34.4	<u>-</u>	-
Total %	15.0	6.3	0.0	21.3	23.7	25.0	0.0	48.8	19.6	0.0	10.3	29.9	-
PHF	0.972	0.879	0.250	0.944	0.832	0.883	0.000	0.907	0.919	0.000	0.803	0.888	0.932
Lights	456	201	1	658	759	792	0	1551	605	0	329	934	3143
% Lights	93.8	98.5	100.0	95.2	98.7	97.5	-	98.1	95.1	-	98.5	96.3	96.9
Mediums	23	3	0	26	8	17	0	25	24	0	5	29	80
% Mediums	4.7	1.5	0.0	3.8	1.0	2.1	-	1.6	3.8	-	1.5	3.0	2.5
Articulated Trucks	7	0	0	7	2	3	0	5	7	0	0	7	19
% Articulated Trucks	1.4	0.0	0.0	1.0	0.3	0.4	-	0.3	1.1	-	0.0	0.7	0.6

Count Name: CUY-94 & I-480 EB TMC Site Code: Start Date: 10/30/2014 Page No: 5

																	Southb Out 1122 22 3 1147 456 23 7 486 T		In 658 26 7 691 201 3 0 204 L	178 48 10 183 1 1 1 0 0 0 1 1 U	al 80 80 83 8 8										
ach [W]	Total	934	59	7	920]	329	u		,	334	_	<u>_</u>	•	i	Pe	ak	Н	our	Da	ata	1				973	2	1	960	Out	***
Eastbound Approach [W]	드	934	29	7	920	$\frac{1}{1}$	-0	c		,	0	_	→	•		10 Ei	0/30/20 nding / 0/30/20)14 ⁻ At)14 ⁻	7:15 A 8:15 A	M M						0	0	0	0	In	weephodila Apploach
Eastbon	Ont	0	0	0	0		605	70	7	- !	636	~	J	•		Li M Ai	ghts edium: rticulat	s ed T	Frucks							973	2	=	960	Total	- [-]
																	U 0 0 0 0 1061 47 14 1122		T 792 17 3 812 1551 25 5 1581	75 8 22 76 26 72 19	9										

Turning Movement Peak Hour Data Plot (7:15 AM)

Count Name: CUY-94 & I-480 EB TMC Site Code: Start Date: 10/30/2014 Page No: 6

Turning Movement Peak Hour Data (4:30 PM)

				running	inionemen	il Fear III	Jui Dala (4.30 i ivi) _.					
		Southbour	nd Approach			Northboun	d Approach			Eastbound	d Approach		
Start Time		South	nbound			North	bound			East	bound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Right	Thru	Left	App. Total	Int. Total
4:30 PM	295	60	0	355	125	205	0	330	177	0	79	256	941
4:45 PM	301	52	0	353	112	209	0	321	193	0	93	286	960
5:00 PM	316	58	0	374	123	212	0	335	152	0	75	227	936
5:15 PM	336	48	0	384	97	175	0	272	192	0	83	275	931
Total	1248	218	0	1466	457	801	0	1258	714	0	330	1044	3768
Approach %	85.1	14.9	0.0	-	36.3	63.7	0.0	-	68.4	0.0	31.6	_	-
Total %	33.1	5.8	0.0	38.9	12.1	21.3	0.0	33.4	18.9	0.0	8.8	27.7	-
PHF	0.929	0.908	0.000	0.954	0.914	0.945	0.000	0.939	0.925	0.000	0.887	0.913	0.981
Lights	1226	217	0	1443	445	783	0	1228	695	0	326	1021	3692
% Lights	98.2	99.5	-	98.4	97.4	97.8	-	97.6	97.3	-	98.8	97.8	98.0
Mediums	18	1	0	19	12	14	0	26	15	0	4	19	64
% Mediums	1.4	0.5	-	1.3	2.6	1.7	_	2.1	2.1	-	1.2	1.8	1.7
Articulated Trucks	4	0	0	4	0	4	0	4	4	0	0	4	12
% Articulated Trucks	0.3	0.0	-	0.3	0.0	0.5	-	0.3	0.6	-	0.0	0.4	0.3

Count Name: CUY-94 & I-480 EB TMC Site Code: Start Date: 10/30/2014 Page No: 7

													Southt Out 1109 18 4 1131 1226 18 4 1248 T	ound App In 1443 4 1466 217 1 0 218 L	Total 2552 37 8 2597 0 0 0 U										
ach [W] Total	1021	19	4	1044	4	320	4	0	330]-	<u></u>	F	Peak	Hou	r Dat	l				675	0	13	662	Out	Westbo
Eastbound Approach [W] Out In Total	1021	19	4	1044	╁	0	5	0	0 +	-].	→		10/30/20 Ending 10/30/20)14 4:30 F At)14 5:30 F	PM				Ī	0	0	0	0	5	Westbound Approach [E]
Eastbou	0	0	0	0		ce i	0	4	47	<u>-</u>			Lights Medium							675	0	13	662	Total	oach [E]
													U 0 0 0 0 1921 33	T 783 14 4 801 1228 26	R 445 12 0 457 3149 59										

Turning Movement Peak Hour Data Plot (4:30 PM)

Count Name: CUY-94 & I-480 WB TMC Site Code: Start Date: 10/30/2014 Page No: 1

Turning Movement Data

		Southbound	d Approach			Westbound	d Approach			Northbour	d Approach		l
Start Time		South	bound			West	bound			North	bound		l
Start Time	Right	Thru	U-Turn	App. Total	Right	Thru	Left	App. Total	Thru	Left	U-Turn	App. Total	Int. Total
6:00 AM	23	49	0	72	10	0	27	37	13	58	0	71	180
6:15 AM	48	80	0	128	23	0	33	56	44	108	0	152	336
6:30 AM	46	92	0	138	20	0	38	58	57	126	0	183	379
6:45 AM	62	93	0	155	35	0	52	87	65	118	0	183	425
Hourly Total	179	314	0	493	88	0	150	238	179	410	0	589	1320
7:00 AM	54	94	0	148	36	0	71	107	80	118	0	198	453
7:15 AM	83	106	0	189	56	0	78	134	113	163	0	276	599
7:30 AM	100	103	0	203	58	0	76	134	171	171	0	342	679
7:45 AM	104	81	0	185	72	0	80	152	130	158	0	288	625
Hourly Total	341	384	0	725	222	0	305	527	494	610	0	1104	2356
8:00 AM	80	100	0	180	45	0	70	115	140	129	0	269	564
8:15 AM	74	67	0	141	49	0	58	107	108	141	0	249	497
8:30 AM	45	102	0	147	42	0	57	99	99	129	0	228	474
8:45 AM	48	86	0	134	31	0	71	102	85	114	0	199	435
Hourly Total	247	355	0	602	167	0	256	423	432	513	0	945	1970
9:00 AM	41	93	0	134	37	0	59	96	79	107	0	186	416
9:15 AM	35	77	0	112	16	1	86	103	87	121	0	208	423
9:30 AM	52	78	0	130	22	0	66	88	68	104	0	172	390
9:45 AM	38	67	0	105	24	0	76	100	74	107	0	181	386
Hourly Total	166	315	0	481	99	1	287	387	308	439	0	747	1615
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	<u>-</u>	-	-
2:00 PM	62	77	0	139	71	1	102	174	111	110	0	221	534
2:15 PM	61	91	0	152	63	1	148	212	111	117	0	228	592
2:30 PM	56	117	0	173	70	0	169	239	98	107	0	205	617
2:45 PM	59	93	0	152	83	0	149	232	118	120	0	238	622
Hourly Total	238	378	0	616	287	2	568	857	438	454	0	892	2365
3:00 PM	90	135	0	225	65	0	188	253	141	123	0	264	742
3:15 PM	97	155	0	252	84	0	204	288	124	125	0	249	789
3:30 PM	103	136	0	239	100	0	219	319	163	141	0	304	862
3:45 PM	97	153	0	250	95	0	240	335	145	129	0	274	859
Hourly Total	387	579	0	966	344	0	851	1195	573	518	0	1091	3252
4:00 PM	80	124	0	204	79	0	193	272	147	138	0	285	761
4:15 PM	69	115	0	184	88	0	213	301	145	163	0	308	793
4:30 PM	105	145	0	250	69	0	219	288	140	145	0	285	823
4:45 PM	89	132	0	221	75	0	226	301	153	155	0	308	830
Hourly Total	343	516	0	859	311	0	851	1162	585	601	0	1186	3207
5:00 PM	89	152	0	241	67	1	202	270	134	151	0	285	796

5:15 PM	66	156	0	222	92	0	225	317	155	104	0	259	798
5:30 PM	64	120	0	184	94	0	231	325	139	105	0	244	753
5:45 PM	64	126	0	190	72	0	230	302	124	113	0	237	729
Hourly Total	283	554	0	837	325	1	888	1214	552	473	0	1025	3076
Grand Total	2184	3395	0	5579	1843	4	4156	6003	3561	4018	0	7579	19161
Approach %	39.1	60.9	0.0	-	30.7	0.1	69.2	-	47.0	53.0	0.0	-	-
Total %	11.4	17.7	0.0	29.1	9.6	0.0	21.7	31.3	18.6	21.0	0.0	39.6	-
Lights	2155	3318	0	5473	1812	4	4025	5841	3482	3875	0	7357	18671
% Lights	98.7	97.7	-	98.1	98.3	100.0	96.8	97.3	97.8	96.4	-	97.1	97.4
Mediums	27	68	0	95	29	0	105	134	76	122	0	198	427
% Mediums	1.2	2.0	-	1.7	1.6	0.0	2.5	2.2	2.1	3.0	-	2.6	2.2
Articulated Trucks	2	9	0	11	2	0	26	28	3	21	0	24	63
% Articulated Trucks	0.1	0.3	-	0.2	0.1	0.0	0.6	0.5	0.1	0.5	-	0.3	0.3

Count Name: CUY-94 & I-480 WB TMC Site Code: Start Date: 10/30/2014 Page No: 3

Turning Movement Data Plot

Count Name: CUY-94 & I-480 WB TMC Site Code: Start Date: 10/30/2014 Page No: 4

Turning Movement Peak Hour Data (7:15 AM)

	1			running	inionemen	il Feak i ic	iui Dala (T. IS AIVI)					
		Southboun	nd Approach			Westbound	d Approach			Northbour	d Approach		
Start Time		South	nbound			Westi	oound			North	bound		
Start Time	Right	Thru	U-Turn	App. Total	Right	Thru	Left	App. Total	Thru	Left	U-Turn	App. Total	Int. Total
7:15 AM	83	106	0	189	56	0	78	134	113	163	0	276	599
7:30 AM	100	103	0	203	58	0	76	134	171	171	0	342	679
7:45 AM	104	81	0	185	72	0	80	152	130	158	0	288	625
8:00 AM	80	100	0	180	45	0	70	115	140	129	0	269	564
Total	367	390	0	757	231	0	304	535	554	621	0	1175	2467
Approach %	48.5	51.5	0.0	<u>-</u>	43.2	0.0	56.8	-	47.1	52.9	0.0	-	-
Total %	14.9	15.8	0.0	30.7	9.4	0.0	12.3	21.7	22.5	25.2	0.0	47.6	-
PHF	0.882	0.920	0.000	0.932	0.802	0.000	0.950	0.880	0.810	0.908	0.000	0.859	0.908
Lights	359	381	0	740	226	0	283	509	541	606	0	1147	2396
% Lights	97.8	97.7	-	97.8	97.8	-	93.1	95.1	97.7	97.6	-	97.6	97.1
Mediums	8	8	0	16	5	0	16	21	13	13	0	26	63
% Mediums	2.2	2.1	-	2.1	2.2	<u>-</u>	5.3	3.9	2.3	2.1	-	2.2	2.6
Articulated Trucks	0	1	0	1	0	0	5	5	0	2	0	2	8
% Articulated Trucks	0.0	0.3	-	0.1	0.0	-	1.6	0.9	0.0	0.3	-	0.2	0.3

Count Name: CUY-94 & I-480 WB TMC Site Code: Start Date: 10/30/2014 Page No: 5

										Southbook Out 767 18 0 785 359 8 0 367 R	;	16 16 1 757 1 381 8 1 390 T	oach [N] Total 1507 34 1 1542 0 0 0 U														
ach [W]	Total	965	21	2	988				P	eak	Ho	our	Dat	а	Ł	R	231	0	σı	226		0	0	0	0	Out	Westbound Approach [E]
Eastbound Approach [W]	u	0	0	0	0					10/30/20 Ending A 10/30/20	014 7 At 014 8	7:15 AI 3:15 AI	м		←	-	0	0	0	0	\parallel	535	51	21	509	5	and Appr
Eastbon	Out	965	21	2	988				- 1	Lights Medium: Articulat					Ţ	_	304	5	16	283	Ц	535	5	21	509	Total	oach [E]
										0 0 0 0 0 0 664 24 6 694 Out	1	L 606 13 2 621 1147 26 2	T 541 13 0 554 J 1811 50 8 1869 Total														

Turning Movement Peak Hour Data Plot (7:15 AM)

Count Name: CUY-94 & I-480 WB TMC Site Code: Start Date: 10/30/2014 Page No: 6

Turning Movement Peak Hour Data (3:30 PM)

				running	inionellieli	it i cak i io	ui Dala ((3.30 i ivi)					
		Southbour	nd Approach			Westbound	d Approach			Northboun	d Approach		
Start Time		South	nbound			West	oound			North	bound		
Start Time	Right	Thru	U-Turn	App. Total	Right	Thru	Left	App. Total	Thru	Left	U-Turn	App. Total	Int. Total
3:30 PM	103	136	0	239	100	0	219	319	163	141	0	304	862
3:45 PM	97	153	. 0	250	95	0	240	335	145	129	0	274	859
4:00 PM	80	124	0	204	79	0	193	272	147	138	0	285	761
4:15 PM	69	115	0	184	88	0	213	301	145	163	0	308	793
Total	349	528	. 0	877	362	0	865	1227	600	571	0	1171	3275
Approach %	39.8	60.2	0.0	-	29.5	0.0	70.5	-	51.2	48.8	0.0	-	-
Total %	10.7	16.1	0.0	26.8	11.1	0.0	26.4	37.5	18.3	17.4	0.0	35.8	-
PHF	0.847	0.863	0.000	0.877	0.905	0.000	0.901	0.916	0.920	0.876	0.000	0.950	0.950
Lights	347	518	0	865	359	0	849	1208	592	552	0	1144	3217
% Lights	99.4	98.1	-	98.6	99.2		98.2	98.5	98.7	96.7	-	97.7	98.2
Mediums	2	10	0	12	2	0	14	16	8	17	0	25	53
% Mediums	0.6	1.9	<u>-</u>	1.4	0.6	<u>-</u>	1.6	1.3	1.3	3.0	_	2.1	1.6
Articulated Trucks	0	0	0	0	1	0	2	3	0	2	0	2	5
% Articulated Trucks	0.0	0.0	-	0.0	0.3	-	0.2	0.2	0.0	0.4	-	0.2	0.2

Count Name: CUY-94 & I-480 WB TMC Site Code: Start Date: 10/30/2014 Page No: 7

											951 10 1 962 347 2 0 349 R	8	I Appr In 365 12 0 877 1518 10 0 628 T	0ach [N Total 1816 22 1 1839 0 0 0 U														
ach [W]	Total	899	19	2	920				F	Pe;	ak	Hc	our	Dat	ta	t	- \[\nabla	362	_	2	359		0	0	0	0	Out	Westbou
Eastbound Approach [W]	드	0	0	0	0					10. En 10.	/30/20 nding A /30/20	14 3 At 114 4	:30 PI :30 PI	M M		+	-[-	0	0	0	0	\parallel	1227	3	16	1208	5	vvestbound Approach [E]
Eastboo	Ont	899	19	2	920					Lig Me Art	ghts ediums ticulate	s ed Tr	ucks			Ţ	· _	865	2	14	849		1227	ω	16	1208	Total	pach [E]
											U 0 0 0 0 0 1367 24 2	5	1 L 552 117 2 571 144 25 2	T 592 8 0 600 2511 49 4														

Turning Movement Peak Hour Data Plot (3:30 PM)

Count Name: CUY-94 & RALPH TMC Site Code: Start Date: 10/30/2014 Page No: 1

Turning Movement Data

	1	0	de le ecces el Asses				14/		_				h h		ı		-	. (l		İ	ĺ
			thbound App				vves	tbound App				Nort	hbound App				Eas	stbound Appi			
Start Time	Right		Southboun		Ann Total	Diaht	Thur	Westbound		Ann Total	Diaht	Th	Northbound		Ann Total	Dialet	Thu.	Eastbound		Ann Tatal	Int. Total
6:00 AM	0 Right	Thru 60	Left 0	U-Turn 0	App. Total 60	Right 0	Thru 0	Left 6	U-Turn 0	App. Total 6	Right 1	Thru 20	Left 0	U-Turn 0	App. Total 21	Right 6	Thru 0	Left 0	U-Turn 0	App. Total 6	93
6:15 AM	0	106	2	0	108	1	0	3	0	4	1	55	2	0	58	11	1	0	0	12	182
6:30 AM	0	110	0	0	110	0	1	13	0	14	0	66	2	0	68	9	5	1	0	15	207
6:45 AM	1	110	0	0	111	2	1	14	0	17	3	86	4	0	93	13	0	0	0	13	234
Hourly Total	1	386	2	0	389	3	2	36	0	41	5	227	8	0	240	39	6	1	0	46	716
7:00 AM	0	106	0	0	106	0	1	13	0	14	1	105	3	0	109	14	2	1	0	17	246
7:15 AM	1	137	0	0	138	2	0	15	0	17	4	145	3	0	152	14	1	3	0	18	325
7:30 AM	1	154	2	0	157	1	0	14	0	15	6	175	3	0	184	12	5	4	0	21	377
7:45 AM	3	172	3	0	178	1	11	15	0	27	8	170	7	0	185	6	9	0	0	15	405
Hourly Total	5	569	5	0	579	4	12	57	0	73	19	595	16	0	630	46	17	8	0	71	1353
8:00 AM	0	132	1	0	133	0	3	12	0	15	6	161	1	0	168	11	0	3	0	14	330
	1	114	1	0	116	3	2		0	18	3	139	3	0	145	10	4	0	0	14	293
8:15 AM		-		0				13		-	3		-	-					0	-	
8:30 AM 8:45 AM	2	131 102	2	0	134 105	3	2	4 14	0	5 19	2	125 99	4 2	0	132 103	3	2	1	0	9	280
	-			-			-			-					-			1			1136
Hourly Total	4	479	5	0	488	6	8	43	0	57	14	524	10	0	548	32	6	5	0	43	
9:00 AM	1	89	2	0	92	1	0	12	0	13	4	103	4	2	113	5	5	1	0	11	229
9:15 AM	1	82	0	0	83	1	1	8	0	10	5	89	. 3	0	97	10	2	2	0	14	204
9:30 AM	0	97	0	0	97	2	2	5	0	9	1	81	3	0	85	9	0	3	0	12	203
9:45 AM	3	81	1	0	85	2	2	8	0	12	1	93	0	0	94	3	1	3	0	7	198
Hourly Total	5	349	3	0	357	6	5	33	0	44	11	366	10	2	389	27	8	9	0	44	834
*** BREAK ***	-			-		-	-								-	-		-	-	-	-
2:00 PM	0	103	1	0	104	4	3	10	0	17	7	137	8	0	152	12	1	1	0	14	287
2:15 PM	3	134	1	0	138	3	2	4	0	9	1	132	12	0	145	11	. 0	1	0	12	304
2:30 PM	4	144	3	0	151	4	4	10	0	18	3	131	5	0	139	6	6	4	0	16	324
2:45 PM	1	114	0	0	115	2	4	13	0	19	8	156	9	0	173	13	4	1	0	18	325
Hourly Total	8	495	5	0	508	13	13	37	0	63	19	556	. 34	0	609	42	11	7	0	60	1240
3:00 PM	4	196	2	0	202	2	3	11	0	16	14	160	5	0	179	11	3	0	0	14	411
3:15 PM	6	222	7	0	235	3	3	15	0	21	4	164	7	0	175	10	2	4	0	16	447
3:30 PM	5	180	2	0	187	2	9	19	0	30	7	201	. 8	0	216	17	. 7	. 5	0	29	462
3:45 PM	5	186	4	0	195	5	3	21	0	29	10	186	8	0	204	12	6	2	0	20	448
Hourly Total	20	784	15	0	819	12	18	66	0	96	35	711	28	0	774	50	18	11	0	79	1768
4:00 PM	1	166	1	0	168	1	5	17	0	23	7	166	. 8	0	181	8	. 7	3	. 0	18	390
4:15 PM	0	161	2	0	163	2	4	18	0	24	9	175	. 6	. 0	190	7	. 3	3	0	13	390
4:30 PM	3	187	0	0	190	3	9	21	0	33	4	139	14	0	157	11	2	6	0	19	399
4:45 PM	2	188	4	0	194	0	5	13	0	18	7	167	8	0	182	7	3	5	0	15	409
Hourly Total	6	702	7	0	715	6	23	69	0	98	27	647	36	0	710	33	15	17	0	65	1588
5:00 PM	3	195	1	0	199	3	4	27	0	34	7	139	11	0	157	9	5	0	0	14	404

5:15 PM	2	159	3	0	164	2	4	8	0	14	12	197	7	0	216	9	2	4	0	15	409
5:30 PM	4	141	2	0	147	3	6	15	0	24	4	168	9	0	181	5	4	3	0	12	364
5:45 PM	1	158	2	0	161	1	5	16	0	22	3	166	5	0	174	6	3	1	0	10	367
Hourly Total	10	653	8	0	671	9	19	66	0	94	26	670	32	0	728	29	14	8	0	51	1544
Grand Total	59	4417	50	0	4526	59	100	407	0	566	156	4296	174	2	4628	298	95	66	0	459	10179
Approach %	1.3	97.6	1.1	0.0	-	10.4	17.7	71.9	0.0	-	3.4	92.8	3.8	0.0	-	64.9	20.7	14.4	0.0	-	-
Total %	0.6	43.4	0.5	0.0	44.5	0.6	1.0	4.0	0.0	5.6	1.5	42.2	1.7	0.0	45.5	2.9	0.9	0.6	0.0	4.5	-
Lights	57	4324	49	0	4430	58	100	406	0	564	156	4197	167	1	4521	289	95	64	0	448	9963
% Lights	96.6	97.9	98.0	-	97.9	98.3	100.0	99.8	-	99.6	100.0	97.7	96.0	50.0	97.7	97.0	100.0	97.0	-	97.6	97.9
Mediums	2	81	1	0	84	1	0	1	0	2	0	94	6	0	100	9	0	2	0	11	197
% Mediums	3.4	1.8	2.0	-	1.9	1.7	0.0	0.2	-	0.4	0.0	2.2	3.4	0.0	2.2	3.0	0.0	3.0	-	2.4	1.9
Articulated Trucks	0	12	0	0	12	0	0	0	0	0	0	5	1	1	7	0	0	0	0	0	19
% Articulated Trucks	0.0	0.3	0.0	-	0.3	0.0	0.0	0.0	-	0.0	0.0	0.1	0.6	50.0	0.2	0.0	0.0	0.0	-	0.0	0.2

Count Name: CUY-94 & RALPH TMC Site Code: Start Date: 10/30/2014 Page No: 3

Turning Movement Data Plot

Count Name: CUY-94 & RALPH TMC Site Code: Start Date: 10/30/2014 Page No: 4

Turning Movement Peak Hour Data (7:15 AM)

1	i						unni	<i>j</i> 141040	,,,,,	ı canı	ioui D	ata (1.	10 / 110	'/							
		Sout	thbound App	roach			Wes	tbound Appr	oach			Nort	hbound App	roach			Eas	stbound Appr	oach		
Start Time			Southbound	I				Westbound					Northbound	I				Eastbound			
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
7:15 AM	1	137	0	0	138	2	0	15	0	17	4	145	3	0	152	14	1	3	0	18	325
7:30 AM	1	154	2	0	157	1	0	14	0	15	6	175	3	0	184	12	5	4	0	21	377
7:45 AM	3	172	3	0	178	1	11	15	0	27	8	170	7	0	185	6	9	0	0	15	405
8:00 AM	0	132	1	0	133	0	3	12	0	15	6	161	1	0	168	11	0	3	0	14	330
Total	5	595	6	0	606	4	14	56	0	74	24	651	14	0	689	43	15	10	0	68	1437
Approach %	0.8	98.2	1.0	0.0	-	5.4	18.9	75.7	0.0	-	3.5	94.5	2.0	0.0	-	63.2	22.1	14.7	0.0	-	-
Total %	0.3	41.4	0.4	0.0	42.2	0.3	1.0	3.9	0.0	5.1	1.7	45.3	1.0	0.0	47.9	3.0	1.0	0.7	0.0	4.7	-
PHF	0.417	0.865	0.500	0.000	0.851	0.500	0.318	0.933	0.000	0.685	0.750	0.930	0.500	0.000	0.931	0.768	0.417	0.625	0.000	0.810	0.887
Lights	5	580	6	0	591	4	14	55	0	73	24	637	13	0	674	41	15	10	0	66	1404
% Lights	100.0	97.5	100.0	-	97.5	100.0	100.0	98.2	-	98.6	100.0	97.8	92.9	-	97.8	95.3	100.0	100.0	-	97.1	97.7
Mediums	0	14	0	0	14	0	0	1	0	1	0	14	1	0	15	2	0	0	0	2	32
% Mediums	0.0	2.4	0.0	-	2.3	0.0	0.0	1.8	-	1.4	0.0	2.2	7.1	-	2.2	4.7	0.0	0.0	-	2.9	2.2
Articulated Trucks	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
% Articulated Trucks	0.0	0.2	0.0	-	0.2	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.1

Count Name: CUY-94 & RALPH TMC

Site Code: Start Date: 10/30/2014 Page No: 5

Turning Movement Peak Hour Data Plot (7:15 AM)

Count Name: CUY-94 & RALPH TMC Site Code: Start Date: 10/30/2014 Page No: 6

Turning Movement Peak Hour Data (3:00 PM)

						•	a	, ,,,,,,,,,	,,,,,	· oan i	ioai D	ata (O.	00 1 10	'/							1
		Sout	thbound App	roach			Wes	tbound Appr	oach			Nort	hbound App	oach			Eas	tbound Appr	oach		İ
Ota at Time a			Southbound	i				Westbound					Northbound					Eastbound			İ
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
3:00 PM	4	196	2	0	202	2	3	11	0	16	14	160	5	0	179	11	3	0	0	14	411
3:15 PM	6	222	7	0	235	3	3	15	0	21	4	164	7	0	175	10	2	4	0	16	447
3:30 PM	5	180	2	0	187	2	9	19	0	30	7	201	8	0	216	17	7	5	0	29	462
3:45 PM	5	186	4	0	195	5	3	21	0	29	10	186	8	0	204	12	6	2	0	20	448
Total	20	784	15	0	819	12	18	66	0	96	35	711	28	0	774	50	18	11	0	79	1768
Approach %	2.4	95.7	1.8	0.0	-	12.5	18.8	68.8	0.0	-	4.5	91.9	3.6	0.0	-	63.3	22.8	13.9	0.0	-	-
Total %	1.1	44.3	0.8	0.0	46.3	0.7	1.0	3.7	0.0	5.4	2.0	40.2	1.6	0.0	43.8	2.8	1.0	0.6	0.0	4.5	-
PHF	0.833	0.883	0.536	0.000	0.871	0.600	0.500	0.786	0.000	0.800	0.625	0.884	0.875	0.000	0.896	0.735	0.643	0.550	0.000	0.681	0.957
Lights	20	769	15	0	804	12	18	66	0	96	35	692	27	0	754	48	18	11	0	77	1731
% Lights	100.0	98.1	100.0	-	98.2	100.0	100.0	100.0	-	100.0	100.0	97.3	96.4	-	97.4	96.0	100.0	100.0	-	97.5	97.9
Mediums	0	12	0	0	12	0	0	0	0	0	0	18	1	0	19	2	0	0	0	2	33
% Mediums	0.0	1.5	0.0	-	1.5	0.0	0.0	0.0	-	0.0	0.0	2.5	3.6	-	2.5	4.0	0.0	0.0	-	2.5	1.9
Articulated Trucks	0	3	0	0	3	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	4
% Articulated Trucks	0.0	0.4	0.0	-	0.4	0.0	0.0	0.0	_	0.0	0.0	0.1	0.0	<u>-</u>	0.1	0.0	0.0	0.0	-	0.0	0.2

Count Name: CUY-94 & RALPH TMC

Site Code: Start Date: 10/30/2014

Page No: 7

Turning Movement Peak Hour Data Plot (3:00 PM)

WEAVE VOLUME COUNT SUMMARY

By LJB Inc

Date Thursday, January 29, 2015

Time 7:00 AM to 8:00 AM

Location: IR-480 EB

Location 2: From I-480 EB to SR 176 NB

From State Rd. Entrance to I-480 EB

	I-480	EB to SR 176 NB		Sta	ate Rd to I-480 EB	
Time	State Rd. Merge to Broadview overpass	Broadview overpass to SR 176 Ramp diverge	Total	State Rd. Merge to Broadview overpass	Broadview overpass to SR 176 Ramp diverge	Total
7:00 AM	138	47	185	87	6	93
7:15 AM	201	46	247	109	2	111
7:30 AM	205	53	258	106	1	107
7:45 AM	179	44	223	86	1	87
Hourly Total	723	190	913	388	10	398

Date Tuesday, February 03, 2015 Time 4:30 PM to 5:30 PM

	I-480	EB to SR 176 NB		St	ate Rd to I-480 EB	
Time	State Rd. Merge to Broadview overpass	Broadview overpass to SR 176 Ramp diverge	Total	State Rd. Merge to Broadview overpass	Broadview overpass to SR 176 Ramp diverge	Total
4:30 PM	90	82	172	69	14	83
4:45 PM	104	126	230	57	13	70
5:00 PM	121	99	220	62	10	72
5:15 PM	90	123	213	60	8	68
Hourly Total	405	430	835	248	45	293

The following traffic count data was available for the I-480 mainline and ramps

- I-480 mainline: Permanent count station at SLM 12.210, 0.20 miles west of Ridge Road
- Ramps: 24 hour/48 hour count data for ramps at Ridge, State Road and SR 176/SR 17 interchanges in 2012 and 2013.

Following steps were followed to normalize traffic data from various time periods to a base 2014 year and to develop design year traffic.

- 1. Summarize available 24 hour traffic count data for I-480 permanent count station and for all ramps between the permanent count station and Jennings Freeway interchange
- 2. Apply seasonal adjustment factors and growth rates provided by NOACA to adjust all traffic to existing year (2014).
- 3. Estimate hourly mainline volume for the study sections using the permanent count station data by deducting exit ramp volume and adding entrance ramp volume.
- 4. Establish AM and PM peak hour volume for each location, and establish network wide peak hour volumes for the mainline and ramps. Balance volumes.
- 5. Apply growth rates provided by NOACA to generate design year (2034) volumes for the study location. Balance volumes for any discrepancies.

STA	ATION ID	45018	45018	79218	79318	71918	71618	53918	54118	96218	96418	96318	53818	54018	71718	71818	81518	81618	533	318
LO	CATION	ATR STATION 142, SLM 12.21 (EASTBOUND)	ATR STATION 142, SLM 12.21 (WESTBOUND)	EB IR-480 TO RIDGE RD	RIDGE RD TO EB IR-480	EB IR-480 TO STATE RD	STATE RD TO EB IR-480	EB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 EB	SR 17 WB TO IR-480 EB	SR 17 EB TO IR-480 EB	WB IR-480 TO SR 17	WB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 WB	WB IR-480 TO STATE RD	STATE RD TO WB IR-480	WB IR-480 TO RIDGE RD	RIDGE RD TO WB IR-480	SR 17/176 TO SR 176 NB	SR 176 SB TO SR 17-176
DATE	COLLECTED	05/23/12	05/23/12	07/09/13	07/09/13	09/10/12	09/11/12	06/18/09	11/4-11/5/13	07/17/13	07/17/13	07/17/13	10/04/12	05/03/12	09/11/12	09/11/12	07/09/13	07/09/13	8/1-8/2/13	8/1-8/2/13
	0:00	620	560	148	80	96	51	163	113	9	33	46	188	266	121	56	162	86	41	84
	1:00	413	357	90	60	54	49	115	96	8	12	25	114	169	73	42	91	35	31	42
	2:00	381	290	54	65	64	44	127	82	3	10	15	89	131	44	28	79	40	22	
	3:00	350	303	50	81	52	80	103	87	9	13	28	85		44	48	57	52	29	
	4:00	665	604	80	185	73	155	196	205	11		21	132		41	106	77	79		_
	5:00	1857	1623	147	615	143	508	627	558	16		81	318		65	284	152	232		
	6:00	4975	3658	367	1191	417	1061	1575	1255	61	247	190	957		234	578	420	494		
DAY	7:00	6845	5405	482	1141	767	1130	1876	1060	102	306	354	1471	893	515	902	690	705		332
OF C	8:00	5121	4264	567	841	780	748	1517	1019	106	218	282	1305		400	734	705	593		
RC	9:00	3788	3499	534	792	536	587	981	952	106	172	267	956		359		643	531		
HOUR	10:00	3287	3141	529	743	502	463	855	794	95	155	219	740	_	367	506	662	528		
BY H	11:00	3311	3344	548	733	555	417	903	819	88		262	791		423	500	762	594		
	12:00	3437	3559	626	822	494	482	939	784	84		253	859		479		872	682		
Ξ	13:00	3495	3940	594	860	531	491	1053	847	102		260	923		486		872	689		
OLUMES	14:00	4119	4686	651	872	686	582	1135	1020	113		288	1128	,	735		1028	692		
>	15:00	4780	6085	697	935	818	599	1123	1335	155	181	340	1362	1,582	1,079	780	1254	725		
RAW	16:00	5447	6469	730	888	933	566	1076	1425	201	242	378	1547	1,771	1,139	815	1363	662		
~2	17:00	5149	6248	722	807	925	519	1145	1396	196		328	1578	,	1,237	783	1372	606		
	18:00	3695	4632	601	768	701	479	992	946	85	171	259	1410	,	872	668	1187	656		
	19:00	2774	3137	570	578	603	369	763	552	50		195	852		597		770	498		
	20:00	2704	2642	511	544	566	294	702	470	45	86	140	669		477	429	606	444		
	21:00	2314	2240	391	475	413	253	659	447	25		111	535		386		519	328		
	22:00	1762	1840	356	328	268	227	611	280	19		91	461		269		397	223		
	23:00	1213	1091	221	180	192	108	377	227	9	54	79	302		236	136	319	164		
	TOTAL	72502	73617	10266	14584	11169	10,262	19613	16769	1,698	3,236	4512	18772	18367	10678	10727	15059	10338	6356	7004

LC	OCATION	ATR STATION 142, SLM 12.21 (EASTBOUND)	ATR STATION 142, SLM 12.21 (WESTBOUND)	EB IR-480 TO RIDGE RD	RIDGE RD TO EB IR-480	EB IR-480 TO STATE RD	STATE RD TO EB IR-480	EB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 EB	SR 17 WB TO IR-480 EB	SR 17 EB TO IR-480 EB	WB IR-480 TO SR 17	WB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 WB	WB IR-480 TO STATE RD	STATE RD TO WB IR-480	WB IR-480 TO RIDGE RD	RIDGE RD TO WB IR-480	SR 17/176 TO SR 176 NB	SR 176 SB TO SR 17-176
	0:00	570	510	130	70	100	50	140	110	10	30	40	170	230	110	50	150	80	40	70
	1:00	380	330	80	50	50	50	100	90	10	10	20	100	150	70	40	80	30	30	40
	2:00	350	260	50	60	60	40	110	80	0	10	10	80	120	40	30	70	40	20	40
	3:00	320	280	50	70	50	70	90	90	10	10	30	80	130	40	40	50	50	30	30
¥	4:00	610	550	70	170	70	140	170	200	10	40	20	120	100	40	100	70	70	50	40
F DAY	5:00	1700	1480	130	560	140	470	550	550	20	90	70	280	190	60	260	140	210	150	80
OF.	6:00	4550	3340	330		420	980	1370	1240	60	230	170	850	450	220	590	380	450	390	150
HOUR	7:00	6260	4940	440	1030	890	1050	1630	1040	90	280	320	1310	790	530	950	630	640	530	290
Ξ	8:00	4680	3900	510	760	820	820	1320	1000	100	200	260	1160	680	420	760	640	540	370	280
, BY	9:00	3460	3200	480	720	540	540	850	940	100	160	240	850	670	390	610	580	480	320	240
1ES	10:00	3000	2870	480	670	510	430	740	780	90	140	200	660	680	340	470	600	480	270	220
5	11:00	3030	3060	500	660	560	390	790	810	80	160	240	700	700	390	460	690	540	290	250
\ <u>0</u>	12:00	3140	3250	570	750	500	450	820	770	80	170	230	770	820	440	500	790	620	290	300
4	13:00	3190	3600	540	780	530	460	920	830	90	150	240	820	900	450	520	790	620	290	300
EXISTING YEAR (2014) VOLUMES,	14:00	3760	4280	590	790	690	650	990	1000	100	200	260	1000	1190	860	690	930	630	300	420
, R	15:00	4370	5560	630	850	910	720	980	1310	140	170	310	1210	1390	1200	910	1140	660	360	560
ΥEΑ	16:00	4980	5910	660	810	1010	690	940	1400	180	220	340	1380	1560	1160	940	1240	600	410	590
وَ	17:00	4710	5710	650	730	980	610	1000	1370	180	200	300	1400	1480	1210	760	1240	550	380	650
I I	18:00	3380	4230	550	700	710	440	860	930	80	160	240	1260	1150	810	620	1080	590	290	440
EXIS	19:00	2540	2870	520	520	610	340	660	540	50	90	180	760	770	550	470	700	450	180	280
_	20:00	2470 2110	2410	460	490	570 420	270	610 570	460	40	80	130	600	640	440 360	400 310	550 470	400 300	180	260
	21:00 22:00	1610	2050	350 320	430 300	420 270	240	530	440 280	20	70 50	100 80	480	540	250		360	200	160 140	230
	22:00	1110	1680 1000	200	160	190	210 100	330	280	20 10	50 50	70	410 270	450 390	220	180 130		200 150		210 140
	TOTAL	66280	67270		13210	11600	10210	17070	16480	1570	2 970	4100	16720	1 6170	10600	10 790	290 13660	9380	80 5550	6110

Note: Volumes are seasonally adjusted and projected to 2014

LOCATION	ATR STATION 142, SLM 12.21 (EASTBOUND)	ATR STATION 142, SLM 12.21 (WESTBOUND)	EB IR-480 TO RIDGE RD	RIDGE RD TO EB IR-480	EB IR-480 TO STATE RD	STATE RD TO EB IR-480	EB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 EB	SR 17 WB TO IR-480 EB	SR 17 EB TO IR-480 EB	WB IR-480 TO SR 17	WB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 WB	WB IR-480 TO STATE RD	STATE RD TO WB IR-480	WB IR-480 TO RIDGE RD	RIDGE RD TO WB IR-480	SR 17/176 TO SR 176 NB	SR 176 SB TO SR 17-176
							EXISTII	NG YEAR (20	014) R	AMP V	OLUME	S							
FINAL AM PEAK	6260	4940	510	1080	890	1050	1630	1240	90	280	320	1310	790	530	950	630	640	530	290
(2014) PM PEAK	4980	5910	660	850	1010	720	1000	1400	180	220	340	1400	1560	1210	940	1240	660	410	650

EXISTING YEAR (2014) MAINLINE VOLUMES

				_													
•	OCATION	I-480-WEST OF	RIDGE RD	I-480-BETWEEN	MPS	I-480-RIDGE TO	STATE	I-480-BETWEEN	E RD PS	I-480-STATE RD	TO SR 176	Maawaaa ook	SR 176 RAMPS	I-480-EAST OF SR 176/SR 17	AMPS	SR 176 - N of I-	480
	DIRECTION	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	NB	SB
2014 FINAL	AM PEAK	6260	4940	5750	4300	6830	4930	5940	3980	6990	4510	5360	3720	6970	5350	3470	2320
	PM PEAK	4980	5910	4320	5250	5170	6490	4160	5550	4880	6760	3880	5200	5680	6940	2810	3610

^{*}VOLUMES ARE ALL BALANCED

DESIGN YEAR (2034) MAINLINE AND RAMP VOLUMES

ı	OCATION	EB IR-480 TO RIDGE RD	RIDGE RD TO EB IR-480	EB IR-480 TO STATE RD	STATE RD TO EB IR-480	EB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 EB	SR 17 WB TO IR-480 EB	SR 17 EB TO IR-480 EB	WB IR-480 TO SR 17	WB IR-480 TO SR 176 NB	SR 176 SB TO IR-480 WB	WB IR-480 TO STATE RD	STATE RD TO WB IR-480	WB IR-480 TO RIDGE RD	RIDGE RD TO WB IR-480		SR 17/176 TO SR 176 NB	17/176 TO SR 176 176 SB TO SR 17-1
AM PEAK 510 1080 890 PM PEAK 660 850 1010					1060 720	1630 1000	1240 1400	90 180	280	320 340	1310 1400	790 1560	530 1210	950 940	630 1240	640 660	530 410	290 65 0	

1	LOCATION	GR EGIT OF RIDGE RD		I-480-BETWEEN RIDGE	RD RAMPS	AND BINGE TO CTATE	2	I-480-BETWEEN STATE	RD RAMPS	I-480-STATE RD TO SR	176	I-480-BETWEEN SR 176	RAMPS	I-480-EAST OF SR 176/SR	17 RAMPS	08 J J V N - 3C J 80	
	DIRECTION	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	NB	SB
FINAL	AM PEAK	6530	5120	6090	4480	7120	5110	6230	4160	7290	4690	5660	3900	7270	5530	3470	2120
2034	PM PEAK	5140	6270	4480	5610	5330	6850	4320	5910	5040	7120	4040	5560	5840	7300	2810	3610

^{*}VOLUMES ARE ALL BALANCED

BASED ON THE PEAK HOUR VOLUME (4PM-6PM)

From: Sahar Tawfiq <STawfiq@mpo.noaca.org>

To: "SKnebel@LJBinc.com" <SKnebel@LJBinc.com>,

Cc: Joshua Naramore <JNaramore@mpo.noaca.org>, "Brian.Blayney@dot.state.oh.us"

<Brian.Blayney@dot.state.oh.us>

Date: 02/06/2015 11:36 AM

Subject: RE: D12 safety study growth rates/IR-480 Study

Scott,

Attached is CUY-480-14.10/14.40 study forecast. Please note the following:

- The growth rates per year for the IR-480 main line and ramps within the study area are based on NOACA's Regional Travel model base year 2010 network and future 2035 network. The growth rates can be used to establish the traffic for a different year.
- The turning movement forecast for the intersections of State Road with Brookpark Road and IR-480 WB and EB Ramps are based on NOACA's regional Travel Model and 2014 traffic count provided.
- Ralph Road is not on NOACA's Regional Model. Based on the model output for base year 2010 and future year 2035, the travel zones in that area north of IR-480 show a negative growth.

I will finish SR-17/Ridge Road intersection forecast next week. Please let me know if you have any question.

Sahar Tawfiq Northeast Ohio Areawide Coordinating Agency 1299 Superior Avenue Cleveland, Ohio 44114-3204 PH: (216) 241-2414, Extension 280

stawfiq@mpo.noaca.org www.noaca.org Email

CUY-480-14.10/14.40 (State Road interchange to Jennings Frwy)

Mainline and Ramps Growth Rates

	Growth Rate per Year
<u>IR-480/SR-94</u>	%
IR-480 west of SR-94	0.1
Eastbound Exit Ramp	0
Westbound Entrance Ramp	0
Eastbound Entrance Ramp	0.02
Westbound Exit Ramp	0.02
SR-94 South of IR-480	0
SR-94 North of IR-481	0
IR-480/SR-176/Granger	
IR-480 West of SR-176	0.2
IR-480 Eastbound to SR-176 Northbound Ramp	0
SR-176 Southbound to Westbound IR-480 Ramp	0
IR-480 Westbound to SR-176 Northbound Ramp	0
SR-176 Southbound to Eastbound IR-480 Ramp	0
SR-176	0
Granger Road West of SR-176 Ramps	0
Granger Road East of SR-176 Ramps	0.23
Granger Road to SR-176 Northbound Ramp	0
SR-176 Southbound to Granger Road Ramp	0
IR-480 East of SR-176	0.15

State Road and Brookpark Road intersection

		2014 Count ADT		2035 Future Tra	ffic
	Movement	2014 Count ADT	ADT	AM PEAK	PM PEAK
	EB Left	3,891	3,700	360	250
Зоас	EB Thru	5,363	5,100	470	380
Brookpark Road	EB Right	1,108	1,100	25	130
okpa	WB Left	1,712	1,700	40	240
3roc	WB Thru	5,050	5,000	230	520
	WB Right	3,963	3,900	260	360
	NB Left	1,115	1,100	50	80
ō	NB Thru	10,080	10,000	1,020	610
Roa	NB Right	562	600	20	60
State Road	SB Left	3,666	3,650	260	270
S	SB Thru	9,226	9,200	430	1,020
	SB Right	4,629	4,600	220	500

State Road and IR-489 EB Ramps intersection

		2014 Count ADT	20	35 Future Traffi	ic
	Movement	2014 Count ADT	ADT	AM PEAK	PM PEAK
S	EB Left	3,528	3,400	320	310
Ramps	EB Thru	0	0	0	0
8 8	EB Right	8,040	7,600	600	670
IR-480 EB	WB Left	0	0	0	0
8-48	WB Thru	0	0	0	0
=	WB Right	0	0	0	0
	NB Left	0	0	0	0
Þ	NB Thru	11,039	11,200	820	810
Roa	NB Right	8,775	8,900	780	460
State Road	SB Left	3,326	3,200	200	210
S	SB Thru	11,233	10,800	470	1,200
	SB Right	0	0	0	0

State Road and IR-489 WB Ramps intersection

		2014 Count ADT	20)35 Future Traffi	ic
	Movement	2014 Count ADT	ADT	AM PEAK	PM PEAK
S	EB Left	0	0	0	0
amb	EB Thru	0	0	0	0
IR-480 WB Ramps	EB Right	0	0	0	0
M 0	WB Left	7,709	7,600	300	850
8-48	WB Thru	0	0	0	0
<u> </u>	WB Right	3,419	3,400	250	360
	NB Left	7,771	7,300	600	550
Б	NB Thru	6,887	6,500	550	600
Roa	NB Right	0	0	0	0
State Road	SB Left	0	0	0	0
S	SB Thru	6,566	5,700	350	460
	SB Right	4,224	3,700	350	300

> CUY-480-14.10/14.40 SAFETY STUDY 2014 EXISTING CONDITIONS PEAK HOUR VOLUMES

> CUY-480-14.10/14.40 SAFETY STUDY 2034 EXISTING CONDITIONS PEAK HOUR VOLUMES

I-480 EB Weave Analysis Volume Calculations 2034 AM Peak

Weave Percentages for EB traffic to SR 176

	From I-480	From State Rd
AM Peak	59%	41%
PM Peak	66%	34%

2034 PM Peak

Adjusted Weave Volume

I-480 WB Weave Analysis Volume Calculations

2034 AM Peak

2034 PM Peak

Legend:

- xx Established AM/PM design hour volume
- xx LJB weave volume count (field observations)
- xx Adjusted volume to match design hour vol

Note: I-480 WB weave volumes are estimated based on I-480 EB weave patterns between State Rd and SR 176, and are applied for reciprocated peak (EB % in the AM applied to PM in the WB direction and PM % to AM)

APPENDIX E CRASH DIAGRAMS

PROPERTY DAMAGE ONLY INJURY OR FATAL

TOTAL CRASHES

SYMBOLS						
	MOVING VEHICLE					
→>>>	BACKING VEHICLE					
← ·-	NON-INVOLVED VEH					
→	PEDESTRIAN					
	PARKED VEHICLE					
	FIXED OBJECT					
•	FATAL CRASH					
0	INJURY CRASH					

TYPES OF CRASHES - - REAR END RIGHT ANGLE

HEAD ON

✓ \ SIDE SWIPE ____OUT OF CONTROL

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED LEFT TURN

3. NITE - IF BETWEEN DUSK AND DAWN

SHOW FOR

EACH CRASH

1. TIME, DAY, DATE

CRASH DIAGRAM

DATE: 1/29/201 PAGE: 1 of 2

PROPERTY DAMAGE ONLY INJURY OR FATAL

TOTAL CRASHES

MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH

SYMBOLS **TYPES OF CRASHES** - - REAR END RIGHT ANGLE SIDE SWIPE ____OUT OF CONTROL LEFT TURN HEAD ON

SHOW FOR **EACH CRASH** 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL **CONDITION EXISTED**

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

13.99 LOG POINT No. 3 Years PERIOD FROM _ Cleveland IR-480 CITY ___ ROUTE NUMBER ____

DATE: 1/29/201 PAGE: 2 of 21

PROPERTY DAMAGE ONLY INJURY OR FATAL

TOTAL CRASHES

	OTHID OLO
	MOVING VEHICLE
	BACKING VEHICLE
← - —	NON-INVOLVED VEH
	PEDESTRIAN
	PARKED VEHICLE
	FIXED OBJECT
•	FATAL CRASH
0	INJURY CRASH

SYMBOLS **TYPES OF CRASHES** - - REAR END ✓ \ SIDE SWIPE ____OUT OF CONTROL

SHOW FOR **EACH CRASH** 1. TIME, DAY, DATE RIGHT ANGLE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED LEFT TURN 3. NITE - IF BETWEEN DUSK AND DAWN HEAD ON

CRASH DIAGRAM

14.10 14.22 LOG POINT No. 3 Years 2013 PERIOD FROM _ Cleveland IR-480 CITY _ ROUTE NUMBER _

DATE: 1/29/20 PAGE: 3 of 21

SHOW FOR

EACH CRASH

2. WEATHER AND ROAD SURFACE IF UNUSUAL

CONDITION EXISTED

3. NITE - IF BETWEEN

DUSK AND DAWN

1. TIME, DAY, DATE

NUMBER OF CRASHES

______ PROPERTY DAMAGE ONLY

__6__

INJURY OR FATAL

TOTAL CRASHES

SYMBOLS	TYPES OF CRASHES
MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH	REAR END RIGHT ANGLE SIDE SWIPE OUT OF CONTROL LEFT TURN HEAD ON

CRASH DIAGRAM

 LOG POINT No.
 14.20
 TO
 14.32

 PERIOD
 3 Years
 FROM
 2011
 TO
 2013

 CITY
 Cleveland
 ROUTE NUMBER
 IR-480

DATE: 1/29/2015

PAGE: 4 of 21

12 PROPERTY DAMAGE ONLY

9____

INJURY OR FATAL

21 TOTAL CRASHES

	SYMBOLS	TYPES OF CRASHES
***	MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH	REAR END RIGHT ANGLE SIDE SWIPE LEFT TURN HEAD ON

SHOW FOR EACH CRASH

1. TIME, DAY, DATE

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

LOG POINT No.		14.34	TO		14.46
PERIOD	3 Years	FROM	2011	то _	2013
CITY	Cleveland		ROUTE NUMBER		IR-480

DATE: 1/29/201

PAGE: 5 of 21

PROPERTY DAMAGE ONLY

TOTAL CRASHES

INJURY OR FATAL

	SYMBOLS
	MOVING VEHICLE
→ >>>	BACKING VEHICLE
← ·—	NON-INVOLVED VEH.
	PEDESTRIAN
	PARKED VEHICLE
	FIXED OBJECT
•	FATAL CRASH
0	INJURY CRASH
The state of the s	•

TYPES OF CRASHES

- - REAR END RIGHT ANGLE ____OUT OF CONTROL LEFT TURN

HEAD ON

2. WEATHER AND ROAD SURFACE IF UNUSUAL **CONDITION EXISTED**

3. NITE - IF BETWEEN DUSK AND DAWN

SHOW FOR

EACH CRASH

1. TIME, DAY, DATE

CRASH DIAGRAM

14.45 14.57 LOG POINT No. 3 Years PERIOD FROM _ Cleveland IR-480 CITY ___ ROUTE NUMBER ___

DATE: 1/29/201 PAGE: 6 of 2

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

;	SYMBOLS	TYPES OF CRASHES
	MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH	REAR END RIGHT ANGLE SIDE SWIPE DISCONTROL LEFT TURN HEAD ON

SHOW FOR **EACH CRASH**

1. TIME, DAY, DATE

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

14.57 14.68 LOG POINT No. 3 Years 2011 PERIOD _ FROM _ Cleveland IR-480 CITY ____ ROUTE NUMBER ___

DATE: 1/29/201 PAGE: 7 of 2

9 PROPERTY DAMAGE ONLY

11

INJURY OR FATAL
TOTAL CRASHES

SYMBOLS	TYPES OF CRASHES
MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH	REAR END RIGHT ANGLE SIDE SWIPE OUT OF CONTRO LEFT TURN HEAD ON
 .,,	<u> </u>

SHOW FOR EACH CRASH

 TIME, DAY, DATE
 WEATHER AND ROAD SURFACE IF UNUSUAL

3. NITE - IF BETWEEN DUSK AND DAWN

CONDITION EXISTED

CRASH DIAGRAM

 LOG POINT No.
 14.68
 TO
 14.80

 PERIOD
 3 Years
 FROM
 2011
 TO
 2013

 CITY
 Cleveland
 ROUTE NUMBER
 IR-480

DATE: 1/29/2015 PAGE: 8 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL TOTAL CRASHES

SYMBOLS MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH

TYPES OF CRASHES - - REAR END

HEAD ON

1. TIME, DAY, DATE RIGHT ANGLE SIDE SWIPE ____OUT OF CONTROL

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED LEFT TURN 3. NITE - IF BETWEEN DUSK AND DAWN

SHOW FOR

EACH CRASH

CRASH DIAGRAM

DATE: 1/29/201 PAGE: 9 of 2°

PROPERTY DAMAGE ONLY

TOTAL CRASHES

INJURY OR FATAL

	SYMBOLS
	MOVING VEHICLE BACKING VEHICLE
	NON-INVOLVED VEH PEDESTRIAN
	PARKED VEHICLE FIXED OBJECT FATAL CRASH
Ö	INJURY CRASH

TYPES OF CRASHES - - REAR END SIDE SWIPE

RIGHT ANGLE _ು್' OUT OF CONTROL

HEAD ON

CONDITION EXISTED LEFT TURN

1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL

SHOW FOR

EACH CRASH

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

14.98 15.10 LOG POINT No. __ 3 Years 2011 PERIOD _ FROM _ Cleveland IR-480 CITY ___ ROUTE NUMBER ____

DATE: 1/29/201 PAGE: 10 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

	SYMBOLS	
	MOVING VEHICLE BACKING VEHICLE	_
← - —	NON-INVOLVED VEH. PEDESTRIAN	_
	PARKED VEHICLE FIXED OBJECT	_
•	FATAL CRASH	_
0	INJURY CRASH	-

TYPES OF CRASHES - - REAR END RIGHT ANGLE

HEAD ON

_____OUT OF CONTROL

1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED LEFT TURN

3. NITE - IF BETWEEN DUSK AND DAWN

SHOW FOR

EACH CRASH

CRASH DIAGRAM

15.09 LOG POINT No. _ 3 Years FROM _ 2011 PERIOD _ Cleveland IR-480 CITY ____ ROUTE NUMBER ____

DATE: 1/29/20 PAGE: 11 of 21

9 PROPERTY DAMAGE ONLY

_____ IN

INJURY OR FATAL

3 TOTAL CRASHES

,	SYMBOLS	TYPES OF CRASHES
****	MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH	REAR END RIGHT ANGLE SIDE SWIPE OUT OF CONTE
0	INJURY CRASH	HEAD ON

SHOW FOR EACH CRASH

1. TIME, DAY, DATE

2. WEATHER AND ROA

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

 LOG POINT No.
 15.21
 TO
 15.33

 PERIOD
 3 Years
 FROM
 2011
 TO
 2013

 CITY
 Cleveland
 ROUTE NUMBER
 IR-480

DATE: 1/29/2015 PAGE: 12 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

TYPES OF CRASHES
REAR END RIGHT ANGLE SIDE SWIPE OUT OF CONTROL LEFT TURN HEAD ON

TYPES OF CRASHES SHOW FOR **EACH CRASH** - REAR END

1. TIME, DAY, DATE

2. WEATHER AND ROAD SURFACE IF UNUSUAL **CONDITION EXISTED**

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

15.33 LOG POINT No. 3 Years PERIOD FROM _ IR-480 Cleveland CITY ___ ROUTE NUMBER ___

DATE: 1/30/20 PAGE: 13 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

;	SYMBOLS
	MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH PEDESTRIAN
	PARKED VEHICLE FIXED OBJECT
•	FATAL CRASH INJURY CRASH

TYPES OF CRASHES - - REAR END RIGHT ANGLE

____OUT OF CONTROL LEFT TURN

HEAD ON

1. TIME, DAY, DATE

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED

SHOW FOR

EACH CRASH

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

15.50 LOG POINT No. 3 Years PERIOD FROM _ IR-480 Cleveland CITY ___ ROUTE NUMBER ____

DATE: 1/30/201 PAGE: 14 of 21

PROPERTY DAMAGE ONLY INJURY OR FATAL

TOTAL CRASHES

	SYMBOLS
	MOVING VEHICLE
	BACKING VEHICL
	NON-INVOLVED VE
+ -	PEDESTRIAN
\setminus	PARKED VEHICLE
	FIXED OBJECT
•	FATAL CRASH
0	INJURY CRASH

TYPES OF CRASHES - REAR END RIGHT ANGLE ✓ \ SIDE SWIPE

HEAD ON

OUT OF CONTROL

1. TIME, DAY, DATE LEFT TURN

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED

SHOW FOR EACH CRASH

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

10.37 LOG POINT No. 3 Years FROM _ PERIOD SR-176 Cleveland CITY ___ ROUTE NUMBER ____

DATE: 1/30/20 PAGE: 15 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

;	SYMBOLS
	MOVING VEHICLE
→ >>>	BACKING VEHICL
	NON-INVOLVED VE
	PEDESTRIAN
$\overline{}$	PARKED VEHICLE
	FIXED OBJECT
•	FATAL CRASH
0	INJURY CRASH

LEFT TURN

- REAR END RIGHT ANGLE OUT OF CONTROL

HEAD ON

1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL **CONDITION EXISTED** 3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

DATE: 1/30/201 PAGE: 16 of 21

7 PROPERTY DAMAGE ONLY2 INJURY OR FATAL

<u>9</u> TO

TOTAL CRASHES

SYMBOLS

MOVING VEHICLE
BACKING VEHICLE
NON-INVOLVED VEH.
PEDESTRIAN
PARKED VEHICLE
FIXED OBJECT
FATAL CRASH
O INJURY CRASH

HEAD ON

SHOW FOR EACH CRASH 1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

 LOG POINT No.
 10.80
 TO
 10.95

 PERIOD
 3 Years
 FROM
 2011
 TO
 2013

 CITY
 Cleveland
 ROUTE NUMBER
 SR-176

DATE: 1/30/2019 PAGE: 17 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

SYMBOLS					
—	MOVING VEHICLE				
→>>>	BACKING VEHICLE				
← ·-	NON-INVOLVED VEH.				
→	PEDESTRIAN				
	PARKED VEHICLE				
	FIXED OBJECT				
•	FATAL CRASH				
0	INJURY CRASH				

TYPES OF CRASHES - - REAR END

HEAD ON

RIGHT ANGLE SIDE SWIPE ____OUT OF CONTROL

2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED LEFT TURN

3. NITE - IF BETWEEN DUSK AND DAWN

SHOW FOR

EACH CRASH

1. TIME, DAY, DATE

CRASH DIAGRAM

DATE: 1/29/201 PAGE: 18 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

;	SYMBOLS	TYPES OF CRASHES	
	MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH. PEDESTRIAN PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH	REAR END RIGHT ANGLE SIDE SWIPE LEFT TURN HEAD ON	L

SHOW FOR **EACH CRASH**

1. TIME, DAY, DATE

2. WEATHER AND ROAD SURFACE IF UNUSUAL **CONDITION EXISTED**

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

10.18 LOG POINT No. 3 Years 2011 PERIOD FROM _ SR-94 Cleveland CITY ___ ROUTE NUMBER ___

DATE: 1/29/201 PAGE: 19 of 21

PROPERTY DAMAGE ONLY

28

NJURY OR FATAL	
TOTAL CRASHES	

	SYMBOLS
	MOVING VEHICLE
>>>	BACKING VEHICLE
	NON-INVOLVED VEH
+ -	PEDESTRIAN
\setminus	PARKED VEHICLE
	FIXED OBJECT
•	FATAL CRASH
0	INJURY CRASH

TYPES OF CRASHES - - REAR END RIGHT ANGLE SIDE SWIPE ____OUT OF CONTROL LEFT TURN

HEAD ON

SHOW FOR **EACH CRASH** 1. TIME, DAY, DATE

- 2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED
- 3. NITE IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

LOG POINT No.		10.35	TO		10.48
PERIOD	3 Years	FROM	2011	. то .	2013
CITY	Cleveland		ROUTE NUMBER		SR-94

DATE: 1/29/201 PAGE: 20 of 21

PROPERTY DAMAGE ONLY

INJURY OR FATAL

TOTAL CRASHES

SYMBOLS
 MOVING VEHICLE BACKING VEHICLE NON-INVOLVED VEH PEDESTRIAN
PARKED VEHICLE FIXED OBJECT FATAL CRASH INJURY CRASH

TYPES OF CRASHES - - REAR END SIDE SWIPE

HEAD ON

RIGHT ANGLE ____OUT OF CONTROL CONDITION EXISTED LEFT TURN

1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL

SHOW FOR

EACH CRASH

3. NITE - IF BETWEEN DUSK AND DAWN

CRASH DIAGRAM

14.34 14.46 LOG POINT No. 3 Years 2011 PERIOD . FROM _ Cleveland IR-480 CITY ___ ROUTE NUMBER ____

DATE: 1/29/201 PAGE: 21 of 2

APPENDIX F SAMPLE TIGHT DIAMOND INTERCHANGE SIGNAL PLAN

0

Σ

 \perp

9+960

E₈ ◀

 \top

LW3

AS PER PLAN

BRACKET ARM, 9.Im

RIGID OVERHEAD SIGN SUPPORT

FOUNDATION, AS PER PLAN

LE2

L00P	DETECTION ZONE DIMENSIONS	TO	PRESENCE/ PULSE	LOCK/ NON-LOCK	(E)XTEND/ (D)ELAY	CAMERA	LOCATION (STA.)	TYPE
LSI	1.8m X 33.5m	3	PRESENCE	LOCK	-	8	16+491	-
LS2	1.8m X 33.5m	3	PRESENCE	LOCK	-	8	16+491	-
LS3	1.8m X 33.5m	3	PRESENCE	LOCK	-	8	16+491	-
Q3	1.8m X 9.1m	-	PRESENCE	NON-LOCK	(D) 7 sec.	7	16+644	SPLIT
Q4	1.8m X 9.1m	_	PRESENCE	NON-LOCK	(D) 7 sec.	7	16+644	SPLIT
SL5	6.lm X 1.8m	-	PRESENCE	NON-LOCK	-	7	l6+658	CYCLE
SL6	L8m X L8m	_	PRESENCE	NON-LOCK	-	9	9+841.5	CYCLE
SL7	L8m X L8m	_	PRESENCE	NON-LOCK	-	9	9+841.5	CYCLE
LE3	1.8m X 6.1m	6	PRESENCE	LOCK	(E) 3 sec.	10	9+940	-
LE4	1.8m X 6.1m	6	PRESENCE	LOCK	(E) 3 sec.	10	9+940	-
LW3	I.8m X 2lm	1&4	PRESENCE	LOCK	-	5&6	9+964	-
LW4	I.8m X 2lm	1&4	PRESENCE	LOCK	-	5&6	9+973	-

NOTE: See Interconnect Plan for camera locations. Location (STA.) reference is measured to detection zonenearest the stopline.

- NOTES:
 1. The minimum bend radius of the embedded conduit ell shall be equal to or greater than 305mm.
- 2. The contractor shall coordinate as necessary to permit galvanized conduit to be installed in advance of any pavement construction.
- 3. See Lighting Plans for conduit path and quantities of lighting circuit.
- 4. Payment for the wood pole and pullbox is included with power service (lump sum).
- 5. A second phone drop shall be installed at the ODOT District 7 offices as directed by the Engineer for connection of the Central Office Monitor.

Sn3\

9+94h LE4

PULLBOX PBI. 610mm X 890mm X 660mm. AS PER PLAN, STA. 9+939, 17m LT.

9+920

I-75

ITEM	QUAN.	UNIT	DESCRIPTION
625		Each	Bracket Arm, 9.1 Meter
625		Meter	Conduit, 51mm, 713.04
625		Meter	Conduit, 76mm, 713.04
625		Meter	Trench
625	1	Each	Pullbox, 450mm, 713.08
625	2	Each	Pullbox, Misc.: Pullbox, 713.081, 610mm x 890mm x 660mm, As Per Plan
625	4	Each	Ground Rod
630	3.8	Meter	Ground Mounted Support, No. 3 Post
630	2	Each	Street Name Sign Support, As Per Plan
630		Each	Overhead Sign Support. Misc.: Combination Overhead
			Sign Support, Type TC-9.30M, 18.2m/14.4m,
			As Per Plan
630	1	Each	Sign Hanger Assembly, Mast Arm, As Per Plan
630	4	Each	Sign Support Assembly, Pole Mounted
630	2.23	SqMeter	Sign, Flat Sheet, Type G
630	2	Each	Sign, Double Faced, Street Name, Type G,
			As Per Plan
630	1	Each	Rigid Overhead Sign Support Foundation, As Per Plan
632	11	Each	Vehicular Signal Head, 3 Section, 300mm Lens, 1-Way, As Per Plan "A"
632	2	Each	Pedestrian Signal Head, Type D2, As Per Plan "A"
632		Each	Covering of Vehicular Signal Head
632		Each	Covering of Venteural Signal Head
632		Meter	Signal Cable, 5 Conductor, No. 14 AWG
632		Meter	Signal Cable, 3 Conductor, No. 12 AWG
632		Meter	Signal Cable, 5 Conductor, No. 12 AWG
632		Meter	Interconnect Cable, 6 Pair, No. 12 AWG, Solid,
عدد	- 30	1110 001	REA (PE-39), As Per Plan
632	2	Each	Phone Drop
632		Each	Signal Support Foundation, As Per Plan
632		Each	Pedestal Foundation
632		Meter	Power Cable, 2 Conductor, No. 6 AWG
		Each	Power Service, As Per Plan
632		Each	Combination Signal Support, Misc.: Combination
632 632	1		
632 632	1		Signal Support, Type TC-81.20M, 16.8 m,
632			Signal Support, Type TC-81.20M, 16.8 m, As Per Plan
632 632	1	Each	Signal Support, Type TC-81.20M, 16.8 m, As Per Plan Pedestal, 2.4m, Transformer Base
632	1	Each Lump	Signal Support, Type TC-81.20M, 16.8 m, As Per Plan Pedestal, 2.4m, Transformer Base
632 632	1 1		Signal Support, Type TC-81.20M, 16.8 m, As Per Plan Pedestal, 2.4m, Transformer Base Signalization, Misc.: Optical Detection, As Per Plan Controller, Misc.: Controller, Actuated, 12 Phase.
632 632 633	1 1	Lump Each	Signal Support, Type TC-81.20M, 16.8 m, As Per Plan Pedestal, 2.4m, Transformer Base Signalization, Misc.: Optical Detection, As Per Plan Controller, Misc.: Controller, Actuated, 12 Phase, Solid State Digital Microprocessor, As Per Plan
632 632 632	1 1	Lump	Signal Support, Type TC-81.20M, 16.8 m, As Per Plan Pedestal, 2.4m, Transformer Base Signalization, Misc.: Optical Detection, As Per Plan

PHASING DIAGRAM

Ramp D Ramp B

OVLC OVLD	Ø5 OVLA
0VLC \$\phi_2\$	Ø5 OVLA
OVLC	OVLB OVLA
ø3	OVLB A OVLA
ov <u>lc</u>	ø4

	Benchwood	Road		INCREASING STATIONS
NOTE:	Allangles measured clockwise.		90°	
				MAST ARM ANGLE (SIGNAL SUPPORT)
	POLE ITEM ANGLES			

POLE ORIENTATION

0 °

_ °

45°

315° 45°

OR HANDHOLE

POLE No/Ref

P5

10.2

0 ° 180 °

0 ° 0 °

0 °

OVLA - 1,2,3,5,6

OVLB - 3,6

OVLC - 1,2,4,5,6

OVLD - I,4

	9.lm	
W ₄ W ₃	3.2m	
-	I6.8m FLEV. 282,100	
	ELEW ESTABLES	
	914mm	
	POLE P4	

WESTBOUND ELEVATION

POLE P6

EASTBOUND ELEVATION

17.2m 18.2m

75 SOUTH
Dayton

ELEV. 282.000

DESCRIPTION	DEAD LOAD (lbs)	RIGID ATTACH LOAD (lbs)	AREA (m²/ft²)
Vehicular Signal Head, 3 Section	88	25	0.38/4.08
Sign (Sn3)	19	30	0.70/7.5
Guide Sign (Each)	350	225	4.095/44.08
Bracket Arm	550	-	-

Benchwood Road and Miller Lane INTERSECTION

		(COORD	INAT	ION T	IMING	ì		
CYCLE/OFFSET				PHASE	(sec)				TIME
	1	2	3	4	5	6	7	8	
FREE									<u>0:00 - 05:00</u>
70 / 13	13	21	-	36	-	34	14	22	<u>05:00 - 06:30</u>
100 / 13	14	31	-	55	_	45	24	31	06:30 - 08:30
85 / 18	14	29	-	42	-	43	16	26	08:30 - 16:00
100 / 86	13	30	-	57	-	43	26	31	16:00 - 19:00
85 / 18	14	29	-	42	-	43	16	26	<u> 19:00 - 21:00</u>
70 / 13	13	21	-	36	-	34	14	22	21:00 - 23:00
FREE									23:00 - 24:00
			SPE	CIAL	PATTE	RNS			
CYCLE/OFFSET				PHASE	(sec)				PATTERN
	1	2	3	4	5	6	7	8	
120 / 87_	18	47		55		65	25	30	Sb_EVENT
120 / 113	18	47		55		65	25	30	Nb_EVENT
120 / 106	18	45		57		63	27	30	INTERSTATE PK
120 / 20_	22	38		60		60	27	33	CHRISTMAS
·									·

NOTE: See Traffic Signal Plan For Additional Information.

TRAFFIC SIGNAL CONTROLLER TIMING CHART

Wyse Road and Poe/Wyse Connector INTERSECTION

		(COORD	INAT	ION T	IMING	ì		
CYCLE/OFFSET				PHASE	(sec)				TIME
	1	2	3	4	5	6	7	8	
FREE	-								<u>0:00 - 05:00</u>
70 / 7	-	30	-	15	-	30	-	25	<u>05:00 - 06:30</u>
100 / 23	-	41	-	16	-	41	-	43	06:30 - 08:30
85 / 13	-	38	-	15	-	38	-	32	08:30 - 16:00
100 / 38	-	40	-	18	-	40	-	42	<u>16:00 - 19:00</u>
85 / 13	-	38	-	15	-	38	-	32	<u> 19:00 - 21:00</u>
70 / 7	-	30	-	15	-	30	-	25	<u>21:00 - 23:00</u>
FREE	-								23:00 - 24:00
			SPE	CIAL	PATTE	RNS			
CYCLE/OFFSET				PHASE	(sec)				PATTERN
	1	2	3	4	5	6	7	8	
120 /60		55		15		55		50	Sb_EVENT
120 /72		55		15		55		50	Nb_EVENT
120 /54		55		18		55		47	<u>INTERSTATE PK</u>
120 /29		100		15		60		45	CHRISTMAS

NOTE: See Traffic Signal Plan For Additional Information.

	TRAFFIC	SIGNAL	CONTR	OLLEF	R TIM	ING (CHART			
INTERSE	CTION	<u>I-75</u>	and B	enchy	vood/	Wyse	Road			
	START UP	ALL DED		DU	JAL EN	TRY	RING	1		
START IN: Y/ TIME FOR FLA	~ ,	_	,	RE	ST IN	RED:	RING	1 ();	RING	2 🔾
FIRST PHASE(1	RLAP	Α	E		С	D
COLOR DISPLA	YED: GREEN	; YELLOW	<u> </u>						+4+5+6	1+4
INTERVAL OR	FFATURE					DLLER				
INTERVAL OR	. EMTONE		1	2	3	4	5	6	7	8
INTERSECTION	MOVEMENT		WB Lt(L)	EB Th(L)	SB (L)	NB (R)	WB Th(R)	EB Lt(R)		
MINIMUM GREE	N (INITIAL)	(SEC.)	6	7	7	7	7	6		
PASSAGE TIME	(PRESET GAR) (SEC.)								
MAXIMUM GREE	N I	(SEC.)	20	15	30	30	15	20		
MAXIMUM GREE	N II	(SEC.)	20	15	40	40	15	20		
YELLOW CHANG	E	(SEC.)	3.6	3.4	3.3	3.4	3.4	3.6		
ALL RED CLEA	RANCE	(SEC.)	1.7	0.7	1.5	1.7	1.0	1.4		
WALK		(SEC.)		6			6			
PED. CLEAR T				6			6			
	MAXIMUM	(NO/YES)								
RECALL	MINIMUM	(NO/YES)	Y	N	N	N	N	Y		
	PEDESTRAIN		N	Υ	N	N	Υ	N		
MEMORY		(ON/OFF)	ON	-	-	ON	-	ON		
CALL TO NON-	ACTUATED	No. 1		\sim			\sim			

			COORD	INAT:	ION T	IMING	i		
CYCLE/OFFSET				PHASE	(sec)				TIME
	1	2	3	4	5	6	7	8	
FREE									<u>0:00 - 05:00</u>
70 / 0	13	18	19	20	18	13			<u>05:00 - 06:30</u>
100 / 0	21	17	30	32	21	17			06:30 - 08:30
85 / 0	23	21	20	21	23	21			<u>08:30 - 16:00</u>
100 / 0	23	22	25	30	23	22			16:00 - 19:00
85 / 0	23	21	20	21	23	21			<u> 19:00 - 21:00</u>
70 / 0	13	18	19	20	18	13			21:00 - 23:00
FREE									23:00 - 24:00
		•	SPE	CIAL	PATTE	RNS			
CYCLE/OFFSET		·		PHASE	(sec)	·			PATTERN
	1	I	1	I	1			I	i

			SPE	CIAL	PALLE	:KN2			
CYCLE/OFFSET				PHASE	(sec)				PATTERN
	1	2	3	4	5	6	7	8	
120 / 0	18	28	45	29	26	20			Sb_EVENT
120 / 0	22	28	28	42	22	28			Nb_EVENT
120 / 0	22	22	33	43	22	22			<u>INTERSTATE PK</u>
120 / 0	28	28	28	36	28	28			CHRISTMAS

						_			_		_	_	_	_			_	┸		_	_					_					=				J	
																																				2
									ΙN	ΙTΕ	ER'	VΑ	LS	6/1	PH	AS	ES	ò																	٦	
		PHA	SE			1				2				3				4				5			(ŝ			_	7			8	3	\Box	ď
MOVEME				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	`
		E5-8	R	R	R	R		G	G	G		G	Υ	R		R	R	R		R	R	R														
	PED																																			1
2 Wb	VEH	W8-9	R	G	₩	R		R	R	R		R	R	R		R	R	R		G	G	G														
Lt(L)																																				-
3 Wb	VEH	W6-7	R	G	G	G		G	G	G		G	Υ	R		R	R	R		G	G	G												П		١.
	PED																																			-
4 Sb	VEH	S1-3	R	R	R	R		R	R	R		R	R	R		G	Υ	R		R	R	R												П	П	-
5 Eb	VEH	E1-2	R	G	G	G		G	G	G		G	G	G		G	Υ	R		R	R	R												П	П	Ī
	PED																																			
6 Eb	VEH	E3-4	R	R	R	R		R	R	R		G	G	G		Ф	¥	R		R	R	R												П		-
Lt(R)	PED																																			
7 Wb	VEH	W1-5	R	G	G	G		G	Υ	R		R	R	R		R	R	R		R	R	R														į
Th(R)	PED																																			101
8 Nb	VEH	N1-3	R	R	R	R		R	R	R		R	R	R		R	R	R		G	Υ	R														1
																																		_		

NOTE: (L) Denotes Left intersection (Ramp D) denote Right intersection (Ramp B).

TIMING SIGNAL TRAFFIC

29.305

634 803

Σ

POLE ORIENTATION

4				ANG	GLE (DEC	FROM	INDEX L	.INE	
POLE No/Ref	POLE HEIGHT (m)	INDEX LINE ANGLE (DEG)	PEDESTRIAN SIGNAL	PEDESTRIAN PUSHBUTTON	WEATHERHEAD	CONDUIT ELL	POLE MTD SIGN	STREET NAME SIGN	MASTARM B
PI	10.2	0 °	0 °	- °	0 °	280°	- °	270°	270°
P2	2.4	0 °	0 °	- °	- °	315°	- °	- °	_ •
P3	10.2	0 °	_ °	_ °	0 °	225°	0 °	270°	_ •
P4		_ °	_ °	_ °	_ °	_ °	_ °	_ °	_ °

VEHICLE DETECTION ZONE SUMMARY

LOOP	DETECTION ZONE DIMENSIONS	T0	PRESENCE/ PULSE	LOCK/ NON-LOCK	(E)XTEND/ (D)ELAY	CAMERA	LOCATION (STA.)	TYPE
LNI	1.8m X 33.5m	4	PRESENCE	LOCK	-		16+440	-
LN2	1.8m X 33.5m	4	PRESENCE	LOCK	-	ı	16+440	-
LN3	1.8m X 33.5m	4	PRESENCE	LOCK	-	I	16+440	-
QI	1.8m X 9.1m	-	PRESENCE	NON-LOCK	(D) 7 sec.	4	16+290	SPLIT
Q2	1.8m X 9.1m	-	PRESENCE	NON-LOCK	(D) 7 sec.	4	16+290	SPLIT
SLI	6.lm X 1.8m	-	PRESENCE	NON-LOCK	-	4	16+273	CYCLE
SL2	1.8m X 1.8m	-	PRESENCE	NON-LOCK	-	2	10+185	CYCLE
SL3	1.8m X 1.8m	-	PRESENCE	NON-LOCK	-	2	10+185	CYCLE
SL4	1.8m X 1.8m	-	PRESENCE	NON-LOCK	-	2	10+185	CYCLE
LWI	1.8m X 6.1m	I	PRESENCE	LOCK	(E) 3 sec.	3	10+037	-
LW2	1.8m X 6.1m	1	PRESENCE	LOCK	(E) 3 sec.	3	10+037	-
LEI	L8m X 2lm	3&6	PRESENCE	LOCK	-	5&6	10+002	-
LE2	L8m X 2lm	3&6	PRESENCE	LOCK	-	5&6	10+011	-

NOTE: See Interconnect Plan for camera locations. Location (STA.) reference is measured to detection zone nearest the stopline.

- 1. The minimum bend radius of the embedded conduit ell shall be equal to or greater
- 2. See Lighting Plans for conduit path and quantities of lighting circuit.
- 3. The contractor shall coordinate as necessary to permit galvanized conduit to be installed in advance of any roadway construction.
- 4. A detail of the rigid overhead support foundation for Pole P1 is shown as part of the bridge plans for MOT-75-30272 on Sheets 664-666 of 803. The signal contractor shall coordinate to ensure proper placement of the rigid overhead support foundation.
- 5. Signal support foundations requirements for Pole P3 are given on sheet 635. The signal contractor shall coordinate to ensure proper placement of the signal support foundation within the embankment of the MSE wall.
- 6. The conduit path shall be constructed in accordance with ODOT standard construction drawing HL-30.31M (5-1-95).

> S AIL N ⋖ Ш $\widehat{\mathbf{a}}$ AL AMP N U <u>E</u> S **M** O AFFI(4 α α Ш Z 5 1-7

ROAD

S

T-75-29.305

⊙∑

636 803

HORIZONTAL SCALE IN METERS

POLE PI

NORTHBOUND ELEVATION

POLE PI WESTBOUND ELEVATION

DESCRIPTION	DEAD LOAD (lbs)	RIGID ATTACH LOAD (lbs)	AREA (m²/ft²)
Vehicular Signal Head, 3 Section	88	25	0.38/4.08
Sign (Sn3)	19	30	0.70/7.5
Sign (Sn10)	15	30	0.37/4.0
Guide Sign (Each)	350	225	4.095/44.08
Bracket Arm	550	-	-

APPENDIX G SIGNAL WARRANT ANALYSIS

SIGNAL WARRANT ANALYSIS

Traffic signals may be removed if the intersection does not meet at least one of the criteria specified in the Ohio Manual of Uniform Traffic Control Devices (OMUTCD), Section 4C.02.

- > Warrant 1, Eight-Hour Vehicular Volume: This warrant requires traffic volumes on both the major and minor street approaches to satisfy minimum criteria for eight hours of an average day.
- > Warrant #2: Four Hour Volume. This warrant requires that for a minimum of four hours of an average day traffic volumes on both the major and minor street fall above the applicable curve in the attached figures. The Four-Hour signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic signal.
- > Warrant 3, Peak Hour: This warrant requires that for a minimum of one hour of an average day traffic volumes on both the major and minor street fall above the applicable curve in the attached figures. The minimum side street volume is 150 vehicles in the peak hour. Warrant 3 is intended for use where traffic conditions are such that for a minimum of one hour of an average day, minor street traffic experiences undue delay when entering or crossing the major street.

Existing traffic volumes at State Road and Ralph Avenue/Burger Avenue intersection were evaluated against eight-hour, four-hour and peak-hour signal warrant criteria.

Warrants were evaluated based on low speed criteria applicable for roadways with posted speed limits of 40 miles per hour or less. The posted speed limit on State Road is 35 mph. State Road is considered the major street with two approach lanes, and Ralph Avenue/Burger Avenue as a minor street with a single lane. No reduction of right-turning vehicles was applied to side street traffic volumes.

Results indicate that the study intersection does not justify traffic signal control, as summarized in **Table I-1.** Detailed signal warrant worksheets are appended.

TABLE I-1: SIGNAL WARRANT SUMMARY

SIGNAL WARRANT	STATE/BURGER/RALPH
Warrant 1: 8 –Hour Vehicular Volume	Warrant Not Met
Warrant 2: 4-Hour Vehicular Volume	Warrant Not Met
Warrant 3: Peak Hour Volume	Warrant Not Met

Date: Thursday, October 30, 2014
Jurisdiction: Cleveland, Ohio
Intersection: State Road @ Ralph/Burger

No

Number of APPROACH Lanes:

Major Street = 2 Minor Street = 1

Speed Limit = 35 (mph)

Population above 10,000? Yes

70% Warrant Apply?

Traffic Signal Warrant (OMUTCD - 2005)

	Warı	rant 1 - Co	ndition	Α
	100%	80%	70%	56%
Major Approach:	600	480	420	336
Minor Approach:	150	120	105	84
Mid - 1AM				
1AM - 2AM				
2:00 AM				
3:00 AM				
4:00 AM				
5:00 AM				
6:00 AM				
7:00 AM				
8:00 AM				
9:00 AM				
10:00 AM				
11:00 AM				
Noon - 1PM				
1PM - 2PM				
2:00 PM				
3:00 PM				+
4:00 PM				+
5:00 PM				+
6:00 PM				
7:00 PM			_	
8:00 PM				
9:00 PM				
10:00 PM			_	
11:00 PM				
Hours Met =	0	0	0	3

		Condit	
100%		70%	56%
900	720	630	504
75	60	53	42
	+	+	+
	+	+	+
			+
	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+
3	6	6	7
J	0	0	,

Data:	Majo	r St:	TOTAL	Mino	r St:	> OF TWO
Mid - 1AM	0	0	0	0	0	0
1AM - 2AM	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0
6:00 AM	282	152	434	27	38	38
7:00 AM	516	541	1057	64	68	68
8:00 AM	561	627	1188	64	51	64
9:00 AM	377	396	773	51	44	51
10:00 AM	82	175	257	21	19	21
11:00 AM	0	0	0	0	0	0
Noon - 1PM	0	0	0	0	0	0
1PM - 2PM	79	0	79	0	0	0
2:00 PM	508	609	1117	63	60	63
3:00 PM	819	774	1593	96	79	96
4:00 PM	715	710	1425	98	65	98
5:00 PM	671	728	1399	94	51	94
6:00 PM	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0

Warrant 1 - Condition A:

100%	Warrant Met?	No
70%	Warrant Met?	No

Warrant 1 - Condition B:

100%	Warrant Met?	No
70%	Warrant Met?	No

Combination of Warrant 1 - Conditions A & B:

80%	Warrant Met?	No
56% (70%)	Warrant Met?	No

State Road @ Ralph/Burger

State Road @ Ralph/Burger

Warrant 3, Peak-Hour Vehicular Volume

Warrant 3, Peak-Hour Vehicular Volume (70% Factor)

ODOT District 12

Planning and Engineering Department Office of Traffic Planning-BMB

Signal Warrants - Summary

Study Name: PC Warrants State at Ralph

Study Date : 11/06/14

Page No. :1

Major Street Approaches

Northbound: State Road

Number of Lanes: **2** 85% Speed < 40 MPH.

Total Approach Volume: 4,626

Southbound: State Road

Number of Lanes: **2** 85% Speed < 40 MPH.

Total Approach Volume: 4,526

Minor Street Approaches

Eastbound: Burger

Number of Lanes: 1

Total Approach Volume: 459

Westbound: Ralph
Number of Lanes: 1

Total Approach Volume: 566

Warrant Summary (Urban values apply.)

Warrant 1 - Eight Hour Vehicular Volumes	Not Satisfied
Warrant 1A - Minimum Vehicular Volume	
Warrant 1B - Interruption of Continuous Traffic	
Warrant 1 A&B - Combination of Warrants	
Warrant 2 - Four Hour Volumes	Not Satisfied
Warrant 3 - Peak Hour	Satisfied
Warrant 3A - Peak Hour Delay	
Warrant 3B - Peak Hour Volumes	
Warrant 4 - Pedestrian Volumes	Not Evaluated
Warrant 5 - School Crossing	Not Evaluated
Warrant 6 - Coordinated Signal System	Not Satisfied
Warrant 7 - Crash Experience	Not Evaluated
Warrant 8 - Roadway Network	Not Evaluated
Warrant 9 - Intersection Near a Grade Crossing	Not Evaluated

ODOT District 12

Planning and Engineering Department Office of Traffic Planning-BMB

Study Name: PC Warrants State at Ralph

Study Date : 11/06/14 Page No. : 2

Signal Warrants - Summary

Major Street - Total of Both Directions (VPH)

Analysis of 8-Hour Volume Warrants:

War 1A-Minimum Volume

War 1B-Interruption of Traffic

War 1C-Combination of Warrants

							-										
Hour	Major	Mir	or	Maj	Min	Hour	Major	Mir	or	Maj	Min	Hour	Major	Min	or	Maj	Min
Begin	Total	Vol	Dir	600	150	Begin	Total	Vol	Dir	900	75	Begin	Total	Vol	Dir	720	120
15:00	1,593	96	W	Yes	No	14:45	1,482	86	W	Yes	Yes	15:00	1,593	96	W	Yes	No
15:15	1,561	103	W	Yes	No	15:45	1,448	109	W	Yes	Yes	15:15	1,561	103	W	Yes	No
15:30	1,504	106	W	Yes	No	16:45	1,440	90	W	Yes	Yes	15:30	1,504	106	W	Yes	No
14:45	1,482	86	W	Yes	No	07:30	1,266	75	W	Yes	Yes	14:45	1,482	86	W	Yes	No
16:30	1,459	99	W	Yes	No	14:30	1,369	74	W	Yes	No	16:30	1,459	99	W	Yes	No
15:45	1,448	109	W	Yes	No	07:15	1,295	74	W	Yes	No	15:45	1,448	109	W	Yes	No
16:45	1,440	90	W	Yes	No	14:15	1,242	62	W	Yes	No	16:45	1,440	90	W	Yes	No
16:15	1,432	109	W	Yes	No	07:00	1,209	73	W	Yes	No	16:15	1,432	109	W	Yes	No
16:00	1,425	98	W	Yes	No	14:00	1,117	63	W	Yes	No	16:00	1,425	98	W	Yes	No
17:00	1,399	94	W	Yes	No	06:45	1,050	69	EB	Yes	No	17:00	1,399	94	W	Yes	No
14:30	1,369	74	W	Yes	No	06:30	887	63	EB	No	No	14:30	1,369	74	W	Yes	No
07:15	1,295	74	W	Yes	No	08:30	857	47	W	No	No	07:15	1,295	74	W	Yes	No
07:30	1,266	75	W	Yes	No	13:45	829	44	W	No	No	07:30	1,266	75	W	Yes	No
14:15	1,242	62	W	Yes	No	08:45	773	51	W	No	No	14:15	1,242	62	W	Yes	No
07:00	1,209	73	W	Yes	No	06:15	763	57	EB	No	No	07:00	1,209	73	W	Yes	No
07:45	1,191	65	W	Yes	No	09:00	744	44	W	No	No	07:45	1,191	65	W	Yes	No
14:00	1,117	63	W	Yes	No	06:00	629	46	EB	No	No	14:00	1,117	63	W	Yes	No
06:45	1,050	69	EB	Yes	No	09:15	541	33	EB	No	No	06:45	1,050	69	EB	Yes	No
17:15	1,043	60	W	Yes	No	13:30	539	26	W	No	No	17:15	1,043	60	W	Yes	No
08:00	1,036	57	W	Yes	No	05:45	425	33	EB	No	No	08:00	1,036	57	W	Yes	No
08:15	938	55	W	Yes	No	09:30	361	21	W	No	No	08:15	938	55	W	Yes	No
06:30	887	63	EB	Yes	No	17:45	335	22	W	No	No	06:30	887	63	EB	Yes	No
08:30	857	47	W	Yes	No	13:15	256	17	W	No	No	08:30	857	47	W	Yes	No
13:45	829	44	W	Yes	No	05:30	247	18	EB	No	No	13:45	829	44	W	Yes	No

APPENDIX H SYNCHRO INTERSECTION CAPACITY ANALYSIS REPORTS

INTERSECTION CAPACITY ANALYSIS

STATE ROAD CORRIDOR CAPACITY ANALYSIS

Intersection capacity was evaluated with the assistance of Synchro traffic simulation software (version 8) and with output provided using HCM algorithms. The results of the capacity analysis for the existing traffic conditions and existing volumes are provided in **Table H-1** and Synchro output summaries are appended to this section.

The following recommended improvements were evaluated at the critical intersections within the study area under Build conditions:

- 1. Revise signal phasing of the EB and WB ramp intersections to operate a 4/5 phase Buckeye diamond configuration. A single controller proposed to operate the revised sequence.
- 2. Add a westbound right turn lane at the Brookpark/State Road intersection.
- 3. Optimized signal timing and offsets on the State Road corridor.

Also, Burger/Ralph Ave and State Road intersection was analyzed as a two way stop controlled (TWSC) intersection with State Road having right of way. Signal removal was evaluated as the existing signal did not meet the signal warrant criteria.

The proposed condition levels of service and delay of the four study intersections within the study area are summarized in **Table H-2**. Traffic signal control removal at State Road and Burger/Ralph Avenue is not recommended due to the significant delays on the minor street approaches.

TABLE H-1: EXISTING INTERSECTION CAPACITY SUMMARY

Study Period	EB approach	WB approach	NB approach	B approach SB approach						
State Road and	Brookpark Roa	nd								
Existing - AM	F/101.6	D/50.0	E/70.7	E/68.7	E/74.8					
Existing - PM	E/76.4	F/112.7	D/42.2	D/39.8	E/64.3					
State Road and I-480 eastbound ramps										
Existing - AM	D/42.3		D/41.7	C/21.9	D/38.0					
Existing - PM	D/41.6		C/31.6	C/20.7	C/30.2					
State Road and	I-480 westboun	d ramps								
Existing - AM		C/31.6	C/32.0	C/26.1	C/30.2					
Existing - PM		E/55.7	C/31.0	C/29.2	D/39.4					
State Road and	Burger Ave/Ra	lph Ave								
Existing - AM	D/40.9	D/44.0	A/7.6	A/7.2	B/11.9					
Existing - PM	D/40.9	D/48.4	A/9.2	A/8.4	B/12.8					
Note: Letter/Num	ber - Level of Serv	vice/Average Delay	per Vehicle							
Legend: Red - LOS	SE or F or volume									

TABLE H-2: BUILD INTERSECTION CAPACITY SUMMARY

Study Period	EB approach	WB approach	NB approach	SB approach	Intersection	
State Road and	Brookpark R	oad				
Build - AM	E/67.1	D/45.7	E/75.7	D/39.6	E/58.0	
Build - PM	D/49.7	D/48.7	E/56.0	D/40.6	D/46.7	
State Road and	I-480 eastbou	nd ramps				
Build - AM	D/40.8		D/36.6	B/17.9	C/34.2	
Build - PM	C/29.8		C/28.5	C/24.3	C/27.2	
State Road and	I-480 westbou	nd ramps				
Build - AM		C/30.6	B/15.1	C/31.6	C/23.4	
Build - PM		C/34.4	C/20.7	C/31.5	C/28.8	
State Road and	Burger Ave/R	Ralph Ave ¹				
Build - AM	C/19.1	E/43.1	A/8.7	A/9.0	NA	
Build - PM	E/40.1	F/220.4	A/9.6	A/9.8	NA	
Note: Letter/Num	ber - Level of Se	ervice/Average De	elay per Vehicle			
Legend: Red - LOS	SE or F or volur	ne/capacity (v/c)	ratio >1.0			
Note 1 - TWSC in	ntersection with	Burger/Ralph und	er stop control			

As shown in Table H-3, the proposed improvements reduce overall intersection delay by 10 percent to 27 percent.

TABLE H-3: SUMMARY OF INTERSECTION DELAY IMPROVEMENTS

		AM Peal	(PM Peak			
Intersection	No-Build	Build	% Difference	No-Build	Build	% Difference	
State Road and Brookpark Road	74.8	58.0	22%	64.3	46.7	27%	
State Road and I-480 eastbound ramps	38.0	34.2	10%	30.2	27.2	10%	
State Road and I-480 westbound ramps	30.2	23.4	23%	39.4	28.8	27%	

	۶	→	•	•	←	•	1	†	~	\	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ ∱		7	∱ β		7	ħβ		7	^	7
Volume (vph)	361	500	25	38	233	252	51	1003	20	310	535	261
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			0%			-3%	
Total Lost time (s)	5.0	6.0		5.0	6.0		5.0	6.0		5.0	6.0	5.0
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frt	1.00	0.99		1.00	0.93		1.00	1.00		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1752	3404		1770	3140		1752	3525		1696	3592	1591
FIt Permitted	0.21	1.00		0.38	1.00		0.40	1.00		0.07	1.00	1.00
Satd. Flow (perm)	387	3404		703	3140		731	3525		130	3592	1591
Peak-hour factor, PHF	0.82	0.86	0.57	0.73	0.80	0.89	0.61	0.88	0.83	0.88	0.85	0.78
Adj. Flow (vph)	440	581	44	52	291	283	84	1140	24	352	629	335
RTOR Reduction (vph)	0	3	0	0	117	0	0	1	0	0	0	152
Lane Group Flow (vph)	440	622	0	52	457	0	84	1163	0	352	629	183
Heavy Vehicles (%)	3%	5%	4%	2%	5%	8%	3%	2%	6%	8%	2%	3%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	8		7	4		5	2		1	6	3
Permitted Phases	8			4			2			6		6
Actuated Green, G (s)	62.0	50.0		44.0	37.0		59.2	50.0		76.0	61.8	81.8
Effective Green, g (s)	62.0	50.0		44.0	37.0		59.2	50.0		76.0	61.8	81.8
Actuated g/C Ratio	0.41	0.33		0.29	0.25		0.39	0.33		0.51	0.41	0.55
Clearance Time (s)	5.0	6.0		5.0	6.0		5.0	6.0		5.0	6.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	341	1134		256	774		351	1175		285	1479	867
v/s Ratio Prot	c0.17	0.18		0.01	0.15		0.01	0.33		c0.17	0.18	0.03
v/s Ratio Perm	c0.36			0.05			0.08			c0.45		0.09
v/c Ratio	1.29	0.55		0.20	0.59		0.24	0.99		1.24	0.43	0.21
Uniform Delay, d1	36.2	40.8		38.6	49.8		28.9	49.8		50.0	31.4	17.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	150.9	0.5		0.4	1.2		0.4	24.0		132.3	0.9	0.1
Delay (s)	187.1	41.3		39.0	51.0		29.2	73.7		182.3	32.3	17.6
Level of Service	F	D		D	D		С	Е		F	С	В
Approach Delay (s)		101.6			50.0			70.7			68.7	
Approach LOS		F			D			Е			Е	
Intersection Summary												
HCM 2000 Control Delay			74.8	H	CM 2000	Level of	Service		Ε			
HCM 2000 Volume to Capa	city ratio		1.31									
Actuated Cycle Length (s)			150.0	Sı	um of lost	time (s)			22.0			
Intersection Capacity Utiliza	tion		98.4%	IC	U Level o	of Service)		F			
Analysis Period (min)			15									
c Critical Lane Group												

2: State Rd (SR-94) & IR-480 EB Off Ramp/IR-480 EB On Ramp 2014 AM Existing

	۶	→	•	•	←	•	1	1	~	\	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ		77					ተተተ	7	ň	ተተተ	
Volume (vph)	334	0	636	0	0	0	0	842	769	204	486	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			3%			0%	
Total Lost time (s)	6.0		6.0					6.0	6.0	5.0	6.0	
Lane Util. Factor	0.97		*0.90					*0.60	1.00	1.00	0.91	
Frt	1.00		0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433		2769					3271	1575	1770	4893	
FIt Permitted	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433		2769					3271	1575	1770	4893	
Peak-hour factor, PHF	0.80	0.92	0.92	0.92	0.92	0.92	0.92	0.88	0.83	0.88	0.97	0.92
Adj. Flow (vph)	418	0	691	0	0	0	0	957	927	232	501	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	484	0	0	0
Lane Group Flow (vph)	418	0	691	0	0	0	0	957	443	232	501	0
Heavy Vehicles (%)	2%	2%	5%	2%	2%	2%	2%	3%	1%	2%	6%	2%
Turn Type	Prot		Prot					NA	Perm	Prot	NA	
Protected Phases	4		4					2		3	23	
Permitted Phases									2			
Actuated Green, G (s)	28.0		28.0					34.0	34.0	21.0	61.0	
Effective Green, g (s)	28.0		28.0					34.0	34.0	21.0	61.0	
Actuated g/C Ratio	0.28		0.28					0.34	0.34	0.21	0.61	
Clearance Time (s)	6.0		6.0					6.0	6.0	5.0		
Vehicle Extension (s)	3.0		3.0					3.0	3.0	3.0		
Lane Grp Cap (vph)	961		775					1112	535	371	2984	
v/s Ratio Prot	0.12		c0.25					c0.29		c0.13	0.10	
v/s Ratio Perm	2.12								0.28		0.15	
v/c Ratio	0.43		0.89					0.86	0.83	0.63	0.17	
Uniform Delay, d1	29.5		34.5					30.8	30.3	35.9	8.5	
Progression Factor	1.00		1.00					1.00	1.00	0.89	1.63	
Incremental Delay, d2	1.4		14.7					8.8	13.7	7.0	0.1	
Delay (s)	30.9		49.2					39.6	44.0	39.0	13.9	
Level of Service	С	40.0	D		0.0			D	D	D	B	
Approach Delay (s)		42.3			0.0			41.7			21.9	
Approach LOS		D			Α			D			С	
Intersection Summary									_			
HCM 2000 Control Delay	., ,,		38.0	H	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.81						4= 0			
Actuated Cycle Length (s)	•		100.0		um of lost				17.0			
Intersection Capacity Utilizat	ion		82.6%	IC	U Level	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

3: State Rd (SR-94) & IR-480 WB On Ramp/IR-480 WB Off Ramp 2014 AM Existing

	۶	→	•	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				77		7	14.54	^			ተተኈ	
Volume (vph)	0	0	0	304	0	231	621	554	0	0	390	367
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				6.0		6.0	5.0	6.0			6.0	
Lane Util. Factor				*0.64		1.00	*0.93	0.95			0.91	
Frt				1.00		0.85	1.00	1.00			0.93	
Flt Protected				0.95		1.00	0.95	1.00			1.00	
Satd. Flow (prot)				2159		1583	3291	3539			4707	
FIt Permitted				0.95		1.00	0.95	1.00			1.00	
Satd. Flow (perm)				2159		1583	3291	3539			4707	
Peak-hour factor, PHF	0.92	0.92	0.92	0.95	0.92	0.80	0.91	0.81	0.92	0.92	0.92	0.88
Adj. Flow (vph)	0	0	0	320	0	289	682	684	0	0	424	417
RTOR Reduction (vph)	0	0	0	0	0	178	0	0	0	0	179	0
Lane Group Flow (vph)	0	0	0	320	0	111	682	684	0	0	662	0
Heavy Vehicles (%)	2%	2%	2%	7%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type				Prot		Prot	Prot	NA			NA	
Protected Phases				4		4	3	23			2	
Permitted Phases												
Actuated Green, G (s)				28.0		28.0	21.0	61.0			34.0	
Effective Green, g (s)				28.0		28.0	21.0	61.0			34.0	
Actuated g/C Ratio				0.28		0.28	0.21	0.61			0.34	
Clearance Time (s)				6.0		6.0	5.0				6.0	
Vehicle Extension (s)				3.0		3.0	3.0				3.0	
Lane Grp Cap (vph)				604		443	691	2158			1600	
v/s Ratio Prot				c0.15		0.07	c0.21	0.19			c0.14	
v/s Ratio Perm												
v/c Ratio				0.53		0.25	0.99	0.32			0.41	
Uniform Delay, d1				30.4		27.9	39.4	9.4			25.3	
Progression Factor				1.00		1.00	0.72	1.54			1.00	
Incremental Delay, d2				3.3		1.4	21.0	0.3			0.8	
Delay (s)				33.7		29.2	49.2	14.8			26.1	
Level of Service				С		С	D	В			С	
Approach Delay (s)		0.0			31.6			32.0			26.1	
Approach LOS		Α			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			30.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	ratio		0.60									
Actuated Cycle Length (s)			100.0	S	um of lost	time (s)			17.0			
Intersection Capacity Utilization	1		82.6%		CU Level o				Е			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	•	•	←	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			€ 1}			414	
Volume (vph)	10	15	43	56	14	4	14	681	24	6	595	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.93			0.99			0.99			1.00	
Flt Protected		0.99			0.97			1.00			1.00	
Satd. Flow (prot)		1710			1813			3508			3496	
FIt Permitted		0.95			0.78			0.91			0.94	
Satd. Flow (perm)		1639			1456			3188			3281	
Peak-hour factor, PHF	0.63	0.42	0.77	0.93	0.32	0.50	0.50	0.93	0.75	0.50	0.87	0.42
Adj. Flow (vph)	16	36	56	60	44	8	28	732	32	12	684	12
RTOR Reduction (vph)	0	32	0	0	2	0	0	2	0	0	1	0
Lane Group Flow (vph)	0	76	0	0	110	0	0	790	0	0	707	0
Heavy Vehicles (%)	0%	0%	5%	2%	0%	0%	7%	2%	0%	0%	3%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4			2			2		
Actuated Green, G (s)		25.0			25.0			84.0			84.0	
Effective Green, g (s)		25.0			25.0			84.0			84.0	
Actuated g/C Ratio		0.21			0.21			0.70			0.70	
Clearance Time (s)		5.0			5.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		341			303			2231			2296	
v/s Ratio Prot												
v/s Ratio Perm		0.05			c0.08			c0.25			0.22	
v/c Ratio		0.22			0.36			0.35			0.31	
Uniform Delay, d1		39.4			40.7			7.2			6.9	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.5			3.3			0.4			0.3	
Delay (s)		40.9			44.0			7.6			7.2	
Level of Service		D			D			Α			Α	
Approach Delay (s)		40.9			44.0			7.6			7.2	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			11.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	/ ratio		0.36									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			11.0			
Intersection Capacity Utilization	n		49.5%		CU Level o				Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	—	•	•	†	<i>></i>	\	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	∱ î≽		ሻ	∱ ⊅		7	∱ β		7	^	7
Volume (vph)	274	401	134	237	529	378	81	636	57	286	1120	545
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			0%			-3%	
Total Lost time (s)	5.0	6.0		5.0	6.0		5.0	6.0		5.0	6.0	5.0
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	0.95		1.00	0.95	1.00
Frt	1.00	0.96		1.00	0.93		1.00	0.99		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1752	3313		1770	3171		1752	3474		1696	3592	1591
FIt Permitted	0.10	1.00		0.21	1.00		0.08	1.00		0.20	1.00	1.00
Satd. Flow (perm)	193	3313		395	3171		155	3474		363	3592	1591
Peak-hour factor, PHF	0.90	0.86	0.82	0.90	0.97	0.88	0.78	0.96	0.79	0.94	0.94	0.83
Adj. Flow (vph)	304	466	163	263	545	430	104	662	72	304	1191	657
RTOR Reduction (vph)	0	23	0	0	95	0	0	5	0	0	0	96
Lane Group Flow (vph)	304	606	0	263	880	0	104	729	0	304	1191	561
Heavy Vehicles (%)	3%	5%	4%	2%	5%	8%	3%	2%	6%	8%	2%	3%
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	8		7	4		5	2		1	6	3
Permitted Phases	8			4			2			6		6
Actuated Green, G (s)	58.2	38.2		55.8	37.0		62.5	51.8		76.0	60.3	80.3
Effective Green, g (s)	58.2	38.2		55.8	37.0		62.5	51.8		76.0	60.3	80.3
Actuated g/C Ratio	0.39	0.25		0.37	0.25		0.42	0.35		0.51	0.40	0.54
Clearance Time (s)	5.0	6.0		5.0	6.0		5.0	6.0		5.0	6.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	282	843		319	782		178	1199		354	1443	851
v/s Ratio Prot	c0.14	0.18		0.10	c0.28		0.04	0.21		c0.11	0.33	0.09
v/s Ratio Perm	0.27	0.70		0.20	4.40		0.20	0.04		c0.32	0.00	0.26
v/c Ratio	1.08	0.72		0.82	1.13		0.58	0.61		0.86	0.83	0.66
Uniform Delay, d1	46.9	51.0		36.4	56.5		32.0	40.7		26.3	40.1	25.0
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	75.9	3.0		15.7	72.5		4.8	2.3		18.3	5.5	1.9
Delay (s)	122.8	54.0		52.1	129.0		36.8	43.0		44.6	45.6	26.9
Level of Service	F	D 76.4		D	F 112.7		D	D 42.2		D	D 20.0	С
Approach Delay (s) Approach LOS		76.4 E			F			42.2 D			39.8 D	
Intersection Summary												
HCM 2000 Control Delay			64.3	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	city ratio		0.99									
Actuated Cycle Length (s)			150.0		um of lost				22.0			
Intersection Capacity Utiliza	tion		98.6%	IC	CU Level o	of Service	9		F			
Analysis Period (min)			15									
c Critical Lane Group												

2: State Rd (SR-94) & IR-480 EB Off Ramp/IR-480 EB On Ramp 2014 PM Existing

	۶	→	•	•	←	•	1	†	~	\	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1		77					ተተተ	7	J.	ተተተ	
Volume (vph)	330	0	714	0	0	0	0	841	457	218	1248	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			3%			0%	
Total Lost time (s)	6.0		6.0					6.0	6.0	5.0	6.0	
Lane Util. Factor	0.97		*0.99					*0.61	1.00	1.00	*0.83	
Frt	1.00		0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3467		3105					3358	1544	1787	4638	
Flt Permitted	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3467		3105					3358	1544	1787	4638	
Peak-hour factor, PHF	0.89	0.92	0.93	0.92	0.92	0.92	0.92	0.95	0.91	0.91	0.93	0.92
Adj. Flow (vph)	371	0	768	0	0	0	0	885	502	240	1342	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	331	0	0	0
Lane Group Flow (vph)	371	0	768	0	0	0	0	885	171	240	1342	0
Heavy Vehicles (%)	1%	2%	3%	2%	2%	2%	2%	2%	3%	1%	2%	2%
Turn Type	Prot		Prot					NA	Perm	Prot	NA	
Protected Phases	4		4					2		3	23	
Permitted Phases									2			
Actuated Green, G (s)	28.0		28.0					34.0	34.0	21.0	61.0	
Effective Green, g (s)	28.0		28.0					34.0	34.0	21.0	61.0	
Actuated g/C Ratio	0.28		0.28					0.34	0.34	0.21	0.61	
Clearance Time (s)	6.0		6.0					6.0	6.0	5.0		
Vehicle Extension (s)	3.0		3.0					3.0	3.0	3.0		
Lane Grp Cap (vph)	970		869					1141	524	375	2829	_
v/s Ratio Prot	0.11		c0.25					c0.26		c0.13	0.29	
v/s Ratio Perm									0.11			
v/c Ratio	0.38		0.88					0.78	0.33	0.64	0.47	
Uniform Delay, d1	29.0		34.4					29.6	24.5	36.1	10.7	
Progression Factor	1.00		1.00					1.00	1.00	0.81	1.66	
Incremental Delay, d2	1.1		12.7					5.2	1.7	6.4	0.3	
Delay (s)	30.2		47.1					34.8	26.1	35.4	18.0	
Level of Service	С		D					С	С	D	В	
Approach Delay (s)		41.6			0.0			31.6			20.7	
Approach LOS		D			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			30.2	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.78									
Actuated Cycle Length (s)			100.0		um of lost				17.0			
Intersection Capacity Utilizat	ion		105.5%	IC	U Level o	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

3: State Rd (SR-94) & IR-480 WB On Ramp/IR-480 WB Off Ramp 2014 PM Existing

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1/1/		7	14.54	^			ተተኈ	
Volume (vph)	0	0	0	865	0	362	571	600	0	0	600	349
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				6.0		6.0	5.0	6.0			6.0	
Lane Util. Factor				0.97		1.00	*0.93	0.95			0.91	
Frt				1.00		0.85	1.00	1.00			0.94	
Flt Protected				0.95		1.00	0.95	1.00			1.00	
Satd. Flow (prot)				3433		1599	3260	3574			4820	
FIt Permitted				0.95		1.00	0.95	1.00			1.00	
Satd. Flow (perm)				3433		1599	3260	3574			4820	
Peak-hour factor, PHF	0.92	0.92	0.92	0.90	0.92	0.91	0.88	0.92	0.92	0.92	0.86	0.85
Adj. Flow (vph)	0	0	0	961	0	398	649	652	0	0	698	411
RTOR Reduction (vph)	0	0	0	0	0	191	0	0	0	0	106	0
Lane Group Flow (vph)	0	0	0	961	0	207	649	652	0	0	1003	0
Heavy Vehicles (%)	2%	2%	2%	2%	2%	1%	3%	1%	2%	2%	2%	1%
Turn Type				Prot		Prot	Prot	NA			NA	
Protected Phases				4		4	3	23			2	
Permitted Phases												
Actuated Green, G (s)				28.0		28.0	21.0	61.0			34.0	
Effective Green, g (s)				28.0		28.0	21.0	61.0			34.0	
Actuated g/C Ratio				0.28		0.28	0.21	0.61			0.34	
Clearance Time (s)				6.0		6.0	5.0				6.0	
Vehicle Extension (s)				3.0		3.0	3.0				3.0	
Lane Grp Cap (vph)				961		447	684	2180			1638	
v/s Ratio Prot				c0.28		0.13	c0.20	0.18			c0.21	
v/s Ratio Perm				00.20		00	00.20	00				
v/c Ratio				1.00		0.46	0.95	0.30			0.61	
Uniform Delay, d1				36.0		29.8	39.0	9.3			27.5	
Progression Factor				1.00		1.00	0.75	1.48			1.00	
Incremental Delay, d2				29.0		3.4	18.9	0.3			1.7	
Delay (s)				65.0		33.2	48.0	14.0			29.2	
Level of Service				E		С	D	В			С	
Approach Delay (s)		0.0		_	55.7		_	31.0			29.2	
Approach LOS		Α			E			С			С	
Intersection Summary												
HCM 2000 Control Delay			39.4	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	ratio		0.83									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utilization	1		105.5%		U Level o				G			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	4	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4 1₽			413-	
Volume (vph)	11	18	50	66	18	12	32	863	40	15	794	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0			5.0			6.0			6.0	
Lane Util. Factor		1.00			1.00			0.95			0.95	
Frt		0.92			0.98			0.99			1.00	
FIt Protected		0.99			0.97			1.00			1.00	
Satd. Flow (prot)		1695			1809			3473			3524	
FIt Permitted		0.94			0.70			0.88			0.89	
Satd. Flow (perm)		1600			1304			3067			3134	
Peak-hour factor, PHF	0.55	0.64	0.74	0.79	0.50	0.60	0.88	0.88	0.63	0.54	0.88	0.83
Adj. Flow (vph)	20	28	68	84	36	20	36	981	63	28	902	24
RTOR Reduction (vph)	0	43	0	0	5	0	0	4	0	0	2	0
Lane Group Flow (vph)	0	73	0	0	135	0	0	1076	0	0	953	0
Heavy Vehicles (%)	0%	0%	4%	0%	0%	0%	4%	3%	0%	0%	2%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			4			2			2	
Permitted Phases	4			4			2			2		
Actuated Green, G (s)		25.0			25.0			84.0			84.0	
Effective Green, g (s)		25.0			25.0			84.0			84.0	
Actuated g/C Ratio		0.21			0.21			0.70			0.70	
Clearance Time (s)		5.0			5.0			6.0			6.0	
Vehicle Extension (s)		3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)		333			271			2146			2193	
v/s Ratio Prot												
v/s Ratio Perm		0.05			c0.10			c0.35			0.30	
v/c Ratio		0.22			0.50			0.50			0.43	
Uniform Delay, d1		39.4			42.0			8.3			7.8	
Progression Factor		1.00			1.00			1.00			1.00	
Incremental Delay, d2		1.5			6.4			0.8			0.6	
Delay (s)		40.9			48.4			9.2			8.4	
Level of Service		D			D			Α			Α	
Approach Delay (s)		40.9			48.4			9.2			8.4	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			12.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacit	y ratio		0.50									
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			11.0			
Intersection Capacity Utilization	n		69.7%		CU Level o				С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	~	\	+	- ✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }		, j	^	7	J.	∱ }		Ţ	^	7
Volume (vph)	361	500	25	38	233	252	51	1003	20	310	535	261
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			0%			-3%	
Total Lost time (s)	5.0	6.0		5.0	6.0	5.0	5.0	6.0		5.0	6.0	5.0
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00		1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1752	3404		1770	3438	1495	1752	3525		1696	3592	1591
Flt Permitted	0.39	1.00		0.40	1.00	1.00	0.41	1.00		0.09	1.00	1.00
Satd. Flow (perm)	727	3404		736	3438	1495	762	3525		169	3592	1591
Peak-hour factor, PHF	0.82	0.86	0.57	0.73	0.80	0.89	0.61	0.88	0.83	0.88	0.85	0.78
Adj. Flow (vph)	440	581	44	52	291	283	84	1140	24	352	629	335
RTOR Reduction (vph)	0	4	0	0	0	87	0	1	0	0	0	81
Lane Group Flow (vph)	440	621	0	52	291	196	84	1163	0	352	629	254
Heavy Vehicles (%)	3%	5%	4%	2%	5%	8%	3%	2%	6%	8%	2%	3%
Turn Type	pm+pt	NA		pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	8		7	4	1	5	2		1	6	3
Permitted Phases	8			4		4	2			6		6
Actuated Green, G (s)	56.0	44.3		34.7	28.0	55.8	50.2	49.2		70.0	70.0	93.0
Effective Green, g (s)	56.0	44.3		34.7	28.0	55.8	50.2	49.2		70.0	70.0	93.0
Actuated g/C Ratio	0.37	0.30		0.23	0.19	0.37	0.33	0.33		0.47	0.47	0.62
Clearance Time (s)	5.0	6.0		5.0	6.0	5.0	5.0	6.0		5.0	6.0	5.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	428	1005		216	641	556	301	1156		361	1676	986
v/s Ratio Prot	c0.16	0.18		0.01	0.08	0.07	0.01	c0.33		c0.18	0.18	0.04
v/s Ratio Perm	c0.23			0.04		0.07	0.08			0.27		0.12
v/c Ratio	1.03	0.62		0.24	0.45	0.35	0.28	1.01		0.98	0.38	0.26
Uniform Delay, d1	42.8	45.6		45.7	54.2	34.1	37.3	50.4		47.7	25.9	12.9
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	50.9	2.9		0.6	2.3	0.4	0.5	28.0		40.4	0.6	0.1
Delay (s)	93.7	48.4		46.2	56.5	34.4	37.8	78.4		88.1	26.5	13.0
Level of Service	F	D		D	Е	С	D	Е		F	С	В
Approach Delay (s)		67.1			45.7			75.7			39.6	
Approach LOS		Е			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			58.0	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	acity ratio		1.04									
Actuated Cycle Length (s)			150.0			st time (s)			22.0			
Intersection Capacity Utiliza	ation		90.3%	IC	U Level	of Service	9		Е			
Analysis Period (min)			15									
c Critical Lane Group												

2: State Rd (SR-94) & IR-480 EB Off Ramp/IR-480 EB On Ramp 2014 AM Build

	۶	→	•	•	←	•	1	1	~	\	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ		77					↑ ↑↑	7	ሻ	ተተተ	
Volume (vph)	334	0	636	0	0	0	0	842	769	204	486	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			3%			0%	
Total Lost time (s)	6.0		6.0					6.0	6.0	5.0	5.0	
Lane Util. Factor	0.97		0.88					0.91	1.00	1.00	0.91	
Frt	1.00		0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433		2707					4960	1575	1770	4893	
FIt Permitted	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433		2707					4960	1575	1770	4893	
Peak-hour factor, PHF	0.80	0.92	0.92	0.92	0.92	0.92	0.92	0.88	0.83	0.88	0.97	0.92
Adj. Flow (vph)	418	0	691	0	0	0	0	957	927	232	501	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	503	0	0	0
Lane Group Flow (vph)	418	0	691	0	0	0	0	957	424	232	501	0
Heavy Vehicles (%)	2%	2%	5%	2%	2%	2%	2%	3%	1%	2%	6%	2%
Turn Type	Prot		Prot					NA	Perm	Prot	NA	
Protected Phases	8		8					6		5	56	
Permitted Phases									6			
Actuated Green, G (s)	29.0		29.0					33.0	33.0	21.0	60.0	
Effective Green, g (s)	29.0		29.0					33.0	33.0	21.0	54.0	
Actuated g/C Ratio	0.29		0.29					0.33	0.33	0.21	0.54	
Clearance Time (s)	6.0		6.0					6.0	6.0	5.0		
Vehicle Extension (s)	3.0		3.0					3.0	3.0	3.0		
Lane Grp Cap (vph)	995		785					1636	519	371	2642	
v/s Ratio Prot	0.12		c0.26					0.19		c0.13	0.10	
v/s Ratio Perm									c0.27			
v/c Ratio	0.42		0.88					0.58	0.82	0.63	0.19	
Uniform Delay, d1	28.7		33.8					27.8	30.7	35.9	11.8	
Progression Factor	1.00		1.00					1.00	1.00	0.18	1.66	
Incremental Delay, d2	1.3		13.5					1.5	13.3	7.4	0.1	
Delay (s)	30.0		47.3					29.4	44.0	14.1	19.7	
Level of Service	С		D					С	D	В	В	
Approach Delay (s)		40.8			0.0			36.6			17.9	
Approach LOS		D			Α			D			В	
Intersection Summary												
HCM 2000 Control Delay			34.2	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.77									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utiliza	tion		82.6%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

3: State Rd (SR-94) & IR-480 WB On Ramp/IR-480 WB Off Ramp 2014 AM Build

	۶	→	•	•	←	•	4	†	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻሻ		7	ሻሻ	^			ተተተ	7
Volume (vph)	0	0	0	304	0	231	621	554	0	0	390	367
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				6.0		6.0	5.0	5.0			6.0	6.0
Lane Util. Factor				*0.64		1.00	*0.93	0.95			0.91	1.00
Frt				1.00		0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95		1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				2159		1583	3291	3539			5085	1583
Flt Permitted				0.95		1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				2159		1583	3291	3539			5085	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.95	0.92	0.80	0.91	0.81	0.92	0.92	0.92	0.88
Adj. Flow (vph)	0	0	0	320	0	289	682	684	0	0	424	417
RTOR Reduction (vph)	0	0	0	0	0	175	0	0	0	0	0	313
Lane Group Flow (vph)	0	0	0	320	0	114	682	684	0	0	424	104
Heavy Vehicles (%)	2%	2%	2%	7%	2%	2%	2%	2%	2%	2%	2%	2%
Turn Type				Prot		Prot	Prot	NA			NA	Perm
Protected Phases				4		4	1	12			2	. 0
Permitted Phases				•		•	•	· -			_	2
Actuated Green, G (s)				29.0		29.0	29.0	59.0			25.0	25.0
Effective Green, g (s)				29.0		29.0	29.0	59.0			25.0	25.0
Actuated g/C Ratio				0.29		0.29	0.29	0.59			0.25	0.25
Clearance Time (s)				6.0		6.0	5.0				6.0	6.0
Vehicle Extension (s)				3.0		3.0	3.0				3.0	3.0
Lane Grp Cap (vph)				626		459	954	2088			1271	395
v/s Ratio Prot				c0.15		0.07	c0.21	c0.19			c0.08	000
v/s Ratio Perm				00.10		0.01	00.21	00.10			00.00	0.07
v/c Ratio				0.51		0.25	0.71	0.33			0.33	0.26
Uniform Delay, d1				29.6		27.2	31.8	10.4			30.7	30.1
Progression Factor				1.00		1.00	0.29	1.61			1.00	1.00
Incremental Delay, d2				3.0		1.3	3.8	0.4			0.7	1.6
Delay (s)				32.6		28.4	13.0	17.2			31.4	31.7
Level of Service				C		C	В	В			C	C
Approach Delay (s)		0.0			30.6	J		15.1			31.6	J
Approach LOS		A			C			В			С	
Intersection Summary												
HCM 2000 Control Delay			23.4	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity	v ratio		0.54			_3.5.51						
Actuated Cycle Length (s)	,		100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utilizatio	n		82.6%		U Level		!		E			
Analysis Period (min)			15		2 20.01							
c Critical Lane Group												

	TW	O-WAY STOP	CONTR	OL SU	MMARY			
General Informatio	n		Site I	nforma	tion			
Analyst	VM		Interse	ection		State at I	Buraer/R	alph
Agency/Co.			Jurisdi			Clevelan		- -
Date Performed	5/29/201	5		sis Year		2014-Bui		
Analysis Time Period	AM Peak							
Project Description Co								
East/West Street: Burg	er/Ralph	Study	North/S	South Str	eet: State F	Road		
Intersection Orientation:					rs): <i>0.25</i>	1000		
		nto	10 10.0.	(11				
Vehicle Volumes as Major Street	Ta Aujustine	Northbound		<u> </u>		Southboo	ınd	
Movement	1	2	3		4	,	JIIU I	6
wovernent	 	T	R		4 L	5 T		R
Valuma (vah/h)	14	681	24		6	595		5
Volume (veh/h) Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00
Hourly Flow Rate, HFR	1.00	1.00	1.00	' 	1.00	1.00		1.00
(veh/h)	14	681	24		6	595		5
Percent Heavy Vehicles	0				0			
Median Type				Undivid	led			
RT Channelized			0					0
Lanes	0	2	0		0	2		0
Configuration	LT		TR		LT			TR
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	ınd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume (veh/h)	10	15	43		56	14		4
Peak-Hour Factor, PHF	1.00	1.00	1.00	,	1.00	1.00		1.00
Hourly Flow Rate, HFR	10	15	43		56	14		4
(veh/h) Percent Heavy Vehicles	0	0	0	_	0	0		0
Percent Grade (%)	- -	0	0		- 0	0		-
Flared Approach	+		1			T N		
	+	_				+		
Storage		0	<u> </u>			0		
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration		LTR				LTR		
Delay, Queue Length, a	i e	ii i				1		
Approach	Northbound	Southbound		Westbou		_	Eastbour	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT	LT		LTR			LTR	
v (veh/h)	14	6		74			68	
C (m) (veh/h)	987	902		166			322	
v/c	0.01	0.01		0.45			0.21	
95% queue length	0.04	0.02		2.05			0.78	
Control Delay (s/veh)	8.7	9.0		43.1	_		19.1	
LOS				#3.1 E			C 19.1	
	A	Α						
Approach Delay (s/veh)				43.1			19.1	
Approach LOS				E			С	

Generated: 5/29/2015 5:19 PM

	۶	→	•	•	+	•	•	†	<i>></i>	\	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ î≽		ሻ	^	7	ሻ	∱ β		7	^	7
Volume (vph)	274	401	134	237	529	378	81	636	57	286	1120	545
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			0%			-3%	
Total Lost time (s)	5.0	6.0		5.0	6.0	5.0	5.0	6.0		5.0	6.0	5.0
Lane Util. Factor	1.00	0.95		1.00	0.95	1.00	1.00	0.95		1.00	0.95	1.00
Frt	1.00	0.96		1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85
FIt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00
Satd. Flow (prot)	1752	3313		1770	3438	1495	1752	3474		1696	3592	1591
FIt Permitted	0.21	1.00		0.25	1.00	1.00	0.09	1.00		0.20	1.00	1.00
Satd. Flow (perm)	390	3313		473	3438	1495	172	3474		350	3592	1591
Peak-hour factor, PHF	0.90	0.86	0.82	0.90	0.97	0.88	0.78	0.96	0.79	0.94	0.94	0.83
Adj. Flow (vph)	304	466	163	263	545	430	104	662	72	304	1191	657
RTOR Reduction (vph)	0	23	0	0	0	67	0	6	0	0	0	37
Lane Group Flow (vph)	304	606	0	263	545	363	104	728	0	304	1191	620
Heavy Vehicles (%)	3%	5%	4%	2%	5%	8%	3%	2%	6%	8%	2%	3%
Turn Type	pm+pt	NA		pm+pt	NA	pm+ov	pm+pt	NA		pm+pt	NA	pm+ov
Protected Phases	3	8		7	4	1	5	2		1	6	3
Permitted Phases	8	40.0		4	24.5	4	2	40.0		6	00.0	6
Actuated Green, G (s)	64.1	40.0		53.6	34.5	60.4	51.9	43.0		74.9	60.0	84.6
Effective Green, g (s)	64.1	40.0		53.6	34.5	60.4	51.9	43.0		74.9	60.0	84.6
Actuated g/C Ratio	0.43 5.0	0.27		0.36 5.0	0.23	0.40 5.0	0.35 5.0	0.29 6.0		0.50 5.0	0.40	0.56 5.0
Clearance Time (s)	3.0	6.0 3.0						3.0		3.0	6.0	3.0
Vehicle Extension (s)				3.0	3.0	3.0	3.0				3.0	
Lane Grp Cap (vph)	390	883		334 0.10	790 0.16	601	153	995 0.21		407 c0.13	1436	897 0.11
v/s Ratio Prot v/s Ratio Perm	c0.13 c0.21	0.18		0.10	0.16	0.10 0.14	0.04 0.19	0.21		0.24	c0.33	0.11
v/c Ratio	0.78	0.69		0.16	0.69	0.14	0.19	0.73		0.24	0.83	0.20
Uniform Delay, d1	32.1	49.4		37.3	52.9	35.3	65.5	48.3		44.1	40.4	23.4
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2	9.5	4.3		11.6	4.9	1.00	11.4	4.8		7.3	5.7	2.3
Delay (s)	41.6	53.7		48.9	57.8	37.1	76.9	53.1		51.4	46.1	25.7
Level of Service	71.0 D	D		70.5 D	67.6	D	7 0.5 E	D		D	D	C
Approach Delay (s)		49.7			48.7			56.0			40.6	
Approach LOS		D			D			E			D	
Intersection Summary												
HCM 2000 Control Delay			46.7	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.83									
Actuated Cycle Length (s)			150.0			t time (s)			22.0			
Intersection Capacity Utiliza	ition		86.5%	IC	U Level	of Service	•		E			
Analysis Period (min)			15									
c Critical Lane Group												

2: State Rd (SR-94) & IR-480 EB Off Ramp/IR-480 EB On Ramp 2014 PM - Texas Diamond Interchange Phasing

	۶	→	•	•	←	4	1	†	~	-	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ		77					ተተተ	7	ሻ	^ ^	
Volume (vph)	330	0	714	0	0	0	0	841	457	218	1248	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Grade (%)		0%			0%			3%			0%	
Total Lost time (s)	6.0		6.0					6.0	6.0	5.0	5.0	
Lane Util. Factor	0.97		*0.99					0.91	1.00	1.00	0.91	
Frt	1.00		0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3467		3105					5009	1544	1787	5085	
FIt Permitted	0.95		1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3467		3105					5009	1544	1787	5085	
Peak-hour factor, PHF	0.89	0.92	0.93	0.92	0.92	0.92	0.92	0.95	0.91	0.91	0.93	0.92
Adj. Flow (vph)	371	0	768	0	0	0	0	885	502	240	1342	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	346	0	0	0
Lane Group Flow (vph)	371	0	768	0	0	0	0	885	156	240	1342	0
Heavy Vehicles (%)	1%	2%	3%	2%	2%	2%	2%	2%	3%	1%	2%	2%
Turn Type	Prot		Prot					NA	Perm	Prot	NA	
Protected Phases	8		8					6		5	5 6	
Permitted Phases									6			
Actuated Green, G (s)	34.7		34.7					31.0	31.0	17.3	54.3	
Effective Green, g (s)	34.7		34.7					31.0	31.0	17.3	48.3	
Actuated g/C Ratio	0.35		0.35					0.31	0.31	0.17	0.48	
Clearance Time (s)	6.0		6.0					6.0	6.0	5.0		
Vehicle Extension (s)	3.0		3.0					3.0	3.0	3.0		
Lane Grp Cap (vph)	1203		1077					1552	478	309	2456	
v/s Ratio Prot	0.11		c0.25					c0.18		c0.13	0.26	
v/s Ratio Perm	2.24								0.10	0.70		
v/c Ratio	0.31		0.71					0.57	0.33	0.78	0.55	
Uniform Delay, d1	23.9		28.3					28.9	26.5	39.5	18.2	
Progression Factor	1.00		1.00					1.00	1.00	0.19	1.39	
Incremental Delay, d2	0.7		4.0					0.5	0.4	10.1	0.2	
Delay (s)	24.5		32.4					29.4	26.9	17.5	25.5	
Level of Service	С	20.0	С		0.0			C	С	В	C	
Approach Delay (s)		29.8			0.0			28.5			24.3	
Approach LOS		С			Α			С			С	
Intersection Summary												
HCM 2000 Control Delay			27.2	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.67									
Actuated Cycle Length (s)			100.0		ım of lost				17.0			
Intersection Capacity Utilizat	ion		107.7%	IC	U Level o	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

3: State Rd (SR-94) & IR-480 WB On Ramp/IR-480 WB Off Ramp 2014 PM - Texas Diamond Interchange Phasing

	۶	→	•	•	←	•	1	†	~	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻሻ		7	ሻሻ	^			ተተተ	7
Volume (vph)	0	0	0	865	0	362	571	600	0	0	600	349
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				6.0		6.0	5.0	5.0			6.0	6.0
Lane Util. Factor				0.97		1.00	*0.93	0.95			0.91	1.00
Frt				1.00		0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95		1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				3433		1599	3260	3574			5085	1599
Flt Permitted				0.95		1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				3433		1599	3260	3574			5085	1599
Peak-hour factor, PHF	0.92	0.92	0.92	0.90	0.92	0.91	0.88	0.92	0.92	0.92	0.86	0.85
Adj. Flow (vph)	0	0	0	961	0	398	649	652	0	0	698	411
RTOR Reduction (vph)	0	0	0	0	0	158	0	0	0	0	0	305
Lane Group Flow (vph)	0	0	0	961	0	240	649	652	0	0	698	106
Heavy Vehicles (%)	2%	2%	2%	2%	2%	1%	3%	1%	2%	2%	2%	1%
Turn Type				Prot		Prot	Prot	NA			NA	Perm
Protected Phases				4		4	1	12			2	
Permitted Phases												2
Actuated Green, G (s)				34.0		34.0	23.3	54.0			25.7	25.7
Effective Green, g (s)				34.0		34.0	23.3	54.0			25.7	25.7
Actuated g/C Ratio				0.34		0.34	0.23	0.54			0.26	0.26
Clearance Time (s)				6.0		6.0	5.0				6.0	6.0
Vehicle Extension (s)				3.0		3.0	3.0				3.0	3.0
Lane Grp Cap (vph)				1167		543	759	1929			1306	410
v/s Ratio Prot				c0.28		0.15	c0.20	0.18			c0.14	
v/s Ratio Perm				00.20		00	00.20	00				0.07
v/c Ratio				0.82		0.44	0.86	0.34			0.53	0.26
Uniform Delay, d1				30.2		25.6	36.7	12.9			32.0	29.6
Progression Factor				1.00		1.00	0.40	1.43			1.00	1.00
Incremental Delay, d2				6.6		2.6	8.2	0.1			0.4	0.3
Delay (s)				36.9		28.2	22.8	18.6			32.4	29.9
Level of Service				D		C	C	В			C	C
Approach Delay (s)		0.0		_	34.4			20.7			31.5	
Approach LOS		А			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			28.8	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacit	tv ratio		0.74			_5.5.5.						
Actuated Cycle Length (s)	.,		100.0	Sı	um of lost	time (s)			17.0			
Intersection Capacity Utilization	on		107.7%		U Level o				G			
Analysis Period (min)			15		2 20.010							
c Critical Lane Group												

	TW	O-WAY STOP	CONTR	OL SUN	IMARY				
General Information	n		Site I	nformat	ion				
Analyst	VM		Interse	Intersection			State at Burger/Ralph		
Agency/Co.						Cleveland			
Date Performed	5/29/201	5/29/2015				2014-Bui	ild		
Analysis Time Period	PM Peak								
Project Description Cl	UY-480-Safety	Study							
East/West Street: Burg	er/Ralph		North/S	South Stre	et: State F	Road			
Intersection Orientation:			Study F	Period (hr	s): 0.25				
Vehicle Volumes a	nd Adiustme	ents	•						
Major Street		Northbound		İ		Southboo	und		
Movement	1	2	3		4	5		6	
	L	T	R		L	T		R	
Volume (veh/h)	32	863	40		15	794		20	
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00	
Hourly Flow Rate, HFR (veh/h)	32	863	40		15	794		20	
Percent Heavy Vehicles	0				0				
Median Type		_		Undivided					
RT Channelized			0					0	
Lanes	0	2	0		0	2		0	
Configuration	LT		TR		LT			TR	
Upstream Signal		0				0			
Minor Street	i	Eastbound	•				ınd		
Movement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
Volume (veh/h)	11	18	50		66	18		12	
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00	
Hourly Flow Rate, HFR (veh/h)	11	18	50	66		18		12	
Percent Heavy Vehicles	0	0	0		0	0		0	
Percent Grade (%)		0	•			0	-		
Flared Approach		N				N			
Storage		0				0			
RT Channelized		1	0					0	
Lanes	0	1	0		0	0 1		0	
Configuration	 	LTR	 			LTR			
Delay, Queue Length, a	and Lovel of S						ı		
Approach	Northbound	Southbound		Westboun	ıd.	1	Eastboun	4	
Movement	1		7		9	10	11	12	
		4	1	8	9	10	<u> </u>	12	
Lane Configuration	LT	LT		LTR			LTR		
v (veh/h)	32	15		96		 	79		
C (m) (veh/h)	822	761		86			179		
v/c	0.04	0.02		1.12			0.44		
95% queue length	0.12	0.06		6.66			2.04		
Control Delay (s/veh)	9.6	9.8		220.4			40.1		
LOS	Α	Α		F			Е		
Approach Delay (s/veh)				220.4		40.1			
Approach LOS				F		 	E		
r ipprodori 200				, TM		1			

Generated: 5/29/2015 5:19 PM

APPENDIX I HCS MAINLINE/RAMPS CAPACITY ANALYSIS REPORTS

TECHNICAL ANALYSIS

Capacity analyses were performed to evaluate the Existing and Build conditions based on existing (2014) and design year (2034) traffic. Analyses were conducted using the 2010 Highway Capacity Manual methodologies. The freeway, weave, ramp merge/diverge analysis results are summarized by direction in the following sections.

I-480 EB MAINLINE AND RAMPS CAPACITY ANALYSIS

Freeway sections, ramp merge/diverge, weave analysis and ramp roadway capacity analysis for the I-480 Eastbound sections are included in **Tables I-1 through I-3**. The LOS results are graphically shown in **Figure I-1 and I-2** for the design year No-Build and Build conditions, respectively. Output reports are appended to this section.

TABLE I-1: LOS SUMMARY - I-480 EASTBOUND FREEWAY ANALYSIS

Direction	Section of IR-480	Time	2014	2034	2034	
Direction	Section of IK-400	Period	Existing	Existing	Build	
	Between SR-94 ramps	AM	C / 25.6	D / 27.1		
	Detween SK-94 famps	PM	B / 17.7	C / 18.4	Same as	
EB	Between SR-176 ramps	AM	C / 23.0	C / 24.4	No-Build	
EB	between 5K-170 tamps	PM	B / 16.6	B / 17.3		
	SR 94 to SR 176	AM	We	ave	C / 25.1	
	3K 24 to 3K 170	PM	VV C	B / 17.2		

Alphanumeric values represent level of service, Numeric values represent density in pc/lane/mile

TABLE I-2: LOS SUMMARY - I-480 EB WEAVE ANALYSIS

IR-480 EB Weave	Time Period	2014 Existing	2034 Existing	2034 Build ¹
Between SR-176 and SR-94	AM	D/31.9	D/33.5	N/A
	PM	C/20.5	C/21.3	IV/A

Alphanumeric values represent level of service, Numeric values represent density in pc/lane/mile

Note 1: With 2-lane I-480 EB to SR 176 NB ramp geometry, weave analysis is not applicable as the available distance (3500') between the ramps exceeds the max. weave distance of 3040'.

TABLE I-3: LOS SUMMARY - I-480 EASTBOUND RAMP MERGE/DIVERGE ANALYSIS

Ramp	Merge/ Diverge	Time Period	2014 Existing	2034 Existing	2034 Build	
	Divolgo	AM	C / 23.9	C/25.1		
IR-480 EB to SR-94	Diverge	PM	B / 17.6	B / 18.3	Same as No-Build	
CD 04 / ID 400 FD		AM		C / 25.9		
SR-94 to IR-480 EB	Merge	PM	Weave		B / 16.7	
IR-480 EB to SR-176	Diverge	AM	, we	A/3.0		
IN-400 ED to SN-170	Diverge	PM		A/5.2		

Alphanumeric values represent level of service, Numeric values represent density in pc/lane/mile

RAMP ROADWAY LEVEL OF SERVICE - I-480/SR176 INTERCHANGE

The ramp roadway capacity analysis was performed for all the free-flow ramps at the I-480/SR 176 interchange. **Table I-4** summarizes the results for I-480 EB and SR 176 NB ramps.

The ramp configuration of SR 176 NB was revised to mitigate the over-capacity condition highlighted in the table. The SR 176 NB ramp from I-480 EB is revised to 2-lane ramp whereas the SR 176 NB ramp from I-480 WB is reduced to a single lane.

TABLE I-4: RAMP ROADWAY V/C RATIO SUMMARY - I-480 EB AND SR 176 NB RAMPS

			Ramp			No	-Build				Bu	ild	
Ramp ID	Ramp Location	Ramp Free Flow Speed	Volume - 2034 (pc/hr)	No. of Lanes	Ramp Capacity (pc/hr)	V/C ratio	Under or Over Capacity?	Notes	No. of Lanes	Ramp Capacity (pc/hr)	V/C ratio	Under or Over Capacity?	Notes
2014 & 20	034 AM PEAK VOLUMES												
R1	IR-480 EB exit to SR-176 NB	45 mph	1630	1	2100	0.78	Under Capacity	Ramp Roadway	2	4200	0.39	Over Capacity	Ramp Roadway
R2	SR-176 NB entrance ramp from Brookpark	45 mph	530	1	2100	0.25	Under Capacity	Ramp Roadway	1	2100		C/20.3	
R3	SR-176 NB - single lane merge of I-480 EB and Brookpark Entrance ramps	45 mph	2160	1	2100	1.03	Over Capacity	Ramp Roadway	2	4200	(HCS Freeway/Ramp Conditions) ¹		p Merge
R4	SR-176 NB entrance ramp from IR-480 WB	45 mph	1310	2	4200	0.31	Under Capacity	Ramp Roadway	1	2100	0.62	Over Capacity	Ramp Roadway
2014 & 20	034 PM PEAK VOLUMES												
R1	IR-480 EB exit to SR-176 NB	45 mph	1000	1	2100	0.48	Under Capacity	Ramp Roadway	2	4200	0.24	Under Capacity	Ramp Roadway
R2	SR-176 NB entrance ramp from Brookpark	45 mph	410	1	2100	0.20	Under Capacity	Ramp Roadway	1	2100	area.	B/14.0	
R3	SR-176 NB - single lane merge of I-480 EB and Brookpark Entrance ramps	45 mph	1410	1	2100	0.67	Under Capacity	Ramp Roadway	2	4200	(HCS Freeway/Ram Conditions)		p Merge
R4	SR-176 NB entrance ramp from IR-480 WB	45 mph	1400	2	4200	0.33	Under Capacity	Ramp Roadway	1	2100	0.67	Under Capacity	Ramp Roadway
Note 1 - Le	gend: Letter/Numerical value - Level of service/d	lensity in pc/l	ane/mile										

I-480 WB MAINLINE AND RAMPS CAPACITY ANALYSIS

Freeway sections, ramp merge/diverge, weave analysis and ramp roadway capacity analysis for the I-480 EB and SR 176 NB sections are included in **Tables I-5 through I-7**. The LOS results are graphically shown in Figure 1 and 2 for the design year No-Build and Build conditions, respectively. Output reports are provided in **Appendix E.**

TABLE I-5: LOS SUMMARY - I-480 WESTBOUND FREEWAY ANALYSIS

Direction	Section of IR-480	Time Period	2014 Existing	2034 Existing	2034 Build
	Between SR-176 ramps	AM	B / 15.9	B / 16.7	Same as
	between SK-170 famps	PM	C / 22.2	C / 23.9	No-Build
WB	Between SR-94 and SR-176	AM	C / 19.2	C / 20.0	Weave
WD	Detween SK-94 and SK-170	PM	D / 29.6	D/31.9	weave
	Between SR-94 ramps	AM	B / 16.9	B / 17.7	Same as
	between SK-94 famps	PM	C / 23.7	C / 25.2	No-Build

Alphanumeric values represent level of service, Numeric values represent density in pc/lane/mile

TABLE I-6: LOS SUMMARY - I-480 WB WEAVE ANALYSIS

IR-480 WB Weave	Time Period	Existing	2034 Build
Patyyaan SD 176 and SD 04	AM	N/A (Freeway	B / 19.1
Between SR-176 and SR-94	PM	section)	D/33.2

Alphanumeric values represent LOS, Numeric values represent density in pc/lane/mile

TABLE I-7: LOS SUMMARY - I-480 WESTBOUND RAMP MERGE/DIVERGE ANALYSIS

Ramp	Merge/ Diverge	Time Period	2014 Existing	2034 Existing	2034 Build	
SR-176 SB to IR-480 WB	Morgo	AM	C / 20.2	C / 20.8		
SR-1/0 SD to IR-460 W D	Merge	PM	D/31.4	D/32.6	Weave	
IR-480 WB to SR-94	Divaraa	AM	C / 20.6	C / 21.3	weave	
IR-400 W B to SR-94	Diverge	PM	D/33.5	D/35.0		
SR-94 to IR-480 WB	Marga	AM	B / 17.5	B / 18.1	Same as	
3R-94 to IR-460 W B	Merge	PM	C / 22.8	C / 24.1	No-Build	

Alphanumeric values represent level of service, Numeric values represent density in pc/lane/mile

RAMP ROADWAY LEVEL OF SERVICE - I-480/SR176 INTERCHANGE

Table I-8 summarizes the results for I-480 WB and SR 176 SB ramps. Note that the No-Build and Build geometry remains the same for these ramp roadways, and hence the capacity analysis results are unchanged.

TABLE I-8: RAMP ROADWAY V/C RATIO SUMMARY - I-480 WB AND SR 176 SB RAMPS

			Ramp			No-Bu	iild/Build	
Ramp ID	Ramp Location	Ramp Free Flow Speed	Volume - 2034 (pc/hr)	No. of Lanes	Ramp Capacity (pc/hr)	V/C ratio	Under or Over Capacity?	Notes
2014 & 2	034 AM PEAK VOLUMES							
R5	SR-176 SB exit to Brookpark	45 mph	290	1	2100	0.14	Under Capacity	Ramp Roadwa
R6	SR-176 SB exit to IR-480 (EB/WB)	45 mph	2030	2	4200	0.48	Under Capacity	Ramp Roadwa
R7	SR-176 SB exit to IR-480 EB	45 mph	1240	1	2100	0.59	Under Capacity	Ramp Roadwa
R8	SR-176 SB exit to IR-480 WB	45 mph	790	1	2100	0.38	Under Capacity	Ramp Roadwa
2014 & 2	034 PM PEAK VOLUMES							
25	SR-176 SB exit to SR-17	45 mph	650	1	2100	0.31	Under Capacity	Ramp Roadwa
R6	SR-176 SB exit to IR-480 EB/WB	45 mph	2960	2	4200	0.70	Under Capacity	Ramp Roadwa
R7	SR-176 SB exit to IR-480 EB	45 mph	1400	1	2100	0.67	Under Capacity	Ramp Roadwa
R8	SR-176 SB exit to IR-480 WB	45 mph	1560	1	2100	0.74	Under Capacity	Ramp Roadwa

TECHNICAL ANALYSIS

FIGURE I-2 – DESIGN YEAR (2034) – BUILD LOS SUMMARY Legend:

Segment OS A-D Weave LOSE Merge/Diverge Ramp roadway → Lane Addition Lane reduction IR-480 Brookpark Rd (SR-17)

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period Project Description CUY-	LJB Inc 3/6/2015 AM Peak	udv	Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-94 ramps
•	400 Salety Sit) oo (N)		aning Data
✓ Oper.(LOS) Flow Inputs		L	Des.(N)	Piai	nning Data
Volume, V	5940	veh/h	Dook Hour Footor DUE	0.94	
AADT	3940	veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	8	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2	
Enand Innuta	1.5				
Speed Inputs			Calc Speed Adj and	гго	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f_{LW}		mph
Number of Lanes, N	4		f_{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	65.0	mph mph	FFS	65.0	mph
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f _{HV} 1643	pc/h/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x	∶N x f _{⊔\/}	
x f _p) S	64.2	mph	x f _p)	110	pc/h/ln
D = v _p / S	25.6	pc/mi/ln			mph
LOS	С		$D = v_p / S$ Required Number of Lane	s, N	pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Floric			HCS 2010 TM Version 6.60		rated: 3/10/2015 9:11

HCS 2010TM Version 6.60

Generated: 3/10/2015 9:11 AM

		F	REEWAY	WEAV	NG WOF	RKSHEE	Τ		
Genera	l Informati	on			Site Info	rmation			
Analyst Agency/Cor Date Perfor Analysis Tir	rmed me Period	LJB Inc 3/6/201 AM Pe	5 ak		Freeway/Dir of Travel IR-480 EB Weaving Segment Location Between SR-176 and SR-94 Analysis Year 2014				
Project Des Inputs	scription CUY-48	30 Safety Stud	ly						
Weaving co Weaving nu Weaving se	onfiguration umber of lanes, N egment length, L ee-flow speed, F	S		One-Sided 5 3500ft 65 mph	Segment typ Freeway min Freeway max Terrain type	imum speed			Freewa 1: 235 Leve
Conver	sions to po	c/h Unde	r Base Co	ndition	1				_
	V (veh/h)	PHF	Truck (%)	RV (%)	E _T	E _R	f_{HV}	fp	v (pc/h)
V_{FF}	4975	0.94	8	0	1.5	1.2	0.962	1.00	5504
V_{RF}	385	0.94	2	0	1.5	1.2	0.990	1.00	414
V_{FR}	965	0.94	4	0	1.5	1.2	0.980	1.00	1047
V_{RR}	665	0.94	2	0	1.5	1.2	0.990	1.00	715
V _{NW}	6219		•	•	•		•	V =	7680
V _W	1461								
VR	0.190								
Configu	uration Cha	aracteris	tics						
Minimum n	naneuver lanes,	N _{WL}		2 lc	Minimum we	eaving lane cl	nanges, LC _{MIN}		1461 lc/h
Interchange	e density, ID			1.0 int/mi	Weaving lan	e changes, L	.C _w		2421 lc/h
Minimum F	RF lane changes,	, LC _{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		3076 lc/h
Minimum F	R lane changes	, LC _{FR}		1 lc/pc	Total lane ch	nanges, LC _{AL}	L		5497 lc/h
Minimum F	RR lane changes	, LC _{RR}		lc/pc	Non-weaving	g vehicle inde	ex, I _{NW}		2177
Weavin	g Segmen	t Speed,	Density, I	_evel of	Service,	and Cap	acity		
Weaving se	egment flow rate	, V		7437 veh/h	Weaving inte	ensity factor,	W		0.323
Weaving se	egment capacity	, c _w	1	0952 veh/h	1 '	gment speed			48.1 mph
Weaving se	egment v/c ratio			Average weaving speed, S_{W}				52.8 mph	
	egment density,	D	3	1.9 pc/mi/ln	Average non				47.1 mph
Level of Se	ervice, LOS			D	Maximum we	eaving length	ı, L _{max}		4437 ff
Notes									
Chapter 13,	segments longer t "Freeway Merge a nes that exceed the	and Diverge Se	gments".	_		solated merge	and diverge are	eas using the	procedures of

HCS 2010TM Version 6.60

Generated: 3/10/2015 3:49 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period Project Description CUY-	LJB Inc 3/6/2015 AM Peak	ıdı	Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-176 ramps
✓ Oper.(LOS)	400 Salety Sit)oo (N)	□ Die	nning Data
Flow Inputs		L	Pes.(N)	□Fla	Illing Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5360	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 9 0 Level	
DDHV = AADTX K X D		ven/n	Grade % Length Up/Down %	mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)] 0.957	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	4 65.0	ft ft ramps/mi mph mph	f _{LW} f _{LC} TRD Adjustment FFS	65.0	mph mph mph mph
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I x f _p) S D = v _p / S LOS	N x f _{HV} 1490 64.9 23.0 C	pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \text{ x})$ $x f_p$ S $D = v_p / S$ Required Number of Lanes		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

HCS 2010TM Version 6.60

Generated: 3/10/2015 9:22 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 AM Peak		Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-176 ramps
Project Description CUY-	480 Safety Sti		N (A1)	□ pi-	anian Data
✓ Oper.(LOS)		L	Des.(N)	Pia	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	3720	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 9 0 Level mi	
			Up/Down %		
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)] 0.957	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	4 65.0	ft ft ramps/mi mph mph	f _{LW} f _{LC} TRD Adjustment FFS	65.0	mph mph mph mph
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$ S $D = v_p / S$ LOS	N x f _{HV} 1034 65.0 15.9 B	pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \text{ x} \text{ x } f_p)$ S $D = v_p / S$ Required Number of Lane		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E_R - Exhibits 11-10, 11-12 E_T - Exhibits 11-10, 11-11, f_p - Page 11-18 LOS, S, FFS, v_p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Florid			HCS 2010 TM Version 6.60	Cana	erated: 3/10/2015 9:28

HCS 2010TM Version 6.60

Generated: 3/10/2015 9:28 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst			Highway/Direction of Trave		
Agency or Company	LJB Inc		From/To	Betweer 176	n SR-94 and SR-
Date Performed	3/6/2015		Jurisdiction	Clevelar	nd
Analysis Time Period	AM Peak		Analysis Year	2014	
Project Description CUY-	480 Safety St	udy			
✓ Oper.(LOS)			Des.(N)	Plar	ning Data
Flow Inputs					
Volume, V	4510	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	8	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
DDITV - AADTX K X D		Venin	Grade % Length Up/Down %	1111	
Calculate Flow Adjus	tments		Ор/Вонн 70		
	1.00			1.2	
f _p			E _R		
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f_{LW}		mph
Number of Lanes, N	4		f_{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS	65.0	mph
Base free-flow Speed,		mph		00.0	
BFFS	5.7		5 : (1)		
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS)			Design (N)		
v _p = (V or DDHV) / (PHF x I	N x f		Design LOS		
x f _p)	1247	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	$N \times f_{HV}$	pc/h/ln
Λ' _p / S	65.0	mph	x f _p)		ролин
	19.2	pc/mi/ln	S		mph
D = v _p / S		рс/пп/п	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spee	ed			
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	, 11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-1
speed			LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3		

HCS 2010TM Version 6.60

Generated: 3/10/2015 9:26 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 AM Peak		Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-94 ramps
Project Description CUY-	480 Safety Sti				. 5.
✓ Oper.(LOS)			Des.(N)	□ Plar	nning Data
Flow Inputs	2000		D 111 E (DUE		
Volume, V AADT Peak Hr Prop. of AADT K	3980	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.94 8 0	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length Up/Down %	Level mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)1 0.962	
Speed Inputs			Calc Speed Adj and		
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f		mph
Number of Lanes, N	4		f _{LW}		•
Total Ramp Density, TRD		ramps/mi	f _{LC}		mph
FFS (measured)	65.0	mph	TRD Adjustment	05.0	mph
Base free-flow Speed, BFFS	33.5	mph	FFS	65.0	mph
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f		Design (N) Design LOS		
x f _p) S	65.0	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/ln
D = v _p / S	16.9	mph pc/mi/ln	S		mph
LOS	70.9 В	рс/пп/п	$D = v_p / S$		pc/mi/ln
LUS	Ь		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Florid	Na. All Dights Doso	mund	HCS 2010 TM Version 6.60	Conor	rated: 3/10/2015 9:25 A

HCS 2010TM Version 6.60

Generated: 3/10/2015 9:25 AM

		RAMP	S AND RAI	MP JUNCTI	ONS WC	RKS	HEET			
General Infor	mation			Site Infor			·			
Analyst Agency or Company Date Performed	LJB I 3/3/2			Freeway/Dir of Tra Junction Jurisdiction		IR-480 SR-94 Clevela				
Analysis Time Period				Analysis Year		2014	iiiu			
Project Description										
Inputs										
Upstream Adj R	amp	Freeway Num Ramp Numbe	ber of Lanes, Ner of Lanes, N	4 1					Downstrea Ramp	am Adj
□Yes □	On	1	ane Length, L _A						Yes	□On
☑ No	Off	Deceleration Freeway Volu	Lane Length L _D	1500 6830					☑ No	Off
L _{up} = fi	t	Ramp Volume	e, V _R	890					L _{down} =	ft
V _u = ve	eh/h		e-Flow Speed, S _{FF} low Speed, S _{FR}	= 65.0 45.0					V _D =	veh/h
Conversion to	o pc/h Und	I	110						1	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	6830	0.94	Level	9	0	0.	957	1.00	75	593
Ramp	890	0.94	Level	4	0	0.	980	1.00	9	66
UpStream						_			 	
DownStream		I <u> </u>						L Diverge Areas		
Estimation of		morgo / mode			Estimat	ion o	fv_{42}	51101g0711000		
		/ D \						· \/ _ + (\/ _ \/	/ \D	
_	V ₁₂ = V _F		10.7\					: V _R + (V _F - V		
L _{EQ} =		tion 13-6 or	•		L _{EQ} =			Equation 13-		•
P _{FM} =	_	Equation (I	EXHIDIT 13-6)		P _{FD} =			436 using Ed	quation (Exh	ibit 13-7)
V ₁₂ =	pc/h	F '' 40	40.47		V ₁₂ =			355 pc/h		
V ₃ or V _{av34}		-	-14 or 13-17)		V ₃ or V _{av34}			369 pc/h (Equ		4 or 13-17)
Is V_3 or $V_{av34} > 2,70$								☐Yes ☑ No		
Is V ₃ or V _{av34} > 1.5 *			10 10 10					☐ Yes ☑ No		10 10
If Yes,V _{12a} =	pc/n (1 13-19)	•	-16, 13-18, or		If Yes,V _{12a} :	=		oc/h (Equation 9)	n 13-16, 13	-18, or 13-
Capacity Che					Capacit	ty Ch		- /		
, ,	Actual		Capacity	LOS F?			Actual	С	apacity	LOS F?
					V_{F}		7593	Exhibit 13-	-8 9400	No
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	6627	Exhibit 13-	-8 9400	No
					V _R		966	Exhibit 13-	10 2100	No
Flow Entering	n Merae In	fluence A	\rea				a Dive	rge Influer	nce Area	
	Actual		Desirable	Violation?	1011 =1		Actual	Max Desira		Violation?
V _{R12}		Exhibit 13-8			V ₁₂	3	3855	Exhibit 13-8	4400:All	No
Level of Serv	ice Detern	nination (if not F)	•		f Serv	/ice De	terminatio	n (if not	. F)
$D_R = 5.475 + 0.1$.0086 V ₁₂ - 0	•	,
D _R = (pc/mi/ln	• •	12	^			3.9 (pc.		12	Б	
LOS = (Exhibit							oit 13-2)			
Speed Detern					Speed I	•				
					- '		xhibit 13			
M _S = (Exibit 13	=				1 *	-	Exhibit)	*		
	ibit 13-11)				1			-		
	ibit 13-11)				1 *	-	(Exhibit	•		
ļ	ibit 13-13)						(Exhibit	-		10045 5 5
Copyright © 2014 Unive	ersity of Florida, A	All Rights Reser	ved		HCS2010 [™]	¹ Versio	n 6.60	G	enerated: 3/10)/2015 9:24 AN

General Infor			RAMP JUNG	Site Infor		=			
Analyst				eeway/Dir of Tr		R-480 WB			
•	LID	la a		•					
Agency or Company				nction		R-176 SB			
Date Performed		2015		risdiction		leveland			
Analysis Time Period		Peak	An	alysis Year	20	014			
Project Description	CUY-480 Safe	ety Study							
Inputs		1						1	
Jpstream Adj Ramp		Freeway Num	ber of Lanes, N	4				Downstrea	am Adj
		Ramp Numbe	r of Lanes, N	1				Ramp	
Yes Or	1	Acceleration L	ane Length, L	700				□Yes	On
	•	Deceleration I	ane Length L _D						
☑ No ☐ Of	Γ	Freeway Volu	- 5	3720				✓ No	Off
L _{up} = ft		1	•					L _{down} =	ft
L _{up} = ft		Ramp Volume	11	790				uown	
V _u = veh/h	ı	1	-Flow Speed, S _{FF}	65.0				V _D =	veh/h
-u veil/ii	1	Ramp Free-Fl	ow Speed, S _{FR}	45.0				"	~
Conversion to	o pc/h Un	der Base	Conditions					-	
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PHF	x f x f
	(Veh/hr)						<u>'</u>		
Freeway	3720	0.94	Level	8	0	0.962	1.00	4	116
Ramp	790	0.94	Level	3	0	0.985	1.00	3	353
UpStream		ļļ							
DownStream							<u> </u>		
=		Merge Areas			-		Diverge Areas		
Estimation of	' V ₁₂				Estimatio	n of v ₁₂			
	V ₁₂ = V _F	(P _{FM})				\/ -	.\/ + /\/ \/	\D	
L _{EQ} =		iation 13-6 o	13-7)		_		$V_R + (V_F - V_R)$		0)
			ion (Exhibit 13-6)		L _{EQ} =		(Equation 13-		
P _{FM} =			וטוו (באווטונ וס-ס)		P _{FD} =		using Equatio	n (Exhibit 13	i-7)
V ₁₂ =	458 p		40.44		V ₁₂ =		pc/h		
V ₃ or V _{av34}		pc/h (Equati	on 13-14 or 13-		V ₃ or V _{av34}		pc/h (Equation 1	13-14 or 13-1	7)
	17)					> 2.700 nc/h?	☐Yes ☐No		-
Is V_3 or $V_{av34} > 2,70$							☐ Yes ☐ No		
Is V_3 or $V_{av34} > 1.5$							⊢ Yes	n 12 16 11	R_18 or
If Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =		pc/n (⊑quatio 13-19)	11 13-10, 13)- 10, UI
		13-19)			Compatient		,		
Capacity Che		1 -	,	100=	Capacity			**	1
	Actual	1	apacity	LOS F?		Actual	1	pacity	LOS F
					V_{F}		Exhibit 13-8	8	
V_{FO}	4969	Exhibit 13-8		No	$V_{FO} = V_{F} - \frac{1}{2}$	V_R	Exhibit 13-8	8	1
FU							Exhibit 13	-	1
					V _R		10		<u> </u>
Flow Entering	g Merge lı	nfluence A	rea		Flow Ente	ering Dive	erge Influen		
	Actual	Max	Desirable	Violation?		Actual	Max Desi	irable	Violation
V_{R12}	2499	Exhibit 13-8	4600:AII	No	V ₁₂		Exhibit 13-8	Į Ī	
Level of Serv	ice Deteri	mination (if not F)		Level of S	Service De	eterminatio	n (if not	F)
		0.0078 V ₁₂ - 0.			1		0.0086 V ₁₂ - 0.		
D _R = 20.2 (pc/m	• • • • • • • • • • • • • • • • • • • •	12	^			/mi/ln)	12	U	
	•								
,						hibit 13-2)			
SNAAA DAtarr	nination				1	eterminati	on		
Speed Determ	hit 13 11\				1	nibit 13-12)			
	DIL 13-11)				S _R = mph (Exhibit 13-12)				
M _S = 0.305 (Exi					S _R = mph	I (EXNIDIT 13-12	.)		
$M_S = 0.305 \text{ (Exi}$ $S_R = 58.0 \text{ mph}$	(Exhibit 13-11)					ı (Exhibit 13-12 ı (Exhibit 13-12			
$M_S = 0.305 \text{ (Exi}$ $S_R = 58.0 \text{ mph}$ $S_0 = 62.4 \text{ mph}$					S ₀ = mph	•)		

		RAMP	S AND RAI	MP JUNCTION	ONS WC	RKS	HEET			
General Infor	mation			Site Infor			··			
Analyst Agency or Company	LJB I		J	reeway/Dir of Tra Junction		IR-480 SR-94				
Date Performed Analysis Time Period	3/3/20 AM P			Jurisdiction Analysis Year		Clevela 2014	ina			
Project Description			<i>r</i>	Allalysis Teal		2014				
Inputs		.y c.uuy								
Upstream Adj R	amp	Freeway Num Ramp Numbe	ber of Lanes, N	4					Downstrea	am Adj
□Yes □	On	l '	ane Length, L _A	1					Ramp Yes	On
✓ No	Off	1	Lane Length L _D	575 4510					✓ No	Off
L _{up} = fi	, , , , t								L _{down} =	ft
V _u = ve	eh/h		e-Flow Speed, S _{FF} low Speed, S _{FR}	65.0 45.0					V _D =	veh/h
Conversion to	nc/h Hna	I	111	+0.0						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	4510	0.94	Level	8	0	0.	962	1.00	49	990
Ramp	530	0.94	Level	3	0	0.	985	1.00	5	72
UpStream										
DownStream		<u></u>								
Estimation of		Merge Areas			Fatimat	lion o	£ , ,	Diverge Areas		
Estimation of	V ₁₂				Estimat	ion o				
	$V_{12} = V_{F}$: V _R + (V _F - V		
L _{EQ} =	(Equa	tion 13-6 or	13-7)		L _{EQ} =		(Equation 13-	12 or 13-13)
P _{FM} =	using	Equation (I	Exhibit 13-6)		P _{FD} =		0.	436 using Ed	quation (Exhi	bit 13-7)
V ₁₂ =	pc/h				V ₁₂ =		2	198 pc/h		
V ₃ or V _{av34}		-	-14 or 13-17)		V ₃ or V _{av34}		1:	246 pc/h (Eq	uation 13-1	4 or 13-17)
Is V ₃ or V _{av34} > 2,70	0 pc/h?	s 🗌 No			Is V ₃ or V _{av}	_{/34} > 2,7	00 pc/h? [☐ Yes 🗹 No		
Is V ₃ or V _{av34} > 1.5 *	V ₁₂ /2	s 🗌 No			Is V ₃ or V _{av}	_{/34} > 1.5		☐Yes 🗹 No		
If Yes,V _{12a} =	pc/h (1 13-19)	•	-16, 13-18, or		If Yes,V _{12a} :	=		oc/h (Equation 9)	n 13-16, 13	-18, or 13-
Capacity Che	cks				Capacit	y Ch	ecks			
	Actual		Capacity	LOS F?			Actual		apacity	LOS F?
					V _F		4990	Exhibit 13-	-8 9400	No
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	4418	Exhibit 13-	-8 9400	No
					V_R		572	Exhibit 13-	10 2100	No
Flow Entering	Merge In	fluence A	\rea		Flow Er	nterin	g Dive	rge Influei	ice Area	
	Actual	Max	Desirable	Violation?		/	Actual	Max Desira	ble	Violation?
V _{R12}		Exhibit 13-8			V ₁₂	2	498	Exhibit 13-8	4400:All	No
Level of Serv	ice Detern	nination (if not F)	•	Level o	f Serv	rice De	terminatio	n (if not	F)
$D_R = 5.475 + 0.$	00734 v _R + (0.0078 V ₁₂ -	- 0.00627 L _A			D _R = 4	.252 + 0	.0086 V ₁₂ - 0	.009 L _D	
D _R = (pc/mi/ln)				$D_R = 2$	0.6 (pc	mi/ln)			
LOS = (Exhibit	13-2)					(Exhil	oit 13-2)			
Speed Detern	nination				Speed I	•		on .		
					 '		xhibit 13			
M _S = (Exibit 13 S = mmh (Exh	*					-	(Exhibit	· ·		
	ibit 13-11)					-	(Exhibit	•		
	ibit 13-11) ibit 13-13)				1	-	-	•		
ļ		VII Diabta D	wod		<u> </u>		(Exhibit	•	operated 0/10	V201E 0:20 **
Copyright © 2014 Unive	risity of Fiorida, A	ııı Kıgnts Keser	veu		HCS2010 [™]	' Versio	n 6.60	G	eneratea: 3/10	/2015 9:29 AN

General Infor			RAMP JUNG	Site Infor		-			
Analyst				eway/Dir of Tr		2-480 WB			
•	ı ın	Inc		•					
Agency or Company Date Performed	LJB			nction		R-94			
		2015 Dools		risdiction		eveland			
Analysis Time Period		Peak	An	alysis Year	20)14			
Project Description	CUY-480 Sate	ety Study							
Inputs		Te	baraftara N					1	
Jpstream Adj Ramp		1 '	ber of Lanes, N	4				Downstrea	am Adj
		Ramp Numbe	r of Lanes, N	1				Ramp	
☐ Yes ☐ On	l	Acceleration L	ane Length, L _A	1500				□Yes	On
☑ No ☐ Off	:	Deceleration L	ane Length L _D						
M NO LO		Freeway Volu	- 5	3980				☑ No	Off
L _{up} = ft		Ramp Volume	•	950				L _{down} =	ft
-up		1	11					down	
V _u = veh/h		1	-Flow Speed, S _{FF}	65.0				V _D =	veh/h
			ow Speed, S _{FR}	45.0					
Conversion to		der Base	Conditions						
(pc/h)	(\/oh/hr)	PHF	Terrain	%Truck	%Rv	f_{HV}	fp	v = V/PHF	x f _{HV} x f,
	(Veh/hr)	0.04	Level	0	_		<u>'</u>		
Freeway	3980	0.94	Level	8	0	0.962	1.00		403
Ramp	950	0.94	Level	7	0	0.966	1.00	1	046
UpStream DownStream		+ +			\vdash		-		
DownStream		Merge Areas			 		L Diverge Areas		
Estimation of		Weige Aleas			Estimatio		Diverge Areas		
Latimation of					LStillatio	11 01 12			
	$V_{12} = V_{F}$	(P _{FM})				V ₁₂ =	V _R + (V _F - V _R)P _{ED}	
L _{EQ} =	(Equ	iation 13-6 or	13-7)		. =	12	(Equation 13-	. –	3)
P _{FM} =	0.087	using Equat	ion (Exhibit 13-6)		L _{EQ} =				
V ₁₂ =	383 p		,		P _{FD} =		using Equatio	n (Exhibit 13	-1)
			on 13-14 or 13-		V ₁₂ =		pc/h		
V ₃ or V _{av34}	17)	pom (Equation	511 10-14 01 10-		$ m V_3$ or $ m V_{av34}$		pc/h (Equation 1	3-14 or 13-1	7)
Is V_3 or $V_{av34} > 2,70$,	es 🗸 No			Is V ₃ or V _{av34}	> 2,700 pc/h?	□Yes □No		
Is V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{3v34}	> 1.5 * V ₁₂ /2	□Yes □No		
			on 13-16, 13-				pc/h (Equation	n 13-16, 13	3-18, or
f Yes,V _{12a} =		pc/ii (⊑quatii · 13-19)	011 13-10, 13-		If Yes,V _{12a} =		13-19)		
Capacity Che		/			Capacity	Checks			
-	Actual	C	apacity	LOS F?		Actua	Car	oacity	LOS F
					V _F		Exhibit 13-8	3	
		[_,,,,,]			$V_{FO} = V_F - \frac{1}{2}$	V_	Exhibit 13-8	_	\vdash
V_{FO}	5449	Exhibit 13-8		No		· R	Exhibit 13-		+
					V_R		10	1	
Flow Entering	n Merae II	nfluence A	rea		Flow Ente	erina Dive	erge Influen	ce Area	<u> </u>
	Actual	1	Desirable	Violation?		Actual	Max Desi		Violation
V _{R12}	2807	Exhibit 13-8	4600:All	No	V ₁₂	•	Exhibit 13-8		
Level of Serv				***		Service D	eterminatio	n (if not	F)
		0.0078 V ₁₂ - 0.0			1		0.0086 V ₁₂ - 0.	-	• /
	• •	0.0010 v ₁₂ - 0.0	70021 LA			•	0.0000 v ₁₂ - 0.	.ooa L _D	
$D_{R} = 17.5 (pc/m)$	•					/mi/ln)			
OS = B (Exhibit					<u> </u>	hibit 13-2)			
	nination				Speed De	terminati	on		
Speed Detern					$D_s = (Exh$	nibit 13-12)			
	oit 13-11)				I.		Λ.		
M _S = 0.251 (Exil	-				$S_R = mph$	(Exhibit 13-12	(.)		
$M_S = 0.251 \text{ (Exilos)}$ $S_R = 59.2 \text{ mph (}$	Exhibit 13-11)					•			
$S_R = 59.2 \text{ mph } ($ $S_0 = 62.0 \text{ mph } ($	-				S ₀ = mph	(Exhibit 13-12 (Exhibit 13-12 (Exhibit 13-13)		

AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 PM Peak		Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-94 ramps
Project Description CUY-	480 Safety Sti				
✓ Oper.(LOS)			Des.(N)	□ Plar	nning Data
Flow Inputs			B 1 11 E 1 BUE		
Volume, V AADT	4160	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 8	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)1 <i>0</i> .962	
Speed Inputs			Calc Speed Adj and		
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f		mph
Number of Lanes, N	4		f _{LW}		•
Total Ramp Density, TRD		ramps/mi	f _{LC}		mph
FFS (measured)	65.0	mph	TRD Adjustment	25.0	mph
Base free-flow Speed, BFFS		mph	FFS	65.0	mph
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	Nyf		Design (N) Design LOS		
x t _p)		pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/ln
S D = v / S	65.0 17.7	mph	s		mph
D = v _p / S	17.7	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Florio	da All Diahte Daca	nyed	HCS 2010 TM Version 6.60	Gener	rated: 3/10/2015 2:40 F

HCS 2010TM Version 6.60

Generated: 3/10/2015 2:40 PM

		F	REEWAY	/ WEAV	ING WOR	RKSHEE	T		
Genera	l Informati	on			Site Info	rmation			<u> </u>
Analyst Agency/Cor Date Perfor Analysis Tin	med	LJB Ind 3/6/201 PM Pe	5 ak		Freeway/Dir Weaving Seg Analysis Yea	gment Locati	IR-480 on Betwee 2014) EB en SR-176 a	nd SR-94
Inputs	cription COT-40	ou Salety Stut	<u>ту</u>						
Weaving se Freeway fre	mber of lanes, N gment length, L e-flow speed, Fl	s FS		One-Sided 5 3500ft 65 mph	Segment type Freeway min Freeway max Terrain type	imum speed			Freeway 15 2350 Leve
Conver	sions to po	c/h Unde	r Base Co	ndition	S	1	1	•	
	V (veh/h)	PHF	Truck (%)	RV (%)	E _T	E _R	f_{HV}	fp	v (pc/h)
V_{FF}	3490	0.94	8	0	1.5	1.2	0.962	1.00	3861
V_{RF}	390	0.94	2	0	1.5	1.2	0.990	1.00	419
V_{FR}	670	0.94	4	0	1.5	1.2	0.980	1.00	727
V_{RR}	330	0.94	2	0	1.5	1.2	0.990	1.00	355
V _{NW}	4216			•		-		V =	5362
V _W	1146								•
VR	0.214								
Configu	ration Cha	aracteris	tics						
Minimum m	aneuver lanes,	N _{WL}		2 lc	Minimum we	eaving lane c	hanges, LC _{MIN}		1146 lc/h
Interchange	e density, ID			1.0 int/mi	Weaving lan	e changes, l	_C _w		2106 lc/h
Minimum R	F lane changes,	, LC _{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		2026 lc/h
Minimum F	R lane changes,	, LC _{FR}		1 lc/pc	Total lane ch	nanges, LC _{AL}	L		4132 lc/h
Minimum R	R lane changes	, LC _{RR}		lc/pc	Non-weaving	g vehicle inde	ex, I _{NW}		1476
Weavin	g Segmen	t Speed,	Density, I		<u> </u>				
Weaving se	egment flow rate	, V		5192 veh/h	Weaving inte	ensity factor,	W		0.258
Weaving se	egment capacity	, c _w	1	0797 veh/h	Weaving seg	•			52.2 mph
Weaving se	egment v/c ratio			0.481	Average wea	aving speed,	S_W		54.8 mph
	egment density,	D	20	0.5 pc/mi/ln	Average non	n-weaving sp	eed, S _{NW}		51.6 mph
Level of Se	rvice, LOS			С	Maximum we	eaving length	n, L _{MAX}		4677 ft
Notes									
Chapter 13, '	egments longer to Freeway Merge a es that exceed the	and Diverge Se	gments".			solated merge	and diverge are	eas using the	procedures of

HCS 2010TM Version 6.60

Generated: 3/10/2015 4:02 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period Project Description CUY-	LJB Inc 3/6/2015 PM Peak	udv	Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-176 ramps
•	400 Salety Sit)oo (N)	□ Dlor	ning Data
✓ Oper.(LOS) Flow Inputs		L	Pes.(N)	□Plai	nning Data
Volume, V	3880	veh/h	Dook Hour Footor DHE	0.94	
AADT	3000	veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	9	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2	
Speed Inputs	1.5		Calc Speed Adj and		
•		<u> </u>	Caic Speed Auj and	rrs	
Lane Width		ft			
Rt-Side Lat. Clearance	4	ft	f _{LW}		mph
Number of Lanes, N	4	, .	f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	65.0	mph mph	FFS	65.0	mph
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f _{HV} 1078	pc/h/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x	N x f _{HV}	
x f _p) S	65.0	mph	x f _p)	111	pc/h/ln
D = v _p / S	16.6	pc/mi/ln	S D = v / S		mph
LOS	В		$D = v_p / S$ Required Number of Lane	s, N	pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Floric			HCS 2010 TM Version 6.60		rated: 3/10/2015 2:41

HCS 2010TM Version 6.60

Generated: 3/10/2015 2:41 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 PM Peak		Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-176 ramps
Project Description CUY-	480 Safety Sti		A.D.		. 5.
✓ Oper.(LOS)			Des.(N)	Pla	nning Data
Flow Inputs	5000	la /la	Deals Have Faster DUE	0.04	
Volume, V AADT	5200	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 9	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments		·		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1)] 0.957	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f_{LW}		mph
Number of Lanes, N	4		f_{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS	65.0	mph
Base free-flow Speed, BFFS		mph			r
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f		<u>Design (N)</u> Design LOS		
x f _p)		pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/ln
S D = v / C	65.0	mph	s		mph
$D = v_p / S$	22.2	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Florid			HCS 2010 TM Version 6.60	0	erated: 3/10/2015 3:31

HCS 2010TM Version 6.60

Generated: 3/10/2015 3:31 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	ΪT	
General Information			Site Information		
Analyst			Highway/Direction of Trave	el <i>IR-480</i> V	VB
Agency or Company	LJB Inc		From/To	Betweer	n SR-94 and SR-
Date Performed	3/6/2015		Jurisdiction	176 Clevelar	nd
Analysis Time Period	PM Peak		Analysis Year	2014	
Project Description CUY-	480 Safety St	udy			
✓ Oper.(LOS)			Des.(N)	Plan	ning Data
Flow Inputs					
Volume, V	6760	veh/h	Peak-Hour Factor, PHF	0.94	
AADT		veh/day	%Trucks and Buses, P _T	5	
Peak-Hr Prop. of AADT, K			%RVs, P _R	0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length	Level mi	
DDU = AADIXKXD		ven/n	Grade % Length Up/Down %	IIII	
Calculate Flow Adjus	tmonts		Ор/ВОМП 70		
	1.00			1.2	
f _p			E _R		
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f_{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS	65.0	mph
Base free-flow Speed,		mph		00.0	Прп
BFFS					
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS)			Design (N)		
V = (V or DDHV) / (DHE v	N v f		Design LOS		
v _p = (V or DDHV) / (PHF x l	1843	pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x)$	$N \times f_{HV}$	n a /b /l n
x f _p)	00.0	and the	x f _p)		pc/h/ln
S D = · · · / C	62.2	mph	s		mph
$D = v_p / S$	29.6	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	D		Required Number of Lanes	s, N	
Glossary			Factor Location		
N - Number of lanes	S - Spe	-d			
V - Hourly volume	D - Dens		E _R - Exhibits 11-10, 11-12		f _{LW} - Exhibit 11-8
v _n - Flow rate		e-flow speed	E _T - Exhibits 11-10, 11-11,	11-13	f _{LC} - Exhibit 11-9
LOS - Level of service		ase free-flow	f _p - Page 11-18		TRD - Page 11-1
speed	Di 1 O - Di	ACC II CC-IICVV	LOS, S, FFS, v _p - Exhibits	11-2,	
DDHV - Directional design	hour volume		11-3		
Copyright © 2014 University of Florid	da All Diabta Daga	mad	HCS 2010 TM Version 6.60	Conor	ated: 3/10/2015 3:29 P

HCS 2010TM Version 6.60

Generated: 3/10/2015 3:29 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period Project Description CUY-	LJB Inc 3/6/2015 PM Peak 480 Safety Sti	udv	Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-94 ramps
✓ Oper.(LOS)	100 Garety Git		Pes.(N)	□ Dlar	nning Data
Flow Inputs			7C5.(IV)	га	Illing Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5550	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 8 0 Level mi	
		_	Up/Down %		
Calculate Flow Adjus	tments				
f_p E_T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)] 0.962	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	4 65.0	ft ft ramps/mi mph mph	f _{LW} f _{LC} TRD Adjustment FFS	65.0	mph mph mph mph
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I x f _p) S D = v _p / S LOS Glossary		pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \times x f_p)$ S $D = v_p / S$ Required Number of Lane Factor Location		pc/h/ln mph pc/mi/ln
	C Cnoc		1 40101 20041011		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed	BFFS - Ba		E_R - Exhibits 11-10, 11-12 E_T - Exhibits 11-10, 11-11 f_p - Page 11-18 LOS, S, FFS, v_p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
DDHV - Directional design	nour volume da All Rights Rese		HCS 2010 TM Version 6.60		rated: 3/10/2015 3:28 F

HCS 2010TM Version 6.60

Generated: 3/10/2015 3:28 PM

		RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET			
General Infor	mation			Site Infor						
Analyst	macron			eeway/Dir of Tr		IR-480	ER			
Agency or Company	LJB	Inc		nction		SR-94	LD			
Date Performed	3/3/2			risdiction		Clevela	nd			
Analysis Time Period				alysis Year		2014	iiu			
Project Description			, u	laryolo i oai		2017				
Inputs	001 400 0010	ity Olddy								
-		Era avvav Nivra	har of Lanca N	4				Ī		
Upstream Adj R	amp	1	ber of Lanes, N	4					Downstrea	m Adj
	7.0	Ramp Numbe	r of Lanes, N	1					Ramp	
□Yes □	On	Acceleration L	ane Length, L _A						Yes	On
✓ No	∃O#	Deceleration I	ane Length L _D	1500						
I INO	∫Off	Freeway Volu		5170					✓ No	Off
L _{up} = fi	ŀ	1							L _{down} =	ft
-up	•	Ramp Volume		1010					uowii	
V,, = ve	eh/h	Freeway Free	-Flow Speed, S _{FF}	65.0					V _D =	veh/h
v _u – v	511/11	Ramp Free-Fl	ow Speed, S _{FR}	45.0					D	
Conversion to	o pc/h Uni	der Base	Conditions							
	V	PHF	Terrain	%Truck	%Rv		f I	f	v = V/PHF	v f v f
(pc/h)	(Veh/hr)	РПГ	remain	% ITUCK	70 TV		f _{HV}	f _p	v – v/F111	^ 'HV ^ 'p
Freeway	5170	0.94	Level	9	0	0.9	957	1.00	574	18
Ramp 1010 0.94 Level					0	0.9	980	1.00	109	96
UpStream										
DownStream										
		Merge Areas						iverge Areas		
Estimation of	V ₁₂				Estimati	on o	f v ₁₂			
	V ₁₂ = V _F	(P)						V _R + (V _F - V _R	\P	
_	12 1	1 111	40.7)		_					
L _{EQ} =		ation 13-6 or	•		L _{EQ} =		(E	Equation 13-1	2 or 13-13)	
P _{FM} =	using	Equation (Exhibit 13-6)		P _{FD} =		0.4	136 using Equ	iation (Exhib	oit 13-7)
V ₁₂ =	pc/h				V ₁₂ =		31	24 pc/h		
V ₃ or V _{av34}	pc/h (Equation 13	-14 or 13-17)		V ₃ or V _{av34}		13	12 pc/h (Equa	ation 13-14	or 13-17)
Is V ₃ or V _{av34} > 2,70			,			. > 2 7		Yes ☑ No		,
Is V ₃ or V _{av34} > 1.5 '			16 12 10 05					Yes No	10 16 10	10 0 12
If Yes,V _{12a} =	pc/n (13-19)		-16, 13-18, or		If Yes,V _{12a} =		19	c/h (Equation	13-16, 13-	18, Of 13-
Capacity Che		/			Capacity	, Ch		·)		
Capacity One	Actual	1 0	ongoitu	LOS F?	Dapacity	7 011		l Co.	pacity	LOS F?
	Actual	 	apacity	LUSF?	\/		Actual		1	
					V _F		5748	Exhibit 13-8	+	No
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	4652	Exhibit 13-8	9400	No
					V_R		1096	Exhibit 13-10	2100	No
Flow Entering	Morgo Ir	fluoneo A	roa	<u> </u>		torin		ge Influenc		
I TOW LINETHIS	Actual		Desirable	Violation?	I IOW LII	_	Actual	Max Desirab		Violation?
	Actual	 	Desirable	VIOIALIOIT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_				
V _{R12}		Exhibit 13-8			V ₁₂		124	Exhibit 13-8	4400:All	No
Level of Serv								<u>terminatior</u>		-)
$D_R = 5.475 + 0.$	00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$.252 + 0.	0086 V ₁₂ - 0.0	009 L _D	
D _R = (pc/mi/ln)				D _R = 17	.6 (pc/	mi/ln)			
LOS = (Exhibit	•						oit 13-2)			
,										
Speed Detern	nination				Speed D					
M _S = (Exibit 1:	3-11)				$D_{s} = 0.3$	397 (E	xhibit 13-	12)		
-	ibit 13-11)				$S_R = 55$.9 mph	(Exhibit	13-12)		
	ibit 13-11)				S ₀ = 70.1 mph (Exhibit 13-12)					
	ibit 13-11)				S = 61.6 mph (Exhibit 13-13)					
					• •		`	•		
Copyright © 2014 Unive	ersity of Florida,	All Rights Reser	ved		HCS2010 [™]	Versio	n 6.60	Ger	nerated: 3/10/	2015 3:25 PI

General Infor			RAMP JUNG	Site Infor					
Analyst						18U WD			
•	חו ו	Ino		eeway/Dir of Tr		R-480 WB			
Agency or Company	LJB			nction		R-176 SB			
Date Performed		2015		risdiction		leveland			
Analysis Time Period		Peak	An	alysis Year	20	014			
Project Description	CUY-480 Safe	ety Study							
Inputs		1							
Jpstream Adj Ramp		Freeway Num	ber of Lanes, N	4				Downstrea	am Adj
		Ramp Numbe	r of Lanes, N	1				Ramp	
☐ Yes ☐ On	1	Acceleration L	ane Length, L₄	700				□Yes	☐ On
		1	ane Length L						
☑ No ☐ Off	f	1	- 5	5000				✓ No	Off
		Freeway Volu		5200					£
L _{up} = ft		Ramp Volume	e, V _R	1560				L _{down} =	ft
		Freeway Free	-Flow Speed, S _{FF}	65.0				V _D =	veh/h
V _u = veh/h		1	ow Speed, S _{FR}	45.0				VD -	veh/h
Conversion to	n nc/h Hn		111					I	
	<i>γ</i> γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ			0/ = :	2/5	r	r		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHF	x t _{HV} x t _p
Freeway	5200	0.94	Level	8	0	0.962	1.00	5	753
Ramp	1560	0.94	Level	3	0	0.985	1.00	1	684
UpStream		7.7.					1	<u>'</u>	
DownStream		1 1					Ì		
		Merge Areas				•	Diverge Areas		
Estimation of		-			Estimatio				
		/ D \							
	$V_{12} = V_{F}$					V ₁₂ =	$V_R + (V_F - V_R)$)P _{FD}	
L _{EQ} =		ıation 13-6 oı			L _{EQ} =		(Equation 13-		3)
P _{FM} =	0.007	using Equat	tion (Exhibit 13-6)		P _{FD} =		using Equatio		
V ₁₂ =	42 pc	c/h						עבאוווטונ וט	,
			on 13-14 or 13-		V ₁₂ =		pc/h		_,
V ₃ or V _{av34}	17)				V_3 or V_{av34}		pc/h (Equation 1	3-14 or 13-1	<i>(</i>)
Is V ₃ or V _{av34} > 2,70	0 pc/h? 🗹 Y∈	es 🗌 No			Is V_3 or V_{av34}	> 2,700 pc/h?	□Yes □No		
Is V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{av34}	> 1.5 * V ₁₂ /2	□Yes □No		
0 4.0.			on 13 16 12			12	pc/h (Equation	n 13-16, 13	3-18, or
f Yes,V _{12a} =		pc/n (Equati · 13-19)	on 13-16, 13-		If Yes,V _{12a} =	•	13-19)	•	•
Capacity Che		,			Capacity	Checks			
pro a ay a me	Actual	(apacity	LOS F?	1 1 2 2 2 2 3	Actua	Car	acity	LOS F
	, 101001	 	- perenty		V _F	. 10100	Exhibit 13-8	1	1 -331
						, 			+
V_{FO}	7437	Exhibit 13-8		No	$V_{FO} = V_{F}$ -	v _R	Exhibit 13-8		
					V_R		Exhibit 13	·	1
	<u> </u>	<u> </u>			1	<u> </u>	10		<u> </u>
Flow Entering	Î			10	Flow Ent		erge Influen		
	Actual		Desirable	Violation?		Actual	Max Desi	rable	Violation
V _{R12}	3985	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-8		
Level of Serv	ice Deteri	mination (if not F)		Level of S	Service D	eterminatio	n (if not	F)
D _R = 5.475 +	0.00734 v _R +	0.0078 V ₁₂ - 0.0	00627 L _A		D,	R = 4.252 + 0	0.0086 V ₁₂ - 0.	009 L _D	
D _R = 31.4 (pc/m		12	**		1	/mi/ln)		5	
	•								
_OS = D (Exhibit						hibit 13-2)			
	nination				1 -	eterminati	on		
Speed Detern					$D_s = (Exh$	nibit 13-12)			
	bit 13-11)				l _a		1)		
M _S = 0.468 (Exil	-				$S_R = mph$	ı (Exhibit 13-12	()		
S _R = 54.2 mph ((Exhibit 13-11)					ı (Exhibit 13-12 ı (Exhibit 13-12			
$M_S = 0.468 \text{ (Exil)}$ $S_R = 54.2 \text{ mph (}$ $S_0 = 60.6 \text{ mph (}$	-				S ₀ = mph	ı (Exhibit 13-12 ı (Exhibit 13-12 ı (Exhibit 13-13	2)		

		RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor							
Analyst	mation			eeway/Dir of Tr		IR-480	WB				
Agency or Company	LJB I	Inc	Ju	nction		SR-94					
Date Performed	3/3/2		Ju	risdiction		Clevela	nd				
Analysis Time Period	l PM F	Peak	An	alysis Year		2014					
Project Description	CUY-480 Safe	ty Study		•							
Inputs											
Upstream Adj R	amp		ber of Lanes, N	4					Downstrea	m Adj	
□Yes □	On	Ramp Numbe		1					Ramp		
	1011	1	ane Length, L _A						Yes	On	
✓ No	Off	1	Lane Length L _D	575					☑ No	Off	
		Freeway Volu	me, V _F	6760							
L _{up} = fi	İ	Ramp Volume	e, V _R	1210					L _{down} =	ft	
V -	1.0	Freeway Free	-Flow Speed, S _{FF}	65.0				ļ,	V _D =	veh/h	
$V_u = V_0$	eh/h	Ramp Free-Fl	ow Speed, S _{ED}	45.0					v D _	VCII/II	
Conversion to	nc/h Uni	der Base	Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	6760	0.94	Level	8	0	0.9	962	1.00	747	79	
Ramp	1210	0.94	Level	3	0	_	985	1.00	130		
UpStream		0.01	20.0.		<u> </u>	+ -	,,,,			·	
DownStream											
		Merge Areas						iverge Areas			
Estimation of	V ₁₂				Estimati	ion o	f v ₁₂				
	V ₁₂ = V _F	(P)			 			V _R + (V _F - V _R)P		
 =	12 1	ation 13-6 or	13 7)		=			Equation 13-1			
L _{EQ} =			· ·		L _{EQ} =		-	-			
P _{FM} =	_	Equation (=XIIIDIL 13-0)		P _{FD} =			436 using Equ	iation (Exnit	oft 13-7)	
V ₁₂ =	pc/h				V ₁₂ =			98 pc/h			
V ₃ or V _{av34}			-14 or 13-17)		V_3 or V_{av34}			'40 pc/h (Equa	ation 13-14	or 13-17)	
Is V_3 or $V_{av34} > 2,70$					Is V ₃ or V _{av3}	$_{34} > 2,7$	00 pc/h? [☐Yes ☑ No			
Is V ₃ or V _{av34} > 1.5 *	V ₁₂ /2 □ Ye	s 🗌 No			Is V ₃ or V _{av3}	₃₄ > 1.5	* V ₁₂ /2	☐Yes ☑ No			
If Yes,V _{12a} =			-16, 13-18, or		If Yes,V _{12a} =			c/h (Equation	13-16, 13-	18, or 13-	
	13-19)						19	9)			
Capacity Che		1 0		1	Capacity	y Che				1	
	Actual		apacity	LOS F?	.,		Actual		pacity	LOS F?	
					V _F		7479	Exhibit 13-8		No	
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	6172	Exhibit 13-8	9400	No	
					V_R		1307	Exhibit 13-10	2100	No	
Flow Entering	Merge In	fluence A	rea		Flow En	terin	a Dive	ge Influenc	e Area		
	Actual		Desirable	Violation?	1 10 11 = 11	_	Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	\neg	998	Exhibit 13-8	4400:All	No	
Level of Serv	ica Datarr		if not F)					termination			
$D_R = 5.475 + 0.$		•			1			.0086 V ₁₂ - 0.0			
* *	• •	0.0076 V ₁₂	0.00027 L _A					.0000 v ₁₂ - 0.0	009 LD		
D _R = (pc/mi/ln	•				l ''	8.5 (pc/	•				
LOS = (Exhibit							it 13-2)				
Speed Detern	nination				Speed D	<u>eteri</u>	minatic	n			
M _S = (Exibit 13	3-11)				$D_{s} = 0.4$	416 (E	khibit 13-	12)			
-	ibit 13-11)				1	5.4 mph	(Exhibit	13-12)			
						S ₀ = 68.4 mph (Exhibit 13-12)					
	ibit 13-11)				1 *		(Exhibit	,			
. ,		All Dights D:	und		- "		`		2010tc-1: 0/401	2015 2:00 5	
opyright © 2014 Unive	rsity of Florida, /	uı kıgnıs keser	veu		HCS2010 [™]	Versio	า 6.60	Ger	ierateu: 3/10/	2015 3:33 PN	

General Infor			RAMP JUNG	Site Infor		-			
Analyst				eway/Dir of Tr		R-480 WB			
•	ı ın	Inc		•					
Agency or Company Date Performed				nction risdiction		R-94			
		2015 Dools				leveland			
Analysis Time Period		Peak	An	alysis Year	20)14			
Project Description	CUY-480 Safe	ety Study							
Inputs		<u> </u>						1	
Upstream Adj Ramp		1 '	ber of Lanes, N	4				Downstrea	am Adj
		Ramp Numbe	r of Lanes, N	1				Ramp	
Yes Or	1	Acceleration L	ane Length, L₄	1500				□Yes	On
		1	ane Length L _D						
☑ No ☐ Of	Γ	Freeway Volu	- 5	5550				☑ No	Off
_ _{-up} = ft		1						L _{down} =	ft
_{-up} = ft		Ramp Volume	11	940				-down	
V _u = veh/h	1	Freeway Free	-Flow Speed, S _{FF}	65.0				V _D =	veh/h
v _u venn	!	Ramp Free-Fl	ow Speed, S _{FR}	45.0				J D	
Conversion to	o pc/h Un	der Base	Conditions						
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PHF	x f x f
	(Veh/hr)						<u>'</u>		
Freeway	5550	0.94	Level	8	0	0.962	1.00	6	140
Ramp	940	0.94	Level	7	0	0.966	1.00	1	035
UpStream		ļļ							
DownStream		<u> </u>					<u></u>		
		Merge Areas			L		Diverge Areas		
Estimation of	^r v ₁₂				Estimatio	n of v ₁₂			
	V ₁₂ = V _F	(P _{EM})				\/ -		\D	
L _{EO} =		iation 13-6 o	r 13-7)		Į.	v ₁₂ –	V _R + (V _F - V _R		
L _{EQ} =					L _{EQ} =		(Equation 13-	12 or 13-1	3)
P _{FM} =			cion (Exhibit 13-6)		P _{FD} =		using Equation	n (Exhibit 13	-7)
V ₁₂ =	543 p				V ₁₂ =		pc/h		
V ₃ or V _{av34}		pc/h (Equati	on 13-14 or 13-		V ₃ or V _{av34}		pc/h (Equation 1	3-14 or 13-1	7)
	17)					> 2 700 nc/h2	☐Yes ☐No		,
Is V_3 or $V_{av34} > 2,70$									
Is V_3 or $V_{av34} > 1.5$						- 1.5 V ₁₂ /2	Yes No	n 12 16 40	10
If Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =		pc/h (Equation 13-19)	11 13-10, 13	5-18, Of
		13-19)			2 "		10-10)		
Capacity Che					Capacity				
	Actual	1	Capacity	LOS F?		Actua	i i	pacity	LOS F
					V_{F}		Exhibit 13-8	8	
V_{FO}	7175	Exhibit 13-8		No	$V_{FO} = V_{F}$	V _R	Exhibit 13-8	8	
- FO	'			""		- 1	Exhibit 13	-1	1
	<u>L</u>	<u> </u>		<u>L</u>	V _R		10	<u></u>	<u> </u>
Flow Entering	g Merge II	nfluence A	rea		Flow Ente	ering Dive	erge Influen	ce Area	
	Actual		Desirable	Violation?		Actual	Max Desi	irable	Violation
V _{R12}	3491	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-8		
Level of Serv	ice Deteri	mination (if not F)			Service D	eterminatio	n (if not	F)
		0.0078 V ₁₂ - 0.			1		0.0086 V ₁₂ - 0.		
$D_{R} = 22.8 (pc/m)$	• • •	12	A			/mi/ln)	12	U	
	•								
OS = C (Exhibit						hibit 13-2)	1		
Speed Detern	nination				1 -	terminati	on		
	bit 13-11)				$D_s = (Exh$	nibit 13-12)			
M _S = 0.314 (Exi					S = mnh	(Exhibit 13-12)		
	(Exhibit 13-11)				S _R = mph	(EXHIBIT TO TE	7)		
S _R = 57.8 mph	(Exhibit 13-11)					•			
$S_R = 57.8 \text{ mph}$ $S_0 = 60.2 \text{ mph}$	(Exhibit 13-11) (Exhibit 13-11) (Exhibit 13-13)				S ₀ = mph	(Exhibit 13-12 (Exhibit 13-13 (Exhibit 13-13)		

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 AM Peak		Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-94 ramps
Project Description CUY-	480 Safety Stu				
✓ Oper.(LOS)			Des.(N)	Pla	nning Data
Flow Inputs					
Volume, V AADT Peak-Hr Prop. of AADT, K	6230	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.94 8 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length Up/Down %	Level mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)1 <i>0.962</i>	
Speed Inputs			Calc Speed Adj and		
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS	65.0	·
Base free-flow Speed, BFFS		mph	irro	05.0	mph
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x	N x f		<u>Design (N)</u> Design LOS		
x f _p)	^{□v} 1723 63.5	pc/h/ln mph	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/ln
D = v _p / S	27.1	pc/mi/ln	S		mph
LOS	D	рслили	$D = v_p / S$		pc/mi/ln
			Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E_R - Exhibits 11-10, 11-12 E_T - Exhibits 11-10, 11-11 f_p - Page 11-18 LOS, S, FFS, v_p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Florid			HCS 2010 TM Version 6.60	0	erated: 3/9/2015 10:36

HCS 2010TM Version 6.60

Generated: 3/9/2015 10:36 AM

		F	REEWAY	WEAV	NG WOF	RKSHEE	Т		
General	Information	on			Site Info	rmation	•		•
Analyst Agency/Com Date Perforn Analysis Tim	ned ne Period	LJB Inc 3/6/201 AM Pea	5 ak		Freeway/Dir Weaving Seg Analysis Yea	gment Location		0 EB een SR-176 a No-Build	nd SR-94
Project Desc Inputs	cription CUY-48	0 Safety Stud	ly						
Weaving cor Weaving nur Weaving seç Freeway free	mber of lanes, N gment length, L _s e-flow speed, FF	s FS		One-Sided 5 3500ft 65 mph	Segment typ Freeway min Freeway max Terrain type	imum speed			Freeway 15 2350 Leve
Convers	sions to po	:/h Unde	r Base Co	ndition	1	1	1	ı	1
	V (veh/h)	PHF	Truck (%)	RV (%)	Ε _Τ	E _R	f_{HV}	fp	v (pc/h)
V_{FF}	5270	0.94	8	0	1.5	1.2	0.962	1.00	5831
V_{RF}	390	0.94	2	0	1.5	1.2	0.990	1.00	419
V_{FR}	960	0.94	4	0	1.5	1.2	0.980	1.00	1042
V_{RR}	670	0.94	2	0	1.5	1.2	0.990	1.00	720
V_{NW}	6551							V =	8012
V _W	1461							•	•
VR	0.182								
Configu	ration Cha	racterist	tics						
Minimum ma	aneuver lanes, N	N _{WL}		2 lc	Minimum we	eaving lane cl	hanges, LC _{MIN}		1461 lc/h
Interchange	density, ID			1.0 int/mi	Weaving lan	e changes, L	.C _w		2421 lc/h
Minimum RF	= lane changes,	LC_{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		3150 lc/h
Minimum FF	R lane changes,	LC_{FR}		1 lc/pc	Total lane ch	nanges, LC _{AL}	L		5571 lc/h
Minimum RF	R lane changes,	LC_{RR}		lc/pc	Non-weaving	g vehicle inde	ex, I _{NW}		2293
Weaving	g Segment	Speed,	Density, I		L				
Weaving se	gment flow rate,	V	•	7756 veh/h	Weaving inte	ensity factor,	W		0.326
	gment capacity,			0981 veh/h	Weaving seg	gment speed	, S		47.8 mph
Weaving se	gment v/c ratio			0.706	Average wea	aving speed,	S_W		52.7 mph
Weaving se	gment density, [)	33	3.5 pc/mi/ln	Average non	n-weaving sp	eed, S _{NW}		46.8 mph
Level of Ser	vice, LOS			D	Maximum we	eaving length	ı, L _{MAX}		4357 ft
Notes									
Chapter 13, "l	egments longer the Freeway Merge as that exceed the	ind Diverge Se	gments".	-		solated merge	and diverge ar	eas using the	procedures of

Generated: 8/27/2015 2:47 PM

		F	REEWAY	/ WEAV	NG WOF	RKSHEE	T		
Genera	l Informati	on			Site Info	rmation			
Analyst Agency/Cor Date Perfor Analysis Tir Project Des	rmed	LJB Inc 3/6/201 AM Pea 30 Safety Stud	5 ak		Freeway/Dir Weaving Seç Analysis Yea	gment Location	IR-48i on Betwe 2034	en SR-176 a	nd SR-94
Inputs									
Weaving se Freeway fre	umber of lanes, Negment length, Lee-flow speed, F	s FS		One-Sided 5 3500ft 65 mph	Segment typ Freeway min Freeway max Terrain type	imum speed			Freewa 1: 235: Leve
Conver	sions to po	c/h Unde	r Base Co	ndition	"	1		·	<u> </u>
	V (veh/h)	PHF	Truck (%)	RV (%)	E _T	E _R	f _{HV}	fp	v (pc/h)
V_{FF}	5270	0.94	8	0	1.5	1.2	0.962	1.00	5831
V_{RF}	390	0.94	2	0	1.5	1.2	0.990	1.00	419
V_{FR}	960	0.94	4	0	1.5	1.2	0.980	1.00	1042
V_{RR}	670	0.94	2	0	1.5	1.2	0.990	1.00	720
V_NW	6551							V =	8012
V_{W}	1461							-	
VR	0.182								
Configu	uration Cha	aracterist	tics						
Minimum n	naneuver lanes,	N _{WL}		3 lc	Minimum we	eaving lane cl	hanges, LC _{MIN}		419 lc/h
Interchang	e density, ID			1.0 int/mi	Weaving lan	e changes, L	.C _w		lc/h
Minimum F	RF lane changes,	, LC _{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		lc/h
Minimum F	R lane changes	, LC _{FR}		0 lc/pc	Total lane ch	nanges, LC _{AL}	L		lc/h
Minimum F	RR lane changes	, LC _{RR}		lc/pc	Non-weaving	g vehicle inde	ex, I _{NW}		
Weavin	g Segmen	t Speed,	Density, I	Level of	Service,	and Cap	acity		
Weaving se	egment flow rate egment capacity egment v/c ratio			veh/h veh/h	Weaving into Weaving seg Average wea	•	, S		mph mph
ı	egment density,	D		pc/mi/ln	Average non	n-weaving sp	eed, S _{NW}		mph
_	ervice, LOS			•	Maximum we		****		2791 f
Notes					<u> </u>		INICAX		
a. Weaving s Chapter 13,	segments longer t "Freeway Merge a nes that exceed the	and Diverge Se	gments".			solated merge	and diverge are	eas using the I	procedures of

Generated: 8/27/2015 10:58 AM

	BASIC FRE	EWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 AM Peak 480 Safety Stu	dv	Highway/Direction of Trave From/To Jurisdiction Analysis Year	el IR-480 EB SR-94 to S Cleveland 2034 Build	SR 176
✓ Oper.(LOS)			es.(N)	Planni	ng Data
Flow Inputs			00.(11)		ng Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	7290	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length Up/Down %	0.94 8 0 Level mi	
Calculate Flow Adjus	tments		Op/Down /6		
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2)] 0.962	
Speed Inputs			Calc Speed Adj and I	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	5 65.0	ft ft ramps/mi mph mph	f _{LW} f _{LC} TRD Adjustment FFS	65.0	mph mph mph mph
LOS and Performanc	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x l x f _p) S D = v _p / S LOS	N x f _{HV} 1613 64.4 25.1 C	pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$ S $D = v_p / S$ Required Number of Lanes		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13 f	_{LW} - Exhibit 11-8 _{LC} - Exhibit 11-9 TRD - Page 11-11

Generated: 8/27/2015 11:03 AM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period AM Peak Project Description CUY-480 Safety Study		Highway/Direction of Travel IR-480 EB From/To Between SR-176 ram Jurisdiction Cleveland Analysis Year 2034			
•	460 Salety Sit		(1)		. 5.
✓ Oper.(LOS)		L	Des.(N)	□Piar	nning Data
Flow Inputs	5000	1- //-	Deale Herri Fratar DHE	0.04	
Volume, V AADT	5660	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 9	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments		· · · · · · · · · · · · · · · · · · ·		
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2	
·	1.5		•		
Speed Inputs			Calc Speed Adj and	гго	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f_{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	65.0	mph mph	FFS	65.0	mph
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS)	N v f		Design (N) Design LOS		
v _p = (V or DDHV) / (PHF x l x f _p)		pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/ln
S D = v / S	64.6	mph	s		mph
$D = v_p / S$	24.4	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	С		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Floric		nyod	HCS 2010 TM Version 6.60	Conor	rated: 3/9/2015 10:37

HCS 2010TM Version 6.60

Generated: 3/9/2015 10:37 AM

General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 AM Peak		Highway/Direction of Travel IR-48		n SR-176 ramps
	480 Safety Stι				
✓ Oper.(LOS)			Pes.(N)	∐ Plar	nning Data
Flow Inputs					
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	3900	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 9 0 Level mi	
			Up/Down %		
Calculate Flow Adjus	tments				
f_p E_T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R -$	1.2 1)] 0 .957	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS	65.0	•
Base free-flow Speed, BFFS		mph	FFS	65.0	mph
LOS and Performanc	e Measures	}	Design (N)		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF \times I \times f_p)$ S $D = v_p / S$ LOS	N x f _{HV} 1084 65.0 16.7 B	pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \text{ x} \text{ x} f_p)$ S $D = v_p / S$ Required Number of Lane		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

	BASIC FRE	EWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst			Highway/Direction of Trave	I <i>IR-480 V</i>	VB
Agency or Company	LJB Inc		From/To		SR-94 and SR-
Date Performed Analysis Time Period	3/6/2015 AM Peak		Jurisdiction Analysis Year	Clevelar 2034 No	
Project Description CUY-	480 Safety Stu	dy			
✓ Oper.(LOS)			es.(N)	Plan	ning Data
Flow Inputs					
Volume, V AADT	4690	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 8	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments		·		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$)] 0.962	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS ,	65.0	mph
Base free-flow Speed, BFFS		mph		00.0	Прп
LOS and Performanc	e Measures		Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I	N x f _{HV} 1297	pc/h/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x	N x f _{HV}	pc/h/ln
x f _p) S	65.0	mph	x f _p)		ροπιπι
D = v _p / S	20.0	pc/mi/ln	S		mph
LOS	C	релили	D = v _p / S Required Number of Lanes	s, N	pc/mi/ln
Glossary			Factor Location	·	
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed			E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11
DDHV - Directional design	hour volume		11-3		

Generated: 5/1/2015 7:34 PM

		F	REEWAY	WEAV	NG WOF	RKSHEE	Т		
General Information				Site Information					
Analyst Agency/Company Date Performed Analysis Time Period AM Peak Project Description CUY-480 Safety Study					Freeway/Dir of Travel IR-480 WB Weaving Segment Location Between SR-176 and SR-94 Analysis Year 2034 Build				nd SR-94
Inputs	CIIPLION COY-40	ou Salety Stud	цу						
Weaving se Freeway fre	mber of lanes, N gment length, L e-flow speed, F	s FS		One-Sided 5 3530ft 65 mph	Segment typ Freeway min Freeway max Terrain type	imum speed			Freeway 15 2350 Leve
Conver	sions to po	c/h Unde	r Base Co	ndition	1				_
	V (veh/h)	PHF	Truck (%)	RV (%)	E _T	E _R	f_{HV}	fp	v (pc/h)
V_{FF}	3630	0.94	8	0	1.5	1.2	0.962	1.00	4016
V_{RF}	530	0.94	2	0	1.5	1.2	0.990	1.00	569
V_{FR}	270	0.94	4	0	1.5	1.2	0.980	1.00	293
V_{RR}	260	0.94	2	0	1.5	1.2	0.990	1.00	279
V_{NW}	4295							V =	5157
V _W	862								•
VR	0.167								
Configu	ration Ch	aracteris	tics						
Minimum m	aneuver lanes,	N _{WI}		2 lc	Minimum we	aving lane c	hanges, LC _{MIN}		862 lc/h
Interchange	e density, ID			1.0 int/mi	Weaving lane changes, LC _W			1827 lc/h	
Minimum R	F lane changes	, LC _{RF}		1 lc/pc	Non-weaving lane changes, LC _{NW}			2105 lc/h	
Minimum Fl	R lane changes	, LC _{FR}		1 lc/pc	Total lane changes, LC _{ALL} 39				3932 lc/h
Minimum R	R lane changes	, LC _{RR}		lc/pc	Non-weaving vehicle index, I _{NW}				1516
Weavin	g Segmen	t Speed,	Density, I		1				
Weaving se	gment flow rate	e, V		4990 veh/h	Weaving inte	ensity factor,	W		0.246
Weaving segment capacity, c _w 11048 veh/h			Weaving segment speed, S 54			54.1 mph			
Weaving segment v/c ratio 0.452				Average weaving speed, $S_{\rm W}$			55.1 mph		
Weaving segment density, D 19.1 pc/mi/ln			Average non-weaving speed, $S_{\rm NW}$			53.8 mph			
Level of Se	of Service, LOS B			В	Maximum weaving length, L _{MAX} 42				4203 ft
Notes a. Weaving s	egments longer t	han the calcula	ited maximum le	ength should I	pe treated as is	solated merge	and diverge ar	eas using the	procedures of
Chapter 13, '	'Freeway Merge a es that exceed the	and Diverge Se	egments".	-			-		

Generated: 8/27/2015 12:02 PM

	BASIC FRI	EEWAY SEC	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 AM Peak		Highway/Direction of Trave From/To Jurisdiction Analysis Year		SR-94 ramps
	480 Safety Stu				
✓ Oper.(LOS)		<u></u>	es.(N)	∐ Plan	ning Data
Flow Inputs					
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	4160	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 8 0 Level mi	
			Up/Down %		
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)] 0.962	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	£		ma m la
Number of Lanes, N	4	it.	f _{LW}		mph
Total Ramp Density, TRD	,	ramps/mi	f _{LC}		mph
FFS (measured)	65.0	mph	TRD Adjustment		mph
Base free-flow Speed, BFFS	00.0	mph	FFS	65.0	mph
LOS and Performanc	e Measures	}	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x i x f _p) S D = v _p / S LOS	N x f _{HV} 1151 65.0 17.7 B	pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF x x f_p)$ S $D = v_p / S$ Required Number of Lanes		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11
DDHV - Directional design Copyright © 2014 University of Floric		rved	HCS 2010 TM Version 6.60	Genera	ated: 3/9/2015 11:16 A

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	VM LJB Inc 3/6/2015 AM Peak		Highway/Direction of Trave From/To Jurisdiction		to SR 176 NB Entr
	480 Safety Stu	ıdv	Analysis Year	2034 Du	nu -
✓ Oper.(LOS)	+00 Garety Git		es.(N)	☐ Plan	ning Data
Flow Inputs					ming Data
Volume, V AADT Peak-Hr Prop. of AADT, K	1630	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.94 8 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length Up/Down %	Level mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = \frac{1}{[1 + P_T(E_T - 1) + P_R(E_R - 1)]}$	1.2	
	1.0				
Speed Inputs			Calc Speed Adj and	гго	
Lane Width		ft			
Rt-Side Lat. Clearance	4	ft	f_{LW}		mph
Number of Lanes, N	4	, .	f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	65.0	mph mph	FFS	65.0	mph
LOS and Performance	e Measures	<u> </u>	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x i x f _p) S D = v _p / S		pc/h/ln mph pc/mi/ln	$\frac{\text{Design (N)}}{\text{Design LOS}}$ $v_p = (V \text{ or DDHV}) / (PHF \text{ x})$ $x f_p$ S	N x f _{HV}	pc/h/ln mph
LOS	Α	·	D = v _p / S Required Number of Lanes	s, N	pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

Generated: 8/27/2015 3:20 PM

<u> </u>		RAMP	S AND RAM	P JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor			- -				
Analyst	Traction .			eeway/Dir of Tr		IR-480	FR				
Agency or Company	LJB I	nc		nction		SR-94	LD				
Date Performed	3/3/2			risdiction		Clevela	nd				
	**************************************			alysis Year		2034	iiu				
Project Description			7 11	laryolo i cai		2007					
Inputs	001 400 0010	ty Otday									
-		Erooway Num	ber of Lanes, N	4							
Upstream Adj R	amp	I		•					Downstrea	m Adj	
	10	Ramp Numbe	r of Lanes, N	1					Ramp		
□Yes □	On	Acceleration L	ane Length, L _A						Yes	On	
✓ No	Off	Deceleration I	ane Length L _D	1500							
INO L	JOII	Freeway Volu		7120					✓ No	Off	
L _{up} = ff									L _{down} =	ft	
_up	•	Ramp Volume		890					down		
V,, = ve	eh/h	1 '	-Flow Speed, S _{FF}	65.0					V _D =	veh/h	
u v	211/11	Ramp Free-Fl	ow Speed, S _{FR}	45.0					D		
Conversion to	pc/h Und	der Base	Conditions					•			
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f _{HV}	fp	v = V/PHF	x f _{HV} x f _n	
. ,	(Veh/hr)	204				+					
Freeway	7120	0.94	Level	9	0	_	957	1.00	79 ⁻		
Ramp	890	0.94	Level	4	0	0.9	980	1.00	96	6	
UpStream						_					
DownStream		<u>. </u>									
F-4:4:4		Merge Areas			F - 4: 4:			iverge Areas			
Estimation of	V ₁₂				Estimati	on o	τν ₁₂				
	V ₁₂ = V _F	(P _{FM})					V ₁₂ =	V _R + (V _F - V _R	P _{FD}		
L _{EQ} =	(Faus	ition 13-6 or	13-7)		L _{EQ} =			Equation 13-1			
		Equation (•		P _{FD} =		-	436 using Equ	•		
P _{FM} =	_	Equation (I	-XIIIDIL 13-0)						iation (Exilic	nt 13-7)	
V ₁₂ =	pc/h				V ₁₂ =			96 pc/h			
V ₃ or V _{av34}		-	-14 or 13-17)		${ m V_3}$ or ${ m V_{av34}}$			59 pc/h (Equa	ation 13-14	or 13-17)	
Is V ₃ or V _{av34} > 2,70	0 pc/h?	s 🗌 No			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \checkmark No						
Is V ₃ or V _{av34} > 1.5 *	V ₁₂ /2	s 🗌 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes V No						
If Yes,V _{12a} =			-16, 13-18, or		If Yes,V _{12a} =			c/h (Equation	13-16, 13-	18, or 13-	
	13-19))					19	9)			
Capacity Che	cks				Capacity	/ Che	ecks				
	Actual	С	apacity	LOS F?			Actual	Cap	pacity	LOS F?	
			•		V _F		7915	Exhibit 13-8	9400	No	
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- \/	6949	Exhibit 13-8	9400	No	
▼FO		LAHIDIL 13-0				*R					
					V _R		966	Exhibit 13-10	2100	No	
Flow Entering	Merge In	fluence A	rea		Flow En	terin	g Diver	ge Influenc	ce Area		
	Actual	Max	Desirable	Violation?		I	Actual	Max Desirab	le	Violation?	
V _{R12}		Exhibit 13-8			V ₁₂	3	996	Exhibit 13-8	4400:All	No	
Level of Serv	ice Detern	nination (if not F)		<u> </u>	Son	rice De	termination	if not l	=)	
$D_R = 5.475 + 0.1$.0086 V ₁₂ - 0.0		/	
* *		0.0070 V ₁₂ -	0.00027 L _A		1			.0000 v ₁₂ - 0.0	009 LD		
D _R = (pc/mi/ln					$D_R = 25$.1 (pc/	mi/ln)				
LOS = (Exhibit '	13-2)				LOS = C	(Exhib	oit 13-2)				
Speed Detern	nination				Speed D	eter	minatio	n			
M _S = (Exibit 13	s = (Exibit 13-11)					D _s = 0.385 (Exhibit 13-12)					
-											
					S _R = 56.1 mph (Exhibit 13-12)						
$S_0 = mph (Exh$	_o = mph (Exhibit 13-11)					S ₀ = 67.6 mph (Exhibit 13-12)					
S = mph (Exhibit 13-13) S = 61.3 mph (Exhib					(Exhibit	13-13)					
Copyright © 2014 University of Florida, All Rights Reserved HCS2010 TM Version 6.60							Ger	nerated: 3/9/2	015 10:38 AM		

	RA	MPS AND	RAMP JUNG	CTIONS W	ORKSHI	EET				
General Infor	mation			Site Infor	mation					
Analyst			Fre	eeway/Dir of Tr	avel	IR-480) EB			
Agency or Company	LJB	Inc	Ju	nction		SR-94	ļ			
Date Performed	3/6/2	.015	Ju	risdiction		Clevel	and			
Analysis Time Period			An	alysis Year		2034 E	Build			
Project Description	CUY-480 Safe	ty Study								
Inputs										
Upstream Adj Ramp		Freeway Num	ber of Lanes, N	4					Downstre	am Adi
		Ramp Numbe	er of Lanes, N	1					Ramp	
☐ Yes ☐ Or	1	Acceleration I	_ane Length, L₄	1500					□Yes	On
	•	1	Lane Length L _D						_	
☑ No ☐ Of	Ī	Freeway Volu	- 5	6230					✓ No	Off
L _{up} = ft		1							L _{down} =	ft
L _{up} = ft		Ramp Volume		1060					uowii	
$V_{u} = veh/h$	1	1	e-Flow Speed, S _{FF}	65.0					$V_D =$	veh/h
u -		Ramp Free-F	low Speed, S _{FR}	45.0						
Conversion to	o pc/h Un	der Base	Conditions							
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	x f _{HV} x f _D
" /	(Veh/hr)	 				+		r		
Freeway	6230	0.94	Level	8	0	$\overline{}$.962	1.00	1	893
Ramp	1060	0.94	Level	2	0	1 0	.990	1.00	1	1139
UpStream DownStream						+				
Downoucam		Merge Areas						iverge Areas		
Estimation of					Estimati	ion d		go / ouc		
		(B.)					12			
	$V_{12} = V_{F}$						V ₁₂ = '	V _R + (V _F - V _F	R)P _{FD}	
L _{EQ} =		ation 13-6 o			L _{EQ} =		(Equation 13	-12 or 13-1	3)
P _{FM} =	0.075	using Equa	tion (Exhibit 13-6)		P _{FD} =		ι	using Equation	on (Exhibit 1	3-7)
V ₁₂ =	520 p	c/h			V ₁₂ =			oc/h	,	,
V ₃ or V _{av34}		pc/h (Equati	on 13-14 or 13-		V ₃ or V _{av34} pc/h (Equation 13-14 or 13-17)					(7)
	17)	_			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
Is V_3 or $V_{av34} > 2,70$										
Is V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av34} > 1.5 * V ₁₂ /2					3 19 or
If Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =			3-19)	/// 13-10, 1	3-10, 01
		13-19)			Composite	. 04		,		
Capacity Che		1 /	,	1 100 50	Capacity	y Ch		1 0	**	1 100 50
	Actual		Capacity	LOS F?	.,		Actual		pacity	LOS F?
					V _F	_		Exhibit 13-		
V_{FO}	8032	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-		
					V _R			Exhibit 13	3-	
		<u> </u>	.			4*	D:	10	4	
Flow Entering				1	Flow En			rge Influer		
	Actual	1	Desirable	Violation?		+	Actual	Max Des	sirable 1	Violation?
V _{R12}	3896	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		
Level of Serv		•			1			terminatio	•	<u>F)</u>
D _R = 5.475 +	0.00734 v _R +	0.0078 V ₁₂ - 0.	00627 L _A			D _R =	4.252 + 0	.0086 V ₁₂ - 0	.009 L _D	
$D_{R} = 25.9 (pc/m)$	ni/ln)				$D_R = (p$	c/mi/	ln)			
LOS = C (Exhibit	13-2)				LOS = (E	xhibi	t 13-2)			
Speed Determ					<u> </u>			n		
					Speed Determination D _s = (Exhibit 13-12)					
M _S = 0.378 (Exi							hibit 13-12)			
1 ''	(Exhibit 13-11)				I ''					
	(Exhibit 13-11)				I *		hibit 13-12)			
S = 57.8 mph	(Exhibit 13-13)				S = m	ph (Ex	hibit 13-13)			

r											
		RAMP	S AND RAM			RKSHE	ET				
General Infor	mation			Site Infor							
Analyst				eeway/Dir of Tr		R-480 EB					
Agency or Company				nction			3 (2 LN RA	AMP)			
Date Performed	3/3/20			risdiction		leveland	D				
Analysis Time Period Project Description			AI	alysis Year		034 BUIL	ט				
Inputs	CU1-400 Salei	ly Sludy									
		Freeway Num	ber of Lanes, N	5				1			
Upstream Adj R		1 '							Downstre	am	Adj
□Yes □	On	Ramp Numbe		2					Ramp		
			ane Length, L _A						☐Yes		On
☑ No	Off	Deceleration L	ane Length L _D	1500					✓ No		Off
		Freeway Volu	me, V _F	7290							
L _{up} = fi	t	Ramp Volume	, V _R	1630				Į.	_ _{down} =	f	t
		Freeway Free	-Flow Speed, S _{FF}	65.0				ļ	V _D =		eh/h
V _u = ve	eh/h	Ramp Free-Fl	ow Speed, S _{FR}	45.0					v D –	V	511/11
Conversion to											
	V V			0/ T	0/ D			,	. – WDLIE		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{H∨}	<i>'</i>	f _p	/ = V/PHF	· X 1	HV X Tp
Freeway	7290	0.94	Level	9	0	0.957		1.00	8′	104	
Ramp	1630	0.94	Level	4	0	0.980		1.00	17	769	
UpStream											
DownStream											
5 - 4: 4: 4		Merge Areas			- 4: 4: -	C -		erge Areas			
Estimation of	1 ₂				Estimation	on ot v	12				
	$V_{12} = V_{F}$	(P _{FM})					$V_{12} = V$	R + (V _F - V _R)P _{FD}		
L _{EQ} =	(Equa	tion 13-6 or	13-7)		L _{EQ} =		(Ec	uation 13-12	2 or 13-13	3)	
P _{FM} =	using	Equation (E	Exhibit 13-6)		P _{FD} =		0.26	using Equ	ation (Exh	ibit '	13-7)
V ₁₂ =	pc/h	. ,	,		V ₁₂ =			pc/h	,		,
V ₃ or V _{av34}	•	Fauation 13	-14 or 13-17)		V ₃ or V _{av34}			pc/h (Equa	ation 13-1	4 n	r 13 ₋ 17)
Is V ₃ or V _{av34} > 2,70			14 01 10 17)		Is V ₃ or V _{av34}	> 2 700 ;			111011 10 1	7 0	10 17)
Is V_3 or $V_{av34} > 2,70$											
"""			-16, 13-18, or		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No pc/h (Equation 13-16, 13-18, or 13						or 13_
If Yes,V _{12a} =	13-19)	Lqualion 13	-10, 13-10, 01		If Yes,V _{12a} =		19)	ii (Equation	15-10, 15	-10	, 01 13-
Capacity Che	cks				Capacity	Chec	ks				
	Actual	С	apacity	LOS F?			Actual	Cap	acity		LOS F?
					V _F		6484	Exhibit 13-8	9400		No
V_{FO}		Exhibit 13-8			V _{FO} = V _F -	V ₂	4715	Exhibit 13-8	9400	┪	No
. 40		LXIIIDIC 10 0						Exhibit 13-10	-		
<u> </u>	<u> </u>	<u> </u>			V _R		1769				No
Flow Entering	· · ·			\" " O	Flow Ent			e Influenc		1 ,	<i>"</i> 1 <i>"</i> 2
.,	Actual		Desirable	Violation?	.,	Actu		Max Desirabl		+	/iolation?
V _{R12}		Exhibit 13-8			V ₁₂	299		Exhibit 13-8	4400:All		No
Level of Serv								rmination		<i>F</i>)	
D _R = 5.475 + 0.	00734 v _R + 0	0.0078 V ₁₂ -	0.00627 L _A		D	_R = 4.25	52 + 0.00	086 V ₁₂ - 0.0	009 L _D		
D _R = (pc/mi/ln)				$D_{R} = 3.0$	(pc/mi/l	n)				
LOS = (Exhibit	13-2)				LOS = A (I	Exhibit '	13-2)				
Speed Detern					Speed De						
					D _s = 0.457 (Exhibit 13-12)						
M _S = (Exibit 13	-										
	ibit 13-11)				1 11						
	ibit 13-11)				l *		xhibit 13	,			
S = mph (Exh	ibit 13-13)				S = 61.2	2 mph (E	xhibit 13	3-13)			

Generated: 8/27/2015 3:13 PM

General Infor			RAMP JUNG	Site Infor						
Analyst				eway/Dir of Tr		R-480 WB				
•	LID	la a		•						
Agency or Company Date Performed				nction		R-176 SB				
		2015 Dools		risdiction		leveland				
Analysis Time Period		Peak	An	alysis Year	20	034				
Project Description	CUY-480 Safe	ety Study								
Inputs		1						1		
Upstream Adj Ramp		Freeway Num	ber of Lanes, N	4				Downstrea	am Adj	
		Ramp Numbe	r of Lanes, N	1				Ramp	•	
Yes Or	า	Acceleration I	ane Length, L₄	700						
		1	- 7	, 00				Yes	∐ On	
☑ No ☐ Of	f	1	ane Length L _D					✓ No	Off	
		Freeway Volu	me, V _F	3900				l.	61	
_{-up} = ft		Ramp Volume	e, V _R	790				L _{down} =	ft	
		Freeway Free	-Flow Speed, S _{FF}	65.0				ļ.,		
V _u = veh/h	1	1	ow Speed, S _{FR}					V _D =	veh/h	
0	//- **		. 117	45.0						
Conversion t	T -	der Base	Conditions		1		T	1		
(pc/h)	(\/ab/br\	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PHF	x f _{H\/} x f,	
	(Veh/hr)						<u>'</u>			
Freeway	3900	0.94	Level	8	0	0.962	1.00		315	
Ramp	790	0.94	Level	3	0	0.985	1.00	8	353	
UpStream		$oxed{\Box}$								
DownStream										
		Merge Areas					Diverge Areas			
Estimation of	^F v ₁₂				Estimatio	n of v ₁₂				
	V ₁₂ = V _F	(P)								
_			40.7)			V ₁₂ =	$V_R + (V_F - V_R)$)P _{FD}		
_{EQ} =		ıation 13-6 oı			L _{EQ} =		(Equation 13-	12 or 13-1	3)	
P _{FM} =	0.111	using Equat	tion (Exhibit 13-6)		P _{FD} =		using Equatio	n (Exhibit 13	-7)	
V ₁₂ =	480 p	oc/h			V ₁₂ =		pc/h	(_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• /	
	1917	pc/h (Equation	on 13-14 or 13-				•	0.44 40.4	- \	
V_3 or V_{av34}	17)				V ₃ or V _{av34}		pc/h (Equation 1	3-14 or 13-1	7)	
Is V_3 or $V_{av34} > 2,70$	0 pc/h?	es 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
Is V_3 or $V_{av34} > 1.5$					Is V ₃ or V _{av34}	> 1.5 * V ₁₂ /2	☐Yes ☐No			
0 0.0.			on 12 16 12				pc/h (Equation	n 13-16, 13	3-18, or	
f Yes,V _{12a} =		pc/n (Equali · 13-19)	on 13-16, 13-		If Yes,V _{12a} =		13-19) 	,	•	
Capacity Che		10-10)			Capacity	Chacks				
capacity one	Actual		apacity	LOS F?	L	Actual	Car	pacity	LOS F	
	Actual	+ 1	γαρασιιγ	LOG1!	1/	Actual			LOGF	
					V _F		Exhibit 13-8		+	
V_{FO}	5168	Exhibit 13-8		No	$V_{FO} = V_{F} -$	V_R	Exhibit 13-8	8	<u> </u>	
					V _R		Exhibit 13-	-		
				<u> </u>	1		10		<u> </u>	
Flow Entering	g Merge Ir	nfluence A	rea		Flow Ente	ering Dive	erge Influen			
	Actual		Desirable	Violation?		Actual	Max Desi	irable	Violation	
V _{R12}	2579	Exhibit 13-8	4600:All	No	V ₁₂		Exhibit 13-8			
Level of Serv	ice Deter					Service D	eterminatio	n (if not	F)	
		•			1				• /	
	• • • • • • • • • • • • • • • • • • • •	0.0078 V ₁₂ - 0.0	00021 LA			•	0.0086 V ₁₂ - 0.	.ooa L _D		
$D_{R} = 20.8 (pc/m)$	ni/ln)				$D_R = (pc)$	/mi/ln)				
OS = C (Exhibit	13-2)				LOS = (Ex	hibit 13-2)				
•						eterminati	on			
Speed Deterr					1 -		~··			
					1 "	nibit 13-12)				
	bit 13-11)				S _R = mph (Exhibit 13-12)					
M _S = 0.309 (Exi	bit 13-11) (Exhibit 13-11)				S _R = mph	i (Exhibit 13-12	.)			
S _R = 57.9 mph	(Exhibit 13-11)					ı (Exhibit 13-12 ı (Exhibit 13-12				
$M_S = 0.309 \text{ (Exi}$ $S_R = 57.9 \text{ mph}$ $S_0 = 62.1 \text{ mph}$	· ·				S ₀ = mph	· •)			

		RAMPS	S AND RAM			RKSH	IEET					
General Infor	mation			Site Infor								
Analyst				reeway/Dir of Tra		IR-480 V	VB					
Agency or Company				unction		SR-94						
Date Performed	3/3/20			urisdiction		Clevelar						
Analysis Time Period Project Description			A	nalysis Year	-	2034-No	Bulla					
Inputs	CU1-400 Salei	iy Siddy										
		Erooway Numl	per of Lanes, N	4								
Upstream Adj R	anp	1		4						Downstre	am .	Adj
□Yes□	70-	Ramp Number	•	1						Ramp		
		1	ane Length, L _A							Yes		On
☑ No □	Off	Deceleration L	ane Length L _D	575						✓ No		Off
		Freeway Volur	ne, V _F	4690								JOII
L _{up} = f	t	Ramp Volume	, V _R	530						L _{down} =	ft	
.,		Freeway Free-	Flow Speed, S _{FF}	65.0					Į,			h/h
V _u = v	eh/h	Ramp Free-Flo	ow Speed, S _{ED}	45.0						V _D =	VE	eh/h
Conversion to	o pc/h Und	<u> </u>	111									
	V V	PHF		0/ Truels	0/ Dv	Τ,		f		, – \//DUE	v f	v f
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	'	HV	f _p		v = V/PHF	^ 'I	HV X I p
Freeway	4690	0.94	Level	8	0	0.9	62	1.00		5′	189	
Ramp	530	0.94	Level	3	0	0.9	85	1.00		5	72	
UpStream						+						
DownStream	<u> </u>	l l Merge Areas						iverge Are	226			
Estimation of		weige Aleas			Estimati	ion of		iverge Are	zas			
		(D)			200777407					\D		
	$V_{12} = V_F$							V _R + (V _F				
L _{EQ} =		ition 13-6 or	*		L _{EQ} =		-	-		2 or 13-13		
P _{FM} =	using	Equation (E	xhibit 13-6)		P _{FD} =		0.4	436 using	g Equ	ation (Exh	ibit 1	3-7)
V ₁₂ =	pc/h				V ₁₂ =		25	85 pc/h				
V ₃ or V _{av34}	pc/h (l	Equation 13-	·14 or 13-17)		${ m V_3}$ or ${ m V_{av34}}$		13	802 pc/h ((Equa	ation 13-1	4 or	13-17)
Is V ₃ or V _{av34} > 2,70	00 pc/h?	s 🗌 No			Is V ₃ or V _{av3}	₃₄ > 2,70	0 pc/h? [] Yes ☑	No			
Is V ₃ or V _{av34} > 1.5 3	* V ₁₂ /2	s 🗌 No			Is V ₃ or V _{av3}	₃₄ > 1.5 *	V ₁₂ /2]Yes ☑	No			
If Yes,V _{12a} =			-16, 13-18, or		If Yes,V _{12a} =		р	c/h (Equa	ation	13-16, 13	-18,	or 13-
	13-19)						19	9)				
Capacity Che		1 0		T 100 F0	Capacity	y Cne			0			1.00.50
	Actual		apacity	LOS F?	\ \/		Actual	- Cybibi		pacity	\dashv	LOS F?
.,					V _F	-, -	5189	Exhibi		+	\dashv	No
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	4617	Exhibi			_	No
					V_R		572	Exhibit	13-10	2100		No
Flow Entering	g Merge In				Flow En							
	Actual		Desirable	Violation?		A	ctual	Max D			<u> </u>	/iolation?
V _{R12}		Exhibit 13-8			V ₁₂	25	85	Exhibit 1	3-8	4400:All		No
Level of Serv					Level of					<u> </u>	F)	
D _R = 5.475 + 0.	00734 v _R + 0	0.0078 V ₁₂ -	0.00627 L _A		[[$O_{R} = 4.$	252 + 0.	.0086 V ₁₂	₂ - 0.0	009 L _D		
D _R = (pc/mi/ln)				D _R = 21	.3 (pc/r	ni/ln)					
LOS = (Exhibit	13-2)				LOS = C	(Exhib	t 13-2)					
Speed Detern					Speed D			on .				
$M_S = (Exibit 1)$					- '		hibit 13-					
1 -	ibit 13-11)				1	-	(Exhibit					
''	•					•	(Exhibit	,				
	nibit 13-11)					-		•				
b – IIIhii (⊏XI)	iibit 13-13)				p - 62	e mpn	(Exhibit	13-13)				

Generated: 5/1/2015 7:38 PM

General Infor			RAMP JUNG	Site Infor		-				
Analyst				eway/Dir of Tr		R-480 WB				
•	I ID	Inc		•						
Agency or Company Date Performed				nction risdiction		R-94				
		2015 Dools				leveland				
Analysis Time Period		Peak	An	alysis Year	20	034				
Project Description	CUY-480 Safe	ety Study								
Inputs		L						1		
Upstream Adj Ramp		1 '	ber of Lanes, N	4				Downstrea	am Adj	
		Ramp Numbe	r of Lanes, N	1				Ramp		
Yes Or	1	Acceleration L	ane Length, L₄	1500				□Yes	On	
		1	ane Length L _D						_	
☑ No ☐ Of	Γ	Freeway Volu	- 5	4160				☑ No	Off	
_ _{-up} = ft		1						L _{down} =	ft	
_{-up} = ft		Ramp Volume		950				-down		
V _u = veh/h	ı	Freeway Free	-Flow Speed, S _{FF}	65.0				V _D =	veh/h	
- u VCII/II	ı	Ramp Free-Fl	ow Speed, S _{FR}	45.0				"	~	
Conversion to	o pc/h Un	der Base	Conditions					•		
(pc/h)	V	PHF	Terrain	%Truck	%Rv	f _{HV}	fp	v = V/PHF	x f x f	
	(Veh/hr)						<u> </u>	ļ		
Freeway	4160	0.94	Level	8	0	0.962	1.00	4	603	
Ramp	950	0.94	Level	7	0	0.966	1.00	1	046	
UpStream		ļļ								
DownStream		<u> </u>								
		Merge Areas					Diverge Areas			
Estimation of	^r v ₁₂				Estimatio	on of v ₁₂				
	V ₁₂ = V _E	(P _{EM})				\/ -		\D		
L _{EO} =		iation 13-6 oi	r 13-7)			v ₁₂ –	V _R + (V _F - V _R			
L _{EQ} =					L _{EQ} =		(Equation 13-	12 or 13-1	3)	
P _{FM} =			ion (Exhibit 13-6)		P _{FD} =		using Equation	n (Exhibit 13	i-7)	
V ₁₂ =	401 p				V ₁₂ =		pc/h			
V ₃ or V _{av34}		pc/h (Equation	on 13-14 or 13-		V ₃ or V _{av34}		pc/h (Equation 1	3-14 or 13-1	7)	
	17)				Is V ₃ or V _{av34} > 2,700 pc/h? ☐ Yes ☐ No					
Is V_3 or $V_{av34} > 2,70$					Is V_3 or $V_{av34} > 2,700$ pc//? Yes No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
Is V_3 or $V_{av34} > 1.5$						- 1.5 V ₁₂ /2		n 12 16 40	10 ~-	
If Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =		pc/h (Equation 13-19)	11 13-10, 13	5-18, Of	
120		13-19)			2 "					
Capacity Che	ĺ				Capacity		1			
	Actual	1 9	Capacity	LOS F?		Actua		pacity	LOS F	
					V_{F}		Exhibit 13-8	3		
V _{FO}	5649	Exhibit 13-8		No	$V_{FO} = V_{F}$ -	V _R	Exhibit 13-8	3		
FU				"			Exhibit 13	- 1	1	
	<u> </u>				V _R		10	<u> </u>	<u> </u>	
Flow Entering	g Merge li	nfluence A	rea		Flow Enter	ering Dive	erge Influen			
	Actual	Max	Desirable	Violation?		Actual	Max Desi	rable	Violation	
V_{R12}	2887	Exhibit 13-8	4600:AII	No	V ₁₂		Exhibit 13-8	T		
Level of Serv	ice Deteri	mination (if not F)		Level of S	Service D	eterminatio	n (if not	F)	
		0.0078 V ₁₂ - 0.0			1		0.0086 V ₁₂ - 0.			
D _R = 18.1 (pc/m		IZ	٨		1	/mi/ln)	12	U		
	•									
_OS = B (Exhibit						hibit 13-2)	,			
	nination				1 -	eterminati	on			
					$D_s = (Exh$	nibit 13-12)				
Speed Determ	bit 13-11)				S _R = mph (Exhibit 13-12)					
Speed Determ M _S = 0.256 (Exi	· ·				S _R = mph	ı (Exhibit 13-12	2)			
Speed Determ M _S = 0.256 (Exi S _R = 59.1 mph	(Exhibit 13-11)					· ·				
Speed Determ $M_S = 0.256$ (Exi $S_R = 59.1$ mph $S_0 = 61.8$ mph $S_0 = 61.8$ mph	· ·				S ₀ = mph	ı (Exhibit 13-12 ı (Exhibit 13-12 ı (Exhibit 13-13	2)			

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSHI	EET				
General Infor	mation			Site Infor	mation					
Analyst			Fre	eeway/Dir of Tra	avel	SR 176	S NB			
Agency or Company	LJB I	nc	Ju	nction		On-ram	np from Bro	okpark		
Date Performed	3/6/2			risdiction		Clevela				
Analysis Time Period			An	alysis Year		2034 B	uild			
Project Description	CUY-480 Safe	ty Study								
Inputs		Tra access Nicor	shar of Lanca N						Ι	
Upstream Adj Ramp		1 '	ber of Lanes, N	2					Downstrea	am Adj
☐Yes ☐On		Ramp Numbe		1					Ramp	
			ane Length, L _A	500					□Yes	On
☑ No ☐ Off	:	1	Lane Length L _D						☑ No	Off
		Freeway Volu		1630					=	ft
L _{up} = ft		Ramp Volume	11	530					L _{down} =	11
$V_{ij} = veh/h$		1	-Flow Speed, S _{FF}	45.0					V _D =	veh/h
			low Speed, S _{FR}	45.0						
Conversion to		der Base	Conditions		,					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f_p	v = V/PHF	x f _{HV} x f _p
Freeway	1630	0.94	Level	4	0	0.9	980	1.00	1	769
Ramp	530	0.94	Level	2	0	0.9	990	1.00	į	569
UpStream						_				
DownStream		<u> </u>						iverge Areas		
Estimation of		WEIGE AIEas			Estimat	ion o	fv	iverge Areas		
		(D)							\D	
_	$V_{12} = V_F$		40 =\		l			$V_R + (V_F - V_R)$		0)
L _{EQ} =		ation 13-6 o	•		L _{EQ} =			Equation 13-		-
P _{FM} =			tion (Exhibit 13-6)		P _{FD} =			using Equatio	n (Exhibit 13	3-7)
V ₁₂ =	1769				V ₁₂ =		•	oc/h	10.44 40.4	- \
V ₃ or V _{av34}			13-14 or 13-17)		V ₃ or V _{av34}	. 0.7		pc/h (Equation 1	13-14 or 13-1	/)
Is V ₃ or V _{av34} > 2,70								Yes No		
Is V ₃ or V _{av34} > 1.5 *			3-16, 13-18, or		" "	• .		☐Yes ☐ No oc/h (Equatio	n 10 16 1	2 10 or
If Yes,V _{12a} =	13-19)		5-10, 15-16, 01		If Yes,V _{12a} =	=		3-19)	11 13-10, 1	o- 10, UI
Capacity Che	cks				Capacit	y Che	ecks	,		
	Actual		Capacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F			Exhibit 13-	8	
V_{FO}	2338	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-	8	
					V _R			Exhibit 13	-	
E. E		<u> </u>						10		
Flow Entering	Actual		A rea Desirable	Violation?	Flow En	\neg	Actual	rge Influer Max Des		Violation?
V _{R12}	2550	Exhibit 13-8	4600:All	No	V ₁₂		-tctuai	Exhibit 13-8	liable	Violation:
Level of Serv				140		F Son	ice De	terminatio	n (if not	E)
	0.00734 v _R + 0							.0086 V ₁₂ - 0	•	1)
$D_{R} = 0.470 \text{ m}$ $D_{R} = 20.3 \text{ (pc/m)}$		3.0070 V ₁₂ - 0.	00027 L _A					.0000 v ₁₂ - 0	.003 L _D	
	-				1 ., .,	oc/mi/lr	,			
LOS = C (Exhibit					 	Exhibit				
Speed Detern	nination				Speed L			<u>on</u>		
$M_{S} = 0.326 \text{ (Exit)}$	•				I " '	Exhibit 1	•			
_ · · ·	Exhibit 13-11)				I ''		nibit 13-12)			
	Exhibit 13-11)				ľ		nibit 13-12)			
S = 44.0 mph (Exhibit 13-13)				S = m	ph (Exh	nibit 13-13)			

Generated: 8/27/2015 1:16 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 PM Peak		Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-94 ramps
Project Description CUY-	480 Safety St		N (A1)		anian Data
✓ Oper.(LOS)		L	Des.(N)	Pia	nning Data
Flow Inputs Volume, V AADT Peak-Hr Prop. of AADT, K	4320	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.94 8 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length Up/Down %	Level mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)] 0.962	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	4 65.0	ft ft ramps/mi mph mph	f _{LW} f _{LC} TRD Adjustment FFS	65.0	mph mph mph mph
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS) $v_p = (V \text{ or DDHV}) / (PHF x)$ $x f_p)$ S $D = v_p / S$ LOS	N x f _{HV} 1195 65.0 18.4 C	pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \text{ x} \text{ x } f_p)$ S $D = v_p / S$ Required Number of Lane		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E_R - Exhibits 11-10, 11-12 E_T - Exhibits 11-10, 11-11 f_p - Page 11-18 LOS, S, FFS, v_p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Florid			HCS 2010 TM Version 6.60	Cana	erated: 3/10/2015 8:45

Copyright © 2014 University of Florida, All Rights Reserved

HCS 2010TM Version 6.60

		F	REEWAY	/ WEAV	NG WOF	RKSHEE	T			
Genera	Informati	on			Site Info	rmation				
Analyst Agency/Cor Date Perfor Analysis Tir	med ne Period	LJB Ind 3/6/20° PM Pe	5 ak		Freeway/Dir Weaving Seg Analysis Yea	gment Locati		0 EB een SR-176 a No Build	nd SR-94	
Project Des Inputs	cription CUY-48	30 Safety Stud	dy							
Weaving co Weaving nu Weaving se	nfiguration mber of lanes, N gment length, L _e e-flow speed, Fl	S		One-Sided 5 3500ft 65 mph	Freeway minimum speed, S _{MIN}					
Conver	sions to po	c/h Unde	r Base Co	ndition	S					
	V (veh/h)	PHF	Truck (%)	RV (%)	E _T	E _R	f_{HV}	fp	v (pc/h)	
V_{FF}	3650	0.94	8	0	1.5	1.2	0.962	1.00	4038	
V_{RF}	390	0.94	2	0	1.5	1.2	0.990	1.00	419	
V_{FR}	670	0.94	4	0	1.5	1.2	0.980	1.00	727	
V _{RR}	330	0.94	2	0	1.5	1.2	0.990	1.00	355	
V _{NW}	4393				I			V =	5539	
V _W	1146									
VR	0.207									
Configu	ration Cha	aracteris	tics							
Minimum m	aneuver lanes,	N _{WI}		2 lc	Minimum we	eaving lane c	hanges, LC _{MIN}		1146 lc/h	
Interchange	e density, ID	***		1.0 int/mi	Weaving lan	ne changes, L	_C _w		2106 lc/h	
Minimum R	F lane changes,	, LC _{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		2142 lc/h	
Minimum F	R lane changes,	, LC _{FR}		1 lc/pc	Total lane ch	nanges, LC _{AL}	L		4248 lc/h	
Minimum R	R lane changes	, LC _{RR}		lc/pc	Non-weaving	g vehicle ind	ex, I _{NW}		1538	
Weavin	g Segmen	t Speed,	Density, I	_evel of	Service,	and Car	pacity			
Weaving se	egment flow rate	, V		5362 veh/h	ı -	ensity factor,			0.263	
Weaving se	gment capacity	, c _w	1	0889 veh/h		gment speed			52.1 mph 54.6 mph	
ľ	gment v/c ratio			0.492	⁷² "					
ľ	egment density,	D	2	1.3 pc/mi/ln	Average nor				51.4 mph	
Level of Se	rvice, LOS			С	Maximum w	eaving length	n, L _{MAX}		4607 ft	
Chapter 13, '	egments longer to Freeway Merge a es that exceed the	and Diverge Se	egments".	_		solated merge	and diverge ar	eas using the l	procedures of	

Generated: 8/27/2015 2:47 PM

		F	REEWAY	/ WEAVI	NG WOF	RKSHEE	T		
Genera	Information	on			Site Info	rmation			
Analyst Agency/Cor Date Perfor Analysis Tir Project Des	med	LJB Inc 3/6/201 PM Pea 30 Safety Stud	5 ak		Freeway/Dir Weaving Seg Analysis Yea	gment Location	IR-48 on Betwe 2034	en SR-176 a	and SR-94
Inputs	'	,	,						
Weaving se Freeway fre	mber of lanes, N gment length, L e-flow speed, FI	S FS		3500ft 65 mph	Segment typ Freeway min Freeway max Terrain type	imum speed			Freeway 15 2350 Leve
Conver	sions to po	c/h Unde	1	ndition	1	1			1
	V (veh/h)	PHF	Truck (%)	RV (%)	E _T	E _R	f_{HV}	fp	v (pc/h)
V_{FF}	3650	0.94	8	0	1.5	1.2	0.962	1.00	4038
V_{RF}	390	0.94	2	0	1.5	1.2	0.990	1.00	419
V_{FR}	670	0.94	4	0	1.5	1.2	0.980	1.00	727
V_{RR}	330	0.94	2	0	1.5	1.2	0.990	1.00	355
V_{NW}	4393							V =	5539
V_W	1146							-	
VR	0.207								
Configu	ration Cha	aracterist	tics		r				
Minimum m	aneuver lanes, l	N_{WL}		3 lc	Minimum we	eaving lane cl	hanges, LC _{MIN}		419 lc/h
Interchange	e density, ID			1.0 int/mi	Weaving lan	ie changes, L	.C _w		lc/h
Minimum R	F lane changes,	LC_{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		lc/h
Minimum F	R lane changes,	LC_FR		0 lc/pc	Total lane ch	nanges, LC _{AL}	L		lc/h
Minimum R	R lane changes	, LC _{RR}		lc/pc	Non-weaving	g vehicle inde	ex, I _{NW}		
Weavin	g Segment	t Speed,	Density, I	Level of	Service,	and Cap	acity		
Weaving se	egment flow rate egment capacity, egment v/c ratio			5362 veh/h veh/h	Weaving intensity factor, W				
ľ	egment density, I	D		pc/mi/ln	Average nor	mph			
Level of Se				•	Maximum we		****		3041 ft
Notes							IVII VA		
a. Weaving s Chapter 13,	egments longer to Freeway Merge a es that exceed the	and Diverge Se	gments".	_		solated merge	and diverge ar	eas using the	procedures of

Generated: 8/27/2015 10:59 AM

	BASIC FRE	EWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 PM Peak	al i	Highway/Direction of Trave From/To Jurisdiction Analysis Year	el IR-480 El SR-94 to Cleveland 2034 Buil	SR 176 d
•	480 Safety Stu	-	oo (N)	□ Dlopp	sing Data
✓ Oper.(LOS) Flow Inputs			es.(N)	□Piani	ning Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5040	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 8 0 Level mi	
			Up/Down %		
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2)] 0.962	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS LOS and Performanc Operational (LOS)		ft ft ramps/mi mph mph	f _{LW} f _{LC} TRD Adjustment FFS Design (N) Design (N) Design LOS	65.0	mph mph mph mph
$v_p = (V \text{ or DDHV}) / (PHF x)$ $x f_p$ S $D = v_p / S$ LOS	N x f _{HV} 1115 65.0 17.2 B	pc/h/ln mph pc/mi/ln	v _p = (V or DDHV) / (PHF x x f _p) S D = v _p / S Required Number of Lanes		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Bas		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

Generated: 8/27/2015 11:03 AM

	BASIC FRI	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company	VM LJB Inc		Highway/Direction of Trave From/To	I-480EB Ramp	to SR 176 NB Entr
Date Performed Analysis Time Period	3/6/2015 PM Peak		Jurisdiction Analysis Year	Clevelar 2034 Bu	
	480 Safety Stι				
✓ Oper.(LOS)			es.(N)	∐ Plan	ning Data
Flow Inputs					
Volume, V AADT	1000	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 8	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments				
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS	65.0	mph
Base free-flow Speed, BFFS		mph		00.0	тіріі
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I x f _p)	N x f _{HV} 277	pc/h/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x	N x f _{HV}	pc/h/ln
S 'p'	65.0	mph	x f _p)		ролип
D = v _p / S	4.3	pc/mi/ln	S		mph
LOS	4.3 A	рс/пп/п	D = v _p / S Required Number of Lanes	s, N	pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E_R - Exhibits 11-10, 11-12 E_T - Exhibits 11-10, 11-11, f_p - Page 11-18 LOS, S, FFS, v_p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11
- 3					

Generated: 8/27/2015 3:21 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period Project Description CUY-	LJB Inc 3/6/2015 PM Peak	al.	Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-176 ramps
· ·	460 Salety Sit		N (A1)	□ DI-	and an Data
✓ Oper.(LOS)		L	Des.(N)	□Piar	nning Data
Flow Inputs	10.10	1- //-	Deale Harris France DUE	0.04	
Volume, V AADT	4040	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 9	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments		<u> </u>		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$		
Speed Inputs			Calc Speed Adj and	FF5	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f_{LW}		mph
Number of Lanes, N	4		f_{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured) Base free-flow Speed, BFFS	65.0	mph mph	FFS	65.0	mph
LOS and Performanc	e Measures	6	Design (N)		
Operational (LOS)	N v f		Design (N) Design LOS		
v _p = (V or DDHV) / (PHF x l x f _p)		pc/h/ln	$v_p = (V \text{ or DDHV}) / (PHF x x f_p)$	N x f _{HV}	pc/h/ln
S D = v / S	65.0	mph	s		mph
D = v _p / S	17.3	pc/mi/ln	$D = v_p / S$		pc/mi/ln
LOS	В		Required Number of Lane	s, N	
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11 f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3	, 11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1
Copyright © 2014 University of Floric		nuad	HCS 2010 TM Version 6.60	Conor	rated: 3/10/2015 8:47

Copyright © 2014 University of Florida, All Rights Reserved

HCS 2010TM Version 6.60

	BASIC FRE	EWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	LJB Inc 3/6/2015 PM Peak 480 Safety Stu	ndv.	Highway/Direction of Trave From/To Jurisdiction Analysis Year		SR-176 ramps
✓ Oper.(LOS)	roo carety eta		Pes.(N)	☐ Plan	ning Data
Flow Inputs			.(14)		Timig Data
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D	5560	veh/h veh/day veh/h	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R General Terrain: Grade % Length	0.94 9 0 Level mi	
			Up/Down %		
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2)] 0.957	
Speed Inputs			Calc Speed Adj and I	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS LOS and Performanc Operational (LOS) v _p = (V or DDHV) / (PHF x I x f _p) S	N x f _{HV} 1545 64.7	pc/h/ln mph	f_{LW} f_{LC} TRD Adjustment FFS Design (N) Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \text{ x} \text{ x } f_p)$ S	65.0 N x f _{HV}	mph mph mph pc/h/ln mph
D = v _p / S	23.9	pc/mi/ln			
LOS	С		D = v _p / S Required Number of Lanes	s, N	pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E _R - Exhibits 11-10, 11-12 E _T - Exhibits 11-10, 11-11, f _p - Page 11-18 LOS, S, FFS, v _p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11

Generated: 5/4/2015 12:24 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	Т	
General Information			Site Information		
Analyst			Highway/Direction of Trave	el <i>IR-480</i> l	NB
Agency or Company	LJB Inc		From/To		n SR-94 and SR-
Date Performed Analysis Time Period	3/6/2015 PM Peak		Jurisdiction Analysis Year	Clevelar 2034-No	
Project Description CUY-	480 Safety Stι	udy			
✓ Oper.(LOS)			es.(N)	Plar	nning Data
Flow Inputs					
Volume, V AADT	7120	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T	0.94 5	
Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	%RVs, P _R General Terrain: Grade % Length Up/Down %	0 Level mi	
Calculate Flow Adjus	tments		·		
f _p	1.00		E _R	1.2	
E _T	1.5		$f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$)] <i>0.976</i>	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width		ft			
Rt-Side Lat. Clearance		ft	f _{LW}		mph
Number of Lanes, N	4		f _{LC}		mph
Total Ramp Density, TRD		ramps/mi	TRD Adjustment		mph
FFS (measured)	65.0	mph	FFS	65.0	mph
Base free-flow Speed, BFFS		mph		00.0	Шрп
LOS and Performanc	e Measures	3	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x I x f _p)	N x f _{HV} 1941	pc/h/ln	Design (N) Design LOS v _p = (V or DDHV) / (PHF x	N x f _{HV}	pc/h/ln
S	60.8	mph	x f _p)		ролип
D = v _p / S	31.9	pc/mi/ln	S		mph
LOS	D	ролиши	$D = v_p / S$ Required Number of Lanes	s, N	pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed	BFFS - Ba		E_R - Exhibits 11-10, 11-12 E_T - Exhibits 11-10, 11-11, f_p - Page 11-18 LOS, S, FFS, v_p - Exhibits 11-3		f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-11
DDHV - Directional design	hour volume		11-3		

Generated: 5/4/2015 12:25 PM

		F	REEWAY	/ WEAV	ING WOF	RKSHEE	T				
Genera	l Informati	on			Site Information						
Analyst Agency/Cor Date Perfor Analysis Tir	med ne Period	LJB Ind 3/6/20° PM Pe	5 ak		Freeway/Dir of Travel IR-480 WB Weaving Segment Location Between SR-176 and SR-94 Analysis Year 2034 Build						
Project Des Inputs	cription CUY-48	30 Safety Stud	dy								
Weaving co Weaving nu Weaving se	nfiguration Imber of lanes, N gment length, L _e e-flow speed, Fl	S	Segment type Freeway minimum speed, $S_{\rm MIN}$ Freeway maximum capacity, $C_{\rm IFL}$ 2 Terrain type Le								
Conver	sions to po	c/h Unde	r Base Co	ndition	S						
	V (veh/h)	PHF	Truck (%)	RV (%)	Ε _T	E _R	f _{HV}	fp	v (pc/h)		
V_{FF}	4990	0.94	8	0	1.5	1.2	0.962	1.00	5521		
V_{RF}	920	0.94	2	0	1.5	1.2	0.990	1.00	989		
V_{FR}	570	0.94	4	0	1.5	1.2	0.980	1.00	619		
V_{RR}	640	0.94	2	0	1.5	1.2	0.990	1.00	688		
V_{NW}	6209	1	•		•	•		V =	7817		
V_{W}	1608								•		
VR	0.206										
Configu	iration Cha	aracteris	tics								
Minimum m	naneuver lanes,	N _{WL}		2 lc	Minimum we	eaving lane c	hanges, LC _{MIN}		1608 lc/h		
Interchange	e density, ID			1.0 int/mi	Weaving lane changes, LC _w 2						
Minimum R	F lane changes,	, LC _{RF}		1 lc/pc	Non-weaving	g lane chang	es, LC _{NW}		3074 lc/h		
Minimum F	R lane changes,	, LC _{FR}		1 lc/pc	Total lane ch	nanges, LC _{AL}	L		5647 lc/h		
Minimum R	R lane changes	, LC _{RR}		lc/pc	Non-weaving	g vehicle ind	ex, I _{NW}		2192		
Weavin	g Segmen	t Speed,	Density, I	_evel of	Service,	and Cap	oacity				
	egment flow rate			7575 veh/h 0909 veh/h	ľ	ensity factor, gment speed			0.327 47.2 mph		
	egment v/c ratio	, _W	'	0.694	Average wea	aving speed,	S_W		52.7 mph		
ľ	egment density,	D	33	3.2 pc/mi/ln	Average nor	n-weaving sp	eed, S _{NW}		45.9 mph		
Level of Se	•			D	Maximum w				4595 ft		
Notes					<u> </u>						
a. Weaving s Chapter 13,	segments longer to "Freeway Merge a es that exceed the	and Diverge Se	gments".			solated merge	and diverge ar	eas using the	procedures of		

Generated: 8/27/2015 12:03 PM

	BASIC FR	EEWAY SE	GMENTS WORKSHEE	T	
General Information			Site Information		
Analyst Agency or Company Date Performed Analysis Time Period Project Description CUY-	LJB Inc 3/6/2015 PM Peak	udv	Highway/Direction of Trave From/To Jurisdiction Analysis Year		n SR-94 ramps
✓ Oper.(LOS)	400 Salety Sit)oo (NI)	□ Die	nning Data
Flow Inputs			Pes.(N)	□Pia	nning Data
Volume, V AADT Peak-Hr Prop. of AADT, K	6720	veh/h veh/day	Peak-Hour Factor, PHF %Trucks and Buses, P _T %RVs, P _R	0.94 8 0	
Peak-Hr Direction Prop, D DDHV = AADT x K x D		veh/h	General Terrain: Grade % Length Up/Down %	Level mi	
Calculate Flow Adjus	tments				
f _p E _T	1.00 1.5		E_R $f_{HV} = 1/[1+P_T(E_T - 1) + P_R(E_R - 1)]$	1.2 1)] 0.962	
Speed Inputs			Calc Speed Adj and	FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	4 65.0	ft ft ramps/mi mph mph	f _{LW} f _{LC} TRD Adjustment FFS	65.0	mph mph mph mph
LOS and Performanc	e Measures	<u> </u>	Design (N)		
Operational (LOS) v _p = (V or DDHV) / (PHF x x f _p) S D = v _p / S LOS		pc/h/ln mph pc/mi/ln	Design (N) Design LOS $v_p = (V \text{ or DDHV}) / (PHF \text{ x} \text{ x } f_p)$ S $D = v_p / S$ Required Number of Lanes		pc/h/ln mph pc/mi/ln
Glossary			Factor Location		
N - Number of lanes V - Hourly volume v _p - Flow rate LOS - Level of service speed DDHV - Directional design	BFFS - Ba		E_R - Exhibits 11-10, 11-12 E_T - Exhibits 11-10, 11-11, f_p - Page 11-18 LOS, S, FFS, v_p - Exhibits 11-3	11-13	f _{LW} - Exhibit 11-8 f _{LC} - Exhibit 11-9 TRD - Page 11-1

Copyright © 2014 University of Florida, All Rights Reserved

HCS 2010TM Version 6.60

		RAMP	S AND RAI	MP JUNCTION	ONS WC	RKS	HEET			
General Infor	mation			Site Infor			- · ·			
Analyst Agency or Company Date Performed	LJB I:		J	Freeway/Dir of Tra Junction Jurisdiction		IR-480 SR-94 Clevela				
Analysis Time Period				Analysis Year		2034	ii iu			
Project Description		ty Study		•						
Inputs										
Upstream Adj R	amp	Freeway Num Ramp Numbe	nber of Lanes, N er of Lanes, N	4 1					Downstrea Ramp	am Adj
□Yes □	On	1	Lane Length, L _A						□Yes	□On
✓ No	Off	Deceleration I Freeway Volu	Lane Length L _D ıme, V₌	1500 5330	I ⊻ No ∟ (Off
L _{up} = fi	:	Ramp Volume	e, V _R	1010					L _{down} =	ft
V _u = ve	eh/h		e-Flow Speed, S _{FF} low Speed, S _{FR}	= 65.0 45.0					V _D =	veh/h
Conversion to		I	111							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	5330	0.94	Level	9	0	0.	957	1.00	59	925
Ramp	1010	0.94	Level	4	0	0.	980	1.00	10)96
UpStream						_				
DownStream		<u>l</u> Merge Areas						L Diverge Areas		
Estimation of v ₁₂						tion o	fvac	orverge rateus		
		(D)						- \ / (\ / \	/ \D	
_	$V_{12} = V_F$		10.7\		_			: V _R + (V _F - \		
L _{EQ} =		tion 13-6 or	•		L _{EQ} =			Equation 13-		-
P _{FM} =	_	Equation (I	EXNIDIT 13-6)		P _{FD} =			436 using E	quation (Exh	ibit 13-7)
V ₁₂ =	pc/h	F '' 40	40.47		V ₁₂ =			201 pc/h		
V ₃ or V _{av34}		-	-14 or 13-17)		V_3 or V_{av34} 1362 pc/h (Equation 13-14 or 13-17)					
Is V_3 or $V_{av34} > 2,70$					Is V ₃ or V _{av34} > 2,700 pc/h? ☐ Yes ☑ No					
Is V_3 or $V_{av34} > 1.5$ *			10 10 10		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes \checkmark No pc/h (Equation 13-16, 13-18, or 13-					
If Yes,V _{12a} =	pc/n (i 13-19)	•	-16, 13-18, or		If Yes,V _{12a} :	=		oc/n (⊑quatio 9)	n 13-16, 13	-18, or 13-
Capacity Che					Capacit	ty Ch		- /		
, ,	Actual		Capacity	LOS F?			Actual	C	Capacity	LOS F?
					V _F		5925	Exhibit 13	-8 9400	No
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _R	4829	Exhibit 13	-8 9400	No
					V _R		1096	Exhibit 13-	10 2100	No
Flow Entering	Merge In	fluence A	\rea		Flow Er	nterin	g Dive	rge Influe	nce Area	
	Actual	Max	Desirable	Violation?		,	Actual	Max Desira	able	Violation?
V _{R12}		Exhibit 13-8			V ₁₂	3	3201	Exhibit 13-8	4400:All	No
Level of Serv	ice Detern	nination (if not F)		Level o	f Serv	∕ice De	terminatio	on (if not	F)
$D_R = 5.475 + 0.1$	00734 v _R + 0	0.0078 V ₁₂ -	- 0.00627 L _A			D _R = 4	.252 + 0	.0086 V ₁₂ - 0	0.009 L _D	
D _R = (pc/mi/ln		D _R = 1	8.3 (pc.	/mi/ln)						
LOS = (Exhibit '	13-2)				LOS = B (Exhibit 13-2)					
Speed Detern	nination				Speed I	Deter	minatio	on		
M _S = (Exibit 13					Speed Determination D _s = 0.397 (Exhibit 13-12)					
-	ibit 13-11)				S _R = 55.9 mph (Exhibit 13-12)					
	ibit 13-11)				S ₀ = 69.9 mph (Exhibit 13-12)					
	ibit 13-11)				1	-	(Exhibit	· ·		
copyright © 2014 University of Florida, All Rights Reserved					HCS2010 [™]			-	Generated: 3/10)/2015 8:49 AN
,g 2011 0111VC		11032010	v el SIO	11 0.00			5.5 0.1071			

	RA	MPS AND	RAMP JUNG	CTIONS W	ORKSHE	EET				
General Infor	mation			Site Infor	mation					
Analyst			Fre	eeway/Dir of Tr	avel	IR-480) EB			
Agency or Company	LJB	Inc	Ju	nction		SR-94				
Date Performed	3/6/2	015	Ju	risdiction		Clevel	and			
Analysis Time Period			An	alysis Year		2034 E	Build			
Project Description	CUY-480 Safe	ty Study								
Inputs										
Upstream Adj Ramp		Freeway Num	ber of Lanes, N	4					Downstre	am Adi
		Ramp Numbe	r of Lanes, N	1					Ramp	a /j
☐ Yes ☐ Or	1	Acceleration L	ane Length, L₄	1500					□Yes	□ On
		1	ane Length L _D						_	On
☑ No ☐ Of	f								✓ No	Off
L _{up} = ft		1		4320					L _{down} =	ft
L _{up} = ft		Ramp Volume	**	720					-down	
$V_{ij} = veh/h$	1	1	-Flow Speed, S _{FF}	65.0					V _D =	veh/h
u comm	•	Ramp Free-F	ow Speed, S _{FR}	45.0						
Conversion to	o pc/h Un	der Base	Conditions							
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PHF	F x f _{HV} x f _p
" ,	(Veh/hr)	ļ						· ·		· ·
Freeway	4320	0.94	Level	9	0	_	.957	1.00	4	4803
Ramp	720	0.94	Level	2	0	0	.990	1.00		774
UpStream						+				
DownStream		Morgo Aroso						livorgo Arogo		
Estimation of		Merge Areas			Estimati	ion d		iverge Areas		
Estimation of v ₁₂					LStillati	011	12			
	$V_{12} = V_{F}$	(P _{FM})					V ₁₂ = \	V _R + (V _F - V _F)P _{ED}	
L _{EQ} =	(Equ	ation 13-6 o	13-7)		L _{EQ} =			Equation 13	–	13)
P _{FM} =	0.121	using Equat	tion (Exhibit 13-6)		P _{FD} =			using Equation		
V ₁₂ =	581 p	c/h			V ₁₂ =			oc/h	on (Exhibit i	5-1)
	2111	pc/h (Equati	on 13-14 or 13-							1 7 \
V ₃ or V _{av34}	17)				V_3 or V_{av34} pc/h (Equation 13-14 or 13-17) Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
Is V_3 or $V_{av34} > 2,70$										
Is V ₃ or V _{av34} > 1.5 '	* V ₁₂ /2	s 🗌 No			Is V ₃ or V _{av3}	₃₄ > 1.5]Yes ☐ No		
If Yes,V _{12a} =			on 13-16, 13-		If Yes,V _{12a} =		, 13	oc/h (Equatio 3-19)	n 13-16, 1	3-18, or
		13-19)			·			J- 1 <i>3)</i>		
Capacity Che	cks				Capacity	y Ch	ecks			
	Actual		apacity	LOS F?	<u> </u>		Actual	Ca	pacity	LOS F?
					V_{F}			Exhibit 13-	8	
V_{FO}	5577	Exhibit 13-8		No	$V_{FO} = V_{F}$	- V _R		Exhibit 13-	8	
FO					V _R			Exhibit 13	j-	
								10		
Flow Entering	g Merge In	fluence A	rea		Flow En	terir	ng Dive	ge Influer		!
	Actual	Max	Desirable	Violation?			Actual	Max Des	irable	Violation?
V _{R12}	2695	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		
Level of Serv	ice Deterr	nination (if not F)		Level of	Ser	vice De	terminatio	n (if not	F)
D _R = 5.475 +	0.00734 v _R +	0.0078 V ₁₂ - 0.	00627 L _Δ) _R = 4	4.252 + 0.	.0086 V ₁₂ - 0	.009 L _D	
D _R = 16.7 (pc/m	• • • • • • • • • • • • • • • • • • • •	12	,,			c/mi/l				
LOS = B (Exhibit	-						t 13-2)			
· · · · · · · · · · · · · · · · · · ·					<u> </u>			<u> </u>		
Speed Detern					Speed D			111		
M _S = 0.244 (Exi							13-12)			
S _R = 59.4 mph	(Exhibit 13-11)					-	hibit 13-12)			
	(Exhibit 13-11)			S ₀ = mph (Exhibit 13-12)						
S = 60.5 mph	- (

		RAMPS	S AND RAM			RKS	IEET				
General Info	rmation			Site Infor							
Analyst				reeway/Dir of Tra		R-480 E					
Agency or Company				unction			NB (2 Ln F	Ramp)			
Date Performed	3/3/2			urisdiction		Clevelar					
Analysis Time Perio			Ai	nalysis Year		2034 Bu	ild				
Project Description	CUY-480 Safe	ty Study									
Inputs		<u>.</u>						<u> </u>			
Upstream Adj I	Ramp	Freeway Numb	per of Lanes, N	5					Downstrea	am /	Adj
		Ramp Number	of Lanes, N	2					Ramp		
☐ Yes [On	Acceleration La	ane Length, L _A						□Yes		On
☑ No [Off	Deceleration L	ane Length L	1500							
I VINO		Freeway Volur		5040					✓ No		Off
L _{up} =	ft	Ramp Volume		1000					L _{down} =	ft	
ир			Flow Speed, S _{FF}								
V _u = ν	/eh/h			65.0					$V_D =$	ve	h/h
_		Ramp Free-Flo	111	45.0							
Conversion		der Base (Conditions								
(pc/h)	() (a b /b s)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF	x f₊	_{-IV} x f _n
	(Veh/hr)	0.04	Level					· ·			- P
Freeway	5040	0.94	Level	9	0	0.9		1.00		303	
Ramp	1000	0.94	Level	4	0	0.9	80	1.00	П)85	
UpStream DownStream	+					+					
DownStream		Merge Areas					Di	iverge Areas			
Estimation o		morgo / modo			Estimati	on of		1101907000			
		/ D)						\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\D		
	$V_{12} = V_{F}$				Į.			$V_R + (V_F - V_F)$			
L _{EQ} =		ition 13-6 or	•		L _{EQ} =		(E	Equation 13-1	2 or 13-13	3)	
P _{FM} =	using	Equation (E	xhibit 13-6)		P _{FD} =		0.2	60 using Equ	uation (Exh	ibit 1	3-7)
V ₁₂ =	pc/h				V ₁₂ = 2041 pc/h						
V ₃ or V _{av34}	pc/h (Equation 13-	14 or 13-17)		V ₃ or V _{av34} 1361 pc/h (Equation 13-14 or 13-17						
Is V ₃ or V _{av34} > 2,7	00 pc/h? ☐ Ye :	s 🗆 No			Is V ₃ or V _{av34} > 2,700 pc/h? ☐ Yes ☑ No						
Is V ₃ or V _{av34} > 1.5					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes \checkmark No						
			16, 13-18, or		no/h /Favertion 42 46 42 40 an 42						
If Yes,V _{12a} =	13-19)		,,		If Yes,V _{12a} =		19		,	,	
Capacity Ch	ecks				Capacity	/ Che	cks				
	Actual	Ca	apacity	LOS F?			Actual	Ca	pacity		LOS F?
					V_{F}		4763	Exhibit 13-8	9400		No
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- V _D	3678	Exhibit 13-8	9400		No
FO					V _R	K	1085	Exhibit 13-10		\dashv	No
		<u> </u>				<u> </u>					INU
Flow Enterin				1 1/2-1-120	Flow En			ge Influen		1 1/	r . l . r 0
.,	Actual		Desirable	Violation?	.,	+	ctual	Max Desirab		\perp^{\vee}	iolation?
V _{R12}		Exhibit 13-8			V ₁₂)41	Exhibit 13-8	4400:All		No
Level of Serv								ermination	•	<u>F)</u>	
$D_R = 5.475 + 0$	0.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$O_{R} = 4.$	252 + 0.0	0086 V ₁₂ - 0.0	009 L _D		
D _R = (pc/mi/li	n)				D _R = -5.5	2 (pc/n	ni/ln)				
LOS = (Exhibit	13-2)					(Exhibi	t 13-2)				
Speed Deter					Speed Determination						
											
$M_S = (Exibit 1)$					$D_s = 0.396$ (Exhibit 13-12) $S_R = 55.9$ mph (Exhibit 13-12)						
	hibit 13-11)						•	,			
	hibit 13-11)			S ₀ = 69.9 mph (Exhibit 13-12)							
S = mph (Ex	hibit 13-13)			S = 63.1 mph (Exhibit 13-13)							

Generated: 8/27/2015 3:14 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst			Fre	eeway/Dir of Tr	avel II	R-480 WB				
Agency or Company	LJB I	nc	Ju	nction	S	R-176 SB				
Date Performed	3/6/2	015	Ju	risdiction	C	Cleveland				
Analysis Time Period	I PM P	'eak	An	nalysis Year	2	034-No Buil	d			
Project Description	CUY-480 Safet	ty Study								
Inputs										
Upstream Adj Ramp		Freeway Nun	nber of Lanes, N	4				-	Downstra	om Adi
Opsilealii Auj Kaliip		Ramp Numbe	er of Lanes, N	1					Downstre Ramp	an Auj
☐ Yes ☐ On	1	l '	Lane Length, L _A	700						
			,,	700				Į.	Yes	On
☑ No ☐ Off	f	1	Lane Length L _D					1	✓ No	Off
		Freeway Volu	ıme, V _F	5560				l,		
L _{up} = ft		Ramp Volum	e, V _R	1560				L	down =	ft
		Freeway Free	e-Flow Speed, S _{FF}	65.0				Ι,	/ _D =	veh/h
$V_u = veh/h$		Ramp Free-F	low Speed, S _{FR}	45.0				ľ	, D _	Venin
Conversion to	nc/h Und									
	<i>y</i>			0/ = :	0/15			,	, - \//DI	Fyf yf
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}		f _p v	, = V/PH 	F x f _{HV} x f _p
Freeway	5560	0.94	Level	8	0	0.962		1.00		6151
Ramp	1560	0.94	Level	3	0	0.985		1.00		1684
UpStream										
DownStream										
Merge Areas							Div	erge Areas		
Estimation of v ₁₂					Estimation	on of v _{1.}	2			
$V_{12} = V_F (P_{FM})$.,	. () () ()		
. =		、 ™ / ation 13-6 o	r 13_7)			V ₁		+ (V _F - V _R)F		
L _{EQ} =					L _{EQ} =		(E	quation 13-1	2 or 13-	13)
P _{FM} =			tion (Exhibit 13-6)		P _{FD} =		usi	ing Equation	(Exhibit	3-7)
V ₁₂ =	45 pc				V ₁₂ =		рс	/h		
V ₃ or V _{av34}		oc/h (Equati	ion 13-14 or 13-		V ₃ or V _{av34}		pc/	h (Equation 13	-14 or 13-	17)
	17)					> 2 700 nc/				,
Is V ₃ or V _{av34} > 2,70					Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No					
Is V ₃ or V _{av34} > 1.5 *						- 1.5 V ₁₂ /		res ∟∷no /h (Equation	12 16	12 10 or
If Yes,V _{12a} =			ion 13-16, 13-		If Yes,V _{12a} =		13-1		13-10,	13-16, 01
-	18, or	13-19)			0	01		,		
Capacity Che		1		1	Capacity	_		1 .		1
	Actual	- (Capacity I	LOS F?	1	Ac	tual	Capa	acity	LOS F?
					V _F			Exhibit 13-8		
V_{FO}	7835	Exhibit 13-8		No	$V_{FO} = V_{F}$	V_R		Exhibit 13-8		
 					V _R			Exhibit 13-		
								10		
Flow Entering	g Merge In				Flow Ent	r	verg	e Influenc		1
	Actual		Desirable	Violation?		Actual		Max Desira	able	Violation?
V _{R12}	4144	Exhibit 13-8	4600:All	No	V ₁₂	<u></u>		Exhibit 13-8		<u> </u>
Level of Serv	ice Detern	nination (if not F)		Level of	Service	Dete	rmination	(if no	t F)
	0.00734 v _R + 0	•			+			086 V ₁₂ - 0.0	•	•
D _R = 32.6 (pc/m		12	^		L	:/mi/ln)		14	D	
'''						,	`			
LOS = D (Exhibit					LOS = (Exhibit 13-2)					
Speed Detern	nination				Speed Determination					
M _S = 0.504 (Exil	oit 13-11)				$D_s = (Ex$	hibit 13-12)				
S _R = 53.4 mph (Exhibit 13-11)					S _R = mp	h (Exhibit 13	-12)			
S ₀ = 60.2 mph (Exhibit 13-11)						h (Exhibit 13	-			
					I * .	h (Exhibit 13	,			
S = 56.4 mph (Exhibit 13-13) pyright © 2014 University of Florida, All Rights Reserved					<u> </u>				Conot- !	E/A/201E 40:00 5
ıpyııgııı ⊌ ∠∪14 Univers	ity oi riofida, All	rights reserve	au .		HCS2010 TM	Version 6 6)	(Generated:	5/4/2015 12:22 F

		RAMP	S AND RAM			RKSI	HEET					
General Infor	mation			Site Infor								
Analyst				reeway/Dir of Tra		IR-480 \	VΒ					
Agency or Company				unction		SR-94						
Date Performed	3/3/20			urisdiction		Clevela						
Analysis Time Period Project Description			A	nalysis Year		2034- N	o Bulla					
	CU1-400 Salei	ly Sludy										
Inputs		In Ni	an afterna N						_			
Upstream Adj R	anp.	1	per of Lanes, N	4						Downstrea	am .	Adj
□Yes□	70-	Ramp Number		1					ľ	Ramp		
⊔ res ∟	On	Acceleration L	ane Length, L _A							☐Yes		On
☑ No □	Off	Deceleration L	ane Length L _D	575						✓No		Off
		Freeway Volur	ne, V _F	7120						™ INO		JOII
L _{up} = f	t	Ramp Volume	, V _D	1210					Į.	-down =	ft	
i i		1	Flow Speed, S _{FF}	65.0								
V _u = v	eh/h	Ramp Free-Flo		45.0					- [√ _D =	VE	eh/h
0	/b -		111	40.0								
Conversion t	o pc/n und □ ∨	der Base (onaitions		1	_						
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f_p	<u> </u>	/ = V/PHF	x f	$_{HV}$ x f_{p}
Freeway	7120	0.94	Level	8	0	0.9	62	1.00	\neg	78	377	
Ramp	1210	0.94	Level	3	0	0.9		1.00	\dashv		807	
UpStream						+ ***			\dashv			
DownStream												
		Merge Areas						iverge Area	s			
Estimation of	^f v ₁₂				Estimati	on of	^F V ₁₂					
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F -	· V _P)P _{ED}		
L _{EQ} =	.= .	ition 13-6 or	13-7)		L _{EQ} =			Equation 1)	
P _{FM} =		Equation (E	*		P _{FD} =			436 using 1				3 7)
	_	Equation (E	Ariibit 10 0)					_	∟qu	ation (Exili	DIL I	3-1)
V ₁₂ =	pc/h	- " 10	44 40 47)		V ₁₂ =			72 pc/h				40.4=\
V ₃ or V _{av34}		-	14 or 13-17)		V ₃ or V _{av34} 1852 pc/h (Equation 13-14 or 13-17)							13-17)
Is V ₃ or V _{av34} > 2,70					Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No							
Is V ₃ or V _{av34} > 1.5					Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No							
If Yes,V _{12a} =	pc/h (l 13-19)		·16, 13-18, or		If Yes,V _{12a} = pc/h (Equation 13-16, 13-18, or 13							or 13-
Capacity Che					Capacity	, Che		9)				
Capacity One	Actual	Г <u>С</u>	apacity	LOS F?	Dapacity	1	Actual		Can	acity		LOS F?
	7101001		ариону	2001:	V _F		7877	Exhibit 1		9400	\dashv	No
V		F., b; b; t 12 0				\/		-			\dashv	
V_{FO}		Exhibit 13-8			$V_{FO} = V_{F}$	- v R	6570	Exhibit 1		9400	-	No
					V _R		1307	Exhibit 1				No
Flow Entering					Flow En						1	
	Actual		Desirable	Violation?			ctual	Max Des			\	/iolation?
V _{R12}		Exhibit 13-8			V ₁₂		172	Exhibit 13-		4400:All		No
Level of Serv					Level of					•	<u>F)</u>	
D _R = 5.475 + 0.	00734 v _R + 0	0.0078 V ₁₂ -	0.00627 L _A		[$O_R = 4$.252 + 0	.0086 V ₁₂ -	0.0	09 L _D		
D _R = (pc/mi/ln)				D _R = 35	.0 (pc/i	mi/ln)					
LOS = (Exhibit	13-2)				1		it 13-2)					
Speed Detern					Speed Determination							
<u> </u>					$D_{\rm s} = 0.416 \text{ (Exhibit 13-12)}$							
$M_S = (Exibit 1)$	-				_	-						
	iibit 13-11)						(Exhibit	,				
$S_0 = mph \text{ (Exhibit 13-11)}$ $S_0 = 68.0 \text{ mph (Exhibit 13-11)}$							•	,				
S = mph (Exh	iibit 13-13)			S = 60.7 mph (Exhibit 13-13)								

Generated: 5/4/2015 12:24 PM

RAMPS AND RAMP JUNCTIONS WORKSHEET										
General Infor	mation			Site Infor	mation					
Analyst			Fre	eeway/Dir of Tr	avel I	R-480	0 WB			
Agency or Company	LJB I	nc		nction		R-94	1			
Date Performed	3/6/2	015	Ju	risdiction	(Clevel	land			
Analysis Time Period	I PM P	eak	An	alysis Year	2	034				
Project Description	CUY-480 Safet	ty Study								
Inputs										
Upstream Adj Ramp		Freeway Num	nber of Lanes, N	4					Downstr	om Adi
Opsilealli Auj Kallip		Ramp Numbe	er of Lanes, N	1					Downstre Ramp	ani Auj
☐ Yes ☐ On	1	l '	Lane Length, L _A	1500					_ '	
		1	,,	1300					Yes	☐ On
☑ No ☐ Off	f	1	Lane Length L _D						✓ No	Off
		Freeway Volu	ıme, V _F	5910					_	6
L _{up} = ft		Ramp Volume	e, V _R	940					L _{down} =	ft
		Freeway Free	e-Flow Speed, S _{FF}	65.0					V _D =	veh/h
$V_u = veh/h$		Ramp Free-F	low Speed, S _{FR}	45.0					v D –	Venin
Conversion to	nc/h Und									
	<i>y</i>			0/ = 1	0/ 5	1	,	<u>, </u>	\//D!!	Tyf yf
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	L	f _{HV}	f _p	v = v/PH 	F x f _{HV} x f _p
Freeway	5910	0.94	Level	8	0	0).962	1.00		6539
Ramp	940	0.94	Level	7	0	0).966	1.00		1035
UpStream										
DownStream										
				Di	verge Areas					
Estimation of v ₁₂					Estimation	on o	of v ₁₂			
$V_{12} = V_F (P_{FM})$							\/ -\/	. () () ()		
 =		`	r 13-7)				.=	_R + (V _F - V _R)		
L _{EQ} = D -					L _{EQ} =			equation 13-		
P _{FM} =			tion (Exhibit 13-6)		P _{FD} =		us	sing Equation	າ (Exhibit ´	3-7)
V ₁₂ =	578 p				V ₁₂ =		po	c/h		
V ₃ or V _{av34}		oc/h (Equati	ion 13-14 or 13-		V_3 or V_{av34}		po	c/h (Equation 1	3-14 or 13-	17)
Is V ₃ or V _{av34} > 2,70	17)					> 2.				•
					Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ \square Yes \square No					
Is V ₃ or V _{av34} > 1.5 *						1		res ⊟no c/h (Equatior	13-16	13-18 or
If Yes,V _{12a} =			ion 13-16, 13-		If Yes,V _{12a} =			·19)	1 10-10,	10-10, 01
Capacity Che	18, or	13-19)			Capacity	Ch				
Capacity Cite		1 (Danasit.	1 100 50	Сарасну		1	Con	it :	LOS F?
	Actual		Capacity I	LOS F?	.,		Actual	-	acity T	LUS F?
					V _F			Exhibit 13-8	+	
V_{FO}	7574	Exhibit 13-8		No	$V_{FO} = V_{F}$	V_R		Exhibit 13-8		
					V _R			Exhibit 13-		
	<u> </u>	<u> </u>	<u> </u>				<u></u>	10	<u> </u>	
Flow Entering	î —			\n · · · -	Flow Ent	erii		ge Influen		ì
, .	Actual		Desirable	Violation?		\vdash	Actual	Max Desir	able	Violation?
V _{R12}	3650	Exhibit 13-8	4600:All	No	V ₁₂			Exhibit 13-8		l
Level of Serv		•			+			erminatio	_	t F)
D _R = 5.475 +	0.00734 v _R + 0).0078 V ₁₂ - 0.	.00627 L _A) _R =	4.252 + 0.0	0086 V ₁₂ - 0.	009 L _D	
D _R = 24.1 (pc/m	i/ln)				$D_R = (pc)$	/mi/	ln)			
LOS = C (Exhibit							,			
					LOS = (Exhibit 13-2) Speed Determination					
Speed Detern								1		
M _S = 0.336 (Exit	oit 13-11)				,		13-12)			
S _R = 57.3 mph (Exhibit 13-11)					1		thibit 13-12)			
	Exhibit 13-11)				$S_0 = mp$	h (Ex	khibit 13-12)			
S = 58.5 mph (Exhibit 13-13)					S = mp	h (Ex	hibit 13-13)			
	= 58.5 mpn (EXNIDIT 13-13) right © 2014 University of Florida, All Rights Reserved						sion 6.60		Generated:	5/4/2015 12:37 F

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSH	EET				
General Infor	mation			Site Infor	mation					
Analyst			Fre	eeway/Dir of Tr	avel	SR 176NB-2	2 lane rm	o from 480EE	3	
Agency or Company	LJB I	nc	Jui	nction		On-ramp fro	m Brookr	nark		
Date Performed	8/27/			risdiction		Cleveland	m Broom	Jank		
Analysis Time Period				alysis Year		2034 Build				
Project Description				,		200 i Dana				
Inputs		ij olaaj								
Upstream Adj Ramp			ber of Lanes, N	2					Downstrea	am Adj
☐ Yes ☐ On	l	Ramp Numbe Acceleration I	r of Lanes, N ∟ane Length, L _⊿	1 500					Ramp	По-
☑ No ☐ Off	f		Lane Length L _D	000					☐ Yes ☑ No	☐ On ☐ Off
	•	Freeway Volu		1000						ft
L _{up} = ft		Ramp Volume	• • •	410					L _{down} =	11
		Freeway Free	-Flow Speed, S _{FF}	45.0					V _D =	veh/h
$V_u = veh/h$		Ramp Free-Fl	low Speed, S _{FR}	45.0					l D	Verii/Ti
Conversion to	nc/h Hn		111							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}		f _p	v = V/PHF	x f _{HV} x f _p
Freeway	1000	0.94	Level	4	0	0.980	_	1.00	1	085
Ramp	410	0.94	Level	2	0	0.990	_	1.00		441
UpStream	410	0.34	Level		0	0.330	_	1.00		11 1
DownStream							-			
		Merge Areas			Diverge Areas					
Estimation of v ₁₂					Estimati	ion of v				
V ₁₂ = V _F (P _{FM})								. () /) /	\D	
					L	V		+ (V _F - V _R		_,
L _{EQ} =		ation 13-6 o			L _{EQ} =			uation 13-		
P _{FM} =	1.000	using Equat	tion (Exhibit 13-6)		P _{FD} =		usii	ng Equatio	n (Exhibit 13	3-7)
V ₁₂ =	1085	pc/h			V ₁₂ =		pc/	h		
V ₃ or V _{av34}	0 pc/l	n (Equation	13-14 or 13-17)		V_3 or V_{av34}		pc/ł	n (Equation 1	3-14 or 13-1	7)
Is V ₃ or V _{av34} > 2,70					Is V ₃ or V _{av3}	, > 2,700 pc	c/h?	es □No		
Is V ₃ or V _{av34} > 1.5 *					Is V ₃ or V _{av3}	-				
			3-16, 13-18, or					h (Equatio	n 13-16, 1:	3-18 or
If Yes,V _{12a} =	13-19)		,		If Yes,V _{12a} =		13-1			,
Capacity Che	cks				Capacity	y Check	s			
	Actual		Capacity	LOS F?			ctual	Car	pacity	LOS F?
					V _F			Exhibit 13-8		
V	4500	E 1 7 7 40 0		N.	$V_{FO} = V_{F}$	- V-		Exhibit 13-8	R	
V_{FO}	1526	Exhibit 13-8		No		· R		Exhibit 13		+
					V_R			10		
Flow Entering	Merge In	fluence A	\rea	<u> </u>	Flow En	terina D)ivera	e Influen	ce Area	
	Actual	1	Desirable	Violation?		Actua		Max Desi		Violation?
V _{R12}	1656	Exhibit 13-8	4600:AII	No	V ₁₂		_	xhibit 13-8		
Level of Serv				-	Level of	Service			n (if not	F)
	0.00734 v _R + 0	<u>`</u>			1					<u>, , </u>
ı '`		0.0076 V ₁₂ - 0.	00027 L _A		1		2 + 0.00	86 V ₁₂ - 0.	.009 L _D	
$D_{R} = 14.0 \text{ (pc/m)}$	-					c/mi/ln)				
LOS = B (Exhibit	13-2)				LOS = (E	xhibit 13-	2)			
Speed Detern	nination				Speed D	etermir	ation			
M _S = 0.296 (Exil					1 '	xhibit 13-12				
	Exhibit 13-11)				1	ph (Exhibit 1				
I							-			
S = 44.1 mph ('⊏VIIINII 19-19)				h- 111	אוו (ובצוווטונ ו	J-1J)			

Generated: 8/27/2015 1:11 PM

APPENDIX J STORAGE LENGTH CALCULATIONS

STORAGE LANE LENGTHS

Turn lane lengths were calculated for turn lanes at the study intersections. Lane lengths were first calculated using guidelines specified in the <u>Location and Design Manual</u> Section 401 (Ohio Department of Transportation). Lane lengths based on the ODOT's standard criteria assume design speed limits and include vehicle storage, deceleration length and a 50 foot diverging taper. The calculated lengths were compared to the existing turn lane sizing. A summary of the lane sizing comparison is shown in **Table J1** with lane sizing calculations included in this section.

Turn lane lengths were calculated using the following parameters:

- > 2034 certified traffic volumes
- > 35 miles per hour speed for Brookpark Road and State Road
- > 45 miles per hour speed for I- 480 ramps
- > 150 second cycle length for the State Road/Brookpark Road intersection for both peaks
- > 100 second cycle length for the ramp intersections for the AM and PM peak
- > Lengths rounded up in 5-foot increments

TABLE J1: LANE SIZING CALCULATIONS

	Full-time Others	Tu	rn Lane Sizing	(feet)
Movement	Existing Storage Length (with taper) (feet)	ODOT Calculated ¹	No Block Turn Lane Length ¹	Recommended ¹
Intersection: Brookpark Road at State F	Road			
NB Left Turn (State Road)	155 ³	210	740	No changes
SB Left Turn (State Road)	355	470	740	No changes
SB Right Turn (State Road)	660	775	740	No changes
WB Right Turn (Brookpark Road)	NA	600	400	400 feet
WB Left Turn (Brookpark Road)	265 ³	425	400	No changes
EB Left Turn (Brookpark Road)	295 ³	600	385	No changes
Intersection: State Road and I- 480 east	bound ramp			
NB Right Turn (State Road)	655/370 ²	785	300	No changes
SB Left Turn (State Road)	200	305	425	No changes
EB Left Turn (I-480 EB Exit ramp)	815/815 ²	320/320 ²	375/375 ²	No changes
EB Right Turn (I-480 EB Exit ramp)	815/815 ²	500/500 ²	190/190 ²	No changes
Intersection: State Road and I- 480 wes	tbound ramp			
NB Left Turn (State Road)	205/205 ²	390/390 ²	370/370 ²	No changes
SB Right Turn (State Road)	220	430	195	No changes
WB Left Turn (I-480 WB Exit ramp)	330/330 ²	580/580 ²	375/375 ²	600/600 ²
WB Right Turn (I-480 WB Exit ramp)	330	505	450	600 feet

Note 1: Length includes vehicle storage, deceleration and diverging taper, rounded to nearest 5 ft.

Note 2: Length provided by lane: (inside lane / outside lane) for 2-lane conditions.

Note 3: Additional storage provided in two way left turn lane

CUY-480-14.10/14.40 Turn Lane Length Calculations STATE ROAD AND BROOKPARK ROAD

STATE ROUTE 94 (STATE ROAD) NBLT					
2034 PEAK HOU	R VOLUN	IES			
Movement	AM	PM			
Design Speed	35	35	mph		
Cycle Length	150	150	seconds		
Control (Stop or Signal)	Signal	Signal			
Through Volume	1033	616	vph		
Number of Through Lanes	2	2			
Turning Volume	51	81	vph		
Number of Turning Lanes	1	1			
Design Condition	Α	Α	A, B, or C		
Turning Percentage	5%	12%			
Vehicles Per Cycle	2.1	3.4			
Storage Length	105	160	feet		
Deceleration/Taper	50	50	feet		
Calculated Turn Lane Length	155	210	feet		
No Block Distance	738	470	feet		
No Block Turn Lane Length	738	470	feet		

STATE ROUTE 94 (STATE ROAD) SBLT 2034 AM PEAK HOUR VOLUMES					
Movement	AM	PM			
Design Speed	35	35	mph		
Cycle Length	150	150	seconds		
Control (Stop or Signal)	Signal	Signal			
Through Volume	435	1033	vph		
Number of Through Lanes	2	2			
Turning Volume	258	274	vph		
Number of Turning Lanes	1	1			
Design Condition	Α	Α	A, B, or C		
Turning Percentage	37%	21%			
Vehicles Per Cycle	10.8	11.4			
Storage Length	395	420	feet		
Deceleration/Taper	50	50	feet		
Calculated Turn Lane Length	445	470	feet		
No Block Distance	350	738	feet		
No Block Turn Lane Length	445	738	feet		

STATE ROUTE 94 (STATE ROAD) EBLT 2034 AM PEAK HOUR VOLUMES					
Movement	AM	PM			
Design Speed	35	35	mph		
Cycle Length	150	150	seconds		
Control (Stop or Signal)	Signal	Signa			
Through Volume	500	401	vph		
Number of Through Lanes	2	2			
Turning Volume	381	264	vph		
Number of Turning Lanes	1	1			
Design Condition	Α	Α	A, B, or C		
Turning Percentage	43%	40%			
Vehicles Per Cycle	15.9	11.0			
Storage Length	548	400	feet		
Deceleration/Taper	50	50	feet		
Calculated Turn Lane Length	598	450	feet		
No Block Distance	385	333	feet		
No Block Turn Lane Length	598	450	feet		

STATE ROUTE 94 (STATE ROAD) SBRT						
2034 PM PEAK HO	2034 PM PEAK HOUR VOLUMES					
Movement	AM	PM				
Design Speed	35	35	mph			
Cycle Length	150	150	seconds			
Control (Stop or Signal)	Signal	Signal				
Through Volume	435	1033	vph			
Number of Through Lanes	2	2				
Turning Volume	216	505	vph			
Number of Turning Lanes	1	1				
Design Condition	Α	Α	A, B, or C			
Turning Percentage	33%	33%				
Vehicles Per Cycle	9.0	21.0				
Storage Length	350	725	feet			
Deceleration/Taper	50	50	feet			
Calculated Turn Lane Length	400	775	feet			
No Block Distance	350	738	feet			
No Block Turn Lane Length	400	775	feet			

STATE ROUTE 94 (STATE ROAD) WBLT						
2034 PM PEAK HOUR VOLUMES						
Movement	AM	PM				
Design Speed	35	35	mph			
Cycle Length	150	150	seconds			
Control (Stop or Signal)	Signal	Signa	l			
Through Volume	233	529	vph			
Number of Through Lanes	2	2				
Turning Volume	38	237	vph			
Number of Turning Lanes	1	1				
Design Condition	Α	Α	A, B, or C			
Turning Percentage	14%	31%				
Vehicles Per Cycle	1.6	9.9				
Storage Length	80	373	feet			
Deceleration/Taper	50	50	feet			
Calculated Turn Lane Length	130	423	feet			
No Block Distance	195	400	feet			
No Block Turn Lane Length	195	423	feet			

STATE ROUTE 94 (STATE ROAD) WBRT					
2034 PM PEAK HOUR VOLUMES					
Movement	AM	PM			
Design Speed	35	35	mph		
Cycle Length	150	150	seconds		
Control (Stop or Signal)	Signal	Signa			
Through Volume	233	529	vph		
Number of Through Lanes	2	2			
Turning Volume	252	378	vph		
Number of Turning Lanes	1	1			
Design Condition	Α	Α	A, B, or C		
Turning Percentage	52%	42%			
Vehicles Per Cycle	10.5	15.8			
Storage Length	388	545	feet		
Deceleration/Taper	50	50	feet		
Calculated Turn Lane Length	438	595	feet		
No Block Distance	195	400	feet		
No Block Turn Lane Length	438	595	feet		

CUY-480-14.10/14.40

Turn Lane Length Calculations STATE ROUTE 94 (STATE ROAD) AND I-480 EB RAMPS

STATE ROUTE 94 (STATE ROAD) NBRT					
2034 PEAK HOUR VOLUMES					
Movement	NBRT				
Design Speed	35	35	mph		
Cycle Length	100	100	seconds		
Control (Stop or Signal)	Signal	Signal			
Through Volume	812	801	vph		
Number of Through Lanes	3	3			
Turning Volume	769	457	vph		
Number of Turning Lanes	1	1			
Design Condition	Α	Α	A, B, or C		
Turning Percentage	49%	36%			
Vehicles Per Cycle	21.4	12.7			
Storage Length	735	468	feet		
Deceleration/Taper	50	50	feet		
Calculated Turn Lane Length	785	518	feet		
No Block Distance	300	295	feet		
No Block Turn Lane Length	785	518	feet		

STATE ROUTE 94 (STATE ROAD) SBLT					
2034 PEAK HOU	R VOLUN	IES			
Movement	SBLT				
Design Speed	35	35	mph		
Cycle Length	100	100	seconds		
Control (Stop or Signal)	Signal	Signal			
Through Volume	486	1248	vph		
Number of Through Lanes	3	3			
Turning Volume	204	218	vph		
Number of Turning Lanes	1	1			
Design Condition	Α	Α	A, B, or C		
Turning Percentage	30%	15%			
Vehicles Per Cycle	5.7	6.1			
Storage Length	235	253	feet		
Deceleration/Taper	50	50	feet		
Calculated Turn Lane Length	285	303	feet		
No Block Distance	188	425	feet		
No Block Turn Lane Length	285	425	feet		

INTERSTATE ROUTE 480 EB OFF RAMP EBLT 2034 PEAK HOUR VOLUMES					
Movement	AM	PM			
Design Speed	45	45	mph		
Cycle Length	100	100	seconds		
Control (Stop or Signal)	Signal	Signal			
Through Volume	639	717	vph		
Number of Through Lanes	2	2			
Turning Volume	335	331	vph		
Number of Turning Lanes	2	2			
Design Condition	С	С	A, B, or C		
Turning Percentage	34%	32%			
Vehicles Per Cycle	4.7	4.6			
Storage Length	193	190	feet		
Deceleration/Taper	125	125	feet		
Calculated Turn Lane Length	318	315	feet		
No Block Distance	345	373	feet		
No Block Turn Lane Length	345	373	feet		

INTERSTATE ROUTE 480 EB OFF RAMP EBRT						
2034 PEAK HOUR VOLUMES						
Movement	AM	PM				
Design Speed	45	45	mph			
Cycle Length	100	100	seconds			
Control (Stop or Signal)	Signal	Signal				
Through Volume	335	331	vph			
Number of Through Lanes	2	2	-			
Turning Volume	639	717	vph			
Number of Turning Lanes	2	2				
Design Condition	С	С	A, B, or C			
Turning Percentage	66%	68%				
Vehicles Per Cycle	8.9	10.0				
Storage Length	348	375	feet			
Deceleration/Taper	125	125	feet			
Calculated Turn Lane Length	473	500	feet			
No Block Distance	190	188	feet			
No Block Turn Lane Length	473	500	feet			

CUY-480-14.10/14.40

Turn Lane Length Calculations STATE ROUTE 94 (STATE ROAD) AND I-480 WB RAMPS

STATE ROUTE 94 (STATE ROAD) NBLT					
2034 PEAK HOUR VOLUMES					
Movement	AM	PM			
Design Speed	35	35	mph		
Cycle Length	100	100	seconds		
Control (Stop or Signal)	Signal	Signal			
Through Volume	554	600	vph		
Number of Through Lanes	2	2			
Turning Volume	621	571	vph		
Number of Turning Lanes	2	2			
Design Condition	Α	Α	A, B, or C		
Turning Percentage	53%	49%			
Vehicles Per Cycle	8.6	7.9			
Storage Length	340	320	feet		
Deceleration/Taper	50	50	feet		
Calculated Turn Lane Length	390	370	feet		
No Block Distance	305	333	feet		
No Block Turn Lane Length	390	370	feet		

STATE ROUTE 94 (STATE ROAD) SBRT 2034 PEAK HOUR VOLUMES										
Movement	AM	PM								
Design Speed	35	35	mph							
Cycle Length	100	100	seconds							
Control (Stop or Signal)	Signal	Signal								
Through Volume	390	528	vph							
Number of Through Lanes	3	3								
Turning Volume	367	349	vph							
Number of Turning Lanes	1	1								
Design Condition	Α	Α	A, B, or C							
Turning Percentage	48%	40%								
Vehicles Per Cycle	10.2	9.7								
Storage Length	380	368	feet							
Deceleration/Taper	50	50	feet							
Calculated Turn Lane Length	430	418	feet							
No Block Distance	165	195	feet							
No Block Turn Lane Length	430	418	feet							

INTERSTATE ROUTE 480 WB OFF RAMP WBLT 2034 PEAK HOUR VOLUMES											
Movement	AM	PM									
Design Speed	45	45	mph								
Cycle Length	100	100	seconds								
Control (Stop or Signal)	Signal	Signal									
Through Volume	232	363	vph								
Number of Through Lanes	1	1									
Turning Volume	305	868	vph								
Number of Turning Lanes	2	2									
Design Condition	С	С	A, B, or C								
Turning Percentage	57%	71%									
Vehicles Per Cycle	4.2	12.1									
Storage Length	180	453	feet								
Deceleration/Taper	125	125	feet								
Calculated Turn Lane Length	305	578	feet								
No Block Distance	260	375	feet								
No Block Turn Lane Length	305	578	feet								

INTERSTATE ROUTE 480 WB OFF RAMP WBRT										
2034 PEAK HOU	R VOLUN	IES								
Movement	AM	PM								
Design Speed	45	45	mph							
Cycle Length	100	100	seconds							
Control (Stop or Signal)	Signal	Signal								
Through Volume	305	868	vph							
Number of Through Lanes	2	2								
Turning Volume	232	363	vph							
Number of Turning Lanes	1	1								
Design Condition	С	С	A, B, or C							
Turning Percentage	43%	29%								
Vehicles Per Cycle	6.4	10.1								
Storage Length	260	378	feet							
Deceleration/Taper	125	125	feet							
Calculated Turn Lane Length	385	503	feet							
No Block Distance	180	450	feet							
No Block Turn Lane Length	385	503	feet							

APPENDIX K DESIGN EXCEPTIONS

MEMO

To: Project File

From: Matt Gardner, P.E., ENV SP

Date: May 21, 2015

Subject: CUY-480 EB to SR 176 NB Ramp

Design Exception for 2-lane ramp

Project #: 0110095A.00 – Task 09

The proposed improvement at the I-480 EB exit ramp to SR 176 NB ramps converts the existing single lane ramp to a 2-lane configuration. Dimensions of the existing ramp are shown in **Table H1.**

TABLE H1 - Existing Condition

Existing Section	Width
Ramp pavement width	28 feet
Ramp toe of parapet to toe of parapet	30 feet
Ramp graded shoulder width left	9 feet
Ramp guardrail offset to the left	6 feet
Ramp graded shoulder width right	13 feet

The ODOT L&D criteria (Figure 303-1E) for a 2-lane ramp configuration are summarized below.

- Pavement width = 38 feet (2-12 ft lanes + 4 ft paved shoulder LT+ 10 ft paved shoulder RT)
- Toe to toe of parapet = 38 ft (2-12 ft lanes +4 ft offset to conc barrier +10 ft offset to conc barrier)

Figure 302-2E states the minimum lateral clearance on the existing bridge to remain = 6.5 feet right and 3.5 feet left which results in a toe-to-toe width of 34 feet. However, there is a statement that in no case shall the lateral clearance be less than the approach shoulder width.

- Graded shoulder width left = 9feet
- Guardrail offset to the left = 6feet
- Graded shoulder width right= 15feet

A summary of design exceptions to retrofit a 2-lane ramp having an advisory speed of 45 miles per hour and a pavement width of 30 feet is shown in **Table H2**.

TABLE H2: Design Exceptions

Design Element	Proposed	Required				
Paved Shoulder Width (RT)	4 ft (left) and 2 ft (right)	4 ft (left) and 10 ft (right)				
Bridge width	30 feet	38 feet				
Lateral Clearance	4 ft (left) and 2 ft (right)	4 ft (left) and 10 ft (right)				
Graded Shoulder Width	7 ft (left) and 7ft (right)	9 feet (left) and 15 feet (right)				

The paved shoulder width on the bridge is proposed to be reduced from 8 ft (existing) to a minimum 2 ft width.

APPENDIX L COST ESTIMATE BENEFIT COST ANALYSIS

CUY-480-14.10_14.40 SAFETY STUDY I-480 EB TO SR 176 NB RAMP -2 LANE RAMP (RECONSTRUCTION) - OPTION B, CLEVELAND OHIO, ODOT DISTRICT 12 PRELIMINARY CONSTRUCTION ESTIMATE - MAY 1, 2015

MDE JUNE 2, 2015

	MDE JUNE 2, 2015					_	
ITEM	IDESCRL	QUANTITY	CODEDESC	ι	JNIT COST		TOTAL COST
201E11000	CLEARING AND GRUBBING		LS	\$	20,566.14	\$	20,567.00
202E11000	STRUCTURE REMOVED	1	LS	\$	13,251.51	\$	13,252.00
202E22900	APPROACH SLAB REMOVED	200	SY	\$	36.18	\$	7,236.00
202E23000	PAVEMENT REMOVED	47900	SY	\$	9.47	\$	453,461.00
202E38000	GUARDRAIL REMOVED	1195	FT	\$	1.73	\$	2,063.00
202E47800	IMPACT ATTENUATOR REMOVED	1	EACH	\$	304.10	\$	305.00
203E10000	EXCAVATION	1500	CY	\$	14.38	\$	21,566.00
203E20000	EMBANKMENT	4000	CY	Ś	11.59	\$	46,368.00
209E60500	LINEAR GRADING		MILE	\$	1,780.28	\$	535.00
304E20000	AGGREGATE BASE	1262		\$	47.66	\$	60,148.00
407E10000	TACK COAT		GAL	\$	2.37	Ś	568.00
408E10000	PRIME COAT		GAL	\$	4.12	\$	989.00
				 		Ė	
441E10100	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, (446), PG70-22M	400		\$	207.69	\$	83,076.00
441E10200	ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 2, (446)	160		\$	158.02	\$	25,283.00
451E14010	9" REINFORCED CONCRETE PAVEMENT, CLASS QC1	1260		\$	73.38	\$	92,459.00
451E16010	12" REINFORCED CONCRETE PAVEMENT, CLASS QC1	14000	SY	\$	80.00	\$	1,120,000.00
451E30000	SPECIAL - PRESSURE RELIEF JOINT, TYPE A	140	FT	\$	190.63	\$	26,689.00
605E11100	6" SHALLOW PIPE UNDERDRAINS	3500	FT	\$	9.38	\$	32,819.00
605E14000	6" BASE PIPE UNDERDRAINS	3500	FT	\$	8.29	\$	29,027.00
606E15050	GUARDRAIL, TYPE MGS	1250	FT	\$	16.19	\$	20,242.00
606E26150	ANCHOR ASSEMBLY, MGS TYPE E	1	EACH	\$	2,094.76	\$	2,095.00
606E32160	BRIDGE TERMINAL ASSEMBLY, TYPE TST		EACH	\$	1,357.68	\$	5,431.00
614E11000	MAINTAINING TRAFFIC		LS	\$	68,572.55	\$	68,573.00
618E40600	RUMBLE STRIPS, (ASPHALT CONCRETE)		MILE	\$	796.72	\$	119.00
618E40700	RUMBLE STRIPS, (CONCRETE)		MILE	\$	2,625.31	\$	1,330.00
619E16000	FIELD OFFICE, TYPE A		MNTH	\$	1,737.08	\$	31,268.00
	CONCRETE BARRIER	800		\$	90.00	\$	72,000.00
623E10000	CONSTRUCTION LAYOUT STAKES AND SURVEYING		LS	\$	40,000.00	\$	40,000.00
624E10000	MOBILIZATION		LS	\$	200,000.00	\$	200,000.00
644E00100	EDGE LINE, 4"		MILE	\$	2,701.03	\$	3,871.00
	LANE LINE, 4"		MILE	\$	1,639.29		
644E00200	·			_	,	\$	1,486.00
644E00400	CHANNELIZING LINE, 8"	535		\$	1.48	\$	791.00
644E01514	DOTTED LINE, 8"	1500		\$	2.07	\$	3,112.00
659E00300	TOPSOIL	1000		\$	17.68	\$	17,676.00
659E10000	SEEDING AND MULCHING	9000		\$	2.00	\$	18,000.00
659E14000	REPAIR SEEDING AND MULCHING	450		\$	4.00	\$	1,800.00
659E15000	INTER-SEEDING	450		\$	2.00	\$	900.00
659E20000	COMMERCIAL FERTILIZER		TON	\$	1,000.00	\$	1,260.00
659E31000	LIME		ACRE	\$	200.00	\$	372.00
659E35000	WATER		MGAL	\$	10.00	\$	520.00
832E15000	STORM WATER POLLUTION PREVENTION PLAN		LS	\$	15,000.00	\$	15,000.00
832E30000	EROSION CONTROL	15000	EACH	\$	1.00	\$	15,021.00
	STRUCTURE	21052	SF	\$	225.00	\$	4,736,700.00
				Sub	total	\$	7,326,969.00
					Subtotal	\$	7,326,969.00
			Des	sign	Risk (35%)	\$	2,565,000.00
					Subtotal	\$	9,891,969.00
			1		Jaciotal	Ť	2,30.,000.00
		T T	Inflatio	n Cr	ost (12.9%)		1,277,000.00
-		+	miatio	JC	Total	\$	11,168,969.00
		<u> </u>			iotai	Ψ_	. 1, 100,303.00

- 1 Right of way is not anticipated
- 2 Existing pavement is assumed to be asphalt
 3 Private utility relocation not included
 4 Inflation base upon construction in 2018

CUY-480-14.10_14.40 SAFETY STUDY

ADD LANE ON I-480 WESTBOUND - SR 176 SB ENT RAMP TO STATE RD OVERPASS, CLEVELAND OHIO, ODOT DISTRICT 12 PRELIMINARY CONSTRUCTION ESTIMATE - MAY 1, 2015

ITEM	IDESCRL	QUANTITY	CODEDESC	l	JNIT COST	Т	OTAL COST
201E11000	CLEARING AND GRUBBING	-	LS	\$	17,883.60	\$	17,884.00
202E23000	PAVEMENT REMOVED	5700.00	SY	\$	8.23	\$	46,923.00
202E23500	WEARING COURSE REMOVED	9000.00		\$	4.96	\$	44,624.00
202E35100	PIPE REMOVED, 24" AND UNDER	500	FT	\$	14.40	\$	7,200.00
202E38000	GUARDRAIL REMOVED	325	FT	\$	1.50	\$	488.00
202E42010	ANCHOR ASSEMBLY REMOVED, TYPE E	2	EACH	\$	153.49	\$	307.00
202E58100	CATCH BASIN REMOVED	5	EACH	\$	388.28	\$	1,942.00
203E10000	EXCAVATION	1500	CY	\$	12.50	\$	18,753.00
203E20000	EMBANKMENT	4000	CY	\$	10.08	\$	40,320.00
209E60500	LINEAR GRADING	1	MILE	\$	1,548.07	\$	1,549.00
304E20000	AGGREGATE BASE	6,300.00	CY	\$	41.44	\$	261,095.00
407E10000	TACK COAT	900.00	GAL	\$	2.06	\$	1,852.00
408E10000	PRIME COAT	4800.00	GAL	\$	3.58	\$	17,187.00
441E10100	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, (446), PG70-22M	420.00	CY	\$	180.60	\$	75,852.00
441E10200	ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 2, (446)	580.00	CY	\$	137.41	\$	79,697.00
451E14010	9" REINFORCED CONCRETE PAVEMENT, CLASS QC1	12020.00		\$	63.81	\$	766,979.00
605E11100	6" SHALLOW PIPE UNDERDRAINS	5200		\$	8.15	\$	42,399.00
605E14000	6" BASE PIPE UNDERDRAINS	5200		\$	7.21	\$	37,500.00
606E15050	GUARDRAIL, TYPE MGS	325		\$	14.08	\$	4,577.00
606E26150	ANCHOR ASSEMBLY, MGS TYPE E		EACH	\$	1,821.53	\$	1,822.00
609E26000	CURB, TYPE 6	4200		\$	17.33	\$	72,793.00
611E05900	15" CONDUIT, TYPE B	3100		\$	73.53	\$	227,948.00
611E07400	18" CONDUIT, TYPE B	1000		\$	85.56	\$	85,560.00
611E98150	CATCH BASIN, NO. 3		EACH	\$	2,978.92	\$	2,979.00
611E98180	CATCH BASIN, NO. 3A		EACH	\$	2,319.84	\$	48,717.00
611E99574	MANHOLE, NO. 3		EACH	\$	3,833.95	\$	26,838.00
614E11000	MAINTAINING TRAFFIC		LS	\$	59,628.30	\$	59,629.00
618E40600	RUMBLE STRIPS, (ASPHALT CONCRETE)		MILE	\$	692.80	\$	663.00
619E16000	FIELD OFFICE, TYPE A		MNTH	\$	1,510.50	\$	18,127.00
623E10000	CONSTRUCTION LAYOUT STAKES AND SURVEYING	1	LS	\$	14,852.98	\$	14,853.00
624E10000	MOBILIZATION		LS	\$	59,409.15	\$	59,410.00
630E21000	OVERHEAD SIGN SUPPORT, TYPE TC-12.30, DESIGN 10		EACH	\$	16,464.64	\$	16,465.00
630E45500	OVERHEAD SIGN SUPPORT, TYPE TC-7.65, DESIGN 8		EACH	\$	34,085.58	\$	34,086.00
644E00100	EDGE LINE, 4"		MILE	\$	2,348.73	\$	2,567.00
644E00200	LANE LINE, 4"		MILE	\$	1,425.47	\$	726.00
644E00400	CHANNELIZING LINE, 8"	595		\$	1.28	\$	765.00
659E00300	TOPSOIL	1000		\$	15.37	\$	15,370.00
659E10000	SEEDING AND MULCHING	9000		\$	0.65	\$	5,872.00
659E14000	REPAIR SEEDING AND MULCHING	450	SY	\$	0.43	\$	194.00
659E15000	INTER-SEEDING	450	SY	\$	0.22	\$	98.00
659E20000	COMMERCIAL FERTILIZER	1.26	TON	\$	479.16	\$	604.00
659E31000	LIME	1.86	ACRE	\$	96.55	\$	180.00
659E35000	WATER		MGAL	\$	3.52	\$	184.00
832E15000	STORM WATER POLLUTION PREVENTION PLAN	1	LS	\$	8,971.46	\$	8,972.00
832E30000	EROSION CONTROL	10000	EACH	\$	1.00	\$	10,014.00
				Subto	otal		\$2,183,000.00
					Subtotal	\$	2,183,000
			Г	Design	n Risk (35%)	\$	765,000
				Josigi	Subtotal	\$	2,948,000
					Gubiolai	Ψ	_,5-0,000
			Infla	ation (Cost (12.9%)	\$	381,000
					Total	\$	3,329,000

- 1 Right of way is not anticipated
- 2 Existing pavement is assumed to be asphalt
- 3 Private utility relocation not included
- 4 Inflation base upon construction in 2018

CUY-480-14.10/14.40, STATE ROAD IMPROVEMENTS CUYAHOGA COUNTY, OHIO PRELIMINARY CONSTRUCTION ESTIMATE - MAY 29, 2015

ITEM	DESCRIPTION	QUANTITY	UNIT COST	1	TOTAL COST
201	CLEARING AND GRUBBING	1 LS	\$ 5,000.00	\$	5,000.00
202	PAVEMENT REMOVED, CONCRETE	50 SY	\$ 15.00	\$	750.00
202	CONCRETE MEDIAN REMOVED	420 SY	\$ 25.00	\$	10,500.00
202	CATCH BASIN OR INLET REMOVED	1 EA	\$ 1,500.00	\$	1,500.00
203	EXCAVATION	1200 CY	\$ 10.00	\$	12,000.00
203	EMBANKMENT	250 CY	\$ 15.00	\$	3,750.00
204	SUBGRADE COMPACTION	2000 SY	\$ 2.00	\$	4,000.00
206	CEMENT STABILIZED SUBGRADE, 16" DEEP	2000 SY	\$ 7.50	\$	15,000.00
252	FULL DEPTH PAVEMENT SAWING	2500 FT	\$ 2.00	\$	5,000.00
254	PAVEMENT PLANING, ASPHALT CONCRETE	5000 SY	\$ 2.50	\$	12,500.00
448	ASPHALT CONCRETE SURFACE COURSE 3"	1500 CY	\$ 150.00	\$	225,000.00
304	AGGREGATE BASE, 10"	550 CY	\$ 50.00	\$	27,500.00
407	TACK COAT	2500 GAL	\$ 2.00	\$	5,000.00
452	8" CONCRETE PAVEMENT	2000 SY	\$ 75.00	\$	150,000.00
500	STRUCTURE WORK	1 LS	\$ 50,000.00	\$	50,000.00
603	15" CONDUIT, TYPE B	25 FT	\$ 100.00	\$	2,500.00
604	CATCH BASIN	1 EA	\$ 3,000.00	\$	3,000.00
605	6" BASE PIPE UNDERDRAIN	2500 FT	\$ 6.00	\$	15,000.00
606	GUARD RAIL	100 FT	\$ 15.00	\$	1,500.00
609	CONCRETE CURB	450 FT	\$ 15.00	\$	6,750.00
606	CONCRETE MEDIAN	500 FT	\$ 15.00	\$	7,500.00
630	SIGNAGE	1 LS	\$ 5,000.00	\$	5,000.00
632	OVERHEAD SIGN RELOCATED/REPLACED	3 EA	\$ 25,000.00	\$	75,000.00
632	TRAFFIC DETECTOR RELOCATED	5 EA	\$ 5,000.00	\$	25,000.00
632	TRAFFIC SIGNAL UPGRADE	3 EA	\$ 50,000.00	\$	150,000.00
644	PAVEMENT MARKINGS	1 LS	\$ 15,000.00	\$	15,000.00
659	SEEDING AND MULCHING	550 SY	\$ 2.00	\$	1,100.00
832	SWPPP	1 LS	\$ 5,000.00	\$	5,000.00
832	EROSION CONTROL	2500 EA	\$ 1.00	\$	2,500.00

				Subtotal	\$ 843,000.00
614	MAINTAINING TRAFFIC	1 LS	\$	75,000.00	\$ 75,000.00
619	FIELD OFFICE, TYPE B	9 MN	\$	2,000.00	\$ 18,000.00
623	CONSTRUCTION LAYOUT STAKES	1 LS	\$	15,000.00	\$ 15,000.00
624	MOBILIZATION	1 LS	\$	40,000.00	\$ 40,000.00
			-		
				Subtotal	\$ 991,000.00
		De	sign	Risk (35%)	\$ 347,000.00
				Subtotal	\$ 1,338,000.00
		Inflatio	n C	ost (12.9%)	\$ 173,000.00
				Total	\$ 1,511,000.00

- 1 R/W and utilities are not included in this estimate. (New R/W not anticipated)
- 2 Existing pavement is assumed to be concrete.
- 3 Pavement widening is assumed to be concrete. Entire work area overlaid with asphalt after construction.
- 4 Construction assumed in 2018

CUY-480 (14.10-14.40) SAFETY STUDY - WB RIGHT TURN LANE IMPROVEMENT AT BROOKPARK/STATE INTERSECTION CUYAHOGA COUNTY, OHIO

PRELIMINARY RIGHT OF WAY ESTIMATE - SEPTEMBER 2015

Parcel ID	Land Use	Land Value	Structure Value	Total [A]	TOTAL ACREAGE (ACRES) [B]	Structure Impact		Area: Temporary	Cost: Fee Simple [D=A/B*C]	Cost: Temporary [E]	Labor costs [F]	Relocation [G]	Sub-Total Cost [D+E+F+G]	Cost to Cure	Comments
011-25-004	COMMERCIAL	\$2,362,200		\$2,362,200	2.018	NO	0.033		\$38,971	\$0	\$12,150		\$51,121	\$25,000	TEMPORARY R/W NOT CONSIDERED

Sub-Totals \$38,971 \$0 \$0 \$51,121 \$25,000

\$9,202

\$127,090

Administrative Costs
Jury trial Costs
Incidental transfer Costs

[(sub-total)x0.15]x1.20 [(sub-total)x0.10]x1.50 [(sub-total)x0.90]x0.025

\$7,668 \$1,150 **Estimated Cost** \$94,141 Contingency (35%) \$32,949

* Labor Cost Includes the following: (per ODOT Cost Estimating Procedures For Acquiring Rights of Way)

	TOTAL COST											
Titles		Detailed Appraisal	Detailed Appraisal Review	Negotiation	Closings	Project Management						
\$400		\$4,500	\$2,000	\$1,100	\$400	\$550						

- 1 Existing ROW From face of curb to back of sidewalk 18.5' (0.5' Curb, 13' Tree lawn, 5' SW), Required ROW is 22' (12' RT lane, 7.5' SW, 2.5 ft for Type C&G) New ROW needed 3.5'
- 2 Required Area is estimated for a 3.5' width take for the length of the WB RT lane (400') at Brookpark/State,
- 3 Existing R/W estimated using GIS parcel lines, where available
- 4 Where R/W cannot be easily estimated from GIS parcels, existing R/W is assumed to be 1' behind walk
- 5 Proposed permanent R/W is assumed to be 1' behind proposed walk
- 6 Cost to cure assumes some damages to existing car dealership parking lot

EGAT	Project Safety	Performance Repo	rt
Economic Crash Analysis Tool	Gene	eral Information	
Project Name	CUY-480-14.1-14.4 Safety Study	Contact Email	
Project Description	I-480/SR 94 interchange safety improve	ments Contact Phone	
Reference Number		Date Performed	5/29/2015
Analyst	VM	Analysis Year	2013
Agency/Company	LJB Inc		State Road Improvements

Project St	ummary Results	(Without Anima	l Crashes)		
	KA	В	С	0	Total
N _{predicted} - Existing Conditions	1.3399	5.2874	7.1047	23.1709	36.9029
N _{expected} - Existing Conditions	1.2549	5.2403	7.6431	28.5772	42.7155
N _{potential for improvement} - Existing Conditions	-0.0850	-0.0471	0.5384	5.4063	5.8126
N _{expected} - Proposed Conditions	0.9819	4.4383	6.8409	25.8489	38.1100

ECAT	Project Safety F	Performance Repo	rt
Economic Crash Analysis Tool	Genera	I Information	
Project Name	CUY-480-14.1-14.4 Safety Study	Contact Email	
Project Description	I-480/SR 94 interchange safety improveme	nts Contact Phone	
Reference Number		Date Performed	5/29/2015
Analyst	VM	Analysis Year	2013
Agency/Company	LJB Inc		State Road Improvements

Summary by Crash Type								
		Existing						
Crash Type	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency				
Unknown	0.0250	0.0252	0.0002	0.0196				
Head On	0.2341	0.2391	0.0050	0.1947				
Rear End	16.5354	21.9802	5.4448	21.2808				
Backing	0.7821	0.7523	-0.0298	0.6211				
Sideswipe - Meeting	0.5015	0.5078	0.0063	0.4078				
Sideswipe - Passing	3.8281	3.9849	0.1568	3.2684				
Angle	6.2277	6.9899	0.7622	6.0794				
Parked Vehicle	0.8335	0.7655	-0.0680	0.6371				
Pedestrian	1.5327	1.1370	-0.3957	0.6646				
Animal	0.0231	0.0227	-0.0004	0.0102				
Train	0.0016	0.0016	0.0000	0.0013				
Pedalcycles	0.9381	0.8154	-0.1227	0.4780				
Other Non-Vehicle	0.0000	0.0000	0.0000	0.0000				
Fixed Object	1.3812	1.3947	0.0135	1.0999				
Other Object	0.0486	0.0484	-0.0002	0.0380				
Overturning	0.0823	0.0823	0.0000	0.0674				
Other Non-Collision	0.1818	0.1788	-0.0030	0.1482				
Left Turn	3.7690	3.8124	0.0434	3.1039				
Right Turn	0.0000	0.0000	0.0000	0.0000				

	Project Cos	t Estimate	
Project Name	CUY-480-14.1-14.4 Safety Study	Contact Email	
Project Description	I-480/SR 94 interchange safety improvements	Contact Phone	
Reference Number		Date Performed	5/29/2015
Analyst	VM	Analysis Year	2013
Agency/Company	LJB Inc		State Road Improvements

Engineering Design %	10%
Contingency %	35%

Countermeasures	Construction Costs	Right of Way Costs	Engineering Design Costs	Contingency Amount	Total Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value
Site Characteristic Improvements (i.e. Lane widening)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Lighting)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Signal Phasing)			\$0.00	\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Added Right Turn Lane)	\$886,000.00		\$88,600.00	\$310,100.00	\$1,284,700.00		
CMF 1 - Four to five lane conversion	\$100,000.00		\$10,000.00	\$35,000.00	\$145,000.00		
CMF 2 - Provide a right turn lane on one major road approach		\$94,200.00	\$9,420.00	\$32,970.00	\$136,590.00		
CMF 3 - Modify change plus clearance interval to ITE 1985 Proposed Recommended Practice (4-leg signalized)	\$5,000.00		\$500.00	\$1,750.00	\$7,250.00		
CMF 4 - Provide (Extend) a left turn lane on one major road approach			\$0.00	\$0.00	\$0.00		
CMF 5 - Add through lane (Improve lane channelization)			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
			\$0.00	\$0.00	\$0.00		
		_	\$0.00	\$0.00	\$0.00		
Totals	\$991,000.00	\$94,200.00	\$108,520.00	\$379,820.00	\$1,573,540.00	\$0.00	\$0.00

Inflation %	13%

^{*}Final construction cost should match the Project Cost Estimate

EGAT		S	Safety Benef	it - Cost An	alysis				
Economic Crash Analysis Tool			Genera	al Information					
Project Name	CUY-480-14.1-14.4 Safety Study				Contact Email				
Project Description	I-480/SR 94 interchange safety improvements				Contact Phone				
Reference Number					Date Performed		5/29/2015		
Analyst	VM				Analysis Year		2013		
Agency/Company	LJB Inc						State Road Improve	ments	
Select Site Types to be	used in Benefit-Cost Analysis:	Comm	ents:						
		Countern	neasure Service I	Lives, Costs, and	d Safety Benefit	s			
	Countermeasures	Service Life (Years)	Initial Cost of Countermeasure	Annual Maintenance & Energy Costs	Salvage Value	Net Present Cost of Countermeasure	Total Cost of Countermeasures	Summary of Annual Crash Modifications	Net Present Value of Safety Benefits
Site Characteristic Improve	ements (i.e. Lane widening)		\$0.00			\$0.00	\$0.00		
	f							1	

Countermeasures	Life (Years)	Initial Cost of Countermeasure	Maintenance & Energy Costs	Salvage Value	Cost of Countermeasure	Total Cost of Countermeasures	Annual Crash Modifications	Net Present Value of Safety Benefits
Site Characteristic Improvements (i.e. Lane widening)		\$0.00			\$0.00	\$0.00		
Site Characteristic Improvements (i.e. Lighting)		\$0.00			\$0.00	\$0.00	0.055	4405.055
Site Characteristic Improvements (i.e. Signal Phasing)		\$0.00			\$0.00	\$0.00	-0.356	\$125,955
Site Characteristic Improvements (i.e. Added Right Turn Lane)	20	\$1,284,700.00			\$1,284,700.00	\$1,284,700.00		
CMF 1 - Four to five lane conversion	20	\$145,000.00			\$145,000.00	\$145,000.00	-0.167	\$70,070
CMF 2 - Provide a right turn lane on one major road approach	20	\$136,590.00			\$136,590.00	\$136,590.00	-2.759	\$909,607
CMF 3 - Modify change plus clearance interval to ITE 1985 Proposed Recommended Practice (4-leg signalized)	5	\$7,250.00			\$29,000.00	\$39,859.35	0.744	\$699,767
CMF 4 - Provide (Extend) a left turn lane on one major road approach	20	\$0.00			\$0.00	\$0.00	-0.504	\$175,622
CMF 5 - Add through lane (Improve lane channelization)	20	\$0.00			\$0.00	\$0.00	-1.563	\$494,386
		\$0.00			\$0.00	\$0.00	0.000	\$0
		\$0.00			\$0.00	\$0.00	0.000	\$0
		\$0.00			\$0.00	\$0.00	0.000	\$0
		\$0.00			\$0.00	\$0.00	0.000	\$0
		\$0.00			\$0.00	\$0.00	0.000	\$0
Totals		\$1,573,540.00	\$0.00	\$0.00	\$1,595,290.00	\$1,606,149.35	-4.606	\$2,475,408

Economic Crash Analysis Tool	General Information						
Project Name	CUY-480-14.1-14.4 Safety Study	Contact Email					
Project Description	I-480/SR 94 interchange safety improvements	Contact Phone					
Reference Number		Date Performed	5/29/2015				
Analyst	VM	Analysis Year	2013				
Agency/Company	LJB Inc		State Road Improvements				

Benefit - Cost Calculator
Net Present Value of Project \$1,595,290.00
Net Present Value of Safety Benefits \$2,475,408.08
Net Benefit \$880,118.08
Benefit / Cost Ratio 1.55

