March 4, 2016

PREPARED FOR
Ohio Department of Transportation District 12

5500 Transportation Blvd.
Bldg. 2201
Garfield Heights, OH 44125

PREPARED BY
LJB Inc.
2500 Newmark Drive
Miamisburg, OH 45342
(937) 259-5000

TABLE OF CONTENTS

EXECUTIVE SUMMARY1
EXISTING CONDITIONS7
CRASH ANALYSIS 21
COUNTERMEASURES 30
RECOMMENDATIONS 41
BENEFIT COST ANALYSIS 46
APPENDICES
PROJECT DOCUMENTATION A
EXISTING CONDITIONS B
TRAFFIC DATA C
SIGNAL WARRANTS D
CAPACITY ANALYSIS REPORTS E
CRASH DIAGRAMS F
HSM REPORTS G
COST ESTIMATES AND BENEFIT-COST REPORTS H

EXECUTIVE SUMMARY

STUDY AREA
Interstate 90 is an east/west freeway facility that traverses the east side of downtown Cleveland, Ohio in northern Cuyahoga County and continues east along Lake Erie. The study area includes a 1.8 mile segment of I-90 from SLM 19.50 to 21.30 that includes the three grade-separated interchanges: E. $55^{\text {th }}$ Street, E. $72^{\text {nd }}$ Street (State Route 283), and Martin Luther King Jr. Drive (MLK Drive). A project location map is provided in Figure 1 with a study area map as Figure 2.

FIGURE 1: PROJECT LOCATION MAP

BACKGROUND

The I-90 study corridor and associated interchanges encompass several lakeshore recreational facilities including the Cleveland Lakefront State Park and Nature Preserve, Intercity Yacht Club, E. $55^{\text {th }}$ Street Marina and Gordon Park. Access to these recreational amenities is provided from N. Marginal Road and Lakeshore Boulevard, forming a collector street network parallel to I-90. Many of the local streets in the study area have pedestrian and bicycle facilities to the various recreational areas from points south of I-90. Details of recent studies or projects in the project vicinity are briefly described below.

Lakefront Greenway and Downtown Connector Study

The Lakefront Greenway and Downtown Connector Study is a concurrent planning study focused on Interstate 90 and the parallel local routes of North and South Marginal Road. The E. $55^{\text {th }}$ Street, E. $72^{\text {nd }}$ Street, and MLK Drive interchanges are included within the limits of the Lakefront Greenway Study. The goals of the Lakefront Greenway study are summarized below. Presentation slides from the June 4, 2015 public meeting are included in Appendix A.
> Improve North and South Marginal Road for bicyclists and pedestrians
$>$ Strengthen connections between lakefront and the near eastside neighborhoods
The Greenway study includes concepts for the E. $72^{\text {nd }}$ Street and MLK Drive interchange areas. These concepts include the following transportation improvements:
$>$ Closure of the westbound exit ramp to E. $72^{\text {nd }}$ Street and construction of a roundabout at the E. $72^{\text {nd }}$ Street and North Marginal Road/Lake Shore Blvd intersection

FIGURE 3A: E.72ND ${ }^{\text {ND }}$ STREET CONCEPT (LAKEFRONT GREENWAY)

> Closure of the loop ramp from MLK Drive to westbound I-90 and construction of a roundabout at the MLK Drive/Lake Shore Blvd and WB I-90 exit ramp intersection. Traffic destined to westbound I-90 from MLK Drive would use North Marginal Road/Lakeshore Blvd to access the westbound entrance ramp at the E. $72^{\text {nd }}$ Street intersection.

FIGURE 3B: MLK DRIVE CONCEPT PLAN (LAKEFRONT GREENWAY)

North and South Marginal Road Projects

The city of Cleveland has identified rehabilitation projects for North and South Marginal Roads within the study area. These projects have been recently added to the NOACA's Long Range Transportation Plan by Resolution 2015-025. Excerpts from the NOACA's resolution are also included in Appendix A.

E. $55^{\text {th }}$ Street/Inner-belt CCG4 Project

ODOT has identified a future project, PID 77613 for the widening of E. $55^{\text {th }}$ Street and reconstruction of the existing railroad crossing overpass with E. $55^{\text {th }}$ Street located just south of I-90. This bridge replacement is required to widen E. $55^{\text {th }}$ Street from the existing two-lane section to a four-lane section with bike lanes and to increase the vertical clearance under the bridge.

PROJECT PURPOSE AND SAFETY NEED

The purpose of this study is to evaluate existing safety performance and to identify potential countermeasures to reduce traffic crashes on I-90 and at the interchanges with E. $55^{\text {th }}$ Street, $72^{\text {nd }}$ Street and MLK Drive. The following three segments of I-90 are identified on the 2013 Urban Freeway Excess Locations list based on crashes from 2011 to 2013.
> Rank \#32: SLM 21.01 to 21.11 (MLK Drive interchange)
$>$ Rank \#69: SLM 19.63 to 19.73 (E. $55^{\text {th }}$ Street interchange)
$>$ Rank \#96: SLM 20.61 to 20.71 (E. $72^{\text {nd }}$ Street interchange)
A review of crash data yielded a total of 405 crashes in the study area during a 3 -year period between 2011 and 2013. There were two fatal injury crashes in the study area, both occurring on mainline I90. The following crash types and conditions are over represented in the study area compared to statewide averages for the state highway system, freeway locations (statewide averages shown in parenthesis). Note the statewide crash averages are based on 2008-2012 data whereas the project data encompasses years 2011 to 2013.
$>$ Fatal crashes: 1 crash or 0.2 percent
(0.3 percent)
> Injury crashes: 122 crashes or 30.1 percent
> Rear end crashes: 179 crashes or 44.2 percent
(29.3 percent)
> Sideswipe - passing crashes: 90 crashes or 22.2 percent

RECOMMENDED COUNTERMEASURES

The following countermeasures are recommended to improve safety performance. Estimated costs reflect construction, design contingency, and engineering contingency in 2015 dollars (not adjusted for inflation).

E. 55 ${ }^{\text {th }}$ Street

$>$ Revise lane transition at the railroad crossing to align through traffic in the curb lane. Install overhead lane use signs in advance of pavement transition. The inside through lane in the southbound direction will operate as a defacto left turn lane at the interchange.
> Revise lane configuration northbound to drop right turn lane at the EB I-90 entrance ramp.
$>$ Realign the EB I-90 exit ramp opposite Dick Goddard Way approach
> Signalize the S. Marginal Road intersection as a separate signal phase. Consider converting the S. Marginal Road intersection to RIRO as a long term countermeasure.
$>$ Estimated cost for short term countermeasures: \$1,609,000.
Interstate 90 at E. 72 ${ }^{\text {nd }}$ Street
$>$ Remove the I-90 EB entrance ramp and I-90 WB exit ramp at the E. $72^{\text {nd }}$ Street interchange. Traffic will be diverted to N. Marginal Road to access the MLK Drive interchange.
$>$ Change the alignment of State Route 283 to follow N. Marginal Road.
$>$ Extend deceleration length of the EB I-90 exit ramp to MLK Drive.
$>$ Extend taper length of WB I-90 entrance ramp from MLK Drive.
$>$ Estimated cost for short term countermeasures: $\$ 677,000$. Short term improvements to MLK Drive are required before the proposed improvements are implemented at the E. $72^{\text {nd }}$ Street interchange.

Interstate 90 at MLK Drive

$>$ Short Term Countermeasures

- Extend two southbound through lanes on MLK Drive to East Blvd.
- Widen the WB I-90 exit ramp for dual left turn lanes to MLK Drive. Consider a traffic signal control at this intersection
- Signalize the EB I-90 ramp terminal intersection
- Provide dedicated left turn lanes on MLK Drive at the EB ramps and at the N. Marginal Road intersections
- Revise the EB I-90 exit ramp approach to MLK Drive from a L-R to a LR-R configuration
- Revise MLK Drive northbound approach to EB I-90 exit/entrance ramp approach from a T-TR to a T-R configuration with channelizing island and a receiving lane on the
entrance ramp. The add lane can be 250-300 feet, and then right lane merges to form a single lane ramp prior to the gore.
- Restrict NB left turn movement at Broad Street intersection
- Estimated cost for short term countermeasures: \$1,575,000
> Long Term Countermeasures
- Convert the WB exit ramp/ N. Marginal Road/Lakeshore Boulevard approaches to a modern roundabout intersection
- Realign Lakeshore Boulevard with future park access. Grade separate Lakeshore Boulevard and WB I-90 ramps with prefabricated arch structure.
- Estimated cost for long term countermeasures: $\$ 4,974,000$

EXISTING CONDITIONS

INTERSTATE 90
Existing conditions on I-90 are summarized in Table 1 with existing conditions diagrams provided in Appendix B.

TABLE 1: EXISTING ROADWAY CONDITIONS - I-90

	I-90 (W of E 55th)	I-90 (W of E 72nd)	I-90 (W of MLK Jr Dr)	I-90 (E of MLK Jr Dr)						
ODOT Functional Classification	Urban Interstate	Urban Interstate	Urban Interstate	Urban Interstate						
Posted Speed Limit		60 MPH	60 MPH	60 MPH						
Roadway Section		EB	5 lanes	4 lanes						
	WB	4 lanes	4 lanes	4 lanes						
ADT							117,297	123,131	4 lanes	4 lanes

I-90 INTERCHANGES

Three grade separated interchanges exist on I-90 within the study limits.
$>$ E. 55 ${ }^{\text {th }}$ Street Interchange: This interchange is formed with eastbound ramps terminating at E. $55^{\text {th }}$ Street and westbound ramps terminating at N. Marginal Road. The eastbound ramps are configured as a standard diamond and form a signalized intersection on the south side of the I-90 corridor. The westbound ramps intersect N . Marginal Road at an unsignalized intersection on the north side of the I-90 corridor.
$>E . \mathbf{7 2}^{\text {nd }}$ Street Interchange: This interchange features directional, free flow eastbound ramps and westbound ramps configured as a standard diamond that terminate at a stop controlled intersection. Immediately north of the westbound ramp intersection is N. Marginal Road. N. Marginal Road functions as a collector-distributor between E. $72^{\text {nd }}$ Street and MLK Drive in addition to providing access to lakeshore recreational facilities.
> Martin Luther King Jr. (MLK) Drive Interchange: This interchange features eastbound ramps that that are configured as a standard diamond and forms a stop controlled intersection at MLK Drive on the south side of the I-90 corridor. A loop ramp in the NW quadrant provides access to westbound I-90. Note that southbound traffic on MLK Drive must use N. Marginal Road to access I-90 westbound at the E. $72^{\text {nd }}$ Street interchange.

A distinct feature of the I-90 study corridor is the spacing and configuration of the E. $72^{\text {nd }}$ Street and MLK Drive interchanges. The interchanges do not accommodate all traffic movements thus requiring the use of N. Marginal Road as a collector-distributor roadway. The interchanges are spaced less than 2,000 feet apart which creates substandard weave lengths between ramps on I-90 in both the eastbound and westbound directions.
$>$ The eastbound weave segment is formed by the EB entrance ramp from E. $72^{\text {nd }}$ Street and the EB exit ramp to MLK Drive. The eastbound weave length is approximately 620 feet.
> The westbound weave segment is formed by the WB entrance ramp (loop ramp) from MLK Drive and the WB exit ramp to E. $72^{\text {nd }}$ Street. The westbound weave length is approximately 500 feet.

Capacity analysis was performed to determine the operational performance of the weave areas. For the purpose of analysis, it was assumed that all traffic in the weave merge area crosses between the mainline and ramps. Results indicate that the eastbound weave performs at LOS E during the PM peak hour with a v/c ratio of 0.82 . The westbound weave performs at LOS E during the AM peak hour with a v/c ratio of 0.84 . Results are summarized in Table 2. The letter denotes level of service with the number value denoting density.

TABLE 2: FREEWAY WEAVING ANALYSIS RESULTS

Section	Period	2034 No Build
I-90 EB between E 72nd and MLK Jr Dr	AM	C/22.3
	PM	E/35.8
I-90 WB between MLK Jr Dr and E 72nd	AM	E/36.3
	PM	C/25.8

All freeway segments and ramp merge and diverge points operate at LOS D or better. Details of the No Build capacity analyses are included in Appendix E. However, queueing onto mainline I-90 is observed during the AM peak hour at the MLK Drive interchange on both the EB and WB exit ramps. The constrained conditions of MLK Drive corridor influence the queueing onto mainline, further details are provided under the MLK Drive section of the report (p10-14).

PHOTO 1 - I-90 WB RAMP TO MLK, AM PEAK QUEUES

PHOTO 2 - l-90 EB EXIT RAMP TO MLK, AM PEAK QUEUES

E. 55 ${ }^{\text {TH }}$ STREET

E. $55^{\text {th }}$ Street is an Urban Minor arterial with a posted speed limit of 35 miles per hour. Through the interchange area, E. $55^{\text {th }}$ Street is a four-lane, undivided section with directional, on-street bicycle lanes. The eastbound ramps to/from I-90 intersect E. $55^{\text {th }}$ Street at a signalized intersection. Immediately south of the EB ramp terminal intersection is a second signalized intersection formed by S. Marginal Road (west leg) and Dick Goddard Way (east leg). The two intersections are operated with a single signal controller with the following features:
$>$ Left turn movements from E. $55^{\text {th }}$ Street to the EB entrance ramp, Dick Goddard Way and S. Marginal Road are made from the inside through lane. There are no dedicated left turn lanes on E. $55^{\text {th }}$ Street.
$>$ E. $55^{\text {th }}$ Street narrows to a two-lane section 800 feet south of the I-90 interchange as it passes under a railroad overpass. South of the overpass, E. $55^{\text {th }}$ Street transitions back to a four-lane section. The merge reduces capacity on E. $55^{\text {th }}$ Street resulting in rolling queues during peak hours that extend through the I-90 EB ramp intersection.
> The westbound approach of Dick Goddard Way has a channelizing right turn movement that is not controlled by the traffic signal, rather is stop controlled. Vehicles were observed to make the westbound right turn from Dick Goddard Way and continue onto the eastbound entrance ramp to I-90 without stopping.
$>$ The eastbound exit ramp from I-90 is channelized for right turn movements. The supplemental signal heads are positioned such that right turning vehicles at the stop bar do not have clear view of the signal heads. Additionally, the obtuse approach angle of the channelizing right turn lane obstructs the line of sight of vehicles approaching from the north.
$>$ The westbound ramps to/from I-90 intersect N. Marginal Road on the north side of the interchange at an unsignalized intersection. The westbound exit ramp has a second left turn lane (100 ft length).

PHOTO 3: SOUTHBOUND E. 55TH STREET AT THE EB RAMP INTERSECTION

The combined signalized intersections on E. $55^{\text {th }}$ Street currently operate with several approaches at LOS F indicating an over capacity condition. See Summary of Supplemental Traffic Studies section for additional details.

E. 72ND STREET (SR 283)

E. $72^{\text {nd }}$ Street is an Urban Minor arterial with a posted speed limit of 35 miles per hour. Through the interchange area, E. $72^{\text {nd }}$ Street is a two-lane, divided section with directional, on-street buffered bicycle lanes. This interchange features a directional exit ramp from EB I-90 to SBE. $72^{\text {nd }}$ Street and a directional entrance ramp from NB E. $72^{\text {nd }}$ Street to EB I-90. Traffic north of I-90 must use N. Marginal Road to access I-90 EB from the MLK Drive interchange. There are ramps configured as a standard diamond for WB I-90 traffic that form a stop controlled intersection. Immediately north of the westbound ramp intersection is N. Marginal Road.

PHOTO 4: NORTHBOUND E. $72{ }^{\text {ND }}$ STREET APPROCHING I-90 INTERCHANGE

MARTIN LUTHER KING JR. (MLK) DRIVE
MLK Drive is an Urban Minor arterial with a posted speed limit of 35 miles per hour. The MLK Drive interchange serves as the primary connection between I-90 and the University Circle area.

Intersection Conditions

The MLK Drive interchange area is directly influenced by the following six intersections spaced within a distance of 1,300 feet, as shown in Figure 4.

FIGURE 4: MLK DRIVE INTERSECTION CONDITIONS

1. I-90 WB exit ramp intersection

A three-leg intersection formed by MLK Drive as the south leg, Lakeshore Drive as the north leg, and the WB exit ramp as the east leg. The WB exit ramp is the free flow movement with MLK Drive and Lakeshore Drive approaches under stop sign control. The design of this intersection is nonstandard but right-of-way assignments are designed to accommodate peak hour traffic volumes.

2. I-90 WB entrance ramp diverge

The loop ramp to WB I-90 diverges from MLK Drive just south of the WB exit ramp intersection. The ramp is a free flow movement from MLK Drive but can be impacted by NB queues that extend back from the WB exit ramp intersection.
3. N. Marginal Road intersection

A three-leg intersection formed by MLK Drive as the north and south legs with N. Marginal Road as the west leg, positioned 275 feet south of the WB ramp terminal intersection. The EB approach of N. Marginal Road is under stop sign control. Left turn movements to N. Marginal Road from MLK Drive are made from the inside through lane.

4. I-90 EB ramp terminal intersection

A four-leg intersection formed by MLK Drive as the north and south legs and the I-90 EB exit ramp and the I-90 EB entrance ramp as the east and west legs. The EB exit ramp operates under stop sign control with the MLK Drive approaches under free flow conditions.

5. Broad Avenue intersection

A three-leg intersection formed by MLK Drive as the north and south legs and Broad Avenue as the west leg. There is a northbound left turn lane on MLK Drive at the Broad Avenue intersection. This intersection operates under traffic signal control. Broad Avenue is a low volume street connecting to E. $82^{\text {nd }}$ Street and St. Clair Avenue. The traffic signal is actuated by vehicle calls on Broad Avenue.

6. E. $\mathbf{8 8}^{\text {th }}$ Street intersection

A three leg intersection formed by MLK Drive and E. $88^{\text {th }}$ Street as the east leg. E. $88^{\text {th }}$ Street provides access to the Cleveland Cultural Gardens. The WB approach operates under stop sign control. There is a southbound left turn lane on MLK Drive at this intersection. The intersection is located 275 feet south of Broad Avenue.

Typical Section Conditions

Through the interchange area, MLK Drive is a four-lane, divided section with a center median island.
$>$ The total pavement width is approximately 72 feet between N. Marginal Road and the EB ramp terminal intersections.
$>$ Under the I-90 overpass, there is sidewalk on both sides of MLK Drive of varying width.
$>$ South of the EB ramp terminal intersection, the pavement width begins to transition.
$>$ Under the RR overpass, the total pavement width is approximately 42 feet. There is 10 foot wide sidewalk on both sides of MLK Drive south of the railroad overpass.

Operational Conditions

During field observations, queue spillback onto mainline I-90 extending from the WB exit ramp at MLK Drive was observed during the AM peak hour.

PHOTO 5 -l-90 WB EXIT RAMP APPROACHING MLK DRIVE, AM PEAK QUEUES

PHOTO 6 - I-90 WB MAINLINE AT MLK INTERCHANGE, AM PEAK QUEUES

Factors influencing performance of the WB exit ramp are tied directly to lane capacity of the ramp and downstream constraints on MLK Drive, as described below.
$>$ Single lane conditions on the WB exit ramp restrict the amount of traffic serviced by the WB ramp intersection at MLK Drive. There are two southbound lanes on MLK Drive that could receive traffic flow from two lanes on the WB exit ramp.
> Traffic from the WB exit ramp was observed to stop to allow traffic northbound on MLK Drive or southbound on Lakeshore Boulevard to traverse the intersection. Since the north/south movements are stop controlled, queues form during peak hours as a result of the
continuous flow of traffic from the WB exit ramp to MLK Drive. Motorists from the WB ramp are stopping or slowing to provide a gap in the traffic flow.
> The most significant capacity constraint on MLK Drive is the southbound lane merge that occurs just south of the EB ramp intersection. Traffic from the WB exit ramp utilizes the inside southbound lane due to the downstream merge condition. Right turning traffic from the EB exit ramp fills the southbound curb lane only to merge with the southbound flow from the WB exit ramp. The result is a high volume of southbound traffic converging into a single lane just 300 feet south of the interchange.
$>$ There is no dedicated turn lane on MLK Drive for southbound left turn movements onto the EB entrance ramp. Vehicles must wait in the median opening for a gap in opposing northbound traffic. If multiple left turning vehicles are waiting for a gap, southbound queues will form behind the waiting vehicles which impacts flow from the WB exit ramp.
$>$ Traffic signal operation at Broad Avenue is side-street actuated. The AM peak hour volume on Broad Avenue is low; however, when the signal serves minor street traffic, southbound queues on MLK extend farther towards the I-90 interchange.
$>$ Traffic on the EB exit ramp was observed to queue up the ramp toward mainline I-90. Traffic exiting EB I-90 at MLK Drive is forced to decelerate quickly through the I-90 weave segment to avoid extended queues on the ramp making this maneuver more challenging.

The current conditions on MLK Drive result in poor levels of service for the stop controlled movements at the WB exit ramp and EB exit ramp intersections. Long queues also extend from the WB exit ramp intersection despite the free flow condition on the ramp approach. Additional details related to the No Build levels of service can be found in the Summary of Supplemental Traffic Studies section of this report.

TRAIL SYSTEM
Figure 5 shows the existing shared use/recreational paths and on-street bicycle facilities in the study area. There is a pedestrian bridge that spans I-90 between E. $72^{\text {nd }}$ Street and MLK Drive, providing connection between Gordon Park and the lakeshore destinations. MLK Drive is the only local street in the study area without on-street bicycle facilities. Cyclists use the sidewalk/shared use paths along the west side of MLK Drive.

FIGURE 5: EXISTING MULIT-MODAL FACILITIES

DATA COLLECTION

Current traffic data was obtained from various sources for use in this study, as described below. AM and PM peak hour traffic volumes projected for design year 2034 are shown in Figures 6A through 6D. Traffic data reports used in preparation of this study are provided in Appendix C.
> I-90 Mainline: Directional ADT on mainline I-90 was obtained from a permanent count station located at SLM 24.33 (east of the study area). Data was from a weekday in May 2014. ADT within the project area was determined based on ODOT collected ramp counts (dated $2011,2013)$ between the permanent count station and East $55^{\text {th }}$ Street.
> I-90 ramps: Directional hourly ramp volumes were obtained from short term count stations. A total of 21 hourly ramp counts were obtained, all of which were collected by ODOT between 2011 and 2013. Each count includes a minimum of 24 consecutive hours of data.
$>$ E. 55 ${ }^{\text {th }}$ Street: Turning movement counts were conducted on E. $55^{\text {th }}$ Street in October 2014 as part of the Lakefront Greenway and Downtown Connector Study. Count data at the E. $55^{\text {th }}$ Street intersections with N. Marginal Road, S. Marginal Road, and the I-90 EB ramps was used in preparation of this safety study.
> MLK Drive: A 24-hour turning movement count was conducted on October 30, 2014 at the intersection of MLK Drive and the I-90 EB ramps. Turning movement volumes at the I-90 WB ramp were estimated based on available ramp volumes and 15 -minute volume counts conducted during field inspection.
> N. Marginal Road: Traffic count data was not available for specific locations on N. Marginal Road. Traffic volumes at intersections were estimated using ramp data and count data from adjacent intersections. Traffic on N.Marginal Road is expected to vary seasonally with recreational use of lakefront park facilities.

The following steps were included in the preparation of design year traffic volume forecasts:
> Existing volumes were used to determine the AM and PM peak hours.
$>$ Existing volumes were adjusted to reflect seasonal conditions of the study area using ODOT recommended seasonal adjustment factors for all vehicle classes on an urban interstate route.
> Existing volumes were adjusted for seasonal variations and were then forecast to design year 2034 using growth factors provided by NOACA. Growth rates summarized in Appendix C, listed in percent growth per year, were applied to volumes in the study area to obtain design year volumes. Ramps and freeway segments not listed are projected to have no growth (0 percent). All service/local streets are projected with no growth.

Preliminary development of potential countermeasures identified in this study should be confirmed using existing traffic data at all locations. Estimated traffic volumes used at some locations within the study area should be supplemented with seasonal traffic data.

NO BUILD CAPACITY ANALYSIS

Capacity analyses were performed at key locations in the study area to assess existing operations and to identify critical deficiencies that may contribute to safety issues. Analyses were prepared for No Build conditions using 2034 AM and PM peak hour volumes for the analysis modules listed below. Analysis methodology and detailed output reports for all capacity analyses are included in Appendix E.

FIGURE 6A: 2034 AM PEAK HOUR TRAFFIC VOLUMES

FIGURE 6B: 2034 AM PEAK HOUR TRAFFIC VOLUMES

FIGURE 6C: 2034 PM PEAK HOUR TRAFFIC VOLUMES

FIGURE 6D: 2034 PM PEAK HOUR TRAFFIC VOLUMES

CRASH ANALYSIS

CRASH DATA
Crash data was furnished by the Ohio Department of Transportation for the study area, encompassing a three-year period between 2011 and 2013. The OH-1 crash report for each documented crash was reviewed to confirm accuracy and to locate crashes properly within the study limits. Crash diagrams are provided in Appendix F. Noteworthy crash statistics for the three-year period are summarized below.
> Total crashes: 405 total crashes
$>$ Fatal crashes: 1 crash or 0.2 percent (0.3 percent)
> Injury crashes: 122 crashes or 30.1 percent
$>$ Rear end crashes: 179 crashes or 44.2 percent
> Sideswipe - passing crashes: 90 crashes or 22.2 percent

HIGHWAY SAFETY MANUAL

The predictive method described in Part C of the Highway Safety Manual provides steps to estimate the expected average crash frequency of a site for a given time period, geometric design, traffic control features, and traffic volumes. The expected average crash frequency (Nexpected) is estimated using a predictive model estimate of crash frequency for a specific site type (Npredicted) together with observed crash frequency (where available).
$>$ Predicted average crash frequency: This step involves determination of the predicted crash frequency which reflects how a site would be expected to perform relative to 1,000 similar sites. Calculation of predicted crash frequency utilizes Safety Performance Functions (SPF) for a base condition. Crash Modification Factors (CMF) are applied to account for specific site characteristics that differ from the base condition. A state-level calibration factor is then applied to normalize the base condition to localized conditions. The resulting value is the Predicted Crash Frequency (Npredicted)
$>$ Expected average crash frequency: The next step involves calculation of the expected average crash frequency which reflects average performance of the site over an extended period of time based on actual crash history. This step incorporates the Empirical Bayes (EB) method which combines actual (observed) crash history of the study site with predicted average crash frequency. These values are weighted based on an over-dispersion parameter (k) that is the measure of the strength of the model (safety performance factors). The resulting value is the expected average crash frequency (Nexpected)

EXPECTED EXCESS CRASH RESULTS

The difference between the predicted and expected average crash frequencies is termed the "Expected Excess Crashes" for the site, as shown in Graph 1. If the expected average crash frequency is greater than the predicted average crash frequency, then the site has potential for safety improvement. If expected frequency is less than predicted frequency, then the site is expected to experience fewer crashes per year on average than its peers.

GRAPH 1: EXPECTED EXCESS CRASHES

The HSM predictive method for urban/suburban arterials was applied to E. $55^{\text {th }}$ Street and to MLK Drive, as described below. A detailed overview of the Highway Safety Manual procedures and HSM output reports are provided in Appendix G.
$>$ E. $55^{\text {th }}$ Street: One (1) intersection element for the I-90 EB ramp/Goddard Way/S. Marginal Road intersection. Results summarized in Table $\mathbf{3}$ conclude that the expected crash frequency at this intersection is greater than predicted, indicative of the potential for safety improvement.

TABLE 3: HSM RESULTS FOR EXISTING CONDITIONS - E. 55TH STREET

	E 55 th Street @ l-90 EB ramp/Goddard Way/S. Marginal
Predicted Average Crash Frequency (Npredicted)	12.81
Expected Average Crash Frequency - Existing Conditions (Nexpected, existing)	13.87
Expected Excess Crashes	1.06
Potential for Safety Improvement?	Yes

$>$ MLK Drive: Two (2) intersection elements for the I-90 WB ramp/N. Marginal and I-90 EB ramp intersection and one segment for MLK Drive between the EB I-90 ramp intersection and E. $88^{\text {th }}$ Street. Results summarized in Table 4 conclude that the expected crash frequency is greater than predicted for the EB ramp intersection and the segment south of the intersection, suggesting the potential for safety benefit.
Crash frequency is slightly below the predicted crash frequency for the WB ramp intersection.

TABLE 4: HSM RESULTS FOR EXISTING CONDITIONS - MLK DRIVE

	MLK Drive Total	Intersection: MLK Drive @ I-90 WB Ramp/N.Marginal	Intersection: MLK Drive @ --90 EB Ramp	Segment: MLK Drive south of l-90 EB Ramp intersection
Predicted Average Crash Frequency (Npredicted)	14.24	7.94	5.85	0.45
Expected Average Crash Frequency - Existing Conditions (Nexpected, existing)	20.89	7.42	12.67	0.81
Expected Excess Crashes	6.65	-0.52	6.82	0.36
Potential for Safety Improvement?	Yes	No	Yes	Yes

OBSERVED CRASH HISTORY

The 405 total reported crashes were distributed within the study area as follows:
> I-90 Mainline (including ramp crashes not intersection related): 292 crashes
$>$ E 55 ${ }^{\text {th }}$ Street (including N. Marginal Road): 39 crashes
$>E 72^{\text {nd }}$ Street: 14 crashes
> MLK Drive: 60 crashes

1-90 corridor

There were 292 crashes reported on mainline I-90 during the three-year analysis period. Noteworthy statistics are summarized below.
$>91 \%$ of the mainline crashes were one of three types of crashes: rear end (102 or 35%), fixed object (87 or 30%) or sideswipe passing (77 or 26%).
$>$ A disproportionate high percentage of crashes (46 percent or 133 crashes) occurred in 2011. The other two years experienced 28 percent and 26 percent of the total crashes
>42 percent of crashes on mainline I-90 occurred on non-dry pavement surface (wet, snow or ice).
> Two percent of crashes involved speeds greater than 65 miles per hour
$>$ A fatal injury crash was reported on eastbound I-90 at SLM 20.64, between the ramps at the E. $72^{\text {nd }}$ Street interchange. The crash occurred on Thursday, May 30, 2013 during the 10AM hour under clear and dry conditions. The crash involved a pedestrian that was struck while attempting to assist a stalled vehicle from the travel lanes. The $\mathrm{OH}-1$ report is provided in Appendix F.
>32 percent of mainline crashes resulted in injury. Graph 2 shows the distribution of crash severity over the 3 -year period.

GRAPH 2: MAINLINE I-90 CRASHES BY YEAR AND SEVERITY

GRAPH 3: MAINLINE I-90 EASTBOUND CRASHES

GRAPH 4: MAINLINE I-90 WESTBOUND CRASHES

The locations of crashes on the I- 90 corridor changed as a result of the crash review process. The following three segments of I-90 are identified on the 2013 Urban Freeway Excess Locations list based on crashes from 2011 to 2013:
$>$ Rank \#32: SLM 21.01 to 21.11 (MLK Drive interchange)
$>$ Rank \#69: SLM 19.63 to 19.73 (E. $55^{\text {th }}$ Street interchange)
$>$ Rank \#96: SLM 20.61 to 20.71 (E. $72^{\text {nd }}$ Street interchange)

Graph 5 shows the revised crashes by location. The horizontal arrows (blue) indicate the high priority locations from the 2013 Urban Freeway Excess location analysis listed above. The EB and WB weaves between MLK Drive and E. $72^{\text {nd }}$ Street are shown as vertical lines (orange).
The high crash locations based on the histogram are east and west of the MLK interchange and the E. $55^{\text {th }}$ Street interchange. The weave between MLK Drive and E. $72^{\text {nd }}$ Street may create congestion that contributes to crashes near SLM 20.45 and at SLM 21.25.

GRAPH 5: MAINLINE I-90 CRASH LOCATION

E. $55^{\text {th }}$ Street

There were 39 crashes reported on E. $55^{\text {th }}$ Street during the three-year analysis period. Noteworthy statistics are summarized below.
>75 percent of crashes on E. $55^{\text {th }}$ Street were rear end crashes.
> Crashes were evenly distributed by year and day of week
>75 percent of crashes occurred during daylight hours, 61 percent occurred during clear weather and 69 percent on dry pavement
>87 percent of the crashes occurred at an intersection with 80 percent occurring at the E. $55^{\text {th }}$ Street intersection with the EB ramp/Goddard Way/S. Marginal Road. The remaining 7 percent of intersection crashes occurred at the WB ramp intersection with N. Marginal Road.

GRAPH 6: E. 55TH STREET FREQUENCY OF CRASHES BY CRASH TYPE

E. 72 ${ }^{\text {nd }}$ Street

There were 14 crashes reported on E. 72nd Street during the three-year analysis period. Noteworthy statistics are summarized below.
> 42 percent of crashes resulted in injury
> 35 percent of crashes occurred on Monday
> Crash types included sideswipe passing, rear end, left turn, and fixed object
$>$ Greater than 70 percent of crashes occurred during daylight hours with clear weather and dry pavement.
>6 of the 14 crashes (43 percent) occurred on E. $72^{\text {nd }}$ Street at the driveway to Gordon Park. A concrete median allows ingress/egress but left turn lanes on $\mathrm{E} .72^{\text {nd }}$ Street do not exist.

GRAPH 7: E 72ND ${ }^{\text {ND }}$ STREET FREQUENCY OF CRASHES BY CRASH TYPE

MLK Drive

There were 60 crashes reported on MLK Drive during the three-year analysis period. Noteworthy statistics are summarized below.
> 75 percent of crashes were rear end crashes (45 crashes). The rear end crashes were distributed at the following locations

- 32 rear end crashes at the EB ramp terminal intersection. 30 of those crashes occurred on the EB ramp approaching the intersection. 2 occurred southbound on MLK Drive approaching the intersection
- 7 rear end crashes at or between the Broad Avenue and E. $88^{\text {th }}$ Street intersections
- 4 rear end crashes at or between the WB ramp terminal and N. Marginal Road intersection
- 2 rear end crashes at the SB lane merge
- MLK Drive experiences queueing during weekday peak hours, primarily in the southbound direction during the AM peak and northbound direction during the PM peak. 3 rear-end crashes were observed in the southbound direction of MLK drive during weekday AM peak hours. No rear-end crashes were observed in the northbound direction during weekday PM peak hours.
>12 percent of crashes were fixed object (7 crashes). 3 of the 7 fixed object crashes involved the center concrete median island.
$>$ A bicycle crash was reported on MLK Drive near the intersection with E. $88^{\text {th }}$ Street. This was a non-injury crash.

GRAPH 8: MLK DRIVE FREQUENCY OF CRASHES BY TYPE

COUNTERMEASURES

Mitigation of safety issues on I-90 is to be accomplished by improving ramp capacity and eliminating substandard weave conditions that exist on the I-90 corridor. Due to the proximity of the intersections on the local roadway network and the extended queues that impact adjacent intersections, safety countermeasures are expected to be a corridor-level improvement at specific interchanges. Capacity upgrades that add lanes to mainline I-90 are not a part of this scope of work.

I-90 CORRIDOR

The distance between the MLK Drive interchange and the E. $72^{\text {nd }}$ Street interchange is less than 2,000 feet, resulting in substandard lengths for weaving movement to/from I-90.
Countermeasures are proposed to mitigate crashes in the weave segments of I-90 between E. $72{ }^{\text {nd }}$ Street and MLK Drive. A total of 12 westbound crashes and 17 eastbound crashes are expected to be mitigated by removing the EB entrance ramp and the WB exit ramp at the E. $72^{\text {nd }}$ Street interchange. Removal of the EB entrance ramp and WB exit ramp at E. $72^{\text {nd }}$ Street is proposed to eliminate the substandard weave on I-90 as shown in Figure 7. Justification for this recommendation includes the following:
$>$ Ramp volumes. The peak hour volume (PM) on the EB entrance ramp is 160 vehicles per hour. The peak hour volume (AM) on the WB exit ramp is 130 vehicles.
$>$ Movements not accommodated at the E. $72^{\text {nd }}$ Street interchange are provided at the MLK Drive interchange via N. Marginal Road. The 130 vehicles per hour (VPH) on the WB exit ramp will be redirected to exit at MLK Drive and travel west on N. Marginal Road to E. $72^{\text {nd }}$ Street. Similarly, the 160 VPH on the EB entrance ramp will be redirected east on N. Marginal Road to MLK Drive where they will access I-90 from the EB entrance ramp.
> Diversion of traffic to the MLK Drive is expected to increase congestion at the MLK Drive interchange unless capacity improvements are implemented. See the MLK Drive countermeasure discussion for additional information.
$>$ Extend deceleration length of the EB exit ramp and acceleration length of the WB entrance ramp at the MLK Drive interchange. With closure of the ramps at the E. $72^{\text {nd }}$ Street interchange, additional deceleration and acceleration lengths can be provided. With the EB entrance ramp from E. $72^{\text {nd }}$ Street closed, the deceleration length can be extended from 475 feet to 800 feet with use of the existing pavement.
$>$ The closure of the I-90EB entrance ramp from E. $72^{\text {nd }}$ Street requires relocation of S.R. 283 to N. Marginal Road. Figure 7 shows the proposed relocation of S.R. 283. This relocation to establish new alignment for a State Route will require action by the ODOT Director.
$>$ The removal of I-90 EB entrance ramp from E. $72^{\text {nd }}$ Street improves the safety of bicyclists in the northbound lanes with the removal of shared right turn lane. Without the ramp, the buffer for the bike lane can be extended across what is now the ramp area.

FIGURE 7: E. 72ND RAMP CLOSURES

Note: Weave volumes (estimated) are shown for PM peak hour; all ramp traffic is assumed to weave.
An alternative to the eastbound ramp closure at E. $72^{\text {nd }}$ Street was evaluated which included converting the EB ramps at E. $72^{\text {nd }}$ Street to a diamond ramp configuration and constructing an EB collector-distributor roadway between E. $72^{\text {nd }}$ Street and MLK Drive (Figure 8). This would eliminate the mainline weave segment by forcing all traffic destined to E. $72^{\text {nd }}$ Street and to MLK Drive to exit at the E. $72{ }^{\text {nd }}$ Street interchange. Traffic destined to MLK Drive would continue through the at-grade intersection on E. $72^{\text {nd }}$ Street onto the C-D roadway to access MLK Drive.
FIGURE 8: C-D ROAD BETWEEN E.72ND AND MLK

This alternative is not further evaluated in this study due to higher costs and impacts to Gordon Park. This alternative may be considered if other alternatives are determined not to be feasible. Preliminary engineering is needed to develop an alignment and profile to estimate the construction costs of reconfiguring the EB ramps at E. $72^{\text {nd }}$ Street, construction of a CD roadway parallel to I-90, reconstruction of the pedestrian bridge over I-90, and potential impacts to Gordon Park property.

MLK DRIVE CORRIDOR

The MLK Drive corridor experiences congestion during the AM and PM peak periods. Appendix E contains the detailed analyses and summary for the No Build condition. Locations with LOS E or LOS F are considered capacity deficient for the purposes of this evaluation. Note that the design period for MLK Drive corridor is the AM peak. All level of service results are for the AM peak hour, unless stated otherwise.
$>$ MLK Drive at I-90 WB ramp intersection: LOS F on northbound and southbound approaches. Although the WB ramp approach shows acceptable level of service (LOS B), the high volumes result in a queue length of 1,539 feet. The length of the queue can extend onto mainline I-90 due in part to the capacity constraints of the single lane approach at MLK Drive.
> MLK Drive at N. Marginal Road intersection: LOS E on the eastbound approach of N. Marginal Road.
$>$ MLK Drive at I-90 EB ramp intersection: LOS F on eastbound approach of the EB exit ramp.

The primary capacity constraint on the MLK Drive corridor is the southbound merge at the railroad bridge. Queues that form on both exit ramps are attributed in part to the capacity of the single southbound lane on MLK Drive south of the I-90 interchange. Two countermeasures are proposed to mitigate existing capacity constraints of MLK Drive. The metrics used to evaluate the various improvement alternatives are a combination of intersection LOS and $95^{\text {th }}$ percentile queue lengths derived by SimTraffic software.
> Alternative 1: Provide two southbound lanes on MLK Drive south of the interchange and widen WB exit ramp to two lanes
The first Build alternative includes continuation of two southbound lanes on MLK Drive south of the railroad overpass. Presently, the southbound lanes of MLK Drive merge to a single lane just north of the railroad overpass, resulting in a capacity constraint. Additionally, a second lane on the WB exit ramp is included in this alternative such that two lanes from the ramp can feed into two receiving lanes on MLK Drive and extend south of the RR overpass.
The northbound left turn movement at the Broad Street intersection is to be prohibited during peak hours (7-9 AM and 3-7PM).

> Alternative 2: Alternative 1 plus traffic signal at the EB ramp intersection

The second Build alternative includes improvements from Alternative 1 plus a traffic signal at the EB ramp intersection. This alternative was evaluated separately to discern the additional benefits of assigning right of way at the EB ramp intersection with a traffic signal. The addition of a traffic signal at the EB ramp intersection is expected to improve operations from LOS F to LOS B. Analyses included additional volumes resulting from modifications to the E. $72^{\text {nd }}$ Street interchange.

The $95^{\text {th }}$ percentile queue lengths for No Build (black), Alternative 1 (red), and Alternative 2 (blue) are graphically shown in Figure 9. Results show queues on the WB exit ramp are reduced-- 1,535 feet in the No Build condition to less than 100 feet with Alternative 1. Alternative 2 reduces queues on the EB exit ramp while still maintaining short queue lengths on southbound MLK Drive. The addition of a protected/permissive left turn phase may be considered in the AM peak period to minimize queue lengths of the SB left turn movement.

An interim improvement of only signalizing the EB I-90 ramp intersection without increasing southbound capacity on MLK Drive will increase delays to traffic exiting I-90 WB. In addition to the re-allocation of approach delays, the capacity of the traffic signal is expected to be adversely affected by the queues extending from the railroad bridge unless the second lane is extended on MLK Drive.

FIGURE 9: QUEUE LENGTH COMPARISON, AM PEAK HOUR

> Alternative 3: Signalize WB exit ramp

The WB I-90 exit ramp on MLK Drive also was evaluated with traffic signal control. The intersection configuration matches the existing condition, with the WB exit ramp forming the east leg of the signalized intersection. The N. Marginal Road approach is to be equipped with vehicle detection to force the traffic signal at the WB I-90 exit ramp to cycle and create gaps in the traffic flow during peak periods. With traffic signal control and lane geometry described below and shown in Figure 10, the intersection is expected to operate at LOS C or better during the AM and PM peak hours.

- 2 WB approach lanes on the WB exit ramp (L, LR)
- 1 EB approach lanes on N. Marginal (LR)
- 1 NB approach lane on MLK Drive (T)
- 1 SB approach lane on Lakeshore Blvd (T)

While levels of service are expected to be good, the queue length on the WB ramp approach is expected to be 325 feet. A signal warrant analysis must be conducted prior to recommending a traffic signal at this intersection.

FIGURE 10: ALTERNATIVE 3 - MLK CORRIDOR

Various alternatives were evaluated to assess converting the WB I-90 exit ramp intersection and the N. Marginal Road intersection on MLK Drive into a roundabout configuration. Three configurations for a roundabout intersection were evaluated. Roundabout capacity was evaluated using SIDRA analysis software to forecast levels of service based on various lane conditions. The roundabout alternatives are shown in Figures 11A through 11C with level of service/queue summary included in Table 6.
> Roundabout Option 1: This option retains the basic configuration of the existing intersection with the WB exit ramp as the east leg, Lakeshore Blvd as the north leg, N. Marginal Road as the west leg, and MLK Drive as the south leg. It is concluded that keeping the WB exit ramp as the east leg of the roundabout will operate at poor level of service due to the high left turn demand from the ramp to southbound MLK Drive. As the east leg, the ramp volume would need to yield to NB traffic destined to Lakeshore Drive or N. Marginal Road resulting in LOS F for the ramp.
The SIDRA software estimates the queue on the east leg to be 2,437 feet. The available length of the existing exit ramp configuration between the roundabout and the deceleration lane of the exit ramp is estimated to be 1,600 feet. This option is not considered to be feasible with a roundabout at the ramp intersection at MLK Drive. Signalization would be required to avoid queues from extending past the ramp gore.

FIGURE 11A: ROUNDABOUT OPTION 1, AM PEAK

> Roundabout Option 2: This option features realignment of Lakeshore Boulevard to form the east leg of the roundabout and the WB exit and entrance ramps to form the north leg of the roundabout. Lakeshore Boulevard would be designed to cross over the existing WB loop ramps or the ramp profiles raised to cross over realigned Lakeshore Boulevard. The benefit of Option 2 is that it provides acceptable levels of service for all approaches.
The feasibility of the profile changes to the ramps or to Lakeshore Blvd will need to be evaluated in greater detail. Topography of the park property supports a realignment of Lakeshore Boulevard with future plans to revise the park entrance. Sufficient field survey data is needed to confirm profile grades meet L\&D criteria and determine the need and/or size of retaining walls.

FIGURE 11B: ROUNDABOUT OPTION 2, AM PEAK

> Roundabout Option 3: This option reflects the Greenways concept that includes removal of the loop ramp from MLK Drive to I-90 WB. Traffic is routed across N. Marginal Road to access the existing WB I- 90 entrance ramp at the E. $72^{\text {nd }}$ Street interchange. The analysis shows that a single westbound lane is sufficient to accommodate demand traffic. Congestion can be expected on the N. Marginal Road when seasonal traffic is a part of the traffic mix (recreational vehicles, boat trailers, etc).

The SIDRA software estimates the queue on the east leg to be 580 feet. The available length of the proposed exit ramp between the roundabout and the ramp is estimated to be 800 feet. This option is considered to be feasible with a roundabout at the ramp intersection at MLK Drive.

The changes are expected to increase traffic on N. Marginal Road by nearly 800 vehicles during the PM peak hour. Traffic diversion to N. Marginal Road will likely necessitate improvements to N. Marginal Road, the intersection of E. $72^{\text {nd }}$ Street and N. Marginal Road, and the WB entrance ramp to I-90 from E. $72^{\text {nd }}$ Street. Removal of the loop ramp combined with the ramp removals recommended as short term countermeasures will redirect traffic to N. Marginal Road as summarized in Table 5.

TABLE 5: EXPECTED TRAFFIC DIVERSION TO N. MARGINAL ROAD

From	To	To	Countermeasure Implementation	AM Peak Volume	PM Peak Volume
I-90 WB exit to E. 72	I-90 WB exit to MLK	N. Marginal	Short Term	130 vph	120 vph
I-90 EB entrance from E. 72nd	N. Marginal	I-90 EB entrance from MLK	Short Term	60 vph	160 vph
I-90 WB entrance from MLK	N. Marginal	I-90 WB entrance from E. 72nd	Medium Term	350 vph	500 vph
Traffic Added to N. Marginal Road					

FIGURE 11C: ROUNDABOUT OPTION 3, AM PEAK

TABLE 6: SIDRA CAPACITY ANALYSIS - MLK/N.MARGINAL/LAKESHORE/WB RAMPS INTERSECTION, AM PEAK

Performance Measure	North leg	South leg	West leg	East leg	Intersection
Alternative 1					
LOS/Delay (secs)	D / 37.9	A / 5.0	C/ 30.2	F/89.2	E/ 63.0
Queue	125'	130'	100 '	2440'	
Alternative 2					
LOS/Delay (secs)	A / 6.5	A / 6.6	D / 38.7	B / 11.7	A / 8.4
Queue	170 '	125'	75'	$25 '$	
Alternative 3					
LOS/Delay (secs)	F/ 82.3	A / 8.3	C / 26.9	D / 36.7	C / 31.5
Queue	$100{ }^{\prime}$	40^{\prime}	75'	580'	

E. $5^{\text {TH }}$ STREET CORRIDOR

The following countermeasures were evaluated to quantify the benefits of revising the merge configuration on E. $55^{\text {th }}$ Street and consolidating the two signalized intersections to one signalized intersection. Features of the Build alternative include the following countermeasures, also shown in
Figure 12. The level of service summary based on Synchro analysis is shown in Table 7.
$>$ Revise lane configuration of the SB merge at the railroad bridge

- Revise the pavement markings on E. $55^{\text {th }}$ Street at the railroad bridge to drop the inside, southbound through lane as an exclusive left turn lane at a private driveway opposite Lake Court. This lane configuration converts the existing curb lane into a through lane that continues south to St. Clair Avenue. The changes to pavement markings will reduce the number of southbound conflicts between through vehicles and left turning vehicles at the signalized intersections (EB I-90 ramp and S. Marginal Road/Dick Goddard Way.
- The inside lane on $\mathrm{E} .55^{\text {th }}$ Street in the southbound direction will operate as a defacto left turn lane during peak periods. Through vehicles are permitted, especially those that may be destined to other closely spaced intersections within the study area. Weaving of through vehicles destined to St. Clair Avenue is minimized.
- Add overhead lane-use signs to enable motorists advance notice of the drop lane condition at the Lake Court/private driveway intersection.

$>$ Revised signalized intersection on E. $55^{\text {th }}$ Street formed by the EB exit ramp and Dick

 Goddard Way- Realign the EB I-90 exit ramp opposite Dick Goddard Way to form a primary, signalized intersection on E. $55^{\text {th }}$ Street. The overall size of the combined intersections is reduced to improve operational efficiency and intersection alignment.
- Operate the S. Marginal Road intersection as an exclusive phase that can be skipped when vehicles are not present. Improved levels of service can be achieved with a 4-phase sequence in the AM peak period and a 3-phase sequence in the PM peak period. During PM peak, the SB protected left turn phase can be eliminated due to lower SB left turn demand onto Dick Goddard Way.
- Convert the NB curb lane to be exclusive right turn lane to the EB I-90 entrance ramp. Improved pedestrian facilities can be implemented on the bridge structure over I-90, consistent with the Greenway study.
- The EB I-90 entrance ramp operates as an unsignalized intersection

TABLE 7: CAPACITY ANALYSIS - 55TH STREET CORRIDOR

	EB	WB	NB	SB
	APPROACH	APPROACH	APPROACH	APPROACH

E. 55th Street at l-90 EB Ramps

2034 AM No Build	F/118.0	-	A/0.0	D/42.3
2034 PM No Build	D/52.4	-	A/2.0	C/31.5

E. 55th Street at S. Marginal Road/Dick Goddard Way

2034 AM No Build	$\mathrm{C} / 32.7$	$\mathrm{~F} / 160.6$	$\mathrm{E} / 75.8$	$\mathrm{~A} / 2.2$
2034 PM No Build	$\mathrm{D} / 37.0$	$\mathrm{D} / 39.2$	$\mathrm{D} / 41.9$	$\mathrm{~A} / 0.5$

E. 55th Street at I-90 EB Exit Ramp/Dick Goddard Way (signalized)

2034 AM Build	$\mathrm{C} / 25.5$	$\mathrm{C} / 32.9$	$\mathrm{~A} / 2.5$	$\mathrm{C} / 33.6$
2034 PM Build	$\mathrm{C} / 28.9$	$\mathrm{C} / 28.0$	$\mathrm{~A} / 2.0$	$\mathrm{C} / 29.1$
E. 55th Street at S. Marginal Road (signalized)				
2034 AM Build	$\mathrm{C} / 33.1$	-	$\mathrm{C} / 33.2$	$\mathrm{~A} / 1.5$
2034 PM Build	$\mathrm{C} / 30.2$	-	$\mathrm{C} / 29.0$	$\mathrm{~A} / 1.3$

Numerical values represent delay in seconds per vehicle

> ODOT - DISTRICT 12

FIGURE 12 - E. 55th STREET CONCEPT PLAN

RECOMMENDATIONS

Countermeasures to mitigate crashes on I-90 will require improvements to interchanges and local roadways. The following have been identified as the contributing factors to safety performance on Interstate 90.
> Closely spaced interchanges
$>$ Short weave segments between E. $72^{\text {nd }}$ Street and MLK Drive
The following have been identified as the contributing factors to safety performance on MLK Drive.
$>$ Single lane WB exit ramp from I-90 contributes to queue formation on the exit ramp and spillback onto I-90 during peak morning hours.
> Downstream capacity constraint where the two southbound lanes merge to a single lane at the RR overpass results in queue spillback on the WB and EB exit ramps.
$>$ Stop sign control for the EB ramp terminal intersection causes queues to form on the exit ramp that extend to mainline I-90. These queues aggravate the poor weaving conditions that exist on I-90 EB between E. $72^{\text {nd }}$ Street and MLK by reducing weave length further. Also, these queues leave no room to decelerate from I-90 EB travel lanes.

The focus of improvements to the I-90 corridor requires modifications to the MLK Drive interchange and to the E. $72^{\text {nd }}$ Street interchange. The modifications recommended below are not conducive to multiple construction phases due, in part, to the existing capacity constraints and safety performance of the MLK Drive corridor. Most safety countermeasures route additional traffic to the MLK Drive interchange, thus capacity and geometric improvements are required on the local street network.

The proposed countermeasures are expected to mitigate 29 crashes on the I-90 corridor (12 westbound crashes and 17 eastbound crashes). The proposed countermeasures are expected to mitigate an additional 51 crashes on the MLK Drive corridor. The proposed countermeasures are described below and are shown in Figure 13.

1. Revise MLK Drive to imbalanced 3-lane section. Revise the lane configuration of MLK Drive from the WB exit ramp to the St. Clair Avenue bridge. Revise southbound MLK Drive to have 2 southbound lanes extending south under the railroad bridge. The second lane will be dropped as a left turn lane at East Blvd. opposite the existing pedestrian refuge island. Continuation of the two southbound through lanes on MLK Drive past the RR overpass is recommended to eliminate capacity constraints downstream of the interchange. An additional southbound lane can be provided within the existing pavement (edge lines) without widening. The available vertical clearance under the existing railroad bridge is 16.5 feet or higher for existing travel lanes and meets the design criteria for the proposed widening. Other features of this countermeasure include the following:
> Widen the WB I-90 exit ramp to provide an additional left turn lane to MLK Drive. An additional lane on the WB exit ramp to MLK Drive is recommended to minimize queue spillback onto mainline I-90. Dual lanes from the ramp will be received by the dual southbound through lanes on MLK Drive. Consider signalizing this intersection to make it more conventional; further study is needed to evaluate the potential impacts of signalization on ramp queues.
> Provide dedicated left turn lanes on MLK Drive. The cross section of MLK Drive under $\mathrm{I}-90$ is to be reconstructed as a 5 -lane section without a raised median. A 10 ft bike path on
the west side of MLK Drive is accommodated under I-90 with a 5 ft tree lawn. Left turn lanes are recommended on MLK Drive for the NB left turn movement at the N. Marginal Road intersection and for the SB left turn movement at the EB I-90 ramp intersection. These lanes can be accommodated by removal of the center median island on MLK Drive under the I-90 overpass. This improvement will remove left turning vehicles from the through lane.
$>$ Signalize the EB I-90 ramp intersection. An 8-hour traffic signal warrant is met at the EB ramp intersection with current traffic demand. Appendix D includes details of the signal warrant analysis. Gaps in the southbound traffic flow are inadequate to service the high right turn volumes from the EB exit ramp to MLK Drive, which results in queue spillback onto mainline I-90. Signalization of the EB ramp is only feasible with the addition of a second SB lane on MLK Drive for 2 reasons: 1) queues extend from the merge at the railroad overpass through the EB ramp intersection making signalization ineffective during the peak periods, and 2) signalization would cause longer queues to extend onto I-90 WB mainline during the AM peak hour without additional capacity on MLK Drive.
$>$ Revise the EB I-90 exit ramp approach to MLK Drive from a L-R configuration to LR-R configuration. This configuration will improve the throughput from the exit ramp and help allocate additional green time to the southbound MLK Drive approach.
$>$ Revise MLK Drive northbound approach to EB I-90 exit/entrance ramp approach from a TTR configuration to $\mathrm{T}-\mathrm{R}$ with a channelizing island and a receiving lane on the entrance ramp. This will allow the lefts and rights to move parallel for upto 300 feet, then the right lane on the ramp merges to form a single lane prior to the gore. This configuration will improve the throughput on MLK Drive during PM peak hour conditions, where the demand for the northbound right turn movement is heavy. Also, southbound left turn traffic at the intersection will have sufficient gaps to enter the entrance ramp.
$>$ Restricted movement at Broad Street intersection. Prohibit northbound left turn movement at the Broad Street intersection at all times as suggested the city of Cleveland. The traffic signal is to remain for pedestrian crossings and egress from Broad Street.
A southbound left turn to E. $88^{\text {th }}$ Street is to occur from a shared left-through lane.
$>$ Pavement resurfacing. Mill/fill of pavement surface proposed to a point 500 feet south of the railroad bridge. The remaining distance (1,400 feet) is to install the revised pavement markings by removing the existing pavement markings and restriping the corridor as a 3-lane section.
2. Eliminate substandard weave on I-90 between E. 72 ${ }^{\text {nd }}$ Street and MLK Drive interchanges. Removal of the EB entrance ramp and WB exit ramp at the $\mathrm{E} .72^{\text {nd }}$ Street interchange is recommended to eliminate the substandard weave on I-90 and its associated crash pattern. The entrance ramp tapers of the WB I-90 entrance ramp from MLK Drive and the deceleration length of the I-90 EB exit ramp to MLK Drive are to be increased to meet current L\&D standards. Removal of the EB entrance ramp would require the realignment of S.R. 283, to follow N. Marginal Road and back onto I-90 via I-90 EB entrance ramp from MLK Drive.

Along with the above listed short term improvements, in order to emphasize the existing shared use/recreational paths and on-street bicycle facilities in the area, it is recommended that signs as well as pavement markings denoting pedestrian/bicycle crossings be upgraded within the study area.

A long term plan converts the WB I-90 exit ramp/N. Marginal Road/Lakeshore Drive intersection to a modern roundabout. A roundabout intersection is recommended to replace the two unsignalized
intersections on MLK Drive (north of I-90). Other features of this countermeasure include the following:
$>$ A roundabout intersection at this location would retain the loop ramp from MLK Drive to WB I-90. The existing loop ramp reduces the frequency of ped/vehicle conflicts with the bike path on the west side of MLK Drive and avoids the need for widening of N. Marginal Road.
> The roundabout should incorporate the WB I-90 exit and entrance ramps as the north leg (through movement) to achieve acceptable levels of service.
$>$ Realignment of Lakeshore Boulevard is proposed to form the east leg of the roundabout intersection and N. Marginal Road will form the west leg. Lakeshore Drive crosses over the WB I-90 ramps with a culvert structure to minimize the roadway elevation over the WB I-90 ramps and to match the aesthetic treatments of MLK Drive south of I-90. The proposed alignment also is compatible with future plans to revise access to the Lakefront State Park. Right of way negotiations with the park should include the swap of property that is currently occupied by Lakeshore Boulevard, an estimated land of 1.75 acres size can be captured with realignment.

A hybrid design, featuring two entry lanes for the WB exit ramp and N. Marginal Road approach and a single lane for the MLK Drive and Lakeshore Boulevard approaches, is expected to provide sufficient capacity through the roundabout. See Figure 14. Note that other roundabout configurations are possible without realignment of Lakeshore Boulevard such as two independent roundabouts at N. Marginal Road and WB I-90 ramps/Lakeshore Boulevard.
E.72nd Street/Gordon Park Driveway: Construct a dedicated southbound left turn lane at the Gordon Park Driveway. This improvement would require the removal of raised concrete median to accommodate the left turn lane.

The countermeasures summarized in Figure 12 for the E. $55^{\text {th }}$ Street corridor are expected to mitigate 31 crashes. The pavement marking and signing changes proposed south of I-90 could be implemented prior to intersection reconstruction of the EB I-90 exit ramp/Dick Goddard Way intersection if phased construction improves the feasibility of project implementation. Note also that the conversion of the S. Marginal Road intersection to right in/right out operation should be considered as a long term countermeasure if safety performance continues to be an issue in the future.

In the entire study area, emphasizing the existing shared use/recreational paths and on-street bicycle facilities in the area following recommendations should be considered in the final design:
$>$ Regulatory and directional signage for bicyclists and pedestrians as well as pavement markings denoting crossings should be part of the safety improvements.
$>$ Count down timers, push buttons should be installed at signalized intersections.
> Any trail adjustments necessary to control the speeds of cyclists approaching crosswalks, notably at MLK Drive and N. Marginal Road intersection.

> ODOT - DISTRICT 12
FIGURE 13 - MLK DRIVE SHORT TERM CONCEPT PLAN

> ODOT - DISTRICT 12
FIGURE 14 MLK DRIVE LONG TERM PLAN

BENEFIT COST ANALYSIS

Benefit cost analysis is a tool to determine the financial benefits of a project by comparing the net present value (NPV) of a project to NPV of the safety benefit provided by that project. Benefit cost values greater than one indicate a positive return on the original investment. Preferred countermeasures are those having the highest NPV of safety benefits.

COST ESTIMATES

Project costs were estimated separately for improvements on E. $55^{\text {th }}$ Street, MLK Drive and the I-90 interchange ramps. Detailed construction cost estimates are included in Appendix H and assume the following:
> 35 percent design risk
>8.6 percent inflation rate for an estimated 2018 construction year.
$>$ Right of way impact is expected with construction of a roundabout intersection on MLK Drive at N. Marginal Road/WB ramp intersection.

TABLE 8: COST ESTIMATE SUMMARY

Location	Improvements	Construction Subtotal	Design Inflation	Total Estimated Cost
E. 55th Street Countermeasures	Realign EB exit ramp, install new traffic signal, pavement overlay and markings	$\$ 1,036,000$	$\$ 573,000$	$\$ 1,609,000$
I-90 / MLK Drive Short Term Countermeasures	MLK Drive improvements plus ramp removals at E. $72^{\text {nd }}$ Street interchange	$\$ 1,535,000$	$\$ 717,000$	$\$ 2,252,000$
I-90 / MLK Drive Long Term Countermeasures	Roundabout intersection and realignment of Lakeshore Drive	$\$ 3,392,000$	$\$ 1,582,000$	$\$ 4,974,000$

BENEFIT COST ANALYSIS

A benefit cost analysis was prepared using the ODOT ECAT analysis tool for improvements on E.
$55^{\text {th }}$ Street and on I-90/MLK Drive (short term countermeasures only). The benefit cost of the ramp improvements at E. $72^{\text {nd }}$ interchange are attributed to improved intersection operations at the MLK Drive interchange. Cost estimates and benefit cost analysis reports from the ECAT tool are included in Appendix H.

E. $5^{\text {th }}$ Street

The following crash modification factors were applied for improvements recommended on E. $55^{\text {th }}$ Street. Table 9 summarizes the benefit cost analysis results for the $\mathrm{E} .55^{\text {th }}$ street improvements.
> Provide a left turn lane on one major road approach: A CMF of 0.61 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 3 star quality rating. While exclusive left turn lanes are not being constructed on E. $55^{\text {th }}$ Street, the change of pavement markings that encourage through traffic to use the curb lane will result in the operation of the inside lane (southbound) as a defacto left turn lane during peak periods.
> Improve visibility of signal heads (approach realignment/compact intersection): A CMF of 0.93 was applied to all crashes; This CMF was obtained from the FHWA Crash Clearinghouse and has a 4 star quality rating.
> Road Diet - convert 4-lane to 2-lane plus turn lanes: The road diet CMF of 0.71 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 5 star quality rating.
TABLE 9: BENEFIT COST ANALYSIS: 55TH STREET COUNTERMEASURES

Countermeasures with CMF values used in ECAT Tool	• • • Improvide defacto left turn lanes Road diet
Expected annual crash adjustment	-8.6
Net present value of project	$\$ 1,502,200$
Net present value of safety benefit	$\$ 3,709,900$
Benefit / Cost Ratio	$\mathbf{2 . 4 7}$

MLK Drive

The following crash modification factors were applied for both short and medium term countermeasures on MLK Drive. While the ECAT tool does not specifically calculate the safety benefit of interstate facilities, a total of 29 of the 292 crashes on I- 90 were assigned to the MLK Drive improvements which is considered to be a conservative estimate since queues extend to mainline I-90 from the WB exit ramp. Table 10 summarizes the benefit cost analysis results for MLK Drive.
> Install traffic signal: A CMF of 0.83 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 3 star quality rating.
$>$ Provide a left turn lane on one major road approach: A CMF of 0.61 was applied to all crashes. This CMF was obtained from the FHWA Crash Clearinghouse and has a 3 star quality rating.
$>$ Add through lane: A CMF of 0.675 (factored) was applied to all crashes. This CMF was obtained from a University of Central Florida/Florida DOT research report titled 'Validation and Application of HSM (Part D) in Florida' published in May 2014. Excerpts of the proposed CMFs are included in Appendix H.
$>$ Provide a right turn lane on one major road approach: A CMF of 0.77 was applied to fatal and injury crashes, and a CMF of 0.86 for non-injury crashes.

TABLE 10: BENEFIT COST ANALYSIS: MLK DRIVE SHORT TERM COUNTERMEASURES

Countermeasures with CMF values used in ECAT Tool	• • Provide left and right turn lanes • Add thrfall traffic signal
Expected annual crash adjustment	-10.15
Net present value of project	$\$ 2,225,800$
Net present value of safety benefit	$\$ 3,987,900$
Benefit / Cost Ratio	$\mathbf{1 . 7 9}$

LAKEFRONT GREENWAY and DOWNTOWN CONNECTOR STUDY

Public Meeting

March 5, 2015

WAREHOUSE

Agenda

- Study area
\square Project goals and objectives
\square Plan development process \& project team
\square Existing conditions \& challenges
\square Design concepts and opportunities
\square Public input

Study Area

Goals and Objectives

\square Goals:

- Improve North and South Marginal Roads for travel by bicyclists and pedestrians
\square Strengthen connection between lakefront, downtown, and near eastside neighborhoods
\square Objectives:
- Establish a lakefront greenway Marginal Road corridor
\square Create north-south connections to the Lakefront Greenway
- Facilitate east-west connectivity

Study Area - Priority Connections

Plan Development Process

\square Project Scope, Goals \& Objectives

- Existing Conditions Assessment
- Concept Development
\square Concept Evaluation and Feasibility Assessment
\square Recommendations
\square Steering Committee Meeting 4
\square Report

Community Engagement

Concept Development

- Steering Committee Meeting 1
- Project Team Workshop
- Steering Committee Meeting 2
- Public Meeting \#1 (March 2015)

Concept Evaluation \& Assessment

- Steering Committee Meeting 3

Recommendations

- Public Meeting \#2 (May 2015)

Project Sponsors

James Amendola - St. Clair Superior CDC Michael Fleming - St. Clair Superior CDC Bobbi Reichtell - Campus District Tom Starinsky - Historic Warehouse District \&

Gateway District

Consultant Team

Nancy Lyon-Stadler - Michael Baker Intl.
Michelle Johnson - Environmental Design Group Jeff Kerr - Environmental Design Group
Travis Mathews - Environmental Design Group Jim Shea - Michael Baker Intl. Kim Guice - Michael Baker Intl.

Steering Committee

Radhika Reddy - Ariel Ventures
Ren Camacho - Cleveland Airport Systems
Arthur Schmidt - Cleveland City Planning
Sharonda Watley - Cleveland City Planning
Michelle Harvanek - Cleveland City Sustainability
Linda Sternheimer - Cleveland Cuyahoga County
Port Authority
Ed Rybka - Cleveland Lakefront Development
Kelly Coffman - Cleveland Metroparks
Sara Burns Maier - Cleveland Metrparks
Amy Snell - GCRTA
Ryan Noles - NOACA

Melissa Thompson - NOACA
Mark Coffin - property owner
John Motl - ODOT District 12 Planning
Brian Blayney - ODOT Dist. 12, Traffic Engineering
Scott Knebel - LJB
April Bleakney - Resident, Campus District
Rachel DuFresne - Resident, Campus District
Maureen Haden - Resident, St. Clair Superior
Jim Kastelic - Trust for Public Lands
Larry Orlowski - Lakeside Yacht Club
Barb Clint - YMCA \& Bike Cleveland

Other Plans \& Projects

\square Build upon on-going efforts

- City plans
\square TLCI plans
- Private developer initiatives
- Bikeway plans
\square Cleveland Metroparks Lakefront Plan

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

\qquad

Cleveland Metroparks Waterfront Plan

ENHANCED PLANTINGS

E.55 ${ }^{\text {th }}$ Marina

WATER PLAY/FIRE FEATURE/ SEATING AND PLAY AREA

SHELTER WITH
 SEASONAL FEATURES

()	DRAFT CONCEPTUAL MASTER PLAN
MEOU	EAST 55TH MARINA
CND	LAKEFRONT RESERVATION
ANDPLAY	NOVEMBER 2014

NOVEMBER 2014

Cleveland Metroparks Waterfront Plan

HABITAT ENHANCEMENT \& KAYAK ACCESS

LARGE RESERVE SHEL TER

WATER FEATURE \& NATURE PLAY

WATERFRONT/GATHERING AREA

Existing Conditions: North Marginal

 DISTRICT

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Michael Baker

INTERNATIONAL

Existing Conditions: South Marginal

 DISTRICT

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Challenges

\square Poor pavement condition on both Marginal Roads
\square Limited connections across SR-2 / I-90

North Marginal Road
\square Substandard shared use path

- Narrow
- Obstacles
- Pinch Points
- Unattractive infrastructure
- Chain link fence
- Highway scale lighting
- Lack of landscaping
- No buffer between North Marginal Road and Shoreway

South Marginal Road

- Isolated
- Lacks bicycle and pedestrian infrastructure
- Does not traverse entire study area DISTRICT

Existing Trails \& View Points

Trail Segments \& Nodes

Site Plan Nodes

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Constraints

- Burke
- Ongoing operations
- FAA regulations
- 20 year horizon (minimum)
\square CDF: Port managing active site for sediment processing
- Ongoing generation of urban soils
- Intense industrial use
- Different than USACE management
- 50 year horizon
- Influences implementation of concepts/opportunities

North-South Connections Existing, Planned \& Potential

W. $3^{\text {rd }}$ Street

Existing

- Potential to reconfigure roadway

City is studying feasibility

North Coast Harbor Ped Bridge

Planned

- Will connect Mall C with North Coast Harbor
- Construct for RNC in 2016

E.9 ${ }^{\text {th }}$ Street

Existing

Capacity reduction on E.9 ${ }^{\text {th }}$ not feasible

- Can't widen existing bridge

Potential for adjacent matching structure

E. $16^{\text {th }} / 18^{\text {th }}$ Street

Potential

- Campus District connection
- Take off from parking lot, land by Burke \& by Muni Lot
- Need to clear railroad tracks
- Vertical clearance \& landing considerations

Muni Lot Bridge

Existing

E. $40^{\text {th }}$ Street

Potential

E. 49 ${ }^{\text {th }}$ Street

Potential

- Take off north of railroad tracks and land by marina
- No ramp needed on south end
- Landing challenge - marina impact
- 300 ft great size for prefab bridge
- E. $49^{\text {th }}$ activates Kirtland Park

E. $55^{\text {th }}$ Street

Existing

- Bike lanes \& sidewalks on bridge

Lots of pavement at intersections - South Marginal

- I-90 EB ramps
- North Marginal

E. $72^{\text {nd }}$ Street

Existing

Gordon Park Pedestrian Bridge

Existing

MLK (Lake-to-Lakes Trail)

Existing

Big Ideas

\square E.72nd-MLK
$\square \mathrm{E} .55^{\text {th }}$ Street
\square North Marginal (E.9 ${ }^{\text {th }}$ St to E.55 ${ }^{\text {th }}$ St)
\square Muni Lot Bridge

ODOT Safety Study

ODOT safety study

\square E.72nd Street \& MLK interchange areas
\square E. $55^{\text {th }}$ Street interchange area

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

E.72 ${ }^{\text {nd }}-$ MLK Opportunities

Study crash data to identify problem areas
Potential reconfiguration of ramps as single interchange

- Potential changes to ramp intersections

Modify MLK cross section to improve trail under bridge

Traffic: E.55 ${ }^{\text {th }}$ St - Peak Hours

E.55 ${ }^{\text {th }}$ St Opportunities

- Reconfigure intersections to reduce pavement area
 - Modify lanes over bridge

Eastern Concept (MLK-E.72 ${ }^{\text {nd }} \& E .55^{\text {th }}$)

Lakefront Greenway Concept Development Public Meeting, March 5, 2015

North Marginal by Burke

North Marginal - Existing

North Marginal - Existing

Constrained width Proximity to Shoreway
 Unpleasant bike/ped experience

0

DISTRICT

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Michael Baker
INTERNATIONAL

Central Concept

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Options for North Marginal by Burke

Option 1: Two-Lane
\square Add 8 ft wide trail next to North Marginal
Option 2: One-Way
\square Reduce North Marginal to one-way road for 10 ft trail and more buffer space

Option 3: Bike/Ped (Trail Only)
\square Close section of North Marginal
\square Potential modification to Muni Lot Bridge access could help circulation
$\xrightarrow{\text { AD AB }}$

North Marginal Traffic at E. $55^{\text {th }}$ St

\square North Marginal Traffic volumes at E. $55^{\text {th }}$ Street

- AM Peak: 93 vph (35 EB + 58 WB)
- PM Peak: 290 vph (52 EB + 238 WB)
(Lower volumes betw Burke parking and Aviation HS)

North Marginal as Two-Lane

 DISTRICT

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

North Marginal as Two-Lane

DISTRICT

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

North Marginal as One-Way

North Marginal as One-Way

0
stclair superior
C CAMPUS
DISTRICT

Lakefront Greenway Concept Development Public Meeting, March 5, 2015

North Marginal Bike/Ped Only (Trail)

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Michael Baker
INTERNATIONAL

North Marginal Bike/Ped Only (Trail)

Lakefront Greenway Concept Development Public Meeting, March 5, 2015

Central Concept

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Muni Lot Bridge

Reconfigure WB off ramp to clarify end of ramp and facilitate bike/ped accommodations Provide connection to North Marginal for bikes/peds (and maybe vehicles)
Consider grade issues

Muni Lot Bridge

Lakefront Greenway Concept Development
Public Meeting, March 5, 2015

Central Concept Combinations

Plan Development: Next Steps

\square Gather public input
\square Concept evaluation \& feasibility assessment
\square Develop recommendations
\square Present recommendations (public mtg May 2015)
\square Prepare report

Your Input Matters!

\square What should this park look like?

BOARDS

(6 green dots +6 red dots)

- 3 boards with lots of photos
\square Pedestrian bridge locations
(2 green dots +2 red dots)
- Existing bridges / crossing locations
- Potential pedestrian bridge crossing locations
\square North Marginal (between E.9 ${ }^{\text {th }}$ and E. $55^{\text {th }}$ Streets) (1 green dot +1 red dot)
- Two-way road with multi-use trail
- One-way road with wider multi-use trail
- Bike/pedestrian access only (widened linear park for non-motorized use) DISTRICT

THANK YOU!

NORTHEAST OHIO AREAWIDE COORDINATING AGENCY
MEMORANDUM

TO: \quad NOACA Board of Directors

FROM: Grace Gallucci, Executive Director
DATE: March 6, 2015
RE: \quad Resolution No. 2015-026 - Plan and TIP Amendments - $3^{\text {rd }}$ Quarter State Fiscal Year (SFY) 2015

ACTION REQUESTED

The Board of Directors is asked to approve Resolution No. 2015-026 which directs that NOACA's longrange transportation plan (Plan) and the Transportation Improvement Program (TIP) be amended to include the proposed projects as indicated. Please note that some of the projects listed are to be amended to the Plan, some to the TIP and others to both the Plan and TIP.

PREVIOUS ACTION

The Transportation Subcommittee (TS), Planning and Programming Committee, and Executive Committee have recommended this item for approval.

BACKGROUND/JUSTIFICATION FOR CURRENT ACTION

The proposed amendments to the Plan and the state fiscal year (SFY) 2014-2017 TIP have all been processed through project planning review (PPR). The projects include bridge, roadway and transit projects sponsored by various entities. The amendments also include projects currently programmed in the TIP that, per federal regulations, require an MPO resolution because the amounts of their respective cost decrease or increase exceeds the cost estimate threshold or new funding has been added to a project.

FINANCIAL IMPACT

The estimated total cost of the proposed projects is approximately $\$ 22.2$ million, which includes approximately $\$ 9.4$ million of NOACA controlled funds. Funding for these projects is being provided from a variety of federal, state, and local sources. Federal funding is provided by the Federal Highway Administration and Federal Transit Administration and is administered through NOACA and the Ohio Department of Transportation.

CONCLUSION/NEXT STEPS

Following Board approval, the amendments will be incorporated into the statewide TIP amendment in April 2015.

[^0]RESOLUTION NO. 2015-026

RESOLUTION OF THE BOARD OF DIRECTORS
 OF THE NORTHEAST OHIO AREAWIDE COORDINATING AGENCY

WHEREAS, the Northeast Ohio Areawide Coordinating Agency (NOACA) is the Metropolitan Planning Organization (MPO) for the counties of Cuyahoga, Geauga, Lake, Lorain, and Medina, and the areawide water quality management agency for the same region; and

WHEREAS, the Congress of the United States, through law, and the U.S. Department of Transportation, through regulation, have determined that MPOs shall create a long-range, 20-year transportation plan and a four-year Transportation Improvement Program (TIP) that list federal-aid transportation projects expected to be implemented in each of the program years; and

WHEREAS, the NOACA Board of Directors' Regional Transportation Investment Policy requires that all proposed federal-aid transportation projects be processed through project planning review in order to meet transportation plan goals and federal requirements; and

WHEREAS, the following projects are proposed amendments to the NOACA long-range transportation plan (Connections ${ }^{+}$2035):
a) City of Cleveland: CUY FULTON RDN $28^{\text {TH }}$ ST - This project involves rehabilitation and resurfacing along Fulton Road, from Clark Avenue to Franklin Avenue and West $28^{\text {th }}$ Street from, Franklin Avenue to Detroit Avenue, in Cleveland.
b) City of Cleveland: CUY MLK BLVD: PID No. 98548 - This project involves either relining or removing and replacing the two corrugate metal plate dual arch structures on Martin Luther King Jr. Drive over Doan Brook Creek, approximately one-third of a mile south of IR-90 and just south of East Boulevard in the City of Cleveland.
c) City of Cleveland: CUY NORTH MARGINAL RD - This project involves rehabilitation along North Marginal Road, from East $72^{\text {nd }}$ Street to Martin Luther King Jr. Drive; Martin Luther King Jr. Drive, from North Marginal Road to Lakeshore Boulevard; and Lakeshore Boulevard, from Martin Luther King Jr. Drive to the eastern corporate limit, in Cleveland.
d) City of Cleveland: CUY NORTH MARGINAL RD/SOUTH MARGINAL RD - This project involves rehabilitation along North Marginal Road, from West Boulevard to Lorain Avenue; and along South Marginal Road, from Western Avenue to West $98^{\text {th }}$ Street, in Cleveland.
e) City of Cleveland: CUY SOUTH MARGINAL RD - This project involves rehabilitation along South Marginal Road, from the east end of IR-90 South Marginal Road at the IR-90 eastbound exit ramp to East $9^{\text {th }}$ Street to East $55^{\text {th }}$ Street, in Cleveland.
f) Greater Cleveland Regional Transit Authority (GCRTA): PID No. 99619: GCRTA Trolley Bus Replacement Program - This project involves the replacement of four 35-foot GCRTA trolley buses in 2015.

WHEREAS, the following projects are proposed amendments to the state fiscal year (SFY) 2014-2017 TIP:
a) Ohio Department of Transportation (ODOT) District 12: CUY D12 PPM FY2015: PID No. 95930 - This project involves preventative maintenance on various routes and sections

RESOLUTION NO. 2015-026
(PLAN AND TIP AMENDMENTS $3^{\text {rd }}$ QUARTER SFY 2015)
throughout District 12. Microsurfacing at the following IR-77 locations: SR-82 EB Loop to IR-77 NB, IR-77 SB exit to Pleasant Valley (Loop), and IR-77 NB exit to Pleasant Valley (Loop).
b) City of Cleveland: CUY FULTON RDN $28^{\text {TH }}$ ST - The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation and resurfacing along Fulton Road, from Clark Avenue to Franklin Avenue and West $28^{\text {th }}$ Street from, Franklin Avenue to Detroit Avenue, in Cleveland.
c) City of Cleveland: CUY MLK BLVD: PID No. 98548 - The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves either relining or removing and replacing the two corrugate metal plate dual arch structures on Martin Luther King Jr. Drive over Doan Brook Creek, approximately one-third of a mile south of IR-90 and just south of East Boulevard in the City of Cleveland.
d) City of Cleveland: CUY NORTH MARGINAL RD - The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation along North Marginal Road, from East $72^{\text {nd }}$ Street to Martin Luther King Jr. Drive; Martin Luther King Jr. Drive, from North Marginal Road to Lakeshore Boulevard; and Lakeshore Boulevard, from Martin Luther King Jr. Drive to the eastern corporate limit, in Cleveland.
e) City of Cleveland: CUY NORTH MARGINAL RD/SOUTH MARGINAL RD - The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation along North Marginal Road, from West Boulevard to Lorain Avenue; and along South Marginal Road, from Western Avenue to West $98^{\text {th }}$ Street, in Cleveland.
f) City of Cleveland: CUY SOUTH MARGINAL RD - The preliminary engineering preliminary development (PEPD) phase and preliminary engineering detailed design (PEDD) phase of a project that involves rehabilitation along South Marginal Road, from the east end of IR-90 South Marginal Road at the IR-90 eastbound exit ramp to East $9^{\text {th }}$ Street to East $55^{\text {th }}$ Street, in Cleveland.
g) Ohio Department of Transportation (ODOT): CUY/LAK IR-271-13.16/00.00 NOISE: PID No. 94367 - This project involves noise wall replacement and repair from US Route 322 to Mayfield/Highland Heights corporation line in Mayfield Heights and Highland Heights. LAK IR-271-00.00 (Cuyahoga/Lake County Line) to IR-90 in Willoughby Hills.
h) Greater Cleveland Regional Transit Authority (GCRTA): PID No. 99619: GCRTA Trolley Bus Replacement Program - This project involves the replacement of four 35-foot GCRTA trolley buses in 2015.
i) Laketran: Laketran Bus Improvement Program: PID No. 89669 - This project involves the replacement of four Laketran paratransit vans in 2015.

WHEREAS, all above projects are excluded from regional emissions analysis and as such do not affect the existing plan and TIP's air quality conformity determination; and

WHEREAS, the above projects are consistent with current financial forecasts and plans; and
WHEREAS, it is expected that the project sponsors will, in good faith, endeavor to address comments and recommendations raised during project planning review and will provide evidence of such, prior to the project advancing; and

WHEREAS, the above projects are recommended by the Transportation Subcommittee (TS), Planning and Programming Committee and the Executive Committee as amendments to the Plan and TIP as appropriate.

NOW, THEREFORE, BE IT RESOLVED by the Board of Directors of the Northeast Ohio Areawide Coordinating Agency, consisting of 45 principal officials serving general purpose local governments throughout and within the counties of Cuyahoga, Geauga, Lake, Lorain, and Medina that:

Section 1: The referenced projects have had appropriate review and are recommended for approval.

Section 2: The NOACA transportation plan and TIP are amended to include the projects for project development and processing review purposes.

Section 3: The Executive Director is authorized to transmit certified copies of this resolution to appropriate federal, state, and local agencies.

Certified to be a true copy of a Resolution of the Board of Directors of the Northeast Ohio Areawide Coordinating Agency adopted this $13^{\text {th }}$ day of March 2015.

Secretary:

Date Signed:

LOCATION MAP
LATITUDE：N4103140＊LONGITUDE：W81039＇10＊ $\stackrel{\text { SCALE IN FEET }}{\text { S．}}$

PORTION TO BE IMPROVED
OTHER ROADS \qquad \leftrightarrows
dEsign designation
CURRENT ADT（2005）
DESICN YEAR ADT（2025）－－．．．－．－．－．－ 15050
DESIGN HOURL Y VOLUME（2025）

DIRECTIONAL DISTRIBUTION 15050
TRUCKS（24 HOUR BZC）．．．．．．．．．．．．．．．．．．．．．66\％
DESIGN SPEED． \qquad
DESIGN FUNCTIONAL CLASSIFICATION: - URBAN MINOR ARTERIAL

NHS PROJECT＿ \qquad
DESIGN EXCEPTIONS
NONE REQUIRED

PLAN PREPARED BY：
BURGESS \＆NIPLE，INC． SUITE 612 1300 E．9TH ST．
CLEVELAND，OH 44II

STATE OF OHIO
DEPARTMENT OF TRANSPORTATION

CUY－E．55TH ST．

RECONSTRUCTION OF EXISTING SEPARATED CROSSING WITH THE CSX RAILROAD

CITY OF CLEVELAND CUYAHOGA COUNTY

inoex of sheets：

1
2
$3-5$
$3-5$
6
$7-11$
8111
$12-14$
151030
31
$32-33$
$34-35$
36
$37-38$
$39-40$
$41-42$
$43-44$
$45-51$
52
53
54
$55-56$
57
58
59
$60-61$
$62-63$
64
65
66
67
$68-70$
$71-72$
73
74
75
76
$77-79$
80

RECEIVED

FEB 0 3 2006
PRODUCTION DEPT

PROJECT DESCRIPTION
IMPROVEMENT OF 0.23 MILES OF EAST 55TH STREET BY WIDENING FROM 2 LANES TO 4 LANES， INCREASING THE VERTICAL CLEARANCE UNDER THE STRUCTURE AND O REPLACEMENT OF THE BRID REVISED PROFILE．
project earth disturbeo area：
3．18 ACRES Estimateo contractor earth distrueeo area： 1.75 acres notice of intent earth disturbed area：4．93 acres

2005 SPECIFICATIONS
THE STANDARD SPECIFICATIONS OF THE STATE OF OHIO，DEPARTMENT OF TRANSPORTATION，INCLUDING CHANGES AND SUPPLEMENTAL SPECIFICATIONS LISTED IN THE PROPOSAL SHALL GOVERN THIS IMPROVEMENT．

I hereby approve these plans and declare that the making of this improvement wil THAT THE MAKING OF THIS IMPROVEMENT WILL
REQUIRE THE CLOSING TO TRAFFIC OF THE hichway and that detours will be provided AS INDICATED ON SHEET 6.

		STANDARD CONSTRUCTION DRAWINGS					SUPPLEMENTAL SPECIFICATIONS
ENGINEERS SEAL：	ENGINEERS SEAL：						
		－	\square				
		－	－				
		－	－	－	兂		
		－					SPECIAL
							PROVISIONS
		－	－	－	－		
SIGNED：	SIGNED：						

MEETING MINUTES

CUY-90 19.50/21.30 Safety Study Stakeholder Meeting

Date: January 13, $2016 \quad$ Time: 9:30 am-11:30 am
Location: ODOT District 12 Training Conference Room
Attendees: See sign-in sheet
Purpose: Presentation of Study Recommendations to Stakeholders

Action items	Who by	Due by	Completed
Remove speed zone study from the list of recommendations for MLK Drive.	LJB	$2 / 12 / 16$	
LJB to confirm sight triangles on the I-90 EB exit ramp approach at MLK Drive.	LJB	$2 / 12 / 16$	
Revise capacity analysis of the NB MLK approach at the EB I- 90 ramps to have a T-R lane configuration. Assess operational impacts including queueing to make sure through lane does not block right turn traffic.	LJB	$2 / 12 / 16$	
Revise concept plan and cost estimate if a T-R lane configuration on the NB approach improves capacity of MLK Drive.	LJB	$2 / 12 / 16$	
Evaluate new traffic signal at the MLK/WB I-90 exit ramp intersection. A long cycle length in the AM peak would be acceptable to the stakeholders.	LJB	$2 / 12 / 16$	
Evaluate underpass lighting on MLK for the trail under I-90 and update the cost estimate.	All	TBD	
Co-ordinate preparation of TLCI and safety funding applications. ODOT will take lead on safety funding application.	BMB	TBD	
ODOT to co-ordinate with the city of Cleveland to confirm STP funds can be used for N. Marginal Road reconstruction.	LJB	$2 / 12 / 16$	
Revise E 55 ${ }^{\text {th }}$ Street concept plan for bike lane continuity.	Lis		

1. E. $\mathbf{5 5}^{\text {th }}$ Street interchange countermeasures.

a. The Greenway Study identified a connection for a bike trail between the N. Marginal Road and the S. Marginal Road (west side of E. $55^{\text {th }}$ Street). The safety study repurposes the deck for sidewalk on the east side due to the alignment of lanes south of I-90. Recommendations to incorporate as part of a final study include the following:
i. Metroparks would like pedestrian treatments such as a 'ped count-down timer' at crossings to assist with the double crossing of E. $55^{\text {th }}$ Street for the sidewalk on the east side
ii. The NB bike lane on E. $55^{\text {th }}$ Street conflicts with the right turn only lane at the EB I90 on ramp. Relocate the bike lane between the through and right turn lane to be consistent the OMUTCD guidelines.
b. ODOT proposes prioritizing the countermeasures at the MLK/72 ${ }^{\text {nd }}$ interchange ahead of those at the E. $55^{\text {th }}$ Street interchange. The group agreed MLK improvements appeared to be generally higher priorities for both safety and connectivity.
c. The city of Cleveland proposed an option where the SB through lane be oriented as the inside lane - the curb lane is required to merge with the inside lane as it currently exists in the field. The safety study proposes the SB through lane be oriented as the curb lane thus requiring the inside lane drop as an exclusive left turn lane at Lake Avenue. The safety study configuration was proposed to minimize weaving by creating a defacto left turn lane throughout the study area. The final lane configuration to be determined by the City of Cleveland. No changes are proposed to the safety study concept plan at this point of time.
d. Implementation of the lane configuration can be done as a short term countermeasure. Realignment of the EB I-90 exit ramp could be done as a separate project.

2. 72nd / MLK interchange countermeasures

a. Short term countermeasures

i. Removal of ramps on the east side of the $72^{\text {nd }}$ Street interchange to eliminate weaving condition on I-90 that does not meet nominal criteria and appears to be a contributing factor to observed crash patterns.
The proposed improvement also removes the vehicle/bike conflict at the E. $72^{\text {nd }}$ sreet NB to I-90 EB on ramp. Traffic destined to the ramp is almost a free flow movement and conflicts with the buffered bike lane in the existing configuration - the countermeasure has a safety benefit to E. $72^{\text {nd }}$ Street users as well.
ii. Stakeholders generally concur with adding a second SB lane under the railroad bridge as it fits inside existing curb lines and is expected to improve lane use.

- The City and Metroparks want to reduce the length of the second SB through lane so as not to extend south of East Blvd where a pedestrian refuge island exists south of East Blvd. and is desirable to remain. This change would reduce the effective length of the second SB lane by 500 feet.
- The group engaged in a lengthy discussion of where and how to drop the second lane (E. 88th vs St. Clair, Merge vs. inside lane drop). After discussion, the group reached consensus that the best approach is to drop the lane into a left turn only
lane at E.88th opposite the existing pedestrian refuge island with adequate advance signing to notify drivers of drop lane condition. This approach maximizes the effective length of the second through lane while keeping the pedestrian refuge island and dedicated left turn lane at E. 88th, a workable balance of competing interests.
iii. Trail Crossings at N. Marginal Road and the EB I-90 exit ramp are important to stakeholders. The trail connection on the west side of MLK Drive under I-90 completes the last link in a 21 mile lake-to-lake trail.
iv. A double right turn lane (LR-R) on the EB I-90 exit ramp was suggested to improve throughput from the exit ramp and is to be incorporated into the final safety study. The lane configuration change will reallocate additional green time to the SB MLK Drive approach.
v. Pedestrian/bicyclist safety a concern at the EB I-90 exit ramp crossing. No Turn On Red (NTOR) sign to improve pedestrian safety in the crosswalk. The city suggested a NTOR Except for Curb Lane signing. Keeping clear sight triangles for traffic exiting EB I-90 is important.
vi. No changes are proposed to the existing traffic signal at Broad Avenue due to limited sight distance and pedestrian crossing facilities. Provide crosswalks on south and west legs.
vii. The city suggested reconstructing the MLK Drive and E. $88^{\text {th }}$ Street intersection as a standard T intersection by removing the raised island. This would provide a more conventional intersection and a shorter crosswalk on east leg.
viii. A speed zone study is to be removed from the final safety study. The group agrees that a speed zone study was unnecessary and should be removed from the list of recommendations.

3. 72nd / MLK interchange long term countermeasures

i. Greenway stakeholders want to maximize green space and asked for an estimate of land acreage that can be captured with the realignment of Lakeshore Drive.
ii. Limited support was received for the long term countermeasure from all stakeholders due to the overall construction costs. The long term countermeasure is to remain in the final safety study for information purposes only and is not intended to identify the only feasible layout.
iii. The MLK Drive/ I-90 WB exit ramp/Lakeshore Blvd intersection has an unconventional traffic control as a two-way stop controlled intersection. The City did not see advantage but did not object to ODOT considering it. ODOT agreed to consider Metroparks' request for a traffic signal as a conventional traffic control similar to the EB ramps intersection. ODOT may evaluate signalization of the WB I90 exit ramp using a 300 second cycle, for example, to evaluate queue lengths on the WB approach.

4. Funding

a. TLCI implementation funding may be available to enhance pedestrian and bike elements of the interchange improvements. Their focus is to help as many projects as possible and support projects with other funding sources. Funding applications due January 29, 2016.
i. Brian stated that someone other than ODOT should sponsor an application to TLCI for enhancement treatments (ie. pavers, lighting) for the trail connection on MLK under I-90.
ii. EDG agreed to contact NOACA to determine eligibility of the proposed ped/bike improvements on MLK Drive.
b. ODOT wants to allow the city to continue to pursue STP funding for the N. Marginal Road reconstruction. A pavement replacement project is on the long range plan. The City suggests closure of the E. $72^{\text {nd }}$ ramps should not occur before reconstruction of N. Marginal Road.
c. ODOT expects to pursue safety funds for the balance of the short term countermeasures. Configuration on MLK Drive needs to be resolved with the City prior to March 15, 2016 to enable sufficient time to prepare a funding application for the project.

The above represents LJB's interpretations of the discussion held at the referenced meeting. These notes will be considered agreed to by all parties unless any errors, omissions or discrepancies are reported to the author.

	N ID	40218	41018	64318	64418	64518	64618	64718	64818	66018	66118	66218	66318
LOCATION													
DATE COLLECTED		08/06/13	08/06/13	10/24/11	10/24/11	10/25/11	11/16/11	10/19/11	10/19/11	11/16/11	11/16/11	08/06/13	08/06/13
GROWTH RATE (\%)		0.126	0.126	0.41	0	0	0.41	0	0	0	1.177	1.177	0
GROWTH PERIOD		21	21	23	23	23	23	23	23	23	23	21	21
	0:00	10	9	85	66	47	131	15	18	38	35	33	47
	1:00	5	7	36	35	38	80	13	15	22	10	20	28
	2:00	7	11	27	23	12	46	14	6	17	17	19	27
	3:00	12	5	38	23	23	35	6	4	25	7	16	19
	4:00	10	15	93	13	36	25	14	7	58	19	45	26
	5:00	16	27	324	39	123	120	40	15	125	38	92	25
	6:00	38	90	948	96	409	193	84	48	412	71	302	104
	7:00	59	131	721	239	415	488	191	58	740	186	356	190
	8:00	54	94	962	252	428	399	135	70	548	180	271	231
	9:00	56	63	641	228	452	304	106	59	374	136	217	231
	10:00	65	70	473	200	351	357	91	57	269	155	181	242
	11:00	77	73	430	247	307	410	77	54	277	217	223	285
	12:00	65	96	479	306	334	492	99	83	260	186	242	352
	13:00	71	86	481	255	337	518	95	61	263	216	224	378
	14:00	109	92	525	402	423	667	133	79	359	283	258	394
	15:00	142	112	518	440	428	975	142	93	763	247	260	481
	16:00	147	122	455	504	402	1127	124	102	447	303	195	614
	17:00	155	90	448	392	450	1113	114	95	453	210	209	561
	18:00	96	109	410	316	334	693	95	98	184	141	153	297
	19:00	88	72	278	231	251	548	66	51	113	135	103	180
	20:00	58	73	262	175	227	543	44	49	80	125	102	231
	21:00	59	45	203	125	173	326	28	48	86	72	133	163
	22:00	42	37	207	108	146	240	26	42	52	50	78	110
	23:00	34	34	148	86	109	226	25	26	43	54	58	85
	TOTAL	1476	1561	9193	4801	6256	10057	1776	1238	6007	3096	3791	5302

[^1]| LOCATION | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ECTION | EB | WB |
| GROW | H RATE (\%) | 0.085 | 0.085 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.063 | 0.063 | 0.063 | 0.063 | 0.126 | 0.126 |
| GRO | VTH PERIOD | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| | 0:00 | 632 | 473 | 599 | 441 | 646 | 479 | 629 | 464 | 643 | 476 | 595 | 409 | 726 | 494 |
| | 1:00 | 404 | 308 | 383 | 297 | 411 | 319 | 397 | 305 | 404 | 314 | 365 | 279 | 444 | 316 |
| | 2:00 | 284 | 251 | 266 | 234 | 293 | 252 | 287 | 238 | 296 | 250 | 284 | 227 | 330 | 255 |
| | 3:00 | 261 | 325 | 245 | 316 | 264 | 341 | 261 | 335 | 274 | 342 | 250 | 319 | 286 | 358 |
| | 4:00 | 500 | 513 | 458 | 493 | 485 | 552 | 477 | 538 | 491 | 556 | 454 | 542 | 483 | 636 |
| | 5:00 | 1362 | 1685 | 1274 | 1637 | 1299 | 1763 | 1284 | 1723 | 1308 | 1760 | 1184 | 1720 | 1311 | 2045 |
| | 6:00 | 2942 | 3969 | 2667 | 3871 | 2772 | 4286 | 2724 | 4201 | 2779 | 4316 | 2364 | 4219 | 2575 | 5160 |
| | 7:00 | 4112 | 5781 | 3781 | 5573 | 3972 | 6317 | 3913 | 6125 | 3996 | 6293 | 3575 | 6052 | 4077 | 6803 |
| | 8:00 | 3695 | 5221 | 3437 | 5023 | 3669 | 5574 | 3600 | 5438 | 3676 | 5566 | 3242 | 5310 | 3657 | 6278 |
| | 9:00 | 3060 | 3098 | 2852 | 2957 | 3085 | 3333 | 3025 | 3227 | 3099 | 3310 | 2642 | 3079 | 2960 | 3718 |
| | 10:00 | 2575 | 2655 | 2402 | 2504 | 2646 | 2776 | 2588 | 2684 | 2668 | 2770 | 2313 | 2567 | 2677 | 3042 |
| | 11:00 | 2683 | 2605 | 2474 | 2405 | 2761 | 2683 | 2707 | 2606 | 2800 | 2694 | 2489 | 2444 | 2905 | 2876 |
| | 12:00 | 2648 | 2700 | 2425 | 2524 | 2779 | 2786 | 2696 | 2686 | 2777 | 2798 | 2439 | 2488 | 2930 | 2968 |
| | 13:00 | 2820 | 2797 | 2610 | 2596 | 2990 | 2860 | 2929 | 2765 | 3017 | 2867 | 2676 | 2609 | 3194 | 3092 |
| | 14:00 | 3735 | 3580 | 3488 | 3318 | 3884 | 3679 | 3804 | 3544 | 3936 | 3658 | 3508 | 3251 | 4177 | 3783 |
| | 15:00 | 4883 | 3618 | 4621 | 3383 | 5105 | 4151 | 5012 | 4008 | 5183 | 4144 | 4750 | 3699 | 5722 | 4230 |
| | 16:00 | 5564 | 4173 | 5348 | 3889 | 5966 | 4338 | 5863 | 4213 | 6046 | 4360 | 5639 | 3850 | 6765 | 4324 |
| | 17:00 | 4722 | 3978 | 4503 | 3769 | 5067 | 4225 | 4972 | 4111 | 5157 | 4226 | 4702 | 3829 | 5803 | 4297 |
| | 18:00 | 4464 | 3073 | 4294 | 2929 | 4592 | 3114 | 4493 | 3018 | 4616 | 3144 | 4278 | 2824 | 4980 | 3242 |
| | 19:00 | 2620 | 2074 | 2509 | 1945 | 2691 | 2059 | 2639 | 1992 | 2743 | 2076 | 2490 | 1842 | 3034 | 2125 |
| | 20:00 | 2269 | 1609 | 2162 | 1493 | 2395 | 1573 | 2346 | 1530 | 2418 | 1611 | 2187 | 1434 | 2723 | 1697 |
| | 21:00 | 2107 | 1365 | 1977 | 1293 | 2141 | 1380 | 2093 | 1352 | 2164 | 1405 | 1989 | 1278 | 2319 | 1485 |
| | 22:00 | 1772 | 1127 | 1691 | 1076 | 1801 | 1128 | 1759 | 1102 | 1811 | 1146 | 1664 | 1036 | 1910 | 1244 |
| | 23:00 | 1390 | 805 | 1329 | 754 | 1415 | 797 | 1389 | 771 | 1432 | 809 | 1321 | 723 | 1550 | 871 |
| | DIR. TOTAL | 61507 | 57784 | 57795 | 54720 | 63131 | 60764 | 61885 | 58977 | 63735 | 60892 | 57400 | 56030 | 67536 | 65340 |
| | TOTAL | 119291 | | 112515 | | 123894 | | 120862 | | 124627 | | 113430 | | 132876 | |

[^2]
IR-90 Safety Study

E.55th Street, E. 72nd Street and Dr. Martin Luther King Blvd.

IR-90/E. 55th Street	0.085
IR-90 west of E. 55th	1.177
Eastbound Exit Ramp	1.177
Westbound Entrance Ramp	0
Eastbound Entrance Ramp	0
Westbound Exit Ramp	0
E. 55th Street	
	0.031
IR-90/E. 72nd Street	0
IR-90 West of E. 72nd	0
Eastbound Exit Ramp	0.126
Westbound Entrance Ramp	0.126
Eastbound Entrance Ramp	0
Westbound Exit Ramp	
E. 72nd Street	0.0
	0.063
IR-90/MLK	0
IR-90 West of MLK	0
Eastbound Exit Ramp	0.41
Westbound Entrance Ramp	0.41
Eastbound Entrance Ramp	
Westbound Exit Ramp	IR-90 East of MLK

Monthly Volume by Week (V2)

Date Range: 05/01/2014-05/31/2014
Station: 576
CUY - IR - 90 : 24.330
East / West
Location: 0.12 MI E OF EAST 140TH ST
Week 2 of May, 2014

Day	Sun, May 04		Mon, May 05		Tue, May 06		Wed, May 07		Thu, May 08		Fri, May 09		Sat, May 10		Hour Totals		
Hour	East	West	Both														
0	1089	654	436	333	588	332	578	382	665	410	792	567	1023	692	5171	3370	8541
1	874	662	299	259	333	282	349	253	381	288	427	383	706	496	3369	2623	5992
2	806	525	232	199	262	224	271	208	299	228	369	285	620	363	2859	2032	4891
3	467	288	212	279	235	291	243	313	242	300	336	354	388	311	2123	2136	4259
4	307	215	390	541	421	570	407	538	438	569	435	567	349	332	2747	3332	6079
5	305	359	1141	1843	1138	1903	1125	1833	1117	1877	1043	1783	597	658	6466	10256	16722
6	476	901	2311	4948	2288	5020	2158	4970	2382	4988	2256	4743	1495	1365	13366	26935	40301
7	854	988	3473	7042	3504	6948	3391	6473	3472	7298	3462	6970	1698	1584	19854	37303	57157
8	1153	1260	2809	5476	2996	5738	3051	5942	2969	5676	2856	5144	1751	2391	17585	31627	49212
9	1437	1917	2417	3247	2396	3385	2468	3424	2519	3408	2391	3403	2039	2691	15667	21475	37142
10	1806	2386	2283	2512	2209	2656	2184	2744	2504	2990	2564	2903	2234	3135	15784	19326	35110
11	2134	2355	2299	2428	2424	2500	2431	2560	2564	2970	2711	2815	2689	3030	17252	18658	35910
12	2250	2509	2446	2570	2555	2607	2558	2625	2808	2773	3000	2869	3057	3233	18674	19186	37860
13	2701	2583	2560	2667	2796	2640	2753	2744	3045	2855	3293	3024	2934	3295	20082	19808	39890
14	2763	2661	3529	3042	3530	3175	3624	3215	3814	3390	4194	3395	2986	3165	24440	22043	46483
15	2861	2503	5060	3539	5307	3801	5194	3665	5804	3732	5462	3858	3249	2988	32937	24086	57023
16	2989	2576	6412	3644	6424	4019	6335	3871	6532	4076	6431	3998	3124	2916	38247	25100	63347
17	2567	2374	6811	3579	6859	4092	5360	3965	6705	4100	6331	4068	3149	2844	37782	25022	62804
18	2082	2224	3562	2794	3923	3193	4619	3070	3802	3227	3800	3366	2424	3083	24212	20957	45169
19	1973	1718	2319	1672	2449	1968	2639	2028	2787	2268	2602	2323	2189	2346	16958	14323	31281
20	1665	1539	1922	1359	2141	1649	2408	1619	2335	1777	2018	1887	1940	2037	14429	11867	26296
21	1520	1209	1569	1264	2137	1334	2045	1463	2149	1525	2025	1715	1982	1982	13427	10492	23919
22	1120	1016	1455	1082	1480	1092	1719	1136	1677	1298	1777	1512	2236	1721	11464	8857	20321
23	827	633	994	696	1232	804	1308	795	1569	946	1834	1196	2056	1389	9820	6459	16279
Direction	37026	36055	56941	57015	59627	60223	59218	59836	62579	62969	62409	63128	46915	48047	384715	387273	771988
Day	73081		113956		119850		119054		125548		125537		94962				

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
40218	3	1	13	8	5	15	0	114	29	0	0	0	0	0	1	1	0	0	0
40218	3	1	13	8	5	16	0	136	34	1	1	1	0	0	1	1	0	0	0
40218	3	1	13	8	5	17	0	150	38	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	18	0	65	16	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	19	1	67	17	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	20	1	62	16	0	1	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	21	0	42	11	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	22	0	31	8	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	5	23	0	20	5	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	0	0	9	2	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	1	0	4	1	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	2	0	6	2	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	3	0	10	3	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	4	0	9	2	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	5	0	14	3	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	6	0	32	8	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	6	7	0	50	13	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	8	0	43	11	0	0	0	0	0	4	0	0	0	0
40218	3	1	13	8	6	9	0	46	12	1	0	1	0	0	0	0	0	0	0
40218	3	1	13	8	6	10	0	54	13	1	1	1	0	0	0	0	0	0	0
40218	3	1	13	8	6	11	0	62	16	1	1	1	0	0	2	0	0	0	0
40218	3	1	13	8	6	12	0	52	13	0	1	0	1	0	3	0	0	0	0
40218	3	1	13	8	6	13	0	57	14	2	1	0	0	0	2	0	0	0	0
40218	3	1	13	8	6	14	1	90	23	0	1	0	0	0	2	0	0	0	0
40218	3	1	13	8	6	15	0	120	30	0	0	1	0	0	1	0	0	0	0
40218	3	1	13	8	6	16	0	126	31	0	0	0	0	0	0	1	0	0	0
40218	3	1	13	8	6	17	1	132	33	0	1	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	18	0	82	20	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	6	19	3	74	18	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	20	0	50	12	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	21	0	50	13	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	22	0	36	9	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	6	23	0	30	7	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	0	0	23	6	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	1	0	10	3	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	2	0	6	2	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	3	0	11	3	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	4	0	6	2	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	7	5	0	11	3	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	6	0	27	7	0	0	0	0	0	1	1	0	0	0
40218	3	1	13	8	7	7	0	50	12	0	0	0	0	0	0	0	0	0	0
40218	3	1	13	8	7	8	0	46	11	0	0	0	0	0	1	0	0	0	0
40218	3	1	13	8	7	9	0	50	12	0	1	0	0	0	1	0	0	0	0
40218	3	1	13	8	7	10	0	44	11	0	1	1	0	0	2	0	0	0	0
40218	3	1	13	8	7	11	0	61	15	1	1	0	0	0	2	1	0	0	0
40218	3	1	13	8	7	12	1	61	15	2	2	1	0	0	2	0	0	0	0
40218	3	1	13	8	7	13	0	56	14	0	1	0	0	0	2	0	0	0	0
40218	3	1	13	8	7	14	0	76	19	0	1	1	0	0	2	0	0	0	0

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
40318	1	1	13	8	8	6	0	63	16	0	0	0	0	0	2	0	0	0	0
40318	1	1	13	8	8	7	0	38	9	0	0	1	0	0	4	0	0	0	0
40318	1	1	13	8	8	8	0	40	10	1	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	9	0	34	8	2	2	0	1	0	1	0	0	0	0
40318	1	1	13	8	8	10	0	57	14	2	2	0	1	0	0	0	0	0	0
40318	1	1	13	8	8	11	0	42	11	0	1	1	1	0	0	0	0	0	0
40318	1	1	13	8	8	12	0	44	11	2	1	1	0	0	0	0	0	0	0
40318	1	1	13	8	8	13	0	55	14	2	1	1	0	0	1	0	0	0	0
40318	1	1	13	8	8	14	0	59	15	1	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	15	0	78	19	1	1	1	0	0	0	0	0	0	0
40318	1	1	13	8	8	16	0	98	24	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	17	0	86	22	0	0	0	0	0	1	0	0	0	0
40318	1	1	13	8	8	18	0	70	17	0	0	0	0	0	1	0	0	0	0
40318	1	1	13	8	8	19	0	64	16	0	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	20	0	50	13	0	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	21	0	39	10	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	8	22	1	38	9	0	0	0	0	0	1	0	0	0	0
40318	1	1	13	8	8	23	0	39	10	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	0	0	21	5	1	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	1	0	12	3	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	2	0	10	2	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	3	0	6	2	0	0	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	4	0	8	2	0	1	0	0	0	0	0	0	0	0
40318	1	1	13	8	9	5	0	11	3	0	1	0	0	0	1	0	0	0	0
40318	5	1	13	8	8	6	0	24	0	0	0	0	0	0	1	0	0	0	0
40318	5	1	13	8	8	7	0	36	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	8	0	32	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	9	0	16	3	0	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	10	0	18	2	0	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	11	0	22	2	1	1	1	0	0	1	0	0	0	0
40318	5	1	13	8	8	12	0	14	5	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	13	0	26	3	1	1	1	0	0	0	0	0	0	0
40318	5	1	13	8	8	14	0	32	4	0	0	0	0	0	1	0	0	0	0
40318	5	1	13	8	8	15	1	31	6	0	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	16	0	35	6	1	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	17	0	22	9	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	18	0	25	3	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	19	0	18	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	20	0	18	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	21	0	20	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	22	0	16	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	8	23	0	23	1	0	0	0	0	0	1	0	0	0	0
40318	5	1	13	8	9	0	0	12	1	2	1	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	1	0	1	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	2	0	6	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	3	0	4	0	0	0	0	0	0	0	0	0	0	0
40318	5	1	13	8	9	4	0	7	2	2	1	0	0	0	1	0	0	0	0
40318	5	1	13	8	9	5	0	11	3	0	1	0	0	0	1	0	0	0	0
40318	5	2	13	8	8	6	0	30	8	1	0	0	0	0	1	0	0	0	0

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
40918	5	1	13	7	25	9	1	57	14	0	1	0	0	0	2	0	0	0	0
40918	5	1	13	7	25	10	2	54	13	2	1	0	0	0	3	0	0	0	0
40918	5	1	13	7	25	11	1	82	20	3	1	0	0	0	5	1	0	0	0
40918	5	1	13	7	25	12	0	74	19	1	1	1	0	0	2	0	0	0	0
40918	5	1	13	7	25	13	0	78	20	1	1	1	1	0	1	1	0	0	0
40918	5	1	13	7	25	14	2	81	20	2	1	0	0	0	0	0	0	0	0
40918	5	1	13	7	25	15	1	84	21	1	0	0	0	0	2	0	0	0	0
40918	5	1	13	7	25	16	1	98	25	2	2	1	0	0	1	0	0	0	0
40918	5	1	13	7	25	17	0	86	21	3	1	1	1	0	0	0	0	0	0
40918	5	1	13	7	25	18	3	84	21	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	25	19	0	79	20	2	1	0	0	0	3	0	0	0	0
40918	5	1	13	7	25	20	0	73	18	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	25	21	1	58	15	0	1	0	1	0	1	0	0	0	0
40918	5	1	13	7	25	22	0	43	11	0	0	1	0	0	0	0	0	0	0
40918	5	1	13	7	25	23	1	30	7	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	26	0	0	11	3	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	26	1	0	10	3	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	26	2	0	6	1	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	26	3	0	7	2	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	26	4	0	13	3	0	0	0	0	0	0	0	0	0	0
40918	5	1	13	7	26	5	0	30	8	0	0	0	0	0	0	1	0	0	0
40918	5	1	13	7	26	6	1	62	16	0	0	0	0	0	1	0	0	0	0
40918	5	1	13	7	26	7	0	106	27	0	0	0	0	0	2	0	0	0	0
40918	5	1	13	7	26	8	0	79	20	2	1	1	0	0	2	0	0	0	0
40918	5	1	13	7	26	9	1	51	13	2	1	0	0	0	1	0	0	0	0
40918	1	1	13	7	25	9	1	47	12	3	1	1	0	0	2	0	0	0	0
40918	1	1	13	7	25	10	1	42	11	0	1	1	0	0	2	0	0	0	0
40918	1	1	13	7	25	11	1	54	14	3	1	2	1	0	4	0	0	0	0
40918	1	1	13	7	25	12	2	74	18	5	5	1	0	0	4	0	0	0	0
40918	1	1	13	7	25	13	1	77	19	2	0	1	0	0	2	0	0	0	0
40918	1	1	13	7	25	14	0	104	26	5	1	3	0	0	6	0	0	0	0
40918	1	1	13	7	25	15	3	91	23	0	1	0	0	0	4	0	0	0	0
40918	1	1	13	7	25	16	2	121	30	2	1	1	0	0	1	0	0	0	0
40918	1	1	13	7	25	17	1	130	33	0	1	1	0	0	0	0	0	0	0
40918	1	1	13	7	25	18	2	86	21	0	1	0	0	0	2	0	0	0	0
40918	1	1	13	7	25	19	1	106	26	1	1	0	0	0	2	0	0	0	0
40918	1	1	13	7	25	20	2	101	25	0	0	1	0	0	1	0	0	0	0
40918	1	1	13	7	25	21	1	66	16	0	0	0	0	0	0	0	0	0	0
40918	1	1	13	7	25	22	0	68	17	0	1	1	0	0	0	0	0	0	0
40918	1	1	13	7	25	23	1	30	7	0	0	0	0	0	0	0	0	0	0
40918	1	1	13	7	26	0	0	15	4	0	1	0	0	0	0	0	0	0	0
40918	1	1	13	7	26	1	0	13	3	0	0	0	0	0	0	0	0	0	0
40918	1	1	13	7	26	2	0	6	1	0	0	0	0	0	0	0	0	0	0
40918	1	1	13	7	26	3	0	10	2	0	0	0	0	0	0	0	0	0	0
40918	1	1	13	7	26	4	0	6	1	0	0	0	0	0	0	0	0	0	0
40918	1	1	13	7	26	5	0	17	4	0	0	0	0	0	0	0	0	0	0
40918	1	1	13	7	26	6	1	37	9	1	0	1	0	0	1	0	0	0	0
40918	1	1	13	7	26	7	1	37	9	1	1	1	1	0	1	0	0	0	0
40918	1	1	13	7	26	8	0	34	9	4	1	4	0	0	3	0	0	0	0
40918	1	1	13	7	26	9	0	60	15	0	1	0	0	0	0	0	0	0	0

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
41018	7	1	13	8	5	15	0	100	25	2	1	0	0	0	1	0	0	0	0
41018	7	1	13	8	5	16	1	100	25	0	1	1	0	0	1	1	0	0	0
41018	7	1	13	8	5	17	0	88	22	1	1	1	0	0	0	0	0	0	0
41018	7	1	13	8	5	18	0	74	18	0	1	0	0	0	1	0	0	0	0
41018	7	1	13	8	5	19	0	66	16	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	5	20	1	65	16	0	1	0	0	0	1	0	0	0	0
41018	7	1	13	8	5	21	0	38	10	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	5	22	0	32	8	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	5	23	0	32	8	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	0	0	8	2	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	1	0	6	1	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	2	0	10	2	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	3	0	4	1	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	4	0	13	3	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	5	0	22	6	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	6	1	74	19	0	0	1	0	0	2	0	0	0	0
41018	7	1	13	8	6	7	0	110	27	1	1	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	8	0	79	20	0	0	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	9	0	50	13	2	2	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	10	0	57	14	0	0	1	0	0	3	0	0	0	0
41018	7	1	13	8	6	11	0	59	15	1	1	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	12	0	79	20	0	1	1	0	0	2	0	0	0	0
41018	7	1	13	8	6	13	0	70	17	2	1	0	0	0	2	0	0	0	0
41018	7	1	13	8	6	14	0	78	19	0	0	0	0	0	2	0	0	0	0
41018	7	1	13	8	6	15	1	90	22	0	0	1	0	0	5	1	0	0	0
41018	7	1	13	8	6	16	1	99	25	2	2	1	0	0	1	0	0	0	0
41018	7	1	13	8	6	17	0	78	19	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	18	1	90	23	1	1	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	19	0	61	15	0	1	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	20	1	62	15	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	21	2	36	9	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	6	22	0	32	8	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	6	23	0	29	7	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	0	0	17	4	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	1	0	6	2	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	2	0	6	1	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	3	0	10	2	0	0	0	0	0	1	0	0	0	0
41018	7	1	13	8	7	4	0	14	3	0	0	0	0	0	0	0	0	0	0
41018	7	1	13	8	7	5	0	26	7	0	0	0	0	0	0	1	0	0	0
41018	7	1	13	8	7	6	0	76	19	0	0	0	0	0	2	0	0	0	0
41018	7	1	13	8	7	7	0	114	29	0	1	0	0	0	4	0	0	0	0
41018	7	1	13	8	7	8	0	78	20	2	1	1	0	0	3	0	0	0	0
41018	7	1	13	8	7	9	0	56	14	2	3	0	0	0	2	0	0	0	0
41018	7	1	13	8	7	10	1	54	14	2	1	1	0	0	2	1	0	0	0
41018	7	1	13	8	7	11	0	59	15	2	3	1	0	0	1	0	0	0	0
41018	7	1	13	8	7	12	0	73	18	1	1	1	0	0	0	0	0	0	0
41018	7	1	13	8	7	13	0	60	15	1	1	1	0	0	1	0	0	0	0
41018	7	1	13	8	7	14	0	74	19	0	1	0	0	0	5	0	0	0	0

Data For Station: 63318

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/05/11	10:00	Axle	1	1	291	58	1	9	11	0	5	22	3	0	0	1
10/05/11	11:00	Axle	1	1	273	62	1	5	17	1	4	27	5	0	0	0
10/05/11	12:00	Axle	1	2	292	74	0	11	16	1	7	35	4	0	1	0
10/05/11	13:00	Axle	1	2	311	60	0	14	23	1	3	28	3	0	0	1
10/05/11	14:00	Axle	1	3	433	69	0	8	12	1	3	35	2	0	1	0
10/05/11	15:00	Axle	1	4	529	80	0	18	9	2	3	34	4	0	2	0
10/05/11	16:00	Axle	1	0	541	62	0	9	10	0	6	19	3	0	1	2
10/05/11	17:00	Axle	1	2	536	52	0	4	3	0	3	31	0	0	0	0
10/05/11	18:00	Axle	1	2	356	35	1	1	5	0	3	8	0	1	0	1
10/05/11	19:00	Axle	1	2	286	24	0	0	1	0	5	6	0	0	0	0
10/05/11	20:00	Axle	1	1	221	22	0	2	2	0	3	5	0	0	0	0
10/05/11	21:00	Axle	1	5	184	12	0	0	0	0	2	1	0	0	0	0
10/05/11	22:00	Axle	1	0	137	19	0	0	0	0	1	3	0	0	0	0
10/05/11	23:00	Axle	1	1	107	6	0	0	0	0	1	3	0	0	0	0
10/06/11	00:00	Axle	1	0	91	8	0	0	0	0	0	1	0	0	0	0
10/06/11	01:00	Axle	1	0	67	7	0	0	0	0	1	0	0	0	0	0
10/06/11	02:00	Axle	1	0	30	5	0	1	0	0	1	0	0	0	0	0
10/06/11	03:00	Axle	1	1	35	7	0	0	1	0	0	1	0	0	0	0
10/06/11	04:00	Axle	1	0	68	9	0	1	0	0	0	0	0	0	0	0
10/06/11	05:00	Axle	1	1	158	14	0	2	4	0	0	4	0	0	0	0
10/06/11	06:00	Axle	1	2	290	39	0	5	4	0	4	6	0	0	2	1
10/06/11	07:00	Axle	1	0	497	42	2	6	7	0	6	14	3	0	2	1
10/06/11	08:00	Axle	1	2	432	51	2	17	2	0	3	27	4	0	0	0
10/06/11	09:00	Axle	1	1	298	65	0	15	12	1	5	21	2	0	1	1
10/06/11	10:00	Axle	1	0	250	57	2	15	11	0	8	31	4	0	0	0
10/06/11	11:00	Axle	1	0	255	58	0	8	16	1	5	23	4	0	1	0
10/06/11	12:00	Axle	1	1	304	73	1	8	14	0	3	26	5	0	0	0
10/06/11	13:00	Axle	1	0	288	81	4	10	25	0	5	33	1	0	0	0
10/06/11	14:00	Axle	1	4	464	86	1	11	22	0	7	31	4	0	0	1
10/06/11	15:00	Axle	1	2	529	82	0	13	13	0	3	29	2	0	0	0
10/06/11	16:00	Axle	1	2	534	70	0	5	9	1	4	26	0	0	0	1
10/06/11	17:00	Axle	1	0	512	63	0	5	7	0	4	18	0	0	0	0
10/06/11	18:00	Axle	1	1	330	26	0	2	6	0	5	14	0	0	0	0
10/06/11	19:00	Axle	1	3	261	29	1	1	3	0	3	8	0	0	0	0
10/06/11	20:00	Axle	1	0	190	16	0	1	1	0	1	3	0	0	0	0
10/06/11	21:00	Axle	1	1	169	13	0	0	0	0	2	0	0	0	0	0
10/06/11	22:00	Axle	1	4	168	14	0	0	0	0	1	1	0	0	0	0
10/06/11	23:00	Axle	1	2	117	10	0	1	1	0	0	0	0	0	0	0
10/07/11	00:00	Axle	1	1	68	10	0	0	0	0	0	2	0	0	0	0
10/07/11	01:00	Axle	1	2	61	7	0	0	0	0	0	1	0	0	0	0
10/07/11	02:00	Axle	1	1	52	1	0	0	0	0	1	0	0	0	0	0
10/07/11	03:00	Axle	1	0	44	5	0	1	2	0	0	0	0	0	0	0
10/07/11	04:00	Axle	1	0	59	6	0	2	0	0	0	0	0	0	0	0
10/07/11	05:00	Axle	1	0	167	14	0	0	3	0	1	6	0	0	0	0
10/07/11	06:00	Axle	1	4	286	29	0	7	5	0	3	5	1	0	0	0
10/07/11	07:00	Axle	1	1	460	41	2	10	4	1	2	14	0	0	0	1
10/07/11	08:00	Axle	1	0	430	52	3	13	8	0	2	26	1	0	0	1

Data For Station: 63418

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/05/11	11:00	Axle	1	6	271	69	2	6	6	5	6	27	4	0	0	0
10/05/11	12:00	Axle	1	6	268	69	1	8	14	5	2	27	8	0	1	0
10/05/11	13:00	Axle	1	11	350	65	4	6	15	4	2	20	5	0	0	0
10/05/11	14:00	Axle	1	11	395	113	0	9	10	6	3	13	4	0	1	0
10/05/11	15:00	Axle	1	9	433	95	0	9	10	3	2	10	0	1	0	0
10/05/11	16:00	Axle	1	12	543	98	0	6	14	0	2	14	1	0	1	1
10/05/11	17:00	Axle	1	14	553	77	0	4	14	0	5	3	1	0	0	1
10/05/11	18:00	Axle	1	7	402	56	0	1	2	0	1	4	1	0	0	1
10/05/11	19:00	Axle	1	9	295	47	0	0	7	1	0	2	0	1	0	0
10/05/11	20:00	Axle	1	8	266	28	0	1	1	0	1	2	0	0	0	0
10/05/11	21:00	Axle	1	8	266	25	0	1	3	0	1	0	0	0	0	0
10/05/11	22:00	Axle	1	3	167	23	0	1	3	0	0	0	0	0	0	0
10/05/11	23:00	Axle	1	3	146	14	0	0	3	1	0	0	0	0	0	0
10/06/11	00:00	Axle	1	2	109	15	0	0	0	0	0	0	0	0	0	0
10/06/11	01:00	Axle	1	2	56	5	0	1	0	0	0	0	0	0	0	0
10/06/11	02:00	Axle	1	3	55	4	0	1	0	0	0	0	0	0	0	0
10/06/11	03:00	Axle	1	0	26	3	0	1	1	0	1	0	0	0	0	0
10/06/11	04:00	Axle	1	4	55	12	0	0	2	0	1	1	0	0	0	0
10/06/11	05:00	Axle	1	6	195	27	0	0	5	0	0	2	0	0	0	0
10/06/11	06:00	Axle	1	7	314	66	1	11	8	3	0	1	0	0	0	0
10/06/11	07:00	Axle	1	7	514	70	1	11	18	4	3	10	1	0	2	0
10/06/11	08:00	Axle	1	10	446	83	1	9	8	0	5	13	1	1	1	1
10/06/11	09:00	Axle	1	6	335	93	2	6	11	4	2	15	0	0	2	0
10/06/11	10:00	Axle	1	11	253	92	1	12	9	1	4	14	2	0	0	0
10/06/11	11:00	Axle	1	10	277	90	2	9	13	6	1	16	2	0	1	0
10/06/11	12:00	Axle	1	8	260	83	2	7	10	6	4	12	3	1	1	0
10/06/11	13:00	Axle	1	8	285	92	0	11	9	3	3	16	1	1	0	0
10/06/11	14:00	Axle	1	15	382	102	5	8	16	1	4	16	4	1	1	0
10/06/11	15:00	Axle	1	13	450	94	2	9	16	2	3	15	3	0	0	0
10/06/11	16:00	Axle	1	12	486	73	1	4	15	3	2	5	1	2	0	0
10/06/11	17:00	Axle	1	10	518	64	0	4	8	0	1	5	1	0	0	0
10/06/11	18:00	Axle	1	7	403	41	0	2	6	0	1	4	0	1	0	0
10/06/11	19:00	Axle	1	7	328	38	0	3	4	0	0	1	0	0	0	0
10/06/11	20:00	Axle	1	10	268	43	0	1	1	0	3	2	0	0	0	0
10/06/11	21:00	Axle	1	8	243	20	0	0	3	0	0	0	0	0	0	0
10/06/11	22:00	Axle	1	2	184	23	0	0	1	0	0	1	0	0	0	1
10/06/11	23:00	Axle	1	2	150	21	0	1	2	0	0	1	0	0	1	1
10/07/11	00:00	Axle	1	4	108	15	0	2	2	0	1	0	0	0	0	0
10/07/11	01:00	Axle	1	2	76	9	0	0	3	0	0	0	1	0	0	0
10/07/11	02:00	Axle	1	1	45	0	0	1	1	0	0	1	0	0	0	0
10/07/11	03:00	Axle	1	3	35	5	0	0	1	0	1	1	0	0	0	0
10/07/11	04:00	Axle	1	4	58	13	0	1	2	0	0	4	1	0	0	0
10/07/11	05:00	Axle	1	5	182	26	0	2	4	0	1	0	0	0	0	0
10/07/11	06:00	Axle	1	10	310	50	0	14	11	0	2	2	0	0	0	1
10/07/11	07:00	Axle	1	9	508	53	2	12	15	3	5	12	1	0	0	0
10/07/11	08:00	Axle	1	9	416	102	1	11	11	1	6	16	3	0	0	0
10/07/11	09:00	Axle	1	8	261	84	1	9	9	3	4	9	2	0	0	4
10/07/11	10:00	Axle	1	7	280	108	2	8	10	5	4	14	1	1	1	3
10/07/11	11:00	Axle	1	9	281	76	4	6	9	3	8	20	0	1	0	2

Data For Station: 63718

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/05/11	14:00	Axle	1	1	113	28	0	4	2	1	2	3	3	0	0	0
10/05/11	15:00	Axle	1	1	126	28	0	7	1	0	1	2	1	0	0	0
10/05/11	16:00	Axle	1	2	131	23	0	3	2	1	0	3	2	0	0	1
10/05/11	17:00	Axle	1	2	139	16	0	0	1	0	0	1	0	0	0	0
10/05/11	18:00	Axle	1	1	116	13	0	0	0	0	0	1	0	0	0	0
10/05/11	19:00	Axle	1	0	100	12	0	2	0	0	1	0	0	0	0	1
10/05/11	20:00	Axle	1	0	86	8	0	1	0	0	2	0	0	0	0	0
10/05/11	21:00	Axle	1	1	72	6	0	0	0	0	0	0	0	0	0	0
10/05/11	22:00	Axle	1	0	64	4	0	0	0	0	0	0	0	0	0	0
10/05/11	23:00	Axle	1	1	66	6	0	0	0	0	0	0	0	0	0	0
10/06/11	00:00	Axle	1	0	31	1	0	0	0	0	0	0	0	0	0	0
10/06/11	01:00	Axle	1	0	17	1	0	0	0	0	0	0	0	0	0	0
10/06/11	02:00	Axle	1	0	14	2	0	0	0	0	0	0	0	0	0	0
10/06/11	03:00	Axle	1	1	7	1	0	0	0	0	0	0	0	0	0	0
10/06/11	04:00	Axle	1	0	3	3	0	0	0	0	0	0	0	0	0	0
10/06/11	05:00	Axle	1	0	19	9	0	0	0	0	0	0	0	0	0	0
10/06/11	06:00	Axle	1	2	52	13	0	6	1	0	1	0	0	0	0	1
10/06/11	07:00	Axle	1	0	93	25	0	1	3	0	0	6	1	0	0	0
10/06/11	08:00	Axle	1	0	90	17	0	3	2	0	0	5	1	1	0	0
10/06/11	09:00	Axle	1	0	61	17	0	3	0	0	0	6	1	3	0	0
10/06/11	10:00	Axle	1	0	79	19	0	1	0	2	3	4	1	0	1	0
10/06/11	11:00	Axle	1	0	84	24	0	2	3	0	1	5	3	1	1	0
10/06/11	12:00	Axle	1	0	62	18	0	0	0	1	1	6	3	0	0	0
10/06/11	13:00	Axle	1	0	75	10	0	5	1	1	0	6	1	0	0	0
10/06/11	14:00	Axle	1	0	100	20	0	7	1	1	1	4	1	0	0	1
10/06/11	15:00	Axle	1	1	108	33	1	12	1	1	1	3	0	0	0	1
10/06/11	16:00	Axle	1	1	150	18	0	4	1	0	1	2	0	0	0	0
10/06/11	17:00	Axle	1	0	145	18	0	0	0	0	0	3	0	0	0	1
10/06/11	18:00	Axle	1	0	120	12	0	0	0	0	0	0	0	0	0	0
10/06/11	19:00	Axle	1	1	98	9	0	2	1	0	1	1	0	0	0	0
10/06/11	20:00	Axle	1	0	89	7	0	0	0	0	0	0	0	0	0	1
10/06/11	21:00	Axle	1	0	76	9	0	1	0	0	0	0	0	0	0	0
10/06/11	22:00	Axle	1	0	66	3	0	0	0	0	1	1	0	0	0	1
10/06/11	23:00	Axle	1	2	60	3	0	0	0	0	0	3	0	0	0	1
10/07/11	00:00	Axle	1	1	40	3	0	1	0	0	0	0	0	0	0	1
10/07/11	01:00	Axle	1	0	20	1	0	0	0	0	0	1	0	0	0	0
10/07/11	02:00	Axle	1	0	22	2	0	0	0	0	0	0	0	0	0	0
10/07/11	03:00	Axle	1	0	15	1	0	1	0	0	0	0	0	0	0	0
10/07/11	04:00	Axle	1	0	14	0	0	0	0	0	0	0	0	0	0	0
10/07/11	05:00	Axle	1	1	14	2	0	0	1	0	0	0	0	0	0	0
10/07/11	06:00	Axle	1	2	57	16	0	4	2	1	0	0	1	0	0	0
10/07/11	07:00	Axle	1	1	77	26	0	2	0	0	1	3	1	0	0	0
10/07/11	08:00	Axle	1	0	65	15	0	3	2	1	1	3	2	0	1	0
10/07/11	09:00	Axle	1	0	66	15	1	2	2	1	1	3	0	0	0	0
10/07/11	10:00	Axle	1	0	97	16	0	3	2	1	0	0	2	0	0	0
10/07/11	11:00	Axle	1	1	68	22	0	4	2	2	1	3	2	0	0	0
10/07/11	12:00	Axle	1	2	92	21	0	5	1	0	1	4	2	0	0	0

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
63918	7	1	13	8	5	14	2	310	78	2	1	1	0	0	8	0	0	0	0
63918	7	1	13	8	5	15	0	316	79	1	0	1	1	0	11	1	0	0	0
63918	7	1	13	8	5	16	0	346	87	0	1	1	0	0	8	0	0	0	0
63918	7	1	13	8	5	17	0	389	97	3	0	3	1	0	9	0	0	0	0
63918	7	1	13	8	5	18	1	326	82	2	1	1	0	0	4	0	0	0	0
63918	7	1	13	8	5	19	2	265	66	0	1	0	0	0	1	0	0	0	0
63918	7	1	13	8	5	20	1	215	54	0	0	0	0	0	2	0	0	0	0
63918	7	1	13	8	5	21	2	210	52	0	0	0	0	0	2	0	0	0	0
63918	7	1	13	8	5	22	1	149	37	0	0	0	0	0	1	0	0	0	0
63918	7	1	13	8	5	23	0	127	32	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	6	0	0	71	18	0	1	0	0	0	0	0	0	0	0
63918	7	1	13	8	6	1	0	38	10	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	6	2	2	22	5	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	6	3	0	26	6	0	1	0	0	0	0	0	0	0	0
63918	7	1	13	8	6	4	0	25	6	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	6	5	0	49	12	0	1	1	0	0	0	0	0	0	0
63918	7	1	13	8	6	6	0	157	39	0	1	1	0	0	3	0	0	0	0
63918	7	1	13	8	6	7	0	290	72	0	0	0	0	0	10	0	0	0	0
63918	7	1	13	8	6	8	1	281	70	2	1	1	0	0	2	0	0	0	0
63918	7	1	13	8	6	9	0	243	61	2	1	1	0	0	5	0	0	0	0
63918	7	1	13	8	6	10	0	228	57	2	1	1	0	0	4	0	0	0	0
63918	7	1	13	8	6	11	1	242	61	2	1	1	0	0	5	0	0	0	0
63918	7	1	13	8	6	12	2	260	65	2	2	0	0	0	4	0	0	0	0
63918	7	1	13	8	6	13	1	267	67	3	1	1	0	0	10	0	0	0	0
63918	7	1	13	8	6	14	1	297	74	1	1	1	0	0	5	0	0	0	0
63918	7	1	13	8	6	15	0	346	86	0	1	1	0	0	6	1	0	0	0
63918	7	1	13	8	6	16	1	366	91	1	1	1	0	0	8	0	0	0	0
63918	7	1	13	8	6	17	0	402	101	1	1	1	0	0	5	0	0	0	0
63918	7	1	13	8	6	18	3	346	86	0	0	1	0	0	3	0	0	0	0
63918	7	1	13	8	6	19	3	300	75	0	1	0	0	0	0	0	0	0	0
63918	7	1	13	8	6	20	1	239	60	0	1	0	0	0	2	0	0	0	0
63918	7	1	13	8	6	21	1	242	60	0	0	0	1	0	2	0	0	0	0
63918	7	1	13	8	6	22	0	162	41	0	0	0	0	0	2	0	0	0	0
63918	7	1	13	8	6	23	3	142	35	0	1	0	0	0	0	0	0	0	0
63918	7	1	13	8	7	0	0	86	22	1	1	0	0	0	0	0	0	0	0
63918	7	1	13	8	7	1	0	38	9	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	7	2	1	31	8	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	7	3	0	20	5	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	7	4	0	19	5	0	0	0	0	0	0	0	0	0	0
63918	7	1	13	8	7	5	1	52	13	2	1	1	0	0	0	0	0	0	0
63918	7	1	13	8	7	6	1	153	38	2	1	1	0	0	0	0	0	0	0
63918	7	1	13	8	7	7	1	292	73	0	1	0	0	0	4	0	0	0	0
63918	7	1	13	8	7	8	1	259	65	2	1	1	1	0	3	0	0	0	0
63918	7	1	13	8	7	9	0	230	58	3	3	0	1	0	4	0	0	0	0
63918	7	1	13	8	7	10	0	226	57	0	1	1	2	0	5	0	0	0	0
63918	7	1	13	8	7	11	0	224	56	1	1	1	0	0	4	0	0	0	0
63918	7	1	13	8	7	12	1	262	65	4	1	1	1	0	5	0	0	0	0
63918	7	1	13	8	7	13	0	274	68	2	1	0	1	0	6	2	0	0	0

Data For Station: 64018

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/11/11	10:00	Axle	1	0	274	56	0	5	6	1	3	11	1	0	1	0
10/11/11	11:00	Axle	1	0	291	51	0	7	6	0	3	5	0	0	1	0
10/11/11	12:00	Axle	1	2	321	61	0	4	5	0	1	10	0	0	0	0
10/11/11	13:00	Axle	1	0	315	57	0	15	4	0	7	8	0	0	1	0
10/11/11	14:00	Axle	1	1	379	70	0	26	7	0	6	10	1	1	1	2
10/11/11	15:00	Axle	1	2	421	56	0	2	10	0	6	13	1	0	5	4
10/11/11	16:00	Axle	1	0	373	60	0	6	2	0	5	13	2	0	1	1
10/11/11	17:00	Axle	1	0	400	57	0	2	2	0	2	8	0	1	3	0
10/11/11	18:00	Axle	1	0	269	41	0	2	0	0	1	4	0	0	0	0
10/11/11	19:00	Axle	1	1	284	29	0	1	0	0	1	4	0	0	0	0
10/11/11	20:00	Axle	1	1	207	20	0	0	0	0	0	3	0	0	1	0
10/11/11	21:00	Axle	1	1	153	13	0	0	0	0	0	2	0	0	0	0
10/11/11	22:00	Axle	1	0	190	14	0	0	0	0	0	1	0	0	0	0
10/11/11	23:00	Axle	1	0	123	7	0	0	0	0	0	1	0	0	0	0
10/12/11	00:00	Axle	1	2	84	9	0	0	0	0	1	0	0	0	0	0
10/12/11	01:00	Axle	1	0	49	4	0	0	0	0	0	1	0	0	0	0
10/12/11	02:00	Axle	1	0	39	2	0	1	0	0	0	0	0	0	0	0
10/12/11	03:00	Axle	1	0	38	5	0	3	1	0	0	0	0	0	0	0
10/12/11	04:00	Axle	1	0	51	5	0	6	0	0	0	0	0	0	0	0
10/12/11	05:00	Axle	1	0	159	20	0	6	0	0	0	1	0	0	0	0
10/12/11	06:00	Axle	1	1	273	31	0	2	1	0	1	4	1	0	0	0
10/12/11	07:00	Axle	1	0	409	44	0	3	2	0	3	16	0	0	3	0
10/12/11	08:00	Axle	1	0	411	45	0	4	2	0	5	14	0	0	3	0
10/12/11	09:00	Axle	1	0	317	43	0	6	2	0	3	6	0	0	1	1
10/12/11	10:00	Axle	1	0	283	52	0	7	5	0	5	6	0	1	2	1
10/12/11	11:00	Axle	1	0	296	57	0	4	4	0	3	14	0	0	0	1
10/12/11	12:00	Axle	1	0	321	50	0	5	5	0	3	7	0	0	0	1
10/12/11	13:00	Axle	1	0	286	54	0	13	4	0	3	15	1	0	2	0
10/12/11	14:00	Axle	1	1	350	68	1	23	6	0	5	22	1	0	1	0
10/12/11	15:00	Axle	1	0	418	69	0	6	6	0	5	11	0	0	0	1
10/12/11	16:00	Axle	1	0	361	62	0	8	3	0	3	10	1	0	1	0
10/12/11	17:00	Axle	1	0	380	44	0	5	1	0	4	5	0	0	2	0
10/12/11	18:00	Axle	1	0	330	33	1	0	0	0	1	6	0	0	0	0
10/12/11	19:00	Axle	1	0	234	22	0	1	0	0	2	2	0	0	1	0
10/12/11	20:00	Axle	1	0	213	18	0	0	0	0	0	3	0	0	1	0
10/12/11	21:00	Axle	1	0	177	11	1	0	0	0	1	0	0	0	0	0
10/12/11	22:00	Axle	1	0	150	12	0	1	0	0	0	4	0	0	0	0
10/12/11	23:00	Axle	1	0	110	11	0	0	0	0	0	1	0	0	0	0
10/13/11	00:00	Axle	1	0	84	2	0	0	0	0	0	1	0	0	0	0
10/13/11	01:00	Axle	1	0	47	2	0	0	0	0	0	0	0	0	0	0
10/13/11	02:00	Axle	1	0	39	2	0	1	0	0	1	0	0	0	0	0
10/13/11	03:00	Axle	1	0	41	4	0	3	0	0	0	0	0	0	0	0
10/13/11	04:00	Axle	1	0	59	4	0	5	0	0	0	1	0	0	0	0
10/13/11	05:00	Axle	1	0	164	12	0	7	0	0	1	0	0	0	0	0
10/13/11	06:00	Axle	1	1	272	32	0	2	1	0	4	6	1	0	1	0
10/13/11	07:00	Axle	1	1	444	44	0	4	0	0	3	9	0	0	3	0
10/13/11	08:00	Axle	1	0	411	42	0	2	14	0	6	12	0	0	4	1
10/13/11	09:00	Axle	1	0	320	63	0	8	4	0	4	8	1	0	3	0
10/13/11	10:00	Axle	1	0	270	37	0	5	2	0	4	10	0	0	1	0
10/13/11	11:00	Axle	1	2	298	49	1	3	6	0	5	7	0	0	3	0

Data For Station: 64118

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/11/11	10:00	Axle	1	2	270	70	0	6	7	0	1	6	0	0	0	0
10/11/11	11:00	Axle	1	1	280	57	0	8	10	0	2	6	0	0	0	0
10/11/11	12:00	Axle	1	2	293	57	0	8	7	0	2	8	2	0	0	0
10/11/11	13:00	Axle	1	2	303	57	1	5	2	0	2	6	2	0	0	1
10/11/11	14:00	Axle	1	1	395	75	0	6	3	1	5	8	1	0	0	0
10/11/11	15:00	Axle	1	4	519	94	1	6	4	1	3	8	2	0	0	0
10/11/11	16:00	Axle	1	1	498	66	0	4	1	0	2	4	0	0	0	0
10/11/11	17:00	Axle	1	1	525	64	0	3	0	0	1	7	0	0	0	0
10/11/11	18:00	Axle	1	4	360	45	2	8	1	0	0	4	0	0	0	0
10/11/11	19:00	Axle	1	0	307	32	2	5	1	0	1	3	0	0	0	0
10/11/11	20:00	Axle	1	3	248	22	0	1	0	0	1	1	0	1	0	0
10/11/11	21:00	Axle	1	0	223	19	0	2	0	0	1	1	0	0	0	0
10/11/11	22:00	Axle	1	0	202	21	0	0	0	0	1	0	0	0	0	0
10/11/11	23:00	Axle	1	0	144	13	0	0	0	0	0	1	0	0	0	0
10/12/11	00:00	Axle	1	0	75	12	1	2	0	0	0	1	0	0	0	0
10/12/11	01:00	Axle	1	0	67	3	0	3	0	0	0	0	0	0	0	0
10/12/11	02:00	Axle	1	1	28	4	0	2	0	0	0	1	0	0	0	0
10/12/11	03:00	Axle	1	0	39	5	1	1	0	0	0	0	0	0	0	0
10/12/11	04:00	Axle	1	1	34	15	0	2	0	0	0	1	0	0	0	0
10/12/11	05:00	Axle	1	0	63	18	0	0	1	0	0	3	0	0	0	0
10/12/11	06:00	Axle	1	0	181	31	0	4	2	0	0	0	0	0	0	0
10/12/11	07:00	Axle	1	1	343	57	6	7	2	0	3	4	0	0	0	0
10/12/11	08:00	Axle	1	0	318	66	8	4	8	0	1	5	1	0	0	0
10/12/11	09:00	Axle	1	0	257	67	5	7	4	0	3	6	0	0	0	0
10/12/11	10:00	Axle	1	0	246	65	2	7	3	0	3	7	0	0	0	0
10/12/11	11:00	Axle	1	0	297	53	0	4	1	0	4	11	0	0	0	0
10/12/11	12:00	Axle	1	1	302	63	0	5	6	0	2	6	1	1	0	1
10/12/11	13:00	Axle	1	0	316	53	0	7	7	0	4	6	0	0	0	0
10/12/11	14:00	Axle	1	0	364	76	1	6	9	0	2	7	0	0	0	1
10/12/11	15:00	Axle	1	1	452	72	1	5	8	0	3	7	0	0	0	0
10/12/11	16:00	Axle	1	1	460	73	0	4	6	1	2	5	0	0	0	0
10/12/11	17:00	Axle	1	0	472	43	0	1	0	0	1	3	0	0	0	0
10/12/11	18:00	Axle	1	1	369	40	4	4	3	0	0	2	0	0	0	0
10/12/11	19:00	Axle	1	0	304	32	5	2	0	0	0	3	0	0	0	0
10/12/11	20:00	Axle	1	0	254	25	0	1	0	0	0	2	0	0	0	0
10/12/11	21:00	Axle	1	0	194	31	1	1	0	0	0	0	0	0	0	0
10/12/11	22:00	Axle	1	0	171	19	0	1	0	0	1	0	0	0	0	0
10/12/11	23:00	Axle	1	1	152	18	0	0	0	0	0	0	0	0	0	0
10/13/11	00:00	Axle	1	0	75	15	0	4	0	0	0	0	0	0	0	0
10/13/11	01:00	Axle	1	0	56	5	2	1	0	0	0	0	0	0	0	0
10/13/11	02:00	Axle	1	0	47	4	0	2	0	0	0	0	0	0	0	0
10/13/11	03:00	Axle	1	0	23	3	1	1	0	0	0	0	0	0	0	0
10/13/11	04:00	Axle	1	0	27	10	0	1	0	0	0	1	0	0	0	0
10/13/11	05:00	Axle	1	0	68	19	0	1	0	0	1	0	0	0	0	0
10/13/11	06:00	Axle	1	0	203	34	1	2	4	0	0	2	0	0	0	0
10/13/11	07:00	Axle	1	0	369	56	4	5	7	0	4	4	0	0	0	0
10/13/11	08:00	Axle	1	0	311	69	7	7	1	0	3	7	2	0	0	1
10/13/11	09:00	Axle	1	0	300	58	2	10	5	0	4	7	1	1	0	0
10/13/11	10:00	Axle	1	0	256	61	1	5	5	0	3	6	1	0	0	0
10/13/11	11:00	Axle	1	0	267	68	0	6	4	0	5	7	1	0	0	0

Data For Station: 64218

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/11/11	10:00	Axle	1	1	204	48	0	3	3	0	4	9	0	0	0	0
10/11/11	11:00	Axle	1	0	258	33	1	8	2	0	2	3	1	0	0	0
10/11/11	12:00	Axle	1	0	285	43	0	3	3	0	5	3	0	0	0	0
10/11/11	13:00	Axle	1	2	278	51	0	3	2	0	2	5	0	0	0	0
10/11/11	14:00	Axle	1	5	367	59	0	9	4	1	0	5	0	0	0	0
10/11/11	15:00	Axle	1	5	395	63	1	0	1	0	3	6	1	0	0	1
10/11/11	16:00	Axle	1	6	483	68	1	3	1	0	2	5	1	0	0	0
10/11/11	17:00	Axle	1	3	507	60	0	1	1	1	1	3	0	0	0	0
10/11/11	18:00	Axle	1	2	398	43	0	0	0	0	0	3	0	1	0	0
10/11/11	19:00	Axle	1	6	368	31	0	0	0	0	1	0	0	0	0	0
10/11/11	20:00	Axle	1	3	243	18	0	3	0	0	0	0	0	0	0	0
10/11/11	21:00	Axle	1	0	196	18	0	1	0	0	1	0	0	0	0	0
10/11/11	22:00	Axle	1	0	184	14	0	0	0	0	0	0	0	0	0	0
10/11/11	23:00	Axle	1	2	119	10	0	0	0	0	0	0	0	0	0	0
10/12/11	00:00	Axle	1	0	72	5	0	0	0	0	0	0	0	0	0	0
10/12/11	01:00	Axle	1	1	43	0	0	0	0	0	0	0	0	0	0	0
10/12/11	02:00	Axle	1	0	36	7	0	1	0	0	0	0	0	0	0	0
10/12/11	03:00	Axle	1	0	32	0	0	0	0	0	0	0	0	0	0	0
10/12/11	04:00	Axle	1	0	32	3	0	0	0	0	0	0	0	0	0	0
10/12/11	05:00	Axle	1	0	75	11	0	0	0	0	0	0	0	0	0	0
10/12/11	06:00	Axle	1	1	166	17	0	1	1	0	0	1	0	0	0	0
10/12/11	07:00	Axle	1	1	243	26	0	2	2	0	1	1	0	0	0	0
10/12/11	08:00	Axle	1	6	251	27	0	6	1	0	2	5	0	1	1	1
10/12/11	09:00	Axle	1	2	214	33	0	3	7	0	2	4	1	0	0	0
10/12/11	10:00	Axle	1	1	176	39	0	5	8	1	3	4	0	0	0	0
10/12/11	11:00	Axle	1	0	236	40	0	6	13	0	0	3	1	0	0	1
10/12/11	12:00	Axle	1	1	301	40	0	0	7	1	3	5	0	0	0	1
10/12/11	13:00	Axle	1	0	269	43	0	7	3	0	2	6	0	0	0	1
10/12/11	14:00	Axle	1	1	335	35	0	10	2	0	2	5	0	0	0	0
10/12/11	15:00	Axle	1	0	413	63	0	5	2	0	4	7	1	0	0	1
10/12/11	16:00	Axle	1	1	476	69	0	5	0	1	2	3	2	0	0	2
10/12/11	17:00	Axle	1	3	502	54	0	2	0	0	0	2	0	0	0	0
10/12/11	18:00	Axle	1	1	355	35	0	4	1	0	2	7	0	0	0	0
10/12/11	19:00	Axle	1	0	282	30	0	0	0	0	0	2	0	0	0	0
10/12/11	20:00	Axle	1	1	244	21	0	0	0	0	0	0	0	0	0	0
10/12/11	21:00	Axle	1	0	179	20	0	0	0	0	1	1	0	0	0	0
10/12/11	22:00	Axle	1	2	185	11	0	1	0	0	2	0	0	0	0	0
10/12/11	23:00	Axle	1	0	112	6	0	0	0	0	0	0	0	0	0	0
10/13/11	00:00	Axle	1	0	70	4	0	0	0	0	0	0	0	0	0	0
10/13/11	01:00	Axle	1	0	42	6	0	0	0	0	1	0	0	0	0	0
10/13/11	02:00	Axle	1	0	41	5	0	0	0	0	1	1	0	0	0	0
10/13/11	03:00	Axle	1	0	28	1	0	1	0	0	0	0	0	0	0	0
10/13/11	04:00	Axle	1	0	39	3	0	0	0	0	0	0	0	0	0	0
10/13/11	05:00	Axle	1	0	88	9	0	0	1	0	0	0	0	0	0	0
10/13/11	06:00	Axle	1	0	159	19	0	2	0	0	0	0	0	0	0	0
10/13/11	07:00	Axle	1	0	272	38	0	5	2	0	1	3	0	0	0	0
10/13/11	08:00	Axle	1	0	263	39	0	6	2	0	1	2	0	0	0	0
10/13/11	09:00	Axle	1	0	248	35	0	7	1	0	0	1	0	0	0	0
10/13/11	10:00	Axle	1	0	239	48	0	5	4	0	2	4	0	0	0	0
10/13/11	11:00	Axle	1	1	264	36	0	7	1	0	5	9	0	0	0	0

Data For Station: 64318

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/24/11	13:00	Axle	1	0	383	56	0	5	0	0	2	10	0	0	1	0
10/24/11	14:00	Axle	1	0	417	64	0	4	1	0	1	10	0	0	0	2
10/24/11	15:00	Axle	1	0	431	50	0	5	0	0	0	5	0	0	1	0
10/24/11	16:00	Axle	1	0	391	30	1	5	0	0	0	5	0	0	0	0
10/24/11	17:00	Axle	1	0	376	40	0	2	0	0	3	5	0	0	0	0
10/24/11	18:00	Axle	1	0	346	33	0	0	0	0	4	5	0	0	1	0
10/24/11	19:00	Axle	1	0	234	25	0	1	0	0	0	3	0	1	0	0
10/24/11	20:00	Axle	1	0	222	23	0	0	0	0	0	4	0	0	0	0
10/24/11	21:00	Axle	1	0	183	7	0	1	0	0	0	2	0	0	0	0
10/24/11	22:00	Axle	1	0	184	11	0	0	0	0	0	1	0	0	0	1
10/24/11	23:00	Axle	1	0	134	6	0	0	0	0	0	1	0	0	0	0
10/25/11	00:00	Axle	1	0	72	8	0	0	0	0	1	0	0	0	0	0
10/25/11	01:00	Axle	1	0	32	2	0	0	0	0	0	0	0	0	0	0
10/25/11	02:00	Axle	1	0	22	4	0	0	0	0	0	0	0	0	0	0
10/25/11	03:00	Axle	1	0	32	4	0	0	0	0	0	0	0	0	0	0
10/25/11	04:00	Axle	1	0	81	7	0	0	0	0	0	0	0	0	0	0
10/25/11	05:00	Axle	1	1	282	19	0	0	0	0	0	6	0	0	0	0
10/25/11	06:00	Axle	1	0	771	91	0	0	0	0	10	25	1	0	3	0
10/25/11	07:00	Axle	1	1	559	69	1	1	1	0	8	35	5	2	3	0
10/25/11	08:00	Axle	1	1	786	82	0	1	1	1	2	30	3	1	6	0
10/25/11	09:00	Axle	1	0	521	68	0	3	0	0	4	10	0	1	1	1
10/25/11	10:00	Axle	1	0	381	56	0	1	0	0	4	5	0	0	2	0
10/25/11	11:00	Axle	1	0	348	50	0	1	0	0	3	5	0	0	1	0
10/25/11	12:00	Axle	1	1	381	55	0	5	0	0	4	8	0	0	1	0
10/25/11	13:00	Axle	1	0	380	63	0	5	0	0	0	5	0	1	0	1

Data For Station: 64418

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/24/11	13:00	Axle	1	0	187	72	0	3	0	0	0	2	0	0	1	0
10/24/11	14:00	Axle	1	0	298	114	1	2	0	0	0	3	0	0	0	0
10/24/11	15:00	Axle	1	0	383	67	0	1	1	0	0	5	0	0	0	0
10/24/11	16:00	Axle	1	0	466	50	0	0	0	0	0	7	0	0	1	0
10/24/11	17:00	Axle	1	0	361	36	0	0	0	0	3	5	1	0	1	0
10/24/11	18:00	Axle	1	0	287	36	0	1	0	0	0	4	0	0	1	0
10/24/11	19:00	Axle	1	0	219	16	0	0	0	0	0	5	0	0	0	0
10/24/11	20:00	Axle	1	0	170	10	0	0	0	0	0	2	0	0	0	0
10/24/11	21:00	Axle	1	0	115	7	0	1	0	0	0	7	0	0	0	0
10/24/11	22:00	Axle	1	0	104	6	0	1	0	0	1	0	0	0	0	0
10/24/11	23:00	Axle	1	0	87	2	0	0	0	0	0	0	0	0	0	0
10/25/11	00:00	Axle	1	0	66	3	0	0	0	0	0	0	0	0	0	0
10/25/11	01:00	Axle	1	0	35	1	0	0	0	0	0	0	0	0	0	0
10/25/11	02:00	Axle	1	0	23	1	0	0	0	0	0	0	0	0	0	0
10/25/11	03:00	Axle	1	0	22	1	0	0	0	0	1	0	0	0	0	0
10/25/11	04:00	Axle	1	1	13	0	0	0	0	0	0	0	0	0	0	0
10/25/11	05:00	Axle	1	0	37	1	0	0	0	0	0	2	1	0	0	0
10/25/11	06:00	Axle	1	0	89	5	0	1	0	0	0	4	1	0	0	0
10/25/11	07:00	Axle	1	3	207	20	0	3	0	0	5	5	1	0	4	0
10/25/11	08:00	Axle	1	0	224	24	0	2	0	0	2	5	2	1	2	0
10/25/11	09:00	Axle	1	0	195	32	0	1	0	0	2	5	1	0	1	0
10/25/11	10:00	Axle	1	0	169	28	0	2	0	1	0	5	2	0	0	1
10/25/11	11:00	Axle	1	1	212	33	0	2	0	0	0	5	1	1	2	0
10/25/11	12:00	Axle	1	0	259	42	0	2	3	0	3	5	2	0	1	1
10/25/11	13:00	Axle	1	0	243	44	0	4	1	0	0	4	1	0	7	1

Data For Station: 64518

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/24/11	14:00	Axle	1	1	355	32	0	5	0	0	0	3	0	0	1	0
10/24/11	15:00	Axle	1	0	365	35	0	1	0	0	0	1	0	0	0	0
10/24/11	16:00	Axle	1	0	370	32	0	5	1	0	0	2	0	0	0	0
10/24/11	17:00	Axle	1	0	381	33	0	3	0	0	0	2	1	0	1	0
10/24/11	18:00	Axle	1	2	318	27	0	2	0	0	0	1	0	0	1	0
10/24/11	19:00	Axle	1	0	210	21	0	0	0	0	0	2	0	0	0	0
10/24/11	20:00	Axle	1	0	196	8	0	1	0	0	0	0	0	0	0	0
10/24/11	21:00	Axle	1	1	144	16	0	1	0	0	0	0	0	0	0	0
10/24/11	22:00	Axle	1	0	110	9	0	0	0	0	0	0	0	0	0	0
10/24/11	23:00	Axle	1	0	118	8	0	0	0	0	0	0	0	0	0	0
10/25/11	00:00	Axle	1	1	48	1	0	0	0	0	0	0	0	0	0	0
10/25/11	01:00	Axle	1	0	40	1	0	0	0	0	0	0	0	0	0	0
10/25/11	02:00	Axle	1	0	12	1	0	0	0	0	0	0	0	0	0	0
10/25/11	03:00	Axle	1	0	24	1	0	0	0	0	0	0	0	0	0	0
10/25/11	04:00	Axle	1	0	35	3	0	0	0	0	0	0	0	0	0	0
10/25/11	05:00	Axle	1	0	116	13	0	1	0	0	1	0	0	0	0	0
10/25/11	06:00	Axle	1	2	366	61	0	2	0	0	0	5	0	0	0	0
10/25/11	07:00	Axle	1	0	389	34	0	1	0	0	0	9	1	3	5	0
10/25/11	08:00	Axle	1	1	374	55	0	2	0	0	0	9	3	3	9	0
10/25/11	09:00	Axle	1	0	417	48	0	5	1	1	0	7	1	1	0	0
10/25/11	10:00	Axle	1	0	310	52	0	6	0	0	0	3	0	2	1	0
10/25/11	11:00	Axle	1	1	274	46	0	2	1	0	0	2	0	0	1	0
10/25/11	12:00	Axle	1	1	312	39	0	2	0	0	0	2	0	0	0	0
10/25/11	13:00	Axle	1	0	306	42	0	8	1	0	0	2	0	0	0	0
10/25/11	14:00	Axle	1	1	393	44	0	5	0	0	0	6	0	0	1	0
10/25/11	15:00	Axle	1	2	399	48	0	5	0	0	0	2	0	0	0	0
10/25/11	16:00	Axle	1	1	381	38	0	5	0	0	0	3	0	0	0	0
10/25/11	17:00	Axle	1	3	434	37	0	2	0	0	0	2	0	1	0	0
10/25/11	18:00	Axle	1	1	330	23	0	1	0	0	1	0	0	0	0	0
10/25/11	19:00	Axle	1	1	246	19	0	1	0	0	0	0	0	0	0	0
10/25/11	20:00	Axle	1	0	227	12	0	1	0	0	2	0	0	0	0	0
10/25/11	21:00	Axle	1	0	176	7	0	0	0	0	1	0	0	0	0	0
10/25/11	22:00	Axle	1	0	143	12	0	0	0	0	0	0	0	0	0	0
10/25/11	23:00	Axle	1	0	108	8	0	0	0	0	0	0	0	0	0	0
10/26/11	00:00	Axle	1	1	57	6	0	0	0	0	0	0	0	0	0	0
10/26/11	01:00	Axle	1	0	28	0	0	0	0	0	0	0	0	0	0	0
10/26/11	02:00	Axle	1	0	34	1	0	0	0	0	0	0	0	0	0	0
10/26/11	03:00	Axle	1	0	29	4	0	1	0	0	0	0	0	0	0	0
10/26/11	04:00	Axle	1	0	26	2	0	0	0	0	0	0	0	0	0	0
10/26/11	05:00	Axle	1	0	108	16	0	1	0	0	1	0	0	0	0	0
10/26/11	06:00	Axle	1	0	350	68	0	3	0	0	3	5	0	2	1	0
10/26/11	07:00	Axle	1	0	416	57	0	2	0	0	1	5	5	4	7	0
10/26/11	08:00	Axle	1	1	441	50	0	1	0	1	1	4	4	6	4	0
10/26/11	09:00	Axle	1	0	411	70	0	4	0	0	0	3	1	0	0	1
10/26/11	10:00	Axle	1	0	283	47	0	4	0	0	0	2	0	0	0	0
10/26/11	11:00	Axle	1	1	270	43	0	3	0	0	0	2	0	0	1	0
10/26/11	12:00	Axle	1	0	353	54	0	1	1	0	0	4	0	0	0	1
10/26/11	13:00	Axle	1	1	317	51	0	6	1	0	0	3	0	0	0	0

Data For Station: 64618

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
11/16/11	00:00	Axle	1	1	122	7	0	2	0	0	0	0	0	0	0	0
11/16/11	01:00	Axle	1	0	74	6	0	0	0	0	0	0	0	0	0	0
11/16/11	02:00	Axle	1	0	42	3	0	1	0	0	0	0	0	0	0	0
11/16/11	03:00	Axle	1	0	30	5	0	0	0	0	0	0	0	0	0	0
11/16/11	04:00	Axle	1	0	23	2	0	0	0	0	0	0	0	0	0	0
11/16/11	05:00	Axle	1	0	108	12	0	1	0	0	0	0	0	0	0	0
11/16/11	06:00	Axle	1	0	175	17	0	2	0	0	0	0	0	0	0	0
11/16/11	07:00	Axle	1	0	432	48	0	4	0	0	1	5	0	0	0	0
11/16/11	08:00	Axle	1	1	354	38	0	2	0	0	1	5	0	0	0	0
11/16/11	09:00	Axle	1	0	262	36	0	2	0	0	0	5	0	0	0	0
11/16/11	10:00	Axle	1	0	287	65	0	2	1	0	0	4	0	0	0	0
11/16/11	11:00	Axle	1	0	344	60	0	4	0	0	0	4	0	0	0	0
11/16/11	12:00	Axle	1	0	424	61	0	5	0	0	0	4	0	0	0	0
11/16/11	13:00	Axle	1	0	442	67	1	4	0	0	2	4	0	0	0	0
11/16/11	14:00	Axle	1	2	583	77	0	2	0	0	1	5	0	0	0	0
11/16/11	15:00	Axle	1	1	841	121	0	4	0	0	1	10	0	0	0	1
11/16/11	16:00	Axle	1	0	1,000	115	0	2	1	0	1	10	1	0	2	0
11/16/11	17:00	Axle	1	0	922	175	0	1	0	0	6	12	0	0	2	0
11/16/11	18:00	Axle	1	0	610	76	0	1	0	0	4	5	0	0	0	0
11/16/11	19:00	Axle	1	0	487	55	0	1	0	0	0	6	1	0	0	0
11/16/11	20:00	Axle	1	0	490	49	0	1	0	0	0	5	0	0	0	0
11/16/11	21:00	Axle	1	0	287	34	0	1	0	0	0	5	0	0	0	0
11/16/11	22:00	Axle	1	0	210	29	0	1	0	0	1	0	0	0	0	0
11/16/11	23:00	Axle	1	0	200	24	0	1	0	0	1	0	0	0	1	0
11/17/11	00:00	Axle	1	0	120	23	0	0	0	0	2	0	0	0	0	0
11/17/11	01:00	Axle	1	0	50	6	0	0	0	0	0	0	0	0	0	0
11/17/11	02:00	Axle	1	0	30	7	0	0	0	0	0	0	0	0	0	0
11/17/11	03:00	Axle	1	0	30	11	0	0	0	0	0	0	0	0	0	0
11/17/11	04:00	Axle	1	0	18	3	0	1	0	0	0	0	0	0	0	0
11/17/11	05:00	Axle	1	0	95	12	0	1	0	0	1	0	0	0	0	0
11/17/11	06:00	Axle	1	0	173	18	0	0	0	0	1	0	0	0	0	0
11/17/11	07:00	Axle	1	0	428	46	0	2	1	0	0	9	0	0	0	0
11/17/11	08:00	Axle	1	0	333	45	1	2	0	0	0	5	0	0	0	0
11/17/11	09:00	Axle	1	0	292	50	0	3	1	0	0	4	0	0	0	0
11/17/11	10:00	Axle	1	0	289	48	0	4	1	0	1	0	0	0	0	0

Data For Station: 64718

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/18/11	15:00	Axle	1	0	129	35	0	6	0	0	2	2	0	0	0	0
10/18/11	16:00	Axle	1	0	136	31	0	3	1	0	1	0	0	0	0	0
10/18/11	17:00	Axle	1	0	91	23	0	1	0	0	0	0	0	0	0	0
10/18/11	18:00	Axle	1	0	71	10	0	2	1	0	0	0	0	0	0	0
10/18/11	19:00	Axle	1	0	60	4	0	0	0	0	0	0	0	0	0	0
10/18/11	20:00	Axle	1	0	49	2	0	0	0	0	0	2	0	0	0	0
10/18/11	21:00	Axle	1	0	34	0	0	1	0	0	0	1	0	0	0	0
10/18/11	22:00	Axle	1	0	37	5	0	0	1	0	0	1	0	0	0	0
10/18/11	23:00	Axle	1	0	33	2	0	0	0	0	0	0	0	0	0	0
10/19/11	00:00	Axle	1	0	15	1	0	0	0	0	0	0	0	0	0	0
10/19/11	01:00	Axle	1	0	13	1	0	0	0	0	0	0	0	0	0	0
10/19/11	02:00	Axle	1	0	15	0	0	0	0	0	0	0	0	0	0	0
10/19/11	03:00	Axle	1	0	5	1	0	0	0	0	0	0	0	0	0	0
10/19/11	04:00	Axle	1	0	11	3	0	0	0	0	0	1	0	0	0	0
10/19/11	05:00	Axle	1	0	37	5	0	1	0	0	0	0	0	0	0	0
10/19/11	06:00	Axle	1	0	76	11	0	2	1	0	0	1	0	0	0	0
10/19/11	07:00	Axle	1	0	180	17	0	4	2	0	0	2	1	0	0	0
10/19/11	08:00	Axle	1	0	117	13	0	8	2	1	1	3	0	0	0	1
10/19/11	09:00	Axle	1	0	83	23	0	4	1	0	2	1	0	0	0	0
10/19/11	10:00	Axle	1	0	74	21	0	0	0	0	1	2	0	0	0	0
10/19/11	11:00	Axle	1	0	69	8	0	0	3	0	0	2	0	1	0	0
10/19/11	12:00	Axle	1	1	75	19	0	6	3	0	0	3	0	0	0	0
10/19/11	13:00	Axle	1	0	82	12	1	5	1	0	0	1	0	0	0	0
10/19/11	14:00	Axle	1	0	111	31	0	1	0	0	0	1	0	0	0	0
10/19/11	15:00	Axle	1	0	112	36	0	4	0	0	0	0	1	0	0	0
10/19/11	16:00	Axle	1	0	106	25	0	0	0	0	1	2	0	0	0	0
10/19/11	17:00	Axle	1	0	107	14	0	2	0	0	0	0	0	0	0	0
10/19/11	18:00	Axle	1	0	93	8	0	0	1	0	1	0	0	0	0	0
10/19/11	19:00	Axle	1	0	65	5	0	1	0	0	0	0	0	0	0	0
10/19/11	20:00	Axle	1	0	41	6	0	0	0	0	0	0	0	0	0	0
10/19/11	21:00	Axle	1	0	26	3	0	0	0	0	0	1	0	0	0	0
10/19/11	22:00	Axle	1	0	23	4	0	0	1	0	0	0	0	0	0	0
10/19/11	23:00	Axle	1	0	26	1	0	0	0	0	0	0	0	0	0	0
10/20/11	00:00	Axle	1	0	14	2	0	1	0	0	0	0	0	0	0	0

10/20/11	01:00	Axle	1	0	14	2	0	0	0	0	0	0	0	0	0	0
10/20/11	02:00	Axle	1	1	11	0	0	0	0	0	0	0	0	0	0	0
10/20/11	03:00	Axle	1	0	8	1	0	0	0	0	0	0	0	0	0	0
10/20/11	04:00	Axle	1	0	4	5	0	0	0	0	0	1	0	0	0	0
10/20/11	05:00	Axle	1	0	36	6	0	2	0	0	0	2	0	0	0	0
10/20/11	06:00	Axle	1	0	66	16	0	2	0	0	0	1	0	0	0	0
10/20/11	07:00	Axle	1	0	175	12	0	4	0	0	0	1	0	0	0	0
10/20/11	08:00	Axle	1	1	118	18	0	3	1	0	1	4	0	0	0	0
10/20/11	09:00	Axle	1	0	84	20	0	3	2	0	1	2	0	0	0	0
10/20/11	10:00	Axle	1	0	77	12	0	3	1	0	0	1	1	0	0	0
10/20/11	11:00	Axle	1	0	87	24	0	3	0	0	0	2	1	0	0	0
10/20/11	12:00	Axle	1	0	69	17	0	2	1	0	0	1	0	0	0	0
10/20/11	13:00	Axle	1	0	93	21	0	1	1	0	0	2	0	0	0	0
10/20/11	14:00	Axle	1	0	125	29	0	2	1	0	0	1	1	0	0	0
10/20/11	15:00	Axle	1	0	147	35	0	9	1	0	1	1	0	0	0	0
10/20/11	16:00	Axle	1	0	133	28	0	2	0	0	0	1	0	0	0	0
10/20/11	17:00	Axle	1	0	90	14	0	1	0	0	0	0	0	0	0	0
10/20/11	18:00	Axle	1	0	83	10	0	2	1	0	0	0	0	0	0	0
10/20/11	19:00	Axle	1	0	47	4	0	1	0	0	0	1	0	0	0	0
10/20/11	20:00	Axle	1	0	51	4	0	0	0	0	0	0	0	0	0	0
10/20/11	21:00	Axle	1	0	49	2	0	0	0	0	0	0	0	0	0	0
10/20/11	22:00	Axle	1	0	42	8	0	0	0	0	0	0	0	0	0	0
10/20/11	23:00	Axle	1	0	30	4	0	0	1	0	0	0	0	0	0	0
10/21/11	00:00	Axle	1	0	16	1	0	0	0	0	0	0	0	0	0	0
10/21/11	01:00	Axle	1	0	16	0	0	0	0	0	0	0	0	0	0	0
10/21/11	02:00	Axle	1	0	12	1	0	0	0	0	0	0	0	0	0	0
10/21/11	03:00	Axle	1	0	5	0	0	0	0	0	0	0	0	0	0	0
10/21/11	04:00	Axle	1	0	6	4	0	0	0	0	0	2	0	0	0	0
10/21/11	05:00	Axle	1	0	33	6	0	1	0	0	0	3	0	0	0	0
10/21/11	06:00	Axle	1	0	68	12	0	2	0	0	1	2	0	0	0	0
10/21/11	07:00	Axle	1	0	155	15	0	2	0	0	2	3	1	0	0	0
10/21/11	08:00	Axle	1	0	140	14	0	2	2	0	0	2	0	0	0	0
10/21/11	09:00	Axle	1	0	76	16	0	3	0	0	1	1	0	0	0	0
10/21/11	10:00	Axle	1	0	73	17	0	3	2	0	0	1	0	0	0	0
10/21/11	11:00	Axle	1	0	59	9	0	2	1	0	1	1	0	0	0	0

Data For Station: 64818

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
10/19/11	10:00	Axle	1	0	47	14	0	0	1	0	0	0	0	0	0	0
10/19/11	11:00	Axle	1	0	54	3	0	0	0	1	0	0	0	0	0	0
10/19/11	12:00	Axle	1	0	66	18	0	4	1	0	0	0	0	0	0	0
10/19/11	13:00	Axle	1	0	54	9	0	2	0	0	0	1	0	0	0	0
10/19/11	14:00	Axle	1	1	71	11	0	1	0	0	0	1	0	0	0	0
10/19/11	15:00	Axle	1	0	86	13	0	0	0	0	0	0	1	0	0	0
10/19/11	16:00	Axle	1	0	100	9	0	1	0	0	0	0	0	0	0	0
10/19/11	17:00	Axle	1	0	83	16	0	0	0	0	0	3	0	0	0	0
10/19/11	18:00	Axle	1	0	95	11	0	0	0	0	0	0	0	0	0	0
10/19/11	19:00	Axle	1	0	50	5	0	0	0	0	0	0	0	0	0	0
10/19/11	20:00	Axle	1	0	52	1	0	0	0	0	0	0	0	0	0	0
10/19/11	21:00	Axle	1	0	48	4	0	0	0	0	0	0	0	0	0	0
10/19/11	22:00	Axle	1	0	41	4	0	0	0	0	0	0	0	0	0	0
10/19/11	23:00	Axle	1	0	25	3	0	0	0	0	0	0	0	0	0	0
10/20/11	00:00	Axle	1	0	18	1	0	0	0	0	0	0	0	0	0	0
10/20/11	01:00	Axle	1	0	16	0	0	0	0	0	0	0	0	0	0	0
10/20/11	02:00	Axle	1	0	6	1	0	0	0	0	0	0	0	0	0	0
10/20/11	03:00	Axle	1	0	4	0	0	0	0	0	0	0	0	0	0	0
10/20/11	04:00	Axle	1	0	6	1	0	0	0	0	1	0	0	0	0	0
10/20/11	05:00	Axle	1	0	12	3	0	0	0	0	0	1	0	0	0	0
10/20/11	06:00	Axle	1	0	38	10	0	2	0	0	0	2	0	0	0	0
10/20/11	07:00	Axle	1	0	57	3	0	0	1	0	0	2	0	0	0	0
10/20/11	08:00	Axle	1	0	63	8	0	2	0	0	1	1	0	0	0	0
10/20/11	09:00	Axle	1	0	51	8	0	2	1	0	0	2	0	0	0	0
10/20/11	10:00	Axle	1	0	39	17	0	0	1	0	0	1	1	0	0	0
10/20/11	11:00	Axle	1	0	54	14	0	2	1	0	0	0	1	0	0	0
10/20/11	12:00	Axle	1	1	58	6	0	0	0	0	0	1	0	0	0	0
10/20/11	13:00	Axle	1	0	69	8	0	1	1	0	0	2	0	0	0	0

Data For Station: 66018

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
11/15/11	13:00	Axle	1	0	237	47	0	7	5	0	2	5	0	0	0	0
11/15/11	14:00	Axle	1	1	290	52	1	11	2	1	2	5	0	0	0	0
11/15/11	15:00	Axle	1	1	305	58	0	5	5	0	1	7	0	0	0	0
11/15/11	16:00	Axle	1	1	257	43	1	7	3	0	2	7	0	0	1	0
11/15/11	17:00	Axle	1	0	262	29	0	4	2	0	1	3	0	0	0	0
11/15/11	18:00	Axle	1	0	186	22	0	2	0	0	1	2	0	0	0	0
11/15/11	19:00	Axle	1	0	104	12	0	3	0	0	0	2	0	0	0	0
11/15/11	20:00	Axle	1	0	82	8	0	2	0	0	0	0	0	0	0	0
11/15/11	21:00	Axle	1	0	68	6	0	0	0	0	0	0	0	0	0	0
11/15/11	22:00	Axle	1	0	62	3	0	0	0	0	0	0	0	0	0	0
11/15/11	23:00	Axle	1	0	60	2	0	0	0	0	0	0	0	0	0	0
11/16/11	00:00	Axle	1	0	34	6	0	1	1	0	0	0	0	0	0	0
11/16/11	01:00	Axle	1	1	20	3	0	0	0	0	0	0	0	0	0	0
11/16/11	02:00	Axle	1	0	14	4	0	0	0	0	1	0	0	0	0	0
11/16/11	03:00	Axle	1	0	22	3	0	1	1	0	0	0	0	0	0	0
11/16/11	04:00	Axle	1	0	59	2	0	1	0	0	0	2	0	0	0	0
11/16/11	05:00	Axle	1	0	110	23	0	3	0	0	1	0	0	0	0	0
11/16/11	06:00	Axle	1	0	353	84	0	2	4	0	3	7	0	0	0	0
11/16/11	07:00	Axle	1	0	683	103	0	5	1	0	2	14	1	0	3	1
11/16/11	08:00	Axle	1	1	499	79	0	4	3	0	5	10	0	0	0	1
11/16/11	09:00	Axle	1	0	307	80	0	10	3	0	3	7	0	1	0	0
11/16/11	10:00	Axle	1	0	220	54	0	10	2	1	4	5	0	0	0	0
11/16/11	11:00	Axle	1	0	220	64	0	11	3	0	2	3	1	0	0	0
11/16/11	12:00	Axle	1	0	219	54	0	6	2	0	1	4	0	0	0	0
11/16/11	13:00	Axle	1	0	213	55	0	11	3	0	1	6	0	0	0	0
11/16/11	14:00	Axle	1	0	280	87	0	16	1	0	4	5	1	0	0	0
11/16/11	15:00	Axle	1	2	623	154	0	15	4	0	8	18	6	0	8	0
11/16/11	16:00	Axle	1	1	390	63	0	7	6	0	4	18	0	0	1	1
11/16/11	17:00	Axle	1	1	418	62	0	4	2	0	4	6	0	0	0	1
11/16/11	18:00	Axle	1	0	177	21	0	0	0	0	2	1	0	0	1	0
11/16/11	19:00	Axle	1	0	110	13	0	1	0	0	0	0	0	0	0	0
11/16/11	20:00	Axle	1	0	79	9	0	0	0	0	0	0	0	0	0	0
11/16/11	21:00	Axle	1	0	84	9	0	1	0	0	0	1	0	0	0	0
11/16/11	22:00	Axle	1	0	50	7	0	0	0	0	0	0	0	0	0	0
11/16/11	23:00	Axle	1	0	44	3	0	0	0	0	0	0	0	0	0	0
11/17/11	00:00	Axle	1	0	28	5	0	0	0	0	0	1	0	0	0	0
11/17/11	01:00	Axle	1	0	11	2	0	1	0	0	0	0	0	0	0	0
11/17/11	02:00	Axle	1	0	12	3	0	0	0	0	1	0	0	0	0	0
11/17/11	03:00	Axle	1	0	27	4	0	0	0	0	0	1	0	0	0	0
11/17/11	04:00	Axle	1	0	58	6	0	3	1	0	0	2	0	0	0	0
11/17/11	05:00	Axle	1	0	123	25	0	2	0	0	1	1	0	0	0	0

11/17/11	06:00	Axle	1	0	327	98	0	3	0	0	2	6	0	0	0	0
11/17/11	07:00	Axle	1	0	611	98	0	4	4	0	2	20	0	0	3	1
11/17/11	08:00	Axle	1	0	516	90	1	10	1	0	5	12	0	0	0	1
11/17/11	09:00	Axle	1	0	277	45	1	15	2	1	3	4	0	0	0	0
11/17/11	10:00	Axle	1	0	201	54	0	6	3	0	5	3	0	0	0	0
11/17/11	11:00	Axle	1	0	205	52	0	6	3	1	2	5	0	0	0	0

Data For Station: 66118

Date	Time	Type	Lane	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12	Bin 13
11/15/11	13:00	Axle	1	0	143	45	0	5	5	0	2	7	0	1	0	0
11/15/11	14:00	Axle	1	0	146	35	0	5	3	0	3	9	0	0	0	0
11/15/11	15:00	Axle	1	1	248	46	0	2	0	0	5	8	0	0	0	0
11/15/11	16:00	Axle	1	2	250	37	0	1	0	0	2	9	0	0	4	0
11/15/11	17:00	Axle	1	2	208	23	0	0	0	0	1	5	0	0	0	1
11/15/11	18:00	Axle	1	0	139	9	0	0	0	0	0	3	1	0	0	0
11/15/11	19:00	Axle	1	0	126	10	0	1	0	0	0	4	1	0	0	0
11/15/11	20:00	Axle	1	0	80	8	0	0	0	0	0	1	1	0	0	0
11/15/11	21:00	Axle	1	0	63	3	0	0	0	0	0	1	0	0	0	0
11/15/11	22:00	Axle	1	0	62	0	0	0	0	0	0	1	0	0	0	0
11/15/11	23:00	Axle	1	0	41	3	0	0	0	0	0	0	0	0	0	0
11/16/11	00:00	Axle	1	0	27	3	0	0	0	0	0	0	0	0	0	0
11/16/11	01:00	Axle	1	0	8	1	0	0	0	0	0	0	0	0	0	0
11/16/11	02:00	Axle	1	0	15	0	0	0	0	0	0	0	0	0	0	0
11/16/11	03:00	Axle	1	0	5	0	0	0	1	0	0	0	0	0	0	0
11/16/11	04:00	Axle	1	0	15	1	0	0	0	0	0	0	0	0	0	0
11/16/11	05:00	Axle	1	0	30	3	0	0	0	0	0	0	0	0	0	0
11/16/11	06:00	Axle	1	0	50	4	0	3	0	0	1	2	0	0	0	1
11/16/11	07:00	Axle	1	0	132	14	0	3	1	1	2	7	0	0	0	1
11/16/11	08:00	Axle	1	1	116	26	0	2	0	1	1	7	0	1	0	1
11/16/11	09:00	Axle	1	1	83	22	0	5	1	0	1	4	1	0	0	0
11/16/11	10:00	Axle	1	1	88	32	0	2	0	0	5	5	0	0	0	1
11/16/11	11:00	Axle	1	0	137	35	0	4	1	0	3	7	0	0	0	1
11/16/11	12:00	Axle	1	0	107	33	0	4	8	0	2	6	1	0	0	0
11/16/11	13:00	Axle	1	1	141	28	0	5	3	0	3	4	2	0	0	0
11/16/11	14:00	Axle	1	0	189	39	0	2	2	0	1	8	3	0	0	1
11/16/11	15:00	Axle	1	1	174	28	0	3	1	1	0	5	0	0	1	0
11/16/11	16:00	Axle	1	0	203	37	0	2	0	0	6	12	2	0	0	0
11/16/11	17:00	Axle	1	0	156	19	0	0	0	0	0	7	0	0	0	0
11/16/11	18:00	Axle	1	1	108	11	0	0	0	0	1	1	0	0	0	0
11/16/11	19:00	Axle	1	0	100	13	0	1	0	0	0	3	0	0	0	0
11/16/11	20:00	Axle	1	0	90	16	0	0	0	0	0	2	0	0	0	0
11/16/11	21:00	Axle	1	0	50	12	0	0	0	0	0	0	0	0	0	0
11/16/11	22:00	Axle	1	0	32	9	0	0	0	0	2	0	0	0	0	0
11/16/11	23:00	Axle	1	0	40	7	0	0	0	0	0	0	0	0	0	0
11/17/11	00:00	Axle	1	0	27	5	0	1	0	0	0	0	0	0	0	1
11/17/11	01:00	Axle	1	0	15	2	0	0	1	0	0	0	0	0	0	0
11/17/11	02:00	Axle	1	0	11	1	0	0	0	0	0	0	0	0	0	0
11/17/11	03:00	Axle	1	0	7	1	0	0	0	0	0	0	0	0	0	0
11/17/11	04:00	Axle	1	0	9	1	0	0	0	0	0	0	0	0	0	0
11/17/11	05:00	Axle	1	0	29	3	0	1	0	0	0	0	0	0	0	1
11/17/11	06:00	Axle	1	0	46	9	0	3	0	0	0	2	0	0	0	0
11/17/11	07:00	Axle	1	0	155	17	0	1	1	0	7	2	0	1	1	0
11/17/11	08:00	Axle	1	1	124	14	0	2	2	1	6	3	0	0	0	0

	0	76	23	0	3	0	0	0	1	1	1	0	0					
$11 / 17 / 11$	$09: 00$	Axle	1	0	76	1	79	29	0	2	1	0	4	6	0	0	0	0
$11 / 17 / 11$	$10: 00$	Axle	1	Axle	1	0	108	26	0	4	0	0	3	5	1	0	0	1
$11 / 17 / 11$	$11: 00$	Axle	1	2	116	24	1	4	3	0	2	3	0	0	1	2		
$11 / 17 / 11$	$12: 00$	Axle	1	0	131	25	0	1	2	0	0	8	0	0	0	1		

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
66218	3	1	13	8	5	15	1	166	41	3	0	3	1	0	2	1	0	0	0
66218	3	1	13	8	5	16	1	131	33	1	0	1	3	0	5	2	0	0	0
66218	3	1	13	8	5	17	1	138	35	1	1	1	0	0	2	1	0	0	0
66218	3	1	13	8	5	18	0	84	21	1	0	1	0	0	1	0	0	0	0
66218	3	1	13	8	5	19	1	74	18	0	0	0	1	0	0	0	0	0	0
66218	3	1	13	8	5	20	1	74	19	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	5	21	3	59	15	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	5	22	0	55	14	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	5	23	0	48	12	0	0	0	0	0	1	0	0	0	0
66218	3	1	13	8	6	0	1	22	6	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	6	1	0	14	3	0	0	0	0	0	1	0	0	0	0
66218	3	1	13	8	6	2	0	12	3	1	0	1	0	0	0	0	0	0	0
66218	3	1	13	8	6	3	0	10	3	0	0	0	0	0	0	1	0	0	0
66218	3	1	13	8	6	4	0	30	8	0	0	0	0	0	2	0	0	0	0
66218	3	1	13	8	6	5	1	60	15	0	1	0	1	0	2	1	0	0	0
66218	3	1	13	8	6	6	0	202	51	2	1	2	0	0	6	3	0	0	0
66218	3	1	13	8	6	7	3	237	59	2	1	3	2	0	7	1	0	0	0
66218	3	1	13	8	6	8	0	183	46	2	0	2	2	0	4	1	0	0	0
66218	3	1	13	8	6	9	1	134	34	4	1	4	5	0	4	5	0	0	0
66218	3	1	13	8	6	10	0	114	29	4	0	3	3	0	2	5	0	0	0
66218	3	1	13	8	6	11	0	142	35	2	0	3	6	0	4	5	0	0	0
66218	3	1	13	8	6	12	1	150	38	4	1	1	2	0	9	8	0	0	0
66218	3	1	13	8	6	13	1	135	34	4	2	3	3	0	9	7	0	0	0
66218	3	1	13	8	6	14	1	167	42	4	1	4	4	0	3	2	0	0	0
66218	3	1	13	8	6	15	3	178	44	0	1	0	1	0	1	2	0	0	0
66218	3	1	13	8	6	16	6	122	30	3	1	2	3	0	5	0	0	0	0
66218	3	1	13	8	6	17	1	143	36	0	0	0	0	0	3	2	0	0	0
66218	3	1	13	8	6	18	0	104	26	1	0	1	1	0	2	0	0	0	0
66218	3	1	13	8	6	19	1	70	17	2	0	1	0	0	0	0	0	0	0
66218	3	1	13	8	6	20	0	70	18	0	0	1	1	0	0	0	0	0	0
66218	3	1	13	8	6	21	0	93	23	0	0	0	1	0	0	1	0	0	0
66218	3	1	13	8	6	22	0	55	14	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	6	23	0	39	10	0	0	1	1	0	0	0	0	0	0
66218	3	1	13	8	7	0	0	24	6	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	1	1	24	6	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	2	0	10	3	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	3	0	14	4	0	0	0	0	0	0	0	0	0	0
66218	3	1	13	8	7	4	1	37	9	1	0	1	0	0	0	0	0	0	0
66218	3	1	13	8	7	5	1	66	17	2	0	1	0	0	4	0	0	0	0
66218	3	1	13	8	7	6	3	182	46	2	0	3	4	0	2	4	0	0	0
66218	3	1	13	8	7	7	1	220	55	5	1	3	5	0	7	2	0	0	0
66218	3	1	13	8	7	8	1	179	45	2	1	1	5	0	7	2	0	0	0
66218	3	1	13	8	7	9	2	152	38	3	1	3	3	0	8	4	0	0	0
66218	3	1	13	8	7	10	1	121	30	6	3	4	2	0	10	5	0	0	0
66218	3	1	13	8	7	11	0	123	31	4	1	4	2	0	3	2	0	0	0
66218	3	1	13	8	7	12	1	148	37	1	0	1	3	0	6	2	0	0	0
66218	3	1	13	8	7	13	0	141	35	6	2	4	4	0	4	3	0	0	0
66218	3	1	13	8	7	14	1	154	39	8	1	5	2	0	4	1	0	0	0

STA	DIR	LANE	YEAR	MNTH	DATE	HOUR	CLS_1	CLS_2	CLS_3	CLS_4	CLS_5	CLS_6	CLS_7	CLS_8	CLS_9	CLS_10	CLS_11	CLS_12	CLS_13
66318	3	1	13	8	5	15	1	447	112	4	3	1	0	0	9	0	0	0	0
66318	3	1	13	8	5	16	1	602	151	1	1	0	0	0	5	0	0	0	0
66318	3	1	13	8	5	17	2	531	133	0	1	0	0	0	8	0	0	0	0
66318	3	1	13	8	5	18	2	252	63	0	0	0	0	0	2	0	0	0	0
66318	3	1	13	8	5	19	1	167	42	0	0	0	0	0	2	0	0	0	0
66318	3	1	13	8	5	20	2	153	38	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	5	21	0	118	29	0	1	0	0	0	0	0	0	0	0
66318	3	1	13	8	5	22	1	90	23	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	5	23	0	74	18	0	1	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	0	0	41	10	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	1	0	23	6	0	0	0	0	0	2	0	0	0	0
66318	3	1	13	8	6	2	0	24	6	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	3	0	17	4	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	4	0	21	5	1	1	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	5	0	22	5	0	0	1	0	0	0	0	0	0	0
66318	3	1	13	8	6	6	0	86	21	2	2	1	0	0	3	0	0	0	0
66318	3	1	13	8	6	7	0	153	38	4	3	1	1	0	9	0	0	0	0
66318	3	1	13	8	6	8	0	190	48	4	4	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	9	1	192	48	2	3	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	10	0	204	51	4	2	2	0	0	4	0	0	0	0
66318	3	1	13	8	6	11	0	239	60	5	3	2	0	0	5	0	0	0	0
66318	3	1	13	8	6	12	3	295	74	3	3	0	0	0	10	0	0	0	0
66318	3	1	13	8	6	13	0	323	81	2	2	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	14	1	334	83	4	3	1	0	0	8	0	0	0	0
66318	3	1	13	8	6	15	0	414	104	2	3	1	0	0	6	0	0	0	0
66318	3	1	13	8	6	16	1	533	133	2	1	1	0	0	6	0	0	0	0
66318	3	1	13	8	6	17	4	487	122	0	0	0	0	0	5	0	0	0	0
66318	3	1	13	8	6	18	5	257	64	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	19	0	159	40	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	20	3	199	50	0	1	0	0	0	2	0	0	0	0
66318	3	1	13	8	6	21	0	144	36	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	6	22	0	96	24	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	6	23	1	73	18	0	1	0	0	0	1	0	0	0	0
66318	3	1	13	8	7	0	0	44	11	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	7	1	0	30	8	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	7	2	0	24	6	0	0	0	0	0	0	0	0	0	0
66318	3	1	13	8	7	3	0	12	3	0	0	0	0	0	1	0	0	0	0
66318	3	1	13	8	7	4	0	18	4	0	1	0	0	0	0	0	0	0	0
66318	3	1	13	8	7	5	0	30	8	0	0	1	0	0	1	0	0	0	0
66318	3	1	13	8	7	6	0	89	22	4	3	0	0	0	3	0	0	0	0
66318	3	1	13	8	7	7	0	150	38	4	3	1	0	0	9	1	0	0	0
66318	3	1	13	8	7	8	0	176	44	6	3	1	0	0	13	0	0	0	0
66318	3	1	13	8	7	9	0	169	42	7	5	3	0	0	14	0	0	0	0
66318	3	1	13	8	7	10	1	206	51	8	5	2	0	0	5	0	0	0	0
66318	3	1	13	8	7	11	0	227	57	4	3	1	1	0	6	0	0	0	0
66318	3	1	13	8	7	12	1	240	60	4	5	1	0	0	5	0	0	0	0
66318	3	1	13	8	7	13	0	294	74	3	2	1	0	0	7	0	0	0	0
66318	3	1	13	8	7	14	0	306	77	7	5	2	0	0	7	0	0	0	0

Meter Counts - 2015

Below is a summary of 2015 counts from the meters at E. 55th, E. 72nd, Gordon Park and

		January	February	March	April	May	June	July	August	September	October	November	December
Lakefront	E. 55 Fishing Pier Entr	5522	3619	7500	9920	21105	20763	22762	21757	17810	14793	11222	9670
Lakefront	E. 55 Marina	1411	1759	1793	2834	7778	9608	12484	12328	6882	7653	937	2050
Lakefront	E. 72 Gordon Boat Ramp Exit	5809	4859	1607	4190	8160	8715	9369	8539	7585	6527	6166	4149
Lakefront	E. 72 Pic Area Exit Fishing	5761	5599	9043	13757	26021	21685	25624	8375	18404	7763	6864	6428
Lakefront	Whiskey Island/Wendy Park*						31123	43349	42680	25431	11479	7033	4884

Meter malfunction, average used
*Counting began in June 2015
Persons Per Car Multiplier

| | Jan | Feb | Mar | April | May | June | July | Aug | Sept | Oct | Nov | Dec |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lakefront (except Whiskey
 Is./Wendy Pk) | 1.19 | 1.19 | 1.47 | 1.47 | 1.54 | 1.54 | 1.71 | 1.71 | 1.61 | 1.61 | 1.33 | 1.33 |
| Whiskey Is./Wendy Pk* | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |

${ }^{*}$ Conservative estimate used as no observations have been done to calculate a multiplier

SUMMARY OF SUPPLEMENTAL TRAFFIC STUDIES

TRAFFIC SIGNAL WARRANT ANALYSIS
Traffic count data collected at the I-90 EB Ramp intersection with MLK Drive was used to evaluate eight-hour signal warrants as presented in the Ohio Manual of Uniform Traffic Control Devices (OMUTCD). Signal warrants results are summarized in Table E1.

TABLE E1: SIGNAL WARRANT RESULTS FOR MLK DRIVE @ EB RAMP INTERSECTION

Warrant	Warrant Criteria	Warrant Results		
Warrant 1	Eight Hour Volume: Condition A	approaches AND 200 vph on one minor street approach for any eight hours		Warrant Met
:---:				
(Meets 11 of the 8 hours needed)				
Warrant 1 Eight Hour Volume: Condition B				
925 vph combined on major street approaches AND 100 vph on one minor street approach for any eight hours	(Meets 11 of the 8 hours needed)			

Date:
Jurisdiction:
Intersection:
Number of APPROACH Lanes:
Major Street =
Minor Street =
Speed Limit 2
Population 35 (mph)
70\% Warrant Apply?
No

	Warrant 1-Condition A			
	100%	80%	70%	56%
Major Approach:	600	480	420	336
Minor Approach:	200	160	140	112
Mid - 1AM				
1AM - 2AM				
2:00 AM				
3:00 AM				
4:00 AM				
5:00 AM				
6:00 AM	+	+	+	+
7:00 AM	+	+	+	+
8:00 AM	+	+	+	+
9:00 AM	+	+	+	+
10:00 AM	+	+	+	+
11:00 AM	+	+	+	+
Noon - 1PM	+	+	+	+
1PM - 2PM	+	+	+	+
2:00 PM	+	+	+	+
3:00 PM	+	+	+	+
4:00 PM	+	+	+	+
5:00 PM	+	+	+	+
6:00 PM				
7:00 PM				
8:00 PM				
9:00 PM				
10:00 PM				
11:00 PM				
Hours Met	12	12	12	12

Warrant 1-Condition A:

100%	Warrant Met?	Yes
70%	Warrant Met?	No

Monday, January 26, 2015
Cleveland, OH
IR 90 EB Ramps \& MLK Jr Dr

Traffic Signal Warrant (OMUTCD - 2005)

Data:	Major St:		TOTAL	Mino	St:	> OF TWO
Mid - 1AM	0	0	0	0	0	0
1AM-2AM	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0
6:00 AM	1284	586	1870	0	548	548
7:00 AM	1192	1013	2205	0	624	624
8:00 AM	808	722	1530	0	514	514
9:00 AM	630	658	1288	0	494	494
10:00 AM	511	926	1437	0	534	534
11:00 AM	526	861	1387	0	404	404
Noon - 1PM	534	859	1393	0	410	410
1PM - 2PM	511	1131	1642	0	454	454
2:00 PM	611	1413	2024	0	489	489
3:00 PM	557	1668	2225	0	514	514
4:00 PM	525	1643	2168	0	560	560
5:00 PM	559	1361	1920	0	522	522
6:00 PM	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0

Combination of Warrant 1 - Conditions A \& B:

80%	Warrant Met?	Yes
$56 \%(70 \%)$	Warrant Met?	No

Warrant 1 - Condition B:

100%	Warrant Met?	Yes
70%	Warrant Met?	No

IR 90 EB Ramps \& MLK Jr Dr

70\% Warrant Apply? No

IR 90 EB Ramps \& MLK Jr Dr
Warrant 3, Peak-Hour Vehicular Volume

Warrant 3, Peak-Hour Vehicular Volume (70\% Factor)

70\% Warrant Apply?
No

SUMMARY OF CAPACITY ANALYSIS

NO BUILD CAPACITY ANALYSIS

Capacity analyses were performed at key locations in the study area to assess existing operations and to identify critical deficiencies that may contribute to safety issues. Analyses were prepared for No Build conditions using 2034 AM and PM peak hour volumes for the analysis modules listed below. Analysis methodology and detailed output reports for all capacity analyses are included in Appendix E.
$>$ Freeway section analysis (Table E1)
I-90 Mainline
> Ramp merge analysis (Table E2)
All I-90 ramps
> Ramp diverge analysis (Table E3)
All I-90 ramps
> Intersection analyses (Tables E4 and E5)
E. $55^{\text {th }}$ Street and MLK Drive

TABLE E1: FREEWAY SECTION ANALYSIS

Direction	Section of l-90	Period	2034 No Build
EB	$\begin{gathered} 1-90 \\ \text { West of } \mathrm{E} 55 \text { th } \end{gathered}$	AM	B / 18.0
		PM	C/24.8
	$\begin{gathered} 1-90 \\ \text { Btw E 55th ramps } \end{gathered}$	AM	B/ 16.5
		PM	C/ 23.8
	I-90 Btw E 55th and E 72nd	AM	C/ 18.2
		PM	D / 27.3
	$\begin{gathered} \mathrm{I}-90 \\ \text { Btw } \mathrm{E} 72^{\text {nd }} \text { ramps } \end{gathered}$	AM	B/ 17.9
		PM	D/26.8
	I-90 Btw MLK ramps	AM	B/ 15.4
		PM	C/25.1
	$1-90$East of MLK	AM	C / 18.1
		PM	D/31.5
WB	I-90 West of E 55th	AM	D/26.2
		PM	C/ 18.9
	$\begin{gathered} 1-90 \\ \text { Btw E } 55^{\text {th }} \text { ramps } \end{gathered}$	AM	C/ 25.4
		PM	B / 17.5
	I-90 Btw E 55th and E 72nd	AM	D/28.8
		PM	C/20.9
	$\begin{gathered} 1-90 \\ \text { Btw } \mathrm{E} 2^{\text {nd }} \mathrm{ramps} \end{gathered}$	AM	D / 27.9
		PM	C/ 20.3
	I-90 Btw MLK ramps	AM	D/26.9
		PM	C/ 18.6
	$\begin{gathered} 1-90 \\ \text { East of MLK } \end{gathered}$	AM	D / 33.4
		PM	C/20.9

TABLE E2: RAMP MERGE ANALYSIS

Merge	Period	2034 No Build
I-90 EB Entrance From E 55th	AM	B / 15.3
	PM	C / 23.7
I-90 EB Entrance From E 72nd	AM	weave segment
	PM	weave segment
I-90 EB Entrance From MLK Jr Dr	AM	B / 18.6
	PM	D / 31.1
I-90 WB Entrance From MLK Jr Dr	AM	weave segment
	PM	weave segment
I-90 WB Entrance From E 55th	AM	C / 22.5
	PM	B/17.5
I-90 WB Entrance From E 72nd	AM	C / 23.2
	PM	B / 17.2

TABLE E3: RAMP DIVERGE ANALYSIS

Diverge	Period	2034 No Build
I-90 EB Exit To E 55th	AM	$\mathrm{v} / \mathrm{c}=0.19$
	PM	$\mathrm{v} / \mathrm{c}=0.14$
I-90 EB Exit To E 72nd	AM	B/ 15.2
	PM	C/ 23.5
I-90 EB Exit To MLK Jr Dr	AM	weave segment
	PM	weave segment
I-90 WB Exit To MLK Jr Dr	AM	D / 33.6
	PM	B/19.8
I-90 WB Exit To E 72nd	AM	weave segment
	PM	weave segment
I-90 WB Exit To E 55th	AM	D / 28.8
	PM	C/22.0

TABLE E4: NO BUILD INTERSECTION ANALYSIS - MLK DRIVE

	EB	WB	NB	SB
	APPROACH	APPROACH	APPROACH	APPROACH

MLK at l-90 WB Exit Ramp / Lakeshore Blvd (2-way stop control)

2034 AM No Build	-	B/12.91	F/8937	F/6530
2034 PM No Build	-	$\mathrm{A} / 7.3$	$\mathrm{E} / 49.0$	$\mathrm{~F} / 86.5$

MLK at N. Marginal Road (1-way stop control)

2034 AM No Build	E/37.7	-	A/0.7	FREE
2034 PM No Build	C/16.3	-	A/0.4	FREE

2034 AM No Build	F/267.7	-	FREE	A/0.3
2034 PM No Build	D/25.9	-	FREE	A/1.7

Numerical values represent delay in seconds per vehicle

1. Westbound queues equal to 1,540 feet as simulated in SimTraffic model

TABLE E5: NO BUILD CAPACITY ANALYSIS - E. 55TH STREET

	EB	WB	NB	SB
	APPROACH	APPROACH	APPROACH	APPROACH

E. 55th Street at S. Marginal Road

2034 AM No Build	C/32.7	F/160.6	E/75.8	$\mathrm{A} / 2.2$
2034 PM No Build	$\mathrm{D} / 37.0$	$\mathrm{D} / 39.2$	$\mathrm{D} / 41.9$	$\mathrm{~A} / 0.5$

E. 55th Street at l-90 EB Ramps

2034 AM No Build	F/118.0	-	A/0.0	D/42.3
2034 PM No Build	D/52.4	-	A/2.0	A/0.0
E. 55th Street at N. Marginal Road				

2034 AM No Build	C/15.8	-	A/1.0	FREE
2034 PM No Build	C/16.5	-	A/2.4	FREE

N Marginal at l-90 WB Ramps

2034 AM No Build	FREE	A/7.5	F/62.4	-
2034 PM No Build	FREE	A/7.8	F/241.2	-

Numerical values represent delay in seconds per vehicle

Capacity deficient locations are summarized below. Locations with LOS E or LOS F are considered capacity deficient for the purposes of this evaluation.
$>$ Mainline I-90 weave segment between E. $72^{\text {nd }}$ Street and MLK Drive (LOS E)
$>$ MLK Drive at I-90 WB ramp intersection (LOS F on critical approach)
> MLK Drive at N. Marginal Road intersection (LOS E on critical approach)
> MLK Drive at I-90 EB ramp intersection (LOS F on EB approach)
$>$ E. $55^{\text {th }}$ Street at S. Marginal Road/Dick Goddard Way (LOS F on WB approach, LOS E on EB approach)
$>$ E. $55^{\text {th }}$ Street at I-90 EB ramp intersection (LOS F on EB approach)
$>$ Mainline weave: I-90 EB and WB between E. $72^{\text {nd }}$ Street and MLK Drive

c Critical Lane Group

c Critical Lane Group

2: E. 55th Street \& I-90 East Exit \& I-90 East Entrance 2034 PM - No Build

C Critical Lane Group

1: E. 55th Street \& South Marginal 2034 PM - No Build

C Critical Lane Group

7: E 55th St \& I-90 EB Off Ramp/Goddard Way 2034 AM Build (EB Ramp Reconfiguration)

2034 AM Build (EB Ramp Reconfiguration)

7: E 55th St \& I-90 EB Off Ramp/Goddard Way 2034 PM Build (EB Ramp Reconfiguration)

2034 PM Build (EB Ramp Reconfiguration)

TWO-WAY STOP CONTROL SUMMARY		
General Information	Site Information	
Analyst	MLS	Intersection
Agency/Co.	Uurisdiction	IR-90 WB Off Ramp \& MLK
Date Performed	LJB Inc.	ODOT District 12
Analys Year	2034 Existing Condition	
Analysis Time Period	AM Peak Hour	
Project Description CUY-90-19.5/21.3		
East/West Street: IR-90 WB Off Ramp		
Intersection Orientation: East-West	North/South Street: Martin Luther King Jr Dr	

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)				1100		100
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.92	0.92	0.92
Hourly Flow Rate, HFR (veh/h)	0	0	0	1195	0	108
Percent Heavy Vehicles	0	--	--	4	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration				LTR	LR	
Upstream Signal		0			0	

Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)		120			100	
Peak-Hour Factor, PHF	1.00	0.92	1.00	1.00	0.92	1.00
Hourly Flow Rate, HFR (veh/h)	0	130	0	0	108	0
Percent Heavy Vehicles	0	2	0	0	2	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		T			T	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LTR		T			T	
v (veh/h)		1195		130			108	
C (m) (veh/h)		1610		7			8	
v/c		0.74		18.57			13.50	
95\% queue length		7.54		18.07			15.17	
Control Delay (s/veh)		13.4		8937			6530	
LOS		B		F			F	
Approach Delay (s/veh)	--	--	8937			6530		
Approach LOS	--	--	F			F		

Vehicle Volumes and Adjustments

Major Street	Eastbound			Westbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)				445		75
Peak-Hour Factor, PHF	1.00	1.00	1.00	0.92	0.92	0.92
Hourly Flow Rate, HFR (veh/h)	0	0	0	483	0	81
Percent Heavy Vehicles	0	--	--	4	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration				LTR	LR	
Upstream Signal		0			0	

Minor Street	Northbound			Southbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)		75			130	
Peak-Hour Factor, PHF	1.00	0.92	1.00	1.00	0.92	1.00
$\begin{aligned} & \begin{array}{l} \text { Hourly Flow Rate, HFR } \\ \text { (veh/h) } \end{array} \\ & \hline \end{aligned}$	0	81	0	0	141	0
Percent Heavy Vehicles	0	2	0	0	2	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration		T			T	

Delay, Queue Length, and Level of Service

Approach	Eastbound	Westbound	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LTR		T			T	
v (veh/h)		483		81			141	
C (m) (veh/h)		1610		160			169	
v/c		0.30		0.51			0.83	
95\% queue length		1.27		2.46			5.73	
Control Delay (s/veh)		8.2		48.6			85.9	
LOS		A		E			F	
Approach Delay (s/veh)	--	--	48.6			85.9		
Approach LOS	--	--	E			F		

	4	\rightarrow		7			4	\dagger	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		\%					性			$\uparrow \uparrow$	
Volume (veh/h)	35	0	590	0	0	0	0	455	605	15	1180	0
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	-	641	0	0	0	0	495	658	16	1283	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								504				
pX, platoon unblocked												
vC , conflicting volume	1563	2467	641	2139	2139	576	1283			1152		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	1563	2467	641	2139	2139	576	1283			1152		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
$t \mathrm{~F}$ (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	49	100	0	0	100	100	100			97		
cM capacity (veh/h)	74	29	417	0	47	460	537			602		
Direction, Lane \#	EB 1	EB 2	NB 1	NB 2	SB 1	SB 2						
Volume Total	38	641	330	822	444	855						
Volume Left	38	0	0	0	16	0						
Volume Right	0	641	0	658	0	0						
cSH	74	417	1700	1700	602	1700						
Volume to Capacity	0.51	1.54	0.19	0.48	0.03	0.50						
Queue Length 95th (ft)	54	873	0	0	2	0						
Control Delay (s)	96.5	277.9	0.0	0.0	0.8	0.0						
Lane LOS	F	F			A							
Approach Delay (s)	267.7		0.0		0.3							
Approach LOS	F											
Intersection Summary												
Average Delay			58.2									
Intersection Capacity Utilization			76.3\%		CU Level	f Service			D			
Analysis Period (min)			15									

	4			7			4	4	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		\%					蚛			* \uparrow	
Volume (veh/h)	45	0	500	0	0	0	0	550	1255	30	545	0
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	49	0	543	0	0	0	0	598	1364	33	592	0
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								504				
pX, platoon unblocked												
VC , conflicting volume	957	2620	296	2185	1938	981	592			1962		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	957	2620	296	2185	1938	981	592			1962		
tC , single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	75	100	22	100	100	100	100			89		
cM capacity (veh/h)	194	21	700	5	58	249	979			293		
Direction, Lane \#	EB 1	EB 2	NB 1	NB 2	SB 1	SB 2						
Volume Total	49	543	399	1563	230	395						
Volume Left	49	0	0	0	33	0						
Volume Right	0	543	0	1364	0	0						
cSH	194	700	1700	1700	293	1700						
Volume to Capacity	0.25	0.78	0.23	0.92	0.11	0.23						
Queue Length 95th (ft)	24	188	0	0	9	0						
Control Delay (s)	29.7	25.6	0.0	0.0	4.7	0.0						
Lane LOS	D	D			A							
Approach Delay (s)	25.9		0.0		1.7							
Approach LOS	D											
Intersection Summary												
Average Delay			5.2									
Intersection Capacity Utilization			65.7\%		CU Level	Service			C			
Analysis Period (min)			15									

SITE LAYOUT

Site: MLK @ N.Marginal/Lakeshore
Option 1 - (AM Peak)
Roundabout

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LJB INC | Created: Monday, June 29, 2015 9:47:24 AM
Project: Q:IODOT_OPI0109946A.00 - VAR-STW-Safety Studies PID 97542, $2015 \backslash 03$ District $12 \backslash 02$ CUY 90IToolsISIDRAIOption1.sip6

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)

© Site: MLK @ N.Marginal/Lakeshore

Option 1 - (AM Peak)
Roundabout

All Movement Classes

	South	East	North	West	Intersection
	5.0	89.2	37.9	30.2	63.0
LOS	A	F	D	C	E

Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E LOS F | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Level of Service Method: Delay \& v/c (HCM 2010)
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Level of Service Method: SIDRA Roundabout LOS
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

DELAY (CONTROL)

Average control delay per vehicle, or average pedestrian delay (seconds)

Site: MLK@ N.Marginal/Lakeshore - PM

Option 1 - (PM Peak)
Roundabout

All Movement Classes

	South	East	North	West	Intersection
	5.3	9.3	10.7	12.5	8.4
LOS	A	A	B	B	A

Colour code based on Level of Service

| LOS A LOS B LOS C LOS D LOS E LOS F | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Level of Service Method: Delay \& v/c (HCM 2010)
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Roundabout Level of Service Method: SIDRA Roundabout LOS
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

LANE SUMMARY

Site: MLK @ N.Marginal/Lakeshore

Option 1 - (AM Peak)
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: MLK Dr													
Lane $1^{\text {d }}$	533	3.0	1077	0.495	100	5.0	LOS A	4.9	125.9	Full	350	0.0	0.0
Approach	533	3.0		0.495		5.0	LOS A	4.9	125.9				
East: I-90 WB Ramps													
Lane $1^{\text {d }}$	1292	3.0	1098	1.177	100	99.0	LOS F	95.2	2436.6	Full	1000	0.0	47.7
Lane 2	154	3.0	649	0.237	20^{6}	7.3	LOS A	1.3	32.4	Full	1000	0.0	0.0
Approach	1446	3.0		1.177		89.2	LOS F	95.2	2436.6				
North: Lakeshore Dr													
Lane $1^{\text {d }}$	132	3.0	219	0.601	100	37.9	LOS D	4.9	124.3	Full	500	0.0	0.0
Approach	132	3.0		0.601		37.9	LOS D	4.9	124.3				
West: N. Marginal Dr													
Lane $1^{\text {d }}$	110	3.0	215	0.511	100	30.2	LOS C	3.8	97.6	Full	1000	0.0	0.0
Approach	110	3.0		0.511		30.2	LOS C	3.8	97.6				
Intersection	2220	3.0		1.177		63.0	LOS E	95.2	2436.6				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
6 Lane under-utilisation due to downstream effects
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LJB INC | Processed: Monday, June 29, 2015 9:35:25 AM
Project: Q:IODOT_OPI0109946A. 00 - VAR-STW-Safety Studies PID 97542, $2015 \backslash 03$ District $12 \backslash 02$ CUY 90lToolsISIDRAIOption1.sip6

LANE SUMMARY

Site: MLK @ N.Marginal/Lakeshore - PM

Option 1 - (PM Peak)
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: MLK Dr													
Lane $1^{\text {d }}$	647	3.0	1045	0.619	100	5.3	LOS A	7.1	182.7	Full	350	0.0	0.0
Approach	647	3.0		0.619		5.3	LOS A	7.1	182.7				
East: I-90 WB Ramps													
Lane $1^{\text {d }}$	614	3.0	1122	0.548	100	9.7	LOS A	4.6	116.6	Full	1000	0.0	0.0
Lane 2	82	3.0	671	0.122	22^{5}	6.6	LOS A	0.6	15.4	Full	1000	0.0	0.0
Approach	696	3.0		0.548		9.3	LOS A	4.6	116.6				
North: Lakeshore Dr													
Lane $1^{\text {d }}$	164	3.0	545	0.301	100	10.7	LOS B	1.8	45.7	Full	500	0.0	0.0
Approach	164	3.0		0.301		10.7	LOS B	1.8	45.7				
West: N. Marginal Dr													
Lane $1^{\text {d }}$	240	3.0	564	0.426	100	12.5	LOS B	2.8	72.7	Full	1000	0.0	0.0
Approach	240	3.0		0.426		12.5	LOS B	2.8	72.7				
Intersection	1747	3.0		0.619		8.4	LOS A	7.1	182.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane under-utilisation found by the program
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LJB INC | Processed: Monday, June 29, 2015 11:02:24 AM
Project: Q:IODOT_OPI0109946A. 00 - VAR-STW-Safety Studies PID 97542, $2015 \backslash 03$ District $12 \backslash 02$ CUY 90lToolsISIDRAIOption1.sip6

SITE LAYOUT

Site: MLK @ N.Marginal/Lakeshore
Option 2 - (AM Peak)
Roundabout

LANE SUMMARY

Site: MLK @ N.Marginal/Lakeshore

Option 2 - (AM Peak)
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: MLK Dr													
Lane $1^{\text {d }}$	533	3.0	944	0.564	100	6.6	LOS A	4.9	124.9	Full	350	0.0	0.0
Approach	533	3.0		0.564		6.6	LOS A	4.9	124.9				
East: Lakeshore													
Lane $1^{\text {d }}$	109	3.0	685	0.159	100	11.7	LOS B	0.9	22.1	Full	1000	0.0	0.0
Approach	109	3.0		0.159		11.7	LOS B	0.9	22.1				
North: MLK/WB Ramps													
Lane 1	734	3.0	1142	0.642	100	6.8	LOS A	6.6	169.4	Full	500	0.0	0.0
Lane $2^{\text {d }}$	734	3.0	1142	0.642	100	6.2	LOS A	6.6	169.4	Full	500	0.0	0.0
Approach	1467	3.0		0.642		6.5	LOS A	6.6	169.4				
West: N. Marginal Dr													
Lane 1	23	3.0	129	0.177	100	46.5	LOS D	1.0	25.5	Full	300	0.0	0.0
Lane $2^{\text {d }}$	87	3.0	227	0.382	100	36.6	LOS D	3.0	75.6	Full	1000	0.0	0.0
Approach	110	3.0		0.382		38.7	LOS D	3.0	75.6				
Intersection	2218	3.0		0.642		8.4	LOS A	6.6	169.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

LANE SUMMARY

Site: MLK @ N.Marginal/Lakeshore -PM

Option 2 - (PM Peak)
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \mathrm{Ba} \\ \text { Veh } \end{gathered}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \end{aligned}$	Lane Config	Lane Length ft	$\begin{aligned} & \text { Cap. } \\ & \text { Adj. } \\ & \% \end{aligned}$	Prob. Block. \%
South: MLK Dr													
Lane $1^{\text {d }}$	647	3.0	958	0.675	100	6.9	LOS A	6.9	175.4	Full	350	0.0	0.0
Approach	647	3.0		0.675		6.9	LOS A	6.9	175.4				
East: Lakeshore													
Lane $1^{\text {d }}$	163	3.0	563	0.289	100	14.0	LOS B	1.7	44.3	Full	1000	0.0	0.0
Approach	163	3.0		0.289		14.0	LOS B	1.7	44.3				
North: MLK/WB Ramps													
Lane 1	358	3.0	1072	0.334	100	7.0	LOS A	2.3	58.6	Full	500	0.0	0.0
Lane $2^{\text {d }}$	359	3.0	1074	0.334	100	6.0	LOS A	2.3	58.6	Full	500	0.0	0.0
Approach	717	3.0		0.334		6.5	LOS A	2.3	58.6				
West: N. Marginal Dr													
Lane 1	43	3.0	365	0.119	100	16.1	LOS B	0.6	14.7	Full	300	0.0	0.0
Lane $2{ }^{\text {d }}$	196	3.0	683	0.287	100	10.1	LOS B	1.8	45.6	Full	1000	0.0	0.0
Approach	239	3.0		0.287		11.2	LOS B	1.8	45.6				
Intersection	1766	3.0		0.675		8.0	LOS A	6.9	175.4				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SITE LAYOUT

Site: MLK @ N.Marginal/Lakeshore - PM
Option 3 - Greenway Study Option
(PM Peak)
Roundabout

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LJB INC | Created: Friday, July 31, 2015 4:34:20 PM
Project: Q:IODOT_OPI0109946A.00 - VAR-STW-Safety Studies PID 97542, $2015 \backslash 03$ District 12102 CUY 90\Tools\SIDRAIOption3-Rev.sip6

LANE SUMMARY

Site: MLK @ N.Marginal/Lakeshore

Option 3 - Greenway Study Option
 (AM Peak)
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{aligned} & \text { 95\% Bac } \\ & \text { Veh } \end{aligned}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block \%
South: MLK Dr													
Lane 1	266	3.0	1229	0.217	100	9.4	LOS A	1.5	38.9	Full	350	0.0	0.0
Lane $2^{\text {d }}$	266	3.0	1229	0.217	100	7.2	LOS A	1.5	38.9	Full	350	0.0	0.0
Approach	533	3.0		0.217		8.3	LOS A	1.5	38.9				
East: WB Exit Ramp													
Lane 1	702	3.0	746	0.941	100	38.0	LOS D	22.1	564.7	Full	1000	0.0	0.0
Lane $2^{\text {d }}$	743	3.0	790	0.941	100	35.4	LOS D	22.7	582.1	Full	1000	0.0	0.0
Approach	1446	3.0		0.941		36.7	LOS D	22.7	582.1				
North: Lakeshore													
Lane $1^{\text {d }}$	98	3.0	98	1.000^{4}	100	90.6	LOS F	3.8	96.9	Full	500	0.0	0.0
Lane 2	11	3.0	805	0.014	100	7.3	LOS A	0.1	1.8	Full	100	0.0	0.0
Approach	109	3.0		1.000		82.3	LOS F	3.8	96.9				
West: N. Marginal Dr													
Lane $1^{\text {d }}$	43	3.0	236	0.184	100	28.1	LOS C	1.3	33.9	Full	1000	0.0	0.0
Lane 2	87	3.0	236	0.368	100	26.4	LOS C	2.8	71.6	Full	1000	0.0	0.0
Approach	130	3.0		0.368		26.9	LOS C	2.8	71.6				
Intersection	2217	3.0		1.000		31.5	LOS C	22.7	582.1				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
$4 x=1.00$ due to minimum capacity
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LJB INC | Processed: Friday, July 31, 2015 4:35:29 PM
Project: Q:IODOT_OP\0109946A. 00 - VAR-STW-Safety Studies PID 97542, $2015 \backslash 03$ District 12102 CUY 90ITools\SIDRAIOption3-Rev.sip6

LANE SUMMARY

Site: MLK @ N.Marginal/Lakeshore - PM

Option 3 - Greenway Study Option
 (PM Peak)
 Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	$\begin{aligned} & \text { 95\% Bac } \\ & \text { Veh } \end{aligned}$	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \\ & \mathrm{ft} \end{aligned}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: MLK Dr													
Lane 1	323	3.0	1234	0.262	100	9.4	LOS A	1.8	46.4	Full	350	0.0	0.0
Lane $2^{\text {d }}$	323	3.0	1234	0.262	100	8.3	LOS A	1.8	46.4	Full	350	0.0	0.0
Approach	647	3.0		0.262		8.9	LOS A	1.8	46.4				
East: WB Exit Ramp													
Lane 1	374	3.0	666	0.562	100	18.7	LOS B	4.8	123.8	Full	1000	0.0	0.0
Lane $2^{\text {d }}$	403	3.0	717	0.562	100	15.7	LOS B	4.9	126.7	Full	1000	0.0	0.0
Approach	777	3.0		0.562		17.2	LOS B	4.9	126.7				
North: Lakeshore													
Lane $1^{\text {d }}$	141	3.0	321	0.440	100	29.0	LOS C	3.6	90.9	Full	500	0.0	0.0
Lane 2	22	3.0	716	0.030	100	8.7	LOS A	0.2	4.1	Full	500	0.0	0.0
Approach	163	3.0		0.440		26.3	LOS C	3.6	90.9				
West: N. Marginal Dr													
Lane $1^{\text {d }}$	43	3.0	642	0.068	100	13.8	LOS B	0.4	10.3	Full	1000	0.0	0.0
Lane 2	196	3.0	642	0.305	100	9.7	LOS A	2.0	51.1	Full	1000	0.0	0.0
Approach	239	3.0		0.305		10.5	LOS B	2.0	51.1				
Intersection	1826	3.0		0.562		14.2	LOS B	4.9	126.7				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v / c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LJB INC | Processed: Friday, July 31, 2015 4:35:29 PM
Project: Q:IODOT_OP\0109946A. 00 - VAR-STW-Safety Studies PID 97542, $2015 \backslash 03$ District 12102 CUY 90ITools\SIDRAIOption3-Rev.sip6

2: MLK Jr Dr \& N Marginal Rd 2034 AM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB Signal

2: MLK Jr Dr \& N Marginal Rd 2034 PM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB Signal

1: MLK Jr Dr/Lakeshore Blvd \& IR-90 WB Off Ramp

2: MLK Jr Dr \& N Marginal Rd 2034 AM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB \& WB Signal

HCM Signalized Intersection Capacity Analysis
CUY-90-19.5/21.3

3: MLK Jr Dr \& IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 AM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB \& WB Signal

HCM Signalized Intersection Capacity Analysis
CUY-90-19.5/21.3

1: MLK Jr Dr/Lakeshore Blvd \& IR-90 WB Off Ramp

HCM Signalized Intersection Capacity Analysis
CUY-90-19.5/21.3

2: MLK Jr Dr \& N Marginal Rd
2034 PM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB \& WB Signal

HCM Signalized Intersection Capacity Analysis
CUY-90-19.5/21.3

3: MLK Jr Dr \& IR-90 EB Off Ramp/IR-90 EB On Ramp 2034 PM Build - 2 SB Lanes, 2 WB Exit Lanes, +EB \& WB Signal

Intersection: 1: MLK Jr Dr/Lakeshore Blvd \& IR-90 WB Off Ramp

Movement	WB	NB	SB
Directions Served	LR	T	T
Maximum Queue (tt)	1264	162	126
Average Queue (ft)	1185	59	43
95th Queue (ft)	1535	125	85
Link Distance (ft)	1208	177	582
Upstream Blk Time (\%)	85	4	
Queuing Penalty (veh)	0	5	
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 3: MLK Jr Dr \& IR-90 WB On Ramp

Movement	NB	SB	SB
Directions Served	T	T	T
Maximum Queue (ft)	18	218	208
Average Queue (ft)	1	192	175
95th Queue (ft)	9	237	233
Link Distance (ft)	18	177	177
Upstream BIk Time (\%)	4	26	12
Queuing Penalty (veh)	9	160	70
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 5: MLK Jr Dr \& IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (ft)	784	797	22	102	348	372
Average Queue (ft)	692	709	1	12	318	295
95th Queue (ft)	982	969	12	56	343	406
Link Distance (ft)	750	750	289	289	302	302
Upstream Blk Time (\%)	78	84			45	14
Queuing Penalty (veh)	0	0			272	83
Storage Bay Dist (ft)						

Intersection: 8: MLK Jr Dr \& N Marginal Rd

Movement	EB	NB	SB	SB
Directions Served	LR	LT	T	TR
Maximum Queue (ft)	106	126	65	55
Average Queue (ft)	31	19	35	14
95th Queue (ft)	82	84	52	42
Link Distance (ft)	787	302	18	18
Upstream Blk Time (\%)		0	42	7
Queuing Penalty (veh)		0	252	42
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 13: MLK Drive \& Broad Ave

Movement	EB	NB	NB	SB	B12	B12
Directions Served	LR	L	T	TR	T	
Maximum Queue (ft)	43	70	446	176	411	326
Average Queue (ft)	17	20	65	97	370	205
95th Queue (ft)	43	56	256	221	474	442
Link Distance (ft)	276	2210	2210	85	289	289
Upstream Blk Time (\%)				8	69	6
Queuing Penalty (veh)				146	610	56
Storage Bay Dist (ft)						
Storage Blk Time (\%)						
Queuing Penalty (veh)						

Network Summary

Network wide Queuing Penalty: 1706

Intersection: 1: MLK Jr Dr/Lakeshore Blvd \& IR-90 WB Off Ramp

Movement	WB	WB	NB	SB
Directions Served	L	LR	T	T
Maximum Queue (ft)	25	33	151	116
Average Queue (ft)	2	3	73	48
95th Queue (ft)	12	18	136	88
Link Distance (ft)	1209	1209	171	576
Upstream Blk Time (\%)			2	
Queuing Penalty (veh)			3	
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 3: MLK Jr Dr \& IR-90 WB On Ramp

Movement	NB	NB
Directions Served	T	R
Maximum Queue (ft)	12	9
Average Queue (ft)	2	0
95th Queue (ft)	13	6
Link Distance (ft)	18	18
Upstream Blk Time (\%)	2	0
Queuing Penalty (veh)	4	0
Storage Bay Dist (ft)		
Storage Blk Time (\%)		

Intersection: 5: MLK Jr Dr \& IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	NB	SB	SB
Directions Served	L	R	T	TR	LT	T
Maximum Queue (ft)	790	799	7	57	116	133
Average Queue (ft)	755	769	0	9	33	20
95th Queue (ft)	903	784	7	40	101	95
Link Distance (ft)	750	750	289	289	302	302
Upstream Blk Time (\%)	93	98				
Queuing Penalty (veh)	0	0				
Storage Bay Dist (ft)						
Storage Blk Time (\%)						
Queuing Penalty (veh)						

Intersection: 8: MLK Jr Dr \& N Marginal Rd

Movement	EB	NB	SB
Directions Served	LR	LT	TR
Maximum Queue (ft)	71	85	4
Average Queue (ft)	24	22	0
95th Queue (ft)	59	67	3
Link Distance (ft)	787	302	18
Upstream Blk Time (\%)			0
Queuing Penalty (veh)			0
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 13: MLK Drive \& Broad Ave

Movement	EB	NB	SB	SB
Directions Served	LR	LT	T	TR
Maximum Queue (ft)	39	598	109	108
Average Queue (ft)	14	113	23	28
95th Queue (ft)	39	426	76	85
Link Distance (ft)	269	2210	85	85
Upstream Blk Time (\%)			0	0
Queuing Penalty (veh)			3	3
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Network Summary

Network wide Queuing Penalty: 12

Intersection: 1: MLK Jr Dr/Lakeshore Blvd \& IR-90 WB Off Ramp

Movement	WB	WB	NB	SB
Directions Served	L	LR	T	T
Maximum Queue (ft)	32	28	174	100
Average Queue (tt)	2	2	82	48
95th Queue (ft)	13	14	157	83
Link Distance (ft)	1209	1209	171	576
Upstream Blk Time (\%)			5	
Queuing Penalty (veh)			6	
Storage Bay Dist (tt)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 3: MLK Jr Dr \& IR-90 WB On Ramp

Movement	NB
Directions Served	T
Maximum Queue (ft)	27
Average Queue (ft)	3
95th Queue (ft)	18
Link Distance (ft)	18
Upstream Blk Time (\%)	3
Queuing Penalty (veh)	8
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 5: MLK Jr Dr \& IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	NB	B12	SB	SB	SB
Directions Served	LTR	R	T	TR	T	L	T	T
Maximum Queue (ft)	269	234	187	299	37	66	158	158
Average Queue (ft)	162	112	38	155	2	14	77	104
95th Queue (ft)	242	212	118	270	29	43	130	151
Link Distance (ft)	752	752	295	295	85		308	308
Upstream Blk Time (\%)			0	1	0			
Queuing Penalty (veh)			0	5	3			
Storage Bay Dist (ft)						100		
Storage Blk Time (\%)							1	
Queuing Penalty (veh)							0	

Intersection: 8: MLK Jr Dr \& N Marginal Rd

Movement	EB	NB	NB	SB
Directions Served	LR	L	T	TR
Maximum Queue (ft)	96	47	49	4
Average Queue (ft)	28	14	3	0
95th Queue (ft)	69	42	26	3
Link Distance (ft)	786		308	18
Upstream Blk Time (\%)				0
Queuing Penalty (veh)				0
Storage Bay Dist (ft)		100		
Storage Blk Time (\%)			0	
Queuing Penalty (veh)			0	

Intersection: 13: MLK Drive \& Broad Ave

Movement	EB	NB	SB	SB	B12	B12
Directions Served	LR	LT	T	TR	T	T
Maximum Queue (ft)	42	752	141	153	15	28
Average Queue (ft)	15	193	33	44	1	2
95th Queue (ft)	41	577	102	126	8	14
Link Distance (ft)	269	2210	85	85	295	295
Upstream Blk Time (\%)			1	2		
Queuing Penalty (veh)			8	14		
Storage Bay Dist (ft)						
Storage Blk Time (\%)						

Network Summary

Network wide Queuing Penalty: 44

Arterial Level of Service: NB MLK Jr Dr

Cross Street	Node	Delay $(\mathrm{s} / \mathrm{veh})$	Travel time (s)	Dist (mi)	Arterial Speed
IR-90 EB On Ramp	3	6.6	13.4	0.1	18
N Marginal Rd	2	2.1	9.4	0.1	26
IR-90 WB On Ramp	5	0.0	1.6	0.0	38
IR-90 WB Off Ramp	1	16.2	21.9	0.0	8
Total		24.9	46.4	0.2	16

Arterial Level of Service: SB MLK Jr Dr

Cross Street	Node	Delay $(\mathrm{s} / \mathrm{veh})$	Travel time (s)	Dist (mi)	Arterial Speed
IR-90 WB On Ramp	5	13.4	18.4	0.0	10
N Marginal Rd	2	9.3	11.5	0.0	5
IR-90 EB Off Ramp	3	28.3	35.4	0.1	7
Total	12	9.1	16.1	0.1	15

Intersection: 1: MLK Jr Dr/Lakeshore Blvd \& IR-90 WB Off Ramp

Movement	WB	NB	SB
Directions Served	LR	T	T
Maximum Queue (ft)	587	77	158
Average Queue (ft)	109	32	52
95th Queue (ft)	554	61	124
Link Distance (ft)	1208	177	582
Upstream Blk Time (\%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 2: MLK Jr Dr \& N Marginal Rd

Movement	EB	NB	SB	SB
Directions Served	LR	L	T	TR
Maximum Queue (ft)	209	84	108	63
Average Queue (ft)	53	22	32	17
95th Queue (ft)	173	73	120	81
Link Distance (ft)	786		18	18
Upstream Blk Time (\%)			17	9
Queuing Penalty (veh)			51	28
Storage Bay Dist (ft)		100		
Storage Blk Time (\%)		5		
Queuing Penalty (veh)		15		

Intersection: 3: MLK Jr Dr \& IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	NB	SB	SB	SB
Directions Served	L	R	T	TR	L	T	T
Maximum Queue (ft)	710	704	49	94	120	378	353
Average Queue (ft)	365	213	7	39	74	129	111
95th Queue (ft)	792	669	33	91	142	413	380
Link Distance (ft)	750	750	289	289		302	302
Upstream Blk Time (\%)	14	13				25	16
Queuing Penalty (veh)	0	0				73	48
Storage Bay Dist (ft)					100		
Storage Blk Time (\%)					33	9	
Queuing Penalty (veh)					92	3	

Intersection: 5: MLK Jr Dr \& IR-90 WB On Ramp

Movement	SB	SB
Directions Served	T	T
Maximum Queue (ft)	152	127
Average Queue (ft)	41	35
95th Queue (ft)	173	151
Link Distance (ft)	177	177
Upstream Blk Time (\%)	10	6
Queuing Penalty (veh)	29	17
Storage Bay Dist (ft)		
Storage Blk Time (\%)		

Intersection: 13: MLK Drive \& Broad Ave

Movement	EB	NB	NB	SB	B12	B12
Directions Served	LR	L	T	TR	T	
Maximum Queue (ft)	61	50	632	153	268	126
Average Queue (ft)	18	6	182	43	58	19
95th Queue (ft)	49	31	504	140	272	141
Link Distance (ft)	276		2210	85	289	289
Upstream Blk Time (\%)				2	9	1
Queuing Penalty (veh)				22	47	3
Storage Bay Dist (ft)		100				
Storage Blk Time (\%)			6			
Queuing Penalty (veh)			1			

Network Summary

Network wide Queuing Penalty: 428

Arterial Level of Service: NB MLK Jr Dr

Cross Street	Node	Delay $(\mathrm{s} / \mathrm{veh})$	Travel time (s)	Dist (mi)	Arterial Speed
IR-90 EB On Ramp	3	7.7	14.7	0.1	17
N Marginal Rd	2	1.7	8.8	0.1	27
IR-90 WB On Ramp	5	0.1	1.7	0.0	38
IR-90 WB Off Ramp	1	11.8	17.3	0.0	10
Total		21.3	42.4	0.2	17

Arterial Level of Service: SB MLK Jr Dr

Cross Street	Node	Delay $(\mathrm{s} / \mathrm{veh})$	Travel time (s)	Dist (mi)	Arterial Speed
IR-90 WB On Ramp	5	3.0	8.2	0.0	22
N Marginal Rd	2	0.5	2.7	0.0	23
IR-90 EB Off Ramp	3	7.8	15.1	0.1	16
Total	12	2.0	9.0	0.1	27

Intersection: 1: MLK Jr Dr/Lakeshore Blvd \& IR-90 WB Off Ramp

Movement	WB	WB	NB	SB
Directions Served	L	LR	T	T
Maximum Queue (ft)	4	25	70	80
Average Queue (ft)	0	2	31	45
95th Queue (ft)	0	15	60	72
Link Distance (ft)	1209	1209	171	576
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Intersection: 2: MLK Jr Dr \& N Marginal Rd

Movement	EB	NB	SB
Directions Served	LR	LT	TR
Maximum Queue (ft)	121	48	18
Average Queue (ft)	52	8	1
95th Queue (ft)	87	33	10
Link Distance (ft)	780	307	18
Upstream Blk Time (\%)			0
Queuing Penalty (veh)			0
Storage Bay Dist (ft)			
Storage Blk Time (\%)			

Intersection: 3: MLK Jr Dr \& IR-90 EB Off Ramp/IR-90 EB On Ramp

Movement	EB	EB	NB	SB	SB	SB
Directions Served	LTR	R	T	L	T	T
Maximum Queue (ft)	183	160	154	149	132	139
Average Queue (ft)	88	39	79	70	54	72
95th Queue (ft)	153	101	130	125	103	119
Link Distance (ft)	752	752	300	307	307	307
Upstream Blk Time (\%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)						
Storage Blk Time (\%)						

Intersection: 5: MLK Jr Dr \& IR-90 WB On Ramp

Movement	NB
Directions Served	R
Maximum Queue (ft)	3
Average Queue (ft)	0
95th Queue (ft)	2
Link Distance (ft)	18
Upstream Blk Time (\%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	

Intersection: 13: MLK Drive \& Broad Ave

Movement	EB	NB	SB	SB
Directions Served	LR	LT	T	TR
Maximum Queue (ft)	56	1105	81	98
Average Queue (ft)	15	238	17	15
95th Queue (ft)	44	743	57	61
Link Distance (ft)	269	2210	85	85
Upstream Blk Time (\%)		0	0	0
Queuing Penalty (veh)		0	1	2

Storage Bay Dist (ft)
Storage Blk Time (\%)
Queuing Penalty (veh)
Intersection: 15: Bend

Movement	EB
Directions Served	T
Maximum Queue (ft)	169
Average Queue (ft)	6
95th Queue (ft)	89
Link Distance (ft)	368
Upstream Blk Time (\%)	0
Queuing Penalty (veh)	1
Storage Bay Dist (ft)	
Storage Blk Time (\%)	
Queuing Penalty (veh)	
Network Summary	
Network wide Queuing Penalty: 3	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		\|Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hour	Highway/Direction of Travel IR-90 From/To Betwe Jurisdiction ODOT Analysis Year 2034	Eastbound E 55th Ramps istrict 12 isting Condition
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$3660 \quad \mathrm{veh} / \mathrm{h}$ veh/day veh/h	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
$\begin{aligned} & \mathrm{f}_{\mathrm{p}} \\ & \mathrm{E}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	\qquad	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{aligned} & \text { Operational (LOS) } \\ & \begin{array}{l} v_{p}=(V \text { or DDHV }) /(\text { PHF } \times N \\ \left.x f_{p}\right) \\ S \\ D=v_{p} / S \\ \text { LOS } \end{array} \end{aligned}$	$\mathrm{NXf}_{\mathrm{HV}}{ }_{993}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ 60.0 mph 16.5 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ B	Design (N) Design LOS $\begin{aligned} & v_{p}=(V \text { or DDHV }) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.\times f_{p}\right) \\ & S \\ & D=v_{p} / S \end{aligned}$ Required Number of Lanes, N	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ mph $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, } S, F F S, v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}} \text { - Exhibit 11-9 } \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		\|Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hour	Highway/Direction of Travel IR-90 From/To East of Jurisdiction ODO Analysis Year 2034	astbound MLK istrict 12 isting Condition
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$4015 \quad \mathrm{veh} / \mathrm{h}$ veh/day veh/h	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{T}} \end{array}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	\qquad	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{aligned} & \text { Operational (LOS) } \\ & \begin{array}{l} v_{p}=(V \text { or DDHV }) /(\text { PHF } \times N \\ \left.x f_{p}\right) \\ S \\ D=v_{p} / S \\ \text { LOS } \end{array} \end{aligned}$	$\begin{array}{rl} \mathrm{NXf}_{\mathrm{HV}} 1089 & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ & \\ 60.0 & \mathrm{mph} \\ 18.1 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{C} & \end{array}$	Design (N) Design LOS $\begin{aligned} & v_{p}=(V \text { or DDHV }) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.\times f_{p}\right) \\ & S \\ & D=v_{p} / S \end{aligned}$ Required Number of Lanes, N	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ mph $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & \mathrm{E}_{\mathrm{T}} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, } \mathrm{S}, \mathrm{FFS}, \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hour	Highway/Direction of Travel IR-90 / Eastbound From/To East of MLK Jurisdiction ODOT District 12 Analysis Year 2034 Existing Condition	
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$6830 \quad$$\mathrm{veh} / \mathrm{h}$ veh/day	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4 \%RVs, P_{R} 0 General Terrain: Level Grade \quad Length mi Up/Down \%	
Calculate Flow Adjustments			
$\begin{aligned} & \mathrm{f}_{\mathrm{p}} \\ & \mathrm{E}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	f_{Lw} mph f_{LC} mph TRD Adjustment mph FFS 60.0 mph	
LOS and Performance Measures		Design (N)	
Operational $($ LOS $)$ $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV$) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{Hv}} 1853\right.$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ S 58.8 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 31.5 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS D		Design (N) Design LOS $\mathrm{v}_{\mathrm{p}}=\left(\mathrm{V}\right.$ or DDHV) $/\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=v_{p} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow our volume	E_{R} - Exhibits 11-10, 11-12 $f_{L W}-$ Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		\|Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hour	Highway/Direction of Travel IR-90 From/To East of Jurisdiction ODO Analysis Year 2034	Westbound MLK istrict 12 isting Condition
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi 	
Calculate Flow Adjustments			
$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{T}} \end{array}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	\qquad	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{aligned} & \text { Operational (LOS) } \\ & \begin{array}{l} v_{p}=(V \text { or DDHV }) /(\text { PHF } \times N \\ \left.x f_{p}\right) \\ S \\ D=v_{p} / S \\ \text { LOS } \end{array} \end{aligned}$	$\begin{array}{cl} \mathrm{NXf}_{\mathrm{HV}}{ }_{1937} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ & \\ 57.9 & \mathrm{mph} \\ 33.4 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ D & \end{array}$	Design (N) Design LOS $\begin{aligned} & v_{p}=(V \text { or DDHV }) /\left(\text { PHF } \times N \times f_{H V}\right. \\ & \left.\times f_{p}\right) \\ & S \\ & D=v_{p} / S \end{aligned}$ Required Number of Lanes, N	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ mph $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & f_{p} \text { - Page 11-18 } \\ & \text { LOS, } S, F F S, v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}} \text { - Exhibit 11-9 } \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		\|Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hour	Highway/Direction of Travel IR-90 From/To Betwe Jurisdiction ODO Analysis Year 2034	Westbound MLK Ramps istrict 12 isting Condition
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	$4110 \quad \mathrm{veh} / \mathrm{h}$ veh/day veh/h	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
$\begin{aligned} & \mathrm{f}_{\mathrm{p}} \\ & \mathrm{E}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{array}{\|l} \text { f } \\ \text { Lw } \\ f_{\text {LC }} \\ \text { TRD Adjustment } \\ \text { FFS } \end{array}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{aligned} & \text { Operational (LOS) } \\ & v_{p}=(V \text { or DDHV) } / \text { (PHF x } \\ & \left.x f_{p}\right) \\ & S \\ & D=v_{p} / S \\ & \text { LOS } \end{aligned}$	$\begin{array}{cl} \mathrm{NXf}_{\mathrm{HV}}{ }_{1115} & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ & \\ 60.0 & \mathrm{mph} \\ 18.6 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{C} & \end{array}$	$\begin{aligned} & \text { Design }(\mathrm{N}) \\ & \text { Design LOS } \\ & \mathrm{v}_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV) } /\left(\text { PHF } \times N \times f_{H V}\right.\right. \\ & \left.\times f_{p}\right) \\ & S \\ & D=v_{p} / S \end{aligned}$ Required Number of Lanes, N	$\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ mph $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{\mathrm{T}} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & \mathrm{f}_{\mathrm{p}} \text { - Page 11-18 } \\ & \text { LOS, S, FFS, } \mathrm{v}_{\mathrm{p}} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit } 11-8 \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit } 11-9 \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hour	Highway/Direction of Travel IR-90 From/To Betwe Jurisdiction ODO Analysis Year 2034	Westbound E 72nd Ramps istrict 12 isting Condition
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV $=$ AADT $\times K \times D$	veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4 \%RVs, P_{R} 0 General Terrain: Level GradeLength Up/Down \% mi	
Calculate Flow Adjustments			
$\begin{aligned} & \mathrm{f}_{\mathrm{p}} \\ & \mathrm{E}_{\mathrm{T}} \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{aligned} & E_{R} \quad 1.2 \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{aligned}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\mathrm{f}_{\text {Lw }}$ f_{LC} TRD Adjustment FFS 60.0	mph mph mph mph
LOS and Performance Measures		Design (N)	
 $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times \mathrm{NXf} \mathrm{f}_{\mathrm{HV}} 1671\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ S 59.9 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 27.9 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS D		Design LOS $\mathrm{v}_{\mathrm{p}}=(\mathrm{V}$ or DDHV $) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}}\right.$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times \mathrm{f}_{\mathrm{p}}\right)$ mph S $D=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R}-\text { Exhibits 11-10, 11-12 } \\ & E_{T}-\text { Exhibits 11-10, 11-11, 11-13 } \\ & f_{p}-\text { Page 11-18 } \\ & \text { LOS, } S, \text { FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}}-\text { Exhibit 11-8 } \\ & \mathrm{f}_{\mathrm{LC}}-\text { Exhibit 11-9 } \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hour	Highway/Direction of Travel IR-90 From/To Betwe Jurisdiction ODO Analysis Year 2034	Westbound E 55th Ramps District 12 isting Condition
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N) $\quad \square$	\square Planning Data
Flow Inputs			
Volume, V AADT Peak-Hr Prop. of AADT, K Peak-Hr Direction Prop, D DDHV = AADT $\times \mathrm{K} \times \mathrm{D}$	$3870 \quad$veh/h veh/day veh/h	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4 \%RVs, P_{R} 0 General Terrain: Level Grade \quad Length mi Up/Down \%	
Calculate Flow Adjustments			
$\begin{array}{\|l} \hline \mathrm{f}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{T}} \end{array}$	$\begin{aligned} & 1.00 \\ & 1.5 \end{aligned}$	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{array}$	
Speed Inputs		Calc Speed Adj and FFS	
Lane Width Rt-Side Lat. Clearance Number of Lanes, N Total Ramp Density, TRD FFS (measured) Base free-flow Speed, BFFS	ft ft 4 $\mathrm{ramps} / \mathrm{mi}$ mph mph	$\begin{array}{\|l} \text { f } \\ \mathrm{L}_{\mathrm{LW}} \\ \mathrm{f}_{\mathrm{LC}} \\ \text { TRD Adjustment } \\ \text { FFS } \end{array}$	mph mph mph mph
LOS and Performance Measures		Design (N)	
$\begin{array}{lll} \hline \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or DDHV }) /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{HV}} 1050\right. & \mathrm{pc} / \mathrm{h} / \mathrm{ln} \\ \left.\times \mathrm{f}_{\mathrm{p}}\right) & 60.0 & \mathrm{mph} \\ \mathrm{~S} & 17.5 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & B & \\ \text { LOS } & B & \end{array}$		Design LOS $v_{p}=(V$ or DDHV $) /\left(\right.$ PHF $\times N \times f_{H V}$ $\mathrm{pc} / \mathrm{h} / \mathrm{ln}$ $\left.\times f_{\mathrm{p}}\right)$ mph S $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ $D=v_{\mathrm{p}} / \mathrm{S}$ Required Number of Lanes, N	
Glossary		Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	S - Speed D - Density FFS - Free-flow speed BFFS - Base free-flow hour volume	$\begin{aligned} & E_{R} \text { - Exhibits 11-10, 11-12 } \\ & E_{T} \text { - Exhibits 11-10, 11-11, 11-13 } \\ & f_{p}-\text { Page 11-18 } \\ & \text { LOS, } S \text {, FFS, } v_{p} \text { - Exhibits 11-2, } \\ & 11-3 \end{aligned}$	$\begin{aligned} & \mathrm{f}_{\mathrm{LW}} \text { - Exhibit 11-8 } \\ & \mathrm{f}_{\mathrm{LC}} \text { - Exhibit 11-9 } \\ & \text { TRD - Page 11-11 } \end{aligned}$

BASIC FREEWAY SEGMENTS WORKSHEET				
General Information		Site Information		
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 AM Peak Hour	Highway/Direction of Travel IR-90/Eastbound From/To Between MLK and E.72nd Jurisdiction ODOT District 12 Analysis Year 2034 Build		
Project Description CUY-90-19.5/21.3				
\square Oper.(LOS) \square		Des.(N)	\square Planning Data	
Flow Inputs				
Volume, V AADT	6160	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4		
Peak-Hr Prop. of AADT, K		\%RVs, P_{R}		
Peak-Hr Direction Prop, D	veh/h	General Terrain: Level Grade \% Length mi Up/Down \%		
Calculate Flow Adjustments				
$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{T}} \end{array}$	1.00	$\begin{aligned} & E_{R} \\ & f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{aligned}$		
	1.5			
Speed Inputs		Calc Speed Adj and FFS		
Lane Width ft	ft			
Rt-Side Lat. Clearance				
Number of Lanes, N	4		mph	
Total Ramp Density, TRD	ramps/mi	fic TRD Adjustment	mph mph	
FFS (measured)	60.0	FFS 60.0		
Base free-flow Speed, BFFS	mph			
LOS and Performance Measures		Design (N)		
Operational (LOS)		Design (N)		
$\begin{aligned} & \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or DDHV }) /\left(\mathrm{PHF} \times \mathrm{N} \times \mathrm{f}_{\mathrm{Hv}} 1671 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}\right. \\ & \left.\mathrm{xf}_{\mathrm{p}}\right) \end{aligned}$		Design LOS$v_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV)/(PHF } \times N \times f_{\mathrm{HV}}\right.$		
S 59.9 mph $\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ 27.9 $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ LOS D		$\left.x f_{p}\right)$		
Glossary		Factor Location		
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 f_{LW} - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 f_{LC} - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$		

BASIC FREEWAY SEGMENTS WORKSHEET			
General Information		Site Information	
Analyst Agency or Company Date Performed Analysis Time Period	MLS LJB Inc. 2/27/2015 PM Peak Hour	Highway/Direction of Travel IR-90 / Eastbound From/To Between MLK and E.72nd Jurisdiction ODOT District 12 Analysis Year 2034 Build	
Project Description CUY-90-19.5/21.3			
\square Oper.(LOS) \square		Des.(N)	\square Planning Data
Flow Inputs			
Volume, V AADT	4490	Peak-Hour Factor, PHF 0.94 \%Trucks and Buses, P_{T} 4	
Peak-Hr Prop. of AADT, K		\%RVs, P_{R} O	
Peak-Hr Direction Prop, D	veh/h	General Terrain: Level Grade \% Length mi Up/Down \%	
Calculate Flow Adjustments			
$\begin{array}{\|l\|} \hline \mathrm{f}_{\mathrm{p}} \\ \mathrm{E}_{\mathrm{T}} \end{array}$	1.00	$\begin{array}{lc} E_{R} & 1.2 \\ f_{H V}=1 /\left[1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)\right] 0.980 \end{array}$	
	1.5		
Speed Inputs		Calc Speed Adj and FFS	
Lane Width			
Rt-Side Lat. Clearance Number of Lanes, N 4		f_{Lw} mph	
Number of Lanes, N	4	$\begin{aligned} & \mathrm{f} \mathrm{Lw} \\ & \mathrm{f} \mathrm{LC} \end{aligned}$	mph
Total Ramp Density, TRD	ramps/mi	TRD Adjustment	$\begin{aligned} & \mathrm{mph} \\ & \mathrm{mph} \end{aligned}$
FFS (measured)	60.0	FFS 60.0	
Base free-flow Speed, BFFS	mph		
LOS and Performance Measures		Design (N)	
Operational (LOS)		Design (N)	
$\begin{aligned} & \mathrm{v}_{\mathrm{p}}=(\mathrm{V} \text { or DDHV }) /\left(\mathrm{PHF} \times N \times \mathrm{f}_{\mathrm{HV}} 1218 \quad \mathrm{pc} / \mathrm{h} / \mathrm{ln}\right. \\ & \left.\mathrm{xf} \mathrm{f}_{\mathrm{p}}\right) \end{aligned}$		Design LOS$v_{\mathrm{p}}=\left(\mathrm{V} \text { or DDHV)/(PHF } \times N \times f_{\mathrm{HV}}\right.$	
$\begin{array}{lll} \mathrm{S} & 60.0 & \mathrm{mph} \\ \mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S} & 20.3 & \mathrm{pc} / \mathrm{mi} / \mathrm{ln} \\ \operatorname{LOS} & C & \end{array}$		$\left.x f_{p}\right)$	
		$\mathrm{D}=\mathrm{v}_{\mathrm{p}} / \mathrm{S}$ (pc/mi/ln	
		Required Number of Lanes, N	
Glossary	Glossary	Factor Location	
N - Number of lanes V - Hourly volume v_{p} - Flow rate LOS - Level of service speed DDHV - Directional design	D - Density FFS - Free-flow speed BFFS - Base free-flow	E_{R} - Exhibits 11-10, 11-12 $f_{L W}$ - Exhibit 11-8 E_{T} - Exhibits 11-10, 11-11, 11-13 $f_{L C}$ - Exhibit 11-9 f_{p} - Page 11-18 TRD - Page 11-11 LOS, S, FFS, v_{p} - Exhibits 11-2, $11-3$	

RAMPS AND RAMP JUNCTIONS WORKSHEET			
General Information		Site Information	
Analyst	MLS	Freeway/Dir of Travel	IR-90/Westbound
Agency or Company	LJB Inc.	Junction	E 72 nd St
Date Performed	2/27/2015	Jurisdiction	ODOT District 12
Analysis Time Period	PM Peak Hour	Analysis Year	2034 Existing Condition

Inputs

Upstream Adj Ramp	Freeway Number of Lanes, N		Downstream Adj
	Ramp Number of Lanes, N	1	Ramp
\square Yes $\quad \square$ On	Acceleration Lane Length, L_{A}	735	$\square \text { Yes } \quad \square \text { On }$
\square No $\quad \square$ Off	Deceleration Lane Length L_{D} Freeway Volume, V_{F}	4490	$\square \text { No } \quad \square \text { Off }$
$L_{\text {up }}=\quad \mathrm{ft}$	Ramp Volume, V_{R}	140	$\mathrm{L}_{\text {down }}=\mathrm{ft}$
$N_{u}=\quad \mathrm{veh} / \mathrm{h}$	Freeway Free-Flow Speed, S_{FF} Ramp Free-Flow Speed, S_{FR}	$\begin{aligned} & 60.0 \\ & 45.0 \end{aligned}$	$V_{D}=\quad \mathrm{veh} / \mathrm{h}$

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} V \\ (\mathrm{Veh} / \mathrm{hr}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	f_{HV}	f_{p}	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	4490	0.94	Level	4	0	0.980	1.00	4872
Ramp	140	0.94	Level	2	0	0.990	1.00	150
UpStream								
DownStream								
Merge Areas					Diverge Areas			
Estimation of v_{12}					Estimation of \mathbf{v}_{12}			
$\begin{aligned} & L_{\text {EQ }}= \\ & P_{\mathrm{FM}}= \\ & \mathrm{V}_{12}= \\ & \mathrm{V}_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }} \\ & \text { Is } V_{3} \text { or } V_{\text {av34 }} \\ & \text { If } Y e s, V_{12 a}= \end{aligned}$	$\begin{gathered} V_{12}=1 \\ (E c \\ 0.199 \\ 970 \\ 1951 \\ 17) \\ \text { c/h? } \quad \square \\ 12 / 2 \quad \square Y \\ 1948 \\ 18,0 \end{gathered}$		-7) (Exhibit 13-14 or 3-16,		$\begin{aligned} & L_{E Q}= \\ & P_{F D}= \\ & V_{12}= \end{aligned}$ V_{3} or $V_{\text {av34 }}$ Is V_{3} or V Is V_{3} or V If Yes, $\mathrm{V}_{12 \mathrm{a}}$	$\begin{aligned} & 2,700 \mathrm{p} \\ & 1.5{ }^{*} \mathrm{~V} \end{aligned}$) $P_{F D}$ -12 or 13-13) n (Exhibit 13-7) 13-14 or 13-17) n 13-16, 13-18, or

Capacity Checks

Capacity Checks

	Actual	Capacity		LOS F?		Actual	Capacity		LOS F?
V_{FO}	5022	Exhibit 13-8		No	V_{F}		Exhibit 13-8		
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{R}$		Exhibit 13-8		
					$V_{\text {R }}$		Exhibit 10		
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$	2098	Exhibit 13-8	4600:All	No	V_{12}		Exhibit 13-8		
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
	$\mathrm{D}_{\mathrm{R}}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$				$\begin{array}{ll} & \mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{C}_{\mathrm{R}}= & \text { (pc/mi/n) } \\ \text { LOS }= & \text { (Exhibit 13-2) } \end{array}$				

Speed Determination
Speed Determination

$M_{\mathrm{S}}=$	0.287 (Exibit 13-11)
$S_{\mathrm{R}}=$	$54.8 \mathrm{mph}($ Exhibit 13-11)
$s_{0}=$	56.5 mph

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		MLS LJB Inc. 2/27/2015 AM Peak Hour			Freeway/Dir of Travel Weaving Segment Location Analysis Year			IR-90 / Eastbound E 72nd St / MLK Jr Dr 2034 Existing Condition	
Project Description CUY-90-19.50/21.30									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 515 \mathrm{ft} \\ 60 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 40 \\ 2300 \\ \text { Leve } \\ \hline \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$V_{\text {FF }}$	3335	0.92	4	0	1.5	1.2	0.980	1.00	3698
V_{RF}	60	0.92	0	0	1.5	1.2	1.000	1.00	65
$V_{\text {FR }}$	625	0.92	4	0	1.5	1.2	0.980	1.00	693
V_{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0
V_{NW}	3698							$\mathrm{V}=$	4456
$\mathrm{V}_{\text {w }}$	758								
VR	0.170								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum $F R$ lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 Ic 1.2 int/mi $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimun Weaving Non-we Total lan Non-we	ing lan ange ne cha ges, L	ges, L $\mathrm{LC}_{\mathrm{NW}}$ $I_{\text {NW }}$		$758 \mathrm{lc/h}$ $930 \mathrm{lc/h}$ $271 \mathrm{lc/h}$ $1201 \mathrm{lc} / \mathrm{h}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Wea Wea Weav Wea Leve	ment flow ment capa ment v / c r ment dens ce, LOS			4370 veh/h 7906 veh/h 0.553 $2.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ C	Weaving Weaving Average Average Maximum	ent fpe	${ }_{\text {, }} \mathrm{S}_{\mathrm{NW}}$		$\begin{array}{r} \hline 0.441 \\ 49.9 \mathrm{mph} \\ 53.9 \mathrm{mph} \\ 49.2 \mathrm{mph} \\ 4233 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2014 University of Florida, All Rights Reserved					HCS 2	Versio		rated:	2015 1:45 PN

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		MLS LJB Inc. 2/27/2015 PM Peak Hour			Freeway/Dir of Travel Weaving Segment Location Analysis Year			IR-90 / Eastbound E 72nd St / MLK Jr Dr 2034 Existing Condition	
Project Description CUY-90-19.50/21.30									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 515 \mathrm{ft} \\ 60 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MI }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 40 \\ 2300 \\ \text { Level } \\ \hline \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$V_{\text {FF }}$	5385	0.92	4	0	1.5	1.2	0.980	1.00	5970
V_{RF}	160	0.92	1	0	1.5	1.2	0.995	1.00	175
$V_{\text {FR }}$	545	0.92	1	0	1.5	1.2	0.995	1.00	595
V_{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0
V_{NW}	5970							$\mathrm{V}=$	6740
$\mathrm{V}_{\text {w }}$	770								
VR	0.114								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum $F R$ lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 lc $1.2 \mathrm{int} / \mathrm{mi}$ $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimum Weaving Non-wea Total lan Non-wea	ing lane	ges, L $\mathrm{LC}_{\mathrm{NW}}$ I_{NW}		$770 \mathrm{lc/h}$ $942 \mathrm{lc/h}$ $739 \mathrm{lc/h}$ $1681 \mathrm{lc/h}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weaving segment flow rate, v Weaving segment capacity, c_{w} Weaving segment v / c ratio Weaving segment density, D Level of Service, LOS				6620 veh/h 8071 veh/h 0.820 $5.8 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ E	Weaving intensity factor, W Weaving segment speed, S Average weaving speed, S_{w} Average non-weaving speed, S_{Nw} Maximum weaving length, $L_{\text {MAX }}$				$\begin{array}{r} \hline 0.575 \\ 47.0 \mathrm{mph} \\ 52.7 \mathrm{mph} \\ 46.4 \mathrm{mph} \\ 3678 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2014 University of Florida, All Rights Reserved					HCS 20	Version		ated: 1	2015 3:51 PN

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		MLS LJB Inc. 2/27/2015 AM Peak Hour			Freeway/Dir of Travel Weaving Segment Location Analysis Year			IR-90 / Westbound MLK Jr Dr / E 72nd St 2034 Existing Condition	
Project Description CUY-90-19.50/21.30									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 475 \mathrm{ft} \\ 60 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 40 \\ 2300 \\ \text { Leve } \\ \hline \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$V_{\text {FF }}$	5810	0.92	4	0	1.5	1.2	0.980	1.00	6442
V_{RF}	350	0.92	7	0	1.5	1.2	0.966	1.00	394
$V_{\text {FR }}$	130	0.92	3	0	1.5	1.2	0.985	1.00	143
V_{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0
V_{NW}	6442							$\mathrm{V}=$	6979
$\mathrm{V}_{\text {w }}$	537								
VR	0.077								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum $F R$ lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 Ic 1.2 int/mi $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimun Weaving Non-we Total lan Non-we	ing lan ange ne cha ges, L	ges, L $\mathrm{LC}_{\mathrm{NW}}$ $I_{\text {NW }}$		$537 \mathrm{Ic} / \mathrm{h}$ $692 \mathrm{lc/h}$ $814 \mathrm{lc} / \mathrm{h}$ $1506 \mathrm{lc} / \mathrm{h}$
Weaving Segment Speed, Density, Level of Service, and Capacity									
	ment flow ment capa ment v / c r ment dens ce, LOS			6837 veh/h 8169 veh/h 0.837 $6.3 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ E	Weaving Weaving Average Average Maximum	ent fpe	$\mathrm{d}, \mathrm{~S}_{\mathrm{NW}}$		$\begin{array}{r} 0.562 \\ 48.1 \mathrm{mph} \\ 52.8 \mathrm{mph} \\ 47.8 \mathrm{mph} \\ 3317 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2014 University of Florida, All Rights Reserved					HCS 2	Versio	Generated: 6/22/2015		2015 1:46 PN

FREEWAY WEAVING WORKSHEET									
General Information					Site Information				
Analyst Agency/Company Date Performed Analysis Time Period		MLS LJB Inc. 2/27/2015 PM Peak Hour			Freeway/Dir of Travel Weaving Segment Location Analysis Year			IR-90 / Westbound MLK Jr Dr / E 72nd St 2034 Existing Condition	
Project Description CUY-90-19.50/21.30									
Inputs									
Weaving configuration Weaving number of lanes, N Weaving segment length, L_{s} Freeway free-flow speed, FFS				$\begin{array}{r} \text { One-Sided } \\ 4 \\ 475 \mathrm{ft} \\ 60 \mathrm{mph} \end{array}$	Segment type Freeway minimum speed, $\mathrm{S}_{\text {MIN }}$ Freeway maximum capacity, $\mathrm{C}_{\mathrm{IFL}}$ Terrain type				$\begin{array}{r} \text { Freeway } \\ 40 \\ 2300 \\ \text { Leve } \\ \hline \hline \end{array}$
Conversions to pc/h Under Base Conditions									
	V (veh/h)	PHF	Truck (\%)	RV (\%)	E_{T}	E_{R}	f_{HV}	fp_{p}	v (pc/h)
$V_{\text {FF }}$	3990	0.92	4	0	1.5	1.2	0.980	1.00	4424
V_{RF}	500	0.92	2	0	1.5	1.2	0.990	1.00	549
$V_{\text {FR }}$	120	0.92	5	0	1.5	1.2	0.976	1.00	134
V_{RR}	0	0.92	0	0	1.5	1.2	1.000	1.00	0
V_{NW}	4424							$\mathrm{V}=$	5107
$\mathrm{V}_{\text {w }}$	683								
VR	0.134								
Configuration Characteristics									
Minimum maneuver lanes, N_{WL} Interchange density, ID Minimum RF lane changes, $\mathrm{LC}_{\mathrm{RF}}$ Minimum $F R$ lane changes, $\mathrm{LC}_{\mathrm{FR}}$ Minimum RR lane changes, $\mathrm{LC}_{\mathrm{RR}}$				2 Ic 1.2 int/mi $1 \mathrm{lc} / \mathrm{pc}$ $1 \mathrm{lc} / \mathrm{pc}$ Ic/pc	Minimun Weaving Non-we Total lan Non-we	ing lan ange ne cha ges, L	ges, L $\mathrm{LC}_{\mathrm{NW}}$ $I_{\text {NW }}$		$683 \mathrm{Ic} / \mathrm{h}$ $838 \mathrm{lc} / \mathrm{h}$ $398 \mathrm{lc} / \mathrm{h}$ $1236 \mathrm{lc} / \mathrm{h}$ 252
Weaving Segment Speed, Density, Level of Service, and Capacity									
Weav Wea Wea Wea Leve	ment flow ment capa ment v / c r ment dens ce, LOS			5011 veh/h 8000 veh/h 0.626 $5.8 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ C	Weaving Weaving Average Average Maximum	ent fpe	, $S_{\text {NW }}$		$\begin{array}{r} \hline 0.481 \\ 49.5 \mathrm{mph} \\ 53.5 \mathrm{mph} \\ 49.0 \mathrm{mph} \\ 3870 \mathrm{ft} \end{array}$
Notes									
a. Weaving segments longer than the calculated maximum length should be treated as isolated merge and diverge areas using the procedures of Chapter 13, "Freeway Merge and Diverge Segments". b. For volumes that exceed the weaving segment capacity, the level of service is "F".									
Copyright © 2014 University of Florida, All Rights Reserved					HCS 2	Versio		rated:	2015 1:46 PN

	SYMBoLs	TYPES OF CRASH
	Ving vehicle	Re
\pm	BACING VEHCLE NON-INOOLVED VEH.	Right
	Sos-INOLVE	side S
$\widetilde{\square}$	parked vehicle	eer out of control
$\stackrel{\square}{-}$	FIXED OBJ ECT FATALACCIDENT	¢ Left turn
$\stackrel{\circ}{-}$	FATALACCIDENT	Head

$\begin{gathered} \text { SHOW FOR } \\ \text { EACH CRASH } \end{gathered}$
1. TIME, day, date
2. WEATHER AND ROAD SURFACE IF UNUSUAL ONDITION EXISTED
3. NITE - IF BETWEEN DUSK AND DAWN

NUMBER OF CRASHES
10 Property damage only
$\underline{\underline{9}}$ injury or fatal
19 totalaccidents

SHOW FOR
EACH CRASH

NUMBER OF CRASHES
16 Property damage only
7 INJURY OR FATAL
ury or fatal

	SYmbols	TYPES OF CRASHES
\checkmark	moving vehicle	- rear end
\cdots	BACKING VEHICLE	Right ANGLE
----	NON-INVOLVED VEH PEDESTRIAN	\because SIDE SWIP
$\stackrel{\square}{\square}$	parked vehicle	We out of control
\square	FIXED OBJECT FATALACCIDENT	\bigcirc Leftturn
\bigcirc	FATALACCIDENT INJ URY ACCIDENT	. head on

| SHOW FOR |
| :---: | :---: |
| EACH CRASH |$|$

LOG POINT No.	CRASH DIAGRAM					
	21.05			то	21.19	
PERIOD	3 Years	FROM	2011		T0	2013
CITY	Cleveland		Route	number		CUY-90

NUMBER OF CRASHES
33 Property damage only
$\underline{\underline{9}}$ injury or fatal
42 totalaccidents

	SYMBOLS	TYPES OF CRASH
	moving vehicle	\cdots rear end
\cdots	BACKING VEHICLE NON-INVOIVED VEH.	Right ANGLE
------	PEDESTRIAN	\cdots side swipe
\square	parked vehicle	ee out of control
	FIXED OBJECT fatalaccident	LEFT TURN
\bigcirc	Inj URY ACCIDENT	- head on

SHOW FOR EACH CRASH
1. TIME, DAY, DATE
2. WEATHER AND ROAD SURFACE IF UNUSUAL CONDITION EXISTED
3. NITE-IF BETWEEN DUSK AND DAWN

LOG POINT No.	CRASH DIAGRAM					
	2.63			то	2.80	
PERIOD	3 Years	FROM	2011		T0	2013
CITY	Cleveland		Route	NUMBER		MLK 」 r. Dr.

[^3]

[^4]UNIT

HSY0304 OH1U (REV 01/12.)

UNIT

[^5]
顷 Motorist/ Non-Motorist / Occupant

OHIO CPMEX SAFEN morman
 Motorist/ Non-Motorist / Occupant

UNT NMMER		
OLIS		Loury, Earl, V.

440 Ingleside Road Cleveland, Ohio 44128

SEATINO POSITION

O1- FRONT LEFT SIDE (MOTORCYCXE DRIVER)' O2-FRONT MIPDLE O3-FRONT-RIGHT SIDE O4-SECOND LEFTSIDE (MOTORCYCLEPASSENGER) 05. SECOND - MDDLE OB, SECOND-RAGHT SIDE

O7 THIRO- LEFT SIDE (MOTOROYCLE SIDE QAR)
O8 - THIRD - MIDDLE:
OO - THIRD - RIGHT SIDE
10- SLEEPER SECTION OF CAB (TRUCK)

- PASSENGER IN OTHER ENCLOSED CARCO AREA
(NON-TRALLNG UNTSUCHASABUS, PIGK-UP WITH CAB) 00° UNKNOWN. 13 TRAILING UNIT 15. NON MOTORIST 10 OTHER

12. PASSENGER NUNEVOLOSED CARGOAREA
13. RiDING ONA VEHICLE EXTERIOR (NON-TRALINGUN)T

CONDITION

1-CLASS A

$2-C L A S S B$
3-CLASS C
4. REGULA

5- MCMOPaD SMI
AIR BAG USAGE
I - NOT PEPLOYEO
2 -DEPGOYED FRON
3 - DEPLOYED SIDE
A- DEPLOYED BOTH FRONJSIUE
5 - NOT APPLICABIE
O- DEPLOYMENT UNKNOWN
ALCOHOLDRUG SUSPECTED
1 NONE
2 2YES - ALCOOOL SUSPECTED
3-YES - HBO NOT MMPARRED
4-YES-DRUG SUSPECTED $5-$ YES ALCOHOL AND ORUG SUSRECT

ALCOHOL TES STAYUS

2 -TESTREFUSED
3. TEST GIVEN, CONTAMINATEO SAMPLENNUSABLE

4 - TEST GIVEN RESULIS KNOWN,
5. TEST GIVEN RESU, TS UNKNOWN

ADORESS, CITY, STATE ZJP
ALCOHOL TEST TYE DRUG TEST SYAMAB

DRUGTRST TYE DRNERDISTRACTEDBY

ALCOHOL TEST TYPE	DRUGTERTSAATUB - ,	DRUG TEAT TYPE
1-NONE	1 -NONE GIVEN ,	1 NONE
2-BLOOD	2-TESY REFUSED	$3-81000$
3-URINE	3 TTEST GIVEN, CONTAMINATED SAMPLEANUSABLE	3 URINE
4 - BREATH	4-TEST GIVEN, RESULTS KNOWN	4-BREATH
5:OTHER	S-TEST GMEN, RESULTS UNKNOWN	$5-$ OTHER

ALCOHOL TEST TYPE	DRUGTERTSAATUB - ,	DRUG TEAT TYPE
1-NONE	1 -NONE GIVEN ,	1 NONE
2-BLOOD	2-TESY REFUSED	$3-81000$
3-URINE	3 TTEST GIVEN, CONTAMINATED SAMPLEANUSABLE	3 URINE
4 - BREATH	4-TEST GIVEN, RESULTS KNOWN	4-BREATH
5:OTHER	S-TEST GMEN, RESULTS UNKNOWN	$5-$ OTHER

6-OTHERINSIDE TBE VEMCLE

5 OTHER ELEGTRONIC DEVICE
7. EXTERNA DISTRACTION:
3. TESTGIVEN, CONTAMINATED SAMPLEANUSABLE

4-TEST GIVEN, RESULTS KNOWN
S-TEST GVEN, RESULTS UNKNOWN

CONTACT PHORE- INCLUDE AREA CODE

UNIT NUMBER NAME: LAST, FIRSI, MIDDLE
MEDXCAL FACILITY INNKED TAKENTO
SAFETY ECUPMENTUSED
\square MOTORCYCL
HEMET
EJECTONTAPPEDDATE OF BIRTH

GENDER
F-FEMALE
F-FEMAL
M-MALE CONFACT PHONE- BCLUDE AREA CODE

MEDICAL FACLUTY INURED TAEEN TO SAFETYEQMPMENTUSED

HSY8300 OH1M (Rev 01/12)

吅 OCCUPANT/ WITNESS AdDENDUM

LOCAL REPORT NUMBER 13D-155	REPORTING AGENCY CLEVELAND DIVISION OF POLICE	$\begin{array}{\|l\|} \hline \text { DATE OF CRASH } \\ \text { M } 05 \text { I } 30 \text { Y } 2013 \\ \hline \end{array}$
in CoUNTY OF Cuyahoga	190 E/B 328 ft E of MP 176.2	

Project Safety Performance Report			
General Information			
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074
Reference Number		Date Performed	6/25/2015
Analyst	VM	Analysis Year	2013
Agency/Company	LJB Inc		MLK Drive - Short Term Improvements

Summary of Anticipated Safety Performance of the Project (average crashes/year)

Project Summary Results (Without Animal Crashes)					
	KA	B	C	0	Total
$\mathrm{N}_{\text {predicted }}$ - Existing Conditions	0.4371	1.7888	2.4512	8.1335	12.8106
$\mathrm{N}_{\text {expected }}$ - Existing Conditions	0.4274	1.5820	2.8137	9.0469	13.8700
$\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions	-0.0097	-0.2068	0.3625	0.9134	1.0594
$\mathrm{N}_{\text {expected }}$ - Proposed Conditions	0.1622	0.5973	1.0642	3.4253	5.2490

Project Safety Performance Report			
General Information			
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074
Reference Number		Date Performed	6/25/2015
Analyst	VM	Analysis Year	2013
Agency/Company	LJB Inc		MLK Drive - Short Term Improvements

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
CR382; 3.4	E.55th/S.Marginal/Dick Goddard/l-90 EB ramp	0.4371	1.7888	2.4512	8.1335	12.8106

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
CR382; 3.4	E.55th/S.Marginal/Dick Goddard/l-90 EB ramp	0.4274	1.582	2.8137	9.0469	13.87

Proposed Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
CR382; 3.4	E.55th/S.Marginal/Dick Goddard/l-90 EB ramp	0.1622	0.5973	1.0642	3.4253	5.249

		Project Safety Performance R		
		General Information		
Project Name		CUY-90 Safety Study		Contact Email
Project Description		I-90/E.55th and I-90/MLK Interchange, MLK Improvements		Contact Phone
Reference Number				Date Performed
Analyst		VM		Analysis Year
Agency/Company		LJB Inc		
Summary by Crash Type				
Crash Type		Existing		ProposedExpected CrashFrequency
	Predicted Crash Frequency	Expected Crash Frequency	PSI	
Unknown	0.0071	0.0071	0.0000	0.0034
Head On	0.0827	0.0819	-0.0008	0.0393
Rear End	5.8618	7.8887	2.0269	3.7861
Backing	0.2772	0.2502	-0.0270	0.1201
Sideswipe - Meeting	0.1710	0.1687	-0.0023	0.0810
Sideswipe - Passing	1.3537	1.2020	-0.1517	0.5769
Angle	2.2058	1.6654	-0.5404	0.7993
Parked Vehicle	0.2498	0.2325	-0.0173	0.1116
Pedestrian	0.4294	0.3725	-0.0569	0.1902
Animal	0.0000	0.0000	0.0000	0.0000
Train	0.0004	0.0004	0.0000	0.0002
Pedalcycles	0.3396	0.2992	-0.0404	0.1292
Other Non-Vehicle	0.0000	0.0000	0.0000	0.0000
Fixed Object	0.4026	0.4079	0.0053	0.1958
Other Object	0.0143	0.0142	-0.0001	0.0068
Overturning	0.0225	0.0223	-0.0002	0.0107
Other Non-Collision	0.0536	0.0528	-0.0008	0.0253
Left Turn	1.3390	1.2042	-0.1348	0.5779
Right Turn	0.0000	0.0000	0.0000	0.0000

Summary of Anticipated Safety Performance of the Project (average crashes/year)

Project Summary Results (Without Animal Crashes)					
	KA	B	C	0	Total
$\mathrm{N}_{\text {predicted }}$ - Existing Conditions	0.4610	1.9869	2.8754	8.9188	14.2421
$\mathrm{N}_{\text {expected }}$ - Existing Conditions	0.4500	1.9173	3.4555	15.0699	20.8927
$\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions	-0.0110	-0.0696	0.5801	6.1511	6.6506
$\mathrm{N}_{\text {expected }}$ - Proposed Conditions	0.2121	0.8903	1.5770	7.0231	9.7025

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	0.0132	0.0457	0.0758	0.3156	0.4503
MR12252; 2.88	MLK @ I-90 EB ramps intersection	0.1574	0.6831	0.9783	4.035	5.8538
MR12252; 3.02	MLK @ WB ramps/N.Marginal	0.2904	1.2581	1.8213	4.5682	7.938

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	0.013	0.045	0.0736	0.6756	0.8072
MR12252; 2.88	MLK @ I-90 EB ramps intersection	0.1545	0.7565	1.5884	10.1692	12.6686
MR12252; 3.02	MLK @ WB ramps/N.Marginal	0.2825	1.1158	1.7935	4.2251	7.4169

Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	-0.0002	-0.0007	-0.0022	0.36	0.3569
MR12252; 2.88	MLK @ I-90 EB ramps intersection	-0.0029	0.0734	0.6101	6.1342	6.8148
MR12252; 3.02	MLK @ WB ramps/N.Marginal	-0.0079	-0.1423	-0.0278	-0.3431	-0.5211

Proposed Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
MR12252; 2.65-2.84	MLK-E.88th to EB ramps	0.0089	0.0304	0.0498	0.456	0.5451
MR12252; 2.88	MLK @ I-90 EB ramps intersection	0.0602	0.295	0.6192	4.4279	5.4023
MR12252; 3.02	MLK @ WB ramps/N.Marginal	0.143	0.5649	0.908	2.1392	3.7551

		Project Safety Performance R		
		General Information		
Project Name		CUY-90 Safety Study		Contact Email
Project Description		I-90/E.55th and I-90/MLK Interchange, MLK Improvements		Contact Phone
Reference Number				Date Performed
Analyst		VM		Analysis Year
Agency/Company		LJB Inc		
Summary by Crash Type				
Crash Type		Existing		ProposedExpected CrashFrequency
	Predicted Crash Frequency	Expected Crash Frequency	PSI	
Unknown	0.0125	0.0124	-0.0001	0.0059
Head On	0.0970	0.0963	-0.0007	0.0460
Rear End	6.4941	13.1865	6.6924	6.0252
Backing	0.2983	0.2977	-0.0006	0.1442
Sideswipe - Meeting	0.1994	0.2029	0.0035	0.0986
Sideswipe - Passing	1.5035	1.8972	0.3937	0.9237
Angle	2.4412	2.0674	-0.3738	0.9785
Parked Vehicle	0.4303	0.3856	-0.0447	0.1849
Pedestrian	0.2935	0.2762	-0.0173	0.1313
Animal	0.0168	0.0166	-0.0002	0.0112
Train	0.0008	0.0009	0.0001	0.0004
Pedalcycles	0.1384	0.1343	-0.0041	0.0631
Other Non-Vehicle	0.0000	0.0000	0.0000	0.0000
Fixed Object	0.6940	0.8768	0.1828	0.4135
Other Object	0.0252	0.0249	-0.0003	0.0120
Overturning	0.0389	0.0388	-0.0001	0.0176
Other Non-Collision	0.0903	0.0885	-0.0018	0.0416
Left Turn	1.4848	1.3063	-0.1785	0.6159
Right Turn	0.0000	0.0000	0.0000	0.0000

Project Cost Estimate							
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com				
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	$937-259-5074$				
Reference Number		Date Performed	6				
Analyst	VM	Analysis Year	$6 / 25 / 2015$				
Agency/Company	LJB Inc		2013				

*Final construction cost should match the Project Cost Estimate

	CUY-90-19.50/21.30 SAFETY STUDY ODOT DISTRICT 12 PRELIMINARY CONSTRUCTION ESTIMATE - REV FEB 2016 MLK Drive Short Term: RESURFACE AND STRIPE BETWEEN WB EXIT RAMP AND EAST BLVD, 2 NEW SIGNALS, ADD RECEIVING LANE ON EB I-90 ENTRANCE RAMP AT MLK			
ITEM	DESCRIPTION	JANTITY	UNIT COST	TOTAL COST
201	CLEARING AND GRUBBING	1 LS	\$5,000	\$5,000
202	REMOVE CONCRETE ISLANDS	1540 SY	\$25	\$38,500
202	PAVEMENT REMOVED	260 SY	\$15	\$3,900
202	SIDEWALK REMOVED	2500 SF	\$2	\$5,000
202	CURB REMOVED	942 SF	\$4	\$3,768
203	EMBANKMENT	1300 CY	\$10	\$13,000
254	PAVEMENT PLANING, ASPHALT CONCRETE	9600 SY	\$5	\$48,000
301	ASPHALT CONCRETE BASE, 6"	200 CY	\$200	\$40,000
304	AGGREGATE BASE, 10"	300 CY	\$50	\$15,000
407	TACK COAT	1000 GAL	\$5	\$5,000
448	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, PG6422, 1.25"	431 CY	\$275	\$118,525
448	ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 1, PG64-22, 1.75"	223 CY	\$250	\$55,750
451	9" REINFORCED CONCRETE PAVEMENT	500 SY	\$80	\$40,000
608	CONCRETE WALK	2500 SF	\$4	\$10,000
609	CURB	942 FT	\$20	\$18,840
609	6" CONCRETE TRAFFIC ISLAND	50 SY	\$60	\$3,000
630	SIGNAGE	1 LS	\$50,000	\$50,000
632	TRAFFIC SIGNAL INSTALLATION	2 EA	\$150,000	\$300,000
632	TRAFFIC SIGNAL ADJUSTMENTS	1 EA	\$25,000	\$25,000
644	PAVEMENT MARKINGS REMOVAL AND REPLACEMENT	1 LS	\$25,000	\$25,000
644	PAVEMENT MARKINGS	1 LS	\$30,000	\$30,000
832	SWPPP	1 LS	\$2,500	\$2,500
832	EROSION CONTROL	2500 EA	\$1	\$2,500
			Subtotal	\$ 859,000.00
614	MAINTAINING TRAFFIC	1 LS	\$150,000	\$150,000
619	FIELD OFFICE, TYPE B	6 MN	\$1,600	\$9,600
623	CONSTRUCTION LAYOUT STAKES	1 LS	\$15,000	\$15,000
624	MOBILIZATION	1 LS	\$40,000	\$40,000
			Subtotal	\$ 1,074,000.00
			sign Risk (35\%)	\$376,000
			Subtotal	\$1,450,000
Inflation Cost (8.6\%) $\quad \$ 125,000$				
Total $\quad \$ 1,575,000$				

Notes:
1 Construction estimated in 2017
2 Utility relocation not included

Notes:
1 Construction estimated in]2017
2 Utility relocation not included

Project Cost Estimate			
Project Name	CUY-90 Safety Study	Contact Email	vmadineni@ljbinc.com
Project Description	I-90/E.55th and I-90/MLK Interchange, MLK Improvements	Contact Phone	937-259-5074
Reference Number		Date Performed	6/25/2015
Analyst	VM	Analysis Year	2013
Agency/Company	LJB Inc		Short Term Improvements

*Final construction cost should match the Project Cost Estimate

Notes:
1 Construction estimated in 2017
2 Utility relocation not included
3 Roundabout and 2 ramp culverts

[^0]: $\mathrm{PE}=$ preliminary engineering, $\mathrm{RW}=$ right of way, $\mathrm{C}=$ construction, $\mathrm{CE}=$ construction engineering, $\mathrm{CO}=$ construction contract, $\mathrm{PEDD}=\mathrm{preliminary}$ engineering detailed design,
 $\mathrm{PEPD}=$ preliminary engineering preliminary development, $\mathrm{AR}=$ archeological recovery

[^1]: *VOLUMES ARE ALL SEASONALLY ADJUSTED

[^2]: *VOLUMES ARE ALL SEASONALLY ADJUSTED

[^3]: HSY8304 OH1U (REV 01/12)

[^4]: HSY8304 OH1U (Rev 01/1 2)

[^5]: HSY8304 OHIU (REV 01/12)

