CUY-480-7.14 WB
 Performance Based Project Development Report PID 108482

The environmental review, consultation, and other actions required by applicable federal environmental laws for these projects are being, or have been, carried out by ODOT pursuant to 23 U.S.C. 327 and a memorandum of understanding dated December 11, 2015, and executed by FHWA and ODOT.

July 2019

Prepared by

Table of Contents

1. Introduction 1
1.1 Project Background 1
1.2 Existing Conditions 2
2. Performance Based Project Development 2
3. Alternatives Considered 4
3.1 Build using Standard Criteria 4
3.2 Build using Reduced PBPD Criteria 4
4. Safety Analysis 5
4.1 Crash Rankings 5
4.2 Crash Data 5
4.3 Crash Trends 6
4.4 Highway Safety Manual Analysis 7
5. Capacity Analysis 8
6. Cost Estimates 9
7. Conclusion 10

Appendices

A. Preliminary Design Memo, Schematic Plan, Typical Sections
B. Crash Diagrams
C. ECAT Input and Output Reports
D. Count Data, NOACA Correspondence, and Traffic Volume Calculations
E. Capacity Analysis Results

1. Introduction

1.1 Project Background

The purpose of this report is to investigate the use of Performance Based Project Development (PBPD) criteria to reconfigure the westbound I-480 lane assignments through the I-71/SR 237/Grayton Road interchanges to provide 3 through lanes of traffic on the existing 2-lane section. A map of the study area is shown in Figure 1 on this page. The use of reduced shoulder widths would enable the existing roadway to accommodate an additional through lane without the need for roadway or bridge widening. The proposed project will increase capacity for this segment of I480 and will improve the operation and therefore safety between the I-71 NB to I-480 WB entrance ramp (Ramp T) to the I-480 exit ramp to SR 237 (Ramp B-5).

A preliminary review of design constraints was previously developed to confirm the feasibility of applying reduced PBPD criteria and a memo was submitted on $1 / 10 / 19$ and included the following:

- Investigated shifting the crown location due to proposed lane shifts
- Developed proposed lane and shoulder configuration
- Investigated existing bridge deck drainage
- Determined vertical and horizontal clearances

The preliminary design investigation is included in Appendix A and concludes the construction of the project using PBPD design criteria is feasible. District 12 review comments and the disposition is also provided in Appendix A.

Figure 1 - Project Location

1.2 Existing Conditions

The I-480 westbound roadway consists of 3 lanes east of the I-480 westbound exit ramp to southbound SR 237 (Ramp B-5); 2 lanes between Ramp B-5 and the I-71 southbound ramp to I-480 westbound; and 4 lanes through the Grayton Road interchange. The westbound roadway of I-480 consists of 12^{\prime} wide lanes with paved shoulder widths of 10^{\prime} on the outside and 11^{\prime} on the inside. Existing typical sections are shown in Appendix A. The posted speed limit on I-480 within the project is 60 mph . Per the ODOT Traffic Monitoring Management System (TMMS), the 2018 Annual Average Daily Traffic (AADT) on westbound I-480 are as follows:

- 37,600 east of the entrance ramp from northbound I-71
- 51,400 between the entrance ramp from northbound I-71 and the SR-237 SB exit ramp
- 61,300 between the southbound I-71 entrance ramp and the Grayton Road exit ramp

There is $1^{\circ} 00^{\prime} 00^{\prime \prime}$ horizontal curve between the bridge over the NS RR/RTA and the bridge over the Berea Freeway/ramps that has a superelevation rate of 0.024 and meets 56 mph design speed. A $1^{\circ} 28^{\prime} 00^{\prime \prime}$ horizontal curve begins just west of the mainline bridge over SR 237 has a superelevation rate of 0.036 and meets 60 mph design speed.

Presently the I-71 northbound ramp to westbound I-480 (Ramp T) merges into the outside third lane on I-480 which subsequently becomes a drop lane at the exit ramp to southbound SR 237 (Ramp B-5), thus creating a significant weave movement between traffic wishing to continue on westbound I-480 and I-480 traffic exiting on Ramp B-5 to the airport. Another weave movement is located between the southbound I-71 ramp to westbound I-480 and the westbound exit ramp to Grayton Road. Currently there are 2 lanes on I-480 westbound and the 2-lane ramp from I-71 southbound enters as 2 add lanes on I-480 prior to the Grayton Road deceleration lane. This forces westbound I-480 traffic to cross over two lanes of entering traffic from I-71 southbound to access the exit ramp to Grayton Road. The existing weaves and lane assignments are shown in Figure 2 and 3.

2. Performance Based Project Development

Performance Based Project Development (PBPD) is a planning and design philosophy with a general premise that proposed improvements should be targeted based on project-specific needs. The emphasis is on safety and operational performance, not strict adherence to standards. The goal of the PBPD is to fix what is broken and not spend scarce resources solely for the purpose of meeting published design standards.

Recognizing that existing geometric deficiencies and lane continuity issues are resulting in higher than normal crash occurrences, the District requested this corridor be evaluated using PBPD strategies. PBPD criteria that are to be considered for this project include the following:

- Reconfigure the existing WB lane assignments through the I-71/SR 237/Grayton Rd. interchanges to provide 3 lanes on the existing 2-lane section and improve existing weaves. The proposed lane assignments compared to the existing lane assignments are shown in Figure 2 and 3.
- Provide reduced shoulder widths to avoid any widening of the westbound roadway and the mainline bridge over SR 237. Proposed paved shoulder widths are 5' on the inside and 4' on the outside.

Figure 2 - I-480 WB from I-71 NB to SR 237 SB Weave (Not to Scale)

Proposed

3. Alternatives Considered

The alternatives considered to provide a third continuous through lane on westbound I-480 are:
1.) Build using standard criteria
2.) Build using Reduced PBPD criteria

The two Build alternatives are summarized as follows:

3.1 Build using Standard Criteria

The Build using Standard Criteria alternative provides a three-lane section on westbound I-480 meeting current design criteria. In order to provide the additional lane and meet all current design standards, the following improvements are needed:

- Current design criteria require 12 ft . lanes with 10 ft . paved shoulders on both sides. The westbound roadway would need to be widened by 12 feet on the outside.
- The CUY-480-0791 bridge would need to be reconstructed and widened by 12 feet since the structure is less than 200 ft . in length and needs to have standard 10 ft . shoulders on both sides.
- Four overhead bridges (CUY-480-0727, CUY-71-1008, CUY-480-0869 and CUY-480-0873) would need to be reconstructed to move the outside piers north to accommodate the widening on I-480 to provide standard shoulder widths.

Operations and safety are expected to be improved through the proposed addition of capacity and reduction in congestion. However, the improvements listed above would obviously require significant funding in order to construct the Build using Standard Criteria condition which meets current design standards.

3.2 Build using Reduced PBPD Criteria

The Build using Reduced PBPD Criteria alternative utilizes the existing 2-lane westbound roadway width (lanes and shoulders) to provide 3 through lanes of traffic using reduced shoulder widths. The improvements would include the following:

- Provide three 12 ft . lanes with 5 ft . paved inside shoulder and 4 ft . paved outside shoulder on the westbound roadway, see Proposed Typical Sections in Appendix A. The option of 11 ft . lanes with 8 ft . paved inside shoulder could be investigated further. However, the analysis in this study assumes the 12 ft . lanes option.
- Requires a design exception for shoulder width - left and right side on the roadway, and right side for one mainline bridge that is less than 200 ft . in length. The other two mainline bridges are over 200 feet in length and will have shoulders exceeding the minimum of 3.5 feet allowed per L\&D Volume 1 Figure 302-2.
- Requires the crown location to shift, thus resulting in variable mill/fill on the roadway and hydrodemoliton and variable overlays on the 3 mainline bridges.

Pavement coring on the existing shoulders should be performed to determine if the buildup is adequate to carry traffic. Construction costs have been estimated for the option that uses the existing shoulders as well as the option that replace the shoulders. See Section 6 for cost estimates. Operations and safety are expected to be improved through the proposed addition of capacity and reduction in congestion. See Sections 4 and 5 for safety and capacity analysis.

4. Safety Analysis

4.1 Crash Rankings

Segments of I-480 in the study area have the following rankings (shown in Table 1) on the ODOT 2017 HSIP Urban Freeway List:

Table 1 - ODOT 2017 HSIP Rankings

Straight Line Mileage	Location on I-480 WB	HSIP Ranking
$7.17-2.27$	Just east of Grayton Rd exit	\#2075
$7.37-7.47$	Between Grayton Rd exit \& I-71 SB entrance	\#1756
$7.86-7.96$	Just east of I-71 SB entrance	\#567
$8.44-8.54$	Just east of SR 237 exit	\#265
$8.74-8.84$	Just west of I-71 NB entrance	\#1758

4.2 Crash Data

Crash data was obtained from ODOT Transportation Information Mapping System (TIMS) for I-480 westbound and associated ramps in the study area for three complete years of available data (2016-2018). A total of 99 crashes were obtained. The $0 \mathrm{H}-1$ report for each documented crash was reviewed to correct information, where necessary, and locate crashes properly within the study limits. A summary of the crash data is provided in Table 2. Crash data for the study area was plotted on an aerial to identify crash patterns and probable causes. The crash diagrams for the study area are provided in Appendix B.

Table 2 - Crash Data Summary

Crash Year	Number	Percent
2016	33	33.3%
2017	35	35.4%
2018	31	31.3%

Crash Severity	Number	Percent
Injury Crash	21	21.2%
Property Damage Crash	78	78.8%

Crash Type	Number	Percent
Rear End	44	44.4%
Sideswipe - Passing	34	34.3%
Fixed Object	18	18.2%
Other Non-Collision	2	2.0%
Angle	1	1.0%

Day of Week	Number	Percent
Tuesday	23	23.2%
Friday	20	20.2%
Monday	18	18.2%
Wednesday	15	15.2%
Thursday	11	11.1%
Sunday	7	7.1%
Saturday	5	5.1%

Road Condition	Number	Percent
Dry	72	72.7%
Wet	17	17.2%
Snow	8	8.1%
Water (Standing, Moving)	1	1.0%
Ice	1	1.0%

4.3 Crash Trends

Noteworthy crash patterns in the study area have been summarized with supporting details and probable causes:

- Rear End Crashes

Rear end crashes were the most prevalent crash type in the study area. A total of 44 rear end crashes were reported, nine resulting in injury. Rear end crashes represent 44.4 percent of the crashes reported within the study area, higher than the statewide average of 29.9 percent. Twenty-seven of the rear end crashes occurred between the I-71 northbound entrance ramp and the SR-237 exit ramp, seven occurred between the SR-237 exit ramp and the I-71 southbound entrance ramp, and seven occurred between I-71 southbound entrance ramp and the Grayton Road exit ramp. Most (77.3 percent) of the rear end crashes occurred during dry pavement conditions and most (79.5 percent) occurred during daylight. The crashes were concentrated during the PM peak (77.3 percent taking place from 3:00-7:00 PM). These crashes are likely due to congestion and erratic movements from the weaves in the study area.

- Sideswipe-Passing Crashes

Sideswipe-passing crashes were the second most prevalent crash type in the study area. A total of 34 sideswipe-passing crashes were reported, four resulting in injury. Sideswipepassing crashes represent 34.3 percent of the total crashes reported in the study area, higher than the statewide average of 18.6 percent. Fourteen of the sideswipe-passing crashes occurred between the I-71 northbound entrance ramp and the SR-237 exit ramp, seven occurred between the SR-237 exit ramp and the I-71 southbound entrance ramp, and 11 occurred between I-71 southbound entrance ramp and the Grayton Road exit ramp. Of the sideswipe-passing crashes, most (79.4 percent) occurred during dry pavement conditions and most (70.6 percent) occurred during daylight. The crashes were concentrated during the AM peak (20.6 percent taking place from 7:00-10:00 AM) and PM peak (44.1 percent taking place from 3:00-7:00 PM). These crashes are likely due to congestion and erratic movements from the weaves in the study area.

- Fixed Object Crashes

Fixed object crashes were the third most prevalent crash type in the study area. A total of 18 fixed object crashes were reported, six resulting in injury. Fixed object crashes represent 18.2 percent of the total crashes reported in the study area, lower than the statewide average of 26.1 percent. Five of the fixed object crashes occurred between the I-71 northbound entrance ramp and the SR-237 exit ramp, four occurred between the SR-237 exit ramp and the I-71 southbound entrance ramp, and four occurred between I-71 southbound entrance ramp and the Grayton Road exit ramp. About half (44.4 percent) of the fixed object crashes occurred during wet pavement conditions and about half (44.4 percent) occurred in the dark. The crashes were concentrated during the AM peak (44.4 percent taking place from 7:00-10:00 AM). It is suspected that many of the fixed object crashes are due to inclement weather and/or a vehicle attempting to avoid a rear end or sideswipe-passing crash.

4.4 Highway Safety Manual Analysis

A crash analysis was performed using the ODOT Economic Crash Analysis Tool (ECAT) and Highway Safety Manual (HSM) methodology for freeway segments to determine the safety implications of constructing the Build using Reduced PBPD Criteria alternative. The crash analysis is a conceptual comparison based on the change in typical section in the Build using Reduced PBPD Criteria compared to existing conditions. Crash data for the entire study area was not imported into ECAT for this analysis, only the predicted average crash frequency output of ECAT was utilized.

The predicted frequency of crashes/year was used to estimate how the crash frequency would change as a result of this project. Since a full ECAT analysis was not completed, the crash frequencies should not be compared to other locations, and conclusions should not be made about these frequencies versus known trends or data. These results are for a conceptual comparison of the alternatives only. The ECAT input and output reports are provided in Appendix C and the crash frequencies and percent change in crash frequency for the different crash severities are listed in Table 3 below.

Table 3 - Predicted Crash Frequency Comparison (Crashes/Year)

I-480 Between	Alternative	Fatal or Incapacitating Injury	Incapacitating Injury	Possible Injury	Property Damage Only	Total
	Ex. Conditions	0.8526	2.9262	3.3136	19.1011	$\mathbf{2 6 . 1 9 3 5}$
	Build w/ PBPD	0.8283	2.6702	2.9510	9.9099	$\mathbf{1 6 . 3 5 9 4}$
	Percent Change	-2.9%	-8.7%	-10.9%	-48.1%	$\mathbf{- 3 7 . 5 \%}$
 I-71 SB	Ex. Conditions	0.4239	1.4382	1.6215	11.5567	$\mathbf{1 5 . 0 4 0 3}$
	Build w/ PBPD	0.6243	1.9143	2.0713	9.5571	$\mathbf{1 4 . 1 6 7 0}$
	Percent Change	47.3%	33.1%	27.7%	-17.3%	$\mathbf{- 5 . 8 \%}$
 SR 237	Ex. Conditions	0.4095	1.4646	1.6827	8.3382	$\mathbf{1 1 . 8 9 5 0}$
	Build w/ PBPD	0.6038	1.9467	2.1512	10.7945	$\mathbf{1 5 . 4 9 6 2}$
	Percent Change	47.4%	32.9%	27.8%	29.5%	$\mathbf{3 0 . 3 \%}$

The results of the above crash frequency comparison shows a range in percent changes between the predicted crashes for the existing conditions compared to the implementation of the Build using Reduced PBPD Criteria alternative solely based on HSM methodology. This HSM analysis compares predicted crashes, which reflects how a site would be expected to perform relative to 1,000 similar sites. The crash history shows that most of the crashes are directly related to weaving and congestion (sideswipe-passing and rear end crashes) and are not a typical distribution of crash types and crash characteristics. So the predicted crashes shown for the existing conditions may not be representative of the site. Based on engineering judgement, the implementation of the Build using Reduced PBPD Criteria alternative, which specifically improves weaving and congestion, is expected to improve safety, even though that is not shown by HSM analysis.

5. Capacity Analysis

Weave volumes were collected for the two weaves in the study area from 6-10 AM and 3-7 PM on Thursday, March 28, 2019. The peak hours were determined to be from 7:15-8:15 AM and 4:305:30 PM. Northeast Ohio Areawide Coordinating Agency (NOACA) provided a linear annual growth rate of 0.04% for the study area. The growth rate was applied to the count data to calculate Design Year 2040 volumes. Count data, NOACA correspondence, and traffic volume calculations are provided in Appendix D.

Weave capacity was evaluated using HCS7 to assess existing conditions compared to the Build using Reduced PBPD Criteria alternative using 2019 and 2040 traffic volumes. Levels of service (LOS) and density are summarized in Table 4. Detailed capacity analysis results are provided in Appendix E.

Table 4 - Weave Capacity Analysis Results - Existing and Build Scenarios

I-480 WB Weave	Scenario	2019		2040	
		AM	PM	AM	PM
I-71 NB to SR-237 SB	Ex. Conditions	D/31.6	E/41.7	D/32.0	E/42.1
	Build w/ PBPD	C/24.7	D/33.0	C/25.1	D/33.4
I-71 SB to Grayton Rd	Ex. Conditions	C/26.0	$\begin{gathered} \mathrm{F} / * \\ (\mathrm{~V} / \mathrm{C}=1.26) \end{gathered}$	C/26.3	$\begin{gathered} \mathrm{F} / * \\ (\mathrm{~V} / \mathrm{C}=1.27) \end{gathered}$
	Build w/ PBPD	C/20.4	$\begin{gathered} \mathrm{F} / * \\ (\mathrm{~V} / \mathrm{C}=1.26) \end{gathered}$	C/20.7	$\begin{gathered} \mathrm{F} / * \\ (\mathrm{~V} / \mathrm{C}=1.27) \end{gathered}$

Letter/Number - LOS/ Density (pc/mi/ln)
Red indicates failing LOS/Density
*Density was non-computable, so V/C ratio was listed instead
Capacity is failing during the PM peak at the weave between I-71 SB and Grayton Road in the existing conditions. The Build using Reduced PBPD Criteria alternative will improve capacity compared to the existing conditions at both weave locations in the study area, but it will not bring the failing weave between I-71 SB and Grayton Road to acceptable capacity during the PM peak. The AM peak analysis shows the weave between I-71 SB and Grayton Road will be improved with the Build using Reduced PBPD Criteria alternative, even though this improvement cannot be seen in the PM peak results since the density was non-computable. It is anticipated that the proposed improvements will greatly improve operations and reduce congestion by improving the existing weave, even though the HCS analysis does not show this. Additionally, capacity on I-480 westbound between the two weaves will be improved by the addition of another through lane, changing from a 2-lane section to a 3-lane section.

HCS support was contacted to inquire about the analysis in this study. They confirmed the analysis of the proposed conditions. However, their direction was that the existing conditions should be analyzed as separate merge and diverge facilities, as opposed to a weave. Weaving movements exist in both the existing and proposed conditions. Analyzing these existing movements as a merge and diverge may not adequately account for the weaving movements and will likely show that the facility operates better than it does in the field. This will also make it difficult to compare to the Build using Reduced PBPD Criteria alternative analysis. HCS may not have the capability to analyze these existing atypical weaves as desired. For this reason, the weave analysis of the existing conditions shown in this report may not represent exactly what is occurring in the field, but it serves as a way of directly comparing the existing weave configuration to the Build using Reduced PBPD Criteria alternative weave configuration.

Analysis of the existing conditions as separate merge and diverge facilities was conducted for documentation purposes. Levels of service (LOS) and density are summarized in Table 5. Detailed capacity analysis results are provided in Appendix E.

Table 5 - HCS Support Recommended Analysis Results - Existing Conditions

Facility	2019		2040	
	AM	PM	AM	PM
I-71 NB to I-480 WB Merge	$\mathrm{C} / 25.9$	$\mathrm{D} / 33.6$	$\mathrm{C} / 26.1$	$\mathrm{D} / 33.9$
I-480 WB to SR 237 SB Diverge	$\mathrm{C} / 22.7$	$\mathrm{F} / 31.7$ $(\mathrm{~V} / \mathrm{C}=1.04)$	$\mathrm{C} / 23.0$	$\mathrm{F} / 32.0$ $(\mathrm{~V} / \mathrm{C}=1.04)$
I-71 SB to I-480 WB Merge	$\mathrm{F} / 32.5$ $(\mathrm{~V} / \mathrm{C}=1.03)$	$\mathrm{F} / 52.7$ $(\mathrm{~V} / \mathrm{C}=1.61)$	$\mathrm{F} / 32.8$ $(\mathrm{~V} / \mathrm{C}=1.04)$	$\mathrm{F} / 53.2$ $(\mathrm{~V} / \mathrm{C}=1.63)$
I-480 WB to Grayton Rd. Diverge	$\mathrm{B} / 17.4$	$\mathrm{C} / 27.3$	$\mathrm{~B} / 17.6$	$\mathrm{C} / 27.5$

Letter/Number - LOS/ Density (pc/mi/ln)
Red indicates failing LOS/Density

6. Cost Estimates

Conceptual construction cost estimates were developed for two scenarios of the Build using Reduced PBPD Criteria reduced shoulder widths; one estimate assumes the pavement for the existing shoulders is retained and the second estimate includes full replacement of the shoulder pavement. It has been assumed a design exception for shoulder width will be required for the roadway and one mainline bridge that is less than 200 ft . in length (CUY-480-0791). Estimates of probable construction costs were determined with conceptual quantities using Estimator. A summary of estimated construction costs is provided in Table 6. The construction cost estimates are in 2019 dollars and include a design contingency of 20%.

Table 6 - Estimated Cost of Construction in 2019 Dollars

Category	PBPD without Shoulder Replacement	PBPD with Shoulder Replacement
Roadway	-	$\$ 190,000$
Pavement	$\$ 541,000$	$\$ 1,857,000$
Maintenance of Traffic	$\$ 28,000$	$\$ 285,000$
Structures (CUY-480-0791)	$\$ 135,000$	$\$ 135,000$
Structures (CUY-480-0800)	$\$ 383,000$	$\$ 383,000$
Structures (CUY-480-0831)	$\$ 286,000$	$\$ 286,000$
Traffic Control	$\$ 99,000$	$\$ 99,000$
Incidentals	$\$ 70,000$	$\$ 172,000$
Sub-Total $=$	$\$ 1,542,000$	$\$ 3,407,000$
Design Contingency (20%)	$\$ 309,000$	$\$ 682,000$
Grand Total $=$	$\$ 1,851,000$	$\$ 4,089,000$

7. Conclusion

Utilizing reduced shoulder widths to reconfigure the existing 2-lane westbound I-480 roadway to a 3-lane section has been investigated and determined to be a feasible design option and a cost effective solution to improving capacity and safety on this section of heavily traveled I-480. The estimated cost to construct the reconfiguration of the westbound roadway with milling and resurfacing will be significantly less than the cost for the 12 ft . widening of the existing roadway and one mainline bridge, and relocation of the outside piers for 4 overhead bridges required to meet all current design criteria.

The results of the HSM analysis shows a range in percent changes between the predicted crashes for the existing conditions compared to the implementation of the Build using Reduced PBPD Criteria alternative solely based on HSM methodology. This HSM analysis compares predicted crashes only. The crash history shows that most of the crashes are not a typical distribution of crash types and crash characteristics. So the predicted crashes may not be representative of the site. Based on engineering judgement, the implementation of the Build using Reduced PBPD Criteria alternative, which specifically improves weaving and congestion, is expected to improve safety, even though that is not shown by HSM analysis.

The Build using Reduced PBPD Criteria alternative will improve capacity compared to the existing conditions at both weave locations in the study area, but it will not bring the failing weave between I-71 SB and Grayton Road to acceptable capacity during the PM peak. Capacity on I-480 westbound between the two weaves will be improved by the addition of another through lane, changing from a 2-lane section to a 3-lane section.

Based on engineering judgement, the existing weaves will be improved at both locations. These improvements will likely lead to a reduction in the high frequency of sideswipe-passing and rear end crashes shown in the crash history. Figure 2 shows that vehicles traveling from I-71 NB to I480 WB have to merge and then change one lane in the existing conditions compared to only changing one lane in the proposed conditions. Figure 3 shows that vehicles traveling from I-480 WB to Grayton Road have to weave through two lanes from I-71 SB then diverge compared to only changing two lanes in the proposed conditions. Capacity in the segment between the two weaves will be greatly improved by changing from the existing 2-lane section to the proposed 3-lane section.

The results of the HSM and capacity analyses are not overwhelmingly conclusive. However, it is questionable whether they are truly representative of the existing and Build using Reduced PBPD Criteria alternative conditions. It is anticipated that the proposed improvements will improve operations and reduce congestion in the I-480 WB study area, therefore reducing crashes related to these existing issues. It is recommended that full ECAT analysis and IMS-style capacity analysis with supplemental microsimulation be conducted to verify the findings of this study and better understand the full impacts of the proposed Build using Reduced PBPD Criteria alternative before implementation.

Appendix A

Preliminary Design Memo, Schematic Plan,
Typical Sections, Review Comments and Disposition

Memo

RE: Preliminary Review of Design Constraints Summary for CUY-480-7.14 WB
Date: January 10, 2019; Revised July 30, 2019

Background

Carpenter Marty Transportation (CM) was retained to investigate and produce a Performance Based Project Development (PBPD) analysis and report of IR-480 WB from the IR-71 NB to IR-480 WB entrance ramp to the Grayton Road exit ramp. Before the PBPD analysis and report is produced, a preliminary review of design constraints was completed. The review includes the investigation of shifting crown location due to lane shifts, development of proposed lane and shoulder configuration, investigation of existing bridge deck drainage, and determination of vertical and horizontal clearances. The findings of this review are summarized in this Memo.

Roadway Design

A preliminary layout of the proposed lane and shoulder configuration is provided in Attachment A, and the existing and proposed typical sections are provided in Attachment B. At this time, the only controlling criteria design exception anticipated for this project is for shoulder width. From Table 301-3 in the ODOT L\&D Volume 1, the median and right side graded shoulder width should be 15^{\prime}, and the treated (paved) shoulder width should be 10 '. The minimum barrier offset is 4 ', which is being met. The layout as shown provides a 5^{\prime} paved shoulder on the median side and 4' paved on the outside.

No design exceptions are required for two of the existing mainline structures (CUY-4800800 and 0831) since they are over 200 ' in length. From Table 302-2 in the ODOT L\&D Volume 1, the minimum lateral clearance for an urban interstate bridges with a length exceeding 200^{\prime} is 3.5^{\prime}. 5^{\prime} is being provided on the median, and a minimum of 4^{\prime} provided on the right side. Structure CUY-480-0791 is less than 200' in length and will require a design exception for the outside shoulder width since proposed is 4^{\prime} and required is 10^{\prime}.

The tapers/shifts at the begin and end of project are adequate for 70+ MPH.
Pavement cores will be required on the existing shoulders to determine if they are adequate to carry traffic, or if they will require full depth replacement. Full depth replacement of the shoulders will greatly increase the project cost due to not only the pavement removal and replacement itself, but MOT costs as well.

CM is assuming a variable thickness milling and overlay will be required to shift the crown of the existing roadway to align with the proposed innermost lane line.

If there are funds available to widen the outside shoulders, relocate/replace the existing guardrail and complete grading work, it is recommended. With only 5 ' of inside shoulder

CARPENTER MARTY transoratamon

and 4' of outside shoulder provided, any disabled vehicle or crash would not have sufficient width to pull over without encroaching on the adjacent travel lane. The shoulders can be tapered down to existing at the structures to eliminate the need for modifications to the bridges.

Impacts to the existing signage along the corridor would be minimal and would consist of only a few overhead truss/mast arm mounted signs needing to be reset to align with the proposed lanes.

Mainline Bridge Drainage

The bridge deck drainage was analyzed using the methods described in the Location \& Design Manual Volume 2. A 10-year frequency event was used per Section 1103.2 and allowable spread was determined assuming no spread into the lanes per Table 1103-1. CDSS was utilized to determine inlet pass by flow for the right shoulder of all bridges.

CUY-480-0791
The existing bridge has three scuppers on the left side and five scuppers on the right side of the bridge.

Location	Maximum Spread (ft.)	Allowable Spread (ft.)
Left Shoulder	5.41	4.25
Right Shoulder	4.37	5.50

The scuppers are not adequate for the proposed lane configuration on the left side of the bridge. More scuppers can be added to decrease the spread below allowable limits. The scuppers on the right side of the bridge are adequate for the proposed lane configuration.

CUY-480-0800
The existing bridge has 13 scuppers on the left side and 17 scuppers on the right side of the bridge.

Location	Maximum Spread (ft.)	Allowable Spread (ft.)
Left Shoulder	6.71	4.00
Right Shoulder	5.10	5.50

The scuppers on the left side of the bridge are not adequate for the proposed lane configuration. New scuppers as well as a drainage collection system would need to be added due to lane configuration under the bridge to improve drainage conditions on the bridge. The scuppers on the right side of the bridge are adequate for the proposed lane configuration.

CARPENTER MARTY ${ }_{\text {transsortataion }}$

CUY-480-0831
The existing bridge has five scuppers on the left side and seven scuppers on the right side of the bridge.

Location	Maximum Spread (ft.)	Allowable Spread (ft.)
Left Shoulder	6.52	5.25
Right Shoulder	6.70	5.25

The scuppers on both sides of the bridge are not adequate for the proposed lane configuration. New scuppers as well as a drainage collection system would need to be added to both sides due to lane configuration under the bridge to improve drainage conditions on the bridge.

Overhead Bridge Clearances

The vertical and horizontal clearances for each bridge were determined using existing plans, BR-191 reports, and aerial maps.

Bridge	Controlling Location	Existing Minimum Horizontal Clearance (ft.)	Proposed Minimum Horizontal Clearance (ft.)	Allowable Minimum Horizontal Clearance (ft.)
CUY-480-0727	Right Shoulder	10.25	4.75	4.0
CUY-71-1008	Left Shoulder	10.0	4.0	4.0
CUY-480-0869	Left Shoulder	10.0	4.0	4.0
CUY-480-0873	Left Shoulder	10.0	4.0	4.0

Bridge	Controlling Location	Existing Minimum Vertical Clearance (ft.)	Allowable Minimum Vertical Clearance (ft.)
CUY-480-0727	Ex. centerline WB lanes	16.4	14.5
CUY-71-1008	Left edge of lane	17.5	14.5
CUY-480-0869	Ex. centerline WB lanes	17.7	14.5
CUY-480-0873	Left edge of lane	16.3	14.5

Bridge Overlays

The crown location on the mainline bridge decks will need to be modified. Per BDM 404.2, maximum overlay thickness is $21 / 2$ inches. Crown shift will not be able to be accomplished with an overlay without an approved deviation to BDM 404.2. The proposed maximum overlay thickness would be approximately $31 / 2$ inches not including any hydrodemolition of the existing deck.

Conclusion

Overall CM believes that the construction of the project is feasible and would provide a substantial improvement to the traffic flow by providing an additional travel lane and reducing the weaves throughout the corridor.

This design memo was reviewed, and comments provided by District 5 in an email dated $2 / 4 / 19$. A disposition of comments was provided via email on 2/18/19. See Attachment C for the comments and disposition.

Attachment A
 Schematic Plan

Attachment B
 Typical Sections

SECTION OF EXISTING PAVEMENT - I.R. 480

SECTION APPLIES: STA. 491+00

SECTION OF EXISTING PAVEMENT - I.R. 480
SECTION APPLIES:
STA. $446+00$

SECTION OF EXISTING PAVEMENT - I.R. 480
SECTION APPLIES:
STA. $457+00$

SECTION OF EXISTING PAVEMENT - I.R. 480
SECTION APPLIES:
STA. 481+00

SECTION OF PROPOSED PAVEMENT - I.R. 480

SECTION APPLIES:

$$
\text { STA. } 491+00
$$

SECTION OF PROPOSED PAVEMENT - I.R. 480
SECTION APPLIES:
STA. $446+00$
STA. 446+00

SECTION OF PROPOSED PAVEMENT - I.R. 480

> SECTION APPLIES: STA. $457+00$

SECTION OF PROPOSED PAVEMENT - I.R. 480
SECTION APPLIES:

Attachment C
 Design Memo Review Comments and Disposition

From:	Westbrooks, Kevin kwestbrooks@gpdgroup.com
Sent:	Monday, February 18, 2019 2:21 PM
To:	Keri.Welch@dot.ohio.gov
Cc:	Gina Balsamo; John Gallagher; Eric.Kallio@dot.ohio.gov; Keith.Hamilton@dot.ohio.gov;
	Anthony.Toth@dot.ohio.gov
Subject:	RE: CUY IR 480 07.14 WB - PBPD Preliminary Review

Keri,

As we discussed the other day, the document that was reviewed by ODOT was not intended to be a final product. It was intended to be more of a status memo to make sure that ODOT was still in support of continued progress on the project. A final, much more detailed report will be submitted on this project. As such, some of the comments will be incorporated into the final document. Below are the responses to the comments from Carpenter Marty.

1. Please reference PID\#108482 on the review.

- This will be included in the PBPD report.

2. Include an existing typical section and proposed typical section in the report showing the lane and shoulder widths.

- This will be included in the PBPD report.

3. Can the lane width configuration be taken down to 2-11' lanes and 1-12' lane to increase the shoulder widths to help with the drainage issues?

- The two lanes could be taken down to 11', but a design exception for lane width would be required.

4. The I-71 southbound ramp onto I-480 westbound will create the potential of a weave for the Grayton exit. Please note in the memo that this should be studied further in the IOS.

- This will be studied as part of the PBPD.

5. The report indicates that a crown shift on the mainline bridges is necessary. What is the total cover with the 3 $1 / 2$ " overlay?

- This would depend on how much hydrodemolition is performed. SS 848.20 specifies a minimum depth of $1^{\prime \prime}$ of hydrodemolition. This would leave $1.5^{\prime \prime}$ of cover over the top mat of reinforcing steel plus the overlay. Overlays are typically not accounted for in cover over reinforcing steel since the deck concrete and overlay are not monolithic.
Can this be accommodated with the bridge overlay being constructed part width?
- The variable thickness portion of the overlay would only occur within the location of where the crown currently is and where the proposed crown will be, 6'. If you placed a construction joints at the limits of the crown shift, one joint would be in the middle of a proposed lane and the other joint would be at the lane line.
How far is the crown shift?
- The crown shift would be 6' with the 3-12' lanes.

Is this feasible?

- Per the BDM the below are the following maximum uniform thicknesses of rigid overlays.

```
Latex Modified (LMC) - 2.5"
Micro-Silica Modified (MSC) - 3"
Superplasticized Dense (SDC) - No limit
```

- Another idea may be to overlay the bridges with asphalt overlays. The original bridge decks had 2.5" asphalt overlays on them. In 1999, a constant $2.5^{\prime \prime}$ micro-silica overlay was placed after the $2.5^{\prime \prime}$ asphalt overlay was removed. The longevity of the asphalt overlay would not be what a rigid overlay would be.

Kevin Westbrooks, PE, PTOE
Project Manager / Traffic Engineer
Licensed in OH

GPD GROUP

ARCHITECTS • ENGINEERS • PLANNERS
T: 216.927 .8688 / M: 330.697.1856 / F: 216.518.5545
5595 Transportation Blvd, Suite 100, Cleveland, OH 44125
gpdgroup.com

Confidentiality Notice: This email message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by email and delete all copies of the original message. Please consider the environment before printing this email.

From: Keri.Welch@dot.ohio.gov [mailto:Keri.Welch@dot.ohio.gov]
Sent: Monday, February 4, 2019 12:12 PM
To: Westbrooks, Kevin kwestbrooks@gpdgroup.com
Cc: Gina Balsamo gbalsamo@cmtran.com; John Gallagher jgallagher@cmtran.com; Eric.Kallio@dot.ohio.gov;
Keith.Hamilton@dot.ohio.gov; Anthony.Toth@dot.ohio.gov
Subject: RE: CUY IR 480 07.14 WB - PBPD Preliminary Review

Kevin,

The District has reviewed the preliminary review for the I-480 WB PBPD Project and offers the following comments:

1. Please reference PID\#108482 on the review.
2. Include an existing typical section and proposed typical section in the report showing the lane and shoulder widths.
3. Can the lane width configuration be taken down to $2-11^{\prime}$ lanes and $1-12^{\prime}$ lane to increase the shoulder widths to help with the drainage issues?
4. The I-71 southbound ramp onto I-480 westbound will create the potential of a weave for the Grayton exit. Please note in the memo that this should be studied further in the IOS.
5. The report indicates that a crown shift on the mainline bridges is necessary. What is the total cover with the 3 $1 / 2 "$ overlay? Can this be accommodated with the bridge overlay being constructed part width? How far is the crown shift? Is this feasible?

Please incorporate these comments into the report.

Thanks,
Keri
Keri J. Welch, PE
Traffic Planning Engineer
ODOT District 12: Cuyahoga, Geauga \& Lake counties
5500 Transportation Blvd., Garfield Heights, Ohio 44125
(p) 216.584.2166
transportation.ohio.gov

From: Westbrooks, Kevin kwestbrooks@gpdgroup.com
Sent: Monday, January 14, 2019 10:38 AM
To: Hamilton, Keith Keith.Hamilton@dot.ohio.gov
Cc: Welch, Keri Keri.Welch@dot.ohio.gov; Gina Balsamo gbalsamo@cmtran.com; John Gallagher jgallagher@cmtran.com
Subject: CUY IR 480 07.14 WB - PBPD Preliminary Review

Keith,

Below is a link to Carpenter Marty's preliminary review of the I-480 WB PBPD project. Please let us know if you have any questions or comments. Upon ODOT's acceptance/concurrence, CM will move on to the full PBPD analysis and report.
https://cmtran-my.sharepoint.com/:f:/p/gbalsamo/EhL7X6bV9hFCsImcvYiL9ywB0LgYVBrT- JpMXU-qPDCFA?e=AsJINm

Thanks,

Kevin Westbrooks, PE, PTOE
Project Manager / Traffic Engineer

GPD GROUP

Glaus, Pyle, Schomer, Burns \& DeHaven, Inc.
5595 Transportation Blvd, Suite 100 Cleveland, OH 44125 gpdgroup.com
tel / 216.927.8688 cel / 330.697.1856 fax / 216.518.5545
AKRON / ATLANTA / CHARDON / CLEVELAND / COLUMBUS / DALLAS / HOUSTON / INDIANAPOLIS / LOUISVILLE / MARION / PHOE NIX / SEATTLE / YOUNGSTOWN

Confidentiality Notice: This email message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information Any unauthorized review, use, disclosure or distribution is prohibited. If you are not the intended recipient, please contact the sender by email and delete all copies of the original message. Please consider the environment before printing this email

Appendix B
 Crash Diagrams

Appendix C
 ECAT Input and Output Reports

Existing Segment: Summary Results (Without Animal Crashes) (Crashes/Year)						
	KA	B	\mathbf{C}	\mathbf{O}	Total	
$\mathbf{N}_{\text {predicted }}$	0.8526	2.9262	3.3136	19.1011	$\mathbf{2 6 . 1 9 3 5}$	
$\mathbf{N}_{\text {expected }}$ - Existing Condtions	0.0000	0.0000	0.0000	0.0000	$\mathbf{0 . 0 0 0 0}$	
$\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions	0.0000	0.0000	0.0000	0.0000	$\mathbf{0 . 0 0 0 0}$	

Existing Segment: Summary Results (Without Animal Crashes) (Crashes/Year)						
	KA	B	\mathbf{C}	\mathbf{O}	Total	
$\mathbf{N}_{\text {predicted }}$	0.4239	1.4382	1.6215	11.5567	$\mathbf{1 5 . 0 4 0 3}$	
$\mathbf{N}_{\text {expected }}$ - Existing Condtions	0.0000	0.0000	0.0000	0.0000	$\mathbf{0 . 0 0 0 0}$	
$\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions	0.0000	0.0000	0.0000	0.0000	$\mathbf{0 . 0 0 0 0}$	

Existing Segment: Summary Results (Without Animal Crashes) (Crashes/Year)						
	KA	B	C	\mathbf{O}	Total	
$\mathbf{N}_{\text {predicted }}$	0.4095	1.4646	1.6827	8.3382	$\mathbf{1 1 . 8 9 5 0}$	
$\mathbf{N}_{\text {expected }}$ - Existing Condtions	0.0000	0.0000	0.0000	0.0000	$\mathbf{0 . 0 0 0 0}$	
$\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions	0.0000	0.0000	0.0000	0.0000	$\mathbf{0 . 0 0 0 0}$	

	Project Information							
45	General Information							
Project Name	CUY-480-7.14 WB			Contact Email		Gsprungle@cmtran.com		
Project Description	Performance Based Project Development Report Safety Analysis			Contact Phone		614-656-2419		
Reference Number	PID 108482			Date Performed		7/31/2019		
Analyst	Greg Sprungle			Analysis Year		2018		
Agency/Company	Carpenter Marty Transportation							
Perform Benefit Cost Analysis?	No							
Do the proposed improvements fundamentally change the conditions of the base safety performance function (SPF), Or is crash data unavailable for the analysis condition, Or is only predicted (and not expected) analysis needed for the existing or proposed condition?								
(Examples: unsignalized to signalized, undivided to divided, increase or decrease in the number of lanes, change the number of approaches to an intersection, significant realignment of the roadway)								
			If Yes, are you analyzing the existing or proposed conditions?					Proposed
Project Elements Description Table								
Project Element ID (Must be Unique)	Site Type	Intersection Control Type	Location Information					
			NLFID	Begin Logpoint/ Intersection Midpoint	End Logpoint (Leave blank for Intersection)	Length (mi) OR Intersection Radius Buffer (mi)	Cross Route NLFID(s)	Common Name
IR480N; 8.479-8.863	Freeway Segment		SCUYIR00480**	8.479	8.863	- 0.384		1-480 WB between 71N and 237
IR480N; 7.174-7.753	Freeway Segment		SCUYIR00480**	7.174	7.753	0.579		1-480 WB between 71S and Grayton
IR480N; 7.753-8.479	Freeway Segment		SCUYIR00480**	7.753	8.479	0.726		$1-480$ WB between 71N and 71S

Proposed Segment: Summary Results (Without Animal Crashes) (Crashes/Year)						
	KA	B	C	O	Total	
$\mathbf{N}_{\text {predicted }}$	0.8283	2.6702	2.9510	9.9099	$\mathbf{1 6 . 3 5 9 4}$	
$\mathrm{~N}_{\text {predicted }}$ - Proposed Conditions All CMFs	0.8283	2.6702	2.9510	9.9099	$\mathbf{1 6 . 3 5 9 4}$	

Proposed Segment: Summary Results (Without Animal Crashes) (Crashes/Year)						
	KA	B	C	O	Total	
$\mathbf{N}_{\text {predicted }}$	0.6243	1.9143	2.0713	9.5571	$\mathbf{1 4 . 1 6 7 0}$	
$\mathrm{~N}_{\text {predicted }}$ - Proposed Conditions All CMFs	0.6243	1.9143	2.0713	9.5571	$\mathbf{1 4 . 1 6 7 0}$	

Proposed Segment: Summary Results (Without Animal Crashes) (Crashes/Year)						
	KA	B	C	O	Total	
$\mathbf{N}_{\text {predicted }}$	0.6038	1.9467	2.1512	10.7945	$\mathbf{1 5 . 4 9 6 2}$	
$\mathrm{~N}_{\text {predicted }}$ - Proposed Conditions All CMFs	0.6038	1.9467	2.1512	10.7945	$\mathbf{1 5 . 4 9 6 2}$	

	Project Safety Performance Report		
连	General Information		
Project Name	CUY-480-7.14 WB	Contact Email	Gsprungle@cmtran.com
Project Description	Performance Based Project Development Report Safety Analysis	Contact Phone	614-656-2419
Reference Number	PID 108482	Date Performed	7/31/2019
Analyst	Greg Sprungle	Analysis Year	2018
Agency/Company	Carpenter Marty Transportation		

Summary of Anticipated Safety Performance of the Project (average crashes/year)

Project Summary Results (Without Animal Crashes)					
	KA	B	C	0	Total
$\mathbf{N}_{\text {predicted }}$ - Existing Conditions	1.6860	5.8290	6.6178	38.9960	53.1288
$\mathbf{N}_{\text {expected }}$ - Existing Conditions	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions	0.0000	0.0000	0.0000	0.0000	0.0000
$\mathrm{N}_{\text {predicted }}$ - Proposed Conditions	2.0564	6.5312	7.1735	30.2615	46.0226

	Project Safety Performance Report		
	General Information		
Project Name	CUY-480-7.14 WB	Contact Email	Gsprungle@cmtran.com
Project Description	Performance Based Project Development Report Safety Analysis	Contact Phone	614-656-2419
Reference Number	PID 108482	Date Performed	7/31/2019
Analyst	Greg Sprungle	Analysis Year	2018
Agency/Company	Carpenter Marty Transportation		

Existing Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
IR480N; 8.479-8.863	I-480 WB between 71 N and 237	0.4095	1.4646	1.6827	8.3382	11.895
IR480N; 7.174-7.753	$1-480$ WB between 71 S and Grayton	0.8526	2.9262	3.3136	19.1011	26.1935
IR480N; 7.753-8.479	I-480 WB between 71 N and 71S	0.4239	1.4382	1.6215	11.5567	15.0403

Existing Conditions Project Element Expected Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
IR480N; 8.479-8.863	I-480 WB between 71 N and 237	0	0	0	0	0
IR480N; 7.174-7.753	I-480 WB between 71 S and Grayton	0	0	0	0	0
IR480N; 7.753-8.479	I-480 WB between 71 N and 71S	0	0	0	0	0

Existing Conditions Project Element Potential for Safety Improvement Summary (Without Animal Crashes)

Proposed Conditions Project Element Predicted Crash Summary (Without Animal Crashes)						
Project Element ID	Common Name	Crash Severity Level				
		KA	B	C	0	Total
IR480N; 8.479-8.863	1-480 WB between 71 N and 237	0.6038	1.9467	2.1512	10.7945	15.4962
IR480N; 7.174-7.753	1-480 WB between 71S and Grayton	0.8283	2.6702	2.951	9.9099	16.3594
IR480N; 7.753-8.479	I-480 WB between 71 N and 71S	0.6243	1.9143	2.0713	9.5571	14.167

Summary by Crash Type				
Crash Type	Existing			Proposed
	Predicted Crash Frequency	Expected Crash Frequency	PSI	Predicted Crash Frequency
	0.1137			0.1137
	0.0972			0.0972
Rear End	21.3072			21.3072
Backing	0.2308			0.2308
Sideswipe - Meeting	0.4378			0.4378
Sideswipe - Passing	14.0934			14.0934
Angle	0.5469			0.5469
Parked Vehicle	0.3636			0.3636
Pedestrian	0.0668			0.0668
Animal	2.1589			2.1589
Train	0.0000			0.0000
Pedalcycles	0.0000			0.0000
Other Non-Vehicle	0.0000			0.0000
Fixed Object	6.3787			6.3787
Other Object	0.7478			0.7478
Overturning	0.4112			0.4112
Other Non-Collision	1.0720			1.0720
Left Turn	0.1555			0.1555
Right Turn	0.0000			0.0000

Appendix D

Count Data, NOACA Correspondence, and Traffic Volume Calculations

Time: 6:00 AM - 10:00 AM

	Westbound											
	$\mathrm{I}-480 \mathrm{WB}$ to I-480 WB			I-480 WB to SR-237 SB			I-71 NB to l-480 WB			I-71 NB to SR-237 SB		
Time	Passanger Vehicles	Heavy Vehicles	Total	Passanger Vehicles	Heavy Vehicles	Total	Passanger Vehicles	Heavy Vehicles	Total	Passanger Vehicles	Heavy Vehicles	Total
6:00 AM	172	27	199	84	0	84	81	7	88	3	1	4
6:15 AM	230	25	255	92	3	95	124	5	129	4	1	5
6:30 AM	360	33	393	114	3	117	158	2	160	5	0	5
6:45 AM	347	39	386	117	4	121	190	7	197	9	0	9
7:00 AM	366	35	401	117	8	125	226	7	233	11	0	11
7:15 AM	455	30	485	131	5	136	284	11	295	9	0	9
7:30 AM	573	33	606	122	8	130	302	10	312	11	1	12
7:45 AM	481	51	532	131	10	141	253	12	265	9	0	9
8:00 AM	476	30	506	120	9	129	227	12	239	10	1	11
8:15 AM	434	42	476	114	6	120	273	18	291	11	2	13
8:30 AM	424	47	471	110	5	115	245	11	256	7	2	9
8:45 AM	405	49	454	93	9	102	217	15	232	8	1	9
9:00 AM	314	43	357	90	7	97	176	10	186	5	0	5
9:15 AM	363	45	408	112	9	121	193	23	216	4	0	4
9:30 AM	351	50	401	95	6	101	189	9	198	8	0	8
9:45 AM	334	47	381	90	12	102	140	8	148	8	0	8
Total	6085	626	6711	1732	104	1836	3278	167	3445	122	9	131

	Westbound											
	$\mathrm{I}-480 \mathrm{WB}$ to I-480 WB			I-480 WB to SR-237 SB			I-71 NB to l-480 WB			I-71 NB to SR-237 SB		
Time	Passanger Vehicles	Heavy Vehicles	Total	Passanger Vehicles	Heavy Vehicles	Total	Passanger Vehicles	Heavy Vehicles	Total	Passanger Vehicles	Heavy Vehicles	Total
3:00 PM	604	29	633	131	8	139	243	6	249	9	0	9
3:15 PM	606	34	640	148	7	155	243	4	247	14	1	15
3:30 PM	669	40	709	143	5	148	226	3	229	6	0	6
3:45 PM	737	31	768	152	7	159	240	8	248	8	1	9
4:00 PM	715	21	736	142	9	151	294	5	299	9	0	9
4:15 PM	769	31	800	133	2	135	262	6	268	14	1	15
4:30 PM	764	29	793	126	7	133	278	6	284	19	1	20
4:45 PM	782	29	811	179	1	180	260	4	264	17	1	18
5:00 PM	801	27	828	135	3	138	270	2	272	15	0	15
5:15 PM	788	22	810	184	11	195	271	4	275	15	1	16
5:30 PM	727	18	745	143	3	146	263	1	264	22	0	22
5:45 PM	643	29	672	112	3	115	250	4	254	9	0	9
6:00 PM	561	20	581	127	2	129	233	1	234	2	0	2
6:15 PM	516	19	535	117	4	121	194	2	196	13	0	13
6:30 PM	506	27	533	103	2	105	183	4	187	9	0	9
6:45 PM	428	14	442	127	7	134	185	0	185	6	0	6
Total	10616	420	11036	2202	81	2283	3895	60	3955	187	6	193

Date: 3/28/2019

Quality Counts
Time: 6:00 AM - 10:00 AM

	Westbound											
	I-480 WB to I-480 WB			1-480 WB to Grayton Rd			I-71 to I-480 WB			I-71 to Grayton Rd		
Time	Passanger Vehicles	Heavy Vehicles	Total									
6:00 AM	183	24	207	58	1	59	44	5	49	25	2	27
6:15 AM	277	19	296	78	4	82	66	11	77	24	0	24
6:30 AM	408	36	444	71	3	74	86	12	98	32	0	32
6:45 AM	449	36	485	107	3	110	117	8	125	57	2	59
7:00 AM	465	29	494	104	6	110	111	4	115	38	2	40
7:15 AM	559	34	593	162	3	165	160	15	175	37	0	37
7:30 AM	671	35	706	167	3	170	188	8	196	43	1	44
7:45 AM	519	59	578	219	8	227	216	14	230	48	3	51
8:00 AM	529	38	567	159	4	163	180	8	188	43	3	46
8:15 AM	529	48	577	158	4	162	162	14	176	38	0	38
8:30 AM	539	52	591	129	4	133	150	16	166	51	2	53
8:45 AM	508	54	562	126	5	131	135	13	148	42	2	44
9:00 AM	363	51	414	112	2	114	127	16	143	42	2	44
9:15 AM	444	65	509	93	4	97	126	15	141	35	4	39
9:30 AM	438	51	489	105	3	108	136	13	149	24	4	28
9:45 AM	372	48	420	97	6	103	143	14	157	25	1	26
Total	7253	679	7932	1945	63	2008	2147	186	2333	604	28	632

	Westbound											
	I-480 WB to I-480 WB			I-480 WB to Grayton Rd			I-71 to I-480 WB			I-71 to Grayton Rd		
Time	Passanger Vehicles	Heavy Vehicles	Total									
3:00 PM	692	28	720	117	4	121	352	20	372	58	1	59
3:15 PM	688	34	722	141	1	142	411	23	434	58	0	58
3:30 PM	794	42	836	91	3	94	421	19	440	69	1	70
3:45 PM	808	31	839	141	1	142	481	10	491	50	5	55
4:00 PM	846	23	869	131	3	134	463	9	472	42	1	43
4:15 PM	868	31	899	136	4	140	597	12	609	51	0	51
4:30 PM	884	34	918	139	2	141	543	16	559	57	0	57
4:45 PM	929	32	961	115	2	117	514	14	528	75	3	78
5:00 PM	890	28	918	120	1	121	569	15	584	58	0	58
5:15 PM	921	26	947	157	0	157	547	17	564	53	1	54
5:30 PM	861	17	878	134	1	135	497	11	508	49	0	49
5:45 PM	756	28	784	128	1	129	428	13	441	41	1	42
6:00 PM	652	27	679	108	1	109	355	5	360	25	2	27
6:15 PM	580	20	600	124	2	126	292	7	299	25	0	25
6:30 PM	567	25	592	113	2	115	295	10	305	37	0	37
6:45 PM	525	11	536	87	1	88	224	5	229	28	0	28
Total	12261	437	12698	1982	29	2011	6989	206	7195	776	15	791

From:	Ali Makarachi AMakarachi@mpo.noaca.org
Sent:	Wednesday, April 24, 2019 12:10 PM
To:	Gina Balsamo; Chelsea Cousins
Cc:	Mike Kubek
Subject:	RE: CUY-480-7.14 WB PBPD Growth Rate Request
Follow Up Flag:	Flag for follow up
Flag Status:	Completed

Gina,
Yes I agree with 0.04% for both periods. The future year is 22 years out and we should see some growth. Please note that 0.04% is annual growth.

Regards,

Ali Makarachi, PhD, PE

Northeast Ohio Areawide Coordinating Agency (NOACA)
Transportation Modeling \& Data Integration Manager
1299 Superior Avenue E
Cleveland, OH 44114
(216) 241-2414, Ext. 370
www.noaca.org
amakarachi@mpo.noaca.org

From: Gina Balsamo gbalsamo@cmtran.com
Sent: Wednesday, April 24, 2019 10:26 AM
To: Ali Makarachi AMakarachi@mpo.noaca.org; Chelsea Cousins ccousins@cmtran.com
Cc: Mike Kubek MKubek@mpo.noaca.org
Subject: RE: CUY-480-7.14 WB PBPD Growth Rate Request
Ali,
Thank you for the model outputs. Typically, we use the same growth rate for AM and PM peak analysis. Would you recommend using 0.04% for the all segments in the study area for the both peaks? We want to make sure we are being conservative but also realistic in our analysis.

Thanks for your help,
Gina Balsamo, PE
Traffic Engineer
CARPENTER

614.656.2429 | www.cmtran.com

From: Ali Makarachi AMakarachi@mpo.noaca.org
Sent: Monday, April 22, 2019 11:56 AM
To: Chelsea Cousins ccousins@cmtran.com
Cc: Gina Balsamo gbalsamo@cmtran.com; Mike Kubek MKubek@mpo.noaca.org
Subject: RE: CUY-480-7.14 WB PBPD Growth Rate Request
Chelsea,
The requested NOACA travel forecasting model outputs are attached. The CAGR value for the I-480 WB for the AM peak period is zero and for the PM peak period is 0.04%.

Please let me know if you have any questions.

Regards,

Ali Makarachi, PhD, PE
Northeast Ohio Areawide Coordinating Agency (NOACA)
Transportation Modeling \& Data Integration Manager
1299 Superior Avenue E
Cleveland, OH 44114
(216) 241-2414, Ext. 370
www.noaca.org
amakarachi@mpo.noaca.org
fla

From: Chelsea Cousins [mailto:ccousins@cmtran.com]
Sent: Tuesday, April 16, 2019 8:41 AM
To: Ali Makarachi AMakarachi@mpo.noaca.org
Cc: Gina Balsamo gbalsamo@cmtran.com; Mike Kubek MKubek@mpo.noaca.org
Subject: CUY-480-7.14 WB PBPD Growth Rate Request
Good Morning,
We would like to request growth rates for the following locations. We are conducting a Performance Based Project Development analysis for ODOT District 12 of the IR-71 NB to IR-480 WB entrance ramp to the Grayton Road exit ramp. Please see attached count data. Analysis will be conducted on the existing count data (2019) and the horizon year, which will be 2040. The report will be reviewed by ODOT District 12 .

Please let me know if you need any further information.
Thanks,

Chelsea Cousins, EIT

Project Engineer
CARPENTER
MARTY
614.656.2418 | www.cmtran.com

Appendix E
 Capacity Analysis Results

HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Existing Conditions		

Geometric Data

Number of Lanes (N), In	3	Segment Type	Freeway
Segment Length (Ls), ft	1275	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.50	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2129	1111	41	536
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	9.33	4.85	6.87	5.66
Heavy Vehicle Adjustment Factor (fHV)	0.915	0.954	0.946	
Flow Rate (vi), pc/h	2475	1239	Freeway Max Capacity (clFL), pc/h/ln	2300
Weaving Flow Rate (vw), pc/h	1842	Density-Based Capacity (cIWL), pc/h/ln	1867	
Non-Weaving Flow Rate (vNW), pc/h	2522	Demand Flow-Based Capacity (cIW), pc/h	5687	
Total Flow Rate (v), pc/h	Weaving Segment Capacity (cw), veh/h	5212		
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5601		
Minimum Lane Change Rate (LCMIN), Ic/h	1239	Volume-to-Capacity Ratio (v/c)	0.78	
Maximum Weaving Length (LMAX), ft	6929			

Speed and Density

Non-Weaving Vehicle Index (INW)	161	Average Weaving Speed (SW), mi/h	49.0
Non-Weaving Lane Change Rate (LCNW), Ic/h	633	Average Non-Weaving Speed (SNW), mi/h	44.1
Weaving Lane Change Rate (LCW), Ic/h	1391	Average Speed (S), mi/h	46.0
Weaving Lane Change Rate (LCAll), Ic/h	2024	Density (D), pc/mi/ln	31.6
Weaving Intensity Factor (W)	0.325	Level of Service (LOS)	D

[^0]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Existing Conditions		

Geometric Data

Number of Lanes (N), In	3	Segment Type	Freeway
Segment Length (Ls), ft	1275	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3242	1095	69	646
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.81	1.52	3.11	3.55
Heavy Vehicle Adjustment Factor (fHV)	0.963	0.985	0.970	76
Flow Rate (vi), pc/h	3581	1183	Freeway Max Capacity (cIFL), pc/h/ln	2300
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1936		
Non-Weaving Flow Rate (vNW), pc/h	3657	Demand Flow-Based Capacity (cIW), pc/h	7038	
Total Flow Rate (v), pc/h	Weaving Segment Capacity (cw), veh/h	5623		
Volume Ratio (VR)	0.341	Adjusted Weaving Area Capacity, pc/h	5808	
Minimum Lane Change Rate (LCMIN), Ic/h	1183	Volume-to-Capacity Ratio (v/c)	0.96	
Maximum Weaving Length (LMAX), ft	6028			

Speed and Density

Non-Weaving Vehicle Index (INW)	233	Average Weaving Speed (SW),mi/h	48.4
Non-Weaving Lane Change Rate (LCNW), Ic/h	867	Average Non-Weaving Speed (SNW), mi/h	42.6
Weaving Lane Change Rate (LCW), Ic/h	1335	Average Speed (S), mi/h	44.4
Weaving Lane Change Rate (LCAll), Ic/h	2202	Density (D), pc/mi/ln	41.7
Weaving Intensity Factor (W)	0.348	Level of Service (LOS)	E

[^1]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Existing Conditions		

Geometric Data

Number of Lanes (N), In	3	Segment Type	Freeway
Segment Length (Ls), ft	1275	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.50	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2147	1120	41	541
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	9.33	4.85	5.87	0.66
Heavy Vehicle Adjustment Factor (fHV)	0.915	0.954	47	608
Flow Rate (vi), pc/h	2496	Freeway Max Capacity (cIFL), pc/h/ln	2300	
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1867		
Non-Weaving Flow Rate (vNW), pc/h	2543	Demand Flow-Based Capacity (cIW), pc/h	5687	
Total Flow Rate (v), pc/h	4400	Weaving Segment Capacity (cw), veh/h	5212	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5601		
Minimum Lane Change Rate (LCMIN), Ic/h	1249	Volume-to-Capacity Ratio (v/c)	0.79	
Maximum Weaving Length (LMAX), ft	6929			

Speed and Density

Non-Weaving Vehicle Index (INW)	162	Average Weaving Speed (SW), mi/h	48.9
Non-Weaving Lane Change Rate (LCNW), Ic/h	637	Average Non-Weaving Speed (SNW), mi/h	44.0
Weaving Lane Change Rate (LCW), Ic/h	1401	Average Speed (S), mi/h	45.9
Weaving Lane Change Rate (LCAlI), Ic/h	2038	Density (D), pc/mi/ln	32.0
Weaving Intensity Factor (W)	0.327	Level of Service (LOS)	D

[^2]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Existing Conditions		

Geometric Data

Number of Lanes (N), In	3	Segment Type	Freeway
Segment Length (Ls), ft	1275	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	0
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3269	1104	70	651
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.81	1.52	3.11	3.55
Heavy Vehicle Adjustment Factor (fHV)	0.963	0.985	0.970	77
Flow Rate (vi), pc/h	3611	1909	Freeway Max Capacity (cIFL), pc/h/ln	2300
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1936		
Non-Weaving Flow Rate (vNW), pc/h	3688	Demand Flow-Based Capacity (cIW), pc/h	7038	
Total Flow Rate (v), pc/h	5597	0.341	Weaving Segment Capacity (cw), veh/h	5623
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5808		
Minimum Lane Change Rate (LCMIN), Ic/h	1192	Volume-to-Capacity Ratio (v/c)	0.96	
Maximum Weaving Length (LMAX), ft	6028			

Speed and Density

Non-Weaving Vehicle Index (INW)	235	Average Weaving Speed (SW),mi/h	48.3
Non-Weaving Lane Change Rate (LCNW), Ic/h	873	Average Non-Weaving Speed (SNW), mi/h	42.5
Weaving Lane Change Rate (LCW), Ic/h	1344	Average Speed (S), mi/h	44.3
Weaving Lane Change Rate (LCAII), Ic/h	2217	Density (D), pc/mi/ln	42.1
Weaving Intensity Factor (W)	0.350	Level of Service (LOS)	E

[^3]
Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB and IR-71 NB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	60.0	25.0
Segment Length (L) / Acceleration Length (LA),ft	1500	700
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		2665	1152	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		8.54	4.92	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.921	0.953	
Flow Rate (vi),pc/h		3078	1286	
Capacity (c), pc/h		6900	1900	
Volume-to-Capacity Ratio (v/c)		0.63	0.68	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	149.7	Density in Ramp Influence Area (DR), pc/mi/ln		25.9
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)		0.386
Downstream Equilibrium Distance (LEQ), ft	3518.0	Flow Outer Lanes (voA), pc/mi/ln		1120
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed (SR), mi/h		53.1
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	0.636	Outer Lanes Freeway Speed (So), mi/h		57.8
Flow in Lanes 1 and 2 (v12), pc/h	1958	Ramp Junction Speed (S), mi/h		54.2
Flow Entering Ramp-Infl. Area (vR12), pc/h	3244	Average Density (D), pc/mi/ln		26.8
Level of Service (LOS)	C			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB and IR-71 NB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	60.0	25.0
Segment Length (L) / Acceleration Length (LA),ft	1500	700
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3888	1164	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		8.54	4.92	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.921	0.953	
Flow Rate (vi),pc/h		4491	1299	
Capacity (c), pc/h		6900	1900	
Volume-to-Capacity Ratio (v/c)		0.84	0.68	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	454.9	Density in Ramp Influence Area (DR), pc/mi/ln		33.6
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)		0.556
Downstream Equilibrium Distance (LEQ), ft	4267.4	Flow Outer Lanes (voA), pc/mi/ln		1554
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed (SR), mi/h		50.0
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	0.654	Outer Lanes Freeway Speed (So), mi/h		56.2
Flow in Lanes 1 and 2 (v12), pc/h	2937	Ramp Junction Speed (S), mi/h		51.5
Flow Entering Ramp-Infl. Area (vR12), pc/h	4236	Average Density (D), pc/mi/ln		37.5
Level of Service (LOS)	D			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB and IR-71 NB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	60.0	25.0
Segment Length (L) / Acceleration Length (LA),ft	1500	700
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adju		

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000
Demand and Capacity	2688	1161
Demand Volume (Vi)	0.94	0.94
Peak Hour Factor (PHF)	8.54	4.92
Total Trucks, \%	-	-
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	0.921	0.953
Heavy Vehicle Adjustment Factor (fHV)	3105	1296
Flow Rate (vi),pc/h	6900	1900
Capacity (c), pc/h	0.64	0.68
Volume-to-Capacity Ratio (v/c)		
Speed and Density		

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	157.6	Density in Ramp Influence Area (DR), pc/mi/ln	26.1
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)	0.389
Downstream Equilibrium Distance (LEQ), ft	3548.4	Flow Outer Lanes (vOA), pc/mi/ln	1130
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed (SR), mi/h	53.0
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	0.636	Outer Lanes Freeway Speed (So), mi/h	57.7
Flow in Lanes 1 and 2 (v12), pc/h	1975	Ramp Junction Speed (S), mi/h	54.1
Flow Entering Ramp-Infl. Area (vR12), pc/h	3271	Average Density (D), pc/mi/ln	27.1
Level of Service (LOS)	C		
Copyright © 2019 University of Florida. All Rights Reserved.			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB and IR-71 NB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	3	1
Free-Flow Speed (FFS), mi/h	60.0	25.0
Segment Length (L) / Acceleration Length (LA),ft	1500	700
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Sever	Weather
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3920	1174	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		8.54	4.92	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.921	0.953	
Flow Rate (vi),pc/h		4528	1311	
Capacity (c), pc/h		6900	1900	
Volume-to-Capacity Ratio (v/c)		0.85	0.69	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	465.4	Density in Ramp Influence Area (D)), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	33.9
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)		0.567
Downstream Equilibrium Distance (LEQ), ft	4303.2	Flow Outer Lanes (voA), pc/mi/ln		1562
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed (SR), mi/h	49.8
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	0.655	Outer Lanes Freeway Speed (SO), m	mi/h	56.2
Flow in Lanes 1 and 2 (v12), pc/h	2966	Ramp Junction Speed (S), mi/h		51.4
Flow Entering Ramp-Infl. Area (vR12), pc/h	4277	Average Density (D), pc/mi/ln		37.9
Level of Service (LOS)	D			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB to SR 237 SB diverge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	60.0	55.0
Segment Length (L) / Deceleration Length (LA),ft	1500	1500
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3240	577	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		7.81	5.75	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.928	0.946	
Flow Rate (vi),pc/h		3714	649	
Capacity (c), pc/h		4600	2200	
Volume-to-Capacity Ratio (v/c)		0.81	0.30	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (D)), $\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$	22.7
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)		0.226
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed	(R), mi/h	55.9
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	1.000	Outer Lanes Freeway Speed (So),		-
Flow in Lanes 1 and 2 (v12), pc/h	3714	Ramp Junction Speed (S), mi/h		55.9
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln		33.2
Level of Service (LOS)	C			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB to SR 237 SB diverge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	60.0	55.0
Segment Length (L) / Deceleration Length (LA),ft	1500	1500
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		4337	715	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		3.20	3.51	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.969	0.966	
Flow Rate (vi), pc/h		4761	787	
Capacity (c), pc/h		4600	2200	
Volume-to-Capacity Ratio (v/c)		1.04	0.36	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		31.7
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)		-
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed	(SR), mi/h	55.7
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	1.000	Outer Lanes Freeway Speed (SO), m	mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	4761	Ramp Junction Speed (S), mi/h		-
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln		-
Level of Service (LOS)	F			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB to SR 237 SB diverge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	1
Free-Flow Speed (FFS), mi/h	60.0	55.0
Segment Length (L) / Deceleration Length (LA),ft	1500	1500
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3267	582	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		7.81	5.75	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.928	0.946	
Flow Rate (vi),pc/h		3745	654	
Capacity (c), pc/h		4600	2200	
Volume-to-Capacity Ratio (v/c)		0.81	0.30	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		23.0
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)		0.227
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed (SR), mi/h		55.9
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	1.000	Outer Lanes Freeway Speed (So), mi/h		-
Flow in Lanes 1 and 2 (v12), pc/h	3745	Ramp Junction Speed (S), mi/h		55.9
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln		33.5
Level of Service (LOS)	C			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB to SR 237 SB diverge - Existing Conditions		
Geometric Data	Freeway		
	2	Ramp	
Number of Lanes (N), In	60.0	1	
Free-Flow Speed (FFS), mi/h	1500	55.0	
Segment Length (L) / Deceleration Length (LA),ft	Level	1500	
Terrain Type	-	Level	
Percent Grade, \%	Freeway	-	
Segment Type / Ramp Side		Right	
Adjustmer\|			

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		4373	721	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		3.20	3.51	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.969	0.966	
Flow Rate (vi), pc/h		4801	794	
Capacity (c), pc/h		4600	2200	
Volume-to-Capacity Ratio (v/c)		1.04	0.36	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		32.0
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)		-
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed (SR), mi/h		55.7
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	1.000	Outer Lanes Freeway Speed (SO), mi/h		-
Flow in Lanes 1 and 2 (v12), pc/h	4801	Ramp Junction Speed (S), mi/h		-
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln		-
Level of Service (LOS)	F			
Copyright © 2019 University of Florida. All Rights Reserved.		ays Version 7.6		erated: 07/3

HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	1515	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	1
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.50	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2129	1111	41	536
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	9.33	4.85	6.87	5.66
Heavy Vehicle Adjustment Factor (fHV)	0.915	0.954	0.946	
Flow Rate (vi), pc/h	2475	1239	Freeway Max Capacity (clFL), pc/h/ln	2300
Weaving Flow Rate (vw), pc/h	1842	Density-Based Capacity (cIWL), pc/h/ln	1886	
Non-Weaving Flow Rate (vNW), pc/h	2522	Demand Flow-Based Capacity (cIW), pc/h	5687	
Total Flow Rate (v), pc/h	4364	Weaving Segment Capacity (cw), veh/h	5292	
Volume Ratio (VR)	0.422	Volume-to-Capacity Ratio (v/c)	5687	
Minimum Lane Change Rate (LCMIN), Ic/h	1842	6929	0.77	
Maximum Weaving Length (LMAX), ft				

Speed and Density

Non-Weaving Vehicle Index (INW)	191	Average Weaving Speed (SW), mi/h	48.1
Non-Weaving Lane Change Rate (LCNW), Ic/h	570	Average Non-Weaving Speed (SNW), mi/h	41.5
Weaving Lane Change Rate (LCW), Ic/h	2143	Average Speed (S), mi/h	44.1
Weaving Lane Change Rate (LCAll), Ic/h	2713	Density (D), pc/mi/ln	24.7
Weaving Intensity Factor (W)	0.358	Level of Service (LOS)	C

[^4]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	1515	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	1
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3242	1095	69	646
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.81	1.52	3.11	3.55
Heavy Vehicle Adjustment Factor (fHV)	0.963	0.985	0.970	0.966
Flow Rate (vi), pc/h	3581	1183	76	711
Weaving Flow Rate (vw), pc/h	1894	Freeway Max Capacity (cIFL), pc/h/ln		2300
Non-Weaving Flow Rate (vNW), pc/h	3657	Density-Based Capacity (cIWL), pc/h/ln		1955
Total Flow Rate (v), pc/h	5551	Demand Flow-Based Capacity (cıw), pc/h		7038
Volume Ratio (VR)	0.341	Weaving Segment Capacity (cW), veh/h		6814
Minimum Lane Change Rate (LCMIN), Ic/h	1894	Adjusted Weaving Area Capacity, pc/h		7038
Maximum Weaving Length (LMAX), ft	6028	Volume-to-Capacity Ratio (v/c)		0.79

Speed and Density

Non-Weaving Vehicle Index (INW)	277	Average Weaving Speed (SW),mi/h	47.4
Non-Weaving Lane Change Rate (LCNW), Ic/h	804	Average Non-Weaving Speed (SNW), mi/h	39.7
Weaving Lane Change Rate (LCW), Ic/h	2195	Average Speed (S), mi/h	42.0
Weaving Lane Change Rate (LCAll), Ic/h	2999	Density (D), pc/mi/ln	33.0
Weaving Intensity Factor (W)	Level of Service (LOS)	D	

[^5]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	1515	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	1
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2147	1120	41	541
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	9.33	4.85	5.87	0.66
Heavy Vehicle Adjustment Factor (fHV)	0.915	0.954	47	608
Flow Rate (vi), pc/h	2496	Freeway Max Capacity (cIFL), pc/h/ln	2300	
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1886		
Non-Weaving Flow Rate (vNW), pc/h	2543	Demand Flow-Based Capacity (cIW), pc/h	5687	
Total Flow Rate (v), pc/h	4400	Weaving Segment Capacity (cw), veh/h	5292	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5687		
Minimum Lane Change Rate (LCMIN), Ic/h	1857	Volume-to-Capacity Ratio (v/c)	0.77	
Maximum Weaving Length (LMAX), ft	6929			

Speed and Density

Non-Weaving Vehicle Index (INW)	193	Average Weaving Speed (SW), mi/h	48.1
Non-Weaving Lane Change Rate (LCNW), Ic/h	575	Average Non-Weaving Speed (SNW), mi/h	41.3
Weaving Lane Change Rate (LCW), Ic/h	2158	Average Speed (S), mi/h	43.9
Weaving Lane Change Rate (LCAll), Ic/h	2733	Density (D), pc/mi/ln	25.1
Weaving Intensity Factor (W)	0.360	Level of Service (LOS)	C

HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 NB and SR-237 SB - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	1515	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	1
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	1
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3269	1104	70	651
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.81	1.52	3.11	3.55
Heavy Vehicle Adjustment Factor (fHV)	0.963	0.985	0.966	
Flow Rate (vi), pc/h	3611	1909	Freeway Max Capacity (clFL), pc/h/ln	2300
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1955		
Non-Weaving Flow Rate (vNW), pc/h	3688	Demand Flow-Based Capacity (cIW), pc/h	7038	
Total Flow Rate (v), pc/h	5597	Weaving Segment Capacity (cw), veh/h	6814	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	7038		
Minimum Lane Change Rate (LCMIN), Ic/h	1909	Volume-to-Capacity Ratio (v/c)	0.80	
Maximum Weaving Length (LMAX), ft	6028			

Speed and Density

Non-Weaving Vehicle Index (INW)	279	Average Weaving Speed (SW),mi/h	47.4
Non-Weaving Lane Change Rate (LCNW), Ic/h	810	Average Non-Weaving Speed (SNW), mi/h	39.5
Weaving Lane Change Rate (LCW), Ic/h	2210	Average Speed (S), mi/h	41.9
Weaving Lane Change Rate (LCAll), Ic/h	3020	Density (D), pc/mi/ln	33.4
Weaving Intensity Factor (W)	0.389	Level of Service (LOS)	D

[^6]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Existing Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2740	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.50	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2444	789	178	725
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	8.56	7.97	4.43	3.14
Heavy Vehicle Adjustment Factor (fHV)	0.921	0.926	0.958	7970
Flow Rate (vi), pc/h	2823	Freeway Max Capacity (clFL), pc/h/ln	2300	
Weaving Flow Rate (vw), pc/h	1701	Density-Based Capacity (cIWL), pc/h/ln	2033	
Non-Weaving Flow Rate (vNW), pc/h	Demand Flow-Based Capacity (clW), pc/h	6667		
Total Flow Rate (v), pc/h	4722	Weaving Segment Capacity (cw), veh/h	6212	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	6667		
Minimum Lane Change Rate (LCMIN), Ic/h	1590	Volume-to-Capacity Ratio (v/c)	0.71	
Maximum Weaving Length (LMAX), ft	6236			

Speed and Density

Non-Weaving Vehicle Index (INW)	414	Average Weaving Speed (SW), mi/h	50.6
Non-Weaving Lane Change Rate (LCNW), Ic/h	1337	Average Non-Weaving Speed (SNW), mi/h	42.9
Weaving Lane Change Rate (LCW), Ic/h	2016	Average Speed (S), mi/h	45.4
Weaving Lane Change Rate (LCAII), Ic/h	3353	Density (D), pc/mi/ln	26.0
Weaving Intensity Factor (W)	Level of Service (LOS)	C	

[^7]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Existing Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2740	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3744	2235	247	536
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.44	2.86	1.90	1.44
Heavy Vehicle Adjustment Factor (fHV)	0.967	4119	0.972	0.981
Flow Rate (vi), pc/h	3446	578		
Weaving Flow Rate (vw), pc/h	Freeway Max Capacity (cIFL), pc/h/ln	2300		
Non-Weaving Flow Rate (vNW), pc/h	4387	7411	Density-Based Capacity (cIWL), pc/h/ln	1992
Total Flow Rate (v), pc/h	Weaving Segment Capacity (cw), veh/h	5710		
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5883		
Minimum Lane Change Rate (LCMIN), Ic/h	0	Volume-to-Capacity Ratio (v/c)	5882	
Maximum Weaving Length (LMAX), ft	6771	1.26		

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (SW),mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

[^8]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Existing Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2740	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.50	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2465	796	180	731
Peak Hour Factor (PHF)	0.94	0.94	0.94	3.94
Total Trucks, \%	8.56	7.97	0.93	
Heavy Vehicle Adjustment Factor (fHV)	0.921	9.926	0.970	
Flow Rate (vi), pc/h	2847	Freeway Max Capacity (clFL), pc/h/ln	200	802
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	2033		
Non-Weaving Flow Rate (vNW), pc/h	3047	Demand Flow-Based Capacity (clW), pc/h	6667	
Total Flow Rate (v), pc/h	Weaving Segment Capacity (cw), veh/h	6212		
Volume Ratio (VR)	0.360	Adjusted Weaving Area Capacity, pc/h	6667	
Minimum Lane Change Rate (LCMIN), Ic/h	1604	Volume-to-Capacity Ratio (v/c)	0.71	
Maximum Weaving Length (LMAX), ft	6236			

Speed and Density

Non-Weaving Vehicle Index (INW)	417	Average Weaving Speed (SW), mi/h	50.5
Non-Weaving Lane Change Rate (LCNW), Ic/h	1342	Average Non-Weaving Speed (SNW), mi/h	42.7
Weaving Lane Change Rate (LCW), Ic/h	2030	Average Speed (S), mi/h	45.2
Weaving Lane Change Rate (LCAll), Ic/h	3372	Density (D), pc/mi/ln	26.3
Weaving Intensity Factor (W)	0.266	Level of Service (LOS)	C

[^9]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Existing Conditions		

Geometric Data

Number of Lanes (N), In	4	Segment Type	Freeway
Segment Length (Ls), ft	2740	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3776	2254	249	541
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.44	2.86	1.90	1.44
Heavy Vehicle Adjustment Factor (fHV)	0.967	4154	0.972	0.981
Flow Rate (vi), pc/h	2467	Freeway Max Capacity (cIFL), pc/h/ln	270	
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	1992		
Non-Weaving Flow Rate (vNW), pc/h	4424	Demand Flow-Based Capacity (cIW), pc/h	5882	
Total Flow Rate (v), pc/h	7475	Weaving Segment Capacity (cw), veh/h	5710	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5883		
Minimum Lane Change Rate (LCMIN), Ic/h	0	Volume-to-Capacity Ratio (v/c)	1.27	
Maximum Weaving Length (LMAX), ft	6771			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (SW),mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

[^10]
Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB and IR-71 SB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	2
Free-Flow Speed (FFS), mi/h	60.0	55.0
Segment Length (L) / Acceleration Length (LA),ft	1500	1500
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3169	967	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		7.46	7.22	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.931	0.933	
Flow Rate (vi),pc/h		3621	1103	
Capacity (c), pc/h		4600	4400	
Volume-to-Capacity Ratio (v/c)		1.03	0.25	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		32.5
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)		-
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed ((SR), mi/h	49.3
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	1.000	Outer Lanes Freeway Speed (SO), m	i/h	-
Flow in Lanes 1 and 2 (v12), pc/h	3621	Ramp Junction Speed (S), mi/h		-
Flow Entering Ramp-Infl. Area (vR12), pc/h	4724	Average Density (D), pc/mi/ln		-
Level of Service (LOS)	F			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB and IR-71 SB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	2
Free-Flow Speed (FFS), mi/h	60.0	55.0
Segment Length (L) / Acceleration Length (LA),ft	1500	1500
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		4280	2482	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		3.17	2.77	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.969	0.973	
Flow Rate (vi),pc/h		4699	2714	
Capacity (c), pc/h		4600	4400	
Volume-to-Capacity Ratio (v/c)		1.61	0.62	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		52.7
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)		-
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed (SR), mi/h	0.0
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	1.000	Outer Lanes Freeway Speed (SO), m	mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	4699	Ramp Junction Speed (S), mi/h		-
Flow Entering Ramp-Infl. Area (vR12), pc/h	7413	Average Density (D), pc/mi/ln		-
Level of Service (LOS)	F			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB and IR-71 SB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	2
Free-Flow Speed (FFS), mi/h	60.0	55.0
Segment Length (L) / Acceleration Length (LA),ft	1500	1500
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3196	976	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		7.46	7.22	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.931	0.933	
Flow Rate (vi),pc/h		3652	1113	
Capacity (c), pc/h		4600	4400	
Volume-to-Capacity Ratio (v/c)		1.04	0.25	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		32.8
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)		-
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed ((SR), mi/h	48.9
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	1.000	Outer Lanes Freeway Speed (SO), m	i/h	-
Flow in Lanes 1 and 2 (v12), pc/h	3652	Ramp Junction Speed (S), mi/h		-
Flow Entering Ramp-Infl. Area (vR12), pc/h	4765	Average Density (D), pc/mi/ln		-
Level of Service (LOS)	F			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB and IR-71 SB merge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	2	2
Free-Flow Speed (FFS), mi/h	60.0	55.0
Segment Length (L) / Acceleration Length (LA),ft	1500	1500
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		4317	2503	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		3.17	2.77	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.969	0.973	
Flow Rate (vi),pc/h		4739	2737	
Capacity (c), pc/h		4600	4400	
Volume-to-Capacity Ratio (v/c)		1.63	0.62	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		53.2
Distance to Upstream Ramp (LUP), ft	2310	Speed Index (M)		-
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		-
Distance to Downstream Ramp (LDOWN), ft	1965	On-Ramp Influenece Area Speed ((SR), mi/h	0.0
Prop. Freeway Vehicles in Lane 1 and 2 (PM)	1.000	Outer Lanes Freeway Speed (SO), m	mi/h	-
Flow in Lanes 1 and 2 (v12), pc/h	4739	Ramp Junction Speed (S), mi/h		-
Flow Entering Ramp-Infl. Area (vR12), pc/h	7476	Average Density (D), pc/mi/ln		-
Level of Service (LOS)	F			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB to Grayton Rd diverge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	60.0	30.0
Segment Length (L) / Deceleration Length (LA),ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adjum		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Sever	Weather
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3233	903	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		8.43	3.45	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.922	0.967	
Flow Rate (vi), pc/h		3730	993	
Capacity (c), pc/h		9200	1900	
Volume-to-Capacity Ratio (v/c)		0.41	0.52	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (D)), pc/mi/ln	17.4
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)		0.582
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/mi/ln		772
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed	(S), mi/h	49.5
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	0.436	Outer Lanes Freeway Speed (So), m	i/h	65.8
Flow in Lanes 1 and 2 (v12), pc/h	2186	Ramp Junction Speed (S), mi/h		55.2
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln		16.9
Level of Service (LOS)	B			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB to Grayton Rd diverge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	60.0	30.0
Segment Length (L) / Deceleration Length (LA),ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	5979	783
Peak Hour Factor (PHF)	0.94	0.94
Total Trucks, \%	3.23	1.57
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHV)	0.969	0.985
Flow Rate (vi),pc/h	6564	846
Capacity (c), pc/h	9200	1900
Volume-to-Capacity Ratio (v/c)	0.71	0.45

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	27.3
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)	0.569
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/mi/ln	1613
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed (SR), mi/h	49.8
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	0.436	Outer Lanes Freeway Speed (So), mi/h	63.4
Flow in Lanes 1 and 2 (v12), pc/h	3339	Ramp Junction Speed (S), mi/h	55.7
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln	29.5
Level of Service (LOS)	C		
Copyright © 2019 University of Florida. All Rights Reserved.			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB to Grayton Rd diverge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	60.0	30.0
Segment Length (L) / Deceleration Length (LA),ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adj		

Adjustment Factors

Driver Population		All Familiar	All Familiar	
Weather Type		Non-Severe Weather	Non-Severe Weather	
Incident Type		No Incident	-	
Final Speed Adjustment Factor (SAF)		1.000	1.000	
Final Capacity Adjustment Factor (CAF)		1.000	1.000	
Demand Adjustment Factor (DAF)		1.000	1.000	
Demand and Capacity				
Demand Volume (Vi)		3261	911	
Peak Hour Factor (PHF)		0.94	0.94	
Total Trucks, \%		8.43	3.45	
Single-Unit Trucks (SUT), \%		-	-	
Tractor-Trailers (TT), \%		-	-	
Heavy Vehicle Adjustment Factor (fHV)		0.922	0.967	
Flow Rate (vi), pc/h		3763	1002	
Capacity (c), pc/h		9200	1900	
Volume-to-Capacity Ratio (v/c)		0.41	0.53	
Speed and Density				
Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln		17.6
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)		0.583
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (voA), pc/mi/ln		779
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed (SR), mi/h		49.5
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	0.436	Outer Lanes Freeway Speed (So), mi/h		65.8
Flow in Lanes 1 and 2 (v12), pc/h	2206	Ramp Junction Speed (S), mi/h		55.2
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln		17.0
Level of Service (LOS)	B			

Project Information

Analyst	GMB	Date	$7 / 31 / 2019$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB to Grayton Rd diverge - Existing Conditions		

Geometric Data

	Freeway	Ramp
Number of Lanes (N), In	4	1
Free-Flow Speed (FFS), mi/h	60.0	30.0
Segment Length (L) / Deceleration Length (LA),ft	1500	630
Terrain Type	Level	Level
Percent Grade, \%	-	-
Segment Type / Ramp Side	Freeway	Right
Adjum		

Adjustment Factors

Driver Population	All Familiar	All Familiar
Weather Type	Non-Severe Weather	Non-Severe Weather
Incident Type	No Incident	-
Final Speed Adjustment Factor (SAF)	1.000	1.000
Final Capacity Adjustment Factor (CAF)	1.000	1.000
Demand Adjustment Factor (DAF)	1.000	1.000

Demand and Capacity

Demand Volume (Vi)	6030	790
Peak Hour Factor (PHF)	0.94	0.94
Total Trucks, \%	3.23	1.57
Single-Unit Trucks (SUT), \%	-	-
Tractor-Trailers (TT), \%	-	-
Heavy Vehicle Adjustment Factor (fHV)	0.969	0.985
Flow Rate (vi),pc/h	6620	853
Capacity (c), pc/h	9200	1900
Volume-to-Capacity Ratio (v/c)	0.72	0.45

Speed and Density

Upstream Equilibrium Distance (LEQ), ft	-	Density in Ramp Influence Area (DR), pc/mi/ln	27.5
Distance to Upstream Ramp (LUP), ft	-	Speed Index (D)	0.570
Downstream Equilibrium Distance (LEQ), ft	-	Flow Outer Lanes (vOA), pc/mi/ln	1627
Distance to Downstream Ramp (LDOWN), ft	-	Off-Ramp Influenece Area Speed (SR), mi/h	49.7
Prop. Freeway Vehicles in Lane 1 and 2 (PD)	0.436	Outer Lanes Freeway Speed (So), mi/h	63.4
Flow in Lanes 1 and 2 (v12), pc/h	3367	Ramp Junction Speed (S), mi/h	55.6
Flow Entering Ramp-Infl. Area (vR12), pc/h	-	Average Density (D), pc/mi/ln	29.8
Level of Service (LOS)	C		
Copyright © 2019 University of Florida. All Rights Reserved.			

HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	5	Segment Type	Freeway
Segment Length (Ls), ft	2885	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.50	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2444	789	178	725
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	8.56	7.97	4.43	3.14
Heavy Vehicle Adjustment Factor (fHV)	0.921	0.926	0.958	0.970
Flow Rate (vi), pc/h	2823	906	198	795
Weaving Flow Rate (vw), pc/h	1701	Freeway Max Capacity (cIFL), pc/h/ln		2300
Non-Weaving Flow Rate (vNW), pc/h	3021	Density-Based Capacity (cIWL), pc/h/ln		2044
Total Flow Rate (v), pc/h	4722	Demand Flow-Based Capacity (cıw), pc/h		6667
Volume Ratio (VR)	0.360	Weaving Segment Capacity (cW), veh/h		6212
Minimum Lane Change Rate (LCMIN), Ic/h	1590	Adjusted Weaving Area Capacity, pc/h		6667
Maximum Weaving Length (LMAX), ft	6236	Volume-to-Capacity Ratio (v/c)		0.71

Speed and Density

Non-Weaving Vehicle Index (INW)	436	Average Weaving Speed (SW), mi/h	50.6
Non-Weaving Lane Change Rate (LCNW), Ic/h	1223	Average Non-Weaving Speed (SNW), mi/h	44.0
Weaving Lane Change Rate (LCW), Ic/h	2276	Average Speed (S), mi/h	46.2
Weaving Lane Change Rate (LCAll), Ic/h	3499	Density (D), pc/mi/ln	20.4
Weaving Intensity Factor (W)	Level of Service (LOS)	C	

[^11]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2019
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	5	Segment Type	Freeway
Segment Length (Ls), ft	2885	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3744	2235	247	536
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.44	2.86	1.90	1.44
Heavy Vehicle Adjustment Factor (fHV)	0.967	4119	0.972	0.981
Flow Rate (vi), pc/h	3024	Freeway Max Capacity (cIFL), pc/h/ln	268	
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	2003		
Non-Weaving Flow Rate (vNW), pc/h	Demand Flow-Based Capacity (cIW), pc/h	5882		
Total Flow Rate (v), pc/h	7411	Weaving Segment Capacity (cw), veh/h	5710	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5883		
Minimum Lane Change Rate (LCMIN), Ic/h	0	Volume-to-Capacity Ratio (v/c)	1.26	
Maximum Weaving Length (LMAX), ft	6771			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (SW),mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

[^12]
HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	AM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	5	Segment Type	Freeway
Segment Length (Ls), ft	2885	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	Cross Weaving Managed Lane	No	

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	2465	796	180	731
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	8.56	7.97	0.43	3.14
Heavy Vehicle Adjustment Factor (fHV)	0.921	0.926	0.970	
Flow Rate (vi), pc/h	2847	Freeway Max Capacity (clFL), pc/h/ln	200	802
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	2040		
Non-Weaving Flow Rate (vNW), pc/h	3047	Demand Flow-Based Capacity (cIW), pc/h	6667	
Total Flow Rate (v), pc/h	4763	Weaving Segment Capacity (cw), veh/h	6212	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	6667		
Minimum Lane Change Rate (LCMIN), Ic/h	1604	Volume-to-Capacity Ratio (v/c)	0.71	
Maximum Weaving Length (LMAX), ft	6236			

Speed and Density

Non-Weaving Vehicle Index (INW)	440	Average Weaving Speed (SW), mi/h	50.6
Non-Weaving Lane Change Rate (LCNW), Ic/h	1228	Average Non-Weaving Speed (SNW), mi/h	43.9
Weaving Lane Change Rate (LCW), Ic/h	2290	Average Speed (S), mi/h	46.1
Weaving Lane Change Rate (LCAll), Ic/h	3518	Density (D), pc/mi/ln	20.7
Weaving Intensity Factor (W)	0.264	Level of Service (LOS)	C

HCS7 Freeway Weaving Report

Project Information

Analyst	CMC	Date	$4 / 25 / 19$
Agency	CMTran	Analysis Year	2040
Jurisdiction	ODOT District 12	Time Period Analyzed	PM
Project Description	IR-480 WB between IR-71 SB and Grayton Rd - Proposed Conditions		

Geometric Data

Number of Lanes (N), In	5	Segment Type	Freeway
Segment Length (Ls), ft	2885	Number of Maneuver Lanes (NWL), In	2
Weaving Configuration	One-Sided	Ramp-to-Freeway Lane Changes (LCRF), Ic	0
Terrain Type	Level	Freeway-to-Ramp Lane Changes (LCFR), Ic	2
Percent Grade, \%	-	Ramp-to-Ramp Lane Changes (LCRR), Ic	0
Interchange Density (ID), int/mi	0.50	Cross Weaving Managed Lane	No

Adjustment Factors

Driver Population	All Familiar	Final Speed Adjustment Factor (SAF)	1.000
Weather Type	Non-Severe Weather	Final Capacity Adjustment Factor (CAF)	1.000
Incident Type	No Incident	Demand Adjustment Factor (DAF)	1.000

Demand and Capacity

	FF	RF	RR	FR
Demand Volume (Vi), veh/h	3776	2254	249	541
Peak Hour Factor (PHF)	0.94	0.94	0.94	0.94
Total Trucks, \%	3.44	2.86	1.90	1.44
Heavy Vehicle Adjustment Factor (fHV)	0.967	0.972	0.981	0.986
Flow Rate (vi), pc/h	4154	Freeway Max Capacity (cIFL), pc/h/ln	270	2300
Weaving Flow Rate (vw), pc/h	Density-Based Capacity (cIWL), pc/h/ln	2003		
Non-Weaving Flow Rate (vNW), pc/h	4424	Demand Flow-Based Capacity (cIW), pc/h	5882	
Total Flow Rate (v), pc/h	7475	Weaving Segment Capacity (cw), veh/h	5710	
Volume Ratio (VR)	Adjusted Weaving Area Capacity, pc/h	5883		
Minimum Lane Change Rate (LCMIN), Ic/h	0	Volume-to-Capacity Ratio (v/c)	1.27	
Maximum Weaving Length (LMAX), ft	6771			

Speed and Density

Non-Weaving Vehicle Index (INW)	-	Average Weaving Speed (SW),mi/h	-
Non-Weaving Lane Change Rate (LCNW), Ic/h	-	Average Non-Weaving Speed (SNW), mi/h	-
Weaving Lane Change Rate (LCW), Ic/h	-	Average Speed (S), mi/h	-
Weaving Lane Change Rate (LCAll), Ic/h	-	Density (D), pc/mi/ln	-
Weaving Intensity Factor (W)	Level of Service (LOS)	F	

[^13]
[^0]: Copyright © 2019 University of Florida. All Rights Reserved.

[^1]: Copyright © 2019 University of Florida. All Rights Reserved.

[^2]: Copyright © 2019 University of Florida. All Rights Reserved.

[^3]: Copyright © 2019 University of Florida. All Rights Reserved.

[^4]: Copyright © 2019 University of Florida. All Rights Reserved

[^5]: Copyright © 2019 University of Florida. All Rights Reserved.

[^6]: Copyright © 2019 University of Florida. All Rights Reserved.

[^7]: Copyright © 2019 University of Florida. All Rights Reserved

[^8]: Copyright © 2019 University of Florida. All Rights Reserved

[^9]: Copyright © 2019 University of Florida. All Rights Reserved.

[^10]: Copyright © 2019 University of Florida. All Rights Reserved

[^11]: Copyright © 2019 University of Florida. All Rights Reserved

[^12]: Copyright © 2019 University of Florida. All Rights Reserved

[^13]: Copyright © 2019 University of Florida. All Rights Reserved

