GARCADIS

Safety Study

U.S. 422 at Rapids Road Geauga County, Ohio

August 31, 2022

Safety Study

U.S. 422 at Rapids Road Geauga County, Ohio

August 2022

Prepared By:

Arcadis U.S., Inc.
1300 Superior Avenue, Suite 1300
Cleveland
Ohio 44114
Phone: 2162985239
Fax: 2167816177

Prepared For:

Brian Blayney, PE
District Traffic Planning Engineer
Ohio Department of Transportation
District 12: Cuyahoga, Geauga \& Lake Counties
5500 Transportation Boulevard
Garfield Heights
Ohio 44125

Our Ref:

30141842

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

Executive Summary 1
1 Introduction 1
2 Purpose and Need 1
3 Existing Conditions 1
4 Safety History 5
5 Crash Data 6
5.1 Statewide Comparison 6
5.2 Crash Statistic Summary 7
5.3 Crash Probable Causes 8
6 Proposed Improvements 8
7 Capacity Analysis 9
7.1 Data Collection and Design Hourly Traffic Volumes 9
7.2 Existing Conditions Capacity Analysis 10
7.3 No-Build Conditions Capacity Analysis 10
7.4 Build Conditions Capacity Analysis 11
8 Conceptual Estimate of Probable Cost 12
9 Safety Benefit 12
10 Conclusions and Recommendations 13
Tables
Table 1. Study Area Crash Statistics (2019 to 2021) 7
Table 2. Calculated Left-Turn Lane Lengths. 8
Table 3. Level of Service Criteria for Signalized Intersections 9
Table 4. Existing Conditions (2022) Capacity Analysis Results 10
Table 5. No-Build Conditions (2047) Capacity Analysis Results 11
Table 6. Build Conditions (2047) Capacity Analysis Results 11
Table 7. Proposed Improvements - ECAT Analysis Results Summary 13
Table 8. Proposed Improvements Benefit-Cost Summary 13

Figures

Figure 1. Study Area Map 2
Figure 2. U.S. 422 Looking East 3
Figure 3. U.S. 422 Looking West 3
Figure 4. Rapids Road Looking North 4
Figure 5. Rapids Road Looking South 4
Figure 6. U.S. 422 Queues on the Eastbound Approach 5
Figure 7. Crash History Compared to Statewide Averages 6
Appendices
Appendix A. Crash Analysis Module Tool Results
Appendix B. Crash Diagram
Appendix C. Design Hourly Volumes
Appendix D. Highway Capacity Software Output
Appendix E. Conceptual Schematics of the Proposed Improvements
Appendix F. Cost Estimate
Appendix G. Economic Crash Analysis Tool Results

Executive Summary

The Ohio Department of Transportation (ODOT) retained Arcadis U.S., Inc. (Arcadis) to study safety and traffic operations at the intersection of U.S. Route 422 (U.S. 422) with Rapids Road in Geauga County, Ohio. The intersection is located approximately 14 miles east of the City of Solon and 6 miles west of the Village of Parkman. U.S. 422 is an east-west corridor that provides a connection between the cities of Cleveland and Warren. Rapids Road is a north-south corridor connecting U.S. 422 to State Route (SR) 87. The purpose of this safety study is to analyze existing safety conditions, predict future safety conditions, and develop safety improvements that will promote safe and efficient traffic operations now and in the future.
ODOT District 12 has been monitoring crashes and traffic operations at the intersection of U.S. 422 and Rapids Road for several years. A summary of the safety history is below:

- In 2014, ODOT completed the GEA-422-10.93/13.31 Corridor Study, which found that the intersection was ranked \#60 on ODOT's safety priority list for rural intersections and recommended constructing a traffic signal and left turn lanes on U.S. 422.
- In 2015, following the recommendations from the GEA-422-10.93/13.31 Corridor Study, ODOT converted the signal to a traffic signal but did not build the left turn lanes.
- In 2017, ODOT completed the GEA-422 (11.11-11.55) Abbreviated Safety Study, which found that the intersection ranked \#17 in 2015 (the same year the signal was constructed) and \#82 in 2016 for rural intersections.
- In 2018 the intersection was ranked \#161 on ODOT's safety priority list for rural intersections.
- In 2020 the intersection was ranked \#165 on ODOT's safety priority list for rural intersections.
- In 2022, ODOT completed the 2022 GEA-422 Traffic Operations Assessment Systems Tool (TOAST) Study, which provided TOAST scores for the intersection and identified an opportunity for improvements to safety, incident clearance time, volume per lane, and travel time.

The 2014, 2017, and 2022 studies identified rear-end crashes as the predominant crash type on U.S. 422 and recommended improving intersection sight distance, constructing left-turn lanes on U.S. 422, and interconnecting the traffic signals at Great Lake Parkway, Rapids Road, and SR 700.

Between 2019 and 2021, 16 crashes and 6 injuries occurred at the intersection of U.S. 422 and Rapids Road. Rear-end crashes were the most common crash type, accounting for 10 of the 16 crashes and all 6 injuries. All of the rear-end crashes occurred on U.S. 422. Given that most of the crashes were rear-end crashes on U.S. 422, proposed improvements include construction of left-turn lanes on U.S. 422 to provide storage for vehicles waiting to turn left during a green signal phase, reconstructing the traffic signal using mast arms, and implementing flashing yellow arrow (FYA) signal operation.

The benefit-cost ratio for the proposed improvements is 0.98 . If implemented, these countermeasures are anticipated to provide a sufficient safety benefit to justify the cost of construction. According to ODOT's Economic Crash Analysis Tool (ECAT), the proposed improvements will reduce crashes by 3 per year.

1 Introduction

The Ohio Department of Transportation (ODOT) retained Arcadis U.S., Inc. (Arcadis) to study the overall safety and traffic operations of the intersection of U.S. Route 422 (U.S. 422) with Rapids Road in Geauga County, Ohio. The study area is located approximately 14 miles east of the City of Solon and 6 miles west of the Village of Parkman. The safety study included an analysis of the existing safety performance of the intersection; a traffic analysis of current intersection operations and future intersection operations (with no improvements and with implementation of proposed improvements); and a predictive safety analysis to quantify the safety benefits associated with the proposed improvements. This report presents the results of the safety study.

2 Purpose and Need

The purpose of this safety study is to analyze existing safety conditions, predict future safety conditions, and determine the potential safety benefit of proposed improvements.

The need for this study is demonstrated by the findings of three studies conducted by ODOT since 2014 that are described in Section 4. The intersection of U.S. 422 and Rapids Road has consistently appeared on ODOT's safety priority list for rural intersections since 2014 with rankings varying from \#17 to \#82. The most recent study, completed in 2022, provided Traffic Operations Assessment Systems Tool (TOAST) scores documenting safety, incident clearance times, volumes per lane, travel time performance, freight performance, bottlenecks, and secondary crashes.

Traffic congestion along U.S. 422 is a daily, ongoing issue. It is common for a queue of vehicles to develop on U.S. 422 because of the signal or when a westbound or eastbound traveling vehicle is stopped during a green signal phase while waiting to turn left onto Rapids Road. Therefore, ODOT is evaluating the potential safety and efficiency benefits of constructing left-turn lanes on U.S. 422.

3 Existing Conditions

U.S. 422 is an east-west principal arterial with a posted speed limit of 45 miles per hour (mph) and an average daily traffic (ADT) volume of approximately 16,000 vehicles per day (vpd), of which 10 to 12 percent is truck traffic. There is one 12 -foot-wide lane in each direction, with 1 -foot-wide paved shoulders adjacent to the travel lanes. The road is striped with centerline rumble stripes and edge lines. Rapids Road is a north-south local road with a posted speed limit of 55 mph and an ADT volume of $2,000 \mathrm{vpd}$, of which less than 1 percent is truck traffic. There is one 12 -foot-wide lane in each direction, with a 1 -foot-wide paved shoulder adjacent to the travel lanes. The intersection is signalized with no turn lanes. The signal heads are mounted to span wire. The signal operates using three phases: one phase for U.S. 422; one phase for Rapids Road; and a third short, protected eastbound left-turn phase during the p.m. peak hour, although there is no eastbound left-turn lane.

The pavement condition rating for U.S. 422 is 80 , according to the ODOT Transportation Information Mapping System (TIMS). Lighting is present at the intersection. Utility poles are present in all four corners of the intersection. There are no pedestrian facilities (sidewalk, curb ramps, and crosswalks). The study area is illustrated on Figure 1.

Figure 1. Study Area Map

A field visit was conducted on July 7, 2022, around 4:30 p.m. In addition, ODOT District 12 collected drone aerial video in August 2022. Observations of the study area during the field review are summarized as follows:

- Traffic volumes are high on U.S. 422 but relatively low on Rapids Road.

Figure 2. U.S. 422 Looking East

Figure 3. U.S. 422 Looking West

Figure 4. Rapids Road Looking North

Figure 5. Rapids Road Looking South

- A typical eastbound queue was seven to ten vehicles on U.S. 422 eastbound. However, at times the queue reached approximately 20 vehicles. The queue cleared during some signal phase but not each signal phase.

Figure 6. U.S. 422 Queues on the Eastbound Approach

- Vehicles queued on U.S. 422 behind a vehicle waiting to turn left were observed using the shoulder to bypass the left-turning vehicle.
- There are drainage ditches on all four sides of the intersection with a culvert that crosses beneath U.S. 422 on the west approach.
- A large number of single-unit trucks and semi-trucks were observed on U.S. 422.
- There is a slight downgrade on U.S. 422 west of the intersection.

4 Safety History

ODOT District 12 has been monitoring the crashes and traffic operations along U.S. 422, including the intersection of U.S. 422 and Rapids Road, for almost 10 years.

In 2014, ODOT District 12 conducted the GEA-422-10.93/13.31 Corridor Study to examine existing safety conditions and traffic operations along U.S. 422. The study identified several segments and intersections on ODOT's safety priority list including the intersection of U.S. 422 and Rapids Road, which ranked \#60 for rural intersections. The study identified rear-end and angle crashes as the top two crash types and a failing level of service (LOS) on Rapids Road. The study recommendations included installing a new three-phase traffic signal, improving intersection sight distance, constructing left-turn lanes on U.S. 422, and interconnecting the new traffic signal with the traffic signals at Great Lake Parkway and State Route (SR) 700.

In 2015, ODOT District 12 constructed a new traffic signal.
In 2017, ODOT District 12 conducted the GEA-422 (11.11-11.55) Abbreviated Safety Study to examine existing safety conditions and traffic operations along U.S. 422 including the Rapids Road intersection. The study found that the intersection of U.S. 422 at Rapids Road ranked \#17 in 2015 (the year the traffic signal was constructed), and \#82 in 2016 for rural intersections on ODOT's safety priority lists. The study recommendations included
installing a backplate on the traffic signal heads, installing a 40 -mph advisory speed placard approaching the intersection, and constructing left-turn lanes on U.S. 422.

In 2018 the intersection was ranked \#161 on ODOT's safety priority list for rural intersections.
In 2020 the intersection was ranked \#165 on ODOT's safety priority list for rural intersections.
In 2022, ODOT District 12 conducted the 2022 GEA-422 TOAST Study to examine existing safety conditions along U.S. 422 from Shaw Road to Rapids Road. The TOAST scores for the segment of U.S. 422 that includes the intersection with Rapids Road showed an opportunity for improvement in safety, incident clearance time, volume per lane, and travel time. Specific to the intersection at Rapids Road, the TOAST study recommendations included constructing left-turn lanes on U.S. 422 and interconnecting the traffic signals at Great Lakes Parkway, Rapids Road, and SR 700.

5 Crash Data

Crash data from 2019 to 2021 were provided by ODOT District 12 and analyzed using ODOT's Crash Analysis Module (CAM) Tool. A total of 16 crashes and 6 injuries occurred within the study area during the three-year period. Crash data for the study area were compared to statewide averages obtained from ODOT's CAM Tool.

5.1 Statewide Comparison

The frequency of crash types in the study area compared to statewide averages for rural roads on the state system is shown on Figure 7. As indicated on the figure, rear-end, right-turn, and injury crashes occur more frequently in the study area compared to statewide averages.

Figure 7. Crash History Compared to Statewide Averages

5.2 Crash Statistic Summary

Additional statistics based on the crash data are summarized in Table 1. As shown in the table, the most common crash type that occurred between 2019 and 2021 was rear-end crashes. None of the crashes resulted in a fatality. All six injuries were a result of rear-end crashes. Twelve crashes occurred on dry pavement, indicating that weather is not typically a contributing factor. Thirteen crashes occurred between 6 a.m. and $7 \mathrm{p} . \mathrm{m}$., indicating that lighting is not typically a contributing factor. More detailed explanations of the crashes are provided following the table.

Table 1. Study Area Crash Statistics (2019 to 2021)

Crash Severity	Number	Percentage
Fatal Crash	0	0%
Injury Crash	6	38%
Property Damage Only (PDO) Crash	10	62%

Light Condition	Number	Percentage
Daylight	13	81%
Dark - Not Lighted	2	13%
Dawn/Dusk	1	6%

Type of Crash	Number	Percentage
Rear-End	13	82%
Fixed Object	1	6%
Backing	1	6%
Right-Turn	1	6%

Road Condition	Number	Percentage
Dry	12	75%
Wet	4	25%

Month	Number	Percentage
January	2	13%
February	3	19%
March	0	0%
April	2	13%
May	0	0%
June	1	6%
July	5	30%
August	1	6%
September	2	13%
October	0	0%
November	0	0%
December	0	0%

Contributing Factor	Number	Percentage
Followed too Closely/ACDA	13	69%
Failure to Control	1	6%
Other	1	6%
Left of Center	1	6%

Year	Crash	Percentage
2019	6	37%
2020	3	19%
2021	7	44%

Rear-End Crashes - Rear-end crashes accounted for approximately 82 percent of all crashes and 100 percent of all injuries. Ten of the 13 rear-end crashes were coded as rear-end crashes in TIMS. Two crashes that were coded as fixed object crashes were recoded as rear-end crashes because they were caused by eastbound vehicles striking the drainage ditch on the south side of U.S. 422 trying to avoid a rear-end crash. One crash that was coded as a sideswipe passing crash was recoded as a rear-end crash because it involved a motorcycle traveling westbound that swerved across the centerline to avoid a rear-end crash and sideswiped the vehicle it
was trying to avoid. All of the rear-end crashes occurred on U.S. 422. Assured clear distance or following too closely was the contributing factor in all of these crashes.

Fixed Object Crashes - After two of the fixed object crashes were recoded as rear-end crashes only, one fixed object crash remained in the dataset. This crash involved a vehicle traveling westbound that lost control in the intersection and struck a tree on the north side of U.S. 422 approximately 100 feet west of the intersection. This crash involved a drunk driver at 10.00 p.m. on a Saturday night.

Backing Crash - The backing crash occurred when two single-unit trucks traveling eastbound were stopped at the signal and the lead truck reversed to back out of the intersection.

Right-Turn Crash - This crash involved a vehicle traveling westbound that turned right and struck a southbound vehicle waiting at the traffic signal. This crash occurred in the snow on wet pavement.

A full printout from the ODOT CAM Tool is included in Appendix A and a crash diagram is included in Appendix B.

5.3 Crash Probable Causes

As indicated in Section 5, rear-end crashes accounted for the majority of the crashes that occurred in the study area between 2019 and 2021. Assured clear distance or following too closely was the contributing factor in most of these crashes. From a review of the $\mathrm{OH}-1$ reports, it is difficult to discern whether a rear-end crash occurred because traffic was queued during a red signal phase or because traffic was queued during a green signal phase while the vehicle at the signal was waiting to turn left onto Rapids Road.

6 Proposed Improvements

Given that the majority of crashes in the study area are rear-end crashes on U.S. 422, the proposed countermeasure is to add eastbound and westbound left-turn lanes. The addition of left-turn lanes will minimize through-movement blockage by providing storage space on U.S. 422 for vehicles turning left. The traffic signal will be reconstructed using mast arms and flashing yellow arrow (FYA) signal operation will be implemented. A conceptual schematic of the proposed improvements is included in Appendix E .

The left-turn lane lengths proposed for the intersection of U.S. 422 and Rapids Road were calculated using guidance provided in the ODOT Location and Design (L\&D) Manual, Volume 1. The L\&D Manual provides guidelines to calculate the length of each turn lane based on traffic demand and degree of blockage caused by vehicles queued in the adjacent through lanes. The calculated length of each proposed left-turn lane is summarized in Table 2. The proposed turn lane length is 650 feet to comply with the recommendations for the maximum length of a turn lane in ODOT's L\&D Manual, Volume 1.

Table 2. Calculated Left-Turn Lane Lengths

Movement	Approach Lane Configuration	Cycle Length (s)	Calculated Storage (feet)		Calculated Through Blockage (feet)		Proposed Turn Lane Length (feet)
			AM	PM	AM	PM	
EBL	L-TR	90	125	175	375	750	650
WBL	L-TR	90	125	125	775	450	650

The proposed length of each left-turn lane was not selected based on the calculated through blockage lengths in an effort to minimize impacts to adjacent properties and to reduce construction cost.

7 Capacity Analysis

A capacity analysis is the primary method for evaluating the efficiency of a roadway or intersection as it relates to vehicular traffic. The Highway Capacity Manual, published by the Transportation Research Board, outlines capacity analysis procedures and criteria for evaluating the operations of unsignalized and signalized intersections. ${ }^{1}$ The criteria for evaluating the operation of an intersection are measured in terms of LOS, a qualitive measure, and control delay per vehicle. There are six levels of service, designated by the letters A through F. LOS A represents the best operating conditions, and LOS F represents the worst operating conditions. An overall intersection LOS of A through D is generally considered acceptable for ODOT projects. LOS criteria are listed in Table 3.

Table 3. Level of Service Criteria for Signalized Intersections

Level of Service	Signalized Intersection Delay (seconds)
A	≤ 10
B	$>10-20$
C	$>20-35$
D	$>35-55$
E	$>55-80$
F	>80 or Volume-Capacity Ratio >1.0

The existing conditions, no-build conditions, and build conditions capacity analyses were conducted using Highway Capacity Software (HCS).

7.1 Data Collection and Design Hourly Traffic Volumes

The traffic volume data necessary to complete the capacity analysis were obtained from two sources. ODOT District 12 collected turning movement count (TMC) data on June 2, 2022. The data captured the a.m. and p.m. peak hours, which are 6:15 a.m. to 7:15 a.m. and 4:45 p.m. to 5:45 p.m., respectively. The Northeast Ohio Areawide Coordinating Agency's (NOACA's) Travel Demand Model identified a 0.3 percent background linear growth rate.

To develop the a.m. and p.m. design hourly traffic volumes (DHV), the 2022 a.m. and p.m. peak hour TMCs were rounded up to the nearest five vehicles and forecasted to 2027 and 2047 using the 0.3 percent background linear growth rate provided by NOACA. The truck percentage on U.S. 422 is 10 percent eastbound and 12 percent

[^0]westbound. Copies of the 2022 TMC data and the growth rate information provided by NOACA are included in Appendix C, along with 2022, 2027, and 2047 DHVs.

7.2 Existing Conditions Capacity Analysis

A traffic capacity analysis was conducted to evaluate the existing intersection operations. The analysis used the existing 90 second cycle length, the protected eastbound left-turn phase (without a dedicated left turn lane) during the p.m. peak hour, and the U.S. 422 phases set to max during the a.m. peak hour. The results of the analysis are presented in Table 4.

As shown in the table, overall, the intersection operates at LOS B in the a.m. and p.m. peak hours. Although the overall intersection LOS is acceptable, the $95^{\text {th }}$ percentile queue is almost 300 feet long on U.S. 422 westbound during the a.m. peak hour and approximately 300 feet long on U.S. 422 eastbound during the p.m. peak hour. The HCS output is included in Appendix D.

Table 4. Existing Conditions (2022) Capacity Analysis Results

Intersection	Movement	AM			PM		
		LOS	$\begin{gathered} \text { Delay } \\ \text { (seconds) } \end{gathered}$	Average Queue Length (feet)	LOS	$\begin{aligned} & \text { Delay } \\ & \text { (seconds) } \end{aligned}$	Average Queue Length (feet)
U.S. 422 and Rapids Road	Eastbound	A	3.4	60	B	11.1	294
	Westbound	A	10.0	281	A	8.9	207
	Northbound	D	40.2	47	D	39.4	31
	Southbound	D	41.4	70	D	41.8	87
	Overall	B	10.5		B	12.6	

7.3 No-Build Conditions Capacity Analysis

A traffic capacity analysis was conducted to evaluate future intersection operations assuming no improvements are implemented based on traffic volumes forecasted to 2047. The analysis used the same signal timing as discussed in Section 7.2. The results of the analysis are presented in Table 5.

As shown in the table, overall, the intersection operates at LOS B in the a.m. and p.m. peak hours. The $95^{\text {th }}$ percentile queue increases to 450 feet on U.S. 422 westbound during the a.m. peak hour and to almost 400 feet on U.S. 422 eastbound during the p.m. peak hour. Overall, traffic operations will deteriorate slightly as traffic volumes in the study area increase. The HCS output is included in Appendix D.

Table 5. No-Build Conditions (2047) Capacity Analysis Results

Intersection	Movement	AM			PM		
		LOS	$\begin{aligned} & \text { Delay } \\ & \text { (seconds) } \end{aligned}$	Average Queue Length (feet)	LOS	$\begin{aligned} & \text { Delay } \\ & \text { (seconds) } \end{aligned}$	Average Queue Length (feet)
U.S. 422 and Rapids Road	Eastbound	A	4.4	89	C	20.5	374
	Westbound	B	17.0	447	B	10.8	259
	Northbound	D	40.1	78	D	39.4	61
	Southbound	D	43.3	107	D	47.1	132
	Overall	B	16.0		B	19.8	

7.4 Build Conditions Capacity Analysis

A traffic capacity analysis was conducted to evaluate future intersection operations with the addition of the proposed left-turn lanes on U.S. 422. The analysis used the same signal timing as discussed in Section 7.2. The results of the analysis are presented in Table 6.

As shown in the table, the intersection operates at LOS B in the a.m. and p.m. peak hours and the overall delay decreases slightly. The $95^{\text {th }}$ percentile queue on U.S. 422 westbound decreases approximately 50 feet during the a.m. peak hour and the $95^{\text {th }}$ percentile queue on U.S. 422 eastbound decreases approximately 50 feet during the p.m. peak hour.

Table 6. Build Conditions (2047) Capacity Analysis Results

Intersection	Movement	AM			PM		
		LOS	$\begin{gathered} \text { Delay } \\ \text { (seconds) } \end{gathered}$	Average Queue Length (feet)	LOS	$\begin{aligned} & \text { Delay } \\ & \text { (seconds) } \end{aligned}$	Average Queue Length (feet)
U.S. 422 and Rapids Road	Eastbound Left	C	25.0	26	A	4.8	10
	Eastbound Through	A	3.7	71	B	12.8	338
	Westbound Left	A	4.1	<10	B	18.6	11
	Westbound Through	B	16.1	406	A	9.4	230
	Northbound	D	41.2	79	D	40.4	62
	Southbound	D	46.5	113	D	52.7	143
	Overall	B	15.9		B	14.9	

The HCS analysis results for 2047 are included in Appendix D.

8 Conceptual Estimate of Probable Cost

A conceptual estimate of probable cost to implement the proposed improvements was prepared using ODOT historical bid prices. The estimates include the cost for design, right-of-way, and construction. Estimated construction costs were developed using estimated quantities for items that would be needed for or impacted by implementation of the recommended improvements.

The following assumptions were utilized in developing the conceptual estimate of probable cost:

- Unit prices for all items were estimated based on ODOT's Historical Bid Data Item Search (2019-2022)
- A 30 percent design contingency was selected based on the Procedures for Budget Estimating.
- The rate of inflation was calculated using the ODOT Office of Estimating Fiscal Year 2023-2027 Business Plan Inflation Calculator. Based on a construction midpoint of June 2023, a 5 percent rate of inflation (to the assumed midpoint of construction) was assumed.

The total 2023 conceptual estimate of probable construction cost (with inflation) is $\$ 902,016$. The total project cost includes $\$ 80,000$ for preliminary engineering, 90,000 for final design, and $\$ 100,000$ for right-of-way acquisition. Therefore, the total project cost is $\$ 1,202,016$. A detailed cost estimate is included in Appendix F.

9 Safety Benefit

The safety benefit associated with the proposed improvements discussed in Section 8 was analyzed. The American Association of State Highway and Transportation Officials (AASHTO) Highway Safety Manual (HSM) is used to determine how an intersection is performing compared to similar locations. ${ }^{2}$ It is also used to assess the safety benefits of proposed improvements. The HSM Part C discusses use of a predictive model for this type of analysis. The predictive method estimates the predicted crash frequency ($\mathrm{N}_{\text {predicted }}$) together with observed crash frequency to estimate the expected crash frequency ($\mathrm{Nexpeccted}^{\text {) }}$. The difference between predicted and expected crash frequency is explained below.
$\mathrm{N}_{\text {predicted }}$ is the anticipated (predicted) crash frequency, which describes how a location is expected to perform relative to similar sites. The calculation of $\mathrm{N}_{\text {predicted }}$ uses Safety Performance Functions to determine a base condition and applies crash modification factors to account for site-specific features that differ from the base condition. The final value is multiplied by a calibration factor specific to Ohio to normalize the base condition. $N_{\text {expected }}$ is the estimated expected average crash frequency at a site for a given time period. The calculation of Nexpected uses the Empirical Bayes method to combine actual crash frequency with Npredicted. The difference between Npredicted and Nexpected is the "expected excess crashes." If Nexpected is greater than Npredicted, the location may benefit from a safety improvement. If $\mathrm{N}_{\text {expected }}$ is less than $\mathrm{N}_{\text {predicted }}$, the site is experiencing fewer crashes than similar sites.

ODOT's Economic Crash Analysis Tool (ECAT) was used to calculate $\mathrm{N}_{\text {predicted }}$ and $\mathrm{N}_{\text {expected. }}$ The existing conditions (traffic control, presence of a median, number of lanes, intersection control, lighting, presence of driveways) were input into ECAT. The proposed conditions match the existing conditions with the addition of an eastbound and a westbound left-turn lane to determine the reduction in crashes that can be expected and to

[^1]perform a benefit-cost analysis for the proposed improvements. Complete ECAT results are included in Appendix G.

Table 7 presents a comparison of existing intersections ($\mathrm{N}_{\text {expected existing) }}$ to similar intersections ($\mathrm{N}_{\text {predicted existing) }}$ and to the proposed improvements ($\mathrm{N}_{\text {predicted proposed) }}$). The table shows that if the proposed improvements are implemented, the frequency of injury and PDO crashes is predicted to decrease and the overall crash frequency may decrease by three crashes per year.

Table 7. Proposed Improvements - ECAT Analysis Results Summary

Crashes	KA		B	C		0
Npredicted (Existing Conditions)	0.3	1.2	1.6	9.4	12.5	
Nexpected (Existing Conditions)	0.3	1.0	1.3	6.8	9.4	
$N_{\text {Potential for Improvement (Existing Conditions) }}$	-0.1	-0.2	-0.3	-2.6	-3.1	
$N_{\text {predicted }}$ (Proposed Conditions)	0.2	0.9	1.2	7.0	9.3	

ODOT's ECAT was also used to compare the cost to construct the proposed improvements to the anticipated safety benefit. The results of the benefit-cost analysis are shown in Table 8.

Table 8. Proposed Improvements Benefit-Cost Summary

Value	Result
Expected Annual Crash Adjustment	3.23
Net Present Value of the Build Alternative	$\$ 1,202,016$
Net Present Value of Safety Benefit	$\$ 1,453,785$
Benefit-Cost Ratio	0.98

The proposed improvements show a benefit-cost ratio just below 1 .

10 Conclusions and Recommendations

ODOT's ECAT was used to calculate the reduction in crashes that can be expected if eastbound and westbound left-turn lanes are constructed on U.S. 422 and to perform a benefit-cost analysis based on the safety benefit. A benefit-cost ratio greater than 1 indicates a positive return on investment.

The benefit-cost ratio for the proposed improvements is just below 1 . If implemented, the proposed improvements are predicted to provide a sufficient safety benefit to justify the cost of construction. It is recommended that the proposed improvements be constructed.

Arcadis U.S., Inc.
1300 Superior Avenue, Suite 1300
Cleveland
Ohio 44114
Phone: 2162985239
Fax: 2167816177
www.arcadis.com

APPENDIX A

Crash Analysis Module Tool Results

Frequency of Crashes by Hour

Number

Frequency of Crashes by Month

Number

Frequency of Crashes by Light Condition

LIGHT_CONDITION
\square Daylight
\square Dark - Roadway Not Lighted
\square Dawn/Dusk

Number

> Frequency of Crashes by Road Condition

Number
Frequency of Crashes by Road Contour

Frequency of Crashes by Contributing Factor 1

Number

Frequency of Crashes by Contributing Factor 2

Z
0
0
0

Number
Frequency of Crashes by Action 2

ACTION2

Number
Driver 1 Alcohol

DRIVER_ALCOHOL1
\square No

- Yes

Number
Driver 2 Alcohol

DRIVER_ALCOHOL2
\square (blank)

Select Site Type
Int/Rur; 4-leg signalized

Crash Severity	Site Average		Statewide Average
	Total (2019-2021)	Total (\%)	Total (\%)
Fatal Crash	0	0.00%	0.33%
Serious Injury Suspected Crash	1	6.25%	2.84%
Minor Injury Suspected Crash	2	12.50%	11.13%
Injury Possible Crash	3	18.75%	11.29%
Property-Damage-Only	10	62.50%	74.42%
Total	$\mathbf{1 6}$		

Crashes by Crash Type				
	Total (\%)		Fatal \& All Injury (\%)	
Crash Type	Site Average	Statewide Average	Site Average	Statewide Average
Unknown	0.00\%	0.16\%	0.00\%	0.05\%
Head On	0.00\%	2.38\%	0.00\%	4.39\%
Rear End	81.25\%	33.94\%	81.25\%	32.42\%
Backing	6.25\%	7.97\%	6.25\%	0.61\%
Sideswipe - Meeting	0.00\%	0.67\%	0.00\%	0.44\%
Sideswipe - Passing	0.00\%	6.53\%	0.00\%	3.10\%
Angle	0.00\%	14.91\%	0.00\%	26.43\%
Parked Vehicle	0.00\%	3.06\%	0.00\%	0.85\%
Pedestrian	0.00\%	0.80\%	0.00\%	2.79\%
Animal	0.00\%	2.64\%	0.00\%	0.31\%
Train	0.00\%	0.04\%	0.00\%	0.00\%
Pedalcycles	0.00\%	0.42\%	0.00\%	0.99\%
Other Non-Vehicle	0.00\%	0.00\%	0.00\%	0.00\%
Fixed Object	6.25\%	6.85\%	6.25\%	5.03\%
Other Object	0.00\%	0.24\%	0.00\%	0.00\%
Falling From Or In Vehicle	0.00\%	0.00\%	0.00\%	0.00\%
Overturning	0.00\%	0.40\%	0.00\%	0.85\%
Other Non-Collision	0.00\%	0.69\%	0.00\%	0.31\%
Left Turn	0.00\%	14.18\%	0.00\%	19.22\%
Right Turn	6.25\%	4.12\%	6.25\%	2.21\%

Crashes by Light Conditions				
	Total (\%)		Fatal \& All Injury (\%)	
Light Conditions	Site Average	Statewide Average	Site Average	Statewide Average
Daylight	81.25%	75.64%	81.25%	74.97%
Dawn/Dusk	6.25%	4.86%	6.25%	4.39%
Dark - Lighted Roadway	0.00%	10.32%	0.00%	10.27%
Dark - Roadway Not Lighted	12.50%	7.93%	12.50%	9.32%
Dark - Unknown Roadway Lighting	0.00%	0.28%	0.00%	0.24%
Other / Unknown	0.00%	0.97%	0.00%	0.81%

Crashes by Road Conditions				
	Total (\%)		Fatal \& All Injury (\%)	
Road Conditions	Site Average	Statewide Average	Site Average	Statewide Average
Dry	70.59%	74.05%	70.59%	76.43%
Wet	23.53%	19.52%	23.53%	19.86%
Snow	0.00%	4.39%	0.00%	2.76%
Ice	0.00%	1.27%	0.00%	0.54%
Sand, Mud, Dirt, Oil, Gravel	0.00%	0.04%	0.10%	
Water (Standing, Moving)	0.00%	0.02%	0.00%	0.00%
Slush	0.00%	0.19%	0.00%	0.14%
Other / Unknown	5.88%	0.52%	0.00%	0.17%

APPENDIX B

Crash Diagram

APPENDIX C

Traffic Volumes

APPENDIX C

Traffic Volumes - Turning Movement Counts

Ohio Department of Transportation 1980 West Broad Stree

Start Time	ng Movement Data															Eastbound Approach Eastbound					Int. Total
	Southbound Approach					Westbound Approach					Northbound Approach										
			uthbou					estbound					rthbou								
	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	
5:30 AM	9	0	0	0	9	3	186	0	0	189	0	0	5	0	5	0	34	1	0	35	238
5:45 AM	8	0	0	0	8	6	174	0	0	180	1	2	7	0	10	0	64	1	0	65	263
Hourly Total	17	0	0	0	17	9	360	0	0	369	1	2	12	0	15	0	98	2	0	100	501
$\begin{aligned} & \text { 6:00 AM } \\ & \text { 6:15 AM } \\ & \text { 6:30 AM } \\ & \text { 6:45 AM } \end{aligned}$	6	0	0	0	6	0	180	0	0	180	2	1	11	0	14	1	101	1	0	103	303
	16	1	0	0	17	1	255	1	0	257	4	2	7	0	13	3	104	2	0	109	396
	17	1	0	0	18	2	250	0	0	252	0	2	10	0	12	1	77	1	0	79	361
	14	1	3	0	18	4	213	0	0	217	0	1	4	0	5	0	82	7	0	89	329
Hourly Total	53	3	3	0	59	7	898	1	0	906	6	6	32	0	44	5	364	11	0	380	1389
$\begin{aligned} & \text { 7:00 AM } \\ & \text { 7:15 AM } \\ & \text { 7:30 AM } \\ & \text { 7:45 AM } \end{aligned}$	4	0	0	0	4	0	194	1	0	195	0	1	8	0	9	3	109	6	0	118	326
	15	2	3	0	20	1	191	1	0	193	0	3	6	0	9	2	109	10	0	121	343
	15	3	2	0	20	6	207	0	0	213	1	4	5	0	10	1	92	9	0	102	345
	19	0	3	0	22	7	185	1	0	193	0	4	11	0	15	2	107	11	0	120	350
Hourly Total	53	5	8	0	66	14	777	3	0	794	1	12	30	0	43	8	417	36	0	461	1364
$\begin{aligned} & \text { 8:00 AM } \\ & \text { 8:15 AM } \\ & \text { 8:30 AM } \\ & \text { 8:45 AM } \\ & \hline \end{aligned}$	16	1	0	0	17	0	187	0	0	187	0	3	7	0	10	1	105	9	0	115	329
	11	3	0	0	14	2	166	1	0	169	1	2	3	0	6	1	82	12	0	95	284
	11	3	3	0	17	1	169	0	0	170	0	0	5	0	5	2	92	11	0	105	297
	6	3	1	0	10	4	129	0	0	133	2	1	5	0	8	2	73	12	0	87	238
Hourly Total	44	10	4	0	58	7	651	1	0	659	3	6	20	0	29	6	352	44	0	402	1148
$\begin{aligned} & \text { 9:00 AM } \\ & \text { 9:15 AM } \\ & \text { 9:30 AM } \\ & \text { 9:45 AM } \\ & \hline \end{aligned}$	8	0	1	0	9	0	100	1	0	101	0	1	3	0	4	4	90	11	0	105	219
	5	1	2	0	8	0	115	2	0	117	0	0	2	0	2	0	90	5	0	95	222
	4	0	1	0	5	3	110	0	0	113	0	2	1	0	3	1	91	5	0	97	218
	4	0	0	0	4	1	101	0	0	102	1	3	4	0	8	4	83	5	0	92	206
Hourly Total	21	1	4	0	26	4	426	3	0	433	1	6	10	0	17	9	354	26	0	389	865
$\begin{aligned} & \text { 10:00 AM } \\ & \text { 10:15 AM } \\ & \text { 10:30 AM } \\ & \text { 10:45 AM } \\ & \hline \end{aligned}$	10	3	1	0	14	3	111	0	0	114	1	0	4	0	5	2	95	7	0	104	237
	4	1	3	0	8	1	105	2	0	108	4	1	2	0	7	1	74	6	0	81	204
	5	0	3	0	8	1	96	0	0	97	2	1	1	0	4	0	107	3	0	110	219
	7	0	0	0	7	3	84	1	0	88	0	1	5	0	6	0	84	6	0	90	191
Hourly Total	26	4	7	0	37	8	396	3	0	407	7	3	12	0	22	3	360	22	0	385	851
$\begin{aligned} & \text { 11:00 AM } \\ & \text { 11:15 AM } \\ & \text { 11:30 AM } \\ & \text { 11:45 AM } \end{aligned}$	5	2	1	0	8	3	90	2	0	95	1	2	1	0	4	4	106	8	0	118	225
	2	2	1	0	5	1	115	1	0	117	1	1	4	0	6	4	65	6	0	75	203
	4	0	1	0	5	3	92	2	0	97	3	2	4	0	9	4	94	7	0	105	216
	5	0	2	0	7	2	103	1	0	106	0	3	4	0	7	4	103	7	0	114	234
Hourly Total	16	4	5	0	25	9	400	6	0	415	5	8	13	0	26	16	368	28	0	412	878
$\begin{aligned} & \text { 12:00 PM } \\ & \text { 12:15 PM } \end{aligned}$	10	2	6	0	18	1	120	0	0	121	1	1	2	0	4	2	116	12	0	130	273
	9	0	0	0	9	3	115	1	0	119	0	3	5	0	8	4	114	8	0	126	262

12:30 PM	5	1	0	0	6	0	105	1	0	106	2	0	2	0	4	1	94	5	0	100	216
12:45 PM	10	2	3	0	15	1	109	2	0	112	1	1	4	0	6	5	91	8	0	104	237
Hourly Total	34	5	9	0	48	5	449	4	0	458	4	5	13	0	22	12	415	33	0	460	988
1:00 PM	5	2	0	0	7	0	130	0	0	130	0	0	2	0	2	3	115	10	0	128	267
1:15 PM	6	0	1	0	7	0	104	0	0	104	2	4	3	0	9	2	134	5	0	141	261
1:30 PM	10	2	0	0	12	0	132	1	0	133	2	2	1	0	5	3	135	8	0	146	296
1:45 PM	7	3	2	0	12	1	117	0	0	118	2	0	1	0	3	5	138	10	0	153	286
Hourly Total	28	7	3	0	38	1	483	1	0	485	6	6	7	0	19	13	522	33	0	568	1110
2:00 PM	8	1	0	0	9	3	134	3	0	140	0	0	0	0	0	4	152	10	0	166	315
2:15 PM	7	1	2	0	10	2	142	1	0	145	2	1	3	0	6	3	157	4	0	164	325
2:30 PM	7	4	5	0	16	0	115	1	0	116	3	2	4	0	9	7	172	8	0	187	328
2:45 PM	9	1	1	0	11	2	108	1	0	111	0	1	2	0	3	5	190	8	0	203	328
Hourly Total	31	7	8	0	46	7	499	6	0	512	5	4	9	0	18	19	671	30	0	720	1296
3:00 PM	6	5	2	0	13	3	98	2	0	103	0	1	1	0	2	4	211	14	0	229	347
3:15 PM	11	1	1	0	13	5	126	1	0	132	0	0	1	0	1	6	188	14	0	208	354
3:30 PM	6	4	2	0	12	2	99	3	0	104	2	1	1	0	4	3	221	13	0	237	357
3:45 PM	2	3	5	0	10	3	117	1	0	121	3	1	4	0	8	2	226	10	0	238	377
Hourly Total	25	13	10	0	48	13	440	7	0	460	5	3	7	0	15	15	846	51	0	912	1435
4:00 PM	9	4	7	0	20	1	108	3	0	112	2	3	3	0	8	5	214	25	0	244	384
4:15 PM	9	1	2	0	12	2	118	3	0	123	0	3	3	0	6	15	203	5	0	223	364
4:30 PM	3	9	4	0	16	1	104	0	0	105	0	5	1	0	6	10	183	17	0	210	337
4:45 PM	6	6	0	0	12	2	117	1	0	120	2	1	2	0	5	4	225	15	0	244	381
Hourly Total	27	20	13	0	60	6	447	7	0	460	4	12	9	0	25	34	825	62	0	921	1466
5:00 PM	8	2	5	0	15	0	108	1	0	109	2	5	0	0	7	10	226	18	0	254	385
5:15 PM	11	8	3	0	22	5	121	1	0	127	3	1	3	0	7	7	220	10	0	237	393
5:30 PM	11	2	8	0	21	5	116	2	0	123	3	1	3	0	7	8	180	17	0	205	356
5:45 PM	11	2	4	0	17	2	96	0	0	98	0	1	3	0	4	3	173	19	0	195	314
Hourly Total	41	14	20	0	75	12	441	4	0	457	8	8	9	0	25	28	799	64	0	891	1448
6:00 PM	7	2	4	0	13	1	102	1	0	104	1	2	2	0	5	8	167	8	0	183	305
6:15 PM	9	3	2	0	14	0	76	2	0	78	2	2	3	0	7	4	156	8	0	168	267
6:30 PM	6	3	2	0	11	2	81	2	0	85	2	1	2	0	5	2	133	5	0	140	241
6:45 PM	3	2	2	0	7	1	68	3	0	72	1	0	0	0	1	4	113	3	0	120	200
Hourly Total	25	10	10	0	45	4	327	8	0	339	6	5	7	0	18	18	569	24	0	611	1013
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	3	3
Grand Total	441	103	104	0	648	106	6994	54	0	7154	62	86	190	0	338	186	6962	467	0	7615	15755
Approach \%	68.1	15.9	16.0	0.0	-	1.5	97.8	0.8	0.0	-	18.3	25.4	56.2	0.0	-	2.4	91.4	6.1	0.0	-	-
Total \%	2.8	0.7	0.7	0.0	4.1	0.7	44.4	0.3	0.0	45.4	0.4	0.5	1.2	0.0	2.1	1.2	44.2	3.0	0.0	48.3	-
All Vehicles (no classification)	441	103	104	0	648	106	6994	54	0	7154	62	86	190	0	338	186	6962	467	0	7615	15755
$\begin{aligned} & \text { \% All Vehicles (no } \\ & \text { classification) } \\ & \hline \end{aligned}$	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Ohio Department of Transportation
1980 West Broad Street

$$
\text { Mail Stop } 5160
$$

Columbus, Ohio, United States 43223 +16147528099 Brian.Blayney@dot.state.oh.us

Office of Traffic Engineering

Count Name: GEA-422-11.56 Site Code:
Start Date: 06/02/2022 Page No: 3

Turning Movement Data Plot

Ohio Department of Transportation 1980 West Broad Street

$$
\begin{aligned}
& 80 \text { West Broad S } \\
& \text { Mail Stop } 5160
\end{aligned}
$$

Columbus, Ohio, United States 43223 +16147528099 Brian.Blayney@dot.state.oh.us Office of Traffic Engineering

Count Name: GEA-422-11.56 Site Code:
Start Date: 06/02/2022
Page No: 4

Turning Movement Peak Hour Data (6:15 AM)

Start Time	Southbound Approach					Westbound Approach					Northbound ApproachNorthbound					Eastbound Approach Eastbound					Int. Total
	Southbound					Westbound															
	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	
6:15 AM	16	1	0	0	17	1	255	1	0	257	4	2	7	0	13	3	104	2	0	109	396
6:30 AM	17	1	0	0	18	2	250	0	0	252	0	2	10	0	12	1	77	1	0	79	361
6:45 AM	14	1	3	0	18	4	213	0	0	217	0	1	4	0	5	0	82	7	0	89	329
7:00 AM	4	0	0	0	4	0	194	1	0	195	0	1	8	0	9	3	109	6	0	118	326
Total	51	3	3	0	57	7	912	2	0	921	4	6	29	0	39	7	372	16	0	395	1412
Approach \%	89.5	5.3	5.3	0.0	-	0.8	99.0	0.2	0.0	-	10.3	15.4	74.4	0.0	-	1.8	94.2	4.1	0.0	-	
Total \%	3.6	0.2	0.2	0.0	4.0	0.5	64.6	0.1	0.0	65.2	0.3	0.4	2.1	0.0	2.8	0.5	26.3	1.1	0.0	28.0	
PHF	0.750	0.750	0.250	0.000	0.792	0.438	0.894	0.500	0.000	0.896	0.250	0.750	0.725	0.000	0.750	0.583	0.853	0.571	0.000	0.837	0.891
All Vehicles (no classification)	51	3	3	0	57	7	912	2	0	921	4	6	29	0	39	7	372	16	0	395	1412
\% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Ohio Department of Transportation
1980 West Broad Street

Office of Traffic Engineering

Count Name: GEA-422-11.56 Site Code:
Start Date: 06/02/2022
Page No: 5

Turning Movement Peak Hour Data Plot (6:15 AM)

Ohio Department of Transportation 1980 West Broad Street

$$
\begin{aligned}
& 80 \text { West Broad S } \\
& \text { Mail Stop } 5160
\end{aligned}
$$

Columbus, Ohio, United States 43223 +16147528099 Brian.Blayney@dot.state.oh.us Office of Traffic Engineering

Count Name: GEA-422-11.56 Site Code:

Date: 06/02/2022
Page No: 6

Turning Movement Peak Hour Data (4:45 PM)

Start Time	Southbound Approach Southbound					Westbound ApproachWestbound					Northbound Approach Northbound					Eastbound Approach Eastbound					Int. Total
	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	
4:45 PM	6	6	0	0	12	2	117	1	0	120	2	1	2	0	5	4	225	15	0	244	381
5:00 PM	8	2	5	0	15	0	108	1	0	109	2	5	0	0	7	10	226	18	0	254	385
5:15 PM	11	8	3	0	22	5	121	1	0	127	3	1	3	0	7	7	220	10	0	237	393
5:30 PM	11	2	8	0	21	5	116	2	0	123	3	1	3	0	7	8	180	17	0	205	356
Total	36	18	16	0	70	12	462	5	0	479	10	8	8	0	26	29	851	60	0	940	1515
Approach \%	51.4	25.7	22.9	0.0	-	2.5	96.5	1.0	0.0	-	38.5	30.8	30.8	0.0	-	3.1	90.5	6.4	0.0	-	-
Total \%	2.4	1.2	1.1	0.0	4.6	0.8	30.5	0.3	0.0	31.6	0.7	0.5	0.5	0.0	1.7	1.9	56.2	4.0	0.0	62.0	-
PHF	0.818	0.563	0.500	0.000	0.795	0.600	0.955	0.625	0.000	0.943	0.833	0.400	0.667	0.000	0.929	0.725	0.941	0.833	0.000	0.925	0.964
All Vehicles (no classification)	36	18	16	0	70	12	462	5	0	479	10	8	8	0	26	29	851	60	0	940	1515
\% All Vehicles (no classification)	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0	100.0	100.0	-	100.0	100.0

Ohio Department of Transportation
1980 West Broad Street

Office of Traffic Engineering

Count Name: GEA-422-11.56 Site Code:
Start Date: 06/02/2022 Page No: 7

Turning Movement Peak Hour Data Plot (4:45 PM)

APPENDIX C

Traffic Volumes - NOACA Travel Demand Model Data

Maderia, Justin

From:
Sent:
To:
Subject:
Attachments:

Brian.Blayney@dot.ohio.gov
Wednesday, July 6, 2022 12:54 PM
Maderia, Justin; Anderson, Nora
RE: Traffic Count Data for GEA-422 and Rapids
Bblayney_SegmentDetails_07062022124727.pdf

Justin,

I'm good with that. Just for fun, I ran this segment in TFMS. It returned a negative growth rate for cars, but a hefty 3.4% for trucks, which is kind of scary, there are already too many trucks on that road as it is.

I think 0.3% simple annual growth is a good middle of the road number to use for total volumes for all movements.

Brian

From: Maderia, Justin Justin.Maderia@arcadis.com
Sent: Wednesday, July 6, 2022 12:43 PM
To: Blayney, Brian Brian.Blayney@dot.ohio.gov; Anderson, Nora nora.anderson@wsp.com
Subject: RE: Traffic Count Data for GEA-422 and Rapids

Hi Brian,

I was able to access the MioVision video.

It looks like the NOACA data is providing a 0.3% background growth rate. We will use that and forecast the TMC data to 2047 for the HCS analysis.

Thanks!

Justin

Justin Maderia (he/him) PE, PTOE, PTP
Traffic and Safety Project Manager
Arcadis U.S., Inc.
1111 Superior Avenue, Suite 1300 | Cleveland, OH | 44114 | USA
T +1 2162985239
M +1 2165717416
www.arcadis.com

GARCADISin

From: Brian.Blayney@dot.ohio.gov Brian.Blayney@dot.ohio.gov
Sent: Wednesday, July 6, 2022 9:02 AM
To: Anderson, Nora nora.anderson@wsp.com; Maderia, Justin Justin.Maderia@arcadis.com
Subject: Traffic Count Data for GEA-422 and Rapids

Hi Nora and Justin,

Here's the PDF report for Rapids. I believe I correctly shared the data with you in the MioVision portal. Let me know if you haven't received an invitation to view a shared count.

Brian

Brian Blayney, PE
District Traffic Planning Engineer
ODOT District 12: Cuyahoga, Geauga \& Lake Counties
5500 Transportation Blvd., Garfield Heights, Ohio 44125
(p) 216.584.2108
transportation.ohio.gov

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

CAUTION: This is an external email and may not be safe. If the email looks suspicious, please do not click links or open attachments and forward the email to csc@ohio.gov or click the Phish Alert Button if available.

APPENDIX C

Traffic Volumes - Design Hourly Traffic Volumes

APPENDIX D

HCS Capacity Analysis

APPENDIX D

HCS Capacity Analysis - Existing \& No-Build Conditions

APPENDIX D

HCS Capacity Analysis - Build Conditions

APPENDIX E

Conceptual Schematic of Proposed Countermeasure

APPENDIX F

Cost Estimate

PID 115292 - US 422 @ Rapids Rd.

Description	Qty	Unit	Unit Cost	Cost	Comment
CLEARING AND GRUBBING	1	LS	$\$ 20,000$	$\$ 20,000$	
PAVEMENT REMOVED, ASPHALT	2880	SY	$\$ 15$	$\$ 43,200$	
EXCAVATION	250	CY	$\$ 30$	$\$ 7,500$	
EMBANKMENT	250	CY	$\$ 30$	$\$ 7,500$	
PAVEMENT PLANING, ASPHALT CONCRETE	6371	SY	$\$ 5$	$\$ 31,856$	
SUBGRADE COMPACTION	3285	SY	$\$ 3$	$\$ 9,855$	
ASPHALT CONCRETE BASE, PG64-22	501	CY	$\$ 200$	$\$ 100,167$	
AGGREGATE BASE	521	CY	$\$ 75$	$\$ 39,063$	
ASPHALT CONCRETE SURFACE COURSE, TYPE 1, (448), PG64-	204	CY	$\$ 300$	$\$ 61,163$	
ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 1, (448)	285	CY	$\$ 250$	$\$ 71,357$	
SIGNAL SUPPORT, MISC.:New Signal w/ Mast Arms	1	EA	$\$ 250,000$	$\$ 250,000$	
SIGNING, MISC.: Signing and Striping	1	LS	$\$ 7,500$	$\$ 7,500$	
EROSION CONTROL	1000	EA	$\$ 1$	$\$ 1,000$	
MAINTAINING TRAFFIC	1	LS	$\$ 5,000$	$\$ 5,000$	
MOBILIZATION	1	LS	$\$ 10,000$	$\$ 10,000$	
CONSTRUCTION LAYOUT AND STAKING	1	LS	$\$ 3,000$	$\$ 3,000$	
SUBTOTAL				$\$ 668,160$	
30\% DESIGN CONTINGENCY				$\$ 200,448$	
5\% INFLATION				$\$ 33,408$	2022 to 2023
GRAND TOTAL					

APPENDIX G

Economic Crash Analysis Tool Results

Do the proposed improvements fundamentally change the conditions of the base safety performance function (SPF),
Or is crash data unavailable for the analysis condition,
Or is only predicted (and not expected) analysis needed for the existing or proposed condition?
(Examples: unsignalized to signalized, undivided to divided, increase or decrease in the number of lanes, change the number of approaches to an intersection, significant realignment of the roadway)

Project Elements Description Table								
			Location Information					
Project Element ID (Must be Unique)	Site Type	Intersection Control Type	NLFID	Begin Logpoint/ Intersection Midpoint	End Logpoint (Leave blank for Intersection)	Length (mi) OR Intersection Radius Buffer (mi)	Cross Route NLFID(s)	Common Name
US422; 11.562	Rural Two-Lane Two Way Intersection	Signalized	SGEAUS00422**C	11.562		0.05	CGEACR0000	US 422 at Rapids Road

Traffic Volume Growth Rate Calculation For Benefit Cost Analysis			
	Year	AADT	
Present ADT (PADT)	2022	15,755	veh / day
Future ADT (FADT)	2047	18,170	veh / day
Annual Linear Growth Rate		0.0061	

Proposed Conditions: Crash Modification Factors (CMFs) for Rural Two-Lane Two-Way Intersection				
(1) CMF for Intersection Skew Angle CMF ${ }_{1 i}$ from Equations 10-22 or 10-23	(2) CMF for Left-Turn Lanes CMF $_{2 i}$ from Table 10-13	(3) CMF for Right-Turn Lanes $\mathrm{CMF}_{3 i}$ from Table 10-14	(4) CMF for Lighting $\mathrm{CMF}_{4 \mathrm{i}}$ from Equation 10-24	$\begin{gathered} (5) \\ \text { Combined CMF } \\ \text { CMF }_{\text {comB }} \\ (1)^{*}(2)^{*}(3)^{*}(4) \\ \hline \end{gathered}$
1.0000	0.6700	1.0000	0.9999	0.6699

Proposed Conditions: Predicted Crash Summary for Rural Two-Lane Two-Way Intersection							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	$\mathrm{N}_{\text {spf } 3 \text { ST, 4ST or 4SG }}$	Overdispersion Parameter, k	Crash Severity Distribution	$\mathrm{N}_{\text {spt 3ST, 4ST or 4SG }}$ by Severity Distribution	$\begin{aligned} & \text { Combined } \\ & \text { CMFs } \\ & \hline \end{aligned}$	Calibration Factor, C_{i}	Predicted average crash frequency, predicted int
	from Equations $10-8,10-9$, or $10-$ 10	$\begin{gathered} \text { from Section } \\ \text { 10.6.2 } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { from Table } 10 \\ 5 \\ \hline \end{array}$	(2) Total * (4)	from (5) of Worksheet 2B		$(5)^{*}(6)^{\star}(7)$
Total	8.275	0.11	1.000	8.275	0.67	1.68	9.313
Fatal and Injury (FI)	--	--	0.249	2.057	0.67	1.68	2.315
Property Damage Only (PDO)	--	--	0.751	6.217	0.67	1.68	6.998

[^2]| -
 E-C. | Project Safety Performance Report | | |
| :---: | :---: | :---: | :---: |
| Luect Economic Crast Anaysis Tool | General Information | | |
| Project Name | D12 D3 GES FY2022-2024 Traffic | Contact Email | justin.maderia@arcadis.com |
| Project Description | Safety Study | Contact Phone | 216-571-7416 |
| Reference Number | PID \#115292 | Date Performed | 8/12/2022 |
| Analyst | Justin Maderia | Analysis Year | 2047 |
| Agency/Company | Arcadis | | |

Summary of Anticipated Safety Performance of the Project (average crashes/year)

Project Summary Results (Without Animal Crashes)					
	KA	B	C	0	Total
Npredicted ${ }^{\text {- Existing }}$ Conditions	0.2934	1.2471	1.5769	9.4224	12.5398
$\mathrm{N}_{\text {expected }}$ - Existing Conditions	0.2425	1.0309	1.3032	6.8322	9.4088
$\mathbf{N}_{\text {potential for improvement }}$ - Existing Conditions	-0.0509	-0.2162	-0.2737	-2.5902	-3.1310
$\mathrm{N}_{\text {predicted }}$ - Proposed Conditions	0.2181	0.9262	1.1709	6.9979	9.3131

Summary by Crash Type									
Crash Type						Existing			Proposed
	Predicted Crash Frequency	Expected Crash Frequency	PSI	Expected Crash Frequency					
Unknown	0.0166	0.0116	-0.0050						
Head On	0.1072	0.0753	-0.0319						
Rear End	6.4616	4.4208	-2.0408						
Backing	0.6987	0.4675	-0.2312						
Sideswipe - Meeting	0.2967	0.2032	-0.0935						
Sideswipe - Passing	1.0108	0.6817	-0.3291						
Angle	2.9674	2.0482	-0.9192						
Parked Vehicle	0.5471	0.3686	-0.1785						
Pedestrian	0.1361	0.0992	-0.0369						
Animal	0.0000	0.0000	0.0000						
Train	0.0000	0.0000	0.0000						
Pedalcycles	0.0903	0.0649	-0.0254						
Other Non-Vehicle	0.0000	0.0000	0.0000						
Fixed Object	0.9330	0.6388	-0.2942						
Other Object	0.0298	0.0200	-0.0098						
Overturning	0.0586	0.0414	-0.0172						
Other Non-Collision	0.0837	0.0568	-0.0269						
Left Turn	1.2309	0.8558	-0.3751						
Right Turn	0.0000	0.0000	0.0000						

[^0]: ${ }^{1}$ Transportation Research Board. 2016. Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis.

[^1]: ${ }^{2}$ AASHTO. 2010. Highway Safety Manual. First Edition.

[^2]: Federafiaw 23 USC $\$ 09$ pronioits the discovery or admission into evidence of "reports, surveys, schedules, iists, or data" compiled or colliected for the purpose of highway safety improvement projects that might qualify for federal safety improvement funding.

