SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Designer name:	DCL		,
Curve name:	PCLE90-6		CLEAR SHEET
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		
$\mathrm{V}=$	60	mph	(design speed, mph)
Dc =	1.75		(degree of curve of alignment)
Radius =	3,274.04	feet	(radius of curve of alingment)
$e_{d}=$	0.041		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$	0.016		
	right	Is the curve to the left or right (in the direction of stationing)?	
	right	Will the dependent geopak shapes be to the left or right of the baseline?	
Curve widening NOT required for WB-50.	0.188	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
Curve widening NOT required for WB-62.	0.375	feet	ent widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)
	YES	Divid	ay?

P.C. ROTATION DATA				
	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PC=	36	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	60			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.45		(maximum relative gradient)	
$\mathrm{G}=$	222		(maximum relative slope)	
$L(r)=$	327.6720	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	127.8720	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	0.00\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	36	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	60		(adjustment factor for number of lanes rotated)	
$\mathrm{b}(\mathrm{w})=$	1			
$\%=$	0.45		(maximum relative gradient)	
$\mathrm{G}=$	222		(maximum relative slope)	
$L(r)=$	327.6720	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	127.8720	feet	(Tangent Runout Length)	
P.C. Station	194+36.2858		Percent of super to achieve at P.C.?	66.67\%
Is there a spiral for this curve?	NO		Is the roadway rotating past flat at the P.C. transition?	NO
P.T. Station	200+37.9213		Percent of super to achieve at P.T.?	72.10\%
Is there a spiral for this curve?	NO		Is the roadway rotating past flat at the P.T. transition?	NO

P.C. SUPER INFORMATION		Curve Information				
normal crown =	Station	Super Rate		Full super length =	400.98 ft .	
	193+45.7098	-0.016		Slope at PC =	-0.0273	
				P.C. $L(r)=$	199.80	
				G-value of P.C. $L(r)=$	222	
full super =	195+45.5098	-0.041				
				Slope at PT $=$	-0.0296	
P.T. SUPER INFORMATION				P.T. L(r) =	327.67	
	Station	Super Rate		G-value of P.T. L(r) =	222	
cross slope rotating to $=$	199+46.4912	-0.041				
	201+46.2912	-0.016				
				Curve length is time at full super =	$\begin{gathered} 10.03 \\ 4.56 \end{gathered}$	times design spee seconds
	202+74.1632	0.000				
SHOULDER INFORMATION FOR CURVE						
P.C. part of curve		Mainline	Left Shoulder		Mainline	Right Shoulder
	Station	Super Rate	Super Rate	Station	Super Rate	Super Rate
	194+57.5978	-0.0300	-0.0400	195+37.5178	-0.0400	-0.0400
	195+45.5098	-0.0410	-0.0290	195+45.5098	-0.0410	-0.0410
P.T. part of curve	199+46.4912	-0.0410	-0.0290	199+46.4912	-0.0410	-0.0410
	200+34.4032	-0.0300	-0.0400	199+54.4832	-0.0400	-0.0400

SUPERELEVATION TRANSITION LENGTH
ODOT L\&D VOL. 1 - FIGURES 202-7E, 202-8E, 202-9E, FIGURE 202-10E, FIGURE 301-5B AND FIGURE 301-5C

SIMPLE CURVE CONFIGURATION Designer name: DCL			
Curve name:	PCLE90-7		CLEAR SHEET
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		CLEAR SHE
$V=$	60	mph	(design speed, mph)
Dc $=$	4.25		(degree of curve of alignment)
Radius =	1,348.45	feet	(radius of curve of alingment)
$e_{d}=$	0.060		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\text {NC }}\right)=$	0.016		
	LEFT	Is the curve to the left or right (in the direction of stationing)?	
	RIGHT	Will th	dent geopak shapes be to the left or right of the baseline?
Curve widening NOT required for WB-50.	0.875	feet of	nt widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)
Curve widening required for WB-62.	1.125	feet of	nt widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)
	YES	Divid	

P.C. ROTATION DATA				
	0.00\%	From what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
Width of rotating pavement @ PC =	36	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	60			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.45		(maximum relative gradient)	
$\mathrm{G}=$	222		(maximum relative slope)	
$L(r)=$	479.5200	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	127.8720	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	60			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
\% =	0.45		(maximum relative gradient)	
$\mathrm{G}=$	222		(maximum relative slope)	
$L(r)=$	319.6800	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	85.2480	feet	(Tangent Runout Length)	
P.C. Station	207+94.1632			
Is there a spiral for this curve?	YES		Is the roadway rotating past flat at the P.C. transition?	NO
What is the length of the spiral?	520.00'		Spiral G-value and corresponding design speed:	241; $65-\mathrm{mph}$

P.C. SUPER INFORMATION		$\begin{gathered} \text { Super Rate } \\ 0.000 \end{gathered}$		Curve Information			
cross slope rotating from $=$	$\begin{gathered} \text { Station } \\ 202+74.1632 \end{gathered}$				ull super length = Slope at PC = C. Spiral Length = e of P.C. Spiral =	$\begin{gathered} 1338.26 \mathrm{ft} . \\ 0.0600 \\ 520.00 \\ 241 \end{gathered}$	
full super =	207+94.1632	0.060					
P.T. SUPER INFORMATION					Slope at PT = T. Spiral Length =	$\begin{aligned} & 0.0600 \\ & 520.00 \end{aligned}$	
	Station	Super Rate		G-val	ue of P.T. Spiral =	361	
full super =	$221+32.4248$	0.060			$\begin{array}{r} \text { P.T. } \mathrm{L}(\mathrm{t})= \\ \text { alue of P.T. } \mathrm{L}(\mathrm{t})= \end{array}$	$\begin{gathered} 138.62 \\ 361 \end{gathered}$	
$\text { flat }=$	226+52.4248	0.000			Curve length is me at full super $=$	$\begin{aligned} & 22.30 \\ & 15.21 \end{aligned}$	times design spee seconds
normal crown $=$	227+91.0488	-0.016					
SHOULDER INFORMATION FOR CURVE		Mainline	Left Shoulder Super Rate				
P.C. part of curve						Mainline	Right Shoulder
	Station	$\begin{gathered} \text { Super Rate } \\ 0.0400 \end{gathered}$			Station	Super Rate	Super Rate
	206+20.8299		-0.0400		205+34.1632	0.0300	-0.0400
	207+94.1632	0.0600	-0.0600		207+94.1632	0.0600	-0.0100
P.T. part of curve	221+32.4248	0.0600	-0.0600		221+32.4248	0.0600	-0.0100
	223+05.7582	0.0400	-0.0400		$223+92.4248$	0.0300	-0.0400
STATION INFORMATION		Super Rate0.0160	\% of e(d) Achieved 26.67%	Left Shoulder Super Rate -0.0400			
	$\begin{gathered} \text { Station } \\ 225+13.7335 \end{gathered}$				Right Shoulder Super Rate -0.0400		

CROSS SLOPE INFORMATION				
	Super Rate	Station in	Station in P.T. Area	Area
	0.0160	$204+12.8299$	$225+13.7335$	
	0.0530	$207+33.4965$	$221+93.0876$	

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Designer name:	DCL	mph (design speed, mph)	
Curve name:	PCLE90-8		
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		
$\mathrm{V}=$	60		
Dc =	1.00	feet	(degree of curve of alignment)
Radius =	5,729.58		(radius of curve of alingment)
$e_{d}=$	0.027		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$	0.016		
	LEFT	Is the curve to the left or right (in the direction of stationing)?	
	RIGHT	Will the dependent geopak shapes be to the left or right of the baseline?	
Curve widening NOT required for WB-50.	0.000	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
Curve widening NOT required for WB-62.	0.000	feet of pavement widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)	
	YES	Divided roadway?	

P.C. ROTATION DATA				
	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC , etc.)		
Width of rotating pavement @ PC =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	60			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
\% =	0.45		(maximum relative gradient)	
$\mathrm{G}=$	222		(maximum relative slope)	
$L(r)=$	143.8560	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	85.2480	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	24		(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	60		(adjustment factor for number of lanes rotated)	
$b(\mathrm{w})=$	1			
$\%=$	0.45		(maximum relative gradient)	
$\mathrm{G}=$	222		(maximum relative slope)	
$L(r)=$	143.8560	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	85.2480	feet	(Tangent Runout Length)	
P.C. Station	247+95.6471		Percent of super to achieve at P.C.?	66.67\%
Is there a spiral for this curve?	NO		he roadway rotating past flat at the P.C. transition?	YES

P.T. Station $254+35.2641$

Is there a spiral for this curve? NO

Percent of super to achieve at P.T.? 59.26% Is the roadway rotating past flat at the P.T. transition? YES

P.C. SUPER INFORMATION		Curve Information				
	Station	Super Rate		Full super length =	533.06 ft .	
normal crown =	246+14.4951	-0.016		Slope at $\mathrm{PC}=$	\#N/A	
				P.C. $L(r)=$	143.86	
flat $=$	246+99.7431	0.000		G-value of P.C. $L(r)=$	222	
reverse crown =	247+84.9911	0.016		P.C. $\mathrm{L}(\mathrm{t})=$	85.25	
full super =	248+43.5991	0.027		G-value of P.C. $\mathrm{L}(\mathrm{t})=$	222	
				Slope at PT =	0.0160	
P.T. SUPER INFORMATION				P.T. L(r) =	143.86	
	Station	Super Rate		G-value of P.T. $L(r)=$	222	
full super =	253+76.6561	0.027		P.T. $\mathrm{L}(\mathrm{t})=$	85.25	
reverse crown $=$	254+35.2641	0.016		G-value of P.T. L(t) =	222	
$\text { flat }=$	$255+20.5121$	0.000		Curve length is time at full super =	$\begin{aligned} & 10.66 \\ & 6.06 \end{aligned}$	times design spee seconds
normal crown $=$	256+05.7601	-0.016				
SHOULDER INFORMATION FOR CURVE		Mainline Super Rate	Left Shoulder Super Rate		Mainline Super Rate	Right Shoulder Super Rate
	Station			Station		
P.C. part of curve						
P.T. part of curve						

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

P.C. SUPER INFORMATION		Curve Information				
cross slope rotating from =	Station	Super Rate		Full super length =	\#N/A	
	\#N/A	0.000		Slope at $\mathrm{PC}=$	\#N/A	
				P.C. $L(r)=$	\#N/A	
				G-value of P.C. $L(r)=$	\#N/A	
normal crown = full super =	\#N/A	-0.016		P.C. $L(t)=$	\#VALUE!	
	\#N/A	-0.058		G-value of P.C. $\mathrm{L}(\mathrm{t})=$	\#VALUE!	
				Slope at PT =	\#N/A	
P.T. SUPER INFORMATION		Super Rate		P.T. L(r) =	\#VALUE!	
full super $=$ normal crown =	Station			G-value of P.T. L(r) =	\#VALUE!	
	\#N/A \#N/A	-0.058		P.T. $L(t)=$	\#N/A	
		-0.016		G-value of P.T. L(t) =	\#N/A	
				Curve length is time at full super $=$	$\begin{array}{r} 0.00 \\ \text { \#N/A } \end{array}$	times design spee seconds
cross slope rotating to $=$	\#N/A	0.000				
SHOULDER INFORMATION FOR CURVE						
P.C. part of curve		Mainline Super Rate	Left Shoulder Super Rate		Mainline Super Rate	Right Shoulder
	Station			Station		Super Rate
	\#N/A	FALSE	FALSE	\#N/A	FALSE	FALSE
P.T. part of curve	\#N/A	FALSE	FALSE	\#N/A	FALSE	FALSE

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
Width of rotating pavement @ PC = Design speed of PC transition = $\begin{aligned} \mathrm{b}(\mathrm{w}) & = \\ \% & = \\ \mathrm{G} & = \\ \mathrm{L}(\mathrm{r}) & = \\ \mathrm{L}(\mathrm{t}) & = \end{aligned}$	6.00% 24 60 1 0.45 222 255.7440 85.2480	From feet feet feet	cross slope is the roadway being rotated? (i.e. 1.6% fo (do not include curve widening, gore areas or entra (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)	NC, etc.) ce and exit lanes)
P.T. ROTATION DATA				
Width of rotating pavement @ PT = Design speed of PT transition = $\begin{aligned} \mathrm{b}(\mathrm{w}) & = \\ \% & = \\ \mathrm{G} & = \\ \mathrm{L}(\mathrm{r}) & = \\ \mathrm{L}(\mathrm{t}) & = \end{aligned}$	5.50% 24 50 1 0.5 200 230.4000 76.8000	To w feet feet feet	ss slope is the roadway being rotated? (i.e. 1.6\% for N (do not include curve widening, gore areas or entra (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)	, etc.) ce and exit lanes)
P.C. Station Is there a spiral for this curve?	$\begin{gathered} 908+64.1376 \\ \text { NO } \end{gathered}$		Percent of super to achieve at P.C.? Is the roadway rotating past flat at the P.C. transition?	$\begin{gathered} 100.00 \% \\ \text { no } \end{gathered}$
P.T. Station Is there a spiral for this curve?	$\begin{gathered} 911+76.8849 \\ \text { NO } \end{gathered}$		Percent of super to achieve at P.T.? Is the roadway rotating past flat at the P.T. transition?	$\begin{gathered} 100.00 \% \\ \text { no } \end{gathered}$

P.C. SUPER INFORMATION		Curve Information				
cross slope rotating from =	Station	Super Rate		Full super length =	312.75 ft .	
	908+00.2016	-0.060		Slope at $\mathrm{PC}=$	-0.0480	
				P.C. $L(r)=$	63.94	
				G-value of P.C. $L(r)=$	222	
full super =	908+64.1376	-0.048				
				Slope at PT $=$	-0.0480	
P.T. SUPER INFORMATION				P.T. L(r) =	33.60	
	Station	Super Rate		G-value of P.T. L(r) =	200	
full super =	911+76.8849	-0.048				
				Curve length is time at full super $=$	$\begin{aligned} & 6.25 \\ & 4.26 \end{aligned}$	times design spee seconds
cross slope rotating to =	912+10.4849	-0.055				
SHOULDER INFORMATION FOR CURVE						
P.C. part of curve		Mainline Super Rate	Left Shoulder		Mainline	Right Shoulder
	Station		Super Rate	Station	Super Rate	Super Rate
	909+28.0736	-0.0600	-0.0600	909+28.0736	-0.0600	-0.0100
	908+64.1376	-0.0480	-0.0480	908+64.1376	-0.0480	-0.0220
P.T. part of curve	911+76.8849	-0.0480	-0.0480	911+76.8849	-0.0480	-0.0220
	911+43.2849	-0.0550	-0.0550	911+43.2849	-0.0550	-0.0150

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Curve name:	TRE90CHE-3		(design speed mph)
What $\mathrm{e}_{\max }$ table would you like to use?	0.060 MAX		
$\mathrm{V}=$	45	mph	
Dc =	6.00		(degree of curve of alignment)
Radius =	954.93	feet	(radius of curve of alingment)
$e_{d}=$	0.055		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$	0.016		
	LEFT	Is the curve to the left or right (in the direction of stationing)?	
	left	Will th	dent geopak shapes be to the left
Curve widening required for WB-50.	1.000	feet of	ent widening per lane (for 12' lan
Curve widening required for WB-62.	1.250	feet of	ent widening per lane (for 12' lan
	YES	Divid	ay?

P.C. ROTATION DATA				
Width of rotating pavement @ PC= Design speed of PC transition =	4.80\%	From what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
	50			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.5		(maximum relative gradient)	
$\mathrm{G}=$	200		(maximum relative slope)	
$L(r)=$	264.0000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	76.8000	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	45			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185			
$L(r)=$	244.2000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	71.0400	feet	(Tangent Runout Length)	
P.C. Station	911+76.8849		Percent of super to achieve at P.C.?	87.27\%
Is there a spiral for this curve?	NO		he roadway rotating past flat at the P.C. transition?	no

P.T. Station 915+02.0688

Is there a spiral for this curve? NO

Percent of super to achieve at P.T.? 66.67% Is the roadway rotating past flat at the P.T. transition? no

P.C. SUPER INFORMATION		Super Rate -0.048	Curve Information			
cross slope rotating from $=$	Station			Full super length =	210.18 ft .	
	911+76.8849			Slope at $\mathrm{PC}=$	-0.0480	
				P.C. $L(r)=$	33.60	
				G-value of P.C. L(r$)=$	200	
full super =	912+10.4849	-0.055				
				Slope at $\mathrm{PT}=$	-0.0367	
P.T. SUPER INFORMATION				P.T. L $(\mathrm{r})=$	173.16	
	Station	Super Rate		G-value of P.T. L(r) =	185	
full super $=$	914+20.6688	-0.055				
normal crown =				Curve length is	7.23	times design spee
	915+93.8288	-0.016		time at full super =	3.18	
SHOULDER INFORMATION FOR CURVE						
P.C. part of curve		MainlineSuper Rate	Left Shoulder Super Rate		Mainline	Right Shoulder
	Station			Station	Super Rate	Super Rate
	911+76.8849	-0.0480	-0.0480	911+76.8849	-0.0480	-0.0220
	912+10.4849	-0.0550	-0.0550	912+10.4849	-0.0550	-0.0150
P.T. part of curve	914+20.6688	-0.0550	-0.0550	914+20.6688	-0.0550	-0.0150
	914+87.2688	-0.0400	-0.0400	$915+31.6688$	-0.0300	-0.0400

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Curve name:	TRE90CHE-4		(design speed, mph)
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		
$\mathrm{V}=$	40	mph	
Dc $=$	2.00		(degree of curve of alignment)
Radius =	2,864.79	feet	(radius of curve of alingment)
$e_{d}=$	0.025		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$	0.016		
	right	Is the curve to the left or right (in the direction of stationing)?	
	left	Will the dependent geopak shapes be to the left or right of the baseline?	
Curve widening NOT required for WB-50.	0.250	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
Curve widening NOT required for WB-62.	0.500	feet	ent widening per lane (for 12' lan
	yes	Divid	

P.C. ROTATION DATA				
	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PC =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	45			
$b(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
\% =	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185		(maximum relative slope)	
$L(r)=$	111.0000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	71.0400	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.04\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for $\mathrm{N} C$, etc.)		
Width of rotating pavement @ PT =	24		(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	40			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.58		(maximum relative gradient)	
$\mathrm{G}=$	172			
$L(r)=$	103.2000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	66.0480	feet	(Tangent Runout Length)	
P.C. Station	917+23.3849		Percent of super to achieve at P.C.?	52.72\%
Is there a spiral for this curve?	no		he roadway rotating past flat at the P.C. transition?	yes

P.T. Station 919+80.9440 Is there a spiral for this curve? no

SUPERELEVATION TRANSITION LENGTH

P.C. SUPER INFORMATION		Curve Information				
cross slope rotating from =	Station	Super Rate -0.060		Full super length =	\#N/A	
	\#N/A			Slope at $\mathrm{PC}=$	\#N/A	
				P.C. $L(r)=$	\#N/A	
				G-value of P.C. L(r) =	\#N/A	
full super =	\#N/A	-0.053				
				Slope at PT =	-0.0371	
P.T. SUPER INFORMATION				P.T. L(r) =	188.26	
	Station	Super Rate		G-value of P.T. $\mathrm{L}(\mathrm{r})=$	222	
full super = reverse crown =	1002+02.6034	-0.053		P.T. $L(t)=$	56.83	
	1003+34.0274	-0.016		G-value of P.T. L(t) =	222	
$\text { flat }=$	1003+90.8594	0.000		Curve length is time at full super =	4.32 \#N/A	times design spee seconds
normal crown $=$	1004+47.6914	0.016				
SHOULDER INFORMATION FOR CURVE						
P.C. part of curve		Mainline	Left Shoulder		Mainline	Right Shoulder
	Station	Super Rate	Super Rate	Station	Super Rate	Super Rate
	\#N/A	-0.0600	-0.0600	\#N/A	-0.0600	-0.0100
	\#N/A	-0.0530	-0.0530	\#N/A	-0.0530	-0.0170
P.T. part of curve	1002+02.6034	-0.0530	-0.0530	1002+02.6034	-0.0530	-0.0170
	1002+48.7794	-0.0400	-0.0400	1002+84.2994	-0.0300	-0.0400

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
Width of rotating pavement $@ P C=$Design speed of PC transition $=$	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
	60			
$b(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.45		(maximum relative gradient)	
$\mathrm{G}=$	222		(maximum relative slope)	
$L(r)=$	142.0800	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	56.8320	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for N C , etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entra	e and exit lanes)
Design speed of PT transition =	50			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.5		(maximum relative gradient)	
$\mathrm{G}=$	200		(maximum relative slope)	
$L(r)=$	128.0000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	51.2000	feet	(Tangent Runout Length)	
P.C. Station	1006+54.0174		Percent of super to achieve at P.C.?	70.00\%
Is there a spiral for this curve?	no		he roadway rotating past flat at the P.C. transition?	no

P.T. Station 1008+72.4401 Is there a spiral for this curve?

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

P.C. SUPER INFORMATION		Curve Information				
	Station	Super Rate		Full super length =	281.87 ft .	
normal crown $=$	1011+26.9991	-0.016		Slope at PC =	-0.0307	
				P.C. $L(r)=$	96.00	
				G-value of P.C. L(r) =	200	
full super =	1012+22.9991	-0.046				
				Slope at $\mathrm{PT}=$	-0.0307	
P.T. SUPER INFORMATION				P.T. $L(r)=$	136.16	
	Station	Super Rate		G-value of P.T. L(r) =	185	
full super =	1015+04.8658	-0.046		P.T. L(t) =	47.36	
reverse crown =	1015+93.6658	-0.016		G-value of P.T. $\mathrm{L}(\mathrm{t})=$	185	
flat $=$	1016+41.0258	0.000		Curve length is	8.36	times design spee
				time at full super =	4.27	seconds
normal crown =	1016+88.3858	0.016				
SHOULDER INFORMATION FOR CURVE						
		Mainline	Left Shoulder		Mainline	Right Shoulder
	Station	Super Rate	Super Rate	Station	Super Rate	Super Rate
P.C. part of curve	1012+03.7991	-0.0400	-0.0400	1011+71.7991	-0.0300	-0.0400
	1012+22.9991	-0.0460	-0.0460	1012+22.9991	-0.0460	-0.0240
P.T. part of curve	1015+04.8658	-0.0460	-0.0460	1015+04.8658	-0.0460	-0.0240
	1015+22.6258	-0.0400	-0.0400	1015+52.2258	-0.0300	-0.0400

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
Width of rotating pavement @ PC =	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	45			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185		(maximum relative slope)	
$L(r)=$	71.0400	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	47.3600	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	45			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185		(maximum relative slope) (Superelevation Runoff Length to flat)	
$L(r)=$	71.0400	feet		
$L(t)=$	47.3600	feet		
P.C. Station	19+76.21		Percent of super to achieve at P.C.?	66.67\%
Is there a spiral for this curve?	no		he roadway rotating past flat at the P.C. transition?	no

P.T. Station 1024+45.1246

Is there a spiral for this curve?

P.C. SUPER INFORMATION		Curve Information				
normal crown $=$	$\begin{gathered} \text { Station } \\ 1019+76.2193 \end{gathered}$	Super Rate 0.016		$\begin{array}{r} \text { Full super length }= \\ \text { Slope at } P C= \\ P . C . L(r)= \\ \text { G-value of } P . C . L(r)= \end{array}$	$\begin{gathered} 421.55 \mathrm{ft} . \\ 0.0160 \\ 23.68 \\ 185 \end{gathered}$	
full super =	1019+99.8993	0.024				
P.T. SUPER INFORMATION				$\begin{array}{r} \text { Slope at } \mathrm{PT}= \\ \text { P.T. } \mathrm{L}(\mathrm{r})= \end{array}$	$\begin{aligned} & \text { \#N/A } \\ & 23.68 \end{aligned}$	
	Station	Super Rate		G-value of P.T. L(r) =	185	
full super $=$	1024+21.4446	0.024				
normal crown $=$	1024+45.1246	0.016		Curve length is time at full super =	$\begin{gathered} 10.42 \\ 6.39 \end{gathered}$	times design spee seconds
SHOULDER INFORMATION FOR CURVE						
	Station	Mainline Super Rate	Left Shoulder Super Rate	Station	Mainline Super Rate	Right Shoulder Super Rate
P.C. part of curve						
P.T. part of curve						

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

P.C. SUPER INFORMATION		Curve Information				
normal crown $=$	Station	Super Rate		Full super length =	254.48 ft .	
	1199+88.1600	0.016		Slope at PC =	0.0200	
				P.C. $L(r)=$	41.44	
				G-value of P.C. $L(r)=$	185	
full super $=1200+29.6000$		0.030				
				Slope at PT =	0.0200	
P.T. SUPER INFORMATION				P.T. L(r) =	41.44	
full super =	Station	Super Rate		G-value of P.T. $L(r)=$	185	
	1202+84.0844	0.030				
normal crown $=$				Curve length is time at full super =	$\begin{aligned} & 6.97 \\ & 3.86 \end{aligned}$	times design spee seconds
	$1203+25.5244$	0.016				
SHOULDER INFORMATION FOR CURVE		MainlineSuper Rate0.0300	Left Shoulder Super Rate		Mainline Super Rate	
P.C. part of curve						Right Shoulder Super Rate
	Station			Station		
	1200+29.6000		-0.0400			
P.T. part of curve						
	1202+84.0844	0.0300	-0.0400			

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Curve name:	TRE90E30-2		(design speed, mph)
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		
$\mathrm{V}=$	25	mph	
Dc =	28.00		(degree of curve of alignment)
Radius =	204.63	feet	(radius of curve of alingment)
$e_{d}=$	0.057		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$	0.016		
	right	Is the curve to the left or right (in the direction of stationing)?	
	left	Will the dependent geopak shapes be to the left or right of the baseline?	
Curve widening NOT required for WB-50.	0.000	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
Curve widening NOT required for WB-62.	0.000	feet of pavement widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)	
	yes	Divided roadway?	

P.C. ROTATION DATA				
	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
Width of rotating pavement @ PC =	16	feet	(do not include curve widening, gore areas or entrance and exit	
Design speed of PC transition =	30			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
\% =	0.66		(maximum relative gradient)	
$\mathrm{G}=$	152		(maximum relative slope)	
$L(r)=$	138.6240	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	38.9120	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	0.39\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entrance and exit	
Design speed of PT transition =	25			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%$ =	0.7		(maximum relative gradient)	
$\mathrm{G}=$	143			
$L(r)=$	130.4160	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	36.6080	feet	(Tangent Runout Length)	
P.C. Station	1206+68.4536		Percent of super to achieve at P.C.? the roadway rotating past flat at the P.C. transition?	66.67\%
Is there a spiral for this curve?	no			no
P.T. Station	1209+23.7981		Percent of super to achieve at P.T.?	66.67\%
Is there a spiral for this curve?	no		the roadway rotating past flat at the P.T. transition?	yes

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		
$V=$	40	mph	
Dc =	1.00		(degree of curve of alignment)
Radius =	5,729.58	feet	(radius of curve of alingment)
$e_{d}=$	0.016		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$			
	right	Is the curve to the left or right (in the direction of stationing)?	
		Will the dependent geopak shapes be to the left or right of the baseline?	
Curve widening NOT required for WB-50.	0.000	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
Curve widening NOT required for WB-62.	0.000	feet of pavement widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)	
		Divided roadway?	

P.C. SUPER INFORMATION		Curve Information				
	Station	Super Rate		Full super length =	\#N/A	
normal crown $=$	\#N/A	0.000		Slope at $\mathrm{PC}=$	\#N/A	
				P.C. $L(r)=$	\#N/A	
				G-value of P.C. $L(r)=$	\#N/A	
				P.C. $\mathrm{L}(\mathrm{t})=$	\#VALUE!	
full super =	\#N/A	0.016		G-value of P.C. $\mathrm{L}(\mathrm{t})=$	\#VALUE!	
				Slope at PT =	\#N/A	
P.T. SUPER INFORMATION				P.T. L(r) =	\#VALUE!	
	Station	Super Rate		G-value of P.T. $\mathrm{L}(\mathrm{r})=$	\#VALUE!	
full super $=$	\#N/A	0.016		P.T. $L(t)=$	\#N/A	
				G-value of P.T. L(t$)=$	\#N/A	
				Curve length is time at full super $=$	$\begin{array}{r} 0.00 \\ \text { \#N/A } \end{array}$	times design spee seconds
normal crown =	\#N/A	0.000				
SHOULDER INFORMATION FOR CURVE		Mainline Super Rate	Left Shoulder Super Rate			
					Mainline	Right Shoulder
	Station			Station	Super Rate	Super Rate
P.C. part of curve						
P.T. part of curve						

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Designer name:	DCL		(design speed, mph)
Curve name:	TRCHEE90-2		
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		
$\mathrm{V}=$	50	mph	
Dc $=$	0.75		(degree of curve of alignment)
Radius =	7,639.44	feet	(radius of curve of alingment)
$e_{\text {d }}=$	0.016		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$			
	left	Is the curve to the left or right (in the direction of stationing)?	
		Will the dependent geopak shapes be to the left or right of the baseline?	
CHECK CURVE WIDENING BY HAND.	\#N/A	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
CHECK CURVE WIDENING BY HAND.	\#N/A	feet of pavement widening per lane (for 12' la	
		Divid	ay?

P.C. ROTATION DATA			
Width of rotating pavement @ PC= Design speed of PC transition = $\begin{aligned} \mathrm{b}(\mathrm{w}) & = \\ \% & = \\ \mathrm{G} & = \\ \mathrm{L}(\mathrm{r}) & = \\ \mathrm{L}(\mathrm{t}) & = \end{aligned}$	\#N/A \#N/A \#N/A \#N/A \#N/A	From feet feet feet	ss slope is the roadway being rotated? (i.e. 1.6% for NC , etc.) (do not include curve widening, gore areas or entrance and exit lanes) (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)
P.T. ROTATION DATA			
Width of rotating pavement @ PT = Design speed of PT transition = $\begin{aligned} \mathrm{b}(\mathrm{w}) & = \\ \% & = \\ \mathrm{G} & = \\ \mathrm{L}(\mathrm{r}) & = \\ \mathrm{L}(\mathrm{t}) & = \end{aligned}$	\#N/A \#N/A \#N/A \#N/A \#N/A	To w feet feet feet	slope is the roadway being rotated? (i.e. 1.6% for NC, etc.) (do not include curve widening, gore areas or entrance and exit lanes) (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)
P.C. Station Is there a spiral for this curve?			he roadway rotating past flat at the P.C. transition?
P.T. Station Is there a spiral for this curve?			the roadway rotating past flat at the P.T. transition?

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Designer name:	DCL		(design speed, mph)
Curve name:	TRCHEE90-3		
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 MAX		
$\mathrm{V}=$	50	mph	
Dc $=$	0.75		(degree of curve of alignment)
Radius =	7,639.44	feet	(radius of curve of alingment)
$e_{\text {d }}=$	0.016		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$			
	right	Is the curve to the left or right (in the direction of stationing)?	
		Will the dependent geopak shapes be to the left or right of the baseline?	
CHECK CURVE WIDENING BY HAND.	\#N/A	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
CHECK CURVE WIDENING BY HAND.	\#N/A	feet of pavement widening per lane (for 12' la	
		Divid	ay?

P.C. ROTATION DATA			
Width of rotating pavement @ PC= Design speed of PC transition = $\begin{aligned} \mathrm{b}(\mathrm{w}) & = \\ \% & = \\ \mathrm{G} & = \\ \mathrm{L}(\mathrm{r}) & = \\ \mathrm{L}(\mathrm{t}) & = \end{aligned}$	\#N/A \#N/A \#N/A \#N/A \#N/A	From feet feet feet	ss slope is the roadway being rotated? (i.e. 1.6% for NC , etc.) (do not include curve widening, gore areas or entrance and exit lanes) (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)
P.T. ROTATION DATA			
Width of rotating pavement @ PT = Design speed of PT transition = $\begin{aligned} \mathrm{b}(\mathrm{w}) & = \\ \% & = \\ \mathrm{G} & = \\ \mathrm{L}(\mathrm{r}) & = \\ \mathrm{L}(\mathrm{t}) & = \end{aligned}$	\#N/A \#N/A \#N/A \#N/A \#N/A	To w feet feet feet	slope is the roadway being rotated? (i.e. 1.6% for NC, etc.) (do not include curve widening, gore areas or entrance and exit lanes) (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)
P.C. Station Is there a spiral for this curve?			he roadway rotating past flat at the P.C. transition?
P.T. Station Is there a spiral for this curve?			the roadway rotating past flat at the P.T. transition?

