SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Designer name:	DCL	mph (design speed mph)	
Curve name:	pclw90-5		
What $\mathrm{e}_{\max }$ table would you like to use?	0.060 max		
$\mathrm{V}=$	60		
Dc =	1.00		(degree of curve of alignment)
Radius =	5,729.58	feet	(radius of curve of alingment)
$e_{\text {d }}=$	0.027		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$	0.016		
	right	Is the curve to the left or right (in the direction of stationing)?	
	left	Will the dependent geopak shapes be to the left or right of the baseline?	
Curve widening NOT required for WB-50.	0.000	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
Curve widening NOT required for WB-62.	0.000	feet of pavement widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)	
	yes	Divided roadway?	

P.T. Station $202+37.4919$ Is there a spiral for this curve? no

Percent of super to achieve at P.T.? 69.65\%
Is the roadway rotating past flat at the P.T. transition? no

P.C. SUPER INFORMATION		Super Rate
	Station	
normal crown $=$	188+64.4283	-0.016
flat $=$	189+49.6763	0.000
reverse crown =	190+34.9243	0.016
full super =	190+93.5323	0.027
P.T. SUPER INFORMATION		
	Station	Super Rate
full super =	201+71.9959	0.027
normal crown $=$	202+59.9079	0.016
cross slope rotating to $=$	203+87.7799	0.000

STATION INFORMATION

\% of e(d)	Left Shoulder	Right Shoulder
Achieved	Super Rate	Super Rate

SUPERELEVATION TRANSITION LENGTH
ODOT L\&D VOL. 1 - FIGURES 202-7E, 202-8E, 202-9E, FIGURE 202-10E, FIGURE 301-5B AND FIGURE 301-5C

SIMPLE CURVE CONFIGURATION			
Designer name: Curve name:	$\begin{gathered} \text { DCL } \\ \text { pclw90-6 } \end{gathered}$		
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 max		
$\begin{array}{r} V= \\ \mathrm{Dc}= \end{array}$	$\begin{gathered} 60 \\ 4.25 \end{gathered}$	mph	(design speed, mph) (degree of curve of alignment)
Radius =	1,348.14	feet	(radius of curve of alingment)
$\mathrm{e}_{\mathrm{d}}=$	0.060		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\text {Nc }}\right)=$	0.016		
	left	Is the curve to the left or right (in the direction of stationing)?	
	left	Will t	dent geopak shapes be to the left or right of the baseline?
Curve widening NOT required for WB-50.	0.875	feet 0	nt widening per lane (for 12 ' lane and WB-50 design vehicle; L\&D Fig. 301-5b)
Curve widening required for WB-62.	1.125	feet 0	nt widening per lane (for 12 ' lane and WB-62 design vehicle, L\&D Fig. 301-5c)
	yes	Divid	

| CROSS SLOPE INFORMATION | | | |
| :--- | :---: | ---: | :---: | :---: |
| | Super Rate | Station in | Station in P.T. |
| P.C. Area | Area | | |
| | -0.0200 | $205+61.1132$ | $225+93.9291$ |
| | -0.0160 | $205+26.4466$ | $226+28.6036$ |
| | -0.0300 | $206+47.7799$ | $225+07.2427$ |

SUPERELEVATION TRANSITION LENGTH

P.T. Station 254+93.3637 Is there a spiral for this curve? no

P.C. SUPER INFORMATION		Curve Information				
	Station	Super Rate		Dc $=$	10'0"	
normal crown $=$	246+56.5313	0.016		Full super length =	559.78 ft .	
				Slope at $\mathrm{PC}=$	-0.0180	
flat $=$	247+41.7793	0.000		P.C. $L(r)=$	143.86	
reverse crown =	248+27.0273	-0.016		G-value of P.C. $L(r)=$	222	
full super =	248+85.6353	-0.027		P.C. $L(t)=$	85.25	
				G-value of P.C. $\mathrm{L}(\mathrm{t})=$	222	
P.T. SUPER INFORMATION		Super Rate		Slope at $\mathrm{PT}=$	-0.0180	
	Station			P.T. L(r) =	143.86	
full super =	254+45.4117	-0.027		G-value of P.T. L(r) =	222	
reverse crown =	255+04.0197	-0.016		P.T. $\mathrm{L}(\mathrm{t})=$	85.25	
flat $=$	255+89.2677	0.000		G-value of P.T. L(t) =	222	
normal crown $=$	256+74.5157	0.016		Curve length is time at full super $=$	$\begin{gathered} 10.93 \\ 6.36 \end{gathered}$	times design speed seconds
SHOULDER INFORMATION FOR CURVE		Mainline Super Rate	Left Shoulder Super Rate		Mainline Super Rate	
P.C. part of curve	Station			Station		Right Shoulder Super Rate
P.T. part of curve						

STATION INFORMATION

Station	Super Rate	$\%$ of $\mathbf{e}(\mathbf{d})$ Achieved	Left Shoulder Super Rate	Right Shoulder Super Rate
$\mathbf{2 5 6 + 7 0 . 0 0 0 0}$	0.0152	56.12%	-0.0400	-0.0400
$\mathbf{2 4 8 + 2 7 . 0 0 0 0}$	-0.0160	59.24%	-0.0400	-0.0400

SUPERELEVATION TRANSITION LENGTH
ODOT L\&D VOL. 1 - FIGURES 202-7E, 202-8E, 202-9E, FIGURE 202-10E, FIGURE 301-5B AND FIGURE 301-5C

P.C. ROTATION DATA			
Width of rotating pavement @ PC = Design speed of PC transition = $b(w)=$ $\%=$ $\mathrm{G}=$ $L(r)=$ $L(t)=$	\#N/A \#N/A \#N/A \#N/A \#N/A	Fro feet feet feet	oss slope is the roadway being rotated? (i.e. 1.6% for NC, etc.) (do not include curve widening, gore areas or entrance and exit lanes) (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)
P.T. ROTATION DATA			
Width of rotating pavement @ PT = Design speed of PT transition $=$ $b(w)=$ \% = $\mathrm{G}=$ $L(r)=$ $L(t)=$	\#N/A \#N/A \#N/A \#N/A \#N/A	To feet feet feet	s slope is the roadway being rotated? (i.e. 1.6% for NC , etc.) (do not include curve widening, gore areas or entrance and exit lanes) (adjustment factor for number of lanes rotated) (maximum relative gradient) (maximum relative slope) (Superelevation Runoff Length to flat) (Tangent Runout Length)
P.C. Station Is there a spiral for this curve?			Is the roadway rotating past flat at the P.C. transition?

P.T. Station
Is there a spiral for this curve?

SUPERELEVATION TRANSITION LENGTH
ODOT L\&D VOL. 1 - FIGURES 202-7E, 202-8E, 202-9E, FIGURE 202-10E, FIGURE 301-5B AND FIGURE 301-5C
SIMPLE CURVE CONFIG
What $e_{\max }$ table would
Curve widening NOT req
Curve widening NOT req
P.C. ROTATION DATA

P.C. ROTATION DATA				
Width of rotating pavement @ $\mathrm{PC}=$Design speed of PC transition $=$	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
	60			
$\mathrm{b}(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.45		(maximum relative gradient) (maximum relative slope)	
$\mathrm{G}=$	222			
$L(\mathrm{r})=$	165.1680	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	56.8320	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	50		(adjustment factor for number of lanes rotated)	
$b(w)=$	1			
\% =	0.5		(maximum relative gradient)	
$\mathrm{G}=$	200		(maximum relative slope)	
$L(\mathrm{r})=$	148.8000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	51.2000	feet		
P.C. Station Is there a spiral for this curve?	403+90.7048		Is the roadway rotating past flat at the P.C. transition?	66.67\%
	no			no
P.T. Station	409+60.6412		Percent of super to achieve at P.T.?	52.34\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.T. transition?	yes

CROSS SLOPE QUERY

Station	Super Rate	\% of e(d) Achieved	Left Shoulder Super Rate	Right Shoulder Super Rate
$407+07.0500$	0.0465	100.00%	-0.0235	-0.0465

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PC=	16	feet	(do not include curve widening, gore areas or entrance and exit la	
Design speed of PC transition =	50			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.5		(maximum relative gradient)	
$\mathrm{G}=$	200		(maximum relative slope)	
$L(r)=$	176.0000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	51.2000	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entrance and exit la	
Design speed of PT transition =	45			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185		(maximum relative slope)	
$L(r)=$	162.8000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	47.3600	feet	(Tangent Runout Length)	
P.C. Station	411+30.6413		Percent of super to achieve at P.C.?	52.34\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	no
P.T. Station	415+04.1954		Percent of super to achieve at P.T.?	66.67\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.T. transition?	yes

CROSS SLOPE QUERY
Station Super Rate \% of e(d) Left Shoulder Right Shoulder

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Designer name:	DCL		
Curve name:	trw90che-4		(CLEAR SHEET
What $\mathrm{e}_{\text {max }}$ table would you like to use?	0.060 max		
$\mathrm{V}=$	45	mph	(design speed, mph)
Dc $=$	4.00		(degree of curve of alignment)
Radius =	1,432.39	feet	(radius of curve of alingment)
$\mathrm{e}_{\mathrm{d}}=$	0.046		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\text {NC }}\right)=$	0.016		
	right	Is the curve to the left or right (in the direction of stationing)?	
	left	Will t	dent geopak shapes be to the left or right of the baseline?
Curve widening NOT required for WB-50.	0.500	feet	ent widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)
Curve widening NOT required for WB-62.	0.750	feet	ent widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)
	yes	Divid	

$\begin{array}{rc}\text { P.T. Station } & 422+66.1735 \\ \text { Is there a spiral for this curve? } & \text { no }\end{array}$

Percent of super to achieve at P.T.? 50.00%
Is the roadway rotating past flat at the P.T. transition? no

CROSS SLOPE QUERY		Super Rate	\% of e(d) Achieved
	Station		
STATION QUERY			
	$\begin{gathered} \text { Super Rate } \\ 0.0200 \end{gathered}$	$\begin{gathered} \text { Station in } \\ \text { P.C. Area } \\ 418+15.0379 \end{gathered}$	Station in P.T. Area 422+75.0535

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
Width of rotating pavement @ PC =	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
	35			
$b(\mathrm{w})=$	1	(adjustment factor for number of lanes rotated)		
$\%=$	0.62	(maximum relative gradient)		
$\mathrm{G}=$	161	(maximum relative slope)		
$L(r)=$	123.6480	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	61.8240	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	0.84\%	To what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
Width of rotating pavement @ PT =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	30			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.66		(maximum relative gradient)	
$\mathrm{G}=$	152			
$L(r)=$	116.7360	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	58.3680	feet	(Tangent Runout Length)	
P.C. Station	426+64.7771		Percent of super to achieve at P.C.?	66.67\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	yes

P.T. Station $429+44.0224$

Is there a spiral for this curve? no

CROSS SLOPE QUERY

Station	Super Rate	\% of e(d) Achieved	Left Shoulder Super Rate	Right Shoulder Super Rate
$430+17.3797$	0.0041	12.84%	-0.0400	-0.0400

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
Width of rotating pavement @ PC=	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	45			
$\mathrm{b}(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
$\%$ =	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185		(maximum relative slope)	
$L(r)=$	136.7602	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	47.3600	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	2.00\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entrance	and exit lanes)
Design speed of PT transition =	45			
$b(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185		(maximum relative slope)	
$L(r)=$	136.7602	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	47.3600	feet	(Tangent Runout Length)	
P.C. Station	602+44.9912		Percent of super to achieve at P.C.?	66.67\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	no

P.T. Station 606+61.0386 Is there a spiral for this curve? no

Percent of super to achieve at P.T.? 50.00%
Is the roadway rotating past flat at the P.T. transition? no

P.C. SUPER INFORMATION		Curve Information				
normal crown $=$	Station	Super Rate0.016		Dc $=$	42'1.66"	
	602+01.1778			Full super length =	302.08 ft .	
				Slope at PC =	0.0308	
				P.C. $L(r)=$	89.40	
				G-value of P.C. $L(r)=$	185	
full super =	602+90.5779	0.046				
P.T. SUPER INFORMATION				Slope at PT =	0.0231	
	Station	Super Rate		P.T. $\mathrm{L}(\mathrm{r})=$	77.56	
full super =	605+92.6585	0.046		G-value of P.T. L(r) =	185	
cross slope rotating to $=$				Curve length is	9.25	times design speed
	606+70.2187	0.020		time at full super =	4.58	seconds
SHOULDER INFORMATION FOR CURVE		Mainline	Left Shoulder			
P.C. part of curve					Mainline	Right Shoulder
	Station	Super Rate 0.0300	Super Rate	Station	Super Rate	Super Rate
	602+42.6178		-0.0400	602+72.2178	0.0400	-0.0400
	602+90.5779	0.0462	-0.0238	602+90.5779	0.0462	-0.0462
P.T. part of curve	605+92.6585	0.0462	-0.0238	605+92.6585	0.0462	-0.0462
	606+40.6187	0.0300	-0.0400	606+11.0187	0.0400	-0.0400

CROSS SLOPE QUERY
Station Super Rate \% of e(d) Left Shoulder Right Shoulder

SUPERELEVATION TRANSITION LENGTH

P.T. Station 609+35.9496 Is there a spiral for this curve? no

Percent of super to achieve at P.T.? 100.00%
Is the roadway rotating past flat at the P.T. transition? no

P.C. SUPER INFORMATION		Curve Information				
cross slope rotating from =	Station	Super Rate0.020		Dc =	80'0"	
	607+42.9572			Full super length =	115.94 ft .	
				Slope at $\mathrm{PC}=$	0.0240	
				P.C. $L(r)=$	77.06	
				G-value of P.C. $L(r)=$	172	
full super =	608+20.0132	0.048				
P.T. SUPER INFORMATION				Slope at PT =	0.0480	
	Station	Super Rate		P.T. $\mathrm{L}(\mathrm{r})=$	18.03	
full super =	609+35.9496	0.048		G-value of P.T. L(r) =	161	
cross slope rotating to $=$				Curve length is	5.20	times design speed
	609+53.9816	0.055		time at full super =	2.26	seconds
SHOULDER INFORMATION FOR CURVE		Mainline	Left Shoulder			
P.C. part of curve					Mainline	Right Shoulder
	Station	Super Rate0.0300	Super Rate	Station	Super Rate	Super Rate
	607+70.4772		-0.0400	607+97.9972	0.0400	-0.0400
	608+20.0132	0.0480	-0.0220	608+20.0132	0.0480	-0.0480
P.T. part of curve	609+35.9496	0.0480	-0.0220	609+35.9496	0.0480	-0.0480
	609+17.9176	0.0550	-0.0150	609+17.9176	0.0550	-0.0550

CROSS SLOPE QUERY

| Station | Super Rate | $\%$ of e(d)
 Achieved
 $609+38.0700$ | 0.0488 | 101.71% |
| :---: | :---: | :---: | :---: | :---: | | Left Shoulder |
| :---: |
| Super Rate |
| -0.0212 | | Right Shoulder |
| :---: |
| Super Rate |
| -0.0488 |

SUPERELEVATION TRANSITION LENGTH
ODOT L\&D VOL. 1 - FIGURES 202-7E, 202-8E, 202-9E, FIGURE 202-10E, FIGURE 301-5B AND FIGURE 301-5C
SIMPLE CURVE CONFIG
What $e_{\max }$ table would
Curve widening NOT req
Curve widening NOT req
P.C. ROTATION DATA

	4.80\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PC =	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	35			
$\mathrm{b}(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
\% =	0.62		(maximum relative gradient)	
$\mathrm{G}=$	161		(maximum relative slope)	
$\mathrm{L}(\mathrm{r})=$	141.6800	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	41.2160	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.00\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	25			
$\mathrm{b}(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
$\%$ =	0.7		(maximum relative gradient)	
$\mathrm{G}=$	143		(maximum relative slope) (Superelevation Runoff Length to flat)	
$\mathrm{L}(\mathrm{r})=$	125.8400	feet		
$\mathrm{L}(\mathrm{t})=$	36.6080	feet	(Tangent Runout Length)	
P.C. Station Is there a spiral for this curve?	$\begin{gathered} 609+35.9496 \\ \text { no } \end{gathered}$		Percent of super to achieve at P.C.? 87.27\% Is the roadway rotating past flat at the P.C. transition?	
P.T. Station	612+32.4286		Percent of super to achieve at P.T.?	66.67\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.T. transition?	no

P.C. SUPER INFORMATION		Super Rate		Curve Information		
cross slope rotating from $=$	Station			Dc =	250'0"	
	609+35.9496	0.048		Full super length $=$	236.50 ft .	
				Slope at $\mathrm{PC}=$	0.0480	
				P.C. $L(\mathrm{r})=$	18.03	
				G-value of P.C. L(r$)=$	161	
full super =	609+53.9816	0.055				
P.T. SUPER INFORMATION				Slope at $\mathrm{PT}=$	0.0367	
	Station	Super Rate		P.T. $\mathrm{L}(\mathrm{r})=$	102.96	
full super = normal crown $=$	611+90.4819	0.055		G-value of P.T. L(r) =	143	
	612+79.7139	0.016				
cross slope rotating to =	612+93.4419	0.010		Curve length is time at full super $=$	$\begin{gathered} 11.86 \\ 6.45 \end{gathered}$	times design speed seconds
SHOULDER INFORMATION FOR CURVE		Mainline	Left Shoulder		Mainline	
P.C. part of curve						Right Shoulder
	Station	Super Rate0.0480	Super Rate	Station	Super Rate	Super Rate
	609+35.9496		-0.0220	609+35.9496	0.0480	-0.0480
	609+53.9816	0.0550	-0.0150	609+53.9816	0.0550	-0.0550
P.T. part of curve	611+90.4819	0.0550	-0.0150	611+90.4819	0.0550	-0.0550
	612+47.6819	0.0300	-0.0400	612+24.8019	0.0400	-0.0400

CROSS SLOPE QUERY

Station	Super Rate	\% of e(d) Achieved	Left Shoulder Super Rate	Right Shoulder Super Rate
$609+38.0700$	0.0488	88.77%	-0.0212	-0.0488

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
Width of rotating pavement @ PC = Design speed of PC transition =	0.30\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
	30		(adustment factor	
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.66		(maximum relative gradient)	
$\mathrm{G}=$	152		(maximum relative slope)	
$L(r)=$	102.1440	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	58.3680	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	45			
$b(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185			
$L(r)=$	124.3200	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	71.0400	feet	(Tangent Runout Length)	
P.C. Station	502+17.3316		Percent of super to achieve at P.C.?	70.00\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	yes

P.T. Station $503+91.5591$

Is there a spiral for this curve? no

P.C. SUPER INFORMATION		Curve Information				
cross slope rotating from =	Station	Super Rate		Dc =	40'0"	
	501+34.8868	0.003		Full super length =	104.85 ft .	
				Slope at PC =	-0.0196	
$\begin{array}{r} \text { flat }= \\ \text { reverse crown }= \\ \text { full super }= \end{array}$	501+45.8308	0.000		P.C. $L(r)=$	102.14	
	502+04.1988	-0.016		G-value of P.C. $L(r)=$	152	
	502+47.9748	-0.028		P.C. $\mathrm{L}(\mathrm{t})=$	10.94	
				G-value of P.C. $\mathrm{L}(\mathrm{t})=$	152	
P.T. SUPER INFORMATION				Slope at $\mathrm{PT}=$	-0.0193	
	Station	Super Rate		P.T. $\mathrm{L}(\mathrm{r})=$	124.32	
full super = reverse crown =	503+52.8252	-0.028		G-value of P.T. L(r) =	185	
	504+06.1052	-0.016		P.T. $\mathrm{L}(\mathrm{t})=$	71.04	
$\begin{array}{r} \text { flat }= \\ \text { normal crown }= \end{array}$	504+77.1452	0.000		G-value of P.T. L(t) =	185	
	505+48.1852	0.016		Curve length is time at full super $=$	$\begin{aligned} & 5.81 \\ & 2.38 \end{aligned}$	times design speed seconds
SHOULDER INFORMATION FOR CURVE		Mainline Super Rate	Left Shoulder Super Rate		Mainline Super Rate	
P.C. part of curve						Right Shoulder
	Station			Station		Super Rate
P.T. part of curve						

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PC =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	45			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.54		(maximum relative gradient)	
$\mathrm{G}=$	185		(maximum relative slope)	
$L(r)=$	173.1600	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	71.0400	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	16	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	50			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.5		(maximum relative gradient)	
$\mathrm{G}=$	200			
$L(r)=$	124.8000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	51.2000	feet	(Tangent Runout Length)	
P.C. Station	505+96.3537		Percent of super to achieve at P.C.?	68.84\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	no

P.T. Station	$507+75.3039$		
Is there a spiral for this curve?	yes	Is the roadway rotating past flat at the P.T. transition?	no
What is the length of the spiral?	200.00	Spiral G-value and corresponding design speed:	$543 ; 70-\mathrm{mph}$

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
	2.00\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PC =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition $=$	30			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
\% =	0.66		(maximum relative gradient)	
$\mathrm{G}=$	152		(maximum relative slope)	
$L(r)=$	218.8800	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	58.3680	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	3.00\%	To what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
Width of rotating pavement @ PT =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	50		(adjustment factor for number of lanes rotated)	
$b(w)=$	1			
$\%=$	0.5		(maximum relative gradient)	
$\mathrm{G}=$	200		(maximum relative slope)	
$L(r)=$	288.0000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	76.8000	feet	(Tangent Runout Length)	
P.C. Station	807+96.2472		Percent of super to achieve at P.C.?	50.00\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	no

P.T. Station 810+32.6596
Is there a spiral for this curve? yes
What is the length of the spiral? 150.00 '

Is the roadway rotating past flat at the P.T. transition?
no Spiral G-value and corresponding design speed: 208; 50-mph

P.C. SUPER INFORMATION		Curve Information				
cross slope rotating from =	Station	Super Rate0.020		Dc $=$	24*5'0"	
	807+59.7672			Full super length =	126.97 ft .	
				Slope at $\mathrm{PC}=$	0.0300	
				P.C. $L(r)=$	145.92	
				G-value of P.C. L(r) =	152	
full super =	809+05.6872	0.060				
P.T. SUPER INFORMATION				Slope at PT =	0.0600	
	Station	Super Rate		P.T. Spiral Length =	150.00	
full super =	810+32.6596	0.060		G-value of P.T. Spiral =	208	
cross slope rotating to $=$				Curve length is	7.88	times design speed
	$811+82.6596$	0.030		time at full super =	2.89	seconds
SHOULDER INFORMATION FOR CURVE		Mainline	Left Shoulder			
P.C. part of curve					Mainline	Right Shoulder
	Station	Super Rate0.0300	Super Rate	Station	Super Rate	Super Rate
	807+96.2472		-0.0400	808+32.7272	0.0400	-0.0400
	809+05.6872	0.0600	-0.0100	809+05.6872	0.0600	-0.0600
P.T. part of curve	810+32.6596	0.0600	-0.0100	810+32.6596	0.0600	-0.0600
	811+07.6596	0.0300	-0.0400	810+82.6596	0.0400	-0.0400

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

P.C. ROTATION DATA				
Width of rotating pavement @ PC= Design speed of PC transition =	3.00\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
	50			
$b(w)=$	1	(adjustment factor for number of lanes rotated)		
$\%$ =	0.5	(maximum relative gradient)		
$\mathrm{G}=$	200	(maximum relative slope)		
$L(r)=$	144.0000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	76.8000	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	3.00\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	24	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	50			
$b(w)=$	1	(adjustment factor for number of lanes rotated)		
$\%=$	0.5	(maximum relative gradient)		
$\mathrm{G}=$	200			
$L(r)=$	144.0000	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	76.8000	feet	(Tangent Runout Length)	
P.C. Station	$811+82.6596$		Percent of super to achieve at P.C.?	100.00\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	no

P.T. Station $815+75.0704$

Is there a spiral for this curve?
no

Percent of super to achieve at P.T.? 100.00%
Is the roadway rotating past flat at the P.T. transition? no

P.C. SUPER INFORMATION		Curve Information				
cross slope rotating from =	Station	Super Rate0.030		Dc =	20'0"	
	811+82.6596			Full super length $=$	392.41 ft .	
				Slope at PC =	0.0300	
				P.C. $L(r)=$	0.00	
				G-value of P.C. $L(r)=$	\#DIV/0!	
full super =	811+82.6596	0.030				
P.T. SUPER INFORMATION				Slope at PT =	0.0300	
	Station	Super Rate		P.T. L(r) =	0.00	
full super =	815+75.0704	0.030		G-value of P.T. $L(r)=$	\#DIV/0!	
cross slope rotating to $=$				Curve length is	8.72	times design speed
	815+75.0704	0.030		time at full super $=$	5.95	seconds
SHOULDER INFORMATION FOR CURVE		Mainline Super Rate 0.0300	Left Shoulder Super Rate		Mainline Super Rate	Right Shoulder Super Rate
P.C. part of curve	Station			Station		
	811+82.6596		-0.0400			
P.T. part of curve						
	815+75.0704	0.0300	-0.0400			

STATION INFORMATION

SUPERELEVATION TRANSITION LENGTH

SIMPLE CURVE CONFIGURATION			
Designer name:	DCL	mph (design speed, mph)	
Curve name:	trsmid-1		
What $\mathrm{e}_{\max }$ table would you like to use?	0.040 max		
$\mathrm{V}=$	25		
Dc $=$	30.00		(degree of curve of alignment)
Radius =	190.99	feet	(radius of curve of alingment)
$e_{d}=$	0.016		(design superelevation rate)
normal crown $\left(\mathrm{e}_{\mathrm{NC}}\right)=$	0.016		
	left	Is the curve to the left or right (in the direction of stationing)?	
	right	Will the dependent geopak shapes be to the left or right of the baseline?	
Curve widening NOT required for WB-50.	0.000	feet of pavement widening per lane (for 12' lane and WB-50 design vehicle; L\&D Fig. 301-5b)	
Curve widening NOT required for WB-62.	0.000	feet of pavement widening per lane (for 12' lane and WB-62 design vehicle; L\&D Fig. 301-5c)	
	yes	Divided roadway?	

P.C. ROTATION DATA				
Width of rotating pavement @ PC = Design speed of PC transition =	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
	13	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
	25			
$b(w)=$	1	(adjustment factor for number of lanes rotated)		
$\%=$	0.7	(maximum relative gradient)		
$\mathrm{G}=$	143		(maximum relative slope)	
$L(r)=$	29.7440	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	29.7440	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6\% for NC, etc.)		
Width of rotating pavement @ PT =	13	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	25			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.7		(maximum relative gradient)	
$\mathrm{G}=$	143		(maximum relative slope) (Superelevation Runoff Length to flat)	
$L(r)=$	29.7440	feet		
$L(t)=$	29.7440	feet	(Tangent Runout Length)	
P.C. Station	50+74.9841		Percent of super to achieve at P.C.?	66.67\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.C. transition?	yes

P.T. Station $\quad 52+24.9883$

Is there a spiral for this curve? no

Percent of super to achieve at P.T.? 100.00%
Is the roadway rotating past flat at the P.T. transition? no

P.C. SUPER INFORMATION		Super Rate
	Station	
normal crown $=$	50+25.4108	-0.016
flat $=$	50+55.1548	0.000
reverse crown =	50+84.8988	0.016
full super =	$50+84.8988$	0.016
P.T. SUPER INFORMATION		
	Station	Super Rate
full super $=$	52+24.9883	0.016
normal crown $=$	52+24.9883	0.016

SHOULDER INFORMATION FOR CURVE		Mainline Super Rate	Left Shoulder Super Rate		Mainline Super Rate	Right Shoulder Super Rate
	Station			Station		
P.C. part of curve						
P.T. part of curve						

Curve Information		
Full super length $=$	$140.09 \mathrm{ft}$.	
Slope at PC $=$	0.0160	
P.C. $\mathrm{L}(\mathrm{r})=$	29.74	
G-value of P.C. L(r) $=$	143	
P.C. $\mathrm{L}(\mathrm{t})=$	29.74	
G-value of P.C. L(t)	$=$	143
Slope at PT	$=$	0.0160
P.T. L(r)	$=$	0.00
G-value of P.T. L(r) $=$	\#DIV/0!	

Curve length is	6.00	times design speed
time at full super $=$	3.82	seconds

STATION INFORMATION

\% of e(d)	Left Shoulder	Right Shoulder
Achieved	Super Rate	Super Rate

SUPERELEVATION TRANSITION LENGTH
ODOT L\&D VOL. 1 - FIGURES 202-7E, 202-8E, 202-9E, FIGURE 202-10E, FIGURE 301-5B AND FIGURE 301-5C
SIMPLE CURVE CONFIG
What $\mathrm{e}_{\max }$ table would
Curve widening NOT requ
Curve widening NOT req
P.C. ROTATION DATA

	1.60\%	From what cross slope is the roadway being rotated? (i.e. 1.6% for NC , etc.)		
Width of rotating pavement @ PC =	13	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PC transition =	25			
$b(w)=$	1		(adjustment factor for number of lanes rotated)	
\% =	0.7		(maximum relative gradient)	
$\mathrm{G}=$	143		(maximum relative slope)	
$L(r)=$	29.7440	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	29.7440	feet	(Tangent Runout Length)	
P.T. ROTATION DATA				
	1.60\%	To what cross slope is the roadway being rotated? (i.e. 1.6% for NC, etc.)		
Width of rotating pavement @ PT =	13	feet	(do not include curve widening, gore areas or entrance and exit lanes)	
Design speed of PT transition =	25			
$b(\mathrm{w})=$	1		(adjustment factor for number of lanes rotated)	
$\%=$	0.7		(maximum relative gradient)	
$\mathrm{G}=$	143		(maximum relative slope)	
$L(r)=$	29.7440	feet	(Superelevation Runoff Length to flat)	
$L(t)=$	29.7440	feet	(Tangent Runout Length)	
P.C. Station	$53+24.6507$		Percent of super to achieve at P.C.? Is the roadway rotating past flat at the P.C. transition?	100.00%
Is there a spiral for this curve?	no			no
P.T. Station	54+65.3401		Percent of super to achieve at P.T.?	66.67\%
Is there a spiral for this curve?	no		Is the roadway rotating past flat at the P.T. transition?	yes

STATION INFORMATION

