Payne Avenue Bridge Study Cleveland, Ohio

Technical Memorandum November 11, 2023

Prepared for:
ODOT District 12
5500 Transportation Boulevard
Garfield Heights, Ohio 44125
Prepared By:
Burgess \& Niple, Inc.
330 Rush Alley, Suite 700
Columbus, Ohio 43215

Introduction

In December 2022, ODOT requested that Burgess \& Niple (B\&N) determine the feasibility of advancing construction of the proposed Payne Avenue bridge over I-90 ahead of completing the reconstruction of I-90 anticipated with the Innerbelt Trench (CCG5) contract. B\&N completed an evaluation of a bridge configuration that placed bridge piers outside of both the existing I-90 lanes and the proposed I-90 lanes. $B \& N$ has confirmed that this is a feasible solution and that this alignment does not adversely affect adjacent proposed bridges along the I-90 corridor. A design exception will be required for vertical clearance of proposed Payne Avenue over existing l-90, in addition to other next steps identified at the end of this narrative.

Design Criteria

Using the alignments developed for the April 2010 submittal from the Cleveland Innerbelt Study (Innerbelt Study) as a starting point, B\&N modified the proposed I-90 EB/WB alignments near Payne Avenue such that the proposed Payne Avenue bridge pier could be placed outside of the existing I-90 EB pavement. Within the study area (I-90 from Chester Avenue to Superior Avenue), the design speeds and typical sections for I-90 (including the 6-foot wide median barrier per ODOT SCD RM-4.4) and interchange ramps were maintained from the Innerbelt Study. The Payne Avenue design criteria were determined by matching existing as closely as possible, as the intent of the Payne Avenue work is primarily focused on reconstructing the bridge for pier placement and vertical clearance at l-90. The posted speed for Payne Avenue is 25 MPH and an assumed design speed of 30 MPH was used for the purposes of this study.

	Design Speed	Lane Width	Minimum Shoulder Width	Sidewalk Width	Required Vertical Clearance \#
I-90 EB	60 MPH	12' *	12^{\prime}	N/A	$\begin{aligned} & 15.5^{\prime} \mathrm{Min} / 16.0^{\prime} \\ & \text { Preferred } \end{aligned}$
I-90 WB	60 MPH	12^{*}	12^{\prime}	N/A	$\begin{aligned} & 15.5^{\prime} \mathrm{Min} / 16.0^{\prime} \\ & \text { Preferred } \end{aligned}$
Interchange Ramps	Varies \#\#	16' single-lane; 12' multi-lane **	6' RT/3' LT singlelane; $12^{\prime} \mathrm{RT} / 4^{\prime} \mathrm{LT}$ multi-lane **	N/A	$\begin{aligned} & 15.5^{\prime} \mathrm{Min} / 16.0^{\prime} \\ & \text { Preferred } \end{aligned}$
Payne Avenue	30 MPH	11'	N/A; 6' bike lane on either side	8' walk on each side of bridge	N/A (no overhead bridges in study limits)

* Per L\&D Vol 1 Fig 301-4
** Per L\&D Vol 1 Fig 303-1
\# Per Innerbelt Study IMS
\#\# Per L\&D Vol 1 Fig 503-1

Geometric Analysis

Horizontal Geometry - To place the Payne Avenue proposed bridge pier at a location that would both avoid existing I-90 pavement and be located within the median of proposed I-90, the proposed I-90 EB/WB alignments were shifted east by approximately 17 feet at Payne Avenue, beginning north of

Chester Avenue and meeting back to the April 2010 submittal alignments just south of Superior Avenue. Because the Payne Avenue overpass is not near any future proposed overhead guide signs or sight triangles shown in the Innerbelt Study proposed signing plan (developed in 2015/2016), the adjustment in I-90 EB/WB alignment is not anticipated to adversely affect the sign visibility of overhead wayfinding guide signs. See the appendix for exhibits depicting the alignment shift as part of this study. This I-90 horizontal alignment shift required the following alignment adjustments:

- Ramp C2 (I-90 EB to Superior Avenue)
- Ramp C3 (I-90 EB to E 30th Street)
- Ramp C4 (Chester Avenue to I-90 EB)
- Ramp D3 (I-90 WB to Chester Avenue)
- Ramp D4 (I-90 WB to E 24th Street)

In the Innerbelt Study, Ramp C3's inside (right) shoulder was 7.5 feet from an existing building (1580 E $30^{\text {th }}$ Street, Cleveland $\mathrm{OH}, 44114$) at its nearest point; because the alignments shifted to the east to place the Payne Avenue pier outside existing pavement in this study, the ramp was moved 3 feet closer to the existing building, as circled in red in the image below:

Figure 1: Ramp C3 Near Existing Building
These dimensions do not consider any proposed retaining wall or barrier, as well as any existing subsurface features of the building. Proposed Ramp C3 also severs access from E 27th Street to E 30th

Street. Practically, placing the ramp this close to the building may require some form of right-of-way (R/W) and/or property acquisition.

Payne Avenue Vertical Clearance - While the proposed vertical clearance between I-90 and Payne Avenue will meet the standard vertical clearance requirements after construction of I-90, the advancement of the construction of the Payne Avenue bridge replacement necessitates that the proposed structure have sufficient vertical clearance over existing I-90. Using the Payne Avenue profile and structure depth developed in the Innerbelt Study, B\&N found that the vertical clearance between existing I-90 and proposed Payne Avenue was approximately 12.5 feet; the proposed Payne Avenue profile would need to be raised to achieve a sufficient vertical clearance.

Analyzing bridge inventory reports for existing bridges over I-90 within the Innerbelt Study area (excluding all bridges south of Carnegie Avenue, as those are assumed to be replaced prior to when Payne Avenue construction would begin), B\&N observed several existing vertical clearances below standard 16.0 feet at critical bridges:

- I-90 Under CSX Railroad bridge: 15.0-foot vertical clearance
- I-90 Under NSC Railroad bridge: 15.1-foot vertical clearance
- I-90 Under SR-2 bridge: 15.0-foot vertical clearance
- I-90 Under existing Payne Avenue bridge: 15.0-foot vertical clearance

B\&N believes that if a 15.1-foot vertical clearance could be achieved between existing l-90 and proposed Payne Avenue, this would not only be an improvement over the existing condition but also match similar clearances within the corridor. While this will require a design exception to be filed for vertical clearance, the justification would be that (1) further raising the profile is likely to extend the work limits and overall costs, (2) this would be an interim condition and vertical clearance would be increased to meet standards when l-90 is reconstructed, and (3) this interim vertical clearance is greater than the existing and there have not been any bridge hits observed from police reports analyzed from 2019 2022 as a result of deficient vertical clearance at this location.

Increasing the vertical clearance from 12.5 feet to 15.1 feet is accomplished in two parts: (1) by modifying the span configuration to reduce the structure depth and (2) by adjusting the proposed Payne Avenue profile. Adjusting the proposed I-90 horizontal alignment as previously discussed permits the proposed Payne Avenue bridge to be modified from the 2-span structure shown in the Innerbelt Study to a 3-span structure. Utilizing a 3-span structure decreases the structure depth by 1.5 feet. The profile of Payne Avenue was raised the remaining 1.1 feet. 30 MPH design standards were met with the revised profile for Payne Avenue for vertical Stopping Sight Distance (L\&D Vol 1 Section 201.2.2), required vertical curve length (L\&D Vol 1 Section 203.3) and roadway grade requirements (L\&D Vol 1 Section 203.2). No additional R/W acquisition is anticipated by raising the profile as shown in this study, as the Payne Avenue work limits did not increase beyond those shown in the Innerbelt Study.

While the scope of this study was to determine the feasibility of constructing the Payne Avenue bridge prior to construction of I-90, further geometric optimizations have been identified to the alignments shown in the exhibits in the appendices:

- Raise proposed I-90 EB/WB profiles (from that established during the CCG5 Innerbelt Study) to reduce the ultimate vertical clearance under Payne Avenue to a value closer to the required 16.0-foot preferred minimum
- Investigate further optimization of the Payne Avenue bridge structure by reducing the span lengths. This may be able to be accomplished by shifting Ramp D3 (I-90 WB to Chester Avenue) closer to I-90 WB under Payne Avenue and shifting Ramp C4 (Chester Avenue to l-90 EB) closer to I-90 EB under Payne Avenue

Structural Analysis

Three alternatives were investigated by B\&N for the replacement of the Payne Avenue Bridge over I-90 EB/WB. These alternatives include multiple structure types and span arrangements. All alternatives have a bridge length of 348 feet due to the proposed alignment and proposed ramps. The existing buildings at 2675 and 2630 Payne Avenue would need to be acquired and demolished prior to construction for all alternatives. Piers would be cap and column type. Abutments for all alternatives would be in the same location and will be approximately the same size and shape. Side-by-side drilled shaft type abutments could be beneficial to significantly reduce the amount of shoring required to build abutments with traditional driven pile foundations and tall breastwalls. Based on experience from CCG3A, however, this benefit is likely to be overshadowed by the significantly higher cost of drilled shaft abutments compared to traditional abutments. Alternatives 1 and 2 meet the span to depth requirements of AASHTO. An alternative matching the existing superstructure depth could not be achieved. Raising of Payne Avenue would be necessary to replace the bridge before construction proposed I-90 EB/WB to maintain existing minimum vertical clearance.

Alternative 1 - Alternative 1 is a three-span (161 feet, 77 feet, 110 feet) bridge with eight steel plate girders. Rolled beams were also analyzed but did not provide adequate strength. Analysis of the girders resulted in total superstructure depths of $66^{\prime \prime}$ for all spans, but these are preliminary depths and could change in detailed design. The approximate steel weight is $1,530,000$ pounds.

This span arrangement places Pier 1 at the proposed median of I-90, which is just east of existing I-90 EB, and places Pier 2 in the gore area between the east edge of proposed I-90 EB and the proposed E 27th Street and Superior Avenue ramps (Ramps C2 and C3). Since the existing and proposed piers both are cap and column type with individual footings for each column, it is anticipated that the proposed footings can be sized and positioned to avoid conflicts with the existing footings. If footing conflicts are unavoidable, the reuse of the existing foundations or piles would be investigated. Temporary shoring would be required at the eastern edge of existing l-90 EB to construct the proposed Pier 1. This shoring could potentially be soldier pile type if required to avoid conflicts with the existing pier foundations.

To accommodate the superstructure depth of the three-span arrangement, the Payne Avenue profile would need to be raised by approximately $13^{\prime \prime}$. This raising is manageable since the proposed profile would tie into the existing profile prior to the E 25th Street and E 27th Street intersections. The bridge could be replaced prior to l-90 lowering and could potentially be constructed in phases to maintain vehicular, bicycle, and pedestrian traffic during construction.

If phased construction is required, significant temporary shoring along the centerline of Payne Avenue would be needed to retain the embankments during phase 1 removal and construction. This shoring
would likely be steel sheet pile with multiple rows of ground anchors and would have exposed heights up to 33 feet. Temporary MSE walls along Payne Avenue would then be required to retain the embankments behind the proposed abutments for phase 2 removal and construction. Temporary shoring needed for phase construction could be eliminated if Payne Avenue can be closed to traffic during its construction.

Alternative 2 - Alternative 2 is a two-span (161 feet, 187 feet) bridge with eight haunched steel plate girders. While constant web depth girders are also feasible, haunching provides a significant savings in steel weight. Both ten and eleven girder layouts were also analyzed but did not significantly lessen the total structure depth to warrant the additional steel weight. Analysis of the girders resulted in total superstructure depths of $59^{\prime \prime}, 91^{\prime \prime}$, and $60^{\prime \prime}$ for Span 1, maximum haunch over the pier, and Span 2 respectively. The approximate steel weight is $1,600,000$ pounds.

Much like Alternative 1, Pier 1 is located at the proposed median of I-90. The proposed pier footings would also be placed to avoid the existing if possible. Temporary shoring of the pier, assumed to be cantilever steel sheeting, is required on the west side and potentially the east side depending on MOT. This shoring could potentially be soldier pile type if required to avoid conflicts with the existing pier foundations.

To accommodate the haunched girder depth of the two-span arrangement, the Payne Avenue profile would need to be raised by approximately $37^{\prime \prime}$ near the pier. $B \& N$ determined that this profile raising is not feasible since it would affect the buildings to the west of $\mathrm{I}-90$ and would require modification to E 25th Street and E 27th Street. Since profile raising is not feasible, this alternative would require I-90 to be lowered prior to replacement of the bridge. Another impact of this is that Payne Avenue would need to be closed to traffic during construction of the bridge and I-90.

Alternative 3 - Alternative 3 is a single span (348 feet) through type arch or truss. This alternative was not studied in detail as part B\&N's scope of services. While this type of bridge is technically feasible for this application and for the needs of the site, it is less beneficial than the other studied alternatives. The major disadvantages of this alternative are its cost and complexity.

Pros

- The superstructure depth is likely similar to the other alternatives.
- No piers are required and the structure completely spans I-90 and its ramps, so potential substructure conflicts are greatly lessened.
- I-90 MOT is most flexible for this structure type since it doesn't have any piers.
- Accelerated construction of the superstructure is possible and would save substantial construction time and lane closure time.

Cons

- This structure type is very costly compared to other more common structure types.
- This structure type is uncommon in this span and width. Bidding may be difficult due to contractor unfamiliarity and complexity.
- This structure type is fracture critical and has more stringent inspection requirements than typical redundant bridge types, such as those in Alternatives 1 and 2.
- Phased construction may not be possible for a steel arch or truss. This would require closure of Payne Avenue to construct.
- If phased construction is not possible, a separate utility bridge would be needed to convey the utilities currently attached to the existing bridge.
- Maintaining this type of bridge is costlier than more conventional bridge types.

Utilities - Streetlights with overhead lines are attached to the pier caps and will need to be relocated or replaced with the proposed bridge. The underside of the deck is currently inaccessible due to timber decking between the beams. Existing survey information shows water lines attached to the crossframes in the northern and southern fascia beam bays. Survey data also shows gas lines and fiber optic lines attached to other interior bays. Utility coordination would be required during design to verify ownership and whether the existing utilities are still in service. If the utilities are found to be in service and need to be carried by the proposed bridge, phased construction may be necessary even if full closure of Payne would be permitted. Temporary relocations to accommodate phased removal and construction may be required for all attached utilities that need to remain in service during construction. For example, a utility attached to the bridge section designated as phase 1 removal would need to be temporarily relocated to the phase 2 removal section before it can be permanently switched back to the phase 1 construction section.

Cost Estimate - A preliminary cost estimate was completed for each alternative. The goal of the costs presented in this estimate is to determine the relative cost differences between the alternatives, not the total construction cost of each alternative. This data can also be used to determine the cost of phased construction vs full closure. Ultimately, these costs can be used to compare to the cost of re-decking the existing bridge and could potentially be helpful for budgetary and financial planning efforts of the stakeholders. Prices are all presented in 2023 dollars per current item pricing. Estimated costs do not include raising of Payne Avenue, modifications to E 25th Street and E 27th Street, lowering of I-90 $\mathrm{EB} / \mathrm{WB}$, or R / W acquisitions. The estimated costs are summarized in the Bridge Alternative Cost Summary Table (below).

Alternatives 1 and 2 were found to have very similar costs. It was assumed that the piers and abutments for each alternative would have similar sizes and shapes. The additional structural steel required for Alternatives 2 was offset by the cost an additional pier in Alternative 1. If phased construction of Payne Avenue is required, the additional cost is approximately $\$ 900,000$.

Alternative 3 was estimated on a cost per square foot basis. Similar bridge cost data was used to determine a preliminary total superstructure cost. It was found that through arches and trusses of similar span and width are approximately $\$ 750 /$ SF of deck. It should be noted that while not investigated, it is anticipated that the abutments for Alternative 3 would likely be more complex and larger than the other alternatives, resulting in a higher relative cost.

Bridge Alternative Cost Summary Table		
Alternative Name	Estimated Cost	Commentary
Alternative 1 (Phased Construction)	$\$ 6,400,000$	Cost of phase shoring, pier 2, pier shoring, and girders
Alternative 1 (Full Closure)	$\$ 5,500,000$	Cost of pier 2, pier shoring and girders
Alternative 2	$\$ 5,500,000$	Cost of pier shoring and girders
Alternative 3	$\$ 20,000,000$	Total cost of superstructure

Next Steps

Should ODOT decide to pursue this alternative further, several next steps should be considered:

- Perform similar studies for similar structures within the Cleveland Innerbelt corridor.
- Begin general utility coordination at Payne Avenue to determine which lines are still in service and would need to remain in service during construction.
- Optimize I-90 and ramp geometry as described above when CCG5 final design contract is advanced.
- Investigate further geometric optimizations to avoid the existing building (1580 E $30^{\text {th }}$ Street, Cleveland OH, 44114) near the proposed I-90 EB exit ramp to E 30th Street ramp (Ramp C3) as well as any subsurface features to the building (foundations, basements, etc.) to determine the minimum horizontal clearance required to the building.
- Evaluate potential impacts and mitigation strategies for the building in the southwest quadrant of the bridge when the Payne Avenue roadway profile is modified.
- Begin the design exception process for vertical clearance of Payne Avenue over existing I-90.

Appendix A - Roadway Exhibits

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:48pm

```
Project: Design
Description:
File Name: P:IPR60054ICUY\77510\Design\Roadway\Basemapsl77510_BP001.dgn
Last Revised: 3/14/2023 12:35:34
```

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: PCL90W Alignment Description:			
Alignment Style: CL_P_Construction			
	Station	Northing	Easting

Element: Circular

PC	()	$208+54.24 \mathrm{R} 1$	668766.375	2195496.502
PI	()	$216+08.41 \mathrm{R} 1$	669193.089	2196118.341
CC	()		669877.963	2194733.716
CS	()	$222+29.45 \mathrm{R} 1$	669946.286	2196080.120

Degree of Curvature (Arc)
Length:
Tangent:
Chord:
1348.136
$58^{\circ} 26^{\prime} 47.6^{\prime \prime}$ Left
$4^{\circ} 15^{\prime} 00.0^{\prime \prime}$
1375.213
754.167
1316.359

Middle Ordinate:
171.586

External:
196.609

Tangent Direction:
N $55^{\circ} 322^{\prime 29.7 " ~ E ~}$
Radial Direction:
S $34^{\circ} 27^{\prime} 30.3^{\prime \prime}$ E
Chord Direction:
N 26019'05.9" E
Radial Direction:
N 87º $05^{\prime} 42.1^{\prime \prime} \mathrm{E}$
Tangent Direction:
N $2^{\circ} 54^{\prime} 17.9^{\prime \prime}$ W
Element: Clothoid

CS	()	$222+29.45 \mathrm{R} 1$	669946.286	2196080.120
SPI	()	$224+15.20 \mathrm{R} 1$	670131.797	2196070.706
ST	()	$227+84.45 \mathrm{R} 1$	670490.486	2195976.614
Entrance Radius:	1348.136			
Exit Radius:	0.000			
Length:	555.000			
Angle:	$11^{\circ} 477^{\prime} 37.5^{\prime \prime}$ Left			
Constant:	864.994			
Long Tangent:	370.825			
Short Tangent:	185.750			
Long Chord:	553.956			

Xs:	552.653
Ys:	37.965
$\mathrm{P}:$	9.506
$\mathrm{~K}:$	277.109
Tangent Direction:	$\mathrm{N} 2^{\circ} 54^{\prime} 17.9^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 87^{\circ} 05^{\prime} 42.1^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 10^{\circ} 46^{\prime} 08.0^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 75^{\circ} 18^{\prime} 04.6^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 14^{\circ} 41^{\prime} 55.4^{\prime \prime} \mathrm{W}$

Element: Linear
ST
PC
Tangential Direction:
Tangential Length:

[^0]227+84.45 R1
670490.486
2195976.614

232+00.65 R1
670893.063
2195871.010

Element: Circular

PC	()
PI	()
CC	()
PT	()
	Radius:
	Delta:

Degree of Curvature (Arc)
Length:
Tangent:
Chord:
N 14* $41^{\prime} 55.4^{4}$ W
416.198
Length
Tangen
204.963
102.488
204.957

Middle Ordinate:
0.687

External:
0.687

Tangent Direction:
Radial Direction:
Chord Direction:
Radial Direction:
Tangent Direction:

N 1441'55.4" W N 75 $5^{\circ} 18^{\prime} 04.6^{\prime \prime}$ E N 13055'48.4" W N 76º50'18.6" E N 13º $09^{\prime} 41.4^{\prime \prime}$ W

Element: Linear
PT ()
PC
Tangential Direction:
Tangential Length:
Element: Circular

PC	()	$237+20.07 \mathrm{R} 1$	671398.191	2195750.068
PI	()	$241+28.80 \mathrm{R} 1$	671796.180	2195657.002
CC	()		667999.783	2181216.963
PT	()	$245+37.32 \mathrm{R} 1$	672188.479	2195542.295
	Radius:	14925.157		
	Delta:	$3^{\circ} 08^{\prime} 14.3^{\prime \prime}$ Left		

Degree of Curvature (Arc):	$0^{\circ} 23^{\prime} 02.0^{\prime \prime}$
Length:	817.247
Tangent:	408.725
Chord:	817.144
Middle Ordinate:	5.593
External:	5.595
Tangent Direction:	$\mathrm{N} 13^{\circ} 09^{\prime} 41.4^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 76^{\circ} 50^{\prime} 18.6^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 14^{\circ} 43^{\prime} 48.5^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 73^{\circ} 42^{\prime} 04.3^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 16^{\circ} 17^{\prime} 55.7^{\prime \prime} \mathrm{W}$

Element: Linear
PT ()
PC
$245+37.32$ R1

672188.479	2195542.295
672633.818	2195412.079

Tangential Direction:
Tangential Length:
N 16¹7'55.7" W
463.986

Element: Circular

PC	()
PI	()
CC	()
PRC	()
	Radius:
	Delta:

()
()
()

Delta:
Degree of Curvature (Arc) :
Length:
Tangent:
Chord:
Middle Ordinate:
External:
$250+01.30 R 1$
$252+47.70 R 1$
672633.818
2195412.079
$672870.309 \quad 2195342.929$
671084.268
2190112.620

254+93.76 R1
673099.700
2195252.990

Element: Circular

PRC	()	$254+93.76 \mathrm{R} 1$	673099.700	2195252.990
PI	()	$262+86.47 \mathrm{R} 1$	673837.710	2194963.631
CC	()		676787.662	2204659.160
PT	()	$270+75.94 \mathrm{R} 1$	674611.818	2194792.914
	Radius:	10103.321		
	Delta:	$8^{\circ} 58^{\prime} 21.0^{\prime \prime}$ Right		
of Curvature (Arc):	$0^{\circ} 34^{\prime} 01.6^{\prime \prime}$			
Length:	1582.177			
Tangent:	792.709			
Chord:	1580.561			

Middle Ordinate: 30.955
External: 31.050
Tangent Direction: N 21 ${ }^{\circ} 24^{\prime} 32.8^{\prime \prime}$ W
Radial Direction: N 68³5'27.2" EChord Direction:N 16055'22.3" WRadial Direction:N 77 $33^{\prime 2} 48.2^{\prime \prime} \mathrm{E}$
Tangent Direction: N 12²0 $6^{\prime} 11.8^{\circ}$ W

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:49pm

```
Project: Design
Description:
File Name: P:IPR60054ICUY\77510\Design\Roadway\Basemapsl77510_BP001.dgn
Last Revised: 3/14/2023 12:35:34
```

Note: All units in this report are in feet unless specified otherwise.
Alignment Name: PCLE90
Alignment Description:
Alignment Style: CL_P_Construction

Element: Circular

PC	()	$207+43.63 \mathrm{R} 1$	668722.857	2195592.595
PI	()	$214+95.07 \mathrm{R} 1$	669149.936	2196210.875
CC	()		669832.090	2194826.389
CS	()	$221+14.69 \mathrm{R} 1$	669900.413	2196172.792

Element: Clothoid

CS	()	$221+14.69 \mathrm{R} 1$	669900.413	2196172.792
SPI	()	$223+00.44 \mathrm{R} 1$	670085.924	2196163.378
ST	()	$226+69.69 \mathrm{R} 1$	670444.613	2196069.287
Entrance Radius:	1348.136			
Exit Radius:	0.000			
Length:	555.000			
Angle:	$11^{\circ} 477^{\prime} 37.5^{\prime \prime}$ Left			
Constant:	864.994			
Long Tangent:	370.825			
Short Tangent:	185.750			
Long Chord:	553.956			

Xs:	552.653
Ys:	37.965
$\mathrm{P}:$	9.506
$\mathrm{~K}:$	277.109
Tangent Direction:	$\mathrm{N} 2^{\circ} 54^{\prime} 17.9^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 87^{\circ} 05^{\prime} 42.1^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 10^{\circ} 46^{\prime} 08.0 \mathrm{~W}$
Radial Direction:	$\mathrm{N} 75^{\circ} 18^{\prime} 04.6^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 14^{\circ} 41^{\prime} 55.4^{\prime \prime} \mathrm{W}$

Element: Linear
ST

Tangential Direction:
Tangential Length:
$226+69.69 \mathrm{R} 1$
$231+52.73 \mathrm{R} 1$
$\mathrm{~N} 14^{\circ} 41^{\prime} 55.4^{\prime \prime} \mathrm{W}$
483.038
670444.613
2196069.287
670911.842
2195946.723

Element: Circular

PC	()
PI	()
CC	()
PT	()
	Radius:
	Delta:

Degree of Curvature (Arc)
Length:
Tangent:
Chord:
Pl
()
()
()
()

Radius:
Delta:
Length:
Tangent
Chord
Middle Ordinate
External

Tangent Direction:
Radial Direction:
Chord Direction:
Radial Direction:
Tangent Direction:

$$
231+52.73 \mathrm{R} 1
$$

231+52.73 R1
670911.842

232+55.22 R1
671010.977
2195946.723
672850.246
2195920.717

233+57.69 R1
7639.437
$1^{\circ} 32$ '14.0" Right
045'00.0"
204.965
102.488
204.959
0.687
0.687

N 14²4'55.4" W N 75¹8'04.6" E N 1355'48.4" W N 76º 50'18.6" E N 1300'41.4" W

Element: Linear
PT
PC

$$
233+57.69 \mathrm{R} 1
$$

671110.773
2195897.381

236+71.18 R1
671416.031
2195826.000

Tangential Direction:
Tangential Length:
N 1309'41.4" W
313.493

Element: Circular

PC	()	$236+71.18 \mathrm{R} 1$	671416.031	2195826.000
PI	()	$240+81.96 \mathrm{R} 1$	671816.018	2195732.467
CC	()		668000.585	2181220.017
PT	()	$244+92.53 \mathrm{R} 1$	672210.287	2195617.184
	Radius:	15000.000		
	Delta:	$3^{\circ} 08^{\prime} 14.4 "$ Left		

Degree of Curvature (Arc):	$0^{\circ} 22^{\prime} 55.1^{\prime \prime}$
Length:	821.350
Tangent:	410.778
Chord:	821.247
Middle Ordinate:	5.621
External:	5.624
Tangent Direction:	$\mathrm{N} 13^{\circ} 09^{\prime} 41.4^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 76^{\circ} 50^{\prime} 18.6^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 14^{\circ} 43^{\prime} 48.5^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 73^{\circ} 42^{\prime} 04.3^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 16^{\circ} 17^{\prime} 55.7^{\prime \prime} \mathrm{W}$

Element: Linear
PT ()
PC

$$
244+92.53 \mathrm{R} 1
$$

$$
249+49.08 \text { R1 }
$$

672210.287	2195617.184
672648.483	2195489.056

Tangential Direction:
Tangential Length: N 16¹7'55.7" W 456.544

Element: Circular

PC	()
PI	()
CC	()
PRC	()
	Radius:
	Delta:

Tangent:
243.439 486.440

Middle Ordinate:

Element: Circular

PRC	()	$254+35.66 \mathrm{R} 1$	673109.346	2195333.399
PI	()	$262+11.48 \mathrm{R} 1$	673833.167	2195054.174
CC	()		676858.716	2205052.697
PT	()	$269+84.43 \mathrm{R} 1$	674590.364	2194885.244
	Radius:	10417.414		
	Delta:	$8^{\circ} 31^{\prime} 05.5^{\prime \prime}$ Right		
of Curvature (Arc):	$0^{\circ} 33^{\prime} 00.0^{\prime \prime}$			
Length:	1548.765			
	Tangent:	775.812		

Middle Ordinate:	28.769
External:	28.848
Tangent Direction:	$\mathrm{N} 21^{\circ} 05^{\prime} 41.6^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 68^{\circ} 54^{\prime} 18.4^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 16^{\circ} 50^{\prime} 08.8^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 77^{\circ} 25^{\prime} 23.9^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 12^{\circ} 34^{\prime} 36.1^{\prime \prime} \mathrm{W}$

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:50pm

```
Project: Design
Description:
File Name: P:IPR60054\CUY\77510\Design\Roadway\Basemapsl77510_BP001.dgn
Last Revised: 3/14/2023 12:49:42
```

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: TRE90SUP
 Alignment Description:
 Alignment Style: CL_P_Construction
 Station Northing Easting

Element: Circular

PC	()	$1000+00.00 \mathrm{R} 1$	669919.866	2196196.823
PI	()	$1001+29.71 \mathrm{R} 1$	670049.311	2196188.568
CC	()		669787.275	2194117.563
PT	()	$1002+59.08 \mathrm{R} 1$	670176.732	2196164.323

Degree of Curvature (Arc)
Length:
Tangent:
2083.483
$7^{\circ} 07^{\prime 2} 28.9^{\prime \prime}$ Left
$2^{\circ} 45^{\prime} 00.0^{\prime \prime}$
259.080
129.707

Chord: 258.913
Middle Ordinate: 4.026
External:
4.034

Tangent Direction:
N $3^{\circ} 38^{\prime} 55.4^{\prime \prime}$ W
Radial Direction:
N 86º $21^{\prime} 04.6^{\prime \prime}$ E
Chord Direction: N 7º 12'39.9" W
Radial Direction:
N 79ºㄹ'35.7" E
Tangent Direction:
N $10^{\circ} 46^{\prime} 24.3^{\prime \prime}$ W
Element: Linear

PT	()	$1002+59.08 \mathrm{R} 1$	670176.732	2196164.323
PC	()	$1006+54.02 \mathrm{R} 1$	670564.708	2196090.499
Tangential Direction:	$\mathrm{N} 10^{\circ} 46^{\prime} 24.3 \mathrm{~W}$ W			
Tangential Length:	394.937			

Element: Circular

PC	()	$1006+54.02 \mathrm{R} 1$	670564.708	2196090.499
PI	()	$1007+63.31 \mathrm{R} 1$	670672.075	2196070.069
CC	()		670993.110	2198341.934
PT	()	$1008+72.44 \mathrm{R} 1$	670780.900	2196059.949
	Radius:	2291.831		

Delta:	$5^{\circ} 27^{\prime} 38.0$ " Right
Degree of Curvature (Arc):	$2^{\circ} 30^{\prime} 00.0^{\prime \prime}$
Length:	218.423
Tangent:	109.294
Chord:	218.340
Middle Ordinate:	2.602
External:	2.605
Tangent Direction:	$\mathrm{N} 10^{\circ} 46^{\prime} 24.3^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 79^{\circ} 13^{\prime} 35.7^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 8^{\circ} 02^{\prime} 35.3^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 84^{\circ} 41^{\prime} 13.7^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 5^{\circ} 18^{\prime} 46.3^{\prime \prime} \mathrm{W}$

Element: Linear
PT ()
PC

Tangential Direction:
Tangential Length:

$$
\begin{array}{ll}
\text { 1008+72.44 R1 } & 670780.900 \\
\text { 1011+73.93 R1 } & 671081.097
\end{array}
$$

2196059.949
2196032.032

Element: Circular

PC	()
PI	()
CC	()
PT	()
	Radius:
	Delta:

Degree of Curvature (Arc)
Length:
Tangent:
Chord:
Middle Ordinate:
External:

```
1011+73.93 R1
1013+20.14 R1
1014+65.33 R1
1432.394
11³9'21.4" Left
\(4^{\circ} 00^{\prime} 00.0^{\prime \prime}\) 291.399
146.204
290.897
7.404
7.442
```

Tangent Direction:
Radial Direction:
Chord Direction:
Radial Direction:
Tangent Direction:
N 5 ${ }^{\circ} 18^{\prime} 46.3^{\prime \prime}$ W

N 1108'27.0" W N 7301'52.3" E N 16º 58 '07.7" W

Element: Linear
PT
PC

Tangential Direction:
Tangential Length:
$1014+65.33 \mathrm{R} 1$
$1018+40.33 \mathrm{R} 1$
$\mathrm{~N} 16^{\circ} 58^{\prime} 07.7^{\prime \prime} \mathrm{W}$
375.000

Element: Circular

PC	()	$1018+40.33 \mathrm{R} 1$	671725.186	2195866.381
PI	()	$1019+19.41 \mathrm{R} 1$	671800.822	2195843.302
CC	()		670571.956	2192086.978

PT	()	$1019+98.47 \mathrm{R} 1$
Radius:	3951.433	
Delta:	$2^{\circ} 177^{\prime} 34.7^{\prime \prime}$ Left	
Degree of Curvature (Arc):	$1^{\circ} 27^{\prime} 00.0^{\prime \prime}$	
Length:	158.136	
Tangent:	79.079	
Chord:	158.126	
Middle Ordinate:	0.791	
External:	0.791	
Tangent Direction:	$\mathrm{N} 16^{\circ} 58^{\prime} 07.7^{\prime \prime} \mathrm{W}$	
Radial Direction:	$\mathrm{N} 73^{\circ} 01^{\prime} 52.3^{\prime \prime} \mathrm{E}$	
Chord Direction:	$\mathrm{N} 18^{\circ} 06^{\prime} 55.1^{\prime \prime} \mathrm{W}$	$\mathrm{N} 70^{\circ} 44^{\prime} 17.6^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{N} 19^{\circ} 15^{\prime} 42.4^{\prime \prime} \mathrm{W}$	

Element: Linear
PT ()

PC
()

Tangential Direction:
Tangential Length:
1019+98.47 R1
671875.474
2195817.215

1024+01.24 R1
672255.696
2195684.347

Element: Circular

PC	()
PI	()
CC	()
PT	()
	Radius:
	Delta:

Degree of Curvature (Arc):
Length:
Tangent:
Chord:
N 19ำ15'42.4" W
402.769
$1024+01.24 \mathrm{R} 1$
$1025+00.15 \mathrm{R} 1$

1025+98.89 R1
1909.859
$5^{\circ} 55^{\prime} 46.9^{\prime \prime}$ Right
$3^{\circ} 00^{\prime} 00.0^{\prime \prime}$
197.657
98.917
197.569
2.556
2.560
N $19^{\circ} 15^{\prime} 42.4 " \mathrm{~W}$
N $70^{\circ} 44^{\prime} 17.6^{\prime \prime} \mathrm{E}$
N $16^{\circ} 17^{\prime} 49.0 " \mathrm{~W}$
N $76^{\circ} 40^{\prime} 04.5^{\prime \prime} \mathrm{E}$
N $13^{\circ} 19^{\prime} 55.5^{\prime \prime} \mathrm{W}$
672255.696
2195684.347
$672349.076 \quad 2195651.716$
672885.730
2197487.295
$672445.327 \quad 2195628.907$

Middle Ordinate:
2.556

External:
Tangent Direction:
Radial Direction:
Chord Direction:
Radial Direction:
Tangent Direction:
N 13º $19^{\prime} 55.5^{\prime \prime}$ W
Element: Linear

PT	()	$1025+98.89 \mathrm{R} 1$	672445.327	2195628.907
POE	()	$1029+24.06 \mathrm{R} 1$	672761.731	2195553.925
Tangential Direction:	$\mathrm{N} 13^{\circ} 19^{\prime} 55.5^{\prime \prime} \mathrm{W}$			
Tangential Length:	325.168			

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:53pm

```
Project: Design
Description:
File Name: P:IPR60054ICUY\77510\Design\Roadway\Basemapsl77510_BP001.dgn
Last Revised: 3/14/2023 12:49:42
```

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: TRE90E30

Alignment Description:

Alignment Style: CL_P_Construction
Station Northing Easting

Element: Linear

POB	()	$1200+00.00 \mathrm{R} 1$	671796.013	2195856.635
PC	()	$1205+36.02 \mathrm{R} 1$	672307.417	2195696.075
Tangential Direction:	$\mathrm{N} 17^{\circ} 25^{\prime} 48.6^{\prime \prime} \mathrm{W}$			
Tangential Length:	536.016			

Element: Circular

PC	()	$1205+36.02 \mathrm{R} 1$	672307.417	2195696.075
PI	()	$1207+31.10 \mathrm{R} 1$	672493.544	2195637.639
CC	()		672383.800	2195939.367
PT	()	$1208+69.07 \mathrm{R} 1$	672598.637	2195801.997

Degree of Curvature (Arc)
Length
Tangent:
255.000 74050'04.7" Right
22ํ28'08.2"
333.058
195.084

Chord:
309.884

Middle Ordinate: 52.471
External: $\quad 66.065$
Tangent Direction: \quad N $17^{\circ} 25^{\prime} 48.6^{\prime \prime \prime}$ W
Radial Direction: $\quad N 72^{\circ} 34^{\prime} 11.4^{\prime \prime} \mathrm{E}$
Chord Direction: N 1959'13.8" E
Radial Direction: $\quad \mathrm{S} 32^{\circ} 35^{\prime} 43.9^{\prime \prime} \mathrm{E}$
Tangent Direction: \quad N $57^{\circ} 24^{\prime} 16.1^{\prime \prime}$ E
Element: Linear

PT	()	$1208+69.07 \mathrm{R} 1$	672598.637	2195801.997
POE	()	$1210+02.03 \mathrm{R} 1$	672670.262	2195914.014
angential Direction:	$\mathrm{N} 57^{\circ} 24^{\prime} 16.1^{\prime \prime} \mathrm{E}$			
Tangential Length:	132.959			

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:50pm

```
Project: Design
Description:
File Name: P:IPR60054\CUY\77510\Design\Roadway\Basemapsl77510_BP001.dgn
Last Revised: 3/14/2023 12:49:42
```

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: pTRCHEE90
 Alignment Description:
 Alignment Style: CL_P_Construction
 Station Northing Easting

Element: Linear

POB	()	$1100+00.00 \mathrm{R} 1$	670664.640	2196138.348
PC	()	$1102+00.94 \mathrm{R} 1$	670854.775	2196073.329
Tangential Direction:	$\mathrm{N} 18^{\circ} 52^{\prime} 43.0 \prime \mathrm{~W}$			
Tangential Length:	200.945			

Element: Circular

PC	()	$1102+00.94 \mathrm{R} 1$	670854.775	2196073.329
PI	()	$1104+26.06 \mathrm{R} 1$	671067.781	2196000.490
CC	()		672708.661	2201494.693
PT	()	$1106+50.94 \mathrm{R} 1$	671285.845	2195944.587
	Radius:	5729.579		
	Delta:	$4^{\circ} 30^{\prime} 00.0^{\prime \prime}$ Right		

Degree of Curvature (Arc): $\quad 1^{\circ} 00^{\prime} 00.0^{\prime \prime}$
Length: 450.000
Tangent: 225.116
Chord: $\quad 449.884$
Middle Ordinate: 4.417
External: 4.421
Tangent Direction: N 18º52'43.0" W
Radial Direction: $\quad N 71^{\circ} 0717.0^{\prime \prime} \mathrm{E}$
Chord Direction: N 16³7'43.0" W
Radial Direction: $\quad N 75^{\circ} 37$ '17.0" E
Tangent Direction: N 14 ${ }^{\circ} 22^{\prime} 43.0^{\prime \prime} \mathrm{W}$

Element: Linear

PT	()	$1106+50.94 \mathrm{R} 1$	671285.845	2195944.587
PC	()	$1109+79.56 \mathrm{R} 1$	671604.164	2195862.984
Tangential Direction:	$\mathrm{N} 14^{\circ} 22^{\prime} 43.0^{\prime \prime} \mathrm{W}$			
Tangential Length:	328.613			

Element: Circular

PC	()	$1109+79.56 \mathrm{R} 1$
PI	()	$1111+00.03 \mathrm{R} 1$
CC	()	
PT	()	$1112+20.36 \mathrm{R} 1$
	Radius:	2864.789
Delta:	$4^{\circ} 48^{\prime} 57.5^{\prime \prime}$ Left	
Degree of Curvature (Arc):	$2^{\circ} 00^{\prime} 00.0^{\prime \prime}$	
Length:	240.799	
Tangent:	120.470	
Chord:	240.728	
Middle Ordinate:	2.530	
External:	2.532	
Tangent Direction:	$\mathrm{N} 14^{\circ} 22^{\prime} 43.0^{\prime \prime} \mathrm{W}$	
Radial Direction:	$\mathrm{N} 75^{\circ} 37^{\prime} 17.0^{\prime \prime} \mathrm{E}$	
Chord Direction:	$\mathrm{N} 16^{\circ} 47^{\prime} 11.7^{\prime \prime} \mathrm{W}$	
Radial Direction:	$\mathrm{N} 70^{\circ} 48^{\prime} 19.5^{\prime \prime} \mathrm{E}$	
Tangent Direction:	$\mathrm{N} 19^{\circ} 11^{\prime} 40.5^{\prime \prime} \mathrm{W}$	

Element: Linear
PT
PC

Tangential Direction:
Tangential Length:
$1112+20.36 \mathrm{R} 1$
$1114+63.41 \mathrm{R} 1$
$\mathrm{~N} 19^{\circ} 11^{\prime} 40.5^{\prime \prime} \mathrm{W}$
243.058

Element: Circular

PC	$($
PI	$($
CC	$($
CS	$($
	Radius Delta

1114+63.41 R1
$1115+88.42 \mathrm{R} 1$
$1117+13.41 \mathrm{R} 1$
11459.156
$1^{\circ} 15^{\prime} 00.0 "$ Right
$0^{\circ} 30^{\prime} 00.0^{\prime \prime}$
250.000
125.005
249.995
0.682
0.682

N $19^{\circ} 11^{\prime} 40.5^{\prime \prime} \mathrm{W}$ N 7048'19.5" E N $18^{\circ} 34^{\prime} 10.5^{\prime \prime}$ W N 72 ${ }^{\circ} 03^{\prime} 19.5^{\prime \prime} \mathrm{E}$
Tangent Direction: N 170 $56^{\prime} 40.5^{\prime \prime}$ W

Element: Clothoid

CS	()	$1117+13.41 \mathrm{R} 1$	672301.159	2195633.935
SPI	()	$1117+80.08 \mathrm{R} 1$	672364.583	2195613.395
ST	()	$1119+13.41 \mathrm{R} 1$	672491.785	2195573.424
Entrance Radius:	11459.156			

Exit Radius:	0.000
Length:	200.000
Angle:	$0^{\circ} 30^{\prime} 00.0^{\prime \prime}$ Right
Constant:	1513.880
Long Tangent:	133.334
Short Tangent:	66.667
Long Chord:	199.999
Xs:	199.998
Ys:	0.582
$\mathrm{P}:$	0.145
K:	100.000
Tangent Direction:	$\mathrm{N} 17^{\circ} 56^{\prime} 40.5^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 72^{\circ} 03^{\prime} 19.5^{\prime \prime} \mathrm{E}$
Chord Direction:	$\mathrm{N} 17^{\circ} 3^{\prime} 6^{\prime} 40.5^{\prime \prime} \mathrm{W}$
Radial Direction:	$\mathrm{N} 72^{\circ} 33^{\prime} 19.5^{\prime \prime} \mathrm{E}$
Tangent Direction:	$\mathrm{N} 17^{\circ} 26^{\prime} 40.5^{\prime \prime} \mathrm{W}$

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:47pm

```
Project: Design Description:
File Name: P:\PR60054\CUY\77510\Design\Roadway\Basemaps\77510_BP001.dgn
Last Revised: 3/14/2023 12:35:34
```

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: TRW90CHE

Alignment Description:

Alignment Style: CL_P_Construction
Station Northing Easting

Element: Circular

PC	()	$399+90.15 \mathrm{R} 1$	673568.660	2195058.411
PI	()	$401+90.45 \mathrm{R} 1$	673378.698	2195121.935
CC	()		676905.284	2205036.239
PRC	()	$403+90.70 \mathrm{R} 1$	673191.292	2195192.643

Element: Circular			673191.292	2195192.643
PRC	()	$403+90.70 \mathrm{R} 1$	672922.323	2195294.125
PI	()	$406+78.18 \mathrm{R} 1$	672568.955	2193543.195
CC	()		672635.049	2195304.903
PT	()	$409+60.64 \mathrm{R} 1$		
	Radius:	1762.947		
Delta:	$18^{\circ} 31^{\prime} 22.6^{\prime \prime}$ Right			
Degree of Curvature (Arc):	$3^{\circ} 15^{\prime} 00.0^{\prime \prime}$			
Length:	569.936			
Tangent:	287.476			
Chord:	567.458			
Middle Ordinate:	22.981			

External: $\quad 23.285$

Tangent Direction:	S $20^{\circ} 40^{\prime} 17.4^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} 69^{\circ} 19^{\prime} 42.6^{\mathrm{I}} \mathrm{W}$
Chord Direction:	$\mathrm{S} 11^{\circ} 24^{\prime} 36.2^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} 87^{\circ} 51^{\prime} 05.1^{\prime \prime} \mathrm{W}$
Tangent Direction:	$\mathrm{S} 2^{\circ} 08^{\prime} 54.9^{\prime \prime} \mathrm{E}$

Element: Linear
PT
PC

Tangential Direction:
Tangential Length:

> 409+60.64 R1
672635.049
2195304.903

411+30.87 R1
672464.944
2195311.285

S $2^{\circ} 08^{\prime} 54.9^{\prime \prime} \mathrm{E}$
170.225

Element: Circular

PC	()
PI	()
CC	()
PT	()

()
()
()
()

Radius:
Delta:
Degree of Curvature (Arc):
Length:
Tangent:
Chord:
Middle Ordinate:
External:
Tangent Direction:
Radial Direction:
Chord Direction:
Radial Direction:
Tangent Direction:
$411+30.87 \mathrm{R} 1$
$413+62.56 \mathrm{R} 1$
$415+85.47 \mathrm{R} 1$
954.930
$27^{\circ} 16^{\prime} 35.0^{\prime \prime}$ Left
$6^{\circ} 00^{\prime} 00.0^{\prime \prime}$
454.607
231.696
450.326
26.925
27.706
672464.944
2195311.285
672233.411
2195319.971
672500.745
2196265.543

S $2^{\circ} 08^{\prime} 54.9^{\prime \prime} \mathrm{E}$ S $87^{\circ} 51^{\prime} 05.1^{\prime \prime} \mathrm{W}$ S 15047'12.4" E S 60³4'30.1" W S $29^{\circ} 25^{\prime 2} 29.9^{\prime \prime} \mathrm{E}$

Element: Linear
PT ()
PC

Tangential Direction:
Tangential Length:
$415+85.47 \mathrm{R} 1$
$416+72.84 \mathrm{R} 1$
672031.604
2195433.799
671955.511
2195476.719

Element: Circular

PC	()	$416+72.84 \mathrm{R} 1$	671955.511	2195476.719
PI	()	$419+46.67 \mathrm{R} 1$	671717.000	2195611.250
CC	()		671251.799	2194229.104
PT	()	$422+13.98 \mathrm{R} 1$	671445.686	2195648.316
	Radius:	1432.394		
Delta:	$21^{\circ} 38^{\prime} 44.3^{\prime \prime}$ Right			
Degree of Curvature (Arc):		$4^{\circ} 00^{\prime} 00.0^{\prime \prime}$		
Length:	541.141			
Tangent:	273.835			

Chord:	537.928
Middle Ordinate:	25.479
External:	25.940
Tangent Direction:	$\mathrm{S} 29^{\circ} 25^{\prime} 29.99^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} 60^{\circ} 34^{\prime} 30.1^{\prime \prime} \mathrm{W}$
Chord Direction:	$\mathrm{S} 18^{\circ} 36^{\prime} 07.7^{\prime \prime} \mathrm{E}$
Radial Direction:	$\mathrm{S} 82^{\circ} 13^{\prime} 144.4^{\prime \prime} \mathrm{W}$
Tangent Direction:	$\mathrm{S} 7^{\circ} 46^{\prime} 45.6^{\prime \prime} \mathrm{E}$

Element: Linear
PT ()
PC

$$
422+13.98 \mathrm{R} 1
$$

671445.686
2195648.316

426+67.70 R1
670996.140
2195709.731

Tangential Direction:
Tangential Length:
S $7^{\circ} 46^{\prime} 45.6^{\prime \prime} \mathrm{E}$
453.721

Element: Circular

PC	()
PI	()
CC	()
PT	()
	Radius:
	Delta:

Degree of Curvature (Arc):
Length:
Tangent:
Chord:
Middle Ordinate:
External:
Tangent Direction:
Radial Direction:
Chord Direction:
Radial Direction:
Tangent Direction:

$$
\begin{array}{r}
426+67.70 \mathrm{R} 1 \\
428+07.95 \mathrm{R} 1 \\
\\
429+46.94 \mathrm{R} 1 \\
1206.227 \\
13^{\circ} 15^{\prime} 50.9^{\prime \prime} \\
4^{\circ} 45^{\prime} 00.0^{\prime \prime} \\
279.245 \\
140.250 \\
278.622 \\
8.072
\end{array}
$$

670996.140
2195709.731
670857.181
2195728.715
671159.413
2196904.856
670726.285
2195779.075

Element: Linear
PT
POE

429+46.94 R1
670726.285
2195779.075

Tangential Direction:
Tangential Length:

430+67.03 R1
S $21^{\circ} 02^{\prime} 36.5^{\prime \prime} \mathrm{E}$
120.090

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:48pm

```
Project: Design
Description:
File Name: P:IPR60054ICUY\77510\Design\Roadway\Basemapsl77510_BP001.dgn
Last Revised: 3/14/2023 12:35:34
```

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: TRW90E24
 Alignment Description:
 Alignment Style: CL_P_Construction
 Station Northing Easting

Element: Linear

POB	()	$600+00.00 \mathrm{R} 1$	672012.729	2195430.668
PC	$600+72.46 \mathrm{R} 1$	671949.615	2195466.267	
Tangential Direction:	$\mathrm{S} 29^{\circ} 25^{\prime} 29.9 \mathrm{E}$			
Tangential Length:	72.462			

Element: Circular

PC	()	$600+72.46 \mathrm{R} 1$	671949.615	2195466.267
PI	()	$603+44.00 \mathrm{R} 1$	671713.105	2195599.670
CC	()		671251.799	2194229.104
PT	()	$606+09.07 \mathrm{R} 1$	671444.065	2195636.426

Length:
Tangent:
1420.394
$21^{\circ} 38^{\prime} 43.8^{\prime \prime}$ Right
$4^{\circ} 02^{\prime} 01.7^{\prime \prime}$
536.604

Chord:
271.539

Chord:
533.419

Middle Ordinate:
25.265

External:
25.722

Tangent Direction:
S $29^{\circ} 25^{\prime 29.9 " ~ E ~}$
Radial Direction: S 60³4'30.1" W
Chord Direction: S 18³6'08.0" E
Radial Direction: S 82¹3'13.9" W
Tangent Direction: S $7^{\circ} 46^{\prime} 46.1^{\prime \prime} \mathrm{E}$

Element: Linear

PT	()	$606+09.07 \mathrm{R} 1$	671444.065	2195636.426
PC	()	$607+57.11 \mathrm{R} 1$	671297.378	2195656.466
Tangential Direction:	S $7^{\circ} 46^{\prime} 46.1 " \mathrm{E}$			
Tangential Length:	148.049			

Element: Circular

PC ()	607+57.11 R1	671297.378	2195656.466
PI ()	608+48.60 R1	671206.735	2195668.849
CC ()		671200.435	2194946.860
PCC ()	609+39.10 R1	671115.890	2195658.049
Radius:	716.197		
Delta:	$14^{\circ} 33^{\prime} 31.5^{\prime \prime}$ Right		
Degree of Curvature (Arc):	$8^{\circ} 00^{\prime} 00.0{ }^{\prime \prime}$		
Length:	181.984		
Tangent:	91.485		
Chord:	181.495		
Middle Ordinate:	5.772		
External:	5.819		
Tangent Direction:	S $7^{\circ} 46^{\prime} 45.6$ " E		
Radial Direction:	S $82^{\circ} 13^{\prime} 14.4{ }^{\prime \prime} \mathrm{W}$		
Chord Direction:	S $0^{\circ} 29^{\prime} 59.8{ }^{\prime \prime} \mathrm{E}$		
Radial Direction:	N 83013'14.1" W		
Tangent Direction:	S $6^{\circ} 46^{\prime} 45.9{ }^{\prime \prime} \mathrm{W}$		

Element: Circular

PCC ()	609+39.10 R1	671115.890	2195658.049
Pl ()	$611+12.18$ R1	670944.022	2195637.618
CC ()		671142.944	2195430.469
PT ()	612+35.58 R1	670916.646	2195466.719
Radius:	229.183		
Delta:	$74^{\circ} 07^{\prime} 11.1{ }^{\prime \prime}$		
Degree of Curvature (Arc):	$25^{\circ} 00^{\prime} 00.0$ "		
Length:	296.479		
Tangent:	173.078		
Chord:	276.234		
Middle Ordinate:	46.294		
External:	58.012		
Tangent Direction:	S 6 ${ }^{\circ} 46{ }^{\prime} 45.9{ }^{\prime \prime} \mathrm{W}$		
Radial Direction:	N 83013'14.1" W		
Chord Direction:	S 43050'21.5" W		
Radial Direction:	N 9 ${ }^{\circ} 06{ }^{\prime} 03.01{ }^{\text {W }}$		
Tangent Direction:	S $80^{\circ} 53^{\prime} 57.0^{\prime \prime} \mathrm{W}$		
ment: Linear			
PT ()	612+35.58 R1	670916.646	2195466.719
POE ()	615+39.22 R1	670868.618	2195166.900
Tangential Direction:	S 8053'57.0" W		
Tangential Length:	303.642		

Horizontal Alignment Review Report

Report Created: 3/14/2023
Time: 12:52pm

```
Project: Design
Description:
File Name: P:IPR60054\CUY\77510\Design\Roadway\Basemapsl77510_BP001.dgn
Last Revised: 3/14/2023 12:49:42
```

Note: All units in this report are in feet unless specified otherwise.

Alignment Name: TRSUPW90

Alignment Description:

Alignment Style: CL_P_Construction
Station Northing Easting

Element: Linear

POB	()	$500+02.61 \mathrm{R} 1$	672617.730	2195286.843
PC	()	$501+86.63 \mathrm{R} 1$	672441.974	2195341.396
Tangential Direction:	$\mathrm{S} 17^{\circ} 14^{\prime} 38.0^{\prime \prime} \mathrm{E}$			
Tangential Length:	184.027			

Element: Circular

PC	()	$501+86.63 \mathrm{R} 1$	672441.974	2195341.396
PI	()	$502+73.05 \mathrm{R} 1$	672359.443	2195367.013
CC	()		672866.593	2196709.407
PT	()	$503+59.26 \mathrm{R} 1$	672280.590	2195402.366

Delta
Degree of Curvature (Arc):
Length:
Tangent:
Chord:
Middle Ordinate:
External: $\quad 2.604$
Tangent Direction:
Radial Direction:
Chord Direction:
Radial Direction:
Tangent Direction:
$6^{\circ} 54^{\prime} 17.4^{\prime \prime}$ Left
$4^{\circ} 00^{\prime} 00.0^{\prime \prime}$
172.621
86.415
172.517
2.600

S $17^{\circ} 14^{\prime} 38.0^{\prime \prime} \mathrm{E}$
S $72^{\circ} 45^{\prime} 22.0^{\prime \prime} \mathrm{W}$ S 2041'46.7" E S $65^{\circ} 51^{\prime} 04.6^{\prime \prime} \mathrm{W}$ S $24^{\circ} 08^{\prime} 55.4^{\prime \prime} \mathrm{E}$

Element: Linear

PT	()	$503+59.26 \mathrm{R} 1$	672280.590	2195402.366
PC	()	$505+96.13 \mathrm{R} 1$	672064.450	2195499.272
Tangential Direction:	$\mathrm{S} 24^{\circ} 08^{\prime} 55.4^{\prime \prime} \mathrm{E}$			
Tangential Length:	236.870			

Element: Circular

PC ()	505+96.13 R1	672064.450	2195499.272
PI ()	507+78.61 R1	671897.938	2195573.926
CC ()		670892.445	2192885.190
CS ()	509+60.59 R1	671723.301	2195626.849
Radius:	2864.789		
Delta:	7¹7'21.8" Right		
Degree of Curvature (Arc):	200'00.0"		
Length:	364.469		
Tangent:	182.481		
Chord:	364.223		
Middle Ordinate:	5.794		
External:	5.806		
Tangent Direction:	S $24^{\circ} 08^{\prime} 55.4{ }^{\prime \prime} \mathrm{E}$		
Radial Direction:	S 65 $511^{\prime} 04.6{ }^{\prime \prime} \mathrm{W}$		
Chord Direction:	S $20^{\circ} 30^{\prime} 14.5{ }^{\prime \prime} \mathrm{E}$		
Radial Direction:	S 73008'26.3" W		
Tangent Direction:	S 16051'33.7" E		

Element: Clothoid

CS	()
SPI	()
ST	()

$509+60.59 \mathrm{R} 1$
$510+27.27 \mathrm{R} 1$
$511+60.59 \mathrm{R} 1$
2864.789
0.000
200.000
$2^{\circ} 00^{\prime} 00.0^{\prime \prime} \mathrm{Right}$
756.940
133.342
66.674
199.989
199.976
2.327
0.582
99.996
671723.301
2195626.849

ST

()

Entrance Radius:
Exit Radius
Length:
Angle:
Constant:
Long Tangent: Short Tangent: Long Chord:

Xs:
99.996

Tangent Direction:
Radial Direction:
S 1651'33.7" E

Chord Direction:
S $73^{\circ} 08^{\prime} 26.3^{\prime \prime} \mathrm{W}$
Radial Direction
Tangent Direction:

S 7508'26.3" W S 14051'33.7" E

Appendix B - Bridge Exhibits

Appendix C - Bridge Inventory Reports

(38) Navigation: N	(39) Nav Vert Clr: 0.0 Ft
(92C) Spec Insp: N	Freq: 0
(92A) Fracture Critical Insp: N	Freq: 0
(474) Main Structure System: Not Applicable (I.E. Culvert, Beam, Slab	

(474) Main Structure System: Not Applicable (I.E. Culvert, Beam, Slab (487) Structural Steel Memb: Unknown Steel - Plans Available And Stee 482) Paint: Other Paint (483) PCS Date: 1/1/1987
(40) Nav Horiz Clear: 0.0 Ft (93C) Special Inspection Date: (93A) Fracture Critical Feature Inspection Date: (468) Hinges: Not Applicable (Structures With No Hinge (465) Framing: None Or Not Applicable (426) Bridge Railing Steel:
(108A) Wearing Surface: Integral Concrete (Separate Non-Modified (423) Thickness: 2.0 in (422) Date of Wearing Surface: 7/1/1993 (547) Slope Protection: Concrete (Cast-In-Place)

ORIGINAL PLANS INFORMATION

(38) Navigation: N	(39) Nav Vert Clr: 0.0 Ft
(92C) Spec Insp: N	Freq: 0
(92A) Fracture Critical Insp: N	Freq: 0

(474) Main Structure System: Not Applicable (I.E. Culvert, Beam, Slab (487) Structural Steel Memb: Unknown Steel - Plans Available And Stee (482) Paint: Other Paint (483) PCS Date: 1/1/1987

ORIGINAL PLANS INFORMATION

(38) Navigation: N	(39) Nav Vert Clr: 0.0 Ft
(92C) Spec Insp: N	Freq: 0
(92A) Fracture Critical Insp: N	Freq: 0
(474) Main Structure Sysem: Not Applicabe	

(474) Main Structure System: Not Applicable (I.E. Culvert, Beam, Slab (487) Structural Steel Memb: Unknown Steel - Plans Available And Stee (482) Paint: Eeu
(483) PCS Date: 1/1/1987
40) Nav Horiz Clear: 0.0 Ft (93C) Special Inspection Date: (93A) Fracture Critical Feature Inspection Date (468) Hinges: Not Applicable (Structures With No Hinge (465) Framing: None Or Not Applicable (426) Bridge Railing Steel:
(108A) Wearing Surface: Latex Concrete Or Similar Additive (423) Thickness: 1.2 in (422) Date of Wearing Surface: 7/1/1983
(547) Slope Protection: Concrete (Cast-In-Place)

ORIGINAL PLANS INFORMATION

(38) Navigation: N	(39) Nav Vert Clr: 0.0 Ft
(92C) Spec Insp: N	Freq: 0
(92A) Fracture Critical Insp: N	Freq: 0
(474) Main Structure System: Not Applicable (I.E. Culvert, Beam, Slab	

(474) Main Structure System: Not Applicable (I.E. Culvert, Beam, Slab (487) Structural Steel Memb: Unknown Steel - Plans Available And Stee (482) Paint: Other Paint 483) PCS Date: $1 / 1 / 1987$
40) Nav Horiz Clear: 0.0 Ft (93C) Special Inspection Date: (93A) Fracture Critical Feature Inspection Date (468) Hinges: Not Applicable (Structures With No Hinge (465) Framing: None Or Not Applicable (426) Bridge Railing Steel:
(108A) Wearing Surface: Monolithic Concrete (Concurrently Placed (423) Thickness: 2.0 in (422) Date of Wearing Surface: 1/1/1993 (547) Slope Protection: Concrete (Cast-In-Place)

ORIGINAL PLANS INFORMATION

Appendix D - Disposition to ODOT Comments

BURGESS 8. NIPLE				DATE:	November 11, 2023		
REVIEW COMMENTS							
PROJECT:		Cleveland Innerbelt Study - Payne Avenue Bridge Study Memorandum				PROJECT NO:	60054
	VIEWERS:	James Calanni (D12); Patrick Toman (D12); Drake Brauer (D12); Mike Herceg (D12); Dayna Mallas (D12)		PHASE:	TECHNICAL MEMORANDUM	SHEET:	
	Tech Memo Page No.	Details	Reviewer Comment	Reviewer	Designer Response	Comment addressed by:	Comment Completed (X) / No action required (NAR) / Consider in Next Steps (NS)
1			It appears the building in the SW quadrant of the bridge is very close to the right of way. Will raising the profile affect this building?	Calanni	This is a good point. This would need to be evaluated during the next phase of project development once additional information regarding the building is obtained and likely conversations occur with the building owner. There are two doors that open up on the sidewalk along Payne Avenue. If the profile is raised, it would need to be evlauated if the pedestrian access route (PAR) width of the sidewalk could be maintained in the same elevation/location to maintain access to the building. The sidewalk is very wide and could allow for a solution that raises the profile of the roadway and makes the elevation up before getting to the building. This would need to be evaluated.	Toombs	NS
2			Alternative 1 has a very short center span with respect to the approach span lengths. Will uplift occur at either pier?	Calanni	No, the minimum reactions for both piers for both interior and exterior girders are positive so won't experience uplift.	Ackerman	NAR
3	5		Alternative 2 is a two-span bridge, but the narrative provides superstructure depths for three spans. (See pdf sheet $5 / 53$). Please correct discrepancy.	Calanni	Narrative was updated to state the depths are for Span 1, over the pier, and Span 2.	Ackerman	X
4			Will a two-span bridge option work if the girder spacing is tightened significantly and the span-todepth ratio requirement is waived?	Calanni	It is probably feasible to design the girders this way, but based on our analysis of using 11 girders that were spaced at 6 -feet, the increased steel weight would be substantial and the subsequant cost increase would be several million dollars.	Ackerman	x
5			Looks like this has some potential. Interesting span arrangement though. I would think we would go with the full closure since there are many alternate routes available.	Herceg	A full closure is a valid alternative for vehicular traffic for the reasons stated in the comment. Other considerations, including maintaining utilities across the structure, may need to be evaluated to determine if the bridge can be completely removed from service during construction	Toombs	NS
6	3		I agree with Mike [Herceg] that this has some potential. My only comment is on sheet 3 the consultant mentions the plan is to finish increasing vertical clearance with the major reconstruction project. The consultant will have to be mindful of how deep they place footers for piers and abutments to account for lowering the pavement. We are running into footer conflicts on all the other major rehab projects right now.	Brauer	This is a good point. We agree that the footing depths would need to be carefully considered as additional design occurs during the next phase of project development.	Ackerman	NS
7			For Alternative 3 - are the ROW impacts expected to be the same as Alternative 1 ? Would be nice if the memo had a simple statement of Alternate 3 ROW impacts. - Even though the $\$ 20 \mathrm{M}$ price tag really takes this out of the running.	Mallas	The ROW impacts are expected to be similar between the two alternatives because the abutment locations would be the same.	Ackerman	NAR
8			If the utilities located on the existing structure are determined to still be in service, are we still going to prefer the detour - and anticipate that a separate utility bridge would be required for the utilities (Water, Gas, Fiber Optic)?	Mallas	This is a good point and one that would need resolved during the next phase of project development. The bridge could be phased which would allow utilities to be maintained across the bridge. There are also a lot of adjacent parallel routes so the bridge phasing could be only what is needed for maintaining utilities and not necessarily for vehicular traffic.	Toombs	NS

BURGESS \& NIPLE				DATE:	November 11, 2023		
REVIEW COMMENTS							
	ROJECT:	Cleveland Innerbelt Study - Payne Avenue Bridge Study Memorandum				PROJECT NO:	60054
	VIEWERS:	James Calanni (D12); Patrick Toman (D12); Drake Brauer (D12); Mike Herceg (D12); Dayna Mallas (D12)		PHASE:	TECHNICAL MEMORANDUM	SHEET:	
	Tech Memo Page No.	Details	Reviewer Comment	Reviewer	Designer Response	Comment addressed by:	Comment Completed (X) / No action required (NAR) / Consider in Next Steps \qquad
9			If the acquisition at Ramp C3 can't be avoided, could it be an option to investigating possibility of eliminating Ramp C3 to avoid acquiring the Cleveland Foodbank building and to keep the connection between E27th and E30th?	Mallas	This is a possibility. Changing the access by removing proposed Ramp C3 would require revising the Interchange Modification Study (IMS) which would require additional traffic analysis to show that the ramp terminal intersection with Superior Avenue wouldn't poorly operate with the additional traffic. An additional study is being completed to evaluate potential geometric modifications to create additional space between the building and proposed Ramp C3.	Toombs	NAR
10			Closing and detouring Payne Ave. to construct the bridge appears preferable due to the height of temporary shoring that would be required to build part-width in two phases. B\&N discusses temporary shoring requiring tiebacks or potential use of wire faced MSE walls, but existing underground utilities on Payne Ave. may affect feasibility of both options.	Toman	Agreed. This would need to be evaluated and confirmed during the next phase of project development when additional location services and utility coordination occurs with the owners.	Toombs	NS
11			Agree that it makes sense to pursue a design exception for vertical clearance over existing IR-90 for and achieve full 16.5^{\prime} minimum vertical clearance via the future profile of proposed $I R-90$.	Toman	Good to know that this is a tool in the toolbox to use during the next phase of project development if needed.	Toombs	NAR

[^0]:)

