

2018 UPDATE TO 2017 PHYSICAL CONDITION INSPECTION REPORT

Bridge CUY-490-0100
SFN 1811991
I-490 Bridge over the Cuyahoga River Valley
Dates of Inspection June 30 through September 27, 2018

2018 UPDATE TO THE 2017 PHYSICAL CONDITION INSPECTION REPORT

ODOT BRIDGE NO. CUY-490-0100 OVER THE CUYAHOGA RIVER VALLEY
 SFN 1811991

Ian M. Foye, PE

Matt J. Lawler, PE

Inspected June 30 thru September 27, 2018

Inspected by:

Ian Foye, PE
Ann M. Griessmann, PE
Karl Hartline, PE

DLZ Ohio, Inc.
HDR Engineering, Inc.
HDR Engineering, Inc.

Prepared for

Ohio Department of Transportation
District 12

DRAFT Report Submitted 11/29/2018
FINAL Report Submitted 1/02/2019

EXECUTIVE SUMMARY

The Interstate 490 Bridge over the Cuyahoga Valley serves as a critical part of the Greater Cleveland area commuter system carrying an estimated 61,890 vehicles per day. The bridge is owned and maintained by the Ohio Department of Transportation (ODOT) and the annual bridge inspection is performed by ODOT or consultants to confirm the condition state of the bridge. DLZ Ohio, Inc. (DLZ) and HDR, Inc. (HDR) were contracted by ODOT to perform fracture critical and element level inspection services on this bridge in 2018.

The overall condition of the bridge (SFN 1811991) is rated a 6, meaning that it is in satisfactory condition. Significant findings justifying the general appraisal rating include the following results:

- The deck floor exhibits numerous spalls with exposed reinforcing steel and deep transverse cracks at transverse deck construction joints. The deck spalls and cracks exhibit leaching and saturation.
- The wearing surface exhibits several patches of concrete and asphalt which are deteriorating and leaving potholes and debris in active traffic lanes.
- The concrete parapets and vandal protection fence have several areas which are deteriorating and in poor condition.
- The Forward Abutment Expansion Joints are in poor condition and are leaking to the abutments below. The backwalls, abutment seats and structural steel are actively deteriorating as a result.
- There are multiple locations where the transverse drainage troughs beneath the expansion joints are torn open and debris and water are leaking onto the steel framework and piers below. Several of the drainage pipes are completely clogged and misaligned.
- The hinges and girders below some of the torn troughs at the expansion joints exhibit surface corrosion due to the debris and leaking drainage.
- The exterior girders exhibit areas of PCS failure with surface rust along the bottom flanges and at the expansion joints. PCS failure with steel corrosion is also common on the crossframes and girder ends near the Forward Abutments and on the inspection manhole systems.
- A stringer near Pier 7L is completely separated from the floorbeam and a $1 / 2^{\prime \prime}$ gap exists between the top flange of Floorbeam 6 and Stringer 5.
- The floorbeams have several locations with loose bolts, missing bolts or misdrilled holes.
- Heavy rusting is common to the bearings near the drainage systems and at the Forward Abutment
- Three (3) bearings at the West Abutment are loose and appear to be floating.
- The abutment walls and backwalls exhibit heavy vertical cracking and spalling with exposed reinforcing steel at the mainline Forward Abutments and at Ramp C-B.
- There are large spalls with exposed and corroded reinforcing steel located at the top of Pier 7R and throughout Pier 9R.

Inspection findings were documented with field notes, sketches, pictures and measurements. Detailed discussion of all related issues can be found in pertinent sections of this routine inspection report.

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN
Table of Contents
EXECUTIVE SUMMARY 1
1.0 Bridge Description 4
2.0 Bridge History 5
3.0 General 5
4.0 Location Map 7
5.0 General Appraisal and Operating Status 8
5.1 Approach Items 8
5.1.1 APPROACH WEARING SURFACE 9
5.1.2 APPROACH SLABS. 10
5.1.3 RELIEF JOINT 11
5.1.4 EMBANKMENT 12
5.1.5 GUARDRAIL 12
5.2 Deck Items 14
5.2.1 FLOOR/SLAB 15
5.2.2 EDGE OF FLOOR/SLAB 18
5.2.3 WEARING SURFACE 19
5.2.4 MEDIAN 20
5.2.5 RAILING 21
5.2.6 DRAINAGE 25
5.2.7 EXPANSION JOINT 28
5.3 Superstructure 33
5.3.1 ALIGNMENT 33
5.3.2 BEAMS/GIRDERS 33
5.3.3 DIAPHRAGM/X-FRAMES 37
5.3.4 STRINGERS 39
5.3.5 FLOORBEAMS 41
5.3.6 BEARING DEVICES 44
5.3.7 PROTECTIVE COATING SYSTEM 47
5.3.8 HINGES 50
5.3.9 FATIGUE 52
5.4 Substructure 53
5.4.1 ABUTMENT WALLS. 54
5.4.2 PIER WALLS, PIER CAPS \& PIER COLUMNS. 54
5.4.3 BACKWALLS 56
5.4.4 WINGWALLS 57
5.4.5 SCOUR 57
5.4.6 SLOPE PROTECTION 58
5.5 Channel 58
5.5.1 ALIGNMENT 59
5.5.2 PROTECTION 59
5.5.3 HYDRAULIC OPENING 59
5.5.4 NAVIGATION LIGHTS 59
5.6 Sign/Utility 59
5.6.1 SIGNS 59
5.6.2 SIGN SUPPORTS 60
5.6.3 UTILITIES 61
5.7 General. 61
5.7.1 INSPECTION ACCESS 61
5.8 Conclusion and Recommendations 65
5.8.1 PRIORITY 65
5.8.2 MAINTENANCE 65
5.8.3 MONITOR 66
APPENDIX I - Bridge Inspection Field Report 67
APPENDIX II - Existing Site Plans 74
APPENDIX III - Existing Transverse Sections 79
APPENDIX IV - Framing Plan 87
APPENDIX V - Substructure Drawings 105
APPENDIX VI - Loose Bolts, Missing Bolts and Misdrilled Holes 129
APPENDIX VII - Bearing/Hinge Condition 133
APPENDIX VIII - Fracture Critical Member Identification Plan 142
APPENDIX IX - Fatigue Prone Details 145
APPENDIX X - Element Level Inspection Data 150

1.0 Bridge Description

ODOT Bridge No. CUY-490-0100 over the Cuyahoga River Valley is located on Interstate 490 in the City of Cleveland. The bridge was originally built in 1990 and has undergone minor rehabilitation projects in 2001 and 2007. The bridge carries five lanes of traffic Eastbound and four lanes Westbound over CSX Railroad, Norfolk Southern Railroad, Quigley Road, West 3 ${ }^{\text {rd }}$ Street, Independence Road and the Cuyahoga River.

The existing bridge is $3,462^{\prime}(\pm$) long and divided into six (6) unit superstructures with five (5) groups of seated hinges. The bridge is further divided into an Eastbound (right) superstructure and a Westbound (left) superstructure which consist of twenty-five (25) and twenty-four (24) spans, respectively. Unit 1 is $240^{\prime}(\pm$) long with four (4) spans of continuous steel beams; Unit 2 L is $688^{\prime}(\pm)$ long with four (4) spans of continuous welded steel girders, a floor system of stringers on floorbeams with a single cantilever near Expansion Joint 1; Unit 2R is $739^{\prime}(\pm)$ long with five (5) spans of continuous welded steel girders, a floor system of stringers on floorbeams with a single cantilever near Expansion Joint 1; Unit 3L is $781^{\prime}(\pm)$ long and Unit $3 R$ is $766^{\prime}(\pm)$ long, both with three (3) spans of continuous welded steel girders, a floor system of stringers on floorbeams with two cantilevers near Expansion Joint 2 and 3 ; Unit 4 L is $527^{\prime}(\pm)$ long and Unit $4 R$ is $491^{\prime}(\pm)$ long, both with three (3) spans of continuous welded steel girders, a floor system of stringers on floorbeams with a single cantilever near Expansion Joint 4; Unit 5, Unit 6, and Ramp C-B are $659^{\prime}(\pm), 562^{\prime}(\pm)$ and $583^{\prime}(\pm)$ long respectively, each with five (5) spans of continuous multiple welded steel girders; Unit 5 has a single cantilever near Expansion Joint 5.

The deck consists of a variable width reinforced concrete deck with a varying thickness and a $11 / 2$ " latex modified concrete overlay. Concrete New Jersey shaped safety barriers with vandal protection fence are located on each side of the deck. Concrete New Jersey shaped safety barriers are also set back-to-back with a 2" open joint in the median to separate the Eastbound and Westbound superstructures. Steel finger-type deck expansion joints are located at the hinges, elastomeric strip seal expansion joints at the mainline Rear Abutments and Ramp B-C, and sliding plate type expansion joints are located at the mainline Forward Abutments and Ramp C-B. The intermediate stringers in Units 2, 3 and 4 are supported by K-frame truss, steel floorbeams between the steel plate girders. The superstructure members are ASTM A572, grade 50 steel.

The superstructure is supported on reinforced concrete capped column piers with spill through abutments. There is one exception at Pier 9 L which is a tee type pier. The current traffic on the bridge is estimated at 61,890 vehicles per day with 6% trucks.

2.0 Bridge History

The bridge was designed by HNTB and opened to traffic in 1990. The following table defines the projects and repairs which took place on the bridge since the opening of the bridge in 1990:

Date	Project
1995	Steel Truck Accident: A roll of steel fell onto the deck near the beginning of the C-B ramp on Eastbound I-490. The steel punctured three (3) holes in the concrete deck and also damaged the barrier wall, fence and overhead sign support. The damage was fully repaired.
1998	Overlay Repaired: A portion of the latex modified concrete overlay in Unit 3 Span 3 and Unit 5 Span 4 were repaired. The concrete abutment faces were also sealed.
2001	Parapets Sealed: The concrete parapets were sealed with epoxy-urethane (Project 296-01).
Ongoing	Maintenance: Several maintenance projects have been completed to clean, repair and maintain the drainage system.
Current	Bridge Inspection: The structure is inspected annually by ODOT or consultants. The 2018 inspection was a fracture critical element level inspection with quantities performed by DLZ Ohio.

3.0 General

The data for this Physical Condition Inspection Report was obtained for the bridge between July 30 through September 27, 2018. The bridge inspection was performed by inspectors from DLZ and HDR. The bridge inspection was performed in accordance with the following documents:

Version	Document
2014	Manual of Bridge Inspection, Ohio Department of Transportation (ODOT)
2010	Manual for Bridge Evaluation, American Association of State Highway and Transportation Officials (AASHTO)
2012	Bridge Inspector's Reference Manual, Federal Highway Association
1986	Inspection of Fracture Critical Bridge Members, U.S. Department of Transportation
1988	National Bridge Inspection Standards, U.S. Department of Transportation

The Scope of Services directed DLZ and HDR to perform an in-depth condition including an "arm's length" inspection of all fracture critical components of the structure, and report the findings in a formal report. The inspectors used several different access methods for the superstructure, including walking the deck, climbing the girders with fall protection, and using manlifts and snoopers. A\&A Safety (A\&A) provided traffic control July $30^{\text {th }}$ through August $7^{\text {th }}$ to safely inspect portions of the bridge. The substructure was visually inspected, and suspect areas sounded from the ground or from the snooper. DLZ and HDR collected photographs, field notes and sketches while carrying out the bridge inspection. No destructive testing was performed.

The Condition ratings used in this report are based on the 2014 ODOT Manual of Bridge Inspection Condition Rating Guidelines.

Condition Rating Guide			
1-4 Individ ual Compor: ent	9-0 NBIS Summary		Inspector Guidelines (Quantitative comments include the Location, Extent \& Severity of the deficiency)
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \vdots \end{aligned}$	9-Excellent	No problems noted: no section loss, general deterioration.	Make brief comments as necessary. Communicate the predominant deficiency.
	7 -Good	Some minor problems (ex. extent of concrete deterioration is up to 1% spalling or up to 5% saturation)	
$\frac{\cong}{\frac{\cong}{\underset{\sim}{\sim}}}$	6 - Satisfactory	Structural elements show some minor deterioration (ex. extent of concrete deterioration is up to 5% spalling or up to 10% saturation)	
	5 -Fair	Structural elements show deterioration but are sound (ex. extent of concrete deterioration is up to 10% spalling or up to 20% saturation)	Document deficiencies quantitatively. Consider taking photos or making sketches.
믕000n	4 - Poor	Advanced* (ex. extent of concrete deterioration is more than 10% spalling or more than 20% saturation). Usually the load path appears to be affected for primary members or there are obvious structural changes since the as-built condition that are advanced.	Candidate to establish monitoring benchmarks to track the rate-of change. Take photos, make sketches and document quantitatively in order to determine if a re-load rating is possible. Include in-service conditions to verify capacity
	3 -Serious	4-Poor. . And local failures possible.	Above. . . And discuss the deficiency immediately with Control Authority.
$\frac{\frac{\rightharpoonup}{j}}{\frac{j}{\square}}$	2 - Critical	3-Serious. . And Unless closely monitored it may be necessary to close the bridge until corrective action is taken.	Above. . And the bridge is a candidate to dispatch road closure and/or immediate repairs and/or increased monitoring (Interim Inspections). Confirm in writing, critical finding.
	1-Imminent Failure	2-Critical. . . And Major deterioration is affecting stability. Bridge or lane(s) shall be closed to traffic but corrective action may put bridge back into light service.	Above. . . And Dispatch immediate lane or bridge closure. Contact the Control Authority. Stay at the bridge until the safety of the traveling public is achieved. Confirm in writing.
	0 - Failed	1-Imm Failure. . . And Out of service beyond corrective action.	
* Advanced -widespread deficiencies or a likely reduction to capacity (more examples on following page). ** Structurally Deficient (SD)-Bridge Deck, Superstructure, or Substructure Summary rated 4-Poor or below. A bridge can also be classified as structurally deficient if its load carrying capacity is significantly below current design standards or if a waterway below frequently overtops the bridge during floods.			

Table 34 - Condition

4.0 Location Map

 SURVEYING - CONSTRUCTION SERVICES

5.0 General Appraisal and Operating Status

The overall condition rating of the bridge is 6, indicating that it is in satisfactory condition.
The following is a summary of the field inspection recently performed on July 30 to September 27, 2018:

Item	Rating
Approach Summary	5
Deck Summary	7
Superstructure Summary	6
Substructure Summary	7
Channel Summary	8

5.1 Approach Items

The Approach overall rating is a 5, indicating that it is in Fair condition.
The following items are rated as follows:

APPROACH ITEMS

c1. Approach Wearing Surface (EA)
c2. Approach Slabs (SF)
c3. Relief Joint (LF)
c4. Embankment (EA) d
c5. Guardrail (EA)

condition state				Cr	
QTY.	1	2	3	4	TR
7	0	5	2	0	2.71
11834.4	1117 5.4	448	211	0	1.32
461.3	283.3	178	0	0	1.49
8	8	0	0	0	1.00
10	3	6	1	0	2.29

N36. Safety Features:
Tr, Gr, Tm
c6. Approach Summary
 SURVEYING - CONSTRUCTION SERVICES

5.1.1 APPROACH WEARING SURFACE

The approach pavement is in fair condition. The approach wearing surface is asphalt concrete. All of the mainline and ramp approaches have concrete and asphalt patches throughout. About 10% of the approach wearing surfaces have existing patches or need to be patched; these areas are exposing the underlying base. The approach wearing surfaces typically have potholes and patched areas that are unsound and breaking apart (see Photo 1). Longitudinal and transverse cracks are also common throughout all approach wearing surfaces.

Photo 1 - Typical approach wearing surface condition URVEYING - CONSTRUCTION SERVICES

5.1.2 APPROACH SLABS

The approach slabs are in fair condition. Approximately 10% of the mainline approach slabs have been patched or are in a distressed state and need to be patched. Several concrete patched areas have completely deteriorated and are filled with asphalt concrete (see Photo 2). The approach slabs of Ramp C-B, Ramp B-C and Ramp C-7 are in good condition. None of the approach slabs appear to be settling and there is no evidence of undermining.

Photo 2 - Typical area of deteriorating patches on the approach URVEYING - CONSTRUCTION SERVICES

5.1.3 RELIEF JOINT

The pavement relief joints are in fair condition. The Eastbound Rear Abutment relief joint is heavily cracked and deteriorated in the shoulder and the remaining relief joint has moderate transverse cracks throughout. The Westbound forward relief joint is deteriorating in the shoulder (see Photo 3). The Eastbound Ramp C-B relief joint is heavily cracked and appears to be settling throughout. The Westbound Rear Abutment relief joint has minor transverse cracks throughout and one large crack in the Southern two lanes. The relief joints at the Westbound Forward Abutment, Ramp B-C, and Ramp C-7 are in good condition with only hairline transverse cracks present.
 SURVEYING - CONSTRUCTION SERVICES

5.1.4 EMBANKMENT

The embankments are in good condition. No settlement, erosion or any other significant deficiencies were noted in the embankment.

5.1.5 GUARDRAIL

The guardrail is in poor condition. There are locations with minor cracking with rust staining at the guardrail connections to the concrete parapet. Two locations have sustained collision damage and are in serious condition. The guardrail on the North side of Ramp C-B is severely damaged and four (4) posts are bent and misaligned (see Photo 4). The guardrail on the South side of the Eastbound Forward Abutment is severely damaged with multiple posts that are missing or are damaged and the guardrail thrie-beam is misaligned and bent (see Photo 5). The remaining five (5) guardrail runs are in good condition exhibiting only minor scrapes and dents throughout. The concrete parapets on all of the approach slabs are in good condition with minor vertical cracks and minor spalls throughout. Minor map cracking is present at the Eastbound Mainline Forward Abutment parapet faces. There is one (1) significant spall with exposed reinforcing steel and cracking throughout the parapet faces at the Westbound mainline, South side (see Photo 6).

Photo 4 - Collision damage at the North side of the Eastbound Ramp C-B guardrail

Photo 5 - Eastbound Mainline West Abutment, South shoulder guardrail damage

ARCHITECTURE•ENGINEERING• PLANNING SURVEYING • CONSTRUCTION SERVICES

Photo 6 - Westbound median at the Rear Abutment

5.2 Deck Items

The Deck overall rating is a 7, indicating that it is in good condition. The bridge deck varies from a $73 / 4$ inch to $81 / 4$ inch thick reinforced concrete slab with a $1 \frac{1}{4}$ inch latex-modified concrete overlay wearing surface.

The following items are rated as follows:

DECK ITEMS

c7.1 Floor/Slab (SF)
c7.2 Edge of Floor/Slab (LF)
c8. Wearing Surface (SF)
c9. Curb/SidewalkWalkway (LF)
c10. Median (LF)
c11. Railing (LF)

condition state				cr	
QTY.	1	2	3	4	TR
518996	4976 93	1401 9	7373	1	1.26
15139	1501 6	-23	0	0	1.01
518995	5164 95	1973	526	1	1.02
6914	6668	246	0	0	1.05
8192	7653	459	80	0	1.24

N36. Safety Features: Rail
c12. Drainage (EA) d
c13. Expansion Joint (LF) d
N58. Deck Summary
 SURVEYING - CONSTRUCTION SERVICES

5.2.1 FLOOR/SLAB

The floor is in good condition. There is map cracking, transverse and longitudinal cracks, spalling with exposed reinforcing steel, delaminations, and efflorescence located throughout the deck. The bridge deck was in generally worse condition near the expansion joints; however, other areas of poor deck conditions were spread sporadically throughout the floor.

Cracking is most common in the middle of the bays between girders and stringers; some of these cracks exhibit minor rust staining and efflorescence. There are several locations near the middle of a few spans where a single transverse crack stretched all the way across the deck floor (see Photo 7). These areas often have smaller cracks and delaminations propagating from them. These large transverse cracks were most likely caused by deck pour construction joints. There are also areas were the concrete around the cracks is saturated or efflorescent (see Photos 7 and 8).

Photo 7 - Transverse deck crack with saturated concrete in Unit 6 Span 4 SURVEYING - CONSTRUCTION SERVICES

The concrete around the pier access manholes is damp and saturated in most locations (see Photo 9). The concrete appears to have minor cracks and rust staining in these areas. There is an open deck core just West of Pier 10 between Girder 3-F and Stringer 3-5. The open core is allowing water to leak through the deck and saturate the concrete around the core (see Photo 10). SURVEYING - CONSTRUCTION SERVICES

Photo 10 - Open deck core with saturated concrete West of Pier 10 SURVEYING - CONSTRUCTION SERVICES

5.2.2 EDGE OF FLOOR/SLAB

The Edge of Floor/Slab is in good condition. The edges of deck were inspected from a snooper. The transverse deck cracks which extend the width of the bridge at deck pour construction joints also extend through the edge of the deck. Throughout the bridge fascia there are minor vertical cracks; these are located approximately every 5 to 10 feet and reflect cracking in the parapets. There is also rust staining present on the edge of floor slab which appears to be leakage from the bridge railing. Larger cracks and spalling were noted near the expansion joints. Several spalls exist on the interior median joint in Unit 5 and Unit 6 (see Photo 11).

Photo 11 - Deck overhang spalls with exposed reinforcing near Pier SURVEYING • CONSTRUCTION SERVICES

5.2.3 WEARING SURFACE

The Wearing Surface is in good condition. The wearing surface was visually inspected by walking the deck during the lane closures used for the snooper inspection and an additional lane closure on the median sides. The wearing surface has transverse and longitudinal cracks throughout, which is allowing water to seep into the concrete deck and promoting deterioration of the floor. Most of the raised pavement markers are missing leaving approximately 6 inch by 6 inch by 1 -inch-deep crevices in the deck where water ponds during rainy weather conditions. There are multiple locations of patches, some of which are concrete and some of which are asphalt concrete. In most cases, the patches seem to be performing and are in good condition; however, there are locations where patches are deteriorated. In some of these areas, asphalt patches have been placed over concrete patches (see Photo 12). These patches are common along the transverse deck pour construction joints.

ARCHITECTURE•ENGINEERING• PLANNING SURVEYING • CONSTRUCTION SERVICES

5.2.4 MEDIAN

The reinforced concrete median parapets are in fair condition. There are multiple locations of cracking, mostly vertical, and spalls on the parapet faces. There are locations where the neoprene cover is missing from on top of the median, most notably on Span 13 and Span 14 (see Photo 13). There is significant cracking and spalling with exposed reinforcing steel at the expansion joint plates and at sign support plates (see Photo 14).

Photo 13 - Neoprene cover missing from the top of the median

Photo 14 - Spalled and cracked median with exposed reinforcing steel at sign support plates SURVEYING - CONSTRUCTION SERVICES

5.2.5 RAILING

The reinforced concrete parapets are in fair condition. The parapets are 42-inch tall reinforced concrete New Jersey type parapets topped with a $4^{\prime}-0^{\prime \prime}$ vandal protection fence. Both the Eastbound and Westbound parapets are cracking with rust staining and exhibit spalling throughout. The majority of the cracks are vertical cracks, which extend the entire length of the bridge and are typically spaced 15 feet to 20 feet apart. The parapet vandal protection fence is in poor condition with several deficiencies throughout. The following sections describe the inspection findings in greater detail.

Spalling

Large spalls with exposed and corroded rebar exist on both faces of the concrete parapet (see Photo 15). There are locations of spalling on the exterior side of the parapet which fully expose the vandal protection fence posts (see Photo 16). The majority of spalling occurs near fence posts. It is likely caused by the fence post anchors being drilled after the parapets were poured. In doing so the rebar in the parapet can be impacted and propagate a crack in the concrete. As water intrudes the crack and the freeze-thaw cycle continues, the crack expands and develops into a spall.

Photo 15 - Spall on Eastbound railing, deteriorating steel at Span 11

ARCHITECTURE • ENGINEERING • PLANNING SURVEYING • CONSTRUCTION SERVICES

Photo 16 - Spall on North exterior rail, exposing fence post, E.J. 4

Parapet Fence

The fence on top of the parapet is in poor condition with many deficiencies throughout the length of the bridge. There are several locations on the Eastbound side where the fence fabric has been damaged and the fence posts are bent. At random locations throughout the bridge, the pack rust around the fence is prying up the fence base plate; this has also caused deterioration of the caulk around the base plates (see Photo 17). Many of the fence gates are unlocked. There are multiple locations where the horizontal rail splices are broken due to heavy corrosion. The East half of the exterior Eastbound fence has multiple locations where the horizontal rail to post connection has failed or is badly deteriorated due to heavy corrosion at the down-slope end of the rail (see Photo 18). SURVEYING - CONSTRUCTION SERVICES

Photo 18 - Bottom railing failed due to corrosion at Span 14 URVEYING - CONSTRUCTION SERVICES

There are long stretches of fence with damaged diamond mesh fabric and with broken, missing or bent fence posts. 120 feet of damaged fence with a bent post is located on Westbound Span 16. Westbound Span 14 has 20 feet of damaged fabric with a broken post. Westbound Span 7 has over 40 feet of damaged and loose fabric. Eastbound Span 1 has one (1) fence post missing, effectively doubling the fabric span length (see Photo 19).

INNOVATIVE IDEAS

5.2.6 DRAINAGE

The drainage system is in poor condition. The current drainage system removes water on the bridge by means of scuppers with downspouts and there is no evidence of pooling or stagnated water on the bridge deck. Despite this, several areas of the drainage system exhibit deficiencies.

The bridge drainage system consists of a longitudinal grade, deck crown, scuppers, neoprene drainage troughs and downspouts connected to the piers to outlet water to the ground below. Scuppers are located in the shoulders near the Rear Abutment, above Pier 4, Pier 9, Pier 12, Pier 15 and Pier 20. There are 35 scuppers total with 18 located in the Eastbound shoulder and 17 located in the Westbound shoulder. There are five (5) drainage troughs, located at each finger joint. The scuppers and troughs drain into the downspouts at Pier 4, Pier 9, Pier 12, Pier 15 and Pier 20.

Only one (1) scupper on the deck flows freely, without debris, on the Eastbound structure and no scuppers flow freely on the Westbound structure. Most of the scuppers are partially clogged with six (6) scuppers being completely plugged and not conveying any water (see Photo 20). Loose trash and debris on the deck is accumulating near the scuppers. There is a loose scupper grate in the right exit lane on the Eastbound direction, it is the first scupper west of Expansion Joint 4. This scupper makes a loud banging noise when driven over.

The neoprene drainage troughs run transversely below the finger expansion joints, they are mostly clogged and overflowing with debris. There are multiple locations were the neoprene troughs are torn open, leaking debris and water onto the steel framing below (see Photo 21). There are also several locations where the troughs are full of debris and missing bolts. Because the drainage troughs are full of debris or broken, drainage from the finger joint spills out of the drainage system and onto the piers and structural steel below. This spillage is causing adverse effects to the structural steel and to the piers adjacent to the expansion joints. Another problematic area of the drainage system is the drain from the scuppers to the collector pipe. Many of the couplers are misaligned (see Photo 22). Several connections to the hoppers are also misaligned and filled with debris, slowing any flow of water. The owner of a local truck garage informed HDR \& DLZ inspectors that the Pier 9 drainage system does not properly drain. The water spills out of the drainage system onto his property below and leaves a sheet of ice during the winter months where he turns his truck around. This is also located over the Norfolk Southern Railroad tracks and may cause problems to their rail system. Below is a list of the drainage trough deficiencies:

Expansion Joint	Girders	Comments
1L	F-G	Gap between drainage trough and joint armor; neoprene is also torn allowing water to leak through; trough half full of debris.
1R	All	Drainage trough is completely full of debris; neoprene beginning to rip; neoprene torn near the end.
2L	G	Neoprene is ripped open.
2R	K-H	The neoprene trough is torn and water is leaking through; joint armor has laminar corrosion with 1/8" section loss.
3L	A, C, D, E	The neoprene is torn over hinge A and debris is spilling onto Girder A; joint armor at Girder C has heavy corrosion; neoprene ripped open between Girders C \& D; partially ripped between Girders D \& E.
3R	G	The trough is torn through at Girder G and stretched and full throughout the rest of the trough
4L	A, D, E	The trough is torn through at Girder A, the remaining trough is full of debris; trough is torn between Girders D \& E (see Photo 23)
4R	All	The neoprene sheeting is torn in multiple locations and water is leaking through; partially full between Girders \& K K
5L	All	The entire drainage trough is completely filled with debris and stretched; trough torn near Girder A \& Girder H
5R	P-X	Trough armor is broken and steel is hanging below trough The rest of the trough is completely filled with debris

Photo 21 - Torn neoprene sheeting causing debris to spill onto the steel below

Photo 22 - Misaligned coupler at Pier 9 drainage spout SURVEYING • CONSTRUCTION SERVICES

Photo 23 - Hanging joint armor at Expansion Joint 4L

5.2.7 EXPANSION JOINT

The expansion joints are in poor condition. Expansion joints consist of elastomeric strip seal joints at the Rear Abutments, steel finger joints at each intermediate expansion joint between bridge units and sliding plate joints at the Forward Abutments and Ramp C-B Abutment.

Elastomeric Strip Seal Joints

The mainline Eastbound Rear Abutment has several locations in which the steel joint is damaged and missing, and the Westbound entrance ramp joint at abutment B-C has similar damage (see Photo 24). These locations are in active travel lanes on Interstate 490 and could be deep enough to cause damage to a vehicle. The remaining abutment elastomeric strip seal joints are in good condition with only minor problems existing. Minor debris between the joints may prevent expansion between the joints. The elastomeric strip seals are present and prevent moisture from leaking onto the abutment backwalls. The expansion joint concrete headers exhibit spalling throughout causing potholes to form at the Rear and Forward Abutments. SURVEYING - CONSTRUCTION SERVICES

Steel Finger Joints

The intermediate finger joints have minor misalignment issues throughout, but are generally in good condition. Expansion Joint 2 fingers are misaligned horizontally, most notably at Westbound Expansion Joint 5 (see Photo 25). There are several areas of rust with most of the rust prevalent on the shoulders of the deck. Areas around the finger joints are patched but starting to deteriorate. Two teeth are missing from Westbound Expansion Joint 2 (see Photo 26).

Photo 26 - Missing teeth at Westbound Expansion Joint 2; also note deck patch.

Sliding Plate Joints

The sliding plate joints at the mainline Forward Abutments and at Ramp C-B are generally in good condition (see Photo 27). The joint sealer is not water tight and, based on the condition of the abutment backwalls, moisture is leaking onto the structure below. The leaking joint is causing corrosion and deterioration to the bridge deck, abutment, and steel members below the joint (see Photo 28).

INNOVATIVE IDEAS

The following table summarizes the expansion joint openings measured during inspection:

Joint Location	Type	Opening	Temperature
Rear Abutment EB	Elastomeric Strip Seal	1.25"	$73^{\circ} \mathrm{F}$
Rear Abutment WB	Elastomeric Strip Seal	0.75"	$76^{\circ} \mathrm{F}$
Ramp C-7	Elastomeric Strip Seal	$13 / 4 "$	$76^{\circ} \mathrm{F}$
Expansion Joint 1 EB	Finger Joint	21/2"	$73^{\circ} \mathrm{F}$
Expansion Joint 1 WB	Finger Joint	$2^{\prime \prime}$	$76^{\circ} \mathrm{F}$
Expansion Joint 2 EB	Finger Joint	$4{ }^{\prime \prime}$	$73^{\circ} \mathrm{F}$
Expansion Joint 2 WB	Finger Joint	$4 "$	$76^{\circ} \mathrm{F}$
Expansion Joint 3 EB	Finger Joint	$31 / 4 "$	$73^{\circ} \mathrm{F}$
Expansion Joint 3 WB	Finger Joint	41/2"	$76^{\circ} \mathrm{F}$
Expansion Joint 4 EB	Finger Joint	41/8"	$73^{\circ} \mathrm{F}$
Expansion Joint 4 WB	Finger Joint	$3 "$	$76^{\circ} \mathrm{F}$
Expansion Joint 5 EB	Finger Joint	23/4"	$73^{\circ} \mathrm{F}$
Expansion Joint 5 WB	Finger Joint	$27 / 8^{\prime \prime}$	$76^{\circ} \mathrm{F}$
Expansion Joint 6 EB	Finger Joint	15/8"	$73^{\circ} \mathrm{F}$
Expansion Joint 6 WB	Finger Joint	21/4"	$76^{\circ} \mathrm{F}$
Forward Abutment EB	Sliding Plate Joint	11/2"	$73^{\circ} \mathrm{F}$
Forward Abutment WB	Sliding Plate Joint	$13 / 4 "$	$76^{\circ} \mathrm{F}$
Ramp C-B	Sliding Plate Joint	17/8"	$76^{\circ} \mathrm{F}$
Ramp B-C	Sliding Plate Joint	$23 / 4{ }^{\prime \prime}$	$73^{\circ} \mathrm{F}$

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN
UNMATCHED CLIENT SERVICE

5.3 Superstructure

The Superstructure overall rating is a 6, indicating that it is in Satisfactory condition.

The following items are rated as follows:

SUPERSTRUCTURE ITEMS	condition state					cr
	QTY.	1	2	3	4	TR
c14. Alignment (EA) d	54	54	0	0	0	1.00
c15.1 Beams/Girders (LF)	55590	$\begin{gathered} 3472 \\ 7 \end{gathered}$	$\begin{gathered} 1996 \\ 2 \end{gathered}$	901	00	1.63
c15.2 Slab (SF)						
c16. Diaphragm/X-Frames (EA)	2341	156	2068	117	0	2.21
c17. Stringers (LF)	16943	3098	1368	156	0	1.93
c18. Floorbeams (LF)	18629	1317	$\begin{gathered} 1690 \\ 3 \end{gathered}$	409	0	2.08
c19. Truss Verticals (EA)						
c20. Truss Diagonals (EA)						
c21. Truss Upper Chord (EA)						
c22. Truss Lower Chord (EA)						
c23. Truss Gusset Plate (EA) d						
c24. Lateral Bracing (EA)						
c25. Sway Bracing (EA)						
c26. Bearing Devices (EA) d	465.00	314	106	42	3	2.19
c27. Arch (LF)						
c28. Arch Column/Hanger (EA)						
c29. Arch Spandrel Walls (LF)						
c30. Prot. Coating System (LF) d	91162	4149	4645	2364	847	2.07
c31. Pins/Hangers/Hinges (EA) d	64	-	81	3	0	2.23
c32. Fatigue (LF) d	91162	9114 4	18	0	0	1.00
N59. Superstructure Summary					(9-0)	6

5.3.1 ALIGNMENT

The Alignment is in good condition. Alignment was visually checked by sight at several girder locations throughout the bridge. There were no significant instances of misaligned girders or sagging noticed during the inspection.

5.3.2 BEAMS/GIRDERS

The Beams and Girders are in good condition. There are a large number of girder locations exhibiting peeling paint with corrosion or primer showing. Corrosion is common at the bottom of the webs and the tops of the bottom flanges along the fascia girders (see Photo 29). This corrosion is likely the result of water collecting and resting on the exterior sides of the beams during rain events and is consistent throughout the length of the bridge. Overall, corrosion is most active near the expansion joints. In these areas, the girders or beams exhibit heavier laminar rusting with moderate section loss up to $1 / 8^{\prime \prime}$ in some cases which typically extends about 10 to 15 feet on either side of the expansion joint (see Photo 30). There are also several locations of the transverse stiffener bowed where located at a splice (see Photo 31).

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN
UNMATCHED CLIENT SERVICE

Photo 29 - Corrosion on top of the bottom flange of Girder M

Photo 30 - Corrosion with section loss near expansion joint 4

ARCHITECTURE • ENGINEERING • PLANNING SURVEYING • CONSTRUCTION SERVICES

There are multiple locations where longitudinal stiffeners are slightly bent or bowed. The most severe bowed stiffener is at Girder J, Bay 12 between Pier 9R and 10R (see Photo 32). There are also multiple locations of misdrilled holes in the transverse stiffeners. These misdrilled holes are most likely handrail holes which were incorrectly placed or erection bolt holes that were drilled during construction to fit-up the crossframes. There is a location between Pier 7L and Pier 9L where the bottom girder flanges exhibit a wave which is most likely a fabrication or erection deficiency (see Photo 33).

ARCHITECTURE • ENGINEERING • PLANNING SURVEYING • CONSTRUCTION SERVICES

Multiple wind guide attachments are rusted and bent away from the girder (see Photo 34). Many misdrilled holes were noted in the connection plates at splices (see Photo 35).

Photo 34 - Bent wind guide attachment, Girder A at expansion joint 3 SURVEYING - CONSTRUCTION SERVICES

Photo 35 - Misdrilled holes in connection plate at girder splice

5.3.3 DIAPHRAGM/X-FRAMES

The X-frames are generally in good condition except at the deck joints. Units 1, 5, 6 and Ramp C-B have crossframes rated in this section. Girder crossframes in Units 2 through 4 are considered floorbeams. Most of the crossframes exhibit localized areas of peeling paint and light surface corrosion. The crossframes are in much worse condition at the abutments and under the expansion joints. These crossframes typically have advanced corrosion with severe section loss (see Photo 36). SURVEYING - CONSTRUCTION SERVICES

There are several locations throughout the length of the bridge where the crossframe connections to the girder or beam transverse stiffener have loose bolts, missing bolts or misdrilled holes (see Photo 37). Based on the PCS and the overall physical condition of the girders and crossframes, this defect does not negatively affect the surrounding members or the overall structure. A full list of these locations is shown in Appendix VI.

Photo 37 - Crossframe missing bolts in Unit 3 Span 3 URVEYING - CONSTRUCTION SERVICES

5.3.4 STRINGERS

The stringers are in good condition. The most common area of corrosion is along the edge of the top flange of the stringer along the deck haunch (see Photo 38). The condition of the stringers worsens near the expansion joints and over the river, most likely due to the presence of moisture. There are some minor areas of corrosion and freckled rust at these locations, although no section loss or pitting is notable. Additionally, there are loose bolts in the bottom splice plates of Stringers 7 and 8 near Floorbeam 23 between Pier 10R and 11R (see Photo 39).

Photo 38 - Typical Corrosion Along Stringer Top Flange SURVEYING - CONSTRUCTION SERVICES

However, Stringer 5 at Floorbeam 6 in the span between Pier 6 L and 7 L is completely disconnected from the floorbeam and is floating. A half inch gap exists between the floorbeam and the stringer. The gap effectively doubles the span length of the stringer; however, the stringer and the area around it appear to be in good condition (see Photo 40).

5.3.5 FLOORBEAMS

The Floorbeams are in good condition. Floorbeam K-frames are located in Units 3, 4 and 5, and are connected to the girder with bolts to the girder transverse stiffeners at the top and through the use of bolted connection plates at the base. The floorbeams located below the expansion joints are typically in worse condition than the other floorbeams. At most expansion joints, the floorbeams have active corrosion and rust because of the water falling from the clogged drainage system (see Photo 41). The remainder of the floorbeams exhibit areas of minor rust. Freckled rusting is common on the diagonal members of the K-frames.

The connections of the floorbeams to girders are in fair condition with loose bolts, missing bolts, and misdrilled holes found throughout the length of the bridge. Many of the connection plates and floorbeam members have loose bolts that could be turned by hand. There are also several locations where misdrilled holes were found URVEYING - CONSTRUCTION SERVICES
on the floorbeam connection plate or a portion of the floorbeam itself (see Photo 42). Based on the PCS and physical condition of the plate, these locations were most likely missed during construction and do not seem to be causing adverse effects on the structure. There are also locations where bolts were never installed, and, in one severe location on the $7^{\text {th }}$ floorbeam located after Pier 11R, there are no bolts connecting the floorbeam to the top of the transverse stiffener on Girder J (see Photo 43). In locations without bolts the floorbeams are welded to the girder connection plates.

Photo 42 - Floorbeam misdrilled holes at connection plate

ARCHITECTURE•ENGINEERING• PLANNING SURVEYING • CONSTRUCTION SERVICES

There are also several locations where the edge distance of the bolts in the steel connection plates is not adequate. In one location, the connection plate appears to be field cut to fit into place; the cope was overcut leaving minimal distance between the edge of the plate and the last row of bolts (see Photo 44).
 SURVEYING • CONSTRUCTION SERVICES

5.3.6 BEARING DEVICES

The Bearing Devices are in fair condition. It was noted that rocker bearing 1-D, 1-M, 1-N of the Eastbound bridge is floating. The bearings are hand loose and appear to be carrying zero live load and zero dead load, the load is likely transferred through the deck to the adjacent bearings by way of the end diaphragms (see Photo 45). Many bearings at the Rear Abutment have the lead shim plate slipped out from the base plate of the rocker, which may indicate the periodic floating of other bearings as well. The abutments typically have debris build-up around the bearings. Laminar corrosion present around bolts and base plates on the Forward Abutment bearings (see Photos 46). Many of the rockers at the abutments exhibit heavy rusting on both the rockers. Based on the cracking of the PCS around the abutment bearings and the observed rotations of the rockers, the debris and rust do not appear to be restricting movement and the bearings appear to be operating normally for the given temperature conditions observed during inspection.

Photo 45 - Bearing 1-M floating and is hand loose; shim slipped

ARCHITECTURE • ENGINEERING • PLANNING SURVEYING - CONSTRUCTION SERVICES

Photo 47 - Forward Abutment Bearing Off Center

The pier bearings are in fair condition. The pier roller bearing plates have varied offsets but do not exceed $2^{\prime \prime}$ and are within the tolerable limits that would be expected to be seen for the given temperature conditions

ARCHITECTURE • ENGINEERING• PLANNING SURVEYING • CONSTRUCTION SERVICES
during inspection. There are several locations where the bearing connection bolts and plates are loose on the piers (see Photo 48). The pier bearings near the expansion joint drainage pipes are generally in worse condition. Bearings near the drainage pipes exhibit surface rust to the bearing and pier connection plate (see Photo 49). For a complete list of bearing conditions and translations see Appendix VII.

Photo 48 - Pier bearing loose connection plates and bolts

ARCHITECTURE • ENGINEERING• PLANNING SURVEYING • CONSTRUCTION SERVICES

5.3.7 PROTECTIVE COATING SYSTEM

The Protective Coating System is in fair condition. Areas around the drainage system show the most deterioration to the PCS. In these areas, there's both surface corrosion and laminar corrosion to the girders, floorbeams, crossframes, and bearings (see Photo 50). Areas in several spans exhibit bubbled and cracked PCS along the webs and tops of the bottom flanges with areas of exposed corroded metal (see Photo 51). There are also localized areas throughout the bridge where the paint is missing and the primer is exposed. Additionally, the paint has failed along portions of the handrail that is attached to the girder. Units 3 through 6 have a thick layer of dust over the North face of the beams and girders. Units 5 and 6 are almost completely covered with a similar dirt layer. Dirt cover makes it difficult to see PCS failure and steel deficiencies (see Photo 52).

Photo 50 - Typical PCS failing at Expansion Joint 5

Photo 51 - Typical deteriorated PCS cracked and bubbling on flange

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN
UNMATCHED CLIENT SERVICE

Photo 52 - Typical dirt covering PCS SURVEYING • CONSTRUCTION SERVICES

5.3.8 HINGES

The Hinges are in fair condition. All of the hinges appear to be operating as designed during the 2018 inspection. Surface corrosion and debris on the bottom plates is common on the expansion hinges and can hinder proper hinge movement. As previously mentioned, this is a direct result of the leaking expansion joint and drainage trough systems. There is one (1) missing bolt in the sole plate of Girder 3-K at Expansion Hinge 3 and two (2) missing bolts in the sole plate of Girder 4-D at Expansion Hinge 3 (see Photo 53). Several bolts appear to be missing or broken bolt heads due to the large build-up of rust around the expansion hinges (see Photo 54).
 SURVEYING - CONSTRUCTION SERVICES

The area adjacent to the hinges commonly has debris piled on top of the girder flange (see Photo 55). This is problematic because the debris will hold water on the girder flange causing further rusting. It is recommended that this gets removed as part of a general maintenance program. These conditions are causing accelerated deterioration to the structural elements adjacent to the expansion joints.

Photo 55 - Debris Piled on Girder Flange around hinges SURVEYING • CONSTRUCTION SERVICES

Laminar corrosion is active at many hinges' teethed plates and between the sole plates and the teethed plates (see Photo 56).

5.3.9 FATIGUE

The fatigue-prone details for this bridge are in good condition. The end terminations of the longitudinal stiffener weld to the webs of the girders without a radius termination are considered a stress category E detail. No signs of fatigue cracking were noted for this detail.

The stringer bottom flange to floorbeam top flange weld is considered a stress category E detail. Stringer 5 at Floorbeam 6 in the span between Pier 6 L and 7 L is completely disconnected from the floorbeam. There is no sign that these members were ever welded together and this is not likely fatigue-cracking, but an incorrect fit-up that occurred during construction. No other signs of fatigue cracking were noted for this detail.

The cantilevered-suspended span design indicates that the roller hinges are detailed for a higher rating. The detail at Expansion Joint Roller 5 was constructed with tri-axial welds (see Photo 57). The tri-axial constraint reduces the apparent ductility of the member and is considered a stress category E detail. No signs of fatigue cracking were noted for this detail. For a complete list of fatigue prone details see Appendix IX.

For the Fracture Critical Member and Fatigue Prone Connection Plan see Appendix VIII.

ARCHITECTURE•ENGINEERING• PLANNING SURVEYING • CONSTRUCTION SERVICES

Photo 57 - Tri-axial weld at Expansion Joint 5

5.4 Substructure

The Substructure overall rating is a 7, indicating that it is in Good condition.

The following items are rated as follows:

SUBSTRUCTURE ITEMS

c33. Abutment Walls (LF)
c34. Abutment Caps (LF)
c35. Abut. Columns/Bents (EA)
c36. Pier Walls (LF)
c37. Pier Caps (LF)
c38. Pier Columns/Bents (EA)
c39. Backwalls (LF)
c40. Wingwalls (EA)
c42. Scour (EA) d
c43. Slope Protection (EA) d
N60. Substructure Summary

condition state					Cr
QTY.	1	2	3	4	TR
524.6	483.6	41	0	0	1.11
	0				
	0				
25.3	18.3	7	0	0	1.36
3821.2	3757 2	61	3	0	1.04
132	107	24	1	0	1.36
524.6	468.6	42	14	0	1.48
8	8	0	0	0	1.00
58	58	0	0	0	1.00
6	6	0	0	0	1.00

5.4.1 ABUTMENT WALLS

The abutment walls are in fair condition. The abutment walls on the Rear Abutments and Ramp C-7 are generally in good condition. The elastomeric strip seals at these abutments are in good condition and very little moisture appears to be affecting the abutments. The only deficiencies noted were minor vertical cracks and small spalls that exist in the concrete at the corner between the abutment wall and the beam seat. The abutment walls on both Forward Abutments exhibit several minor vertical cracks with rust staining, spalls and delaminations (see Photo 58). There are also horizontal cracks along the abutment seat. Portions of the all abutments are covered with dirt and debris but no other structural defects are present.

5.4.2 PIER WALLS, PIER CAPS \& PIER COLUMNS

The pier walls, caps and columns are in fair/good/good condition. The pier walls and the pier caps were visually inspected and suspect areas sounded from the ground, from a snooper and from the top of the pier caps.

The deficiencies found include minor vertical cracks throughout the pier columns. Most of the vertical cracks extend half of the column height or more. Horizontal cracks in the pier caps are frequent, and are often mirrored on both sides of the cap. There were also some locations of diagonal cracking stemming from the joint where the cap meets the column.

The pier caps and columns with drainage attached to them are generally in worse condition then the other piers. These deficiencies are likely caused by the leaking drainage systems or water leaking through the rusted manholes above the piers. Pier 9L and 9R are in worse condition than the other piers, with many vertical cracks, delaminations and rust stains closely spaced (see Photo 59).

The South end of Pier 7R cap is in poor condition exhibiting a large spall with exposed and corroded reinforcing steel (see Photo 60).

5.4.3 BACKWALLS

The backwalls are in fair condition. The backwalls on the Rear Abutments and Ramp C-7 are generally in good condition. The elastomeric strip seals at these abutments are in good condition and very little moisture appears to be affecting the backwalls. The backwalls on the Forward Abutments are in fair condition and have minor deficiencies. Both Forward Abutment backwalls exhibit many vertical cracks with spalling and delaminations. Some of the cracking exhibits efflorescence and rust staining. The Ramp B-C backwall is in good condition with a few minor vertical cracks. The Ramp C-B backwall in in poor condition. Large portions of the backwall are delaminated or spalling with exposed reinforcing (see Photo 61). The backwall also exhibits many vertical cracks with rust staining. The continuous progression of the backwall deterioration is most likely caused by the leaking from the strip seal expansion joint.

5.4.4 WINGWALLS

The wingwalls are in good condition. There are areas of cracking and spalling near the ground lines of the wingwalls. The South wingwall at Eastbound Ramp B-C has a large vertical crack with moisture leaking through it (see Photo 62). No other significant deficiencies were noted.

5.4.5 SCOUR

The condition of the scour is good. A visual inspection was performed at both abutments and at the bottom of each pier. Very minor erosion exists near the bottom of the piers with downspouts; the erosion is not negatively affecting the piers.

ARCHITECTURE•ENGINEERING• PLANNING SURVEYING • CONSTRUCTION SERVICES

5.4.6 SLOPE PROTECTION

Slope protection is in good condition. Minor cracking exists at the bottom of the mainline Eastbound Rear Abutment. The slope protection is failing around the base of the South column of Pier 14R (see Photo 63).

5.5 Channel

The Channel overall rating is an 8, indicating that it is in very good condition.
The following items are rated as follows:

CHANNEL ITEMS
c51. Alignment (LF) d
c52. Protection (LF) d
c53. Hydraulic Opening (EA) d
c54. Navigation Lights (EA) d
N61. Channel Summary
condition state \quad Cr

QTY.	1	2	3	4	TR
200.00	200	0	0	0	1.00
400	400	0	0	0	1.00
60	60	0	0	0	1.00
6	6	0	0	0	1.00
$(9-0)$					

5.5.1 ALIGNMENT

The alignment of the Cuyahoga River is in good condition. The river and the canal have a straight alignment for more than 100 feet upstream and downstream. No significant deficiencies were noted.

5.5.2 PROTECTION

The channel protection of the Cuyahoga River is in good condition. The Cuyahoga River has steel sheeting that protects the channel banks. No significant deficiencies were noted.

5.5.3 HYDRAULIC OPENING

The hydraulic opening of the Cuyahoga River is in good condition. No significant deficiencies were noted.

5.5.4 NAVIGATION LIGHTS

The navigation lights over the Cuyahoga River are in good condition. All lights were functioning normally during inspection.

5.6 Sign/Utility

The following items are rated as follows:

SIGN/UTILITY ITEMS

c55. Signs (EA) d
c56. Sign Supports (EA) d
c57. Utilities (LF) d
General Appraisal
N41. Operating Status

condition state					cr
QTY.	1	2	3	4	TR
12	11	1	0	0	1.12
9	9	0	0	0	1.00
4600.00	4600	0	0	0	1.00
$(9-0)$					

5.6.1 SIGNS

The signs are rated in good condition. The concrete parapet and cover plate of the sign support at Pier 13R has sustained minor collision damage but is still functional. URVEYING - CONSTRUCTION SERVICES

5.6.2 SIGN SUPPORTS

The sign supports are in good condition. The sign supports were inspected from a snooper. The sign supports typically have PCS failure with very minor section loss to the structural steel (see Photo 64). Debris build-up around the signs bases is also typical.

Photo 64 - Typical PCS failure with section loss at the sign supports SURVEYING • CONSTRUCTION SERVICES

5.6.3 UTILITIES

The utilities are in good condition. The light poles on the bridge are in generally good condition. Minor PCS loss was noted on the light poles throughout the bridge. The light poles and junction boxes on the bridge are typically rusting and are missing in several locations. Conduit running across the top of the median at the West end has broken casing with rusting interior protection (see Photo 65).

5.7 General

5.7.1 INSPECTION ACCESS

Safety Handrail \& Cable

The inspection handrails and safety cables in Unit 2 through Unit 4 are in generally good condition. These two features are essential to provide safe access for inspection. They allow an inspection to occur without interruption to the traffic above. There are a few areas on the handrail where the PCS has failed and the handrail is corroding, especially near the downspouts. The safety cable is not properly anchored in a few places and is attached directly onto the handrail (see Photo 66). Two (2) floorbeam bay lengths are missing the safety cable, but the handrail is in good condition (see Photo 67). It is typical that the safety cable does not extend

ARCHITECTURE • ENGINEERING• PLANNING SURVEYING - CONSTRUCTION SERVICES
all the way up to the expansion joint, making hinges more difficult to inspect. Because of the lack of handrail near the expansion joints, it is difficult to cross the expansion joint while walking the girders; especially the joints where the neoprene trough is completely full of debris, blocking the inspector's path.

Photo 66 - Safety cable attached directly to handrail near Pier 10L SURVEYING - CONSTRUCTION SERVICES

Safety Cable Issues				
Girder	Unit	Span	Description	Location
2-E	2	2	Safety Cable Missing	4 $^{\text {th }}$ Floorbeam West of Pier 6L
3-A	3	2	Safety Cable Attached to Rail	4th Floorbeam East of Pier 10L
3-D	3	2	Safety Cable Attached to Rail	4th Floorbeam East of Pier 10L

Manholes

The manholes, located in the shoulders above Pier 4, Pier 9, Pier 12, Pier 15 and Pier 20, are in critical condition. The manhole and ladder systems are extremely corroded and cannot be used safely. Several manhole lids are corroded shut preventing access to the pier below. The manhole castings are also leaking water onto the steel below causing the heavy corrosion to the steel (see Photo 68). SURVEYING • CONSTRUCTION SERVICES

Snooper Access

Trees and brush are protruding into the outside shoulders of the bridge which makes reaching below the deck with a snooper difficult at both ends of the bridge in Unit 1 and Unit 6. It is recommended that these trees are cleared prior to next year's inspection. The ground slope at the East end of the Westbound bridge approaches the bottom of the beam, barring a snooper from reaching in for inspection. Additionally, the recently installed lighting poles for the Towpath Trail, under construction, run under Span 4 and limit the amount of snooper boom rotation in the span.

5.8 Conclusion and Recommendations

HDR and DLZ have determined the following recommendations for this bridge. Based on the level of urgency, recommendations have been divided into three categories: Priority, Maintenance, and Monitor.

5.8.1 PRIORITY

The following recommendations are priority repairs which should be completed as soon as possible to address an immediate safety concern:

- Repair the concrete expansion joint headers at all abutment expansion joints
- Repair holes in the mainline Eastbound Rear Abutment expansion joint armor
- Repair deteriorated wearing surface patches and patch any existing potholes including the deck core that was found West of Pier 10
- Repair failed neoprene trough steel support armor which is hanging from Expansion Joint 5R
- Replace torn neoprene drainage troughs that have tears or have missing anchor bolts

5.8.2 MAINTENANCE

The following recommendations are on-going repairs which are intended to maintain the current level of service for the structure:

- Clean all scuppers and downspouts to prevent water from leaking onto the steel and piers below the expansion joints
- Clean the drainage troughs under the finger joints, which are still in good condition, to prevent water from leaking onto the steel and piers below the expansion joints
- Patch the wearing surface to protect the underlying floor
- Patch and reseal cracked or spalled portions of the concrete parapet
- Repair any damaged portion of the parapet vandal protection fence
- Replace the seal at the mainline forward abutments and the Ramp C-B and Ramp B-C abutments to prevent moisture from leaking onto the substructure below
- Tighten loose bolts and replace missing bolts in cross-frames, floorbeams, stringers, bearings and hinges
- Clean and repaint structural steel
- Repair portions of safety cable which were incorrectly installed or missing
- Rehabilitate inspection manholes system above Pier 4, Pier 9, Pier 12, Pier 15 and Pier 20
- Remove vegetation at both ends of structure to allow snooper access during inspection

5.8.3 MONITOR

The following items should be investigated and recorded with each annual bridge inspection:

- Monitor the deterioration to the structural steel under the leaking deck joints for accelerated corrosion
- Monitor the bearings and expansion rollers with large rotations and those that are floating
- Monitor all the fatigue prone details
- Monitor spalling and reinforcing corrosion at the tops of the backwall at both abutments and at the South edge of Pier 7R SURVEYING • CONSTRUCTION SERVICES

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN
UNMATCHED CLIENT SERVICE

APPENDIX I - Bridge Inspection Field Report

2017 ELEMENT LEVEL INSPECTION
 BRIDGE INSPECTION FIELD REPORT

Structure File Number: 1811991
Sufficiency Rating: 86.7
District: 12 Place Code (FIPS): CLEVELAND

Inventory Bridge Number: CUY 0049001.000
Date Built: 7/1/1990
I-490 over CUYAHOGA RIVER

Bridge Type: 3 - STEEL/6 - GIRDER (FLOOR SYSTEM)/3 - DECK

2017 ELEMENT LEVEL INSPECTION

Structure File Number: 1811991
Sufficiency Rating: 86.7
District: 12 Place Code (FIPS): CLEVELAND

Inventory Bridge Number: CUY 0049001.000

Bridge Type: 3 - STEEL/6-GIRDER (FLOOR SYSTEM)/3 - DECK

 " c " = condition prefix; "N" = NBIS rating

Inspection Procedures

Consultant Inspection. 7-30 through 8-7. Climb access over RR on 9-24 to 9-25. Weekdays anytime with DLZ Engineering, Matt Lawler 216-392-4447.

Comments

APPROACH

c1. Approach Wearing Surface

All of the mainline and ramp approaches have concrete and asphalt patches throughout. About 10% of the approach wearing surfaces have existing patches or need to be patched; these areas are exposing the underlying base. The approach wearing surfaces typically have potholes and patched areas that are unsound and breaking apart. Longitudinal and transverse cracks are also common throughout all approach wearing surfaces.

c2. Approach Slabs

Approximately 10% of the mainline approach slabs have been patched or are in a distressed state and need to be patched. Several concrete patched areas have completely deteriorated and are filled with asphalt concrete. The approach slabs of Ramp C-B, Ramp B-C and Ramp C-7 are in good condition. None of the approach slabs appear to be settling and there is no evidence of undermining.

c3. Relief Joint

The Eastbound Rear Abutment relief joint is heavily cracked and deteriorated in the shoulder and the remaining relief joint has moderate transverse cracks throughout. The Eastbound Ramp C-B relief joint is heavily cracked and appears to be settling throughout. The Westbound Rear Abutment relief joint has minor transverse cracks throughout and one large crack in the Southern two lanes. The relief joints at the Westbound Forward Abutment, Ramp B-C, and Ramp C-7 are in good condition with only hairline transverse cracks present.

c5. Guardrail

There are locations with minor cracking with rust staining at the guardrail connections to the concrete parapet. Two locations have sustained collision damage and are in serious condition. The guardrail on the North side of Ramp C-B is severely damaged and four (4) posts are bent and misaligned. The guardrail on the South side of the Eastbound Forward Abutment is severely damaged with multiple posts that are missing or are damaged and the guardrail thrie-beam is misaligned and bent. The concrete parapets on all of the approach slabs are in good condition with minor vertical cracks and minor spalls throughout.

DECK

c7.1 Floor/Slab

There is map cracking, transverse and longitudinal cracks with efflorescence, spalling with exposed reinforcing steel, delaminations and efflorescence located throughout the deck. The bridge deck was in generally worse condition near the expansion joints. There are several locations near the middle of a few spans where a single

2017 ELEMENT LEVEL INSPECTION BRIDGE INSPECTION FIELD REPORT

Structure File Number: 1811991
Sufficiency Rating: 86.7
District: 12 Place Code (FIPS): CLEVELAND

Inventory Bridge Number: CUY 0049001.000
Date Built: 7/1/1990
I-490 over CUYAHOGA RIVER

Bridge Type: 3 - STEEL/6 - GIRDER (FLOOR
SYSTEM)/3 - DECK
transverse crack stretched all the way across the deck floor. These areas often had smaller cracks and delaminations propagating from them. There is an open deck core just West of Pier 10 between Girder 3-F and Stringer 3-5. The open core is allowing water to leak through the deck and saturate the concrete around the core.

c7.2 Edge of Floor/Slab

The bridge fascia exhibits minor vertical cracks throughout; these are located approximately every 5 to 10 feet. There is also rust staining present on the edge of floor slab which appears to be leakage from the bridge railing. Larger cracks and spalling were noted near the expansion joints. Several spalls exist on the interior median joint in Unit 5 and Unit 6.

c8. Wearing Surface

The wearing surface has transverse and longitudinal cracks throughout which is allowing water to seep into the concrete deck and promoting deterioration of the floor. Most of the raised pavement markers are missing leaving approximately 6 inch by 6 inch by 1 -inch-deep crevices in the deck. There are multiple locations of patches, some of which are concrete and some of which are asphalt concrete. There are locations where patches are deteriorated.

c10. Median

There are multiple locations of cracking, mostly vertical, and spalls on the parapet faces. There are locations where the neoprene cover is missing from on top of the median, most notably on Span 13 and Span 14. There is significant cracking and spalling with exposed reinforcing steel at the expansion joint between Spans 4 and 5.

c11. Railing

Both the Eastbound and Westbound parapets are cracking with rust staining and exhibit spalling throughout. The majority of the cracks are vertical cracks which extend the entire length of the bridge and are typically spaced 15 feet to 20 feet apart. There are locations of spalling on the exterior side of the parapet which fully expose the vandal protection fence posts.

There are several locations on the Eastbound side where the fence fabric has been damaged and the fence posts are bent. At random locations throughout the bridge, the pack rust around the fence is prying up the fence base plate. Many of the fence gates are unlocked. There are multiple locations where the horizontal rail splices are broken due to heavy corrosion. There are long stretches of fence with damaged diamond mesh fabric and with broken or bent fence posts. 120 feet of damaged fence with a bent post is located on Westbound Span 16. Westbound Span 14 has 20 feet of damaged fabric with a broken post. Westbound Span 7 has over 40 feet of damaged and loose fabric. Eastbound Span 1 has one (1) fence post missing, effectively doubling the fabric span length.

c12. Drainage

Most of the scuppers are partially clogged with six (6) scuppers being completely plugged. Loose trash and debris on the deck is accumulating near the scuppers. There is a loose scupper grate in the right exit lane on the Eastbound direction, which makes a loud banging noise.

The neoprene drainage troughs run transversely below the finger expansion joints, they are mostly clogged and overflowing with debris. There are multiple locations were the neoprene troughs are torn open leaking debris and water onto the steel framing below. Many of the couplers are misaligned. Several connections to the

2017 ELEMENT LEVEL INSPECTION BRIDGE INSPECTION FIELD REPORT

Structure File Number: 1811991
Sufficiency Rating: 86.7

Inventory Bridge Number: CUY 0049001.000
Date Built: 7/1/1990

Bridge Type: 3 - STEEL/6 - GIRDER (FLOOR
SYSTEM)/3 - DECK
hoppers are also misaligned and filled with debris.

c13. Expansion Joint

The mainline Eastbound Rear Abutment has several locations in which the steel joint is damaged and missing. The expansion joint concrete headers exhibit spalling throughout causing potholes to form at the Rear and Forward Abutments. Expansion Joint 2 fingers are misaligned horizontally, most notably at Westbound Expansion Joint 5. There are several areas of rust with most of the rust prevalent on the shoulders of the deck. Areas around the finger joints are patched but starting to deteriorate. Two teeth are missing from Westbound Expansion Joint 2

The sliding plate joints at the mainline Forward Abutments and at Ramp C-B are generally in good condition. The joint sealer is not water tight and, based on the condition of the abutment backwalls, moisture is leaking onto the structure below. The leaking joint is causing corrosion and deterioration to the bridge deck, abutment, and steel members below the joint

SUPERSTRUCTURE

c15.1 Beams/Girders

The Beams and Girders are in good condition. Corrosion is common at the bottom of the webs and the tops of the bottom flanges along the fascia girders. Corrosion is most active near the expansion joints. In these areas, the girders or beams exhibit heavier laminar rusting with moderate section loss up to $1 / 8$ " in some cases which typically extends about 10 to 15 feet on either side of the expansion joint. There are also several locations of the transverse stiffener being tack welded to the girder. There is a location between Pier 7L and Pier 9L where the bottom girder flanges exhibit a wave which is most likely a fabrication or erection deficiency. Multiple wind guide attachments are rusted and bent away from the girder.

There are multiple locations where longitudinal stiffeners are slightly bent or bowed. There are also multiple locations of misdrilled holes in the transverse stiffeners. These misdrilled holes are most likely handrail holes which were incorrectly placed or erection bolt holes that were drilled during construction to fit-up the crossframes. There is also one location where a vertical stiffener is not welded to Girder J, this was most likely missed during original construction. There a few location with missing bolts in girder splices.

c16. Diaphragm/Cross Frames

There are several locations throughout the length of the bridge where the crossframe connections to the girder or beam transverse stiffener have loose bolts, missing bolts or misdrilled holes. Based on the PCS and the overall physical condition of the girders and crossframes, this defect does not negatively affect the surrounding members or the overall structure.

c17. Stringers

The stringers are in good condition. The condition of the stringers worsens near the expansion joints and over the river, most likely due to the presence of moisture. There are some minor areas of corrosion and freckled rust at these locations, although no section loss or pitting is notable.

Stringer 5 at Floorbeam 6 in the span between Pier 6L and 7L is completely disconnected from the floorbeam and is floating. A half inch gap exists between the floorbeam and the stringer. The gap effectively doubles the span length of the

2017 ELEMENT LEVEL INSPECTION

Structure File Number: 1811991
Sufficiency Rating: 86.7
District: 12 Place Code (FIPS): CLEVELAND

Bridge Type: 3 - STEEL/6-GIRDER (FLOOR SYSTEM)/3 - DECK
stringer.

c18. Floorbeams

The connections of the floorbeams to girders are in fair condition with loose bolts, missing bolts, and misdrilled holes found throughout the length of the bridge. Freckled rusting is common on the diagonal members of the K frames. 6 new locations of missing bolts or misdrilled holes were found in the 2017 inspection.

c26. Bearing Devices

The abutments typically have debris build-up around the bearings. Many of the rockers at the abutments exhibit heavy rusting on both the rockers and base plates. Laminar corrosion present around bolts and base plates on the Forward Abutment bearings.
It was noted that rocker bearing 1-X of the Eastbound bridge is floating. The bearing is hand loose and appears to be carrying zero live load and zero dead load, the load is likely transferred through the deck to the adjacent bearings. There are several locations where the bearing connection bolts and plates are loose.

The pier bearings near the expansion joint drainage pipes are generally in worse condition. Bearings near the drainage pipes exhibit surface rust to the bearing and pier connection plate.
c30. Protective Coating System
The Protective Coating System is in fair condition. Areas around the drainage system show the most deterioration to the PCS. In these areas, there's both surface corrosion and laminar corrosion to the girders, floorbeams, crossframes, and bearings. There are also localized areas throughout the bridge where the paint is missing and the primer is exposed.
c31. Pins/Hangers/Hinges
The Hinges are in fair condition. The area adjacent to the hinges commonly has debris piled on top of the girder flange. This is problematic because the debris will hold water on the girder flange further advance the rusting. There is one (1) missing bolt in the sole plate of Girder 3-K at Expansion Hinge 3 and one (1) missing bolt in the sole plate of Girder 4-D at Expansion Hinge 3. Several bolts appear to be missing or broken due to the large build-up of rust around the expansion hinges. Laminar corrosion is active where the teeth of the hinges fall into the grooves of the sole plate and the masonry plate.

c32. Fatigue

There is a tri-axial weld at expansion joint 5, but no cracks were noted. No cracks noted at the ends of the longitudinal stiffeners. The stringer bottom flange to floorbeam top flange weld is considered a fatigue prone detail. Stringer 5 at Floorbeam 6 in the span between Pier 6L and 7 L is completely disconnected from the floorbeam. No other signs of fatigue cracking were noted for this detail.

SUBSTRUCTURE

c33. Abutment Walls

The abutment walls on the rear abutments and Ramp C-7 are generally in good condition. The abutment walls on both forward abutments exhibit several minor vertical cracks with rust staining, spalls and delaminations.

2017 ELEMENT LEVEL INSPECTION

BRIDGE INSPECTION FIELD REPORT

Sufficiency Rating: 86.7
District: 12 Place Code (FIPS): CLEVELAND

Inventory Bridge Number: CUY 0049001.000
Date Built: 7/1/1990
I-490 over CUYAHOGA RIVER

Bridge Type: 3 - STEEL/6-GIRDER (FLOOR SYSTEM)/3 - DECK
c38. Pier Columns/Bents
Minor vertical cracks throughout the pier columns. Most of the vertical cracks extend half of the column height or more. The pier caps and columns with drainage attached to them are generally in worse condition then the other piers.
c36. Pier Walls
Pier 9L is the only hammerhead pier on the bridge. It is generally in good condition with minor spalls and cracks with efflorescence.

c37. Pier Caps

The pier caps are generally in good condition. Horizontal cracks in the pier caps are frequent, and are often mirrored on both sides of the cap. There were also some locations of diagonal cracking stemming from the joint where the cap meets the column. The South end of Pier 7R cap is in poor condition exhibiting a large spall with exposed and corroded reinforcing steel.

c39. Backwalls

The backwalls on the rear abutments and Ramp C-7 are generally in good condition. The backwalls on the forward abutments are in fair condition and have minor deficiencies. Both forward abutment backwalls exhibit many minor vertical cracks with minor spalls and delaminations. Some of the cracking exhibits efflorescence and rust staining. The Ramp C-B backwall in in poor condition. Large portions of the backwall are delaminated or spalling with exposed reinforcing
c40. Wingwalls
There are minor areas of cracking and spalling near the ground lines of the wingwalls. The South wingwall at Eastbound Ramp B-C has a large vertical crack with moisture leaking through it
c43. Slope Protection
Slope protection is in good condition. Minor cracking exists at the bottom of the mainline Eastbound Rear Abutment. The slope protection is failing around the base of the South column of Pier 14R. SURVEYING • CONSTRUCTION SERVICES

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN
UNMATCHED CLIENT SERVICE

APPENDIX II - Existing Site Plans

crushed aggregate slope protection detall

Note: The Crushed Aggregote Slope Protection sholl be ploced within the Itimits speciffied
on Sheet $[3 / 80]$ and on this Sheet. The 6 (1r bee of No. 5 Stggregote sholl bo plociced to
the same limits and shall be nclucd the samo limits and sholl bo included with
Item 601 , Crushed Aggregote Slope Protection, Item 6ol, Crushed Agyregor
as per plon, for poumment.

Note: Soe Roodway Plons for fino
groding of cut sloees.
hntit. br.mo. 9 Part I - Substructure

general plan and elevation RAMP C-B
I-290 OVER CUYAHOGA RIVER

CLEVELANO CUYAHOQA COUNTY (E) 1 -290) oH1O SURVEYING - CONSTRUCTION SERVICES

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE

APPENDIX III - Existing Transverse Sections

$\frac{\text { TYPICAL SLAB REINFORCEMENT DETAIL }}{\text { (Unit } 3 L \text { shoun, Unit JR apposite hend) }}$

PLACEMENT DIAGRAM FOR ADDITIONAL REINFORCEMENT OVER PIERS

Revised 18-24-86

$$
\begin{aligned}
& \text { Use tyoptcol boy rotifer ing when one stringer } \\
& \text { between GIrders. } 4 A \text { and } 48 \text { (see Slob Stan). }
\end{aligned}
$$

placement diagram for additional reinforcement over piers

Note: The top of Portland Cement Concrete elevations Shown at
the gutter Lines are those which are required before ce concrete the gutter lines ere those which ore required before concrete
it placed. Proper allowance hos been made for the dead load
it hent deflections caused.
wearing surface.

Note: | Required reinforcing bor lop lengths |
| :--- |
| shall. be 30 bor diameters minimum. |

Required reinforcing bor lop lens this
shall be 30 bar diameters minimum.

Note: All reinforcing bar marks

Notes:
 sol be not more than 1:4 for a haunch less than 9 " in width. For Fence Details, see Sheet $\boxed{105108}$.

Revised 12-24-86
H.N.t. br. No. 9 PART II - SUPERSTRUCTURE Kansas cir cleveland nev roan TYPICAL CROSS SECTIO

UNIT 4
-290 over cur alga river
BR. No. CUY-290-0110 STA .985+85.75
STA
STA

 SURVEYING • CONSTRUCTION SERVICES

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE

APPENDIX IV - Framing Plan

Unit 2 (Port 1)
Loose Bol \dagger
Missing Bol \dagger

- Misdrilled Holes

Unit 4 (Part 3)

- Loose Bolt
- Missing Bol \dagger
- Misdrilled Holes

Unit 6 (Part 1)

- Loose Bolt
- Missing Bolt
- Misdrilled Holes

Unit 6 (Part 2)

- Loose Bolt
- Missing Bolt
- Misdrilled Holes

Unit 6 (Part 3)

Loose Bol \dagger
Missing Bol \dagger
Misdrilled Holes

 SURVEYING • CONSTRUCTION SERVICES

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE

APPENDIX V - Substructure Drawings

6R: East Face

Pier 8R

2018
Inspection
Findings

E FACE

W FAce

2018
Inspection

Pier 12R: West Face

> 四=spall

W FACE

Pier 22R: East Face

W face

 SURVEYING - CONSTRUCTION SERVICES

APPENDIX VI - Loose Bolts, Missing Bolts and Misdrilled Holes

Weastbound Left Bridge

Loose Bolts, Missing Bolts and Misdrilled Holes

Item	Unit	Span	Girder/Stringer	Floorbeam	Side
Loose Bolt	1	4	Beam 1-H	3	North
Loose Bolt	1	4	Beam 1-J	3	North
Loose Bolt	1	4	Beam 1-H	4	North
Loose Bolt	1	4	Beam 1-H	4	South
Loose Bolt	1	4	Beam 1-J	4	South
Loose Bolt	1	4	Beam 1-K	4	North
Misdrilled Hole	1	4	Beam 1-D	5	South
Missing Bolt	1	4	Beam 1-F	5	South
Loose Bolt	1	4	Beam 1-G	5	South
Missing Bolt	1	4	Beam 1-G	5	South
Misdrilled Hole	1	4	Beam 1-H	5	South
Missing Bolt	1	4	Beam 1-H	5	South
Missing Bolt	1	4	Beam 1-J	5	South
Missing Bolt	1	4	Beam 1-K	5	South
Missing Bolt	1	4	Beam 1-L	5	South
Missing Bolt	1	4	Beam 1-M	5	South
Missing Bolt	1	4	Beam 1-N	5	South
Loose Bolt	2	2	Stringer 2-1	0	North
Missing Bolt	2	3	Girder 2-F	3	South
Missing Bolt	2	3	Girder2-A	9	South
Loose Bolt	2	3	Girder 2-D	10	North
Loose Bolt	2	3	Girder 2-D	11	North
Loose Bolt	2	3	Girder 2-A	12	South
Loose Bolt	2	3	Girder 2-D	12	North
Misdrilled Hole	2	4	Girder 2-D	0	North
Missing Bolt	2	4	Girder 2-D	3	North
Misdrilled Hole	2	4	Girder 2-G	13	South
Misdrilled Hole	3	1	Girder 3-C	2	North
Misdrilled Hole	3	1	Girder 3-A	3	South
Misdrilled Hole	3	1	Girder 3-C	3	North
Misdrilled Hole	3	1	Girder 3-A	4	South
Misdrilled Hole	3	1	Girder 3-A	5	South
Misdrilled Hole	3	1	Girder 3-B	5	South
Loose Bolt	3	1	Girder 3-C	6	South
Misdrilled Hole	3	2	Girder 3-D	4	North
Misdrilled Hole	3	2	Girder 3-B	5	South
Misdrilled Hole	3	2	Girder 3-D	5	South
Misdrilled Hole	3	3	Girder 3-C	4	North
Missing Bolt	4	1	Girder 4-D	0	South
Missing Bolt	4	1	Girder 4-E	0	North
Missing Bolt	4	1	Girder 4-D	Hinge	Norh
Missing Bolt	4	1	Girder 4-D	Hinge	South
Missing Bolt	4	1	Girder 4-E	Hinge	North
Loose Bolt	4	1	Girder 4-C	4	South
Loose Bolt	4	1	Girder 4-D	10	North
Loose Bolt	4	1	Girder 4-A	11	South
Loose Bolt	4	1	Girder 4-C	11	South
Misdrilled Hole	4	3	Girder 4-C	11	South
Loose Bolt	5	2	Girder 5-E	2	North
Loose Bolt	5	3	Girder 5-K	2	South

Items in Red found in 2018 Inspection

Total Loose Bolt Locations
Total Missing Bolt Locations Total Misdrilled Locations Holes

16
15

Eastbound Right Bridge
Loose Bolts, Missing Bolts and Misdrilled Holes

Item	Unit	Span	Girder/Stringer	Floorbeam	Side
Loose Bolt	1	1	Beam 1-Q	3	South
Misdrilled Hole	1	2	Beam 1-V	1	South
Misdrilled Hole	1	2	Beam 1-W	1	North
Loose Bolt	1	2	Beam 1-W	2	North
Loose Bolt	1	2	Beam 1-V	3	South
Loose Bolt	1	2	Beam 1-X	3	North
Loose Bolt	1	2	Beam 1-V	4	North
Loose Bolt	1	2	Beam 1-Q	5	South
Misdrilled Hole	1	3	Beam 1-V	3	South
Misdrilled Hole	1	3	Beam 1-X	3	North
Misdrilled Hole	2	3	Girder 2-L	10	South
Misdrilled Hole	2	4	Girder 2-L	0	South
Loose Bolt	2	4	Girder 2-K	1	North
Loose Bolt	2	5	Girder 2-M	1	North
Misdrilled Hole	2	5	Stringer 2-12	10	South
Misdrilled Hole	2	5	Stringer 2-13	10	South
Misdrilled Hole	3	1	Girder 3-G	14	South
Loose Bolt	3	2	Girder 3-J	5	North
Loose Bolt	3	2	Girder 3-J	5	South
Loose Bolt	3	2	Girder 3-K	5	North
Missing Bolt	3	2	Stringer 3-5	7	South
Loose Bolt	3	2	Stringer 3-7	22	North
Loose Bolt	3	2	Stringer 3-8	22	South
Misdrilled Hole	3	2	Girder 3-J	23	North
Missing Bolt	3	2	Girder 3-J	23	South
Misdrilled Hole	3	3	Girder 3-H	2	North
Misdrilled Hole	3	3	Girder 3-J	2	North
Misdrilled Hole	3	3	Girder 3-J	5	South
Misdrilled Hole	3	3	Girder 3-K	5	North
Missing Bolt	3	3	Girder 3-J	6	North
Missing Bolt	3	3	Girder 3-H	7	South
Misdrilled Hole	3	3	Girder 3-G	10	North
Loose Bolt	4	1	Girder 4-H	0	South
Missing Bolt	4	1	Girder 4-K	Hinge	South
Loose Bolt	4	1	Girder 4-F	9	South
Loose Bolt	4	2	Girder 4-H	0	South
Loose Bolt	4	2	Girder 4-J	1	North
Misdrilled Hole	4	2	Girder 4-J	1	South
Misdrilled Hole	4	2	Girder 4-J	3	North
Misdrilled Hole	4	2	Girder 4-J	3	South
Misdrilled Hole	4	2	Girder 4-G	4	South
Loose Bolt	4	2	Girder 4-G	4	South
Misdrilled Hole	4	2	Girder 4-H	4	South
Misdrilled Hole	4	2	Girder 4-J	4	North
Misdrilled Hole	4	2	Girder 4-J	4	South
Misdrilled Hole	4	2	Girder 4-K	4	North
Misdrilled Hole	4	2	Girder 4-H	11	North
Loose Bolt	4	3	Girder 4-J	1	South
Missing Bolt	5	2	Girder 5-N	2	South
Missing Bolt	5	2	Girder 5-P	2	North
Missing Bolt	5	2	Girder 5-W	0	North
Missing Bolt	5	2	Girder 5-X	0	North
Missing Bolt	5	2	Girder 5-X	2	North
Missing Bolt	5	3	Girder 5-P	3	South
Loose Bolt	5	3	Girder 5-X	6	North
Missing Bolt	5	3	Girder 5-P	10	South

Item	Unit	Span	Girder/Stringer	Floorbeam	Side
Loose Bolt	5	3	Girder 5-P	10	South
Missing Bolt	5	3	Girder 5-Q	10	South
Missing Bolt	5	3	Girder 5-R	10	South
Missing Bolt	5	3	Girder 5-S	10	South
Missing Bolt	5	3	Girder 5-T	10	South
Missing Bolt	5	3	Girder 5-U	10	South
Missing Bolt	5	3	Girder 5-V	10	South
Missing Bolt	5	4	Girder 5-P	2	South
Missing Bolt	5	4	Girder 5-Q	2	North
Missing Bolt	5	4	Girder 5-U	2	South
Missing Bolt	5	4	Girder 5-V	2	North
Missing Bolt	5	4	Girder 5-W	2	South
Missing Bolt	5	4	Girder 5-P	4	South
Missing Bolt	5	4	Girder 5-Q	4	North
Missing Bolt	5	4	Girder 5-Q	4	South
Misdrilled Hole	5	5	Girder 5-T	2	South
Missing Bolt	5	5	Girder 5-T	2	South
Missing Bolt	5	5	Girder 5-U	2	North
Missing Bolt	6	1	Girder 6-ZC	1	North
Missing Bolt	6	1	Girder 6-ZB	3	North
Missing Bolt	6	1	Girder 6-ZB	3	South
Missing Bolt	6	1	Girder 6-ZB	4	North
Missing Bolt	6	1	Girder 6-ZB	5	North
Missing Bolt	6	1	Girder 6-ZC	5	North
Missing Bolt	6	1	Girder 6-ZB	6	South
Missing Bolt	6	1	Girder 6-ZC	6	South
Missing Bolt	6	1	Girder 6-ZD	6	North
Missing Bolt	6	1	Girder 6-W	7	South
Missing Bolt	6	1	Girder 6-ZB	7	North
Missing Bolt	6	1	Girder 6-ZB	7	South
Missing Bolt	6	2	Girder 6-W	1	South
Missing Bolt	6	2	Girder 6-ZB	1	North
Missing Bolt	6	2	Girder 6-W	2	South
Missing Bolt	6	2	Girder 6-ZB	2	North
Missing Bolt	6	2	Girder 6-Q	3	South
Missing Bolt	6	2	Girder 6-R	3	North
Missing Bolt	6	2	Girder 6-V	3	South
Missing Bolt	6	2	Girder 6-W	3	North
Missing Bolt	6	2	Girder 6-ZC	3	South
Missing Bolt	6	2	Girder 6-ZD	3	North
Missing Bolt	6	2	Girder 6-Q	4	South
Missing Bolt	6	2	Girder 6-R	4	North
Missing Bolt	6	2	Girder 6-ZB	6	South
Missing Bolt	6	2	Girder 6-ZC	6	North
Missing Bolt	6	5	Girder 6-X	0	South
Missing Bolt	6	5	Girder 6-Y	1	North
Misdrilled Hole	Ramp	C-B	Girder 6-ZC	4	North
Missing Bolt	Ramp	C-B	Girder 6-ZD	0	North
Missing Bolt	Ramp	C-B	Girder 6-ZB	1	North
Missing Bolt	Ramp	C-B	Girder 6-ZB	2	North

Items in Red found in 2018 Inspection

Total Loose Bolt Locations
Total Missing Bolt Locations
Total Misdrilled Locations Holes

21
59
26

INNOVATIVE IDEAS EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE

APPENDIX VII - Bearing/Hinge Condition

2018 Bridge Bearing/Hinges:

Condition Rating Left Bridge

Unit 1: Bearings and Hinges (Table 1) Rate Bearings: CS1, CS2, CS3 or CS4

Location	1-A	1-B	1-C	$1-\mathrm{D}$	1 1-E	1-EA	1-EB	1-EC	1-ED
Rear Abutment	CS3	CS2	CS3	CS4	CS2	CS3	CS2	CS2	CS1
Pier 1	CS1								
Pier 2	CS1		CS1	CS1	CS1	CS1		CS1	CS1
Pier 3	CS1		CS1	CS1	CS1	CS1		CS1	CS1

Unit 1: Bearings and Hinges (Table 2)

Location	1-F	1-G	1-H	1-J	1-K	1-L	1-M	1-N	1-P
Rear Abutment	CS3	CS2	CS2	CS2	CS2	CS2	CS4	CS4	CS3
Pier 1	CS1								
Pier 2	CS1								
Pier 3	CS1								

Unit 2: Bearings and Hinges

Westbound Beams
Location $2-\mathrm{A}$ $2-\mathrm{B}$ $2-\mathrm{C}$ $2-\mathrm{D}$ $2-\mathrm{E}$ $2-\mathrm{F}$ $2-\mathrm{G}$ Expansion Joint 1 CS2 CS2 CS2 CS2 CS2 CS2 CS2 Pier 4 CS2 CS2 CS2 CS1 CS1 CS1 CS1 Pier 5 CS2 CS1 CS1 CS1 CS1 CS1 CS1 Pier 6 CS1 CS1 CS1 CS1 CS1 Pier 7 CS1 CS1 CS1 CS1 CS1 Pier 8

Unit 3: Bearings and Hinges

Location	$3-\mathrm{A}$	$3-\mathrm{B}$	$3-\mathrm{C}$	$3-\mathrm{D}$	$3-\mathrm{E}$
Expansion Joint 2	CS2	CS2	CS2	CS2	CS2
Pier 9	CS2	CS3	CS3	CS3	CS3
Pier 10	CS1	CS1	CS1	CS1	CS2
Pier 11	CS2	CS2	CS2	CS2	CS2
Pier 12	CS3	CS3	CS2	CS2	CS3
Expansion Joint 3	CS2	CS2	CS2	CS3	CS3

Unit 4: Bearings and Hinges

Location	$4-\mathrm{A}$	$4-\mathrm{B}$	$4-\mathrm{C}$	$4-\mathrm{D}$	$4-\mathrm{E}$
Pier 13	CS2	CS1	CS1	CS1	CS1
Pier 14	CS2	CS2	CS1	CS2	CS2
Pier 15	CS2	CS1	CS2	CS2	CS2
Expansion Joint 4	CS2	CS2	CS2	CS2	CS2

Unit 5: Bearings and Hinges

Westbound Beams												
Location	5-A	5-B	5-C	5-D	5-E	5-F	5-G	5-H	5-J	5-K	5-L	5-M
Pier 16	CS1		CS1	CS1	CS2	CS2	CS2	CS1	CS1	CS1	CS1	CS1
Pier 17	CS1	S	CS1									
Pier 18	CS1											
Pier 19	CS1											
Pier 20	CS3	CS3	CS3	CS1								
Expansion Joint 5	CS2											

Unit 6: Bearings and Hinges

Westbound Beams												
Location	6-A	6-B	6-C	6-D	6-E	6-F	6-G	6-H	6-J	6-K	6-L	6-N
Pier 21	CS1	5	5	CS1								
Pier 22	CS1	\bigcirc	5	CS1								
Pier 23	CS1	$>$	CS1									
Pier 24	CS1											
Forward Abutment	CS3											

Left Bearings			
CS1 Total	CS2 Total	CS3 Total	CS4 Total
176	34	27	3
Total	240		

Left Hinges			
CS1 Total	CS2 Total	CS3 Total	CS4 Total
0	32	2	0
Total	34		

2018 Bridge Bearing/Hinges:

Condition Rating Left Bridge

Unit 1: Bearings and Hinges (Table 1) Rate Bearings: CS1, CS2, CS3 or CS4

Location	$1-\mathrm{A}$	$1-\mathrm{B}$	$1-\mathrm{C}$	$1-\mathrm{D}$	$1-\mathrm{E}$	$1-\mathrm{EA}$	$1-\mathrm{EB}$	$1-\mathrm{EC}$	$1-\mathrm{ED}$
Rear Abutment	$8^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{E}$	$13^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{W}$	$7^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{W}$	$5^{\circ} \mathrm{W}$
Pier 1									
Pier 2	Fixed		Fixed	Fixed	Fixed	Fixed			
Pier 3									

Unit 1: Bearings and Hinges (Table 2)

Location	$1-\mathrm{F}$	$1-\mathrm{G}$	$1-\mathrm{H}$	$1-\mathrm{J}$	$1-\mathrm{K}$	$1-\mathrm{L}$	$1-\mathrm{M}$	$1-\mathrm{N}$	$1-\mathrm{P}$
Rear Abutment	$6^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{E}$
Pier 1									
Pier 2	Fixed								
Pier 3									

Unit 2: Bearings and Hinges

Westbound Beams
Location $2-\mathrm{A}$ $2-\mathrm{B}$ $2-\mathrm{C}$ $2-\mathrm{D}$ $2-\mathrm{E}$ $2-\mathrm{F}$ $2-\mathrm{G}$ Expansion Joint 1 Pier 4 0° 0° $5^{\circ} \mathrm{W}$ Pier 5 $3^{\circ} \mathrm{E}$ 0° $2^{\circ} \mathrm{E}$ $1^{\circ} \mathrm{W}$ $5^{\circ} \mathrm{E}$ 0° $1^{\circ} \mathrm{W}$ Pier 6 Fixed Fixed Fixed Fixed Fixed Pier 7 Fixed Fixed Fixed Fixed Fixed Pier 8

Unit 3: Bearings and Hinges

Westbound Beams					
Location	$3-\mathrm{A}$	$3-\mathrm{B}$	$3-\mathrm{C}$	$3-\mathrm{D}$	$3-\mathrm{E}$
Expansion Joint 2	$2^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$
Pier 9	$1^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{W}$	$5^{\circ} \mathrm{W}$	$5^{\circ} \mathrm{W}$	$5^{\circ} \mathrm{W}$
Pier 10	Fixed	Fixed	Fixed	Fixed	Fixed
Pier 11	$3^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{E}$
Pier 12	$7^{\circ} \mathrm{W}$	$6^{\circ} \mathrm{W}$	$10^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{W}$	$1^{\circ} \mathrm{W}$
Expansion Joint 3	$3^{\circ} \mathrm{W}$	$1^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{W}$	$4^{\circ} \mathrm{W}$	$6^{\circ} \mathrm{W}$

Unit 4: Bearings and Hinges

Location	$4-\mathrm{A}$	$4-\mathrm{B}$	$4-\mathrm{C}$	$4-\mathrm{D}$	$4-\mathrm{E}$
Pier 13	Fixed	Fixed	Fixed	Fixed	Fixed
Pier 14	Fixed	Fixed	Fixed	Fixed	Fixed
Pier 15	$2^{\circ} \mathrm{W}$	0°	$5^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{W}$
Expansion Joint 4	$1^{\circ} \mathrm{E}$	0°	$1^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{W}$

Unit 5: Bearings and Hinges

Westbound Beams												
Location	5-A	5-B	5-C	5-D	5-E	5-F	5-G	5-H	5-J	5-K	5-L	5-M
Pier 16		5										
Pier 17		S										
Pier 18	Fixed											
Pier 19												
Pier 20												
Expansion Joint 5												

Unit 6: Bearings and Hinges

Location	6-A	6-B	6-C	6-D	6-E	6-F	6-G	6-H	6-J	6-K	6-L	6-N
Pier 21										$>$		
Pier 22	Fixed	,		Fixed								
Pier 23											3	
Pier 24												
Forward Abutment	$6^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{E}$	$10^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$	$11^{\circ} \mathrm{E}$	$13^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{E}$

2018 Bridge Bearing/Hinges:

Condition Rating Right Bridge

Unit 1: Bearings and Hinges
Eastbound Beams

Location	$1-Q$	$1-R$	$1-S$	$1-T$	$1-U$	$1-\mathrm{V}$	$1-\mathrm{W}$	$1-\mathrm{X}$	$1-\mathrm{Y}$
Rear Abutment	CS2	CS1	CS2	CS2	CS1	CS1	CS2	CS1	CS2
Pier 1	CS1								
Pier 2	CS1								
Pier 3	CS1	CS1	CS1	CS1	CS1	CS1	CS2	CS2	CS2

Unit 2: Bearings and Hinges
Eastbound Beams

Location	$2-\mathrm{H}$	$2-\mathrm{J}$	$2-\mathrm{K}$	$2-\mathrm{L}$	$2-\mathrm{M}$
Expansion Joint 1	CS2	CS2	CS2	CS2	CS2
Pier 4	CS1	CS1	CS1	CS1	CS1
Pier 5	CS1	CS1	CS1	CS1	CS1
Pier 6	CS1	CS1	CS1	CS1	CS1
Pier 7	CS1	CS1	CS1	CS1	CS1
Pier 8	CS1	CS1	CS1	CS1	CS1

Unit 3: Bearings and Hinges
Eastbound Beams

Location	$3-\mathrm{F}$	$3-\mathrm{G}$	$3-\mathrm{H}$	$3-\mathrm{J}$	$3-\mathrm{K}$
Expansion Joint 2	CS2	CS2	CS2	CS2	CS2
Pier 9	CS2	CS2	CS2	CS2	CS1
Pier 10	CS2	CS2	CS2	CS2	CS2
Pier 11	CS2	CS2	CS2	CS2	CS2
Pier 12	CS2	CS3	CS3	CS3	CS2
Expansion Joint 3	CS2	CS2	CS2	CS2	CS2

Unit 4: Bearings and Hinges
Eastbound Beams

Location	$4-\mathrm{F}$	$4-\mathrm{G}$	$4-\mathrm{H}$	$4-\mathrm{J}$	$4-\mathrm{K}$
Pier 13	CS1	CS1	CS1	CS1	CS1
Pier 14	CS2	CS2	CS2	CS2	CS3
Pier 15	CS2	CS2	CS2	CS2	CS2
Expansion Joint 4	CS2	CS3	CS2	CS2	CS2

Unit 5: Bearings and Hinges

Location	5-N	5-P	5-Q	5-R	5-S	5-T	5-U	5-V	5-W	5-X
Pier 16	CS2	-	CS2							
Pier 17	CS2	S	CS2							
Pier 18	CS1	CS2								
Pier 19	CS1									
Pier 20	CS2									
Expansion Joint 5	CS2									

Unit 6: Bearings and Hinges

Ramp C-B Pier Abutment

| Eastbound Beams |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Location 6-ZA 6-ZB 6-ZC 6-ZD 6-ZE
 Ramp C-B 23 CS2 CS1 CS1 CS1 CS1
 Ramp C-B 24 CS1 CS1 CS1 CS1 CS1
 Ramp C-B 25 CS1 CS1 CS1 CS1 CS1
 Ramp C-B 26 CS1 CS1 CS1 CS1 CS1
 Ramp C-B 27 CS1 CS1 CS1 CS1 CS1
 Ramp C-B F.A. CS3 CS3 CS3 CS3 CS3 |

Right Bearings			
CS1 Total	CS2 Total	CS3 Total	CS4 Total
132	72	15	0
Total	219		

Right Hinges			
CS1 Total	CS2 Total	CS3 Total	CS4 Total
0	29	1	0
Total	30		

2018 Bridge Bearing/Hinges:

Condition Rating Right Bridge

Unit 1: Bearings and Hinges
Eastbound Beams

Location	$1-\mathrm{Q}$	$1-\mathrm{R}$	$1-\mathrm{S}$	$1-\mathrm{T}$	$1-\mathrm{U}$	$1-\mathrm{V}$	$1-\mathrm{W}$	$1-\mathrm{X}$	$1-\mathrm{Y}$
Rear Abutment	$1^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{W}$	$1^{\circ} \mathrm{W}$	$1^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$	$10^{\circ} \mathrm{E}$
Pier 1									
Pier 2	Fixed								
Pier 3									

Unit 2: Bearings and Hinges
Eastbound Beams

Location	$2-\mathrm{H}$	$2-\mathrm{J}$	$2-\mathrm{K}$	$2-\mathrm{L}$	$2-\mathrm{M}$
Expansion Joint 1	$3^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{E}$
Pier 4	$4^{\circ} \mathrm{W}$	$4^{\circ} \mathrm{W}$	$4^{\circ} \mathrm{W}$	$1^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{W}$
Pier 5	0°	$3^{\circ} \mathrm{E}$	0°	$2^{\circ} \mathrm{W}$	$1^{\circ} \mathrm{W}$
Pier 6	Fixed	Fixed	Fixed	Fixed	Fixed
Pier 7	Fixed	Fixed	Fixed	Fixed	Fixed
Pier 8	0°	$1^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	0°

Unit 3: Bearings and Hinges

Eastbound Beams						
Location $3-\mathrm{F}$ $3-\mathrm{G}$ $3-\mathrm{H}$ $3-\mathrm{J}$ $3-\mathrm{K}$ Expansion Joint 2 $6^{\circ} \mathrm{E}$ $8^{\circ} \mathrm{E}$ $7^{\circ} \mathrm{E}$ $9^{\circ} \mathrm{E}$ $4^{\circ} \mathrm{E}$ Pier 9 $5^{\circ} \mathrm{W}$ $5^{\circ} \mathrm{W}$ $5^{\circ} \mathrm{W}$ $2^{\circ} \mathrm{W}$ $4^{\circ} \mathrm{W}$ Pier 10 Fixed Fixed Fixed Fixed Fixed Pier 11 $4^{\circ} \mathrm{E}$ $5^{\circ} \mathrm{E}$ $3^{\circ} \mathrm{E}$ $5^{\circ} \mathrm{E}$ $5^{\circ} \mathrm{E}$ Pier 12 0° $1^{\circ} \mathrm{E}$ $1^{\circ} \mathrm{E}$ $4^{\circ} \mathrm{E}$ $6^{\circ} \mathrm{E}$ Expansion Joint 3 $2^{\circ} \mathrm{W}$ $2^{\circ} \mathrm{W}$ $2^{\circ} \mathrm{W}$ $2^{\circ} \mathrm{W}$ $2^{\circ} \mathrm{W}$						

Unit 4: Bearings and Hinges

Eastbound Beams					
Location $4-\mathrm{F}$ $4-\mathrm{G}$ $4-\mathrm{H}$ $4-\mathrm{K}$ Pier 13 Fixed Fixed Fixed Fixed Fixed Pier 14 Fixed Fixed Fixed Fixed Fixed Pier 15 $4^{\circ} \mathrm{W}$ $7^{\circ} \mathrm{W}$ $5^{\circ} \mathrm{W}$ $12^{\circ} \mathrm{W}$ $4^{\circ} \mathrm{W}$ Expansion Joint 4 $0^{\circ} \mathrm{E}$ $0^{\circ} \mathrm{E}$ $2^{\circ} \mathrm{E}$ $3^{\circ} \mathrm{E}$ $0^{\circ} \mathrm{E}$					

Unit 5: Bearings and Hinges

Location	$5-\mathrm{N}$	$5-\mathrm{P}$	$5-\mathrm{Q}$	$5-\mathrm{R}$	$5-\mathrm{S}$	$5-\mathrm{T}$	$5-\mathrm{U}$	$5-\mathrm{V}$	5	
Pier 16										
Pier 17										
Pier 18	Fixed									
Pier 19										
Pier 20										
Expansion Joint 5	$2^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{W}$							

Unit 6: Bearings and Hinges

Location	6-P	6-Q	6-R	6-S	6-T	6-U	6-V	6-W	6-X	6-Y	6-Z
Pier 21											
Pier 22	Fixed	+									
Pier 23											
Pier 24											\bigcirc
Forward Abutment	$3^{\circ} \mathrm{E}$	$10^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{E}$	$11^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{E}$

Ramp C-B Pier Abutment

Eastbound Beams					
Location	6-ZA	$6-$ ZB	$6-\mathrm{ZC}$	$6-\mathrm{ZD}$	$6-\mathrm{ZE}$
Ramp C-B 23					
Ramp C-B 24					
Ramp C-B 25	Fixed	Fixed	Fixed	Fixed	Fixed
Ramp C-B 26					
Ramp C-B 27					
Ramp C-B F.A.	$8^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$

APPENDIX VIII - Fracture Critical Member Identification Plan

Fracture Critical Member and Fatigue Prone Connection Identification Plan

District:	12
County-Route-SLM:	CUY-490-0100
Structural File Number:	181991
Access:	Snooper inspection, Manlift, Climbing Techniques

Fatigue Life Study:	Year of Study: Not calculated
	Remaining Fatigue Life: Not calculated

Load Path Redundant: No, structure is fracture critical; inspect FCM's every 24 months.
Structurally Redundant: Yes, Continuous Spans

Location: Structure carries I-490 over the Cuyahoga River Valley in Cleveland, Ohio.

The existing bridge is $3,462^{\prime}(\pm)$ long and divided into six (6) units. The Westbound (left) superstructure consists of twentyfive (25) spans and the Eastbound (right) superstructure consists of twenty-four (24) spans plus 5 additional spans on Ramp C-B. The spans range from a minimum of 53^{\prime} to a maximum of 340^{\prime}. The bridge deck width varies, carrying five lanes of traffic Eastbound and four lanes Westbound over CSX Railroad, Norfolk Southern Railroad, Quigley Road, West $3^{\text {rd }}$ Street, Independence Road and the Cuyahoga River. The average daily traffic for the bridge is 61,890 vehicles with average truck traffic of 4,230 vehicles (2010).

Additional Instructions:

Floorbeam spacing in units 2-5 is greater than 14^{\prime}. Use snooper or climbing techniques to access fracture critical locations.
 SURVEYING - CONSTRUCTION SERVICES

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE

APPENDIX IX - Fatigue Prone Details

Fatigue Prone Details AASHTO LRFD Bridge Design Specs Table 6.6.1.2.3-1			
Photo Reference (photos on following pages)	Category (E, E' or R for Retrofit)	Distribution	Description
Photo 1	E		The end terminations of the longitudinal stiffener weld to the webs of the girders without a radius termination
Photo 2	E		Short longitudinal stiffener welded to the girder web where $\mathrm{L}>12 \mathrm{t}$ or 4 " and $\mathrm{t}<0.8^{\prime \prime}$
Photo 3	E'		Plate welded to bottom flange (used at seated hinge as a guide)
Photo 4	E		The stringer bottom flange to floorbeam top flange weld, flange thickness ≥ 0.8 in.
Photo 5	E		Expansion Joint Roller 5 was constructed with tri-axial welds

 SURVEYING • CONSTRUCTION SERVICES

INNOVATIVE IDEAS
EXCEPTIONAL DESIGN UNMATCHED CLIENT SERVICE

APPENDIX X - Element Level Inspection Data

Westbound: Left Bridge Approach Items

Approach Slab Summary	condition state		cr			
	QTY.	1	2	3	4	TR
c1. Approach Wearing Surface (EA	4	0	4	0	0	
c2 Approach Slabs (SF)	6116.8	5684	411	22	0	
c3. Relief Joint (LF)	244.7	207	38.0	0.0	0	
c4. Embankment (EA)	5	5	0	0	0	
c5. Guardrail (EA)	4	1	3	0	0	
c. Bridge Approach Pavement (EA)	4	4	0	0	0	
c. 13 Expansion Joint (LF)	0	0	0	0	0	

Mainline Rear Approach Slab	condition state						
	QTY.	1	2	3	4	TR	
c1. Approach Wearing Surface (EA	1	0	1	0	0		
c2 Approach Slabs (SF)	1757.4	1556	181	20	0		
c3. Relief Joint (LF)	70.3	42	28	0	0		
c4. Embankment (EA)	1	1	0	0	0		
c5. Guardrail (EA)	1	0	1	0	0		
c. Bridge Approach Pavement (EA)	1	1	0	0	0		
c.13 Expansion Joint (LF)	0	0	0	0	0		

Mainline Forward Approach Slab	condition state						
	QTY.	1	2	3	4	TR	
c1. Approach Wearing Surface (EA	1	0	1	0	0		
c2 Approach Slabs (SF)	2829.2	2648	179	2	0		
c3. Relief Joint (LF)	113.2	103	10	0	0		
c4. Embankment (EA)	1	1	0	0	0		
c5. Guardrail (EA)	1	0	1	0	0		
c. Bridge Approach Pavement (EA)	1	1	0	0	0		
c13. Expansion Joint (LF)	0	0	0	0	0		

Ramp C-7 Rear Approach Slab	condition state						
	QTY.	1	2	3	4	TR	
c1. Approach Wearing Surface (EA	1	0	1	0	0		
c2 Approach Slabs (SF)	893	858	35	0	0		
c3. Relief Joint (LF)	35.7	36	0	0	0		
c4. Embankment (EA)	1	1	0	0	0		
c5. Guardrail (EA)	1	0	1	0	0		
c. Bridge Approach Pavement (EA)	1	1	0	0	0		
c13. Expansion Joint (LF)	0	0	0	0	0		

Ramp B-C Forward	condition state						
Approach Slab	QTY.	1	2	3	4	TR	
c1. Approach Wearing Surface (EA	1	0	1	0	0		
c2 Approach Slabs (SF)	637.2	621	16	0	0		
c3. Relief Joint (LF)	25.5	25	0	0	0		
c4. Embankment (EA)	2	2	0	0	0		
c5. Guardrail (EA)	1	1	0	0	0		
c. Bridge Approach Pavement (EA)	1	1	0	0	0		
c13. Expansion Joint (LF)	0	0	0	0	0		

Eastbound: Right Bridge Approach Items

Approach Slab Summary	condition state						
	QTY.	1	2	3	4	TR	
c1. Approach Wearing Surface (3.0	0.0	1.0	2.0	0.0		
	5717.6	5491.6	37.0	189.0	0.0		
c3. Relief Joint (LF)	216.5	76.5	140.0	0.0	0.0		
c4. Embankment (EA)	4.0	4.0	0.0	0.0	0.0		
c5. Guardrail (EA)	6.0	2.0	3.0	1.0	0.0		
c. Bridge Approach Pavement (3.0	3.0	0.0	0.0	0.0		
c.13 Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Mainline Rear Approach Slab	c condition state						
	QTY.	1	2	3	4	TR	
c1. Approach Wearing Surface (1.0	0.0	0.0	1.0	0.0		
c2 Approach Slabs (SF)	1923.3	1722.3	12.0	189.0	0.0		
c3. Relief Joint (LF)	70.3	10.3	60.0	0.0	0.0		
c4. Embankment (EA)	1.0	1.0	0.0	0.0	0.0		
c5. Guardrail (EA)	2.0	1.0	1.0	0.0	0.0		
c. Bridge Approach Pavement (1.0	1.0	0.0	0.0	0.0		
c.13 Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Mainline Forward Approach Slab	condition state					
	QTY.	1	2	3	4	TR
c1. Approach Wearing Surface (1.0	0.0	1.0	0.0	0.0	
c2 Approach Slabs (SF)	2562.8	2557.8	5.0	0.0	0.0	
c3. Relief Joint (LF)	113.2	53.2	60.0	0.0	0.0	
c4. Embankment (EA)	1.0	1.0	0.0	0.0	0.0	
c5. Guardrail (EA)	2.0	1.0	1.0	0.0	0.0	
c. Bridge Approach Pavement (1.0	1.0	0.0	0.0	0.0	
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0	

Ramp C-B Forward Approach Slab	condition state						
	QTY.	1	2	3	4	TR	
c1. Approach Wearing Surface (1.0	0.0	0.0	1.0	0.0		
c2 Approach Slabs (SF)	1231.5	1211.5	20.0	0.0	0.0		
c3. Relief Joint (LF)	33.0	13.0	20.0	0.0	0.0		
c4. Embankment (EA)	2.0	2.0	0.0	0.0	0.0		
c5. Guardrail (EA)	2.0	0.0	1.0	1.0	0.0		
c. Bridge Approach Pavement (1.0	1.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Westbound: Left Bridge Deck Items 2018

Deck Summary	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	262933	250188	6797	5948	0		
c7.2 Edge of Floor/Slab (LF)	6914	6892.6	21	0	0		
c8. Wearing Surface (SF)	262933	261241	1534	158	0		
c9. Curb/sidewalk/Walkway (LF)	0	0	0	0	0		
c10. Median (LF)	3457	3236.8	220	0	0		
c11.Railing (LF)	3457	3236.1	203	18	0		
c12. Drainage (EA)	17	12	3	2	0		
c13. Expansion Joint (LF)	654	494	52	108	0		

Deck Span 1: Rear Abutment to Pier 1	condition state							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	6372.4	6359.4	13	0	0			
c7.2 Edge of Floor/Slab (LF)	106	106.0	0	0	0			
c8. Wearing Surface (SF)	6372.4	6368.4	4	0	0			
c10. Median (LF)	53	53.0	0	0	0			
c11.Railing (LF)	53.0	53.0	0.0	0.0	0.0			
c12. Drainage (EA)	0	0.0	0	0	0			
c13. Expansion Joint (LF)	144	134.0	10	0	0			

Deck Span 2: Pier 1 to Pier 2	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8054.9	7785.9	269	0	0		
c7.2 Edge of Floor/Slab (LF)	134	134.0	0	0	0		
c8. Wearing Surface (SF)	8054.9	8045.9	9	0	0		
c10. Median (LF)	67	67.0	0	0	0		
c11.Railing (LF)	67	47.0	20.0	0.0	0.0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 3: Pier 2 to Pier 3	condition state						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8054.9	8030.9	24	0	0		
c7.2 Edge of Floor/Slab (LF)	134	134.0	0	0	0		
c8. Wearing Surface (SF)	8054.9	8049.9	3	2	0		
c10. Median (LF)	67	67.0	0	0	0		
c11.Railing (LF)	67	67.0	0.0	0.0	0.0		
c12. Drainage (EA)	2	2.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 4: Pier 3 to Pier 4	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	7521.118	7465.1	56	0	0			
c7.2 Edge of Floor/Slab (LF)	136	136.0	0	0	0			
c8. Wearing Surface (SF)	7521.1	7403.1	116	2	0			
c10. Median (LF)	68	68.0	0	0	0			
c11.Railing (LF)	68	18.0	50.0	0.0	0.0			
c12. Drainage (EA)	2	2.0	0	0	0			
c13. Expansion Joint (LF)	100	98.0	2	0	0			

Deck Span 5: Pier 4 to Pier 5	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	10075.81	9807.8	268	0	0		
c7.2 Edge of Floor/Slab (LF)	263	263.0	0	0	0		
c8. Wearing Surface (SF)	10075.8	10069.8	6	0	0		
c10. Median (LF)	131.5	131.5	0	0	0		
c11.Railing (LF)	131.5	105.5	26	0	0		
c12. Drainage (EA)	1	0.0	1	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 6: Pier 5 to Pier 6	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	13830.29	13654.3	176	0	0		
c7.2 Edge of Floor/Slab (LF)	361	361.0	0	0	0		
c8. Wearing Surface (SF)	13830.3	13800.3	28	2	0		
c10. Median (LF)	180.5	180.5	0	0	0		
c11.Railing (LF)	180.5	171.5	9	0	0		
c12. Drainage (EA)	1	0.0	1	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 7: Pier 6 to Pier 7	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	13830.29	11318.1	596	1916	0		
c7.2 Edge of Floor/Slab (LF)	361	361.0	0	0	0		
c8. Wearing Surface (SF)	13830.3	13819.3	11	0	0		
c10. Median (LF)	180.5	180.5	0	0	0		
c11.Railing (LF)	180.5	174.5	6	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 8: Pier 7 to Pier 9	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	15136.02	12598	464	2074	0		
c7.2 Edge of Floor/Slab (LF)	401	401	0	0	0		
c8. Wearing Surface (SF)	15136	14989	147	0	0		
c10. Median (LF)	200.5	201	0	0	0		
c11.Railing (LF)	200.5	176	25	0	0		
c12. Drainage (EA)	0	0	0	0	0		
c13. Expansion Joint (LF)	66	59	6	1	0		

Deck Span 9: Pier 9 to Pier 10	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	15472.97	15255	218	0	0			
c7.2 Edge of Floor/Slab (LF)	474	474	0	0	0			
c8. Wearing Surface (SF)	15473	15365	17	91	0			
c10. Median (LF)	237	146	91	0	0			
c11.Railing (LF)	237	236	1	0	0			
c12. Drainage (EA)	3	2	0	0	1			
c13. Expansion Joint (LF)	0	0	0	0	0			

Deck Span 10: Pier 10 to Pier $\mathbf{1 1}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	21544.65	20888.6	560	96	0		
c7.2 Edge of Floor/Slab (LF)	660	660.0	0	0	0		
c8. Wearing Surface (SF)	21544.6	21486.1	59	0	0		
c10. Median (LF)	330	330.0	0	0	0		
c11.Railing (LF)	330	328.0	2	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 11: Pier 11 to Pier $\mathbf{1 2}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	11359.91	10959.9	400	0	0		
c7.2 Edge of Floor/Slab (LF)	348	348.0	0	0	0		
c8. Wearing Surface (SF)	11359.9	11308.9	51	0	0		
c10. Median (LF)	174	155.0	19	0	0		
c11.Railing (LF)	174	171.0	3	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 12: Pier 12 to Pier $\mathbf{1 3}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	13501.07	13016.1	485	0	0		
c7.2 Edge of Floor/Slab (LF)	396	396.0	0	0	0		
c8. Wearing Surface (SF)	13501.1	13305.1	196	0	0		
c10. Median (LF)	198	183.0	15	0	0		
c11.Railing (LF)	198	190.0	8	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	66	60.0	6	0	0		

Deck Span 13: Pier 13 to Pier $\mathbf{1 4}$	Cr condition state						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	12948.2	12192.2	372	384	0		
c7.2 Edge of Floor/Slab (LF)	378	372.0	6	0	0		
c8. Wearing Surface (SF)	12948.2	12889.2	59	0	0		
c10. Median (LF)	189	149.0	40	0	0		
c11.Railing (LF)	189	187.0	2	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 14: Pier 14 to Pier $\mathbf{1 5}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	9934.5	9222.5	520	192	0		
c7.2 Edge of Floor/Slab (LF)	290	290.0	0	0	0		
c8. Wearing Surface (SF)	9934.5	9820.5	114	0	0		
c10. Median (LF)	145	145.0	0	0	0		
c11.Railing (LF)	145	145.0	0	0	0		
c12. Drainage (EA)	1	1.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 15: Pier 15 to Pier $\mathbf{1 6}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	11025.7	10991.7	34	0	0		
c7.2 Edge of Floor/Slab (LF)	268	253.0	15	0	0		
c8. Wearing Surface (SF)	11025.7	10970.7	50	5	0		
c10. Median (LF)	134	134.0	0	0	0		
c11.Railing (LF)	134	81.3	35	18	0		
c12. Drainage (EA)	2	0.0	0	2	0		
c13. Expansion Joint (LF)	74	62.0	12	0	0		

Deck Span 16: Pier 16 to Pier $\mathbf{1 7}$	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	11342.3	9618.3	632	1092	0			
c7.2 Edge of Floor/Slab (LF)	270	270.0	0	0	0			
c8. Wearing Surface (SF)	11342.3	11320.3	8	14	0			
c10. Median (LF)	135	114.0	21	0	0			
c11.Railing (LF)	135	131.0	4	0	0			
c12. Drainage (EA)	0	0.0	0	0	0			
c13. Expansion Joint (LF)	0	0.0	0	0	0			

Deck Span 17: Pier 17 to Pier $\mathbf{1 8}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	11358	10502	728	128	0		
c7.2 Edge of Floor/Slab (LF)	270.4	267	3	0	0		
c8. Wearing Surface (SF)	11358	11336	8	14	0		
c10. Median (LF)	135.2	114	21	0	0		
c11.Railing (LF)	135.2	135	0	0	0		
c12. Drainage (EA)	0	0	0	0	0		
c13. Expansion Joint (LF)	0	0	0	0	0		

Deck Span 18: Pier 18 to Pier $\mathbf{1 9}$	Condition state						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	11326.9	11098.9	228	0	0		
c7.2 Edge of Floor/Slab (LF)	269.6	257.6	12	0	0		
c8. Wearing Surface (SF)	11326.9	11304.9	8	14	0		
c10. Median (LF)	134.8	134.8	0	0	0		
c11.Railing (LF)	134.8	134.8	0	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 19: Pier 19 to Pier $\mathbf{2 0}$	l condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	10501.6	10385.6	110	6	0		
c7.2 Edge of Floor/Slab (LF)	250	250.0	0	0	0		
c8. Wearing Surface (SF)	10501.6	10479.6	8	14	0		
c10. Median (LF)	125	124.0	1	0	0		
c11.Railing (LF)	125	123.0	2	0	0		
c12. Drainage (EA)	1	1.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 20: Pier 20 to Pier $\mathbf{2 1}$	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	8095	8071	24	0	0			
c7.2 Edge of Floor/Slab (LF)	229.5	230	0	0	0			
c8. Wearing Surface (SF)	8095.0	7967	128	0	0			
c10. Median (LF)	114.8	115	0	0	0			
c11.Railing (LF)	114.8	115	0	0	0			
c12. Drainage (EA)	1	1	0	0	0			
c13. Expansion Joint (LF)	93	81	12	0	0			

Deck Span 21: Pier 21 to Pier $\mathbf{2 2}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8145.0	8025.0	120	0	0		
c7.2 Edge of Floor/Slab (LF)	235.3	235.3	0	0	0		
c8. Wearing Surface (SF)	8145	8022.0	123	0	0		
c10. Median (LF)	117.6	117.6	0	0	0		
c11.Railing (LF)	117.6	117.6	0	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 22: Pier 22 to Pier $\mathbf{2 3}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8288.1	8134.1	94	60	0		
c7.2 Edge of Floor/Slab (LF)	239.4	239.4	0	0	0		
c8. Wearing Surface (SF)	8288.1	8189.1	99	0	0		
c10. Median (LF)	119.7	119.7	0	0	0		
c11.Railing (LF)	119.7	114.7	5	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 23: Pier 23 to Pier $\mathbf{2 4}$	l condition state						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8502.7	8232.7	270	0	0		
c7.2 Edge of Floor/Slab (LF)	245.6	245.6	0	0	0		
c8. Wearing Surface (SF)	8502.7	8376.2	127	0	0		
c10. Median (LF)	122.8	122.8	0	0	0		
c11.Railing (LF)	122.8	122.8	0	0	0		
c12. Drainage (EA)	0	0.0	0	0	0		
c13. Expansion Joint (LF)	0	0.0	0	0	0		

Deck Span 24: Pier 24 to Forward Abutment	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	6710.3	6574.3	136	0	0			
c7.2 Edge of Floor/Slab (LF)	193.8	193.8	0	0	0			
c8. Wearing Surface (SF)	6710.3	6554.3	156	0	0			
c10. Median (LF)	96.9	84.9	12	0	0			
c11.Railing (LF)	96.9	91.9	5	0	0			
c12. Drainage (EA)	3	2.0	1	0	0			
c13. Expansion Joint (LF)	111	0.0	4	107	0			

Eastbound: Right Bridge Deck Items 2018

Deck Summary	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	256063.0	247415.4	7222.0	1425.6	2.0		
c7.2 Edge of Floor/Slab (LF)	8224.6	8122.6	102.0	0.0	0.0		
c8. Wearing Surface (SF)	256063.0	255256.2	438.8	368.0	0.0		
c9. Curb/sidewalk/Walkway (LF)		0.0					
c10. Median (LF)	3456.8	3430.8	26.0	0.0	0.0		
c11.Railing (LF)	4767.8	4449.5	256.0	62.3	0.0		
c12. Drainage (EA)	18.0	9.0	9.0	0.0	2.0		
c13. Expansion Joint (LF)	602.0	536.0	44.0	22.0	0.0		

Deck Span 1: Rear Abutment to Pier 1	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	3841.5	3784.5	57.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	106.0	106.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	3841.5	3836.5	5.0	0.0	0.0		
c10. Median (LF)	53.0	53.0	0.0	0.0	0.0		
c11.Railing (LF)	53.0	16.0	21.0	16.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	77.0	59.0	14.0	4.0	0.0		

Deck Span 2: Pier 1 to Pier 2	condition state Cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	4855.7	4819.7	36.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	134.0	134.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	4855.7	4835.7	10.0	10.0	0.0		
c10. Median (LF)	67.0	67.0	0.0	0.0	0.0		
c11.Railing (LF)	67.0	43.5	18.3	5.3	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 3: Pier 2 to Pier 3	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	4855.7	4811.7	44.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	134.0	134.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	4855.7	4835.7	10.0	10.0	0.0		
c10. Median (LF)	67.0	67.0	0.0	0.0	0.0		
c11.Railing (LF)	67.0	43.5	18.3	5.3	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 4: Pier 3 to Pier 4	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	4827.4	4824.4	3.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	136.0	136.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	4827.4	4807.4	10.0	10.0	0.0		
c10. Median (LF)	68.0	68.0	0.0	0.0	0.0		
c11.Railing (LF)	68.0	44.5	18.3	5.3	0.0		
c12. Drainage (EA)	2.0	1.0	0.0	0.0	1.0		
c13. Expansion Joint (LF)	69.0	69.0	0.0	0.0	0.0		

Deck Span 5: Pier 4 to Pier 5	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8646.4	8224.8	71.0	350.7	0.0		
c7.2 Edge of Floor/Slab (LF)	263.0	263.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	8646.4	8460.4	12.0	174.0	0.0		
c10. Median (LF)	131.5	125.5	6.0	0.0	0.0		
c11.Railing (LF)	131.5	118.5	10.0	3.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 6: Pier 5 to Pier 6	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8646.4	8426.4	220.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	263.0	263.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	8646.4	8620.4	6.0	20.0	0.0		
c10. Median (LF)	131.5	131.5	0.0	0.0	0.0		
c11.Railing (LF)	131.5	129.5	2.0	0.0	0.0		
c12. Drainage (EA)	1.0	0.0	1.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 7: Pier 6 to Pier 7	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	8646.4	8614.4	32.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	263.0	263.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	8646.4	8646.4	0.0	0.0	0.0		
c10. Median (LF)	131.5	122.5	9.0	0.0	0.0		
c11.Railing (LF)	131.5	124.5	7.0	0.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 8: Pier 7 to Pier 8	condition state								cr
	QTY.	1	2	3	4	TR			
c7.1 Floor/Slab (SF)	11999.8	10506.8	984.0	509.0	0.0				
c7.2 Edge of Floor/Slab (LF)	365.0	365.0	0.0	0.0	0.0				
c8. Wearing Surface (SF)	11999.8	11992.8	7.0	0.0	0.0				
c10. Median (LF)	182.5	182.5	0.0	0.0	0.0				
c11.Railing (LF)	182.5	154.5	25.3	2.8	0.0				
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0				
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0				

Deck Span 9: Pier 8 to Pier 9	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	10959.4	10955.4	4.0	0.0	1.0		
c7.2 Edge of Floor/Slab (LF)	334.0	334.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	10959.4	10950.4	9.0	0.0	0.0		
c10. Median (LF)	167.0	164.0	3.0	0.0	0.0		
c11.Railing (LF)	167.0	152.3	12.0	2.8	0.0		
c12. Drainage (EA)	2.0	1.0	1.0	0.0	0.0		
c13. Expansion Joint (LF)	66.0	63.0	2.0	1.0	0.0		

CS-4 is the deck core that was never filled. Hole is one bay west of sign support

Deck Span 10: Pier 9 to Pier 10	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	13003.1	11669.1	1334.0	0.0	1.0		
c7.2 Edge of Floor/Slab (LF)	402.0	387.0	15.0	0.0	0.0		
c8. Wearing Surface (SF)	13003.1	12920.2	14.8	68.0	0.0		
c10. Median (LF)	201.0	201.0	0.0	0.0	0.0		
c11.Railing (LF)	201.0	199.0	2.0	0.0	0.0		
c12. Drainage (EA)	1.0	0.0	1.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 12: Pier 11 to Pier $\mathbf{1 2}$	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	11968.0	11720.0	248.0	0.0	0.0			
c7.2 Edge of Floor/Slab (LF)	370.0	370.0	0.0	0.0	0.0			
c8. Wearing Surface (SF)	11968.0	11963.0	5.0	0.0	0.0			
c10. Median (LF)	185.0	185.0	0.0	0.0	0.0			
c11.Railing (LF)	185.0	181.0	4.0	0.0	0.0			
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0			
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0			

Deck Span 13: Pier 12 to Pier $\mathbf{1 3}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	11900.8	11748.8	152.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	368.0	368.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	11900.8	11893.8	7.0	0.0	0.0		
c10. Median (LF)	184.0	184.0	0.0	0.0	0.0		
c11.Railing (LF)	184.0	184.0	0.0	0.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	66.0	59.0	5.0	2.0	0.0		

Deck Span 14: Pier 13 to Pier $\mathbf{1 4}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	10799.7	10327.7	472.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	334.0	334.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	10799.7	10727.7	0.0	72.0	0.0		
c10. Median (LF)	167.0	167.0	0.0	0.0	0.0		
c11.Railing (LF)	167.0	150.0	5.0	12.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 15: Pier 14 to Pier $\mathbf{1 5}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	9378.2	8895.2	483.0	0.0			
c7.2 Edge of Floor/Slab (LF)	290.0	290.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	9378.2	9378.2	0.0	0.0	0.0		
c10. Median (LF)	145.0	145.0	0.0	0.0	0.0		
c11.Railing (LF)	145.0	135.0	10.0	0.0	0.0		
c12. Drainage (EA)	1.0	0.0	1.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 16: Pier 15 to Pier $\mathbf{1 6}$	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	9315.8	9051.8	264.0	0.0				
c7.2 Edge of Floor/Slab (LF)	268.0	228.0	40.0	0.0	0.0			
c8. Wearing Surface (SF)	9315.8	9313.8	2.0	0.0	0.0			
c10. Median (LF)	134.0	134.0	0.0	0.0	0.0			
c11.Railing (LF)	134.0	127.0	7.0	0.0	0.0			
c12. Drainage (EA)	2.0	1.0	1.0	0.0	0.0			
c13. Expansion Joint (LF)	66.0	61.0	5.0	0.0	0.0			

Deck Span 17: Pier 16 to Pier $\mathbf{1 7}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	9467.8	8803.8	584.0	80.0	0.0		
c7.2 Edge of Floor/Slab (LF)	270.0	254.0	16.0	0.0	0.0		
c8. Wearing Surface (SF)	9467.8	9458.8	9.0	0.0	0.0		
c10. Median (LF)	135.0	134.0	1.0	0.0	0.0		
c11.Railing (LF)	135.0	125.0	10.0	0.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 18: Pier 17 to Pier $\mathbf{1 8}$	condition state cr					
	QTY.	1	2	3	4	TR
c7.1 Floor/Slab (SF)	9481.0	9357.0	124.0	0.0	0.0	
c7.2 Edge of Floor/Slab (LF)	270.4	258.4	12.0	0.0	0.0	
c8. Wearing Surface (SF)	9481.0	9481.0	0.0	0.0	0.0	
c10. Median (LF)	135.2	135.2	0.0	0.0	0.0	
c11.Railing (LF)	135.2	125.2	10.0	0.0	0.0	
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0	
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0	

Deck Span 19: Pier 18 to Pier $\mathbf{1 9}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	9455.0	9119.0	336.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	269.6	255.6	14.0	0.0	0.0		
c8. Wearing Surface (SF)	9455.0	9422.0	33.0	0.0	0.0		
c10. Median (LF)	134.8	134.8	0.0	0.0	0.0		
c11.Railing (LF)	134.8	124.8	10.0	0.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 20: Pier 19 to Pier 20	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	8766.1	8534.1	232.0	0.0	0.0			
c7.2 Edge of Floor/Slab (LF)	250.0	250.0	0.0	0.0	0.0			
c8. Wearing Surface (SF)	8766.1	8766.1	0.0	0.0	0.0			
c10. Median (LF)	125.0	125.0	0.0	0.0	0.0			
c11.Railing (LF)	125.0	113.0	12.0	0.0	0.0			
c12. Drainage (EA)	1.0	0.0	0.0	0.0	1.0			
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0			

Deck Span 21: Pier 20 to Pier $\mathbf{2 1}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	9336.8	9246.8	90.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	229.5	229.5	0.0	0.0	0.0		
c8. Wearing Surface (SF)	9336.8	9326.8	10.0	0.0	0.0		
c10. Median (LF)	114.8	114.8	0.0	0.0	0.0		
c11.Railing (LF)	114.8	114.8	0.0	0.0	0.0		
c12. Drainage (EA)	2.0	1.0	1.0	0.0	0.0		
c13. Expansion Joint (LF)	107.0	101.0	6.0	0.0	0.0		

Deck Span 22: Pier 21 to Pier 22	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	9695.0	9542.0	153.0	0.0	0.0			
c7.2 Edge of Floor/Slab (LF)	235.3	235.3	0.0	0.0	0.0			
c8. Wearing Surface (SF)	9695.0	9658.0	37.0	0.0	0.0			
c10. Median (LF)	117.6	117.6	0.0	0.0	0.0			
c11.Railing (LF)	117.6	110.6	3.0	4.0	0.0			
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0			
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0			

Deck Span 23: Pier 22 to Pier $\mathbf{2 3}$	condition state cr						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	9865.4	9696.4	169.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	239.4	239.4	0.0	0.0	0.0		
c8. Wearing Surface (SF)	9865.4	9755.4	110.0	0.0	0.0		
c10. Median (LF)	119.7	113.7	6.0	0.0	0.0		
c11.Railing (LF)	119.7	114.7	5.0	0.0	0.0		
c12. Drainage (EA)	1.0	0.0	1.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Deck Span 24: Pier 23 to Pier 24	condition state cr							
	QTY.	1	2	3	4	TR		
c7.1 Floor/Slab (SF)	10120.8	9098.9	552.0	469.9	0.0			
c7.2 Edge of Floor/Slab (LF)	390.6	390.6	0.0	0.0	0.0			
c8. Wearing Surface (SF)	10120.8	10085.8	35.0	0.0	0.0			
c10. Median (LF)	122.8	121.8	1.0	0.0	0.0			
c11.Railing (LF)	267.8	265.8	2.0	0.0	0.0			
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0			
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0			

Ramp C-B: Pier C-B 24 to Pier C- B 25	condition state						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	3427.4	3403.4	24.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	246.0	246.0	0.0	0.0	0.0		
c8. Wearing Surface (SF)	3427.4	3403.4	24.0	0.0	0.0		
c10. Median (LF)	0.0	0.0	0.0	0.0	0.0		
c11.Railing (LF)	246.0	246.0	0.0	0.0	0.0		
c12. Drainage (EA)	1.0	1.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Ramp C-B: Pier C-B 25 B to Pier C- B6	condition state						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	3476.7	3444.7	32.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	249.5	249.5	0.0	0.0	0.0		
c8. Wearing Surface (SF)	3476.7	3476.7	0.0	0.0	0.0		
c10. Median (LF)	0.0	0.0	0.0	0.0	0.0		
c11.Railing (LF)	249.5	249.5	0.0	0.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Ramp C-B: Pier C-B 26 to Pier C- B 27	condition state						
	QTY.	1	2	3	4	TR	
c7.1 Floor/Slab (SF)	3476.7	3452.7	24.0	0.0	0.0		
c7.2 Edge of Floor/Slab (LF)	249.5	249.5	0.0	0.0	0.0		
c8. Wearing Surface (SF)	3476.7	3476.7	0.0	0.0	0.0		
c10. Median (LF)	0.0	0.0	0.0	0.0	0.0		
c11.Railing (LF)	249.5	245.5	4.0	0.0	0.0		
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0		
c13. Expansion Joint (LF)	0.0	0.0	0.0	0.0	0.0		

Ramp C-B: Pier C-B 27 to Abutment C-B	condition state cr					
	QTY.	1	2	3	4	TR
c7.1 Floor/Slab (SF)	2675.5	2638.5	37.0	0.0	0.0	
c7.2 Edge of Floor/Slab (LF)	192.0	192.0	0.0	0.0	0.0	
c8. Wearing Surface (SF)	2675.5	2675.5	0.0	0.0	0.0	
c10. Median (LF)	0.0	0.0	0.0	0.0	0.0	
c11.Railing (LF)	192.0	192.0	0.0	0.0	0.0	
c12. Drainage (EA)	0.0	0.0	0.0	0.0	0.0	
c13. Expansion Joint (LF)	49.0	40.0	0.0	9.0	0.0	

Westbound: Left Bridge Superstructure Items

Superstructure Items: Westbound Total	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	24	24	0	0	0	
c15.1 Beams/Girders (LF)	27881	18786	8595	500	0	
c16. Diaphragm/X-Frames (EA)	1165	0	1084	81	0	
c17 Stringers (LF)	8984	1508	7376	100	0	
c18 Floorbeams (LF)	9583	1032	8336	215	0	
c26 Bearing Devices (EA)	240	216	23	1	0	
c30 Protective Coating System (LF)	46448	17551	27443	997	376	
c31 Hinges (EA)	34	0	32	2	0	
c32 Fatigue (LF)	46448	46447	1	0	0	

Superstructure Items: Unit 1 Span 1		condition state					
	QTY.	1	2	3	4	TR	
c14 Alignment (EA)	1	1	0	0	0		
c15.1 Beams/Girders (LF)	959	862	90	7	0		
c16. Diaphragm/X-Frames (EA)	68	0	68	0	0		
c17 Stringers (LF)	0	0	0	0	0		
c18 Floorbeams (LF)	0	0	0	0	0		
c26 Bearing Devices (EA)	18	18	0	0	0		
c30 Protective Coating System (LF)	959	858	94	7	0		
c31 Hinges (EA)	0	0	0	0	0		
c32 Fatigue (LF)	959	959	0	0	0		

Superstructure Items: Unit 1 Span 3	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1064	904	160	0	0	
c16. Diaphragm/X-Frames (EA)	73	0	73	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	8	0	8	0	0	
c26 Bearing Devices (EA)	16	16	0	0	0	
c30 Protective Coating System (LF)	1072	941	131	0	0	
c31 Hinges (EA)	0	0	0	0		
c32 Fatigue (LF)	1072	1072	0	0	0	

Superstructure Items: Unit 1 Span 4	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	890	681	74	135	0	
c16. Diaphragm/X-Frames (EA)	54	0	54	0	0	
c17 Stringers (LF)	90	65	0	25	0	
c18 Floorbeams (LF)	202	96	101	5	0	
c26 Bearing Devices (EA)	15	15	0	0	0	
c30 Protective Coating System (LF)	1182	952	74	75	0	
c31 Hinges (EA)	7	0	5	2	0	
c32 Fatigue (LF)	1182	1182	0	0	0	

Superstructure Items: Unit 2 Span 1		Condition state						
	QTY.	1	2	3	4	TR		
c14 Alignment (EA)	1	1	0	0	0			
c15.1 Beams/Girders (LF)	922	601	321	0	0			
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0			
c17 Stringers (LF)	760	380	380	0	0			
c18 Floorbeams (LF)	711	0	711	0	0			
c26 Bearing Devices (EA)	7	7	0	0	0			
c30 Protective Coating System (LF)	2393	601	1792	0	0			
c31 Hinges (EA)	0	0	0	0	0			
c32 Fatigue (LF)	2393	2393	0	0	0			

Superstructure Items: Unit 2 Span 3	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	903	592	311	0	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	903	0	903	0	0	
c18 Floorbeams (LF)	842	0	842	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	2648	580	2053	0	15	
c31 Hinges (EA)	0	0	0	0		
c32 Fatigue (LF)	2648	2648	0	0	0	

Superstructure Items: Unit 3 Span 1	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1189	272	915	2	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	951	0	951	0	0	
c18 Floorbeams (LF)	997	0	996	1	0	
c26 Bearing Devices (EA)	5	0	5	0	0	
c30 Protective Coating System (LF)	3137	-420	3554	3	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	3137	3137	0	0	0	

Superstructure Items: Unit 3 Span 2		condition state						
	QTY.	1	2	3	4	TR		
c14 Alignment (EA)	1	1	0	0	0			
c15.1 Beams/Girders (LF)	1658	655	1003	0	0			
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0			
c17 Stringers (LF)	1327	0	1327	0	0			
c18 Floorbeams (LF)	1434	0	1434	0	0			
c26 Bearing Devices (EA)	5	4	1	0	0			
c30 Protective Coating System (LF)	4419	718	3437	0	264			
c31 Hinges (EA)	0	0	0	0	0			
c32 Fatigue (LF)	4419	4418	1	0	0			

Superstructure Items: Unit 3 Span 3		c condition state						
	QTY.	1	2	3	4	TR		
c14 Alignment (EA)	1	1	0	0	0			
c15.1 Beams/Girders (LF)	874	93	777	4	0			
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0			
c17 Stringers (LF)	700	0	700	0	0			
c18 Floorbeams (LF)	748	0	748	0	0			
c26 Bearing Devices (EA)	5	4	1	0	0			
c30 Protective Coating System (LF)	2322	79	2240	4	0			
c31 Hinges (EA)	0	0	0	0	0			
c32 Fatigue (LF)	2322	2322	0	0	0			

Superstructure Items: Unit 4 Span 1	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	991	490	429	72	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	792	80	712	0	0	
c18 Floorbeams (LF)	935	94	841	0	0	
c26 Bearing Devices (EA)	5	1	4	0	0	
c30 Protective Coating System (LF)	2718	33	2443	242	0	
c31 Hinges (EA)	5	0	5	0	0	
c32 Fatigue (LF)	2718	2718	0	0	0	

Superstructure Items: Unit 4 Span 3	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	725	439	286	0	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	725	0	725	0	0	
c18 Floorbeams (LF)	683	0	683	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	2133	965	1136	0	32	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	2133	2133	0	0	0	

Superstructure Items: Unit 5 Span 2	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1485	1283	202	0	0	
c16. Diaphragm/X-Frames (EA)	100	0	100	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	11	11	0	0	0	
c30 Protective Coating System (LF)	1485	1281	202	0	2	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1485	1485	0	0	0	

Superstructure Items: Unit 5 Span 3		condition state						
	QTY.	1	2	3	4	TR		
c14 Alignment (EA)	1	1	0	0	0			
c15.1 Beams/Girders (LF)	1645	1282	363	0	0			
c16. Diaphragm/X-Frames (EA)	108	0	108	0	0			
c17 Stringers (LF)	0	0	0	0	0			
c18 Floorbeams (LF)	8	0	8	0	0			
c26 Bearing Devices (EA)	11	11	0	0	0			
c30 Protective Coating System (LF)	1653	158	1360	135	0			
c31 Hinges (EA)	0	0	0	0	0			
c32 Fatigue (LF)	1653	1653	0	0	0			

Superstructure Items: Unit 5 Span 5	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1500	1347	153	0	0	
c16. Diaphragm/X-Frames (EA)	99	0	99	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	12	12	0	0	0	
c30 Protective Coating System (LF)	1500	1347	153	0	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1500	1500	0	0	0	

Superstructure Items: Unit 6 Span 1	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1092	768	196	128	0	
c16. Diaphragm/X-Frames (EA)	77	0	77	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	8	0	8	0	0	
c26 Bearing Devices (EA)	12	12	0	0	0	
c30 Protective Coating System (LF)	1100	748	265	69	18	
c31 Hinges (EA)	12	0	12	0	0	
c32 Fatigue (LF)	1100	1100	0	0	0	

Superstructure Items: Unit 6 Span 2	condition state cr						
	QTY.	1	2	3	4	TR	
c14 Alignment (EA)	1	1	0	0	0		
c15.1 Beams/Girders (LF)	1119	822	297	0	0		
c16. Diaphragm/X-Frames (EA)	74	0	74	0	0		
c17 Stringers (LF)	0	0	0	0	0		
c18 Floorbeams (LF)	0	0	0	0	0		
c26 Bearing Devices (EA)	10	10	0	0	0		
c30 Protective Coating System (LF)	1119	842	277	0	0		
c31 Hinges (EA)	0	0	0	0	0		
c32 Fatigue (LF)	1119	1119	0	0	0		

Superstructure Items: Unit 6 Span 5		condition state cr						
	QTY.	1	2	3	4	TR		
c14 Alignment (EA)	1	1	0	0	0			
c15.1 Beams/Girders (LF)	1138	922	204	12	0			
c16. Diaphragm/X-Frames (EA)	85	0	84	1	0			
c17 Stringers (LF)	0	0	0	0	0			
c18 Floorbeams (LF)	8	0	8	0	0			
c26 Bearing Devices (EA)	25	13	11	1				
c30 Protective Coating System (LF)	1146	915	219	12	0			
c31 Hinges (EA)	0	0	0	0	0			
c32 Fatigue (LF)	1146	1146	0	0	0			

Eastbound: Right Bridge Superstructure Items

Superstructure Items: Eastbound Total	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	30	30	0	0	0	
c15.1 Beams/Girders (LF)	27713	16305	11010	398	0	
c16. Diaphragm/X-Frames (EA)	1186	167	983	36	0	
c17 Stringers (LF)	7959	1599	6305	56	0	
c18 Floorbeams (LF)	9041	280	8565	194	2	
c26 Bearing Devices (EA)	225	211	14	0	0	
c30 Protective Coating System (LF)	44713	23951	18997	1302	471	
c31 Hinges (EA)	30	9	21	0	0	
c32 Fatigue (LF)	44713	44696	17	0	0	

Superstructure Items: Unit 1 Span 1	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	477	339	136	2	0	
c16. Diaphragm/X-Frames (EA)	32	0	32	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	9	9	0	0	0	
c30 Protective Coating System (LF)	477	339	136	2	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	477	477	0	0	0	

Superstructure Items: Unit 1 Span 2	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	603	577	26	0	0	
c16. Diaphragm/X-Frames (EA)	40	37	3	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	9	9	0	0	0	
c30 Protective Coating System (LF)	603	577	23	3	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	603	603	0	0	0	

Superstructure Items: Unit 1 Span 3		condition state cr						
	QTY.	1	2	3	4	TR		
c14 Alignment (EA)	1	1	0	0	0			
c15.1 Beams/Girders (LF)	603	462	141	0	0			
c16. Diaphragm/X-Frames (EA)	40	30	10	0	0			
c17 Stringers (LF)	0	0	0	0	0			
c18 Floorbeams (LF)	0	0	0	0	0			
c26 Bearing Devices (EA)	9	9	0	0	0			
c30 Protective Coating System (LF)	603	428	163	12	0			
c31 Hinges (EA)	0	0	0	0	0			
c32 Fatigue (LF)	603	603	0	0	0			

Superstructure Items: Unit 1 Span 4	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	552	410	142	0	0	
c16. Diaphragm/X-Frames (EA)	32	12	20	0	0	
c17 Stringers (LF)	60	60	0	0	0	
c18 Floorbeams (LF)	131	82	49	0	0	
c26 Bearing Devices (EA)	9	9	0	0	0	
c30 Protective Coating System (LF)	743	543	200	0	0	
c31 Hinges (EA)	5	0	5	0	0	
c32 Fatigue (LF)	743	743	0	0	0	

Superstructure Items: Unit 2 Span 2	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	658	352	306	0	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	526	0	526	0	0	
c18 Floorbeams (LF)	561	0	561	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	1745	1439	306	0	0	
c31 Hinges (EA)	0	0	0	0		
c32 Fatigue (LF)	1745	1745	0	0	0	

Superstructure Items: Unit 2 Span 3	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	658	266	392	0	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	526	0	526	0	0	
c18 Floorbeams (LF)	561	0	561	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	1745	1419	326	0	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1745	1745	0	0	0	

Superstructure Items: Unit 2 Span 4	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	913	578	335	0	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	730	365	365	0	0	
c18 Floorbeams (LF)	810	0	810	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	2453	1308	1145	0	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	2453	2452	1	0	0	

Superstructure Items: Unit 2 Span 5	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	835	304	404	128	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	668	453	167	48	0	
c18 Floorbeams (LF)	748	0	748	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	2251	510	1560	182	0	
c31 Hinges (EA)	5	0	5	0	0	
c32 Fatigue (LF)	2251	2251	0	0	0	

Superstructure Items: Unit 3 Span 2	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1691	331	1360	0	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	1353	0	1353	0	0	
c18 Floorbeams (LF)	1496	0	1484	12	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	4540	586	3932	0	22	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	4540	4540	0	0	0	

Superstructure Items: Unit 3 Span 3	condition state cr						
	QTY.	1	2	3	4	TR	
c14 Alignment (EA)	1	1	0	0	0		
c15.1 Beams/Girders (LF)	920	561	359	0	0		
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0		
c17 Stringers (LF)	736	368	368	0	0		
c18 Floorbeams (LF)	810	0	786	24	0		
c26 Bearing Devices (EA)	5	5	0	0	0		
c30 Protective Coating System (LF)	2466	1352	1050	0	64		
c31 Hinges (EA)	0	0	0	0	0		
c32 Fatigue (LF)	2466	2466	0	0	0		

Superstructure Items: Unit 4 Span 2	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	823	587	236	0	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	658	165	494	0	0	
c18 Floorbeams (LF)	748	0	748	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	2229	1983	236	10	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	2229	2229	0	0	0	

Superstructure Items: Unit 4 Span 3	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	725	397	320	8	0	
c16. Diaphragm/X-Frames (EA)	0	0	0	0	0	
c17 Stringers (LF)	580	108	464	8	0	
c18 Floorbeams (LF)	623	0	623	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	1928	1026	580	314	8	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1928	1928	0	0	0	

Superstructure Items: Unit 5 Span 2	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1215	1077	138	0	0	
c16. Diaphragm/X-Frames (EA)	80	0	80	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	9	9	0	0	0	
c30 Protective Coating System (LF)	1215	918	0	297	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1215	1215	0	0	0	

Superstructure Items: Unit 5 Span 3	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1286	1171	115	0	0	
c16. Diaphragm/X-Frames (EA)	79	16	63	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	8	8	0	0	0	
c26 Bearing Devices (EA)	10	10	0	0	0	
c30 Protective Coating System (LF)	1294	946	137	0	211	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1294	1294	0	0	0	

Superstructure Items: Unit 6 Span 1	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1311	485	704	122	0	
c16. Diaphragm/X-Frames (EA)	96	12	72	12	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	8	0	0	8	0	
c26 Bearing Devices (EA)	10	10	0	0	0	
c30 Protective Coating System (LF)	1319	590	599	130	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1319	1319	0	0	0	

Superstructure Items: Unit 6 Span 2	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1466	1213	250	3	0	
c16. Diaphragm/X-Frames (EA)	92	0	92	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	8	0	8	0	0	
c26 Bearing Devices (EA)	10	10	0	0	0	
c30 Protective Coating System (LF)	1474	1203	258	3	10	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1474	1474	0	0	0	

Superstructure Items: Unit 6 Span 4	condition state cr						
	QTY.	1	2	3	4	TR	
c14 Alignment (EA)	1	1	0	0	0		
c15.1 Beams/Girders (LF)	1312	903	409	0	0		
c16. Diaphragm/X-Frames (EA)	85	0	85	0	0		
c17 Stringers (LF)	0	0	0	0	0		
c18 Floorbeams (LF)	8	8	0	0	0		
c26 Bearing Devices (EA)	11	11	0	0	0		
c30 Protective Coating System (LF)	1320	911	409	0	0		
c31 Hinges (EA)	0	0	0	0	0		
c32 Fatigue (LF)	1320	1320	0	0	0		

Superstructure Items: Unit 6 Span 5	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	1122	488	634	0	0	
c16. Diaphragm/X-Frames (EA)	86	0	80	6	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	11	0	11	0	0	
c30 Protective Coating System (LF)	1122	507	373	242	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	1122	1122	0	0	0	

Superstructure Items: Span 24 Ramp C-B	condition state		Cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	499	30	426	43	0	
c16. Diaphragm/X-Frames (EA)	32	32	0	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	8	8	0	0	0	
c30 Protective Coating System (LF)	499	30	327	43	100	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	499	499	0	0	0	

Superstructure Items: Span 25 Ramp C-B	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	492	0	492	0	0	
c16. Diaphragm/X-Frames (EA)	35	0	35	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	492	0	492	0	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	492	492	0	0	0	

Superstructure Items: Span 26 Ramp C-B	condition state cr						
	QTY.	1	2	3	4	TR	
c14 Alignment (EA)	1	1	0	0	0		
c15.1 Beams/Girders (LF)	499	0	499	0	0		
c16. Diaphragm/X-Frames (EA)	27	0	27	0	0		
c17 Stringers (LF)	0	0	0	0	0		
c18 Floorbeams (LF)	0	0	0	0	0		
c26 Bearing Devices (EA)	5	5	0	0	0		
c30 Protective Coating System (LF)	499	0	499	0	0		
c31 Hinges (EA)	0	0	0	0	0		
c32 Fatigue (LF)	499	499	0	0	0		

Superstructure Items: Span 27 Ramp C-B	condition state		cr			
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	589	0	589	0	0	
c16. Diaphragm/X-Frames (EA)	34	0	34	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	5	5	0	0	0	
c30 Protective Coating System (LF)	589	0	597	0	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	589	589	0	0	0	

Superstructure Items: Span 28 Ramp C-B	condition state cr					
	QTY.	1	2	3	4	TR
c14 Alignment (EA)	1	1	0	0	0	
c15.1 Beams/Girders (LF)	480	96	384	0	0	
c16. Diaphragm/X-Frames (EA)	30	0	30	0	0	
c17 Stringers (LF)	0	0	0	0	0	
c18 Floorbeams (LF)	0	0	0	0	0	
c26 Bearing Devices (EA)	10	10	0	0	0	
c30 Protective Coating System (LF)	480	0	480	0	0	
c31 Hinges (EA)	0	0	0	0	0	
c32 Fatigue (LF)	480	480	0	0	0	

Substructure Rear Abutment Items	condition state						
	QTY.	1	2	3	4	TR	
c33. Abutment Walls (LF)	145.73	145.73	0.00	0.00	0.00		
c39. Backwalls (LF)	145.73	145.73	0.00	0.00	0.00		
c40. Wingwalls (EA)	1	1	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		
c43. Slope Protection (EA) d	1	1	0	0	0		

Pier 1L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	125.31	125.31	0.00	0.00	0.00		
c38. Pier Columns (LF)	8	8	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 2L Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	117.83	117.83	0.00	0.00	0.00			
c38. Pier Columns (LF)	7	7	0	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 3L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	108.33	108.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	7	7	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 4L Condition State	condition state						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	99.88	86.88	13.00	0.00	0.00		
c38. Pier Columns (LF)	3	3	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 5L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	82.85	71.85	11.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 6L Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	75.13	75.13	0.00	0.00	0.00			
c38. Pier Columns (LF)	2	0	2	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 7L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	75.13	75.13	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	0	2	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 9L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c36. Pier Walls (LF)	25.33	18.33	7.00	0.00	0.00		
c37. Pier Caps (LF)	67	58	9	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 10L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	53.33	14.00	0.00	0.00		
c38. Pier Columns (LF)	2	0	2	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 11L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	61.33	6.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 12L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	0	2	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 13L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 14L Condition State	condition state							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	72.34	72.34	0.00	0.00	0.00			
c38. Pier Columns (LF)	2	1	1	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 15L Condition State	condition state						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	74.23	71.23	3.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 16L Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	78.49	78.49	0.00	0.00	0.00	
c38. Pier Columns (LF)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 17L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	82.17	82.17	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	1	1	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 18L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	85.70	85.70	0.00	0.00	0.00		
c38. Pier Columns (LF)	3	3	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 19L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	89.75	89.75	0.00	0.00	0.00		
c38. Pier Columns (LF)	3	2	1	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Substructure Ramp B-C	condition state cr					
	QTY.	1	2	3	4	TR
Abutment Items	28.08	28.08	0.00	0.00	0.00	
c33. Abutment Walls (LF)	28.08	28.08	0.00	0.00	0.00	
c39. Backwalls (LF)	2	2	0	0	0	
c40. Wingwalls (EA)	1	1	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	
c43. Slope Protection (EA) d						

Pier 20L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 21L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	69.58	69.58	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 22L Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	75.27	75.27	0.00	0.00	0.00	
c38. Pier Columns (LF)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 23L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	85.71	85.71	0.00	0.00	0.00		
c38. Pier Columns (LF)	3	2	1	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 24L Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	98.96	98.96	0.00	0.00	0.00		
c38. Pier Columns (LF)	3	3	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Substructure Forward Abutment Items	condition state cr					
	QTY.	1	2	3	4	TR
c33. Abutment Walls (LF)	115.16	97.16	18.00	0.00	0.00	
c39. Backwalls (LF)	115.16	98.16	15.00	2.00	0.00	
c40. Wingwalls (EA)	1	1	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	
c43. Slope Protection (EA) d	1	1	0	0	0	

Substructure Summary	condition state cr						
	QTY.	1	2	3	4	TR	
c33. Abutment Walls (LF)	289	271	18	0	0		
c36. Pier Walls (LF)	25.33	18.33	7.00	0.00	0.00		
c37. Pier Caps (LF)	1900.6	1844.6	56.0	0.0	0.0		
c38. Pier Columns/Bents(EA)	65	53	12	0	0		
c39. Backwalls (LF)	289	272	15	2	0		
c40. Wingwalls (EA)	4	4	0	0	0		
c42. Scour (EA) d	26	26	0	0	0		
c43. Slope Protection (EA) d	3	3	0	0	0		

Channel Items	condition state cr						
	QTY.	1	2	3	4	TR	
c. 51 Alignment	200	200	0	0	0		
c. 52 Protection	400	400	0	0	0		
c. 53 Hydraulic Opening	60	60	0	0	0		
c. 54 Navigation Lights	60	60	0	0	0		

Sign/Utility Items	condition state cr						
	QTY.	1	2	3	4	TR	
c.55 Signs	6	6	0	0	0		
c.56 Sign Supports	4	4	0	0	0		
c.57 Utilities	4600	4600	0	0	0		

Substructure Rear Abutment Items	condition state cr						
	QTY.	1	2	3	4	TR	
c33. Abutment Walls (LF)	78.25	78.25	0.00	0.00	0.00		
C39. Backwalls (LF)	78.25	78.25	1.00	0.00	0.00		
C40. Wingwalls (EA)	1	1	0	0	0		
C42. Scour (EA) d	1	1	0	0	0		
C43. Slope Protection (EA) d	1	1	0	0	0		

Pier 1R Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	73.92	73.92	0.00	0.00	0.00			
c38. Pier Columns (LF)	4	4	0	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 2R Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	72.25	72.25	0.00	0.00	0.00			
c38. Pier Columns (LF)	4	4	0	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 3R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	70.56	70.56	0.00	0.00	0.00		
c38. Pier Columns (LF)	4	4	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 4R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	69.88	69.88	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	0	2	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 5R Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00			
c38. Pier Columns (LF)	2	1	1	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 6R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	1	1	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 7R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	60.33	5.00	2.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 8R Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
C37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00			
C38. Pier Columns (LF)	2	2	0	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 9R Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00			
c38. Pier Columns (LF)	2	0	1	1	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 10R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	0	2	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 11R Condition State	condition state cr							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00			
c38. Pier Columns (LF)	2	2	0	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 12R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	1	1	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 13R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	1	1	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 14R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 15R Condition State	condition state						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 16R Condition State	condition state						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 17R Condition State	condition state $c r$						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	67.33	67.33	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 18R Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	73.30	73.30	0.00	0.00	0.00	
c38. Pier Columns (LF)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 19R Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	75.13	75.13	0.00	0.00	0.00	
c38. Pier Columns (LF)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 20R Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	75.13	75.13	0.00	0.00	0.00	
c38. Pier Columns (LF)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 21R Condition State	condition state					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	81.56	81.56	0.00	0.00	0.00	
c38. Pier Columns (LF)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 22R Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	96.88	96.88	0.00	0.00	0.00	
c38. Pier Columns (LF)	3	2	1	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 23R Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	75.04	75.04	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 24R Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	88.10	87.10	0.00	1.00	0.00	
c38. Pier Columns (LF)	3	2	1	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Substructure Forward Abutment Items	condition state Cr						
	QTY.	1	2	3	4	TR	
c33. Abutment Walls (LF)	104.32	87.32	17.00	0.00	0.00		
c39. Backwalls (LF)	104.32	92.32	11.00	1.00	0.00		
c40. Wingwalls (EA)	1	1	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		
c43. Slope Protection (EA) d	1	1	0	0	0		

Pier 23 C-B Condition State	condition state							
	QTY.	1	2	3	4	TR		
c37. Pier Caps (LF)	34	34	0	0	0			
c38. Pier Columns (LF)	2	2	0	0	0			
c42. Scour (EA) d	1	1	0	0	0			

Pier 24 C-B Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	34	34	0	0	0	
c38. Pier Columns (LF)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Pier 25 C-B Condition State	condition state						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	38.65	38.65	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 26 C-B Condition State	condition state cr						
	QTY.	1	2	3	4	TR	
c37. Pier Caps (LF)	38.65	38.65	0.00	0.00	0.00		
c38. Pier Columns (LF)	2	2	0	0	0		
c42. Scour (EA) d	1	1	0	0	0		

Pier 27 C-B Condition State	condition state cr					
	QTY.	1	2	3	4	TR
c37. Pier Caps (LF)	48.22	48.22	0.00	0.00	0.00	
c38. Pier Columns (LF)	3	2	1	0	0	
c42. Scour (EA) d	1	1	0	0	0	

Substructure Ramp C-B	condition state					
Abutment Items	QTY.	1	2	3	4	TR
c33. Abutment Walls (LF)	53	46	7	0	0	
c39. Backwalls (LF)	53	27	15	11	0	
c40. Wingwalls (EA)	2	2	0	0	0	
c42. Scour (EA) d	1	1	0	0	0	
c43. Slope Protection (EA) d	1	1	0	0	0	

Substructure Summary	condition state Cr						
	QTY.	1	2	3	4	TR	
c33. Abutment Walls (LF)	235.6	211.6	23	0	0		
c37. Pier Caps (LF)	1920.58	1912.58	5.00	3.00	0.00		
c38. Pier Columns/Bents(EA)	67	54	12	1	0		
c39. Backwalls (LF)	235.6	197.6	27.0	12.0	0.0		
c40. Wingwalls (EA)	4	4	0	0	0		
c42. Scour (EA) d	32	32	0	0	0		
c43. Slope Protection (EA) d	3	3	0	0	0		

Sign/Utility Items	condition state cr						
	QTY.	1	2	3	4	TR	
c. 55 Signs	6	5	1	0	0		
c. 56 Sign Supports	5	5	0	0	0		
c.57 Utilities	4600	4600	0	0	0		

Westbound Bottom of Deck Condition: 2018

Unit:	1		Span:	2		Bridge:	Left		Span Len		55.0		Say:		mino	trans	se crac	thro	hout		55.0	\times	155.0	x	0.02	=			CS2	
Bridge Member /Bay	$\begin{aligned} & \text { Beam 1-A to } \\ & \text { Beam 1-C } \end{aligned}$		Beam 1-C to Beam 1-D		$\begin{aligned} & \text { Beam 1-D to } \\ & \text { Beam 1-E } \end{aligned}$		Beam 1-E to Beam 1-EA		Beam 1-EA to Beam 1-EC		Beam 1-EC to Beam 1-ED		$\begin{aligned} & \text { Beam 1-ED to } \\ & \text { Beam 1-F } \end{aligned}$		Beam 1-F to Beam 1-G		Beam 1-G to Beam 1-H		Beam 1-H to Beam 1-J		Beam 1-J to Beam 1-K		Beam 1-K to Beam 1-L		Beam 1-L to Beam 1-M		Beam 1-M toBeam 1-N		$\begin{array}{\|c} \text { Beam 1-N to } \\ \text { Beam 1-P } \end{array}$	
Pier 1L	CS-2	CS-3																												
1																														
2													16		16						8		8		12		8			
3																									8					
4					2																				8					
5					12																									
Pier 2L									<																					\square
								CS-2	cs-3																					
								269	0																					

Unit:	1		Span:	3		Bridge:	Left		Span Le		60.0																	
Bridge Member /Bay	$\begin{aligned} & \text { Beam 1-A to } \\ & \text { Beam 1-C } \end{aligned}$		$\begin{aligned} & \text { Beam 1-C to } \\ & \text { Beam 1-D } \end{aligned}$		$\begin{gathered} \text { Beam 1-D to } \\ \text { Beam 1-E } \end{gathered}$		$\begin{gathered} \text { Beam 1-E to } \\ \text { Beam 1-EA } \end{gathered}$		$\begin{aligned} & \text { Beam 1-EA to } \\ & \text { Beam 1-ED } \end{aligned}$		$\begin{aligned} & \text { Beam 1-ED to } \\ & \text { Beam 1-F } \end{aligned}$		Beam 1-F to Beam 1-G		Beam 1-G toBeam 1-H		$\begin{aligned} & \text { Beam 1-H to } \\ & \text { Beam 1-J } \end{aligned}$		Beam 1-J to Beam 1-K		Beam 1-K to Beam 1-L		$\begin{array}{\|c} \text { Beam 1-L to } \\ \text { Beam 1-M } \end{array}$		$\begin{array}{\|l\|} \hline \text { Beam 1-M to } \\ \text { Beam 1-N } \end{array}$		Beam 1-N to Beam 1-P	
Pier 2L	CS-2	CS-3																										
1																												
2																					8		8					
3																			4									
4															8		8				4				4			
5															8													
Pier 3L	-		-	-	-	,	-	-	\sim	<	<	<	-	-	-	-	-	-	-		-	-	-	-	\times	-	\times	<
Total Deck Deterioration:								CS-2	CS-3																			
								24	0																			

Unit: 1	1	Span: 4	Bridge: Left \quad Span Length: 58.0

Unit: \quad Span: $1 \quad$ Bridge: Left \quad Span Length: 107.5

Bridge Member /Bay	Beam 2-A to Stringer 2-1		Stringer 2-1 to Stringer 2-3		Stringer 2-3 to Girder 2-B		Girder 2-B to Girder 2-C		Girder 2-C to Stringer 2-6		Stringer 2-6 to Girder 2-D		Girder 2-D to Stringer 2-7		Stringer 2-7 to Girder 2-E		Girder 2-E to Stringer 2-8		$\begin{gathered} \text { Stringer 2-8 to } \\ \text { Girder 2-F } \end{gathered}$		Girder 2-F to Stringer 2-9		Stringer 2-9 to Girder 2-G	
Pier 4L	CS-2	CS-3																						
1							8		8		8													
2	6		10				8		8		8													
3			6		6		8		8		8													
4	6						8		8		8													
5			6		6		8		8		8													
6	6										8													
7			6		6		8		8		8													
8											8													
9			6		6		8		8		8													
10											8													
Pier 5L	<		\bigcirc	<	\bigcirc	<	C	\bigcirc	\bigcirc	<	$\xrightarrow{\square}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	<	\bigcirc	<	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\longrightarrow
Total Deck Deterioration:								CS-2	CS-3															
								268	0															

Unit: $\quad 2 \quad$ Span: $3 \quad$ Bridge: Left \quad Span Length: 157.5

Bridge Member /Bay	Beam 2-A to Stringer 2-5		Stringer 2-5 to Stringer 2-6		Stringer 2-6 to Girder 2-D		Girder 2-D to Stringer 2-7		Stringer 2-7 to Girder 2-E		Girder 2-E to Stringer 2-8		Stringer 2-8 to Girder 2-F		Girder 2-F to Stringer 2-9		Stringer 2-9 to Girder 2-G	
Pier 6L	CS-2	CS-3																
1	8			48		31.68		48	8		8			96			8	
2	8			48		31.68		48	8		8			96			8	
3	8			48		31.68		48	8		8			96			8	
4	8			48		31.68		48	8		8			96	8		8	
5	8			48		31.68	25	48	33		8		8		8		16	
6	8		8	48	8	31.68	33	48	33		8		8		8		8	
7	8			48		31.68		48	8		8		8		8		16	
8	8			48		31.68		48	8		8		8		8		8	
9	8			48		31.68		48	8		8		8		8		16	
10	8			48		31.68		48	8		8		8				8	
11	8			48		31.68		48	8								8	
12				48		31.68		48									8	
Pier 7L	8	\checkmark	\longrightarrow	$>$	8	$\xrightarrow{\square}$	\bigcirc	$>+$	\gg	\bigcirc	\bigcirc	\bigcirc	$\xrightarrow{\square}$	\triangle	\bigcirc	<	\bigcirc	$>$
Total Deck Deterioration:								CS-2	CS-3									
								596	1916.2									

Unit:	3		Span:	2		Bridge:	Left		Span Len	gth:	309.0					
Bridge Member /Bay	Girder 3-A to Stringer 3-1		Stinger 3-1 to Girder 3-B		Girder 3-B to Stringer 3-2		Stringer 3-2 to Girder 2-C		Girder 3-C to Stringer 3-3		Stinger 3-3 to Girder 3-D		Girder 3-D to Stringer 3-4		Stringer 3-4 to Girder 3-E	
Pier 10L	CS-2	CS-3														
1								96								
2																
3							8									
4							8									
5	8		8		8		8		8		8		8		8	
6	8						8		8				8		8	
7	8		8				8		8							
8	8						8		8				8			
9	8		8		8		8		8				8		8	
10	8						8		8		8					
11	8		8		8		8		8				8			
12	8						8		8				8		8	
13	8		8				8		8							
14	8						8		8				8			
15	8		8		8		8		8		8		8		8	
16	8						8									
17	8		8				8									
18	8						8									
19	8															
20	8															
21																
22																
Pier 11L	<		\square	$<$	-	<	\bigcirc	$>$	$>$		\triangle	$<$	-	-	Σ	<
Total Deck Deterioration:								CS-2	cs-3							
								560	96							

Unit:	3		Span:	3	Bridge:		Left		Span Length:		159.0					
Bridge Member /Bay	Girder 3-A to Stringer 3-1		Stinger 3-1 to Girder 3-B		Girder 3-B to Stringer 3-2		Stringer 3-2 to Girder 2-C		Girder 3-C to Stringer 3-3		Stinger 3-3 to Girder 3-D		Girder 3-D to Stringer 3-4		Stringer 3-4 to Girder 3-E	
Pier 11L	CS-2	CS-3														
1	16		8		8		8		8		8		8		16	
2	8		8		8		8								8	
3	8												8		8	
4	8														8	
5	8		8										8		8	
6	8														8	
7	8												8		8	
8	8														8	
9	8												8		8	
10	8														8	
11	8		8		8		8						8		8	
12	16		8		8		8						8		16	
Pier 12L	-		<	-	,	-	\bigcirc	$\xrightarrow{<}$	\bigcirc							
Total Deck Deterioration:								CS-2	CS-3							
								400	0							

Unit:	4	Span:		1	Bridge:		Left		Span Length:		130.0					
$\begin{array}{\|c\|} \hline \text { Bridge } \\ \text { Member } \\ \text { /Bay } \end{array}$	Girder 4-A to Stringer 4-1		Stinger 4-1 to Girder4-B		Girder 4-B to Stringer 4-2		Stringer 4-2 to Girder 4-C		Girder 4-C to Stringer 4-3		Stinger 4-3 to Girder 4-D		Girder 4-D to Stringer 4-4		Stringer 4-4 to Girder 4-E	
Pier 12L	CS-2	CS-3														
1			2													
2	6															
3	10		15		8				6						8	
4	6		12		8				6		8				8	
5					5		8		3		8					
6	14		5		16				5		8				16	
7	10		10		10		14		7		8		3		16	
8	5				8		24		4		8		6		16	
9	10		10		8		16				8		6		16	
10	5				10		8				10		10		16	
11	2															
12	5		5													
13																
Pier 13L	\checkmark	$<$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$>$	\bigcirc	$>$	$<$						
Total Deck Deterioration:								CS-2	CS-3							
								485	0							

Unit:	6		Span:	1		ridge:	Left		Span Le		106.8							
Bridge Member /Bay	Girder Girde		Girde Gird	$\begin{aligned} & 5-B \text { to } \\ & 6-C \end{aligned}$	Girde Gird		Girde Gird	$\begin{aligned} & \text { 6-D to } \\ & \text { er 6-E } \end{aligned}$	Girde Gird		Girder Gird	$\begin{aligned} & 5-\mathrm{F} \text { to } \\ & 6-\mathrm{G} \end{aligned}$	Girder Gird	$\begin{aligned} & \text {-G to } \\ & 6-\mathrm{H} \end{aligned}$	Gird Gir	$\begin{aligned} & -\mathrm{H} \text { to } \\ & 6-\mathrm{J} \end{aligned}$		$\begin{aligned} & 5-\mathrm{J} \text { to } \\ & 6-\mathrm{N} \end{aligned}$
Pier 20L	CS-2	CS-3																
1																		
2																		
3	6																	
4																		
5													6					
6																		
7	6										6							
8																		
9																		
Pier 21L	\bigcirc	<	\bigcirc	\bigcirc	<	<	\bigcirc	3	3		\bigcirc	<	<	<	$>$		<	,
				Total Deck Deterioration:				CS-2	CS-3									

Unit:	6		Span:	2	Bridge:		Left		Span Length:		95.6							
Bridge Member /Bay	Girder 6-A to Girder 6-B		Girder 6-B to Girder 6-C		Girder 6-C to Girder 6-D		Girder 6-D to Girder 6-E		Girder 6-E to Girder 6-F		Girder 6-F to Girder 6-G		Girder 6-G to Girder 6-H		Girder 6-H to Girder 6-J		Girder 6-J to Girder 6-N	
Pier 21L	CS-2	CS-3																
1	7																	
2	5												5					
3																		
4																		
5	7		7		7		7		7		7		7		5		5	
6															5			
7			7										10		15			
8	7																	
Pier 22L	\bigcirc		-	<	$<$	-	\triangle	$>$	\longrightarrow	$>$	\bigcirc	-	-	,	-	\times	<	\longrightarrow
Total Deck Deterioration:								CS-2	CS-3									
								120	0									

Eastbound Bottom of Deck Condition: 2018

Unit:	1		Span:	2		Bridge:	Right		Span Le	gth:	67.0					
Bridge Member/ Bay	$\begin{aligned} & \text { Beam 1-Q to } \\ & \text { Beam 1-R } \end{aligned}$		Beam 1-R to Beam1-S		$\begin{gathered} \text { Beam 1-S to } \\ \text { Beam 1-T } \end{gathered}$		$\begin{gathered} \text { Beam 1-T to } \\ \text { Beam 1-U } \end{gathered}$		$\begin{aligned} & \text { Beam 1-U to } \\ & \text { Beam 1-V } \end{aligned}$		$\begin{aligned} & \text { Beam 1-V to } \\ & \text { Beam 1-W } \end{aligned}$		Beam 1-W to Beam 1-X		$\begin{gathered} \text { Beam 1-X to } \\ \text { Beam 1-Y } \end{gathered}$	
Pier 1R	CS-2	CS-3														
1																
2													12		16	
3																
4	8															
5																
Pier 2R	$>$	<	\bigcirc	Total Deck Deterioration:				\bigcirc	\triangle	,	<	-	\triangle	-	\bigcirc	\longrightarrow
								CS-2	CS-3							
								36	0							

Unit:	2		Span:	2		Bridge:	Right		Span Len	gth:	112.5					
Bridge Member/ Bay	Girder 2-H to Stringer 2-10		Stringer 2-10 to Girder 2-J		Girder 2-J to Stringer 2-11		$\left\lvert\, \begin{gathered} \text { Stringer 2-11 to } \\ \text { Girder 2-K } \end{gathered}\right.$		Girder 2-K to Stringer 2-12		Stringer 2-12 to Girder 2-L		Girder 2-L to Stringer 2-13		Stringer 2-13 to Girder 2-M	
Pier 5R	CS-2	CS-3														
					8		2				2					
2					8				8		3		8		16	
3									8		5					
4									8							
5							8		8							
6																
7																
8	16		16		16		16		16		16		16		16	
9																
10																
11																
Pier 6R	$>$		$>$	\bigcirc	\bigcirc	\gg	$>$	$>$	$>$		$>$	-	-	<	\triangle	\bigcirc
Total Deck Deterioration:								CS-2 CS	CS-3							
									0							

Unit:	2		Span:	3		Bridge:	Right		Span Le	gth:	111.5					
Bridge Member/ Bay	Girder 2-H to Stringer 2-10		Stringer 2-10 to Girder 2-J		Girder 2-J to Stringer 2-11		$\left\lvert\, \begin{gathered} \text { Stringer 2-11 to } \\ \text { Girder 2-K } \end{gathered}\right.$		Girder 2-K to Stringer 2-12		Stringer 2-12 to Girder 2-L		Girder 2-L to Stringer 2-13		$\begin{array}{\|c} \text { Stringer 2-13 to } \\ \text { Girder 2-M } \end{array}$	
Pier 6R	CS-2	CS-3														
1																
2																
3																
4																
5																
6																
7																
8																
9																
10	16		8				8									
11																
Pier 7R	\bigcirc	-	\bigcirc	\bigcirc	$>$	\bigcirc	$>$	<	\triangle							
Total Deck Deterioration:								CS-2 CS	CS-3							
									0							

Unit: 3 Span: $1 \quad$ Bridge: Right \quad Span Length: 142.0

Unit: Span: 3 Bridge: Right Span Length: 282.0

Bridge Member/ Bay	Girder 3-F to Stringer 3-5		Stinger 3-5 to Girder 3-G		Girder 3-G to Stringer 3-6		Stringer 3-6 to Girder 3-H		Girder 3-H to Stringer 3-7		Stinger 3-7 to Girder 3-J		Girder 3-J to Stringer 3-8		Stringer 3-8 to Girder 3-K	
Pier 10R	CS-2	CS-3														
1															16	
2	8				8										24	
3															24	
4															24	
5															24	
6	8	8			8										24	
7															24	
8							8		8		16		8		24	
9											2				24	
10	8	8			8										24	
11															24	
12									8				8		16	
13																
14	8				8											
15																
16									8				8			
17																
18																
19									8							
20																
21																
22																
23																
24																
25																
Pier 11R	$<$	<	<	Δ	$>$	\checkmark	$>$	$><$	3		$>$	$>$	-	-	\bigcirc	$<$
Total Deck Deterioration:								CS-2	CS-3	CS-4						
								418	16	1						

Unit: Span: 3 Bridge: Right Span Length: 143.0

Unit:	4	Span:		1	Bridge:		Right		Span Length:		155					
Bridge Member/ Bay	Girder 4-F to Stringer 4-7		Stinger 4-7 to Girder 4-G		Girder 4-G to Stringer 4-8		Stringer 4-8 to Girder 4-H		Girder 4-H to Stringer 4-9		Stinger 4-9 to Girder 4-J		Girder 4-J to Stringer 4-10		Stringer 4-10 to Girder 4-K	
Pier 12R	CS-2	CS-3														
1																
2																
3															8	
4																
5															16	
6															24	
7															8	
8															8	
9															8	
10																
11	10		10		10		10		10		10		10		10	
12																
13																
14																
Pier 13R	$<$		$<$	\bigcirc	<	<		<	\bigcirc		\bigcirc	$<$	\triangle	<	\bigcirc	$<$
Total Deck Deterioration:								CS-2	CS-3							
								152	0							

Unit: 4 Span: $4 \quad$ Bridge: Right \quad Span Length: 167.0

Bridge Member/ Bay	Girder 4-F to Stringer 4-7		Stinger 4-7 to Girder 4-G		Girder 4-G to Stringer 4-8		Stringer 4-8 to Girder 4-H		Girder 4-H to Stringer 4-9		$\begin{aligned} & \text { Stinger 4-9 to } \\ & \text { Girder 4-J } \end{aligned}$		Girder 4-J to Stringer 4-10		$\begin{array}{\|c} \text { Stringer 4-10 to } \\ \text { Girder 4-K } \end{array}$	
Pier 13R	CS-2	CS-3														
1	8														16	
2	8														16	
3	8														16	
4	8														16	
5	8														16	
6	8														16	
7	16		8		8		8		8		16		8		16	
8	16										8				16	
9	16		8		8		8		8		8		8		16	
10	16														16	
11	16		8		8		8		8		16		8		16	
Pier 14R	<	<	<	\bigcirc	<	<	\bigcirc	<	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\square
Total Deck Deterioration:								CS-2	CS-3							
								472	0							

Unit: 4 Span: 4 Bridge: Right Span Length: 112.0

Unit:	6		n:	5		dge:	Right		Span Le	th:	84.9									
Bridge Member/ Bay	Girder 5-P to Girder 5-Q		Girder 5-Q to Girder 5-R		Girder 5-R to Girder 5-S		Girder 5-S to Girder 5-T		Girder 5-T to Girder 5-U		Girder 5-U to Girder 5-V		Girder 5-V to Girder 5-W		Girder 5-W to Girder 5-X		Girder 6-X to Girder 6-Y		Girder 6-Y to Girder 6-Z	
Pier 24R	CS-2	CS-3																		
1																				
2																				
3																				
4																			8	
5																			8	
6																			24	
Pier F.A.	π	$>$	$>$	\sum	\bigcirc	<	<	\bigcirc	\bigcirc	<	\bigcirc	\bigcirc	\bigcirc	<	\bigcirc	\bigcirc	$>$	<	\bigcirc	\bigcirc
				Total D	Deteri	ation		CS-2	CS-3											
								40	0											

\qquad 1 Bridge: Right

Bridge Member/ Bay	Girder 6-ZA to Girder 6-ZB		Girder 6-ZB to Girder 6-ZC		Girder 6-ZC to Girder 6-ZD	
Pier 23C-B	CS-2	CS-3	CS-2	CS-3	CS-2	CS-3
1						
2						
3						
4					3	
5						
Pier 24C-B	3	,	<	,	-	$>$
	Total De	Deteri	tion:		CS-2	CS-3
					3	0

Unit: $\underline{\text { Ramp C-B }}$ Span: \quad Bridge: Right $\underline{ }$

Bridge Member/ Bay	Girder 6-ZA to Girder 6-ZB		Girder 6-ZB to Girder 6-ZC		Girder 6-ZC to Girder 6-ZD	
Pier 24C-B	CS-2	CS-3	CS-2	CS-3	CS-2	CS-3
1					8	
2						
3					16	
4						
5						
Pier 25C-B	\bigcirc					
	Total Deck Deterioration:				CS-2	CS-3
					24	0

\qquad Bridge:
Right
Span Length: \qquad

Bridge Member/ Bay	Girder 6-ZA to Girder 6-ZB		Girder 6-ZB to Girder 6-ZC		Girder 6-ZC to Girder 6-ZD	
Pier 25C-B	CS-2	CS-3	CS-2	CS-3	CS-2	CS-3
1					8	
2						
3			8			
4	8					
5	8					
Pier 26C-B	3	$>$	<	C	$\xrightarrow{>}$	\bigcirc
	Total Deck Deterioration:				CS-2	CS-3
					32	0

Bridge Member/ Bay	Girder 6-ZA to Girder 6-ZB		Girder 6-ZB to Girder 6-ZC		Girder 6-ZC to Girder 6-ZD	
Pier 26C-B	CS-2	CS-3	CS-2	CS-3	CS-2	CS-3
1			8		6	
2			6			
3						
4						
5			4			
Pier 27C-B	\bigcirc		,		\bigcirc	
	Total Deck Deterioration:				CS-2	CS-3
					24	0

Unit: $\quad \underline{\text { Ramp C-B }} \quad$ Span: \quad Bridge: Right \quad Span Length: 88.5

Bridge Member/ Bay	Girder 6-ZA to Girder 6-ZB		Girder 6-ZB to Girder 6-ZC		Girder 6-ZC to Girder 6-ZD	
Pier 27C-B	CS-2	CS-3	CS-2	CS-3	CS-2	CS-3
1			4		8	
2						
3					8	
4					9	
5					8	
F.A. C-B	\bigcirc	-	<	+	\triangle	$\xrightarrow{<}$
	Total Deck Deterioration:				CS-2	CS-3
					37	0

Steel Deficiencies : Steel assumed CS-1 unless noted otherwise

Unit: $\quad 1 \quad$ Span $1 \quad$ Bridge: Left \quad Span Length: $\quad 53 \mathrm{ft}$.

	Beam 1-A Foot)			$\begin{aligned} & \text { Beam 1-B } \\ & \text { (Linear Foot) } \end{aligned}$			Beam 1-C Foot)			Beam 1-D(Linear Foot)			Beam 1-E Foot)			Beam 1-EA (Linear Foot)			Beam 1-EB (Linear Foot)			Beam 1-EC (Linear Foot)			Beam 1-ED (Linear Foot)		
	Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
	CS-2	CS-3	CS-4																								
R.A.	\bigcirc	\bigcirc	\bigcirc	$\xrightarrow{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\xrightarrow{ }$	\bigcirc	$\xrightarrow{ }$	$\xrightarrow{<}$	\bigcirc	3	$\xrightarrow{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\xrightarrow{ }$	$\xrightarrow{ }$	$\xrightarrow{ }$	$\xrightarrow{<}$	\bigcirc	$\xrightarrow{\square}$
1	2			1			3	1		1			10						1			1					
2	2			1			2	1		1			10			1						1			1		
3	2			1			2	1		1			1	1		1						1					
4	1			1			2			1						1						1			1		
Pier 1L	$>$	<	<	\bigcirc	<	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle	\triangle	\longrightarrow	\triangle	<	\bigcirc	\bigcirc	<	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	$>$	<	\square
Total	7	0	0	4	0	0	9	3	0	4	0	0	21	1	0	3	0	0	1	0	0	4	0	0	2	0	0
Beam/Girder Total:X-Frames Totals:		CS-1	CS-2	CS-3	CS-4	Span Quantity																					
		862	90	7	0	Beam/ Girder (LF):X-Frames (Ea.):				959 ft																	
		0	68	0	0					68 Each																	

Unit:	1		Span	2		Bridge:	Left		Span Le	ngth:	67																
$\stackrel{\text { ®. }}{\stackrel{\text { ®n }}{0}}$	Beam 1-A	Foot)	(Linear	Beam 1-C	Foot)	(Linear		eam 1near Fo		Beam 1-	Foot)	(Linear		$\begin{aligned} & \text { eam 1-E } \\ & \text { near For } \end{aligned}$			am 1-E near Fo			am 1-ED ear Fo			Beam 1-F near Foot			eam 1- near Fo	
음	Con	dition St		Con	dition St		Con	dition S			dition St			dition St			dition S										
Σ	CS-2	CS-3	CS-4																								
Pier 1L	\bigcirc	$\xrightarrow{<}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\geq	$\xrightarrow{<}$	$\xrightarrow{\square}$	\geq	$>$	\bigcirc	\sum	$>$	$\xrightarrow{<}$	\sum	$>$	\bigcirc	$>$	\bigcirc	\bigcirc	$\xrightarrow{<}$	\bigcirc	$\xrightarrow{\square}$	$\xrightarrow{<}$	$>$	$\xrightarrow{\square}$
1	5						4			4			5			2											
2																											
3																											
4																											
5																											
Pier 2L	\rightarrow	\bigcirc	$>$	$>$	$>$	\bigcirc	$>$	$>$	\bigcirc	\bigcirc	$>$	\rightarrow	$>$	\bigcirc	$>$	$>$	$>$	$>$	$>$	\bigcirc	\rightarrow	$>$	$>$	$>$	$>$	$>$	\rightarrow
Total	5	0	0	0	0	0	4	0	0	4	0	0	5	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Beam/Girder Total: Floorbeam Total: X-Frames Totals:		CS-1	CS-2	CS-3	CS-4	Span Quantity																					
		1070	78	0	0		Beam/ Girder (LF):			1148 ft .																	
		0	16	0	0		Floorbeam (LF):			16 ft .																	
		0	78	0	0		X-Frames (Ea.):			78 Each																	

Unit: $\quad 1 \quad$ Span \quad Bridge: Left \quad Span Length: $\quad \underline{~} 67 \mathrm{ft}$

Unit: 1
Span $\quad 1$
Bridge: Left
Span Length:
53 ft

$\begin{aligned} & \text { Beam 1-F } \\ & \text { (Linear Foot) } \end{aligned}$			$\begin{aligned} & \text { Beam 1-G } \\ & \text { (Linear Foot) } \end{aligned}$			$\begin{aligned} & \text { Beam 1-H } \\ & \text { (Linear Foot) } \end{aligned}$			$\begin{aligned} & \text { Beam 1-J } \\ & \text { (Linear Foot) } \end{aligned}$			Beam 1-K Foot)			Beam 1-L(Linear Foot)			Beam 1-M (Linear Foot)			Beam 1-N(Linear Foot)			Beam 1-P(Linear Foot)			Diaphragms/ Frames (Each) 		
Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
CS-2	CS-3	CS-4																											
$>$	$>$	$>$	$\xrightarrow{\sim}$	$>$	$>$	$>$	$\xrightarrow{<}$	$\xrightarrow{<}$	$\xrightarrow{ }$	$\xrightarrow{<}$	$\xrightarrow{\square}$	$\xrightarrow{ }$	$\xrightarrow{\square}$	$>$	\bigcirc	$\xrightarrow{+}$	$\xrightarrow{\square}$	\bigcirc	\bigcirc	$\xrightarrow{<}$	$>$	$\xrightarrow{<}$	$\xrightarrow{ }$	\bigcirc	$\xrightarrow{<}$	$\xrightarrow{<}$	$>$	$\xrightarrow{<}$	$\xrightarrow{\square}$
1															4			4									17		
1	1		3						6						4									2			17		
1	1					2						4															17		
1	1														2												17		
\bigcirc	\rightarrow	\bigcirc	\bigcirc	$>$	\bigcirc	\bigcirc	$>$	\bigcirc	$>$	\bigcirc	\bigcirc	\bigcirc	\rightarrow	$>$	$\xrightarrow{ }$	\rightarrow	\rightarrow	\bigcirc	\rightarrow	$>$	\rightarrow	\rightarrow	\bigcirc	\bigcirc	\bigcirc	$>$	\bigcirc	$>$	\bigcirc
4	3	0	3	0	0	2	0	0	6	0	0	4	0	0	10	0	0	4	0	0	0	0	0	2	0	0	68	0	0

Unit: 1 Span \quad Bridge: Left \quad Span Length: $\quad \underline{67} \mathrm{ft}$

Beam 1-H (Linear Foot)			Beam 1-J(Linear Foot)			Beam 1-K Foot)			Beam 1-L (Linear Foot)			Beam 1-M (Linear Foot)			$\begin{aligned} & \text { Beam 1-N } \\ & \text { (Linear Foot) } \end{aligned}$			Beam 1-P(Linear Foot)			Floorbeams (Linear Foot)			Diaphragms/X-Frames (Each)		
Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
CS-2	CS-3	CS-4																								
$\xrightarrow{>}$	$>$	$\xrightarrow{\square}$	$>$	$>$	$>$	$>$	$\xrightarrow{ }$	$>$	$>$	$\xrightarrow{>}$	$\xrightarrow{\square}$	$>$	$>$	$>$	$\xrightarrow{\square}$	$>$	$>$	$\xrightarrow{ }$	$>$	$\xrightarrow{\square}$	\rightarrow	$>$	$\xrightarrow{\square}$	$\xrightarrow{>}$	$\xrightarrow{ }$	$\xrightarrow{\square}$
			5			8			6			5			5			6			3			15		
																					3			15		
																					3			15		
																					3			15		
						8						5			4			6			4			18		
$>$	\bigcirc	<	\bigcirc	<	-	\bigcirc	\rightarrow	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark	3	$>$	$>$	<	\bigcirc	\bigcirc	\bigcirc	\rightarrow	$>$	\bigcirc	3	$>$	\longrightarrow
0	0	0	5	0	0	16	0	0	6	0	0	10	0	0	9	0	0	12	0	0	16	0	0	78	0	0

Unit: 1
Span
3
Bridge:
Left \qquad

$\begin{aligned} & \text { Beam 1-J } \\ & \text { (Linear Foot) } \end{aligned}$			$\begin{array}{\|c\|} \hline \text { Beam 1-K } \\ \text { Foot) } \end{array}$			$\begin{aligned} & \text { Beam 1-L } \\ & \text { (Linear Foot) } \end{aligned}$			Beam 1-M (Linear Foot)			$\begin{aligned} & \text { Beam 1-N } \\ & \text { (Linear Foot) } \end{aligned}$			$\begin{aligned} & \text { Beam 1-P } \\ & \text { (Linear Foot) } \end{aligned}$			Floorbeams (Linear Foot)			$\begin{aligned} & \text { Diaphragms/ } \\ & \text { X-Frames (Each) } \end{aligned}$		
Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
CS-2	CS-3	CS-4																					
$>$	$>$	$>$	$>$	$>$	$>$	\bigcirc	$>$	$>$	$>$	$>$	$>$	\bigcirc	$>$	$>$	$>$	$>$	$>$	$>$	$>$	$>$	\rightarrow	$>$	$\xrightarrow{\square}$
4			6			2						4						2			15		
																		2			14		
																		1			14		
																		1			15		
												5			7			2			15		
\geq	<	\bigcirc	\triangle	\bigcirc	\longrightarrow	\triangle	\longrightarrow	\triangle	\leq	\triangle	\longrightarrow	$>$	$>$	\triangle	\triangle	\leq	\triangle	\triangle	$>$	\triangle	\bigcirc	\triangle	\longrightarrow
4	0	0	6	0	0	2	0	0	0	0	0	9	0	0	7	0	0	8	0	0	73	0	0

Unit: $\quad 1$
Span $\quad 4$
Bridge:
Left
Span Length:
53 ft

Beam 1-J(Linear Foot)			Beam 1-K Foot)			Beam 1-L (Linear Foot)			Beam 1-M (Linear Foot)			Beam 1-N(Linear Foot)			Beam 1-P(Linear Foot)			Floorbeams (Linear Foot)			Diaphragms/ Frames (Each)		
Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
CS-2	CS-3	CS-4																					
$\xrightarrow{<}$	$\xrightarrow{>}$	$\xrightarrow{<}$	$\xrightarrow{ }$	$\xrightarrow{<}$	$\xrightarrow{\square}$	$\xrightarrow{>}$	$\xrightarrow{>}$	$\xrightarrow{\square}$	$\xrightarrow{ }$	$\xrightarrow{>}$	$\xrightarrow{\square}$	$\xrightarrow{ }$	$\xrightarrow{ }$	$>$	\bigcirc	$\xrightarrow{\square}$	$>$	$\xrightarrow{>}$	$>$	$\xrightarrow{>}$	$\xrightarrow{\square}$	$\xrightarrow{>}$	$\xrightarrow{\square}$
																		20			11		
																		20			11		
																		20			11		
																		20			11		
	5			5			5			5			5			5		21			10		
\longrightarrow	\triangle	<	\triangle	\bigcirc	<	<	\bigcirc	\bigcirc	\longrightarrow	\triangle	\longrightarrow	\triangle	\rightarrow	$>$	\triangle	\rightarrow	$>$	\triangle	<	\triangle	\triangle	<	\longrightarrow
	5	0	0	5	0	0	5	0	0	5	0	0	5	0	0	5	0	101	0	0	54	0	0

Unit:	2		Span	4		Bridge:	Left		Span Le	gth:	80.5																								
		$\begin{aligned} & \text { Girder 2-A } \\ & \text { inear Foo } \end{aligned}$			$\begin{aligned} & \text { tringer 2- } \\ & \text { inear Foo } \end{aligned}$			$\begin{aligned} & \text { tringer } 2 \\ & \text { inear Fod } \end{aligned}$			$\begin{aligned} & \text { jirder 2-D } \\ & \text { near Foo } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { tringer 2- } \\ & \text { inear Foo } \end{aligned}$			irder 2			$\begin{aligned} & \text { ringer 2 } \\ & \text { near For } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { iirder 2-1 } \\ & \text { near Foc } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ringer 2 } \\ & \text { near Fo } \end{aligned}$			$\begin{aligned} & \text { irder 2-c } \\ & \text { near Foc } \\ & \hline \end{aligned}$			oorbea			
뭄		dition St			dition St			dition S		Con	dition St			dition St		Con	dition St			dition St			dition St			dition S			dition S			dition S			
\%	CS-2	CS-3	CS-4																																
Pier 7L	\bigcirc	$\xrightarrow{ }$	\bigcirc	-	-	$\xrightarrow{\sim}$	$\xrightarrow{\sim}$	-	$\xrightarrow{\sim}$,	-	-	\bigcirc	$\xrightarrow{\sim}$	\bigcirc	-	-	-	\bigcirc	$\xrightarrow{\sim}$	$\xrightarrow{\sim}$	-	-	\bigcirc	$\xrightarrow{\sim}$	$\xrightarrow{\sim}$	-	-	-	$\xrightarrow{\sim}$	$\xrightarrow{\sim}$	$\xrightarrow{ }$	$\xrightarrow{\sim}$		
1	7.6667									5.4167						8.6667						8.5						2.8333							
2	7.6667									5.4167						8.6667						8.5						2.8333							
3	7.6667									5.4167						8.6667						8.5						2.8333							
4	7.6667									5.4167						8.6667						8.5						2.8333							
5	7.6667									5.4167						8.6667						8.5						2.8333							
6	7.6667									5.4167						8.6667						8.5						2.8333							
7	15.042									15.042						15.042						15.042						15.042							
8	15.042	1								15.042						15.042						15.042						15.042							
9	15.042									15.042						15.042						15.042						15.042							
10	15.042									15.042						15.042						15.042						15.042							
11	15.042									15.042						15.042						15.042						15.042							
12	6.0417	9									20						18						18						15						
Expansion 2	>	\bigcirc	-	,	<	-	\bigcirc	\bigcirc	\bigcirc	,	,	-	\bigcirc	>	\bigcirc	,	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	,	-	\bigcirc	>	\bigcirc	-	\bigcirc	\bigcirc	-	>	\geq	\bigcirc		
Total	127.25	10	0	0	0	0	0	0		107.71	20	0	0	0		127.21	18	0	0	0		126.21	18	0	0	0		92.208	15	0	0	0	0		
Beam/Girder Total:		CS-1	CS-2	CS-3	CS-4	Beam/ Girder (LF):				903 ft .																									
		241.42	580.58	81	0																														
Stringer Total: Floorbeam Total:		885	0	0		Stringer (LF):						885 ft																							
		842	0	0	0	Floorbeam (LF):				842 ft																									

	Girder 6-A (Linear Foot)			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Girder 6-B } \\ \text { Foot) } \end{array} \\ \hline \end{array}$			$\begin{gathered} \text { Girder 6-C } \\ \text { (Linear Foot) } \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-D } \\ \text { (Linear Foot) } \end{gathered}$			$\begin{gathered} \text { Girder 6-E } \\ \text { (Linear Foot) } \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-F } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-G } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-H } \\ \text { (Linear Foot) } \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-J } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-N } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{array}{\|l\|l} \hline \begin{array}{c} \text { Diaphragms/ } \\ \text { Frames (Each) } \end{array} \\ \hline \end{array}$		
	Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
	CS-2	CS-3	cs-4																														
Pier 21L	\bigcirc	\sim	\triangle	\bigcirc	-	\bigcirc	<	\bigcirc	$\xrightarrow{\sim}$	-	-	$\xrightarrow{\sim}$	-	-	-	-	\bigcirc	$\xrightarrow{\sim}$	-	-	\bigcirc	${ }^{\sim}$	\bigcirc	-	,	\bigcirc	\bigcirc	$\xrightarrow{\sim}$	\sim	-	\sim	-	$\xrightarrow{\sim}$
1	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
2	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
3	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
4	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
5	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
6	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
7	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
8	5			7.3516			2.625			3.625			3			4.625			2.625			2.9406			2.375			2.9406					
Pier 22L	$>$			>	-	$<$	\bigcirc	\triangle	\bigcirc	<	\triangle	\leq	>	\bigcirc	\triangle	\bigcirc	\bigcirc		\bigcirc	-		\bigcirc	\bigcirc	>	<	\triangle		\bigcirc	\triangle	\bigcirc	$<$	\leq	,
Total	40	0		58.813	0	0	21	0	0	29	0	0	24	0	0	37	0	0	21	0		23.525	0	0	19	0		23.525	0	0	0	0	0

Beam/Girder Total:
X-Frames Totals:
Unit: $\quad 6$

$$
\frac{21}{\text { pan Quantit }}
$$

Beam/ Girder (LF): $\quad 1119 \mathrm{ft}$.
X -Frames (Ea.):

	$\begin{gathered} \hline \text { Girder 6-A } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\underbrace{\text { Girder 6-B }}_{\text {Foot) }}$ (Linear			$\begin{gathered} \hline \text { Girder 6-C } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-D } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			Girder 6-E (Linear Foot)			$\begin{gathered} \hline \text { Girder 6-F } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-G } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-H } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \text { Girder 6-J } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 6-N } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{aligned} & \text { Floorbeams } \\ & \text { (Linear Foot) } \\ & \hline \end{aligned}$			$\begin{array}{\|c\|} \hline \text { Diaphragms/ } \\ \text { Frames (Each) } \end{array}$		
	Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
	CS-2	CS-3	CS-4																																	
Pier 22 L	\bigcirc	<	-	,	-	-	,	-	<	,	-	-	S	-	<	-	-	<	-	-	-	-	-	-	-	-	-)	<	-	-	-	-	-	-	r
1	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
2	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
3	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
4	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
5	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
6	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
7	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
8	3.25			11.969			14.962			11.969			5.875			5.5			4.375			7.5			2.875			5.375								
Pier 23L	\bigcirc			,			\bigcirc	\bigcirc	-	,	\triangle	\triangle	>		\bigcirc			\bigcirc			\bigcirc		\bigcirc	\pm							\leq		\pm	\bigcirc	\bigcirc	\bigcirc

Beam/Girder Total:
-Frames Totals:

0	0	95.754	0
$\mathrm{CS}-1$	$\mathrm{CS}-2$	$\mathrm{CS}-3$	$\mathrm{CS}-4$
622.8	589.2	0	0
0	8	0	0
0	73	0	0

Span Quantity
Beam/Girder (LF): $\quad 1212 \mathrm{ft}$.
X-Frames (Ea.): $\quad \frac{83}{} \mathrm{Each}$

	Girder 6-A (Linear Foot)			${\underset{\text { Foot) }}{ } \text { (Linear }}^{\text {Girder 6-B }}$			Girder 6-C (Linear Foot)			$\begin{gathered} \text { Girder 6-D } \\ \text { (Linear Foot) } \end{gathered}$			Girder 6-E (Linear Foot)			Girder 6-F (Linear Foot)			Girder 6-G (Linear Foot)			Girder 6-H (Linear Foot)			$\begin{gathered} \hline \text { Girder 6-J } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			Girder 6-N (Linear Foot)			Floorbeams (Linear Foot)			Diaphragms/ Frames (Each)		
	Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
	CS-2	cs-3	cs-4																																	
Pier 23L	\bigcirc	\sim	-	-	-	-	$\xrightarrow{ }$	-	-	-	-	\bigcirc	,	-	-	-	c	$\xrightarrow{<}$	-	-	\bigcirc	-	-	\bigcirc	$\xrightarrow{ }$	\bigcirc	\bigcirc	,	-	-	-	-	-	$\xrightarrow{\sim}$,	-
	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
2	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
3	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
4	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
5	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
6	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
7	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
8	2.5			4			4.875			4.125			2.375			2.75			1			2.125			2.625			1.5								
Pier 24L	$>$	\triangle	<	\bigcirc	-	\bigcirc	-	-	<	-	\triangle	\bigcirc	\bigcirc	-	<	-	<	\bigcirc	\bigcirc	\bigcirc	\leq	\bigcirc	\bigcirc	\leq	\bigcirc	\bigcirc	\bigcirc	<	\bigcirc	,	<	\bigcirc	-	\bigcirc	<	-
Total	20	0	0	32		0	39	0		33	0	0	19	0	0	22	0	0	8	0	0	17)	0	0	21	0	0	12	0			O		0		

[^0]\[

$$
\begin{aligned}
& \begin{array}{crrrr}
\text { CS-1 } & \text { CS-2 } & \text { CS-3 } & \text { CS-4 } \\
\hline 1112 & 223 & 0 & 0 \\
\hline & & 0 & 0 & \\
\hline
\end{array} \\
& \begin{array}{l}
\text { Beam/ Girder (LF): } \quad \frac{1335}{\mathrm{ft}} \\
\text { Floorbeam (LF): }
\end{array}
\end{aligned}
$$
\]

X-Frames (Ea.): $\quad 8 \quad$ Each
Unit: \qquad Bridge: Left
Span Length: 96.9 ft

品合				Girder 6-	$\begin{aligned} & \text { Foot) } \end{aligned}$	(Linear		Girder 6			Girder 6			$\begin{aligned} & \hline \text { Birder } 6 \\ & \text { near Fo } \\ & \hline \end{aligned}$			Girder 6			$\begin{aligned} & \text { irder } \\ & \text { near } F \end{aligned}$			Girder 6-			Girder 6			Girder 6-N			loorb		$\begin{array}{\|c} \begin{array}{\|c\|c\|c\|c\|r} \text { Fra } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { agms/ } \\ & \text { mes (E } \end{aligned}$	${ }_{\text {ach })}^{x-}$
-		ndition St		Cond	dition Sta			dition S			dition S			dition			dition St			dition			dition St		Con	dition St			dition Sta			ditio			dition S	
$\stackrel{5}{2}$	CS-2	CS-3	CS-4	CS-2	CS	CS-4	cs-2	cs-3	CS-4																											
Pier 24L	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	\sim	\bigcirc	\bigcirc	\sim	\sim	$\xrightarrow{\sim}$	\bigcirc	\sim	\bigcirc	-	\bigcirc	\sim	\bigcirc	<	-	\bigcirc	$\xrightarrow{\sim}$	$\xrightarrow{ }$	\bigcirc	\bigcirc	\bigcirc	-	$\xrightarrow{\sim}$	-	Cs,	\bigcirc	\sim	-	\bigcirc
1	12.113			6			2.3333			1.5			8			2.5			7			1.8333			1.6667				12							
2	12.113						2.3333			1.5						2.5						1.8333			1.6667											
3	12.113						2.3333			1.5						2.5						1.8333			1.6667											
4	12.113						2.3333			1.5						2.5						1.8333			1.6667											
5	12.113						2.3333			1.5			14			2.5						1.8333			1.6667											
6	12.113						2.3333			1.5			10			2.5			15			1.8333			1.6667											
F.A.	\bigcirc	\bigcirc	-	-	-	-	\bigcirc	\rightarrow	\bigcirc	\bigcirc	\rightarrow	\rightarrow	\bigcirc	-	\pm	-	-	\bigcirc		,	,	\bigcirc	-	\bigcirc	\bigcirc	-	-	-		\bigcirc	,		-	\bigcirc	-	-
Total	72.68	0	0	6	0	0	14	0	0	9	0	0	32		0	15	0	0	22			11	0	0	10	0		1	12	0				0	1	
Beam/Girder Total:		CS-1	CS-2	CS-3	CS-4	Span Quantity																														
		922.32	203.68	12	0		Beam/ Girder (LF):			1138 ft																										
Floorbeam Total:X-Frames Totals:		0	8	0	0		Floorbea	am (LLF):			ft .																									
		0	84	1	0		X-Frames (Ea.):			85 Each																										

Steel Deficiencies: Steel assumed CS-1 unless noted otherwise

Unit: ${ }^{6} \quad$ Span $1 \quad$ Bridge: Right \quad Span Length: 10 ft

	$\begin{gathered} \text { Girder 5-N } \\ \text { (Linear Foot) } \end{gathered}$			$\begin{gathered} \hline \text { Girder 5-P } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 5-Q } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			Girder 5-R (Linear Foot)			$\begin{gathered} \text { Girder 5-S } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { Girder 5-T } \\ \text { (Linear Foot) } \\ \hline \end{gathered}$			Girder 5-U			Girder 5-V (Linear Foot)				Girder 5-W			$\begin{aligned} & \hline \text { Girder 5-X } \\ & \text { (Linear Foot) } \end{aligned}$		
	Condition State			Condition State			Condition State			Condition State			Condition State			Condition State			Condition State				Condition State			Condition State			Condition State		
	cs-2	cs-3	cs-4		cs-2	cs-3	cs-4	cs-2	cs-3	cs-4	cs-2	cs-3	cs-4																		
Pier 20R	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-		-	\bigcirc	-	-	-	-	\bigcirc	-	-
1																															
2		12						10			6																				
Expansion 5	\bigcirc	-	-	-	-	,	,												,	,			,			,			,	,	,
Total		12				0	0	10		0	6				0		6							6							
		CS-1	CS-2	cs-3	cs-4		Span Qu	tity																							

-

Unit: $\quad \begin{array}{llll}6 & \text { Span } 3 & \text { Bridge: Right } & \text { Span Length: } 119.7 \mathrm{ft}\end{array}$

Unit:	Ramp C-B			Span 28			Bridge: Right			Span Length:		96.0 ft .						
${ }_{\square}^{\text {® }}$	Girder 6-ZA (Linear Foot)			Girder 6-ZB(Linear Foot) (Linear Foot)			Girder 6-ZC (Linear Foot)			Girder 6-ZD (Linear Foot) (Linear Foot)			Girder 6-ZE (Linear Foot)			Diaphragms/X-Frames (Each)		
	Condition State			Condition State			Condition State			Condition State			Condition State			Condition State		
$\stackrel{\text { \% }}{ }$	cs-2	CS-3	cs-4															
Pier 27 C - ${ }^{\text {c }}$	${ }^{\circ}$	-	-	,	-	-	,	\cdots	-	-	-	-	${ }^{\sim}$	-	-	-	-	
1	19.2			19.2			19.2			19.2			19.2					
2	19.2			19.2			19.2			19.2			19.2					
3	19.2			19.2			19.2			19.2			19.2					
4	19.2			19.2			19.2			19.2			19.2					
5	19.2			19.2			19.2			19.2			19.2					
Abut. C-B	,	-	-	,	-	,										-	-	
Total	96			96		0	96		0	96	0	0	96		0			
Beam/Girder Total: X-Frames Totals:		cs-1	Cs-2	cs-3	cs-4	$\begin{aligned} & \text { Beam/ Girder (LL): } \\ & \text { X-Frames (Ea).): } \end{aligned}$				$\frac{480 \mathrm{ft.}}{30} \mathrm{Each}$								
		96	384	0	0													
		0	30	0	0													

[^0]: Beam/Girder Total:
 Floorbeam Total:
 X-Frames Totals:

