

DRAINAGE DESIGN REPORT

February 09, 2015

	REVISION HISTORY								
Revision	Date	Comments							
	January 7, 2011	Original report included with interim Gateway Roadway Submittal.							
1	August 4, 2011	Report included with final Gateway Roadway Submittal.							
2	September 30, 2011	Report to HDR for Final Compliance.							
3	October 3, 2011	Report to ODOT for Final Submittal.							
4	November 4, 2011	Report to HDR for Re-Submittal Final							
5	November 17, 2011	Report to HDR for Final Compliance							
6	December 1, 2011	Report to ODOT for Final Re-Submittal							
7	May 15, 2012	Post-design update NDC 0052. Changes to Pond Pack output in Appendix G only.							
8	May 17, 2012	Post-design update for NDC 0050. Updates to inlet spacing and storm sewer calculations (D-93, D-136) in Appendix I.							
9	February 9, 2015	CDSS calculations updated to reflect As- Built conditions. ODOT requested CDSS calculations be updated to reflect As-Built conditions.							

Made By: Peter Shedivy 09/29/2011 Revised By: Kevin Monroe 02/09/2015 Checked By: Erica Johnson 02/09/2015

DRAINAGE DESIGN REPORT

Table of Contents

Introduction	2
Project Area	2
Drainage and Stormwater Management Requirements	
East Bank Outfall	5
W. 3 rd Street Outfall	6
Canal Outfall	6
Central Viaduct Outfall	7
Commercial Parking Lot Combined Sewer Outfall	8
Ontario Outfall/Tri-C Outfall	8
E. 9 th Street Outfall	9
Locations of Pavement Reconstruction	11

List of Figures

Figure 1 - Existing Drainage Area Map - 3rd Street & Canal Rd.

Figure 2 - Existing Drainage Area Map - Central Viaduct, Ontario & E. 9th Street

Figure 3 - Proposed Drainage Area Map - East Bank, 3rd Street & Canal Rd.

Figure 4 - Proposed Drainage Area Map for Ontario, Tri-C & 9^{th} Street

Figure 5 - Proposed Drainage Area Map - Central Viaduct Way

Figure 6 - Proposed Drainage Area Map - Commercial Parking Lot, Carnegie, Ontario & E. 9th Street Resurfacing Locations

List of Tables

Table 1 Spread Requirements for Roads in the Gateway Region

Table 2 Outfall Peak Discharge Rates

Table 3 Impacts on CSO Areas

Table 4 Pre and Post Flow Calculations

List of Appendices

Appendix A Form LD-35

Appendix B Drainage Calculations - East Bank Outfall

Appendix C Drainage Calculations - W. 3rd Street Outfall

DRAINAGE DESIGN REPORT

Appendix D Drainage Calculations - Canal Outfall

Appendix E Drainage Calculations - Central Viaduct Outfall

Appendix F Drainage Calculations - Commercial Parking Lot Combined Sewer

Outfall

Appendix G Drainage Calculations - Ontario Outfall/Tri -C Outfall

Appendix H Drainage Calculations - E. 9th Street Outfall

Appendix I Drainage Calculations - Locations of Pavement Reconstruction

along Ontario St. and Carnegie Ave.

Appendix J BL-Unit 1, 2, 3, and Ramp A5 Scupper Calculations

Appendix K Roadway Partial Resurfacing BL-Drainage Spread Calculations

Appendix L Wall I/Ramp A3 BU1500 (For information only)

Introduction

The purpose of this report is to describe and document the design criteria and procedures used to complete the final design of the drainage and stormwater management facilities for the Gateway portion of the Innerbelt Bridge Project. A detailed description is provided for the drainage and stormwater management system design for each of the seven major outfalls within this portion of the Project. Anticipated maintenance requirements are provided for drainage and stormwater treatment facilities within each outfall drainage area. Design calculations are provided in the Appendices to this report.

Project Area

The project area of the Innerbelt Bridge extends over a distance of approximately 1.7 miles, with about 1.0 mile on the east bank of the Cuyahoga River, and the remaining 0.7 miles on the west bank of the river. The area within the project limits, about 80 acres, lies entirely within the City of Cleveland's combined sewer area. More specifically, the project area lies within five different sewersheds (CSO-80, CSO-90, CSO-94, CSO 95 and CSO-235). The northernmost portion of the project area, on the east bank of the Cuyahoga River, drains to Combined Sewer Overflows (CSO's) 94 and 95, which discharge to Lake Erie. The remainder of the project area on the east bank of the river and the entire project area on the west bank of the river, drain to CSO's 80, 90 and 235, which discharge to the Cuyahoga River.

DRAINAGE DESIGN REPORT

Roadway construction documents for the Innerbelt Bridge Project were prepared in three parts: (1) the E. 9th Street Construction Package which covered the new streets proposed for the Commercial region of the east bank project area, (2) the Gateway Construction Package which covered the mainline portion of the east bank project area, and (3) the Tremont Construction Package which covered the entire west bank project area. The Gateway portion of the project area consists of seven major drainage areas, or "outfalls", and numerous locations of pavement reconstruction on local streets.

Drainage and Stormwater Management Requirements

Both stormwater quantity and quality control requirements were established for the Innerbelt Bridge Project. Regarding stormwater quantity control, areas within the project limits could remain connected to the combined sewer system. However, peak flows and runoff volumes to the combined sewer system from major outfalls were limited according to requirements of ODOT and the Northeast Ohio Regional Sewer District (NEORSD).

For this project, ODOT required that the post-construction 5-, 10- and 25-year peak flow rates at any point in the existing combined sewer system be limited to pre-construction rates. The sewer district required that there be no increase in stormwater runoff volume discharged to any individual combined sewer overflow (CSO) area during their control storm event. To control stormwater quality for the project, post-construction Best Management Practices (BMPs) were required for all proposed storm-only sewer systems to which the project drains. It was also required that installation of new storm-only drainage systems be implemented to the greatest extent possible. Outfall peak discharge rates are shown in Table 2, and impacts on the affected CSO areas are shown in Table 3.

In general, the design criteria contained in Volume 2 of the ODOT L&D Manual were used for the drainage and stormwater management facilities. City of Cleveland standards were used to design the storm sewers for the local streets. ODOT Form LD-35, which contains specific drainage design criteria, was completed for the Innerbelt Bridge Project and is included in

DRAINAGE DESIGN REPORT

this report as Appendix A. Specific spread requirements for roads in the Gateway Region are shown in Table 1.

All drainage and stormwater management facilities constructed under the Gateway Construction Package within the mainline right-of-way will be owned and maintained by ODOT. The new drainage facilities associated with local street reconstruction will be owned and maintained by the City of Cleveland.

Table 1
Spread Requirements for Roads in the Gateway Region

Road Name	No. of Lanes	Lane Width (feet)	Shoulder Width (feet)	Allowable Spread on Traveled Lane (feet)	Total Allowable Spread (feet)	Design Storm	ADT
I-90 Mainline/Ultimate Mainline/Bi-direct. Ramp A3 Ramp A4 Ramp A5	5 5 1 2 2	12 12 16 12 12	Varies Varies 6RT, 3LT Varies Varies	0 0 0 0	Varies Varies 6, 3 Varies Varies	10-year 10-year 10-year 10-year 10-year	71,000 71,000
Central Viaduct Way	2	13	0	6	6	2-year	1,000¹
Carnegie Avenue Ontario Street	6 7	9-13	5 13	8 8	13 21	5-year 5-year	33,200
E. 9 th Street	5	12	0	8	8	5-year	32,300

¹ Estimate made by comparing to similar nearby roadways and considering the traffic that feeds the roadway.

DRAINAGE DESIGN REPORT

East Bank Outfall

The East Bank Outfall is at the Cuyahoga River under the east side of the new Innerbelt Bridge. As shown on Figure 3, this is the outfall for 2.59 acres of the new bridge deck between Piers 4 and 8. The bridge deck scupper and downspout at Pier 5 will discharge directly to an extended dry detention basin, East Bank Detention Basin A, for stormwater quality control. This detention basin was also designed to discharge the Water Quality Volume over a 48-hour period. This detention basin will discharge to a new separate storm sewer that discharges to the river. Due to the close proximity to salt storage piles, the portion of this basin directly adjacent to Pier 5 will be lined with an impermeable geomembrane.

The scuppers and downspouts at Piers 7 and 8 will also discharge to a new separate storm sewer, which leads to another extended dry detention basin, East Bank Detention Basin B, for stormwater quality control. In addition, the scupper and downspout at Pier 6 will also discharge to this basin directly. This detention basin was designed to discharge the Water Quality Volume over a 48-hour period. This detention basin will discharge back into the new separate storm sewer.

Peak discharge rates from the East Bank Outfall are shown in Table 2. Drainage design calculations for this outfall are provided in Appendix B. Anticipated maintenance requirements for the drainage and stormwater management system for the East Bank Outfall are:

- 1. Routine inspection and cleaning of scuppers and storm sewer system.
- 2. Mowing around perimeter of detention basins if necessary.
- 3. Routine inspection of detention basins, removal of woody vegetation and cleaning of outlet structures.

DRAINAGE DESIGN REPORT

W. 3rd Street Outfall

The W. 3rd Street Outfall, as shown in Figure 3, is the discharge from bridge deck scuppers located at Pier 10. These scuppers will drain to an extended dry detention basin that discharges to the existing separate storm sewer in W. 3rd Street. Pre- and Post-construction peak flow rates at this outfall location are shown in Table 2. Pre- and post-construction drainage area boundaries are shown in Figures 1 and 2, respectively. The proposed peak 5-, 10- and 25-year flow rates into the existing separate storm sewer system at this location are less than existing conditions and will not require detention. The extended dry detention basin will provide the required stormwater quality control for discharge to a separate storm sewer system.

Drainage design calculations for this outfall are provided in Appendix C. Anticipated maintenance requirements for the drainage and stormwater management system for the W. 3rd Street Outfall are:

- 1. Routine inspection and cleaning of scuppers and storm sewer system.
- 2. Mowing around perimeter of water quality/detention basin.
- 3. Routine inspection of detention basin, removal of woody vegetation and cleaning of outlet structure.

Canal Outfall

The Canal Outfall is at Canal Road and lies within CSO-235. Flows from these areas are regulated by E-25 having dry weather flows and portions of wet weather flows routed to CSO SLPS via E-26/Stones Levee Pump Station. Overflow will occur if pump station capacity is exceeded. Excess wet weather flow will be diverted to CSO 235 if side weir at E-24 is overtopped. Flows that go through SLPS will be directed to CSO-093/090 and are shown in Table 3 as part of a larger total project analysis. As shown on Figure 3, this is the outfall for 3.32 acres of the new bridge deck and existing area to Canal Road. There was a slight increase in area from the new bridge deck, and the proposed C value went down due to some buildings being removed on the south side of Canal Rd. The scuppers and downspouts at

DRAINAGE DESIGN REPORT

Pier 11 will discharge to new catch basinS located outside of the new pavement of Canal Road. Pre- and post-construction peak flow rates at this outfall location are shown in Table 2. Pre- and post-construction drainage area boundaries are shown in Figures 1 and 3, respectively. There is no stormwater quality control BMP provided for the Canal Outfall because it discharges to the existing combined sewer system.

Drainage design calculations for the Canal Outfall are provided in Appendix D. Anticipated maintenance requirements for the drainage system for the Canal Outfall consist of routine inspection and cleaning of bridge scuppers and the storm sewer system.

Central Viaduct Outfall

As shown in Figure 2, the Central Viaduct Outfall drains 2.03 acres of the reconstructed local streets between Carnegie Avenue and the southeast side of the new Innerbelt Bridge. The existing area was 2.54 acres and portions of this is being routed to Ontario outfall by the new bridge and parts are going to the Commercial Parking Lot connection. The storm sewer system draining this area lies within CSO-093/CSO-90 drainage boundary, and will discharge to the existing combined sewer system. Flows from this area are regulated by E-24 with dry weather flows and portions of wet weather flow are routed to CSO-093, and excess wet weather flow is diverted to CSO-090 once E-24 weir is overtopped. A portion of the existing drainage area will be covered up by the proposed Innerbelt Bridge and taken to the Ontario outfall. This reduction in area leaves a net 23.9% reduction of runoff. Pre- and post-construction peak flow rates at this outfall location are shown in Table 2. Pre- and post-construction drainage area boundaries are shown in Figures 1 and 3, respectively. There is no stormwater quality control BMP provided for the Central Viaduct Outfall because it discharges to the existing combined sewer system.

Drainage design calculations for the Central Viaduct Outfall are provided in Appendix E. Anticipated maintenance requirements for the drainage system for the Carnegie Outfall consist of routine inspection and cleaning of bridge scuppers and the storm sewer system.

DRAINAGE DESIGN REPORT

Commercial Parking Lot Combined Sewer Outfall

The Commercial Combined Sewer Outfall is lies within CSO-235. Flows from these areas are regulated by E-25 having dry weather flows and portions of wet weather flows routed to CSO SLPS via E-26/Stones Levee Pump Station. Overflow will occur if pump station capacity is exceeded. Excess wet weather flow will be diverted to CSO 235 if side weir at E-24 is overtopped. Flows that go through SLPS will be directed to CSO-093/090 and are shown in Table 3 as part of a larger total project analysis. As shown on Figure 4, this is the outfall for 0.70 acres of the new bridge deck, and a portion of a parking lot on the north side of Commercial Road. This area was going to drain onto the GCRTA property, but will know be routed through a storm sewer to the existing combined sewer along Commercial Road, so that no water outfalls onto GCRTA property. Since the area drained to Central Viaduct Outfall under existing conditions, no existing conditions were calculated for this new connection.

Drainage design calculations for the Commercial Parking Lot Combined Sewer Outfall are provided in Appendix F. Anticipated maintenance requirements for the drainage system for the Outfall consist of routine inspection and cleaning of bridge scupper and storm sewer system.

Ontario Outfall

The Ontario Outfall is at the southeast corner of the intersection of Ontario Street and Carnegie Avenue, and lies within CSO-093/CSO-90 drainage boundary, and will discharge to the existing combined sewer system. Flows from this area are regulated by E-24 with dry weather flows and portions of wet weather flow are routed to CSO-093, and excess wet weather flow is diverted to CSO-090 once E-24 weir is overtopped. As shown on Figure 4, this is the outfall for 2.99 acres of the reconstructed I-90 roadway. The increase in area is from the new bridge bringing more area to this location from the GCRTA property, Central Viaduct & CSO-235 area around Commercial Parking Lot. Tri-C parking lot is also tributary to the Ontario system, and has addition parking being added during construction of Ramp A4. The new storm sewers draining this roadway area will discharge to an underground

DRAINAGE DESIGN REPORT

detention facility consisting of a network of 72" corrugated steel spiral rib conduit. The outlet from this detention facility will discharge to the existing 15" sewer at the east side of this site. Pre- and post-construction peak flow rates without detention at this outfall location are shown in Table 1. Pre- and post-construction drainage area boundaries are shown in Figures 2 and 4, respectively. The new detention facility will provide 0.35 acre-feet of underground storage to limit post-construction peak flow rates in the existing combined sewer system to no more than the pre-construction rates. CSO volume for CSO-90 is evaluated by adding the increased area for Ontario & Tri-C outfalls, but removing the Commercial, Canal, and Central Viaduct drainage. This results in a net decrease to CSO-90 as seen in Table 3 during wet weather events. There is no stormwater quality control BMP provided for the Ontario Outfall because it discharges to the existing combined sewer system. However, runoff will be pretreated by structures with sumps and bar screens prior to entering the underground detention facility to prevent blockage from accumulated debris, and to minimize the frequency of cleaning. Drainage design calculations for the Ontario Outfall are provided in Appendix G. Anticipated maintenance requirements for the drainage and stormwater management system for the Ontario Outfall are:

- 1. Routine inspection and cleaning of the storm sewer system including the two pretreatment structures.
- 2. Landscape maintenance above and in the vicinity of the underground detention facility.
- 3. Routine inspection of the underground detention facility.
- 4. Cleaning (jet wash) as necessary of the underground detention facility.

E. 9th Street Outfall

The E. 9th Street Outfall is at the southeast corner of the intersection of E. 9th Street and Carnegie Avenue, and lies within CSO-94. As shown on Figure 7, this is the outfall for 1.76 acres of the reconstructed I-90 roadway. The existing area to this outfall was only 0.75 acres from the existing on-ramp, but the additional bridge pavement from the new bridge is creating the increase which in runoff and volume which will be offset by detention. The new

DRAINAGE DESIGN REPORT

storm sewers draining this roadway area will discharge to a dry detention basin. The outlet from this detention facility will discharge to the existing 12" sewer that connects the E. 9th Street sewer main. Pre- and post-construction peak flow rates at this outfall location are shown in Table 2. Pre- and post-construction drainage area boundaries are shown in Figures 2 and 4, respectively. The new detention facility will provide 0.42 acre-feet of storage to limit post-construction peak flow rates in the existing combined sewer system to no more than the pre-construction rates. Orange/14th Street reconstruction areas were modeled with the 9th Street outfall since it is tributary to the 96" sewer main. Areas were removed from Orange/14th to make up for the increase in area to the 9th Street Outfall. There is no stormwater quality control BMP provided for the E. 9th Street Outfall because it discharges to the existing combined sewer system.

Three conditions were evaluated for the 9th Street Detention Basin. The first was for CCG1 contract where a proposed storm sewer from the new I-90 WB lanes is connected to the proposed detention basin. This storm sewer has 0.70 acre of pavement and 0.27 acres of steep sloped grass tributary to it. Calculations were also provided for CCG3 conditions where the grassed area will be converted into pavement shown in Appendix H for future I-90 WB lanes. The third calculation shows a temporary connection from the existing I-90 sag to the proposed storm sewer. Due to the construction phasing and sequencing, this temporary connection will need to take three barrier inlets off an existing No. 4 brick sewer (33") and route it to the 9th Street basin before the 33" is grouted. The fill height on the pipe will be exceeded with the construction of Walls G & H. This connection will remove 1.13 acres of pavement that was tributary to CSO-090 and route it to CSO-094. The detention basin will be constructed with the storm sewer so that flow rates will be reduced to existing rates for CCG1, CCG3, and the temporary connection. An increase in CSO volume to CSO-094 during this connection, and reduction in CSO-090 will occur between construction phases 3 and 6 which is to last one year. Once traffic is moved to the new bridge (BL16/17) over Ontario, the existing 1.13 acres will be able to sheet flow down to an existing grassed loop area and enter back into the CSO-090 sewer system through an area inlet.

DRAINAGE DESIGN REPORT

Additional outfalls that lie within CSO 94 and are nearby to the proposed E9th detention facility are CB UNK, CB-14323, and CB-14387. These calculations are shown in Tables 2-4. Table 4 also includes the bi-directional condition for CB-14323 in which case the PCB allows for additional bridge flow to enter this outlet.

Drainage design calculations for the E. 9th Street Outfall are provided in Appendix H. Anticipated maintenance requirements for the drainage and stormwater management system for the E. 9th Street Outfall are:

- 1. Routine inspection and cleaning of the storm sewer system including the two outlet structures.
- 2. Landscape maintenance of the site.

Locations of Pavement Reconstruction

In addition to the proposed drainage system for the major outfalls from the Gateway Region, there are 14 relatively small areas of pavement reconstruction along Carnegie and Ontario, as shown in Figure 6. Since these areas have similar runoff coefficients for existing and proposed conditions, and drainage areas were not changing CSO boundaries; only the proposed conditions were calculated with CDSS for spread/SS requirements. These areas are tributary to CSO-093/CSO-90's, and will discharge to the existing combined sewer system. Flows from this area are regulated by E-24 with dry weather flows and portions of wet weather flow are routed to CSO-093, and excess wet weather flow is diverted to CSO-090 once E-24 weir is overtopped. The drainage calculations for these areas of pavement reconstruction are shown in Appendix I. Drainage boundaries, areas, and runoff coefficients used in the calculations are shown in Figure 6.

DRAINAGE DESIGN REPORT

Table 2 Outfall Peak Discharge Rates

	Existing Drainag	Proposed	Existing	Prop. Coef.		Exist. Time	Prop. Time		I Existing	ntensity					Existing	Peak Flo			.1		eiving ipe
Drainage Area ID	e Area (acres)	Drainage Area (acres)	Coef. of Runoff, C	of Runoff, C	Inc. in C	of Conc. (min)	onc. Conc.		10-yr	25- yr	5-yr	Propose 10-yr	25- yr	5-yr	10-yr	25-yr	5-yr	Proposed 10-yr	25-yr	Size	Cap. (cfs)
East Bank Outfall ¹		2.59		0.90			18.70					3.73	4.47				-	8.7	10.4		-
W. 3 rd St. Outfall ^{1,2}	3.20	3.70	0.74	0.66	-0.08	4.07	10.20	5.75	6.57	7.51	4.04	4.55	5.22	13.66	15.61	17.85	9.88 - 0.04	11.13 - 0.12	12.77 - 0.51		
Canal Outfall ^{1,3}	3.29	3.32	.85	.78	-0.07	5.89	5.89	6.04	6.91	7.63	6.04	6.91	7.63	16.87	19.29	21.33	15.58 - 2.40	17.82 - 2.80	19.70 - 3.40		
Cen. Via. Outfall ³	2.54	2.03	.86	.82	-0.04	7.61	8.33	4.88	5.53	6.34	4.70	5.32	6.10	10.72	12.14	13.92	7.80	8.83	10.12		
Commercial Parking Lot Outfall ³		0.70		0.83	0.83		3.00				6.01	6.89	7.86				3.51	4.02	4.59	36"	22
Ontario Outfall ^{3,4}	1.45	2.99	.85	.88	.03	10.80	8.65										3.23	3.57	4.06		
E. 9 th St. Outfall ^{3,4}	0.85	1.76	0.57	.70	.13	3.72	5.88										4.58	5.67	8.53		
Tri-C Outfall³	0.85	1.21	0.83	0.85	.02	5.80	5.11	5.32	6.06	6.94	5.49	6.27	7.16	3.75	4.27	4.89	5.65	6.45	7.37	33"	18
Pier 7B³	0.25	0.39	.90	.81	09	4.58	7.04	5.62	6.42	7.34	5.02	5.70	7.04	1.27	1.45	1.66	1.58	1.80	2.22	12"	3
CB UNK ³	1.08	0.98	0.60	0.86	0.16	6.1	6.1	5.25	5.98	6.84	5.25	5.98	6.84	3.4	3.9	4.4	4.4	5.0	5.8	12"	3
CB 13487 ³	0.92	0.53	0.79	0.70	09	6.3	6.7	5.20	5.92	6.77	5.10	5.80	6.64	3.70	4.30	4.90	1.90	2.10	2.40		
CB 13423 ³	0.56	0.91	0.80	0.84	.04	3.2	5.7	5.96	6.83	7.79	5.35	6.09	6.97	2.70	3.10	3.50	4.10	4.60	5.30	12"	3

²Discharges to an existing storm sewer.

⁴Results obtained from PondPack Software.

DRAINAGE DESIGN REPORT

Table 3 - Impacts on CSO Areas

Combined Sewer System ID ¹	Project Drainage Area ID	Existing Drainage Area (A in acres)	Proposed Drainage Area (A in acres)	Existing Coefficient of Runoff (C)	Proposed Coefficient of Runoff (C)	Existing C x A	Proposed C x A	Percent Change in Runoff Volume
	Canal Outfall	3.29	3.32	0.85	0.78	2.80	2.59	-7.5%
CSO-235	Commercial Combined Sewer System¹	6.57	3.28	0.77	0.79	5.06	2.59	-48.8%
000 200	Commercial Parking Lot		0.70		0.83		0.58	New Connection
	Total	9.86	7.30	0.80	0.79	7.86	5.76	-26.7%
	Canal Outfall	3.29	3.32	0.85	0.78	2.80	2.59	-7.5%
	Central Viaduct Outfall	2.54	2.03	.86	.82	2.18	1.66	-23.9%
	Commercial Parking Lot		0.70		0.83		0.58	New Connection
	Ontario Outfall	1.45	2.99	0.85	0.88	1.23	2.63	122.8%
CSO-90 ²	Tri-C Parking Lot	0.85	1.21	0.83	0.85	0.71	1.03	45.1%
	Pier 7B	0.25	0.39	0.90	0.81	0.23	0.32	-60.9%
	Commercial Combined Sewer System ¹	6.57	3.28	0.77	0.79	5.06	2.59	-48.8%
	E. 22 nd Street	0.76	0.79	0.65	0.69	0.50	0.55	10.0%
	Total	15.71	14.71	0.81	0.81	12.70	11.95	-5.91%
	E. 9 th St. Outfall	0.75	1.76	0.57	0.70	0.43	1.23	186.1%
	E. 9 th St. Outfall Temp ⁴	0.75	2.89	0.57	0.78	0.43	2.25	423.0%
	CB UNK	1.08	0.98	0.60	0.86	0.65	0.84	30.1%
	CB 13487	0.92	0.53	0.79	0.70	0.73	0.37	-49.0%
CSO-94	CB 13423	0.56	0.91	0.80	0.84	0.45	0.76	70.6%
	14 th & Orange ³	9.93	8.46	0.71	0.68	7.05	5.75	-18.4%
	Total	13.24	12.64	0.70	0.71	9.30	8.96	-3.6%
	Total (Temp. Connection at D- EXA50)	10.68	13.11	0.70	0.73	9.30	9.99	7.4%

¹From Table 2, Drainage Design Report, E. 9th Street Roadway Package.

²CSO-235 system drains to CSO-90 system.

³Area diverted to CSO-94 from CSO-235.

⁴Area included in temporary total only.

Table 4 - Pre & Post Flow Calculations

						T		T.	1	T
LINTE		Made by: P			Date:		11/3/2011			
INIP		Checked by:	BH		Date:		11/3/2011			
Job Numb										
Cieveiand	Innerbelt Gateway Roadway Pre and Post Drainage Areas and R CN, Curve Number			98	74	77	94			
	CN, Curve Number C, Rational Coefficient		0.9		1	0.5				
		Fair cond.	0.0	0.0		Moderate				
	Terrain Description		Pavement	Parking Lot		Slope	Commercial	Area	CN	С
	Canal Combined Sewer Outfall Pre EX MH 9925	0.05	1.65				1.59	3.29	95.76	0.85
	Canal Combined Sewer Post EX MH 9925	0.05	1.70		0.48		1.09	3.32	92.93	0.78
	9th St Combined Sewer Outfall Pre EX-6820	0.08	0.28		0.39			0.75	83.56	0.57
	9th St Combined Sewer Outfall Post EX-6820 CCG1	0.27	0.99		0.50			1.76	88.27	0.70
_	9th St Temporary Connection	0.27	2.12		0.50			2.89	92.07	0.78
ਗੁ	Existing Scupper Discharge Point EX-39 CB PIER 7B		0.25					0.25	98.00	0.90
Outfall	Proposed Discharge Point EX-39 CB PIER 7B	0.10	0.25			0.04		0.39	90.97	0.81
_	Ontario Combined Sewer Outfall Pre D8025		0.82		0.63			1.45	87.57	0.85
a	Ontario Combined Sewer Outfall Post D8025	0.27	2.69		0.03			2.99	96.04	0.88
Area	Tri - C Pre EX-1018		0.75		0.10			0.85	95.18	0.83
	Tri - C Post EX-1018		1.11		0.10			1.21	96.02	0.85
ğ	3rd St Storm Sewer Outfall Pre EX-9305		2.36		0.84			3.20	91.69	0.74
Drainage	3rd St Storm Sewer Outfall Post EX-9305		2.23		1.48			3.70	88.42	0.66
<u>r</u>	Central Viaduct Way Existing MH 8973		2.39		0.15			2.54	96.58	0.86
	Central Viaduct Way Proposed MH 8973		1.75		0.28			2.03	94.69	0.82
	Commercial Parking Lot Post EX-18020	0.24	0.46					0.70	91.53	0.83
	UNK-PRE	0.36	0.44		0.28			1.08	66.26	0.60
	UNK-POST	0.19	0.79					0.98	94.32	0.86
	CB INLET 13487 PRE	0.53	0.39					0.92	87.10	0.79
	CB INLET 13487 POST	0.53						0.53	79.00	0.70
	CB INLET 13423 PRE	0.28	0.28					0.56	88.50	0.80
	CB INLET 13423 POST	0.28	0.63					0.91	92.15	0.84
	CB INLET 13423 POST BIDIRECTIONAL	0.28	0.82					1.10	93.16	0.85

Table 4 - Pre & Post Flow Calculations (continue)

HNTB	Made by: PNS Date: 11/03/2011	
סואה	Checked by: BAH Date: 11/03/2011	
Late Missester and 40000		

						Existing Scupper									
Analysis Condition Outfall Name	EXISTING CS 9th St Outfall	PROPOSED STORM SEWER 9th St Outfall	Temporary Connection 9th St Outfall	Existing CS Ontario Outfall	Proposed to EX CS Ontario Outfall	Discharge Point EX-	Proposed Discharge Point EX-39 CB Pier 7B	Existing CS Tri-C Parking Lot	Proposed to EX CS Tri-C Parking Lot	Existing SS 3rd St Outfall D9305	Proposed to EX SS 3rd St Outfall D9305	Existing CS CV Outfall D8973	Proposed to EX CS CV Outfall D8973		Commerical Parki Lot Post Ex-10820
Sheetflow	GRASS					pavement	grass					pavement	pavement	GRASS	pavement
Runoff Coeffiecient	0.70					0.90	0.70					0.90	0.90	0.70	0.90
length, ft (<100)	17.00					69.00	87.00					100.00	86.00	42.00	26.00
dz, ft	2.00					1.10	6.61					1.00	1.70	12.00	1.04
slope	0.12					0.016	0.076					0.01	0.02	0.29	0.04
Tt, min	1.31					2.56	3.42					3.60	2.66	1.53	1.16
Sheetflow	Pavement	Pavement	Pavement	Pavement	Pavement			Pavement	Pavement	Pavement	Pavement			GRASS	
Runoff Coefficient	0.90	0.90	0.90	0.90	0.90			0.90	0.90	0.90	0.90			0.70	
length, ft (<100)	83.00	30.00	64.00	100.00	100.00			100.00	100.00	100.00	10.00			43.00	
dz, ft	6.00	1.20	1.20	1.75	4.00			1.10	1.10	3.00	0.05			2.00	
slope ft/ft	0.07	0.04	0.02	0.02	0.04			0.01	0.01	0.03	0.03			0.05	
Tt, min	1.70	1.24	2.34	3.00	2.27			3.49	3.49	2.50	1.43			2.83	
Shallow Concentrated	Grass Row	Grass Row	Paved Shoulder	GUTTER FLOW	GUTTER FLOW	GUTTER FLOW	Grass	GUTTER FLOW	GUTTER FLOW	Gutter Flow	Gutter Flow	PAVEMENT	Gutter	PAVEMENT	Gutter
	88.00	400.00	500.00	1108.00	582.00	173.00	20.00	200.00	227.00	27.00	685.00	127.00	247.00	42.00	181.00
length, ft	7.00	5.00	6.00	15.00	4.00	0.85	8.00	1.00	3.00	0.50	3.19	1.00	1.25	0.10	6.88
dz, ft	7.00	1.25	1.20	1.35	0.69	0.85		0.50	1.32	1.85	0.46	0.79		0.10	3.80
slope %		1.25 0.457					40.00			0.620					0.619
Intercept Coefficient, k avg velocity, ft/s	0.457 4.23	1.68	0.620 2.23	0.620 2.37	0.620 1.69	0.620 1.43	0.457 9.48	0.620 1.44	0.620 2.34	2.77	0.620 1.39	0.619 1.80	0.619 1.44	0.619 0.99	3.96
Tt, min	0.35	3.98	3.74	7.80	5.75	2.02	0.04	2.32	1.62	0.16	8.23	1.17	2.85	0.71	0.76
Shallow Concentrated length, ft															
dz, ft															
slope															
Intercept Coefficient, k															
avg velocity, ft/s															
Tt, min															
Channel flow side slope, X:1 side slope, X:1	GRASS SWALE 4.00 3.00	STORM SEWER	STORM SEWER		STORM SEWER		3.00 3.00			STORM SEWER	STORM SEWER	STORM SEWER	STORM SEWER	STORM SEWER	STORM SEWE
bank full depth, ft	0.60	flowing full	flowing full		flowing full		0.60			flowing full	flowing full	flowing full	flowing full	flowing full	flowing full
dz, ft	2.00	20.00	12.00		27.00		0.41			nowing run	nowing ruii	nowing ruii	nowing run	nowing run	nowing run
length, ft	44.00	444.00	458.00		452.00		170.00			338.00	470.00	610.00	605.00	547.00	428.00
manning's, n	0.070	0.015	0.015		0.015		0.040			0.015	0.015	0.015	0.015	0.015	0.015
cross-sectional area, ft ²	1.26	18 in average	12 in average		18 in average		1.08			15 in average	15 in average	18 in average		24 in average	12 in
wetted perimeter, ft	4.37						3.79			J					
hydraulic radius, ft	0.29						0.28								
slope ft/ft	0.05	0.05	0.03		0.06		0.0024			1.00		0.01		0.03	0.06
velocity, ft/s	1.98	11.20	13.20		12.00		0.79			4.00	4.00	3.58	3.58	11.00	9.00
Tt, min	0.37	0.66	0.58		0.63		3.59			1.41	1.96	2.84	2.82	0.83	0.79
Total Tc, minimum 3 minute	3.72	5.88	6.65	10.80	8.65	4.58	7.04	5.80	5.11	4.07	11.62	7.61	8.33	5.89	2.71
	0.75	4.70	2.00	4.45	0.00	0.05	0.00	0.05	4.04	2.00	2.70	0.54	0.00	2.00	0.70
Area, acres	0.75	1.76	2.89	1.45	2.99	0.25	0.39	0.85	1.21	3.20	3.70	2.54	2.03	3.29	0.70
C weighted	0.57	0.70	0.78	0.85	0.88	0.90	0.81	0.83	0.85	0.74	0.66	0.86	0.82	0.85	0.83
Intesities, in/hr	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD
15	5.83	5.30	5.11	4.17	4.62	5.62	5.02	5.32	5.49	5.75	4.04	4.88	4.70	6.04	6.01
I 10 I 25	6.68 7.62	6.04 6.91	5.81 6.65	4.70 5.39	5.23 6.00	6.42 7.34	5.70 7.04	6.06 6.94	6.27 7.16	6.57 7.51	4.55 5.22	5.53 6.34	5.32 6.10	6.91 7.63	6.89 7.86
Flows, cfs - NEORSD															
	2.50	6.52	11.40	5 14	12.10	1.27	1.50	2.75	E 65	12.66	0.00	10.72	7.90	16 97	2.51
Q5 Q10	2.50 2.86	6.52 7.43	11.48 13.06	5.14 5.79	12.10 13.70	1.27 1.45	1.58 1.80	3.75 4.27	5.65 6.45	13.66 15.61	9.88 11.13	10.72 12.14	7.80 8.83	16.87 19.29	3.51 4.02
Q10 Q25	3.26	8.50	14.94	6.64	15.71	1.45	2.22	4.27	7.37	17.85	12.77	13.92		21.33	4.02
<u>~</u>	5.20	*view pondpack	*view pondpack	5.01	*view pondpack							. 3.02		00	7.00

Table 4 - Pre & Post Flow Calculations (continue)

TIMES	(contii	nue)					
MNTB	Checked by: BH	11/3/2011					
Job Number: 49633	1					1	1
5011 01 D /D / 1 / 1 / 1 D :							
E9th St Pre/Post calcs taken from Bri	dge 7 and 8 Drainage Report						
							CB INLET 13423 POST
Analysis Condition	UK PRE	UK POST	CB INLET 13487 PRE	CB INLET 13487 POST	CB INLET 13423 PRE	CB INLET 13423 POST	BIDIRECTIONAL
Outfall Name							
Sheetflow Runoff Coeffiecient	Pavement 0.900	Pavement 0.900	Pavement 0.900	Pavement 0.900	Pavement 0.900	Pavement 0.900	Pavement 0.900
length, ft (<100)	240.000	240.000	225.000	170.000	78.000	225.000	360.000
dz, ft slope	3.000 0.013	3.000 0.013	4.000 0.018	1.750 0.010	3.000 0.038	4.000 0.018	6.000 0.017
Tt, min	5.177	5.177	4.458	4.649	2.029	4.458	5.761
Sheetflow					GRASS		
Runoff Coefficient length, ft (<100)					0.900 12.000		
dz, ft slope					2.000 0.167		
Tt, min					0.488		
Shallow Concentrated							
length, ft							
dz, ft slope							
Intercept Coefficient, k avg velocity, ft/s							
Tt, min							
Shallow Concentrated length, ft	-						
dz, ft slope							
Intercept Coefficient, k							
avg velocity, ft/s							
Tt, min							
Channel flow	GUTTER	GUTTER	GUTTER		GRASS SWALE	GUTTER	
side slope, X:1 side slope, X:1	0.010 62.500	0.010 62.500	0.010 25.000		6.000 3.000	0.010 25.000	
bank full depth, ft dz, ft	0.120 0.750	0.120 0.750	0.200 1.500		0.250 15.000	0.200 3.400	
length, ft	45.000	45.000	71.000		128.000 0.040	192.000	
manning's, n cross-sectional area, ff	0.015 0.450	0.015 0.450	0.015 0.500		0.040	0.015 0.500	
wetted perimeter, ft hydraulic radius, ft	7.621 0.059	7.621 0.059	5.204 0.096		2.311 0.122	5.204 0.096	
slope	0.017 1.945	0.017 1.945	0.021 3.030		0.117 3.131	0.018 2.774	
velocity, ft/s							
Tt, min	0.386	0.386	0.391		0.681	1.154	
Channel flow side slope, X:1	CONCRETE SWALE 2.000	CONCRETE SWALE 2.000	GRASS SWALE 4.000	GRASS SWALE 4.000		PIPE FLOW	PIPE FLOW
side slope, X:1	4.000	4.000	4.000	4.000		4.050	1.050
bank full depth, ft dz, ft	1.000 1.000	1.000 1.000	1.000 0.650	1.000 1.050		1.250 19.000	1.250 19.000
length, ft manning's, n	77.000 0.015	77.000 0.015	140.000 0.040	206.000 0.040		73.000 0.015	73.000 0.015
cross-sectional area, ff	3.000	3.000	4.000	4.000		717.15	
wetted perimeter, ft hydraulic radius, ft	6.359 0.472	6.359 0.472	8.246 0.485	8.246 0.485			
slope velocity, ft/s	0.013 6.860	0.013 6.860	0.005 1.567	0.005 1.642		0.260 30.000	0.260 30.000
-		0.187	1.489	2.091		0.041	0.041
Tt, min	0.187		1.409	2.091		0.041	0.041
Channel flow side slope, X:1	GRASS SWALE 4.000	GRASS SWALE 4.000					
side slope, X:1 bank full depth, ft	4.000 1.000	4.000 1.000					
dz, ft	1.750	1.750					
length, ft manning's, n	76.000 0.040	76.000 0.040					
cross-sectional area, ff wetted perimeter, ft	4.000 8.246	4.000 8.246					
hydraulic radius, ft	0.485	0.485					
slope velocity, ft/s	0.023 3.490	0.023 3.490					
Tt, min	0.363	0.363				<u> </u>	1
Total Tc, min	6.1	6.1	6.3	6.7	3.2	5.7	5.8
Area, acres	1.080	0.980	0.918	0.527	0.560	0.910	1.100
C weighted	0.60	0.86	0.79	0.70	0.80	0.84	0.85
Intesities, in/hr	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD	NEORSD
I 5 I 10	5.249 5.977	5.249 5.977	5.200 5.918	5.102 5.800	5.961 6.831	5.348 6.094	5.323 6.065
125	6.837	6.837	6.771	6.639	7.794	6.969	6.936
Flows, cfs							
Q5 O10	3.4	4.4	3.7	1.9	2.7	4.1	5.0
Q10 Q25	3.9 4.4	5.0 5.8	4.3 4.9	2.1 2.4	3.1 3.5	4.6 5.3	5.7 6.5
1					1		

ORIZONTAL ALE IN FEET

X TAB

A0

FIGU DRAIN RIO, T

ING

-0

EXIS:

06

4

0

C DWG. NO. AM-002

DRAINAGE DESIGN REPORT

APPENDIX A

GENERAL PROJECT INFORMATION

CUY 90 14.90 County Route Section

Attach Typical Section)

AFFECTED ROADWAYS:	Route	Average Daily Traffic	Rural / Urban
INTERSTATE OR OTHER L/A FACILITIES	I-90 Innerbelt Bridge	71,000	Urban Interstate
	Orange Ave	23,300	Urban Arterial
	Fairfield Ave	1,500	Urban Collector
	Abbey Ave	1,200	Urban Collector
	Canal Rd		Urban Collector
	Ontario St	33,200	Urban Arterial
	Carnegie Ave	24,000	Urban Arterial
	E. 9 th St	32,300/3,600	Urban Arterial Under I-90, Future Urban Collector
ARTERIALS AND COLLECTORS			(extension)
THIS IN THE COLLEGE OF THE	Broadway	12,400	Urban Arterial
	E. 14 th St	19,100	Urban Arterial, Future
			Urban Collector
			(extension)
	W. 14 th St	3,600	Urban Collector
			(extension)
	W. 13 th St	8,700	Urban Collector
	Starkweather Ave	$2,000^{1}$	Urban Local
	Kenilworth Ave	$2,000^{1}$	Urban Local
	Central Viaduct Way	$1,000^{1}$	Urban Local
LOCALS	Commercial Rd	$1,000^{1}$	Urban Collector, Future
		,	Urban Local (realigned
			portion)
	See L&D Manual,		•
CLEAR ZONE	Vol. 1, Section		
CLEAR ZONE	600.2		

¹ Estimate made by comparing to similar nearby roadways and considering the traffic that feeds the roadway.

All Units are English:

PIPE POLICY:

The Pipe Policy of ODOT and the City of Cleveland will be used for this project. (See Section 1002 for additional information)

If a policy other than ODOT's is being used, the following material types are permitted:

For drainage conduit owned and maintained by the city of Cleveland:

1. <u>Use Vitrified Clay Pipe (VCP), Extra Strength (ES), C-700, with premium joints, ODOT item 706.08 for all proposed main sewer pipe 18" and smaller.</u>

- 2. <u>Use Reinforced Concrete Pipe (RCP) with premium joints, ODOT Item 706.02 for all proposed main sewer</u> pipe 21" and larger.
- 3. <u>Ductile Iron Pipe (DIP) may be used if approved by the WPC engineer.</u>

(Please attach a copy of the written pipe policy. In lieu of a written policy, documentation of locally funded construction practices may be provided) See Attachment A.

I	PO	2	\mathbf{T}	C	O	N	S	Т	R	T	10	٦r	ri	[1	V	R	1	/	P	P	C	T	T	C	V	7

POS	TT CONSTRUCTION BMP POLICY:
The I	Post Construction BMP Policy of ODOT will be used for this project.
If a p	olicy other than ODOT's is being used, the following BMP's are permitted:
PRO	DJECT SPECIFIC INFORMATION AFFECTING DRAINAGE:
See A	Attachment B - Project Scope, Central Viaduct, CUY-90-14.90, Innerbelt Bridge, Section 13, Drainage
Sect	ion A. Roadway Culverts (Type A Conduits)
1.	DESIGN STORM FREQUENCY (1004.2):
	a. Mainline <u>50-</u> Year
	b. Crossroads <u>10-</u> Year
2.	BANKFULL DESIGN <u>Yes</u> No (Circle yes if at least one culvert has bankfull design) <i>attach a list of culverts with bankfull designs</i> Culvert across driveway entrance on south side of proposed E. 9 th Street extension.
3.	FLOOD PLAIN CULVERT(S) NEEDED? Yes No (Circle yes if at least one culvert has flood plain culverts) attach a list of culverts with flood plain culverts
4.	DURABILITY SERVICE LIFE Year attach a list of culverts with their durability service life if multiple culverts have different frequencies.
5.	ABRASIVE SITE? Yes No (Circle yes if at least one culvert has an abrasive site) attach a list of culverts with their abrasive site assumptions if multiple culverts are different
6.	MAXIMUM ALLOWABLE HEADWATER FOR DESIGN STORM (1006.2):
	a. 2 feet below the near, low edge of the pavement for drainage areas 1000 acres or greater and 1 foot below for culverts draining less than 1000 acres.
	b. <u>2 feet above the inlet crown of the culvert or above a tailwater elevation that submerges the inlet crown in flat to rolling terrain.</u>

- d. <u>1 foot below the near edge of pavement for bicycle pathways.</u>
- METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1003): 7.

c. 4 feet above the inlet crown of a culvert in a deep ravine.

- a. <u>For rural streams, use USGS Water Resources Investigations Report 89-4126 "Techniques for Estimating Flood-Peak Discharges of Rural Unregulated Streams in Ohio".</u>
- b. <u>For urban streams, use USGS Open File Report 93-135 "Estimation of Peak-Frequency Relations, Flood Hydrographs, and Volume–Duration–Frequency Relations of Ungaged Small Urban Streams in Ohio".</u>
- 8. SCALE OF TOPOGRAPHIC MAPPING USED TO DELINEATE DRAINAGE AREAS (1101.1):
 - a. >100 acres: 1" = 2000'
 - b. < 100 acres: 1" = 50 to 800'
- 9. MANNING'S "n" USED FOR (1105.6.5):
 - a. Smooth pipe 0.012
 - b. Corrugated pipe:

 $2^{-2}/_{3}$ " x $^{1}/_{2}$ ": Full flow 0.0225-0.0250

3" x 1": Full flow 0.0260-0.0281

6" x 2": Full flow — 0.0300 0.0332—

Section A. Roadway Culverts - Continued

10. ENTRANCE LOSS COEFFICIENT (k_e) (1105.6.6, table 1105-1):

a. Corrugated pipe: HW-4 Headwall <u>0.90</u> Full Headwall <u>0.25</u>*

b. Smooth Concrete pipe HW-4 Headwall <u>0.20</u> Full Headwall <u>0.20</u>

d. Box Shape Full Headwall _____ *with beveled entrance

- 11. MINIMUM COVER (top of pipe to subgrade) FOR (1008):
 - a. Rigid pipe 9"
 - b. Flexible pipe 12"
- 12. MAXIMUM COVER FOR (1008):
 - a. Rigid pipe <u>See Figures 1008-10 to 1008-14, L&D Vol.2</u>
 - b. Flexible pipe <u>Thermoplastic 20'; Corrugated Steel See Figures 1008-1 1008-9 and 1008-15 1008-21</u>
- 13. MAXIMUM ALLOWABLE CULVERT OUTLET VELOCITY (1002.2.2):
 - a. Bare earth channel <u>5 fps</u>
 - b. Rock channel protection 20 fps
 - c. Use <u>energy dissipator</u> for velocities in excess of 20 f.p.s.

- 14. HEADWALL TYPE (1106.2):
 - a. Half-Height Headwall Std Dwg HW-2.1 and 2.2
 - b. Full-Height Headwall Std Dwg HW-1.1
 - c. Concrete Apron provide special detail drawing
- 15. CONTACT WILL BE MADE WITH COUNTY ENGINEER TO ESTABLISH:
 - a. Contact shall be made with the County Engineer at the beginning of the design process to ascertain ditch cleanout grades and watersheds, and the design shall be based on that information.
 - b. Form LD-33 (available in the L&D, Vol 2, Appendix) shall be used to document approval.
- 16. MINIMUM PIPE SIZE (1002.3.1, Figure 1002-1):
 - a. Freeway or limited access facility 24"
 - b. Other highways 15"

Section B. Storm Sewers (Type B & C Conduits)

- 1. DESIGN FREQUENCY (Just Full) (1104.4.1) 10-year, ODOT and City
- 2. HYDRAULIC GRADIENT SHALL NOT EXCEED (1104.4.2):
 - a. <u>12</u> inches below edge of pavement for <u>25-</u> year frequency storm (<u>ODOT only</u>).
 - b. Pavement catch basin grate or lip of inlet for <u>25-</u> year frequency storm (<u>ODOT only</u>).
 - c. A point in a depressed pavement sag that would result in an impassible highway for a <u>50-</u> year frequency storm (ODOT only).
 - d. Other: Storm sewers for all highways shall satisfy a 50-yr check to preclude flooding of buildings or extensive flooding of private property. One-directional lane of a multiple-lane highway or one-half of a lane on a two-lane highway shall be passable when the sewer system is discharging the 50-year storm.
 - e. The above is based on:
 - i. A pipe roughness "n" = 0.015 for pipe sizes 60" and under and 0.013 for larger sizes.
 - ii. _____
- 3. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1003):
 - a. Rational Method for pavement drainage, storm sewer and ditches.
 - i. Use ODOT rainfall data for design of pavement drainage and storm sewers.
 - ii. Use NEORSD rainfall data to compute discharge rates to the existing combined sewer system (Attachment C).
 - b. TR-55 for detention analysis.
 - i. Use ODOT rainfall data for detention facilities discharging to surface waters.

- ii. Use NEORSD rainfall data for detention facilities discharging to the combined sewer system.
- 4. COEFFICIENT OF RUNOFF "C" FOR (1101.2.3):
 - a. Pavement and paved shoulders <u>0.9</u>
 - b. Berms and slopes $(4:1 \text{ and flatter}) \ \underline{0.5}$
 - c. Berms and slopes (steeper than 4:1) 0.7
 - d. Contributing areas:

Residential 0.3 - 0.5 (single family), 0.4 - 0.7 (multi-family) Woods 0.3 Cultivated 0.3 - 0.6 Grassed Terrace (adjacent to sidewalks) 0.30

- 5. METHOD USED TO DETERMINE TIME TO FIRST CATCH BASIN OR PAVEMENT INLET (1101.2):
 - a. The summation of the time of overland flow, the time of shallow concentrated flow and the time of pipe or open channel flow.
- 6. MINIMUM TIME TO (1104.4.4):
 - a. Ditch catch basin 15 minutes
 - b. Pavement inlet or catch basin 10 minutes
 - c. When connecting to combined sewer, actual Tc calculated for pre/post flow analysis.

Section B. Storm Sewers (Type B & C Conduits) - Continued

- 7. MINIMUM COVER OVER SEWERS (1104.2.1): (see Attachment B)
 - a. Rigid pipe:
 - i. Type B conduit (under pavement or paved shoulder) 9" (top of pipe to subgrade). In no installation shall the distance from the top of pipe to pavement surface be <15".
 - ii. Type C conduit (beyond pavement or paved shoulder) 18" (top of pipe to finish grade)
 - b. Flexible pipe:
 - i. Type B conduit (under pavement or paved shoulder) 12" (top of pipe to subgrade). In no installation shall the distance from the top of pipe to pavement surface be <24".
 - ii. Type C conduit (beyond pavement or paved shoulder) 24" (top of pipe to finish grade)
 - c. City requirement: 3 feet for all main sewers
- 8. DESIRABLE MINIMUM VELOCITY FOR DESIGN FLOW 3 f.p.s (1104.2.1). City sewers 3 f.p.s.
- 9. MAXIMUM LENGTH BETWEEN MANHOLES OR SUITABLE CLEANOUT POINTS (1104.2.2):
 - a. ODOT: Under 36"diameter 300' City: Under 42" diameter 300'
 - b. ODOT: 36" 60" diameter <u>500' City: 42" diameter and larger 500'</u>
 - c. ODOT: Over 60" diameter <u>750-1000</u>'

- 10. MINIMUM PIPE SIZE UNDER PAVEMENT (1104.4.6):
 - a. Freeway or limited access facility <u>15 inches</u>
 - d. Other highways 12 inches
 - e. <u>City storm sewer pipe: 12 inches</u>
- 11. PROCEDURE TO FOLLOW WHEN EXISTING PRIVATE DRAINS ARE CUT BY PROPOSED

SEWERS OR DITCHES: Connect through the curb or into a drainage structure as per general note in construction plans.

Section C. Roadway Ditches

- 1. METHOD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1003):
 - a. Rational Method

b.

2. DESIGN FREQUENCY TO DETERMINE (1102.3.1 or 1102.4):

ADT >2000:

- a. Depth of flow determination <u>10-</u> year
- b. Shear Stress determination (for protection and width of protection) <u>5-</u> year

ADT <2000:

- c. Depth of flow determination <u>5-</u> year
- d. Shear Stress determination (for protection and width of protection) 2- year
- 3. METHOD USED TO DETERMINE TIME OF FLOW TO DITCH (1101.2):

The summation of the time of overland flow, the time of shallow concentrated flow and the time of pipe or open channel flow.

4. ALLOWABLE SHEAR STRESS FOR DITCH LINING (1102.3):

Permanent Ditch Protection:

- a. Seed lining 0.40 psf.
- b. Sod or other temporary ditch protection <u>1.0</u> psf.
- c. Turf Reinforcing Mat (SS836), Type 1 2.00 psf.
- d. Turf Reinforcing Mat (SS836), Type 2 3.00 psf.
- e. Turf Reinforcing Mat (SS836), Type 3 <u>5.00</u> psf.
- f. RCP, Type B <u>6</u> psf.
- g. RCP, Type C 4 psf.

h. RCP, Type D <u>2</u> psf.

Temporary Ditch Protection (Item 670):

- a. Mat, Type A <u>1.25</u> psf.
- b. Mat, Type B <u>1.50</u> psf.
- c. Mat, Type C 2.00 psf.
- d. Mat, Type E <u>2.25</u> psf.
- e. Mat, Type F <u>0.45</u> psf.

Section C. Roadway Ditches - Continued

f. Mat, Type G <u>1.75</u> psf.

Tied Concrete Block Mat (Item 601)

- a. Type 1 3 psf.
- b. Type 2 5 psf.
- c. Type3 7 psf.
- 5. MANNING'S "n" USED FOR (1102.3):
 - a. Seed lining 0.03
 - b. Sod, jute, or other temporary linings <u>0.04</u>
 - c. Turf reinforcing mats 0.04
 - d. Tied Concrete Block Matting <u>0.03</u>
 - e. Rock channel protection <u>0.06 for ditches</u>, <u>0.04 for large channels</u>
- 6. DITCH CONFIGURATION (1102.2):
 - a. <u>Std roadside ditch radius</u> for roadway, with <u>12-</u> inch minimum depth
 - b. <u>Trapezoidal</u> for toe of embankment, with <u>12-</u> inch minimum depth
- 6. TYPE OF DITCH CATCH BASIN (1102.3.4):
 - a. ODOT Std No.2-2A and B, No.2-3, No.2-4, No.2-5, No.2-6, No.4, No.5, No.8 and side ditch inlets
- 8. MINIMUM LONGITUDINAL SLOPE OF DITCHES IN CUT SECTIONS (1102.1):
 - a. <u>0.50%</u> desirable minimum
 - b. 0.25% absolute minimum
- 9. METHOD USED TO LOCATE EXISTING FARM TILE CROSSED BY HIGHWAYS?

	a.	Contact the appropriate County Engineer's office for assistance in locating existing farm tile.			
Section	ь. n С.	Through field observations. Roadway Ditches – Continued			
10.	MIN	NIMUM WIDTH OF DITCH LININGS (1102.3.1):			
	a.	Sod <u>7.5</u> ft.			
	b.	Temporary linings 7.5 ft.			
	c.	Turf reinforcing mats 7.5 ft.			
11.	DES	SIGN FREQUENCY DEPTH SHALL NOT EXCEED (1102.3.1):			
	a.	An elevation 1 foot below edge of pavement for the design discharge.			
	b.	The depth of flow in toe of slope ditches shall be limited such that the design year discharge does not overtop the ditch bank.			
Section D. Median Ditches NA					
1.	DIT	CCH CONFIGURATIONS (1102.3):			
	a.	Depressed			
	b.	Type of barrier			
2.	WII	OTH BETWEEN PAVEMENT EDGES ft.			
3.	ALI	LOWABLE SHEAR STRESS FOR DITCH LINING (1102.3):			
	Permanent Ditch Protection:				
	a.	Seed lining psf.			
	i.	Sod or other temporary ditch protection psf.			
	j.	Turf Reinforcing Mat (SS836), Type 1 psf.			
	k.	Turf Reinforcing Mat (SS836), Type 2 psf.			
	1.	Turf Reinforcing Mat (SS836), Type 3 psf.			
	Temporary Ditch Protection (Item 670):				
	d.	Mat, Type A psf.			
	e.	Mat, Type B psf.			
	f.	Mat, Type C psf.			
	g.	Mat, Type E psf.			
	h.	Mat, Type F psf.			
	i.	Mat, Type G psf.			

Tied Concrete Block Mat (Item 601)

	a.	Type 1 psf.
	b.	Type 2 psf.
	c.	Type 3 psf.
1.	METH a.	OD USED TO ESTIMATE DESIGN DISCHARGE (Q) (1101.2):
	b.	
5.	CATC	H BASIN SPACING WILL BE DETERMINED BY HYDRAULIC ANALYSIS USING (1102.3.4):
	a.	year frequency and "n" = for velocity
	b.	year frequency and "n" = for depth
	c.	Controls: i. Design frequency depth shall not exceed:
		(1)
		(2)
	d.	Catch basin spacing, depressed median, fill section:
		Median Width 84' 60' 40'
		i. Desirable maximum
		ii. Absolute maximum
5.	TYPE	OF MEDIAN CATCH BASIN OR INLET (1102.3.4):
	a.	
7.	MINIM	IUM LONGITUDINAL SLOPE OF DEPRESSED EARTH MEDIAN:
Sectio	on E. D	rainage for Curbed Pavements
l.	CONT	ROLS FOR THE DETERMINATION OF INLET OR CATCH BASIN SPACING (1103):
	a.	Design storm frequency: 10- year ODOT, 5-year ADT Urban >9000, other 2-year
	b.	Check storm frequency: <u>50-</u> year for freeways, high volume highways and high volume City streets; <u>25-</u> year for other multi-lane highways and City streets (for underpasses or depressed roadways where the storm sewer is the only outlet)
	c.	METHOD USED TO DETERMINE TIME TO FIRST CATCH BASIN OR PAVEMENT

ii. Absolute minimum time of concentration of 10 minutes

i. The summation of the time of overland flow, the time of shallow concentrated flow and the time of pipe or open channel flow.

INLET:

	d.	Maximum spread of flow into traveled lane (use ODOT L&D Manual Table 1103-1 and ADT):		
		i. Freeways <u>0</u> ft		
		ii. 2-lane City Streets <u>6</u> ft		
		iii. 4-lane City Streets <u>8</u> ft		
		Outside lane width greater than 12 feet0ft. (freeways)		
		Total allowable spread on pavement shoulder width ft. (freeways, see Table 1103-1 for other highway types)		
	e.	Maximum depth of flow at curb 1 in below top of curb for the design discharge, 5 in max. depth. 6- in max. along barrier wall ODOT.		
	f.	Manning's "n" for:		
		i. Reinforced concrete pavement <u>0.015</u>		
		ii. Asphaltic concrete pavement <u>0.015</u>		
		iii. Paved shoulders <u>0.015</u>		
2.	TYPE	OF INLET OR CATCH BASIN PROPOSED FOR (1103):		
	a.	Continuous grades ODOT Std 6' pavement inlet or CB No.3A. City CB-1 on city streets.		
	c.	Sags ODOT Std CB No.3. For drives, Std No.6 with flanking No.3A catch basins - see 1103.7. City sags use a CB-3(single CB-1 adjacent a IB-1)		
3.		Γ LIP OF CURB OPENING INLET WILL BE DEPRESSED2.0 INCHES BELOW MAL GUTTER.		
	a.	A local depression of inches will be used to determine spacing of combination grate and curb opening catch basins for a curb pavement section.		
	b.	A local depression of inches will be used to determine spacing of combination grate and curb opening catch basins for a combination curb and gutter section.		
4.	BRID	BRIDGE DECK DRAINAGE		
	a.	The design frequency of bridge deck drainage in the Scope of Work (14.2.4) and the L&D was intended to be the 10-year event for the Interim and Future condition and a 2-year event for the Bi-Directional Condition. Due to the poor condition of the deck on several existing bridges, these bridge decks or bridge superstructures will be replaced now. When Innerbelt Contract CCG-3 is constructed these bridges will be completely replaced or will no longer be needed. In an attempt		

to reduce the number of scuppers on bridges in accordance with ODOT's L&D Section 1103.1, it was agreed to use the 2-year storm for the design frequency for the re-decked bridges. That requirement is to confine the 2-year design storm to the Interim Condition shoulder width, and

limit the extent to which the 10-year storm spread exceeds the shoulder width.

Northeast Ohio Regional Sewer District

Request for Connection Approval to Combined Sewer System

Submittal Guidelines for Review and Approval

December 6, 2010

Revised:

1.0 Purpose

The Title IV Combined Sewer Code of the Northeast Ohio Regional Sewer District (NEORSD) provides the NEORSD with the authority to control combined sewer overflows (CSOs) from the combined sewer system and control peak flows from local combined sewer systems at the point of connection into sewers owned by the NEORSD or member community. Therefore, the NEORSD has the authority to review all requests for connection approval to the combined sewer system.

The purpose of this document is to provide guidance to landowner, developers, and design engineers interested in developing land in the combined sewer service area and provide a uniform process for submitting construction plans to the NEORSD for review and approval. Design standards and criteria are also provided for use in developing stormwater management systems for sites where a connection is requested to be made to an existing combined sewer or CSO pipe.

2.0 Procedures for Submittal and Review

Requests for connection approval are required for all new development and redevelopment projects within the NEORSD service area seeking to connect to a combined sewer, CSO pipe, or separated storm sewer tributary to a combined sewer or CSO pipe. This section outlines the procedures that should be followed to ensure a complete submittal package is provided for review.

2.1 General Information

- Landowners, developers, and design engineers on behalf of the owner/developer may request
 approval to connect by submitting a set of construction plans with associated calculations
 supporting the stormwater management plan. For the sake of simplicity, the term "Designer" will
 be used throughout this document to refer to the landowner, developer and/or design engineer
 working on behalf of the owner/developer.
- Connection requests shall be made prior to the start of any work requiring approval from NEORSD. Work should only start after approval has been granted.
- As stated in the Title IV Combined Sewer Code of the NEORSD, the NEORSD has 15 business
 days upon receipt of a complete submittal package to review a connection request. The
 NEORSD will attempt to review these request in the shortest possible time. The Designer is
 encouraged to contact the NEORSD early in the design process to avoid delays in the project
 schedule. A definition of a complete submittal package is provided in section 2.2.
- Minimum design standards and criteria accepted by the NEORSD are provided in this document for designing stormwater management plans for sites within its service area. Depending on the location of the development site within the service area, there may be cases where a more restrictive design criterion is required due to downstream capacity issues. The Designer is encouraged to contact the NEORSD early in the design phase to determine whether the site is located in a critical area of the combined sewer system and subject to stricter design criteria.
- Construction plans showing the layout of the area intended to be developed shall be submitted to the NEORSD by the Designer. The plans shall be prepared under the direction of and sealed by a registered professional engineer.
- The NEORSD will review the plans for adequacy of stormwater management design to ensure that the proposed stormwater drainage system has the capacity to handle all contributing flow without diminution of the existing level of service in the combined sewer system.

2.2 Submittal Requirements

A complete submittal package should include and clearly state, at minimum, the following:

- 1. Stormwater criteria and design standards used if other than the NEORSD Title IV Code of Regulation.
- 2. Site map(s) of showing project site location, total drainage area, land use/cover, amount of impervious area and longest flow paths for existing and proposed conditions.
- 3. Detailed topographical map showing existing topography and proposed grades of the entire area, as well as the topography of all adjacent property to the extent that off-site contributing flow can be determined. All off-site contributing flow must be accommodated. All existing watercourses, lakes, wetlands and floodplain (if applicable) should also be included on the map. Please specify the horizontal and vertical national datum used.
- 4. Location, size, and type of all existing storm sewers, channels, and/or structures located upstream and downstream of project area.
- 5. Location, size, and type of proposed storm sewers, channels, and/or structures to be built as part of the site's stormwater management design.
- 6. Plans, cross-section views and details of all SCMs. If an existing SCM on or off-site will be used then as-built information must be provided. Please identify drainage area unique to each SCM on plans.
- 7. Plans and details of the soil erosion and sedimentation control measures. Indicate which measures are temporary or permanent and the party responsible for maintaining the control measures.
- 8. Predominant soil type from USDA soil surveys or soil borings found at site.
- 9. Drainage breakup sheet indicating the number of acres and percent imperviousness contributing to each specific drainage structure or SCM.
- 10. Design data and criteria used for sizing all drainage structures, channels, and SCMs.
- 11. Hydrologic and hydraulic calculations, assumptions, and parameters used for quantifying peak flows for existing and post-development conditions. Longest flow paths used in quantifying time of concentration for each should be shown on a site map.
- 12. A plan and a proposed schedule for the perpetual maintenance of the complete storm drainage system. Indicate who will be responsible (i.e. municipality, landowner, or homeowners' association) for the maintenance. If the homeowners' association will be responsible for the system, the subdivision deed restrictions must have a section indicating such responsibility and a copy must be submitted to the NEORSD. If there is a maintenance agreement with the City, Village or Township, a copy of the agreement must be submitted to the NEORSD. The maintenance plan must be submitted prior to plan approval.

3.0 Design Criteria and Engineering Standards

The design criteria and engineering standards set forth herein are intended to guide designers to develop a stormwater management system that controls the quantity and quality of the stormwater discharge for a development site. The internal drainage for a site as well as the downstream conditions will be reviewed. Every site is part of an overall watershed and the system should be designed with this in mind. The system should conform to natural drainage patterns both on and off-site. These standards are the minimum requirements of the NEORSD and should not be construed as all-inclusive. The design engineer should consider many factors when planning the stormwater management system. In particular, Federal, State, and Local standards may be more strict than these standards. In the case where conflicting standards arise, the more stringent requirement will govern. Exceptions will be considered when conforming to a local community stormwater criteria or standard is required.

3.1 Title IV Design Criteria

The design criteria specified in the Title IV Combined Sewer Code of the NEORSD are outlined below based on the type of sewer that will be connected to (i.e., combined sewer or CSO pipe):

- For connections to the combined sewer system, storage volume shall be provided based on the 5-year event using a maximum release rate as defined in section 3.4. For larger, less frequent design events greater than the 5-year event, the maximum release rate shall be defined as the existing conditions peak discharge of the corresponding storm frequency evaluated for postdevelopment conditions.
- 2. For connections to a CSO pipe, directly or via a separated storm sewer, treatment of stormwater runoff shall be handled in accordance with Part III.G.2.e of the Ohio EPA's General Construction Permit OHC000003. It should be noted, however, that the NEORSD will only accept stormwater management designs that provide water quality treatment for 100% of the project area whether the project is considered a redevelopment project or not. Post-development peak flows shall not exceed existing conditions peak flows up to the 25-year design event.

The criteria are the minimum design standard accepted by the NEORSD. In addition to the Title IV criteria herein, the Designer must also abide by the rules, standards, specifications and master plan of the municipality where the site is located. In the case where conflicting standards arise, the more stringent requirements will govern.

3,2 Rainfall Intensity-Duration-Frequency

Rainfall intensity-duration-frequency (IDF) estimates provided in Appendix A shall be used to the design of the stormwater management plans. Other sources of rainfall IDF estimates may be used if required by another Federal, State, or local standard applicable to the development site. If a different rainfall IDF source is used to support the stormwater design as dictated by another Federal, State or local authority, it should be clearly documented in the submittal package for review.

3.3 Peak Stormwater Flows

There are no NEORSD restrictions on the type of engineering methodology or software that the designer may use to quantify stormwater runoff from the site at this time. It is the responsibility of the designer to select an appropriate methodology suitable for the nature of the site. Supporting documentation, clearly stating the methodology, assumptions, parameters, and computations must be submitted for review and approval. In addition, the basis for selecting critical parameters, i.e., runoff coefficients, curve number, time of concentration, etc., should also be documented and provided for review.

3.4 Maximum Release Rate

Typically the maximum release rate is defined as the existing conditions 6-month, 24-hour peak flow. There may be cases where a more restrictive allowable discharge rate is required due to downstream capacity issues. In this situation, the designer will be required to incorporate a more restrictive release rate criterion into the stormwater management design to protect existing connections by avoiding the increase risks in basement flooding and/or increase in CSO volume. The designer is encouraged to contact the NEORSD to determine whether the development site is located in a critical area of the combined sewer system that is subject to stricter release rate limits.

NOTE: Stormwater Design Discussion Group intends to replace the 6-month, 24-hour criteria with a figure/map that would show release rates based on CSO tributary areas.

3.5 Stormwater Storage Requirements

There are no NEORSD restrictions on the type of engineering methodology or software that the designer may use to quantify required storage volume at this time. It is the responsibility of the designer to select an appropriate methodology for site design. Supporting documentation, clearly stating the methodology, assumptions, parameters, and computations must be submitted for review and approval. Documentation

with supporting calculation on the maximum allowable discharge used to determine the required storage volume must be clearly stated and provided for review and approval.

3.6 Stormwater Conveyance

There are no NEORSD restrictions on the type of engineering methodology or software that the designer may use to size the stormwater conveyance system at this time. It is the responsibility of the designer to select an appropriate methodology for site design. Supporting documentation, clearly stating the methodology, assumptions, parameters, and computations must be submitted for review and approval.

3.7 Physical Connection

The following general conditions are required by the NEORSD regarding the physical connection to one of its facilities pending approval of all connection requests.

Connections to existing laterals

- The existing laterals to be used shall be instated by video camera, and a copy of the video shall
 be submitted to the NEORSD for review and approval prior to the connections being made. Upon
 review of the videotape by the NEORSD, if the existing lateral(s) needs to be cleaned and or
 repaired the work shall be performed at no cost to the NEORSD prior to the connections being
 made.
- The laterals shall be re-inspected after the cleaning and/or repair and a copy of the video shall be submitted to the NEORSD for review and approval prior to the connection being made. All laterals not approved for use shall be abandoned.
- The contractor shall provide a watertight connection to the existing lateral and encase the connection in concrete.

If an existing lateral cannot be used, a new lateral shall be installed and the contractor shall meet the following conditions. (lay permit)

- Provide pre-construction and post-construction video inspection of the interceptor showing
 footage measurement from either the upstream or the downstream manhole and extending a
 minimum of 20 feet past the connection point. The former shall be submitted to the NEORSD for
 approval prior to the commencement of work.
- The connection shall be made through a properly sized cored hole. If the connection is to a reinforced concrete or vitrified clay pipe, then the lateral shall be concreted to the sewer using a manufactured boot that makes a watertight connection. If the connection is to a brick sewer, then the lateral shall be connected by wrapping a waterstop material such as Volclay RX101 or equal around the lateral with two (2) wraps minimum in accordance with the attached detail. If waterstop material is used, the annular space between the sewer wall and lateral shall be filled with hydraulic cement. Either type of connection shall then be encased in concrete. The owner shall warrant that the connection will be watertight for a period of one year.

The following conditions apply to either the use of an existing lateral or the construction of a new lateral.

- The owner shall warrant that the connection will be watertight for a period of one year.
- The contractor is responsible for any and all damage to the interceptor as determined by the NEORSD.
- The contractor shall prevent any debris from entering the sewer. Any debris entering the sewer shall be removed by the contractor.

- The contractor is responsible for obtaining any and all permits required for the work.
- A 72-hour notice shall be provided to Mr. Lyle Plummer or Mr. Brian Stapleton (216-641-6000) to schedule a NEORSD inspector for the connection.

APPENDIX A

Table A-1. Rainfall Depth-Duration.

Тс			n-Durat			Rainfall D	epth (in)					
(min)	2-Month	3-Month	4-Month	6-Month	9-Month	1-Year	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
5	0.13	0.15	0.17	0.19	0.22	0.32	0.39	0.46	0.53	0.60	0.67	0.73
10	0.24	0.28	0.30	0.35	0.40	0.50	0.60	0.72	0.81	0.93	1.01	1.10
15	0.30	0.35	0.38	0.45	0.51	0.61	0.74	0.88	1.00	1.14	1.25	1.36
20	0.34	0.39	0.43	0.50	0.57	0.68	0.82	0.99	1.12	1.29	1.42	1.56
25	0.37	0.44	0.47	0.56	0.63	0.74	0.90	1_10	1.25	1.45	1.60	1,76
30	0.41	0.48	0.52	0.61	0.69	0.81	0.98	1.21	1.38	1.61	1.78	1.96
35	0.43	0.50	0.55	0.64	0.72	0.84	1.01	1.26	1.44	1.69	1.87	2.07
40	0.45	0.52	0.57	0.67	0.75	0.87	1.05	1.31	1.51	1.77	1.97	2.18
45	0.47	0.55	0.60	0.70	0.79	0.90	1.09	1.36	1.57	1.85	2.06	2.29
50	0.49	0.57	0.62	0.72	0.82	0.93	9 1.13	1.41	1.63	1.93	2.16	2.40
55	0.51	0.59	0.65	0.75	0.85	0.96	1.17	1.46	1.69	2.01	2.25	2.51
60	0.53	0.61	0.67	0.78	0.88	0.99	1.21	1.51	1.76	2.09	2.35	2.62
65	0.54	0.62	0.68	0.80	0.90	1.00	1.22	1.53	1.78	2.12	2.39	2.67
70	0.55	0.64	0.70	0.81	0.92	1.01	1.24	1.55	1.81	2.15	2.43	2.72
75	0.56	0.65	0.71	0.83	0.93	1.03	1.25	1.57	1.83	2.18	2.47	2.76
80	0.57	0.66	0.72	0.84	0.95	1.04	1,27	1.59	1.86	2.22	2.51	2.81
85	0.58	0.67	0.74	0.86	0.97	1.05	1.28	1.61	1.88	2.25	2.55	2.86
90	0.59	0.69	0.75	0.87	0.99	1.07	1.30	1.64	1.91	2.28	2.59	2.91
95	0.60	0.70	0.76	0.89	1.00	1.08	1.31	1.66	1.93	2.31	2.63	2.95
100	0.61	. 0.71	, 0.78	0.90	1.02	1.09	1.33	1.68	1.96	2.35	2.6	3.00
105	0.62	0.72	0.79	0.92	1.04	1.11	1.34	1.70	1.98	2.38	3 2.7:	1 3.05
110	0.63	0.74	0.80	0.93	1.06	1,12	1.36	1.72	2.01	2.4	1 2.7	3.10
115	0.64	0.75	0.82	0.99	1.07	1.13	1.37	7 1.74	2.03	2.4	4 2.79	3.14
120	0.65	0.76	0.83	0.96	1.09	1.15	1.39	1.76	2.06	2.4	3 2.8	3.19
180	0.72	0.84	0.92	1.06	1.21	1.23	1.49	1.89	2.21	2.6	3.0	3.48
360	0.8/	0.98	1.07	7 1,24	1.41	1.45	1.75	2.21	2.61	L 3.20	3.7	0 4.25
720	0.97		3 1.24	1.43	1.63	1.67	2.01	2.52	2.9	3.6	1 4.1	
1440	1.13	1.3:	1 1.4	1.69	1.88	1.95	2.33	3 2.92	3.40	4.0	9 4.6	6 5.28

Bolded numbers indicate values taken directly from rainfall atlas references. Rainfall estimates for 2-month through 9-month frequencies were taken from the Illinois State Water Survey's *Rainfall Frequency Atlas of the Midwest (Bulletin 71)* by Huff and Angel dated 1992. Rainfall estimates for the 1-year through 100-year frequencies are based on average estimates obtained from the NOAA Atlas 14 website (http://hdsc.nws.noaa.gov/hdsc/pfds/orb/oh_pfds.html). Two observation sites (Cleveland WSO AP 33-1657 and Cleveland Easterly 33-1651) were used to develop the average estimates shown in the table above. Non-bolded numbers were derived by means of linear interpretation between the two rainfall atlas references for estimates.

Table A-2. Rainfall Intensity-Duration.

Тс	2. Kaini				Ra	infall Inte	nsity (in/h	r)				
(min)	2-Month	3-Month	4-Month	6-Month	9-Month	1-Year	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year
5	1.56	1.80	2.04	2.28	2.64	3.84	4.62	5.52	6.30	7.20	7.98	8.70
10	1.44	1.68	1.80	2.10	2.40	3.00	3.60	4.29	4.83	5.55	6.03	6.57
15	1.20	1.40	1.52	1.80	2.04	2.44	2.94	3.52	3.98	4.54	4.98	5.44
20	1.01	1.18	1.28	1 .51	1.71	2.03	2.45	2.97	3.37	3.88	4.27	4.68
25	0.90	1.05	1.14	1.34	1.51	1.78	2.15	2.63	3.00	3.48	3.84	4.22
30	0.82	0.96	1.04	1.22	1.38	1.61	1.95	2.41	2.76	3.21	3.56	3.92
35	0.74	0.86	0.93	1.09	1.24	1.43	1.74	2.15	2.47	2.89	3.21	3.55
40	0.68	0.79	0.86	1.00	1.13	1.30	1.58	1.96	2.26	2.65	2.95	3.27
45	0.63	0.73	0.79	0.93	1.05	1.19	1.45	/ 1.81	2:09	2.46	2.75	3.05
50	0.59	0.68	0.74	0.87	0.98	1.11	1.35	1,69	1.96	2.31	2.59	2.88
55	0.56	0.64	0.70	0.82	0.93	1.04	1.27	1,59	1 .85	2.19	2.46	2.74
60	0.53	0.61	0.67	0.78	0.88	0.99	1.21	1.51	1.76	2.09	2.35	2.62
65	0.50	0.57	0.63	0.73	0.83	0.92	1.13	1.41	1.64	1.95	2.20	2.46
70	0.47	0.54	0.60	0.69	0.78	0.87	1.06	1.33	1.55	1.84	2.08	2.33
75	0.45	0.52	0.57	0.66	0.75	0.82	1.00	1.26	1.46	1.75	1.97	2.21
80	0.43	0.50	0.54	0.63	0.71	0.78	0.95	1.20	1.39	1.66	1.88	2.11
85	0.41	0.47	0.52	0.60	0.68	0.74	0.91	1.14	1.33	1.59	1.80	2.02
90	0.39	0.46	0.50	0.58	0.66	0.71	0.87	1.09	1.27	1.52	1.72	1.94
95	0.38	0.44	0.48	0.56	0.63	0.68	0.83	1.05	1.22	1.46	1.66	1.86
100	0.37	0.43	0.47	0.54	0.61	0.66	0.80	1.01	1.17	1.43	1.60	1.80
105	0.35	0.41	0.45	0.52	0.59	0.63	0.77	0.97	1.13	1.36	1.55	1.74
110	0.34	0.40	0.44	0.51	. 0.58	0.61	0.74	0.94	1.09	1.31	1.50	1.69
115	0.33	0.39	0.43	0.49	0.56	0.59	0.72	0.91	1.08	1.27	1.45	1.64
120	0.33	0.38	0.42	0,48	0.55	0.57	0.70	0.88	1.03	1.24	1.4:	1.60
180	0.24	0.28	0.31	0.35	0.40	0.41	0.50	0.63	0.74	0.89	1.02	2 1.16
360	0.14	0.16	0.18	0.21	0.24	0.24	0.29	0.37	0.43	0.53	0.62	2 0.71
720 🦼	0.08	0.09	0.10	0.12	0.14	0.14	0.17	0.21	0.25	0.30	0.3	0.40
1440	0.05	0.05	0.06	0.07	0.08	0.08	0.10	0.12	0.14	0.17	7 0.19	0.22

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX B

PID: 49633 Date: 11/16/2011 Project: CUY-90-14.90 Location: East Bank Outfall, I-90 WB 142+14 RT

Description: East Bank Outfall - Water Quality Basin to Cuyahoga River, I-90 WB 142+14 RT **Designer**: PNS

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 572.50

JUNC From		STATION From To	ΔAREA Σ AREA (acres)		TIME		SITY	(cfs	.)	DIAM. Li (in.)		SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D1B beg		147+96 147+96	0.79 0.79	0.71 0.71	15.00	4.20	5.12	3.0	3.7	18	13.1	0.0137	580.58 580.40	5.17	11.47	0.0016	581.54 581.52	583.98 584.00	2.44	1.90	CB 2-3 0.015
D1	D2	147+96 144+33	0.30 1.09	0.27 0.98		4.19	4.85	4.1	4.8	18	363.6	0.0046	580.40 578.74	3.73	6.62	0.0027	581.39 579.91	584.00 582.84	2.61	2.10	CB 2-3 0.015
D2B beg	D2 gin	144+33 144+33	0.82 1.91	0.74 1.72	15.00	4.20	5.12	3.1	3.8	18	13.3	0.0450	578.84 578.24	7.99	20.78	0.0017	579.38 579.36	582.84 582.84	3.46	2.50	CB 2-3 0.015
D2	D3	144+33 141+67	0.30 2.21	0.27 1.99		3.97	4.03	7.9	8.0	24	265.3	0.0135	577.69 574.10		24.53	0.0017	578.51 576.23	582.84 582.40	4.33	3.15	CB 2-3 0.015
D3B beg	D3 gin	141+67 141+67	0.68 2.89	0.61 2.60		4.20	5.12	2.6	3.1	18	12.8	0.0320	578.11 577.70		17.53	0.0012	578.80 578.79	582.01 582.40	3.21	2.40	CB 2-3 0.015
D3	D6	141+67 140+88	0.00 2.89	0.00 2.60	17.34	3.89	4.03	10.1		24 Warning		0.0009	574.10 574.03	3.22	6.25	0.0028	576.23 576.00	582.40 582.48	6.17	6.30	MH 3 0.015
D6	D5	140+88 140+64	0.00 2.89	0.00 2.60	21.13	3.47	4.03	9.0	10.5	24	43.0	0.0035	574.03 573.88	4.07	12.46	0.0028	576.00 575.88	582.48 581.58	6.48	6.45	MH 3 0.015
D5	D4	140+64 137+82	0.00 2.89	0.00 2.60	21.34	3.45	4.03	9.0	10.5	24	296.0	0.0018	573.88 573.34	2.86	9.01	0.0028	575.88 574.92	581.58 579.53	5.70	5.70	MH 3 0.015

JUNC ¹ From	TION To	STATION From To	ΔAREA ΣAREA (acres)	ΣCA	TIME		SITY	(cfs	.)	DIAM. L	PIPE ENGTH (ft.)	ISLOPE (ft./ft.)		MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D4A beg	D4 in	137+82 137+82	0.29 3.18	0.26 2.86		3.81	4.65	1.0	1.2	15	11.7	0.0531	576.15 575.53		13.88	0.0005	576.41 576.37	579.35 579.53	2.94	1.95	CB 2-3 * 0.015
D4 fina	HW al	137+82 136+47	0.00 3.18	0.00 2.86	23.07	3.29	3.98	9.4	11.4	30	134.7	0.0048	572.84 572.20		26.36	0.0010	574.15 574.01	579.53 574.71	5.38	4.19	MH 3 0.015

^{*} CB 2-3 is WQB Unit

PID: 49633 Date: 11/16/2011 Project: CUY-90-14.90 Location: East Bank Outfall, I-90 WB 142+14 RT

Description: East Bank Outfall - Water Quality Basin to Cuyahoga River, I-90 WB 142+14 RT **Designer**: PNS

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 50

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 572.50

JUNC	TION	STATION	ΔAREA	ΔCA	BEGIN	RAINF	ALL I	DISCH	ARGE		PIPE		F/L PIPE	MEAN	JUST FULL	FRICT	HYGR EL.	COVER	COVER	COVER	INLET TYPE
From	То	From To	Σ AREA	ΣCA				(cfs	•	DIAM. L		-	IN / OUT	VEL	CAPACITY			IN / OUT			MANNING'S
		10	(acres)		(min.)	(10 yrs.) (5	50 yrs.) (10 yrs.)(50 yrs.)	(in.)	(ft.)	(ft./ft.)	(ft.)	(fps.)	(cfs.)	(ft./ft.)	(ft.)	(ft.)	HY GR	CROWN	'n'
D1B	D1	147+96	0.79	0.71	15.00	4.20	5.48	3.0	3.9	18	13.1	0.0137	580.58	5.17	11.47	0.0018	581.55	583.98	2.43	1.90	CB 2-3
beg	gin	147+96	0.79	0.71									580.40				581.53	584.00			0.015
D1	D2	147+96	0.30	0.27	15.04	4.19	5.17	4.1	5.1	18	363.6	0.0046	580.40	3.73	6.62	0.0031	581.44	584.00	2.56	2.10	CB 2-3
		144+33	1.09	0.98									578.74				579.92	582.84			0.015
D2B	D2	144+33	0.82	0.74	15.00	4.20	5.48	3.1	4.0	18	13.3	0.0450	578.84	7.99	20.78	0.0020	579.40	582.84	3.44	2.50	CB 2-3
beg	gin	144+33	1.91	1.72									578.24				579.37	582.84			0.015
D2	D3	144+33	0.30	0.27	16.67	3.97	4.26	7.9	8.5	24	265.3	0.0135	577.69	6.60	24.53	0.0019	578.53	582.84	4.31	3.15	CB 2-3
		141+67	2.21	1.99									574.10				576.28	582.40			0.015
D3B	D3	141+67	0.68	0.61	15.00	4.20	5.48	2.6	3.4	18	12.8	0.0320	578.11	6.74	17.53	0.0014	578.82	582.01	3.19	2.40	CB 2-3
beg	gin	141+67	2.89	2.60									577.70				578.80	582.40			0.015
D3	D6	141+67	0.00	0.00	17.34	3.89	4.26	10.1	11.1	24	79.6	0.0009	574.10	3.22	6.25	0.0032	576.28	582.40	6.12	6.30	MH 3
		140+88	2.89	2.60						Warning			574.03				576.02	582.48			0.015
D6	D5	140+88	0.00	0.00	21.13	3.47	4.26	9.0	11.1	24	43.0	0.0035	574.03	4.07	12.46	0.0032	576.02	582.48	6.46	6.45	MH 3
		140+64	2.89	2.60									573.88				575.88	581.58			0.015
D5	D4	140+64	0.00	0.00	21.34	3.45	4.26	9.0	11.1	24	296.0	0.0018	573.88	2.86	9.01	0.0032	575.88	581.58	5.70	5.70	MH 3
		137+82	2.89	2.60									573.34				574.94	579.53			0.015

JUNC From	_	STATION From To	ΔAREA ΣAREA (acres)	_	TIME	RAINF INTEN (10 yrs.) (5	SITY	(cfs	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)			JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	_	
D4A beg	D4 Jin	137+82 137+82	0.29 3.18	0.26 2.86		3.81	4.94	1.0	1.3	15	11.7	0.0531	576.15 575.53	6.24	13.88	0.0005	576.42 576.38	579.35 579.53	2.93	1.95	CB 2-3 * 0.015
D4 fina	HW al	137+82 136+47	0.00 3.18	0.00 2.86	23.07	3.29	4.21	9.4	12.1	30	134.7	0.0048	572.84 572.20		26.36	0.0011	574.19 574.03	579.53 574.71	5.34	4.19	MH 3 0.015

^{*} CB 2-3 is WQB Unit

Description: scupper discharge to east bank b pond **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	_	SIDE	LENGTI (ft.)	HRADIUS WIDTH (ft.)	SLOPE		GRADE (ft./ft.)			RUNOFF COEFF.		PROTECT TYPE	INT.		MANN. COEFF.			SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	WIDTH FLOW (ft.)
141+24	143+58	R	284.00	1.00	3.00	3.00	0.0035	0.68	0.68	0.90	0.61	Seed	3.8	4 5	0.030	13.19	1.45	0.13	2.35	0.59	4.53
												Seed	4.3	9 10	0.040	13.78	1.20	0.16	2.68	0.71	5.27
143+58	143+58	L	16.00	1.00	3.00	3.00	0.2500	0.00	0.68	0.90	0.61	Seed	3.8	3 5	0.030	13.23	6.88	3.27	2.35	0.21	2.26
												Jute Mat	3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Temp. Mat	3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	1 3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	2 3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	3 3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	3 4.3	3 10	0.040	13.83	5.82	4.04	2.68	0.26	2.55

Description: scupper discharge to east bank b pond **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	_	SIDE	ELENGTI (ft.)	HRADIUS WIDTH (ft.)	SLOPE		_			RUNOFF COEFF.		PROTECT TYPE	RAIN INT. (in./hr.)	FREQ.	MANN. COEFF.	TIME FLOW (min.)		SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	WIDTH FLOW (ft.)
141+24	143+58	R	284.00	1.00	3.00	3.00	0.0035	0.68	0.68	0.90	0.61	Seed	3.8	4 5	0.030	13.19	1.45	0.13	2.35	0.59	4.53
												Seed	5.8	1 50	0.040	13.52	1.29	0.18	3.56	0.81	5.83
143+58	143+58	L	16.00	1.00	3.00	3.00	0.2500	0.00	0.68	0.90	0.61	Seed	3.8	3 5	0.030	13.23	6.88	3.27	2.35	0.21	2.26
												Jute Mat	3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Temp. Mat	t 3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	1 3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	2 3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	3 3.8	3 5	0.040	13.24	5.58	3.79	2.35	0.24	2.46
												Perm, Type	3 5.8	50	0.040	13.56	6.27	4.66	3.55	0.30	2.79

Description: scupper discharge to east bank b pond inlet D-1 RT ditch **Designer**: PNS

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA [*] BEGIN	ΓΙΟΝ END	SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)	SLOPE	_	GRADE (ft./ft.)	AREA (acres)		RUNOFF COEFF.	_	PROTECT TYPE		FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	
148+24	148+00	R	34.00	1.00	3.00	3.00	0.0050	0.75	0.75	0.90	0.68	Seed	4.25	5 5	0.030	10.33	1.73	0.19	2.87	0.59	4.57
												Seed	5.0′	1 10	0.040	10.39	1.46	0.23	3.38	0.73	5.37
148+00	Concent							0.05		0.90	0.72					10.00					
148+00	147+96	R	26.00	1.00	3.00	3.00	0.0050	0.00	0.80	0.00	0.72	Seed	4.2	1 5	0.030	10.57	1.76	0.19	3.03	0.61	4.66
												Seed	4.95	5 10	0.040	10.68	1.48	0.23	3.56	0.75	5.47

Description: scupper discharge to east bank b pond inlet D-1 RT ditch **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA	ΓΙΟΝ	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
148+24	148+00	R	34.00	1.00	3.00	3.00	0.0050	0.75	0.75	0.90	0.68	Seed	4.25	5 5	0.030	10.33	1.73	0.19	2.87	0.59	4.57
												Seed	6.68	3 50	0.040	10.36	1.57	0.26	4.51	0.83	5.95
148+00	Concent							0.05		0.90	0.72					10.00					
148+00	147+96	R	26.00	1.00	3.00	3.00	0.0050	0.00	0.80	0.00	0.72	Seed	4.2	1 5	0.030	10.57	1.76	0.19	3.03	0.61	4.66
												Seed	6.59	9 50	0.040	10.63	1.59	0.26	4.74	0.84	6.07

Description: scupper discharge to east bank b pond inlet D-2 LT pier 7 **Designer**: PNS

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT	ION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)		(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
144+74	144+58	L	74.00	1.00	3.00	3.00	0.0040	0.15	0.15	0.90	0.14	Seed Seed	4.12 4.8 ⁷			11.18 11.39	1.02 0.87	0.07	0.56 0.65	0.29	

Description: scupper discharge to east bank b pond inlet D-2 LT pier 7 **Designer**: PNS

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 Type 2: 3.00 Type 3: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT	ΓΙΟΝ	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
144+74	144+58	L	74.00	1.00	3.00	3.00	0.0040	0.15	0.15	0.90	0.14	Seed	4.12	2 5	0.030	11.18	1.02	0.07	0.56	0.29	2.74
												Seed	6.39	9 50	0.040	11.28	0.95	0.10	0.86	0.41	3.45

Description: scupper discharge to east bank b pond inlet D-2 RT Pier 7 **Designer**: PNS

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA	TION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	fLOW (ft.)	FLOW (ft.)
144+74	144+58	R	30.00	1.00	3.00	3.00	0.0060	0.67	0.67	0.90	0.60	Seed	4.26	5 5	0.030	10.28	1.80	0.20	2.57	0.54	4.25
												Seed	5.02	2 10	0.040	10.33	1.52	0.25	3.03	0.67	5.00
144+58	Concent							0.15		0.90	0.74					10.00					
144+58	144+96	R	52.00	1.00	3.00	3.00	0.0060	0.00	0.82	0.00	0.74	Seed	4.18	3 5	0.030	10.73	1.89	0.22	3.09	0.59	4.54
												Seed	4.9	1 10	0.040	10.87	1.59	0.27	3.62	0.72	5.33

Description: scupper discharge to east bank b pond inlet D-2 RT Pier 7 **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA	TION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
144+74	144+58	R	30.00	1.00	3.00	3.00	0.0060	0.67	0.67	0.90	0.60	Seed	4.20	6 5	0.030	10.28	1.80	0.20	2.57	0.54	4.25
												Seed	6.69	9 50	0.040	10.31	1.63	0.28	4.04	0.76	5.54
144+58	Concent							0.15		0.90	0.74					10.00					
144+58	144+96	R	52.00	1.00	3.00	3.00	0.0060	0.00	0.82	0.00	0.74	Seed	4.18	8 5	0.030	10.73	1.89	0.22	3.09	0.59	4.54
												Seed	6.5	3 50	0.040	10.81	1.71	0.31	4.82	0.82	2 5.91

Description: scupper discharge to east bank b pond inlet D-1 Left Pier 8 **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 Type 2: 3.00 Type 3: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STATION	SIDE LENGT	H RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	I MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN END	(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)		(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)		(lbs./ sq.ft.)	FLOW (cfs.)	fLOW (ft.)	FLOW (ft.)
148+24 148+00	L 75.00	1.00	3.00	3.00	0.0100	0.05	0.05	0.90	0.05	Seed Seed	4.12 4.8 ⁷	•			1.04 0.91	0.08	0.19	0.13 0.16	

Description: scupper discharge to east bank b pond inlet D-1 Left Pier 8 **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT	ION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)		(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
148+24	148+00	L	75.00	1.00	3.00	3.00	0.0100	0.05	0.05	0.90	0.05	Seed Seed	4.12 6.40	•			1.04 0.98	0.08	0.19 0.29	0.13	

Description: scupper discharge to East Bank Basin A **Designer**: PNS

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	-	SIDE	LENGTI (ft.)		SLOPE	SLOPE	GRADE (ft./ft.)		SUM	RUNOFF COEFF.			RAIN INT.	FREQ.	MANN. COEFF.		VEL. FLOW	(lbs./	DESIGN FLOW	FLOW	FLOW
				(ft.)	(ft./ft.)	(ft./ft.)			(acres)				(in./hr.)	(yrs.)		(min.)	(fps.)	sq.ft.)	(cfs.)	(ft.)	(ft.)
137+40	137+33	R	7.00	1.00	3.00	3.00	0.0295	0.29	0.29	0.90	0.26	Seed	4.29	9 5	0.030	10.04	2.60	0.45	1.12	0.25	2.48
												Jute Mat	4.29	9 5	0.040	10.06	2.09	0.53	1.12	0.29	2.72
												Temp. Mat	4.29	9 5	0.040	10.06	2.09	0.53	1.12	0.29	2.72
												Temp. Mat	5.08	3 10	0.040	10.05	2.20	0.57	1.33	0.31	2.87
137+33	133+22	R	11.00	1.00	3.00	3.00	0.2000	0.00	0.29	0.90	0.26	Seed	4.29	9 5	0.030	10.09	5.14	1.88	1.12	0.15	1.90
												Jute Mat	4.28	8 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Temp. Mat	4.28	8 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Perm, Type	1 4.28	8 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Perm, Type	2 4.28	8 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Perm, Type	2 5.0	7 10	0.040	10.09	4.39	2.40	1.33	0.19	2.15

Description: scupper discharge to East Bank Basin A **Designer**: PNS

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	_	SIDE	LENGTI (ft.)	HRADIUS WIDTH (ft.)	SLOPE		GRADE (ft./ft.)			RUNOFF COEFF.			RAIN INT. (in./hr.)		MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	WIDTH FLOW (ft.)
137+40	137+33	R	7.00	1.00	3.00	3.00	0.0295	0.29	0.29	0.90	0.26	Seed	4.29	9 5	0.030	10.04	2.60	0.45	1.12	0.25	5 2.48
												Jute Mat	4.29	9 5	0.040	10.06	2.09	0.53	1.12	0.29	2.72
												Temp. Mat	4.29	9 5	0.040	10.06	2.09	0.53	1.12	0.29	2.72
												Temp. Mat	6.78	8 50	0.040	10.05	2.38	0.66	1.77	0.36	3.15
137+33	133+22	R	11.00	1.00	3.00	3.00	0.2000 *	0.00	0.29	0.90	0.26	Seed	4.29	9 5	0.030	10.09	5.14	1.88	1.12	0.15	1.90
												Jute Mat	4.28	3 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Temp. Mat	4.28	3 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Perm, Type	1 4.28	3 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Perm, Type	2 4.28	3 5	0.040	10.10	4.22	2.18	1.12	0.17	2.05
												Perm, Type	2 6.70	6 50	0.040	10.09	4.76	2.78	1.77	0.22	2.34

1102-1

REFERENCE SECTION | 102.3.5

East Bank A
PNSHEDIVY
HNTB
10/20/2011

Table of Contents

	Master Network Summary	2
ODOT TR-55	Type II 24 hour	
	Time-Depth Curve	4
	Time-Depth Curve	6
	Time-Depth Curve	8
	Time-Depth Curve	10
	Time-Depth Curve	12
	Unit Hydrograph Equations	14
Proposed Storm Sewer DA	WQstorm	
	Unit Hydrograph Summary	16
	Unit Hydrograph (Hydrograph Table)	18
Extended Detention	Time vs. Volume	21
Extended Detention	Type II 24 hour	
	Elevation-Area Volume Curve	29
	Volume Equations	30
Composite Outlet Structure - 1	Type II 24 hour	
	Outlet Input Data	31
	Individual Outlet Curves	35
	Composite Rating Curve	38
Extended Detention (OUT)	WQstorm	
	Pond Routed Hydrograph (total out)	39
Outlet-Culvert	WQstorm	
	Diverted Hydrograph	46

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Proposed Storm Sewer DA	wq	0	0.022	12.000	0.329
Proposed Storm Sewer DA	5 year	5	0.065	12.000	0.932
Proposed Storm Sewer DA	10 year	10	0.077	12.000	1.089
Proposed Storm Sewer DA	25 year	25	0.094	12.000	1.314
Proposed Storm Sewer DA	50 year	50	0.107	12.000	1.500

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Analysis Point Pro	wq	0	0.020	18.250	0.006
Analysis Point Pro	5 year	5	0.061	12.050	0.787
Analysis Point Pro	10 year	10	0.073	12.050	0.991
Analysis Point Pro	25 year	25	0.089	12.050	1.216
Analysis Point Pro	50 year	50	0.103	12.050	1.390

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Extended Detention (IN)	wq	0	0.022	12.000	0.329	(N/A)	(N/A)
Extended Detention (OUT)	wq	0	0.020	18.250	0.006	579.22	0.016
Extended Detention (IN)	5 year	5	0.065	12.000	0.932	(N/A)	(N/A)
Extended Detention (OUT)	5 year	5	0.061	12.050	0.787	579.49	0.028
Extended Detention (IN)	10 year	10	0.077	12.000	1.089	(N/A)	(N/A)

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Extended Detention (OUT)	10 year	10	0.073	12.050	0.991	579.51	0.029
Extended Detention (IN)	25 year	25	0.094	12.000	1.314	(N/A)	(N/A)
Extended Detention (OUT)	25 year	25	0.089	12.050	1.216	579.54	0.030
Extended Detention (IN)	50 year	50	0.107	12.000	1.500	(N/A)	(N/A)
Extended Detention (OUT)	50 year	50	0.103	12.050	1.390	579.56	0.031

Subsection: Time-Depth Curve Return Event: 5 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour				
Label	Type II 24 hour			
Start Time	0.000 hours			
Increment	0.100 hours			
End Time	24.000 hours			
Return Event	5 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.1	0.1	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.2	0.2	0.2	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.3
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.4	0.4	0.4	0.4
9.000	0.4	0.4	0.4	0.5	0.5
9.500	0.5	0.5	0.5	0.5	0.5
10.000	0.5	0.5	0.6	0.6	0.6
10.500	0.6	0.6	0.6	0.6	0.7
11.000	0.7	0.7	0.7	0.8	0.8
11.500	0.8	0.9	1.0	1.3	1.7
12.000	1.9	2.0	2.0	2.1	2.1
12.500	2.1	2.2	2.2	2.2	2.2
13.000	2.3	2.3	2.3	2.3	2.3
13.500	2.3	2.3	2.4	2.4	2.4
14.000	2.4	2.4	2.4	2.4	2.4
14.500	2.4	2.5	2.5	2.5	2.5
15.000	2.5	2.5	2.5	2.5	2.5
15.500	2.5	2.5	2.5	2.6	2.6
16.000	2.6	2.6	2.6	2.6	2.6
16.500	2.6	2.6	2.6	2.6	2.6

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 5 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

= ==					
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	2.6	2.6	2.6	2.7	2.7
17.500	2.7	2.7	2.7	2.7	2.7
18.000	2.7	2.7	2.7	2.7	2.7
18.500	2.7	2.7	2.7	2.7	2.7
19.000	2.7	2.7	2.7	2.8	2.8
19.500	2.8	2.8	2.8	2.8	2.8
20.000	2.8	2.8	2.8	2.8	2.8
20.500	2.8	2.8	2.8	2.8	2.8
21.000	2.8	2.8	2.8	2.8	2.8
21.500	2.8	2.8	2.8	2.8	2.8
22.000	2.9	2.9	2.9	2.9	2.9
22.500	2.9	2.9	2.9	2.9	2.9
23.000	2.9	2.9	2.9	2.9	2.9
23.500	2.9	2.9	2.9	2.9	2.9
24.000	2.9	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 10 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour					
Label	Type II 24 hour				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	10 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.4	0.4	0.4
7.500	0.4	0.4	0.4	0.4	0.4
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.5	0.5	0.5	0.5
9.000	0.5	0.5	0.5	0.5	0.5
9.500	0.6	0.6	0.6	0.6	0.6
10.000	0.6	0.6	0.6	0.7	0.7
10.500	0.7	0.7	0.7	0.8	0.8
11.000	0.8	0.8	0.9	0.9	0.9
11.500	1.0	1.0	1.2	1.5	1.9
12.000	2.3	2.3	2.4	2.4	2.5
12.500	2.5	2.5	2.6	2.6	2.6
13.000	2.6	2.6	2.7	2.7	2.7
13.500	2.7	2.7	2.7	2.8	2.8
14.000	2.8	2.8	2.8	2.8	2.8
14.500	2.8	2.9	2.9	2.9	2.9
15.000	2.9	2.9	2.9	2.9	2.9
15.500	2.9	3.0	3.0	3.0	3.0
16.000	3.0	3.0	3.0	3.0	3.0
16.500	3.0	3.0	3.0	3.1	3.1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 10 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	3.1	3.1	3.1	3.1	3.1
17.500	3.1	3.1	3.1	3.1	3.1
18.000	3.1	3.1	3.1	3.1	3.2
18.500	3.2	3.2	3.2	3.2	3.2
19.000	3.2	3.2	3.2	3.2	3.2
19.500	3.2	3.2	3.2	3.2	3.2
20.000	3.2	3.2	3.2	3.2	3.3
20.500	3.3	3.3	3.3	3.3	3.3
21.000	3.3	3.3	3.3	3.3	3.3
21.500	3.3	3.3	3.3	3.3	3.3
22.000	3.3	3.3	3.3	3.3	3.3
22.500	3.3	3.3	3.3	3.4	3.4
23.000	3.4	3.4	3.4	3.4	3.4
23.500	3.4	3.4	3.4	3.4	3.4
24.000	3.4	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour				
Label	Type II 24 hour			
Start Time	0.000 hours			
Increment	0.100 hours			
End Time	24.000 hours			
Return Event	25 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.4
6.500	0.4	0.4	0.4	0.4	0.4
7.000	0.4	0.4	0.4	0.4	0.4
7.500	0.4	0.5	0.5	0.5	0.5
8.000	0.5	0.5	0.5	0.5	0.5
8.500	0.5	0.6	0.6	0.6	0.6
9.000	0.6	0.6	0.6	0.6	0.7
9.500	0.7	0.7	0.7	0.7	0.7
10.000	0.7	0.8	0.8	0.8	0.8
10.500	0.8	0.9	0.9	0.9	0.9
11.000	1.0	1.0	1.0	1.1	1.1
11.500	1.2	1.3	1.4	1.8	2.3
12.000	2.7	2.8	2.9	2.9	3.0
12.500	3.0	3.0	3.1	3.1	3.1
13.000	3.2	3.2	3.2	3.2	3.2
13.500	3.3	3.3	3.3	3.3	3.3
14.000	3.4	3.4	3.4	3.4	3.4
14.500	3.4	3.4	3.5	3.5	3.5
15.000	3.5	3.5	3.5	3.5	3.5
15.500	3.5	3.6	3.6	3.6	3.6
16.000	3.6	3.6	3.6	3.6	3.6
16.500	3.6	3.7	3.7	3.7	3.7

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	3.7	3.7	3.7	3.7	3.7
17.500	3.7	3.7	3.7	3.8	3.8
18.000	3.8	3.8	3.8	3.8	3.8
18.500	3.8	3.8	3.8	3.8	3.8
19.000	3.8	3.8	3.8	3.9	3.9
19.500	3.9	3.9	3.9	3.9	3.9
20.000	3.9	3.9	3.9	3.9	3.9
20.500	3.9	3.9	3.9	3.9	3.9
21.000	3.9	4.0	4.0	4.0	4.0
21.500	4.0	4.0	4.0	4.0	4.0
22.000	4.0	4.0	4.0	4.0	4.0
22.500	4.0	4.0	4.0	4.0	4.0
23.000	4.0	4.0	4.1	4.1	4.1
23.500	4.1	4.1	4.1	4.1	4.1
24.000	4.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	50 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.2
3.000	0.2	0.2	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.3
4.500	0.3	0.3	0.3	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.4	0.4
6.000	0.4	0.4	0.4	0.4	0.4
6.500	0.4	0.4	0.4	0.4	0.5
7.000	0.5	0.5	0.5	0.5	0.5
7.500	0.5	0.5	0.5	0.5	0.5
8.000	0.6	0.6	0.6	0.6	0.6
8.500	0.6	0.6	0.6	0.7	0.7
9.000	0.7	0.7	0.7	0.7	0.7
9.500	0.8	0.8	0.8	0.8	0.8
10.000	0.8	0.9	0.9	0.9	0.9
10.500	1.0	1.0	1.0	1.0	1.1
11.000	1.1	1.1	1.2	1.2	1.3
11.500	1.3	1.4	1.7	2.0	2.6
12.000	3.1	3.2	3.3	3.3	3.4
12.500	3.4	3.5	3.5	3.5	3.6
13.000	3.6	3.6	3.7	3.7	3.7
13.500	3.7	3.7	3.8	3.8	3.8
14.000	3.8	3.8	3.9	3.9	3.9
14.500	3.9	3.9	3.9	3.9	4.0
15.000	4.0	4.0	4.0	4.0	4.0
15.500	4.0	4.1	4.1	4.1	4.1
16.000	4.1	4.1	4.1	4.1	4.1
16.500	4.2	4.2	4.2	4.2	4.2

Subsection: Time-Depth Curve Return Event: 50 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	4.2	4.2	4.2	4.2	4.2
17.500	4.2	4.3	4.3	4.3	4.3
18.000	4.3	4.3	4.3	4.3	4.3
18.500	4.3	4.3	4.3	4.4	4.4
19.000	4.4	4.4	4.4	4.4	4.4
19.500	4.4	4.4	4.4	4.4	4.4
20.000	4.4	4.4	4.4	4.5	4.5
20.500	4.5	4.5	4.5	4.5	4.5
21.000	4.5	4.5	4.5	4.5	4.5
21.500	4.5	4.5	4.5	4.5	4.5
22.000	4.6	4.6	4.6	4.6	4.6
22.500	4.6	4.6	4.6	4.6	4.6
23.000	4.6	4.6	4.6	4.6	4.6
23.500	4.6	4.6	4.6	4.6	4.7
24.000	4.7	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 0 years Label: ODOT TR-55 Storm Event: WQstorm

WQstorm
0.000 hours
0.100 hours
24.000 hours
0 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.0	0.0	0.0	0.0
2.000	0.0	0.0	0.0	0.0	0.0
2.500	0.0	0.0	0.0	0.0	0.0
3.000	0.0	0.0	0.0	0.0	0.0
3.500	0.0	0.0	0.0	0.0	0.1
4.000	0.1	0.1	0.1	0.1	0.1
4.500	0.1	0.1	0.1	0.1	0.1
5.000	0.1	0.1	0.1	0.1	0.1
5.500	0.1	0.1	0.1	0.1	0.1
6.000	0.1	0.1	0.1	0.1	0.1
6.500	0.1	0.1	0.1	0.1	0.1
7.000	0.1	0.1	0.1	0.1	0.1
7.500	0.1	0.1	0.1	0.1	0.1
8.000	0.1	0.1	0.1	0.1	0.1
8.500	0.1	0.1	0.2	0.2	0.2
9.000	0.2	0.2	0.2	0.2	0.2
9.500	0.2	0.2	0.2	0.2	0.2
10.000	0.2	0.2	0.2	0.2	0.2
10.500	0.2	0.2	0.2	0.2	0.3
11.000	0.3	0.3	0.3	0.3	0.3
11.500	0.3	0.3	0.4	0.5	0.6
12.000	0.7	0.8	0.8	0.8	0.8
12.500	0.8	0.8	0.8	0.8	0.8
13.000	0.8	0.9	0.9	0.9	0.9
13.500	0.9	0.9	0.9	0.9	0.9
14.000	0.9	0.9	0.9	0.9	0.9
14.500	0.9	0.9	0.9	0.9	0.9
15.000	0.9	0.9	0.9	0.9	1.0
15.500	1.0	1.0	1.0	1.0	1.0
16.000	1.0	1.0	1.0	1.0	1.0
16.500	1.0	1.0	1.0	1.0	1.0

Subsection: Time-Depth Curve Return Event: 0 years
Label: ODOT TR-55 Storm Event: WQstorm

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

= ==					
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	1.0	1.0	1.0	1.0	1.0
17.500	1.0	1.0	1.0	1.0	1.0
18.000	1.0	1.0	1.0	1.0	1.0
18.500	1.0	1.0	1.0	1.0	1.0
19.000	1.0	1.0	1.0	1.0	1.0
19.500	1.0	1.0	1.0	1.0	1.0
20.000	1.0	1.0	1.1	1.1	1.1
20.500	1.1	1.1	1.1	1.1	1.1
21.000	1.1	1.1	1.1	1.1	1.1
21.500	1.1	1.1	1.1	1.1	1.1
22.000	1.1	1.1	1.1	1.1	1.1
22.500	1.1	1.1	1.1	1.1	1.1
23.000	1.1	1.1	1.1	1.1	1.1
23.500	1.1	1.1	1.1	1.1	1.1
24.000	1.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph Equations

Unit Hydrograph Method (Computational Notes) Definition of Terms

Αt Total area (acres): At = Ai + ApΑi Impervious area (acres) Pervious area (acres) Ap CNi Runoff curve number for impervious area CNp Runoff curve number for pervious area fLoss f loss constant infiltration (depth/time) Saturated Hydraulic Conductivity (depth/time) gKs Md Volumetric Moisture Deficit Capillary Suction (length) Psi Horton Infiltration Decay Rate (time^-1) hK Initial Infiltration Rate (depth/time) fo fc Ultimate(capacity)Infiltration Rate (depth/time) Ia Initial Abstraction (length) Computational increment (duration of unit excess rainfall) dt Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) User specified override computational main time increment UDdt (only used if UDdt is => .1333Tc) D(t) Point on distribution curve (fraction of P) for time step t Κ 2/(1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67) Hydrograph shape factor = Unit Conversions * K: = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K Default Ks = 645.333 * 0.75 = 484 Ks Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc Lag Total precipitation depth, inches Ρ Pa(t) Accumulated rainfall at time step t Incremental rainfall at time step t Pi(t) Peak discharge (cfs) for 1in. runoff, for 1hr, for 1 sq.mi. = (Ks * A * Q) / qp Tp (where Q = 1in. runoff, A=sq.mi.) Qu(t) Unit hydrograph ordinate (cfs) at time step t Final hydrograph ordinate (cfs) at time step t Q(t) Accumulated runoff (inches) at time step t for impervious area Rai(t) Rap(t) Accumulated runoff (inches) at time step t for pervious area Incremental runoff (inches) at time step t for impervious area Rii(t) Rip(t) Incremental runoff (inches) at time step t for pervious area R(t) Incremental weighted total runoff (inches) Rtm Time increment for rainfall table Si S for impervious area: Si = (1000/CNi) - 10Sp S for pervious area: Sp = (1000/CNp) - 10Time step (row) number t Time of concentration Tc

Time (hrs) of entire unit hydrograph: Tb = Tp + Tr

Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag

Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

Tb

Тр

Tr

Subsection: Unit Hydrograph Equations

Unit Hydrograph Method Computational Notes Precipitation

Column (1) Time for time step t

Column (2) D(t) = Point on distribution curve for time step t Column (3) <math>Pi(t) = Pa(t) - Pa(t-1): Col.(4) - Preceding Col.(4)

Column (4) $Pa(t) = D(t) \times P$: $Col.(2) \times P$

Pervious Area Runoff (using SCS Runoff CN Method)

Rap(t) = Accumulated pervious runoff for time step t

If $(Pa(t) \text{ is } \le 0.2\text{Sp})$ then use: Rap(t) = 0.0

Column (5) If (Pa(t) is > 0.2Sp) then use:

Rap(t) = (Col.(4)-0.2Sp)**2 / (Col.(4)+0.8Sp)

Rip(t) = Incremental pervious runoff for time step t

Column (6) Rip(t) = Rap(t) - Rap(t-1)

Rip(t) = Col.(5) for current row - Col.(5) for preceding row.

Impervious Area Runoff

Column (7 & 8)... Did not specify to use impervious areas.

Incremental Weighted Runoff

Column (9)
$$R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$$
$$R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$$

SCS Unit Hydrograph Method

Column (10) Q(t) is computed with the SCS unit hydrograph method using R(t) and Qu(t).

Subsection: Unit Hydrograph Summary Return Event: 0 years
Label: Proposed Storm Sewer DA Storm Event: WQstorm

Storm Event	WQstorm
Return Event	0 years
Duration	72.000 hours
Depth	1.1 in
Time of Concentration (Composite)	0.170 hours
Area (User Defined)	0.291 acres
Constalined Time	
Computational Time Increment	0.023 hours
Time to Peak (Computed)	11.968 hours
Flow (Peak, Computed)	0.333 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	0.329 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	0.291 acres
Maximum Retention (Pervious)	0.2 in
Maximum Retention (Pervious, 20 percent)	0.0 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.9 in
Runoff Volume (Pervious)	0.022 ac-ft
Hydrograph Volume (Area under	Hydrograph curve)
Volume	0.022 ac-ft
SCS Unit Hydrograph Parameter	rs .
Time of Concentration (Composite)	0.170 hours
Computational Time Increment	0.023 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 0 years
Label: Proposed Storm Sewer DA Storm Event: WQstorm

SCS Unit Hydrograph Parameters	
Unit peak, qp	1.941 ft ³ /s
Unit peak time, Tp	0.113 hours
Unit receding limb, Tr	0.453 hours
Total unit time, Tb	0.567 hours

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 0 years Label: Proposed Storm Sewer DA Storm Event: WQstorm

Storm Event WQstorm Return Event 0 years Duration 72.000 hours Depth 1.1 in Time of Concentration (Composite) 0.170 hours Area (User Defined) 0.291 acres		
Duration 72.000 hours Depth 1.1 in Time of Concentration (Composite) 0.170 hours	Storm Event	WQstorm
Depth 1.1 in Time of Concentration (Composite) 0.170 hours	Return Event	0 years
Time of Concentration (Composite) 0.170 hours	Duration	72.000 hours
(Composite) 0.170 hours	Depth	1.1 in
Area (User Defined) 0.291 acres		0.170 hours
	Area (User Defined)	0.291 acres

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
4.900	0.001	0.001	0.001	0.001	0.001
5.150	0.001	0.001	0.001	0.001	0.001
5.400	0.001	0.001	0.001	0.002	0.002
5.650	0.002	0.002	0.002	0.002	0.002
5.900	0.002	0.002	0.002	0.002	0.002
6.150	0.002	0.002	0.002	0.002	0.002
6.400	0.002	0.002	0.002	0.002	0.002
6.650	0.002	0.002	0.002	0.003	0.003
6.900	0.003	0.003	0.003	0.003	0.003
7.150	0.003	0.003	0.003	0.003	0.003
7.400	0.003	0.003	0.003	0.003	0.003
7.650	0.003	0.003	0.003	0.003	0.003
7.900	0.004	0.004	0.004	0.004	0.004
8.150	0.004	0.004	0.004	0.004	0.004
8.400	0.004	0.004	0.005	0.005	0.005
8.650	0.005	0.005	0.005	0.005	0.005
8.900	0.006	0.006	0.006	0.006	0.006
9.150	0.006	0.006	0.006	0.006	0.006
9.400	0.006	0.007	0.007	0.007	0.007
9.650	0.007	0.007	0.007	0.007	0.008
9.900	0.008	0.008	0.008	0.008	0.009
10.150	0.009	0.009	0.010	0.010	0.010
10.400	0.011	0.011	0.011	0.012	0.012
10.650	0.012	0.013	0.013	0.014	0.015
10.900	0.015	0.016	0.016	0.017	0.018
11.150	0.019	0.020	0.021	0.022	0.024
11.400	0.025	0.026	0.028	0.032	0.042
11.650	0.057	0.082	0.112	0.150	0.198
11.900	0.268	0.324	0.329	0.292	0.217
12.150	0.142	0.096	0.073	0.059	0.051
12.400	0.045	0.041	0.036	0.033	0.030
12.650	0.028	0.027	0.025	0.024	0.024
12.900	0.023	0.022	0.021	0.020	0.020

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 0 years Label: Proposed Storm Sewer DA Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time	Timo	Flow	Flow	Flow	Flow	Flow
13.150	Time (hours)					
13.400 0.017 0.016 0.015 0.015 13.650 0.015 0.014 0.014 0.014 0.014 13.900 0.013 0.013 0.012 0.011 0.011 14.150 0.012 0.011 0.011 0.011 0.011 14.400 0.011 0.011 0.011 0.011 0.011 14.4900 0.010 0.010 0.010 0.010 0.010 0.010 14.900 0.010 0.010 0.010 0.010 0.010 0.010 14.900 0.010 0.010 0.010 0.010 0.010 0.010 15.150 0.009 0.009 0.009 0.009 0.009 0.009 15.400 0.009 0.008 0.008 0.008 0.008 0.008 15.650 0.008 0.008 0.008 0.008 0.008 0.008 15.900 0.008 0.008 0.007 0.007 0.007 0.007 0.007 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
13.650 0.015 0.014 0.014 0.014 0.012 0.012 0.012 13.900 0.013 0.013 0.012 0.012 0.012 0.012 14.150 0.012 0.011 0.011 0.011 0.011 0.011 0.011 14.400 0.010 0.010 0.010 0.010 0.010 0.011 0.011 14.900 0.010 0.010 0.010 0.010 0.010 0.010 15.150 0.009 0.009 0.009 0.009 0.009 0.009 15.400 0.009 0.009 0.009 0.008 0.008 0.008 15.650 0.008 0.008 0.008 0.008 0.008 0.008 15.900 0.008 0.008 0.007 0.007 0.007 0.007 16.400 0.007 0.007 0.007 0.007 0.007 0.007 16.650 0.007 0.007 0.007 0.007 0.006 0.006						
13.900 0.013 0.012 0.011 0.012 0.011 14.150 0.012 0.011 0.011 0.011 0.011 0.011 14.400 0.011 0.011 0.011 0.011 0.011 0.011 14.650 0.010 0.010 0.010 0.010 0.010 0.010 14.900 0.010 0.010 0.010 0.010 0.010 0.010 15.150 0.009 0.009 0.009 0.009 0.009 0.009 15.400 0.009 0.009 0.009 0.008 0.008 15.650 0.008 0.008 0.008 0.008 0.008 15.900 0.008 0.008 0.008 0.008 0.008 15.900 0.008 0.008 0.007 0.007 0.007 16.400 0.007 0.007 0.007 0.007 0.007 16.650 0.007 0.007 0.007 0.007 0.007 16.900						
14.150 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
14.400 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.007 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
14.650 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 0.007 0.007 0.007 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
14.900 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
15.150 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.0007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 <						
15.400 0.009 0.009 0.008 0.008 15.650 0.008 0.008 0.008 0.008 0.008 15.900 0.008 0.008 0.007 0.007 0.007 16.150 0.007 0.007 0.007 0.007 0.007 16.400 0.007 0.007 0.007 0.007 0.007 16.650 0.007 0.007 0.007 0.007 0.007 16.900 0.007 0.007 0.007 0.006 0.006 17.150 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 18.400 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 19.400 0.005 0.005						
15.650 0.008 0.008 0.008 0.008 0.008 15.900 0.008 0.008 0.007 0.007 0.007 16.150 0.007 0.007 0.007 0.007 0.007 16.400 0.007 0.007 0.007 0.007 0.007 16.650 0.007 0.007 0.007 0.007 0.007 16.900 0.007 0.007 0.007 0.006 0.006 17.150 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 17.650 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 18.400 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.005						
15.900 0.008 0.007 0.007 0.007 16.150 0.007 0.007 0.007 0.007 0.007 16.400 0.007 0.007 0.007 0.007 0.007 16.650 0.007 0.007 0.007 0.007 0.007 16.900 0.007 0.007 0.007 0.006 0.006 17.150 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.005 18.400 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.005						
16.150 0.007 0.007 0.007 0.007 0.007 16.400 0.007 0.007 0.007 0.007 0.007 16.650 0.007 0.007 0.007 0.007 0.007 16.900 0.007 0.007 0.006 0.006 0.006 17.150 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.005 18.400 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.005 19.400 0.004 0.004 0.004 0.004 0.004						
16.400 0.007 0.007 0.007 0.007 0.007 16.650 0.007 0.007 0.007 0.007 0.007 0.007 16.900 0.007 0.006 0.006 0.006 0.006 0.006 17.150 0.006 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 0.006 17.650 0.006 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.006 0.005 18.400 0.005 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 0.005 19.400 0.004 0.004 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
16.650 0.007 0.007 0.007 0.007 0.007 16.900 0.007 0.007 0.007 0.006 0.006 17.150 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 17.650 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.005 18.400 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 19.400 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004						
16.900 0.007 0.007 0.007 0.006 0.006 17.150 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 17.650 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.006 18.400 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.004 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004						
17.150 0.006 0.006 0.006 0.006 0.006 17.400 0.006 0.006 0.006 0.006 0.006 17.650 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.005 18.400 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.004 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004						
17.400 0.006 0.006 0.006 0.006 0.006 17.650 0.006 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.005 0.005 18.400 0.005 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.005 0.004 19.650 0.004 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
17.650 0.006 0.006 0.006 0.006 0.006 17.900 0.006 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.005 0.005 18.400 0.005 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.005 0.004 19.650 0.004 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
17.900 0.006 0.006 0.006 0.006 0.006 18.150 0.006 0.006 0.006 0.006 0.005 18.400 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.005 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
18.150 0.006 0.006 0.006 0.006 0.005 18.400 0.005 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 0.005 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
18.400 0.005 0.005 0.005 0.005 18.650 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
18.650 0.005 0.005 0.005 0.005 18.900 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
18.900 0.005 0.005 0.005 0.005 19.150 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
19.150 0.005 0.005 0.005 0.005 19.400 0.005 0.005 0.005 0.005 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
19.400 0.005 0.005 0.005 0.005 0.004 19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
19.650 0.004 0.004 0.004 0.004 0.004 19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
19.900 0.004 0.004 0.004 0.004 0.004 20.150 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004						
20.150 0.004 0.004 0.004 0.004 0.004 0.004 20.400 0.004 0.004 0.004 0.004 0.004 0.004						
20.400 0.004 0.004 0.004 0.004 0.004						
20.900 0.004 0.004 0.004 0.004 0.004						
21.150 0.004 0.004 0.004 0.004 0.004						
21.400 0.004 0.004 0.004 0.004 0.004						
21.650 0.004 0.004 0.004 0.004 0.004	21.650			0.004	0.004	
21.900 0.004 0.004 0.004 0.004 0.004						
22.150 0.004 0.004 0.004 0.004 0.004						
22.400 0.004 0.004 0.004 0.004 0.004						
22.650 0.004 0.004 0.004 0.004 0.004						
22.900 0.004 0.004 0.004 0.004 0.004		0.004			0.004	0.004
23.150 0.004 0.004 0.004 0.004 0.004	23.150				0.004	
						0.004

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 0 years

Label: Proposed Storm Sewer DA

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
23.650	0.004	0.004	0.004	0.004	0.004
23.900	0.003	0.003	0.003	0.003	0.002
24,150	0.001	0.001	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.000	0.000	0.000	0.000
0.250	0.000	0.000	0.000	0.000	0.000
0.500	0.000	0.000	0.000	0.000	0.000
0.750	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
1.250	0.000	0.000	0.000	0.000	0.000
1.500	0.000	0.000	0.000	0.000	0.000
1.750	0.000	0.000	0.000	0.000	0.000
2.000	0.000	0.000	0.000	0.000	0.000
2.250	0.000	0.000	0.000	0.000	0.000
2.500	0.000	0.000	0.000	0.000	0.000
2.750	0.000	0.000	0.000	0.000	0.000
3.000	0.000	0.000	0.000	0.000	0.000
3.250	0.000	0.000	0.000	0.000	0.000
3.500	0.000	0.000	0.000	0.000	0.000
3.750	0.000	0.000	0.000	0.000	0.000
4.000	0.000	0.000	0.000	0.000	0.000
4.250	0.000	0.000	0.000	0.000	0.000
4.500	0.000	0.000	0.000	0.000	0.000
4.750	0.000	0.000	0.000	0.000	0.000
5.000	0.000	0.000	0.000	0.000	0.000
5.250	0.000	0.000	0.000	0.000	0.000
5.500	0.000	0.000	0.000	0.000	0.000
5.750	0.000	0.000	0.000	0.000	0.000
6.000	0.000	0.000	0.000	0.000	0.000
6.250	0.000	0.000	0.000	0.000	0.000
6.500	0.000	0.000	0.000	0.000	0.000
6.750	0.000	0.000	0.000	0.000	0.000
7.000	0.000	0.000	0.000	0.000	0.000
7.250	0.000	0.000	0.000	0.000	0.000
7.500	0.000	0.000	0.000	0.000	0.000
7.750	0.000	0.001	0.001	0.001	0.001
8.000	0.001	0.001	0.001	0.001	0.001
8.250	0.001	0.001	0.001	0.001	0.001
8.500	0.001	0.001	0.001	0.001	0.001
8.750	0.001	0.001	0.001	0.001	0.001
9.000	0.001	0.001	0.001	0.001	0.001
9.250	0.001	0.001	0.001	0.001	0.001
9.500	0.001	0.001	0.001	0.001	0.001
9.750	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001
10.000	0.001	0.001	0.001	0.001	0.001

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

T:	\/ali::===	Values s	Values s	\/ali::===	Values
Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
		· · ·	` '		
10.250	0.001	0.002	0.002 0.002	0.002	0.002
10.500	0.002	0.002		0.002	0.002
10.750	0.002	0.002	0.002	0.002	0.002
11.000	0.002	0.002	0.002	0.002	0.002
11.250	0.003	0.003	0.003	0.003	0.003
11.500	0.003	0.003	0.003	0.003	0.004
11.750	0.004	0.005	0.005	0.006	0.007
12.000	0.008	0.010	0.011	0.012	0.012
12.250	0.013	0.013	0.013	0.013	0.013
12.500	0.014	0.014	0.014	0.014	0.014
12.750	0.014	0.014	0.014	0.014	0.014
13.000	0.014	0.014	0.015	0.015	0.015
13.250	0.015	0.015	0.015	0.015	0.015
13.500	0.015	0.015	0.015	0.015	0.015
13.750	0.015	0.015	0.015	0.015	0.015
14.000	0.015	0.015	0.015	0.015	0.015
14.250	0.015	0.015	0.015	0.015	0.015
14.500	0.015	0.016	0.016	0.016	0.016
14.750	0.016	0.016	0.016	0.016	0.016
15.000	0.016	0.016	0.016	0.016	0.016
15.250	0.016	0.016	0.016	0.016	0.016
15.500	0.016	0.016	0.016	0.016	0.016
15.750	0.016	0.016	0.016	0.016	0.016
16.000	0.016	0.016	0.016	0.016	0.016
16.250	0.016	0.016	0.016	0.016	0.016
16.500	0.016	0.016	0.016	0.016	0.016
16.750	0.016	0.016	0.016	0.016	0.016
17.000	0.016	0.016	0.016	0.016	0.016
17.250	0.016	0.016	0.016	0.016	0.016
17.500	0.016	0.016	0.016	0.016	0.016
17.750	0.016	0.016	0.016	0.016	0.016
18.000	0.016	0.016	0.016	0.016	0.016
18.250	0.016	0.016	0.016	0.016	0.016
18.500	0.016	0.016	0.016	0.016	0.016
18.750	0.016	0.016	0.016	0.016	0.016
19.000	0.016	0.016	0.016	0.016	0.016
19.250	0.016	0.016	0.016	0.016	0.016
19.500	0.016	0.016	0.016	0.016	0.016
19.750	0.016	0.016	0.016	0.016	0.016
20.000	0.016	0.016	0.016	0.016	0.016
20.250	0.016	0.016	0.016	0.016	0.016

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Valuma
Time (hours)	volume (ac-ft)	volume (ac-ft)	volume (ac-ft)	volume (ac-ft)	Volume (ac-ft)
			` '		
20.500	0.016 0.016	0.016 0.016	0.016 0.016	0.016	0.016
20.750				0.016	0.016
21.000	0.016	0.016	0.016	0.016	0.016
21.250	0.016	0.016	0.016	0.016	0.016
21.500	0.016	0.016	0.016	0.016	0.016
21.750	0.016	0.016	0.016	0.016	0.016
22.000	0.016	0.016	0.016	0.016	0.016
22.250	0.016	0.016	0.016	0.016	0.016
22.500	0.016	0.016	0.016	0.016	0.016
22.750	0.016	0.016	0.016	0.016	0.016
23.000	0.016	0.016	0.016	0.016	0.016
23.250	0.016	0.016	0.016	0.016	0.016
23.500	0.016	0.016	0.015	0.015	0.015
23.750	0.015	0.015	0.015	0.015	0.015
24.000	0.015	0.015	0.015	0.015	0.015
24.250	0.015	0.015	0.015	0.015	0.015
24.500	0.015	0.015	0.015	0.015	0.015
24.750	0.015	0.015	0.015	0.015	0.015
25.000	0.015	0.015	0.015	0.015	0.015
25.250	0.015	0.015	0.015	0.015	0.015
25.500	0.015	0.015	0.015	0.015	0.015
25.750	0.015	0.015	0.015	0.015	0.015
26.000	0.015	0.015	0.015	0.015	0.015
26.250 26.500	0.014 0.014	0.014 0.014	0.014 0.014	0.014 0.014	0.014 0.014
26.750	0.014	0.014		0.014	0.014
27.000	0.014	0.014	0.014 0.014	0.014	0.014
27.250	0.014	0.014	0.014	0.014	0.014
27.500	0.014	0.014	0.014	0.014	0.014
27.750	0.014	0.014	0.014	0.014	0.014
28.000	0.014	0.014	0.014	0.014	0.014
28.250	0.014	0.014	0.014	0.014	0.014
28.500	0.014	0.014	0.014	0.014	0.014
28.750	0.014	0.013	0.013	0.013	0.013
29.000	0.013	0.013	0.013	0.013	0.013
29.250	0.013	0.013	0.013	0.013	0.013
29.500	0.013	0.013	0.013	0.013	0.013
29.750	0.013	0.013	0.013	0.013	0.013
30.000	0.013	0.013	0.013	0.013	0.013
30.250	0.013	0.013	0.013	0.013	0.013
					0.013
30.500	0.013	0.013	0.013	0.013	0.013

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

т.	Val	Vol.) (- l		\/-I-
Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
30.750	0.013	0.013	0.013	0.013	0.013
31.000	0.012	0.012	0.012	0.012	0.012
31.250	0.012	0.012	0.012	0.012	0.012
31.500	0.012	0.012	0.012	0.012	0.012
31.750	0.012	0.012	0.012	0.012	0.012
32.000	0.012	0.012	0.012	0.012	0.012
32.250	0.012	0.012	0.012	0.012	0.012
32.500	0.012	0.012	0.012	0.012	0.012
32.750	0.012	0.012	0.012	0.012	0.012
33.000	0.012	0.012	0.012	0.012	0.012
33.250	0.012	0.012	0.012	0.012	0.012
33.500	0.012	0.012	0.011	0.011	0.011
33.750	0.011	0.011	0.011	0.011	0.011
34.000	0.011	0.011	0.011	0.011	0.011
34.250	0.011	0.011	0.011	0.011	0.011
34.500	0.011	0.011	0.011	0.011	0.011
34.750	0.011	0.011	0.011	0.011	0.011
35.000	0.011	0.011	0.011	0.011	0.011
35.250	0.011	0.011	0.011	0.010	0.010
35.500	0.010	0.010	0.010	0.010	0.010
35.750	0.010	0.010	0.010	0.010	0.010
36.000	0.010	0.010	0.010	0.010	0.010
36.250	0.010	0.010	0.010	0.010	0.010
36.500	0.010	0.010	0.010	0.010	0.010
36.750	0.010	0.010	0.010	0.010	0.010
37.000	0.010	0.010	0.010	0.010	0.010
37.250	0.010	0.010	0.010	0.010	0.010
37.500	0.010	0.009	0.009	0.009	0.009
37.750	0.009	0.009	0.009	0.009	0.009
38.000	0.009	0.009	0.009	0.009	0.009
38.250	0.009	0.009	0.009	0.009	0.009
38.500	0.009	0.009	0.009	0.009	0.009
38.750	0.009	0.009	0.009	0.009	0.009
39.000	0.009	0.009	0.009	0.009	0.009
39.250	0.009	0.009	0.009	0.009	0.009
39.500	0.009	0.009	0.009	0.009	0.009
39.750	0.009	0.009	0.009	0.009	0.009
40.000	0.009	0.008	0.008	0.008	0.008
40.250	0.008	0.008	0.008	0.008	0.008
40.500	0.008	0.008	0.008	0.008	0.008
40.750	0.008	0.008	0.008	0.008	0.008

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

T:	Values s	Values a	\/al	\/al.::	\/alı
Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
			` '		
41.000	0.008 0.008	0.008 0.008	0.008	0.008	0.008 0.008
41.250			0.008	0.008	
41.500	0.008	0.008	0.008	0.008	0.008
41.750	0.008	0.008	0.008	0.008	0.008
42.000	0.008	0.008	0.008	0.008	0.008
42.250	0.008	0.008	0.008	0.008	0.008
42.500	0.008	0.008	0.008	0.008	0.008
42.750	0.008	0.008	0.008	0.008	0.008
43.000	0.008	800.0	0.007	0.007	0.007
43.250	0.007	0.007	0.007	0.007	0.007
43.500	0.007	0.007	0.007	0.007	0.007
43.750	0.007	0.007	0.007	0.007	0.007
44.000	0.007	0.007	0.007	0.007	0.007
44.250	0.007	0.007	0.007	0.007	0.007
44.500	0.007	0.007	0.007	0.007	0.007
44.750	0.007	0.007	0.007	0.007	0.007
45.000	0.007	0.007	0.007	0.007	0.007
45.250	0.007	0.007	0.007	0.007	0.007
45.500	0.007	0.007	0.007	0.007	0.007
45.750	0.007	0.007	0.007	0.007	0.007
46.000	0.007	0.007	0.007	0.007	0.007
46.250	0.007	0.007	0.007	0.006	0.006
46.500	0.006	0.006	0.006	0.006	0.006
46.750	0.006	0.006	0.006	0.006	0.006
47.000	0.006	0.006	0.006	0.006	0.006
47.250	0.006	0.006	0.006	0.006	0.006
47.500	0.006	0.006	0.006	0.006	0.006
47.750	0.006	0.006	0.006	0.006	0.006
48.000	0.006	0.006	0.006	0.006	0.006
48.250	0.006	0.006	0.006	0.006	0.006
48.500	0.006	0.006	0.006	0.006	0.006
48.750	0.006	0.006	0.006	0.006	0.006
49.000	0.006	0.006	0.006	0.006	0.006
49.250	0.006	0.006	0.006	0.006	0.006
49.500	0.006	0.006	0.006	0.006	0.006
49.750	0.006	0.006	0.006	0.006	0.006
50.000	0.006	0.006	0.006	0.005	0.005
50.250	0.005	0.005	0.005	0.005	0.005
50.500	0.005	0.005	0.005	0.005	0.005
50.750	0.005	0.005	0.005	0.005	0.005
51.000	0.005	0.005	0.005	0.005	0.005

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

T:	\/al	Val.	\/al	Val.	Val.
Time	Volume	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
(hours)	(ac-ft)				
51.250	0.005	0.005	0.005	0.005	0.005
51.500	0.005	0.005	0.005	0.005	0.005
51.750	0.005	0.005	0.005	0.005	0.005
52.000	0.005	0.005	0.005	0.005	0.005
52.250	0.005	0.005	0.005	0.005	0.005
52.500	0.005	0.005	0.005	0.005	0.005
52.750	0.005	0.005	0.005	0.005	0.005
53.000	0.005	0.005	0.005	0.005	0.005
53.250	0.005	0.005	0.005	0.005	0.005
53.500	0.005	0.005	0.005	0.005	0.005
53.750	0.005	0.005	0.005	0.005	0.004
54.000	0.004	0.004	0.004	0.004	0.004
54.250	0.004	0.004	0.004	0.004	0.004
54.500	0.004	0.004	0.004	0.004	0.004
54.750	0.004	0.004	0.004	0.004	0.004
55.000	0.004	0.004	0.004	0.004	0.004
55.250	0.004	0.004	0.004	0.004	0.004
55.500	0.004	0.004	0.004	0.004	0.004
55.750	0.004	0.004	0.004	0.004	0.004
56.000	0.004	0.004	0.004	0.004	0.004
56.250	0.004	0.004	0.004	0.004	0.004
56.500	0.004	0.004	0.004	0.004	0.004
56.750	0.004 0.004	0.004 0.004	0.004	0.004	0.004
57.000 57.250	0.004	0.004	0.004 0.004	0.004 0.004	0.004 0.004
57.500	0.004	0.004	0.004		0.004
57.750	0.004	0.004	0.004	0.004 0.004	0.004
58.000	0.004	0.004	0.004	0.004	0.003
58.250	0.003	0.003	0.003	0.003	0.003
58.500	0.003	0.003	0.003	0.003	0.003
58.750	0.003	0.003	0.003	0.003	0.003
59.000	0.003	0.003	0.003	0.003	0.003
59.250	0.003	0.003	0.003	0.003	0.003
59.500	0.003	0.003	0.003	0.003	0.003
59.750	0.003	0.003	0.003	0.003	0.003
60.000	0.003	0.003	0.003	0.003	0.003
60.250	0.003	0.003	0.003	0.003	0.003
60.500	0.003	0.003	0.003	0.003	0.003
60.750	0.003	0.003	0.003	0.003	0.003
61.000	0.003	0.003	0.003	0.003	0.003
61.250	0.003	0.003	0.003	0.003	0.003
01.230	0.003	0.003	0.003	0.003	0.003

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

_	•				
Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
61.500	0.003	0.003	0.003	0.003	0.003
61.750	0.003	0.003	0.003	0.003	0.003
62.000	0.003	0.003	0.003	0.003	0.003
62.250	0.003	0.003	0.003	0.003	0.003
62.500	0.003	0.003	0.003	0.003	0.003
62.750	0.003	0.003	0.003	0.003	0.003
63.000	0.003	0.003	0.003	0.003	0.003
63.250	0.003	0.003	0.003	0.003	0.003
63.500	0.002	0.002	0.002	0.002	0.002
63.750	0.002	0.002	0.002	0.002	0.002
64.000	0.002	0.002	0.002	0.002	0.002
64.250	0.002	0.002	0.002	0.002	0.002
64.500	0.002	0.002	0.002	0.002	0.002
64.750	0.002	0.002	0.002	0.002	0.002
65.000	0.002	0.002	0.002	0.002	0.002
65.250	0.002	0.002	0.002	0.002	0.002
65.500	0.002	0.002	0.002	0.002	0.002
65.750	0.002	0.002	0.002	0.002	0.002
66.000	0.002	0.002	0.002	0.002	0.002
66.250	0.002	0.002	0.002	0.002	0.002
66.500	0.002	0.002	0.002	0.002	0.002
66.750	0.002	0.002	0.002	0.002	0.002
67.000	0.002	0.002	0.002	0.002	0.002
67.250	0.002	0.002	0.002	0.002	0.002
67.500	0.002	0.002	0.002	0.002	0.002
67.750	0.002	0.002	0.002	0.002	0.002
68.000	0.002	0.002	0.002	0.002	0.002
68.250	0.002	0.002	0.002	0.002	0.002
68.500	0.002	0.002	0.002	0.002	0.002
68.750	0.002	0.002	0.002	0.002	0.002
69.000	0.002	0.002	0.002	0.002	0.002
69.250	0.002	0.002	0.002	0.002	0.002
69.500	0.002	0.002	0.002	0.002	0.002
69.750	0.002	0.002	0.002	0.002	0.002
70.000	0.002	0.002	0.002	0.002	0.002
70.250	0.002	0.002	0.002	0.002	0.002
70.500	0.002	0.002	0.002	0.002	0.002
70.750	0.002	0.002	0.002	0.002	0.002
71.000	0.002	0.002	0.002	0.002	0.002
71.250	0.002	0.002	0.002	0.002	0.002
71.500	0.002	0.002	0.002	0.002	0.002

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
71.750	0.002	0.001	0.001	0.001	0.001
72.000	0.001	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Elevation-Area Volume Curve Return Event: 0 years Label: Extended Detention Storm Event: Type II 24 hour

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
578.60	0.0	0.018	0.000	0.000	0.000
578.80	0.0	0.020	0.057	0.004	0.004
579.00	0.0	0.025	0.068	0.005	0.008
579.10	0.0	0.037	0.093	0.003	0.011
579.20	0.0	0.040	0.116	0.004	0.015
579.80	0.0	0.051	0.136	0.027	0.043
580.20	0.0	0.060	0.166	0.022	0.065
580.40	0.0	0.064	0.186	0.012	0.077

Subsection: Volume Equations Return Event: 0 years
Label: Extended Detention Storm Event: Type II 24 hour

Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2 - El1) * (Area1 + Area2 + sqr(Area1 * Area2))

where: EL1, EL2 Lower and upper elevations of the increment Area1, Area2 Areas computed for EL1, EL2, respectively

Volume Incremental volume between EL1 and EL2

Subsection: Outlet Input Data Return Event: 0 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Requested Pond Water Surface Elevations			
Minimum (Headwater)	578.60 ft		
Increment (Headwater)	0.25 ft		
Maximum (Headwater)	580.40 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1	E2
	_	_		(ft)	(ft)
Inlet Box	Riser - 1	Forward	Culvert - 1	579.40	580.40
Orifice-Circular	Orifice - 1	Forward	Culvert - 1	578.60	580.40
Culvert-Circular	Culvert - 1	Forward	TW	576.14	580.40
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 0 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	578.60 ft
Orifice Diameter	0.50 in
Orifice Coefficient	0.660
Otractica ID Division 4	
Structure ID: Riser - 1 Structure Type: Inlet Box	
Number of Openings	1
Elevation	579.40 ft
Orifice Area	2.6 ft ²
Orifice Coefficient	0.660
Weir Length	6.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	15.00 in
Length	11.00 ft
Length (Computed Barrel)	11.01 ft
Slope (Computed)	0.050 ft/ft
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	
	0.023
Kr	0.023 0.000
Kr Convergence Tolerance	
* **	0.000
Convergence Tolerance	0.000
Convergence Tolerance Inlet Control Data	0.000 0.00 ft
Convergence Tolerance Inlet Control Data Equation Form	0.000 0.00 ft
Convergence Tolerance Inlet Control Data Equation Form K	0.000 0.00 ft Form 1 0.0045
Convergence Tolerance Inlet Control Data Equation Form K M	0.000 0.00 ft Form 1 0.0045 2.0000

Subsection: Outlet Input Data Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Inlet Control Data	
T1 ratio (HW/D)	1.070
T2 ratio (HW/D)	1.172
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	577.48 ft	T1 Flow	4.802 ft ³ /s
T2 Elevation	577.61 ft	T2 Flow	5.488 ft³/s

Subsection: Outlet Input Data Return Event: 0 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Structure ID: TW Structure Type: TW Setup, DS Channel						
Tailwater Type Free Outfall						
Convergence Tolerances						
Maximum Iterations	30					
Tailwater Tolerance (Minimum)	0.01 ft					
Tailwater Tolerance (Maximum)	0.50 ft					
Headwater Tolerance (Minimum)	0.01 ft					
Headwater Tolerance (Maximum)	0.50 ft					
Flow Tolerance (Minimum)	0.001 ft ³ /s					
Flow Tolerance (Maximum)	10.000 ft ³ /s					

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.60	0.000	0.00	0.00	0.00	0.00	0.000	(N/A)	0.00
578.85	0.003	578.85	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.10	0.005	579.10	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.35	0.006	579.35	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.40	0.006	579.40	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.60	0.007	579.60	Free Outfall	576.90	0.00	0.000	(N/A)	0.00
579.85	0.008	579.85	Free Outfall	577.73	0.00	0.000	(N/A)	0.00
580.10	0.005	580.10	579.68	579.68	0.00	0.000	(N/A)	0.00
580.35	0.000	580.35	580.35	580.35	0.00	0.000	(N/A)	0.00
580.40	0.000	580.40	580.40	580.40	0.00	0.000	(N/A)	0.00

Message

1-1C33dgC
WS below an invert; no flow.
H =.23
H =.48
H =.73
H =.78
H =.98
H =1.23
H =.42
H =.00
H =.00

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.60	0.000	0.00	0.00	0.00	0.00	0.000	(N/A)	0.00
578.85	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.10	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.35	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.40	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.60	1.744	579.60	Free Outfall	576.90	0.00	0.000	(N/A)	0.00
579.85	5.886	579.85	Free Outfall	577.73	0.00	0.000	(N/A)	0.00
580.10	11.340	580.10	579.68	579.68	0.00	0.000	(N/A)	0.00
580.35	13.210	580.35	580.35	580.35	0.00	0.000	(N/A)	0.00
580.40	13.553	580.40	580.40	580.40	0.00	0.000	(N/A)	0.00

Message

WS below an invert; no flow.

Weir: H =0.2ft Weir: H =0.45ft

FULLY CHARGED RISER: Orifice Equation Control to Crest; H=.70 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=.95 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=1.00

Subsection: Individual Outlet Curves Return Event: 0 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

Mannings open channel maximum capacity: 15.537 ft³/s

Upstream ID = Riser - 1, Orifice - 1 Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.60	0.000	0.00	0.00	Free Outfall	0.00	0.000	(N/A)	0.00
578.85	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.10	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.35	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.40	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.60	1.752	576.90	Free Outfall	Free Outfall	0.00	0.001	(N/A)	0.00
579.85	5.891	577.73	Free Outfall	Free Outfall	0.00	0.004	(N/A)	0.00
580.10	11.343	579.68	Free Outfall	Free Outfall	0.00	0.002	(N/A)	0.00
580.35	12.669	580.35	Free Outfall	Free Outfall	0.00	0.541	(N/A)	0.00
580.40	12.761	580.40	Free Outfall	Free Outfall	0.00	0.792	(N/A)	0.00

Message

WS below an invert; no flow.

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

CRIT.DEPTH CONTROL Vh= .199ft

Dcr= .526ft CRIT.DEPTH Hev= .00ft

CRIT.DEPTH CONTROL Vh= .504ft

Dcr= .982ft CRIT.DEPTH Hev= .00ft INLET CONTROL... Submerged: HW

=3.54

INLET CONTROL... Submerged: HW

=4.21

INLET CONTROL... Submerged: HW

=4.26

Subsection: Composite Rating Curve Return Event: 0 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
578.60	0.000	(N/A)	0.00
578.85	0.003	(N/A)	0.00
579.10	0.005	(N/A)	0.00
579.35	0.006	(N/A)	0.00
579.40	0.006	(N/A)	0.00
579.60	1.752	(N/A)	0.00
579.85	5.891	(N/A)	0.00
580.10	11.343	(N/A)	0.00
580.35	12.669	(N/A)	0.00
580.40	12.761	(N/A)	0.00

Contributing Structures

Contributing Structures
(no Q: Riser - 1,Orifice - 1,Culvert - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1.Orifice - 1.Culvert - 1

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

Peak Discharge	0.006 ft ³ /s
Time to Peak	18.250 hours
Hydrograph Volume	0.020 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.050	0.001	0.001	0.001	0.001	0.001
10.300	0.001	0.001	0.001	0.001	0.001
10.550	0.001	0.001	0.001	0.001	0.001
10.800	0.001	0.001	0.002	0.002	0.002
11.050	0.002	0.002	0.002	0.002	0.002
11.300	0.002	0.002	0.002	0.002	0.002
11.550	0.002	0.002	0.002	0.003	0.003
11.800	0.003	0.004	0.004	0.004	0.004
12.050	0.005	0.005	0.005	0.005	0.005
12.300	0.005	0.005	0.005	0.005	0.005
12.550	0.005	0.005	0.005	0.005	0.005
12.800	0.005	0.005	0.005	0.005	0.005
13.050	0.005	0.005	0.005	0.005	0.005
13.300	0.005	0.005	0.005	0.005	0.005
13.550	0.005	0.005	0.005	0.005	0.005
13.800	0.005	0.005	0.005	0.005	0.005
14.050	0.005	0.005	0.005	0.005	0.005
14.300	0.005	0.005	0.005	0.005	0.005
14.550	0.005	0.005	0.005	0.005	0.005
14.800	0.005	0.005	0.006	0.006	0.006
15.050	0.006	0.006	0.006	0.006	0.006
15.300	0.006	0.006	0.006	0.006	0.006
15.550	0.006	0.006	0.006	0.006	0.006
15.800	0.006	0.006	0.006	0.006	0.006
16.050	0.006	0.006	0.006	0.006	0.006
16.300	0.006	0.006	0.006	0.006	0.006
16.550	0.006	0.006	0.006	0.006	0.006
16.800	0.006	0.006	0.006	0.006	0.006
17.050	0.006	0.006	0.006	0.006	0.006
17.300	0.006	0.006	0.006	0.006	0.006
17.550	0.006	0.006	0.006	0.006	0.006
17.800	0.006	0.006	0.006	0.006	0.006
18.050	0.006	0.006	0.006	0.006	0.006
18.300	0.006	0.006	0.006	0.006	0.006
18.550	0.006 0.006	0.006 0.006	0.006	0.006	0.006 0.006
18.800			0.006	0.006	
19.050	0.006	0.006	0.006	0.006	0.006

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
19.300	0.006	0.006	0.006	0.006	0.006
19.550	0.006	0.006	0.006	0.006	0.006
19.800	0.006	0.006	0.006	0.006	0.006
20.050	0.006	0.006	0.006	0.006	0.006
20.300	0.006	0.006	0.006	0.006	0.006
20.550	0.006	0.006	0.006	0.006	0.006
20.800	0.006	0.006	0.006	0.006	0.006
21.050	0.006	0.006	0.006	0.006	0.006
21.300	0.006	0.006	0.006	0.006	0.006
21.550	0.006	0.006	0.006	0.006	0.006
21.800	0.006	0.006	0.006	0.006	0.006
22.050	0.006	0.006	0.006	0.006	0.006
22.300	0.006	0.006	0.006	0.006	0.006
22.550	0.006	0.006	0.006	0.006	0.005
22.800	0.005	0.005	0.005	0.005	0.005
23.050	0.005	0.005	0.005	0.005	0.005
23.300	0.005	0.005	0.005	0.005	0.005
23.550	0.005	0.005	0.005	0.005	0.005
23.800	0.005	0.005	0.005	0.005	0.005
24.050	0.005	0.005	0.005	0.005	0.005
24.300	0.005	0.005	0.005	0.005	0.005
24.550	0.005	0.005	0.005	0.005	0.005
24.800	0.005	0.005	0.005	0.005	0.005
25.050	0.005	0.005	0.005	0.005	0.005
25.300	0.005	0.005	0.005	0.005	0.005
25.550	0.005	0.005	0.005	0.005	0.005
25.800	0.005	0.005	0.005	0.005	0.005
26.050	0.005	0.005	0.005	0.005	0.005
26.300	0.005	0.005	0.005	0.005	0.005
26.550	0.005	0.005	0.005	0.005	0.005
26.800	0.005	0.005	0.005	0.005	0.005
27.050	0.005	0.005	0.005	0.005	0.005
27.300	0.005	0.005	0.005	0.005	0.005
27.550	0.005	0.005	0.005	0.005	0.005
27.800	0.005	0.005	0.005	0.005	0.005
28.050	0.005	0.005	0.005	0.005	0.005
28.300	0.005	0.005	0.005	0.005	0.005
28.550	0.005	0.005	0.005	0.005	0.005
28.800	0.005	0.005	0.005	0.005	0.005
29.050	0.005	0.005	0.005	0.005	0.005
29.300	0.005	0.005	0.005	0.005	0.005
29.550	0.005	0.005	0.005	0.005	0.005

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
29.800	0.005	0.005	0.005	0.005	0.005
30.050	0.005	0.005	0.005	0.005	0.005
30.300	0.005	0.005	0.005	0.005	0.005
30.550	0.005	0.005	0.005	0.005	0.005
30.800	0.005	0.005	0.005	0.005	0.005
31.050	0.005	0.005	0.005	0.005	0.005
31.300	0.005	0.005	0.005	0.005	0.005
31.550	0.005	0.005	0.005	0.005	0.005
31.800	0.005	0.005	0.005	0.005	0.005
32.050	0.005	0.005	0.005	0.005	0.005
32.300	0.005	0.005	0.005	0.005	0.005
32.550	0.005	0.005	0.005	0.005	0.005
32.800	0.005	0.005	0.005	0.005	0.005
33.050	0.005	0.005	0.005	0.005	0.005
33.300	0.005	0.005	0.005	0.005	0.005
33.550	0.005	0.005	0.005	0.005	0.005
33.800	0.005	0.005	0.005	0.005	0.005
34.050	0.005	0.005	0.005	0.005	0.005
34.300	0.005	0.005	0.005	0.005	0.005
34.550	0.005	0.005	0.005	0.005	0.005
34.800	0.005	0.005	0.005	0.005	0.005
35.050	0.005	0.005	0.005	0.005	0.005
35.300	0.005	0.005	0.005	0.005	0.005
35.550	0.005	0.005	0.005	0.005	0.005
35.800	0.005	0.005	0.005	0.005	0.005
36.050	0.005	0.005	0.005	0.005	0.005
36.300	0.005	0.005	0.005	0.005	0.005
36.550	0.005	0.005	0.005	0.005	0.005
36.800	0.005	0.005	0.005	0.005	0.005
37.050	0.005	0.005	0.005	0.005	0.005
37.300	0.005	0.005	0.005	0.005	0.005
37.550	0.005	0.005	0.005	0.005	0.005
37.800	0.005	0.005	0.005	0.005	0.005
38.050	0.005	0.005	0.005	0.005	0.005
38.300	0.005	0.005	0.005	0.005	0.005
38.550	0.005	0.005	0.005	0.005	0.005
38.800	0.005	0.005	0.005	0.005	0.005
39.050	0.005	0.004	0.004	0.004	0.004
39.300	0.004	0.004	0.004	0.004	0.004
39.550	0.004	0.004	0.004	0.004	0.004
39.800	0.004	0.004	0.004	0.004	0.004
40.050	0.004	0.004	0.004	0.004	0.004

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
40.300	0.004	0.004	0.004	0.004	0.004
40.550	0.004	0.004	0.004	0.004	0.004
40.800	0.004	0.004	0.004	0.004	0.004
41.050	0.004	0.004	0.004	0.004	0.004
41.300	0.004	0.004	0.004	0.004	0.004
41.550	0.004	0.004	0.004	0.004	0.004
41.800	0.004	0.004	0.004	0.004	0.004
42.050	0.004	0.004	0.004	0.004	0.004
42.300	0.004	0.004	0.004	0.004	0.004
42.550	0.004	0.004	0.004	0.004	0.004
42.800	0.004	0.004	0.004	0.004	0.004
43.050	0.004	0.004	0.004	0.004	0.004
43.300	0.004	0.004	0.004	0.004	0.004
43.550	0.004	0.004	0.004	0.004	0.004
43.800	0.004	0.004	0.004	0.004	0.004
44.050	0.004	0.004	0.004	0.004	0.004
44.300	0.004	0.004	0.004	0.004	0.004
44.550	0.004	0.004	0.004	0.004	0.004
44.800	0.004	0.004	0.004	0.004	0.004
45.050	0.004	0.004	0.004	0.004	0.004
45.300	0.004	0.004	0.004	0.004	0.004
45.550	0.004	0.004	0.004	0.004	0.004
45.800	0.004	0.004	0.004	0.004	0.004
46.050	0.004	0.004	0.004	0.004	0.004
46.300	0.004	0.004	0.004	0.004	0.004
46.550	0.004	0.004	0.004	0.004	0.004
46.800	0.004	0.004	0.004	0.004	0.004
47.050	0.004	0.004	0.004	0.004	0.004
47.300	0.004	0.004	0.004	0.004	0.004
47.550	0.004	0.004	0.004	0.004	0.004
47.800	0.004	0.004	0.004	0.004	0.004
48.050	0.004	0.004	0.004	0.004	0.004
48.300	0.004	0.004	0.004	0.004	0.004
48.550	0.004	0.004	0.004	0.004	0.004
48.800	0.004	0.004	0.004	0.004	0.004
49.050	0.004	0.004	0.004	0.004	0.004
49.300	0.004	0.004	0.004	0.004	0.004
49.550	0.004	0.004	0.004	0.004	0.004
49.800	0.004	0.004	0.004	0.004	0.004
50.050	0.004	0.004	0.004	0.004	0.004
50.300	0.004	0.004	0.004	0.004	0.004
50.550	0.004	0.004	0.004	0.004	0.004

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
50.800	0.004	0.004	0.004	0.004	0.004
51.050	0.004	0.004	0.004	0.004	0.004
51.300	0.004	0.004	0.004	0.004	0.004
51.550	0.004	0.004	0.004	0.004	0.004
51.800	0.004	0.004	0.004	0.004	0.004
52.050	0.004	0.003	0.003	0.003	0.003
52.300	0.003	0.003	0.003	0.003	0.003
52.550	0.003	0.003	0.003	0.003	0.003
52.800	0.003	0.003	0.003	0.003	0.003
53.050	0.003	0.003	0.003	0.003	0.003
53.300	0.003	0.003	0.003	0.003	0.003
53.550	0.003	0.003	0.003	0.003	0.003
53.800	0.003	0.003	0.003	0.003	0.003
54.050	0.003	0.003	0.003	0.003	0.003
54.300	0.003	0.003	0.003	0.003	0.003
54.550	0.003	0.003	0.003	0.003	0.003
54.800	0.003	0.003	0.003	0.003	0.003
55.050	0.003	0.003	0.003	0.003	0.003
55.300	0.003	0.003	0.003	0.003	0.003
55.550	0.003	0.003	0.003	0.003	0.003
55.800	0.003	0.003	0.003	0.003	0.003
56.050	0.003	0.003	0.003	0.003	0.003
56.300	0.003	0.003	0.003	0.003	0.003
56.550	0.003	0.003	0.003	0.003	0.003
56.800	0.003	0.003	0.003	0.003	0.003
57.050	0.003	0.003	0.003	0.003	0.003
57.300	0.003	0.003	0.003	0.003	0.003
57.550	0.003	0.003	0.003	0.003	0.003
57.800	0.003	0.003	0.003	0.003	0.003
58.050	0.003	0.003	0.003	0.003	0.002
58.300	0.002	0.002	0.002	0.002	0.002
58.550	0.002	0.002	0.002	0.002	0.002
58.800	0.002	0.002	0.002	0.002	0.002
59.050	0.002	0.002	0.002	0.002	0.002
59.300	0.002	0.002	0.002	0.002	0.002
59.550	0.002	0.002	0.002	0.002	0.002
59.800	0.002	0.002	0.002	0.002	0.002
60.050	0.002	0.002	0.002	0.002	0.002
60.300	0.002	0.002	0.002	0.002	0.002
60.550	0.002	0.002	0.002	0.002	0.002
60.800	0.002	0.002	0.002	0.002	0.002
61.050	0.002	0.002	0.002	0.002	0.002

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
61.300	0.002	0.002	0.002	0.002	0.002
61.550	0.002	0.002	0.002	0.002	0.002
61.800	0.002	0.002	0.002	0.002	0.002
62.050	0.002	0.002	0.002	0.002	0.002
62.300	0.002	0.002	0.002	0.002	0.002
62.550	0.002	0.002	0.002	0.002	0.002
62.800	0.002	0.002	0.002	0.002	0.002
63.050	0.002	0.002	0.002	0.002	0.002
63.300	0.002	0.002	0.002	0.002	0.002
63.550	0.002	0.002	0.002	0.002	0.002
63.800	0.002	0.002	0.002	0.002	0.002
64.050	0.002	0.002	0.002	0.002	0.002
64.300	0.002	0.002	0.002	0.002	0.002
64.550	0.002	0.002	0.002	0.002	0.002
64.800	0.002	0.002	0.002	0.002	0.002
65.050	0.002	0.002	0.002	0.002	0.002
65.300	0.002	0.002	0.002	0.002	0.002
65.550	0.002	0.002	0.002	0.002	0.002
65.800	0.002	0.002	0.002	0.002	0.002
66.050	0.002	0.002	0.002	0.002	0.002
66.300	0.002	0.002	0.002	0.002	0.002
66.550	0.002	0.002	0.002	0.002	0.002
66.800	0.002	0.002	0.002	0.002	0.001
67.050	0.001	0.001	0.001	0.001	0.001
67.300	0.001	0.001	0.001	0.001	0.001
67.550	0.001	0.001	0.001 0.001	0.001 0.001	0.001 0.001
67.800 68.050	0.001 0.001	0.001 0.001	0.001	0.001	0.001
68.300	0.001	0.001	0.001	0.001	0.001
68.550	0.001	0.001	0.001	0.001	0.001
68.800	0.001	0.001	0.001	0.001	0.001
69.050	0.001	0.001	0.001	0.001	0.001
69.300	0.001	0.001	0.001	0.001	0.001
69.550	0.001	0.001	0.001	0.001	0.001
69.800	0.001	0.001	0.001	0.001	0.001
70.050	0.001	0.001	0.001	0.001	0.001
70.300	0.001	0.001	0.001	0.001	0.001
70.550	0.001	0.001	0.001	0.001	0.001
70.800	0.001	0.001	0.001	0.001	0.001
71.050	0.001	0.001	0.001	0.001	0.001
71.300	0.001	0.001	0.001	0.001	0.001
71.550	0.001	0.001	0.001	0.001	0.001

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
71.800	0.001	0.001	0.001	0.001	0.001

Subsection: Diverted Hydrograph
Label: Outlet-Culvert

Return Event: 0 years
Storm Event: WQstorm

Peak Discharge	0.006 ft ³ /s
Time to Peak	18.250 hours
Hydrograph Volume	0.020 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
10.050	0.001	0.001	0.001	0.001	0.001
10.300	0.001	0.001	0.001	0.001	0.001
10.550	0.001	0.001	0.001	0.001	0.001
10.800	0.001	0.001	0.002	0.002	0.002
11.050	0.002	0.002	0.002	0.002	0.002
11.300	0.002	0.002	0.002	0.002	0.002
11.550	0.002	0.002	0.002	0.003	0.003
11.800	0.003	0.004	0.004	0.004	0.004
12.050	0.005	0.005	0.005	0.005	0.005
12.300	0.005	0.005	0.005	0.005	0.005
12.550	0.005	0.005	0.005	0.005	0.005
12.800	0.005	0.005	0.005	0.005	0.005
13.050	0.005	0.005	0.005	0.005	0.005
13.300	0.005	0.005	0.005	0.005	0.005
13.550	0.005	0.005	0.005	0.005	0.005
13.800	0.005	0.005	0.005	0.005	0.005
14.050	0.005	0.005	0.005	0.005	0.005
14.300	0.005	0.005	0.005	0.005	0.005
14.550	0.005	0.005	0.005	0.005	0.005
14.800	0.005	0.005	0.006	0.006	0.006
15.050	0.006	0.006	0.006	0.006	0.006
15.300	0.006	0.006	0.006	0.006	0.006
15.550	0.006	0.006	0.006	0.006	0.006
15.800	0.006	0.006	0.006	0.006	0.006
16.050	0.006	0.006	0.006	0.006	0.006
16.300	0.006	0.006	0.006	0.006	0.006
16.550	0.006	0.006	0.006	0.006	0.006
16.800	0.006	0.006	0.006	0.006	0.006
17.050	0.006	0.006	0.006	0.006	0.006
17.300	0.006	0.006	0.006	0.006	0.006
17.550	0.006	0.006	0.006	0.006	0.006
17.800	0.006	0.006	0.006	0.006	0.006
18.050	0.006	0.006	0.006	0.006	0.006
18.300	0.006	0.006	0.006	0.006	0.006
18.550	0.006	0.006	0.006	0.006	0.006
18.800	0.006	0.006	0.006	0.006	0.006
19.050	0.006	0.006	0.006	0.006	0.006

Subsection: Diverted Hydrograph
Label: Outlet-Culvert

Return Event: 0 years
Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
19.300	0.006	0.006	0.006	0.006	0.006
19.550	0.006	0.006	0.006	0.006	0.006
19.800	0.006	0.006	0.006	0.006	0.006
20.050	0.006	0.006	0.006	0.006	0.006
20.300	0.006	0.006	0.006	0.006	0.006
20.550	0.006	0.006	0.006	0.006	0.006
20.800	0.006	0.006	0.006	0.006	0.006
21.050	0.006	0.006	0.006	0.006	0.006
21.300	0.006	0.006	0.006	0.006	0.006
21.550	0.006	0.006	0.006	0.006	0.006
21.800	0.006	0.006	0.006	0.006	0.006
22.050	0.006	0.006	0.006	0.006	0.006
22.300	0.006	0.006	0.006	0.006	0.006
22.550	0.006	0.006	0.006	0.006	0.005
22.800	0.005	0.005	0.005	0.005	0.005
23.050	0.005	0.005	0.005	0.005	0.005
23.300	0.005	0.005	0.005	0.005	0.005
23.550	0.005	0.005	0.005	0.005	0.005
23.800	0.005	0.005	0.005	0.005	0.005
24.050	0.005	0.005	0.005	0.005	0.005
24.300	0.005	0.005	0.005	0.005	0.005
24.550	0.005	0.005	0.005	0.005	0.005
24.800	0.005	0.005	0.005	0.005	0.005
25.050	0.005	0.005	0.005	0.005	0.005
25.300	0.005	0.005	0.005	0.005	0.005
25.550	0.005	0.005	0.005	0.005	0.005
25.800	0.005	0.005	0.005	0.005	0.005
26.050	0.005	0.005	0.005	0.005	0.005
26.300	0.005	0.005	0.005	0.005	0.005
26.550	0.005	0.005	0.005	0.005	0.005
26.800	0.005	0.005	0.005	0.005	0.005
27.050	0.005	0.005	0.005	0.005	0.005
27.300	0.005	0.005	0.005	0.005	0.005
27.550	0.005	0.005	0.005	0.005	0.005
27.800	0.005	0.005	0.005	0.005	0.005
28.050	0.005	0.005	0.005	0.005	0.005
28.300	0.005	0.005	0.005	0.005	0.005
28.550	0.005	0.005	0.005	0.005	0.005
28.800	0.005	0.005	0.005	0.005	0.005
29.050	0.005	0.005	0.005	0.005	0.005
29.300	0.005	0.005	0.005	0.005	0.005
29.550	0.005	0.005	0.005	0.005	0.005

Subsection: Diverted Hydrograph
Label: Outlet-Culvert

Return Event: 0 years
Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
29.800	0.005	0.005	0.005	0.005	0.005
30.050	0.005	0.005	0.005	0.005	0.005
30.300	0.005	0.005	0.005	0.005	0.005
30.550	0.005	0.005	0.005	0.005	0.005
30.800	0.005	0.005	0.005	0.005	0.005
31.050	0.005	0.005	0.005	0.005	0.005
31.300	0.005	0.005	0.005	0.005	0.005
31.550	0.005	0.005	0.005	0.005	0.005
31.800	0.005	0.005	0.005	0.005	0.005
32.050	0.005	0.005	0.005	0.005	0.005
32.300	0.005	0.005	0.005	0.005	0.005
32.550	0.005	0.005	0.005	0.005	0.005
32.800	0.005	0.005	0.005	0.005	0.005
33.050	0.005	0.005	0.005	0.005	0.005
33.300	0.005	0.005	0.005	0.005	0.005
33.550	0.005	0.005	0.005	0.005	0.005
33.800	0.005	0.005	0.005	0.005	0.005
34.050	0.005	0.005	0.005	0.005	0.005
34.300	0.005	0.005	0.005	0.005	0.005
34.550	0.005	0.005	0.005	0.005	0.005
34.800	0.005	0.005	0.005	0.005	0.005
35.050	0.005	0.005	0.005	0.005	0.005
35.300	0.005	0.005	0.005	0.005	0.005
35.550	0.005	0.005	0.005	0.005	0.005
35.800	0.005	0.005	0.005	0.005	0.005
36.050	0.005	0.005	0.005	0.005	0.005
36.300	0.005	0.005	0.005	0.005	0.005
36.550	0.005	0.005	0.005	0.005	0.005
36.800	0.005	0.005	0.005	0.005	0.005
37.050	0.005	0.005	0.005	0.005	0.005
37.300	0.005	0.005	0.005	0.005	0.005
37.550	0.005	0.005	0.005	0.005	0.005
37.800	0.005	0.005	0.005	0.005	0.005
38.050	0.005	0.005	0.005	0.005	0.005
38.300	0.005	0.005	0.005	0.005	0.005
38.550	0.005	0.005	0.005	0.005	0.005
38.800	0.005	0.005	0.005	0.005	0.005
39.050	0.005	0.004	0.004	0.004	0.004 0.004
39.300	0.004	0.004	0.004	0.004	
39.550	0.004	0.004	0.004	0.004	0.004
39.800	0.004	0.004	0.004	0.004	0.004
40.050	0.004	0.004	0.004	0.004	0.004

Subsection: Diverted Hydrograph Return Event: 0 years Label: Outlet-Culvert Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
40.300	0.004	0.004	0.004	0.004	0.004
40.550	0.004	0.004	0.004	0.004	0.004
40.800	0.004	0.004	0.004	0.004	0.004
41.050	0.004	0.004	0.004	0.004	0.004
41.300	0.004	0.004	0.004	0.004	0.004
41.550	0.004	0.004	0.004	0.004	0.004
41.800	0.004	0.004	0.004	0.004	0.004
42.050	0.004	0.004	0.004	0.004	0.004
42.300	0.004	0.004	0.004	0.004	0.004
42.550	0.004	0.004	0.004	0.004	0.004
42.800	0.004	0.004	0.004	0.004	0.004
43.050	0.004	0.004	0.004	0.004	0.004
43.300	0.004	0.004	0.004	0.004	0.004
43.550	0.004	0.004	0.004	0.004	0.004
43.800	0.004	0.004	0.004	0.004	0.004
44.050	0.004	0.004	0.004	0.004	0.004
44.300	0.004	0.004	0.004	0.004	0.004
44.550	0.004	0.004	0.004	0.004	0.004
44.800	0.004	0.004	0.004	0.004	0.004
45.050	0.004	0.004	0.004	0.004	0.004
45.300	0.004	0.004	0.004	0.004	0.004
45.550	0.004	0.004	0.004	0.004	0.004
45.800	0.004	0.004	0.004	0.004	0.004
46.050	0.004	0.004	0.004	0.004	0.004
46.300	0.004	0.004	0.004	0.004	0.004
46.550	0.004	0.004	0.004	0.004	0.004
46.800	0.004	0.004	0.004	0.004	0.004
47.050	0.004	0.004	0.004	0.004	0.004
47.300	0.004	0.004	0.004	0.004	0.004
47.550	0.004	0.004	0.004	0.004	0.004
47.800	0.004	0.004	0.004	0.004	0.004
48.050	0.004	0.004	0.004	0.004	0.004
48.300	0.004	0.004	0.004	0.004	0.004
48.550	0.004	0.004	0.004	0.004	0.004
48.800	0.004	0.004	0.004	0.004	0.004
49.050	0.004	0.004	0.004	0.004	0.004
49.300	0.004	0.004	0.004	0.004	0.004
49.550	0.004	0.004	0.004	0.004	0.004
49.800	0.004	0.004	0.004	0.004	0.004
50.050	0.004	0.004	0.004	0.004	0.004
50.300	0.004	0.004	0.004	0.004	0.004
50.550	0.004	0.004	0.004	0.004	0.004

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i

[08.11.01.51] Page 49 of 53

Subsection: Diverted Hydrograph
Label: Outlet-Culvert

Return Event: 0 years
Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
50.800	0.004	0.004	0.004	0.004	0.004
51.050	0.004	0.004	0.004	0.004	0.004
51.300	0.004	0.004	0.004	0.004	0.004
51.550	0.004	0.004	0.004	0.004	0.004
51.800	0.004	0.004	0.004	0.004	0.004
52.050	0.004	0.003	0.003	0.003	0.003
52.300	0.003	0.003	0.003	0.003	0.003
52.550	0.003	0.003	0.003	0.003	0.003
52.800	0.003	0.003	0.003	0.003	0.003
53.050	0.003	0.003	0.003	0.003	0.003
53.300	0.003	0.003	0.003	0.003	0.003
53.550	0.003	0.003	0.003	0.003	0.003
53.800	0.003	0.003	0.003	0.003	0.003
54.050	0.003	0.003	0.003	0.003	0.003
54.300	0.003	0.003	0.003	0.003	0.003
54.550	0.003	0.003	0.003	0.003	0.003
54.800	0.003	0.003	0.003	0.003	0.003
55.050	0.003	0.003	0.003	0.003	0.003
55.300	0.003	0.003	0.003	0.003	0.003
55.550	0.003	0.003	0.003	0.003	0.003
55.800	0.003	0.003	0.003	0.003	0.003
56.050	0.003	0.003	0.003	0.003	0.003
56.300	0.003	0.003	0.003	0.003	0.003
56.550	0.003	0.003	0.003	0.003	0.003
56.800	0.003	0.003	0.003	0.003	0.003
57.050	0.003	0.003	0.003	0.003	0.003
57.300	0.003	0.003	0.003	0.003	0.003
57.550	0.003	0.003	0.003	0.003	0.003
57.800	0.003	0.003	0.003	0.003	0.003
58.050	0.003	0.003	0.003	0.003	0.002
58.300	0.002	0.002	0.002	0.002	0.002
58.550	0.002	0.002	0.002	0.002	0.002
58.800	0.002	0.002	0.002	0.002	0.002
59.050	0.002	0.002	0.002	0.002	0.002
59.300	0.002	0.002	0.002	0.002	0.002
59.550	0.002	0.002	0.002	0.002	0.002
59.800	0.002	0.002	0.002	0.002	0.002
60.050	0.002	0.002	0.002	0.002	0.002
60.300	0.002	0.002	0.002	0.002	0.002
60.550	0.002	0.002	0.002	0.002	0.002
60.800	0.002	0.002	0.002	0.002	0.002
61.050	0.002	0.002	0.002	0.002	0.002

Subsection: Diverted Hydrograph
Label: Outlet-Culvert

Return Event: 0 years
Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

		presents time		ue in each ro	
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
61.300	0.002	0.002	0.002	0.002	0.002
61.550	0.002	0.002	0.002	0.002	0.002
61.800	0.002	0.002	0.002	0.002	0.002
62.050	0.002	0.002	0.002	0.002	0.002
62.300	0.002	0.002	0.002	0.002	0.002
62.550	0.002	0.002	0.002	0.002	0.002
62.800	0.002	0.002	0.002	0.002	0.002
63.050	0.002	0.002	0.002	0.002	0.002
63.300	0.002	0.002	0.002	0.002	0.002
63.550	0.002	0.002	0.002	0.002	0.002
63.800	0.002	0.002	0.002	0.002	0.002
64.050	0.002	0.002	0.002	0.002	0.002
64.300	0.002	0.002	0.002	0.002	0.002
64.550	0.002	0.002	0.002	0.002	0.002
64.800	0.002	0.002	0.002	0.002	0.002
65.050	0.002	0.002	0.002	0.002	0.002
65.300	0.002	0.002	0.002	0.002	0.002
65.550	0.002	0.002	0.002	0.002	0.002
65.800	0.002	0.002	0.002	0.002	0.002
66.050	0.002	0.002	0.002	0.002	0.002
66.300	0.002	0.002	0.002	0.002	0.002
66.550	0.002	0.002	0.002	0.002	0.002
66.800	0.002	0.002	0.002	0.002	0.001
67.050	0.001	0.001	0.001	0.001	0.001
67.300	0.001	0.001	0.001	0.001	0.001
67.550	0.001	0.001	0.001	0.001	0.001
67.800	0.001	0.001	0.001	0.001	0.001
68.050	0.001	0.001	0.001	0.001	0.001
68.300	0.001	0.001	0.001	0.001	0.001
68.550	0.001	0.001	0.001	0.001	0.001
68.800	0.001	0.001	0.001	0.001	0.001
69.050	0.001	0.001	0.001	0.001	0.001
69.300	0.001	0.001	0.001	0.001	0.001
69.550	0.001	0.001	0.001	0.001	0.001
69.800	0.001	0.001	0.001	0.001	0.001
70.050	0.001	0.001	0.001	0.001	0.001
70.300	0.001	0.001	0.001	0.001	0.001
70.550	0.001	0.001	0.001	0.001	0.001
70.800	0.001	0.001	0.001	0.001	0.001
71.050	0.001	0.001	0.001	0.001	0.001
71.300	0.001	0.001	0.001	0.001	0.001
71.550	0.001	0.001	0.001	0.001	0.001

Subsection: Diverted Hydrograph
Label: Outlet-Culvert

Return Event: 0 years
Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
71.800	0.001	0.001	0.001	0.001	0.001

Index

```
С
Composite Outlet Structure - 1 (Composite Rating Curve, 0 years)...38
Composite Outlet Structure - 1 (Individual Outlet Curves, 0 years)...35, 36, 37
Composite Outlet Structure - 1 (Outlet Input Data, 0 years)...31, 32, 33, 34
Ε
Extended Detention (Elevation-Area Volume Curve, 0 years)...29
Extended Detention (OUT) (Pond Routed Hydrograph (total out), 0 years)...39, 40,
41, 42, 43, 44, 45
Extended Detention (Time vs. Volume, 0 years)...21, 22, 23, 24, 25, 26, 27, 28
Extended Detention (Volume Equations, 0 years)...30
Master Network Summary...2, 3
ODOT TR-55 (Time-Depth Curve, 0 years)...12, 13
ODOT TR-55 (Time-Depth Curve, 10 years)...6, 7
ODOT TR-55 (Time-Depth Curve, 25 years)...8, 9
ODOT TR-55 (Time-Depth Curve, 5 years)...4, 5
ODOT TR-55 (Time-Depth Curve, 50 years)...10, 11
Outlet-Culvert (Diverted Hydrograph, 0 years)...46, 47, 48, 49, 50, 51, 52
Proposed Storm Sewer DA (Unit Hydrograph (Hydrograph Table), 0 years)...18, 19,
Proposed Storm Sewer DA (Unit Hydrograph Summary, 0 years)...16, 17
U
Unit Hydrograph Equations...14, 15
```

East Bank Basin A Water Quality Calculations Made By:

AReede

Date:

Checked By: **BHess** Date: 12/2/2011 Emergency Spillway Weir Water Quality: WQv= (PAC)/12 From ODOT L&D2 1115.4 Calculation Equation Q=3.367BH^3/2 0.75 in Q10 Precipitation 1.089 cfs B (Weir 0.29 acres 6 ft A - Drainage Area length) Cq 0.9 when drainage area is impervious H= 0.14 ft Top of Embankm 0.0163 ac*ft 580.4 Water Quality Volume WQv = ent Invert of **Extended Detention** Emergenc Volume (EDV) = 120%*WQV 0.0196 ac*ft y Spillway 579.56 Available Depth 0.84 Required Forebay Volume (RFV) 10% of WQv 0.0016 ac*ft Check for emergenc y spillway Actual WQv Released EDV - RFV 0.0179 ac*ft depth Bottom of Basin Top of Berm Provided Forebay Volume Elevation 578.5 Elevation 579 Area of bottom of Anti-Seep (assuming trapezoidal Area of Top of Collar From ODOT L&D 2 1117.4.1.2 configuration) Forebay (ac) 0.001 Forebay (ac) 0.009 Y- Depth of water at Provided Forebay spillway Volume 0.0022 ac*ft crest, 1.52 ft Z-slope of upstream face of embankm Forebay % of Basin 11.07 % ent S-slope of Check for WQv outfall 0.0025 provided pipe Length of **Drainage Time** Saturation 12.3 ft 16 hour WQ flow Seepage (see enclosed length spreadsheet) 0.529 ft^3/s increase 1.8 ft W-Width 16 hour check 16 hour volume 95 ft^3 of Collar D-50% of WQv (not to Diameter 426 ft^3 exceed) of Conduit P -Projection of Collar (P=W-D) 5 Check for 16 hour # of compliance collars Minimum 2 collars at minimum 48 hour WQ flow spacing 10'. (see enclosed 48 hour check spreadsheet) 3.684 48 hour volume 663 100% of WQv (not to exceed) 853 Check for 48 hour compliance

12/2/2011

ID	73	End	48.000 hours
Label	Minimum Drain Time - 1	Pond Node	Extended Detention
Start	0.000 hours	Outlet Structure	Composite Outlet Structure - 1
Increment	1.000 hours		

Subsection: User Notifications Label: Minimum Drain Time - 1

User Notifications

Message Id	15
Scenario	wq
Element Type	Composite Outlet Structure
Element Id	59
Label	Composite Outlet Structure - 1
Time	(N/A)
Message	Kr (reverse flow entrance loss coefficient) was not specified. Kr was set to same value as Ke= 0.200.
Source	Warning
Message Id	67
Scenario	wq
Element Type	Composite Outlet Structure
Element Id	59
Label	Composite Outlet Structure - 1
Time	(N/A)
Message	Flow direction set to reverse for one ore more structures in composite outlet structure Composite Outlet Structure - 1. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond.
Source	Warning
Message Id	40
Scenario	wq
Element Type	Minimum Drain Time
Element Id	73
Label	Minimum Drain Time - 1
Time	(N/A)
Message	Mass balance for routing volumes vary by more than 0.5 %. (0.6 % of Outflow Volume))
Source	Warning

Subsection: Time vs. Elevation

Label: Minimum Drain Time - 1 (OUT)

Time vs. Elevation (ft)

Output Time increment = 3,600.000 hours Time on left represents time for first value in each row.

Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
0.000	579.22	579.20	579.19	579.18	579.17
5.000	579.16	579.15	579.14	579.13	579.12
10.000	579.11	579.10	579.08	579.07	579.05
15.000	579.04	579.02	579.01	578.99	578.98
20.000	578.97	578.95	578.94	578.93	578.92
25.000	578.90	578.89	578.88	578.87	578.86
30.000	578.85	578.83	578.82	578.81	578.80
35.000	578.78	578.77	578.76	578.75	578.75
40.000	578.74	578.73	578.72	578.72	578.71
45.000	578.70	578.70	578.69	578.69	(N/A)

Subsection: Time vs. Volume

Label: Minimum Drain Time - 1 (OUT)

Time vs. Elevation (ft)

Output Time increment = 3,600.000 hours Time on left represents time for first value in each row.

Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
()	(1-9)	()	()	()	(1.5)
0.000	579.22	579.20	579.19	579.18	579.17
5.000	579.16	579.15	579.14	579.13	579.12
10.000	579.11	579.10	579.08	579.07	579.05
15.000	579.04	579.02	579.01	578.99	578.98
20.000	578.97	578.95	578.94	578.93	578.92
25.000	578.90	578.89	578.88	578.87	578.86
30.000	578.85	578.83	578.82	578.81	578.80
35.000	578.78	578.77	578.76	578.75	578.75
40.000	578.74	578.73	578.72	578.72	578.71
45.000	578.70	578.70	578.69	578.69	(N/A)

Subsection: Elevation-Area Volume Curve

Label: Extended Detention

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
578.60	0.0	0.018	0.000	0.000	0.000
578.80	0.0	0.020	0.057	0.004	0.004
579.00	0.0	0.025	0.068	0.005	0.008
579.10	0.0	0.037	0.093	0.003	0.011
579.20	0.0	0.040	0.116	0.004	0.015
579.80	0.0	0.051	0.136	0.027	0.043
580.20	0.0	0.060	0.166	0.022	0.065
580.40	0.0	0.064	0.186	0.012	0.077

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations					
Minimum (Headwater) 578.60 ft					
Increment (Headwater) 0.25 ft					
Maximum (Headwater) 580.40 ft					

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inlet Box	Riser - 1	Forward	Culvert - 1	579.40	580.40
Orifice-Circular	Orifice - 1	Forward	Culvert - 1	578.60	580.40
Culvert-Circular	Culvert - 1	Forward	TW	576.14	580.40
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	1
Elevation	578.60 ft
Orifice Diameter	0.50 in
Orifice Coefficient	0.660
Structure ID: Riser - 1 Structure Type: Inlet Box	
Number of Openings	1
Elevation	579.40 ft
Orifice Area	2.6 ft ²
Orifice Coefficient	0.660
Weir Length	6.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Number of Barrels Diameter	1 15.00 in
	-
Diameter	15.00 in
Diameter Length	15.00 in 11.00 ft
Diameter Length Length (Computed Barrel)	15.00 in 11.00 ft 11.01 ft
Diameter Length Length (Computed Barrel) Slope (Computed)	15.00 in 11.00 ft 11.01 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200 0.023
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200 0.023 0.000
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200 0.023 0.000
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200 0.023 0.000 0.000 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance Inlet Control Data Equation Form	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200 0.023 0.000 0.00 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance Inlet Control Data Equation Form K	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200 0.023 0.000 0.00 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance Inlet Control Data Equation Form K M	15.00 in 11.00 ft 11.01 ft 0.050 ft/ft 0.013 0.200 0.023 0.000 0.00 ft Form 1 0.0045 2.0000

Subsection: Outlet Input Data

Label: Composite Outlet Structure - 1

Inlet Control Data						
T1 ratio (HW/D)	1.070					
T2 ratio (HW/D)	1.172					
Slope Correction Factor	-0.500					

Use unsubmerged inlet control 0 equation below T1 elevation

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	577.48 ft	T1 Flow	4.802 ft ³ /s
T2 Elevation	577.61 ft	T2 Flow	5.488 ft ³ /s

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Structure ID: TW Structure Type: TW Setup, DS Channel					
Tailwater Type	Free Outfall				
Convergence Tolerances					
Maximum Iterations	30				
Tailwater Tolerance (Minimum)	0.01 ft				
Tailwater Tolerance (Maximum)	0.50 ft				
Headwater Tolerance (Minimum)	0.01 ft				
Headwater Tolerance (Maximum)	0.50 ft				
Flow Tolerance (Minimum)	0.001 ft ³ /s				
Flow Tolerance (Maximum)	10.000 ft ³ /s				

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.60	0.000	0.00	0.00	0.00	0.00	0.000	(N/A)	0.00
578.85	0.003	578.85	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.10	0.005	579.10	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.35	0.006	579.35	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.40	0.006	579.40	Free Outfall	576.14	0.00	0.000	(N/A)	0.00
579.60	0.007	579.60	Free Outfall	576.90	0.00	0.000	(N/A)	0.00
579.85	0.008	579.85	Free Outfall	577.73	0.00	0.000	(N/A)	0.00
580.10	0.005	580.10	579.68	579.68	0.00	0.000	(N/A)	0.00
580.35	0.000	580.35	580.35	580.35	0.00	0.000	(N/A)	0.00
580.40	0.000	580.40	580.40	580.40	0.00	0.000	(N/A)	0.00

Message

WS below an invert; no flow. H = .23 H = .48 H = .73 H = .78 H = .98 H = 1.23 H = .42 H = .00	1-1C33dgC
H = .48 H = .73 H = .78 H = .98 H = 1.23 H = .42 H = .00	WS below an invert; no flow.
H = .73 H = .78 H = .98 H = 1.23 H = .42 H = .00	H =.23
H = .78 H = .98 H = 1.23 H = .42 H = .00	H =.48
H = .98 H = 1.23 H = .42 H = .00	H =.73
H =1.23 H =.42 H =.00	H =.78
H = .42 H = .00	H =.98
H =.00	H =1.23
	H =.42
11 00	H =.00
H =.00	H =.00

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.60	0.000	0.00	0.00	0.00	0.00	0.000	(N/A)	0.00
578.85	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.10	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.35	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.40	0.000	0.00	0.00	576.14	0.00	0.000	(N/A)	0.00
579.60	1.744	579.60	Free Outfall	576.90	0.00	0.000	(N/A)	0.00
579.85	5.886	579.85	Free Outfall	577.73	0.00	0.000	(N/A)	0.00
580.10	11.340	580.10	579.68	579.68	0.00	0.000	(N/A)	0.00
580.35	13.210	580.35	580.35	580.35	0.00	0.000	(N/A)	0.00
580.40	13.553	580.40	580.40	580.40	0.00	0.000	(N/A)	0.00

Message

WS below an invert; no flow.

Weir: H =0.2ft Weir: H =0.45ft

FULLY CHARGED RISER: Orifice Equation Control to Crest; H=.70 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=.95 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=1.00

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

Mannings open channel maximum capacity: 15.537 ft³/s

Upstream ID = Riser - 1, Orifice - 1 Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.60	0.000	0.00	0.00	Free Outfall	0.00	0.000	(N/A)	0.00
578.85	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.10	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.35	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.40	0.000	576.14	Free Outfall	Free Outfall	0.00	0.000	(N/A)	0.00
579.60	1.752	576.90	Free Outfall	Free Outfall	0.00	0.001	(N/A)	0.00
579.85	5.891	577.73	Free Outfall	Free Outfall	0.00	0.004	(N/A)	0.00
580.10	11.343	579.68	Free Outfall	Free Outfall	0.00	0.002	(N/A)	0.00
580.35	12.669	580.35	Free Outfall	Free Outfall	0.00	0.541	(N/A)	0.00
580.40	12.761	580.40	Free Outfall	Free Outfall	0.00	0.792	(N/A)	0.00

Message

WS below an invert; no flow.

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

FLOW PRECEDENCE SET TO

UPSTREAM CONTROLLING

STRUCTURE

CRIT.DEPTH CONTROL Vh= .199ft

Dcr= .526ft CRIT.DEPTH Hev= .00ft

CRIT.DEPTH CONTROL Vh= .504ft

Dcr= .982ft CRIT.DEPTH Hev= .00ft

INLET CONTROL... Submerged: HW

=3.54

INLET CONTROL... Submerged: HW

=4.21

INLET CONTROL ... Submerged: HW

=4.26

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
578.60	0.000	(N/A)	0.00
578.85	0.003	(N/A)	0.00
579.10	0.005	(N/A)	0.00
579.35	0.006	(N/A)	0.00
579.40	0.006	(N/A)	0.00
579.60	1.752	(N/A)	0.00
579.85	5.891	(N/A)	0.00
580.10	11.343	(N/A)	0.00
580.35	12.669	(N/A)	0.00
580.40	12.761	(N/A)	0.00

Contributing Structures

Contributing Structures
(no Q: Riser - 1,Orifice - 1,Culvert - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Orifice - 1,Culvert - 1 (no Q: Riser - 1)
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1,Orifice - 1,Culvert - 1
Riser - 1.Orifice - 1.Culvert - 1

Subsection: Elevation-Volume-Flow Table (Pond)

Label: Minimum Drain Time - 1

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	579.22 ft
Volume (Initial)	0.016 ac-ft
Flow (Initial Outlet)	0.006 ft ³ /s
Flow (Initial Infiltration)	0.000 ft ³ /s
Flow (Initial, Total)	0.006 ft ³ /s
Time Increment	1.000 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + 0 (ft³/s)
578.60	0.000	0.000	0.018	0.000	0.000	0.000
578.85	0.003	0.005	0.022	0.000	0.003	0.121
579.10	0.005	0.011	0.037	0.000	0.005	0.282
579.35	0.006	0.022	0.043	0.000	0.006	0.527
579.40	0.006	0.024	0.044	0.000	0.006	0.579
579.60	1.752	0.033	0.047	0.000	1.752	2.545
579.85	5.891	0.045	0.052	0.000	5.891	6.983
580.10	11.343	0.059	0.058	0.000	11.343	12.767
580.35	12.669	0.074	0.063	0.000	12.669	14.459
580.40	12.761	0.077	0.064	0.000	12.761	14.628

Subsection: Level Pool Pond Routing Summary

Label: Minimum Drain Time - 1

Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions			
Elevation (Water Surface, Initial)	579.22 ft		
Volume (Initial)	0.016 ac-ft		
Flow (Initial Outlet)	0.006 ft ³ /s		
Flow (Initial Infiltration)	0.000 ft ³ /s		
Flow (Initial, Total)	0.006 ft ³ /s		
Time Increment	1.000 hours		
Flow (Peak In) Flow (Peak Outlet)	0.000 ft ³ /s 0.006 ft ³ /s	Time to Peak (Flow, In) Time to Peak (Flow, Outlet)	0.000 hours 0.000 hours
Elevation (Water Surface, Peak)	579.20 ft	_	
Volume (Peak)	0.016 ac-ft	<u></u>	
Mass Balance (ac-ft)			
Volume (Initial)	0.016 ac-ft		
Volume (Total Inflow)	0.000 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.014 ac-ft		
Volume (Retained)	0.002 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.6 %		

Subsection: Detention Time Label: Extended Detention

Infiltration	
Infiltration Method (Computed)	No Infiltration
Approximate Detention Times	
Time to Peak (Outflow + Infiltration, Peak to Peak Detention Time)	0.000 hours
Time to Peak (Inflow, Peak to Peak Detention Time)	0.000 hours
Detention Time (Peak to Peak)	0.000 hours

Subsection: Pond Routed Hydrograph (total out)

Label: Minimum Drain Time - 1

Peak Discharge	0.006 ft ³ /s
Time to Peak	0.000 hours
Hydrograph Volume	0.014 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.000 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.006	0.005	0.005	0.005	0.005
5.000	0.005	0.005	0.005	0.005	0.005
10.000	0.005	0.005	0.005	0.005	0.005
15.000	0.005	0.005	0.004	0.004	0.004
20.000	0.004	0.004	0.004	0.004	0.004
25.000	0.004	0.004	0.004	0.004	0.004
30.000	0.003	0.003	0.003	0.003	0.003
35.000	0.003	0.002	0.002	0.002	0.002
40.000	0.002	0.002	0.002	0.002	0.002
45.000	0.001	0.001	0.001	0.001	(N/A)

	BW6 34 21		
For Kiprap & East B.	rnk B/166 no. 49633	Sheet no. //2	militarian son
Made by f. Sheeling	Checked by	Backchecked by	
Date 7-20-/11	Date	Date	***************************************

Determine sherr stress on d/s of forebay $T_0 = 7 + 5$ T = 8hS = 62.46.25)h = 0078 (marring solver) 6" # stone (Pond typing the 601)

750 > 7 -: STABLE.

Also dreck LBD VII p. 178/240 Figure 1107-1 No protection regard for Velocity 24 AHG.

Q= 0.29 x 0.90 x 5.1 = 1.33 cfs

STILL BASINS!

= 00000

| Marrings $\rightarrow T_{19} = 7h = 62.4 \times 0.0284$ | solver \times 0.33 | h = 0.0284 | = 0.50284

= 0.58 16/42 TR.S V Q.K.

Innerbelt

Title	Innerbelt	
Engineer	PNShedivy	East Bank Basin B
Company		
Date	11/10/2011	

Bentley PondPack V8i [08.11.01.51] Page 1 of 57

Table of Contents

	Master Network Summary	2
ODOT TR-55	Type II 24-hr 10-yr	
	Time-Depth Curve	4
	Time-Depth Curve	6
	Time-Depth Curve	8
	Time-Depth Curve	10
	Time-Depth Curve	12
I-90 Bridge - 142	Type II 24-hr Water Quality Storm	
	Runoff CN-Area	14
I-90 Bridge 143	Type II 24-hr Water Quality Storm	
	Runoff CN-Area	15
I-90 Bridge 147	Type II 24-hr Water Quality Storm	
	Runoff CN-Area	16
I-90 Bridge - 142	Type II 24-hr Water Quality Storm Unit Hydrograph Summary	17
I-90 Bridge 143	Type II 24-hr Water Quality Storm Unit Hydrograph Summary	19
I-90 Bridge 147	Type II 24-hr Water Quality Storm Unit Hydrograph Summary	21
EB Detention (OUT)	Time vs. Elevation	23
EB Detention	Time vs. Volume	31
EB Detention	Type II 24-hr Water Quality Storm Elevation-Area Volume	39
	Curve Volume Equations	40
EB Detention WQB	Type II 24-hr Water Quality Storm	40
	Outlet Input Data	41
	Individual Outlet Curves	45
	Composite Rating Curve	55

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
I-90 Bridge 147	WQ storm	0	0.066	12.000	1.02
I-90 Bridge 147	5 yr	5	0.211	12.000	3.03
I-90 Bridge 147	10-yr	10	0.251	12.000	3.57
I-90 Bridge 147	25-yr	25	0.306	12.000	4.32
I-90 Bridge 147	50-yr	50	0.353	12.000	4.96
I-90 Bridge 143	WQ storm	0	0.046	12.000	0.71
I-90 Bridge 143	5 yr	5	0.147	12.000	2.11
I-90 Bridge 143	10-yr	10	0.174	12.000	2.48
I-90 Bridge 143	25-yr	25	0.213	12.000	3.00
I-90 Bridge 143	50-yr	50	0.246	12.000	3.45
I-90 Bridge - 142	WQ storm	0	0.048	12.000	0.73
I-90 Bridge - 142	5 yr	5	0.151	12.000	2.17
I-90 Bridge - 142	10-yr	10	0.179	12.000	2.55
I-90 Bridge - 142	25-yr	25	0.219	12.000	3.09
I-90 Bridge - 142	50-yr	50	0.253	12.000	3.55

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
D-1	WQ storm	0	0.066	12.000	1.02
D-1	5 yr	5	0.211	12.000	3.03
D-1	10-yr	10	0.251	12.000	3.57
D-1	25-yr	25	0.306	12.000	4.32
D-1	50-yr	50	0.353	12.000	4.96
D-2	WQ storm	0	0.113	12.000	1.73
D-2	5 yr	5	0.358	12.000	5.16
D-2	10-yr	10	0.425	12.000	6.05
D-2	25-yr	25	0.519	12.000	7.32
D-2	50-yr	50	0.599	12.000	8.41
D-4	WQ storm	0	0.158	16.050	0.06
D-4	5 yr	5	0.507	12.100	6.07
D-4	10-yr	10	0.602	12.050	7.31
D-4	25-yr	25	0.735	12.050	8.98
D-4	50-yr	50	0.849	12.050	10.42
Out 20	WQ storm	0	0.158	16.100	0.06
Out 20	5 yr	5	0.507	12.100	6.07
Out 20	10-yr	10	0.602	12.100	7.30
Out 20	25-yr	25	0.735	12.100	8.95
Out 20	50-yr	50	0.849	12.100	10.34

Pond Summary

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
EB Detention (IN)	WQ storm	0	0.160	12.000	2.41	(N/A)	(N/A)
EB Detention (OUT)	WQ storm	0	0.158	16.050	0.06	577.98	0.113
EB Detention (IN)	5 yr	5	0.509	12.000	7.23	(N/A)	(N/A)
EB Detention (OUT)	5 yr	5	0.507	12.100	6.07	578.45	0.176
EB Detention (IN)	10-yr	10	0.604	12.000	8.48	(N/A)	(N/A)
EB Detention (OUT)	10-yr	10	0.602	12.050	7.31	578.52	0.185
EB Detention (IN)	25-yr	25	0.738	12.000	10.24	(N/A)	(N/A)
EB Detention (OUT)	25-yr	25	0.735	12.050	8.98	578.59	0.196
EB Detention (IN)	50-yr	50	0.852	12.000	11.76	(N/A)	(N/A)
EB Detention (OUT)	50-yr	50	0.849	12.050	10.42	578.65	0.205

Subsection: Time-Depth Curve Return Event: 10 years
Label: ODOT TR-55 Storm Event: Type II 24-hr 10-yr

 Time-Depth Curve: Type II 24-hr 10-yr

 Label
 Type II 24-hr 10-yr

 Start Time
 0.000 hours

 Increment
 0.100 hours

 End Time
 24.000 hours

 Return Event
 10 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.4	0.4	0.4
7.500	0.4	0.4	0.4	0.4	0.4
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.5	0.5	0.5	0.5
9.000	0.5	0.5	0.5	0.5	0.5
9.500	0.6	0.6	0.6	0.6	0.6
10.000	0.6	0.6	0.6	0.7	0.7
10.500	0.7	0.7	0.7	0.8	0.8
11.000	0.8	0.8	0.9	0.9	0.9
11.500	1.0	1.0	1.2	1.5	1.9
12.000	2.3	2.3	2.4	2.4	2.5
12.500	2.5	2.5	2.6	2.6	2.6
13.000	2.6	2.6	2.7	2.7	2.7
13.500	2.7	2.7	2.7	2.8	2.8
14.000	2.8	2.8	2.8	2.8	2.8
14.500	2.8	2.9	2.9	2.9	2.9
15.000	2.9	2.9	2.9	2.9	2.9
15.500	2.9	3.0	3.0	3.0	3.0
16.000	3.0	3.0	3.0	3.0	3.0

Subsection: Time-Depth Curve Return Event: 10 years
Label: ODOT TR-55 Storm Event: Type II 24-hr 10-yr

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

• • • •	rinic on fert represents time for first value in each rown				
Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
		7 7		7 7	
16.500	3.0	3.0	3.0	3.1	3.1
17.000	3.1	3.1	3.1	3.1	3.1
17.500	3.1	3.1	3.1	3.1	3.1
18.000	3.1	3.1	3.1	3.1	3.2
18.500	3.2	3.2	3.2	3.2	3.2
19.000	3.2	3.2	3.2	3.2	3.2
19.500	3.2	3.2	3.2	3.2	3.2
20.000	3.2	3.2	3.2	3.2	3.3
20.500	3.3	3.3	3.3	3.3	3.3
21.000	3.3	3.3	3.3	3.3	3.3
21.500	3.3	3.3	3.3	3.3	3.3
22.000	3.3	3.3	3.3	3.3	3.3
22.500	3.3	3.3	3.3	3.4	3.4
23.000	3.4	3.4	3.4	3.4	3.4
23.500	3.4	3.4	3.4	3.4	3.4
24.000	3.4	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24-hr 25-yr

Time-Depth Curve:	Type II 24-hr 25-yr
Label	Type II 24-hr 25-
Label	yr
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	25 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.4	0.4
6.500	0.4	0.4	0.4	0.4	0.4
7.000	0.4	0.4	0.4	0.4	0.4
7.500	0.4	0.5	0.5	0.5	0.5
8.000	0.5	0.5	0.5	0.5	0.5
8.500	0.5	0.6	0.6	0.6	0.6
9.000	0.6	0.6	0.6	0.6	0.7
9.500	0.7	0.7	0.7	0.7	0.7
10.000	0.7	0.8	0.8	0.8	0.8
10.500	0.8	0.9	0.9	0.9	0.9
11.000	1.0	1.0	1.0	1.1	1.1
11.500	1.2	1.3	1.5	1.8	2.3
12.000	2.7	2.8	2.9	2.9	3.0
12.500	3.0	3.0	3.1	3.1	3.1
13.000	3.2	3.2	3.2	3.2	3.3
13.500	3.3	3.3	3.3	3.3	3.3
14.000	3.4	3.4	3.4	3.4	3.4
14.500	3.4	3.4	3.5	3.5	3.5
15.000	3.5	3.5	3.5	3.5	3.5
15.500	3.6	3.6	3.6	3.6	3.6
16.000	3.6	3.6	3.6	3.6	3.6

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24-hr 25-yr

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

	rinic on fert represents time for first value in each rown				
Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
				7 7	` ′
16.500	3.7	3.7	3.7	3.7	3.7
17.000	3.7	3.7	3.7	3.7	3.7
17.500	3.7	3.7	3.8	3.8	3.8
18.000	3.8	3.8	3.8	3.8	3.8
18.500	3.8	3.8	3.8	3.8	3.8
19.000	3.8	3.9	3.9	3.9	3.9
19.500	3.9	3.9	3.9	3.9	3.9
20.000	3.9	3.9	3.9	3.9	3.9
20.500	3.9	3.9	3.9	3.9	4.0
21.000	4.0	4.0	4.0	4.0	4.0
21.500	4.0	4.0	4.0	4.0	4.0
22.000	4.0	4.0	4.0	4.0	4.0
22.500	4.0	4.0	4.0	4.0	4.0
23.000	4.1	4.1	4.1	4.1	4.1
23.500	4.1	4.1	4.1	4.1	4.1
24.000	4.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50 years

Label: ODOT TR-55 Storm Event: Type II 24-hr 50-yr

Time-Depth Curve:	Type II 24-hr 50-yr
Label	Type II 24-hr 50-
Label	yr
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	50 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.2	0.2
3.000	0.2	0.2	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.3
4.500	0.3	0.3	0.3	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.4	0.4	0.4
6.000	0.4	0.4	0.4	0.4	0.4
6.500	0.4	0.4	0.4	0.4	0.5
7.000	0.5	0.5	0.5	0.5	0.5
7.500	0.5	0.5	0.5	0.5	0.6
8.000	0.6	0.6	0.6	0.6	0.6
8.500	0.6	0.6	0.6	0.7	0.7
9.000	0.7	0.7	0.7	0.7	0.8
9.500	0.8	0.8	0.8	0.8	0.8
10.000	0.9	0.9	0.9	0.9	0.9
10.500	1.0	1.0	1.0	1.0	1.1
11.000	1.1	1.1	1.2	1.2	1.3
11.500	1.3	1.4	1.7	2.0	2.7
12.000	3.1	3.2	3.3	3.4	3.4
12.500	3.5	3.5	3.5	3.6	3.6
13.000	3.6	3.7	3.7	3.7	3.7
13.500	3.8	3.8	3.8	3.8	3.8
14.000	3.9	3.9	3.9	3.9	3.9
14.500	3.9	4.0	4.0	4.0	4.0
15.000	4.0	4.0	4.0	4.1	4.1
15.500	4.1	4.1	4.1	4.1	4.1
16.000	4.1	4.1	4.2	4.2	4.2

Subsection: Time-Depth Curve Return Event: 50 years
Label: ODOT TR-55 Storm Event: Type II 24-hr 50-yr

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

	ne on leit iel	nesents time	e ioi ilist vai	ue III eacii i c	· vv .
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
16.500	4.2	4.2	4.2	4.2	4.2
17.000	4.2	4.2	4.3	4.3	4.3
17.500	4.3	4.3	4.3	4.3	4.3
18.000	4.3	4.3	4.3	4.4	4.4
18.500	4.4	4.4	4.4	4.4	4.4
19.000	4.4	4.4	4.4	4.4	4.4
19.500	4.4	4.4	4.5	4.5	4.5
20.000	4.5	4.5	4.5	4.5	4.5
20.500	4.5	4.5	4.5	4.5	4.5
21.000	4.5	4.5	4.5	4.6	4.6
21.500	4.6	4.6	4.6	4.6	4.6
22.000	4.6	4.6	4.6	4.6	4.6
22.500	4.6	4.6	4.6	4.6	4.6
23.000	4.6	4.7	4.7	4.7	4.7
23.500	4.7	4.7	4.7	4.7	4.7
24.000	4.7	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 5 years
Label: ODOT TR-55 Storm Event: Type II 24-hr 5-yr

Type II 24-hr 5-yr
Type II 24-hr 5-yr
0.000 hours
0.100 hours
24.000 hours
5 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.1	0.1	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.2	0.2	0.2	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.3
8.000	0.3	0.4	0.4	0.4	0.4
8.500	0.4	0.4	0.4	0.4	0.4
9.000	0.4	0.4	0.4	0.5	0.5
9.500	0.5	0.5	0.5	0.5	0.5
10.000	0.5	0.5	0.5	0.6	0.6
10.500	0.6	0.6	0.6	0.6	0.7
11.000	0.7	0.7	0.7	0.8	0.8
11.500	0.8	0.9	1.0	1.2	1.6
12.000	1.9	2.0	2.0	2.1	2.1
12.500	2.1	2.2	2.2	2.2	2.2
13.000	2.2	2.3	2.3	2.3	2.3
13.500	2.3	2.3	2.3	2.4	2.4
14.000	2.4	2.4	2.4	2.4	2.4
14.500	2.4	2.4	2.4	2.5	2.5
15.000	2.5	2.5	2.5	2.5	2.5
15.500	2.5	2.5	2.5	2.5	2.5
16.000	2.6	2.6	2.6	2.6	2.6
16.500	2.6	2.6	2.6	2.6	2.6

Subsection: Time-Depth Curve Return Event: 5 years
Label: ODOT TR-55 Storm Event: Type II 24-hr 5-yr

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

rime on left represents time for mist value in each row.					
Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
` ,	` '	` '	` '	. ,	(111)
17.000	2.6	2.6	2.6	2.6	2.6
17.500	2.6	2.6	2.7	2.7	2.7
18.000	2.7	2.7	2.7	2.7	2.7
18.500	2.7	2.7	2.7	2.7	2.7
19.000	2.7	2.7	2.7	2.7	2.7
19.500	2.7	2.7	2.7	2.8	2.8
20.000	2.8	2.8	2.8	2.8	2.8
20.500	2.8	2.8	2.8	2.8	2.8
21.000	2.8	2.8	2.8	2.8	2.8
21.500	2.8	2.8	2.8	2.8	2.8
22.000	2.8	2.8	2.8	2.8	2.8
22.500	2.9	2.9	2.9	2.9	2.9
23.000	2.9	2.9	2.9	2.9	2.9
23.500	2.9	2.9	2.9	2.9	2.9
24.000	2.9	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 0 years

Label: ODOT TR-55 Storm Event: Type II 24-hr Water Quality

Storm

Time-Depth Curve:	Type II 24-hr Water Quality Storm
Label	Type II 24-hr Water Quality Storm
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	0 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.0	0.0	0.0	0.0
2.000	0.0	0.0	0.0	0.0	0.0
2.500	0.0	0.0	0.0	0.0	0.0
3.000	0.0	0.0	0.0	0.0	0.0
3.500	0.0	0.0	0.0	0.0	0.0
4.000	0.1	0.1	0.1	0.1	0.1
4.500	0.1	0.1	0.1	0.1	0.1
5.000	0.1	0.1	0.1	0.1	0.1
5.500	0.1	0.1	0.1	0.1	0.1
6.000	0.1	0.1	0.1	0.1	0.1
6.500	0.1	0.1	0.1	0.1	0.1
7.000	0.1	0.1	0.1	0.1	0.1
7.500	0.1	0.1	0.1	0.1	0.1
8.000	0.1	0.1	0.1	0.1	0.1
8.500	0.1	0.1	0.1	0.1	0.2
9.000	0.2	0.2	0.2	0.2	0.2
9.500	0.2	0.2	0.2	0.2	0.2
10.000	0.2	0.2	0.2	0.2	0.2
10.500	0.2	0.2	0.2	0.2	0.2
11.000	0.2	0.3	0.3	0.3	0.3
11.500	0.3	0.3	0.4	0.5	0.6
12.000	0.7	0.7	0.7	0.7	0.8
12.500	0.8	0.8	0.8	0.8	0.8
13.000	0.8	0.8	0.8	0.8	0.8
13.500	0.8	0.8	0.8	0.9	0.9
14.000	0.9	0.9	0.9	0.9	0.9
14.500	0.9	0.9	0.9	0.9	0.9
15.000	0.9	0.9	0.9	0.9	0.9

Subsection: Time-Depth Curve Return Event: 0 years

Storm Event: Type II 24-hr Water Quality

Storm

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Label: ODOT TR-55

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
15.500	0.9	0.9	0.9	0.9	0.9
16.000	0.9	0.9	0.9	0.9	0.9
16.500	0.9	0.9	0.9	0.9	0.9
17.000	0.9	0.9	1.0	1.0	1.0
17.500	1.0	1.0	1.0	1.0	1.0
18.000	1.0	1.0	1.0	1.0	1.0
18.500	1.0	1.0	1.0	1.0	1.0
19.000	1.0	1.0	1.0	1.0	1.0
19.500	1.0	1.0	1.0	1.0	1.0
20.000	1.0	1.0	1.0	1.0	1.0
20.500	1.0	1.0	1.0	1.0	1.0
21.000	1.0	1.0	1.0	1.0	1.0
21.500	1.0	1.0	1.0	1.0	1.0
22.000	1.0	1.0	1.0	1.0	1.0
22.500	1.0	1.0	1.0	1.0	1.0
23.000	1.0	1.0	1.0	1.0	1.0
23.500	1.0	1.0	1.0	1.0	1.0
24.000	1.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Runoff CN-Area Return Event: 0 years

Storm Event: Type II 24-hr Water Quality

Storm

Runoff Curve Number Data

Label: I-90 Bridge - 142

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.680	100.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.680	(N/A)	(N/A)	98.000

Subsection: Runoff CN-Area Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: I-90 Bridge 143

Storm

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads	98.000	0.660	100.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.660	(N/A)	(N/A)	98.000

Subsection: Runoff CN-Area Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: I-90 Bridge 147

Storm

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads	98.000	0.950	100.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.950	(N/A)	(N/A)	98.000

Subsection: Unit Hydrograph Summary Return Event: 0 years

Label: I-90 Bridge - 142 Storm Event: Type II 24-hr Water Quality Storm

Storm Event	Type II 24-hr Water Quality Storm
Return Event	0 years
Duration	72.000 hours
Depth	1.1 in
Time of Concentration (Composite)	0.167 hours
Area (User Defined)	0.680 acres
Computational Time Increment	0.022 hours
Time to Peak (Computed)	11.979 hours
Flow (Peak, Computed)	0.74 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	0.73 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	0.680 acres
Maximum Retention (Pervious)	0.2 in
Maximum Retention (Pervious, 20 percent)	0.0 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.8 in
Runoff Volume (Pervious)	0.048 ac-ft
Hydrograph Volume (Area unde	or Hydrograph ourse)
Hydrograph Volume (Area unde	
Volume	0.048 ac-ft
SCS Unit Hydrograph Paramete	ers
Time of Concentration (Composite)	0.167 hours
Computational Time Increment	0.022 hours
Unit Hydrograph Shape Factor	483.432

Subsection: Unit Hydrograph Summary Return Event: 0 years

Label: I-90 Bridge - 142 Storm Event: Type II 24-hr Water Quality Storm

SCS Unit Hydrograph Parameters	
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	4.61 ft³/s
Unit peak time, Tp	0.111 hours
Unit receding limb, Tr	0.445 hours
Total unit time, Tb	0.557 hours

Return Event: 0 years Subsection: Unit Hydrograph Summary

Storm Event: Type II 24-hr Water Quality Label: I-90 Bridge 143 Storm

Storm Event	Type II 24-hr Water Quality Storm
Return Event	0 years
Duration	72.000 hours
Depth	1.1 in
Time of Concentration (Composite)	0.167 hours
Area (User Defined)	0.660 acres
Computational Time Increment	0.022 hours
Time to Peak (Computed)	11.978 hours
Flow (Peak, Computed)	0.72 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	0.71 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	0.660 acres
Maximum Retention (Pervious)	0.2 in
Maximum Retention (Pervious, 20 percent)	0.0 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.8 in
Runoff Volume (Pervious)	0.046 ac-ft
Hydrograph Volume (Area und	der Hydrograph curve)
Volume	0.046 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.167 hours
Computational Time Increment	0.022 hours
Unit Hydrograph Shape Factor	483.432

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph Summary Return Event: 0 years

Label: I-90 Bridge 143 Storm Event: Type II 24-hr Water Quality Storm

CCC Unit Hudrograph Darameters	
SCS Unit Hydrograph Parameters	
K Factor	0.749
Receding/Rising, Tr/Tp	1.670
Unit peak, qp	4.49 ft ³ /s
Unit peak time, Tp	0.111 hours
Unit receding limb, Tr	0.444 hours
Total unit time, Tb	0.556 hours

Subsection: Unit Hydrograph Summary Return Event: 0 years

Label: I-90 Bridge 147 Storm Event: Type II 24-hr Water Quality Storm

Storm Event	Type II 24-hr Water Quality Storm	
Return Event	0	years
Duration	72.000	hours
Depth	1.1	in
Time of Concentration (Composite)	0.167	hours
Area (User Defined)	0.950	acres
Computational Time Increment	0.022	hours
Time to Peak (Computed)	11.979	hours
Flow (Peak, Computed)	1.04	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	12.000	hours
Flow (Peak Interpolated Output)	1.02	ft³/s
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	0.950	acres
Maximum Retention (Pervious)	0.2	
Maximum Retention (Pervious, 20 percent)	0.0	in
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	0.8	in
Runoff Volume (Pervious)	0.066	ac-ft
11. 1		
Hydrograph Volume (Area unde		
Volume	0.066	ac-ft
SCS Unit Hydrograph Paramete	ers	
Time of Concentration (Composite)	0.167	hours
Computational Time Increment	0.022	hours
Unit Hydrograph Shape Factor	483.432	

Return Event: 0 years Subsection: Unit Hydrograph Summary

Storm Event: Type II 24-hr Water Quality Label: I-90 Bridge 147

Storm

SCS Unit Hydrograph Parameters					
K Factor	0.749				
Receding/Rising, Tr/Tp	1.670				
Unit peak, qp	6.45 ft ³ /s				
Unit peak time, Tp	0.111 hours				
Unit receding limb, Tr	0.445 hours				
Total unit time, Tb	0.557 hours				

Subsection: Time vs. Elevation Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention (OUT)

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	577.00	577.00	577.00	577.00	577.00
0.250	577.00	577.00	577.00	577.00	577.00
0.500	577.00	577.00	577.00	577.00	577.00
0.750	577.00	577.00	577.00	577.00	577.00
1.000	577.00	577.00	577.00	577.00	577.00
1.250	577.00	577.00	577.00	577.00	577.00
1.500	577.00	577.00	577.00	577.00	577.00
1.750	577.00	577.00	577.00	577.00	577.00
2.000	577.00	577.00	577.00	577.00	577.00
2.250	577.00	577.00	577.00	577.00	577.00
2.500	577.00	577.00	577.00	577.00	577.00
2.750	577.00	577.00	577.00	577.00	577.00
3.000	577.00	577.00	577.00	577.00	577.00
3.250	577.00	577.00	577.00	577.00	577.00
3.500	577.00	577.00	577.00	577.00	577.00
3.750	577.00	577.00	577.00	577.00	577.00
4.000	577.00	577.00	577.00	577.00	577.00
4.250	577.00	577.00	577.00	577.00	577.00
4.500	577.00	577.00	577.00	577.00	577.00
4.750	577.00	577.00	577.00	577.00	577.00
5.000	577.00	577.00	577.00	577.00	577.00
5.250	577.00	577.01	577.01	577.01	577.01
5.500	577.01	577.01	577.01	577.01	577.01
5.750	577.01	577.01	577.01	577.01	577.01
6.000	577.01	577.01	577.01	577.01	577.01
6.250	577.01	577.01	577.01	577.01	577.01
6.500	577.02	577.02	577.02	577.02	577.02
6.750	577.02	577.02	577.02	577.02	577.02
7.000	577.02	577.02	577.02	577.02	577.02
7.250	577.02	577.03	577.03	577.03	577.03
7.500	577.03	577.03	577.03	577.03	577.03
7.750	577.03	577.03	577.03	577.03	577.04
8.000	577.04 577.04	577.04 577.04	577.04 577.04	577.04	577.04 577.04
8.250 8.500	577.04 577.04	577.04 577.05	577.04 577.05	577.04 577.05	577.04 577.05
8.500	577.04 577.05	577.05 577.05	5/7.05 577.05	5/7.05 577.05	5/7.05 577.06
9.000	577.05 577.06	577.05 577.06	5/7.05 577.06	577.05 577.06	577.06 577.06
9.000	577.06 577.06	577.06 577.07	577.06 577.07	577.06 577.07	577.06 577.07
9.250	577.06 577.07	577.07 577.07	5/7.0/ 577.07	577.07 577.08	577.07 577.08
9.750	577.07 577.08	577.07 577.08	577.07 577.08	577.08 577.08	577.08 577.09
3.730	3/7.00	3//.00	3//.00	3//.00	3//.09

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Elevation Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention (OUT)

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.							
Time	Elevation	Elevation	Elevation	Elevation	Elevation		
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)		
10.000	577.09	577.09	577.09	577.09	577.10		
10.250	577.10	577.10	577.10	577.10	577.11		
10.500	577.11	577.11	577.11	577.12	577.12		
10.750	577.12	577.13	577.13	577.13	577.14		
11.000	577.14	577.14	577.15	577.15	577.16		
11.250	577.16	577.17	577.17	577.18	577.19		
11.500	577.19	577.20	577.21	577.22	577.23		
11.750	577.26	577.29	577.33	577.38	577.45		
12.000	577.53	577.62	577.69	577.74	577.78		
12.250	577.80	577.82	577.84	577.85	577.86		
12.500	577.87	577.87	577.88	577.89	577.89		
12.750	577.90	577.90	577.90	577.91	577.91		
13.000	577.92	577.92	577.92	577.93	577.93		
13.250	577.93	577.93	577.94	577.94	577.94		
13.500	577.94	577.95	577.95	577.95	577.95		
13.750	577.95	577.95	577.96	577.96	577.96		
14.000	577.96	577.96	577.96	577.96	577.96		
14.250	577.97	577.97	577.97	577.97	577.97		
14.500	577.97	577.97	577.97	577.97	577.97		
14.750	577.97	577.97	577.98	577.98	577.98		
15.000	577.98	577.98	577.98	577.98	577.98		
15.250	577.98	577.98	577.98	577.98	577.98		
15.500	577.98	577.98	577.98	577.98	577.98		
15.750	577.98	577.98	577.98	577.98	577.98		
16.000	577.98	577.98	577.98	577.98	577.98		
16.250	577.98	577.98	577.98	577.98	577.98		
16.500	577.98	577.98	577.98	577.98	577.98		
16.750	577.98	577.98	577.98	577.98	577.98		
17.000	577.98	577.98	577.98	577.98	577.98		
17.250	577.98	577.98	577.98	577.98	577.98		
17.500	577.98	577.98	577.98	577.98	577.98		
17.750	577.98	577.98	577.98	577.97	577.97		
18.000	577.97	577.97	577.97	577.97	577.97		
18.250	577.97	577.97	577.97	577.97	577.97		
18.500	577.97	577.97	577.97	577.97	577.97		
18.750	577.97	577.97	577.97	577.97	577.96		
19.000	577.96	577.96	577.96	577.96	577.96		
19.250	577.96	577.96	577.96	577.96	577.96		
19.500	577.96	577.96	577.96	577.96	577.96		
19.750	577.95	577.95	577.95	577.95	577.95		

Subsection: Time vs. Elevation Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention (OUT)

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.							
Time	Elevation	Elevation	Elevation	Elevation	Elevation		
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)		
20.000	577.95	577.95	577.95	577.95	577.95		
20.250	577.95	577.95	577.95	577.94	577.94		
20.500	577.94	577.94	577.94	577.94	577.94		
20.750	577.94	577.94	577.94	577.94	577.94		
21.000	577.93	577.93	577.93	577.93	577.93		
21.250	577.93	577.93	577.93	577.93	577.93		
21.500	577.93	577.93	577.92	577.92	577.92		
21.750	577.92	577.92	577.92	577.92	577.92		
22.000	577.92	577.92	577.92	577.92	577.91		
22.250	577.91	577.91	577.91	577.91	577.91		
22.500	577.91	577.91	577.91	577.91	577.91		
22.750	577.91	577.90	577.90	577.90	577.90		
23.000	577.90	577.90	577.90	577.90	577.90		
23.250	577.90	577.90	577.90	577.89	577.89		
23.500	577.89	577.89	577.89	577.89	577.89		
23.750	577.89	577.89	577.89	577.89	577.88		
24.000	577.88	577.88	577.88	577.88	577.88		
24.250	577.88	577.88	577.87	577.87	577.87		
24.500	577.87	577.87	577.87	577.86	577.86		
24.750	577.86	577.86	577.86	577.86	577.85		
25.000	577.85	577.85	577.85	577.85	577.85		
25.250	577.84	577.84	577.84	577.84	577.84		
25.500	577.84	577.83	577.83	577.83	577.83		
25.750	577.83	577.83	577.82	577.82	577.82		
26.000	577.82	577.82	577.82	577.81	577.81		
26.250	577.81	577.81	577.81	577.80	577.80		
26.500	577.80	577.80	577.80	577.80	577.79		
26.750	577.79	577.79	577.79	577.79	577.79		
27.000	577.78	577.78	577.78	577.78	577.78		
27.250	577.78	577.77	577.77	577.77	577.77		
27.500	577.77	577.77	577.76	577.76	577.76		
27.750	577.76	577.76	577.76	577.75	577.75		
28.000	577.75	577.75	577.75	577.75	577.74		
28.250	577.74	577.74	577.74	577.74	577.74		
28.500	577.73	577.73	577.73	577.73	577.73		
28.750	577.73	577.73	577.72	577.72	577.72		
29.000	577.72	577.72	577.72	577.71	577.71		
29.250	577.71	577.71	577.71	577.71	577.70		
29.500	577.70	577.70	577.70	577.70	577.70		
29.750	577.70	577.69	577.69	577.69	577.69		

Subsection: Time vs. Elevation Return Event: 0 years

Label: EB Detention (OUT)

Storm Event: Type II 24-hr Water Quality

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time of fert represents time for first value in each row.						
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	
30.000	577.69	577.69	577.68	577.68	577.68	
30.250	577.68	577.68	577.68	577.67	577.67	
30.230	577.67	577.67	577.67	577.67	577.67	
30.750	577.66	577.66	577.66	577.66	577.66	
31.000	577.66	577.65	577.65	577.65	577.65	
31.250	577.65	577.65	577.64	577.64	577.64	
31.500	577.64	577.64	577.64	577.64	577.63	
31.750	577.63	577.63	577.63	577.63	577.63	
32.000	577.62	577.62	577.62	577.62	577.62	
32.250	577.62	577.62	577.61	577.61	577.61	
32.500	577.61	577.61	577.61	577.61	577.60	
32.750	577.60	577.60	577.60	577.60	577.60	
33.000	577.59	577.59	577.59	577.59	577.59	
33.250	577.59	577.59	577.58	577.58	577.58	
33.500	577.58	577.58	577.58	577.58	577.57	
33.750	577.57	577.57	577.57	577.57	577.57 577.57	
34.000	577.56	577.56	577.56	577.56	577.56	
34.250	577.56	577.56	577.55	577.55	577.55	
34.500	577.55 577.55	577.55 577.55	577.55	577.55	577.54	
34.750	577.54	577.54	577.54	577.54	577.54	
35.000	577.54	577.53	577.53	577.53	577.53	
35.250	577.53	577.53	577.53	577.52	577.52	
35.500	577.52	577.52	577.52	577.52	577.52	
35.750	577.51	577.51	577.51	577.51	577.51	
36.000	577.51	577.51	577.50	577.50	577.50	
36.250	577.50	577.50	577.50	577.50	577.49	
36.500	577.49	577.49	577.49	577.49	577.49	
36.750	577.49	577.48	577.48	577.48	577.48	
37.000	577.48	577.48	577.48	577.48	577.47	
37.250	577.47	577.47	577.47	577.47	577.47	
37.500	577.47	577.46	577.46	577.46	577.46	
37.750	577.46	577.46	577.46	577.45	577.45	
38.000	577.45	577.45	577.45	577.45	577.45	
38.250	577.45	577.44	577.44	577.44	577.44	
38.500	577.44	577.44	577.44	577.43	577.43	
38.750	577.43	577.43	577.43	577.43	577.43	
39.000	577.43	577.42	577.42	577.42	577.42	
39.250	577.42	577.42	577.42	577.42	577.41	
39.500	577.41	577.41	577.41	577.41	577.41	
39.750	577.41	577.40	577.40	577.40	577.40	

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Elevation Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention (OUT)

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

time on left represents time for first value in each row.						
Time	Elevation	Elevation	Elevation	Elevation	Elevation	
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)	
40.000	577.40	577.40	577.40	577.40	577.39	
40.250	577.39	577.39	577.39	577.39	577.39	
40.500	577.39	577.39	577.38	577.38	577.38	
40.750	577.38	577.38	577.38	577.38	577.38	
41.000	577.37	577.37	577.37	577.37	577.37	
41.250	577.37	577.37	577.37	577.36	577.36	
41.500	577.36	577.36	577.36	577.36	577.36	
41.750	577.36	577.35	577.35	577.35	577.35	
42.000	577.35	577.35	577.35	577.35	577.35	
42.250	577.34	577.34	577.34	577.34	577.34	
42.500	577.34	577.34	577.34	577.33	577.33	
42.750	577.33	577.33	577.33	577.33	577.33	
43.000	577.33	577.33	577.32	577.32	577.32	
43.250	577.32	577.32	577.32	577.32	577.32	
43.500	577.31	577.31	577.31	577.31	577.31	
43.750	577.31	577.31	577.31	577.31	577.30	
44.000	577.30	577.30	577.30	577.30	577.30	
44.250	577.30	577.30	577.30	577.29	577.29	
44.500	577.29	577.29	577.29	577.29	577.29	
44.750	577.29	577.29	577.28	577.28	577.28	
45.000	577.28	577.28	577.28	577.28	577.28	
45.250	577.28	577.28	577.27	577.27	577.27	
45.500	577.27	577.27	577.27	577.27	577.27	
45.750	577.27	577.26	577.26	577.26	577.26	
46.000	577.26	577.26	577.26	577.26	577.26	
46.250	577.26	577.25	577.25	577.25	577.25	
46.500	577.25	577.25	577.25	577.25	577.25	
46.750	577.25	577.24	577.24	577.24	577.24	
47.000	577.24	577.24	577.24	577.24	577.24	
47.250	577.24	577.23	577.23	577.23	577.23	
47.500	577.23	577.23	577.23	577.23	577.23	
47.750	577.23	577.23	577.22	577.22	577.22	
48.000	577.22	577.22	577.22	577.22	577.22	
48.250	577.22	577.22	577.22	577.21	577.21	
48.500	577.21	577.21	577.21	577.21	577.21	
48.750	577.21	577.21	577.21	577.21	577.20	
49.000	577.20	577.20	577.20	577.20	577.20	
49.250	577.20	577.20	577.20	577.20	577.20	
49.500	577.20	577.19	577.19	577.19	577.19	
49.750	577.19	577.19	577.19	577.19	577.19	
•	•	Danitlas Co.	Į.	·		

Subsection: Time vs. Elevation Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention (OUT)

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for mist value in each row.						
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	
50.000	577.19	577.19	577.19	577.18	577.18	
50.250	577.18	577.18	577.18	577.18	577.18	
50.500	577.18	577.18	577.18	577.18	577.18	
50.750	577.17	577.17	577.17	577.17	577.17	
51.000	577.17 577.17	577.17	577.17	577.17	577.17	
51.250	577.17	577.17	577.17	577.16	577.16	
51.500	577.16	577.16	577.16	577.16	577.16	
51.750	577.16	577.16	577.16	577.16	577.16	
52.000	577.16	577.15	577.15	577.15	577.15	
52,250	577.15	577.15	577.15	577.15	577.15	
52.500	577.15	577.15	577.15	577.15	577.15	
52.750	577.14	577.14	577.14	577.14	577.14	
53,000	577.14	577.14	577.14	577.14	577.14	
53,250	577.14	577.14	577.14	577.14	577.14	
53.500	577.13	577.13	577.13	577.13	577.13	
53.750	577.13	577.13	577.13	577.13	577.13	
54.000	577.13	577.13	577.13	577.13	577.13	
54.250	577.12	577.12	577.12	577.12	577.12	
54.500	577.12	577.12	577.12	577.12	577.12	
54.750	577.12	577.12	577.12	577.12	577.12	
55.000	577.12	577.11	577.11	577.11	577.11	
55.250	577.11	577.11	577.11	577.11	577.11	
55.500	577.11	577.11	577.11	577.11	577.11	
55.750	577.11	577.11	577.11	577.10	577.10	
56.000	577.10	577.10	577.10	577.10	577.10	
56.250	577.10	577.10	577.10	577.10	577.10	
56.500	577.10	577.10	577.10	577.10	577.10	
56.750	577.10	577.09	577.09	577.09	577.09	
57.000	577.09	577.09	577.09	577.09	577.09	
57.250	577.09	577.09	577.09	577.09	577.09	
57.500	577.09	577.09	577.09	577.09	577.09	
57.750	577.09	577.08	577.08	577.08	577.08	
58.000	577.08	577.08	577.08	577.08	577.08	
58.250	577.08	577.08	577.08	577.08	577.08	
58.500	577.08	577.08	577.08	577.08	577.08	
58.750	577.08	577.08	577.08	577.07	577.07	
59.000	577.07	577.07	577.07	577.07	577.07	
59.250	577.07	577.07	577.07	577.07	577.07	
59.500	577.07	577.07	577.07	577.07	577.07	
59.750	577.07	577.07	577.07	577.07	577.07	

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Elevation Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention (OUT)

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.						
Time	Elevation	Elevation	Elevation	Elevation	Elevation	
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)	
60.000	577.07	577.07	577.07	577.07	577.06	
60.250	577.06	577.06	577.06	577.06	577.06	
60.500	577.06	577.06	577.06	577.06	577.06	
60.750	577.06	577.06	577.06	577.06	577.06	
61.000	577.06	577.06	577.06	577.06	577.06	
61.250	577.06	577.06	577.06	577.06	577.06	
61.500	577.06	577.06	577.06	577.05	577.05	
61.750	577.05	577.05	577.05	577.05	577.05	
62.000	577.05	577.05	577.05	577.05	577.05	
62.250	577.05	577.05	577.05	577.05	577.05	
62.500	577.05	577.05	577.05	577.05	577.05	
62.750	577.05	577.05	577.05	577.05	577.05	
63.000	577.05	577.05	577.05	577.05	577.05	
63.250	577.05	577.05	577.05	577.04	577.04	
63.500	577.04	577.04	577.04	577.04	577.04	
63.750	577.04	577.04	577.04	577.04	577.04	
64.000	577.04	577.04	577.04	577.04	577.04	
64.250	577.04	577.04	577.04	577.04	577.04	
64.500	577.04	577.04	577.04	577.04	577.04	
64.750	577.04	577.04	577.04	577.04	577.04	
65.000	577.04	577.04	577.04	577.04	577.04	
65.250	577.04	577.04	577.04	577.04	577.04	
65.500	577.04	577.04	577.04	577.03	577.03	
65.750	577.03	577.03	577.03	577.03	577.03	
66.000	577.03	577.03	577.03	577.03	577.03	
66.250	577.03	577.03	577.03	577.03	577.03	
66.500	577.03	577.03	577.03	577.03	577.03	
66.750	577.03	577.03	577.03	577.03	577.03	
67.000	577.03	577.03	577.03	577.03	577.03	
67.250	577.03	577.03	577.03	577.03	577.03	
67.500	577.03	577.03	577.03	577.03	577.03	
67.750	577.03	577.03	577.03	577.03	577.03	
68.000	577.03	577.03	577.03	577.03	577.03	
68.250	577.03	577.03	577.03	577.03	577.03	
68.500	577.03	577.03	577.02	577.02	577.02	
68.750	577.02	577.02	577.02	577.02	577.02	
69.000	577.02	577.02	577.02	577.02	577.02	
69.250	577.02	577.02	577.02	577.02	577.02	
69.500	577.02	577.02	577.02	577.02	577.02	
69.750	577.02	577.02	577.02	577.02	577.02	

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.51] Page 29 of 57

Subsection: Time vs. Elevation Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention (OUT)

Storm

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

	•				
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
70.000	577.02	577.02	577.02	577.02	577.02
70.250	577.02	577.02	577.02	577.02	577.02
70.500	577.02	577.02	577.02	577.02	577.02
70.750	577.02	577.02	577.02	577.02	577.02
71.000	577.02	577.02	577.02	577.02	577.02
71.250	577.02	577.02	577.02	577.02	577.02
71.500	577.02	577.02	577.02	577.02	577.02
71.750	577.02	577.02	577.02	577.02	577.02
72.000	577.02	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

	time on left represents time for first value in each row.						
Time	Volume	Volume	Volume	Volume	Volume		
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
0.000	0.000	0.000	0.000	0.000	0.000		
0.250	0.000	0.000	0.000	0.000	0.000		
0.500	0.000	0.000	0.000	0.000	0.000		
0.750	0.000	0.000	0.000	0.000	0.000		
1.000	0.000	0.000	0.000	0.000	0.000		
1.250	0.000	0.000	0.000	0.000	0.000		
1.500	0.000	0.000	0.000	0.000	0.000		
1.750	0.000	0.000	0.000	0.000	0.000		
2.000	0.000	0.000	0.000	0.000	0.000		
2.250	0.000	0.000	0.000	0.000	0.000		
2.500	0.000	0.000	0.000	0.000	0.000		
2.750	0.000	0.000	0.000	0.000	0.000		
3.000	0.000	0.000	0.000	0.000	0.000		
3.250	0.000	0.000	0.000	0.000	0.000		
3.500	0.000	0.000	0.000	0.000	0.000		
3.750	0.000	0.000	0.000	0.000	0.000		
4.000	0.000	0.000	0.000	0.000	0.000		
4.250	0.000	0.000	0.000	0.000	0.000		
4.500	0.000	0.000	0.000	0.000	0.000		
4.750	0.000	0.000	0.000	0.000	0.000		
5.000	0.000	0.000	0.000	0.000	0.000		
5.250	0.001	0.001	0.001	0.001	0.001		
5.500	0.001	0.001	0.001	0.001	0.001		
5.750	0.001	0.001	0.001	0.001	0.001		
6.000	0.001	0.001	0.001	0.001	0.001		
6.250	0.001	0.001	0.001	0.001	0.002		
6.500	0.002	0.002	0.002	0.002	0.002		
6.750	0.002	0.002	0.002	0.002	0.002		
7.000	0.002	0.002	0.002	0.002	0.002		
7.250	0.003	0.003	0.003	0.003	0.003		
7.500	0.003	0.003	0.003	0.003	0.003		
7.750	0.003	0.003	0.003	0.004	0.004		
8.000	0.004	0.004	0.004	0.004	0.004		
8.250	0.004	0.004	0.004	0.004	0.004		
8.500	0.005	0.005	0.005	0.005	0.005		
8.750	0.005	0.005	0.005	0.006	0.006		
9.000	0.006	0.006	0.006	0.006	0.006		
9.250	0.007	0.007	0.007	0.007	0.007		
9.500	0.007	0.007	0.008	0.008	0.008		
9.750	0.008	0.008	0.008	0.009	0.009		
		Danilla. O.		d Madhaada Oalidiaa			

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
10.000	0.009	0.009	0.009	0.010	0.010
10.250	0.010	0.010	0.011	0.011	0.011
10.500	0.011	0.012	0.012	0.012	0.012
10.750	0.013	0.013	0.013	0.014	0.014
11.000	0.015	0.015	0.015	0.016	0.016
11.250	0.017	0.017	0.018	0.019	0.019
11.500	0.020	0.021	0.022	0.023	0.025
11.750	0.027	0.030	0.035	0.041	0.049
12.000	0.058	0.068	0.076	0.083	0.087
12.250	0.090	0.093	0.094	0.096	0.097
12.500	0.098	0.099	0.100	0.101	0.101
12.750	0.102	0.102	0.103	0.103	0.104
13.000	0.104	0.105	0.105	0.106	0.106
13.250	0.106	0.107	0.107	0.107	0.108
13.500	0.108	0.108	0.108	0.109	0.109
13.750	0.109	0.109	0.109	0.110	0.110
14.000	0.110	0.110	0.110	0.110	0.110
14.250	0.111	0.111	0.111	0.111	0.111
14.500	0.111	0.111	0.111	0.111	0.112
14.750	0.112	0.112	0.112	0.112	0.112
15.000	0.112	0.112	0.112	0.112	0.112
15.250	0.112	0.112	0.112	0.113	0.113
15.500	0.113	0.113	0.113	0.113	0.113
15.750	0.113	0.113	0.113	0.113	0.113
16.000	0.113	0.113	0.113	0.113	0.113
16.250	0.113	0.113	0.113	0.113	0.113
16.500	0.113	0.113	0.113	0.113	0.113
16.750	0.113	0.113	0.113	0.113	0.113
17.000	0.112	0.112	0.112	0.112	0.112
17.250	0.112	0.112	0.112	0.112	0.112
17.500	0.112	0.112	0.112	0.112	0.112
17.750	0.112	0.112	0.112	0.112	0.112
18.000	0.112	0.112	0.112	0.112	0.111
18.250	0.111	0.111	0.111	0.111	0.111
18.500	0.111	0.111	0.111	0.111	0.111
18.750	0.111	0.111	0.111	0.111	0.110
19.000 19.250	0.110 0.110	0.110	0.110	0.110	0.110
19.250		0.110	0.110 0.109	0.110 0.109	0.110
19.750	0.110 0.109	0.110 0.109	0.109	0.109	0.109 0.109
19./50	0.109	0.109	0.109	0.109	0.109

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.51] Page 32 of 57

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.						
Time	Volume	Volume	Volume	Volume	Volume	
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
20.000	0.109	0.109	0.109	0.108	0.108	
20.250	0.108	0.108	0.108	0.108	0.108	
20.500	0.108	0.108	0.108	0.107	0.107	
20.750	0.107	0.107	0.107	0.107	0.107	
21.000	0.107	0.107	0.106	0.106	0.106	
21.250	0.106	0.106	0.106	0.106	0.106	
21.500	0.106	0.106	0.105	0.105	0.105	
21.750	0.105	0.105	0.105	0.105	0.105	
22.000	0.105	0.104	0.104	0.104	0.104	
22.250	0.104	0.104	0.104	0.104	0.104	
22.500	0.104	0.103	0.103	0.103	0.103	
22.750	0.103	0.103	0.103	0.103	0.103	
23.000	0.103	0.102	0.102	0.102	0.102	
23.250	0.102	0.102	0.102	0.102	0.102	
23.500	0.101	0.101	0.101	0.101	0.101	
23.750	0.101	0.101	0.101	0.101	0.100	
24.000	0.100	0.100	0.100	0.100	0.100	
24.250	0.100	0.099	0.099	0.099	0.099	
24.500	0.099	0.098	0.098	0.098	0.098	
24.750	0.097	0.097	0.097	0.097	0.097	
25.000	0.096	0.096	0.096	0.096	0.096	
25.250	0.095	0.095	0.095	0.095	0.094	
25.500	0.094	0.094	0.094	0.094	0.093	
25.750	0.093	0.093	0.093	0.093	0.092	
26.000	0.092	0.092	0.092	0.092	0.091	
26.250	0.091	0.091	0.091	0.091	0.090	
26.500	0.090	0.090	0.090	0.089	0.089	
26.750	0.089	0.089	0.089	0.088	0.088	
27.000	0.088	0.088	0.088	0.087	0.087	
27.250	0.087	0.087	0.087	0.086	0.086	
27.500	0.086	0.086	0.086	0.085	0.085	
27.750	0.085	0.085	0.085	0.084	0.084	
28.000	0.084	0.084	0.084	0.083	0.083	
28.250	0.083	0.083	0.083	0.082	0.082	
28.500	0.082	0.082	0.082	0.081	0.081	
28.750	0.081	0.081	0.081	0.080	0.080	
29.000	0.080	0.080	0.080	0.079	0.079	
29.250	0.079	0.079	0.079	0.079	0.078	
29.500	0.078	0.078	0.078	0.078	0.077	
29.750	0.077	0.077	0.077	0.077	0.076	

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.						
Time	Volume	Volume	Volume	Volume	Volume	
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
30.000	0.076	0.076	0.076	0.076	0.075	
30.250	0.075	0.075	0.075	0.075	0.075	
30.500	0.074	0.074	0.074	0.074	0.074	
30.750	0.073	0.073	0.073	0.073	0.073	
31.000	0.072	0.072	0.072	0.072	0.072	
31.250	0.072	0.071	0.071	0.071	0.071	
31.500	0.071	0.070	0.070	0.070	0.070	
31.750	0.070	0.070	0.069	0.069	0.069	
32.000	0.069	0.069	0.068	0.068	0.068	
32.250	0.068	0.068	0.068	0.067	0.067	
32.500	0.067	0.067	0.067	0.067	0.066	
32.750	0.066	0.066	0.066	0.066	0.065	
33.000	0.065	0.065	0.065	0.065	0.065	
33.250	0.064	0.064	0.064	0.064	0.064	
33.500	0.063	0.063	0.063	0.063	0.063	
33.750	0.063	0.062	0.062	0.062	0.062	
34.000	0.062	0.062	0.061	0.061	0.061	
34.250	0.061	0.061	0.061	0.060	0.060	
34.500	0.060	0.060	0.060	0.060	0.059	
34.750	0.059	0.059	0.059	0.059	0.059	
35.000	0.058	0.058	0.058	0.058	0.058	
35.250	0.058	0.057	0.057	0.057	0.057	
35.500	0.057	0.057	0.056	0.056	0.056	
35.750	0.056	0.056	0.056	0.055	0.055	
36.000	0.055	0.055	0.055	0.055	0.054	
36.250	0.054	0.054	0.054	0.054	0.054	
36.500	0.053	0.053	0.053	0.053	0.053	
36.750	0.053	0.053	0.052	0.052	0.052	
37.000	0.052	0.052	0.052	0.051	0.051	
37.250	0.051	0.051	0.051	0.051	0.050	
37.500	0.050	0.050	0.050	0.050	0.050	
37.750	0.050	0.049	0.049	0.049	0.049	
38.000	0.049	0.049	0.048	0.048	0.048	
38.250	0.048	0.048	0.048	0.048	0.047	
38.500	0.047	0.047	0.047	0.047	0.047	
38.750	0.047	0.046	0.046	0.046	0.046	
39.000	0.046	0.046	0.045	0.045	0.045	
39.250	0.045	0.045	0.045	0.045	0.044	
39.500	0.044	0.044	0.044	0.044	0.044	
39.750	0.044	0.043	0.043	0.043	0.043	

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.						
Time	Volume	Volume	Volume	Volume	Volume	
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
40.000	0.043	0.043	0.043	0.042	0.042	
40.250	0.042	0.042	0.042	0.042	0.042	
40.500	0.041	0.041	0.041	0.041	0.041	
40.750	0.041	0.041	0.040	0.040	0.040	
41.000	0.040	0.040	0.040	0.040	0.039	
41.250	0.039	0.039	0.039	0.039	0.039	
41.500	0.039	0.039	0.038	0.038	0.038	
41.750	0.038	0.038	0.038	0.038	0.037	
42.000	0.037	0.037	0.037	0.037	0.037	
42.250	0.037	0.037	0.036	0.036	0.036	
42.500	0.036	0.036	0.036	0.036	0.035	
42.750	0.035	0.035	0.035	0.035	0.035	
43.000	0.035	0.035	0.034	0.034	0.034	
43.250	0.034	0.034	0.034	0.034	0.034	
43.500	0.033	0.033	0.033	0.033	0.033	
43.750	0.033	0.033	0.033	0.032	0.032	
44.000	0.032	0.032	0.032	0.032	0.032	
44.250	0.032	0.031	0.031	0.031	0.031	
44.500	0.031	0.031	0.031	0.031	0.030	
44.750	0.030	0.030	0.030	0.030	0.030	
45.000	0.030	0.030	0.030	0.029	0.029	
45.250	0.029	0.029	0.029	0.029	0.029	
45.500	0.029	0.028	0.028	0.028	0.028	
45.750	0.028	0.028	0.028	0.028	0.028	
46.000	0.027	0.027	0.027	0.027	0.027	
46.250	0.027	0.027	0.027	0.027	0.026	
46.500	0.026	0.026	0.026	0.026	0.026	
46.750	0.026	0.026	0.026	0.026	0.025	
47.000	0.025	0.025	0.025	0.025	0.025	
47.250	0.025	0.025	0.025	0.024	0.024	
47.500	0.024	0.024	0.024	0.024	0.024	
47.750	0.024	0.024	0.024	0.023	0.023	
48.000	0.023	0.023	0.023	0.023	0.023	
48.250	0.023	0.023	0.023	0.022	0.022	
48.500	0.022	0.022	0.022	0.022	0.022	
48.750	0.022	0.022	0.022	0.022	0.021	
49.000	0.021	0.021	0.021	0.021	0.021	
49.250	0.021	0.021	0.021	0.021	0.021	
49.500	0.020	0.020	0.020	0.020	0.020	
49.750	0.020	0.020	0.020	0.020	0.020	

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.						
Time	Volume	Volume	Volume	Volume	Volume	
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
50.000	0.020	0.019	0.019	0.019	0.019	
50.250	0.019	0.019	0.019	0.019	0.019	
50.500	0.019	0.019	0.018	0.018	0.018	
50.750	0.018	0.018	0.018	0.018	0.018	
51.000	0.018	0.018	0.018	0.018	0.017	
51.250	0.017	0.017	0.017	0.017	0.017	
51.500	0.017	0.017	0.017	0.017	0.017	
51.750	0.017	0.017	0.016	0.016	0.016	
52.000	0.016	0.016	0.016	0.016	0.016	
52.250	0.016	0.016	0.016	0.016	0.016	
52.500	0.015	0.015	0.015	0.015	0.015	
52.750	0.015	0.015	0.015	0.015	0.015	
53.000	0.015	0.015	0.015	0.014	0.014	
53.250	0.014	0.014	0.014	0.014	0.014	
53.500	0.014	0.014	0.014	0.014	0.014	
53.750	0.014	0.014	0.013	0.013	0.013	
54.000	0.013	0.013	0.013	0.013	0.013	
54.250	0.013	0.013	0.013	0.013	0.013	
54.500	0.013	0.013	0.012	0.012	0.012	
54.750	0.012	0.012	0.012	0.012	0.012	
55.000	0.012	0.012	0.012	0.012	0.012	
55.250	0.012	0.012	0.012	0.011	0.011	
55.500	0.011	0.011	0.011	0.011	0.011	
55.750	0.011	0.011	0.011	0.011	0.011	
56.000	0.011	0.011	0.011	0.011	0.011	
56.250	0.010	0.010	0.010	0.010	0.010	
56.500	0.010	0.010	0.010	0.010	0.010	
56.750	0.010	0.010	0.010	0.010	0.010	
57.000	0.010	0.010	0.010	0.009	0.009	
57.250	0.009	0.009	0.009	0.009	0.009	
57.500	0.009	0.009	0.009	0.009	0.009	
57.750	0.009	0.009	0.009	0.009	0.009	
58.000	0.009	0.009	0.008	0.008	0.008	
58.250	0.008	0.008	0.008	0.008	0.008	
58.500	0.008	0.008	0.008	0.008	0.008	
58.750	0.008	0.008	0.008	0.008	0.008	
59.000	0.008	0.008	0.008	0.008	0.007	
59.250	0.007	0.007	0.007	0.007	0.007	
59.500	0.007	0.007	0.007	0.007	0.007	
59.750	0.007	0.007	0.007	0.007	0.007	

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.						
Time	Volume	Volume	Volume	Volume	Volume	
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	
60.000	0.007	0.007	0.007	0.007	0.007	
60.250	0.007	0.007	0.007	0.007	0.006	
60.500	0.006	0.006	0.006	0.006	0.006	
60.750	0.006	0.006	0.006	0.006	0.006	
61.000	0.006	0.006	0.006	0.006	0.006	
61.250	0.006	0.006	0.006	0.006	0.006	
61.500	0.006	0.006	0.006	0.006	0.006	
61.750	0.006	0.006	0.006	0.005	0.005	
62.000	0.005	0.005	0.005	0.005	0.005	
62.250	0.005	0.005	0.005	0.005	0.005	
62.500	0.005	0.005	0.005	0.005	0.005	
62.750	0.005	0.005	0.005	0.005	0.005	
63.000	0.005	0.005	0.005	0.005	0.005	
63.250	0.005	0.005	0.005	0.005	0.005	
63.500	0.005	0.005	0.005	0.004	0.004	
63.750	0.004	0.004	0.004	0.004	0.004	
64.000	0.004	0.004	0.004	0.004	0.004	
64.250	0.004	0.004	0.004	0.004	0.004	
64.500	0.004	0.004	0.004	0.004	0.004	
64.750	0.004	0.004	0.004	0.004	0.004	
65.000	0.004	0.004	0.004	0.004	0.004	
65.250	0.004	0.004	0.004	0.004	0.004	
65.500	0.004	0.004	0.004	0.004	0.004	
65.750	0.004	0.004	0.004	0.003	0.003	
66.000	0.003	0.003	0.003	0.003	0.003	
66.250	0.003	0.003	0.003	0.003	0.003	
66.500	0.003	0.003	0.003	0.003	0.003	
66.750	0.003	0.003	0.003	0.003	0.003	
67.000	0.003	0.003	0.003	0.003	0.003	
67.250	0.003	0.003	0.003	0.003	0.003	
67.500	0.003	0.003	0.003	0.003	0.003	
67.750	0.003	0.003	0.003	0.003	0.003	
68.000	0.003	0.003	0.003	0.003	0.003	
68.250	0.003	0.003	0.003	0.003	0.003	
68.500	0.003	0.003	0.003	0.003	0.003	
68.750	0.003	0.003	0.002	0.002	0.002	
69.000	0.002	0.002	0.002	0.002	0.002	
69.250	0.002	0.002	0.002	0.002	0.002	
69.500	0.002	0.002	0.002	0.002	0.002	
69.750	0.002	0.002	0.002	0.002	0.002	

Subsection: Time vs. Volume Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
70.000	0.002	0.002	0.002	0.002	0.002
70.250	0.002	0.002	0.002	0.002	0.002
70.500	0.002	0.002	0.002	0.002	0.002
70.750	0.002	0.002	0.002	0.002	0.002
71.000	0.002	0.002	0.002	0.002	0.002
71.250	0.002	0.002	0.002	0.002	0.002
71.500	0.002	0.002	0.002	0.002	0.002
71.750	0.002	0.002	0.002	0.002	0.002
72.000	0.002	(N/A)	(N/A)	(N/A)	(N/A)

Return Event: 0 years Subsection: Elevation-Area Volume Curve

Storm Event: Type II 24-hr Water Quality Label: EB Detention

Storm

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
577.0	0.0	0.102	0.000	0.000	0.000
578.0	0.0	0.128	0.345	0.115	0.115
579.0	0.0	0.156	0.426	0.142	0.257
579.0	0.0	0.187	0.514	0.002	0.259
580.0	0.0	0.241	0.640	0.211	0.470
581.0	0.0	0.283	0.785	0.262	0.732

Subsection: Volume Equations Return Event: 0 years

Label: EB Detention Storm Event: Type II 24-hr Water Quality

Storm

Pond Volume Equations
* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2 - El1) * (Area1 + Area2 + sqr(Area1 * Area2))

where: EL1, EL2 Lower and upper elevations of the increment

Area1, Area2 Areas computed for EL1, EL2, respectively Volume Incremental volume between EL1 and EL2

Subsection: Outlet Input Data Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention WQB

Storm

Requested Pond Water Surface	Elevations
Minimum (Headwater)	577.00 ft
Increment (Headwater)	0.10 ft
Maximum (Headwater)	581.00 ft

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inlet Box	R0	Forward	C0	578.00	581.00
Orifice-Circular	Orifice - 1	Forward	C0	577.00	581.00
Culvert-Circular	C0	Forward	TW	574.50	581.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Return Event: 0 years Subsection: Outlet Input Data Storm Event: Type II 24-hr Water Quality Label: EB Detention WQB

Storm

Structure ID: R0 Structure Type: Inlet Box	
Number of Openings	1
Elevation	578.00 ft
Orifice Area	2.6 ft ²
Orifice Coefficient	0.660
Weir Length	6.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False

Subsection: Outlet Input Data

Return Event: 0 years

Storm Event: Type II 24 br Water Outlity

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality Storm

Structure ID: C0 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	24.0 in
Length	129.20 ft
Length (Computed Barrel)	129.20 ft
Slope (Computed)	0.002 ft/ft
Outlet Control Data	
Manning's n	0.015
Ke	0.500
Kb	0.017
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0098
M	2.0000
С	0.0398
Υ	0.6700
T1 ratio (HW/D)	1.159
T2 ratio (HW/D)	1.306
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	576.82 ft	T1 Flow	15.55 ft³/s
T2 Elevation	577.11 ft	T2 Flow	17.77 ft³/s

Subsection: Outlet Input Data

Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Storm

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	2
Elevation	577.00 ft
Orifice Diameter	1.0 in
Orifice Coefficient	0.660

Structure ID: TW Structure Type: TW Setup, DS Channel

Label: EB Detention WQB

Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance (Minimum)	0.01 ft
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

Subsection: Individual Outlet Curves Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention WQB

Storm

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = R0 (Inlet Box)

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
577.00	0.00	0.00	0.00	0.00	0.00	0.00	(N/A)	0.00
577.10	0.00	0.00	0.00	574.56	0.00	0.00	(N/A)	0.00
577.20	0.00	0.00	0.00	574.58	0.00	0.00	(N/A)	0.00
577.30	0.00	0.00	0.00	574.59	0.00	0.00	(N/A)	0.00
577.40	0.00	0.00	0.00	574.60	0.00	0.00	(N/A)	0.00
577.50	0.00	0.00	0.00	574.61	0.00	0.00	(N/A)	0.00
577.60	0.00	0.00	0.00	574.61	0.00	0.00	(N/A)	0.00
577.70	0.00	0.00	0.00	574.61	0.00	0.00	(N/A)	0.00
577.80	0.00	0.00	0.00	574.62	0.00	0.00	(N/A)	0.00
577.90	0.00	0.00	0.00	574.62	0.00	0.00	(N/A)	0.00
578.00	0.00	0.00	0.00	574.63	0.00	0.00	(N/A)	0.00
578.10	0.62	578.10	Free Outfall	574.93	0.00	0.00	(N/A)	0.00
578.20	1.74	578.20	Free Outfall	575.21	0.00	0.00	(N/A)	0.00
578.30	3.20	578.30	Free Outfall	575.48	0.00	0.00	(N/A)	0.00
578.40	4.93	578.40	Free Outfall	575.74	0.00	0.00	(N/A)	0.00
578.50	6.89	578.50	Free Outfall	576.00	0.00	0.00	(N/A)	0.00
578.60	9.06	578.60	Free Outfall	576.27	0.00	0.00	(N/A)	0.00
578.70	11.42	578.70	Free Outfall	576.56	0.00	0.00	(N/A)	0.00
578.80	12.31	578.80	Free Outfall	576.67	0.00	0.00	(N/A)	0.00
578.90	13.06	578.90	Free Outfall	576.78	0.00	0.00	(N/A)	0.00
579.00	13.77	579.00	Free Outfall	576.89	0.00	0.00	(N/A)	0.00
579.10	14.44	579.10	Free Outfall	577.00	0.00	0.00	(N/A)	0.00
579.20	15.08	579.20	Free Outfall	577.14	0.00	0.00	(N/A)	0.00
579.30	15.69	579.30	Free Outfall	577.27	0.00	0.00	(N/A)	0.00
579.40	16.29	579.40	Free Outfall	577.40	0.00	0.00	(N/A)	0.00
579.50	16.86	579.50	Free Outfall	577.53	0.00	0.00	(N/A)	0.00
579.60	17.41	579.60	Free Outfall	577.66	0.00	0.00	(N/A)	0.00
579.70	17.95	579.70	Free Outfall	577.79	0.00	0.00	(N/A)	0.00
579.80	18.47	579.80	Free Outfall	577.91	0.00	0.00	(N/A)	0.00
579.90	18.97	579.90	578.03	578.03	0.00	0.00	(N/A)	0.00
580.00	19.47	580.00	578.15	578.15	0.00	0.00	(N/A)	0.00
580.10	19.95	580.10	578.28	578.28	0.00	0.00	(N/A)	0.00
580.20	20.42	580.20	578.40	578.40	0.00	0.00	(N/A)	0.00
580.30	20.88	580.30	578.52	578.52	0.00	0.00	(N/A)	0.00
580.40	21.33	580.40	578.63	578.63	0.00	0.00	(N/A)	0.00

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.51] Page 45 of 57

Subsection: Individual Outlet Curves Return Event: 0 years

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality

Storm

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = R0 (Inlet Box)

Upstream ID = (Pond Water Surface)

Downstream ID = C0 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
580.50	21.76	580.50	578.75	578.75	0.00	0.00	(N/A)	0.00
580.60	22.20	580.60	578.87	578.87	0.00	0.00	(N/A)	0.00
580.70	22.62	580.70	578.99	578.99	0.00	0.00	(N/A)	0.00
580.80	23.03	580.80	579.10	579.10	0.00	0.00	(N/A)	0.00
580.90	23.44	580.90	579.21	579.21	0.00	0.00	(N/A)	0.00
581.00	23.84	581.00	579.33	579.33	0.00	0.00	(N/A)	0.00

Message

WS below an invert; no flow.

Weir: H = 0.1ft

Weir: H = 0.2ft

Weir: H =0.3ft

Weir: H =0.4ft

Weir: H = 0.5ftWeir: H = 0.6ft

weir: $H = 0.6\pi$

Weir: H =0.7ft

Orifice: H = .80; Riser orifice equation

controlling.

Orifice: H = .90; Riser orifice equation

controlling.

Orifice: H = 1.00; Riser orifice equation

controlling.

Orifice: H = 1.10; Riser orifice equation

controlling.

Orifice: H = 1.20; Riser orifice equation

controlling.

Subsection: Individual Outlet Curves Return Event: 0 years

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality

Storm

RATING TABLE FOR ONE OUTLET TYPE Structure ID = R0 (Inlet Box)

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Message

Orifice: H =1.30; Riser orifice equation controlling.

Orifice: H =1.40; Riser orifice equation controlling.

Orifice: H = 1.50; Riser orifice equation controlling.

Orifice: H = 1.60; Riser orifice equation controlling.

Orifice: H = 1.70; Riser orifice equation controlling.

Orifice: H = 1.80; Riser orifice equation controlling.

FULLY CHARGED RISER: Orifice Equation Control to Crest; H=1.90 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.00 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.10 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.20 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.30 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.40 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.50 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.60 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.70 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.80 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.90 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=3.00

Subsection: Individual Outlet Curves Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention WQB

Storm

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line	Converge Downstream Hydraulic Grade Line	Next Downstream Hydraulic Grade Line	Downstream Hydraulic Grade Line Error	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
		(ft)	(ft)	(ft)	(ft)			
577.00	0.00	0.00	0.00	Free Outfall	0.00	0.00	(N/A)	0.00
577.10	0.01	574.56	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.20	0.02	574.58	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.30	0.03	574.59	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.40	0.03	574.60	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.50	0.04	574.61	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.60	0.04	574.61	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.70	0.05	574.61	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.80	0.05	574.62	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.90	0.05	574.62	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.00	0.06	574.63	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.10	0.68	574.93	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.20	1.81	575.21	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.30	3.27	575.48	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.40	5.00	575.74	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.50	6.96	576.00	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.60	9.14	576.27	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.70	11.49	576.56	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.80	12.38	576.67	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
578.90	13.13	576.78	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.00	13.83	576.89	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.10	14.51	577.00	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.20	15.15	577.14	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.30	15.76	577.27	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.40	16.36	577.40	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.50	16.93	577.53	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.60	17.48	577.66	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.70	18.02	577.79	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.80	18.54	577.91	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.90	19.03	578.03	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.00	19.53	578.15	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.10	20.02	578.28	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
580.20	20.49	578.40	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
580.30	20.94	578.52	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.51] Page 48 of 57

Subsection: Individual Outlet Curves Return Event: 0 years

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality

Storm

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
580.40	21.38	578.63	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.50	21.82	578.75	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.60	22.26	578.87	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
580.70	22.67	578.99	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.80	23.09	579.10	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.90	23.49	579.21	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
581.00	23.90	579.33	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00

Message

WS below an invert; no flow.

BACKWATER CONTROL.. Vh= .005ft hwDi= .057ft Lbw= 129.2ft Hev=

BACKWATER CONTROL.. Vh= .006ft hwDi= .071ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .007ft hwDi= .081ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .008ft hwDi= .087ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .009ft hwDi= .092ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .010ft hwDi= .096ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .010ft hwDi= .099ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .010ft hwDi= .104ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .011ft hwDi= .107ft Lbw= 129.2ft Hev= .00ft

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Individual Outlet Curves Return Event: 0 years

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality

Storm

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Message

BACKWATER CONTROL.. Vh= .011ft hwDi= .110ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .049ft hwDi= .357ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .088ft hwDi= .582ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .124ft hwDi= .792ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .158ft hwDi= 1.000ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .191ft hwDi= 1.209ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .225ft hwDi= 1.429ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .262ft hwDi= 1.665ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .278ft hwDi= 1.758ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .293ft hwDi= 1.840ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .309ft hwDi= 1.920ft Lbw= 129.2ft Hev= .00ft

FULL FLOW...Lfull=2.08ft Vh=.332ft HL=.509ft Hev= .00ft

FULL FLOW...Lfull=27.76ft Vh=.361ft HL=.708ft Hev= .00ft

FULL FLOW...Lfull=46.35ft Vh=.391ft HL=.887ft Hev= .00ft

EastBank.ppc

11/29/2011

Subsection: Individual Outlet Curves Return Event: 0 years

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality

Storm

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Message

FULL FLOW...Lfull=60.39ft Vh=.421ft HL=1.052ft Hev= .00ft FULL FLOW...Lfull=71.35ft Vh=.451ft HL=1.209ft Hev= .00ft FULL FLOW...Lfull=80.00ft Vh=.481ft HL=1.358ft Hev= .00ft FULL FLOW...Lfull=87.04ft Vh=.511ft HL=1.502ft Hev= .00ft FULL FLOW...Lfull=92.72ft Vh=.541ft HL=1.641ft Hev= .00ft FULL FLOW...Lfull=97.41ft Vh=.571ft HL=1.774ft Hev= .00ft FULL FLOW...Lfull=101.26ft Vh=.600ft HL=1.905ft Hev= .00ft FULL FLOW...Lfull=104.71ft Vh=.631ft HL=2.038ft Hev= .00ft FULL FLOW...Lfull=107.65ft Vh=.661ft HL=2.167ft Hev= .00ft FULL FLOW...Lfull=109.85ft Vh=.690ft HL=2.288ft Hev= .00ft FULL FLOW...Lfull=111.95ft Vh=.720ft HL=2.412ft Hev= .00ft FULL FLOW...Lfull=113.79ft Vh=.750ft HL=2.534ft Hev= .00ft FULL FLOW...Lfull=115.47ft Vh=.780ft HL=2.660ft Hev= .00ft FULL FLOW...Lfull=116.83ft Vh=.810ft HL=2.777ft Hev= .00ft FULL FLOW...Lfull=118.10ft Vh=.839ft HL=2.897ft Hev= .00ft FULL FLOW...Lfull=118.47ft Vh=.869ft HL=3.005ft Hev= .00ft FULL FLOW...Lfull=119.47ft Vh=.899ft

HL=3.124ft Hev= .00ft

Subsection: Individual Outlet Curves Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention WQB

Storm

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = $\hat{C0}$ (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
577.00	0.00	0.00	0.00	0.00	0.00	0.00	(N/A)	0.00
577.10	0.01	577.10	Free Outfall	574.56	0.00	0.00	(N/A)	0.00
577.20	0.02	577.20	Free Outfall	574.58	0.00	0.00	(N/A)	0.00
577.30	0.03	577.30	Free Outfall	574.59	0.00	0.00	(N/A)	0.00
577.40	0.03	577.40	Free Outfall	574.60	0.00	0.00	(N/A)	0.00
577.50	0.04	577.50	Free Outfall	574.61	0.00	0.00	(N/A)	0.00
577.60	0.04	577.60	Free Outfall	574.61	0.00	0.00	(N/A)	0.00
577.70	0.05	577.70	Free Outfall	574.61	0.00	0.00	(N/A)	0.00
577.80	0.05	577.80	Free Outfall	574.62	0.00	0.00	(N/A)	0.00
577.90	0.05	577.90	Free Outfall	574.62	0.00	0.00	(N/A)	0.00
578.00	0.06	578.00	Free Outfall	574.63	0.00	0.00	(N/A)	0.00
578.10	0.06	578.10	Free Outfall	574.93	0.00	0.00	(N/A)	0.00
578.20	0.06	578.20	Free Outfall	575.21	0.00	0.00	(N/A)	0.00
578.30	0.06	578.30	Free Outfall	575.48	0.00	0.00	(N/A)	0.00
578.40	0.07	578.40	Free Outfall	575.74	0.00	0.00	(N/A)	0.00
578.50	0.07	578.50	Free Outfall	576.00	0.00	0.00	(N/A)	0.00
578.60	0.07	578.60	Free Outfall	576.27	0.00	0.00	(N/A)	0.00
578.70	0.07	578.70	Free Outfall	576.56	0.00	0.00	(N/A)	0.00
578.80	0.08	578.80	Free Outfall	576.67	0.00	0.00	(N/A)	0.00
578.90	0.08	578.90	Free Outfall	576.78	0.00	0.00	(N/A)	0.00
579.00	0.08	579.00	Free Outfall	576.89	0.00	0.00	(N/A)	0.00
579.10	0.08	579.10	577.00	577.00	0.00	0.00	(N/A)	0.00
579.20	0.08	579.20	577.14	577.14	0.00	0.00	(N/A)	0.00
579.30	0.08	579.30	577.27	577.27	0.00	0.00	(N/A)	0.00
579.40	0.08	579.40	577.40	577.40	0.00	0.00	(N/A)	0.00
579.50	0.08	579.50	577.53	577.53	0.00	0.00	(N/A)	0.00
579.60	0.08	579.60	577.66	577.66	0.00	0.00	(N/A)	0.00
579.70	0.08	579.70	577.79	577.79	0.00	0.00	(N/A)	0.00
579.80	0.08	579.80	577.91	577.91	0.00	0.00	(N/A)	0.00
579.90	0.08	579.90	578.03	578.03	0.00	0.00	(N/A)	0.00
580.00	0.08	580.00	578.15	578.15	0.00	0.00	(N/A)	0.00
580.10	0.08	580.10	578.28	578.28	0.00	0.00	(N/A)	0.00
580.20	0.08	580.20	578.40	578.40	0.00	0.00	(N/A)	0.00
580.30	0.08	580.30	578.52	578.52	0.00	0.00	(N/A)	0.00
580.40	0.08	580.40	578.63	578.63	0.00	0.00	(N/A)	0.00

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center Bentley PondPack V8i [08.11.01.51] Page 52 of 57

Subsection: Individual Outlet Curves Return Event: 0 years

Storm Event: Type II 24-hr Water Quality

Storm

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Label: EB Detention WQB

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
580.50	0.08	580.50	578.75	578.75	0.00	0.00	(N/A)	0.00
580.60	0.08	580.60	578.87	578.87	0.00	0.00	(N/A)	0.00
580.70	0.08	580.70	578.99	578.99	0.00	0.00	(N/A)	0.00
580.80	0.08	580.80	579.10	579.10	0.00	0.00	(N/A)	0.00
580.90	0.08	580.90	579.21	579.21	0.00	0.00	(N/A)	0.00
581.00	0.07	581.00	579.33	579.33	0.00	0.00	(N/A)	0.00

WS below an invert; no flow.
H =.06
H =.16
H =.26
H =.36
H =.46
H =.56
H =.66
H =.76
H =.86
H =.96
H =1.06
H =1.16
H =1.26
H =1.36
H =1.46
H =1.56
H =1.66
H =1.76
H =1.86
H =1.96
H =2.06
H =2.06
H =2.03
H =2.00
H =1.97
H =1.94

Message

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Individual Outlet Curves

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality

Storm

Return Event: 0 years

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

	Message
H =1.91	
H =1.89	
H =1.87	
H =1.85	
H =1.82	
H = 1.80	
H =1.79	
H =1.77	
H =1.75	
H =1.73	
H =1.71	
H =1.70	
H =1.69	
H =1.67	

Subsection: Composite Rating Curve Return Event: 0 years

Storm Event: Type II 24-hr Water Quality Label: EB Detention WQB

Storm

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
577.00	0.00	(N/A)	0.00
577.10	0.01	(N/A)	0.00
577.20	0.02	(N/A)	0.00
577.30	0.03	(N/A)	0.00
577.40	0.03	(N/A)	0.00
577.50	0.04	(N/A)	0.00
577.60	0.04	(N/A)	0.00
577.70	0.05	(N/A)	0.00
577.80	0.05	(N/A)	0.00
577.90	0.05	(N/A)	0.00
578.00	0.06	(N/A)	0.00
578.10	0.68	(N/A)	0.00
578.20	1.81	(N/A)	0.00
578.30	3.27	(N/A)	0.00
578.40	5.00	(N/A)	0.00
578.50	6.96	(N/A)	0.00
578.60	9.14	(N/A)	0.00
578.70	11.49	(N/A)	0.00
578.80	12.38	(N/A)	0.00
578.90	13.13	(N/A)	0.00
579.00	13.83	(N/A)	0.00
579.10	14.51	(N/A)	0.00
579.20	15.15	(N/A)	0.00
579.30	15.76	(N/A)	0.00
579.40	16.36	(N/A)	0.00
579.50	16.93	(N/A)	0.00
579.60	17.48	(N/A)	0.00
579.70	18.02	(N/A)	0.00
579.80	18.54	(N/A)	0.00
579.90	19.03	(N/A)	0.00
580.00	19.53	(N/A)	0.00
580.10	20.02	(N/A)	0.00
580.20	20.49	(N/A)	0.00
580.30	20.94	(N/A)	0.00
580.40	21.38	(N/A)	0.00
580.50	21.82	(N/A)	0.00
580.60	22.26	(N/A)	0.00
580.70	22.67	(N/A)	0.00
580.80	23.09	(N/A)	0.00
580.90	23.49	(N/A)	0.00
581.00	23.90	(N/A)	0.00

Subsection: Composite Rating Curve Return Event: 0 years

Label: EB Detention WQB Storm Event: Type II 24-hr Water Quality

Storm

Composite Outflow Summary

Contributing Structures (no Q: R0,Orifice - 1,C0) Orifice - 1,C0 (no Q: R0) R0,Orifice - 1,C0 R0,Orifice - 1,C0

Index

```
Ε
EB Detention (Elevation-Area Volume Curve, 0 years)...39
EB Detention (OUT) (Time vs. Elevation, 0 years)...23, 24, 25, 26, 27, 28, 29, 30
EB Detention (Time vs. Volume, 0 years)...31, 32, 33, 34, 35, 36, 37, 38
EB Detention (Volume Equations, 0 years)...40
EB Detention WQB (Composite Rating Curve, 0 years)...55, 56
EB Detention WQB (Individual Outlet Curves, 0 years)...45, 46, 47, 48, 49, 50, 51,
52, 53, 54
EB Detention WQB (Outlet Input Data, 0 years)...41, 42, 43, 44
Ι
I-90 Bridge - 142 (Runoff CN-Area, 0 years)...14
I-90 Bridge - 142 (Unit Hydrograph Summary, 0 years)...17, 18
I-90 Bridge 143 (Runoff CN-Area, 0 years)...15
I-90 Bridge 143 (Unit Hydrograph Summary, 0 years)...19, 20
I-90 Bridge 147 (Runoff CN-Area, 0 years)...16
I-90 Bridge 147 (Unit Hydrograph Summary, 0 years)...21, 22
Μ
Master Network Summary...2, 3
0
ODOT TR-55 (Time-Depth Curve, 0 years)...12, 13
ODOT TR-55 (Time-Depth Curve, 10 years)...4, 5
ODOT TR-55 (Time-Depth Curve, 25 years)...6, 7
ODOT TR-55 (Time-Depth Curve, 5 years)...10, 11
ODOT TR-55 (Time-Depth Curve, 50 years)...8, 9
```

East Bank Basin B Water Quality Calculations Made By:

AReede

Date:

Checked By: **BHess** Date: 12/2/2011 Emergency Spillway Weir Water Quality: WQv= (PAC)/12 From ODOT L&D2 1115.4 Calculation Equation Q=3.367BH^3/2 Precipitation 0.75 in Q10 8.48 cfs B (Weir 2.29 acres 9 ft A - Drainage Area length) 0.43 ft Cq 0.9 when drainage area is impervious H= Top of Embankm 0.1288 ac*ft 583 Water Quality Volume WQv = ent Invert of **Extended Detention** Emergenc Volume (EDV) = 120%*WQV 0.1546 ac*ft y Spillway 582.4 Available Depth 0.6 Required Forebay Volume (RFV) 10% of WQv 0.0129 ac*ft Check for emergenc y spillway Actual WQv Released EDV - RFV 0.1417 ac*ft depth Bottom of Basin Top of Berm Provided Forebay Volume Elevation 578 Elevation 578.8 Area of bottom of Anti-Seep (assuming trapezoidal Area of Top of Collar From ODOT L&D 2 1117.4.1.2 configuration) Forebay (ac) 0.0185 Forebay (ac) 0.0282 Y- Depth of water at Provided Forebay spillway Volume 0.0185 ac*ft crest, 1.52 ft Z-slope of upstream face of embankm Forebay % of Basin 12.00 % ent S-slope of Check for WQv outfall 0.0025 provided pipe Length of **Drainage Time** Saturation 12.3 ft 16 hour WQ flow Seepage (see enclosed length spreadsheet) 5.65 ft^3/s increase 1.8 ft W-Width 16 hour check 16 hour volume 1017 ft^3 of Collar D-50% of WQv (not to Diameter 3367 ft^3 exceed) of Conduit P -Projection of Collar (P=W-D) 5 Check for 16 hour # of compliance collars Minimum 2 collars at minimum 48 hour WQ flow spacing 10'. (see enclosed 48 hour check spreadsheet) 33 5978 48 hour volume 100% of WQv (not to exceed) 6733 Check for 48 hour compliance

12/2/2011

ID	69	End	48.000 hours
Label	Minimum Drain Time - 1	Pond Node	EB Detention
Start	0.000 hours	Outlet Structure	EB Detention WQB
Increment	1.000 hours		_

Subsection: User Notifications Label: Minimum Drain Time - 1

User Notifications

Message Id	15
Scenario	WQ storm
Element Type	Composite Outlet Structure
Element Id	39
Label	EB Detention WQB
Time	(N/A)
Message	Kr (reverse flow entrance loss coefficient) was not specified. Kr was set to same value as $Ke = 0.500$.
Source	Warning
Message Id	67
Scenario	WQ storm
Element Type	Composite Outlet Structure
Element Id	39
Label	EB Detention WQB
Time	(N/A)
Message	Flow direction set to reverse for one ore more structures in composite outlet structure EB Detention WQB. To eliminate this warning, edit outlet data and select forward only. If reverse flow analysis is required, then the tailwater conditions must be set to interconnected pond.
Source	Warning
Message Id	17
Scenario	WQ storm
Element Type	Composite Outlet Structure
Element Id	39
Label	EB Detention WQB
Time	(N/A)
Message	Riser orifice equation controls at one or more headwater elevations for outlet structure.
Source	Information

Subsection: Time vs. Elevation

Label: Minimum Drain Time - 1 (OUT)

Time vs. Elevation (ft)

Output Time increment = 3,600.000 hours Time on left represents time for first value in each row.

Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
(Hours)	(10)	(10)	(10)	(10)	(10)
0.000	578.00	577.96	577.93	577.89	577.86
5.000	577.82	577.79	577.76	577.72	577.69
10.000	577.66	577.63	577.60	577.57	577.54
15.000	577.51	577.48	577.46	577.43	577.40
20.000	577.38	577.35	577.33	577.31	577.28
25.000	577.26	577.24	577.22	577.21	577.19
30.000	577.17	577.16	577.14	577.13	577.12
35.000	577.11	577.09	577.08	577.08	577.07
40.000	577.06	577.05	577.05	577.04	577.04
45.000	577.03	577.03	577.03	577.02	(N/A)

Subsection: Time vs. Volume

Label: Minimum Drain Time - 1 (OUT)

Time vs. Elevation (ft)

Output Time increment = 3,600.000 hours Time on left represents time for first value in each row.

Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
0.000	578.00	577.96	577.93	577.89	577.86
5.000	577.82	577.79	577.76	577.72	577.69
10.000	577.66	577.63	577.60	577.57	577.54
15.000	577.51	577.48	577.46	577.43	577.40
20.000	577.38	577.35	577.33	577.31	577.28
25.000	577.26	577.24	577.22	577.21	577.19
30.000	577.17	577.16	577.14	577.13	577.12
35.000	577.11	577.09	577.08	577.08	577.07
40.000	577.06	577.05	577.05	577.04	577.04
45.000	577.03	577.03	577.03	577.02	(N/A)

Subsection: Elevation-Area Volume Curve

Label: EB Detention

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
577.00	0.0	0.102	0.000	0.000	0.000
578.00	0.0	0.128	0.345	0.115	0.115
579.00	0.0	0.156	0.426	0.142	0.257
579.01	0.0	0.187	0.514	0.002	0.259
580.00	0.0	0.241	0.640	0.211	0.470
581.00	0.0	0.283	0.785	0.262	0.732

Subsection: Outlet Input Data Label: EB Detention WQB

Requested Pond Water Surface Elevations				
Minimum (Headwater)	577.00 ft			
Increment (Headwater)	0.10 ft			
Maximum (Headwater)	581.00 ft			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1	E2
			_	(ft)	(ft)
Inlet Box	R0	Forward	C0	578.00	581.00
Orifice-Circular	Orifice - 1	Forward	C0	577.00	581.00
Culvert-Circular	C0	Forward	TW	574.50	581.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Label: EB Detention WQB

Structure ID: R0 Structure Type: Inlet Box	
Number of Openings	1
Elevation	578.00 ft
Orifice Area	2.6 ft ²
Orifice Coefficient	0.660
Weir Length	6.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False

Subsection: Outlet Input Data Label: EB Detention WQB

Structure ID: C0 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	24.0 in
Length	129.20 ft
Length (Computed Barrel)	129.20 ft
Slope (Computed)	0.002 ft/ft
Outlet Control Data	
Manning's n	0.015
Ke	0.500
Kb	0.017
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0098
M	2.0000
С	0.0398
Υ	0.6700
T1 ratio (HW/D)	1.159
T2 ratio (HW/D)	1.306
Slope Correction Factor	-0.500

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	576.82 ft	T1 Flow	15.55 ft³/s
T2 Elevation	577.11 ft	T2 Flow	17.77 ft³/s

Subsection: Outlet Input Data Label: EB Detention WQB

Structure ID: Orifice - 1 Structure Type: Orifice-Circu	lar
Number of Openings	2
Elevation	577.00 ft
Orifice Diameter	1.0 in
Orifice Coefficient	0.660
Structure ID: TW Structure Type: TW Setup, D	S Channel
Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance (Minimum)	0.01 ft
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	$0.001 \text{ ft}^3/\text{s}$
Flow Tolerance (Maximum)	10.000 ft ³ /s

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = R0 (Inlet Box)

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
577.00	0.00	0.00	0.00	0.00	0.00	0.00	(N/A)	0.00
577.10	0.00	0.00	0.00	574.56	0.00	0.00	(N/A)	0.00
577.20	0.00	0.00	0.00	574.58	0.00	0.00	(N/A)	0.00
577.30	0.00	0.00	0.00	574.59	0.00	0.00	(N/A)	0.00
577.40	0.00	0.00	0.00	574.60	0.00	0.00	(N/A)	0.00
577.50	0.00	0.00	0.00	574.61	0.00	0.00	(N/A)	0.00
577.60	0.00	0.00	0.00	574.61	0.00	0.00	(N/A)	0.00
577.70	0.00	0.00	0.00	574.61	0.00	0.00	(N/A)	0.00
577.80	0.00	0.00	0.00	574.62	0.00	0.00	(N/A)	0.00
577.90	0.00	0.00	0.00	574.62	0.00	0.00	(N/A)	0.00
578.00	0.00	0.00	0.00	574.63	0.00	0.00	(N/A)	0.00
578.10	0.62	578.10	Free Outfall	574.93	0.00	0.00	(N/A)	0.00
578.20	1.74	578.20	Free Outfall	575.21	0.00	0.00	(N/A)	0.00
578.30	3.20	578.30	Free Outfall	575.48	0.00	0.00	(N/A)	0.00
578.40	4.93	578.40	Free Outfall	575.74	0.00	0.00	(N/A)	0.00
578.50	6.89	578.50	Free Outfall	576.00	0.00	0.00	(N/A)	0.00
578.60	9.06	578.60	Free Outfall	576.27	0.00	0.00	(N/A)	0.00
578.70	11.42	578.70	Free Outfall	576.56	0.00	0.00	(N/A)	0.00
578.80	12.31	578.80	Free Outfall	576.67	0.00	0.00	(N/A)	0.00
578.90	13.06	578.90	Free Outfall	576.78	0.00	0.00	(N/A)	0.00
579.00	13.77	579.00	Free Outfall	576.89	0.00	0.00	(N/A)	0.00
579.10	14.44	579.10	Free Outfall	577.00	0.00	0.00	(N/A)	0.00
579.20	15.08	579.20	Free Outfall	577.14	0.00	0.00	(N/A)	0.00
579.30	15.69	579.30	Free Outfall	577.27	0.00	0.00	(N/A)	0.00
579.40	16.29	579.40	Free Outfall	577.40	0.00	0.00	(N/A)	0.00
579.50	16.86	579.50	Free Outfall	577.53	0.00	0.00	(N/A)	0.00
579.60	17.41	579.60	Free Outfall	577.66	0.00	0.00	(N/A)	0.00
579.70	17.95	579.70	Free Outfall	577.79	0.00	0.00	(N/A)	0.00
579.80	18.47	579.80	Free Outfall	577.91	0.00	0.00	(N/A)	0.00
579.90	18.97	579.90	578.03	578.03	0.00	0.00	(N/A)	0.00
580.00	19.47	580.00	578.15	578.15	0.00	0.00	(N/A)	0.00
580.10	19.95	580.10	578.28	578.28	0.00	0.00	(N/A)	0.00
580.20	20.42	580.20	578.40	578.40	0.00	0.00	(N/A)	0.00
580.30	20.88	580.30	578.52	578.52	0.00	0.00	(N/A)	0.00
580.40	21.33	580.40	578.63	578.63	0.00	0.00	(N/A)	0.00
580.50	21.76	580.50	578.75	578.75	0.00	0.00	(N/A)	0.00

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

EastBank.ppc 12/2/2011 Bentley PondPack V8i [08.11.01.51] Page 10 of 32

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = R0 (Inlet Box)

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
580.60	22.20	580.60	578.87	578.87	0.00	0.00	(N/A)	0.00
580.70	22.62	580.70	578.99	578.99	0.00	0.00	(N/A)	0.00
580.80	23.03	580.80	579.10	579.10	0.00	0.00	(N/A)	0.00
580.90	23.44	580.90	579.21	579.21	0.00	0.00	(N/A)	0.00
581.00	23.84	581.00	579.33	579.33	0.00	0.00	(N/A)	0.00

Message

WS below an invert; no flow.

Weir: H = 0.1ft

Weir: H = 0.2ft

Weir: H = 0.3ft

Weir: H = 0.4ft

Weir: H = 0.5ft

Weir: H = 0.6ft

Weir: H = 0.7ft

Orifice: H =.80; Riser orifice equation

controlling.

Orifice: H =.90; Riser orifice equation

controlling.

Orifice: H = 1.00; Riser orifice equation

controlling.

Orifice: H = 1.10; Riser orifice equation

controlling.

Orifice: H = 1.20; Riser orifice equation

controlling.

Orifice: H =1.30; Riser orifice equation

controlling.

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = R0 (Inlet Box)

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Message

Orifice: H = 1.40; Riser orifice equation controlling.

Orifice: H = 1.50; Riser orifice equation controlling.

Orifice: H = 1.60; Riser orifice equation controlling.

Orifice: H = 1.70; Riser orifice equation controlling.

Orifice: H =1.80; Riser orifice equation

controlling.

FULLY CHARGED RISER: Orifice Equation Control to Crest; H=1.90 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.00 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.10 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.20 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.30 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.40 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.50 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.60 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.70 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.80 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=2.90 FULLY CHARGED RISER: Orifice Equation Control to Crest; H=3.00

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line	Converge Downstream Hydraulic Grade Line	Next Downstream Hydraulic Grade Line	Downstream Hydraulic Grade Line Error	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
		(ft)	(ft)	(ft)	(ft)		<u> </u>	
577.00	0.00	0.00	0.00	Free Outfall	0.00	0.00	(N/A)	0.00
577.10	0.01	574.56	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.20	0.02	574.58	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.30	0.03	574.59	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.40	0.03	574.60	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.50	0.04	574.61	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.60	0.04	574.61	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.70	0.05	574.61	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.80	0.05	574.62	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
577.90	0.05	574.62	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.00	0.06	574.63	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.10	0.68	574.93	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.20	1.81	575.21	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.30	3.27	575.48	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.40	5.00	575.74	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.50	6.96	576.00	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.60	9.14	576.27	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.70	11.49	576.56	Free Outfall	Free Outfall	0.00	0.00	(N/A)	0.00
578.80	12.38	576.67	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
578.90	13.13	576.78	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.00	13.83	576.89	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.10	14.51	577.00	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.20	15.15	577.14	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.30	15.76	577.27	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.40	16.36	577.40	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.50	16.93	577.53	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.60	17.48	577.66	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.70	18.02	577.79	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.80	18.54	577.91	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
579.90	19.03	578.03	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.00	19.53	578.15	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.10	20.02	578.28	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
580.20	20.49	578.40	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
580.30	20.94	578.52	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.40	21.38	578.63	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.51] Page 13 of 32

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
580.50	21.82	578.75	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.60	22.26	578.87	Free Outfall	Free Outfall	0.00	0.01	(N/A)	0.00
580.70	22.67	578.99	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.80	23.09	579.10	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
580.90	23.49	579.21	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00
581.00	23.90	579.33	Free Outfall	Free Outfall	0.00	0.02	(N/A)	0.00

Message

WS below an invert; no flow.
BACKWATER CONTROL.. Vh= .005ft
hwDi= .057ft Lbw= 129.2ft Hev=
.00ft

BACKWATER CONTROL.. Vh= .006ft hwDi= .071ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .007ft hwDi= .081ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .008ft hwDi= .087ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .009ft hwDi= .092ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .010ft hwDi= .096ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .010ft hwDi= .099ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .010ft hwDi= .104ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .011ft hwDi= .107ft Lbw= 129.2ft Hev= .00ft

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

.

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Message

BACKWATER CONTROL.. Vh= .011ft hwDi= .110ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .049ft hwDi= .357ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .088ft hwDi= .582ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .124ft hwDi= .792ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .158ft hwDi= 1.000ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .191ft hwDi= 1.209ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .225ft hwDi= 1.429ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .262ft hwDi= 1.665ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .278ft hwDi= 1.758ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .293ft hwDi= 1.840ft Lbw= 129.2ft Hev= .00ft

BACKWATER CONTROL.. Vh= .309ft hwDi= 1.920ft Lbw= 129.2ft Hev= .00ft

FULL FLOW...Lfull=2.08ft Vh=.332ft HL=.509ft Hev= .00ft

FULL FLOW...Lfull=27.76ft Vh=.361ft HL=.708ft Hev= .00ft

FULL FLOW...Lfull=46.35ft Vh=.391ft HL=.887ft Hev= .00ft

FULL FLOW...Lfull=60.39ft Vh=.421ft HL=1.052ft Hev= .00ft

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE Structure ID = C0 (Culvert-Circular)

Mannings open channel maximum capacity: 10.50 ft³/s

Upstream ID = R0, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Message

FULL FLOW...Lfull=71.35ft Vh=.451ft HL=1.209ft Hev= .00ft FULL FLOW...Lfull=80.00ft Vh=.481ft HL=1.358ft Hev= .00ft FULL FLOW...Lfull=87.04ft Vh=.511ft HL=1.502ft Hev= .00ft FULL FLOW...Lfull=92.72ft Vh=.541ft HL=1.641ft Hev= .00ft FULL FLOW...Lfull=97.41ft Vh=.571ft HL=1.774ft Hev= .00ft FULL FLOW...Lfull=101.26ft Vh=.600ft HL=1.905ft Hev= .00ft FULL FLOW...Lfull=104.71ft Vh=.631ft HL=2.038ft Hev= .00ft FULL FLOW...Lfull=107.65ft Vh=.661ft HL=2.167ft Hev= .00ft FULL FLOW...Lfull=109.85ft Vh=.690ft HL=2.288ft Hev= .00ft FULL FLOW...Lfull=111.95ft Vh=.720ft HL=2.412ft Hev= .00ft FULL FLOW...Lfull=113.79ft Vh=.750ft HL=2.534ft Hev= .00ft FULL FLOW...Lfull=115.47ft Vh=.780ft HL=2.660ft Hev= .00ft FULL FLOW...Lfull=116.83ft Vh=.810ft HL=2.777ft Hev= .00ft FULL FLOW...Lfull=118.10ft Vh=.839ft HL=2.897ft Hev= .00ft FULL FLOW...Lfull=118.47ft Vh=.869ft HL=3.005ft Hev= .00ft FULL FLOW...Lfull=119.47ft Vh=.899ft HL=3.124ft Hev= .00ft

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
577.00	0.00	0.00	0.00	0.00	0.00	0.00	(N/A)	0.00
577.10	0.01	577.10	Free Outfall	574.56	0.00	0.00	(N/A)	0.00
577.20	0.02	577.20	Free Outfall	574.58	0.00	0.00	(N/A)	0.00
577.30	0.03	577.30	Free Outfall	574.59	0.00	0.00	(N/A)	0.00
577.40	0.03	577.40	Free Outfall	574.60	0.00	0.00	(N/A)	0.00
577.50	0.04	577.50	Free Outfall	574.61	0.00	0.00	(N/A)	0.00
577.60	0.04	577.60	Free Outfall	574.61	0.00	0.00	(N/A)	0.00
577.70	0.05	577.70	Free Outfall	574.61	0.00	0.00	(N/A)	0.00
577.80	0.05	577.80	Free Outfall	574.62	0.00	0.00	(N/A)	0.00
577.90	0.05	577.90	Free Outfall	574.62	0.00	0.00	(N/A)	0.00
578.00	0.06	578.00	Free Outfall	574.63	0.00	0.00	(N/A)	0.00
578.10	0.06	578.10	Free Outfall	574.93	0.00	0.00	(N/A)	0.00
578.20	0.06	578.20	Free Outfall	575.21	0.00	0.00	(N/A)	0.00
578.30	0.06	578.30	Free Outfall	575.48	0.00	0.00	(N/A)	0.00
578.40	0.07	578.40	Free Outfall	575.74	0.00	0.00	(N/A)	0.00
578.50	0.07	578.50	Free Outfall	576.00	0.00	0.00	(N/A)	0.00
578.60	0.07	578.60	Free Outfall	576.27	0.00	0.00	(N/A)	0.00
578.70	0.07	578.70	Free Outfall	576.56	0.00	0.00	(N/A)	0.00
578.80	0.08	578.80	Free Outfall	576.67	0.00	0.00	(N/A)	0.00
578.90	0.08	578.90	Free Outfall	576.78	0.00	0.00	(N/A)	0.00
579.00	0.08	579.00	Free Outfall	576.89	0.00	0.00	(N/A)	0.00
579.10	0.08	579.10	577.00	577.00	0.00	0.00	(N/A)	0.00
579.20	0.08	579.20	577.14	577.14	0.00	0.00	(N/A)	0.00
579.30	0.08	579.30	577.27	577.27	0.00	0.00	(N/A)	0.00
579.40	0.08	579.40	577.40	577.40	0.00	0.00	(N/A)	0.00
579.50	0.08	579.50	577.53	577.53	0.00	0.00	(N/A)	0.00
579.60	0.08	579.60	577.66	577.66	0.00	0.00	(N/A)	0.00
579.70	0.08	579.70	577.79	577.79	0.00	0.00	(N/A)	0.00
579.80	0.08	579.80	577.91	577.91	0.00	0.00	(N/A)	0.00
579.90	0.08	579.90	578.03	578.03	0.00	0.00	(N/A)	0.00
580.00	0.08	580.00	578.15	578.15	0.00	0.00	(N/A)	0.00
580.10	0.08	580.10	578.28	578.28	0.00	0.00	(N/A)	0.00
580.20	0.08	580.20	578.40	578.40	0.00	0.00	(N/A)	0.00
580.30	0.08	580.30	578.52	578.52	0.00	0.00	(N/A)	0.00
580.40	0.08	580.40	578.63	578.63	0.00	0.00	(N/A)	0.00
580.50	0.08	580.50	578.75	578.75	0.00	0.00	(N/A)	0.00

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley Systems, Inc. Haestad Methods Solution Center Bentley PondPack V8i

[08.11.01.51] Page 17 of 32

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

,

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
580.60	0.08	580.60	578.87	578.87	0.00	0.00	(N/A)	0.00
580.70	0.08	580.70	578.99	578.99	0.00	0.00	(N/A)	0.00
580.80	0.08	580.80	579.10	579.10	0.00	0.00	(N/A)	0.00
580.90	0.08	580.90	579.21	579.21	0.00	0.00	(N/A)	0.00
581.00	0.07	581.00	579.33	579.33	0.00	0.00	(N/A)	0.00
	Messa	ge						

Message
WS below an invert; no flow.
H =.06
H =.16
H =.26
H =.36
H =.46
H =.56
H =.66
H =.76
H =.86
H =.96
H =1.06
H =1.16
H =1.26
H =1.36
H =1.46
H =1.56
H =1.66
H =1.76
H =1.86
H =1.96
H =2.06
H =2.06
H =2.03
H =2.00
H =1.97
H =1.94
H =1.91
H =1.89

Subsection: Individual Outlet Curves

Label: EB Detention WQB

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

_____`

Upstream ID = (Pond Water Surface) Downstream ID = C0 (Culvert-Circular)

	Message
H =1.87	
H =1.85	
H =1.82	
H =1.80	
H =1.79	
H =1.77	
H =1.75	
H =1.73	
H =1.71	
H =1.70	
H =1.69	
H =1.67	

Subsection: Composite Rating Curve

Label: EB Detention WQB

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
577.00	0.00	(N/A)	0.00
577.10	0.01	(N/A)	0.00
577.20	0.02	(N/A)	0.00
577.30	0.03	(N/A)	0.00
577.40	0.03	(N/A)	0.00
577.50	0.04	(N/A)	0.00
577.60	0.04	(N/A)	0.00
577.70	0.05	(N/A)	0.00
577.80	0.05	(N/A)	0.00
577.90	0.05	(N/A)	0.00
578.00	0.06	(N/A)	0.00
578.10	0.68	(N/A)	0.00
578.20	1.81	(N/A)	0.00
578.30	3.27	(N/A)	0.00
578.40	5.00	(N/A)	0.00
578.50	6.96	(N/A)	0.00
578.60	9.14	(N/A)	0.00
578.70	11.49	(N/A)	0.00
578.80	12.38	(N/A)	0.00
578.90	13.13	(N/A)	0.00
579.00	13.83	(N/A)	0.00
579.10	14.51	(N/A)	0.00
579.20	15.15	(N/A)	0.00
579.30	15.76	(N/A)	0.00
579.40	16.36	(N/A)	0.00
579.50	16.93	(N/A)	0.00
579.60	17.48	(N/A)	0.00
579.70	18.02	(N/A)	0.00
579.80	18.54	(N/A)	0.00
579.90	19.03	(N/A)	0.00
580.00	19.53	(N/A)	0.00
580.10	20.02	(N/A)	0.00
580.20	20.49	(N/A)	0.00
580.30	20.94	(N/A)	0.00
580.40	21.38	(N/A)	0.00
580.50	21.82	(N/A)	0.00
580.60	22.26	(N/A)	0.00
580.70	22.67	(N/A)	0.00
580.80	23.09	(N/A)	0.00
580.90	23.49	(N/A)	0.00
581.00	23.90	(N/A)	0.00

Contributing Structures

Subsection: Composite Rating Curve

Label: EB Detention WQB

Composite Outflow Summary

Contributing Structures (no Q: R0,Orifice - 1,C0) Orifice - 1,C0 (no Q: R0) R0,Orifice - 1,C0 R0,Orifice - 1,C0

Subsection: Elevation-Volume-Flow Table (Pond)

Label: Minimum Drain Time - 1

L.CH., C.	
Infiltration	
Infiltration Method (Computed)	<none selected=""></none>
Initial Conditions	
Elevation (Water Surface, Initial)	(N/A) ft
Volume (Initial)	(N/A) ac-ft
Flow (Initial Outlet)	(N/A) ft ³ /s
Flow (Initial Infiltration)	(N/A) ft ³ /s
Flow (Initial, Total)	(N/A) ft ³ /s
Time Increment	(N/A) hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
577.00	0.00	0.000	0.102	0.00	0.00	0.00
577.10	0.01	0.010	0.105	0.00	0.01	0.26
577.20	0.02	0.021	0.107	0.00	0.02	0.53
577.30	0.03	0.032	0.110	0.00	0.03	0.80
577.40	0.03	0.043	0.112	0.00	0.03	1.07
577.50	0.04	0.054	0.115	0.00	0.04	1.35
577.60	0.04	0.066	0.117	0.00	0.04	1.64
577.70	0.05	0.078	0.120	0.00	0.05	1.93
577.80	0.05	0.090	0.123	0.00	0.05	2.23
577.90	0.05	0.102	0.125	0.00	0.05	2.53
578.00	0.06	0.115	0.128	0.00	0.06	2.84
578.10	0.68	0.128	0.131	0.00	0.68	3.77
578.20	1.81	0.141	0.134	0.00	1.81	5.22
578.30	3.27	0.155	0.136	0.00	3.27	7.01
578.40	5.00	0.168	0.139	0.00	5.00	9.08
578.50	6.96	0.182	0.142	0.00	6.96	11.38
578.60	9.14	0.197	0.145	0.00	9.14	13.90
578.70	11.49	0.211	0.147	0.00	11.49	16.61
578.80	12.38	0.226	0.150	0.00	12.38	17.85
578.90	13.13	0.241	0.153	0.00	13.13	18.97
579.00	13.83	0.257	0.156	0.00	13.83	20.05
579.10	14.51	0.276	0.192	0.00	14.51	21.18
579.20	15.15	0.295	0.197	0.00	15.15	22.29
579.30	15.76	0.315	0.202	0.00	15.76	23.39
579.40	16.36	0.336	0.208	0.00	16.36	24.48
579.50	16.93	0.357	0.213	0.00	16.93	25.56
579.60	17.48	0.378	0.218	0.00	17.48	26.63
579.70	18.02	0.400	0.224	0.00	18.02	27.70
579.80	18.54	0.423	0.230	0.00	18.54	28.77

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Elevation-Volume-Flow Table (Pond)

Label: Minimum Drain Time - 1

Elevation	Outflow	Storage	Area	Infiltration	Flow (Total)	2S/t + O
(ft)	(ft³/s)	(ac-ft)	(acres)	(ft³/s)	(ft³/s)	(ft³/s)
579.90	19.03	0.446	0.235	0.00	19.03	29.83
580.00	19.53	0.470	0.241	0.00	19.53	30.90
580.10	20.02	0.494	0.245	0.00	20.02	31.98
580.20	20.49	0.519	0.249	0.00	20.49	33.05
580.30	20.94	0.544	0.253	0.00	20.94	34.10
580.40	21.38	0.570	0.257	0.00	21.38	35.17
580.50	21.82	0.596	0.262	0.00	21.82	36.23
580.60	22.26	0.622	0.266	0.00	22.26	37.31
580.70	22.67	0.649	0.270	0.00	22.67	38.37
580.80	23.09	0.676	0.274	0.00	23.09	39.45
580.90	23.49	0.704	0.279	0.00	23.49	40.52
581.00	23.90	0.732	0.283	0.00	23.90	41.60

Subsection: Level Pool Pond Routing Summary

Label: Minimum Drain Time - 1

Infiltration			
Infiltration Method (Computed)	<none selected=""></none>		
Initial Conditions			
Elevation (Water Surface, Initial)	(N/A) ft		
Volume (Initial)	(N/A) ac-ft		
Flow (Initial Outlet)	(N/A) ft ³ /s		
Flow (Initial Infiltration)	(N/A) ft ³ /s		
Flow (Initial, Total)	(N/A) ft ³ /s		
Time Increment	(N/A) hours		
Flow (Peak In) Flow (Peak Outlet)	(N/A) ft³/s (N/A) ft³/s	Time to Peak (Flow, In) Time to Peak (Flow, Outlet)	(N/A) hours (N/A) hours
Elevation (Water Surface, Peak)	(N/A) ft		
Volume (Peak)	(N/A) ac-ft	<u> </u>	
Mass Balance (ac-ft)			
Volume (Initial)	(N/A) ac-ft		
Volume (Total Inflow)	(N/A) ac-ft		
Volume (Total Infiltration)	(N/A) ac-ft		
Volume (Total Outlet Outflow)	(N/A) ac-ft		
Volume (Retained)	(N/A) ac-ft		
Volume (Unrouted)	(N/A) ac-ft		
Error (Mass Balance)	(N/A) %		

Subsection: Pond Routed Hydrograph (total out)

Label: Minimum Drain Time - 1

Peak Discharge	0.06 ft ³ /s
Time to Peak	0.000 hours
Hydrograph Volume	0.112 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.000 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)			Flow (ft³/s)	Flow (ft³/s)		
0.000	0.06	0.06	0.05	0.05	0.05		
5.000	0.05	0.05	0.05	0.05	0.05		
10.000	0.04	0.04	0.04	0.04	0.04		
15.000	0.04	0.04	0.04	0.04	0.03		
20.000	0.03	0.03	0.03	0.03	0.03		
25.000	0.03	0.03	0.02	0.02	0.02		
30.000	0.02	0.02	0.02	0.02	0.02		
35.000	0.01	0.01	0.01	0.01	0.01		
40.000	0.01	0.01	0.01	0.01	0.01		
45.000	0.00	0.00	0.00	0.00	(N/A)		

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX C

STORM SEWER SYSTEM

Description: 3rd Street - I-90 Scuppers to CS **Designer**: PNS

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 577.70

JUNCTION S From To	STATION From To	ΔAREA ΣAREA (acres)		TIME	RAINF INTEN: (10 yrs.) (2	SITY	(cfs	.)	DIAM. L	PIPE ENGTH (ft.)		F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)				MINUS		INLET TYPE MANNING'S 'n'
D38A WQB begin	155+21 154+47	0.30 0.30	0.18 0.18		5.10	6.13	0.9	1.1	15	74.0	0.0200	583.00 581.52	 8.52	0.0004	583.32 582.35	586.58 582.77	3.26	2.33	CB 4 0.015

Note: D-38A outlets into a detention pond. The detention pond overflows into structure D-38. D-38A added to drain Northfolk Southern Rail Road property during construction of the EB Innerbelt bridge.

1

STORM SEWER SYSTEM

Description : 3rd Street - I-90 Scuppers to CS **Designer :** PNS

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 577.70

JUNCTION S From To		ΔAREA Σ AREA (acres)		TIME	RAINFA INTENS (10 yrs.) (2	ITY	(cfs.	.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)					MINUS		INLET TYPE MANNING'S 'n'
D38 9487 begin	34+27 34+75	1.75 1.75	1.58 1.58	10.00	5.10	6.15	8.0	9.7	18	82.8	0.0097	577.00 576.20	 9.63	0.0113	578.64 577.70	582.50 579.70	3.86	4.00	CB 2-3 0.015

CDSS 1.0.0.3. 2011-09-27 3RD ST BMP SS.xml 1

PID: 46933 Date: 04/17/2011 Project: CUY-90-14.90 Location: Beneath Mainline

Description : scupper discharge to 3rd st BMP Designer : PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat
 0.45
 Temporary Mat:
 1.00

 Permanent Mat
 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT	ION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VIL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)	SLOPE (ft./ft.)		(ft./ft.)		SUM (acres)	COEFF.	(Sum)		INT. (in./hr.)		COEFF.		FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
154+80	154+70	R	17.00	1.00	3.00	3.00	0.0735	1.75	1.75	0.90	1.58	Seed	4.2	9 5	0.030	10.05	5.86	2.18	6.76	0.48	3.85
												Jute Mat	4.2	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Temp. Mat	4.2	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm, Type	1 4.2	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm Type	2 4.2	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm Type	2 5.0	8 10	0.040	10.06	4.94	2.69	8.00	0.59	4.52
154+70	154+40	R	5.40	1.00	3.00	3.00	0.0100	0.00	1.75	0.90	1.58	Seed	4.2	9 5	0.030	10.09	2.79	0.47	6.75	0.75	5.48
												Jute Mat	4.2	8 5	0.040	10.10	2.25	0.53	6.75	0.85	6.08
												Temp. Mat	4.2	8 5	0.040	10.10	2.25	0.53	6.75	0.85	6.08
												Temp. Mat	5.0	7 10	0.040	10.10	2.35	0.57	8.00	0.91	6.47
154+70	154+68	R	16.00	1.00	3.00	3.00	0.2422*	0.00	1.75	0.01	1.58	Seed	4.2	8 5	0.030	10.13	9.09	5.41	6.74	0.38	3.15
													4.2	8 5	0.040	10.14	7.35		6.74	0.41	3.47

*See shear stress calc since CDSS exceeded limits with 24.22% slope

PID: 46933 Date: 04/17/2011 Project: CUY-90-14.90 Location: Beneath Mainline

Description: scupper discharge to 3rd st BMP

Designer: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat
 0.45
 Temporary Mat:
 1.00

 Permanent Mat
 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA	TION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VIL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)		INT. (in./hr.)		COEFF.		FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
154+80	154+70	R	17.00	1.00	3.00	3.00	0.0735	1.75	1.75	0.90	1.58	Seed	4.29	3 5	0.030	10.05	5.86	2.18	6.76	0.48	3.85
												Jute Mat	4.29	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Temp. Mat	4.29	3 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm, Type	1 4.29	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm Type	2 4.29	3 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm Type	2 6.78	3 50	0.040	10.05	5.32	3.06	10.67	0.67	5.01
154+70	154+40	R	5.40	1.00	3.00	3.00	0.0100	0.00	1.75	0.90	1.58	Seed	4.29	3 5	0.030	10.09	2.79	0.47	6.75	0.75	5 5.48
												Jute Mat	4.28	3 5	0.040	10.10	2.25	0.53	6.75	0.85	6.08
												Temp. Mat	4.28	3 5	0.040	10.10	2.25	0.53	6.75	0.85	6.08
												Temp. Mat	6.76	5 50	0.040	10.09	2.53	0.64	10.66	1.03	7.18
154+70	154+68	R	16.00	1.00	3.00	3.00	0.2422*	* 0.00	1.75	0.01	1.58	Seed	4.28	3 5	0.030	10.13	9.09	5. 41	6.74	0.36	3.15
													4.28	3 5	0.040	10.14	7.35		6.74	0.41	3.47

*See shear stress calc since CDSS exceeded limits with 24.22% slope

PID: 46933 Date: 04/17/2011 Project: CUY-90-14.90 Location: Beneath Mainline

Description: scupper discharge to 3rd st BMP **Designer:** PNS

Rainfall Area: A

 Allowable Shears

 Seed:
 0.40
 Jute Mat
 0.45
 Temporary Mat:
 1.00

 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

Permanent Mat Type 1: 2.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA	TION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VIL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)		INT. (in./hr.)		COEFF.		FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
154+80	154+70	R	17.00	1.00	3.00	3.00	0.0735	1.75	1.75	0.90	1.58	Seed	4.29	3 5	0.030	10.05	5.86	2.18	6.76	0.48	3.85
												Jute Mat	4.29	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Temp. Mat	4.29	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm, Type	1 4.29	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm Type	2 4.29	9 5	0.040	10.06	4.73	2.49	6.76	0.54	4.26
												Perm Type	2 6.78	3 50	0.040	10.05	5.32	3.06	10.67	0.67	5.01
154+70	154+40	R	5.40	1.00	3.00	3.00	0.0100	0.00	1.75	0.90	1.58	Seed	4.29	9 5	0.030	10.09	2.79	0.47	6.75	0.75	5.48
												Jute Mat	4.28	3 5	0.040	10.10	2.25	0.53	6.75	0.85	6.08
												Temp. Mat	4.28	3 5	0.040	10.10	2.25	0.53	6.75	0.85	6.08
												Temp. Mat	6.76	5 50	0.040	10.09	2.53	0.64	10.66	1.03	7.18
154+70	154+68	R	16.00	1.00	3.00	3.00	0.2500*	0.00	1.75	0.01	1.58	Seed	4.28	3 5	0.030	10.13	9.19	5.54	6.74	0.38	3.13
													4.28	3 5	0.040	10.14	7.44		6.74	0.41	3.45

*See shear stress calc since CDSS exceeded limits with 24.22% slope

Description: scupper discharge to 3rd st BMP LT ditch **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STATION	SIDE LENGT	HRADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN END	(ft.)	WIDTH	SLOPE	SLOPE	(ft./ft.)	(acres)	SUM	COEFF.	(Sum)	TYPE	INT.	FREQ.	COEFF.	FLOW	FLOW	(lbs./	FLOW	FLOW	FLOW
		(ft.)	(ft./ft.)	(ft./ft.)			(acres)				(in./hr.)	(yrs.)		(min.)	(fps.)	sq.ft.)	(cfs.)	(ft.)	(ft.)
-																			
154+80 154+80	R 88.00	1.00	3.00	3.00	0.0050	0.58	0.58	0.90	0.52	Seed	4.16	5 5	0.030	10.90	1.61	0.16	2.17	0.52	4.14
										Seed	4.87	' 10	0.040	11.07	1.35	0.20	2.54	0.64	4.85

Description: scupper discharge to 3rd st BMP LT ditch **Designer**: PNS

Rainfall Area: A Allowable Shears

Seed: 0.40 Jute Mat: 0.45 Temporary Mat: 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT	TION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
154+80	154+80	R	88.00	1.00	3.00	3.00	0.0050	0.58	0.58	0.90	0.52	Seed	4.10	5 5	0.030	10.90	1.61	0.16	2.17	0.52	4.14
												Seed	6.48	3 50	0.040	10.99	1.46	0.23	3.38	0.73	5.37

Ripping Forebay @ 3rd+ 49633 Job no. Sheet no. EN Sheldiry Checked by BHESS Backchecked by 9-22-11 Date 9/22/11 Date

FOREBAY OVERFLOW

Bw = 54

 $P_{0} = 6.35 \text{ efs}$ N = 0.041 S = 24.22% S = 34.22% S = 54 S = 85 = 4:1 S = 0.78% S = 0.78%

(Julien, 1998)

DITCH AT SCUPPER DISCHARGE WHERE COSS DID NOT PRODUCE RESULTS

~=8hS = 62.4 x 0.4/x 0.25 = 6.4 18/42 < 7/6/ : Use fied concrete block MAT TYPE 3 16' LONG x 4' WOR P. 108 of LDVIT

Project Summary	
Title	3rd Street Outfall
Engineer	PNShedivy
Company	HNTB
Date	10/22/2011
Notes	

Table of Contents

	Master Network Summary	2
ODOT TR-55	Type II 24 hour	
	Time-Depth Curve	4
	Time-Depth Curve	6
	Time-Depth Curve	8
	Time-Depth Curve	10
	Time-Depth Curve	12
Existing DA	Type II 24 hour	
	Runoff CN-Area	14
Proposed Storm Sewer DA	Type II 24 hour	
	Runoff CN-Area	15
	Unit Hydrograph Equations	16
Existing DA	WQstorm	
	Unit Hydrograph Summary	18
Proposed Storm Sewer DA	WQstorm	
	Unit Hydrograph	20
	Summary Unit Hydrograph	22
	(Hydrograph Table)	
Extended Detention	Time vs. Volume	25
Extended Detention	Type II 24 hour	
	Elevation-Area Volume Curve	33
	Volume Equations	34
Composite Outlet Structure - 1	Type II 24 hour	
	Outlet Input Data	35
	Individual Outlet Curves	38
	Composite Rating Curve	45
Extended Detention (OUT)	Pond Routed Hydrograph (total out)	47

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Proposed Storm Sewer DA	wq	0	0.130	12.000	1.91
Proposed Storm Sewer DA	5 year	5	0.392	12.000	5.43
Proposed Storm Sewer DA	10 year	10	0.462	12.000	6.35
Proposed Storm Sewer DA	25 year	25	0.562	12.000	7.67
Proposed Storm Sewer DA	50 year	50	0.645	12.000	8.75
Existing DA	wq	0	0.049	11.900	0.86
Existing DA	5 year	5	0.149	11.900	2.45
Existing DA	10 year	10	0.175	11.900	2.87
Existing DA	25 year	25	0.213	11.900	3.46
Existing DA	50 year	50	0.245	11.900	3.96

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Analysis Point Pro	wq	0	0.127	19.000	0.03
Analysis Point Pro	5 year	5	0.209	24.100	0.04
Analysis Point Pro	10 year	10	0.244	17.500	0.12
Analysis Point Pro	25 year	25	0.344	12.950	0.51
Analysis Point Pro	50 year	50	0.427	12.400	1.44
Analysis Point Pre(same as Pro)	wq	0	0.049	11.900	0.86
Analysis Point Pre(same as Pro)	5 year	5	0.149	11.900	2.45
Analysis Point Pre(same as Pro)	10 year	10	0.175	11.900	2.87
Analysis Point Pre(same as Pro)	25 year	25	0.213	11.900	3.46
Analysis Point Pre(same as Pro)	50 year	50	0.245	11.900	3.96

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation	Maximum Pond Storage (ac-ft)
						(ft)	

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Extended Detention (IN)	wq	0	0.130	12.000	1.91	(N/A)	(N/A)
Extended Detention (OUT)	wq	0	0.127	19.000	0.03	580.45	0.095
Extended Detention (IN)	5 year	5	0.392	12.000	5.43	(N/A)	(N/A)
Extended Detention (OUT)	5 year	5	0.209	24.100	0.04	582.25	0.336
Extended Detention (IN)	10 year	10	0.462	12.000	6.35	(N/A)	(N/A)
Extended Detention (OUT)	10 year	10	0.244	17.500	0.12	582.51	0.378
Extended Detention (IN)	25 year	25	0.562	12.000	7.67	(N/A)	(N/A)
Extended Detention (OUT)	25 year	25	0.344	12.950	0.51	582.55	0.385
Extended Detention (IN)	50 year	50	0.645	12.000	8.75	(N/A)	(N/A)
Extended Detention (OUT)	50 year	50	0.427	12.400	1.44	582.64	0.401

Subsection: Time-Depth Curve Return Event: 5 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	5 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.1	0.1	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.2	0.2	0.2	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.3
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.4	0.4	0.4	0.4
9.000	0.4	0.4	0.4	0.5	0.5
9.500	0.5	0.5	0.5	0.5	0.5
10.000	0.5	0.5	0.6	0.6	0.6
10.500	0.6	0.6	0.6	0.6	0.7
11.000	0.7	0.7	0.7	0.8	0.8
11.500	0.8	0.9	1.0	1.3	1.7
12.000	1.9	2.0	2.0	2.1	2.1
12.500	2.1	2.2	2.2	2.2	2.2
13.000	2.3	2.3	2.3	2.3	2.3
13.500	2.3	2.3	2.4	2.4	2.4
14.000	2.4	2.4	2.4	2.4	2.4
14.500	2.4	2.5	2.5	2.5	2.5
15.000	2.5	2.5	2.5	2.5	2.5
15.500	2.5	2.5	2.5	2.6	2.6
16.000	2.6	2.6	2.6	2.6	2.6
16.500	2.6	2.6	2.6	2.6	2.6

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 5 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	2.6	2.6	2.6	2.7	2.7
17.500	2.7	2.7	2.7	2.7	2.7
18.000	2.7	2.7	2.7	2.7	2.7
18.500	2.7	2.7	2.7	2.7	2.7
19.000	2.7	2.7	2.7	2.8	2.8
19.500	2.8	2.8	2.8	2.8	2.8
20.000	2.8	2.8	2.8	2.8	2.8
20.500	2.8	2.8	2.8	2.8	2.8
21.000	2.8	2.8	2.8	2.8	2.8
21.500	2.8	2.8	2.8	2.8	2.8
22.000	2.9	2.9	2.9	2.9	2.9
22.500	2.9	2.9	2.9	2.9	2.9
23.000	2.9	2.9	2.9	2.9	2.9
23.500	2.9	2.9	2.9	2.9	2.9
24.000	2.9	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 10 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour				
Label	Type II 24 hour			
Start Time	0.000 hours			
Increment	0.100 hours			
End Time	24.000 hours			
Return Event	10 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.4	0.4	0.4
7.500	0.4	0.4	0.4	0.4	0.4
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.5	0.5	0.5	0.5
9.000	0.5	0.5	0.5	0.5	0.5
9.500	0.6	0.6	0.6	0.6	0.6
10.000	0.6	0.6	0.6	0.7	0.7
10.500	0.7	0.7	0.7	0.8	0.8
11.000	0.8	0.8	0.9	0.9	0.9
11.500	1.0	1.0	1.2	1.5	1.9
12.000	2.3	2.3	2.4	2.4	2.5
12.500	2.5	2.5	2.6	2.6	2.6
13.000	2.6	2.6	2.7	2.7	2.7
13.500	2.7	2.7	2.7	2.8	2.8
14.000	2.8	2.8	2.8	2.8	2.8
14.500	2.8	2.9	2.9	2.9	2.9
15.000	2.9	2.9	2.9	2.9	2.9
15.500	2.9	3.0	3.0	3.0	3.0
16.000	3.0	3.0	3.0	3.0	3.0
16.500	3.0	3.0	3.0	3.1	3.1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 10 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth (in)
(hours)	(in)	(in)	(in)	(in)	(111)
17.000	3.1	3.1	3.1	3.1	3.1
17.500	3.1	3.1	3.1	3.1	3.1
18.000	3.1	3.1	3.1	3.1	3.2
18.500	3.2	3.2	3.2	3.2	3.2
19.000	3.2	3.2	3.2	3.2	3.2
19.500	3.2	3.2	3.2	3.2	3.2
20.000	3.2	3.2	3.2	3.2	3.3
20.500	3.3	3.3	3.3	3.3	3.3
21.000	3.3	3.3	3.3	3.3	3.3
21.500	3.3	3.3	3.3	3.3	3.3
22.000	3.3	3.3	3.3	3.3	3.3
22.500	3.3	3.3	3.3	3.4	3.4
23.000	3.4	3.4	3.4	3.4	3.4
23.500	3.4	3.4	3.4	3.4	3.4
24.000	3.4	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour					
Label	Type II 24 hour				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	25 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.4
6.500	0.4	0.4	0.4	0.4	0.4
7.000	0.4	0.4	0.4	0.4	0.4
7.500	0.4	0.5	0.5	0.5	0.5
8.000	0.5	0.5	0.5	0.5	0.5
8.500	0.5	0.6	0.6	0.6	0.6
9.000	0.6	0.6	0.6	0.6	0.7
9.500	0.7	0.7	0.7	0.7	0.7
10.000	0.7	0.8	0.8	0.8	0.8
10.500	0.8	0.9	0.9	0.9	0.9
11.000	1.0	1.0	1.0	1.1	1.1
11.500	1.2	1.3	1.4	1.8	2.3
12.000	2.7	2.8	2.9	2.9	3.0
12.500	3.0	3.0	3.1	3.1	3.1
13.000	3.2	3.2	3.2	3.2	3.2
13.500	3.3	3.3	3.3	3.3	3.3
14.000	3.4	3.4	3.4	3.4	3.4
14.500	3.4	3.4	3.5	3.5	3.5
15.000	3.5	3.5	3.5	3.5	3.5
15.500	3.5	3.6	3.6	3.6	3.6
16.000	3.6	3.6	3.6	3.6	3.6
16.500	3.6	3.7	3.7	3.7	3.7

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	3.7	3.7	3.7	3.7	3.7
17.500	3.7	3.7	3.7	3.8	3.8
18.000	3.8	3.8	3.8	3.8	3.8
18.500	3.8	3.8	3.8	3.8	3.8
19.000	3.8	3.8	3.8	3.9	3.9
19.500	3.9	3.9	3.9	3.9	3.9
20.000	3.9	3.9	3.9	3.9	3.9
20.500	3.9	3.9	3.9	3.9	3.9
21.000	3.9	4.0	4.0	4.0	4.0
21.500	4.0	4.0	4.0	4.0	4.0
22.000	4.0	4.0	4.0	4.0	4.0
22.500	4.0	4.0	4.0	4.0	4.0
23.000	4.0	4.0	4.1	4.1	4.1
23.500	4.1	4.1	4.1	4.1	4.1
24.000	4.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour				
Label	Type II 24 hour			
Start Time	0.000 hours			
Increment	0.100 hours			
End Time	24.000 hours			
Return Event	50 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.2
3.000	0.2	0.2	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.3
4.500	0.3	0.3	0.3	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.4	0.4
6.000	0.4	0.4	0.4	0.4	0.4
6.500	0.4	0.4	0.4	0.4	0.5
7.000	0.5	0.5	0.5	0.5	0.5
7.500	0.5	0.5	0.5	0.5	0.5
8.000	0.6	0.6	0.6	0.6	0.6
8.500	0.6	0.6	0.6	0.7	0.7
9.000	0.7	0.7	0.7	0.7	0.7
9.500	0.8	0.8	0.8	0.8	0.8
10.000	0.8	0.9	0.9	0.9	0.9
10.500	1.0	1.0	1.0	1.0	1.1
11.000	1.1	1.1	1.2	1.2	1.3
11.500	1.3	1.4	1.7	2.0	2.6
12.000	3.1	3.2	3.3	3.3	3.4
12.500	3.4	3.5	3.5	3.5	3.6
13.000	3.6	3.6	3.7	3.7	3.7
13.500	3.7	3.7	3.8	3.8	3.8
14.000	3.8	3.8	3.9	3.9	3.9
14.500	3.9	3.9	3.9	3.9	4.0
15.000	4.0	4.0	4.0	4.0	4.0
15.500	4.0	4.1	4.1	4.1	4.1
16.000	4.1	4.1	4.1	4.1	4.1
16.500	4.2	4.2	4.2	4.2	4.2

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 50 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	4.2	4.2	4.2	4.2	4.2
17.500	4.2	4.3	4.3	4.3	4.3
18.000	4.3	4.3	4.3	4.3	4.3
18.500	4.3	4.3	4.3	4.4	4.4
19.000	4.4	4.4	4.4	4.4	4.4
19.500	4.4	4.4	4.4	4.4	4.4
20.000	4.4	4.4	4.4	4.5	4.5
20.500	4.5	4.5	4.5	4.5	4.5
21.000	4.5	4.5	4.5	4.5	4.5
21.500	4.5	4.5	4.5	4.5	4.5
22.000	4.6	4.6	4.6	4.6	4.6
22.500	4.6	4.6	4.6	4.6	4.6
23.000	4.6	4.6	4.6	4.6	4.6
23.500	4.6	4.6	4.6	4.6	4.7
24.000	4.7	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 0 years
Label: ODOT TR-55 Storm Event: WQstorm

Time-Depth Curve: WQstorm	
Label	WQstorm
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	0 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.0	0.0	0.0	0.0
2.000	0.0	0.0	0.0	0.0	0.0
2.500	0.0	0.0	0.0	0.0	0.0
3.000	0.0	0.0	0.0	0.0	0.0
3.500	0.0	0.0	0.0	0.0	0.1
4.000	0.1	0.1	0.1	0.1	0.1
4.500	0.1	0.1	0.1	0.1	0.1
5.000	0.1	0.1	0.1	0.1	0.1
5.500	0.1	0.1	0.1	0.1	0.1
6.000	0.1	0.1	0.1	0.1	0.1
6.500	0.1	0.1	0.1	0.1	0.1
7.000	0.1	0.1	0.1	0.1	0.1
7.500	0.1	0.1	0.1	0.1	0.1
8.000	0.1	0.1	0.1	0.1	0.1
8.500	0.1	0.1	0.2	0.2	0.2
9.000	0.2	0.2	0.2	0.2	0.2
9.500	0.2	0.2	0.2	0.2	0.2
10.000	0.2	0.2	0.2	0.2	0.2
10.500	0.2	0.2	0.2	0.2	0.3
11.000	0.3	0.3	0.3	0.3	0.3
11.500	0.3	0.3	0.4	0.5	0.6
12.000	0.7	0.8	0.8	0.8	0.8
12.500	0.8	0.8	0.8	0.8	0.8
13.000	0.8	0.9	0.9	0.9	0.9
13.500	0.9	0.9	0.9	0.9	0.9
14.000	0.9	0.9	0.9	0.9	0.9
14.500	0.9	0.9	0.9	0.9	0.9
15.000	0.9	0.9	0.9	0.9	1.0
15.500	1.0	1.0	1.0	1.0	1.0
16.000	1.0	1.0	1.0	1.0	1.0
16.500	1.0	1.0	1.0	1.0	1.0

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 0 years Label: ODOT TR-55 Storm Event: WQstorm

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time on left represents time for mist value in each row.					
Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	1.0	1.0	1.0	1.0	1.0
17.500	1.0	1.0	1.0	1.0	1.0
18.000	1.0	1.0	1.0	1.0	1.0
18.500	1.0	1.0	1.0	1.0	1.0
19.000	1.0	1.0	1.0	1.0	1.0
19.500	1.0	1.0	1.0	1.0	1.0
20.000	1.0	1.0	1.1	1.1	1.1
20.500	1.1	1.1	1.1	1.1	1.1
21.000	1.1	1.1	1.1	1.1	1.1
21.500	1.1	1.1	1.1	1.1	1.1
22.000	1.1	1.1	1.1	1.1	1.1
22.500	1.1	1.1	1.1	1.1	1.1
23.000	1.1	1.1	1.1	1.1	1.1
23.500	1.1	1.1	1.1	1.1	1.1
24.000	1.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Runoff CN-Area Return Event: 0 years
Label: Existing DA Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.664	0.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.664	(N/A)	(N/A)	98.000

Subsection: Runoff CN-Area Return Event: 0 years Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	1.750	100.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.750	(N/A)	(N/A)	98.000

Subsection: Unit Hydrograph Equations

Unit Hydrograph Method (Computational Notes) Definition of Terms

Total area (acres): At = Ai + ApΑt Αi Impervious area (acres) Pervious area (acres) Ap CNi Runoff curve number for impervious area CNp Runoff curve number for pervious area fLoss f loss constant infiltration (depth/time) Saturated Hydraulic Conductivity (depth/time) gKs Md Volumetric Moisture Deficit Capillary Suction (length) Psi Horton Infiltration Decay Rate (time^-1) hK Initial Infiltration Rate (depth/time) fo fc Ultimate(capacity)Infiltration Rate (depth/time) Ia Initial Abstraction (length) Computational increment (duration of unit excess rainfall) dt Default dt is smallest value of 0.1333Tc, rtm, and th (Smallest dt is then adjusted to match up with Tp) User specified override computational main time increment UDdt (only used if UDdt is => .1333Tc) D(t) Point on distribution curve (fraction of P) for time step t Κ 2/(1 + (Tr/Tp)): default K = 0.75: (for Tr/Tp = 1.67) Hydrograph shape factor = Unit Conversions * K: = ((1hr/3600sec) * (1ft/12in) * ((5280ft)**2/sq.mi)) * K Default Ks = 645.333 * 0.75 = 484 Ks Lag time from center of excess runoff (dt) to Tp: Lag = 0.6Tc Lag Ρ Total precipitation depth, inches Pa(t) Accumulated rainfall at time step t Incremental rainfall at time step t Pi(t) Peak discharge (cfs) for 1in. runoff, for 1hr, for 1 sq.mi. = (Ks * A * Q) / qp Tp (where Q = 1in. runoff, A=sq.mi.) Ou(t) Unit hydrograph ordinate (cfs) at time step t Final hydrograph ordinate (cfs) at time step t Q(t) Accumulated runoff (inches) at time step t for impervious area Rai(t) Rap(t) Accumulated runoff (inches) at time step t for pervious area Incremental runoff (inches) at time step t for impervious area Rii(t) Rip(t) Incremental runoff (inches) at time step t for pervious area R(t) Incremental weighted total runoff (inches) Rtm Time increment for rainfall table Si S for impervious area: Si = (1000/CNi) - 10Sp S for pervious area: Sp = (1000/CNp) - 10Time step (row) number t Time of concentration Tc Tb Time (hrs) of entire unit hydrograph: Tb = Tp + TrТр Time (hrs) to peak of a unit hydrograph: Tp = (dt/2) + Lag

Time (hrs) of receding limb of unit hydrograph: Tr = ratio of Tp

Tr

Subsection: Unit Hydrograph Equations

Unit Hydrograph Method Computational Notes Precipitation

Column (1) Time for time step t

Column (2) D(t) = Point on distribution curve for time step t Column (3) <math>Pi(t) = Pa(t) - Pa(t-1): Col.(4) - Preceding Col.(4)

Column (4) $Pa(t) = D(t) \times P$: $Col.(2) \times P$

Pervious Area Runoff (using SCS Runoff CN Method)

Rap(t) = Accumulated pervious runoff for time step t

If $(Pa(t) \text{ is } \le 0.2Sp)$ then use: Rap(t) = 0.0

Column (5) If (Pa(t) is > 0.2Sp) then use:

Rap(t) = (Col.(4)-0.2Sp)**2 / (Col.(4)+0.8Sp)

Rip(t) = Incremental pervious runoff for time step t

Column (6) Rip(t) = Rap(t) - Rap(t-1)

Rip(t) = Col.(5) for current row - Col.(5) for preceding row.

Impervious Area Runoff

Column (7 & 8)... Did not specify to use impervious areas.

Incremental Weighted Runoff

Column (9)
$$R(t) = (Ap/At) \times Rip(t) + (Ai/At) \times Rii(t)$$

$$R(t) = (Ap/At) \times Col.(6) + (Ai/At) \times Col.(8)$$

SCS Unit Hydrograph Method

Column (10) Q(t) is computed with the SCS unit hydrograph method

using R(t) and Qu(t).

Subsection: Unit Hydrograph Summary

Label: Existing DA

Storm Event	WQstorm	
Return Event	0 yea	rs
Duration	72.000 hou	ırs
Depth	1.1 in	
Time of Concentration (Composite)	0.083 hou	irs
Area (User Defined)	0.664 acre	es
Computational Time Increment	0.011 hou	ırs
Time to Peak (Computed)	11.922 hou	ırs
Flow (Peak, Computed)	0.88 ft ³ /	S
Output Increment	0.050 hou	ırs
Time to Flow (Peak Interpolated Output)	11.900 hou	ırs
Flow (Peak Interpolated Output)	0.86 ft ³ /	s
Drainage Area		
	98,000	
SCS CN (Composite)	50.000	20
Area (User Defined) Maximum Retention	0.664 acre	23
(Pervious)	0.2 in	
Maximum Retention	0.0 in	
(Pervious, 20 percent)	0.0 111	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	0.9 in	
Runoff Volume (Pervious)	0.049 ac-f	t
	1	. \
Hydrograph Volume (Area under H	ydrograph curv	e)
Volume	0.049 ac-f	t
SCS Unit Hydrograph Parameters		
Time of Concentration (Composite)	0.083 hou	ırs
Computational Time Increment	0.011 hou	ırs
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
- · · · · ·		

Return Event: 0 years

Storm Event: WQstorm

Subsection: Unit Hydrograph Summary

Return Event: 0 years Label: Existing DA Storm Event: WQstorm

SCS Unit Hydrograph Parameters	S
Unit peak, qp	9.03 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph Summary Label: Proposed Storm Sewer DA

Storm Event	WQstorm
Return Event	0 years
Duration	72.000 hours
Depth	1.1 in
Time of Concentration (Composite)	0.206 hours
Area (User Defined)	1.750 acres
Computational Time Increment	0.027 hours
Time to Peak (Computed)	12.001 hours
Flow (Peak, Computed)	1.91 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	1.91 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	1.750 acres
Maximum Retention (Pervious)	0.2 in
Maximum Retention (Pervious, 20 percent)	0.0 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	0.9 in
Runoff Volume (Pervious)	0.130 ac-ft
Hydrograph Volume (Area under	: Hydrograph curve)
Volume	0.130 ac-ft
SCS Unit Hydrograph Parameter	rs
Time of Concentration (Composite)	0.206 hours
Computational Time Increment	0.027 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Return Event: 0 years

Storm Event: WQstorm

Subsection: Unit Hydrograph Summary Label: Proposed Storm Sewer DA

SCS Unit Hydrograph Parameters	
Unit peak, qp	9.65 ft³/s
Unit peak time, Tp	0.137 hours
Unit receding limb, Tr	0.548 hours
Total unit time, Tb	0.685 hours

Return Event: 0 years

Storm Event: WQstorm

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 0 years Label: Proposed Storm Sewer DA Storm Event: WQstorm

Storm Event	WQstorm
Return Event	0 years
Duration	72.000 hours
Depth	1.1 in
Time of Concentration (Composite)	0.206 hours
Area (User Defined)	1.750 acres

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
3.600	0.00	0.00	0.00	0.00	0.00
3.850	0.00	0.00	0.00	0.00	0.00
4.100	0.00	0.00	0.00	0.00	0.00
4.350	0.00	0.00	0.00	0.00	0.00
4.600	0.00	0.00	0.01	0.01	0.01
4.850	0.01	0.01	0.01	0.01	0.01
5.100	0.01	0.01	0.01	0.01	0.01
5.350	0.01	0.01	0.01	0.01	0.01
5.600	0.01	0.01	0.01	0.01	0.01
5.850	0.01	0.01	0.01	0.01	0.01
6.100	0.01	0.01	0.01	0.01	0.01
6.350	0.01	0.01	0.01	0.01	0.01
6.600	0.01	0.01	0.01	0.01	0.02
6.850	0.02	0.02	0.02	0.02	0.02
7.100	0.02	0.02	0.02	0.02	0.02
7.350	0.02	0.02	0.02	0.02	0.02
7.600	0.02	0.02	0.02	0.02	0.02
7.850	0.02	0.02	0.02	0.02	0.02
8.100	0.02	0.02	0.02	0.02	0.02
8.350	0.02	0.03	0.03	0.03	0.03
8.600	0.03	0.03	0.03	0.03	0.03
8.850	0.03	0.03	0.03	0.03	0.04
9.100	0.04	0.04	0.04	0.04	0.04
9.350	0.04	0.04	0.04	0.04	0.04
9.600	0.04	0.04	0.04	0.04	0.04
9.850	0.04	0.05	0.05	0.05	0.05
10.100	0.05	0.05	0.05	0.06	0.06
10.350	0.06	0.06	0.06	0.07	0.07
10.600	0.07	0.07	0.08	0.08	0.08
10.850	0.09	0.09	0.09	0.10	0.10
11.100	0.10	0.11	0.12	0.12	0.13
11.350	0.14	0.15	0.15	0.16	0.18
11.600	0.23	0.30	0.43	0.59	0.79

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph (Hydrograph Table)

Return Event: 0 years

Label: Proposed Storm Sewer DA

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
11.850	1.05	1.41	1.75	1.91	1.81
12.100	1.47	1.07	0.74	0.54	0.43
12.350	0.36	0.31	0.27	0.24	0.21
12.600	0.19	0.18	0.17	0.16	0.15
12.850	0.14	0.14	0.13	0.13	0.12
13.100	0.12	0.12	0.11	0.11	0.11
13.350	0.10	0.10	0.10	0.10	0.09
13.600	0.09	0.09	0.09	0.08	0.08
13.850	0.08	0.08	0.08	0.08	0.07
14.100	0.07	0.07	0.07	0.07	0.07
14.350	0.07	0.07	0.07	0.06	0.06
14.600	0.06	0.06	0.06	0.06	0.06
14.850	0.06	0.06	0.06	0.06	0.06
15.100	0.06	0.06	0.06	0.06	0.05
15.350	0.05	0.05	0.05	0.05	0.05
15.600	0.05	0.05	0.05	0.05	0.05
15.850	0.05	0.05	0.05	0.05	0.04
16.100	0.04	0.04	0.04	0.04	0.04
16.350	0.04	0.04	0.04	0.04	0.04
16.600	0.04	0.04	0.04	0.04	0.04
16.850	0.04	0.04	0.04	0.04	0.04
17.100	0.04	0.04	0.04	0.04	0.04
17.350	0.04	0.04	0.04	0.04	0.04
17.600	0.04	0.04	0.04	0.04	0.04
17.850	0.04	0.04	0.03	0.03	0.03
18.100	0.03	0.03	0.03	0.03	0.03
18.350	0.03	0.03	0.03	0.03	0.03
18.600	0.03 0.03	0.03 0.03	0.03 0.03	0.03 0.03	0.03 0.03
18.850	0.03	0.03	0.03	0.03	0.03
19.100 19.350	0.03	0.03	0.03	0.03	0.03
19.600	0.03	0.03	0.03	0.03	0.03
19.850	0.03	0.03	0.03	0.03	0.03
20.100	0.03	0.03	0.03	0.03	0.03
20.350	0.02	0.02	0.02	0.02	0.02
20.600	0.02	0.02	0.02	0.02	0.02
20.850	0.02	0.02	0.02	0.02	0.02
21.100	0.02	0.02	0.02	0.02	0.02
21.350	0.02	0.02	0.02	0.02	0.02
21.600	0.02	0.02	0.02	0.02	0.02
21.850	0.02	0.02	0.02	0.02	0.02
22.100	0.02	0.02	0.02	0.02	0.02
1 22.130	3.32	3.32	3.32	0.02	0.02

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph (Hydrograph Table) Return Event: 0 years Label: Proposed Storm Sewer DA Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
22.350	0.02	0.02	0.02	0.02	0.02
22.600	0.02	0.02	0.02	0.02	0.02
22.850	0.02	0.02	0.02	0.02	0.02
23.100	0.02	0.02	0.02	0.02	0.02
23.350	0.02	0.02	0.02	0.02	0.02
23.600	0.02	0.02	0.02	0.02	0.02
23.850	0.02	0.02	0.02	0.02	0.02
24.100	0.02	0.01	0.01	0.00	0.00
24.350	0.00	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.000	0.000	0.000	0.000
0.250	0.000	0.000	0.000	0.000	0.000
0.500	0.000	0.000	0.000	0.000	0.000
0.750	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
1.250	0.000	0.000	0.000	0.000	0.000
1.500	0.000	0.000	0.000	0.000	0.000
1.750	0.000	0.000	0.000	0.000	0.000
2.000	0.000	0.000	0.000	0.000	0.000
2.250	0.000	0.000	0.000	0.000	0.000
2.500	0.000	0.000	0.000	0.000	0.000
2.750	0.000	0.000	0.000	0.000	0.000
3.000	0.000	0.000	0.000	0.000	0.000
3.250	0.000	0.000	0.000	0.000	0.000
3.500	0.000	0.000	0.000	0.000	0.000
3.750	0.000	0.000	0.000	0.000	0.000
4.000	0.000	0.000	0.000	0.000	0.000
4.250	0.000	0.000	0.000	0.000	0.000
4.500	0.000	0.000	0.000	0.000	0.000
4.750	0.000	0.000	0.000	0.000	0.000
5.000	0.000	0.000	0.000	0.000	0.000
5.250	0.000	0.000	0.000	0.000	0.000
5.500	0.000	0.000	0.000	0.000	0.000
5.750	0.000	0.000	0.000	0.000	0.000
6.000	0.000	0.000	0.000	0.000	0.000
6.250	0.000	0.000	0.000	0.001	0.001
6.500	0.001	0.001	0.001	0.001	0.001
6.750	0.001	0.001	0.001	0.001	0.001
7.000	0.001	0.001	0.001	0.001	0.001
7.250	0.001	0.001	0.001	0.001	0.001
7.500	0.001	0.001	0.001	0.001	0.001
7.750 8.000	0.001 0.001	0.001	0.001	0.001	0.001
8.250	0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001
8.500 8.750	0.002 0.002	0.002 0.002	0.002 0.002	0.002 0.002	0.002 0.002
9.000					
9.000	0.002 0.003	0.002 0.003	0.002 0.003	0.002 0.003	0.002 0.003
9.250	0.003	0.003	0.003	0.003	0.003
9.750	0.003	0.003	0.003	0.003	0.003
10.000	0.004	0.004	0.004	0.004	0.004
10.000	1 0.004	0.005	0.005	0.005	0.005

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	\/olimo	Voluma
Time (hours)	volume (ac-ft)	volume (ac-ft)	volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
		· · ·			
10.250 10.500	0.006 0.007	0.006 0.007	0.006 0.007	0.006	0.007
				0.008	0.008
10.750	0.008	0.008	0.009	0.009	0.009
11.000	0.010	0.010	0.010	0.011	0.011
11.250	0.011	0.012	0.012	0.013	0.013
11.500	0.014	0.015	0.015	0.016	0.018
11.750	0.020	0.023	0.026	0.031	0.038
12.000	0.045	0.053	0.058	0.064	0.067
12.250	0.070	0.072	0.074	0.075	0.076
12.500	0.077	0.078	0.079	0.079	0.080
12.750	0.081	0.081	0.081	0.082	0.082
13.000	0.083	0.083	0.084	0.084	0.084
13.250	0.085	0.085	0.085	0.086	0.086
13.500	0.086	0.086	0.087	0.087	0.087
13.750	0.087	0.088	0.088	0.088	0.088
14.000	0.088	0.089	0.089	0.089	0.089
14.250	0.089	0.089	0.090	0.090	0.090
14.500	0.090	0.090	0.090	0.090	0.091
14.750	0.091	0.091	0.091	0.091	0.091
15.000	0.091	0.092	0.092	0.092	0.092
15.250	0.092	0.092	0.092	0.092	0.092
15.500	0.092	0.093	0.093	0.093	0.093
15.750	0.093	0.093	0.093	0.093	0.093
16.000	0.093	0.093	0.093	0.093	0.093
16.250	0.094	0.094	0.094	0.094	0.094
16.500	0.094	0.094	0.094	0.094	0.094
16.750	0.094	0.094	0.094	0.094	0.094
17.000	0.094	0.094	0.094	0.094	0.094
17.250	0.094	0.094	0.095	0.095	0.095
17.500	0.095	0.095	0.095	0.095	0.095
17.750	0.095	0.095	0.095	0.095	0.095
18.000	0.095	0.095	0.095	0.095	0.095
18.250	0.095	0.095	0.095	0.095	0.095
18.500	0.095	0.095	0.095	0.095	0.095
18.750	0.095	0.095	0.095	0.095	0.095
19.000	0.095	0.095	0.095	0.095	0.095
19.250	0.095	0.095	0.095	0.095	0.095
19.500	0.095	0.095	0.095	0.095	0.095
19.750	0.095	0.095	0.095	0.095	0.095
20.000	0.095	0.095	0.095	0.095	0.095
20.250	0.095	0.095	0.095	0.095	0.095

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

T	\/.\	Values a	Malana a	\/-\	\/-L
Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
20.500	0.095	0.095	0.095	0.095	0.095
20.750	0.094	0.094	0.094	0.094	0.094
21.000	0.094	0.094	0.094	0.094	0.094
21.250	0.094	0.094	0.094	0.094	0.094
21.500	0.094	0.094	0.094	0.094	0.094
21.750	0.094	0.094	0.094	0.094	0.094
22.000	0.094	0.094	0.094	0.094	0.094
22.250	0.094	0.094	0.094	0.094	0.093
22.500	0.093	0.093	0.093	0.093	0.093
22.750	0.093	0.093	0.093	0.093	0.093
23.000	0.093	0.093	0.093	0.093	0.093
23.250	0.093	0.093	0.093	0.093	0.093
23.500	0.093	0.093	0.093	0.093	0.093
23.750	0.093	0.093	0.093	0.092	0.092
24.000	0.092	0.092	0.092	0.092	0.092
24.250	0.092	0.092	0.092	0.092	0.092
24.500	0.091	0.091	0.091	0.091	0.091
24.750	0.091	0.091	0.091	0.090	0.090
25.000	0.090	0.090	0.090	0.090	0.090
25.250	0.090	0.089	0.089	0.089	0.089
25.500	0.089	0.089	0.089	0.089	0.088
25.750	0.088	0.088	0.088	0.088	0.088
26.000	0.088	0.088	0.087	0.087	0.087
26.250	0.087	0.087	0.087	0.087	0.087
26.500	0.087	0.086	0.086	0.086	0.086
26.750	0.086	0.086	0.086	0.086	0.085
27.000	0.085	0.085	0.085	0.085	0.085
27.250	0.085	0.085	0.084	0.084	0.084
27.500	0.084	0.084	0.084	0.084	0.084
27.750	0.084	0.083	0.083	0.083	0.083
28.000	0.083	0.083	0.083	0.083	0.082
28.250	0.082	0.082	0.082	0.082	0.082
28.500	0.082	0.082	0.082	0.081	0.081
28.750	0.081	0.081	0.081	0.081	0.081
29.000	0.081	0.080	0.080	0.080	0.080
29.250	0.080	0.080	0.080	0.080	0.080
29.500	0.079	0.079	0.079	0.079	0.079
29.750	0.079	0.079	0.079	0.079	0.078
30.000	0.078	0.078	0.078	0.078	0.078
30.250	0.078	0.078	0.078	0.077	0.077
30.500	0.077	0.077	0.077	0.077	0.077

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
30.750	0.077	0.077	0.076	0.076	0.076
31.000	0.076	0.076	0.076	0.076	0.076
31.250	0.076	0.075	0.075	0.075	0.075
31.500	0.075	0.075	0.075	0.075	0.074
31.750	0.074	0.074	0.074	0.074	0.074
32,000	0.074	0.073	0.073	0.073	0.073
32.250	0.073	0.073	0.073	0.073	0.072
32.500	0.072	0.072	0.072	0.072	0.072
32.750	0.072	0.072	0.071	0.071	0.071
33.000	0.071	0.071	0.071	0.071	0.070
33.250	0.070	0.070	0.070	0.070	0.070
33.500	0.070	0.070	0.069	0.069	0.069
33.750	0.069	0.069	0.069	0.069	0.069
34.000	0.068	0.068	0.068	0.068	0.068
34.250	0.068	0.068	0.068	0.067	0.067
34.500	0.067	0.067	0.067	0.067	0.067
34.750	0.067	0.066	0.066	0.066	0.066
35.000	0.066	0.066	0.066	0.066	0.065
35.250	0.065	0.065	0.065	0.065	0.065
35.500	0.065	0.065	0.064	0.064	0.064
35.750	0.064	0.064	0.064	0.064	0.064
36.000	0.063	0.063	0.063	0.063	0.063
36.250	0.063	0.063	0.063	0.063	0.062
36.500	0.062	0.062	0.062	0.062	0.062
36.750	0.062	0.062	0.061	0.061	0.061
37.000	0.061	0.061	0.061	0.061	0.061
37.250	0.061	0.060	0.060	0.060	0.060
37.500	0.060	0.060	0.060	0.060	0.060
37.750 38.000	0.059	0.059	0.059 0.059	0.059	0.059
38.250	0.059 0.058	0.059 0.058	0.059	0.059 0.058	0.059 0.058
38.500	0.058	0.058	0.058	0.058	0.058
38.750	0.057	0.057	0.057	0.057	0.057
39.000	0.057	0.057	0.057	0.057	0.057
39.250	0.057	0.056	0.056	0.056	0.056
39.500	0.056	0.056	0.056	0.056	0.056
39.750	0.056	0.056	0.056	0.055	0.055
40.000	0.055	0.055	0.055	0.055	0.055
40.250	0.055	0.055	0.055	0.055	0.055
40.500	0.055	0.054	0.054	0.054	0.054
40.750	0.054	0.054	0.054	0.054	0.054
1 .0.750	0.001	0.051	0.001	0.001	0.051

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.							
Time	Volume	Volume	Volume	Volume	Volume		
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
41.000	0.053	0.053	0.053	0.053	0.053		
41.250	0.053	0.053	0.053	0.053	0.052		
41.500	0.052	0.052	0.052	0.052	0.052		
41.750	0.052	0.052	0.052	0.051	0.051		
42.000	0.051	0.051	0.051	0.051	0.051		
42.250	0.051	0.051	0.051	0.050	0.050		
42.500	0.050	0.050	0.050	0.050	0.050		
42.750	0.050	0.050	0.049	0.049	0.049		
43.000	0.049	0.049	0.049	0.049	0.049		
43.250	0.049	0.049	0.048	0.048	0.048		
43.500	0.048	0.048	0.048	0.048	0.048		
43.750	0.048	0.047	0.047	0.047	0.047		
44.000	0.047	0.047	0.047	0.047	0.047		
44.250	0.047	0.046	0.046	0.046	0.046		
44.500	0.046	0.046	0.046	0.046	0.046		
44.750	0.046	0.045	0.045	0.045	0.045		
45.000	0.045	0.045	0.045	0.045	0.045		
45.250	0.044	0.044	0.044	0.044	0.044		
45.500	0.044	0.044	0.044	0.044	0.044		
45.750	0.044	0.043	0.043	0.043	0.043		
46.000	0.043	0.043	0.043	0.043	0.043		
46.250	0.043	0.042	0.042	0.042	0.042		
46.500	0.042	0.042	0.042	0.042	0.042		
46.750	0.042	0.041	0.041	0.041	0.041		
47.000	0.041	0.041	0.041	0.041	0.041		
47.250	0.041	0.040	0.040	0.040	0.040		
47.500	0.040	0.040	0.040	0.040	0.040		
47.750	0.040	0.039	0.039	0.039	0.039		
48.000	0.039	0.039	0.039	0.039	0.039		
48.250	0.039	0.038	0.038	0.038	0.038		
48.500	0.038	0.038	0.038	0.038	0.038		
48.750	0.038	0.037	0.037	0.037	0.037		
49.000	0.037	0.037	0.037	0.037	0.037		
49.250	0.037	0.036	0.036	0.036	0.036		
49.500	0.036	0.036	0.036	0.036	0.036		
49.750	0.036	0.036	0.035	0.035	0.035		
50.000	0.035	0.035	0.035	0.035	0.035		
50.250	0.035	0.035	0.034	0.034	0.034		
50.500	0.034	0.034	0.034	0.034	0.034		
50.750	0.034	0.034	0.034	0.033	0.033		
51.000	0.033	0.033	0.033	0.033	0.033		

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.							
Time	Volume	Volume	Volume	Volume	Volume		
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
51.250	0.033	0.033	0.033	0.033	0.032		
51.500	0.032	0.032	0.032	0.032	0.032		
51.750	0.032	0.032	0.032	0.032	0.032		
52.000	0.031	0.031	0.031	0.031	0.031		
52.250	0.031	0.031	0.031	0.031	0.031		
52.500	0.031	0.031	0.030	0.030	0.030		
52.750	0.030	0.030	0.030	0.030	0.030		
53.000	0.030	0.030	0.030	0.029	0.029		
53.250	0.029	0.029	0.029	0.029	0.029		
53.500	0.029	0.029	0.029	0.029	0.029		
53.750	0.028	0.028	0.028	0.028	0.028		
54.000	0.028	0.028	0.028	0.028	0.028		
54.250	0.028	0.027	0.027	0.027	0.027		
54.500	0.027	0.027	0.027	0.027	0.027		
54.750	0.027	0.027	0.026	0.026	0.026		
55.000	0.026	0.026	0.026	0.026	0.026		
55.250	0.026	0.026	0.026	0.025	0.025		
55.500	0.025	0.025	0.025	0.025	0.025		
55.750	0.025	0.025	0.025	0.025	0.025		
56.000	0.024	0.024	0.024	0.024	0.024		
56.250	0.024	0.024	0.024	0.024	0.024		
56.500	0.024	0.024	0.023	0.023	0.023		
56.750	0.023	0.023	0.023	0.023	0.023		
57.000	0.023	0.023	0.023	0.022	0.022		
57.250	0.022	0.022	0.022	0.022	0.022		
57.500	0.022	0.022	0.022	0.022	0.022		
57.750	0.022	0.021	0.021	0.021	0.021		
58.000	0.021	0.021	0.021	0.021	0.021		
58.250	0.021	0.021	0.021	0.021	0.020		
58.500	0.020	0.020	0.020	0.020	0.020		
58.750	0.020	0.020	0.020	0.020	0.020		
59.000	0.020	0.019	0.019	0.019	0.019		
59.250	0.019	0.019	0.019	0.019	0.019		
59.500	0.019	0.019	0.019	0.019	0.018		
59.750	0.018	0.018	0.018	0.018	0.018		
60.000	0.018	0.018	0.018	0.018	0.018		
60.250	0.018	0.018	0.018	0.017	0.017		
60.500	0.017	0.017	0.017	0.017	0.017		
60.750	0.017	0.017	0.017	0.017	0.017		
61.000	0.017	0.016	0.016	0.016	0.016		
61.250	0.016	0.016	0.016	0.016	0.016		

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

3rd Street Outfall051711.ppc 10/24/2011

Bentley PondPack V8i [08.11.01.51] Page 30 of 54

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each row.							
Time	Volume	Volume	Volume	Volume	Volume		
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)		
61.500	0.016	0.016	0.016	0.016	0.015		
61.750	0.015	0.015	0.015	0.015	0.015		
62.000	0.015	0.015	0.015	0.015	0.015		
62.250	0.015	0.015	0.014	0.014	0.014		
62.500	0.014	0.014	0.014	0.014	0.014		
62.750	0.014	0.014	0.014	0.014	0.014		
63.000	0.013	0.013	0.013	0.013	0.013		
63.250	0.013	0.013	0.013	0.013	0.013		
63.500	0.013	0.013	0.013	0.013	0.012		
63.750	0.012	0.012	0.012	0.012	0.012		
64.000	0.012	0.012	0.012	0.012	0.012		
64.250	0.012	0.012	0.012	0.012	0.011		
64.500	0.011	0.011	0.011	0.011	0.011		
64.750	0.011	0.011	0.011	0.011	0.011		
65.000	0.011	0.011	0.011	0.011	0.010		
65.250	0.010	0.010	0.010	0.010	0.010		
65.500	0.010	0.010	0.010	0.010	0.010		
65.750	0.010	0.010	0.010	0.010	0.009		
66.000	0.009	0.009	0.009	0.009	0.009		
66.250	0.009	0.009	0.009	0.009	0.009		
66.500	0.009	0.009	0.009	0.009	0.008		
66.750	0.008	0.008	0.008	0.008	0.008		
67.000	0.008	0.008	0.008	0.008	0.008		
67.250	0.008	0.008	0.008	0.008	0.008		
67.500	0.008	0.007	0.007	0.007	0.007		
67.750	0.007	0.007	0.007	0.007	0.007		
68.000	0.007	0.007	0.007	0.007	0.007		
68.250	0.007	0.006	0.006	0.006	0.006		
68.500	0.006	0.006	0.006	0.006	0.006		
68.750	0.006	0.006	0.005	0.005	0.005		
69.000	0.005	0.005	0.005	0.005	0.005		
69.250	0.005	0.005	0.005	0.004	0.004		
69.500	0.004	0.004	0.004	0.004	0.004		
69.750	0.004	0.004	0.004	0.004	0.004		
70.000	0.004	0.004	0.004	0.003	0.003		
70.250	0.003	0.003	0.003	0.003	0.003		
70.500	0.003	0.003	0.003	0.003	0.003		
70.750	0.003	0.003	0.003	0.003	0.003		
71.000	0.003	0.003	0.002	0.002	0.002		
71.250	0.002	0.002	0.002	0.002	0.002		
71.500	0.002	0.002	0.002	0.002	0.002		

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i

[08.11.01.51] Page 31 of 54

Subsection: Time vs. Volume Return Event: 0 years Label: Extended Detention Storm Event: WQstorm

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

	-				
Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
71.750	0.002	0.002	0.002	0.002	0.002
72.000	0.002	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Elevation-Area Volume Curve Return Event: 0 years Label: Extended Detention Storm Event: Type II 24 hour

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
578.50	0.0	0.000	0.000	0.000	0.000
579.00	0.0	0.040	0.040	0.007	0.007
580.00	0.0	0.056	0.143	0.048	0.054
580.10	0.0	0.087	0.213	0.007	0.062
580.50	0.0	0.109	0.293	0.039	0.101
581.00	0.0	0.123	0.348	0.058	0.159
582.00	0.0	0.153	0.413	0.138	0.296
583.00	0.0	0.186	0.508	0.169	0.466
584.00	0.0	0.203	0.583	0.194	0.660

Subsection: Volume Equations Return Event: 0 years
Label: Extended Detention Storm Event: Type II 24 hour

Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2 - El1) * (Area1 + Area2 + sqr(Area1 * Area2))

where: EL1, EL2 Lower and upper elevations of the increment Area1, Area2 Areas computed for EL1, EL2, respectively

Volume Incremental volume between EL1 and EL2

Subsection: Outlet Input Data Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Requested Pond Water Surface Elevations					
Minimum (Headwater) 578.50 ft					
Increment (Headwater) 0.25 ft					
Maximum (Headwater) 584.00 ft					

Outlet Connectivity

St	ructure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inle	t Box	Riser - 1	Forward + Reverse	Culvert - 1	582.50	584.00
Orif	ice-Circular	Orifice - 1	Forward	Culvert - 1	578.50	584.00
Culv	vert-Circular	Culvert - 1	Forward + Reverse	TW	577.00	584.00
Tail	water Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	3
Elevation	578.50 ft
Orifice Diameter	0.50 in
Orifice Coefficient	0.660
Structure ID: Riser - 1 Structure Type: Inlet Box	
Number of Openings	1
Elevation	582.50 ft
Orifice Area	2.6 ft ²
Orifice Coefficient	0.600
Weir Length	6.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Number of Barrels Diameter	1 18.00 in
	=
Diameter	18.00 in
Diameter Length	18.00 in 83.00 ft
Diameter Length Length (Computed Barrel)	18.00 in 83.00 ft 83.00 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data	18.00 in 83.00 ft 83.00 ft
Diameter Length Length (Computed Barrel) Slope (Computed)	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200 0.018
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200 0.018 0.000
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200 0.018 0.000 0.00 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200 0.018 0.000 0.00 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance Inlet Control Data Equation Form	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200 0.018 0.000 0.00 ft Form 1 0.0045
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance Inlet Control Data Equation Form K	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200 0.018 0.000 0.00 ft
Diameter Length Length (Computed Barrel) Slope (Computed) Outlet Control Data Manning's n Ke Kb Kr Convergence Tolerance Inlet Control Data Equation Form K M	18.00 in 83.00 ft 83.00 ft 0.010 ft/ft 0.013 0.200 0.018 0.000 0.00 ft Form 1 0.0045 2.0000

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Outlet Input Data Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Inlet Control Data		
T1 ratio (HW/D)	1.090	
T2 ratio (HW/D)	1.192	
Slope Correction Factor	-0.500	

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	578.64 ft	T1 Flow	7.58 ft ³ /s
T2 Elevation	578.79 ft	T2 Flow	8.66 ft ³ /s

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.50	0.00	0.00	0.00	0.00	0.00	0.00	577.70	0.00
578.75	0.01	578.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.00	0.01	579.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.25	0.02	579.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.50	0.02	579.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.75	0.02	579.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.00	0.03	580.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.25	0.03	580.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.50	0.03	580.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.75	0.03	580.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.00	0.03	581.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.25	0.04	581.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.50	0.04	581.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.75	0.04	581.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.00	0.04	582.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.25	0.04	582.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.50	0.04	582.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.75	0.04	582.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
583.00	0.05	583.00	578.57	578.57	0.00	0.00	577.70	0.00
583.25	0.04	583.25	579.25	579.25	0.00	0.00	577.70	0.00
583.50	0.04	583.50	579.76	579.76	0.00	0.00	577.70	0.00
583.75	0.04	583.75	580.27	580.27	0.00	0.00	577.70	0.00
584.00	0.04	584.00	580.79	580.79	0.00	0.00	577.70	0.00

Message

WS below an invert; no flow.

H = .23

H = .48

H =.73

.. -./3

H = .98

H =1.23 H =1.48

H =1.73

H =1.98

H =2.23

H =2.48

10/24/2011

3rd Street Outfall051711.ppc

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 38 of 54

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

	Message
H =2.73	
H =2.98	
H =3.23	
H =3.48	
H =3.73	
H =3.98	
H =4.23	
H =4.43	
H =4.00	
H =3.74	
H =3.48	
H =3.21	

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.50	0.00	0.00	0.00	0.00	0.00	0.00	577.70	0.00
578.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.75	2.44	582.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
583.00	6.89	583.00	Free Outfall	578.57	0.00	0.00	577.70	0.00
583.25	10.67	583.25	Free Outfall	579.25	0.00	0.00	577.70	0.00
583.50	12.32	583.50	Free Outfall	579.76	0.00	0.00	577.70	0.00
583.75	13.78	583.75	Free Outfall	580.27	0.00	0.00	577.70	0.00
584.00	15.09	584.00	Free Outfall	580.79	0.00	0.00	577.70	0.00

Message

WS below an invert; no flow.

WS below an invert; no flow.

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Message

WS below an invert; no flow. WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

Weir: H =0.25ft Weir: H = 0.5ft

Orifice: H =.75; Riser orifice equation

controlling.

Orifice: H =1.00; Riser orifice equation

controlling.

Orifice: H =1.25; Riser orifice equation

controlling.

Orifice: H =1.50; Riser orifice equation

controlling.

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

.

Mannings open channel maximum capacity: 11.09 ft³/s

Upstream ID = Riser - 1, Orifice - 1 Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
578.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.75	2.48	577.70	577.70	577.70	0.00	0.00	577.70	0.00
583.00	6.93	578.57	577.70	577.70	0.00	0.01	577.70	0.00
583.25	10.71	579.25	577.70	577.70	0.00	0.00	577.70	0.00
583.50	12.36	579.76	577.70	577.70	0.00	0.01	577.70	0.00
583.75	13.81	580.27	577.70	577.70	0.00	0.00	577.70	0.00
584.00	15.13	580.79	577.70	577.70	0.00	0.00	577.70	0.00

Message

WS below an invert; no flow.
FLOW PRECEDENCE SET TO
UPSTREAM CONTROLLING
STRUCTURE
FLOW PRECEDENCE SET TO
UPSTREAM CONTROLLING
STRUCTURE
FLOW PRECEDENCE SET TO
UPSTREAM CONTROLLING
STRUCTURE
STRUCTURE

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

Mannings open channel maximum capacity: 11.09 ft³/s

Upstream ID = Riser - 1, Orifice - 1 Downstream ID = Tailwater (Pond Outfall)

Message

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING **STRUCTURE**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING

STRUCTURE

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING STRUCTURE**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING **STRUCTURE**

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING STRUCTURE**

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING STRUCTURE**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING

STRUCTURE FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING STRUCTURE

STRUCTURE

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Individual Outlet Curves Return Event: 0 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

.

Mannings open channel maximum capacity: 11.09 ft³/s

Upstream ID = Riser - 1, Orifice - 1 Downstream ID = Tailwater (Pond Outfall)

Message

CRIT.DEPTH CONTROL Vh= .457ft Dcr= 1.019ft H.JUMP IN PIPE Hev= .00ft FULL FLOW...Lfull=83.00ft Vh=.571ft HL=1.548ft Hev= .00ft

FULL FLOW...Lfull=83.00ft Vh=.760ft

HL=2.061ft Hev= .00ft FULL FLOW...Lfull=83.00ft Vh=.950ft

HL=2.575ft Hev= .00ft FULL FLOW...Lfull=83.00ft Vh=1.139ft

HL=3.088ft Hev= .00ft

Subsection: Composite Rating Curve Return Event: 0 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
578.50	0.00	577.70	0.00
578.75	0.01	577.70	0.00
579.00	0.01	577.70	0.00
579.25	0.02	577.70	0.00
579.50	0.02	577.70	0.00
579.75	0.02	577.70	0.00
580.00	0.03	577.70	0.00
580.25	0.03	577.70	0.00
580.50	0.03	577.70	0.00
580.75	0.03	577.70	0.00
581.00	0.03	577.70	0.00
581.25	0.04	577.70	0.00
581.50	0.04	577.70	0.00
581.75	0.04	577.70	0.00
582.00	0.04	577.70	0.00
582.25	0.04	577.70	0.00
582.50	0.04	577.70	0.00
582.75	2.48	577.70	0.00
583.00	6.93	577.70	0.00
583.25	10.71	577.70	0.00
583.50	12.36	577.70	0.00
583.75	13.81	577.70	0.00
584.00	15.13	577.70	0.00

Contributing Structures

(no Q: Riser - 1,Orifice - 1,Culvert - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1,Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Riser - 1, Orifice - 1, Culvert - 1

Subsection: Composite Rating Curve Return Event: 0 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Composite Outflow Summary

Contributing Structures

Riser - 1,Orifice - 1,Culvert - 1 Riser - 1,Orifice - 1,Culvert - 1

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years Label: Extended Detention (OUT) Storm Event: WQstorm

Peak Discharge	0.03 ft ³ /s
Time to Peak	19.000 hours
Hydrograph Volume	0.127 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
4.200	0.00	0.00	0.00	0.00	0.00
4.450	0.00	0.00	0.00	0.00	0.00
4.700	0.00	0.00	0.00	0.00	0.00
4.950	0.00	0.00	0.00	0.00	0.00
5.200	0.00	0.00	0.00	0.00	0.00
5.450	0.00	0.00	0.01	0.01	0.01
5.700	0.01	0.01	0.01	0.01	0.01
5.950	0.01	0.01	0.01	0.01	0.01
6.200	0.01	0.01	0.01	0.01	0.01
6.450	0.01	0.01	0.01	0.01	0.01
6.700	0.01	0.01	0.01	0.01	0.01
6.950	0.01	0.01	0.01	0.01	0.01
7.200	0.01	0.01	0.01	0.01	0.01
7.450	0.01	0.01	0.01	0.01	0.01
7.700	0.01	0.01	0.01	0.01	0.01
7.950	0.01	0.01	0.01	0.01	0.01
8.200	0.01	0.01	0.01	0.01	0.01
8.450	0.01	0.01	0.01	0.01	0.01
8.700	0.01	0.01	0.01	0.01	0.01
8.950	0.01	0.01	0.01	0.01	0.01
9.200	0.01	0.01	0.01	0.01	0.01
9.450	0.01	0.01	0.01	0.01	0.01
9.700	0.01	0.01	0.01	0.01	0.01
9.950	0.01	0.01	0.01	0.01	0.01
10.200	0.01	0.01	0.01	0.01	0.01
10.450	0.02	0.02	0.02	0.02	0.02
10.700	0.02	0.02	0.02	0.02	0.02
10.950	0.02	0.02	0.02	0.02	0.02
11.200	0.02	0.02	0.02	0.02	0.02
11.450	0.02	0.02	0.02	0.02	0.02
11.700	0.02	0.02	0.02	0.02	0.02
11.950	0.02	0.02	0.03	0.03	0.03
12.200	0.03	0.03	0.03	0.03	0.03
12.450	0.03	0.03	0.03	0.03	0.03
12.700	0.03	0.03	0.03	0.03	0.03
12.950	0.03	0.03	0.03	0.03	0.03
13.200	0.03	0.03	0.03	0.03	0.03

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
13.450	0.03	0.03	0.03	0.03	0.03
13.700	0.03	0.03	0.03	0.03	0.03
13.950	0.03	0.03	0.03	0.03	0.03
14.200	0.03	0.03	0.03	0.03	0.03
14.450	0.03	0.03	0.03	0.03	0.03
14.700	0.03	0.03	0.03	0.03	0.03
14.950	0.03	0.03	0.03	0.03	0.03
15.200	0.03	0.03	0.03	0.03	0.03
15.450	0.03	0.03	0.03	0.03	0.03
15.700	0.03	0.03	0.03	0.03	0.03
15.950	0.03	0.03	0.03	0.03	0.03
16.200	0.03	0.03	0.03	0.03	0.03
16.450	0.03	0.03	0.03	0.03	0.03
16.700	0.03	0.03	0.03	0.03	0.03
16.950	0.03	0.03	0.03	0.03	0.03
17.200	0.03	0.03	0.03	0.03	0.03
17.450	0.03	0.03	0.03	0.03	0.03
17.700	0.03	0.03	0.03	0.03	0.03
17.950	0.03	0.03	0.03	0.03	0.03
18.200	0.03	0.03	0.03	0.03	0.03
18.450	0.03	0.03	0.03	0.03	0.03
18.700	0.03	0.03	0.03	0.03	0.03
18.950	0.03	0.03	0.03	0.03	0.03
19.200	0.03 0.03	0.03	0.03 0.03	0.03 0.03	0.03 0.03
19.450 19.700	0.03	0.03 0.03	0.03	0.03	0.03
19.950	0.03	0.03	0.03	0.03	0.03
20.200	0.03	0.03	0.03	0.03	0.03
20.200	0.03	0.03	0.03	0.03	0.03
20.700	0.03	0.03	0.03	0.03	0.03
20.950	0.03	0.03	0.03	0.03	0.03
21.200	0.03	0.03	0.03	0.03	0.03
21.450	0.03	0.03	0.03	0.03	0.03
21.700	0.03	0.03	0.03	0.03	0.03
21.950	0.03	0.03	0.03	0.03	0.03
22.200	0.03	0.03	0.03	0.03	0.03
22.450	0.03	0.03	0.03	0.03	0.03
22.700	0.03	0.03	0.03	0.03	0.03
22.950	0.03	0.03	0.03	0.03	0.03
23.200	0.03	0.03	0.03	0.03	0.03
23.450	0.03	0.03	0.03	0.03	0.03
23.700	0.03	0.03	0.03	0.03	0.03

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
23.950	0.03	0.03	0.03	0.03	0.03
24.200	0.03	0.03	0.03	0.03	0.03
24.450	0.03	0.03	0.03	0.03	0.03
24.700	0.03	0.03	0.03	0.03	0.03
24.950	0.03	0.03	0.03	0.03	0.03
25.200	0.03	0.03	0.03	0.03	0.03
25.450	0.03	0.03	0.03	0.03	0.03
25.700	0.03	0.03	0.03	0.03	0.03
25.950	0.03	0.03	0.03	0.03	0.03
26.200	0.03	0.03	0.03	0.03	0.03
26.450	0.03	0.03	0.03	0.03	0.03
26.700	0.03	0.03	0.03	0.03	0.03
26.950	0.03	0.03	0.03	0.03	0.03
27.200	0.03	0.03	0.03	0.03	0.03
27.450	0.03	0.03	0.03	0.03	0.03
27.700	0.03	0.03	0.03	0.03	0.03
27.950	0.03	0.03	0.03	0.03	0.03
28.200	0.03	0.03	0.03	0.03	0.03
28.450	0.03	0.03	0.03	0.03	0.03
28.700	0.03	0.03	0.03	0.03	0.03
28.950	0.03	0.03	0.03	0.03	0.03
29.200	0.03	0.03	0.03	0.03	0.03
29.450	0.03	0.03	0.03	0.03	0.03
29.700	0.03 0.03	0.03	0.03 0.03	0.03 0.03	0.03 0.03
29.950 30.200	0.03	0.03 0.03	0.03	0.03	0.03
30.200	0.03	0.03	0.03	0.03	0.03
30.700	0.03	0.03	0.03	0.03	0.03
30.950	0.03	0.03	0.03	0.03	0.03
31.200	0.03	0.03	0.03	0.03	0.03
31.450	0.03	0.03	0.03	0.03	0.03
31.700	0.03	0.03	0.03	0.03	0.03
31.950	0.03	0.03	0.03	0.03	0.03
32.200	0.03	0.03	0.03	0.03	0.03
32.450	0.03	0.03	0.03	0.03	0.03
32.700	0.03	0.03	0.03	0.03	0.03
32.950	0.03	0.03	0.03	0.03	0.03
33.200	0.03	0.03	0.03	0.03	0.03
33.450	0.03	0.03	0.03	0.03	0.03
33.700	0.03	0.03	0.03	0.03	0.03
33.950	0.03	0.03	0.03	0.03	0.03
34.200	0.03	0.03	0.03	0.03	0.03

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
34.450	0.03	0.03	0.03	0.03	0.03
34.700	0.03	0.03	0.03	0.03	0.03
34.950	0.03	0.03	0.03	0.03	0.03
35.200	0.03	0.03	0.03	0.03	0.03
35.450	0.03	0.03	0.03	0.03	0.03
35.700	0.03	0.03	0.03	0.03	0.03
35.950	0.03	0.03	0.03	0.03	0.03
36.200	0.03	0.03	0.03	0.03	0.03
36.450	0.03	0.03	0.03	0.03	0.03
36.700	0.03	0.03	0.03	0.03	0.03
36.950	0.03	0.03	0.03	0.03	0.03
37.200	0.03	0.03	0.03	0.03	0.03
37.450	0.03	0.03	0.03	0.03	0.03
37.700	0.03	0.03	0.03	0.03	0.03
37.950	0.03	0.03	0.03	0.03	0.03
38.200	0.03	0.03	0.03	0.03	0.03
38.450	0.03	0.03	0.03	0.03	0.03
38.700	0.03	0.03	0.03	0.03	0.03
38.950	0.03	0.03	0.03	0.03	0.03
39.200	0.03	0.03	0.03	0.03	0.03
39.450	0.03	0.03	0.03	0.03	0.03
39.700	0.03	0.03	0.03	0.03	0.03
39.950	0.03	0.03	0.03	0.03	0.03
40.200	0.03	0.03	0.03	0.03	0.03
40.450 40.700	0.03 0.03	0.03 0.03	0.03 0.03	0.03 0.03	0.03 0.03
	0.03	0.03	0.03	0.03	0.03
40.950 41.200	0.03	0.03	0.03	0.03	0.03
41.450	0.03	0.03	0.03	0.03	0.03
41.700	0.03	0.03	0.03	0.03	0.03
41.950	0.03	0.03	0.03	0.03	0.03
42.200	0.03	0.03	0.03	0.03	0.03
42.450	0.03	0.03	0.03	0.03	0.03
42.700	0.03	0.03	0.03	0.03	0.03
42.950	0.03	0.03	0.03	0.03	0.03
43.200	0.03	0.03	0.03	0.03	0.03
43.450	0.03	0.03	0.03	0.03	0.03
43.700	0.03	0.03	0.03	0.03	0.03
43.950	0.03	0.03	0.03	0.03	0.03
44.200	0.03	0.02	0.02	0.02	0.02
44.450	0.02	0.02	0.02	0.02	0.02
44.700	0.02	0.02	0.02	0.02	0.02

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
44.950	0.02	0.02	0.02	0.02	0.02
45.200	0.02	0.02	0.02	0.02	0.02
45.450	0.02	0.02	0.02	0.02	0.02
45.700	0.02	0.02	0.02	0.02	0.02
45.950	0.02	0.02	0.02	0.02	0.02
46.200	0.02	0.02	0.02	0.02	0.02
46.450	0.02	0.02	0.02	0.02	0.02
46.700	0.02	0.02	0.02	0.02	0.02
46.950	0.02	0.02	0.02	0.02	0.02
47.200	0.02	0.02	0.02	0.02	0.02
47.450	0.02	0.02	0.02	0.02	0.02
47.700	0.02	0.02	0.02	0.02	0.02
47.950	0.02	0.02	0.02	0.02	0.02
48.200	0.02	0.02	0.02	0.02	0.02
48.450	0.02	0.02	0.02	0.02	0.02
48.700	0.02	0.02	0.02	0.02	0.02
48.950	0.02	0.02	0.02	0.02	0.02
49.200	0.02	0.02	0.02	0.02	0.02
49.450	0.02	0.02	0.02	0.02	0.02
49.700	0.02	0.02	0.02	0.02	0.02
49.950	0.02	0.02	0.02	0.02	0.02
50.200	0.02	0.02	0.02	0.02	0.02
50.450	0.02	0.02	0.02	0.02	0.02
50.700	0.02	0.02	0.02	0.02	0.02
50.950	0.02	0.02	0.02	0.02	0.02
51.200	0.02	0.02	0.02	0.02	0.02
51.450	0.02	0.02	0.02	0.02	0.02
51.700	0.02 0.02	0.02 0.02	0.02 0.02	0.02	0.02 0.02
51.950	0.02	0.02	0.02	0.02 0.02	0.02
52.200 52.450	0.02	0.02	0.02	0.02	0.02
52.700	0.02	0.02	0.02	0.02	0.02
52.950	0.02	0.02	0.02	0.02	0.02
53.200	0.02	0.02	0.02	0.02	0.02
53.450	0.02	0.02	0.02	0.02	0.02
53.700	0.02	0.02	0.02	0.02	0.02
53.950	0.02	0.02	0.02	0.02	0.02
54.200	0.02	0.02	0.02	0.02	0.02
54.450	0.02	0.02	0.02	0.02	0.02
54.700	0.02	0.02	0.02	0.02	0.02
54.950	0.02	0.02	0.02	0.02	0.02
55.200	0.02	0.02	0.02	0.02	0.02

Subsection: Pond Routed Hydrograph (total out) Return Event: 0 years

Label: Extended Detention (OUT) Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
55.450	0.02	0.02	0.02	0.02	0.02
55.700	0.02	0.02	0.02	0.02	0.02
55.950	0.02	0.02	0.02	0.02	0.02
56.200	0.02	0.02	0.02	0.02	0.02
56.450	0.02	0.02	0.02	0.02	0.02
56.700	0.02	0.02	0.02	0.02	0.02
56.950	0.02	0.02	0.02	0.02	0.02
57.200	0.02	0.02	0.02	0.02	0.02
57.450	0.02	0.02	0.02	0.02	0.02
57.700	0.02	0.02	0.02	0.02	0.02
57.950	0.02	0.02	0.02	0.02	0.02
58.200	0.02	0.02	0.02	0.02	0.02
58.450	0.02	0.02	0.02	0.02	0.02
58.700	0.02	0.02	0.02	0.02	0.02
58.950	0.02	0.02	0.02	0.02	0.02
59.200	0.02	0.02	0.02	0.02	0.02
59.450	0.02	0.02	0.02	0.02	0.02
59.700	0.02	0.02	0.02	0.02	0.02
59.950	0.02	0.02	0.02	0.02	0.02
60.200	0.02	0.02	0.02	0.02	0.02
60.450	0.02	0.02	0.02	0.02	0.02
60.700	0.02	0.02	0.02	0.02	0.02
60.950	0.02	0.02	0.02	0.02	0.02
61.200	0.02	0.02	0.02	0.02	0.02
61.450	0.02	0.02	0.02	0.02	0.02
61.700	0.02	0.02	0.02	0.02	0.02
61.950	0.02	0.02	0.02	0.02	0.02
62.200	0.02	0.02	0.02	0.02	0.02
62.450	0.02	0.02	0.02	0.02	0.02
62.700	0.02	0.02	0.02	0.02	0.02
62.950	0.02	0.02	0.02	0.02	0.02
63.200	0.02	0.02	0.02	0.02	0.02
63.450	0.02	0.02	0.02	0.02	0.02
63.700	0.02	0.02	0.02	0.02	0.02
63.950	0.02	0.02	0.02	0.02	0.02
64.200	0.02	0.02	0.02	0.02	0.02
64.450	0.02	0.02	0.02	0.02	0.02
64.700	0.02	0.02	0.02	0.02	0.02
64.950	0.02	0.02	0.02	0.02	0.02
65.200	0.02	0.02	0.02	0.02	0.02
65.450	0.02	0.02	0.02	0.02	0.02
65.700	0.02	0.02	0.02	0.02	0.02

Subsection: Pond Routed Hydrograph (total out)

Return Event: 0 years

Label: Extended Detention (OUT)

Storm Event: WQstorm

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 0.050 hours Time on left represents time for first value in each row.

	ne on leit iel	Jiesents tilli	e ioi ilist vai	ue III eacii i u	· vv .
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
65.950	0.02	0.02	0.02	0.02	0.02
66.200	0.02	0.02	0.02	0.02	0.02
66.450	0.02	0.02	0.02	0.02	0.02
66.700	0.02	0.02	0.02	0.02	0.02
66.950	0.02	0.02	0.02	0.02	0.02
67.200	0.02	0.02	0.02	0.02	0.02
67.450	0.02	0.02	0.02	0.02	0.02
67.700	0.02	0.02	0.02	0.02	0.02
67.950	0.02	0.02	0.02	0.02	0.02
68.200	0.01	0.01	0.01	0.01	0.01
68.450	0.01	0.01	0.01	0.01	0.01
68.700	0.01	0.01	0.01	0.01	0.01
68.950	0.01	0.01	0.01	0.01	0.01
69.200	0.01	0.01	0.01	0.01	0.01
69.450	0.01	0.01	0.01	0.01	0.01
69.700	0.01	0.01	0.01	0.01	0.01
69.950	0.01	0.01	0.01	0.01	0.01
70.200	0.01	0.01	0.01	0.01	0.01
70.450	0.01	0.01	0.01	0.01	0.01
70.700	0.01	0.01	0.01	0.01	0.01
70.950	0.01	0.01	0.01	0.01	0.01
71.200	0.01	0.01	0.01	0.01	0.01
71.450	0.01	0.01	0.01	0.01	0.01
71.700	0.01	0.01	0.01	0.01	0.01
71.950	0.01	0.01	(N/A)	(N/A)	(N/A)

Index

```
С
Composite Outlet Structure - 1 (Composite Rating Curve, 0 years)...45, 46
Composite Outlet Structure - 1 (Individual Outlet Curves, 0 years)...38, 39, 40, 41,
42, 43, 44
Composite Outlet Structure - 1 (Outlet Input Data, 0 years)...35, 36, 37
Ε
Existing DA (Runoff CN-Area, 0 years)...14
Existing DA (Unit Hydrograph Summary, 0 years)...18, 19
Extended Detention (Elevation-Area Volume Curve, 0 years)...33
Extended Detention (OUT) (Pond Routed Hydrograph (total out), 0 years)...47, 48,
49, 50, 51, 52, 53
Extended Detention (Time vs. Volume, 0 years)...25, 26, 27, 28, 29, 30, 31, 32
Extended Detention (Volume Equations, 0 years)...34
Master Network Summary...2, 3
ODOT TR-55 (Time-Depth Curve, 0 years)...12, 13
ODOT TR-55 (Time-Depth Curve, 10 years)...6, 7
ODOT TR-55 (Time-Depth Curve, 25 years)...8, 9
ODOT TR-55 (Time-Depth Curve, 5 years)...4, 5
ODOT TR-55 (Time-Depth Curve, 50 years)...10, 11
Proposed Storm Sewer DA (Runoff CN-Area, 0 years)...15
Proposed Storm Sewer DA (Unit Hydrograph (Hydrograph Table), 0 years)...22, 23,
Proposed Storm Sewer DA (Unit Hydrograph Summary, 0 years)...20, 21
U
Unit Hydrograph Equations...16, 17
```

3rd Street Basin Water Quality Calculations Made By: AReede

Checked By: BHess Date: 12/2/2011 Emergency Spillway Weir Water Quality: WQv= (PAC)/12 From ODOT L&D2 1115.4 Calculation Equation Q=3.367BH^3/2 Precipitation 0.75 in Q10 B (Weir A - Drainage Area 1.75 acres length) H= Cq 0.9 when drainage area is impervious Top of Water Quality Volume WQv = 0.0984 ac*ft Extended Detention Volume (EDV) = 120%*WQV 0.1181 ac*ft Required Forebay Volume (RFV)

12/2/2011

Date:

0.0098 ac*ft

0.0134 ac*ft

4.05 ft^3/s

Actual WQv Released	EDV - RFV	0.1083	ac*ft	
	Bottom of Basin		Top of Berm	
Provided Forebay Volume	Elevation	579.5	Elevation	580
(assuming trapezoidal	Area of bottom of		Area of Top of	
configuration)	Forebay (ac)	0.0201	Forebay (ac)	0.0342
	Provided Forebay			

Forebay % of Basin 11.36 % Check for WQv provided

> 16 hour WQ flow (see enclosed spreadsheet)

Drainage Time

Volume

10% of WQv

16 hour check	16 hour volume	729 ft^3
	50% of WQv (not to exceed)	2573 ft^3
	Check for 16 hour compliance	OK
48 hour check	48 hour WQ flow (see enclosed spreadsheet) 48 hour volume	22.46 4043
	100% of WQv (not to exceed)	5146

Check for 48 hour compliance

E t In E S A	op of mbankmen nvert of mergency pillway vailable tepth	584 583.5 0.5	
ei si	check for mergency pillway epth	ОК	
Anti-Seep			
Y w si ci Z ui fe ei t	rom ODOT - Depth of rater at pillway rest, -slope of pstream ace of mbankmenslope of	L&D 2 1117 4.01	
O	utfall pipe	0.0097	
S S le	ength of aturation eepage ength	33.4	
W C	crease V-Width of collar	5.0	ft
	iameter of conduit	2	
	rojection of collar (P=W-	4	
M	of collars linimum 2 c pacing 10'.	1 ollars at min	imum

6.35 cfs

6 ft

0.46 ft

ID	74	End	48.000 hours
Label	Minimum Drain Time - 1	Pond Node	Extended Detention
Start	0.000 hours	Outlet Structure	Composite Outlet Structure - 1
Increment	1.000 hours		

Subsection: User Notifications Label: Minimum Drain Time - 1

User Notifications

Massa as Id	15
Message Id	15
Scenario	wq
Element Type	Composite Outlet Structure
Element Id	59
Label	Composite Outlet Structure - 1
Time	(N/A)
Message	Kr (reverse flow entrance loss coefficient) was not specified. Kr was set to same value as Ke=
	0.200 .
Source	Warning
Message Id	17
Scenario	wq
Element Type	Composite Outlet Structure
Element Id	59
Label	Composite Outlet Structure - 1
Time	(N/A)
Message	Riser orifice equation controls at one or more headwater elevations for outlet structure.
Source	Information

Subsection: Time vs. Elevation

Label: Minimum Drain Time - 1 (OUT)

Time vs. Elevation (ft)

Output Time increment = 3,600.000 hours Time on left represents time for first value in each row.

Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	580.45	580.42	580.40	580.37	580.35
5.000	580.33	580.30	580.28	580.26	580.23
10.000	580.20	580.17	580.15	580.12	580.09
15.000	580.07	580.04	580.01	579.98	579.94
20.000	579.90	579.86	579.82	579.78	579.75
25.000	579.71	579.67	579.63	579.59	579.56
30.000	579.52	579.48	579.45	579.41	579.37
35.000	579.34	579.30	579.27	579.23	579.20
40.000	579.16	579.13	579.10	579.06	579.03
45.000	579.00	578.95	578.90	578.86	(N/A)

Subsection: Time vs. Volume

Label: Minimum Drain Time - 1 (OUT)

Time vs. Elevation (ft)

Output Time increment = 3,600.000 hours Time on left represents time for first value in each row.

Time (hours)			Elevation (ft)	Elevation (ft)	
0.000	580.45	580.42	580.40	580.37	580.35
5.000	580.33	580.30	580.28	580.26	580.23
10.000	580.20	580.17	580.15	580.12	580.09
15.000	580.07	580.04	580.01	579.98	579.94
20.000	579.90	579.86	579.82	579.78	579.75
25.000	579.71	579.67	579.63	579.59	579.56
30.000	579.52	579.48	579.45	579.41	579.37
35.000	579.34	579.30	579.27	579.23	579.20
40.000	579.16	579.13	579.10	579.06	579.03
45.000	579.00	578.95	578.90	578.86	(N/A)

Subsection: Elevation-Area Volume Curve

Label: Extended Detention

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
578.50	0.0	0.000	0.000	0.000	0.000
579.00	0.0	0.040	0.040	0.007	0.007
580.00	0.0	0.056	0.143	0.048	0.054
580.10	0.0	0.087	0.213	0.007	0.062
580.50	0.0	0.109	0.293	0.039	0.101
581.00	0.0	0.123	0.348	0.058	0.159
582.00	0.0	0.153	0.413	0.138	0.296
583.00	0.0	0.186	0.508	0.169	0.466
584.00	0.0	0.203	0.583	0.194	0.660

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Requested Pond Water Surface Elevations				
Minimum (Headwater) 578.50 ft				
Increment (Headwater)	0.25 ft			
Maximum (Headwater)	584.00 ft			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inlet Box	Riser - 1	Forward + Reverse	Culvert - 1	582.50	584.00
Orifice-Circular	Orifice - 1	Forward	Culvert - 1	578.50	584.00
Culvert-Circular	Culvert - 1	Forward + Reverse	TW	577.00	584.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Label: Composite Outlet Structure - 1

Structure ID: Orifice - 1 Structure Type: Orifice-Circular	
Number of Openings	3
Elevation	578.50 ft
Orifice Diameter	0.50 in
Orifice Coefficient	0.660
Structure ID: Riser - 1 Structure Type: Inlet Box	
Number of Openings	1
Elevation	582.50 ft
Orifice Area	2.6 ft ²
Orifice Coefficient	0.600
Weir Length	6.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	False
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	18.00 in
Length	83.00 ft
Length (Computed Barrel)	83.00 ft
Slope (Computed)	0.010 ft/ft
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.018
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
M	2.0000
C	
C	0.0317
Y	0.0317 0.6900

Subsection: Outlet Input Data

Label: Composite Outlet Structure - 1

Inlet Control Data				
T1 ratio (HW/D)	1.090			
T2 ratio (HW/D)	1.192			
Slope Correction Factor	-0.500			

Use unsubmerged inlet control 0 equation below T1 elevation

Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	578.64 ft	T1 Flow	7.58 ft³/s
T2 Elevation	578.79 ft	T2 Flow	8.66 ft ³ /s

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

.....

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.50	0.00	0.00	0.00	0.00	0.00	0.00	577.70	0.00
578.75	0.01	578.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.00	0.01	579.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.25	0.02	579.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.50	0.02	579.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
579.75	0.02	579.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.00	0.03	580.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.25	0.03	580.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.50	0.03	580.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
580.75	0.03	580.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.00	0.03	581.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.25	0.04	581.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.50	0.04	581.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
581.75	0.04	581.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.00	0.04	582.00	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.25	0.04	582.25	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.50	0.04	582.50	Free Outfall	577.70	0.00	0.00	577.70	0.00
582.75	0.04	582.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
583.00	0.05	583.00	578.57	578.57	0.00	0.00	577.70	0.00
583.25	0.04	583.25	579.25	579.25	0.00	0.00	577.70	0.00
583.50	0.04	583.50	579.76	579.76	0.00	0.00	577.70	0.00
583.75	0.04	583.75	580.27	580.27	0.00	0.00	577.70	0.00
584.00	0.04	584.00	580.79	580.79	0.00	0.00	577.70	0.00

Message

WS below an invert; no flow.

H = .23

H = .48

H = .73

H = .98

H =1.23

H = 1.48

H =1.73

H = 1.98

H = 2.23

H =2.48

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Circular)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

	Message
H =2.73	•
H =2.98	
H =3.23	
H =3.48	
H =3.73	
H =3.98	
H =4.23	
H =4.43	
H =4.00	
H =3.74	
H =3.48	
H =3.21	

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

,

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.50	0.00	0.00	0.00	0.00	0.00	0.00	577.70	0.00
578.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
579.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
580.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
581.75	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.00	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.25	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
582.75	2.44	582.75	Free Outfall	577.70	0.00	0.00	577.70	0.00
583.00	6.89	583.00	Free Outfall	578.57	0.00	0.00	577.70	0.00
583.25	10.67	583.25	Free Outfall	579.25	0.00	0.00	577.70	0.00
583.50	12.32	583.50	Free Outfall	579.76	0.00	0.00	577.70	0.00
583.75	13.78	583.75	Free Outfall	580.27	0.00	0.00	577.70	0.00
584.00	15.09	584.00	Free Outfall	580.79	0.00	0.00	577.70	0.00

Message

WS below an invert; no flow. WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

.

Upstream ID = (Pond Water Surface) Downstream ID = Culvert - 1 (Culvert-Circular)

Message

WS below an invert; no flow. WS below an invert; no flow. WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

WS below an invert; no flow.

Weir: H =0.25ft Weir: H =0.5ft

Orifice: H = .75; Riser orifice equation

controlling.

Orifice: H =1.00; Riser orifice equation

controlling.

Orifice: H =1.25; Riser orifice equation

controlling.

Orifice: H =1.50; Riser orifice equation

controlling.

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

Mannings open channel maximum capacity: 11.09 ft³/s

Upstream ID = Riser - 1, Orifice - 1 Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Device Flow (ft³/s)	(into) Headwater Hydraulic Grade Line (ft)	Converge Downstream Hydraulic Grade Line (ft)	Next Downstream Hydraulic Grade Line (ft)	Downstream Hydraulic Grade Line Error (ft)	Convergence Error (ft³/s)	Downstream Channel Tailwater (ft)	Tailwater Error (ft)
578.50	0.00	0.00	0.00	577.70	0.00	0.00	577.70	0.00
578.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
579.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
580.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
581.75	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.00	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.25	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.50	0.12	577.70	577.70	577.70	0.00	0.00	577.70	0.00
582.75	2.48	577.70	577.70	577.70	0.00	0.00	577.70	0.00
583.00	6.93	578.57	577.70	577.70	0.00	0.01	577.70	0.00
583.25	10.71	579.25	577.70	577.70	0.00	0.00	577.70	0.00
583.50	12.36	579.76	577.70	577.70	0.00	0.01	577.70	0.00
583.75	13.81	580.27	577.70	577.70	0.00	0.00	577.70	0.00
584.00	15.13	580.79	577.70	577.70	0.00	0.00	577.70	0.00

Message

WS below an invert; no flow.
FLOW PRECEDENCE SET TO
UPSTREAM CONTROLLING
STRUCTURE
FLOW PRECEDENCE SET TO
UPSTREAM CONTROLLING
STRUCTURE
FLOW PRECEDENCE SET TO
UPSTREAM CONTROLLING
STRUCTURE
STRUCTURE

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

Mannings open channel maximum capacity: 11.09 ft³/s

Upstream ID = Riser - 1, Orifice - 1 Downstream ID = Tailwater (Pond Outfall)

Message

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING **STRUCTURE**

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING STRUCTURE**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING **STRUCTURE**

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING**

STRUCTURE

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING STRUCTURE**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING **STRUCTURE**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING **STRUCTURE**

FLOW PRECEDENCE SET TO UPSTREAM CONTROLLING **STRUCTURE**

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING**

STRUCTURE

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING**

STRUCTURE

FLOW PRECEDENCE SET TO **UPSTREAM CONTROLLING**

STRUCTURE

Subsection: Individual Outlet Curves Label: Composite Outlet Structure - 1

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Culvert - 1 (Culvert-Circular)

.

Mannings open channel maximum capacity: $11.09 \text{ ft}^3/\text{s}$ Upstream ID = Riser - 1, Orifice - 1

Downstream ID = Tailwater (Pond Outfall)

Message

CRIT.DEPTH CONTROL Vh= .457ft Dcr= 1.019ft H.JUMP IN PIPE Hev= .00ft FULL FLOW...Lfull=83.00ft Vh=.571ft HL=1.548ft Hev= .00ft

FULL FLOW...Lfull=83.00ft Vh=.760ft HL=2.061ft Hev= .00ft

FULL FLOW...Lfull=83.00ft Vh=.950ft HL=2.575ft Hev= .00ft

FULL FLOW...Lfull=83.00ft Vh=1.139ft HL=3.088ft Hev= .00ft

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
578.50	0.00	577.70	0.00
578.75	0.01	577.70	0.00
579.00	0.01	577.70	0.00
579.25	0.02	577.70	0.00
579.50	0.02	577.70	0.00
579.75	0.02	577.70	0.00
580.00	0.03	577.70	0.00
580.25	0.03	577.70	0.00
580.50	0.03	577.70	0.00
580.75	0.03	577.70	0.00
581.00	0.03	577.70	0.00
581.25	0.04	577.70	0.00
581.50	0.04	577.70	0.00
581.75	0.04	577.70	0.00
582.00	0.04	577.70	0.00
582.25	0.04	577.70	0.00
582.50	0.04	577.70	0.00
582.75	2.48	577.70	0.00
583.00	6.93	577.70	0.00
583.25	10.71	577.70	0.00
583.50	12.36	577.70	0.00
583.75	13.81	577.70	0.00
584.00	15.13	577.70	0.00

Contributing Structures

(no Q: Riser - 1,Orifice - 1,Culvert - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1,Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1,Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Orifice - 1, Culvert - 1 (no Q: Riser - 1) Riser - 1, Orifice - 1, Culvert - 1

Subsection: Composite Rating Curve Label: Composite Outlet Structure - 1

Composite Outflow Summary

Contributing Structures

Riser - 1,Orifice - 1,Culvert - 1

Subsection: Elevation-Volume-Flow Table (Pond)

Label: Minimum Drain Time - 1

Infiltration		
Infiltration Method (Computed)	<none selected=""></none>	
Initial Conditions		
Elevation (Water Surface,	0.44.	
Initial)	(N/A) ft	
Volume (Initial)	(N/A) ac-ft	
` ,	* . ,	
Flow (Initial Outlet)	(N/A) ft³/s	
Flow (Initial Infiltration)	(N/A) ft³/s	
Flow (Initial, Total)	(N/A) ft³/s	
Time Increment	(N/A) hours	

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
578.50	0.00	0.000	0.000	0.00	0.00	0.00
578.75	0.01	0.001	0.010	0.00	0.01	0.03
579.00	0.01	0.007	0.040	0.00	0.01	0.18
579.25	0.02	0.017	0.044	0.00	0.02	0.43
579.50	0.02	0.029	0.048	0.00	0.02	0.71
579.75	0.02	0.041	0.052	0.00	0.02	1.02
580.00	0.03	0.054	0.056	0.00	0.03	1.34
580.25	0.03	0.075	0.095	0.00	0.03	1.85
580.50	0.03	0.101	0.109	0.00	0.03	2.47
580.75	0.03	0.129	0.116	0.00	0.03	3.15
581.00	0.03	0.159	0.123	0.00	0.03	3.87
581.25	0.04	0.190	0.130	0.00	0.04	4.64
581.50	0.04	0.224	0.138	0.00	0.04	5.45
581.75	0.04	0.259	0.145	0.00	0.04	6.31
582.00	0.04	0.296	0.153	0.00	0.04	7.21
582.25	0.04	0.336	0.161	0.00	0.04	8.16
582.50	0.04	0.377	0.169	0.00	0.04	9.16
582.75	2.48	0.420	0.177	0.00	2.48	12.65
583.00	6.93	0.466	0.186	0.00	6.93	18.20
583.25	10.71	0.513	0.190	0.00	10.71	23.11
583.50	12.36	0.561	0.194	0.00	12.36	25.93
583.75	13.81	0.610	0.199	0.00	13.81	28.57
584.00	15.13	0.660	0.203	0.00	15.13	31.10

Subsection: Level Pool Pond Routing Summary

Label: Minimum Drain Time - 1

Infiltration			
Infiltration Method (Computed)	<none selected=""></none>		
Initial Conditions			
Elevation (Water Surface, Initial)	(N/A) ft		
Volume (Initial)	(N/A) ac-ft		
Flow (Initial Outlet)	(N/A) ft ³ /s		
Flow (Initial Infiltration)	(N/A) ft ³ /s		
Flow (Initial, Total)	(N/A) ft ³ /s		
Time Increment	(N/A) hours		
Flow (Peak In) Flow (Peak Outlet)	(N/A) ft³/s (N/A) ft³/s	Time to Peak (Flow, In) Time to Peak (Flow, Outlet)	(N/A) hours (N/A) hours
Elevation (Water Surface,			
Peak)	(N/A) ft		
Volume (Peak)	(N/A) ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	(N/A) ac-ft		
Volume (Total Inflow)	(N/A) ac-ft		
Volume (Total Infiltration)	(N/A) ac-ft		
Volume (Total Outlet Outflow)	(N/A) ac-ft		
Volume (Retained)	(N/A) ac-ft		
Volume (Unrouted)	(N/A) ac-ft		
Error (Mass Balance)	(N/A) %		

Subsection: Detention Time Label: Extended Detention

Infiltration	
Infiltration Method (Computed)	<none selected=""></none>
Approximate Detention Time	es
Time to Peak (Outflow + Infiltration, Peak to Peak Detention Time)	(N/A) hours
Time to Peak (Inflow, Peak to Peak Detention Time)	(N/A) hours
Detention Time (Peak to Peak)	(N/A) hours

Subsection: Pond Routed Hydrograph (total out)

Label: Minimum Drain Time - 1

Peak Discharge	0.03 ft ³ /s
Time to Peak	0.000 hours
Hydrograph Volume	0.092 ac-ft

HYDROGRAPH ORDINATES (ft³/s) Output Time Increment = 1.000 hours Time on left represents time for first value in each row.

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
0.000	0.03	0.03	0.03	0.03	0.03
5.000	0.03	0.03	0.03	0.03	0.03
10.000	0.03	0.03	0.03	0.03	0.03
15.000	0.03	0.03	0.03	0.03	0.03
20.000	0.03	0.03	0.02	0.02	0.02
25.000	0.02	0.02	0.02	0.02	0.02
30.000	0.02	0.02	0.02	0.02	0.02
35.000	0.02	0.02	0.02	0.02	0.02
40.000	0.02	0.02	0.02	0.02	0.02
45.000	0.02	0.01	0.01	0.01	(N/A)

Minimum Drain Time Detailed Report: Minimum Drain Time - 1

Minimum Drain Time Detailed Report: Minimum Drain Time - 1

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX D

PID: 49633 Date: 01/18/2012 Project: CUY-90-14.90 Location: Canal Road I90Scuppers to EX CB

Description: CANAL ROAD - I-90 Scuppers to CS **Designer**: PNS

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 602.00

JUNC From	_	STATION From To	ΔAREA Σ AREA (acres)	_	BEGIN TIME (min.)	INTEN	ISITY	(cfs	.)	DIAM. I (in.)	PIPE LENGTH (ft.)	SLOPE (ft./ft.)		MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	COVER MINUS HY GR	COVER MINUS CROWN	INLET TYPE MANNING'S 'n'
* D101		25+41 26+27	0.21 0.21	0.19 0.19		5.10	6.07	1.0	1.1	12	86.8	0.0050	605.93 605.50		2.34	0.0014	606.45 606.23	609.25 607.71	2.80	2.32	CB 6 0.015
D39	D99	26+27 26+47	0.42 0.63	0.37 0.56		4.98	6.06	2.8	3.4	12	26.0	0.0912	605.50 603.13		10.03	0.0122	605.92 604.03	607.71 606.38	1.79	1.21	CB 6 0.015
** D100 be		26+42 26+47	0.25 0.88	0.23 0.79		5.10	6.20	1.1	1.4	12	7.6	0.1145	603.00 602.13		11.24	0.0020	603.25 602.88	605.24 606.38	1.99	1.24	CB 3A 0.015
D99 fin	END al	26+47 26+59	0.00 0.88	0.00 0.79		4.97	6.05	3.9	4.8	12	16.3	0.0693	602.13 601.00		8.75	0.0239	602.68 602.00	606.38 605.16	3.70	3.25	MH 3 0.015

^{*} Full flow velocity exceeds 3ft/s, pipe adjacent to pier 11 and minimizing depth of structures.

^{**} D-100 CB City 1 is replacing an existing CB that will be damaged by the construction of D-99 MH. Inlet spread calculations for Canal Road not performed. Spread will be reduced (improved) from existing conditions due to the new bridge.

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX E

Description: Inlet Spacing - Central Viaduct Way (Carnegie to Commercial) 104+44 RT

Designer: AHR

1

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 7.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)		SLOPE	SLOPE			LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
105+27	Begin																	
104+58	CB-3	94.00	0.90	0.16	1.00	1.37	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.44	0.08	0.52	0.110	6.89
104+44	CB-3A	20.00	0.90	0.12	1.00	0.30	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.33	0.14	0.47	0.106	6.62
103+92	CB-3A	50.89	0.40	0.17	1.00	0.82	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.29	0.10	0.38	0.098	6.14
103+02	CB-3A	54.00	0.57	0.18	1.00	0.36	10.00	0.0550	0.0160	0.0160	0.00	0.0417	3.60	0.35	0.11	0.46	0.071	4.41
102+50	CB-3A	151.92	0.63	0.09	1.50	2.88	10.00	0.0051	0.0160	0.0160	0.00	0.0417	3.60	0.25	0.07 *	0.31	0.095	5.95

^{*} Bypass goes to CB @ 16+06 on Commercial Drive, see Appendix F Calcs.

Description: Inlet Spacing - Central Viaduct Way (Carnegie to Commercial) 104+44 RT

Designer: AHR

1

Rainfall Area: A Storm Frequency (yr.): 25 Total Allow. Spread (ft.): 7.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF	NOFF AREA (acres)	TIME	GUTTER TIME (min.)			SLOPE			LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
105+27	Begin																	
104+58	CB-3	94.00	0.90	0.16	1.00	1.21	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.66	0.24	0.89	0.135	8.46
104+44	CB-3A	20.00	0.90	0.12	1.00	0.26	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.52	0.39	0.91	0.136	8.51
103+92	CB-3A	50.89	0.40	0.17	1.00	0.70	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.48	0.32	0.81	0.130	8.14
103+02	CB-3A	54.00	0.57	0.18	1.00	0.31	10.00	0.0550	0.0160	0.0160	0.00	0.0417	6.21	0.60	0.36	0.96	0.093	5.79
102+50	CB-3A	151.92	0.63	0.09	1.00	2.36	10.00	0.0051	0.0160	0.0160	0.00	0.0417	6.21	0.44	0.27 *	0.71	0.129	8.09

^{*}Bypass goes to CB @ 16+06 on Commercial Drive, see Appendix F Calcs.

PID: 49633 Date: 09/15/2011 Project: CUY-90-14.90 Location: Central Viaduct Way to Ex. CS, 104+44 LT

Description :Inlet Spacing - Central Viaduct Way (Carnegie to end) LT curb

Designer : JCA

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 7.00 Allowable Depth (ft.) 0.42

STATION	C.B.	GUTTER	RUI	NOFF	CONC.	GUTTER	TIME	LONG.	GUTT.	PAVT.	GUTT.	LOCAL	RAIN	INTERCPTD	BYPASS	TOTAL	DEPTH	PAVT.
	Туре	LENGTH	COEF	AREA	TIME	TIME	USED					DEPRESS.		FLOW	FLOW	FLOW	FLOW	SPREAD
		(ft.)		(acres)	(min.)	(min.)	(min.)	(ft./ft.)	(ft./ft.)	(ft./ft.)	(ft.)	(ft.)	(in./hrs.)	(cfs.)	(cfs.)	(cfs.)	(ft.)	(ft.)
105+27	Begin																	
104+44	CB-3A	90.23	0.90	0.14	1.50	1.37	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.32	0.13	0.45	0.105	6.56
103+90	CB-3A	50.50	0.90	0.07	1.00	0.83	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.27	0.08	0.36	0.096	5.99
103+84	CB-3A	3.00	0.90	0.02	0.70	0.06	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.15	0.01	0.16	0.070	4.39
102+60	CB-3	129.08	0.90	0.16	1.80	1.94	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.44	0.08	0.52	0.110	6.88
101+70	CB-3A	86.00	0.90	0.13	1.00	1.28	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	0.35	0.15	0.50	0.109	6.79
101+27	I-2-6	37.00	0.90	0.12	1.00	0.54	10.00	0.0063	0.0160	0.0160	0.00	0.0417	3.60	*****	*****	0.54	0.112	7.00

PID: 49633 Date: 09/15/2011 Project: CUY-90-14.90 Location: Central Viaduct Way to Ex. CS, 104+44 LT

Description :Inlet Spacing - Central Viaduct Way (Carnegie to end) LT curb

Designer : JCA

Rainfall Area: A Storm Frequency (yr.): 25 Total Allow. Spread (ft.): 7.00 Allowable Depth (ft.) 0.42

STATION	C.B.	GUTTER		NOFF		GUTTER					GUTT.	_	RAIN	INTERCPTD	BYPASS	TOTAL	DEPTH	PAVT.
	Type	LENGTH (ft.)	COEF	AREA (acres)	TIME (min.)	TIME (min.)	USED (min.)			SLOPE (ft./ft.)		DEPRESS. (ft.)	FALL (in./hrs.)	FLOW (cfs.)	FLOW (cfs.)	FLOW (cfs.)	FLOW (ft.)	SPREAD (ft.)
105+27	Begin																	
104+44	CB-3A	90.23	0.90	0.14	1.50	1.21	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.47	0.31	0.78	0.129	8.05
103+90	CB-3A	50.50	0.90	0.07	1.00	0.71	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.44	0.26	0.70	0.124	7.72
103+84	CB-3A	3.00	0.90	0.02	0.70	0.05	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.29	0.10	0.39	0.099	6.17
102+60	CB-3	129.08	0.90	0.16	1.80	1.67	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.69	0.27	0.97	0.139	8.72
101+70	CB-3A	86.00	0.90	0.13	1.00	1.10	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	0.56	0.44	1.00	0.141	8.82
101+27	I-2-6	37.00	0.90	0.12	1.00	0.46	10.00	0.0063	0.0160	0.0160	0.00	0.0417	6.21	*****	*****	1.11	0.147	9.18 E

Description: Inlet Spacing - Central Viaduct Way - 100+30 RT **Designer**: JCA

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 7.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		AREA	_	TIME		SLOPE	SLOPE	SLOPE	WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
101+53	Begin																	
101+32	I-2-6	25.00	0.90	0.00	1.50	1.42	10.00	0.0050	0.0160	0.0160	0.00	0.0417	3.60	0.00	0.00	0.00	0.017	1.07

CDSS 1.0.0.3.

Description: Inlet Spacing - Central Viaduct Way - 100+30 RT **Designer**: JCA

Rainfall Area: A Storm Frequency (yr.): 25 Total Allow. Spread (ft.): 7.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)			_	GUTTER TIME (min.)		SLOPE		SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
101+53	Begin																	
101+32	I-2-6	25.00	0.90	0.00	1.50	1.25	10.00	0.0050	0.0160	0.0160	0.00	0.0417	6.21	0.01	0.00	0.01	0.021	1.32

PID: 49633 Date: 02/09/2015 Project: CUY-90-14.90 Location: Central Viaduct Way 100+73 (1) LT

Description: Central Viaduct Way Proposed Storm Sewer to Ex. CS_100+73 (1) LT **Designer**:

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 6.00 Tailwater Elevation (ft.): 660.79

JUNCTION S From To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME	RAINF INTEN: (10 yrs.) (2	SITY	(cfs	.)	DIAM. L	PIPE ENGTH (ft.)	ISLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)				MINUS		INLET TYPE MANNING'S 'n'
D57A WALL begin	100+15 100+13	0.10 0.10	0.09 0.09		5.10	6.18	0.5	0.6	6	22.0	0.0218	663.88 663.40	 0.77	0.0131	664.21 663.84	666.23 666.10	2.02	1.85	CB 3A 0.015

PID: 49633 Date: 10/31/2011 Project: CUY-90-14.90 Location: Central Viaduct Way 102+76 LT

Description: Central Viaduct Way Proposed Storm Sewer to Ex. CS_102+76 LT **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 658.38

JUNCTION S From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME		SITY	(cfs.	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	_	INLET TYPE MANNING'S 'n'
D60 D59 begin	101+21 100+62	0.16 0.16	0.15 0.15		5.10	6.16	0.8	0.9	12	58.8	0.0430	665.65 663.12		6.89	0.0009	665.90 663.82	667.40 667.00	1.50	0.75	CB 6 0.015
D61 D59 begin	100+85 100+62	0.51 0.67	0.46 0.61	10.00	5.10	5.79	2.3	2.7	12	104.1	0.0087	660.71 659.80		3.11	0.0074	662.68 661.91	663.71 667.00	1.03	2.00	CB 6 0.015
D59 18222	100+62 100+73	0.00 0.67	0.00 0.61	10.42	5.00	5.79	3.0	3.5	12	35.6	0.0084	658.40 658.10		3.05	0.0129	661.91 661.45	667.00 666.80	5.09	7.60	MH 3 0.015
18222 18244	100+73 102+76	0.97 1.64	0.85 1.46		4.97	5.79	7.3	8.5	18 Warning		0.0015	657.68 657.38		3.76	0.0086	661.45 659.70	666.80 667.55	5.35	7.62	MH 3 0.015
D63B 18244 begin	103+03 102+76	0.18 1.82	0.10 1.56		5.10	6.17	0.5	0.6	12	38.6	0.0453	663.05 661.30		7.07	0.0004	663.26 661.96	667.56 667.55	4.30	3.51	CB 3A 0.015
D62 D63 begin	102+50 102+60	0.09 1.91	0.06 1.62		5.10	5.94	0.3	0.3	12	28.3	0.0180	662.63 662.12		4.46	0.0001	662.86 662.86	667.22 667.23	4.36	3.59	CB 3A 0.015
D63A D63 begin	101+72 102+60	0.13 2.04	0.12 1.73		5.10	5.97	0.6	0.7	12	89.2	0.0017	662.73 662.58		1.38	0.0005	663.30 663.25	666.63 667.23	3.33	2.90	CB 3A 0.015
D63 18244	102+60 102+76	0.16 2.20	0.14 1.87	10.93	4.90	5.94	1.5	1.9	12 Warning		0.0007	661.86 661.85		0.86	0.0036	662.86 662.64	667.23 667.55	4.37	4.37	CB 3 0.015

CDSS 1.0.0.3.

2015-02-09 Central Viaduct Way SS to Ex. CS 102+76 LT.xml

^{*} Based on the approved as-built survey information, the invert elevation of the pipe leaving structure 18222 was 656.68, which would be lower than the downstream invert elevation and the elevation of the pipes leaving structure D18244, and the invert elevation would also be higher than the pipes entering structure 18222. Based on this elevation the slope of the existing pipe run, 18222 to 18244, would be -0.34%. Therefore the elevation was raised by 1 foot in CDSS to allow for analysis of the system.

JUNCTION S	TATION	Δ AREA	ΔCA	BEGIN	RAINF	ALL [DISCH	ARGE		PIPE		F/L PIPE	MEAN	JUST FULL	FRICT	HYGR EL.	COVER	COVER	COVER	INLET TYPE
From To	From	Σ AREA	ΣCA	TIME	INTEN	SITY	(cfs	s.)	DIAM. L	ENGTH	SLOPE	IN / OUT	VEL	CAPACITY	SLOPE	IN / OUT	IN / OUT	MINUS	MINUS	MANNING'S
	То	(acres)		(min.)	(10 yrs.) (2	25 yrs.) (10 yrs.)(25 yrs.)	(in.)	(ft.)	(ft./ft.)	(ft.)	(fps.)	(cfs.)	(ft./ft.)	(ft.)	(ft.)	HY GR	CROWN	'n'
18244 D65	102+76	0.00	0.00	11.40	4.80	5.79	9.0	10.8	18	93.0	0.0054	657.38	5.09	7.18	0.0142	659.70	667.55	7.85	8.67	MH 3
final	103+69	2.20	1.87						Warning			656.88				658.38	667.87			0.015

PID: 49633 Date: 02/09/2015 Project: Cleveland Innerbelt Location: Central Viaduct Way & Commerical Rd

Description: Catch Basins D-60A and D-60B **Designer**:

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 658.38

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.)	DIAM. LE		SLOPE (ft./ft.)		MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	_	INLET TYPE MANNING'S 'n'
D60B D60A begin	101+27 101+27	0.15 0.15	0.14 0.14		5.10	6.11	0.7	8.0	12 Warning		0.0000	663.30 663.30		0.01	0.0007	664.30 663.99	666.30 666.40	2.00	2.00	CB 6 0.015
D60A CS final	101+27 101+25	0.10 0.25	0.00 0.14		5.02	6.11	0.7	0.8	12	4.0	0.8875	663.25 659.70		31.29	0.0007	663.37 660.39	666.40 666.40	3.03	2.15	CB 6 0.015

NOTE: D-60A to the existing combined sewer is a vertical connection. There is 1' of sloped pipe exiting D-60A then a 90 degree drop connection to the existing CS. The 659.70 elevation is the outlet elevation for D-60A which is also the crown of the combined sewer.

Description: Central Viaduct Way Proposed Storm Sewer to Ex. CS_103+69 LT **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 663.24

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)		TIME	RAINF INTEN: (10 yrs.) (2	SITY	OISCHA (cfs. 10 yrs.)(2	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	COVER MINUS CROWN	INLET TYPE MANNING'S 'n'
D68 D67 begin	103+93 103+84	0.17 0.17	0.08		5.10	6.16	0.4	0.5	12	30.0	0.0373	663.53 662.41	4.32	6.41	0.0002	663.72 663.25	667.90 667.96	4.18	3.37	CB 3A 0.015
D67A D67 begin	103+91 103+84	0.07 0.24	0.06 0.14		5.10	6.16	0.3	0.4	12	6.7	0.0090	662.47 662.41	2.45	3.14	0.0002	663.25 663.25	667.97 667.96	4.72	4.50	CB 3A 0.015
D67 D65 final	103+84 103+69	0.02 0.26	0.02 0.16		5.07	6.16	0.8	1.0	12	13.0	0.0131	662.41 662.24	3.65	3.80	0.0010	663.25 663.24	667.96 667.87	4.71	4.55	CB 3A 0.015

PID: 49633 Date: 11/10/2011 Project: CUY-90-14.90 Location: Central Viaduct Way 104+52 LT

Description: Central Viaduct Way Proposed Storm Sewer to Ex. CS_104+52 LT **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 664.00

JUNCTION S From To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME	RAINF INTEN (10 yrs.) (SITY	(cfs.	.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D69A D897 begin	104+44 104+52	0.14 0.14		10.00	5.10	6.20	0.6	0.8	12	7.2	0.0200	663.14 663.00	 4.70	0.0006	664.00 664.00	668.14 668.94	4.14	4.00	CB 3A 0.015

^{*} This is the original design elevation. Invert elevation was not verified from the approved as-built survey information, structure D69A was filled with water to an elevation of 662.94.

PID: 49633 Date: 11/11/2011 Project: CUY-90-14.90 Location: Central Viaduct Way 104+52 LT

Description: Central Viaduct Way Proposed Storm Sewer to Ex. CS_104+58 RT **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 664.00

JUNCTION From To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME		SITY	(cfs.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)				COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D69 D69B begin	104+42 104+57	0.12 0.12	0.11 0.11		5.10	6.17	0.6	0.7	12	20.6	0.0137	663.66 663.38	 3.89	0.0005	664.09 664.08	668.20 668.33	4.11	3.54	CB 3A 0.015
D69B D897 final	104+57 104+52	0.16 0.28	0.14 0.25		5.07	6.17	1.3	1.6	12	32.4	0.1164	662.83 659.06	11.33	0.0025	664.08 664.00	668.33 668.91	4.25	4.50	CB 3 0.015

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX F

CAPACITY OF STANDARD CATCH
BASIN GRATES IN
PAVEMENT SAGS

1103 - 3

REFERENCE SECTION 1103.6, 1103.7

CAPACITY OF STANDARD CATCH BASIN GRATES IN PAVEMENT SAGS 1103 - 3

REFERENCE SECTION | 103.6, 1103.7

Description : Commercial Road - Left Side **Designer :** AHR

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 10.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)			SLOPE	SLOPE	WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
101+36	Begin																	
16+06	CB-3A	393.00	0.80	0.14	1.00	2.52	10.00	0.0721	0.0160	0.0160	0.00	0.0417	3.60	0.32	0.08	0.39	0.063	3.93
12+51	CB-3A	355.00	0.77	0.25	1.00	1.99	10.00	0.0652	0.0160	0.0160	0.00	0.0417	3.60	0.52	0.26	0.78	0.083	5.18
10+96	CB-3A	155.00	0.77	0.13	1.00	1.15	10.00	0.0367	0.0160	0.0160	0.00	0.0417	3.60	0.43	0.20	0.63	0.085	5.33
10+81	CB-3A	15.00	0.66	0.01	1.00	0.15	10.00	0.0316	0.0206	0.0206	0.00	0.0417	3.60	0.21	0.01	0.23	0.066	3.20

Description : Commercial Road - Left Side **Designer :** AHR

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 10.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH			TIME	GUTTER TIME	USED		SLOPE	SLOPE	WIDTH	DEPRESS.	FALL	INTERCPTD FLOW	FLOW	FLOW	DEPTH FLOW	PAVT. SPREAD
		(ft.)		(acres)	(min.)	(min.)	(min.)	(ft./ft.)	(ft./ft.)	(ft./ft.)	(ft.)	(ft.)	(in./hrs.)	(cfs.)	(cfs.)	(cfs.)	(ft.)	(ft.)
101+36	Begin																	
16+06	CB-3A	393.00	0.80	0.14	1.00	2.10	10.00	0.0721	0.0160	0.0160	0.00	0.0417	6.79	0.51	0.23	0.74	0.080	4.99
12+51	CB-3A	355.00	0.77	0.25	1.00	1.64	10.00	0.0652	0.0160	0.0160	0.00	0.0417	6.79	0.85	0.71	1.56	0.108	6.73
10+96	CB-3A	155.00	0.77	0.13	1.00	0.94	10.00	0.0367	0.0160	0.0160	0.00	0.0417	6.79	0.76	0.65	1.41	0.115	7.21
10+81	CB-3A	15.00	0.66	0.01	1.00	0.11	10.00	0.0316	0.0206	0.0206	0.00	0.0417	6.79	0.52	0.19	0.71	0.101	4.90

Description: Commercial Road - Right Side **Designer**: AHR

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 10.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF	NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)	SLOPE		SLOPE		LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
2+50	Begin																	
0+43	CB-3A	207.00	0.83	0.24	1.00	1.28	10.00	0.0500	0.0160	0.0160	0.00	0.0417	3.60	0.48	0.23	0.72	0.084	5.28
16+06	CB-3A	225.00	0.00	0.00	0.00	0.00	0.00	0.0721	0.0160	0.0160	0.00	0.0417	0.00	0.48	0.21	0.68	0.077	4.84
12+52	CB-3A	354.00	0.65	1.48	1.00	1.33	10.00	0.0652	0.0160	0.0160	0.00	0.0417	3.60	1.53	2.12	3.66	0.148	9.25
12+37	CB-3A	15.00	0.66	0.08	1.00	0.07	10.00	0.0652	0.0160	0.0160	0.00	0.0417	3.60	1.11	1.19	2.30	0.124	7.78
11+11	CB-3A	126.00	0.65	0.73	1.00	0.64	10.00	0.0364	0.0160	0.0160	0.00	0.0417	3.60	1.23	1.67 *	2.90	0.151	9.47
10+96	CB-3A	15.00	0.63	0.12	1.00	0.09	10.00	0.0364	0.0160	0.0160	0.00	0.0417	3.60	0.94	1.00	1.95	0.130	8.15
10+80	CB-3	16.00	0.64	0.10	1.00	0.11	10.00	0.0316	0.0160	0.0160	0.00	0.0417	3.60	0.81	0.43	1.24	0.113	7.07

^{*}Bypass flow from CVW RT (D-62) added to Inlet spacing flow.

Description : Commercial Road - Right Side **Designer :** AHR

Rainfall Area: A Storm Frequency (yr.): 25 Total Allow. Spread (ft.): 10.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)	SLOPE				LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
2+50	Begin																	
0+43	CB-3A	207.00	0.83	0.24	1.00	1.12	10.00	0.0500	0.0160	0.0160	0.00	0.0417	6.21	0.71	0.53	1.24	0.104	6.48
16+06	CB-3A	225.00	0.00	0.00	0.00	0.00	0.00	0.0721	0.0160	0.0160	0.00	0.0417	0.00	0.82	0.64	1.46	0.103	6.43
12+52	CB-3A	354.00	0.65	1.48	1.00	1.16	10.00	0.0652	0.0160	0.0160	0.00	0.0417	6.21	2.39	4.20	6.59	0.185	11.54
12+37	CB-3A	15.00	0.66	0.08	1.00	0.06	10.00	0.0652	0.0160	0.0160	0.00	0.0417	6.21	1.79	2.71	4.51	0.160	10.01
11+11	CB-3A	126.00	0.65	0.73	1.00	0.55	10.00	0.0364	0.0160	0.0160	0.00	0.0417	6.21	1.99	3.68	5.67	0.195	12.17
10+96	CB-3A	15.00	0.63	0.12	1.00	0.07	10.00	0.0364	0.0160	0.0160	0.00	0.0417	6.21	1.57	2.59	4.16	0.173	10.84
10+80	CB-3	16.00	0.64	0.10	1.00	0.09	10.00	0.0316	0.0160	0.0160	0.00	0.0417	6.21	1.47	1.53	3.00	0.157	9.84

^{*}Bypass flow from CVW RT (D-62) added to Inlet spacing flow.

PID: 49633 Date: 10/31/2011 Project: CUY-90-14.90 Location: Commercial Parking Lot Combined Sewer

Description: Scupper drainage to proposed system to Commercial CS **Designer:** BHess

Just Full Capacity Frequency (yrs.): 10 **Hydraulic Gradient Frequency (yrs.)**: 25 Rainfall Area: A

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 639.75

JUNCTION From To	STATION From To		TIME	INTENSITY	DISCHARGE (cfs.)) (10 yrs.)(25 yrs.)	DIAM.	PIPE LENGTI (ft.)	H SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)		MINUS	INLET TYPE MANNING'S 'n'
D748 D749 begin	_												
D750 D749 begin													

SEE BU 1015 - ROADWAY E9TH DRAINAGE REPORT FOR THESE CALCULATIONS

D753 D754

D751 D753

D749 D751

D754 D755

D755 18020 final

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX G

Description: Inlet Spacing - I-90 WB TO A4 - LT **Designer**: BH

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 6.00 Allowable Depth (ft.) 0.25

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF		TIME	TIME	USED		SLOPE	SLOPE	WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
159+04	Begin																	
167+26	I-3D	822.00	0.90	0.10	1.00	16.05	17.05	0.0034	0.0300	0.0400	6.00	0.1667	3.92	0.34	0.00	0.34	0.134	4.45
602+08	CB-3A	777.93	0.90	0.25	1.00	3.65	10.00	0.0438	0.0440	0.0440	8.00	0.0417	5.10	0.99	0.16	1.15	0.151	3.43

Note: Calculation is also in Appendix H E9th for storm sewer calculation references.

^{*} Proposed sodded flume after CB-3A that flows into 9th Street detention pond.

Description: Inlet Spacing - I-90 WB TO A4 - LT **Designer**: BH

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 6.00 Allowable Depth (ft.) 0.25

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF		TIME	TIME	USED		SLOPE	SLOPE	WIDTH	DEPRESS.			BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
159+04	Begin																	
167+26	I-3D	822.00	0.90	0.10	1.00	17.79	18.79	0.0034	0.0300	0.0400	6.00	0.1667	2.60	0.22	0.00	0.22	0.114	3.82
602+08	CB-3A	777.93	0.90	0.25	1.00	3.99	10.00	0.0438	0.0440	0.0440	8.00	0.0417	3.60	0.74	0.07	0.81	0.132	3.01

Note: Calculation is also in Appendix H E9th for storm sewer calculation references.

^{*} Proposed sodded flume after CB-3A that flows into 9th Street detention pond.

Description: Inlet Spacing - I-90 WB TO A4 - LT **Designer**: BH

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 6.00 Allowable Depth (ft.) 0.25

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME			SLOPE	SLOPE	SLOPE	WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
159+04	Begin																	
167+26	I-3D	822.00	0.90	0.10	1.00	14.88	15.88	0.0034	0.0300	0.0400	6.00	0.1667	5.31	0.46	0.00	0.46	0.150	4.99
602+08	CB-3A	777.93	0.90	0.25	1.00	3.33	10.00	0.0438	0.0440	0.0440	8.00	0.0417	6.79	1.24	0.29	1.53	0.168	3.82

Note: Calculation is also in Appendix H E9th for storm sewer calculation references.

^{*} Proposed sodded flume after CB-3A that flows into 9th Street detention pond.

Description: Inlet Spacing - I-90 WB Sag near Station 166+84 RT - bidirectional **Designer**: AHR

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 10.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)			PAVT. SLOPE (ft./ft.)		LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
160+30	Begin																	
166+63	I-3D	633.00	0.90	1.31	1.00	5.75	10.00	0.0036	0.0400	0.0400	9.25	0.1667	3.60	3.42	0.82	4.24	0.380	9.50
166+84	I-3D	21.00	0.90	0.05	1.00	0.35	10.00	0.0019	0.0400	0.0400	8.50	0.1667	3.60	*****	*****	0.98	0.248	6.19 Sag
173+67	Begin																	
167+62	I-3D	605.00	0.90	0.47	1.00	6.13	10.00	0.0054	0.0400	0.0400	5.70	0.1667	3.60	1.52	0.00	1.52	0.240	5.99
166+84	I-3D	78.00	0.90	0.15	1.00	0.93	10.00	0.0060	0.0400	0.0400	8.50	0.1667	3.60	*****	*****	0.49	0.153	3.83 End

SUMP DATA

Total Flow (cfs): 1.47 Ponded Depth (ft.): 0.131 Spread on Pavement (ft.): 2.20

Description: Inlet Spacing - I-90 WB Sag near Station 166+84 RT **Designer**: AHR

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 18.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)		LONG. SLOPE (ft./ft.)		PAVT. SLOPE (ft./ft.)		LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)	
160+30	Begin																		
166+63	I-3D	633.00	0.90	1.31	1.00	5.24	10.00	0.0036	0.0400	0.0400	12.00	0.1667	5.10	4.33	1.68	6.01	0.433	10.82	
166+84	I-3D	21.00	0.90	0.05	1.00	0.30	10.00	0.0019	0.0400	0.0400	12.00	0.1667	5.10	*****	*****	1.91	0.318	7.94	Sag
173+67	Begin																		
167+62	I-3D	605.00	0.90	0.47	1.00	5.59	10.00	0.0054	0.0400	0.0400	12.00	0.1667	5.10	2.02	0.14	2.16	0.273	6.83	
166+84	I-3D	78.00	0.90	0.15	1.00	0.83	10.00	0.0060	0.0400	0.0400	12.00	0.1667	5.10	*****	*****	0.82	0.187	4.67	End

SUMP DATA

Total Flow (cfs): 2.73 Ponded Depth (ft.): 0.199 Spread on Pavement (ft.): 3.69

12.00

Description: Inlet Spacing - I-90 WB Sag near Station 166+84 RT **Designer**: AHR

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 12.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF	NOFF AREA (acres)	TIME	GUTTER TIME (min.)				SLOPE		LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)	
160+30	Begin																		
166+63	I-3D	633.00	0.90	1.31	1.00	4.80	10.00	0.0036	0.0400	0.0400	12.00	0.1667	6.79	5.22	2.79	8.01	0.482	12.06	
166+84	I-3D	21.00	0.90	0.05	1.00	0.27	10.00	0.0019	0.0400	0.0400	12.00	0.1667	6.79	*****	*****	3.09	0.381	9.51	Sag
173+67	Begin																		
167+62	I-3D	605.00	0.90	0.47	1.00	5.12	10.00	0.0054	0.0400	0.0400	12.00	0.1667	6.79	2.47	0.40	2.87	0.304	7.61	
166+84	I-3D	78.00	0.90	0.15	1.00	0.73	10.00	0.0060	0.0400	0.0400	12.00	0.1667	6.79	*****	*****	1.32	0.223	5.57	End

SUMP DATA

Total Flow (cfs): 4.41 Ponded Depth (ft.): 0.273 Spread on Pavement (ft.): 5.07

Description: Inlet Spacing - A5, RT to 699+06 (15 ft) **Designer**: AHR

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 15.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	CONC. TIME (min.)	GUTTER TIME (min.)		LONG. SLOPE (ft./ft.)	SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
709+87	Begin																	
699+06	CB-3	1064.00	0.90	0.44	1.00	7.07	10.00	0.0216	0.0302	0.0302	13.00	0.0417	3.60	*****	*****	1.42	0.162	5.38 Sag
698+93	Begin																	
699+06	CB-3	13.00	0.90	0.01	1.00	0.23	10.00	0.0216	0.0182	0.0182	15.00	0.0417	3.60	*****	*****	0.03	0.032	1.78 End

SUMP DATA

Total Flow (cfs): 1.46 Ponded Depth (ft.): 0.123 Spread on Pavement (ft.): 5.89

Description: Inlet Spacing - A5, RT to 699+06 (15 ft) **Designer**: AHR

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 15.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)			TIME	TIME		SLOPE	SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
709+87	Begin																	
699+06	CB-3	1064.00	0.90	0.44	1.00	6.44	10.00	0.0216	0.0302	0.0302	13.00	0.0417	5.10	*****	*****	2.02	0.185	6.12 Sag
698+93	Begin																	
699+06	CB-3	13.00	0.90	0.01	1.00	0.21	10.00	0.0216	0.0182	0.0182	15.00	0.0417	5.10	*****	*****	0.05	0.037	2.03 End

SUMP DATA

Total Flow (cfs): 2.06 Ponded Depth (ft.): 0.165 Spread on Pavement (ft.): 8.19

Description: Inlet Spacing - A5, RT to 699+06 (15 ft) **Designer**: AHR

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 15.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)			TIME	TIME		SLOPE	SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
709+87	Begin																	
699+06	CB-3	1064.00	0.90	0.44	1.00	5.92	10.00	0.0216	0.0302	0.0302	13.00	0.0417	6.79	*****	*****	2.69	0.206	6.82 Sag
698+93	Begin																	
699+06	CB-3	13.00	0.90	0.01	1.00	0.19	10.00	0.0216	0.0182	0.0182	15.00	0.0417	6.79	*****	*****	0.06	0.041	2.27 End

SUMP DATA

Total Flow (cfs): 2.75 Ponded Depth (ft.): 0.208 Spread on Pavement (ft.): 10.52

Description: Ramp A5 (Station 699+86 tp 698+90 LT) **Designer**: ELJ

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA' BEGIN	TION END	SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)	SLOPE	_	GRADE (ft./ft.)	AREA (acres)		RUNOFF COEFF.	_			FREQ.	MANN. COEFF.		VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	
699+86	698+90	L	96.00	0.00	6.00	3.00	0.0575	0.07	0.07	0.70	0.05	Seed	3.53	3 5	0.030	15.79	1.97	0.50	0.17	0.14	1.26
												Jute Mat	3.51	5	0.040	15.98	1.58	0.56	0.17	0.16	1.40
												Temp. Ma	t 3.51	5	0.040	15.98	1.58	0.56	0.17	0.16	1.40
												Temp. Ma	t 4.06	5 10	0.040	15.97	1.70	0.58	0.20	0.16	1.45

Description: Wall F Top of Wall ditch 0+87 to outlet near Ontario **Designer**: AHR

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA1 BEGIN	TION END	SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)			GRADE (ft./ft.)		AREA SUM (acres)	RUNOFF COEFF.	CA (Sum)	PROTECT TYPE	RAIN INT. (in./hr.)	FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	
168+30	167+60	R	85.00	0.00	2.00	2.00	0.0760	0.05	0.05	0.70	0.03	Seed	4.20	5 5	0.030	10.60	2.44	0.79	0.14	0.17	0.67
												Jute Mat	4.19	9 5	0.040	10.68	2.02	0.87	0.14	0.18	0.73
												Temp. Mat	4.19	9 5	0.040	10.68	2.02	0.87	0.14	0.18	0.73
												Temp. Mat	4.94	4 10	0.040	10.72	2.13	0.92	0.16	0.19	0.77
167+60	167+36	R	14.00	0.00	2.00	2.00	0.2800 *	0.00	0.05	0.70	0.03	Seed	4.18	3 5	0.030	10.74	4.14	2.25	0.14	0.13	0.52
												Jute Mat	4.18	3 5	0.040	10.76	3.04	2.63	0.14	0.15	0.60
												Temp. Mat	4.18	3 5	0.040	10.76	3.04	2.63	0.14	0.15	0.60
												Perm, Type	1 4.18	5	0.040	10.76	3.04	2.63	0.14	0.15	0.60
												Perm, Type	2 4.18	3 5	0.040	10.76	3.04	2.63	0.14	0.15	0.60
												Perm, Type	2 4.93	3 10	0.040	10.79	3.34	2.72	0.16	0.16	0.62
167+36	167+36		13.00	0.00	2.00	2.00	0.3800 *	0.05	0.10	0.70	0.07	Seed	4.18	3 5	0.030	10.80	5.46	3.82	0.28	0.16	0.64
												Jute Mat	4.17	7 5	0.040	10.81	4.25	4.33	0.28	0.18	0.73
												Temp. Mat	4.17	7 5	0.040	10.81	4.25	4.33	0.28	0.18	0.73

STA ⁻ BEGIN		SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)	SLOPE		GRADE (ft./ft.)	(acres)		RUNOFF COEFF.		TYPE		FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)		DEPTH FLOW (ft.)	
												Perm, Type	1 4.17	7 5	0.040	10.81	4.25	4.33	0.28	0.18	0.73
												Perm, Type	2 4.17	7 5	0.040	10.81	4.25	4.33	0.28	0.18	0.73
												Perm, Type	3 4.17	7 5	0.040	10.81	4.25	4.33	0.28	0.18	0.73
												Perm, Type	3 4.92	2 10	0.040	10.84	4.47	4.58	0.33	0.19	0.77
167+36	168+62	R	170.00	0.00	2.00	2.00	0.0024	0.03	0.13	0.50	0.08	Seed	3.72	2 5	0.030	14.14	0.80	0.06	0.31	0.44	1.76
												Seed	4.22	2 10	0.040	14.85	0.69	0.07	0.35	0.50	2.02

Description: Ramp A5 (Station 699+20 tp 698+70 LT) and Wall F (Station 2+80 to 4+25)

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	FION END	SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)			GRADE (ft./ft.)		AREA SUM (acres)	RUNOFF COEFF.	CA (Sum)		RAIN INT. (in./hr.)	FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)		WIDTH FLOW (ft.)
2+53	3+35	L	73.00	2.00	2.00	2.50	0.1750 *	0.20	0.20	0.70	0.14	Seed	3.58	3 5	0.030	15.37	3.26	0.76	0.49	0.07	2.31
												Jute Mat	3.57	7 5	0.040	15.45	2.74	0.89	0.49	0.08	2.37
												Temp. Mat	3.57	7 5	0.040	15.45	2.74	0.89	0.49	0.08	2.37
												Temp. Mat	4.14	1 10	0.040	15.42	2.91	0.97	0.57	0.09	2.40
3+35	4+07	L	72.00	2.00	2.00	2.50	0.0050	0.00	0.20	0.00	0.14	Seed	3.44	4 5	0.030	16.60	1.02	0.06	0.47	0.19	2.86
												Seed	3.96	5 10	0.040	16.75	0.88	0.08	0.54	0.24	3.09
4+07	4+25	L	18.00	2.00	2.00	2.50	0.4640 *	0.00	0.20	0.00	0.14	Seed	3.44	1 5	0.030	16.67	4.37	1.48	0.47	0.05	2.23
												Jute Mat	3.44	1 5	0.040	16.68	3.65	1.75	0.47	0.06	2.27
												Temp. Mat	3.44	1 5	0.040	16.68	3.65	1.75	0.47	0.06	2.27
												Perm, Type	1 3.44	1 5	0.040	16.68	3.65	1.75	0.47	0.06	2.27
												Perm, Type	1 3.95	5 10	0.040	16.83	3.92	1.87	0.54	0.06	2.29
699+20	698+70	L	50.00	2.00	2.00	2.00	0.0324	0.07	0.27	0.70	0.19	Seed	3.40	5	0.030	17.07	2.12	0.27	0.64	0.13	2.53
												Seed	3.89	9 10	0.040	17.28	1.85	0.34	0.73	0.17	2.68

Designer: AHR

Description: Wall DE Top of Wall ditch 2+89 to 3+70 **Designer**: AHR

Rainfall Area: A Allowable Shears

Seed: 0.40 Jute Mat: 0.45 Temporary Mat: 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	TION END	SIDE	LENGTH (ft.)		SLOPE	SLOPE	GRADE (ft./ft.)		SUM	RUNOFF COEFF.	CA (Sum)		INT.	FREQ.	MANN. COEFF.		VEL. FLOW	SHEAR (lbs./ sq.ft.)		FLOW	FLOW
				(ft.)	(π./π.)	(ft./ft.)			(acres)				(in./hr.)	(yrs.)		(min.)	(fps.)	34.11.7	(cfs.)	(ft.)	(ft.)
2+89	2+96	R	7.00	0.00	2.00	2.00	0.0187	0.05	0.05	0.70	0.03	Seed	4.29	9 5	0.030	10.08	1.42	0.26	0.14	0.23	3 0.90
												Seed	5.07	7 10	0.040	10.10	1.18	0.31	0.17	0.27	1.07
2+96	3+22	L	26.00	0.00	2.00	2.00	0.2623 *	0.00	0.05	0.70	0.04	Seed	4.2	7 5	0.030	10.19	3.83	2.29	0.15	0.14	0.56
												Jute Mat	4.27	7 5	0.040	10.21	3.30	2.46	0.15	0.15	0.60
												Temp. Mat	4.2	7 5	0.040	10.21	3.30	2.46	0.15	0.15	0.60
												Perm, Type	1 4.2	7 5	0.040	10.21	3.30	2.46	0.15	0.15	0.60
												Perm, Type	2 4.2	7 5	0.040	10.21	3.30	2.46	0.15	0.15	0.60
												Perm, Type	2 5.05	5 10	0.040	10.23	3.40	2.64	0.18	0.16	0.64
3+22	3+70	L	48.00	0.00	2.00	2.00	0.0370	0.00	0.05	0.70	0.04	Seed	4.20	5	0.030	10.63	1.91	0.47	0.16	0.20	0.82
												Jute Mat	4.19	9 5	0.040	10.72	1.56	0.52	0.16	0.23	3 0.90
												Temp. Mat	4.19	9 5	0.040	10.72	1.56	0.52	0.16	0.23	3 0.90
												Temp. Mat	4.94	4 10	0.040	10.72	1.67	0.55	0.19	0.24	0.95

Description: Ditch from Wall DE POB to sheet flow **Designer**: AHR

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA	TION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)		INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
669+26	669+61	R	35.00	0.00	2.00	2.00	0.4514 *	0.02	0.02	0.70	0.01	Seed	3.6	5 5	0.030	15.17	3.41	2.42	0.05	0.09	0.34
												Jute Mat	3.6	5 5	0.040	15.17	3.41	2.42	0.05	0.09	0.34
												Temp. Mat	3.6	5 5	0.040	15.17	3.41	2.42	0.05	0.09	0.34
												Perm, Type	1 3.6	5 5	0.040	15.17	3.41	2.42	0.05	0.09	0.34
												Perm, Type	2 3.6	5 5	0.040	15.17	3.41	2.42	0.05	0.09	0.34
												Perm, Type	2 4.1	7 10	0.040	15.19	3.12	2.72	0.06	0.10	0.39
669+61	669+77	R	16.00	0.00	2.00	2.00	0.0533	0.02	0.04	0.70	0.03	Seed	3.5	3 5	0.030	15.31	1.93	0.54	0.10	0.16	0.64
												Jute Mat	3.5	3 5	0.040	15.33	1.70	0.57	0.10	0.17	0.69
												Temp. Mat	3.5	3 5	0.040	15.33	1.70	0.57	0.10	0.17	0.69
												Temp. Mat	4.1	5 10	0.040	15.36	1.55	0.64	0.12	0.19	0.77

Ex. Pipe PD-98 connects into. Ex. CB installed after these plans. Pictures taken in field

FED. ROAD DIV. NO. STATE

CUYAHOGA COUNTY CITY OF CLEVELAND INNER BELT FREEWAY - PART 5 EAST APPROACH TO CENTRAL VIADUCT CUY-42-(17.43-18.02) DRAINAGE PLAN

CODE	LOCATION		DESCRIPTION	ELEV.	REMARKS
	8+27 B.E.B.	3' / f	Manhole		Adjust to Grade
8-2	4+14 B.F.B.	8	Manhole	670.63	
B.3	0+37 B.F.B.		Manhole	10.0.00	Undisturbed
B-4	5+43 6 'E-3"		Manhole	6685+	Adjust to Grade
B.5	II+60±Carnegie		Manhole	1 20.02	Undisturbed
B-6	5+62+ E. 9th St.		Manhole		Undisturbed
B.7	10+23 E. 9th. St.	ę.	Manhole		Undisturbed
B-8	18+90 E. 9th. St.		Catch Basin		Abandon
B-9	0+47 B.E.B.		Catch Basin		Abandon
B-10			Catch Basin		Abandon
B-11	5+82 Carnegie		Catch Basin		Abandon
	7+75 Carnegie		Catch Basin		Abandon
B-13			Catch Basin		Undisturbed
B-14			Catch Basin		Undisturbed
8-15	5+72 E.9 ** St.		Catch Basin	1	Abandon
B-16	8+34 E.9 th. St.		Catch Basin		Undisturbed
B-17			Catch Basin		Abandon
B-18			Catch Basin		Abandon
B-19			Manhole		Abandon
	4+83 "E-4"		Cetch Basin		Abandon
B-21	11+95 E. 9th.St.		Manhole		Undisturbed
	12+50 F 9th St		Manhole	_	Undisturbed
B-23	12+50 E.9th.St. 4+36 "E-4"		Manhole	1	Abandon
B-24			Catch Basin		Abandon
	4+80 "E-4"		Manhole		Undisturbed
B-26			Catch Basin		Abandon
	10+61 B.E.B.		Manhole		Undisturbed
	10+54 B.E.B.		Manhole		Undisturbed
	10+40 B.E.B.		Manhole	-	Undisturbed
	10+34 B.F.B.		Catch Basin		Undisturbed
B-31			Catch Basin		Abandon
B32			Catch Basin		Remove
B.3.3			Catch Basin	+	Abandon
B-34			Catch Basin	+	Abandon
	3+43 B.E.B.		Catch Basin		Abandon
B:36			Manhole		Undisturbed
B37			Manhole		Undisturbed
	4+10 E-2"		Catch Basin	-	Undisturbed
B 20	5+10 "E-2"		Catch Basin	+	
	5+34 "E-2"				Undisturbed
			Catch Basin	-	Undisturbed
B-41	8+73 Carnegie	IZET.	Catch Basin	-	Abandon

GENERAL NOTES

Sewers are designed by the Bational Formula based on a 10 year storm frequency flowing full.

Minimum Velocity of flow is 3.0 F.P.S. for main lines and 2.5 F.P.S. for laterals.

The abandoning of existing manholes shall be in accordance with Section I-16.03 of the Construction and Meterial Specifications with the following exceptions (I) The existing inlet and outlet pipes shall be sealed with brick (2) After the sealing of the existing pipes is completed and the walls removed to the required depth, the manhole shall be filled with sand and compacted in accordance with Section I.-16.03.

Where proposed sewer pipes are to be connected into existing sewers, the hole in the existing sewer shall be out by the City of Cleveland.

Not all sewer pipes connected to existing catch basins are shown on the plans. Where sewer pipes not shown are encountered during construction the pipes shall be cut at the limits of construction and sealed to the satisfaction of the Engineer. Payment for cutting and sealing in accordance with 4th paragraph of Item 16,03 shall be included in the unit price bid for Item E-101 Roadway Excavation.

Where it is necessary under Item I-8, "Manholes Adjusted to Grade", to replace unsatisfactory manhole frame and cover castings, payment for the new castings shall be made at the Contract unit price bid per each for Item I-8, "Manhole Frame and Covers, Furnished and Placed (City Standard Casting)." Payment Shall constitute full compensation for furnishing, hauling, and placing all castings and any incidentals necessary to complete the item to the satisfaction of the Engineer.

Standard City Manhole Frames and Covers as shown on Sheet No. 23 shall be used on all new manholes.

Where precast reinforced concrete rings are used for Standard No. 1 or No. 2 Manholes, attention is directed to Standard Construction Drawing I-8 M. H. No. I-A for strength and design requirements.

10 ft. of Type I Paved Gutter shall be placed on the upstream side of all Standard No. 2-2 A Catch Basins located in a defined 2 foot bottom ditch.

RCD B.M. ODATE 1-18-57 KD H.K.M. DATE 5-7-57

P.43 Ramp "E-4"

HOWARD, NEEDLES, TAMMEN & BERGENDOF CLEVELAND 914 SHEET. 20

A-37 A-33 \52

121

35 290

Sec. M-6.6(b)

+ Sec. M-6.5(b) or M 6.8(b)

Proposed Pipe Sewers

B - Existing Structures

F - Fxisting Pipe Sewers

The direction of sewer flow is

1011 513 331

5, Standard No. 2 Inlets:

The Standard No. 2 Inlets shall be provided with a 2" depression in the pavement at the face of the curb for the length of the inlet. The pavement transition required to obtain the depression should not be longer than 2 feet along the curb nor more than 3 feet toward the center of the pavement.

PID: Date: 11/02/2011 Project: CUY-90-14.90 Location: ONTARIO- LOCATED BEHIND SIDEWALK

Description : Side Ditch Inlet to Ex. CB draining Ex. Pier 7B scupper - 26+90 LT (DITCH INLET) **Designer :** AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 668.61

JUNCTION S From To		ΔAREA Σ AREA (acres)	ΣCA	TIME	RAINFA INTENS (10 yrs.) (2	SITY	(cfs.	.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)				MINUS		INLET TYPE MANNING'S 'n'
D98 EX39 begin	26+91 26+75	0.13 0.13	0.08		4.20	5.09	0.3	0.4	12	33.0	0.0100	667.96 667.63	 3.32	0.0002	668.62 668.61	671.38 671.37	2.76	2.42	CB 2-2B 0.015

PID: Date: 11/02/2011 Project: CUY-90-14.90 Location: ONTARIO- LOCATED BEHIND SIDEWALK

Description : Side Ditch Inlet to Ex. CB draining Ex. Pier 7B scupper - 26+90 LT (DITCH INLET) **Designer :** AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 50

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 668.61

JUNCTION STAT	_		_						PIPE										INLET TYPE
From To From To	_	ΣCA		INTENS (10 yrs.) (50		(cfs. 10 vrs.)(5	,		ENGTH (ft.)	SLOPE (ft./ft.)	IN / OUT (ft.)	VEL (fps.)	(cfs.)	SLOPE (ft./ft.)	IN / OUT (ft.)	IN / OUT (ft.)		MINUS	MANNING'S 'n'
D98 EX39 26- begin 26-			15.00		5.44		0.4	12		0.0100	667.96 667.63	2.56	3.32	0.0002	668.62 668.61	671.38 671.37	2.76		CB 2-2B 0.015

CAPACITY OF A GRATE CATCH BASIN IN A SUMP

1102-1

REFERENCE SECTION
1102.3.5

Description: Storm Sewer Design - Ontario Outfall

Designer: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 662.93

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)		TIME		SITY	(cfs	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)		HYGR EL. IN / OUT (ft.)	COVER IN / OUT (ft.)	MINUS	_	INLET TYPE MANNING'S 'n'
D125 D126 begin	166+63 166+84	1.31 1.31	1.18 1.18	10.00	5.10	6.05	6.0	7.1	15	20.0	0.0100	686.12 685.92		6.02	0.0162	688.35 688.03	690.87 690.85	2.52	3.50	I 3D 0.015
D126 D122	166+84 167+62	0.20 1.51	0.18 1.36	10.07	5.08	6.05	6.9	8.2	15	77.2	0.0136	685.92 684.87	6.01	7.02	0.0216	688.03 686.36	690.85 691.07	2.82	3.68	I 3D 0.015
D122 D190	167+62 167+45	0.47 1.98	0.42 1.78		5.03	6.05	9.0	10.8	18	72.7	0.0095	684.62 683.93		9.54	0.0140	686.36 685.34	691.07 693.44	4.71	4.95	I 3D 0.015
D190 D171	167+45 167+26	0.10 2.08	0.09 1.87	10.49	4.99	6.05	9.3	11.3	18	44.6	0.0150	683.93 683.26		11.99	0.0155	685.34 684.65	693.44 694.91	8.10	8.01	MH 3 0.015
D171 D132	167+26 699+38	0.10 2.18	0.09 1.96		4.97	6.02	9.7	11.8	18	142.3	0.1105	682.66 666.93	15.26	32.56	0.0168	683.31 668.33	694.91 671.93	11.60	10.75	I 3D 0.015
D132 D179	699+38 698+99	0.00 2.18	0.00 1.96		4.93	5.08	9.7	10.0	18	39.4	0.0642	665.48 662.95	12.49	24.82	0.0120	666.30 665.83	671.93 668.55	5.63	4.95	MH 3 0.015
D178 D179 begin	699+05 698+99	0.45 2.63	0.41 2.37	10.00	5.10	5.08	2.1	2.1	15	75.4	0.0119	663.74 662.84		6.58	0.0013	665.93 665.83	668.14 668.55	2.21	3.15	CB 3 0.015
D179 D50	698+99 699+00	0.36 2.99	0.25 2.62		4.20	5.08	11.0		18 Warning		0.0000	662.45 662.45		0.03	0.0213	665.83 665.57	668.55 671.54	2.72	4.60	CB 8A 0.015

CDSS 1.0.0.3.

2015-02-09 STORM SEWER - ONTARIO OUTFALL_HGL 25 years.xml

¹

^{*} D179 to D50. Based on the approved as-built survey information, the invert elevation at structure D179 is 662.45 and structure D50 is 662.66, which results in a negative slope of -1.72% for the pipe run of D179 to D50.

JUNC From		STATION From To	ΔAREA ΣAREA (acres)	_	TIME		SITY	(cfs	s.)	DIAM. LE	PIPE NGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)		JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	COVER MINUS HY GR	COVER MINUS CROWN	INLET TYPE MANNING'S 'n'
D50	D51	699+03 698+95	0.00 2.99	0.00 2.62		4.19	5.08	11.0	13.3	72	54.0	0.0018	662.19 662.09	3.53	194.45	0.0000	665.57 665.57	671.59 675.44	6.02	3.40	MH 3 0.013
D51	D53	698+95 698+98	0.00 2.99	0.00 2.62		4.16	5.05	10.9	13.2	72	36.0	0.0018	662.09 662.02	3.54	195.93	0.0000	665.50 665.50	675.44 674.14	9.94	7.35	MH 3 0.013
D53	8025	698+98 698+53	0.00 2.99	0.00 2.62		4.13	5.03	10.8	13.2	15 Warning	46.0	0.0013	662.02 661.96		2.51	0.0416	665.28 663.37	674.14 668.83	8.86	10.87	MH 3 0.013
8025 fina		698+53 698+45	0.00 2.99	0.00 2.62		4.12	5.03	10.8	13.2	15 Warning	8.0	0.0038	661.71 661.68	8.80	3.69	0.0553	663.37 662.93	668.83 667.92	5.46	5.87	MH 3 0.015

*See 2011-11-02 STORM SEWER - ONTARIO OUTFALL Outfall D52.xml for model run using actual 10-yr Pond Pack flow of 3.6cfs which removes the warning message.

Description: Storm Sewer Design - Ontario Outfall **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 50

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 662.93

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)		TIME		SITY	(cfs	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	_	INLET TYPE MANNING'S 'n'
D125 D126 begin	166+63 166+84	1.31 1.31	1.18 1.18	10.00	5.10	6.60	6.0	7.8	15	20.0	0.0100	686.12 685.92		6.02	0.0193	689.07 688.68	690.87 690.85	1.80	3.50	I 3D 0.015
D126 D122	166+84 167+62	0.20 1.51	0.18 1.36	10.07	5.08	6.60	6.9	9.0	15	77.2	0.0136	685.92 684.87	6.01	7.02	0.0256	688.68 686.71	690.85 691.07	2.17	3.68	I 3D 0.015
D122 D190	167+62 167+45	0.47 1.98	0.42 1.78		5.03	6.60	9.0	11.8	18	72.7	0.0095	684.62 683.93		9.54	0.0167	686.71 685.50	691.07 693.44	4.36	4.95	I 3D 0.015
D190 D171	167+45 167+26	0.10 2.08	0.09 1.87	10.49	4.99	6.60	9.3	12.4	18	44.6	0.0150	683.93 683.26		11.99	0.0184	685.50 684.68	693.44 694.91	7.94	8.01	MH 3 0.015
D171 D132	167+26 699+38	0.10 2.18	0.09 1.96		4.97	6.55	9.7	12.9	18	142.3	0.1105	682.66 666.93	15.26	32.56	0.0199	683.34 668.35	694.91 671.93	11.57	10.75	I 3D 0.015
D132 D179	699+38 698+99	0.00 2.18	0.00 1.96		4.93	5.38	9.7	10.5	18	39.4	0.0642	665.48 662.95	12.49	24.82	0.0134	666.44 665.91	671.93 668.55	5.49	4.95	MH 3 0.015
D178 D179 begin	699+05 698+99	0.45 2.63	0.41 2.37	10.00	5.10	5.38	2.1	2.2	15	75.4	0.0119	663.74 662.84		6.58	0.0015	666.02 665.91	668.14 668.55	2.12	3.15	CB 3 0.015
D179 D50	698+99 699+00	0.36 2.99	0.25 2.62		4.20	5.38	11.0		18 Warning		0.0000	662.45		0.03	0.0239	665.91 665.62	668.55 671.54	2.64	4.60	CB 8A 0.015

CDSS 1.0.0.3.

2015-02-09 STORM SEWER - ONTARIO OUTFALL_HGL 50 years.xml

¹

^{*} D179 to D50. Based on the approved as-built survey information, the invert elevation at structure D179 is 662.45 and structure D50 is 662.66, which results in a negative slope of -1.72% for the pipe run of D179 to D50.

	TION To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME		SITY	(cfs	i.)	DIAM. LE	PIPE NGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	COVER MINUS HY GR		INLET TYPE MANNING'S 'n'
D50	D51	699+03 698+95	0.00 2.99	0.00 2.62		4.19	5.38	11.0	14.1	72	54.0	0.0018	662.19 662.09	3.53	194.45	0.0000	665.62 665.62	671.59 675.44	5.97	3.40	MH 3 0.013
D51	D53	698+95 698+98	0.00 2.99	0.00 2.62		4.16	5.38	10.9	14.1	72	36.0	0.0018	662.09 662.02	3.54	195.93	0.0000	665.62 665.62	675.44 674.14	9.82	7.35	MH 3 0.013
D53	8025	698+98 698+53	0.00 2.99	0.00 2.62		4.13	5.38	10.8	14.1	15 Warning	46.0	0.0013	662.02 661.96		2.51	0.0474	665.62 663.44	674.14 668.83	8.52	10.87	MH 3 0.013
8025 fina		698+53 698+45	0.00 2.99	0.00 2.62		4.12	5.38	10.8	14.1	15 Warning	8.0	0.0038	661.71 661.68	8.80	3.69	0.0632	663.44 662.93	668.83 667.92	5.39	5.87	MH 3 0.015

*See 2011-11-02 STORM SEWER - ONTARIO OUTFALL Outfall D52.xml for model run using actual 10-yr Pond Pack flow of 3.6cfs which removes the warning message.

CAPACITY OF A GRATE CATCH BASIN IN A SUMP 1102-1

REFERENCE SECTION
1102.3.5

Description: Storm Sewer Design - Ontario Outfall **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 666.96 *

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME		SITY	(cfs	i.)		PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	_	INLET TYPE MANNING'S 'n'
D125 D126 begin	166+63 166+84	1.31 1.31	1.18 1.18	10.00	5.10	6.14	6.0	7.2	15	20.0	0.0100	686.72 686.52		6.02	0.0167	688.51 688.17	690.87 690.85	2.36	2.90	I 3D 0.015
D126 D122	166+84 167+62	0.20 1.51	0.18 1.36		5.08	6.14	6.9	8.3	15	77.2	0.0162	686.52 685.27		7.66	0.0222	688.17 686.46	690.85 691.07	2.68	3.08	I 3D 0.015
D122 D190	167+62 167+45	0.47 1.98	0.42 1.78		5.04	6.07	9.0	10.8	18	72.7	0.0150	685.02 683.93		11.99	0.0141	686.37 685.35	691.07 693.44	4.70	4.55	I 3D 0.015
D190 D171	167+45 167+26	0.10 2.08	0.09 1.87	10.44	5.00	6.07	9.4	11.4	18	44.6	0.0150	683.93 683.26		11.99	0.0156	685.35 684.65	693.44 694.91	8.09	8.01	MH 3 0.015
D171 D132	167+26 699+38	0.10 2.18	0.09 1.96		4.98	6.03	9.8	11.8	18	142.3	0.1105	682.66 666.93	15.25	32.56	0.0169	683.31 668.33	694.91 671.93	11.60	10.75	I 3D 0.015
D132 D179	699+38 698+99	0.00 2.18	0.00 1.96		4.95	5.12	9.7	10.1	18	39.4	0.0642	665.48 662.95	12.49	24.82	0.0122	667.70 667.22	671.93 668.55	4.23	4.95	MH 3 0.015
D178 D179 begin	699+05 698+99	0.45 2.63	0.41 2.37	10.00	5.10	5.12	2.1	2.1	15	75.4	0.0119	663.74 662.84		6.58	0.0014	667.33 667.22	668.14 668.55	0.81	3.15	CB 3 0.015
D179 END final	698+99 699+00	0.36 2.99	0.25 2.62		4.20	5.12	11.0	13.4	18	12.2	0.0238	662.95 662.66		15.12	0.0217	667.22 666.96	668.55 671.54	1.33 **	4.10	CB 8A 0.015

CDSS 1.0.0.3.

2015-02-09 STORM SEWER - ONTARIO OUTFALL D-179 W-TW 25 yr.xml

¹

^{*} Tailwater Elevation is from Pondpack 25 Year WSE

^{** 25} year surcharging stays with in gutter and flows to catch basins along Carnegie.

Description: Storm Sewer Design - Ontario Outfall **Designer**: PNS

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 50

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 667.78 *

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME		SITY	(cfs	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	_	INLET TYPE MANNING'S 'n'
D125 D126 begin	166+63 166+84	1.31 1.31	1.18 1.18	10.00	5.10	6.62	6.0	7.8	15	20.0	0.0100	686.72 686.52		6.02	0.0194	689.10 688.71	690.87 690.85	1.77	2.90	I 3D 0.015
D126 D122	166+84 167+62	0.20 1.51	0.18 1.36		5.08	6.62	6.9	9.0	15	77.2	0.0162	686.52 685.27		7.66	0.0258	688.71 686.72	690.85 691.07	2.14	3.08	I 3D 0.015
D122 D190	167+62 167+45	0.47 1.98	0.42 1.78		5.04	6.62	9.0	11.8	18	72.7	0.0150	685.02 683.93		11.99	0.0168	686.72 685.50	691.07 693.44	4.35	4.55	I 3D 0.015
D190 D171	167+45 167+26	0.10 2.08	0.09 1.87	10.44	5.00	6.62	9.4	12.4	18	44.6	0.0150	683.93 683.26		11.99	0.0185	685.50 684.68	693.44 694.91	7.94	8.01	MH 3 0.015
D171 D132	167+26 699+38	0.10 2.18	0.09 1.96		4.98	5.48	9.8	10.8	18	142.3	0.1105	682.66 666.93	15.25	32.56	0.0139	683.28 668.63	694.91 671.93	11.63	10.75	I 3D 0.015
D132 D179	699+38 698+99	0.00 2.18	0.00 1.96		4.95	5.48	9.7	10.8	18	39.4	0.0642	665.48 662.95	12.49	24.82	0.0139	668.63 668.08	671.93 668.55	3.30	4.95	MH 3 0.015
D178 D179 begin	699+05 698+99	0.45 2.63	0.41 2.37	10.00	5.10	5.48	2.1	2.2	15	75.4	0.0119	663.74 662.84		6.58	0.0016	668.20 668.08	668.14 668.55	-0.06	3.15	CB 3 0.015
D179 END final	698+99 699+00	0.36 2.99	0.25 2.62		4.20	5.48	11.0	14.4	18	12.2	0.0238	662.95 662.66		15.12	0.0248	668.08 667.78	668.55 671.54	0.47	4.10	CB 8A 0.015

CDSS 1.0.0.3.

2015-02-09 STORM SEWER - ONTARIO OUTFALL D-179 W-TW 50 yr.xml

¹

^{*} Tailwater Elevation is from Pondpack 50 Year WSE

^{** 50} year surcharging stays with in gutter and flows to catch basins along Carnegie.

Description: Storm Sewer Design - Ontario Outfall **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 662.93

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME	RAINFA INTENS (10 yrs.) (2	SITY	(cfs.)	DIAM. LI (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)		MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D53 8025 begin	698+98 698+53	2.99 2.99	2.62 2.62	80.00	1.38	1.66	3.6	4.4	15 Warning		0.0013	662.02 661.96		2.18	0.0060	663.29 663.01	674.14 668.83	10.85	10.87	MH 3 0.015
8025 END final	698+53 698+45	0.00 2.99	0.00 2.62	00.20	1.37	1.66	3.6	4.4	15	8.0	0.0038	661.71 661.68		3.69	0.0060	662.98 662.93	668.83 667.92	5.85	5.87	MH 3 0.015

*Calculation provided to show outlet pipe from storm sewer system network flowing with 3.6 cfs as a result of the 10-year Pond Pack discharge flow eliminating the warning message in the previous calculation.

Description: Storm Sewer Design - Ontario Outfall **Designer**: AHR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 50

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 662.93

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME		SITY	(cfs.)	DIAM. LE (in.)		SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	_	INLET TYPE MANNING'S 'n'
D53 8025 begin	698+98 698+53	2.99 2.99	2.62 2.62	80.00	1.38	1.86	3.6	4.9	15 Warning		0.0013	662.02 661.96		2.18	0.0076	663.38 663.03	674.14 668.83	10.76	10.87	MH 3 0.015
8025 END final	698+53 698+45	0.00 2.99	0.00 2.62	80.26	1.37	1.86	3.6	4.9	15	8.0	0.0038	661.71 661.68		3.69	0.0076	662.99 662.93	668.83 667.92	5.84	5.87	MH 3 0.015

*Calculation provided to show outlet pipe from storm sewer system network flowing with 3.6 cfs as a result of the 10-year Pond Pack discharge flow eliminating the warning message in the previous calculation.

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 657.41

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME	RAINF INTEN: (10 yrs.) (2	SITY	(cfs.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	COVER MINUS CROWN	INLET TYPE MANNING'S 'n'
D55 1018 begin	23+18 22+22	0.82 0.82	0.74 0.74		5.10	5.74	3.8	4.2	12	96.0	0.0150	656.96 655.52		4.07	0.0188	659.24 657.44	661.00 665.17	1.76	3.04	CB 6 0.015
D56 1018 begin	20+23 22+22	0.39 1.21	0.29 1.03		5.10	5.99	1.5	1.7	12	199.0	0.0100	663.06 661.07		3.32	0.0032	663.60 661.85	667.10 665.17	3.50	3.04	CB 6 0.015
1018 8060 final	22+22 20+42	0.00 1.21	0.00 1.03		4.91	5.74	5.1	5.9	36	280.2	0.0066	654.66 652.80		50.66	0.0001	657.44 657.41	665.18 669.52	7.74	7.52	MH 3 0.015

^{*} D1018 TO D8060 is a 39" x 31" brick sewer for most of pipe run. A junction exists 30' before D8060 and pipe size changes to a 48". 36" diameter shown is a smaller area than what a 39" x 31" provides, but the smaller area provides a more conservative design. A 38" (which is the equivalent diameter) is not a normal pipe diameter.

D-55 and D-56 Sump Calculation

CAPACITY OF STANDARD CATCH BASIN GRATES IN PAVEMENT SAGS

1103 - 3

REFERENCE SECTION 1103.6, 1103.7

CALC BY: ERJOHNSON 12/7/11 CHECKED BY: AKL 12/7/11

Project Summary	Ontario Outfall le Cleveland Innerbelt gineer PNShedivy mpany HNTB					
Title	Cleveland					
Engineer	PNShedivy					
Company	HNTB					
Date	5/15/2012					

Table of Contents

	Master Network Summary	2
ODOT TR-55	Type II 24 hour	
	Time-Depth Curve	4
	Time-Depth Curve	6
	Time-Depth Curve	8
	Time-Depth Curve	10
Existing DA	Type II 24 hour	
	Unit Hydrograph Summary	12
	Unit Hydrograph Summary	14
	Unit Hydrograph	16
	Summary Unit Hydrograph	18
Proposed Storm Sewer	Summary	10
DA	Type II 24 hour Unit Hydrograph	
	Summary	20
	Unit Hydrograph Summary	22
	Unit Hydrograph Summary	24
	Unit Hydrograph Summary	26
Underground Detention (OUT)	Type II 24 hour	
(33.)	Time vs. Elevation	28
	Time vs. Elevation	31
	Time vs. Elevation	34
	Time vs. Elevation	37
Underground Detention	Type II 24 hour	
	Time vs. Volume	40
	Time vs. Volume	43
	Time vs. Volume	46
	Time vs. Volume	49
Composite Outlet Structure - 1	Type II 24 hour 6 month	
	Outlet Input Data	52
	Outlet Input Data	55
	Outlet Input Data	58
	Outlet Input Data	61

Table of Contents

Underground	Detention
(IN)	

Type II 24 hour

Detention Time	64
Level Pool Pond Routing Summary	65
Detention Time	66
Level Pool Pond Routing Summary	67
Detention Time	68
Level Pool Pond Routing Summary	69
Detention Time	70
Level Pool Pond Routing Summary	71
Pond Inflow Summary	72
Pond Inflow Summary	73
Pond Inflow Summary	74
Pond Inflow Summary	75

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Proposed Storm Sewer DA	5 year	5	0.615	11.950	9.70
Proposed Storm Sewer DA	10 year	10	0.733	11.950	11.45
Proposed Storm Sewer DA	25 year	25	0.903	11.950	13.94
Proposed Storm Sewer DA	50 year	50	1.044	11.950	15.99
Existing DA	5 year	5	0.207	12.000	3.33
Existing DA	10 year	10	0.258	12.000	4.14
Existing DA	25 year	25	0.335	12.000	5.31
Existing DA	50 year	50	0.399	12.000	6.28

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Analysis Point Pro	5 year	5	0.581	12.150	3.23
Analysis Point Pro	10 year	10	0.699	12.150	3.57
Analysis Point Pro	25 year	25	0.868	12.150	4.06
Analysis Point Pro	50 year	50	1.009	12.150	6.86
Analysis Point Pre(same as Pro)	5 year	5	0.207	12.000	3.33
Analysis Point Pre(same as Pro)	10 year	10	0.258	12.000	4.14
Analysis Point Pre(same as Pro)	25 year	25	0.335	12.000	5.31
Analysis Point Pre(same as Pro)	50 year	50	0.399	12.000	6.28

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Underground Detention (IN)	5 year	5	0.615	11.950	9.70	(N/A)	(N/A)
Underground Detention (OUT)	5 year	5	0.581	12.150	3.23	665.52	0.206

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
Underground Detention (IN)	10 year	10	0.733	11.950	11.45	(N/A)	(N/A)
Underground Detention (OUT)	10 year	10	0.699	12.150	3.57	666.07	0.245
Underground Detention (IN)	25 year	25	0.903	11.950	13.94	(N/A)	(N/A)
Underground Detention (OUT)	25 year	25	0.868	12.150	4.06	666.96	0.303
Underground Detention (IN)	50 year	50	1.044	11.950	15.99	(N/A)	(N/A)
Underground Detention (OUT)	50 year	50	1.009	12.150	6.86	667.66	0.336

Subsection: Time-Depth Curve Return Event: 5 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour		
Label	Type II 24 hour	
Start Time	0.000 hours	
Increment	0.100 hours	
End Time	24.000 hours	
Return Event	5 years	

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0
1.500	0.0	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.1	0.1
4.000	0.1	0.1	0.1	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.2	0.2	0.2
6.000	0.2	0.2	0.2	0.2	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.3	0.3	0.3
7.500	0.3	0.3	0.3	0.3	0.3
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.4	0.4	0.4	0.4
9.000	0.4	0.4	0.4	0.5	0.5
9.500	0.5	0.5	0.5	0.5	0.5
10.000	0.5	0.5	0.6	0.6	0.6
10.500	0.6	0.6	0.6	0.6	0.7
11.000	0.7	0.7	0.7	0.8	0.8
11.500	0.8	0.9	1.0	1.3	1.7
12.000	1.9	2.0	2.0	2.1	2.1
12.500	2.1	2.2	2.2	2.2	2.2
13.000	2.3	2.3	2.3	2.3	2.3
13.500	2.3	2.3	2.4	2.4	2.4
14.000	2.4	2.4	2.4	2.4	2.4
14.500	2.4	2.5	2.5	2.5	2.5
15.000	2.5	2.5	2.5	2.5	2.5
15.500	2.5	2.5	2.5	2.6	2.6
16.000	2.6	2.6	2.6	2.6	2.6
16.500	2.6	2.6	2.6	2.6	2.6

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 5 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	2.6	2.6	2.6	2.7	2.7
17.500	2.7	2.7	2.7	2.7	2.7
18.000	2.7	2.7	2.7	2.7	2.7
18.500	2.7	2.7	2.7	2.7	2.7
19.000	2.7	2.7	2.7	2.8	2.8
19.500	2.8	2.8	2.8	2.8	2.8
20.000	2.8	2.8	2.8	2.8	2.8
20.500	2.8	2.8	2.8	2.8	2.8
21.000	2.8	2.8	2.8	2.8	2.8
21.500	2.8	2.8	2.8	2.8	2.8
22.000	2.9	2.9	2.9	2.9	2.9
22.500	2.9	2.9	2.9	2.9	2.9
23.000	2.9	2.9	2.9	2.9	2.9
23.500	2.9	2.9	2.9	2.9	2.9
24.000	2.9	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 10 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour		
Label	Type II 24 hour	
Start Time	0.000 hours	
Increment	0.100 hours	
End Time	24.000 hours	
Return Event	10 years	

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.1	0.1	0.1
3.500	0.1	0.1	0.1	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.2
5.000	0.2	0.2	0.2	0.2	0.2
5.500	0.2	0.2	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.3
6.500	0.3	0.3	0.3	0.3	0.3
7.000	0.3	0.3	0.4	0.4	0.4
7.500	0.4	0.4	0.4	0.4	0.4
8.000	0.4	0.4	0.4	0.4	0.4
8.500	0.4	0.5	0.5	0.5	0.5
9.000	0.5	0.5	0.5	0.5	0.5
9.500	0.6	0.6	0.6	0.6	0.6
10.000	0.6	0.6	0.6	0.7	0.7
10.500	0.7	0.7	0.7	0.8	0.8
11.000	0.8	0.8	0.9	0.9	0.9
11.500	1.0	1.0	1.2	1.5	1.9
12.000	2.3	2.3	2.4	2.4	2.5
12.500	2.5	2.5	2.6	2.6	2.6
13.000	2.6	2.6	2.7	2.7	2.7
13.500	2.7	2.7	2.7	2.8	2.8
14.000	2.8	2.8	2.8	2.8	2.8
14.500	2.8	2.9	2.9	2.9	2.9
15.000	2.9	2.9	2.9	2.9	2.9
15.500	2.9	3.0	3.0	3.0	3.0
16.000	3.0	3.0	3.0	3.0	3.0
16.500	3.0	3.0	3.0	3.1	3.1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 10 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	3.1	3.1	3.1	3.1	3.1
17.500	3.1	3.1	3.1	3.1	3.1
18.000	3.1	3.1	3.1	3.1	3.2
18.500	3.2	3.2	3.2	3.2	3.2
19.000	3.2	3.2	3.2	3.2	3.2
19.500	3.2	3.2	3.2	3.2	3.2
20.000	3.2	3.2	3.2	3.2	3.3
20.500	3.3	3.3	3.3	3.3	3.3
21.000	3.3	3.3	3.3	3.3	3.3
21.500	3.3	3.3	3.3	3.3	3.3
22.000	3.3	3.3	3.3	3.3	3.3
22.500	3.3	3.3	3.3	3.4	3.4
23.000	3.4	3.4	3.4	3.4	3.4
23.500	3.4	3.4	3.4	3.4	3.4
24.000	3.4	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	25 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.1
3.000	0.1	0.1	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.2
4.500	0.2	0.2	0.2	0.2	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.3	0.3
6.000	0.3	0.3	0.3	0.3	0.4
6.500	0.4	0.4	0.4	0.4	0.4
7.000	0.4	0.4	0.4	0.4	0.4
7.500	0.4	0.5	0.5	0.5	0.5
8.000	0.5	0.5	0.5	0.5	0.5
8.500	0.5	0.6	0.6	0.6	0.6
9.000	0.6	0.6	0.6	0.6	0.7
9.500	0.7	0.7	0.7	0.7	0.7
10.000	0.7	0.8	0.8	0.8	0.8
10.500	0.8	0.9	0.9	0.9	0.9
11.000	1.0	1.0	1.0	1.1	1.1
11.500	1.2	1.3	1.4	1.8	2.3
12.000	2.7	2.8	2.9	2.9	3.0
12.500	3.0	3.0	3.1	3.1	3.1
13.000	3.2	3.2	3.2	3.2	3.2
13.500	3.3	3.3	3.3	3.3	3.3
14.000	3.4	3.4	3.4	3.4	3.4
14.500	3.4	3.4	3.5	3.5	3.5
15.000	3.5	3.5	3.5	3.5	3.5
15.500	3.5	3.6	3.6	3.6	3.6
16.000	3.6	3.6	3.6	3.6	3.6
16.500	3.6	3.7	3.7	3.7	3.7

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 25 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	3.7	3.7	3.7	3.7	3.7
17.500	3.7	3.7	3.7	3.8	3.8
18.000	3.8	3.8	3.8	3.8	3.8
18.500	3.8	3.8	3.8	3.8	3.8
19.000	3.8	3.8	3.8	3.9	3.9
19.500	3.9	3.9	3.9	3.9	3.9
20.000	3.9	3.9	3.9	3.9	3.9
20.500	3.9	3.9	3.9	3.9	3.9
21.000	3.9	4.0	4.0	4.0	4.0
21.500	4.0	4.0	4.0	4.0	4.0
22.000	4.0	4.0	4.0	4.0	4.0
22.500	4.0	4.0	4.0	4.0	4.0
23.000	4.0	4.0	4.1	4.1	4.1
23.500	4.1	4.1	4.1	4.1	4.1
24.000	4.1	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour			
Label	Type II 24 hour		
Start Time	0.000 hours		
Increment	0.100 hours		
End Time	24.000 hours		
Return Event	50 years		

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.0	0.0	0.0	0.0	0.0
0.500	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.1	0.1	0.1	0.1
1.500	0.1	0.1	0.1	0.1	0.1
2.000	0.1	0.1	0.1	0.1	0.1
2.500	0.1	0.1	0.1	0.1	0.2
3.000	0.2	0.2	0.2	0.2	0.2
3.500	0.2	0.2	0.2	0.2	0.2
4.000	0.2	0.2	0.2	0.2	0.3
4.500	0.3	0.3	0.3	0.3	0.3
5.000	0.3	0.3	0.3	0.3	0.3
5.500	0.3	0.3	0.3	0.4	0.4
6.000	0.4	0.4	0.4	0.4	0.4
6.500	0.4	0.4	0.4	0.4	0.5
7.000	0.5	0.5	0.5	0.5	0.5
7.500	0.5	0.5	0.5	0.5	0.5
8.000	0.6	0.6	0.6	0.6	0.6
8.500	0.6	0.6	0.6	0.7	0.7
9.000	0.7	0.7	0.7	0.7	0.7
9.500	0.8	0.8	0.8	0.8	0.8
10.000	0.8	0.9	0.9	0.9	0.9
10.500	1.0	1.0	1.0	1.0	1.1
11.000	1.1	1.1	1.2	1.2	1.3
11.500	1.3	1.4	1.7	2.0	2.6
12.000	3.1	3.2	3.3	3.3	3.4
12.500	3.4	3.5	3.5	3.5	3.6
13.000	3.6	3.6	3.7	3.7	3.7
13.500	3.7	3.7	3.8	3.8	3.8
14.000	3.8	3.8	3.9	3.9	3.9
14.500	3.9	3.9	3.9	3.9	4.0
15.000	4.0	4.0	4.0	4.0	4.0
15.500	4.0	4.1	4.1	4.1	4.1
16.000	4.1	4.1	4.1	4.1	4.1
16.500	4.2	4.2	4.2	4.2	4.2

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 50 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time on left represents time for first value in each rown					***
Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
` '		` '	` '	7 7	` ′
17.000	4.2	4.2	4.2	4.2	4.2
17.500	4.2	4.3	4.3	4.3	4.3
18.000	4.3	4.3	4.3	4.3	4.3
18.500	4.3	4.3	4.3	4.4	4.4
19.000	4.4	4.4	4.4	4.4	4.4
19.500	4.4	4.4	4.4	4.4	4.4
20.000	4.4	4.4	4.4	4.5	4.5
20.500	4.5	4.5	4.5	4.5	4.5
21.000	4.5	4.5	4.5	4.5	4.5
21.500	4.5	4.5	4.5	4.5	4.5
22.000	4.6	4.6	4.6	4.6	4.6
22.500	4.6	4.6	4.6	4.6	4.6
23.000	4.6	4.6	4.6	4.6	4.6
23.500	4.6	4.6	4.6	4.6	4.7
24.000	4.7	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Unit Hydrograph Summary

Return Event: 5 years Label: Existing DA Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5 years
Duration	24.000 hours
Depth	2.9 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	1.450 acres
Computational Time Increment	0.024 hours
Time to Peak (Computed)	12.000 hours
Flow (Peak, Computed)	3.33 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	3.33 ft³/s
Drainage Area	
SCS CN (Composite)	87.572
Area (User Defined)	1.450 acres
Maximum Retention (Pervious)	1.4 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.7 in
Runoff Volume (Pervious)	0.207 ac-ft
Hydrograph Volume (Area ui	nder Hydrograph curve)
Volume	0.207 ac-ft
VOIUITIC	0.207 dC-11
SCS Unit Hydrograph Param	neters
Time of Concentration (Composite)	0.180 hours
Computational Time Increment	0.024 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5 years Label: Existing DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters		
Unit peak, qp	9.13 ft ³ /s	
Unit peak time, Tp	0.120 hours	
Unit receding limb, Tr	0.480 hours	
Total unit time, Tb	0.600 hours	

Subsection: Unit Hydrograph Summary

Return Event: 10 years Label: Existing DA Storm Event: Type II 24 hour

<u></u>		
Storm Event	Type II 24 hour	
Return Event	10	years
Duration	24.000	hours
Depth	2.9	in
Time of Concentration (Composite)	0.180	hours
Area (User Defined)	1.450	acres
Computational Time Increment	0.024	hours
Time to Peak (Computed)	12.000	hours
Flow (Peak, Computed)	4.14	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	12.000	hours
Flow (Peak Interpolated Output)	4.14	ft³/s
Drainage Area		
SCS CN (Composite)	87.572	
Area (User Defined)	1.450	acres
Maximum Retention (Pervious)	1.4	
Maximum Retention (Pervious, 20 percent)	0.3	in
0 lef . P		
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	2.1	in
Runoff Volume (Pervious)	0.259	ac-ft
Hydrograph Volume (Area under Hydrograph curve)		
Volume	0.258	аС-П
SCS Unit Hydrograph Paramet	ers	
Time of Concentration (Composite)	0.180	hours
Computational Time Increment	0.024	hours
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	
3i - 3i - i - F		

Subsection: Unit Hydrograph Summary Return Event: 10 years Label: Existing DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters		
Unit peak, qp	9.13 ft ³ /s	
Unit peak time, Tp	0.120 hours	
Unit receding limb, Tr	0.480 hours	
Total unit time, Tb	0.600 hours	

Subsection: Unit Hydrograph Summary

Return Event: 25 years Label: Existing DA Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	25 years
Duration	24.000 hours
Depth	2.9 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	1.450 acres
Computational Time Increment	0.024 hours
Time to Peak (Computed)	12.000 hours
Flow (Peak, Computed)	5.31 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	5.31 ft³/s
Drainage Area	
	87.572
SCS CN (Composite) Area (User Defined)	1.450 acres
Maximum Retention (Pervious)	1.4 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.8 in
Runoff Volume (Pervious)	0.335 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	0.335 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.180 hours
Computational Time Increment	0.024 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 25 years Label: Existing DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters		
Unit peak, qp	9.13 ft ³ /s	
Unit peak time, Tp	0.120 hours	
Unit receding limb, Tr	0.480 hours	
Total unit time, Tb	0.600 hours	

Subsection: Unit Hydrograph Summary

Return Event: 50 years Label: Existing DA Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	50 years
Duration	24.000 hours
Depth	2.9 in
Time of Concentration (Composite)	0.180 hours
Area (User Defined)	1.450 acres
Computational Time Increment	0.024 hours
Time to Peak (Computed)	12.000 hours
Flow (Peak, Computed)	6.28 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	12.000 hours
Flow (Peak Interpolated Output)	6.28 ft³/s
Drainage Area	
SCS CN (Composite)	87.572
Area (User Defined)	1.450 acres
Maximum Retention (Pervious)	1.4 in
Maximum Retention (Pervious, 20 percent)	0.3 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.3 in
Runoff Volume (Pervious)	0.399 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	0.399 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.180 hours
Computational Time Increment	0.024 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 50 years Label: Existing DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters		
Unit peak, qp	9.13 ft ³ /s	
Unit peak time, Tp	0.120 hours	
Unit receding limb, Tr	0.480 hours	
Total unit time, Tb	0.600 hours	

Subsection: Unit Hydrograph Summary Return Event: 5 years
Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5 years
Duration	24.000 hours
Depth	2.9 in
Time of Concentration (Composite)	0.144 hours
Area (User Defined)	2.990 acres
Computational Time Increment	0.019 hours
Time to Peak (Computed)	11.953 hours
Flow (Peak, Computed)	9.73 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	9.70 ft³/s
Drainage Area	
SCS CN (Composite)	96.000
Area (User Defined)	2.990 acres
Maximum Retention (Pervious)	0.4 in
Maximum Retention (Pervious, 20 percent)	0.1 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.5 in
Runoff Volume (Pervious)	0.616 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	0.615 ac-ft
SCS Unit Hydrograph Paramet	ters
Time of Concentration (Composite)	0.144 hours
Computational Time Increment	0.019 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5 years
Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters			
Unit peak, qp	23.47 ft ³ /s		
Unit peak time, Tp	0.096 hours		
Unit receding limb, Tr	0.385 hours		
Total unit time, Tb	0.481 hours		

Subsection: Unit Hydrograph Summary Return Event: 10 years
Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

Storm Event	Type II 24 hour	
Return Event	10 years	
Duration	24.000 hours	
Depth	2.9 in	
Time of Concentration (Composite)	0.144 hours	
Area (User Defined)	2.990 acres	
Computational Time		
Computational Time Increment	0.019 hours	
Time to Peak (Computed)	11.953 hours	
Flow (Peak, Computed)	11.48 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	11.950 hours	
Flow (Peak Interpolated Output)	11.45 ft³/s	
Drainage Area		
SCS CN (Composite)	96.000	
Area (User Defined)	2.990 acres	
Maximum Retention (Pervious)	0.4 in	
Maximum Retention (Pervious, 20 percent)	0.1 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	2.9 in	
Runoff Volume (Pervious)	0.734 ac-ft	
Hydrograph Volume (Area under Hydrograph curve)		
Volume	0.733 ac-ft	
SCS Unit Hydrograph Parame	ters	
Time of Concentration (Composite)	0.144 hours	
Computational Time Increment	0.019 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	

Subsection: Unit Hydrograph Summary Return Event: 10 years
Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	23.47 ft ³ /s
Unit peak time, Tp	0.096 hours
Unit receding limb, Tr	0.385 hours
Total unit time, Tb	0.481 hours

Subsection: Unit Hydrograph Summary Return Event: 25 years
Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	25 years
Duration	24.000 hours
Depth	2.9 in
Time of Concentration (Composite)	0.144 hours
Area (User Defined)	2.990 acres
Constalled Tree	
Computational Time Increment	0.019 hours
Time to Peak (Computed)	11.953 hours
Flow (Peak, Computed)	13.98 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	13.94 ft³/s
Drainage Area	
SCS CN (Composite)	96.000
Area (User Defined)	2.990 acres
Maximum Retention (Pervious)	0.4 in
Maximum Retention (Pervious, 20 percent)	0.1 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	3.6 in
Runoff Volume (Pervious)	0.904 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	0.903 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.144 hours
Computational Time Increment	0.019 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 25 years
Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	23.47 ft ³ /s
Unit peak time, Tp	0.096 hours
Unit receding limb, Tr	0.385 hours
Total unit time, Tb	0.481 hours

Subsection: Unit Hydrograph Summary Return Event: 50 years Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	50 years
Duration	24.000 hours
Depth	2.9 in
Time of Concentration (Composite)	0.144 hours
Area (User Defined)	2.990 acres
Computational Time Increment	0.019 hours
Time to Peak (Computed)	11.953 hours
Flow (Peak, Computed)	16.03 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	15.99 ft³/s
Drainage Area	
SCS CN (Composite)	96.000
Area (User Defined)	2.990 acres
Maximum Retention (Pervious)	0.4 in
Maximum Retention (Pervious, 20 percent)	0.1 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	4.2 in
Runoff Volume (Pervious)	1.045 ac-ft
Hydrograph Volume (Area und	ler Hydrograph curve)
Volume	1.044 ac-ft
SCS Unit Hydrograph Parame	ters
Time of Concentration (Composite)	0.144 hours
Computational Time Increment	0.019 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 50 years
Label: Proposed Storm Sewer DA Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	3
Unit peak, qp	23.47 ft ³ /s
Unit peak time, Tp	0.096 hours
Unit receding limb, Tr	0.385 hours
Total unit time, Tb	0.481 hours

Subsection: Time vs. Elevation Return Event: 5 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	662.00	662.00	662.00	662.00	662.00
0.250	662.00	662.00	662.00	662.00	662.00
0.500	662.00	662.00	662.00	662.00	662.00
0.750	662.00	662.00	662.00	662.00	662.00
1.000	662.00	662.00	662.00	662.00	662.00
1.250	662.00	662.00	662.00	662.00	662.00
1.500	662.00	662.00	662.00	662.00	662.00
1.750	662.00	662.00	662.00	662.00	662.00
2.000	662.00	662.00	662.00	662.00	662.00
2.250	662.00	662.00	662.00	662.00	662.00
2.500	662.00	662.00	662.00	662.00	662.00
2.750	662.00	662.00	662.00	662.00	662.00
3.000	662.01	662.01	662.01	662.01	662.01
3.250	662.01	662.02	662.02	662.02	662.03
3.500	662.03	662.03	662.04	662.04	662.04
3.750	662.05	662.05	662.06	662.06	662.07
4.000	662.07	662.08	662.08	662.09	662.09
4.250	662.10	662.11	662.11	662.12	662.13
4.500	662.13	662.14	662.15	662.16	662.16
4.750	662.17	662.18	662.19	662.20	662.21
5.000	662.22	662.23	662.24	662.25	662.26
5.250	662.27	662.28	662.29	662.30	662.31
5.500	662.32	662.33	662.35	662.36	662.37
5.750	662.38	662.40	662.41	662.42	662.44
6.000	662.45	662.47	662.48	662.49	662.50
6.250	662.51	662.52	662.53	662.53	662.54
6.500	662.55	662.55	662.56	662.57	662.58
6.750	662.59	662.59	662.60	662.61	662.62
7.000	662.63	662.64	662.64	662.65	662.66
7.250	662.67	662.68	662.69	662.70	662.71
7.500	662.72	662.73	662.74	662.75	662.76
7.750	662.77	662.78	662.79	662.80	662.81
8.000	662.82	662.83	662.84	662.85	662.86
8.250	662.88	662.89	662.90	662.91	662.92
8.500	662.94	662.95	662.97	662.98	662.99
8.750	663.01	663.02	663.02	663.03	663.03
9.000	663.03	663.04	663.04	663.04	663.04
9.250	663.04	663.04	663.04	663.05	663.05
9.500	663.05	663.05	663.05	663.05	663.05
9.750	663.05 663.05	663.05	663.05	663.05	663.05
10.000	50.650	663.06	663.06	663.06	663.06

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 5 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

T.			· · · · · · · · · · · · · · · ·	Floor:	El
Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
10.250	663.06	663.06	663.07	663.07	663.07
10.500	663.07	663.07	663.08	663.08	663.08
10.750	663.08	663.09	663.09	663.09	663.10
11.000	663.10	663.11	663.11	663.11	663.12
11.250	663.13	663.14	663.14	663.15	663.16
11.500	663.17	663.19	663.21	663.26	663.35
11.750	663.48	663.65	663.88	664.20	664.58
12.000	664.96	665.28	665.47	665.52	665.49
12.250	665.42	665.34	665.24	665.14	665.04
12.500	664.94	664.84	664.73	664.63	664.53
12.750	664.43	664.33	664.23	664.14	664.06
13.000	663.97	663.89	663.80	663.73	663.66
13.250	663.59	663.53	663.47	663.41	663.36
13.500	663.31	663.27	663.24	663.21	663.18
13.750	663.16	663.14	663.13	663.12	663.11
14.000	663.10	663.09	663.09	663.09	663.08
14.250	663.08	663.08	663.08	663.07	663.07
14.500	663.07	663.07	663.07	663.07	663.07
14.750	663.07	663.07	663.07	663.07	663.06
15.000	663.06	663.06	663.06	663.06	663.06
15.250	663.06	663.06	663.06	663.06	663.06
15.500	663.06	663.06	663.06	663.05	663.05
15.750	663.05	663.05	663.05	663.05	663.05
16.000	663.05	663.05	663.05	663.05	663.05
16.250	663.05	663.05	663.05	663.05	663.05
16.500	663.04	663.04	663.04	663.04	663.04
16.750	663.04	663.04	663.04	663.04	663.04
17.000	663.04	663.04	663.04	663.04	663.04
17.250	663.04	663.04	663.04	663.04	663.04
17.500	663.04	663.04	663.04	663.04	663.04
17.750	663.04	663.04	663.04	663.04	663.04
18.000	663.04	663.04	663.04	663.04	663.04
18.250	663.04	663.04	663.04	663.04	663.04
18.500	663.03	663.03	663.03	663.03	663.03
18.750	663.03	663.03	663.03	663.03	663.03
19.000	663.03	663.03	663.03	663.03	663.03
19.250	663.03	663.03	663.03	663.03	663.03
19.500	663.03	663.03	663.03	663.03	663.03
19.750	663.03	663.03	663.03	663.03	663.03
20.000	663.03	663.03	663.03	663.03	663.03
20.250	663.03	663.03	663.03	663.03	663.03

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 5 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

	rance on fore represents time for most value in cash rown					
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	
20.500	663.03	663.03	663.03	663.03	663.03	
20.750	663.03	663.03	663.03	663.03	663.03	
21.000	663.03	663.03	663.03	663.03	663.03	
21.250	663.03	663.02	663.02	663.02	663.02	
21.500	663.02	663.02	663.02	663.02	663.02	
21.750	663.02	663.02	663.02	663.02	663.02	
22.000	663.02	663.02	663.02	663.02	663.02	
22.250	663.02	663.02	663.02	663.02	663.02	
22.500	663.02	663.02	663.02	663.02	663.02	
22.750	663.02	663.02	663.02	663.02	663.02	
23.000	663.02	663.02	663.02	663.02	663.02	
23.250	663.02	663.02	663.02	663.02	663.02	
23.500	663.02	663.02	663.02	663.02	663.02	
23.750	663.02	663.02	663.02	663.02	663.02	
24.000	663.02	(N/A)	(N/A)	(N/A)	(N/A)	

Subsection: Time vs. Elevation Return Event: 10 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	662.00	662.00	662.00	662.00	662.00
0.250	662.00	662.00	662.00	662.00	662.00
0.500	662.00	662.00	662.00	662.00	662.00
0.750	662.00	662.00	662.00	662.00	662.00
1.000	662.00	662.00	662.00	662.00	662.00
1.250	662.00	662.00	662.00	662.00	662.00
1.500	662.00	662.00	662.00	662.00	662.00
1.750	662.00	662.00	662.00	662.00	662.00
2.000	662.00	662.00	662.00	662.00	662.00
2.250	662.00	662.00	662.00	662.00	662.00
2.500	662.00	662.00	662.00	662.01	662.01
2.750	662.01	662.01	662.01	662.02	662.02
3.000	662.02	662.03	662.03	662.03	662.04
3.250	662.04	662.05	662.05	662.06	662.06
3.500	662.07	662.07	662.08	662.09	662.09
3.750	662.10	662.11	662.11	662.12	662.13
4.000	662.14	662.15	662.15	662.16	662.17
4.250	662.18	662.19	662.20	662.21	662.22
4.500	662.23	662.24	662.25	662.26	662.27
4.750	662.29	662.30	662.31	662.32	662.34
5.000	662.35	662.36	662.38	662.39	662.40
5.250	662.42	662.43	662.45	662.46	662.48
5.500	662.50	662.51	662.51	662.52	662.53
5.750	662.54	662.54	662.55	662.56	662.57
6.000	662.58	662.59	662.59	662.60	662.61
6.250	662.62	662.63	662.64	662.65	662.66
6.500	662.67	662.68	662.69	662.70	662.71
6.750	662.72	662.73	662.74	662.75	662.76
7.000	662.77	662.78	662.79	662.81	662.82
7.250	662.83	662.84	662.85	662.86	662.88
7.500	662.89	662.90	662.91	662.93	662.94
7.750	662.95	662.96	662.98	662.99	663.00
8.000	663.01	663.02	663.02	663.03	663.03
8.250	663.03	663.03	663.04	663.04	663.04
8.500	663.04	663.04	663.04	663.04	663.04
8.750	663.05	663.05	663.05	663.05	663.05
9.000	663.05	663.05	663.05	663.05	663.05
9.250	663.06	663.06	663.06	663.06	663.06
9.500	663.06	663.06	663.06	663.06	663.06
9.750	663.06	663.06	663.06	663.06	663.07
10.000	663.07	663.07	663.07	663.07	663.07

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 10 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

т.			· · ·	Flore:	El
Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
10.250	663.08	663.08	663.08	663.08	663.09
10.500	663.09	663.09	663.09	663.10	663.10
10.750	663.10	663.11	663.11	663.12	663.12
11.000	663.13	663.13	663.14	663.14	663.15
11.250	663.16	663.17	663.18	663.19	663.20
11.500	663.21	663.23	663.26	663.33	663.44
11.750	663.59	663.79	664.07	664.44	664.90
12.000	665.36	665.74	665.99	666.07	666.05
12.250	665.97	665.88	665.78	665.67	665.56
12.500	665.44	665.33	665.21	665.09	664.98
12.750	664.87	664.76	664.66	664.55	664.45
13.000	664.35	664.26	664.17	664.08	663.99
13.250	663.91	663.83	663.75	663.68	663.62
13.500	663.55	663.50	663.44	663.38	663.34
13.750	663.29	663.26	663.22	663.20	663.17
14.000	663.16	663.14	663.13	663.12	663.11
14.250	663.10	663.10	663.09	663.09	663.09
14.500	663.09	663.08	663.08	663.08	663.08
14.750	663.08	663.08	663.08	663.08	663.08
15.000	663.07	663.07	663.07	663.07	663.07
15.250	663.07	663.07	663.07	663.07	663.07
15.500	663.07	663.07	663.06	663.06	663.06
15.750	663.06	663.06	663.06	663.06	663.06
16.000	663.06	663.06	663.06	663.06	663.06
16.250	663.05	663.05	663.05	663.05	663.05
16.500	663.05	663.05	663.05	663.05	663.05
16.750	663.05	663.05	663.05	663.05	663.05
17.000	663.05	663.05	663.05	663.05	663.05
17.250	663.05	663.05	663.05	663.05	663.05
17.500	663.05	663.05	663.05	663.05	663.05
17.750	663.05	663.04	663.04	663.04	663.04
18.000	663.04	663.04	663.04	663.04	663.04
18.250	663.04	663.04	663.04	663.04	663.04
18.500	663.04	663.04	663.04	663.04	663.04
18.750	663.04	663.04	663.04	663.04	663.04
19.000	663.04	663.04	663.04	663.04	663.04
19.250	663.04	663.04	663.04	663.04	663.04
19.500	663.03	663.03	663.03	663.03	663.03
19.750	663.03	663.03	663.03	663.03	663.03
20.000	663.03	663.03	663.03	663.03	663.03
20.250	663.03	663.03	663.03	663.03	663.03

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 10 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

	rance on fore represents time for most value in cash rown					
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	
20.500	663.03	663.03	663.03	663.03	663.03	
20.750	663.03	663.03	663.03	663.03	663.03	
21.000	663.03	663.03	663.03	663.03	663.03	
21.250	663.03	663.03	663.03	663.03	663.03	
21.500	663.03	663.03	663.03	663.03	663.03	
21.750	663.03	663.03	663.03	663.03	663.03	
22.000	663.03	663.03	663.03	663.03	663.03	
22.250	663.03	663.03	663.03	663.03	663.03	
22.500	663.03	663.03	663.03	663.03	663.03	
22.750	663.03	663.03	663.03	663.03	663.03	
23.000	663.03	663.03	663.03	663.03	663.03	
23.250	663.03	663.03	663.03	663.03	663.03	
23.500	663.03	663.03	663.03	663.03	663.03	
23.750	663.03	663.03	663.03	663.03	663.03	
24.000	663.03	(N/A)	(N/A)	(N/A)	(N/A)	

Subsection: Time vs. Elevation Return Event: 25 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	662.00	662.00	662.00	662.00	662.00
0.250	662.00	662.00	662.00	662.00	662.00
0.500	662.00	662.00	662.00	662.00	662.00
0.750	662.00	662.00	662.00	662.00	662.00
1.000	662.00	662.00	662.00	662.00	662.00
1.250	662.00	662.00	662.00	662.00	662.00
1.500	662.00	662.00	662.00	662.00	662.00
1.750	662.00	662.00	662.00	662.00	662.00
2.000	662.00	662.00	662.00	662.00	662.00
2.250	662.01	662.01	662.01	662.01	662.02
2.500	662.02	662.02	662.03	662.03	662.04
2.750	662.04	662.05	662.05	662.06	662.06
3.000	662.07	662.08	662.08	662.09	662.10
3.250	662.11	662.12	662.12	662.13	662.14
3.500	662.15	662.16	662.17	662.18	662.19
3.750	662.20	662.22	662.23	662.24	662.25
4.000	662.26	662.28	662.29	662.30	662.32
4.250	662.33	662.34	662.36	662.37	662.39
4.500	662.41	662.42	662.44	662.45	662.47
4.750	662.49	662.50	662.51	662.52	662.53
5.000	662.54	662.54	662.55	662.56	662.57
5.250	662.58	662.59	662.60	662.61	662.62
5.500	662.63	662.64	662.65	662.66	662.67
5.750	662.68	662.69	662.70	662.72	662.73
6.000	662.74	662.75	662.76	662.77	662.79
6.250	662.80	662.81	662.82	662.84	662.85
6.500	662.86	662.88	662.89	662.90	662.92
6.750	662.93	662.95	662.96	662.97	662.99
7.000	663.00	663.01	663.02	663.02	663.03
7.250	663.03	663.03	663.04	663.04	663.04
7.500	663.04	663.04	663.04	663.04	663.04
7.750	663.04	663.04	663.04	663.04	663.04
8.000	663.04	663.04	663.05	663.05	663.05
8.250	663.05	663.05	663.05	663.05	663.05
8.500	663.05	663.05	663.06	663.06	663.06
8.750	663.06	663.06	663.06	663.06	663.06
9.000	663.07	663.07	663.07	663.07	663.07
9.250	663.07	663.07	663.07	663.07	663.07
9.500	663.07	663.07	663.07	663.08	663.08
9.750	663.08	663.08	663.08	663.08	663.08
10.000	663.09	663.09	663.09	663.09	663.09

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 25 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time		Flanation.	Flavortian	Florestion	Flandian
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
		` '		. ,	` '
10.250	663.10	663.10 663.12	663.10	663.11	663.11
10.500	663.11		663.12	663.12	663.13
10.750	663.13	663.14	663.14	663.15	663.16
11.000	663.16	663.17	663.18	663.18	663.19
11.250	663.20	663.22	663.23	663.24	663.26
11.500	663.28	663.30	663.35	663.43	663.56
11.750	663.75	664.01	664.34	664.80	665.36
12.000	665.95	666.46	666.82	666.96	666.94
12.250	666.86	666.74	666.61	666.48	666.34
12.500	666.21	666.07	665.93	665.80	665.67
12.750	665.53	665.41	665.29	665.17	665.05
13.000	664.94	664.83	664.72	664.61	664.51
13.250	664.41	664.31	664.22	664.13	664.05
13.500	663.96	663.88	663.80	663.73	663.66
13.750	663.60	663.54	663.48	663.43	663.38
14.000	663.33	663.29	663.26	663.23	663.20
14.250	663.18	663.16	663.15	663.14	663.13
14.500	663.12	663.12	663.11	663.11	663.10
14.750	663.10	663.10	663.10	663.09	663.09
15.000	663.09	663.09	663.09	663.09	663.09
15.250	663.09	663.08	663.08	663.08	663.08
15.500	663.08	663.08	663.08	663.08	663.08
15.750	663.08	663.07	663.07	663.07	663.07
16.000	663.07	663.07	663.07	663.07	663.07
16.250	663.07	663.07	663.06	663.06	663.06
16.500	663.06	663.06	663.06	663.06	663.06
16.750	663.06	663.06	663.06	663.06	663.06
17.000	663.06	663.06	663.06	663.06	663.06
17.250	663.06	663.06	663.06	663.06	663.06
17.500	663.06	663.06	663.06	663.06	663.05
17.750	663.05	663.05	663.05	663.05	663.05
18.000	663.05	663.05	663.05	663.05	663.05
18.250	663.05	663.05	663.05	663.05	663.05
18.500	663.05	663.05	663.05	663.05	663.05
18.750	663.05	663.05	663.05	663.05	663.05
19.000	663.05	663.05	663.04	663.04	663.04
19.250	663.04	663.04	663.04	663.04	663.04
19.500	663.04	663.04	663.04	663.04	663.04
19.750	663.04	663.04	663.04	663.04	663.04
20.000	663.04	663.04	663.04	663.04	663.04
20.250	663.04	663.04	663.04	663.04	663.04

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 25 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

	-				
Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
20.500	663.04	663.04	663.04	663.04	663.04
20.750	663.04	663.04	663.04	663.04	663.04
21.000	663.04	663.04	663.04	663.04	663.04
21.250	663.04	663.04	663.04	663.04	663.04
21.500	663.03	663.03	663.03	663.03	663.03
21.750	663.03	663.03	663.03	663.03	663.03
22.000	663.03	663.03	663.03	663.03	663.03
22.250	663.03	663.03	663.03	663.03	663.03
22.500	663.03	663.03	663.03	663.03	663.03
22.750	663.03	663.03	663.03	663.03	663.03
23.000	663.03	663.03	663.03	663.03	663.03
23.250	663.03	663.03	663.03	663.03	663.03
23.500	663.03	663.03	663.03	663.03	663.03
23.750	663.03	663.03	663.03	663.03	663.03
24.000	663.03	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Elevation Return Event: 50 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Elevation	Elevation	Elevation	Elevation	Elevation
(hours)	(ft)	(ft)	(ft)	(ft)	(ft)
0.000	662.00	662.00	662.00	662.00	662.00
0.250	662.00	662.00	662.00	662.00	662.00
0.500	662.00	662.00	662.00	662.00	662.00
0.750	662.00	662.00	662.00	662.00	662.00
1.000	662.00	662.00	662.00	662.00	662.00
1.250	662.00	662.00	662.00	662.00	662.00
1.500	662.00	662.00	662.00	662.00	662.00
1.750	662.00	662.00	662.00	662.00	662.00
2.000	662.01	662.01	662.01	662.01	662.02
2.250	662.02	662.02	662.03	662.03	662.04
2.500	662.05	662.05	662.06	662.07	662.07
2.750	662.08	662.09	662.10	662.11	662.11
3.000	662.12	662.13	662.14	662.16	662.17
3.250	662.18	662.19	662.20	662.21	662.23
3.500	662.24	662.25	662.27	662.28	662.30
3.750	662.31	662.33	662.34	662.36	662.37
4.000	662.39	662.41	662.43	662.44	662.46
4.250	662.48	662.50	662.51	662.52	662.53
4.500	662.53	662.54	662.55	662.56	662.57
4.750	662.58	662.59	662.60	662.61	662.62
5.000	662.63	662.65	662.66	662.67	662.68
5.250	662.69	662.70	662.72	662.73	662.74
5.500	662.75	662.77	662.78	662.79	662.80
5.750	662.82	662.83	662.85	662.86	662.87
6.000	662.89	662.90	662.92	662.93	662.95
6.250	662.96	662.98	662.99	663.01	663.02
6.500	663.02	663.03	663.03	663.03	663.04
6.750	663.04	663.04	663.04	663.04	663.04
7.000	663.04	663.04	663.05	663.05	663.05
7.250	663.05	663.05	663.05	663.05	663.05
7.500	663.05	663.05	663.05	663.05	663.05
7.750	663.05	663.05	663.05	663.05	663.05
8.000	663.05	663.05	663.05	663.06	663.06
8.250	663.06	663.06	663.06	663.06	663.06
8.500	663.06	663.06	663.07	663.07	663.07
8.750	663.07	663.07	663.07	663.07	663.08
9.000	663.08	663.08	663.08	663.08	663.08
9.250	663.08	663.09	663.09	663.09	663.09
9.500	663.09	663.09	663.09	663.09	663.09
9.750	663.09	663.09	663.09	663.10	663.10
10.000	663.10	663.10	663.11	663.11	663.11

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 50 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Ti	Flourstiers	Flourstiers	Floretien	Floreties	Flavetice
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)
	` '	` '		. ,	
10.250	663.11 663.13	663.12 663.14	663.12 663.14	663.13	663.13
10.500				663.15	663.15
10.750	663.16	663.17	663.17	663.18	663.19
11.000	663.19	663.20	663.21	663.22	663.23
11.250	663.25	663.26	663.28	663.30	663.32
11.500	663.34	663.37	663.42	663.52	663.67
11.750	663.89	664.18	664.57	665.10	665.76
12.000	666.47	667.17	667.64	667.66	667.49
12.250	667.38	667.25	667.10	666.94	666.79
12.500	666.64	666.48	666.34	666.19	666.05
12.750	665.91	665.77	665.64	665.52	665.39
13.000	665.27	665.15	665.04	664.93	664.82
13.250	664.71	664.61	664.51	664.41	664.32
13.500	664.23	664.14	664.06	663.98	663.89
13.750	663.82	663.75	663.68	663.62	663.56
14.000	663.50	663.45	663.40	663.35	663.31
14.250	663.27	663.24	663.22	663.20	663.18
14.500	663.16	663.15	663.14	663.14	663.13
14.750	663.12	663.12	663.12	663.11	663.11
15.000	663.11	663.11	663.10	663.10	663.10
15.250	663.10	663.10	663.10	663.09	663.09
15.500	663.09	663.09	663.09	663.09	663.09
15.750	663.09	663.08	663.08	663.08	663.08
16.000	663.08	663.08	663.08	663.08	663.08
16.250	663.08	663.07	663.07	663.07	663.07
16.500	663.07	663.07	663.07	663.07	663.07
16.750	663.07	663.07	663.07	663.07	663.07
17.000	663.07	663.07	663.07	663.07	663.07
17.250	663.07	663.07	663.07	663.07	663.06
17.500	663.06	663.06	663.06	663.06	663.06
17.750	663.06	663.06	663.06	663.06	663.06
18.000	663.06	663.06	663.06	663.06	663.06
18.250	663.06	663.06	663.06	663.06	663.06
18.500	663.06	663.06	663.06	663.05	663.05
18.750	663.05	663.05	663.05	663.05	663.05
19.000	663.05	663.05	663.05	663.05	663.05
19.250	663.05	663.05	663.05	663.05	663.05
19.500	663.05	663.05	663.05	663.05	663.05
19.750	663.05	663.05	663.05	663.04	663.04
20.000	663.04	663.04	663.04	663.04	663.04
20.250	663.04	663.04	663.04	663.04	663.04

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Elevation Return Event: 50 years Label: Underground Detention (OUT) Storm Event: Type II 24 hour

Time vs. Elevation (ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

rance on lore represents time for most value in cach rown						
Time (hours)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	Elevation (ft)	
20.500	663.04	663.04	663.04	663.04	663.04	
20.750	663.04	663.04	663.04	663.04	663.04	
21.000	663.04	663.04	663.04	663.04	663.04	
21.250	663.04	663.04	663.04	663.04	663.04	
21.500	663.04	663.04	663.04	663.04	663.04	
21.750	663.04	663.04	663.04	663.04	663.04	
22.000	663.04	663.04	663.04	663.04	663.04	
22.250	663.04	663.04	663.04	663.04	663.04	
22.500	663.04	663.04	663.04	663.04	663.04	
22.750	663.04	663.04	663.04	663.04	663.04	
23.000	663.04	663.04	663.04	663.04	663.04	
23.250	663.04	663.04	663.04	663.04	663.04	
23.500	663.04	663.04	663.04	663.04	663.04	
23.750	663.04	663.04	663.04	663.04	663.04	
24.000	663.04	(N/A)	(N/A)	(N/A)	(N/A)	

Subsection: Time vs. Volume Return Event: 5 years Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.000	0.000	0.000	0.000
0.250	0.000	0.000	0.000	0.000	0.000
0.500	0.000	0.000	0.000	0.000	0.000
0.750	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
1.250	0.000	0.000	0.000	0.000	0.000
1.500	0.000	0.000	0.000	0.000	0.000
1.750	0.000	0.000	0.000	0.000	0.000
2.000	0.000	0.000	0.000	0.000	0.000
2.250	0.000	0.000	0.000	0.000	0.000
2.500	0.000	0.000	0.000	0.000	0.000
2.750	0.000	0.000	0.000	0.000	0.000
3.000	0.000	0.000	0.000	0.000	0.000
3.250	0.000	0.000	0.000	0.000	0.001
3.500	0.001	0.001	0.001	0.001	0.001
3.750	0.001	0.001	0.001	0.001	0.001
4.000	0.001	0.002	0.002	0.002	0.002
4.250	0.002	0.002	0.002	0.002	0.003
4.500	0.003	0.003	0.003	0.003	0.003
4.750	0.004	0.004	0.004	0.004	0.004
5.000	0.004	0.005	0.005	0.005	0.005
5.250	0.005	0.006	0.006	0.006	0.006
5.500	0.007	0.007	0.007	0.007	0.008
5.750	0.008	0.008	0.008	0.009	0.009
6.000	0.009	0.010	0.010	0.010	0.010
6.250	0.011	0.011	0.011	0.012	0.012
6.500	0.012	0.013	0.013	0.013	0.014
6.750 7.000	0.014 0.016	0.015 0.016	0.015 0.017	0.015 0.017	0.016 0.018
7.000	0.018	0.018	0.017	0.017	0.018
7.500	0.018	0.018	0.019	0.019	0.020
7.750	0.020	0.021	0.021	0.022	0.022
8.000	0.025	0.025	0.025	0.024	0.027
8.250	0.023	0.023	0.020	0.020	0.027
8.500	0.027	0.028	0.029	0.029	0.033
8.750	0.034	0.031	0.034	0.035	0.035
9.000	0.035	0.035	0.035	0.036	0.036
9.250	0.036	0.036	0.036	0.036	0.036
9.500	0.036	0.036	0.036	0.036	0.036
9.750	0.036	0.036	0.036	0.036	0.036
10.000	0.036	0.036	0.037	0.037	0.037
					1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Volume Return Event: 5 years
Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
10.250	0.037	0.037	0.037	0.037	0.037
10.500	0.037	0.037	0.037	0.037	0.037
10.750	0.038	0.038	0.038	0.039	0.039
11.000	0.039	0.039	0.040	0.040	0.040
11.250	0.041	0.041	0.042	0.042	0.043
11.500	0.043	0.044	0.046	0.049	0.054
11.750	0.061	0.072	0.088	0.109	0.137
12.000	0.165	0.188	0.202	0.206	0.204
12.250	0.199	0.193	0.186	0.178	0.171
12.500	0.163	0.155	0.148	0.140	0.133
12.750	0.126	0.119	0.112	0.105	0.099
13.000	0.093	0.088	0.082	0.077	0.073
13.250	0.068	0.064	0.061	0.057	0.054
13.500	0.051	0.049	0.047	0.045	0.044
13.750	0.042	0.041	0.041	0.040	0.040
14.000	0.039	0.039	0.038	0.038	0.038
14.250	0.038	0.038	0.038	0.037	0.037
14.500	0.037	0.037	0.037	0.037	0.037
14.750	0.037	0.037	0.037	0.037	0.037
15.000	0.037	0.037	0.037	0.037	0.037
15.250	0.037	0.037	0.037	0.037	0.036
15.500	0.036	0.036	0.036	0.036	0.036
15.750	0.036	0.036	0.036	0.036	0.036
16.000	0.036	0.036	0.036	0.036	0.036
16.250	0.036	0.036	0.036	0.036	0.036
16.500	0.036	0.036	0.036	0.036	0.036
16.750	0.036	0.036	0.036	0.036	0.036
17.000	0.036	0.036	0.036	0.036	0.036
17.250	0.036	0.036	0.036	0.035	0.035
17.500	0.035	0.035	0.035	0.035	0.035
17.750	0.035	0.035	0.035	0.035	0.035
18.000	0.035	0.035	0.035	0.035	0.035
18.250	0.035	0.035	0.035	0.035	0.035
18.500	0.035	0.035	0.035	0.035	0.035
18.750	0.035	0.035	0.035	0.035	0.035
19.000	0.035	0.035	0.035	0.035	0.035
19.250	0.035	0.035	0.035 0.035	0.035	0.035
19.500 19.750	0.035 0.035	0.035 0.035	0.035	0.035 0.035	0.035 0.035
20.000	0.035	0.035	0.035	0.035	0.035
20.250	0.035	0.035	0.035	0.035	0.035
20.230	0.035	0.035	0.033	0.035	0.035

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 5 years
Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
20.500	0.035	0.035	0.035	0.035	0.035
20.750	0.035	0.035	0.035	0.035	0.035
21.000	0.035	0.035	0.035	0.035	0.035
21.250	0.035	0.035	0.035	0.035	0.035
21.500	0.035	0.035	0.035	0.035	0.035
21.750	0.035	0.035	0.035	0.035	0.035
22.000	0.035	0.035	0.035	0.035	0.035
22.250	0.035	0.035	0.035	0.035	0.035
22.500	0.035	0.035	0.035	0.035	0.035
22.750	0.035	0.035	0.035	0.035	0.035
23.000	0.035	0.035	0.035	0.035	0.035
23.250	0.034	0.034	0.034	0.034	0.034
23.500	0.034	0.034	0.034	0.034	0.034
23.750	0.034	0.034	0.034	0.034	0.034
24.000	0.034	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Volume Return Event: 10 years Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.000	0.000	0.000	0.000
0.250	0.000	0.000	0.000	0.000	0.000
0.500	0.000	0.000	0.000	0.000	0.000
0.750	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
1.250	0.000	0.000	0.000	0.000	0.000
1.500	0.000	0.000	0.000	0.000	0.000
1.750	0.000	0.000	0.000	0.000	0.000
2.000	0.000	0.000	0.000	0.000	0.000
2.250	0.000	0.000	0.000	0.000	0.000
2.500	0.000	0.000	0.000	0.000	0.000
2.750	0.000	0.000	0.000	0.000	0.000
3.000	0.000	0.001	0.001	0.001	0.001
3.250	0.001	0.001	0.001	0.001	0.001
3.500	0.001	0.002	0.002	0.002	0.002
3.750	0.002	0.002	0.002	0.003	0.003
4.000	0.003	0.003	0.003	0.003	0.004
4.250	0.004	0.004	0.004	0.004	0.004
4.500	0.005	0.005	0.005	0.005	0.006
4.750	0.006	0.006	0.006	0.007	0.007
5.000	0.007	0.007	0.008	0.008	0.008
5.250	0.009	0.009	0.009	0.010	0.010
5.500	0.010	0.010	0.011	0.011	0.012
5.750	0.012	0.012	0.013	0.013	0.013
6.000	0.014	0.014	0.015	0.015	0.015
6.250	0.016	0.016	0.017	0.017	0.017
6.500	0.018	0.018	0.019	0.019	0.020
6.750	0.020	0.021	0.021	0.022	0.022
7.000	0.023	0.023	0.024	0.024	0.025
7.250 7.500	0.025 0.028	0.026 0.029	0.026 0.029	0.027 0.030	0.027 0.030
7.750	0.028	0.029	0.029	0.030	0.030
8.000	0.031	0.032	0.032	0.035	0.035
8.250	0.035	0.035	0.035	0.035	0.035
8.500	0.035	0.035	0.035	0.036	0.035
8.750	0.036	0.036	0.036	0.036	0.036
9.000	0.036	0.036	0.036	0.036	0.036
9.250	0.036	0.036	0.036	0.036	0.036
9.500	0.037	0.037	0.037	0.037	0.037
9.750	0.037	0.037	0.037	0.037	0.037
10.000	0.037	0.037	0.037	0.037	0.037
1 10.000	0.037	0.037	0.037	0.037	0.037

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 10 years Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
10.250	0.038	0.038	0.038	0.038	0.038
10.500	0.038	0.038	0.039	0.039	0.039
10.750	0.039	0.039	0.040	0.039	0.040
11.000	0.040	0.033	0.041	0.041	0.042
11.250	0.042	0.043	0.044	0.044	0.045
11.500	0.046	0.047	0.049	0.052	0.059
11.750	0.068	0.082	0.100	0.127	0.160
12.000	0.194	0.222	0.240	0.245	0.244
12.250	0.239	0.232	0.225	0.217	0.209
12.500	0.200	0.192	0.183	0.175	0.166
12.750	0.158	0.150	0.142	0.135	0.127
13.000	0.120	0.114	0.107	0.101	0.095
13.250	0.089	0.084	0.079	0.074	0.070
13.500	0.066	0.062	0.059	0.055	0.053
13.750	0.050	0.048	0.046	0.045	0.043
14.000	0.042	0.041	0.041	0.040	0.040
14.250	0.039	0.039	0.039	0.038	0.038
14.500	0.038	0.038	0.038	0.038	0.038
14.750	0.038	0.038	0.038	0.038	0.038
15.000	0.037	0.037	0.037	0.037	0.037
15.250	0.037	0.037	0.037	0.037	0.037
15.500	0.037	0.037	0.037	0.037	0.037
15.750	0.037	0.037	0.037	0.037	0.037
16.000	0.037	0.036	0.036	0.036	0.036
16.250	0.036	0.036	0.036	0.036	0.036
16.500	0.036	0.036	0.036	0.036	0.036
16.750	0.036	0.036	0.036	0.036	0.036
17.000	0.036	0.036	0.036	0.036	0.036
17.250	0.036	0.036	0.036	0.036	0.036
17.500	0.036	0.036	0.036	0.036	0.036
17.750	0.036	0.036	0.036	0.036	0.036
18.000	0.036	0.036	0.036	0.036	0.036
18.250	0.036	0.036	0.036	0.036	0.036
18.500	0.036	0.036	0.035	0.035	0.035
18.750	0.035	0.035	0.035	0.035	0.035
19.000	0.035	0.035	0.035	0.035	0.035
19.250	0.035	0.035	0.035 0.035	0.035	0.035
19.500 19.750	0.035 0.035	0.035 0.035	0.035	0.035 0.035	0.035 0.035
20.000	0.035	0.035	0.035	0.035	0.035
20.250	0.035	0.035	0.035	0.035	0.035
20.230	0.055	0.035	0.033	0.055	0.035

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 10 years Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)		
` '	` '	` ,	, ,	, ,	` ,		
20.500	0.035	0.035	0.035	0.035	0.035		
20.750	0.035	0.035	0.035	0.035	0.035		
21.000	0.035	0.035	0.035	0.035	0.035		
21.250	0.035	0.035	0.035	0.035	0.035		
21.500	0.035	0.035	0.035	0.035	0.035		
21.750	0.035	0.035	0.035	0.035	0.035		
22.000	0.035	0.035	0.035	0.035	0.035		
22.250	0.035	0.035	0.035	0.035	0.035		
22.500	0.035	0.035	0.035	0.035	0.035		
22.750	0.035	0.035	0.035	0.035	0.035		
23.000	0.035	0.035	0.035	0.035	0.035		
23.250	0.035	0.035	0.035	0.035	0.035		
23.500	0.035	0.035	0.035	0.035	0.035		
23.750	0.035	0.035	0.035	0.035	0.035		
24.000	0.035	(N/A)	(N/A)	(N/A)	(N/A)		

Subsection: Time vs. Volume Return Event: 25 years
Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.000	0.000	0.000	0.000
0.250	0.000	0.000	0.000	0.000	0.000
0.500	0.000	0.000	0.000	0.000	0.000
0.750	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
1.250	0.000	0.000	0.000	0.000	0.000
1.500	0.000	0.000	0.000	0.000	0.000
1.750	0.000	0.000	0.000	0.000	0.000
2.000	0.000	0.000	0.000	0.000	0.000
2.250	0.000	0.000	0.000	0.000	0.000
2.500	0.000	0.000	0.001	0.001	0.001
2.750	0.001	0.001	0.001	0.001	0.001
3.000	0.001	0.002	0.002	0.002	0.002
3.250	0.002	0.002	0.003	0.003	0.003
3.500	0.003	0.003	0.004	0.004	0.004
3.750	0.004	0.004	0.005	0.005	0.005
4.000	0.005	0.006	0.006	0.006	0.006
4.250	0.007	0.007	0.007	0.008	0.008
4.500	0.008	0.009	0.009	0.009	0.010
4.750	0.010	0.010	0.011	0.011	0.012
5.000	0.012	0.012	0.013	0.013	0.014
5.250	0.014	0.014	0.015	0.015	0.016
5.500	0.016	0.017	0.017	0.018	0.018
5.750	0.019	0.019	0.020	0.020	0.021
6.000	0.021	0.022	0.022	0.023	0.023
6.250	0.024	0.025	0.025	0.026	0.026
6.500	0.027	0.028	0.028	0.029	0.029
6.750	0.030	0.031	0.031	0.032	0.033
7.000	0.033	0.034	0.034	0.035	0.035
7.250	0.035	0.035	0.035	0.035	0.035
7.500 7.750	0.035 0.036	0.035 0.036	0.036 0.036	0.036	0.036 0.036
8.000	0.036			0.036	0.036
8.250	0.036	0.036 0.036	0.036 0.036	0.036 0.036	0.036
8.500					
8.750	0.036 0.037	0.036 0.037	0.036 0.037	0.036 0.037	0.037 0.037
9.000	0.037	0.037	0.037	0.037	0.037
9.250	0.037	0.037	0.037	0.037	0.037
9.500	0.037	0.037	0.037	0.037	0.037
9.750	0.037	0.037	0.037	0.038	0.038
10.000	0.038	0.038	0.038	0.038	0.039
10.000	0.036	0.036	0.036	1 0.036	0.039

Bentley Systems, Inc. Haestad Methods Solution Center

Subsection: Time vs. Volume Return Event: 25 years
Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	\/olimo	Voluma
Time (hours)	volume (ac-ft)	volume (ac-ft)	volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
10.250 10.500	0.039 0.040	0.039 0.040	0.039	0.039	0.040
			0.040	0.040	0.041
10.750	0.041	0.041	0.042	0.042	0.042
11.000	0.043	0.043	0.043	0.044	0.044
11.250	0.045	0.046	0.047	0.047	0.048
11.500	0.049	0.051	0.053	0.058	0.066
11.750	0.079	0.096	0.120	0.153	0.194
12.000	0.237	0.272	0.295	0.303	0.302
12.250	0.297	0.290	0.282	0.273	0.264
12.500	0.255	0.245	0.236	0.226	0.216
12.750 13.000	0.207	0.198 0.155	0.189	0.180	0.171 0.132
	0.163		0.147	0.139	
13.250 13.500	0.124 0.093	0.118 0.088	0.111 0.082	0.105 0.078	0.099 0.073
13.750	0.093	0.088	0.082	0.078	0.073
14.000	0.069				0.035
14.250	0.052	0.050 0.043	0.048 0.042	0.046 0.041	0.045
14.500	0.044	0.043	0.042	0.039	0.041
14.750	0.040	0.040	0.040	0.039	0.039
15.000	0.039	0.039	0.039	0.039	0.039
15.250	0.038	0.038	0.038	0.038	0.038
15.500	0.038	0.038	0.038	0.038	0.038
15.750	0.038	0.037	0.037	0.037	0.037
16.000	0.037	0.037	0.037	0.037	0.037
16.250	0.037	0.037	0.037	0.037	0.037
16.500	0.037	0.037	0.037	0.037	0.037
16.750	0.037	0.037	0.037	0.037	0.037
17.000	0.037	0.037	0.037	0.037	0.037
17.250	0.037	0.037	0.036	0.036	0.036
17.500	0.036	0.036	0.036	0.036	0.036
17.750	0.036	0.036	0.036	0.036	0.036
18.000	0.036	0.036	0.036	0.036	0.036
18.250	0.036	0.036	0.036	0.036	0.036
18.500	0.036	0.036	0.036	0.036	0.036
18.750	0.036	0.036	0.036	0.036	0.036
19.000	0.036	0.036	0.036	0.036	0.036
19.250	0.036	0.036	0.036	0.036	0.036
19.500	0.036	0.036	0.036	0.036	0.036
19.750	0.035	0.035	0.035	0.035	0.035
20.000	0.035	0.035	0.035	0.035	0.035
20.250	0.035	0.035	0.035	0.035	0.035
	0.000	0.000	0.000	0.055	5.555

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Volume Return Event: 25 years
Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

	-				
Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
(Hours)	(ac it)				
20.500	0.035	0.035	0.035	0.035	0.035
20.750	0.035	0.035	0.035	0.035	0.035
21.000	0.035	0.035	0.035	0.035	0.035
21.250	0.035	0.035	0.035	0.035	0.035
21.500	0.035	0.035	0.035	0.035	0.035
21.750	0.035	0.035	0.035	0.035	0.035
22.000	0.035	0.035	0.035	0.035	0.035
22.250	0.035	0.035	0.035	0.035	0.035
22.500	0.035	0.035	0.035	0.035	0.035
22.750	0.035	0.035	0.035	0.035	0.035
23.000	0.035	0.035	0.035	0.035	0.035
23.250	0.035	0.035	0.035	0.035	0.035
23.500	0.035	0.035	0.035	0.035	0.035
23.750	0.035	0.035	0.035	0.035	0.035
24.000	0.035	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time vs. Volume Return Event: 50 years Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time	Volume	Volume	Volume	Volume	Volume
(hours)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)	(ac-ft)
0.000	0.000	0.000	0.000	0.000	0.000
0.250	0.000	0.000	0.000	0.000	0.000
0.500	0.000	0.000	0.000	0.000	0.000
0.750	0.000	0.000	0.000	0.000	0.000
1.000	0.000	0.000	0.000	0.000	0.000
1.250	0.000	0.000	0.000	0.000	0.000
1.500	0.000	0.000	0.000	0.000	0.000
1.750	0.000	0.000	0.000	0.000	0.000
2.000	0.000	0.000	0.000	0.000	0.000
2.250	0.000	0.001	0.001	0.001	0.001
2.500	0.001	0.001	0.001	0.001	0.001
2.750	0.002	0.002	0.002	0.002	0.002
3.000	0.003	0.003	0.003	0.003	0.003
3.250	0.004	0.004	0.004	0.004	0.005
3.500	0.005	0.005	0.005	0.006	0.006
3.750	0.006	0.007	0.007	0.007	0.008
4.000	0.008	0.008	0.009	0.009	0.009
4.250	0.010	0.010	0.011	0.011	0.011
4.500	0.012	0.012	0.013	0.013	0.014
4.750	0.014	0.014	0.015	0.015	0.016
5.000	0.016	0.017	0.017	0.018	0.018
5.250	0.019	0.020	0.020	0.021	0.021
5.500	0.022	0.022	0.023	0.024	0.024
5.750	0.025	0.025	0.026	0.027	0.027
6.000	0.028	0.029	0.029	0.030	0.031
6.250	0.031	0.032	0.033	0.034	0.034
6.500	0.034	0.035	0.035	0.035	0.035
6.750	0.035	0.035	0.036	0.036	0.036
7.000	0.036	0.036	0.036	0.036	0.036
7.250 7.500	0.036 0.036	0.036 0.036	0.036 0.036	0.036 0.036	0.036 0.036
7.750	0.036	0.036			0.036
8.000	0.036		0.036	0.036	0.036
8.250	0.036	0.036 0.037	0.036 0.037	0.036 0.037	0.036
8.500	0.037	0.037	0.037	0.037	0.037
8.750	0.037	0.037	0.037	0.037	0.037
9.000	0.037	0.037	0.037	0.037	0.038
9.250	0.038	0.038	0.038	0.038	0.038
9.500	0.038	0.038	0.038	0.038	0.038
9.750	0.038	0.039	0.039	0.039	0.039
10.000	0.039	0.039	0.039	0.039	0.040
10.000	0.039	0.039	0.039	0.039	0.070

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Volume Return Event: 50 years Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

T:	\/ali::===	Volume	Values s	\/al.::	\/alı
Time (hours)	Volume (ac-ft)	volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
			` '		
10.250 10.500	0.040 0.041	0.040 0.041	0.040	0.041	0.041
			0.042	0.042	0.042
10.750	0.042	0.043	0.043	0.044	0.044
11.000	0.044	0.045	0.045	0.046	0.047
11.250	0.047	0.048	0.049	0.050	0.052
11.500	0.053	0.055	0.058	0.064	0.073
11.750	0.088	0.108	0.136	0.175	0.223
12.000	0.273	0.314	0.336	0.336	0.331
12.250	0.325	0.318	0.311	0.302	0.293
12.500	0.283	0.274	0.264	0.254	0.244
12.750	0.234	0.224	0.215	0.206	0.197
13.000	0.188	0.179	0.170	0.162	0.154
13.250	0.146	0.139	0.132	0.125	0.118
13.500	0.111	0.105	0.099	0.094	0.088
13.750	0.083	0.079	0.074	0.070	0.066
14.000	0.063	0.059	0.056	0.054	0.051
14.250	0.049	0.047	0.046	0.045	0.044
14.500	0.043	0.042	0.041	0.041	0.041
14.750	0.040	0.040	0.040	0.040	0.040
15.000	0.039	0.039	0.039	0.039	0.039
15.250	0.039	0.039	0.039	0.039	0.039
15.500	0.038	0.038	0.038	0.038	0.038
15.750	0.038	0.038	0.038	0.038	0.038
16.000	0.038	0.038	0.038	0.038	0.038
16.250	0.038	0.037	0.037	0.037	0.037
16.500	0.037	0.037	0.037	0.037	0.037
16.750	0.037	0.037	0.037	0.037	0.037
17.000	0.037	0.037	0.037	0.037	0.037
17.250	0.037	0.037	0.037	0.037	0.037
17.500	0.037	0.037	0.037	0.037	0.037
17.750	0.037	0.037	0.037	0.037	0.037
18.000	0.037	0.037	0.037	0.037	0.037
18.250	0.037	0.037	0.037	0.036	0.036
18.500	0.036	0.036	0.036	0.036	0.036
18.750	0.036	0.036	0.036	0.036	0.036
19.000	0.036	0.036	0.036	0.036	0.036
19.250	0.036	0.036	0.036	0.036	0.036
19.500	0.036	0.036	0.036	0.036	0.036
19.750	0.036	0.036	0.036	0.036	0.036
20.000	0.036	0.036	0.036	0.036	0.036
20.250	0.036	0.036	0.036	0.036	0.036

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time vs. Volume Return Event: 50 years Label: Underground Detention Storm Event: Type II 24 hour

Time vs. Volume (ac-ft)

Output Time increment = 0.050 hours Time on left represents time for first value in each row.

Time (hours)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)	Volume (ac-ft)
, ,	, ,	` ,	, ,	` ′	` '
20.500	0.036	0.036	0.036	0.036	0.036
20.750	0.036	0.036	0.036	0.036	0.036
21.000	0.036	0.036	0.036	0.036	0.035
21.250	0.035	0.035	0.035	0.035	0.035
21.500	0.035	0.035	0.035	0.035	0.035
21.750	0.035	0.035	0.035	0.035	0.035
22.000	0.035	0.035	0.035	0.035	0.035
22.250	0.035	0.035	0.035	0.035	0.035
22.500	0.035	0.035	0.035	0.035	0.035
22.750	0.035	0.035	0.035	0.035	0.035
23.000	0.035	0.035	0.035	0.035	0.035
23.250	0.035	0.035	0.035	0.035	0.035
23.500	0.035	0.035	0.035	0.035	0.035
23.750	0.035	0.035	0.035	0.035	0.035
24.000	0.035	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 5 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Requested Pond Water Surface Elevations				
Minimum (Headwater)	662.00 ft			
Increment (Headwater)	0.10 ft			
Maximum (Headwater)	668.19 ft			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Area	Orifice - 1	Forward	Culvert - 1	662.00	668.19
Rectangular Weir	Weir - 1	Forward	Culvert - 1	667.42	668.19
Culvert-Circular	Culvert - 1	Forward + Reverse	TW	662.00	668.19
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 5 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Structure ID: Orifice - 1	
Structure Type: Orifice-Area	
Number of Openings	1
Elevation	662.00 ft
Orifice Area	0.4 ft ²
Top Elevation	662.65 ft
Datum Elevation	662.00 ft
Orifice Coefficient	0.660
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	667.42 ft
Weir Length	8.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	15.0 in
Length	42.60 ft
Length (Computed Barrel)	42.60 ft
Slope (Computed)	0.005 ft/ft
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.023
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
ĸ	0.0045
M	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	0.000
T2 ratio (HW/D)	1.195
Slope Correction Factor	-0.500

Subsection: Outlet Input Data Return Event: 5 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2

elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	662.00 ft	T1 Flow	4.80 ft ³ /s
T2 Elevation	663.49 ft	T2 Flow	5.49 ft ³ /s

Subsection: Outlet Input Data Return Event: 10 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Requested Pond Water Surface Elevations				
Minimum (Headwater)	662.00 ft			
Increment (Headwater)	0.10 ft			
Maximum (Headwater)	668.19 ft			

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Area	Orifice - 1	Forward	Culvert - 1	662.00	668.19
Rectangular Weir	Weir - 1	Forward	Culvert - 1	667.42	668.19
Culvert-Circular	Culvert - 1	Forward + Reverse	TW	662.00	668.19
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 10 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Structure ID: Orifice - 1	
Structure Type: Orifice-Area	
Number of Openings	1
Elevation	662.00 ft
Orifice Area	0.4 ft ²
Top Elevation	662.65 ft
Datum Elevation	662.00 ft
Orifice Coefficient	0.660
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	667.42 ft
Weir Length	8.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	15.0 in
Length	42.60 ft
Length (Computed Barrel)	42.60 ft
Slope (Computed)	0.005 ft/ft
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.023
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
M	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	0.000
T2 ratio (HW/D)	1.195
Slope Correction Factor	-0.500

Subsection: Outlet Input Data Return Event: 10 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2

elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	662.00 ft	T1 Flow	4.80 ft ³ /s
T2 Elevation	663.49 ft	T2 Flow	5.49 ft ³ /s

Subsection: Outlet Input Data Return Event: 25 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Requested Pond Water Surface Elevations		
Minimum (Headwater) 662.00 ft		
Increment (Headwater)	0.10 ft	
Maximum (Headwater) 668.19 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Area	Orifice - 1	Forward	Culvert - 1	662.00	668.19
Rectangular Weir	Weir - 1	Forward	Culvert - 1	667.42	668.19
Culvert-Circular	Culvert - 1	Forward + Reverse	TW	662.00	668.19
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 25 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Structure ID: Orifice - 1	
Structure Type: Orifice-Area	
Number of Openings	1
Elevation	662.00 ft
Orifice Area	0.4 ft ²
Top Elevation	662.65 ft
Datum Elevation	662.00 ft
Orifice Coefficient	0.660
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	667.42 ft
Weir Length	8.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	15.0 in
Length	42.60 ft
Length (Computed Barrel)	42.60 ft
Slope (Computed)	0.005 ft/ft
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.023
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
M	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	0.000
T2 ratio (HW/D)	1.195
Slope Correction Factor	-0.500

Subsection: Outlet Input Data Return Event: 25 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2

elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	662.00 ft	T1 Flow	4.80 ft ³ /s
T2 Elevation	663.49 ft	T2 Flow	5.49 ft ³ /s

Subsection: Outlet Input Data Return Event: 50 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Requested Pond Water Surface Elevations		
Minimum (Headwater) 662.00 ft		
Increment (Headwater) 0.10 ft		
Maximum (Headwater) 668.19 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Area	Orifice - 1	Forward	Culvert - 1	662.00	668.19
Rectangular Weir	Weir - 1	Forward	Culvert - 1	667.42	668.19
Culvert-Circular	Culvert - 1	Forward + Reverse	TW	662.00	668.19
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 50 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Structure ID: Orifice - 1 Structure Type: Orifice-Area	
Number of Openings	1
Elevation	662.00 ft
Orifice Area	0.4 ft ²
Top Elevation	662.65 ft
Datum Elevation	662.00 ft
Orifice Coefficient	0.660
Structure ID: Weir - 1 Structure Type: Rectangular Weir	
Number of Openings	1
Elevation	667.42 ft
Weir Length	8.00 ft
Weir Coefficient	3.00 (ft^0.5)/s
Structure ID: Culvert - 1 Structure Type: Culvert-Circular	
Number of Barrels	1
Diameter	15.0 in
Length	42.60 ft
Length (Computed Barrel)	42.60 ft
Slope (Computed)	0.005 ft/ft
Outlet Control Data	
Manning's n	0.013
Ke	0.200
Kb	0.023
Kr	0.000
Convergence Tolerance	0.00 ft
Inlet Control Data	
Equation Form	Form 1
K	0.0045
M	2.0000
С	0.0317
Υ	0.6900
T1 ratio (HW/D)	0.000
T2 ratio (HW/D)	1.195
Slope Correction Factor	-0.500

Subsection: Outlet Input Data Return Event: 50 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour 6 month

Use unsubmerged inlet control 0 equation below T1 elevation.

Use submerged inlet control 0 equation above T2

elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	662.00 ft	T1 Flow	4.80 ft ³ /s
T2 Elevation	663.49 ft	T2 Flow	5.49 ft ³ /s

Subsection: Detention Time

Return Event: 5 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

No Infiltration
12.150 hours
11.950 hours
0.200 hours

Subsection: Level Pool Pond Routing Summary

Return Event: 5 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

		<u> </u>	
Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions		_	
Elevation (Water Surface, Initial)	662.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	9.70 ft³/s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	3.23 ft ³ /s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	665.52 ft		
Volume (Peak)	0.206 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.615 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.581 ac-ft		
Volume (Retained)	0.034 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.1 %		

Subsection: Detention Time Return Event: 10 years
Label: Underground Detention (IN) Storm Event: Type II 24 hour

Infiltration	
Infiltration Method (Computed)	No Infiltration
Approximate Detention Times	
Time to Peak (Outflow + Infiltration, Peak to Peak Detention Time)	12.150 hours
Time to Peak (Inflow, Peak to Peak Detention Time)	11.950 hours
Detention Time (Peak to Peak)	0.200 hours

Subsection: Level Pool Pond Routing Summary

Return Event: 10 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions		<u>—</u>	
Elevation (Water Surface, Initial)	662.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	11.45 ft³/s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	3.57 ft ³ /s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	666.07 ft		
Volume (Peak) 0.245 ac-ft			
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.733 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.699 ac-ft		
Volume (Retained)	0.034 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.1 %		

Subsection: Detention Time Return Event: 25 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

Infiltration	
Infiltration Method (Computed)	No Infiltration
Approximate Detention Times	
Time to Peak (Outflow + Infiltration, Peak to Peak Detention Time)	12.150 hours
Time to Peak (Inflow, Peak to Peak Detention Time)	11.950 hours
Detention Time (Peak to Peak)	0.200 hours

Subsection: Level Pool Pond Routing Summary

Return Event: 25 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions		_	
Elevation (Water Surface, Initial)	662.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	13.94 ft³/s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	4.06 ft ³ /s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	666.96 ft		
Volume (Peak)	0.303 ac-ft		
Mass Balance (ac-ft)		<u> </u>	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.903 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.868 ac-ft		
Volume (Retained)	0.035 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.1 %		

Subsection: Detention Time

Return Event: 50 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

Infiltration	
Infiltration Method (Computed)	No Infiltration
Approximate Detention Times	
Time to Peak (Outflow + Infiltration, Peak to Peak Detention Time)	12.150 hours
Time to Peak (Inflow, Peak to Peak Detention Time)	11.950 hours
Detention Time (Peak to Peak)	0.200 hours

Subsection: Level Pool Pond Routing Summary

Label: Underground Detention (IN) Storm Event: Type II 24 hour

In Citanation			
Infiltration Infiltration Method (Computed)	No Infiltration		
Initial Conditions		_	
Elevation (Water Surface, Initial)	662.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	Flow (Peak In) 15.99 ft ³ /s		11.950 hours
Flow (Peak Outlet)	6.86 ft ³ /s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	667.66 ft		
Volume (Peak)	0.336 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	1.044 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	1.009 ac-ft		
Volume (Retained)	0.035 ac-ft		
Volume (Unrouted)	-0.001 ac-ft		
Error (Mass Balance)	0.1 %		

Return Event: 50 years

Subsection: Pond Inflow Summary Return Event: 5 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'Underground Detention'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed Storm Sewer DA

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed Storm Sewer DA	0.615	11.950	9.70
Flow (In)	Underground Detention	0.615	11.950	9.70

Subsection: Pond Inflow Summary Return Event: 10 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'Underground Detention'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed Storm Sewer DA

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed Storm Sewer DA	0.733	11.950	11.45
Flow (In)	Underground Detention	0.733	11.950	11.45

Subsection: Pond Inflow Summary Return Event: 25 years
Label: Underground Detention (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'Underground Detention'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed Storm Sewer DA

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed Storm Sewer DA	0.903	11.950	13.94
Flow (In)	Underground Detention	0.903	11.950	13.94

Subsection: Pond Inflow Summary Return Event: 50 years Label: Underground Detention (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'Underground Detention'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed Storm Sewer DA

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed Storm Sewer DA	1.044	11.950	15.99
Flow (In)	Underground Detention	1.044	11.950	15.99

Index

C Composite Outlet Structure - 1 (Outlet Input Data, 10 years)...55, 56, 57 Composite Outlet Structure - 1 (Outlet Input Data, 25 years)...58, 59, 60 Composite Outlet Structure - 1 (Outlet Input Data, 5 years)...52, 53, 54 Composite Outlet Structure - 1 (Outlet Input Data, 50 years)...61, 62, 63 Ε Existing DA (Unit Hydrograph Summary, 10 years)...14, 15 Existing DA (Unit Hydrograph Summary, 25 years)...16, 17 Existing DA (Unit Hydrograph Summary, 5 years)...12, 13 Existing DA (Unit Hydrograph Summary, 50 years)...18, 19 Μ Master Network Summary...2, 3 ODOT TR-55 (Time-Depth Curve, 10 years)...6, 7 ODOT TR-55 (Time-Depth Curve, 25 years)...8, 9 ODOT TR-55 (Time-Depth Curve, 5 years)...4, 5 ODOT TR-55 (Time-Depth Curve, 50 years)...10, 11 Proposed Storm Sewer DA (Unit Hydrograph Summary, 10 years)...22, 23 Proposed Storm Sewer DA (Unit Hydrograph Summary, 25 years)...24, 25 Proposed Storm Sewer DA (Unit Hydrograph Summary, 5 years)...20, 21 Proposed Storm Sewer DA (Unit Hydrograph Summary, 50 years)...26, 27 U Underground Detention (IN) (Detention Time, 10 years)...66 Underground Detention (IN) (Detention Time, 25 years)...68 Underground Detention (IN) (Detention Time, 5 years)...64 Underground Detention (IN) (Detention Time, 50 years)...70 Underground Detention (IN) (Level Pool Pond Routing Summary, 10 years)...67

Underground Detention (IN) (Level Pool Pond Routing Summary, 25 years)...69
Underground Detention (IN) (Level Pool Pond Routing Summary, 5 years)...65

Underground Detention (IN) (Level Pool Pond Routing Summary, 50 years)...71

Underground Detention (IN) (Pond Inflow Summary, 10 years)...73

Underground Detention (IN) (Pond Inflow Summary, 25 years)...74

Underground Detention (IN) (Pond Inflow Summary, 5 years)...72

Underground Detention (IN) (Pond Inflow Summary, 50 years)...75

Underground Detention (OUT) (Time vs. Elevation, 10 years)...31, 32, 33

Underground Detention (OUT) (Time vs. Elevation, 25 years)...34, 35, 36

Underground Detention (OUT) (Time vs. Elevation, 5 years)...28, 29, 30

Underground Detention (OUT) (Time vs. Elevation, 50 years)...37, 38, 39

Underground Detention (Time vs. Volume, 10 years)...43, 44, 45

Underground Detention (Time vs. Volume, 25 years)...46, 47, 48

Underground Detention (Time vs. Volume, 5 years)...40, 41, 42

Underground Detention (Time vs. Volume, 50 years)...49, 50, 51

HNTB

Calculations for Joint Deflection, Che	ck Soil Plugob No. 49633	Sheet No. 1/
Made by A Reede	Date 10/1/11	
Checked by ERJOHNSON —	Date 10/3/11	
Backchecked by	Date	

Soil Plug Pi	pe system T-45-18" ppe @ 1.5% premium joints
20 62	11 PIPE - 151 PIPE - 131-18 "PIPE @ 1,5% PREMINUM JOINTS
D-125 & Skelei	pe system -45-18" pipe @ 1.5% premium joints 11 Pipe 130 11 Pipe 151-18" pipe @ 1.5% Premimum joints Dizo to premimum joints Dizo to bell bizz that pipes will be placed in 8 foot Sections
Anticipated	that pipes will be placed in 8 foot Sections
5/2 Inch de	eep equipment joint with rubber O-Ring
	effection à Joint = 0.29840 (1/2 "@ Joint)
	(max) deflection @ Joint = 0.4476° (3/4" @ Joint)
Settlement	@ Soil Plug Area per GC-042 - Soil Plug Area Settlement Rev-1
(May 25, 2	2011), Per page 11 of 90 Consolidation Settlement at the Center
	Plug is approximately 4". This is why storm sewer systm
	igned around the edges of the Soil Plug Area wherethe consolidati
	Aus less.
to MSE	m Sewer System From 0125-122 Will Be Steel Encased due to proximity straps. In addition the differential settlement is consistent straps these piperuns.
The Co	Nsolidation Settlement @ D-122 and D 171 15- approx 2,25"
	onsolidation Settlement @ D-190 is approx 3.6"
= 3.6"-2	1.25" = 1.35 " over 45' (Worst case D190 to 0171)
	45' $1.35 = 0.1125$ $1.35 = 0.1125$ $1.35 = 0.1125$ $1.35 = 0.1125$ $1.35 = 0.1125$
FOR	Reverse Curvature = 2 x 0.143z = 0,2865°
	0.2865° < 0.2984° Normal Deflection

Wall F location ultimate, s3z

SRW

Settlement Analysis
Conjuin

1/26/2011, 9:06:51 AM YHC

Wall F Location

051-

001-

Soil Layers Layer 1 (20 ft), HF / CSG Layer 2 (25 ft), CSF Layer 3 (25 ft), NPS 1 Layer 4 (45 ft), PCS 1 Layer 5 (17 ft), VSC Layer 6 (10 ft), CSC 2 Layer 7 (25 ft), NPS 2 Layer 7 (25 ft), NPS 2

SHEET 10 of 89

001 091 200 092

0.25 0.08 1 0.08 0.2 0.04 15 0.7

Non-Linear Non-Linear

10001

10001

0.13

0362

0.126 0.13

0.125

0.11

27.0 0.11

MPS1 VSC PC52

17 58

92 004

Hon-Lessor

0.125 61.0 0.12

0.125

PCS 1 165

300

1000 88

0.13

NPS2

8 OCR

ŏ ő

Material Type

Eur (ksf)

Unit Weight (Ups/fil3)

8 8

3 8

0.15 0 12

013 0.12

MF7 CSG

Total Consolidation Settlement (Depth: 60 - 202 feet)

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX H

INLET SPACING DESIGN

Description: Inlet Spacing - I-90 WB TO A4 - LT **Designer**: BH

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 6.00 Allowable Depth (ft.) 0.25

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF	AREA	CONC. TIME (min.)	TIME			SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
159+04	Begin																	
167+26	I-3D	822.00	0.90	0.10	1.00	16.05	17.05	0.0034	0.0300	0.0400	6.00	0.1667	3.92	0.34	0.00	0.34	0.134	4.45
602+08	CB-3A	777.93	0.90	0.25	1.00	3.65	10.00	0.0438	0.0440	0.0440	8.00	0.0417	5.10	0.99	0.16	1.15	0.151	3.43

1

DITCH ANALYSIS

Description: I-90 WB Temp

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

 Permanent Mat
 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	TION END	SIDE	LENGTH (ft.)	RADIUS	IN SI OPF		GRADE (ft./ft.)		AREA SUM	RUNOFF COEFF.	CA (Sum)	PROTECT TYPE	RAIN INT.		MANN. COEFF.	TIME	VEL. FLOW	SHEAR (lbs./	DESIGN FLOW	DEPTH FLOW	WIDTH
DEOM	LIVE		(11.)	(ft.)		(ft./ft.)	(16.716.)	(40103)	(acres)	002111	(Guiii)		(in./hr.)		OOLI I .	(min.)	(fps.)	sq.ft.)	(cfs.)	(ft.)	(ft.)
506+50	507+35	L	85.00	0.00	8.00	8.00	0.0030	0.06	0.06	0.90	0.05	Seed	3.36	5 5	0.030	17.42	0.57	0.04	0.18	0.20	3.18
												Seed	3.83	3 10	0.040	17.79	0.48	0.04	0.21	0.23	3.70
507+35	507+95	L	60.00	0.00	6.00	7.00	0.0080	0.00	0.06	0.80	0.05	Seed	3.25	5 5	0.030	18.59	0.87	0.09	0.18	0.18	2.30
												Seed	3.68	3 10	0.040	19.15	0.74	0.10	0.20	0.20	2.65
507+95	508+20	L	25.00	0.00	5.00	6.00	0.0185	0.22	0.28	0.80	0.23	Seed	3.23	3 5	0.030	18.83	1.77	0.32	0.74	0.28	3.04
												Seed	3.65	5 10	0.040	19.43	1.47	0.37	0.84	0.32	3.54
508+20	509+16	L	96.00	0.00	5.00	6.00	0.0219	0.13	0.41	0.80	0.33	Seed	3.16	5 5	0.030	19.60	2.07	0.42	1.06	0.30	3.35
												Jute Mat	3.14	1 5	0.040	19.78	1.67	0.46	1.05	0.34	3.72
												Temp. Mat	t 3.14	1 5	0.040	19.78	1.67	0.46	1.05	0.34	3.72
												Temp. Ma	t 3.55	5 10	0.040	20.36	1.72	0.48	1.19	0.35	3.90
509+16	509+53	L	37.00	0.00	5.00	6.00	0.0173	0.14	0.55	0.80	0.45	Seed	3.11	1 5	0.030	20.09	2.03	0.38	1.39	0.35	3.88
												Seed	3.51	I 10	0.040	20.72	1.69	0.44	1.57	0.41	4.52
509+53	510+16	L	63.00	0.00	5.00	6.00	0.0126	0.00	0.55	0.80	0.45	Seed	3.06	5 5	0.030	20.67	1.79	0.29	1.37	0.37	4.11

1

DITCH ANALYSIS

STATI	ION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)	SLOPE (ft./ft.)		(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	fLOW (ft.)	FLOW (ft.)
												Seed	3.44	10	0.040	21.43	1.49	0.34	1.54	0.43	4.77
510+16	Concent							0.11		0.90	0.55					10.00					
510+16	510+45	L	29.00	0.00	5.00	6.00	0.0098	0.00	0.66	0.90	0.55	Seed	3.04	5	0.030	20.95	1.71	0.26	1.66	0.42	4.62
												Seed	3.4	10	0.040	21.77	1.42	0.30	1.87	0.49	5.38

DITCH ANALYSIS

Description: I-90 WB Temp - 2 **Designer**: AKL

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

Permanent Mat

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	_	SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)	SLOPE		GRADE (ft./ft.)	AREA (acres)		RUNOFF COEFF.	CA (Sum)		RAIN INT. (in./hr.)	FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	WIDTH FLOW (ft.)
510+86	510+65	L	21.00	0.00	5.00	6.00	0.1434 *	0.07	0.07	0.90	0.06	Seed	3.6	1 5	0.030	15.12	2.83	1.08	0.23	0.12	1.33
												Jute Mat	3.60	5 5	0.040	15.15	2.29	1.20	0.23	0.13	3 1.48
												Temp. Mat	3.60	5 5	0.040	15.15	2.29	1.20	0.23	0.13	1.48
												Perm, Type	1 3.60	5 5	0.040	15.15	2.29	1.20	0.23	0.13	1.48
												Perm, Type	1 4.18	B 10	0.040	15.15	2.36	1.27	0.26	0.14	1.57
510+65	510+55	L	10.00	0.00	5.00	6.00	0.0108	0.00	0.07	0.90	0.06	Seed	3.58	8 5	0.030	15.30	1.10	0.13	0.23	0.19	2.13
												Seed	4.1	5 10	0.040	15.33	0.89	0.16	0.26	0.23	3 2.54
510+55	510+45	L	10.00	0.00	5.00	6.00	0.1250*	0.00	0.07	0.90	0.06	Seed	3.58	3 5	0.030	15.37	2.69	0.96	0.23	0.12	1.36
												Jute Mat	3.58	3 5	0.040	15.38	2.19	1.07	0.23	0.14	1.51
												Temp. Mat	3.58	3 5	0.040	15.38	2.19	1.07	0.23	0.14	1.51
												Perm, Type	1 3.58	3 5	0.040	15.38	2.19	1.07	0.23	0.14	1.51
												Perm, Type	1 4.14	4 10	0.040	15.41	2.26	1.13	0.26	0.15	1.60

PID: 49633 Date: 11/16/2011 Project: CUY-90-14.90 Location: E. 9TH ST to detention basin

Description: E. 9TH STREET to detention basin - Temp Connection **Designer**: BH

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 50

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 669.50

JUNCTION	STATION	ΔAREA	ΔCA	BEGIN	RAINF	ALL [DISCHA	ARGE		PIPE		F/L PIPE	MEAN	JUST FULL	FRICT	HYGR EL.	COVER	COVER	COVER	INLET TYPE
From To	From To	ΣAREA	ΣCA	TIME	INTEN		(cfs	•			SLOPE	IN / OUT	VEL	CAPACITY	SLOPE		IN / OUT	MINUS	MINUS	MANNING'S
	10	(acres)		(min.)	(10 yrs.) (5	60 yrs.) (10 yrs.)(5	i0 yrs.)	(in.)	(ft.)	(ft./ft.)	(ft.)	(fps.)	(cfs.)	(ft./ft.)	(ft.)	(ft.)	HY GR	CROWN	'n'
D162 D157	174+92	0.73	0.60	15.00	4.20	5.35	2.5	3.2	15	182.0	0.0098	688.76	4.42	5.97	0.0033	689.44	692.03	2.59	2.02	CB 5
begin	173+09	0.73	0.60									686.97				687.96	695.40			0.015
EXA5 D157	173+20	1.13	1.02	10.00	5.10	6.78	5.2	6.9	15	15.3	0.0098	678.99	5.14	5.96	0.0151	680.24	695.00	14.76	14.76	MH 3
begin	173+09	1.86	1.62									678.84				679.99	695.40			0.015
D157 D158	173+09	0.00	0.00	15.69	4.10	5.20	6.6	8.4	18	75.0	0.0095	670.32	5.50	9.53	0.0085	671.82	695.40	23.58	23.58	MH 3
	173+07	1.86	1.62									669.61				671.18	680.99			0.015
D158 D44	173+07	0.00	0.00	15.91	4.07	5.20	6.6	8.4	18	149.0	0.0099	669.61	5.58	9.73	0.0085	671.18	680.99	9.81	9.88	MH 3
	174+46	1.86	1.62									668.14				669.91	673.99			0.015
* D44 DET9	174+46	0.24	0.22	16.36	4.01	5.20	7.4	9.5	18	37.0	0.0038	668.14	4.17	6.02	0.0110	669.91	673.99	4.08	4.35	CB 3A
final	174+63	2.10	1.84						Warning	9		668.00				669.50	669.28			0.015

^{*} D44 to pond is slightly surcharged for this temporary condition and has a 0.27 ft pressure head.

PID: 49633 Date: 11/16/2011 Project: CUY-90-14.90 Location: E. 9TH ST to detention basin

Description: E. 9TH STREET to detention basin - CCG1 **Designer**: BH

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 50

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 669.50

JUNCTION : From To	STATION From	ΔAREA Σ AREA	_		RAINF INTEN		ISCHA (cfs.		DIAM. L	PIPE ENGTH	ISLOPE	F/L PIPE IN / OUT	MEAN VEL	JUST FULL CAPACITY			COVER IN / OUT	COVER	COVER MINUS	INLET TYPE MANNING'S
	То	(acres)		(min.)	(10 yrs.) (5	60 yrs.) (1	0 yrs.)(5	0 yrs.)	(in.)	(ft.)	(ft./ft.)	(ft.)	(fps.)	(cfs.)	(ft./ft.)	(ft.)	(ft.)	HY GR	CROWN	'n'
D162 D157 begin	174+92 173+09	0.73 0.73	0.60 0.60		4.20	5.35	2.5	3.2	15	182.0	0.0098	688.76 686.97	4.42	5.97	0.0033	689.44 687.96	692.03 695.40	2.59	2.02	CB 5 0.015
D157 D158	173+09 173+07	0.00 0.73	0.00 0.60		4.10	5.30	2.5	3.2	18	75.0	0.0095	670.32 669.61	4.29	9.53	0.0012	670.94 670.70	695.40 680.99	24.46	23.58	MH 3 0.015
D158 D44	173+07 174+46	0.00 0.73	0.00 0.60		4.06	5.16	2.4	3.1	18	149.0	0.0099	669.61 668.14		9.73	0.0012	670.22 669.58	680.99 673.99	10.77	9.88	MH 3 0.015
D44 DET9 final	174+46 174+63	0.24 0.97	0.22 0.82		3.99	5.16	3.3	4.2	18	37.0	0.0038	668.14 668.00		6.02	0.0022	669.58 669.50	673.99 669.28	4.41	4.35	CB 3A 0.015

1102-1

REFERENCE SECTION

1102.3.5

INLET SPACING DESIGN

Description: 2011-08-02 BL8 - D32 Inlet Spread.xml **Designer**: BAHess

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 9.50 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF	AREA		TIME			SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
178+94	Begin																	
175+02	CB-3	290.00	0.90	0.48	1.00	1.77	10.00	0.0169	0.0300	0.0300	9.50	0.0417	5.10	1.54	0.64	2.18	0.199	6.63

DITCH ANALYSIS

Rainfall Area: A Allowable Shears

Seed: 0.40 **Jute Mat:** 0.45 **Temporary Mat:** 1.00

Permanent Mat Type 1: 2.00 **Type 2**: 3.00 **Type 3**: 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STA' BEGIN	TION END	SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)	SLOPE	_	GRADE (ft./ft.)	AREA (acres)			_	PROTECT TYPE		FREQ.	MANN. COEFF.	TIME FLOW (min.)		SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	
602+12	601+49	L	76.00	0.00	10.00	2.60	0.0670	0.50	0.50	0.90	0.45	Seed	3.5	8 5	0.030	15.37	3.37	1.15	1.61	0.28	3.47
												Jute Mat	3.5	7 5	0.040	15.46	2.72	1.28	1.61	0.31	3.86
												Temp. Mat	t 3.5	7 5	0.040	15.46	2.72	1.28	1.61	0.31	3.86
												Perm, Type	1 3.5	7 5	0.040	15.46	2.72	1.28	1.61	0.31	3.86
												Perm, Type	1 4.1	4 10	0.040	15.45	2.82	1.35	1.86	0.32	2 4.08

DITCH ANALYSIS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

 Permanent Mat
 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STATION	;	SIDE LENG	TH RADIUS	i IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN EN	D	(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)		(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	fLOW (ft.)	FLOW (ft.)
600+93 601+4	19	L 73.0	0.00	10.00	5.00	0.0130	0.24	0.24	0.78	0.19	Seed Seed	3.5 <i>i</i>				1.41 1.18	0.20 0.24	0.66 0.76	0.25 0.29	

CAPACITY OF A GRATE CATCH BASIN IN A SUMP

1102-1

REFERENCE SECTION

SUMP

1102.3.5

Bern Eleve 670.00 : ok Shate Elev @ 668.50

D-166 Sump Calculation

CAPACITY OF A GRATE CATCH BASIN IN A SUMP

1102-1

REFERENCE SECTION

1102.3.5

Grate Elev 670.50

 \triangleleft CAPACITY OF A GRATE CATCH BASIN IN (WATER PONDED ON THE GRATE)

PID: 49633 Date: 10/13/2011 Project: Cleveland Innerbelt Location: Bridge 8 inlet

Description: 2011-08-02 BL8 - D32 Pipe **Designer**: PNS

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 677.25

	ION S To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME		SITY	(cfs	.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)		 JUST FULL CAPACITY (cfs.)				MINUS		INLET TYPE MANNING'S 'n'
D32 begii	HW n	175+02 175+27	0.48 0.48	0.43 0.43	10.00	5.10	6.20	2.2	2.7	15	10.0	0.0100	676.10 676.00	 6.02	0.0023	677.27 677.25	690.65 677.25	13.38	13.30	CB 3 0.015

NOTE:

This is a broken back pipe consisting of three sections:

- first section is 5' @ 1.00%;
- middle section is 26' @ 35.97% and
- the final section is 10' @ 1.00%.

Designer: AHR

1

PID: 49633 Date: 10/13/2011 Project: CUY-90-14.90 Location: OUTLET TO 9TH COMBINED SEWER NEAR STA. 39+00 LT

Description: E 9TH STREET detention basin to BL-7 SCUPPERS, A4 LT SHDR DRAINING

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 663.92

•	JUNCT From		STATION From To	ΔAREA Σ AREA (acres)		TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	COVER MINUS HY GR	COVER MINUS CROWN	INLET TYPE MANNING'S 'n'
*	D120 E		601+07 601+09	1.76 1.76	1.23 1.23		1.45	1.75	1.8	2.2	12	16.0	0.0063	664.64 664.54	3.40	2.63	0.0049	665.43 665.35	669.25 670.15	3.82	3.61	CB 2-2A 0.015
	D119 [)165	601+09 38+90	0.00 1.76	0.00 1.23		1.45	1.74	1.8	2.1	12	96.0	0.0059	664.54 663.97	3.33	2.56	0.0048	665.28 664.78	670.15 672.40	4.87	4.61	MH 3 0.015
	D166 E begir		37+75 35+73	0.24 2.00	0.21 1.44	10.00	5.10	6.19	1.0	1.3	12	16.1	0.0150	665.47 665.23	4.12	4.06	0.0017	666.00 665.97	668.50 671.28	2.50	2.03	CB 2-2B 0.015
	D163 [0165	37+73 38+95	0.00 2.00	0.00 1.44		5.08	6.02	1.0	1.2	12	132.3	0.0088	665.18 664.02		3.11	0.0016	665.64 664.75	671.28 672.07	5.64	5.10	MH 3 0.015
	D164 E		601+52 38+95	0.74 2.74	0.61 2.05	16.00	4.06	4.91	2.5	3.0	12 Warnin g		0.0031	665.29 665.12	3.15	1.85	0.0094	666.51 665.99	670.50 672.07	3.99	4.21	CB 2-2B 0.015
	D165 final		38+95 38+91	0.00 2.74	0.00 2.05		1.44	1.74	2.9	3.6	12	5.0	0.0740	663.37 663.00	9.75	9.04	0.0134	663.99 663.92	672.07 676.80	8.08	7.70	MH 3 0.015

CDSS 1.0.0.3.

^{* -} WQB Structure used

^{** -} TC manipulated to get PondPack flow results

PID: 49633 Date: 05/18/2011 Project: CUY-90-14.90 Location: E. 9TH ST at Carnegie/Ramp A4_40+81 LT

Description: E. 9TH STREET at Carnegie/Ramp A4_40+81 LT **Designer**: BSB

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 668.19

JUNCTION S	_	_	_							PIPE										INLET TYPE
From To	From To	Σ AREA (acres)	ΣCA		INTEN		(cfs	,				IN / OUT		CAPACITY			IN / OUT	MINUS		MANNING'S
		(acres)		(min.)	(10 yrs.) (2	25 yrs.) ((10 yrs.)(2	5 yrs.)	(in.)	(ft.)	(ft./ft.)	(ft.)	(fps.)	(cfs.)	(ft./ft.)	(ft.)	(ft.)	HY GR	CROWN	'n'
D12 EXCS	40+81	0.13	0.12	10.00	5.10	6.19	0.6	0.7	15	2.6	0.0000	666.94	0.49	0.04	0.0002	668.19	670.32	2.13	2.13	CB 3A
begin	40+83	0.13	0.12						Warning			666.94				668.19	670.34			0.015

Project Summary		
Title	9th Street Outfall Cleveland Innerbelt	Temporary Condition during MO
Engineer	Brett Hess	phase
Company	HNTB	
Date	10/25/2011	

Table of Contents

	Master Network Summary	2
ODOT TR-55	Type II 24 hour	
	Time-Depth Curve	5
	Time-Depth Curve	7
	Time-Depth Curve	9
	Time-Depth Curve	11
Existing 9th	Type II 24 hour	
	Runoff CN-Area	13
Proposed 9th	Type II 24 hour	
	Runoff CN-Area	14
Existing 9th	Type II 24 hour	
	Unit Hydrograph Summary	15
Existing Orange - 14th	Type II 24 hour	
	Unit Hydrograph Summary	17
Proposed 9th	Type II 24 hour	
	Unit Hydrograph Summary	19
Proposed Orange - 14th	Type II 24 hour	
	Unit Hydrograph Summary	21
PO-2	Type II 24 hour	
	Elevation-Area Volume Curve	23
	Volume Equations	24
PO-2	Type II 24 hour	
	Elevation-Volume-Flow Table (Pond)	25
PO-2 (IN)	Type II 24 hour	
	Level Pool Pond Routing Summary	26
	Level Pool Pond Routing Summary	27
	Level Pool Pond Routing Summary	28
	Level Pool Pond Routing Summary	29
	Pond Inflow Summary	30
	Pond Inflow Summary	31
	Pond Inflow Summary	32
	Pond Inflow Summary	33

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Existing Orange - 14th	5 year	5.00	1.509	11.900	27.39
Existing Orange - 14th	10 year	10.00	1.870	11.900	33.83
Existing Orange - 14th	25 year	25.00	2.401	11.900	43.15
Existing Orange - 14th	50 year	50.00	2.847	11.900	50.86
Existing 9th	5 year	5.00	0.086	11.950	1.56
Existing 9th	10 year	10.00	0.111	11.900	2.00
Existing 9th	25 year	25.00	0.148	11.900	2.68
Existing 9th	50 year	50.00	0.179	11.900	3.25
Proposed 9th	5 year	5.00	0.502	11.950	8.74
Proposed 9th	10 year	10.00	0.611	11.950	10.53
Proposed 9th	25 year	25.00	0.771	11.950	13.09
Proposed 9th	50 year	50.00	0.904	11.950	15.19
Proposed Orange - 14th	5 year	5.00	1.208	11.900	21.96
Proposed Orange - 14th	10 year	10.00	1.510	11.900	27.40
Proposed Orange - 14th	25 year	25.00	1.954	11.900	35.31
Proposed Orange - 14th	50 year	50.00	2.329	11.900	41.87

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-01	5 year	5.00	1.509	11.900	27.39
J-01	10 year	10.00	1.870	11.900	33.83
J-01	25 year	25.00	2.401	11.900	43.15
J-01	50 year	50.00	2.847	11.900	50.86
Composite Outfall	5 year	5.00	3.481	12.050	31.92
Composite Outfall	10 year	10.00	4.312	12.050	32.49
Composite Outfall	25 year	25.00	5.487	12.000	33.37
Composite Outfall	50 year	50.00	6.473	12.100	34.54
EX_OUT	5 year	5.00	1.697	12.000	16.20
EX_OUT	10 year	10.00	2.091	12.000	16.67
EX_OUT	25 year	25.00	2.649	11.950	17.44
EX_OUT	50 year	50.00	3.146	11.950	17.97
J-02	5 year	5.00	1.615	11.900	14.76
J-02	10 year	10.00	1.985	11.850	14.76
J-02	25 year	25.00	2.507	11.800	14.76
J-02	50 year	50.00	2.973	11.800	14.76
J-03	5 year	5.00	1.613	11.950	14.80
J-03	10 year	10.00	1.983	11.900	14.87

9th Street Outfall Cleveland Innerbelt-Temp Connection.ppc 10/25/2011 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 2 of 34

Subsection: Master Network Summary

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-03	25 year	25.00	2.504	11.850	14.89
J-03	50 year	50.00	2.971	11.800	14.87
J-04	5 year	5.00	1.612	12.000	14.78
J-04	10 year	10.00	1.982	11.950	14.81
J-04	25 year	25.00	2.504	11.900	14.82
J-04	50 year	50.00	2.970	11.850	14.81
J-06	5 year	5.00	0.086	11.950	1.56
J-06	10 year	10.00	0.111	11.900	2.00
J-06	25 year	25.00	0.148	11.900	2.68
J-06	50 year	50.00	0.179	11.900	3.25
J-11	5 year	5.00	1.208	11.900	21.96
J-11	10 year	10.00	1.510	11.900	27.40
J-11	25 year	25.00	1.954	11.900	35.31
J-11	50 year	50.00	2.329	11.900	41.87
J-12	5 year	5.00	1.287	11.950	14.76
J-12	10 year	10.00	1.616	11.900	14.76
J-12	25 year	25.00	2.075	11.850	14.76
J-12	50 year	50.00	2.432	11.800	14.76
J-13	5 year	5.00	1.286	11.950	14.98
J-13	10 year	10.00	1.614	11.950	14.80
J-13	25 year	25.00	2.073	11.900	14.83
J-13	50 year	50.00	2.429	11.850	14.92
J-14	5 year	5.00	1.285	12.000	14.85
J-14	10 year	10.00	1.613	12.000	14.78
J-14	25 year	25.00	2.072	11.950	14.79
J-14	50 year	50.00	2.429	11.900	14.83
PR_OUT	5 year	5.00	1.785	12.200	16.05
PR_OUT	10 year	10.00	2.223	12.350	16.14
PR_OUT	25 year	25.00	2.840	12.200	17.05
PR_OUT	50 year	50.00	3.329	12.150	18.85
J-16	5 year	5.00	0.501	12.250	1.29
J-16	10 year	10.00	0.611	12.300	1.38
J-16	25 year	25.00	0.770	12.200	2.29
J-16	50 year	50.00	0.904	12.100	4.11

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-2 (IN)	5 year	5.00	0.502	11.950	8.74	(N/A)	(N/A)
PO-2 (OUT)	5 year	5.00	0.501	12.250	1.29	668.81	0.177

Subsection: Master Network Summary

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-2 (IN)	10 year	10.00	0.611	11.950	10.53	(N/A)	(N/A)
PO-2 (OUT)	10 year	10.00	0.611	12.300	1.38	669.04	0.227
PO-2 (IN)	25 year	25.00	0.771	11.950	13.09	(N/A)	(N/A)
PO-2 (OUT)	25 year	25.00	0.770	12.200	2.29	669.33	0.289
PO-2 (IN)	50 year	50.00	0.904	11.950	15.19	(N/A)	(N/A)
PO-2 (OUT)	50 year	50.00	0.904	12.100	4.11	669.51	0.328

Subsection: Time-Depth Curve Return Event: 5.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	5.00 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.000	0.00	0.00	0.01	0.01	0.01
0.500	0.01	0.02	0.02	0.02	0.03
1.000	0.03	0.03	0.04	0.04	0.04
1.500	0.05	0.05	0.05	0.06	0.06
2.000	0.06	0.07	0.07	0.07	0.08
2.500	0.08	0.09	0.09	0.09	0.10
3.000	0.10	0.10	0.11	0.11	0.12
3.500	0.12	0.12	0.13	0.13	0.14
4.000	0.14	0.14	0.15	0.15	0.16
4.500	0.16	0.17	0.17	0.17	0.18
5.000	0.18	0.19	0.19	0.20	0.20
5.500	0.21	0.21	0.22	0.22	0.23
6.000	0.23	0.24	0.24	0.25	0.26
6.500	0.26	0.27	0.27	0.28	0.28
7.000	0.29	0.29	0.30	0.31	0.31
7.500	0.32	0.33	0.33	0.34	0.34
8.000	0.35	0.36	0.36	0.37	0.38
8.500	0.39	0.39	0.40	0.41	0.42
9.000	0.43	0.44	0.45	0.46	0.47
9.500	0.48	0.49	0.50	0.51	0.52
10.000	0.53	0.54	0.55	0.57	0.58
10.500	0.60	0.61	0.63	0.65	0.67
11.000	0.69	0.71	0.73	0.76	0.79
11.500	0.83	0.90	1.03	1.26	1.66
12.000	1.94	1.99	2.04	2.08	2.12
12.500	2.15	2.17	2.19	2.22	2.24
13.000	2.25	2.27	2.29	2.30	2.32
13.500	2.33	2.35	2.36	2.37	2.38
14.000	2.39	2.41	2.42	2.43	2.44
14.500	2.45	2.46	2.47	2.47	2.48
15.000	2.49	2.50	2.51	2.52	2.53
15.500	2.53	2.54	2.55	2.56	2.56
16.000	2.57	2.58	2.58	2.59	2.60
16.500	2.60	2.61	2.61	2.62	2.63

9th Street Outfall Cleveland Innerbelt-Temp Connection.ppc 10/25/2011 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 5 of 34

Subsection: Time-Depth Curve Return Event: 5.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	
17.000	2.63	2.64	2.64	2.65	2.66	
17.500	2.66	2.67	2.67	2.68	2.68	
18.000	2.69	2.69	2.70	2.70	2.71	
18.500	2.71	2.72	2.72	2.73	2.73	
19.000	2.74	2.74	2.75	2.75	2.76	
19.500	2.76	2.76	2.77	2.77	2.78	
20.000	2.78	2.78	2.79	2.79	2.79	
20.500	2.80	2.80	2.81	2.81	2.81	
21.000	2.82	2.82	2.82	2.83	2.83	
21.500	2.84	2.84	2.84	2.85	2.85	
22.000	2.85	2.86	2.86	2.86	2.87	
22.500	2.87	2.87	2.88	2.88	2.88	
23.000	2.89	2.89	2.89	2.90	2.90	
23.500	2.90	2.91	2.91	2.91	2.92	
24.000	2.92	(N/A)	(N/A)	(N/A)	(N/A)	

Subsection: Time-Depth Curve Return Event: 10.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour					
Label	Type II 24 hour				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	10.00 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.01
0.500	0.02	0.02	0.02	0.03	0.03
1.000	0.04	0.04	0.04	0.05	0.05
1.500	0.05	0.06	0.06	0.07	0.07
2.000	0.07	0.08	0.08	0.09	0.09
2.500	0.10	0.10	0.10	0.11	0.11
3.000	0.12	0.12	0.13	0.13	0.14
3.500	0.14	0.14	0.15	0.15	0.16
4.000	0.16	0.17	0.17	0.18	0.18
4.500	0.19	0.19	0.20	0.20	0.21
5.000	0.21	0.22	0.23	0.23	0.24
5.500	0.24	0.25	0.25	0.26	0.27
6.000	0.27	0.28	0.28	0.29	0.30
6.500	0.30	0.31	0.32	0.32	0.33
7.000	0.34	0.34	0.35	0.36	0.36
7.500	0.37	0.38	0.39	0.39	0.40
8.000	0.41	0.42	0.42	0.43	0.44
8.500	0.45	0.46	0.47	0.48	0.49
9.000	0.50	0.51	0.52	0.53	0.54
9.500	0.55	0.57	0.58	0.59	0.60
10.000	0.62	0.63	0.64	0.66	0.68
10.500	0.69	0.71	0.73	0.75	0.78
11.000	0.80	0.83	0.85	0.89	0.92
11.500	0.96	1.04	1.20	1.46	1.93
12.000	2.25	2.32	2.38	2.42	2.47
12.500	2.50	2.53	2.55	2.58	2.60
13.000	2.62	2.65	2.66	2.68	2.70
13.500	2.72	2.73	2.75	2.76	2.78
14.000	2.79	2.80	2.81	2.82	2.84
14.500	2.85	2.86	2.87	2.88	2.89
15.000	2.90	2.91	2.92	2.93	2.94
15.500	2.95	2.96	2.97	2.98	2.98
16.000	2.99	3.00	3.01	3.02	3.02
16.500	3.03	3.04	3.04	3.05	3.06

9th Street Outfall Cleveland Innerbelt-Temp Connection.ppc 10/25/2011 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 7 of 34

Subsection: Time-Depth Curve Return Event: 10.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	3.07	3.07	3.08	3.09	3.09
17.500	3.10	3.11	3.11	3.12	3.13
18.000	3.13	3.14	3.14	3.15	3.16
18.500	3.16	3.17	3.17	3.18	3.18
19.000	3.19	3.19	3.20	3.20	3.21
19.500	3.21	3.22	3.22	3.23	3.23
20.000	3.24	3.24	3.25	3.25	3.25
20.500	3.26	3.26	3.27	3.27	3.28
21.000	3.28	3.28	3.29	3.29	3.30
21.500	3.30	3.31	3.31	3.31	3.32
22.000	3.32	3.33	3.33	3.33	3.34
22.500	3.34	3.35	3.35	3.35	3.36
23.000	3.36	3.37	3.37	3.37	3.38
23.500	3.38	3.38	3.39	3.39	3.40
24.000	3.40	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 25.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour					
Label	Type II 24 hour				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	25.00 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.02
0.500	0.02	0.03	0.03	0.03	0.04
1.000	0.04	0.05	0.05	0.06	0.06
1.500	0.07	0.07	0.08	0.08	0.09
2.000	0.09	0.09	0.10	0.10	0.11
2.500	0.12	0.12	0.13	0.13	0.14
3.000	0.14	0.15	0.15	0.16	0.16
3.500	0.17	0.17	0.18	0.18	0.19
4.000	0.20	0.20	0.21	0.21	0.22
4.500	0.23	0.23	0.24	0.24	0.25
5.000	0.26	0.26	0.27	0.28	0.28
5.500	0.29	0.30	0.31	0.31	0.32
6.000	0.33	0.33	0.34	0.35	0.36
6.500	0.37	0.37	0.38	0.39	0.40
7.000	0.40	0.41	0.42	0.43	0.44
7.500	0.45	0.46	0.46	0.47	0.48
8.000	0.49	0.50	0.51	0.52	0.53
8.500	0.54	0.55	0.56	0.58	0.59
9.000	0.60	0.61	0.63	0.64	0.65
9.500	0.67	0.68	0.69	0.71	0.72
10.000	0.74	0.76	0.77	0.79	0.81
10.500	0.83	0.86	0.88	0.91	0.93
11.000	0.96	0.99	1.03	1.07	1.11
11.500	1.16	1.25	1.45	1.76	2.32
12.000	2.71	2.79	2.86	2.92	2.97
12.500	3.01	3.04	3.07	3.10	3.13
13.000	3.16	3.18	3.21	3.23	3.25
13.500	3.27	3.29	3.30	3.32	3.34
14.000	3.35	3.37	3.38	3.40	3.41
14.500	3.43	3.44	3.45	3.47	3.48
15.000	3.49	3.50	3.51	3.53	3.54
15.500	3.55	3.56	3.57	3.58	3.59
16.000	3.60	3.61	3.62	3.63	3.64
16.500	3.64	3.65	3.66	3.67	3.68

9th Street Outfall Cleveland Innerbelt-Temp Connection.ppc 10/25/2011 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 9 of 34

Subsection: Time-Depth Curve Return Event: 25.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	3.69	3.70	3.70	3.71	3.72
17.500	3.73	3.74	3.74	3.75	3.76
18.000	3.77	3.77	3.78	3.79	3.80
18.500	3.80	3.81	3.82	3.82	3.83
19.000	3.84	3.84	3.85	3.85	3.86
19.500	3.87	3.87	3.88	3.88	3.89
20.000	3.89	3.90	3.90	3.91	3.91
20.500	3.92	3.93	3.93	3.94	3.94
21.000	3.95	3.95	3.96	3.96	3.97
21.500	3.97	3.98	3.98	3.99	3.99
22.000	4.00	4.00	4.01	4.01	4.02
22.500	4.02	4.03	4.03	4.03	4.04
23.000	4.04	4.05	4.05	4.06	4.06
23.500	4.07	4.07	4.08	4.08	4.09
24.000	4.09	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour				
Label Type II 24 hour				
Start Time	0.000 hours			
Increment	0.100 hours			
End Time	24.000 hours			
Return Event	50.00 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.02
0.500	0.02	0.03	0.03	0.04	0.04
1.000	0.05	0.05	0.06	0.06	0.07
1.500	0.08	0.08	0.09	0.09	0.10
2.000	0.10	0.11	0.11	0.12	0.13
2.500	0.13	0.14	0.14	0.15	0.15
3.000	0.16	0.17	0.17	0.18	0.19
3.500	0.19	0.20	0.20	0.21	0.22
4.000	0.22	0.23	0.24	0.24	0.25
4.500	0.26	0.26	0.27	0.28	0.29
5.000	0.29	0.30	0.31	0.32	0.32
5.500	0.33	0.34	0.35	0.36	0.36
6.000	0.37	0.38	0.39	0.40	0.41
6.500	0.42	0.42	0.43	0.44	0.45
7.000	0.46	0.47	0.48	0.49	0.50
7.500	0.51	0.52	0.53	0.54	0.55
8.000	0.56	0.57	0.58	0.59	0.60
8.500	0.62	0.63	0.64	0.66	0.67
9.000	0.69	0.70	0.71	0.73	0.74
9.500	0.76	0.77	0.79	0.81	0.83
10.000	0.84	0.86	0.88	0.90	0.93
10.500	0.95	0.98	1.00	1.03	1.06
11.000	1.10	1.13	1.17	1.22	1.27
11.500	1.32	1.43	1.65	2.01	2.65
12.000	3.09	3.18	3.26	3.32	3.38
12.500	3.43	3.46	3.50	3.54	3.57
13.000	3.60	3.63	3.65	3.68	3.70
13.500	3.72	3.74	3.77	3.78	3.80
14.000	3.82	3.84	3.86	3.87	3.89
14.500	3.90	3.92	3.93	3.95	3.96
15.000	3.98	3.99	4.00	4.02	4.03
15.500	4.04	4.06	4.07	4.08	4.09
16.000	4.10	4.11	4.12	4.13	4.14
16.500	4.15	4.16	4.17	4.18	4.19

9th Street Outfall Cleveland Innerbelt-Temp Connection.ppc 10/25/2011 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 11 of 34

Subsection: Time-Depth Curve Return Event: 50.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	4.20	4.21	4.22	4.23	4.24
17.500	4.25	4.26	4.27	4.27	4.28
18.000	4.29	4.30	4.31	4.32	4.32
18.500	4.33	4.34	4.35	4.36	4.36
19.000	4.37	4.38	4.38	4.39	4.40
19.500	4.40	4.41	4.42	4.42	4.43
20.000	4.44	4.44	4.45	4.45	4.46
20.500	4.47	4.47	4.48	4.48	4.49
21.000	4.50	4.50	4.51	4.51	4.52
21.500	4.52	4.53	4.54	4.54	4.55
22.000	4.55	4.56	4.56	4.57	4.58
22.500	4.58	4.59	4.59	4.60	4.60
23.000	4.61	4.61	4.62	4.62	4.63
23.500	4.63	4.64	4.64	4.65	4.65
24.000	4.66	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Runoff CN-Area Return Event: 5.00 years Label: Existing 9th Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.2800	100.0	0.0	98.000
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil C	74.000	0.3900	0.0	0.0	74.000
Open space (Lawns,parks etc.) - Fair condition; grass cover 50% to 75% - Soil C	79.000	0.0800	0.0	0.0	79.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.7500	(N/A)	(N/A)	83.493

Subsection: Runoff CN-Area Return Event: 5.00 years Label: Proposed 9th Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.9900	100.0	0.0	98.000
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil B	74.000	0.5000	0.0	0.0	74.000
CN Description	79.000	0.2700	0.0	0.0	79.000
Temp Connection	98.000	1.1300	100.0	0.0	98.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	2.8900	(N/A)	(N/A)	92.073

Subsection: Unit Hydrograph Summary

Return Event: 5.00 years Label: Existing 9th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.7500 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	1.63 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	1.56 ft ³ /s
Drainage Area	
SCS CN (Composite)	83.000
Area (User Defined)	0.7500 acres
Maximum Retention (Pervious)	2.05 in
Maximum Retention (Pervious, 20 percent)	0.41 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.38 in
Runoff Volume (Pervious)	0.086 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	0.086 ac-ft
SCS Unit Hydrograph Parame	eters
	0.010
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years

Label: Existing 9th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters				
Unit peak, qp	10.20 ft ³ /s			
Unit peak time, Tp	0.056 hours			
Unit receding limb, Tr	0.222 hours			
Total unit time, Tb	0.278 hours			

Subsection: Unit Hydrograph Summary

Label: Existing Orange - 14th

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	9.9300 acres
Computational Time	0.011 hours
Increment Time to Book (Computed)	11 022 hours
Time to Peak (Computed)	11.922 hours 28.40 ft ³ /s
Flow (Peak, Computed)	28.40 ft ⁹ /s
Output Increment	0.030 Hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated Output)	27.39 ft ³ /s
Drainage Area	
SCS CN (Composite)	88.969
Area (User Defined)	9.9300 acres
Maximum Retention (Pervious)	1.24 in
Maximum Retention (Pervious, 20 percent)	0.25 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.83 in
Runoff Volume (Pervious)	1.510 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	1.509 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749

Return Event: 5.00 years

Storm Event: Type II 24 hour

Subsection: Unit Hydrograph Summary

Label: Existing Orange - 14th

SCS Unit Hydrograph Parameters				
Unit peak, qp	135.01 ft ³ /s			
Unit peak time, Tp	0.056 hours			
Unit receding limb, Tr	0.222 hours			
Total unit time, Tb	0.278 hours			

Return Event: 5.00 years Storm Event: Type II 24 hour

Subsection: Unit Hydrograph Summary

Label: Proposed 9th

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.098 hours
Area (User Defined)	2.8900 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	11.930 hours
Flow (Peak, Computed)	9.01 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	8.74 ft ³ /s
Drainage Area	
SCS CN (Composite)	92.000
Area (User Defined)	2.8900 acres
Maximum Retention (Pervious)	0.87 in
Maximum Retention (Pervious, 20 percent)	0.17 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.09 in
Runoff Volume (Pervious)	0.502 ac-ft
Hydrograph Volume (Area ur	nder Hydrograph curve)
Volume	0.502 ac-ft
SCS Unit Hydrograph Param	eters
Time of Concentration (Composite)	0.098 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Return Event: 5.00 years

Storm Event: Type II 24 hour

Subsection: Unit Hydrograph Summary

Label: Proposed 9th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	33.41 ft ³ /s
Unit peak time, Tp	0.065 hours
Unit receding limb, Tr	0.261 hours
Total unit time, Tb	0.327 hours

Return Event: 5.00 years

Subsection: Unit Hydrograph Summary

Label: Proposed Orange - 14th

Storm Event	Type II 24 hour		
Return Event	5.00 years		
Duration	24.000 hours		
Depth	2.92 in		
Time of Concentration (Composite)	0.083 hours		
Area (User Defined)	8.4600 acres		
Computational Time			
Increment	0.011 hours		
Time to Peak (Computed)	11.922 hours		
Flow (Peak, Computed)	22.85 ft ³ /s		
Output Increment	0.050 hours		
Time to Flow (Peak Interpolated Output)	11.900 hours		
Flow (Peak Interpolated Output)	21.96 ft ³ /s		
Drainage Area			
SCS CN (Composite)	87.602		
Area (User Defined)	8.4600 acres		
Maximum Retention (Pervious)	1.42 in		
Maximum Retention (Pervious, 20 percent)	0.28 in		
Cumulative Runoff			
Cumulative Runoff Depth (Pervious)	1.72 in		
Runoff Volume (Pervious)	1.210 ac-ft		
Lludrograph Valuma (Araguna			
Hydrograph Volume (Area und	er Hydrograph curve)		
Volume	1.208 ac-ft		
SCS Unit Hydrograph Parame	ters		
Time of Concentration (Composite)	0.083 hours		
Computational Time Increment	0.011 hours		
Unit Hydrograph Shape Factor	483.432		
K Factor	0.749		
Receding/Rising, Tr/Tp	1.670		

Return Event: 5.00 years

Storm Event: Type II 24 hour

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Proposed Orange - 14th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	115.03 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Elevation-Area Volume Curve Return Event: 5.00 years Label: PO-2 Storm Event: Type II 24 hour

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr (A1*A2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
667.00	0.000	0.0006	0.0000	0.000	0.000
667.75	0.000	0.0156	0.0193	0.005	0.005
668.00	0.000	0.1756	0.2435	0.020	0.025
669.00	0.000	0.2091	0.5763	0.192	0.217
669.75	0.000	0.2364	0.6678	0.167	0.384

Subsection: Volume Equations Return Event: 5.00 years Label: PO-2 Storm Event: Type II 24 hour

Pond Volume Equations

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2 - El1) * (Area1 + Area2 + sqr(Area1 * Area2))

where: EL1, EL2 Lower and upper elevations of the increment

Area1, Area2 Areas computed for EL1, EL2, respectively
Volume Incremental volume between EL1 and EL2

Subsection: Elevation-Volume-Flow Table (Pond)

Return Event: 5.00 years

Label: PO-2

Storm Event: Type II 24 hour

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	667.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + 0 (ft ³ /s)
667.00	0.00	0.000	0.0006	0.00	0.00	0.00
667.50	0.68	0.002	0.0084	0.00	0.68	1.58
668.00	0.96	0.025	0.1756	0.00	0.96	13.12
668.50	1.18	0.117	0.1920	0.00	1.18	57.80
669.00	1.36	0.217	0.2091	0.00	1.36	106.49
669.25	1.44	0.271	0.2180	0.00	1.44	132.42
669.50	3.96	0.326	0.2271	0.00	3.96	161.86
669.75	8.49	0.384	0.2364	0.00	8.49	194.43

Subsection: Level Pool Pond Routing Summary

Return Event: 5.00 years

Label: PO-2 (IN)

Storm Event: Type II 24 hour

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	667.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	0.050 hours

Inflow/Outflow Hydrograph Sum	mary		
Flow (Peak In)	8.74 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.29 ft ³ /s	Time to Peak (Flow, Outlet)	12.250 hours
Elevation (Water Surface, Peak)	668.81 ft	<u> </u>	
Volume (Peak)	0.177 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.502 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.501 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Subsection: Level Pool Pond Routing Summary Return Event: 10.00 years

Label: PO-2 (IN)

Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed) No Infiltration		<u> </u>	
Initial Conditions		<u> </u>	
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	10.53 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.38 ft ³ /s	Time to Peak (Flow, Outlet)	12.300 hours
Elevation (Water Surface, Peak)	669.04 ft	_	
Volume (Peak)	0.227 ac-ft		
Mass Balance (ac-ft)		_	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.611 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.611 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Subsection: Level Pool Pond Routing Summary Return Event: 25.00 years

Label: PO-2 (IN)

Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions		<u>—</u>	
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S		T D (5)	44.050.1
Flow (Peak In)	13.09 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	2.29 ft ³ /s	Time to Peak (Flow, Outlet)	12.200 hours
Elevation (Water Surface, Peak)	669.33 ft	<u> </u>	
Volume (Peak)	0.289 ac-ft		
Mass Balance (ac-ft)		_	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.771 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.770 ac-ft		
Volume (Retained)	0.000 ac-ft		
Values a (Hemoustand)	0.000 6		
Volume (Unrouted)	0.000 ac-ft		

Subsection: Level Pool Pond Routing Summary Return Event: 50.00 years

Label: PO-2 (IN)

Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	15.19 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	4.11 ft ³ /s	Time to Peak (Flow, Outlet)	12.100 hours
Elevation (Water Surface, Peak)	669.51 ft	_	
Volume (Peak)	0.328 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.904 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.904 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Subsection: Pond Inflow Summary Return Event: 5.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.502	11.950	8.74
Flow (In)	PO-2	0.502	11.950	8.74

Subsection: Pond Inflow Summary Return Event: 10.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	Proposed 9th	0.611	11.950	10.53
Flow (In)	PO-2	0.611	11.950	10.53

Subsection: Pond Inflow Summary Return Event: 25.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.771	11.950	13.09
Flow (In)	PO-2	0.771	11.950	13.09

Subsection: Pond Inflow Summary Return Event: 50.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.904	11.950	15.19
Flow (In)	PO-2	0.904	11.950	15.19

Index

```
Ε
Existing 9th (Runoff CN-Area, 5.00 years)...13
Existing 9th (Unit Hydrograph Summary, 5.00 years)...15, 16
Existing Orange - 14th (Unit Hydrograph Summary, 5.00 years)...17, 18
Μ
Master Network Summary...2, 3, 4
ODOT TR-55 (Time-Depth Curve, 10.00 years)...7, 8
ODOT TR-55 (Time-Depth Curve, 25.00 years)...9, 10
ODOT TR-55 (Time-Depth Curve, 5.00 years)...5, 6
ODOT TR-55 (Time-Depth Curve, 50.00 years)...11, 12
Ρ
PO-2 (Elevation-Area Volume Curve, 5.00 years)...23
PO-2 (Elevation-Volume-Flow Table (Pond), 5.00 years)...25
PO-2 (IN) (Level Pool Pond Routing Summary, 10.00 years)...27
PO-2 (IN) (Level Pool Pond Routing Summary, 25.00 years)...28
PO-2 (IN) (Level Pool Pond Routing Summary, 5.00 years)...26
PO-2 (IN) (Level Pool Pond Routing Summary, 50.00 years)...29
PO-2 (IN) (Pond Inflow Summary, 10.00 years)...31
PO-2 (IN) (Pond Inflow Summary, 25.00 years)...32
PO-2 (IN) (Pond Inflow Summary, 5.00 years)...30
PO-2 (IN) (Pond Inflow Summary, 50.00 years)...33
PO-2 (Volume Equations, 5.00 years)...24
Proposed 9th (Runoff CN-Area, 5.00 years)...14
Proposed 9th (Unit Hydrograph Summary, 5.00 years)...19, 20
Proposed Orange - 14th (Unit Hydrograph Summary, 5.00 years)...21, 22
```

Title	9th Street Outfall Cleveland Innerbelt	CCG1 Condition
Engineer	Brett Hess	
Company	HNTB	
Date	10/25/2011	

Table of Contents

	Master Network Summary	2
ODOT TR-55	Type II 24 hour	
	Time-Depth Curve	5
	Time-Depth Curve	7
	Time-Depth Curve	9
	Time-Depth Curve	11
Existing 9th	Type II 24 hour	
	Runoff CN-Area	13
Proposed 9th	Type II 24 hour	
	Runoff CN-Area	14
Existing 9th	Type II 24 hour	
	Unit Hydrograph Summary	15
Existing Orange - 14th	Type II 24 hour	
	Unit Hydrograph Summary	17
Proposed 9th	Type II 24 hour	
	Unit Hydrograph Summary	19
Proposed Orange - 14th	Type II 24 hour	
	Unit Hydrograph Summary	21
PO-2	Type II 24 hour	
	Elevation-Area Volume Curve	23
	Volume Equations	24
Composite Outlet Structure - 1	Type II 24 hour	
	Outlet Input Data	25
	Individual Outlet Curves	27
	Composite Rating Curve	29
PO-2 (IN)	Type II 24 hour	
	Level Pool Pond Routing Summary	30
	Level Pool Pond Routing Summary	31
	Level Pool Pond Routing Summary	32
	Level Pool Pond Routing Summary	33
PO-2 (OUT)	Type II 24 hour	

Table of Contents

	Pond Routed Hydrograph (total out) Pond Routed Hydrograph (total out)	34 36
PO-2 (IN)	Type II 24 hour	
	Pond Inflow Summary	38
	Pond Inflow Summary	39

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Existing Orange - 14th	5 year	5.00	1.509	11.900	27.39
Existing Orange - 14th	10 year	10.00	1.870	11.900	33.83
Existing Orange - 14th	25 year	25.00	2.401	11.900	43.15
Existing Orange - 14th	50 year	50.00	2.847	11.900	50.86
Existing 9th	5 year	5.00	0.086	11.950	1.56
Existing 9th	10 year	10.00	0.111	11.900	2.00
Existing 9th	25 year	25.00	0.148	11.900	2.68
Existing 9th	50 year	50.00	0.179	11.900	3.25
Proposed 9th	5 year	5.00	0.256	11.950	4.58
Proposed 9th	10 year	10.00	0.319	11.950	5.67
Proposed 9th	25 year	25.00	0.412	11.950	7.23
Proposed 9th	50 year	50.00	0.490	11.950	8.53
Proposed Orange - 14th	5 year	5.00	1.208	11.900	21.96
Proposed Orange - 14th	10 year	10.00	1.510	11.900	27.40
Proposed Orange - 14th	25 year	25.00	1.954	11.900	35.31
Proposed Orange - 14th	50 year	50.00	2.329	11.900	41.87

Node Summary

Label Scenario		Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-01	5 year	5.00	1.509	11.900	27.39
J-01	10 year	10.00	1.870	11.900	33.83
J-01	25 year	25.00	2.401	11.900	43.15
J-01	50 year	50.00	2.847	11.900	50.86
Composite Outfall	5 year	5.00	3.235	12.050	31.75
Composite Outfall	10 year	10.00	4.020	12.050	32.29
Composite Outfall	25 year	25.00	5.129	12.000	33.17
Composite Outfall	50 year	50.00	6.060	12.000	33.78
EX_OUT	5 year	5.00	1.697	12.000	16.20
EX_OUT	10 year	10.00	2.091	12.000	16.67
EX_OUT	25 year	25.00	2.649	11.950	17.44
EX_OUT	50 year	50.00	3.146	11.950	17.97
J-02	5 year	5.00	1.615	11.900	14.76
J-02	10 year	10.00	1.985	11.850	14.76
J-02	25 year	25.00	2.507	11.800	14.76
J-02	50 year	50.00	2.973	11.800	14.76
J-03	5 year	5.00	1.613	11.950	14.80
J-03	10 year	10.00	1.983	11.900	14.87

Bentley PondPack V8i

[08.11.01.51] Page 2 of 40

Subsection: Master Network Summary

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-03	25 year	25.00	2.504	11.850	14.89
J-03	50 year	50.00	2.971	11.800	14.87
J-04	5 year	5.00	1.612	12.000	14.78
J-04	10 year	10.00	1.982	11.950	14.81
J-04	25 year	25.00	2.504	11.900	14.82
J-04	50 year	50.00	2.970	11.850	14.81
J-06	5 year	5.00	0.086	11.950	1.56
J-06	10 year	10.00	0.111	11.900	2.00
J-06	25 year	25.00	0.148	11.900	2.68
J-06	50 year	50.00	0.179	11.900	3.25
J-11	5 year	5.00	1.208	11.900	21.96
J-11	10 year	10.00	1.510	11.900	27.40
J-11	25 year	25.00	1.954	11.900	35.31
J-11	50 year	50.00	2.329	11.900	41.87
J-12	5 year	5.00	1.287	11.950	14.76
J-12	10 year	10.00	1.616	11.900	14.76
J-12	25 year	25.00	2.075	11.850	14.76
J-12	50 year	50.00	2.432	11.800	14.76
J-13	5 year	5.00	1.286	11.950	14.98
J-13	10 year	10.00	1.614	11.950	14.80
J-13	25 year	25.00	2.073	11.900	14.83
J-13	50 year	50.00	2.429	11.850	14.92
J-14	5 year	5.00	1.285	12.000	14.85
J-14	10 year	10.00	1.613	12.000	14.78
J-14	25 year	25.00	2.072	11.950	14.79
J-14	50 year	50.00	2.429	11.900	14.83
PR_OUT	5 year	5.00	1.540	12.050	15.85
PR_OUT	10 year	10.00	1.930	12.200	15.90
PR_OUT	25 year	25.00	2.482	12.250	15.98
PR_OUT	50 year	50.00	2.916	12.250	16.04
J-16	5 year	5.00	0.256	12.150	1.08
J-16	10 year	10.00	0.319	12.150	1.14
J-16	25 year	25.00	0.412	12.200	1.22
J-16	50 year	50.00	0.490	12.250	1.28

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-2 (IN)	5 year	5.00	0.256	11.950	4.58	(N/A)	(N/A)
PO-2 (OUT)	5 year	5.00	0.256	12.150	1.08	668.27	0.073

Subsection: Master Network Summary

Pond Summary

	-						
Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-2 (IN)	10 year	10.00	0.319	11.950	5.67	(N/A)	(N/A)
PO-2 (OUT)	10 year	10.00	0.319	12.150	1.14	668.41	0.100
PO-2 (IN)	25 year	25.00	0.412	11.950	7.23	(N/A)	(N/A)
PO-2 (OUT)	25 year	25.00	0.412	12.200	1.22	668.61	0.139
PO-2 (IN)	50 year	50.00	0.490	11.950	8.53	(N/A)	(N/A)
PO-2 (OUT)	50 year	50.00	0.490	12.250	1.28	668.78	0.172

Subsection: Time-Depth Curve Return Event: 5.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	5.00 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.01
0.500	0.01	0.02	0.02	0.02	0.03
1.000	0.03	0.03	0.04	0.04	0.04
1.500	0.05	0.05	0.05	0.06	0.06
2.000	0.06	0.07	0.07	0.07	0.08
2.500	0.08	0.09	0.09	0.09	0.10
3.000	0.10	0.10	0.11	0.11	0.12
3.500	0.12	0.12	0.13	0.13	0.14
4.000	0.14	0.14	0.15	0.15	0.16
4.500	0.16	0.17	0.17	0.17	0.18
5.000	0.18	0.19	0.19	0.20	0.20
5.500	0.21	0.21	0.22	0.22	0.23
6.000	0.23	0.24	0.24	0.25	0.26
6.500	0.26	0.27	0.27	0.28	0.28
7.000	0.29	0.29	0.30	0.31	0.31
7.500	0.32	0.33	0.33	0.34	0.34
8.000	0.35	0.36	0.36	0.37	0.38
8.500	0.39	0.39	0.40	0.41	0.42
9.000	0.43	0.44	0.45	0.46	0.47
9.500	0.48	0.49	0.50	0.51	0.52
10.000	0.53	0.54	0.55	0.57	0.58
10.500	0.60	0.61	0.63	0.65	0.67
11.000	0.69	0.71	0.73	0.76	0.79
11.500	0.83	0.90	1.03	1.26	1.66
12.000	1.94	1.99	2.04	2.08	2.12
12.500	2.15	2.17	2.19	2.22	2.24
13.000	2.25	2.27	2.29	2.30	2.32
13.500	2.33	2.35	2.36	2.37	2.38
14.000	2.39	2.41	2.42	2.43	2.44
14.500	2.45	2.46	2.47	2.47	2.48
15.000	2.49	2.50	2.51	2.52	2.53
15.500	2.53	2.54	2.55	2.56	2.56
16.000	2.57	2.58	2.58	2.59	2.60
16.500	2.60	2.61	2.61	2.62	2.63

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 5.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	2.63	2.64	2.64	2.65	2.66
17.500	2.66	2.67	2.67	2.68	2.68
18.000	2.69	2.69	2.70	2.70	2.71
18.500	2.71	2.72	2.72	2.73	2.73
19.000	2.74	2.74	2.75	2.75	2.76
19.500	2.76	2.76	2.77	2.77	2.78
20.000	2.78	2.78	2.79	2.79	2.79
20.500	2.80	2.80	2.81	2.81	2.81
21.000	2.82	2.82	2.82	2.83	2.83
21.500	2.84	2.84	2.84	2.85	2.85
22.000	2.85	2.86	2.86	2.86	2.87
22.500	2.87	2.87	2.88	2.88	2.88
23.000	2.89	2.89	2.89	2.90	2.90
23.500	2.90	2.91	2.91	2.91	2.92
24.000	2.92	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 10.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	10.00 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.01
0.500	0.02	0.02	0.02	0.03	0.03
1.000	0.04	0.04	0.04	0.05	0.05
1.500	0.05	0.06	0.06	0.07	0.07
2.000	0.07	0.08	0.08	0.09	0.09
2.500	0.10	0.10	0.10	0.11	0.11
3.000	0.12	0.12	0.13	0.13	0.14
3.500	0.14	0.14	0.15	0.15	0.16
4.000	0.16	0.17	0.17	0.18	0.18
4.500	0.19	0.19	0.20	0.20	0.21
5.000	0.21	0.22	0.23	0.23	0.24
5.500	0.24	0.25	0.25	0.26	0.27
6.000	0.27	0.28	0.28	0.29	0.30
6.500	0.30	0.31	0.32	0.32	0.33
7.000	0.34	0.34	0.35	0.36	0.36
7.500	0.37	0.38	0.39	0.39	0.40
8.000	0.41	0.42	0.42	0.43	0.44
8.500	0.45	0.46	0.47	0.48	0.49
9.000	0.50	0.51	0.52	0.53	0.54
9.500	0.55	0.57	0.58	0.59	0.60
10.000	0.62	0.63	0.64	0.66	0.68
10.500	0.69	0.71	0.73	0.75	0.78
11.000	0.80	0.83	0.85	0.89	0.92
11.500	0.96	1.04	1.20	1.46	1.93
12.000	2.25	2.32	2.38	2.42	2.47
12.500	2.50	2.53	2.55	2.58	2.60
13.000	2.62	2.65	2.66	2.68	2.70
13.500	2.72	2.73	2.75	2.76	2.78
14.000	2.79	2.80	2.81	2.82	2.84
14.500	2.85	2.86	2.87	2.88	2.89
15.000	2.90	2.91	2.92	2.93	2.94
15.500	2.95	2.96	2.97	2.98	2.98
16.000	2.99	3.00	3.01	3.02	3.02
16.500	3.03	3.04	3.04	3.05	3.06

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 10.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	3.07	3.07	3.08	3.09	3.09
17.500	3.10	3.11	3.11	3.12	3.13
18.000	3.13	3.14	3.14	3.15	3.16
18.500	3.16	3.17	3.17	3.18	3.18
19.000	3.19	3.19	3.20	3.20	3.21
19.500	3.21	3.22	3.22	3.23	3.23
20.000	3.24	3.24	3.25	3.25	3.25
20.500	3.26	3.26	3.27	3.27	3.28
21.000	3.28	3.28	3.29	3.29	3.30
21.500	3.30	3.31	3.31	3.31	3.32
22.000	3.32	3.33	3.33	3.33	3.34
22.500	3.34	3.35	3.35	3.35	3.36
23.000	3.36	3.37	3.37	3.37	3.38
23.500	3.38	3.38	3.39	3.39	3.40
24.000	3.40	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 25.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	25.00 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.02
0.500	0.02	0.03	0.03	0.03	0.04
1.000	0.04	0.05	0.05	0.06	0.06
1.500	0.07	0.07	0.08	0.08	0.09
2.000	0.09	0.09	0.10	0.10	0.11
2.500	0.12	0.12	0.13	0.13	0.14
3.000	0.14	0.15	0.15	0.16	0.16
3.500	0.17	0.17	0.18	0.18	0.19
4.000	0.20	0.20	0.21	0.21	0.22
4.500	0.23	0.23	0.24	0.24	0.25
5.000	0.26	0.26	0.27	0.28	0.28
5.500	0.29	0.30	0.31	0.31	0.32
6.000	0.33	0.33	0.34	0.35	0.36
6.500	0.37	0.37	0.38	0.39	0.40
7.000	0.40	0.41	0.42	0.43	0.44
7.500	0.45	0.46	0.46	0.47	0.48
8.000	0.49	0.50	0.51	0.52	0.53
8.500	0.54	0.55	0.56	0.58	0.59
9.000	0.60	0.61	0.63	0.64	0.65
9.500	0.67	0.68	0.69	0.71	0.72
10.000	0.74	0.76	0.77	0.79	0.81
10.500	0.83	0.86	0.88	0.91	0.93
11.000	0.96	0.99	1.03	1.07	1.11
11.500	1.16	1.25	1.45	1.76	2.32
12.000	2.71	2.79	2.86	2.92	2.97
12.500	3.01	3.04	3.07	3.10	3.13
13.000	3.16	3.18	3.21	3.23	3.25
13.500	3.27	3.29	3.30	3.32	3.34
14.000	3.35	3.37	3.38	3.40	3.41
14.500	3.43	3.44	3.45	3.47	3.48
15.000	3.49	3.50	3.51	3.53	3.54
15.500	3.55	3.56	3.57	3.58	3.59
16.000	3.60	3.61	3.62	3.63	3.64
16.500	3.64	3.65	3.66	3.67	3.68

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 25.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	3.69	3.70	3.70	3.71	3.72
17.500	3.73	3.74	3.74	3.75	3.76
18.000	3.77	3.77	3.78	3.79	3.80
18.500	3.80	3.81	3.82	3.82	3.83
19.000	3.84	3.84	3.85	3.85	3.86
19.500	3.87	3.87	3.88	3.88	3.89
20.000	3.89	3.90	3.90	3.91	3.91
20.500	3.92	3.93	3.93	3.94	3.94
21.000	3.95	3.95	3.96	3.96	3.97
21.500	3.97	3.98	3.98	3.99	3.99
22.000	4.00	4.00	4.01	4.01	4.02
22.500	4.02	4.03	4.03	4.03	4.04
23.000	4.04	4.05	4.05	4.06	4.06
23.500	4.07	4.07	4.08	4.08	4.09
24.000	4.09	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	50.00 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.02
0.500	0.02	0.03	0.03	0.04	0.04
1.000	0.05	0.05	0.06	0.06	0.07
1.500	0.08	0.08	0.09	0.09	0.10
2.000	0.10	0.11	0.11	0.12	0.13
2.500	0.13	0.14	0.14	0.15	0.15
3.000	0.16	0.17	0.17	0.18	0.19
3.500	0.19	0.20	0.20	0.21	0.22
4.000	0.22	0.23	0.24	0.24	0.25
4.500	0.26	0.26	0.27	0.28	0.29
5.000	0.29	0.30	0.31	0.32	0.32
5.500	0.33	0.34	0.35	0.36	0.36
6.000	0.37	0.38	0.39	0.40	0.41
6.500	0.42	0.42	0.43	0.44	0.45
7.000	0.46	0.47	0.48	0.49	0.50
7.500	0.51	0.52	0.53	0.54	0.55
8.000	0.56	0.57	0.58	0.59	0.60
8.500	0.62	0.63	0.64	0.66	0.67
9.000	0.69	0.70	0.71	0.73	0.74
9.500	0.76	0.77	0.79	0.81	0.83
10.000	0.84	0.86	0.88	0.90	0.93
10.500	0.95	0.98	1.00	1.03	1.06
11.000	1.10	1.13	1.17	1.22	1.27
11.500	1.32	1.43	1.65	2.01	2.65
12.000	3.09	3.18	3.26	3.32	3.38
12.500	3.43	3.46	3.50	3.54	3.57
13.000	3.60	3.63	3.65	3.68	3.70
13.500	3.72	3.74	3.77	3.78	3.80
14.000	3.82	3.84	3.86	3.87	3.89
14.500	3.90	3.92	3.93	3.95	3.96
15.000	3.98	3.99	4.00	4.02	4.03
15.500	4.04	4.06	4.07	4.08	4.09
16.000	4.10	4.11	4.12	4.13	4.14
16.500	4.15	4.16	4.17	4.18	4.19

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 50.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	4.20	4.21	4.22	4.23	4.24
17.500	4.25	4.26	4.27	4.27	4.28
18.000	4.29	4.30	4.31	4.32	4.32
18.500	4.33	4.34	4.35	4.36	4.36
19.000	4.37	4.38	4.38	4.39	4.40
19.500	4.40	4.41	4.42	4.42	4.43
20.000	4.44	4.44	4.45	4.45	4.46
20.500	4.47	4.47	4.48	4.48	4.49
21.000	4.50	4.50	4.51	4.51	4.52
21.500	4.52	4.53	4.54	4.54	4.55
22.000	4.55	4.56	4.56	4.57	4.58
22.500	4.58	4.59	4.59	4.60	4.60
23.000	4.61	4.61	4.62	4.62	4.63
23.500	4.63	4.64	4.64	4.65	4.65
24.000	4.66	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Runoff CN-Area Return Event: 5.00 years Label: Existing 9th Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.2800	100.0	0.0	98.000
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil C	74.000	0.3900	0.0	0.0	74.000
Open space (Lawns,parks etc.) - Fair condition; grass cover 50% to 75% - Soil C	79.000	0.0800	0.0	0.0	79.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.7500	(N/A)	(N/A)	83.493

Return Event: 5.00 years Subsection: Runoff CN-Area Label: Proposed 9th Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.9900	100.0	0.0	98.000
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil B	74.000	0.5000	0.0	0.0	74.000
CN Description	79.000	0.2700	0.0	0.0	79.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.7600	(N/A)	(N/A)	88.267

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Existing 9th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.7500 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	1.63 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	1.56 ft³/s
Drainage Area	
SCS CN (Composite)	83.000
Area (User Defined)	0.7500 acres
Maximum Retention (Pervious)	2.05 in
Maximum Retention (Pervious, 20 percent)	0.41 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.38 in
Runoff Volume (Pervious)	0.086 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	0.086 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Existing 9th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	10.20 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph Summary

Return Event: 5.00 years Label: Existing Orange - 14th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	9.9300 acres
Computational Time	0.011 bours
Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	28.40 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated Output)	27.39 ft³/s
Drainage Area	
SCS CN (Composite)	88.969
Area (User Defined)	9.9300 acres
Maximum Retention (Pervious)	1.24 in
Maximum Retention (Pervious, 20 percent)	0.25 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.83 in
Runoff Volume (Pervious)	1.510 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	1.509 ac-ft
SCS Unit Hydrograph Paramet	ers
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Existing Orange - 14th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	135.01 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time. Th	0.278 hours

Subsection: Unit Hydrograph Summary Return Event: 5.00 years

Label: Proposed 9th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.098 hours
Area (User Defined)	1.7600 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	11.930 hours
Flow (Peak, Computed)	4.69 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	4.58 ft³/s
Drainage Area	
	00.000
SCS CN (Composite) Area (User Defined)	88.000 1.7600 acres
Maximum Retention	1.7000 acres
(Pervious)	1.36 in
Maximum Retention (Pervious, 20 percent)	0.27 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.75 in
Runoff Volume (Pervious)	0.256 ac-ft
Lludrograph Values (Area :	or Undrograph sures
Hydrograph Volume (Area und	
Volume	0.256 ac-ft
SCS Unit Hydrograph Paramet	ers
Time of Concentration (Composite)	0.098 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Proposed 9th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	20.35 ft ³ /s
Unit peak time, Tp	0.065 hours
Unit receding limb, Tr	0.261 hours
Total unit time, Tb	0.327 hours

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Proposed Orange - 14th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	8.4600 acres
Computational Time	0.011 hours
Increment Time to Book (Computed)	11 022 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed) Output Increment	22.85 ft ³ /s 0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated Output)	21.96 ft³/s
Drainage Area	
SCS CN (Composite)	87.602
Area (User Defined)	8.4600 acres
Maximum Retention (Pervious)	1.42 in
Maximum Retention (Pervious, 20 percent)	0.28 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.72 in
Runoff Volume (Pervious)	1.210 ac-ft
Hydrograph Volume (Area un	der Hydrograph curve)
Volume	1.208 ac-ft
SCS Unit Hydrograph Parame	eters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Proposed Orange - 14th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameter	ers
Unit peak, qp	115.03 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Elevation-Area Volume Curve Return Event: 5.00 years Label: PO-2 Storm Event: Type II 24 hour

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
667.00	0.000	0.0006	0.0000	0.000	0.000
667.75	0.000	0.0156	0.0193	0.005	0.005
668.00	0.000	0.1756	0.2435	0.020	0.025
669.00	0.000	0.2091	0.5763	0.192	0.217
669.75	0.000	0.2364	0.6678	0.167	0.384

Subsection: Volume Equations Return Event: 5.00 years Label: PO-2 Storm Event: Type II 24 hour

Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2 - El1) * (Area1 + Area2 + sqr(Area1 * Area2))

where: EL1, EL2 Lower and upper elevations of the increment Area1, Area2 Areas computed for EL1, EL2, respectively

Volume Incremental volume between EL1 and EL2

Subsection: Outlet Input Data Return Event: 5.00 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Requested Pond Water Surface Elevations			
Minimum (Headwater) 667.00 ft			
Increment (Headwater)	0.50 ft		
Maximum (Headwater)	670.00 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inlet Box	Riser - 1	Forward	TW	669.25	669.75
Orifice-Area	Orifice - 1	Forward	TW	667.00	669.75
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 5.00 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Structure ID: Orifice - 1	
Structure Type: Orifice-Area	
Number of Openings	1
Elevation	667.00 ft
Orifice Area	0.200 ft ²
Top Elevation	0.00 ft
Datum Elevation	0.00 ft
Orifice Coefficient	0.600
Structure ID: Riser - 1 Structure Type: Inlet Box	
Number of Openings	1
Elevation	669.25 ft
Orifice Area	2.560 ft ²
Orifice Coefficient	0.600
Weir Length	6.50 ft
Weir Coefficient	3.00 (ft^0.5)/s
K Reverse	1.000
Manning's n	0.000
Kev, Charged Riser	0.000
Weir Submergence	False
Orifice H to crest	True
Structure ID: TW Structure Type: TW Setup, DS	Channel
Tailwater Type	Free Outfall
Convergence Tolerances	
Maximum Iterations	30
Tailwater Tolerance (Minimum)	0.01 ft
Tailwater Tolerance (Maximum)	0.50 ft
Headwater Tolerance (Minimum)	0.01 ft
Headwater Tolerance (Maximum)	0.50 ft
Flow Tolerance (Minimum)	0.001 ft ³ /s
Flow Tolerance (Maximum)	10.000 ft ³ /s

Subsection: Individual Outlet Curves Return Event: 5.00 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Area)

.

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
667.00	0.00	(N/A)	0.00
667.50	0.68	(N/A)	0.00
668.00	0.96	(N/A)	0.00
668.50	1.18	(N/A)	0.00
669.00	1.36	(N/A)	0.00
669.25	1.44	(N/A)	0.00
669.50	1.52	(N/A)	0.00
669.75	1.60	(N/A)	0.00

Computation Messages

Computation Messages
H =.00
H =.50
H =1.00
H =1.50
H =2.00
H =2.25
H =2.50
H =2.75

Subsection: Individual Outlet Curves Return Event: 5.00 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

.

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
667.00	0.00	(N/A)	0.00
667.50	0.00	(N/A)	0.00
668.00	0.00	(N/A)	0.00
668.50	0.00	(N/A)	0.00
669.00	0.00	(N/A)	0.00
669.25	0.00	(N/A)	0.00
669.50	2.44	(N/A)	0.00
669.75	6.89	(N/A)	0.00

Computation Messages

HW & TW < Inv.El.=669.250

Weir: H =0ft Weir: H =0.25ft Weir: H =0.5ft

Subsection: Composite Rating Curve Return Event: 5.00 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
667.00	0.00	(N/A)	0.00
667.50	0.68	(N/A)	0.00
668.00	0.96	(N/A)	0.00
668.50	1.18	(N/A)	0.00
669.00	1.36	(N/A)	0.00
669.25	1.44	(N/A)	0.00
669.50	3.96	(N/A)	0.00
669.75	8.49	(N/A)	0.00

Contributing Structures

Contributing Structures
Orifice - 1
Riser - 1 + Orifice - 1
Riser - 1 + Orifice - 1
Riser - 1 + Orifice - 1

Subsection: Level Pool Pond Routing Summary Return Event: 5.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions			
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	<u> </u>		
Flow (Peak In)	4.58 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.08 ft ³ /s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	668.27 ft		
Volume (Peak)	0.073 ac-ft		
Mass Balance (ac-ft)		_	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.256 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.256 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		

Subsection: Level Pool Pond Routing Summary Return Event: 10.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions		<u> </u>	
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S			
Flow (Peak In)	5.67 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.14 ft ³ /s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	668.41 ft	=	
Volume (Peak)	0.100 ac-ft		
Mass Balance (ac-ft)		<u> </u>	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.319 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.319 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.1 %		

Subsection: Level Pool Pond Routing Summary Return Event: 25.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions			
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	7.23 ft³/s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.22 ft ³ /s	Time to Peak (Flow, Outlet)	12.200 hours
Elevation (Water Surface, Peak)	668.61 ft		
Volume (Peak)	0.139 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.412 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.412 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)			

Subsection: Level Pool Pond Routing Summary Return Event: 50.00 years

Label: PO-2 (IN)

Storm Event: Type II 24 hour

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u> </u>	
Initial Conditions			
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S			
Flow (Peak In)	8.53 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.28 ft ³ /s	Time to Peak (Flow, Outlet)	12.250 hours
Elevation (Water Surface, Peak)	668.78 ft		
Volume (Peak)	0.172 ac-ft		
Mass Balance (ac-ft)		<u> </u>	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.490 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.490 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Subsection: Pond Routed Hydrograph (total out) Return Event: 10.00 years

Label: PO-2 (OUT) Storm Event: Type II 24 hour

Peak Discharge	1.14 ft ³ /s
Time to Peak	12.150 hours
Hydrograph Volume	0.319 ac-ft

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
6.200	0.00	0.00	0.00	0.00	0.00
6.450	0.00	0.00	0.00	0.00	0.01
6.700	0.01	0.01	0.01	0.01	0.01
6.950	0.01	0.01	0.01	0.01	0.01
7.200	0.01	0.01	0.01	0.01	0.01
7.450	0.01	0.02	0.02	0.02	0.02
7.700	0.02	0.02	0.02	0.02	0.02
7.950	0.02	0.02	0.02	0.02	0.02
8.200	0.02	0.03	0.03	0.03	0.03
8.450	0.03	0.03	0.03	0.03	0.04
8.700	0.04	0.04	0.04	0.04	0.04
8.950	0.05	0.05	0.05	0.05	0.05
9.200	0.05	0.05	0.05	0.06	0.06
9.450	0.06	0.06	0.06	0.06	0.06
9.700	0.06	0.07	0.07	0.07	0.08
9.950	0.08	0.08	0.08	0.09	0.09
10.200	0.09	0.10	0.10	0.11	0.11
10.450	0.12	0.12	0.13	0.13	0.14
10.700	0.14	0.15	0.16	0.17	0.17
10.950	0.18	0.19	0.20	0.21	0.22
11.200	0.24	0.26	0.28	0.30	0.32
11.450	0.34	0.36	0.42	0.58	0.69
11.700	0.72	0.77	0.85	0.97	1.00
11.950	1.05	1.09	1.12	1.14	1.14
12.200	1.14	1.14	1.13	1.13	1.13
12.450	1.12	1.11	1.11	1.10	1.10
12.700	1.09	1.08	1.08	1.07	1.06
12.950	1.06	1.05	1.04	1.04	1.03
13.200	1.02	1.01	1.01	1.00	0.99
13.450	0.99	0.98	0.97	0.97	0.94
13.700	0.91	0.88	0.84	0.81	0.78
13.950	0.76	0.73	0.70	0.64	0.26
14.200	0.20	0.19	0.19	0.19	0.19
14.450	0.18	0.18	0.18	0.18	0.18
14.700	0.17	0.17	0.17	0.17	0.17
14.950	0.17	0.16	0.16	0.16	0.16
15.200	0.16	0.15	0.15	0.15	0.15

Subsection: Pond Routed Hydrograph (total out)

Return Event: 10.00 years

Label: PO-2 (OUT)

Storm Event: Type II 24 hour

	ile oli leit le		e ioi ilist vai		W.
Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)	(ft³/s)
15.450	0.15	0.15	0.14	0.14	0.14
15.700	0.14	0.14	0.13	0.13	0.13
15.950	0.13	0.13	0.13	0.12	0.12
16.200	0.12	0.12	0.12	0.12	0.12
16.450	0.12	0.12	0.12	0.12	0.12
16.700	0.12	0.12	0.11	0.11	0.11
16.950	0.11	0.11	0.11	0.11	0.11
17.200	0.11	0.11	0.11	0.11	0.11
17.450	0.11	0.11	0.10	0.10	0.10
17.700	0.10	0.10	0.10	0.10	0.10
17.950	0.10	0.10	0.10	0.10	0.10
18.200	0.10	0.10	0.09	0.09	0.09
18.450	0.09	0.09	0.09	0.09	0.09
18.700	0.09	0.09	0.09	0.09	0.09
18.950	0.09	0.09	0.08	0.08	0.08
19.200	0.08	0.08	0.08	0.08	0.08
19.450	0.08	0.08	0.08	0.08	0.08
19.700	0.08	0.08	0.07	0.07	0.07
19.950	0.07	0.07	0.07	0.07	0.07
20.200	0.07	0.07	0.07	0.07	0.07
20.450	0.07	0.07	0.07	0.07	0.07
20.700	0.07	0.07	0.07	0.07	0.07
20.950	0.07	0.07	0.07	0.07	0.07
21.200	0.07	0.07	0.07	0.07	0.07
21.450	0.07	0.07	0.07	0.07	0.07
21.700	0.07	0.07	0.07	0.07	0.07
21.950	0.07	0.07	0.07	0.07	0.07
22.200	0.07	0.07	0.07	0.06	0.06
22.450	0.06	0.06	0.06	0.06	0.06
22.700	0.06	0.06	0.06	0.06	0.06
22.950	0.06	0.06	0.06	0.06	0.06
23.200	0.06	0.06	0.06	0.06	0.06
23.450	0.06	0.06	0.06	0.06	0.06
23.700	0.06	0.06	0.06	0.06	0.06
23.950	0.06	0.06	(N/A)	(N/A)	(N/A)

Subsection: Pond Routed Hydrograph (total out) Return Event: 50.00 years

Label: PO-2 (OUT) Storm Event: Type II 24 hour

Peak Discharge	1.28 ft ³ /s
Time to Peak	12.250 hours
Hydrograph Volume	0.490 ac-ft

Time (hours)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)	Flow (ft³/s)
4.850	0.00	0.00	0.00	0.00	0.00
5.100	0.00	0.00	0.01	0.01	0.01
5.350	0.01	0.01	0.01	0.01	0.01
5.600	0.01	0.01	0.01	0.01	0.01
5.850	0.02	0.02	0.02	0.02	0.02
6.100	0.02	0.02	0.02	0.02	0.02
6.350	0.02	0.02	0.03	0.03	0.03
6.600	0.03	0.03	0.03	0.03	0.03
6.850	0.03	0.03	0.03	0.04	0.04
7.100	0.04	0.04	0.04	0.04	0.04
7.350	0.04	0.04	0.04	0.05	0.05
7.600	0.05	0.05	0.05	0.05	0.05
7.850	0.05	0.05	0.05	0.06	0.06
8.100	0.06	0.06	0.06	0.06	0.07
8.350	0.07	0.07	0.07	0.08	0.08
8.600	0.08	0.08	0.09	0.09	0.09
8.850	0.09	0.10	0.10	0.10	0.10
9.100	0.11	0.11	0.11	0.11	0.11
9.350	0.11	0.12	0.12	0.12	0.12
9.600	0.12	0.13	0.13	0.13	0.14
9.850	0.14	0.15	0.15	0.16	0.16
10.100	0.17	0.17	0.18	0.19	0.19
10.350	0.20	0.21	0.21	0.22	0.23
10.600	0.24	0.25	0.26	0.27	0.28
10.850	0.30	0.31	0.32	0.33	0.35
11.100	0.37	0.39	0.42	0.44	0.47
11.350	0.50	0.54	0.57	0.60	0.68
11.600	0.70	0.74	0.80	0.91	0.98
11.850	1.02	1.08	1.15	1.21	1.25
12.100	1.27	1.28	1.28	1.28	1.28
12.350	1.28	1.28	1.27	1.27	1.27
12.600	1.26	1.26	1.25	1.25	1.24
12.850	1.24	1.23	1.23	1.22	1.22
13.100	1.21	1.21	1.20	1.19	1.19
13.350	1.18	1.18	1.17	1.16	1.15
13.600	1.14	1.14	1.13	1.12	1.11
13.850	1.11	1.10	1.09	1.08	1.08

Subsection: Pond Routed Hydrograph (total out)

Return Event: 50.00 years

Label: PO-2 (OUT)

Storm Event: Type II 24 hour

Time	Flow	Flow	Flow	Flow	Flow
(hours)	(ft ³ /s)	(ft³/s)	(ft ³ /s)	(ft³/s)	(ft³/s)
14.100	1.07	1.06	1.05	1.05	1.04
14.350	1.03	1.02	1.02	1.01	1.00
14.600	0.99	0.99	0.98	0.97	0.97
14.850	0.94	0.91	0.87	0.84	0.81
15.100	0.78	0.76	0.73	0.71	0.68
15.350	0.32	0.23	0.21	0.21	0.21
15.600	0.20	0.20	0.20	0.20	0.19
15.850	0.19	0.19	0.19	0.18	0.18
16.100	0.18	0.18	0.18	0.17	0.17
16.350	0.17	0.17	0.17	0.17	0.17
16.600	0.17	0.17	0.17	0.17	0.16
16.850	0.16	0.16	0.16	0.16	0.16
17.100	0.16	0.16	0.16	0.16	0.15
17.350	0.15	0.15	0.15	0.15	0.15
17.600	0.15	0.15	0.15	0.15	0.15
17.850	0.14	0.14	0.14	0.14	0.14
18.100	0.14	0.14	0.14	0.14	0.14
18.350	0.13	0.13	0.13	0.13	0.13
18.600	0.13	0.13	0.13	0.13	0.13
18.850	0.13	0.12	0.12	0.12	0.12
19.100	0.12	0.12	0.12	0.12	0.12
19.350	0.12	0.11	0.11	0.11	0.11
19.600	0.11	0.11	0.11	0.11	0.11
19.850	0.11	0.11	0.10	0.10	0.10
20.100	0.10	0.10	0.10	0.10	0.10
20.350	0.10	0.10	0.10	0.10	0.10
20.600	0.10	0.10	0.10	0.10	0.10
20.850	0.10	0.10	0.10	0.10	0.10
21.100	0.10	0.10	0.10	0.10	0.10
21.350	0.10	0.10	0.10	0.10	0.10
21.600	0.10	0.10	0.10	0.09	0.09
21.850	0.09	0.09	0.09	0.09	0.09
22.100	0.09	0.09	0.09	0.09	0.09
22.350	0.09	0.09	0.09	0.09	0.09
22.600	0.09	0.09	0.09	0.09	0.09
22.850	0.09	0.09	0.09	0.09	0.09
23.100	0.09	0.09	0.09	0.09	0.09
23.350	0.09	0.09	0.09	0.09	0.09
23.600	0.09	0.09	0.09	0.09	0.09
23.850	0.09	0.09	0.09	0.09	(N/A)

Subsection: Pond Inflow Summary Return Event: 10.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.319	11.950	5.67
Flow (In)	PO-2	0.319	11.950	5.67

Subsection: Pond Inflow Summary Return Event: 50.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.490	11.950	8.53
Flow (In)	PO-2	0.490	11.950	8.53

Index

C Composite Outlet Structure - 1 (Composite Rating Curve, 5.00 years)...29 Composite Outlet Structure - 1 (Individual Outlet Curves, 5.00 years)...27, 28 Composite Outlet Structure - 1 (Outlet Input Data, 5.00 years)...25, 26 Ε Existing 9th (Runoff CN-Area, 5.00 years)...13 Existing 9th (Unit Hydrograph Summary, 5.00 years)...15, 16 Existing Orange - 14th (Unit Hydrograph Summary, 5.00 years)...17, 18 Μ Master Network Summary...2, 3, 4 ODOT TR-55 (Time-Depth Curve, 10.00 years)...7, 8 ODOT TR-55 (Time-Depth Curve, 25.00 years)...9, 10 ODOT TR-55 (Time-Depth Curve, 5.00 years)...5, 6 ODOT TR-55 (Time-Depth Curve, 50.00 years)...11, 12 PO-2 (Elevation-Area Volume Curve, 5.00 years)...23 PO-2 (IN) (Level Pool Pond Routing Summary, 10.00 years)...31 PO-2 (IN) (Level Pool Pond Routing Summary, 25.00 years)...32 PO-2 (IN) (Level Pool Pond Routing Summary, 5.00 years)...30 PO-2 (IN) (Level Pool Pond Routing Summary, 50.00 years)...33 PO-2 (IN) (Pond Inflow Summary, 10.00 years)...38 PO-2 (IN) (Pond Inflow Summary, 50.00 years)...39 PO-2 (OUT) (Pond Routed Hydrograph (total out), 10.00 years)...34, 35 PO-2 (OUT) (Pond Routed Hydrograph (total out), 50.00 years)...36, 37 PO-2 (Volume Equations, 5.00 years)...24 Proposed 9th (Runoff CN-Area, 5.00 years)...14 Proposed 9th (Unit Hydrograph Summary, 5.00 years)...19, 20 Proposed Orange - 14th (Unit Hydrograph Summary, 5.00 years)...21, 22

Title	9th Street Outfall Cleveland Innerbelt	00000
Engineer	Brett Hess	CCG3 Condition
Company	HNTB	
Date	10/25/2011	

Table of Contents

	Master Network Summary	2
ODOT TR-55	Type II 24 hour	
	Time-Depth Curve	5
	Time-Depth Curve	7
	Time-Depth Curve	9
	Time-Depth Curve	11
Existing 9th	Type II 24 hour	
	Runoff CN-Area	13
Proposed 9th	Type II 24 hour	
	Runoff CN-Area	14
Existing 9th	Type II 24 hour	
	Unit Hydrograph Summary	15
Existing Orange - 14th	Type II 24 hour	
	Unit Hydrograph Summary	17
Proposed 9th	Type II 24 hour	
	Unit Hydrograph Summary	19
Proposed Orange - 14th	Type II 24 hour	
	Unit Hydrograph Summary	21
PO-2	Type II 24 hour	
	Elevation-Area Volume Curve	23
	Volume Equations	24
Composite Outlet Structure - 1	Type II 24 hour	
	Outlet Input Data	25
	Individual Outlet Curves	27
	Composite Rating Curve	29
PO-2	Type II 24 hour	
	Elevation-Volume-Flow Table (Pond)	30
PO-2 (IN)	Type II 24 hour	
	Level Pool Pond Routing Summary	31
	Level Pool Pond Routing Summary	32
	Level Pool Pond Routing Summary	33

Table of Contents

Level Pool Pond Routing Summary	34
Pond Inflow Summary	35
Pond Inflow Summary	36
Pond Inflow Summary	37
Pond Inflow Summary	38

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
Existing Orange - 14th	5 year	5.00	1.509	11.900	27.39
Existing Orange - 14th	10 year	10.00	1.870	11.900	33.83
Existing Orange - 14th	25 year	25.00	2.401	11.900	43.15
Existing Orange - 14th	50 year	50.00	2.847	11.900	50.86
Existing 9th	5 year	5.00	0.086	11.950	1.56
Existing 9th	10 year	10.00	0.111	11.900	2.00
Existing 9th	25 year	25.00	0.148	11.900	2.68
Existing 9th	50 year	50.00	0.179	11.900	3.25
Proposed 9th	5 year	5.00	0.292	11.950	5.14
Proposed 9th	10 year	10.00	0.358	11.950	6.23
Proposed 9th	25 year	25.00	0.455	11.950	7.80
Proposed 9th	50 year	50.00	0.535	11.950	9.08
Proposed Orange - 14th	5 year	5.00	1.208	11.900	21.96
Proposed Orange - 14th	10 year	10.00	1.510	11.900	27.40
Proposed Orange - 14th	25 year	25.00	1.954	11.900	35.31
Proposed Orange - 14th	50 year	50.00	2.329	11.900	41.87

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-01	5 year	5.00	1.509	11.900	27.39
J-01	10 year	10.00	1.870	11.900	33.83
J-01	25 year	25.00	2.401	11.900	43.15
J-01	50 year	50.00	2.847	11.900	50.86
Composite Outfall	5 year	5.00	3.272	12.050	31.78
Composite Outfall	10 year	10.00	4.060	12.050	32.32
Composite Outfall	25 year	25.00	5.171	12.000	33.20
Composite Outfall	50 year	50.00	6.105	12.000	33.81
EX_OUT	5 year	5.00	1.697	12.000	16.20
EX_OUT	10 year	10.00	2.091	12.000	16.67
EX_OUT	25 year	25.00	2.649	11.950	17.44
EX_OUT	50 year	50.00	3.146	11.950	17.97
J-02	5 year	5.00	1.615	11.900	14.76
J-02	10 year	10.00	1.985	11.850	14.76
J-02	25 year	25.00	2.507	11.800	14.76
J-02	50 year	50.00	2.973	11.800	14.76
J-03	5 year	5.00	1.613	11.950	14.80
J-03	10 year	10.00	1.983	11.900	14.87

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Master Network Summary

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
J-03	25 year	25.00	2.504	11.850	14.89
J-03	50 year	50.00	2.971	11.800	14.87
J-04	5 year	5.00	1.612	12.000	14.78
J-04	10 year	10.00	1.982	11.950	14.81
J-04	25 year	25.00	2.504	11.900	14.82
J-04	50 year	50.00	2.970	11.850	14.81
J-06	5 year	5.00	0.086	11.950	1.56
J-06	10 year	10.00	0.111	11.900	2.00
J-06	25 year	25.00	0.148	11.900	2.68
J-06	50 year	50.00	0.179	11.900	3.25
J-11	5 year	5.00	1.208	11.900	21.96
J-11	10 year	10.00	1.510	11.900	27.40
J-11	25 year	25.00	1.954	11.900	35.31
J-11	50 year	50.00	2.329	11.900	41.87
J-12	5 year	5.00	1.287	11.950	14.76
J-12	10 year	10.00	1.616	11.900	14.76
J-12	25 year	25.00	2.075	11.850	14.76
J-12	50 year	50.00	2.432	11.800	14.76
J-13	5 year	5.00	1.286	11.950	14.98
J-13	10 year	10.00	1.614	11.950	14.80
J-13	25 year	25.00	2.073	11.900	14.83
J-13	50 year	50.00	2.429	11.850	14.92
J-14	5 year	5.00	1.285	12.000	14.85
J-14	10 year	10.00	1.613	12.000	14.78
J-14	25 year	25.00	2.072	11.950	14.79
J-14	50 year	50.00	2.429	11.900	14.83
PR_OUT	5 year	5.00	1.576	12.050	15.88
PR_OUT	10 year	10.00	1.970	12.200	15.94
PR_OUT	25 year	25.00	2.524	12.250	16.01
PR_OUT	50 year	50.00	2.961	12.250	16.07
J-16	5 year	5.00	0.292	12.150	1.11
J-16	10 year	10.00	0.358	12.150	1.18
J-16	25 year	25.00	0.454	12.200	1.25
J-16	50 year	50.00	0.535	12.250	1.31

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-2 (IN)	5 year	5.00	0.292	11.950	5.14	(N/A)	(N/A)
PO-2 (OUT)	5 year	5.00	0.292	12.150	1.11	668.35	0.088

Subsection: Master Network Summary

Pond Summary

	-						
Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
PO-2 (IN)	10 year	10.00	0.358	11.950	6.23	(N/A)	(N/A)
PO-2 (OUT)	10 year	10.00	0.358	12.150	1.18	668.49	0.116
PO-2 (IN)	25 year	25.00	0.455	11.950	7.80	(N/A)	(N/A)
PO-2 (OUT)	25 year	25.00	0.454	12.200	1.25	668.69	0.155
PO-2 (IN)	50 year	50.00	0.535	11.950	9.08	(N/A)	(N/A)
PO-2 (OUT)	50 year	50.00	0.535	12.250	1.31	668.86	0.189

Subsection: Time-Depth Curve Return Event: 5.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve:	Type II 24 hour
Label	Type II 24 hour
Start Time	0.000 hours
Increment	0.100 hours
End Time	24.000 hours
Return Event	5.00 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.01
0.500	0.01	0.02	0.02	0.02	0.03
1.000	0.03	0.03	0.04	0.04	0.04
1.500	0.05	0.05	0.05	0.06	0.06
2.000	0.06	0.07	0.07	0.07	0.08
2.500	0.08	0.09	0.09	0.09	0.10
3.000	0.10	0.10	0.11	0.11	0.12
3.500	0.12	0.12	0.13	0.13	0.14
4.000	0.14	0.14	0.15	0.15	0.16
4.500	0.16	0.17	0.17	0.17	0.18
5.000	0.18	0.19	0.19	0.20	0.20
5.500	0.21	0.21	0.22	0.22	0.23
6.000	0.23	0.24	0.24	0.25	0.26
6.500	0.26	0.27	0.27	0.28	0.28
7.000	0.29	0.29	0.30	0.31	0.31
7.500	0.32	0.33	0.33	0.34	0.34
8.000	0.35	0.36	0.36	0.37	0.38
8.500	0.39	0.39	0.40	0.41	0.42
9.000	0.43	0.44	0.45	0.46	0.47
9.500	0.48	0.49	0.50	0.51	0.52
10.000	0.53	0.54	0.55	0.57	0.58
10.500	0.60	0.61	0.63	0.65	0.67
11.000	0.69	0.71	0.73	0.76	0.79
11.500	0.83	0.90	1.03	1.26	1.66
12.000	1.94	1.99	2.04	2.08	2.12
12.500	2.15	2.17	2.19	2.22	2.24
13.000	2.25	2.27	2.29	2.30	2.32
13.500	2.33	2.35	2.36	2.37	2.38
14.000	2.39	2.41	2.42	2.43	2.44
14.500	2.45	2.46	2.47	2.47	2.48
15.000	2.49	2.50	2.51	2.52	2.53
15.500	2.53	2.54	2.55	2.56	2.56
16.000	2.57	2.58	2.58	2.59	2.60
16.500	2.60	2.61	2.61	2.62	2.63

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 5.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth				
(hours)	(in)	(in)	(in)	(in)	(in)				
17.000	2.63	2.64	2.64	2.65	2.66				
17.500	2.66	2.67	2.67	2.68	2.68				
18.000	2.69	2.69	2.70	2.70	2.71				
18.500	2.71	2.72	2.72	2.73	2.73				
19.000	2.74	2.74	2.75	2.75	2.76				
19.500	2.76	2.76	2.77	2.77	2.78				
20.000	2.78	2.78	2.79	2.79	2.79				
20.500	2.80	2.80	2.81	2.81	2.81				
21.000	2.82	2.82	2.82	2.83	2.83				
21.500	2.84	2.84	2.84	2.85	2.85				
22.000	2.85	2.86	2.86	2.86	2.87				
22.500	2.87	2.87	2.88	2.88	2.88				
23.000	2.89	2.89	2.89	2.90	2.90				
23.500	2.90	2.91	2.91	2.91	2.92				
24.000	2.92	(N/A)	(N/A)	(N/A)	(N/A)				

Subsection: Time-Depth Curve Return Event: 10.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Type II 24 hour
Type II 24 hour
0.000 hours
0.100 hours
24.000 hours
10.00 years

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.01
0.500	0.02	0.02	0.02	0.03	0.03
1.000	0.04	0.04	0.04	0.05	0.05
1.500	0.05	0.06	0.06	0.07	0.07
2.000	0.07	0.08	0.08	0.09	0.09
2.500	0.10	0.10	0.10	0.11	0.11
3.000	0.12	0.12	0.13	0.13	0.14
3.500	0.14	0.14	0.15	0.15	0.16
4.000	0.16	0.17	0.17	0.18	0.18
4.500	0.19	0.19	0.20	0.20	0.21
5.000	0.21	0.22	0.23	0.23	0.24
5.500	0.24	0.25	0.25	0.26	0.27
6.000	0.27	0.28	0.28	0.29	0.30
6.500	0.30	0.31	0.32	0.32	0.33
7.000	0.34	0.34	0.35	0.36	0.36
7.500	0.37	0.38	0.39	0.39	0.40
8.000	0.41	0.42	0.42	0.43	0.44
8.500	0.45	0.46	0.47	0.48	0.49
9.000	0.50	0.51	0.52	0.53	0.54
9.500	0.55	0.57	0.58	0.59	0.60
10.000	0.62	0.63	0.64	0.66	0.68
10.500	0.69	0.71	0.73	0.75	0.78
11.000	0.80	0.83	0.85	0.89	0.92
11.500	0.96	1.04	1.20	1.46	1.93
12.000	2.25	2.32	2.38	2.42	2.47
12.500	2.50	2.53	2.55	2.58	2.60
13.000	2.62	2.65	2.66	2.68	2.70
13.500	2.72	2.73	2.75	2.76	2.78
14.000	2.79	2.80	2.81	2.82	2.84
14.500	2.85	2.86	2.87	2.88	2.89
15.000	2.90	2.91	2.92	2.93	2.94
15.500	2.95	2.96	2.97	2.98	2.98
16.000	2.99	3.00	3.01	3.02	3.02
16.500	3.03	3.04	3.04	3.05	3.06

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 10.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	3.07	3.07	3.08	3.09	3.09
17.500	3.10	3.11	3.11	3.12	3.13
18.000	3.13	3.14	3.14	3.15	3.16
18.500	3.16	3.17	3.17	3.18	3.18
19.000	3.19	3.19	3.20	3.20	3.21
19.500	3.21	3.22	3.22	3.23	3.23
20.000	3.24	3.24	3.25	3.25	3.25
20.500	3.26	3.26	3.27	3.27	3.28
21.000	3.28	3.28	3.29	3.29	3.30
21.500	3.30	3.31	3.31	3.31	3.32
22.000	3.32	3.33	3.33	3.33	3.34
22.500	3.34	3.35	3.35	3.35	3.36
23.000	3.36	3.37	3.37	3.37	3.38
23.500	3.38	3.38	3.39	3.39	3.40
24.000	3.40	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 25.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour					
Label	Type II 24 hour				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	25.00 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.02
0.500	0.02	0.03	0.03	0.03	0.04
1.000	0.04	0.05	0.05	0.06	0.06
1.500	0.07	0.07	0.08	0.08	0.09
2.000	0.09	0.09	0.10	0.10	0.11
2.500	0.12	0.12	0.13	0.13	0.14
3.000	0.14	0.15	0.15	0.16	0.16
3.500	0.17	0.17	0.18	0.18	0.19
4.000	0.20	0.20	0.21	0.21	0.22
4.500	0.23	0.23	0.24	0.24	0.25
5.000	0.26	0.26	0.27	0.28	0.28
5.500	0.29	0.30	0.31	0.31	0.32
6.000	0.33	0.33	0.34	0.35	0.36
6.500	0.37	0.37	0.38	0.39	0.40
7.000	0.40	0.41	0.42	0.43	0.44
7.500	0.45	0.46	0.46	0.47	0.48
8.000	0.49	0.50	0.51	0.52	0.53
8.500	0.54	0.55	0.56	0.58	0.59
9.000	0.60	0.61	0.63	0.64	0.65
9.500	0.67	0.68	0.69	0.71	0.72
10.000	0.74	0.76	0.77	0.79	0.81
10.500	0.83	0.86	0.88	0.91	0.93
11.000	0.96	0.99	1.03	1.07	1.11
11.500	1.16	1.25	1.45	1.76	2.32
12.000	2.71	2.79	2.86	2.92	2.97
12.500	3.01	3.04	3.07	3.10	3.13
13.000	3.16	3.18	3.21	3.23	3.25
13.500	3.27	3.29	3.30	3.32	3.34
14.000	3.35	3.37	3.38	3.40	3.41
14.500	3.43	3.44	3.45	3.47	3.48
15.000	3.49	3.50	3.51	3.53	3.54
15.500	3.55	3.56	3.57	3.58	3.59
16.000	3.60	3.61	3.62	3.63	3.64
16.500	3.64	3.65	3.66	3.67	3.68

Bentley PondPack V8i [08.11.01.51] Page 9 of 39

Subsection: Time-Depth Curve Return Event: 25.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
17.000	3.69	3.70	3.70	3.71	3.72
17.500	3.73	3.74	3.74	3.75	3.76
18.000	3.77	3.77	3.78	3.79	3.80
18.500	3.80	3.81	3.82	3.82	3.83
19.000	3.84	3.84	3.85	3.85	3.86
19.500	3.87	3.87	3.88	3.88	3.89
20.000	3.89	3.90	3.90	3.91	3.91
20.500	3.92	3.93	3.93	3.94	3.94
21.000	3.95	3.95	3.96	3.96	3.97
21.500	3.97	3.98	3.98	3.99	3.99
22.000	4.00	4.00	4.01	4.01	4.02
22.500	4.02	4.03	4.03	4.03	4.04
23.000	4.04	4.05	4.05	4.06	4.06
23.500	4.07	4.07	4.08	4.08	4.09
24.000	4.09	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Time-Depth Curve Return Event: 50.00 years Label: ODOT TR-55 Storm Event: Type II 24 hour

Time-Depth Curve: Type II 24 hour					
Label	Type II 24 hour				
Start Time	0.000 hours				
Increment	0.100 hours				
End Time	24.000 hours				
Return Event	50.00 years				

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
0.000	0.00	0.00	0.01	0.01	0.02
0.500	0.02	0.03	0.03	0.04	0.04
1.000	0.05	0.05	0.06	0.06	0.07
1.500	0.08	0.08	0.09	0.09	0.10
2.000	0.10	0.11	0.11	0.12	0.13
2.500	0.13	0.14	0.14	0.15	0.15
3.000	0.16	0.17	0.17	0.18	0.19
3.500	0.19	0.20	0.20	0.21	0.22
4.000	0.22	0.23	0.24	0.24	0.25
4.500	0.26	0.26	0.27	0.28	0.29
5.000	0.29	0.30	0.31	0.32	0.32
5.500	0.33	0.34	0.35	0.36	0.36
6.000	0.37	0.38	0.39	0.40	0.41
6.500	0.42	0.42	0.43	0.44	0.45
7.000	0.46	0.47	0.48	0.49	0.50
7.500	0.51	0.52	0.53	0.54	0.55
8.000	0.56	0.57	0.58	0.59	0.60
8.500	0.62	0.63	0.64	0.66	0.67
9.000	0.69	0.70	0.71	0.73	0.74
9.500	0.76	0.77	0.79	0.81	0.83
10.000	0.84	0.86	0.88	0.90	0.93
10.500	0.95	0.98	1.00	1.03	1.06
11.000	1.10	1.13	1.17	1.22	1.27
11.500	1.32	1.43	1.65	2.01	2.65
12.000	3.09	3.18	3.26	3.32	3.38
12.500	3.43	3.46	3.50	3.54	3.57
13.000	3.60	3.63	3.65	3.68	3.70
13.500	3.72	3.74	3.77	3.78	3.80
14.000	3.82	3.84	3.86	3.87	3.89
14.500	3.90	3.92	3.93	3.95	3.96
15.000	3.98	3.99	4.00	4.02	4.03
15.500	4.04	4.06	4.07	4.08	4.09
16.000	4.10	4.11	4.12	4.13	4.14
16.500	4.15	4.16	4.17	4.18	4.19

Bentley Systems, Inc. Haestad Methods Solution Center

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Time-Depth Curve Return Event: 50.00 years
Label: ODOT TR-55 Storm Event: Type II 24 hour

CUMULATIVE RAINFALL (in) Output Time Increment = 0.100 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth
(hours)	(in)	(in)	(in)	(in)	(in)
17.000	4.20	4.21	4.22	4.23	4.24
17.500	4.25	4.26	4.27	4.27	4.28
18.000	4.29	4.30	4.31	4.32	4.32
18.500	4.33	4.34	4.35	4.36	4.36
19.000	4.37	4.38	4.38	4.39	4.40
19.500	4.40	4.41	4.42	4.42	4.43
20.000	4.44	4.44	4.45	4.45	4.46
20.500	4.47	4.47	4.48	4.48	4.49
21.000	4.50	4.50	4.51	4.51	4.52
21.500	4.52	4.53	4.54	4.54	4.55
22.000	4.55	4.56	4.56	4.57	4.58
22.500	4.58	4.59	4.59	4.60	4.60
23.000	4.61	4.61	4.62	4.62	4.63
23.500	4.63	4.64	4.64	4.65	4.65
24.000	4.66	(N/A)	(N/A)	(N/A)	(N/A)

Subsection: Runoff CN-Area Return Event: 5.00 years Label: Existing 9th Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	0.2800	100.0	0.0	98.000
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil C	74.000	0.3900	0.0	0.0	74.000
Open space (Lawns,parks etc.) - Fair condition; grass cover 50% to 75% - Soil C	79.000	0.0800	0.0	0.0	79.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	0.7500	(N/A)	(N/A)	83.493

Return Event: 5.00 years Subsection: Runoff CN-Area Label: Proposed 9th Storm Event: Type II 24 hour

Runoff Curve Number Data

Soil/Surface Description	CN	Area (acres)	C (%)	UC (%)	Adjusted CN
Impervious Areas - Paved parking lots, roofs, driveways, Streets and roads - Soil C	98.000	1.2600	100.0	0.0	98.000
Open space (Lawns,parks etc.) - Good condition; grass cover > 75% - Soil B	74.000	0.5000	0.0	0.0	74.000
COMPOSITE AREA & WEIGHTED CN>	(N/A)	1.7600	(N/A)	(N/A)	91.182

Bentley PondPack V8i

[08.11.01.51] Page 14 of 39

Subsection: Unit Hydrograph Summary Return Event: 5.00 years

Label: Existing 9th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	0.7500 acres
Computational Time Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	1.63 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	1.56 ft³/s
Drainage Area	
	92,000
SCS CN (Composite) Area (User Defined)	83.000 0.7500 acres
Maximum Retention	0.7500 acres
(Pervious)	2.05 in
Maximum Retention (Pervious, 20 percent)	0.41 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.38 in
Runoff Volume (Pervious)	0.086 ac-ft
Liveles manife Malacon (According	Land Bridge man de la la la
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	0.086 ac-ft
SCS Unit Hydrograph Paramet	ters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Existing 9th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters				
Unit peak, qp	10.20 ft ³ /s			
Unit peak time, Tp	0.056 hours			
Unit receding limb, Tr	0.222 hours			
Total unit time, Tb	0.278 hours			

Subsection: Unit Hydrograph Summary

Return Event: 5.00 years Label: Existing Orange - 14th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.083 hours
Area (User Defined)	9.9300 acres
Computational Time	0.011 have
Increment	0.011 hours
Time to Peak (Computed)	11.922 hours
Flow (Peak, Computed)	28.40 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.900 hours
Flow (Peak Interpolated Output)	27.39 ft³/s
Drainage Area	
SCS CN (Composite)	88.969
Area (User Defined)	9.9300 acres
Maximum Retention (Pervious)	1.24 in
Maximum Retention (Pervious, 20 percent)	0.25 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.83 in
Runoff Volume (Pervious)	1.510 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	1.509 ac-ft
SCS Unit Hydrograph Paramet	ers
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Existing Orange - 14th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	135.01 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Unit Hydrograph Summary Return Event: 5.00 years

Label: Proposed 9th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour
Return Event	5.00 years
Duration	24.000 hours
Depth	2.92 in
Time of Concentration (Composite)	0.098 hours
Area (User Defined)	1.7600 acres
Computational Time Increment	0.013 hours
Time to Peak (Computed)	11.930 hours
Flow (Peak, Computed)	5.29 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	11.950 hours
Flow (Peak Interpolated Output)	5.14 ft³/s
Drainage Area	
SCS CN (Composite)	91.000
Area (User Defined)	1.7600 acres
Maximum Retention (Pervious)	0.99 in
Maximum Retention (Pervious, 20 percent)	0.20 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	2.00 in
Runoff Volume (Pervious)	0.293 ac-ft
Hydrograph Volume (Area und	er Hydrograph curve)
Volume	0.292 ac-ft
SCS Unit Hydrograph Paramet	ters
Time of Concentration	
(Composite)	0.098 hours
Computational Time Increment	0.013 hours
Unit Hydrograph Shape Factor	483.432
K Factor	0.749
Receding/Rising, Tr/Tp	1.670

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Proposed 9th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameters	
Unit peak, qp	20.35 ft ³ /s
Unit peak time, Tp	0.065 hours
Unit receding limb, Tr	0.261 hours
Total unit time, Tb	0.327 hours

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Proposed Orange - 14th Storm Event: Type II 24 hour

Storm Event	Type II 24 hour	
Return Event	5.00 years	
Duration	24.000 hours	
Depth	2.92 in	
Time of Concentration (Composite)	0.083 hours	
Area (User Defined)	8.4600 acres	
Computational Time		
Increment	0.011 hours	
Time to Peak (Computed)	11.922 hours	
Flow (Peak, Computed)	22.85 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	11.900 hours	
Flow (Peak Interpolated Output)	21.96 ft³/s	
Drainage Area		
SCS CN (Composite)	87.602	
Area (User Defined)	8.4600 acres	
Maximum Retention (Pervious)	1.42 in	
Maximum Retention (Pervious, 20 percent)	0.28 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.72 in	
Runoff Volume (Pervious)	1.210 ac-ft	
Hydrograph Volume (Area un	der Hydrograph curve)	
Volume	1.208 ac-ft	
SCS Unit Hydrograph Parame	eters	
Time of Concentration (Composite)	0.083 hours	
Computational Time Increment	0.011 hours	
Unit Hydrograph Shape Factor	483.432	
K Factor	0.749	
Receding/Rising, Tr/Tp	1.670	

Subsection: Unit Hydrograph Summary Return Event: 5.00 years Label: Proposed Orange - 14th Storm Event: Type II 24 hour

SCS Unit Hydrograph Parameter	S
Unit peak, qp	115.03 ft³/s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.222 hours
Total unit time, Tb	0.278 hours

Subsection: Elevation-Area Volume Curve Return Event: 5.00 years Label: PO-2 Storm Event: Type II 24 hour

Elevation (ft)	Planimeter (ft²)	Area (acres)	A1+A2+sqr(A1*A 2) (acres)	Volume (ac-ft)	Volume (Total) (ac-ft)
667.00	0.000	0.0006	0.0000	0.000	0.000
667.75	0.000	0.0156	0.0193	0.005	0.005
668.00	0.000	0.1756	0.2435	0.020	0.025
669.00	0.000	0.2091	0.5763	0.192	0.217
669.75	0.000	0.2364	0.6678	0.167	0.384

Subsection: Volume Equations Return Event: 5.00 years Label: PO-2 Storm Event: Type II 24 hour

Pond Volume Equations * Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2 - El1) * (Area1 + Area2 + sqr(Area1 * Area2))

where: EL1, EL2 Lower and upper elevations of the increment Area1, Area2 Areas computed for EL1, EL2, respectively

Volume Incremental volume between EL1 and EL2

Subsection: Outlet Input Data Return Event: 5.00 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Requested Pond Water Surface Elevations		
Minimum (Headwater)	667.00 ft	
Increment (Headwater)	0.50 ft	
Maximum (Headwater)	670.00 ft	

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Inlet Box	Riser - 1	Forward	TW	669.25	669.75
Orifice-Area	Orifice - 1	Forward	TW	667.00	669.75
Tailwater Settings	Tailwater			(N/A)	(N/A)

Subsection: Outlet Input Data Return Event: 5.00 years
Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Structure ID: Orifice - 1		
Structure Type: Orifice-Area		
Number of Openings	1	
Elevation	667.00 ft	
Orifice Area	0.200 ft ²	
Top Elevation	0.00 ft	
Datum Elevation	0.00 ft	
Orifice Coefficient	0.600	
Structure ID: Riser - 1 Structure Type: Inlet Box		
Number of Openings	1	
Elevation	669.25 ft	
Orifice Area	2.560 ft ²	
Orifice Coefficient	0.600	
Weir Length	6.50 ft	
Weir Coefficient	3.00 (ft^0.5)/s	
K Reverse	1.000	
Manning's n	0.000	
Kev, Charged Riser	0.000	
Weir Submergence	False	
Orifice H to crest	True	
Structure ID: TW Structure Type: TW Setup, DS	Channel	
Tailwater Type	Free Outfall	
Convergence Tolerances		
Maximum Iterations	30	
Tailwater Tolerance (Minimum)	0.01 ft	
Tailwater Tolerance (Maximum)	0.50 ft	
Headwater Tolerance (Minimum)	0.01 ft	
Headwater Tolerance (Maximum)	0.50 ft	
Flow Tolerance (Minimum)	0.001 ft ³ /s	
Flow Tolerance (Maximum)	10.000 ft ³ /s	

Subsection: Individual Outlet Curves Return Event: 5.00 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Orifice - 1 (Orifice-Area)

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
667.00	0.00	(N/A)	0.00
667.50	0.68	(N/A)	0.00
668.00	0.96	(N/A)	0.00
668.50	1.18	(N/A)	0.00
669.00	1.36	(N/A)	0.00
669.25	1.44	(N/A)	0.00
669.50	1.52	(N/A)	0.00
669.75	1.60	(N/A)	0.00
Computation Me	essages		-

Com	putation	Messag	es

compatation ricosages
H =.00
H =.50
H =1.00
H =1.50
H =2.00
H =2.25
H =2.50
H =2.75

Subsection: Individual Outlet Curves Return Event: 5.00 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

RATING TABLE FOR ONE OUTLET TYPE Structure ID = Riser - 1 (Inlet Box)

.

Upstream ID = (Pond Water Surface) Downstream ID = Tailwater (Pond Outfall)

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
667.00	0.00	(N/A)	0.00
667.50	0.00	(N/A)	0.00
668.00	0.00	(N/A)	0.00
668.50	0.00	(N/A)	0.00
669.00	0.00	(N/A)	0.00
669.25	0.00	(N/A)	0.00
669.50	2.44	(N/A)	0.00
669.75	6.89	(N/A)	0.00

Computation Messages

HW & TW < Inv.El.=669.250

Weir: H =0ft

Weir: H =0.25ft Weir: H =0.5ft

Subsection: Composite Rating Curve Return Event: 5.00 years Label: Composite Outlet Structure - 1 Storm Event: Type II 24 hour

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)
667.00	0.00	(N/A)	0.00
667.50	0.68	(N/A)	0.00
668.00	0.96	(N/A)	0.00
668.50	1.18	(N/A)	0.00
669.00	1.36	(N/A)	0.00
669.25	1.44	(N/A)	0.00
669.50	3.96	(N/A)	0.00
669.75	8.49	(N/A)	0.00

Contributing Structures

3
Orifice - 1
Riser - 1 + Orifice - 1
Riser - 1 + Orifice - 1
Riser - 1 + Orifice - 1

Subsection: Elevation-Volume-Flow Table (Pond) Return Event: 5.00 years

Infiltration	
Infiltration Method (Computed)	No Infiltration
Initial Conditions	
Elevation (Water Surface, Initial)	667.00 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	0.050 hours

Elevation (ft)	Outflow (ft³/s)	Storage (ac-ft)	Area (acres)	Infiltration (ft³/s)	Flow (Total) (ft³/s)	2S/t + O (ft³/s)
667.00	0.00	0.000	0.0006	0.00	0.00	0.00
667.50	0.68	0.002	0.0084	0.00	0.68	1.58
668.00	0.96	0.025	0.1756	0.00	0.96	13.12
668.50	1.18	0.117	0.1920	0.00	1.18	57.80
669.00	1.36	0.217	0.2091	0.00	1.36	106.49
669.25	1.44	0.271	0.2180	0.00	1.44	132.42
669.50	3.96	0.326	0.2271	0.00	3.96	161.86
669.75	8.49	0.384	0.2364	0.00	8.49	194.43

Subsection: Level Pool Pond Routing Summary Return Event: 5.00 years

		<u></u>	
Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions		<u> </u>	
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	5.14 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.11 ft³/s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	668.35 ft	_	
Volume (Peak)	0.088 ac-ft		
Mass Balance (ac-ft)		_	
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.292 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.292 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
	0.000 00.0		

Subsection: Level Pool Pond Routing Summary Return Event: 10.00 years

Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions		_	
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	6.23 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.18 ft ³ /s	Time to Peak (Flow, Outlet)	12.150 hours
Elevation (Water Surface, Peak)	668.49 ft		
Volume (Peak)	0.116 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.358 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.358 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)	0.0 %		

Subsection: Level Pool Pond Routing Summary Return Event: 25.00 years

Infiltration			
Infiltration Method (Computed)	No Infiltration		
Initial Conditions			
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours		
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	7.80 ft³/s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.25 ft ³ /s	Time to Peak (Flow, Outlet)	12.200 hours
Elevation (Water Surface, Peak)	668.69 ft		
Volume (Peak)	0.155 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.455 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.454 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		

Subsection: Level Pool Pond Routing Summary Return Event: 50.00 years

Infiltration			
Infiltration Method (Computed)	No Infiltration	<u></u>	
Initial Conditions		_	
Elevation (Water Surface, Initial)	667.00 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	0.050 hours	<u> </u>	
Inflow/Outflow Hydrograph S	ummary		
Flow (Peak In)	9.08 ft ³ /s	Time to Peak (Flow, In)	11.950 hours
Flow (Peak Outlet)	1.31 ft ³ /s	Time to Peak (Flow, Outlet)	12.250 hours
Elevation (Water Surface, Peak)	668.86 ft	=	
Volume (Peak)	0.189 ac-ft		
Mass Balance (ac-ft)			
Volume (Initial)	0.000 ac-ft		
Volume (Total Inflow)	0.535 ac-ft		
Volume (Total Infiltration)	0.000 ac-ft		
Volume (Total Outlet Outflow)	0.535 ac-ft		
Volume (Retained)	0.000 ac-ft		
Volume (Unrouted)	0.000 ac-ft		
Error (Mass Balance)			

Subsection: Pond Inflow Summary Return Event: 5.00 years Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.292	11.950	5.14
Flow (In)	PO-2	0.292	11.950	5.14

Subsection: Pond Inflow Summary Return Event: 10.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.358	11.950	6.23
Flow (In)	PO-2	0.358	11.950	6.23

Subsection: Pond Inflow Summary Return Event: 25.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.455	11.950	7.80
Flow (In)	PO-2	0.455	11.950	7.80

Subsection: Pond Inflow Summary Return Event: 50.00 years

Label: PO-2 (IN) Storm Event: Type II 24 hour

Summary for Hydrograph Addition at 'PO-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	Proposed 9th

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	Proposed 9th	0.535	11.950	9.08
Flow (In)	PO-2	0.535	11.950	9.08

Index

C Composite Outlet Structure - 1 (Composite Rating Curve, 5.00 years)...29 Composite Outlet Structure - 1 (Individual Outlet Curves, 5.00 years)...27, 28 Composite Outlet Structure - 1 (Outlet Input Data, 5.00 years)...25, 26 Ε Existing 9th (Runoff CN-Area, 5.00 years)...13 Existing 9th (Unit Hydrograph Summary, 5.00 years)...15, 16 Existing Orange - 14th (Unit Hydrograph Summary, 5.00 years)...17, 18 Μ Master Network Summary...2, 3, 4 ODOT TR-55 (Time-Depth Curve, 10.00 years)...7, 8 ODOT TR-55 (Time-Depth Curve, 25.00 years)...9, 10 ODOT TR-55 (Time-Depth Curve, 5.00 years)...5, 6 ODOT TR-55 (Time-Depth Curve, 50.00 years)...11, 12 PO-2 (Elevation-Area Volume Curve, 5.00 years)...23 PO-2 (Elevation-Volume-Flow Table (Pond), 5.00 years)...30 PO-2 (IN) (Level Pool Pond Routing Summary, 10.00 years)...32 PO-2 (IN) (Level Pool Pond Routing Summary, 25.00 years)...33 PO-2 (IN) (Level Pool Pond Routing Summary, 5.00 years)...31 PO-2 (IN) (Level Pool Pond Routing Summary, 50.00 years)...34 PO-2 (IN) (Pond Inflow Summary, 10.00 years)...36 PO-2 (IN) (Pond Inflow Summary, 25.00 years)...37 PO-2 (IN) (Pond Inflow Summary, 5.00 years)...35 PO-2 (IN) (Pond Inflow Summary, 50.00 years)...38 PO-2 (Volume Equations, 5.00 years)...24 Proposed 9th (Runoff CN-Area, 5.00 years)...14 Proposed 9th (Unit Hydrograph Summary, 5.00 years)...19, 20 Proposed Orange - 14th (Unit Hydrograph Summary, 5.00 years)...21, 22

E. 9TH Water Quantity Basin Anti-Seep Collar Calculations

Made By: ELJ Date:

Checked By: AKL Date: 11/18/2011 11/18/2011

	Checked By:	AKL	Date:
Anti-Seep Collar	From ODOT L&D 2		
	Y- Depth of water at		
	spillway crest,	668.41	ft
	Z-slope of upstream		
	face of		
	embankment	4	
	S-slope of outfall		
	pipe .	0.0063	<mark>;</mark>
	Length of Saturation		
	Graphically	26.0	ft
	Seepage length		
	increase	3.9	ft
	W-Width of Collar	5	i
	D - Diameter of		
	Conduit	1	
	P - Projection of		
	Collar (P=W-D)	4	
	# of collars	2	
	Minimum 2 colla	rs at minim	um spacing 10'.
spaced 14 feet apart			, 5
	*Stationing from 0	Carnegie	
STA. 25+12, 69.20 RT	Avenue	- 3 -	
STA. 25+14, 82.70 RT			
- ,			

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX I

Description: Inlet Spacing - Carnegie (9th to Ontario) LT (Allowable spread = 12 ft + 7 ft) **Designer**: AKL

Rainfall Area: A Storm Frequency (yr.): 5 Total Allow. Spread (ft.): 19.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)		SLOPE			LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
26+69	Begin																	
25+00	CB-3A	169.00	0.76	0.22	1.00	3.29	10.00	0.0027	0.0160	0.0160	12.00	0.0417	4.30	0.45	0.27	0.72	0.146	9.14
23+05	CB-3A	195.00	0.66	0.48	1.00	2.82	10.00	0.0030	0.0200	0.0160	12.00	0.0417	4.30	0.86	0.77	1.63	0.212	10.60
21+00	CB-3A	205.00	0.83	0.35	1.00	2.85	10.00	0.0030	0.0200	0.0160	12.00	0.0417	4.30	0.99	1.03	2.02	0.230	11.48
18+92	CB-3	208.00	0.85	0.39	1.00	2.87	10.00	0.0030	0.0200	0.0160	12.00	0.0417	4.30	*****	*****	2.46	0.247	12.44 Sag
18+25	Begin																	
18+92	CB-3	67.00	0.90	0.13	1.00	1.26	10.00	0.0030	0.0200	0.0160	12.00	0.0417	4.30	*****	*****	0.50	0.136	6.82 End

SUMP DATA

Total Flow (cfs): 2.96 Ponded Depth (ft.): 0.220 Spread on Pavement (ft.): 10.31

Description: Inlet Spacing - Carnegie (9th to Ontario) LT (Allowable spread = 12 ft + 7 ft) **Designer**: AKL

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 19.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)		SLOPE			LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
26+69	Begin																	
25+00	CB-3A	169.00	0.76	0.22	1.00	2.82	10.00	0.0027	0.0160	0.0160	12.00	0.0417	6.79	0.61	0.53	1.14	0.174	10.85
23+05	CB-3A	195.00	0.66	0.48	1.00	2.64	10.00	0.0030	0.0200	0.0160	12.00	0.0417	6.79	1.19	1.49	2.68	0.255	12.95
21+00	CB-3A	205.00	0.83	0.35	1.00	2.61	10.00	0.0030	0.0200	0.0160	12.00	0.0417	6.79	1.40	2.06	3.46	0.281	14.55
18+92	CB-3	208.00	0.85	0.39	1.00	2.52	10.00	0.0030	0.0200	0.0160	12.00	0.0417	6.79	*****	*****	4.31	0.305	16.04 Sag
18+25	Begin																	
18+92	CB-3	67.00	0.90	0.13	1.00	1.07	10.00	0.0030	0.0200	0.0160	12.00	0.0417	6.79	*****	*****	0.79	0.162	8.09 End

SUMP DATA

Total Flow (cfs): 5.11 Ponded Depth (ft.): 0.331 Spread on Pavement (ft.): 16.82

Description: INLET SPACING - CARNEGIE (WEST OF ONTARIO) LT

Designer: AKL

Rainfall Area: A Storm Frequency (yr.): 5 Total Allow. Spread (ft.): 12.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		_	TIME	GUTTER TIME (min.)		SLOPE		SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
10+90	Begin																	
15+25	CB-3	435.00	0.89	0.49	1.00	5.41	10.00	0.0050	0.0160	0.0160	0.00	0.0417	4.30	*****	*****	1.88	0.187	11.66 Sag
16+73	Begin																	
15+25	CB-3	148.00	0.83	0.26	1.00	1.84	10.00	0.0072	0.0160	0.0160	0.00	0.0417	4.30	*****	*****	0.93	0.134	8.36 End

SUMP DATA

Total Flow (cfs): 2.80 Ponded Depth (ft.): 0.211 Spread on Pavement (ft.): 11.96

Description: INLET SPACING - CARNEGIE (WEST OF ONTARIO) LT

Designer: AKL

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 12.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		_	TIME	GUTTER TIME (min.)			SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
10+90	Begin																	
15+25	CB-3	435.00	0.89	0.49	1.00	4.70	10.00	0.0050	0.0160	0.0160	0.00	0.0417	6.79	*****	*****	2.96	0.221	13.84 Sag
16+73	Begin																	
15+25	CB-3	148.00	0.83	0.26	1.00	1.56	10.00	0.0072	0.0160	0.0160	0.00	0.0417	6.79	*****	*****	1.47	0.159	9.93 End

SUMP DATA

Total Flow (cfs): 4.43 Ponded Depth (ft.): 0.298 Spread on Pavement (ft.): 17.42

Description: Inlet Spacing - RT to Sag on Carnegie (Sta. 15+23) RT (Carnegie=8'+1'=9')

Designer: ELJ

Rainfall Area: A Storm Frequency (yr.): 5 Total Allow. Spread (ft.): 9.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	GUTTER TIME (min.)		SLOPE	SLOPE	SLOPE	WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
698+93	Begin																	
15+23	CB-3	80.00	0.90	0.30	1.00	0.93	10.00	0.0072	0.0160	0.0160	14.00	0.0417	4.30	*****	*****	1.16	0.146	9.10 Sag
14+10	Begin																	
15+23	CB-3	113.00	0.90	0.12	1.00	1.91	10.00	0.0050	0.0160	0.0160	14.00	0.0417	4.30	*****	*****	0.46	0.111	6.91 End

SUMP DATA

Total Flow (cfs): 1.63 Ponded Depth (ft.): 0.136 Spread on Pavement (ft.): 7.27

Description: Inlet Spacing - RT to Sag on Carnegie (Sta. 15+23) RT (Carnegie=8'+1'=9')

Designer: ELJ

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 9.00 Allowable Depth (ft.) 0.50

STATION	C.B. Type	GUTTER LENGTH (ft.)		_	TIME	GUTTER TIME (min.)			SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
698+93	Begin																	
15+23	CB-3	80.00	0.90	0.30	1.00	0.78	10.00	0.0072	0.0160	0.0160	14.00	0.0417	6.79	*****	*****	1.83	0.173	10.80 Sag
14+10	Begin																	
15+23	CB-3	113.00	0.90	0.12	1.00	1.62	10.00	0.0050	0.0160	0.0160	14.00	0.0417	6.79	*****	*****	0.73	0.131	8.20 End

SUMP DATA

Total Flow (cfs): 2.57 Ponded Depth (ft.): 0.197 Spread on Pavement (ft.): 11.09

Designer: AKL

1

Description: Inlet Spacing - Carnegie (9th to Ont) RT to Ont RT (Ont Spread 13' + 8')

Rainfall Area: A Storm Frequency (yr.): 5 Total Allow. Spread (ft.): 8.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)	_	NOFF AREA (acres)	CONC. TIME (min.)	GUTTER TIME (min.)	TIME USED (min.)	SLOPE		PAVT. SLOPE (ft./ft.)		LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
26+69	Begin																	
25+25	CB-3	144.00	0.90	0.12	1.00	2.94	10.00	0.0027	0.0200	0.0160	12.00	0.0417	4.30	0.44	0.02	0.46	0.135	6.75
23+25	CB-3	200.00	0.90	0.24	1.00	3.44	10.00	0.0027	0.0200	0.0160	12.00	0.0417	4.30	0.77	0.18	0.95	0.177	8.83
22+20	CB-3	105.00	0.90	0.12	1.00	1.91	10.00	0.0030	0.0200	0.0160	12.00	0.0417	4.30	0.57	0.07	0.64	0.150	7.48
20+70	CB-3	150.00	0.83	0.19	1.00	2.60	10.00	0.0030	0.0200	0.0160	12.00	0.0417	4.30	0.65	0.11	0.76	0.159	7.97
19+35	CB-3A	135.00	0.79	0.21	1.00	2.30	10.00	0.0030	0.0200	0.0160	21.00	0.0417	4.30	0.54	0.28	0.82	0.164	8.18
29+49	CB-3A	98.00	0.82	0.44	1.00	1.22	10.00	0.0046	0.0160	0.0160	21.00	0.0417	4.30	0.83	1.00	1.83	0.188	11.74
29+30	CB-3	19.00	0.70	0.04	1.00	0.28	10.00	0.0046	0.0160	0.0160	21.00	0.0417	4.30	*****	*****	1.12	0.156	9.76 Sag
35+00	Begin																	
29+00	CB-3A	600.00	0.87	0.31	1.00	8.62	10.00	0.0051	0.0160	0.0160	21.00	0.0417	4.30	0.62	0.54	1.16	0.155	9.70
29+30	CB-3	30.00	0.70	0.07	1.00	0.47	10.00	0.0051	0.0160	0.0160	21.00	0.0417	4.30	*****	*****	0.75	0.132	8.26 End

SUMP DATA

Total Flow (cfs): 1.88 Ponded Depth (ft.): 0.153 Spread on Pavement (ft.): 8.35

* Dimension denotes allowable spread for Ontario - 13 ft for RT only lane + 8 ft allowable spread in through lane = 21 ft.

Description: Inlet Spacing - Carnegie (9th to Ont) RT to Ont RT (Ont Spread 13' + 8')

Designer: AKL

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 8.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)	_	NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)	SLOPE	SLOPE	PAVT. SLOPE (ft./ft.)		LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
26+69	Begin																	
25+25	CB-3	144.00	0.90	0.12	1.00	2.52	10.00	0.0027	0.0200	0.0160	12.00	0.0417	6.79	0.63	0.10	0.73	0.160	8.01
23+25	CB-3	200.00	0.90	0.24	1.00	2.93	10.00	0.0027	0.0200	0.0160	12.00	0.0417	6.79	1.11	0.46	1.57	0.213	10.64
22+20	CB-3	105.00	0.90	0.12	1.00	1.59	10.00	0.0030	0.0200	0.0160	12.00	0.0417	6.79	0.91	0.29	1.19	0.188	9.42
20+70	CB-3	150.00	0.83	0.19	1.00	2.18	10.00	0.0030	0.0200	0.0160	12.00	0.0417	6.79	1.00	0.38	1.38	0.199	9.95
19+35	CB-3A	135.00	0.79	0.21	1.00	1.92	10.00	0.0030	0.0200	0.0160	21.00	0.0417	6.79	0.81	0.68	1.49	0.205	10.24
29+49	CB-3A	98.00	0.82	0.44	1.00	1.02	10.00	0.0046	0.0160	0.0160	21.00	0.0417	6.79	1.18	1.95	3.13	0.230	14.36
29+30	CB-3	19.00	0.70	0.04	1.00	0.24	10.00	0.0046	0.0160	0.0160	21.00	0.0417	6.79	*****	*****	2.14	0.199	12.46 Sag
35+00	Begin																	
29+00	CB-3A	600.00	0.87	0.31	1.00	7.58	10.00	0.0051	0.0160	0.0160	21.00	0.0417	6.79	0.83	1.00	1.83	0.184	11.52
29+30	CB-3	30.00	0.70	0.07	1.00	0.40	10.00	0.0051	0.0160	0.0160	21.00	0.0417	6.79	*****	*****	1.33	0.164	10.22 End

SUMP DATA

Total Flow (cfs): 3.48 Ponded Depth (ft.): 0.248 Spread on Pavement (ft.): 14.32

^{*} Dimension denotes allowable spread for Ontario - 13 ft for RT only lane + 8 ft allowable spread in through lane = 21 ft.

Description: Inlet Spacing - Ontario (Carnegie to north) LT **Designer**: AKL

Rainfall Area: A Storm Frequency (yr.): 5 Total Allow. Spread (ft.): 8.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	CONC. TIME (min.)	GUTTER TIME (min.)	TIME USED (min.)					LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
		(1.1.)		(40.00)	()	()	()	(10,710,7	(1627161)	(1.1.7.1.7)		()	((0.0.)	(0.0.)	(0.0.)	(,	()
31+90	Begin										*							
33+20	CB-3	130.00	0.90	0.25	1.00	1.75	10.00	0.0056	0.0160	0.0160	13.30	0.0417	4.30	0.70	0.27	0.97	0.143	8.91
33+50	CB-3	30.00	0.85	0.11	1.00	0.47	10.00	0.0051	0.0160	0.0160	8.00	0.0417	4.30	0.53	0.13	0.66	0.126	7.85
34+05	CB-3	55.00	0.67	0.18	1.00	0.85	10.00	0.0051	0.0160	0.0160	8.00	0.0417	4.30	0.53	0.13	0.65	0.125	7.83
34+70	CB-3	65.00	0.66	0.20	1.00	0.99	10.00	0.0051	0.0160	0.0160	8.00	0.0417	4.30	0.55	0.14	0.69	0.128	7.98
35+40	CB-3	70.00	0.69	0.19	1.00	1.07	10.00	0.0051	0.0160	0.0160	8.00	0.0417	4.30	0.55	0.14	0.69	0.128	7.98
36+10	CB-3	70.00	0.72	0.18	1.00	1.07	10.00	0.0051	0.0160	0.0160	8.00	0.0417	4.30	0.55	0.14	0.69	0.128	7.98
36+70	CB-3	60.00	0.76	0.14	1.00	0.95	10.00	0.0051	0.0160	0.0160	8.00	0.0417	4.30	0.49	0.10	0.60	0.121	7.57
37+45	CB-3	75.00	0.90	0.11	1.00	1.23	10.00	0.0050	0.0160	0.0160	8.00	0.0417	4.30	*****	*****	0.55	0.118	7.35 Sag
38+50	Begin																	
37+75	CB-3A	75.00	0.90	0.04	1.00	1.97	10.00	0.0030	0.0160	0.0160	8.00	0.0417	4.30	0.16	0.01	0.17	0.084	5.25
37+45	CB-3	30.00	0.90	0.02	1.00	0.90	10.00	0.0030	0.0160	0.0160	8.00	0.0417	4.30	****	*****	0.10	0.069	4.28 End

SUMP DATA

Total Flow (cfs): 0.65 Ponded Depth (ft.): 0.055 Spread on Pavement (ft.): 2.24

^{*} Due to varying outside lane width, this dimension is the allowable spread width at each CB.

Description: Inlet Spacing - Ontario (Carnegie to north) LT **Designer**: AKL

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 8.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	CONC. TIME (min.)	GUTTER TIME (min.)	TIME USED (min.)	SLOPE	SLOPE	PAVT. SLOPE (ft./ft.)		LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
31+90	Begin								,	(,	*			(,	(2-2)	(* - ',		
33+20	CB-3	130.00	0.90	0.25	1.00	1.49	10.00	0.0056	0.0160	0.0160	13.30	0.0417	6.79	0.96	0.57	1.53	0.169	10.57
33+50	CB-3	30.00	0.85	0.11	1.00	0.39	10.00	0.0051	0.0160	0.0160	8.00	0.0417	6.79	0.81	0.38	1.19	0.157	9.79
34+05	CB-3	55.00	0.67	0.18	1.00	0.70	10.00	0.0051	0.0160	0.0160	8.00	0.0417	6.79	0.82	0.39	1.21	0.158	9.86
34+70	CB-3	65.00	0.66	0.20	1.00	0.82	10.00	0.0051	0.0160	0.0160	8.00	0.0417	6.79	0.85	0.43	1.28	0.161	10.07
35+40	CB-3	70.00	0.69	0.19	1.00	0.88	10.00	0.0051	0.0160	0.0160	8.00	0.0417	6.79	0.86	0.44	1.30	0.162	10.12
36+10	CB-3	70.00	0.72	0.18	1.00	0.88	10.00	0.0051	0.0160	0.0160	8.00	0.0417	6.79	0.86	0.44	1.30	0.162	10.14
36+70	CB-3	60.00	0.76	0.14	1.00	0.78	10.00	0.0051	0.0160	0.0160	8.00	0.0417	6.79	0.80	0.37	1.17	0.156	9.72
37+45	CB-3	75.00	0.90	0.11	1.00	1.01	10.00	0.0050	0.0160	0.0160	8.00	0.0417	6.79	*****	*****	1.07	0.151	9.44
38+50	Begin																	
37+75	CB-3A	75.00	0.90	0.04	1.00	1.67	10.00	0.0030	0.0160	0.0160	8.00	0.0417	6.79	0.23	0.05	0.27	0.100	6.24
37+45	CB-3	30.00	0.90	0.02	1.00	0.74	10.00	0.0030	0.0160	0.0160	8.00	0.0417	6.79	*****	*****	0.18	0.086	5.38 I

SUMP DATA

Total Flow (cfs): 1.25 Ponded Depth (ft.): 0.108 Spread on Pavement (ft.): 5.55

^{*} Due to varying outside lane width, this dimension is the allowable spread width at each CB.

Description: INLET SPACING - ONTARIO (SOUTH OF CARNEGIE) LT

Designer: AKL

Rainfall Area: A Storm Frequency (yr.): 5 Total Allow. Spread (ft.): 9.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)	COEF	NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)	SLOPE				LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
31+60	Begin																	
30+70	CB-3A	115.00	0.69	0.39	1.00	1.28	10.00	0.0082	0.0160	0.0160	9.00	0.0417	4.30	0.62	0.54	1.16	0.142	8.87
30+33	CB-3	37.00	0.73	0.09	1.00	0.47	10.00	0.0082	0.0160	0.0160	9.00	0.0417	4.30	*****	*****	0.82	0.125	7.80 Sag
25+00	Begin																	
27+10	I-2-8	210.00	0.67	0.45	1.00	2.08	10.00	0.0106	0.0160	0.0160	9.00	0.1667	4.30	0.89	0.41	1.30	0.141	8.82
29+80	CB-3A	270.00	0.84	0.07	1.00	4.36	10.00	0.0052	0.0160	0.0160	9.00	0.0417	4.30	0.42	0.24	0.66	0.125	7.83
30+33	CB-3	53.00	0.71	0.11	1.00	0.85	10.00	0.0052	0.0160	0.0160	9.00	0.0417	4.30	*****	*****	0.58	0.119	7.44 End

SUMP DATA

Total Flow (cfs): 1.40 Ponded Depth (ft.): 0.119 Spread on Pavement (ft.): 6.23

INLET SPACING DESIGN

Description :INLET SPACING - ONTARIO (SOUTH OF CARNEGIE) LT

Designer : AKL

Rainfall Area: A Storm Frequency (yr.): 50 Total Allow. Spread (ft.): 9.00 Allowable Depth (ft.) 0.42

STATION	C.B. Type	GUTTER LENGTH (ft.)	_	NOFF AREA (acres)	TIME	GUTTER TIME (min.)	TIME USED (min.)	SLOPE	SLOPE			LOCAL DEPRESS. (ft.)	RAIN FALL (in./hrs.)	INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)	
31+60	Begin																		
30+70	CB-3A	115.00	0.69	0.39	1.00	1.08	10.00	0.0082	0.0160	0.0160	9.00	0.0417	6.79	0.84	0.99	1.83	0.168	10.53	
30+33	CB-3	37.00	0.73	0.09	1.00	0.40	10.00	0.0082	0.0160	0.0160	9.00	0.0417	6.79	*****	*****	1.44	0.154	9.62	Sag
25+00	Begin																		
27+10	I-2-8	210.00	0.67	0.45	1.00	1.77	10.00	0.0106	0.0160	0.0160	9.00	0.1667	6.79	1.14	0.91	2.05	0.168	10.47	
29+80	CB-3A	270.00	0.84	0.07	1.00	3.65	10.00	0.0052	0.0160	0.0160	9.00	0.0417	6.79	0.67	0.64	1.31	0.162	10.11	
30+33	CB-3	53.00	0.71	0.11	1.00	0.70	10.00	0.0052	0.0160	0.0160	9.00	0.0417	6.79	*****	*****	1.17	0.155	9.70	End

SUMP DATA

Total Flow (cfs): 2.61 Ponded Depth (ft.): 0.199 Spread on Pavement (ft.): 11.23

Description: CARNEGIE - CONNECT TO EXISTING 12" STORM SEWER AT 25+23 RT

Designer: AKL

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 665.69

JUNCTION S From To		ΔAREA ΣAREA (acres)	ΣCA	TIME		SITY	(cfs	.)	DIAM. L	PIPE ENGTH (ft.)	ISLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D12A EX12 begin	25+24 25+18	0.12 0.12	0.11 0.11		5.10	6.20	0.6	0.7	12	9.3	0.0549	665.20 664.69	 7.79	0.0005	665.69 665.69	669.26 670.32	3.57	3.06	CB 3 0.015

Description: Storm Sewer Design Carnegie Left 1 **Designer**: MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 664.66

JUNCTION S	_	ΔAREA ΣAREA	_		RAINF INTENS		DISCH./ (cfs			PIPE	ICL ODE						_	_	_	INLET TYPE
From To	From To	(acres)	ZCA		(10 yrs.) (2			,		(ft.)	(ft./ft.)	IN / OUT (ft.)	VEL (fps.)	(cfs.)	(ft./ft.)	(ft.)	IN / OUT (ft.)		CROWN	MANNING'S 'n'
D70 2304 begin	23+05 23+05	0.48 0.48	0.32 0.32	10.00	5.10	6.20	1.6	2.0	12	6.0	0.0050	663.69 663.66	* 3.04	2.35	0.0040	664.68 664.66	669.06 669.55	4.38	4.37	CB 3A 0.015

^{*} This is the original design elevation. Invert elevation could not be verified from the approved as-built survey information, structure D70 was filled with water to an elevation of 664.81.

PID: 49633 Date: 10/26/2011 Project: CUY-90-14.90 Location: CARNEGIE

Description: Storm Sewer Design Carnegie Left 1A **Designer**: JCA

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 663.96

JUNCTION S From To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.	.)	DIAM. L		SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)		JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D73 7828 begin	21+00 21+00	0.35 0.35	0.29 0.29		5.10	6.18	1.5	1.8	12	23.0	0.0100	663.40 663.17	* 3.90	3.32	0.0034	664.04 663.96	668.65 671.18	4.61	4.25	CB 3A 0.015

NOTE: CDSS calculation shows full length of existing pipe. 6 feet of pipe to be reconstructed at 1% slope within limits of new sidewalk construction. Invert at end of 6 foot proposed pipe = 663.34'

^{*} This is the original design elevation. Invert elevation could not be verified from the approved as-built survey information, structure D73 was filled with water to an elevation of 664.53.

Description: Storm Sewer Design Carnegie Left 1B **Designer**: MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 664.75

JUNCTION S From To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.	.)	DIAM. L	PIPE ENGTH (ft.)	ISLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)						MINUS		INLET TYPE MANNING'S 'n'
D76 7899 begin	18+92 18+33	0.52 0.52	0.45 0.45		5.10	6.18	2.3	2.8	12	57.0	0.0432	664.03 661.57	* 7.49	6.90	0.0080	665.21 664.75	668.07 668.32	2.86	3.04	CB 3 0.015

^{*} This is the original design elevation. Invert elevation could not be verified from the approved as-built survey information, structure D76 was filled with water to an elevation of 664.77.

Description: Storm Sewer Design Carnegie-Ontario 5 **Designer**: MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 662.89

JUNCTION S From To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs	.)	DIAM. L	PIPE ENGTH (ft.)	ISLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)		JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D93 8726 begin	15+25 15+14	0.75 0.75	0.65 0.65		5.10	6.18	3.3	4.0	15 Warning	19.1	0.0000	661.75	2.71 • *	0.01	0.0052	663.00 662.89	667.19 667.69	4.19	4.19	CB 3 0.015

^{*} D93 to D8726. Based on the approved as-built survey information, the invert elevation at structure D8726 would be 662.17, which would result in a negative slope of -2.20% for the pipe run of D93 to D8726.

Description: Storm Sewer Design Carnegie-Ontario 2-3 **Designer**: MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 659.35

JUNCTION From To	STATION From To	ΔAREA ΣAREA (acres)	_	TIME		SITY	(cfs.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)		MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D72 D72A begin	22+20 21+75	0.12 0.12	0.11 0.11		5.10	6.14	0.6	0.7	12	42.9	0.0093	666.15 665.75		3.21	0.0005	666.47 666.42	669.00 668.90	2.53	1.85	CB 3 0.015
D72A CS final	21+75 21+76	0.10 0.22	0.09 0.20		5.04	6.12	1.0	1.2	12	47.7	0.1753	665.20 656.84		13.91	0.0015	665.41 659.35	668.90 669.53	3.49	2.70	CB 3 0.015

Description: Storm Sewer Design Carnegie-Ontario 2-3B **Designer**: JCA

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 658.61

JUNCTION : From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.	.)	DIAM. LE	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS	COVER MINUS CROWN	MANNING'S
D77 D77B begin	19+35 19+45	0.21 0.21	0.17 0.17		5.10	6.18	8.0	1.0	12	17.0	0.0076	664.10 663.97		2.90	0.0011	664.70 664.68	668.22 668.36	3.52	3.12	CB 3A 0.015
D77B D77A	19+45 20+00	0.00 0.21	0.00 0.17		5.07	6.13	8.0	1.0	12	55.0	0.0276	663.95 662.43		5.52	0.0011	664.25 663.14	668.36 669.10	4.11	3.41	MH 3 0.015
D74 D77A begin	20+64 20+00	0.19 0.40	0.16 0.32		5.10	6.15	0.8	1.0	12	64.3	0.0264	664.55 662.85		5.40	0.0010	664.85 663.56	668.57 669.10	3.72	3.02	CB 3 0.015
D77A D780 final	20+00 19+91	0.00 0.40	0.00 0.32		5.03	6.06	1.6	2.0	12 Warning		0.0000	657.01 657.01		0.01	0.0040	658.77 658.61	669.24 669.10	10.47	11.23	MH 3 0.015

^{*} D77A to D7809 (Shown as D780 in CDSS). The invert elevation of structure D7809, from D77A, could not be verified from the approved as-built survey information. The original design called for the pipe to have an invert elevation of 657.61 at D7809, however this would result in a negative slope of -1.55%.

Description: Storm Sewer Design Carnegie-Ontario 2-3D **Designer**: AKL

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 664.21

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	COVER MINUS HY GR	COVER MINUS CROWN	INLET TYPE MANNING'S 'n'
D79 D80 begin	29+00 29+30	0.31 0.31	0.27 0.27		5.10	6.15	1.4	1.7	12	30.0	0.0063	663.71 663.52	3.22	2.64	0.0029	664.53 664.44	667.95 667.60	3.42	3.24	CB 3A 0.015
D80 D81	29+30 29+49	0.11 0.42	0.08 0.35		5.06	6.15	1.8	2.1	12	19.4	0.0175	663.58 663.24	5.00	4.40	0.0048	664.44 664.35	667.60 667.62	3.16	3.02	CB 3 0.015
D81 7710 final	29+49 29+50	0.44 0.86	0.36 0.71		5.05	6.15	3.6	4.3	12	7.0	0.0586	663.24 662.83	9.40	8.04	0.0198	664.35 664.21	667.62 668.43	3.27	3.38	CB 3A 0.015

Description: STORM SEWER - CARNEGIE - SAG @ 15+23 RT Designer: AKL

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 663.63

JUNCTION S From To	From To	ΔAREA ΣAREA (acres)	ΣCA	TIME		SITY	(cfs.	.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D136 8734 begin	15+25 15+01	0.68 0.68	0.61 0.61		5.10	6.19	3.1	3.8	15	29.7	0.0269	662.72 661.92	 9.88	0.0046	663.77 663.63	666.92 667.60	3.15	2.95	CB 3 0.015

PID: 49633 Date: 12/07/2011 Project: Cleveland Innerbelt Location: BL - 14 Carnegie

Description: BL14 Catch Basin D-136A Designer: ELJ

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 660.83

JUNCTION S From To		ΔAREA ΣAREA (acres)		TIME	RAINF INTEN: (10 yrs.) (2	SITY	(cfs.	.)	DIAM. L	PIPE ENGTH (ft.)	ISLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
136A 8734 begin	15+35 15+26	0.26 0.26	0.23 0.23		5.10	6.20	1.2	1.5	12	16.4	0.0976	661.56 659.96		10.37	0.0022	661.82 660.83	667.41 667.69	5.59	4.85	CB 2-2B 0.015

CDSS 1.0.0.3. 2015-02-09 SS - D136A.xml 1

Description: Storm Sewer Design Carnegie-Ontario 4 **Designer**: MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 662.29

JUNCTION From To	STATION From	ΔAREA Σ AREA	_	RAINF		ISCH <i>A</i> (cfs.		DIAM. L	PIPE FNGTH	SI OPF	F/L PIPE IN / OUT	MEAN VEL	JUST FULL	FRICT SLOPE		COVER IN / OUT	COVER	_	INLET TYPE MANNING'S
	То	(acres)		(10 yrs.) (2		•	•	(in.)	(ft.)	(ft./ft.)	(ft.)	(fps.)	(cfs.)	(ft./ft.)	(ft.)	(ft.)		CROWN	'n'
D95 D96 begin	33+20 33+50	0.25 0.25	0.23 0.23	5.10	6.17	1.1	1.4	12	30.0	0.0060	662.84 662.66		2.57	0.0020	663.47 663.41	666.92 666.82	3.45	3.08	CB 3 0.015
D96 D86A	33+50 33+75	0.11 0.36	0.09 0.32	5.06	6.13	1.6	2.0	12	26.0	0.0060	662.66 662.50		2.57	0.0040	663.41 663.30	666.82 667.50	3.41	3.16	CB 3 0.015
D85 D86 begin	34+70 34+05	0.20 0.56	0.18 0.50	 5.10	5.94	0.9	1.1	12	65.0	0.0070	662.40 661.95		2.78	0.0012	663.02 662.94	666.40 666.61	3.38	3.00	CB 3 0.015
D86 D86A	34+05 33+75	0.18 0.74	0.15 0.65	5.02	5.94	1.7	2.0	12	31.0	0.0050	661.95 661.79		2.35	0.0041	662.94 662.81	666.61 667.50	3.67	3.66	CB 3 0.015
D86A D86B final	33+75 34+61	0.00 0.74	0.00 0.65	4.98	5.94	3.3	3.9	15	109.0	0.0040	661.54 661.10		3.83	0.0048	662.81 662.29	667.50 670.50	4.69	4.71	MH 3 0.015

Description : Storm Sewer Design Carnegie-Ontario 4B **Designer :** MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 662.38

JUNC [*] From		STATION From To	ΔAREA Σ AREA (acres)	ΣCA	TIME		SITY	(cfs.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	-	,	JUST FULL CAPACITY (cfs.)	_	_	COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D88 beg	D87 in	35+40 36+10	0.19 0.19	0.13 0.13		5.10	6.08	0.7	0.8	12	70.0	0.0090	662.12 661.49		3.15	0.0007	662.48 662.43	666.12 665.90	3.64	3.00	CB 3 0.015
D87	8277 al	36+10 35+96	0.18 0.37	0.13 0.26		5.01	6.08	1.3	1.6	12	19.0	0.0060	661.49 661.38	_	2.57	0.0026	662.43 662.38	665.90 666.22	3.47	3.41	CB 3 0.015

CDSS 1.0.0.3. SS-ONTARIO LEFT 4B.xml

Description: Storm Sewer Design Carnegie-Ontario 4C **Designer**: AKL

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 661.75

JUNCTION S From To	STATION From To	ΔAREA Σ AREA (acres)		TIME	RAINF. INTENS (10 yrs.) (2	SITY	(cfs.	.)		_	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D89 8470 begin	36+70 36+82	0.14 0.14	0.11 0.11	10.00	5.10	6.18	0.5	0.7	12	23.0	0.0110	661.00 660.75	 3.48	0.0005	661.76 661.75	665.89 666.88	4.13	3.89	CB 3 0.015

CDSS 1.0.0.3. SS-ONTARIO LEFT 4C.xml

Description : Storm Sewer Design Carnegie-Ontario 4D **Designer :** MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 661.81

JUNC From		STATION From To	ΔAREA Σ AREA (acres)		TIME		SITY	(cfs.)	DIAM. L	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	-	,	JUST FULL CAPACITY (cfs.)	_	_	COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D91 beg	D90 gin	37+75 37+45	0.04 0.04	0.04 0.04		5.10	6.15	0.2	0.2	12	30.0	0.0250	661.66 660.91	3.00	5.25	0.0001	661.82 661.82	665.66 665.49	3.84	3.00	CB 3A 0.015
D90 fin	8472 al	37+45 37+50	0.13 0.17	0.12 0.15		5.06	6.15	0.8	0.9	12	10.0	0.0100	660.91 660.81		3.32	0.0009	661.82 661.81	665.49 666.34	3.67	3.58	CB 3 0.015

CDSS 1.0.0.3. SS-ONTARIO LEFT 4D.xml

Description: Storm Sewer Design Carnegie-Ontario 6A **Designer**: MTR

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 12.00 Tailwater Elevation (ft.): 664.22

JUNCTION From To	STATION From To	ΔAREA Σ AREA (acres)	_	TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.	.)	DIAM. L (in.)	PIPE ENGTH (ft.)	SLOPE (ft./ft.)	F/L PIPE IN / OUT (ft.)	MEAN VEL (fps.)	JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D82 D83 begin	29+80 30+33	0.07 0.07	0.06 0.06		5.10	6.11	0.3	0.4	12	51.2	0.0152	663.69 662.91		4.10	0.0001	664.41 664.41	667.89 667.71	3.48	3.20	CB 3A 0.015
D84 D83 begin	30+70 30+33	0.39 0.46	0.27 0.33		5.10	6.11	1.4	1.7	12	35.6	0.0132	663.93 663.46		3.82	0.0029	664.51 664.41	667.93 667.71	3.42	3.00	CB 3A 0.015
D83 8025 final	30+33 30+52	0.20 0.66	0.14 0.48		5.03	6.11	2.4	2.9	12	20.9	0.0134	662.71 662.43		3.84	0.0089	664.41 664.22	667.71 668.83	3.30	4.00	CB 3 0.015

For C.O.C. - TREMONT CATCH BASIN Job no. 49633 Sheet no.

Made by BTA Checked by JTW Backchecked by

Date 10/24/II Date

HNTB

Jate	İc	7/24	-/1)							-	Uc	ite	10	/24	///		UMANA APPROPRIATE TO THE PARTY OF THE PARTY		Dat	···	Company of the Compan								
	1	۵-	₩.	<u> </u>	ıΕ	A	CIT	y c	FC	LEV	ELA	حد	CA	7C1	_ ß	۱حم	N_	-0	B-1	ر ا	بالد		وسا	er_	For				an annual and an annual and an
_	_	Α	DE	PTH	OF		<u>z'-o</u>				a popular de la company de la		A CANADA																
	1	SUN	€ 2	0"		ļ	<u> </u>		0.08	ksF			autorio de la companya de la company							.									
	5V	RCH	1266				1												210"	(001	KcF) _	0.0	8 KSF				, and a second	
	Authoritism makes					and the state of t					age automotive			ACT AND STREET				1.	40"	(0.04	r ect)	= ,	250	KSF	1	-			
										$\overline{}$			- CONTRACTOR OF THE CONTRACTOR	-					,										
						è	ĺ	-									***************************************												
		.~				12-0'			-		<u> </u>				/			0	56 ^k	sF (1.15	\	0	امدا	esF				
				The second secon		W. Carrier		_			$\uparrow \frown$		AL THE STATE OF TH							3	て	i	ŧ.						
							,	-	-	<u>i</u>	$\vdash \setminus$	**********		_	-ud-Yelden)etc							L.,-			ļ				
							<u></u>	-			<u> </u>	0.5	6 ^{KS}											The second secon					
			···			C C C C C C C C C C C C C C C C C C C			ļ								. /		A.W. W			w w======							
			e.:						ļ	Ì												^	}		<u></u>				
_(^l or	vSE	RVA	nvez)	۷, ⊆	HEC	<u> </u>	A s	SIMP	<u>LY</u> _	SU	PFO:	LTC:	\ :	EZA	М	Be	تسو	EM		ATC	<u>+</u> _	BA!	\$112	<u>س</u>	مير	<u> </u>			
				-			Autoria Canada	- Common	ļ		ļ				· · · · · · · · · · · · · · · · · · ·											-			
	Andrew Comme						1	Demination and	ļ				W. B. A. B.									. ۴.							
			·····			7			ω= l	2.644		<u></u>	TAMES AND A STATE OF THE STATE				МАХ	S	HEAR		0.64	$\frac{4}{2}\left(\frac{z}{2}\right)$) =	٥٠	966	<u> </u>			
						<i>*</i>]. 		3 <u>'-0</u> "	ļ		ļ		-						ļ			ļ		<u></u>				
							 	name of the second	3-0		 		ALL MANON TO THE STATE OF THE S				HA:	(N	UHEN	ντ,	0.64	4 (3)" -	<i>O</i> ,	483	انسان عادستا	<u></u>		
and the same of th		***************************************		WWW.	aga agrangement			AAAANE SIAAAN	on advantage of the control of the c	# 1 To 1 T		A TANKS A TANK	AVANORAMINATION AND THE								draw delated	2			At the street of	a le constituent à l'écrit		The second secon	ANA VARIENTA VARA
	The second second						In America California	CONTRACTOR				11.									OR CANADA								
	1000	***************************************	nuuroonnammar suum				Tonas American	ACCURACY PACE) W W		***	A DELLA COLLEGE								O DO NO COLOR								
	TO THE PARTY OF TH				A CONTRACTOR OF THE PARTY OF TH			Ì _#	401	2"						A,		7.2.in	2_		\$					E .		W. W. W.	
				-		<u> </u>	.										= 3				and			-	AND PARENT	and the same of th			
					THE CONTRACTOR OF THE CONTRACT	<u> </u>		<u> </u>		-				-		<u></u>		<u> </u>		-					A POPULATION AND A POPU				
																o =	0,2	20 in	2	_		055	-		A-MAN				
					an and a second				<u> </u>		-						12	20in)(3)	<u> </u>	=	0.0			-	an an annual				
																				~			-						
					WINDOW WAR			-	1			V.5	- / 12	 				-						-					-
						Ru	- 1	40			0.48	33	(, ,	(FT)	=-	0.0	4	 .	54	129		?) =	4	0,00 85 (20	<u>_</u> =_	17.0	.	
	Annual Company						L	d _			(12,)(3)-					***********		ļ		ļ		(B)	4000)	ļ		Annual VIII
						-		ļ	<u></u>	ļ	ļ.,	<u> </u>		R	-		***************************************			ļ	To the same of the			<u> </u>		ļ			
					PA	EQ'C	_=	1 d	1/	/-	//.		? <u>m</u>	R.		<u>_</u>		_/_/	_/	/_	2	17.6) <u>(54</u>)_/	=	0.	000	9	
				7. F. 70. C. 1	ļ		<u>.</u>	1	(\vee			Ty			/	7.6	(✓		60	000	خ	/	, month by				
SOURCE ENGINEER FOR	-						1	motiva materia							CA 0.00	AAA.]		· · ·			O CONTRACTOR OF THE PERSONS AND THE PERSONS AN	0.000	non monative	TO THE PERSON AND THE	**************************************		
				1.7	2 M		4	1.2	75	JA	600	7	2 (6	ار الم		409	193	16- <i>in</i>				δ '	-	40	2.00	(ون	_	മ വ	12
i	- Committee			3	····(/ (4		_	<u> </u>	6,	2.	<u>/-\-</u>	1-2-	-/-	W	=	3.4.	2 k. F	r	/-	/-	eeD ()	3-1-			-	ð.00.	
	TARREST TRANSPORT						A THE STATE OF THE	er constitution of the con	Annual An					-											VI.				
	*					<u> </u>	П,	ζ:		2/	F	L		⇒		, [for.	7.	7V	١,		150	2 7	15	<u>_</u>	4.0	L L		united and a second
				ļ			<u> </u>	- غ		- V	1 6	ע		<u> </u>		V	, 500	ا) م	<u> </u>	1/		10 -	12.1	-		1_tv	Ī		
																													1

ME101-1204

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX J

Bridge Deck Drainage Calculations Summary

For Bridge CUY-90-1566 - (Main Span Unit 1-2-3 & Ramp A5)

Unit 1

Unit 1 is the new I-90 WB Bridge from approximately Sta. 122 + 93 to Sta. 127 + 02 and spans 409 ft. For the Interim condition, Unit 1 has a 0.81% longitudinal slope, 2% cross slope from crown to right, 4% cross slope left of the crown, 5-12 ft lanes, 12 ft right shoulder, and 8 ft left shoulder. The high point of the bridge or drainage divide is located approximately at Station 136+34 ft.

During the Bidirectional condition the bridge has 4-11 ft west bound lanes, and 2-12 ft east bound lanes with a PCB dividing the two allowing drainage to pass from west to east bound lanes. The east bond right shoulder is 6 ft and the west bound left shoulder is variable.

Four 5 ft wide scuppers are proposed on the right shoulder with locations shown on the attached calculations and drainage map from the high point to the beginning of Unit 1. Two scuppers are located on Unit 1 next to pier 2. The other scuppers will downspout at piers 3 & 4 and are offset from the pier approx. 62ft and will flow down the delta frame to the pier. These scuppers are necessary per the below spread criteria.

Spread was analyzed for the interim/ future condition, along with the bi-directional condition. Per the scope requirements the interim/future condition spread was not to exceed the shoulder during a 10-year event. For the bi-directional condition, it is required that the 2-year event spread not exceed the shoulder plus 1/3 of the adjacent travel lane. For the proposed four scupper configuration described above, 10-yr spread criteria are met, meeting ODOT requirements. During the bi-directional condition the spread exceeded the 2-year criteria by 0.16 ft and 0.15 ft at 129+43 and 122+28, respectively, which has been approved by ODOT for final design.

Unit 2

Unit 2 is the new I-90 WB Bridge from approximately Sta. 127 + 02 to Sta. 157 + 94.5 and spans 3092.5 ft. For the Interim condition, Unit 2 has a 0.81% longitudinal slope, 2% cross slope from crown to right, 4% cross slope left of the crown going up to the high point at Sta. 136+34. From Sta. 136+34, the longitudinal slope transitions to 0.50% longitudinal slope, 2%-4% cross slope from the crown to right, and 4% cross slope left of crown has 5-12 ft lanes, 12 ft right shoulder, and 4-8 ft left shoulder. At approx. Sta. 141+00 the left lane transitions into Ramp A5 and a drainage barrier starting at Sta. 149+85 will be in place so that Ramp A5 doesn't flow across the mainline.

During the Bidirectional condition the bridge has 4-11 ft west bound lanes, and 2-12 ft east bound lanes with a PCB dividing the two allowing drainage to pass from west to east bound lanes. The east bond right shoulder is 6 ft and the west bound left shoulder is variable. Ramp A5 converges with the mainline at Sta. 145+00.

19 total scuppers are located on Unit 2. Four 5 ft wide scuppers are proposed on the right shoulder with locations shown on the attached calculations and drainage map from the high point to the beginning of Unit 1. Two scuppers are located on Unit 1 next to pier 2, and the other two scuppers will downspout at piers 3 & 4, respectively on Unit 2 and are offset from the pier approx. 62ft and will flow down the delta frame to the pier. Seventeen 5 ft wide scuppers are proposed from the high point to the end on Unit 2. Nine are located along the right shoulder, five on the left shoulder, and three along the barrier between Ramp A5 and the mainline. The scupper located at Sta. 157+92 along the Ramp A5 barrier acts as a backup to the scupper at Sta. 158+00 which is used for the calculations. The 5 ft wide scupper at Sta. 148+90 & 155+94 has a 6 ft shoulder but rounding occurs at 4ft. Due to maintenance of this scupper, it will be 5 ft and depressed through the rounding and have a maximum 5% slope transition from the rounding to the top of scupper. The high side shoulder has a low point on Ramp A5 at 718+18.91 and high point at 716+52.78. A scupper is located at the low point and flanking scuppers at 718+30 and 718+05. A sump calculation shows 0.0063ft of depth, and 0.16ft of spread at the low point. The edge of shoulder

side of the scupper will be depressed 1" at the sag, and will need to be hand finished 10ft on either side of the scupper.

Spread was analyzed for the interim/ future condition, along with the bi-directional condition. Per the scope requirements the interim/future condition spread was not to exceed the shoulder during a 10-yr event. For the bi-directional condition, it is required that the 2-yr event spread not exceed the shoulder plus 1/3 of the adjacent travel lane. For the proposed 14 scupper configuration described above, 10-yr & 2-yr spread criteria are met, meeting ODOT requirements on Unit 2.

Unit 3

Unit 3 is the new I-90 WB Bridge from approximately Sta. 157 + 94.5 to Sta. 166 + 37.14 and spans 839.5 ft. For the Interim condition, Unit 3 has a 0.5% longitudinal slope, 4% cross slope from crown to right, 4% cross slope left. 5-12 ft lanes, 12 ft right shoulder, and 6 ft left shoulder. At approx. Sta. 159+00 the left lane transitions into Ramp A4 and a gore section divides traffic. No drainage barrier is needed to separate Ramp A4 and the mainline.

During the Bidirectional condition the bridge has 3-11 ft west bound lanes, and 2-12 ft east bound lanes with a PCB dividing the two allowing drainage to pass from west to east bound lanes. The east bond right shoulder is 6 ft and the west bound left shoulder is variable. Ramp A4 converges with the mainline at Sta. 158+00.

One 5 ft wide scupper is proposed on the right shoulder at pier 12 with location shown on the attached calculations and drainage map. The remaining drainage will flow off the bridge and to the inlets in the approach slab. An inlet is also on the left shoulder after the approach slab to pick up drainage from the left shoulder.

Spread was analyzed for the interim/ future condition, along with the bi-directional condition. Per the scope requirements the interim/future condition spread was not to exceed the shoulder during a 10-yr event. For the bi-directional condition, it is required that the 2-yr event spread not exceed the shoulder plus 1/3 of the adjacent travel lane. For the proposed one scupper configuration described above, 10-yr & 2-yr spread criteria are met, meeting ODOT requirements on Unit 3.

Ramp A5

Ramp A5 is the new I-90 WB Bridge/On Ramp for Ontario Ave. from approximately Sta. 707+32.5 to Sta. 699+75.55 and spans 763.44 ft. For the Interim/Bi-directional condition, Ramp A5 has a 0.42-4.99% longitudinal slope, and variable cross slopes do to the super change of the ramp. The Ramp has 2-12 ft lanes, 6 ft right shoulder, and 4 ft left shoulder that tapers down to 2ft.

Two 4 ft wide scuppers are proposed on the left shoulder at piers 2 & 3 and are shown on the attached calculations and drainage map. The remaining drainage on the right shoulder will flow to inlets off the bridge and are included in Gateway Submittal. Scupper flows will be discharged to the combined sewers along Central Viaduct and a new system draining the parking lot north of Commercial Rd.

Spread was analyzed for the interim/ future condition, along with the bi-directional condition (same as Interim). Per the scope requirements the interim/future condition spread was not to exceed the shoulder during a 10-year event. For the proposed two scupper configuration described above, 10-yr spread criteria were met, meeting ODOT requirements.

UNTD	Made by: AHR	Date:	8/8/2011
HRID	Checked by: BH	Date:	8/8/2011
Job Number: 49633			
I-90 WB/Ramp A6			

Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.

Use E=1-(1-w/t)/2.67*Q per HEC 12 for determining inlet intercept flow.

where w = scupper width (ft), and t = design spread (ft).

= 0.015 Allowable Spread is spread that is less than the shoulder width

MAIN VIADUCT UNIT 1 & 2 TO HIGH POINT DECK DRAINAGE CALCULATIONS (ODOT 10 YR RAINFALL CHECK FOR INTERIM CONDITION)

																			IN CONDITI	,			
	CATION											TER ANALY:							INLET ANALY				
Station	offset (feet)		Area (A) (acres)	Runoff Coeff (C)		Total CA	T (min.) (i	I Q in/hr) (cfs			By- Pass (cfs)	Total Y Q (ft) (cfs)	Shoulde Width (ft)	r Spread (t (ft)) Inlet Width (w) (ft)	Flow Area (sq ft)	Velocity (ft/s)	Length (flow dir.) (ft)	Splash Over Vel for L (ft/s)	Splash Reduction Factor	Inlet Intercept Flow (E) (cfs)	By- Pass (cfs)	By- Pass %
136+34	- High Point																•			•			
133+08.56 I-90 WB	35.00	RT	0.55	0.9	0.495	0.495	10	5.1 2.5		81 0.0200 ad is less t		2.523 0.20 wable OK	8 12.00	10.38	5.00	1.08	2.34	1.33	3.95	1.0	2.087	0.436	17%
129+43	35.00	RT	0.67	0.9	0.603	0.603	10	5.1 3.0	0.00	81 0.0200	0.436	3.512 0.23	5 12.00	11.74	5.00	1.38	2.55	1.33	3.95	0.980	2.659	0.853	24%
I-90 WB									Spre	ad is less t	han allo	wable OK											
126+96	35.00	RT	0.47	0.9	0.423	0.423	10	5.1 2.1				3.010 0.22	2 12.00	11.09	5.00	1.23	2.45	1.33	3.95	1.0	2.403	0.607	20%
I-90 WB										ad is less t													
126+86 I-90 WB	35.00	RT	0.02	0.9	0.02	0.02	10	5.1 0.1		0.0200 ad is less t		0.708 0.12 wable OK	9 12.00	6.45	5.00	0.42	1.70	1.33	3.95	1.0	0.694	0.013	2%
122+28	35.00	RT	0.95	0.9	0.855	0.855	10	5.1 4.3	61 0.00	85 0.0230	0.013	4.374 0.26	6 12.00	11.58	0.00	1.54	2.84	0.00	0.00	0	0.000	4.374	100%
I-90 WB End of Bridge									Spre	ad is less t	han allo	wable OK			Drainage in	nlets and des	sign will be in	Tremont Road	lway Package				
eft Should Main	line/Ramp A6																						
808+13	6.00	RT	0.33	0.9	0.297	0.297	10	5.1 1.5				1.515 0.18	8.00	4.69	0.00	0.44	3.44	0.00	0.00	0	0.000	1.515	100%
122+56 Ramp A6/ I-90WB	105.00	LT							Spre	ad is less t	han allo	wable OK			Drainage in	nlets and des	sign will be in	Tremont Road	lway Package				

HNTB	Made by: AHR	Date:	8/8/2011
MRID	Checked by: BH	Date:	8/8/2011
Job Number: 49633			

122+56

Ramp A6/

I-90WB

105.00

Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines. Use E=1-(1-w/t)^2.67*Q per HEC 12 for determining inlet intercept flow.

where w = scupper width (ft), and t = design spread (ft). I-90 WB/Ramp A6 Allowable Spread is spread that is less than the shoulder width plus 1/3 travel lane n = 0.015 MAIN VIADUCT UNIT 1 & 2 TO HIGH POINT DECK DRAINAGE CALCULATIONS (ODOT 2 YR RAINFALL CHECK FOR BI-DIRECTIONAL CONDITION) **GUTTER ANALYSIS** INLET ANALYSIS LOCATION Station Splash Over offset Area (A) Runoff Total Q L-SI. X-SI. Ву-Total Allowable Spread (t) Inlet Flow Velocity Length Splash Inlet By-By-CA CA Width (w Side Coeff (min.) (cfs) (ft/ft) (ft/ft) Pass Q (ft) Reduction Intercept Pass Pass (feet) (acres) (in/hr) (ft) Spread Area (ft/s) (flow dir.) Vel for L (C) (cfs) (cfs) (ft) (ft) (sq ft) (ft) (ft/s) Factor Flow (E) (cfs) (cfs) 136+34 - High Point 0.9 0.495 0.495 10 3.6 1.78103 0.0081 0.0200 0.000 1.781 0.182 10.00 0.83 133+08.56 35.00 9.11 5.00 2.15 1.33 3.95 1.0 1.569 0.212 12% RT 0.55 I-90 WB Spread is less than allowable OK 0.9 0.603 0.603 10 3.6 2.17112 0.0081 0.0200 0.212 2.384 0.203 10.00 10.16 5.00 1.03 2.31 1.33 3.95 0.980 1.953 0.430 129+43 35.00 RT 0.67 18% I-90 WB Spread is greater than allowable NO GOOD ODOT approval for this location to exceed by 0.16 ft 126+96 35.00 0.9 0.423 0.423 10 3.6 1.5228 0.0081 0.0200 0.430 1.953 0.189 10.00 9.43 5.00 0.89 2.20 1.33 3.95 1.693 0.260 RT 0.47 1.0 13% I-90 WB Spread is less than allowable OK 126+86 35.00 0.02 10 3.6 0.07096 0.0081 0.0200 0.260 0.331 0.097 10.00 4.85 0.23 1.41 1.33 3.95 1.0 0.331 0.000 0.02 5.00 0% I-90 WB Spread is less than allowable OK 122+28 35.00 0.95 0.9 0.855 0.855 10 3.6 3.078 0.0085 0.0230 0.000 3.078 0.233 10.15 0.00 1.18 2.60 0.00 0.00 0.000 3.078 100% I-90 WB Spread is greater than allowable NO GOOD ODOT approval for this location to exceed by 0.15 ft End of Bridge Drainage inlets and design will be in Tremont Roadway Package eft Should Mainline/Ramp A6 0.9 0.297 0.297 10 3.6 1.0692 0.0200 0.0400 0.000 1.069 0.165 4.12 0.000 1.069 100% 808+13 6.00 0.33 3.15 0.00 0.00 LT

Drainage inlets and design will be in Tremont Roadway Package

Spread is less than allowable OK

Job Number: 49633 Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines. Use E=1-(1-w/t)^2.67'Q per HEC 12 for determining inlet intercept flow.

umber: 49633			where w = s	scuppe	er width	(ft), and	t = design	spread (ft).		
/B Mainline		n =	0.015	Allow	vable Sn	read is	spread that	t is less than th	ne shoulder w	rictt

Job Number: 49 I-90 WB Mainlin	9633 ne									n:	whe = 0.015	ere w = s	cupper Allowa	width (ft), and t = read is spre	design spre	ead (ft). ess than the	shoulder wi	idth						
			MAIN	I VIAD	UCT	JNIT 2	, 3, R	AMP	A5 FRO	M HIGI	H POIN	T DEC	K DRA	INAG	E CALC				INFALL CH	ECK FOR	INTERIM C	ONDITION)		
Station	OCATION offset (feet)	Side	Area (A) (acres)	Runoff	CA	Total CA	T (min.	I .) (in/h	Q r) (cfs)	L-SI. (ft/ft)	X-SI. (ft/ft)	By- Pass	Total Q	NALYS Y (ft)	Shoulder Width	Spread (t) (ft)	Inlet Width (w)	Flow Area	Velocity (ft/s)	Length (flow dir.)	Splash Ove Vel for L	r Splash Reduction		By- Pass	By- Pass
136+3				(C)								(cfs)	(cfs)		(ft)		(ft)	(sq ft)		(ft)	(ft/s)	Factor	Flow (E) (cfs)	(cfs)	%
138+11.48 I-90 WB East Bank Basin A	35.00	RT	0.29	0.9	0.265	0.265	5 10	5.1	1.353	Spread	0 0.0200 is less t	0.000 han allo	1.353 wable	0.180 OK	12.00	8.99	5.00	0.81	1.67	1.33	3.95	1.0	1.198	0.155	11%
140+68.75 I-90 WB East Bank Basin B	35.00	RT	0.45	0.9	0.407	0.407	7 10	5.1	2.078	Spread	0 0.0200 I is less t	0.155 han allo	2.233 wable	0.217 OK	12.00	10.85	5.00	1.18	1.90	1.33	3.95	0.980	1.768	0.465	21%
141+91.26 I-90 WB East Bank	35.00	RT	0.22	0.9	0.198	0.198	3 10	5.1	1.009		0.0200 l is less t				12.00	9.29	5.00	0.86	1.71	1.33	3.95	1.0	1.287	0.187	13%
Basin B 144+18.75	35.00	RT	0.43	0.9	0.386	0.386	5 10	5.1	1.97						12.00	10.71	5.00	1.15	1.88	1.33	3.95	1.0	1.755	0.402	19%
I-90 WB East Bank Basin B	35.00	RT	0.00		0.044	0.044	100	1 54	1 4 07/		l is less t				40.00		500	0.07		1.00	3.95	1.0	1 1001		400/
I-90 WB East Bank Basin B	35.00	KI	0.23	0.9	0.211	0.211	1 10	5.1	1.078	Spread	0.0200 lis less t	han allo	1.480 owable	OK	12.00	9.30	5.00	0.87	1.71	1.33	3.95	1.0	1.291	0.189	13%
147+68.56 I-90 WB East Bank	35.00	RT	0.48	0.9	0.428	0.428	3 10	5.1	2.183		0.0240 l is less t				12.00	9.90	5.00	1.18	2.02	1.33	3.95	1.0	2.009	0.363	15%
Basin B 148+91.78 I-90 WB	35.00	RT	0.26	0.9	0.238	0.238	3 10	5.1	1.214	4 0.005 Spread	0.0370 l is less t	0.363 han allo	1.576 wable	0.240 OK	12.00	6.48	5.00	0.78	2.03	1.33	3.95	1.0	1.546	0.031	2%
East Bank Basin B 155+48	35.00	RT	1.16	0.9	1.046	1.046	5 10	5.1	5.336	6 0.005	0 0.0400	0.031	5.367	0.391	12.00	9.77	5.00	1.91	2.81	1.33	3.95	1.0	4.576	0.791	15%
I-90 WB										Spread	l is less t	han allo	wable	ок											
157+73 I-90 WB	35.00	RT	0.42	0.9	0.374	0.374	10	5.1	1.909		0.0400 lis less t				12.00	7.55	5.00	1.14	2.37	1.33	3.95	1.0	2.551	0.149	6%
160+30 I-90 WB	35.00	RT	0.52	0.9	0.464	0.464	10	5.1	2.366	Spread	0 0.0400 I is less t	0.149 han allo	2.515 wable	0.294 OK	12.00	7.35	5.00	1.08	2.33	1.33	3.95	1.0	2.395	0.120	5%
166+60 I-90 WB	35.00	RT	1.30	0.9	1.174	1.174	10	5.1	5.985	5 0.005 Spread	0 0.0400 lis less t	0.120 han allo	6.105 wable	0.410 OK	12.00	10.25	0.00 Drainage in	2.10 alets and de	2.91 esign will be in	0.00 Gateway Roa	0.00 Idway Packag	0	0.000	6.105	100%
Left Mainline S	houlder																								
High Point ML 145+39.77	-136+34 57.03	LT	0.15	0.9	0.133	0.133	3 10	5.1	0.679	9 0.004	6 0.0400	0.000	0.679	0.183	6.00	4.57	5.00	0.42	1.62	1.33	3.95	1.0	0.679	0.000	0%
720+40.93 I-90WB/ Ramp A5	6.00	RT								Spread	l is less t	han allo	wable	OK											
718+30 Ramp A5	6.00	RT	0.03	0.9	0.031	0.031	1 10	5.1	0.157	Spread	4 0.0384 I is less t	han allo	0.157 wable	0.105 OK	6.00	2.74	5.00	0.14	1.09	1.33	3.95	1.0	0.157	0.000	0%
718+18.91 Ramp A5	6.00	RT	0.002	0.9	0.002	0.002	2 10	5.1	0.008		4 0.0384 I is less t				6.00	0.89	5.00	0.02	0.52	1.33	3.95	1.0	0.008	0.000	0%
Low Point Ran	mp A5-718+18.	91																							
718+18.91 Ramp A5	6.00	RT	0.002	0.9	0.002	0.002	2 10	5.1	0.01		4 0.0384 I is less t				6.00	0.93	5.00	0.02	0.59	1.33	3.95	1.0	0.010	0.000	0%
718+05 Ramp A5	6.00	RT	0.02	0.9	0.015	0.015	5 10	5.1	0.075		4 0.0384 I is less t				6.00	1.99	5.00	0.08	0.98	1.33	3.95	1.0	0.075	0.000	0%
155+94	mp A5-716+52. 87.00	LT	0.06	0.9	0.05	0.05	5 10	5.1	0.257						4.00	3.94	5.00	0.23	1.12	1.33	3.95	1.0	0.257	0.000	0%
709+70 I-90WB/ Ramp A5	5.00	RT									l is less t														
699+23 End of Ramp A5	6.00	RT	0.41	0.9	0.367	0.36	10	5.1	1.8/2	Spread	0 0.0450 I is less t	han allo	1.872 wable	0.202 OK	6.00	4.49	0.00 Drainage in	0.45 nlets and de	4.12 asign will be in	0.00 Gateway Roa	0.00 dway Packag	е	0.000	1.872	100%
Ramp A5/Main		ght Sh			-					-1 -												1	_		
709+87 155+78 Ramp A5/ I-90WB	36.00 46.00	RT RT	0.51	0.9	0.461	0.461	10	5.1	2.352	Spread	4 0.0400 is less t	han allo	2.352 wable	0.294 OK	12.00	7.35	5.00	1.08	2.18	1.33	3.95	1.0	2.241	0.112	5%
707+61 158+00 Ramp A5/	36.00 50.00	LT RT	0.21	0.9	0.189	0.189	10	5.1	0.964	4 0.004 Spread	4 0.0400 l is less t	0.112 han allo	1.076 wable	0.219 OK	12.00	5.48	5.00	0.60	1.79	1.33	3.95	1.0	1.074	0.002	0%
705+27 Ramp A5	28.00	LT	0.16	0.9	0.148	0.148	10	5.1	0.752		2 0.0400 I is less t				4.00	3.37	4.00	0.23	3.33	1.33	3.95	1.0	0.754	0.000	0%
703+48	28.00	LT	0.12	0.9	0.11	0.11	1 10	5.1	0.56		5 0.0400 I is less t				4.00	2.78	4.00	0.15	3.62	1.33	3.95	0.950	0.532	0.028	5%
Ramp A5 699+53	30.00	LT	0.05	0.9	0.047	0.047	7 10	5.1	0.239	9 0.036 Spread	6 0.0467	0.028	0.267 wable	0.093 OK	2.00	1.99	0.00	0.09	2.90	0.00	0.00	0.000	0.000	0.267	100%
End of Ramp A5	houlder after Ra	amp As								-,							Drainage ir	nlets and de	sign will be in	Gateway Roa	idway Packag	е			
609+86	13.00	RT	0.08	0.9	0.071	0.071	1 10	5.1	0.364		4 0.0338				6.00	4.26	0.00	0.31	1.19	0.00	0.00	0.000	0.000	0.364	100%
166+83 Ramp A4/ I-90WB	76.00	LT								Spread	l is less t	han allo	wable	ок			Drainage ir	nlets and de	sign will be in	Gateway Roa	idway Packag	е			

Made by: AHR Date: 8/8/2011 Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.

Checked by: BH Date: 8/8/2011 Use E=1-(1-wit)*2-67*Q per HEC 12 for determining inlet intercept flow.

MNTE	5			Checke	oy: AH ed by: B		Date:		/2011		Use E	E=1-(1-w	/t)^2.67*0	per	HEC 12 f	or deter	rmining i	inlet interce											
Job Number: 49 I-90 WB Mainlin										n=			scupper Allowa					ad (ft). ss than the	shoulder w	dth + 1/3 a	djacer	nt travel lar	н						
		N	IAIN VIA	DUCT	T UNIT	2, 3, F	RAMP	A5 FR	гом н	IGH PO	DINT E	DECK E						DOT 2 YR						ONAL	CONDIT	TION)			
LC	CATION									1			JTTER A										INLET A						
Station	offset (feet)	Side	Area (A) (acres)	Runoff Coeff (C)	CA	Total CA	T (min.)	l (in/hr)	Q (cfs)	L-SI. (ft/ft)	X-S (ft/ft		s Q	Y (ft)	Allowa Spre (ft)	ad	oread (t) (ft)	Inlet Width (w) (ft)	Flow Area (sq ft)	Velocit (ft/s)		Length (flow dir.) (ft)	Splash Vel f (ft/	Over or L	Splash Reduction Factor	Interest Flow (E	cept	By- Pass (cfs)	By- Pass %
136+3- 138+11.48 I-90 WB	4 - High Point 35.00	RT	0.29	0.9	0.262	0.262	10	3.6	0.943	0.0050 Spread	0.02 is les	0.00 s than al	0.943 llowable	0.15 OK	57 10.0	10	7.86	5.00	0.62	1.53	T	1.33	3.9	5	1.0	0.8	ВО	0.063	7%
140+68.75 I-90 WB	35.00	RT	0.46	0.9	0.412	0.412	2 10	3.6	1.485	0.0050	0 0.02	0.00	3 1.548	0.18	39 10.0	10	9.46	5.00	0.89	1.73		1.33	3.9	5	0.980	1.3	14	0.235	15%
141+91.26	35.00	RT	0.22	0.9	0.196	0.196	10	3.6	0.706				5 0.940		57 10.0	10	7.85	5.00	0.62	1.53	1	1.33	3.9	5 T	1.0	0.8	78 T	0.063	7%
I-90 WB										Spread	is les	s than al	llowable	ОK		•													
144+18.75 I-90 WB	35.00	RT	0.43	0.9	0.386	0.386	10	3.6	1.39	Spread	is les	s than al	3 1.452 llowable	OK	85 10.0	Ю	9.24	5.00	0.85	1.70	!_	1.33	3.9	ь	1.0	1.2	/1	0.181	12%
145+41.24 I-90 WB	35.00	RT	0.24	0.9	0.212	0.212	10	3.6	0.761	0.0050 Spread	0.02 is les:	0.18 s than al	1 0.943 llowable	0.15 OK	57 10.0	10	7.85	5.00	0.62	1.53		1.33	3.9	5	1.0	0.8	79	0.063	7%
147+68.56 I-90 WB	35.00	RT	0.48	0.9	0.428	0.428	10	3.6	1.541	0.0050 Spread	0.02 is les	40 0.06 s than al	3 1.604 llowable	0.20 OK	05 10.0	10	8.55	5.00	0.88	1.83	I	1.33	3.9	5	1.0	1.4	50	0.154	10%
148+91.78 I-90 WB	35.00	RT	0.26	0.9	0.235	0.235	10	3.6	0.846	0.0050 Spread	0 0.03 is les:	70 0.15 s than al	4 1.000 llowable	0.20 OK	02 10.0	10	5.46	5.00	0.55	1.81		1.33	3.9	5	1.0	0.9	98	0.001	0%
155+48 I-90 WB	35.00	RT	1.16	0.9	1.046	1.046	10	3.6	3.767				1 3.768 llowable		42 10.0	10	8.56	5.00	1.46	2.57	T	1.33	3.9	5	1.0	3.4	07	0.361	10%
157+73 I-90 WB	35.00	RT	0.42	0.9	0.374	0.374	10	3.6	1.348				1 1.709		55 10.0	10	6.36	5.00	0.81	2.11	Т	1.33	3.9	5	1.0	1.6	B1	0.028	2%
160+30	35.00	RT	0.52	0.9	0.464	0.464	10	3.6	1.67	0.0050	0 0.04	00 0.02	8 1.698	3 0.25	54 10.0	10	6.35	5.00	0.81	2.11	T	1.33	3.9	5	1.0	1.6	71	0.027	2%
I-90 WB	35.00	RT	1.30	0.9	1.174	1.174	10	3.6	1 4 225				7 4.252		58 10.0	ın I	8.95	0.00	1.60	2.65	1	0.00	0.0	n I	0	0.0	no I	4.252	100%
I-90 WB		KI	1.30	0.5	1.174	1.174	10	3.0	4.223				llowable		30] 10.0		0.50	Drainage ir			in Ga				0	0.0	00	4.232	10076
Left Mainline SI High Point ML																													
145+39.77	57.03	LT	0.15	0.9	0.133	0.133	10	3.6	0.48				0.480		6.0	0	4.02	5.00	0.32	1.49		1.33	3.9	5	1.0	0.4	80	0.000	0%
720+40.93 I-90WB/ Ramp A5	6.00	RT	0.03	0.9	0.031	0.031	10	3.6	0.111				0 0.111		92 6.0	0	2.40	5.00	0.11	1.00		1.33	3.9	15	1.0	0.1	11	0.000	0%
718+30 Ramp A5	6.00	RT	0.002	0.9						Spread	l is les	s than al	0.006	oĸ			0.78	5.00	0.01	0.47		1.33	3.9		1.0	0.0		0.000	09/
718+18.91 Ramp A5	6.00	RT	0.002	0.5	0.002	0.002	10	3.0	0.000				llowable		30] 0.0		0.70	3.00	0.01	0.47		1.55	3.0	0 1	1.0	0.0	00	0.000	076
Low Point Ran	np A5-718+18.	91	0.002	0.9	0.002	0.002	10	3.6	0.007	0.0054	4 0.03	84 0.00	0.007	7 0.03	31 6.0	0	0.81	5.00	0.01	0.54		1.33	3.9	5	1.0	0.0	07	0.000	0%
718+18.91 Ramp A5	6.00	RT	0.00		0.045	0.045	- 10			•			llowable		2 00		4.75	5.00				100		- 1	4.0		ro T	0 000 T	00/
718+05 Ramp A5	6.00	RT	0.02	0.9	0.015	0.015	10	3.6	0.053	Spread	is les	s than al	0.053	OK	6.0	J	1.75	5.00	0.06	0.90		1.33	3.9	0	1.0	0.0	55	0.000	076
155+94	mp A5-716+52. 87.00	LT	0.06	0.9	0.05	0.05	_10	3.6	0.181	0.0040	0 0.02	96 0.00	0.181	1 0.10	02 4.0	0	3.46	5.00	0.18	1.03		1.33	3.9	5	1.0	0.1	B1	0.000	0%
709+70 I-90WB/ Ramp A5	5.00	RT								Spread	is les	s than al	llowable	ÓΚ	•	•				•						•			
699+23 End of Ramp A5	6.00	RT	0.41	0.9	0.367	0.367	10	3.6	1.321	Spread	l is les	s than al	0 1.321 llowable	OK	77 6.0	U	3.94	0.00 Drainage ir	0.35 llets and de	3.78 sign will be		0.00 ateway Ros	0.0 adway Pa		0	0.0	00	1.321	100%
	ine Diveded Ri				0 45	1 0 45	4.0	100	1.00	I o co :	al co	nol o c	0 1 4 00	dec.	EO 45 -	0	6.45	E 00	0.00	1 0.00	-	4.00	I ^-		1.0	1	20	0.004	
709+87 155+78 Ramp A5/ I-90WB	36.00 46.00	RT	0.51	0.9	0.461	0.461	10			Spread	l is les	s than al	0 1.661 llowable	ок			6.45	5.00	0.83	2.00		1.33	3.9	ь	1.0	1.6		0.031	2%
707+61 158+00 Ramp A5/ I-90WB	36.00 50.00	LT RT	0.21	0.9	0.189	0.189	10	3.6	0.681				1 0.711 llowable		38 12.0	10	4.69	5.00	0.44	1.61		1.33	3.9	5	1.0	0.7	11	0.000	0%
705+27 Ramp A5	28.00	LT	0.16	0.9	0.148	0.148	10	3.6	0.531	0.0292 Spread	2 0.04 I is les	00 0.00 s than al	0.531 llowable	0.11 OK	18 4.0	0	2.95	4.00	0.17	3.05	I	1.33	3.9	5	1.0	0.5	31	0.000	0%
703+48 Ramp A5	28.00	LT	0.12	0.9	0.11	0.11	10	3.6	0.395	0.0445 Spread	5 0.04 I is les	00 0.00 s than al	0.395	0.09 OK	98 4.0	0	2.44	4.00	0.12	3.31		1.33	3.9	5	0.950	0.3	76	0.020	5%
699+53 End of	30.00	LT	0.05	0.9	0.047	0.047	10	3.6	0.169				0.189		31 2.0	0	1.74	0.00 Drainage ir	0.07 llets and de	2.66 sign will be		0.00 ateway Ros	0.0 adway Pa		0.000	0.0	00	0.189	100%
Ramp A5	houlder after Ra	amr As				_	<u> </u>																						
609+86 166+83 Ramp A4/	13.00 76.00	RT LT	0.08	0.9	0.071	0.071	10	3.6	0.257				0.257		26 6.0	0	3.74	0.00 Drainage ir	0.24 lets and de	1.09		0.00 ateway Ros	0.0 adway Pa		0.000	0.0	00	0.257	100%
I-90WB							1																						

Go to Chapter 9

Inlets in sag locations operate as weirs under low head conditions and as orifices at greater depths. Orifice flow begins at depths dependent on the grate size, the curb opening height, or the slot width of the inlet, as the case may be. At depths between those at which weir flow definitely prevails and those at which orifice flow prevails, flow is in a transition stage. At these depths, control is ill-defined and flow may fluctuate between weir and orifice control. Design procedures adopted for this Circular are based on a conservative approach to estimating the capacity of inlets in sump locations.

The efficiency of inlets in passing debris is critical in sag locations because all runoff which enters the sag must be passed through the inlet. Total or partial clogging of inlets in these locations can result in hazardous ponded conditions. Grate inlets alone are not recommended for use in sag locations because of the tendencies of grates to become clogged. Combination inlets or curb-opening inlets are recommended for use in these locations.

8.1 Grate Inlets

A grate inlet in a sag location operates as a weir to depths dependent on the bar configuration and size of the grate and as an orifice at greater depths. Grates of larger dimension and grates with more open area, i.e., with less space occupied by lateral and longitudinal bars, will operate as weirs to greater depths than smaller grates or grates with less open area. Q10 = 0.018cfs

The capacity of grate inlets operating as weirs is:

$$Q_i = C_w Pd^{1.5}$$

Cw = 3.0 P = (5ftx1ft Grate) = 12 d = 0.0063ft Spread = 0.16ft with 3.84% cross slope

where: P = perimeter of the grate in ft (m) disregarding bars and the side against the curb $C_{\rm w}$ = 3.0 (1.66 for Sl)

The capacity of a grate inlet operating as an orifice is:

$$Q_{i} = C_{o}A(2gd)^{0.5}$$
 (18)

where: C_0 = orifice coefficient = 0.67 A = clear opening area of the grate, ft² (m²) g = 32.16 ft/s² (9.80 m/s²)

Use of Equation (18) requires the clear area of opening of the grate. Tests of three grates for the Federal

Unit 1 & 2 Proposed Drainage Map to Sta. 136+34

By: BH 6/8/2011 Checked: PS 6/8/2011

Unit 2 Proposed Drainage Map

Unit 3 & Ramp A5 Proposed Drainage Map

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX K

For information only. Calculations have been RFC'd already.

Roadway Partial Gateway (Resurracing BL-7/8-12) - Drainage Calculations

Drainage calculations can be found in the following buildable units:

Bridge drainage (including spread calc for D-21) BU - RFC plans:

- 1240-Bridges 7 & 8
- 1260-Bridge 9
- 1270-Bridge 10/11

Roadway BU – Interim Plans (include SS calc for D-21):

• 1500-Wall I / A3

The drainage calculations for bridges 7, 8, 9, 10, 11, and 12 are located in the aforementioned documents and additional calculations are summarized below. A drainage divide is located on Bridge 9 at Sta. 67+27 and water travels downstream to Bridge 7 and 8 and downstream to Bridges 10, 11, and 12. Bridge 7 and 8 are located at ~Sta. 61+00 and Bridge 10, 11, and 12 are located at ~Sta. 70+50. Drainage calculations for Bridges 7-12 (previously calculated) and a drainage area map are provided. In summary, the bridge drainage for this resurfacing/redecking portion of Gateway, has no adverse impact to existing spread calculations

Westbound Drainage

Bridge 9 downstream to Bridges 7

A closed drainage system exists along the median between bridge 9 and 7 west bound lanes. A crown exists at the edge of pavement/start of median shoulder. Three curb openings (Sta. 64+00, 63+02, and 62+28) are exposed along the median and all flow is intercepted by these openings since the drainage area is small and the curb opening length required to intercept all flow is less than the actual length (see attached hand calc). A reverse vertical curve exists on Bridge 7 and five scuppers are proposed to capture flow after this transition along bridge 7 median (Sta. 60+05, 59+89, 59+30, and 58+98). The traveled lanes all direct flow to the shoulder. A CB-3A is proposed beyond Bridge 9 shoulder (Sta. 64+74) and a sodded flume beyond bridge 7 shoulder (Sta. 58+38). The proposed spread exceeds into the traveled way for the 10-yr storm by as much as 0.58 ft on bridge 7.

Bridge 9 downstream to Bridges 10, 11, and 12

Water travels from the median to the shoulder; no crown exists although curb openings are exposed (Sta. 69+53 and 70+57). On Bridge 11, water travels from the median into 4 proposed scuppers on its shoulder (Sta. 72+66, 72+71, 72+76, and 72+81). Bypass from these scuppers travels onto Bridge 10. Bridge 10 contains a drainage divide and water travels westward and eastward. The eastward flow (and Bridge 11 bypass) is captured in two proposed scuppers (Sta. 73+82 and 73+88). The bypass from these scuppers is conveyed down a flume located some distance beyond it. Bridge 9 shoulder drainage is conveyed down a flume (Sta. 68+98). Allowable spread is not exceeded using the 10-yr design criteria.

Eastbound Drainage

Bridge 9 downstream to Bridges 7

A closed drainage system exists along the median between bridge 9 and 7 west bound lanes. No crown exists and water travels from the shoulder to the median. Three scuppers are proposed on bridge 9 (Sta. 66+22, 65+91, and 65+17). Three inlets (Sta. 64+00, 63+02, and 62+28) are exposed along the median downstream of the scuppers and flow is intercepted by each using its 10 ft curb opening and assuming the grate is a factor of safety only. The attached CDSS calculations begin by taking the flows as calculated from the bridge scupper runoff spreadsheet plus the drainage area to inlet at Sta. 64+00. CDSS then calculates the spread at each inlet. For the 10-yr storm, existing/proposed spread is 3.69/3.81, 4.76/4.76, and 5.37/5.37 ft for inlets at Sta. 64+00, 63+02, and 62+28, respectively. As shown in the calculations and summarized, the existing problem is the spacing of the inlets downstream of the bridge since the resurfacing didn't change the drainage areas and proposed spreads at these inlets are essentially identical; from each inlet essentially no bypass is conveyed to the next downstream inlet. Additionally, the spread at inlet Sta. 64+00 was provided in the bridge 9 drainage report and the

two inlets downstream, at Sta. 63+02 and 62+28, convey no bypass to bridge 7 and hence were not included in the bridge 7 and 8 drainage report.

A crown shift occurs on Bridge 8 and bypass from 62+28 travels across bridge 8 and into the proposed CB3A inlets (Sta. 58+59 and 58+51). These proposed inlets downstream of Bridge 8 also capture bi-directional flow from Bridge 7.

Bridge 9 downstream to Bridges 10, 11, and 12

A closed drainage system exists along the median between bridge 9 and 7 west bound lanes. No crown exists and water travels from the shoulder to the median. Two curb opening inlets (Sta. 69+53 and 70+57) are exposed along the median downstream of bridge 9 and flow is intercepted by each. Downstream of these inlets on Bridge 12, two scuppers are proposed (Sta. 70+95 and 71+40). A crown shift occurs on Bridge 12 and bypass from these scuppers travels across Bridge 12 into the two proposed inlets (Sta. 74+31 and 74+38). Bridge 9 shoulder drainage is conveyed down a flume (Sta. 68+18). Proposed spread exceeds into the traveled way for the 10-yr storm by as much as 0.39 ft for the proposed scupper on bridge 12 at Sta. 70+95.

Relaxed Drainage Spread Criteria

The design frequency of bridge deck drainage in the Scope of Work (14.2.4) and the L&D states the 10year event for the Interim and Future condition and a 2 year event for the Bi-Directional Condition be used in the design. For the I-90 bridges, designated by BL-7, 8, 9, 10, 11, and 12, the project scope has these structures, being redecked, with no change in deck width. After evaluating the existing shoulder widths, there was a concern that they are deficient to today's standards. With these shoulder widths, the proposed spread criteria for the project will not be able to be met, without introducing numerous scuppers on the structures. Also, when Innerbelt Contract CCG-3 is constructed these structures and adjacent pavement will no longer exist. After discussions with ODOT and HDR, it was determined that drainage criteria on these structures, be evaluated on a case by case basis. We recommended and used the 2-year storm for the design frequency in spread analysis. That requirement is to confine the 2-year

design storm to the Bi-Directional and Interim Condition shoulder width, and use the 10-yr storm as a check to limit the extent to which spread exceeds the shoulder width.

Utilizing this criteria, when the 10-year spread criteria could be met it was reported, however if it could not be met, the extent to which it extended into the traveled way was reported and approved by HDR and ODOT. The Bridge drainage documents stated this relaxed criteria and serve as documentation.

 Made by:
 PNS
 Date:
 8/15/2011

 Checked by:
 BH
 Date:
 8/15/2011

Job Number: 49633

Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.

Use E=1-(1-wt)/^2.67*Q per HEC 12 for determining inlet intercept flow.

where w = scupper width (ft), and t = design spread (ft).

n = 0.015 Allowable Spread is spread that is less than the shoulder width for ultimate condition or shoulder width plus 1/3 traveled lane for Interim, whichever is greater.

WB DRAINAGE CALCULATIONS (ODOT 10 YR RAINFALL CHECK FOR INTER	IM & FLITLIDE CONDITION)

								WB	DRAIN	IAGE C	ALCUL	ATION	IS (OE	OT 10	YR RAINF	ALL CHECK F	OR INTERIM &	FUTURE COND	DITION)						
LOC	CATION						1								GU	TTER ANALYSIS			1		T	INLET			ı
Station	offset		Area (A)	Dunoff		Total	_	١,	Q	L-SI.	X-SI.	Ву-	Total	Y		Spread	scupper or inlet width	flow	Velocity	Length	Splash Over	Splach	Inlot	D ₁ /	Ву-
Station	(feet)	Side	, ,	Coeff	CA	CA	(min.	.) (in/hr)		(ft/ft)	(ft/ft)			(ft)	Shoulder width	i i	Width	Area	(ft/s)	(flow dir.)	Vel for L	Reduction		•	Pass
W8/58	` '			(C)			,		, ,		, ,	(cfs)	(cfs)		(ft)	(ft)	(ft)	(sq ft)	, ,	(ft)	(ft/s)	Factor	low (E) (cf:	(cfs)	%
WB/EB existing inlet Sta. 64+00	3.00	RT	0.007	0.9	0.006	0.006	10	5.1	0.03	0.0163 Spread	is less t				3.50	1.75	0.00 See hand calc s	0.03 showing Lt less than	1.01	3.00 g length	0.00	0.000	0.031	0.000	0%
median WB/EB	3.00	RT	0.007	0.0	0.006	0.006	10	51	0.033	3 0.0127	7 0 020	ol o ooc	10.033	sl n n37	3.50	1.87	0.00	0.04	0.93	3.00	0.00	0.000	0.033	0.000	0%
existing inlet Sta. 63+02	0.00		0.007	0.0	0.000	0.000	10	0.1	0.000		is less t				0.00	1.07		•			0.00	0.000	0.000	0.000	070
median																		showing Lt less than							
WB/EB existing inlet Sta. 62+28	3.00	RT	0.005	0.9	0.004	0.004	10	5.1	0.02	0.0127 Spread	7 0.016 is less t				3.50	1.77	0.00	0.03 showing Lt less than	0.79	3.00	0.00	0.000	0.021	0.000	0%
median		ļ						1	1																
WB 60+05 poposed scupper	7.00	LT	0.024	0.9	0.022	0.0216	10	5.1	0.1	1 0.0132 Spread	is great					4.55	1.50	0.10	1.07	0.50	2.00	1.0	0.072	0.038	34%
median WB 59+89	7.00	LT	0.028	0.9	0.025	0.0252	10	5.1	0.129	9 0.0132	2 0.012	6 0.038	0.166	0.058	4.00	4.57	1.50	0.13	1.27	0.50	2.00	1.0	0.109	0.057	35%
poposed scupper median										Spread	is great	er than	allowal	ole NO	GOOD										
WB 59+30	7.00	LT	0.0604	0.9	0.054	0.0544	10	5.1	0.27	7 0.0134						4.58	1.50	0.20	1.68	0.50	2.00	1.0	0.219	0.116	35%
poposed scupper median										Spread	is great	er than	allowal	ole NO	GOOD										
WB 58+98 poposed scupper	7.00	LT	0.076	0.9	0.068	0.0684	10	5.1	0.349	9 0.0137 Spread	7 0.023 is great					4.57	1.50	0.24	1.93	0.50	2.00	1.0	0.304	0.161	35%
median										·	J														
WB proposed CB3A Inlet	52.00	LT	0.230	0.9	0.207	0.207	10	5.1	1.056	0.0188 Spread	0.030	0.000			11.00	4.96	1.41	0.24	3.20 nlet (acres) =	2.42 0.02	5.50 I (in/hr) =	1.000	0.623	0.432	41% Is Q to flume
Sta. 64+74										Opreau	13 1633 1	inan and	wabie	OK					Coeff. (C) =		CA =	0.018			2 < 0.75?
shoulder WB 58+38	57.00	LT	0.1235	0.9	0.111	0.1112	10	5.1	0.567	7 0.0137					4.00	3.38	0.00	0.24	2.36	0.00	5.00	0.000			100%
proposed sod flume										Spread	is less t	than allo	owable	ok				Area past scupper Runoff	r (acres) = · Coeff. (C) =	0.00 0.90	I (in/hr) = CA =	0.000			
shoulder Drainage Divide	e Sta. 67+27																					Total C	to flume =	0.567	7 Y
WB/EB existing inlet	3.00	RT	0	0.9	0	0.000	10	5.1	(0.0170	0.042				3.50	0.00	2.50	0.00	2.10	3.00	5.00	0.00	0.000	0.000	#DIV/0!
Sta. 69+53 median										Opread	10 1000 1	mun unc	Mubic	OI.											
WB/EB existing inlet	3.00	RT	0	0.9	9 0	0.000	10	5.1	(0.0170	0.042				3.50	0.00	2.50	0.00	2.10	3.00	5.00	0.00	0.000	0.000	#DIV/0!
Sta. 70+57										Spreau	15 1655 1	iliali alic	wable	OK											
median 72+66	22.00	LT	0.23	0.9	0.209	0.2093	10	5.1	1.068	0.0360					8.30	6.54	1.50	0.34	3.12	0.50	2.00	0.905	0.484	0.583	55%
proposed scupper										Spread	is less t	than allo	owable	OK											
shoulder 72+71	22.00	LT	0.01	0.9	0.007	0.0072	10	5.1	0.03	7 0.0360					8.30	5.33	1.50	0.23	2.72	0.50	2.00	0.925	0.336	0.284	46%
proposed scupper										Spread	is less t	than allo	owable	OK											
shoulder 72+76	22.00	LT	0.01	0.9	9 0.007	0.0072	2 10	5.1	0.03	7 0.0360	0.016	0 0.284	0.321	0.067	8.30	4.17	1.50	0.14	2.31	0.50	2.00	0.970	0.217	0.104	32%
proposed scupper									•		is less t					•		•	•		•				
shoulder 72+81	22.00	LT	0.01	0.0	0.007	0.0072	10	1 5 1	1 0 03	7 0.0360	1 0 016	OL 0 104	10 141	0.040	8.30	3.06	1.50	0.08	1.88	0.50	2.00	1.0	I 0 117 I	0.022	17%
proposed	22.00		0.01	0.8	0.007	0.0072	10	5.1	0.03		is less t				0.30	3.00	1.50	0.00	1.00	0.50	2.00	1.0	0.117	0.023	11%
scupper shoulder		1					<u> </u>	1	1	=l a		al a -:				T			1	1	T		1 0 1		
73+82 proposed	52.00	LT	0.22	0.9	0.194	0.1935	10	5.1	0.987	7 0.0348 Spread	0.016 is less t				9.50	6.45	1.50	0.33	3.04	0.50	2.00	0.903	0.463	0.548	54%
scupper shoulder																									
73+88 proposed	52.00	LT	0.02	0.9	0.018	0.018	10	5.1	0.092		0.016				9.50	5.43	1.50	0.24 Area past scupp	2.71 per (acres) =	0.50 0.09	2.00 I (in/hr) =	0.921 5.10	0.340	0.299	47% Is Q to flume
scupper shoulder																			Coeff. (C) =		CA =	0.081	Q =	0.413 0.712	3 < 0.75?
WB End of Bridge	52.00	LT	0.160	0.9	0.144	0.144	10	5.1	0.734	4 0.0144 Spread	0.030				11.00	4.55	0.00	0.19 Area past brid	2.80	0.00	5.00 I (in/hr) =	0.000	0.000	0.734	100% Is Q to flume
Sta. 68+98										-pi ouu	.0 .000 1	uil		٠					Coeff. (C) =		CA =	0.000	Q = Q to flume =	0.000 0.734	0.75?
shoulder																	1					i otal G		0.734	

 Made by:
 PNS
 Date:
 8/15/2011

 Checked by:
 BH
 Date:
 8/15/2011

Job Number: 49633

Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.

Use E=1-(1-wit)*2.67*Q per HEC 12 for determining inlet intercept flow.

where w = scupper width (ft), and t = design spread (ft).

n = 0.015 Allowable Spread is spread that is less than the shoulder width for ultimate condition or shoulder width plus 1/3 traveled lane for Interim, whichever is greater.

								WB DRAI	NAGE (•			FUTURE COND		widti pids	175 traveled lair	e ioi intenin,	WITICHEVELIS	greater.	
LOC	ATION								1			(0.			TER ANALYSIS						INLET	ANALYSIS		
Station	offset		Area (A)	Runoff	·	Total		T I Q	L-SI.	X-SI.	Ву-	Total	Υ	Shoulder widtl	n Spread	scupper or inlet width	Flow	Velocity	Length	Splash Over	Splash	Inlet	Ву-	Ву-
	(feet)	Side	Side	Coeff (C)	CA	CA		nin.) (in/hr) (cfs)	(ft/ft)	(ft/ft)	(cfs)	(cfs)	(ft)	way (ft)	(ft)	(ft)	Area (sq ft)	(ft/s)	(flow dir.) (ft)	Vel for L (ft/s)	Reduction Factor	Intercept low (E) (cf:	Pass (cfs)	Pass %
WB/EB existing inlet	3.00	RT	0.007	0.9	0.006	0.006	6 1	10 3.6 0.02		0.0200 l is less t	0.000 han allo			15.70	1.53	0.00	0.02	0.92	3.00	0.00	0.000	0.022	0.000	0%
Sta. 64+00 median																See hand calc s	howing Lt less than	curb openin	g length					
WB/EB existing inlet	3.00	RT	0.007	0.9	0.006	0.006	6 1	10 3.6 0.02		7 0.0200 I is less t				15.70	1.64	0.00	0.03	0.85	3.00	0.00	0.000	0.023	0.000	0%
Sta. 63+02 median	0.00	DT	0.005		0.004	0.004	L.	40 1 00 1 004	-1 0 040	7 0 040	0 0 000	1004	10000	45.70	1.50		howing Lt less than			1 000	0.000		2.000	200
WB/EB existing inlet Sta. 62+28	3.00	RT	0.005	0.8	0.004	0.004	4 1	10 3.6 0.01		7 0.0160 I is less t				15.70	1.56	0.00 See hand calc s	0.02 howing Lt less than	0.73 curb openin	3.00 g length	0.00	0.000	0.015	0.000	0%
median WB 60+05 poposed scupper	7.00	LT	0.024	0.9	0.022	0.0216	6 1	10 3.6 0.07		0.0099				7.70	3.99	1.50	0.08	0.98	0.50	2.00	1.0	0.056	0.022	28%
median WB 59+89	7.00	LT	0.028	0 00	0.025	0.0252	2 1	10 3.6 0.09	1 0.013		6 0.022			7.70	3.95	1.50	0.10	1.15	0.50	2.00	1.0	0.081	0.031	28%
poposed scupper median	7.00	-	0.020	0.8	0.023	0.0232		10 3.0 0.09	-	l is less t				7.70	3.93	1.50	0.10	1.15	0.50	2.00	1.0	0.001	0.031	2070
WB 59+30 poposed scupper	7.00	LT	0.0604	0.9	0.054	0.0544	4 1	10 3.6 0.19		4 0.0190 I is less t	0 0.031 han allo	_		7.70	3.96	1.50	0.15	1.53	0.50	2.00	1.0	0.164	0.064	28%
median WB 58+98 poposed scupper median	7.00	LT	0.076	6 0.9	9 0.068	0.0684	4 1	10 3.6 0.24		7 0.0230 I is less t				7.70	3.93	1.50	0.18	1.75	0.50	2.00	1.0	0.224	0.086	28%
WB proposed CB3A Inlet Sta. 64+74 shoulder	52.00	LT	0.230	0.9	0.207	0.207	7_1	10 3.6 0.74		8 0.0300 I is less t				16.70	4.36	1.41		3.20 nlet (acres) = f Coeff. (C) =		5.50 I (in/hr) = CA =		0.483 Q =	0.262 0.092 0.354	
WB 58+38	57.00	LT	0.1235	0.9	0.111	0.1112	2 1	10 3.6 0.40		7 0.0420				4.00	2.97	0.00	0.18	2.17	0.00	5.00	0.000	0.000	0.400	100%
proposed sod flume shoulder									Spread	l is less t	han allo	owable	OK				Area past scuppe Runoff	r (acres) = f Coeff. (C) =	0.00	I (in/hr) = CA =	0.000	Q = to flume =	0.400 0.400	
Drainage Divide WB/EB	Sta. 67+27 3.00	RT	0	0.9	9 0	0.000	0 1	10 3.6	0.017	0.042	8 0.000	0.000	0.090	10.70	0.00	2.50	0.00	2.10	3.00	5.00	0.00	0.000	0.000	#DIV/0!
existing inlet Sta. 69+53 median										l is less t								•						
WB/EB existing inlet Sta. 70+57	3.00	RT	0	0.9	0	0.000	0 1	10 3.6		0.0428 l is less t				9.20	0.00	2.50	0.00	2.10	3.00	5.00	0.00	0.000	0.000	#DIV/0!
median 72+66	22.00	LT	0.23	0.9	0.209	0.2093	3 1	10 3.6 0.75		0.016				24.70	5.74	1.50	0.26	2.86	0.50	2.00	0.905	0.378	0.375	50%
proposed scupper shoulder									Spread	l is less t	han allo	wable	ок											
72+71 proposed scupper	22.00	LT	0.01	0.9	0.007	0.0072	2 1	10 3.6 0.02		0.0160 l is less t				24.70	4.53	1.50	0.16	2.44	0.50	2.00	0.925	0.244	0.157	39%
shoulder 72+76 proposed	22.00	LT	0.01	0.9	0.007	0.0072	2 1	10 3.6 0.02		0.0160 l is less t				24.70	3.38	1.50	0.09	2.01	0.50	2.00	0.970	0.140	0.042	23%
scupper shoulder																								
72+81 proposed scupper	22.00	LT	0.01	0.9	0.007	0.0072	2 1	10 3.6 0.02		0.0160 l is less t				24.70	2.34	1.50	0.04	1.57	0.50	2.00	1.0	0.064	0.004	6%
shoulder 73+82 proposed	52.00	LT	0.22	2 0.9	0.194	0.1935	5 1	10 3.6 0.69		8 0.0160				11.70	5.62	1.50	0.25	2.77	0.50	2.00	0.903	0.357	0.344	49%
scupper shoulder									_															
73+88 proposed scupper shoulder	52.00	LT	0.02	2 0.9	0.018	0.018	8 1	10 3.6 0.06		8 0.0160 I is less t				11.70	4.59	1.50	0.17 Area past scup Runoff	2.42 per (acres) = f Coeff. (C) =		2.00 I (in/hr) = CA =	0.081	0.246 Q =	0.163 0.413 0.577	40% Is Q to flume 40.75?
WB End of Bridge Sta. 68+98 shoulder	52.00	LT	0.160	0.9	0.144	0.144	4 1	10 3.6 0.51		4 0.0300 I is less t				11.70	4.00	0.00	0.17 Area past brid Runoff	2.80 dge (acres) = f Coeff. (C) =		5.00 I (in/hr) = CA =	0.000 5.1 0.000	0.000 Q = to flume =	0.518 0.000 0.518	100% Is Q to flume < 0.75?

 Made by:
 PNS
 Date:
 8/17/2011

 Checked by:
 BH
 Date:
 8/17/2011

Job Number: 49633

Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.

Use E=1-(1-w/t)^2.67*Q per HEC 12 for determining inlet intercept flow.

where w = scupper width (ft), and t = design spread (ft).

n = 0.015 Allowable Spread is spread that is less than the shoulder width for ultimate condition or shoulder width plus 1/3 traveled lane for Interim, whichever is greater.

			_			-		-	-		0.015								or ultimate condition				ane for Inter	im, whicheve	er is greater.	
				EB [RAIN	IAGE (CALCU	JLATIC	ONS (O	DOT 10	YR RA	AINFAI	LL CI	HECK	FOR II			CONDITION) us	sing L&D Manu	al, Vol 2 g	juidance.	1103.6.2				
LOC	ATION								l				1			GUT	TER ANALYSIS		1				INLET	ANALYSIS		
Station	offset		Area (A)	Runoff		Total	Т	ı	Q	L-SI.	X-SI.	Ву-	Tota	al Y			Spread	scupper or inlet width	Flow	Velocity	Length	Splash Ove	er Splash	Inlet	Ву-	Ву-
	(feet)	Side	Side	Coeff (C)	CA	CA	(min.)	(in/hr)	(cfs)	(ft/ft)	(ft/ft)	Pass (cfs)	Q (cfs	٠,,		der width (ft)	(ft)	(ft)	Area (sq ft)	(ft/s)	(flow dir.) (ft)	Vel for L (ft/s)	Reduction Factor	Intercept low (E) (cf:	Pass (cfs)	Pass %
EB poposed scupper median	3.00	RT	0.090	0.9	0.081	0.081	10	5.1		0.0108 Spread i						3.50	3.87	1.83	0.23	1.84	0.50	2.00	1.0	0.338	0.075	189
Sta. 66+22	2.00	DT	0.022	0.0	0.020	0.039	10	E 1	0 1 1 5	0.0122	0.0300	0 075	10.21	0 0 00	ol c	3.50	2.94	1.83	0.12	1.69	0.50	2.00	1.0	1 0 202 1	0.016	79
EB Bridge 9 poposed scupper median Sta. 65+91	3.00	RT	0.032	0.9	0.028	0.028	3 10	5.1	0.145	0.0132 Spread i					0 3	5.50	2.94	1.83	0.13	1.69	0.50	2.00	1.0	0.203	0.016] //
EB Bridge 9 poposed scupper median Sta. 65+17	3.00	RT	0.072	0.9	0.065	0.065	10	5.1	0.33	0.0188 Spread i					8 3	3.50	3.27	1.83	0.16	2.16	0.50	2.00	0.960	0.296	0.051	15%
WB/EB existing inlet Sta. 64+00	3.00	RT	0.098	0.9	0.088	0.088	3 10	5.1	0.45	0.0163 Spread i						3.50	3.86	2.50	0.22	2.25	3.00	5.00	1.000	0.470	0.031	6%
median WB/EB existing inlet Sta. 63+02	3.00	RT	0.101	0.9	0.091	0.091	10	5.1	0.464	0.0127 Spread i						3.50	5.18	2.50	0.27	1.84	3.00	5.00	1.000	0.409	0.085	179
median WB/EB existing inlet Sta. 62+28 median	3.00	RT	0.086	0.9	0.077	0.077	10	5.1	0.394	0.0127 Spread i						3.50	5.89	2.50	0.28	1.73	3.00	5.00	1.000	0.370	0.110	23%
EB Bridge 9 spread checkpoint Shoulder Sta. 65+18	51.00	RT	0.049	0.9	0.044	0.044	10	5.1		0.0188 Spread i					3 1	0.00	2.32	0.00	0.11 Area past checkpo Runoff	2.08 pint (acres) = f Coeff. (C) =		I (in/hr)	= 0.009	0.000 Q = to flume =	0.224 0.046 0.270	
EB 58+97 spread checkpoint shoulder	62.00	RT	0.4098	0.9	0.369	0.3688	3 10	5.1	1.881	0.0154 Spread i					6 9	9.50	6.53	0.00	0.64	3.11	0.00	2.00	0.000	0.000	1.991	100%
EB 58+59 proposed CB3A Inlet shoulder	63.00	RT	0.054	0.9	0.049	0.049	10	5.1	0.247	0.0110 Spread i					3 9	9.50	7.59	1.41	0.81	2.77	2.42	5.50	1.000	0.945	1.293	58%
EB 58+51 proposed CB3A Inlet shoulder	63.00	RT	0.012	0.9	0.011	0.011	10	5.1	0.056	0.0110 Spread i					6 9	0.50	6.28	1.41	0.55 Area past scupp Runoff	2.44 per (acres) = f Coeff. (C) =		5.50 I (in/hr) CA	= 0.011	0.665 Q = to flume =	0.684 0.056 0.741	
Drainage Divide																										
WB/EB existing inlet Sta. 69+53 median	3.00	RT	0.200	0.9				•		0.0170 Spread i	s greate	er than a	allowa	able NO	GOOD	3.50	3.84	1.50	0.26	3.20	3.00	5.00	1.00	0.673	0.245	27%
WB/EB existing inlet Sta. 70+57 median	3.00	RT	0.075	0.9	0.067	0.067	7 10	5.1	0.342	0.0170 Spread i					0 3	3.50	3.25	1.50	0.15	2.10	3.00	5.00	1.00	0.475	0.113	199
EB 70+95 proposed scupper median	3.00	RT	0.040	0.90	0.036	0.036	10	5.1		0.0360 Spread i						3.50	3.89	1.50	0.13	2.29	0.50	2.00	0.98	0.210	0.084	299
EB 71+40 proposed scupper median	3.00	RT	0.031	0.90	0.027	0.027	7 10	5.1	0.14	0.0360 Spread i						3.50	3.51	1.50	0.10 Bypass flow trave	2.14 els across bri	0.50 dge to propo	2.00 osed inlets of	0.98 right side o	0.170 f bridge.	0.054	24%
EB 74+30.85 Proposed CB3A Inlet	73.00	RT	0.447	0.90	0.402	9.402	10	5.1	2.052	0.0360 Spread i					6 1	5.00	4.95	1.41	0.46	4.58	2.42	5.50	1.000	1.246	0.860	419
shoulder EB 74+37.85 Proposed CB3A Inlet shoulder	73.00	RT	0.030	0.90	0.027	0.027	7 10	5.1	0.138	0.0360 Spread i					0 1	5.00	3.74	1.41	0.26 Area past scup Runoff	3.80 per (acres) = f Coeff. (C) =		5.50 I (in/hr) CA	= 0.000	Q = to flume =	0.282 0.282 0.282	
EB Bridge 9 End of Bridge Shoulder Sta. 67+90	51.00	RT	0.020	0.9	0.018	0.018	3 10	5.1	0.092	0.0188 Spread i					0 1	0.00	1.66	0.00	0.05 Area past brid Runoff	1.50 dge (acres) = f Coeff. (C) =		5.00 I (in/hr) CA	0.000 = 5.1 = 0.009	0.000 Q = to flume =	0.282 0.092 0.046 0.138	1009 Is Q to flume 6 < 0.75?
EB Bridge 9 End of Bridge Shoulder Sta. 68+18	3.00	RT	0.074	0.9	0.066	0.066	10	5.1	0.338	0.0065 Spread i					4 3	3.50	3.96	0.00	0.09	1.45	0.00	5.00	0.000	0.000	0.338	100%

 Made by:
 PNS
 Date:
 8/15/2011

 Checked by:
 BH
 Date:
 8/15/2011

Job Number: 49633

Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.

Use E=1-(1-wt)+2.67*Q per HEC 12 for determining inlet intercept flow.

where w = scupper width (ft), and t = design spread (ft).

n = 0.015 Allowable Spread is spread that is less than the shoulder width for ultimate condition or shoulder width plus 1/3 traveled lane for Interim, whichever is greater.

								EB I	DRAIN	-		0.015 ULATI				·		R INTERIM & FI			width plus	1/3 traveled lai	ne for Interi	m, whichev	er is greater.	
LOC	ATION		<u> </u>							T	0,120			(05)			TER ANALYSI						INLET	ANALYSIS		
Station	offset (feet)	Side	Area (A) Side	Runoff		Total CA	T (min.	l .) (in/hr	Q) (cfs)	L-S			By-	Total Q	Y (ft)	Shoulder width + 1/3 traveled way	Spread	scupper or inlet width	Flow	Velocity (ft/s)	Length	Splash Over	Splash Reduction	Inlet	By- Pass	By- Pass
	, ,			(C)			,	<u></u>		,	,	(cfs)	(cfs)		(ft)	(ft)	(ft)	(sq ft)	` '	(ft)	(ft/s)	Factor	low (E) (cf:	(cfs)	%
EB poposed scupper median Sta. 66+22	3.00	RT	0.090	0.9	0.081	0.081	10	3.6	0.29			.0300 0 ess than				6.20	3.40	1.50	0.17	1.68	0.50	2.00	1.0	0.230	0.062	21%
EB Bridge 9 poposed scupper median	3.00	RT	0.032	0.9	0.028	0.028	3 10	3.6	0.10			.0300 0 ess than				6.20	2.64	1.50	0.10	1.57	0.50	2.00	1.0	0.146	0.017	11%
Sta. 65+91 EB Bridge 9 poposed scupper median	3.00	RT	0.072	0.9	9 0.065	0.065	5 10	3.6	0.23			.0300 0 ess than				6.20	2.90	1.50	0.13	1.99	0.50	2.00	0.960	0.206	0.044	18%
Sta. 65+17 WB/EB existing inlet Sta. 64+00	3.00	RT	0.098	0.9	0.088	0.088	3 10	3.6	0.31			.0300 0 ess than				6.20	3.41	2.50	0.17	2.07	3.00	5.00	1.000	0.351	0.011	3%
median WB/EB existing inlet Sta. 63+02 median	3.00	RT	0.101	0.9	0.091	0.091	10	3.6	0.32			.0200 0 ess than				6.20	4.49	2.50	0.20	1.67	3.00	5.00	1.000	0.299	0.039	11%
WB/EB existing inlet Sta. 62+28 median	3.00	RT	0.086	0.9	9 0.077	0.077	7 10	3.6	0.27			.0160 0 ess than				6.20	5.04	2.50	0.20	1.56	3.00	5.00	1.000	0.266	0.051	16%
EB Bridge 9 spread checkpoint Shoulder Sta. 65+18	51.00	RT	0.049	0.9	0.044	0.044	1 10	3.6	0.15			.0400 0 ess than				25.67	2.04	0.00		1.91 eckpoint (acres) = unoff Coeff. (C) =		2.00 I (in/hr) = CA =	0.009	0.000 Q = to flume =	0.158 0.046 0.204	
EB 58+97 spread checkpoint shoulder	62.00	RT	0.4098	0.9	0.369	0.3688	3 10	3.6	1.32			.0300 0 ess than				43.50	5.69	0.00	0.49	2.84	0.00	2.00	0.000		1.379	100%
EB 58+59 proposed CB3A Inlet shoulder	63.00	RT	0.054	0.9	0.049	0.049	10	3.6	0.17			.0280 1 ess than				43.50	6.62	1.41	0.61	2.53	2.42	5.50	1.000	0.734	0.819	53%
EB 58+51 proposed CB3A Inlet shoulder	63.00	RT	0.012	0.9	9 0.011	0.011	10	3.6	0.0			.0280 0 ess than				43.50	5.30	1.41		2.18 scupper (acres) = unoff Coeff. (C) =		5.50 I (in/hr) = CA =	0.011	0.483 Q = to flume =	0.377 0.056 0.433	
Drainage Divide WB/EB existing inlet Sta. 69+53 median	3.00	RT	0.200	0.9	0.18	0.180	10	3.6	0.64			.0428 0 ess than				7.20	3.37	1.50	0.23	3.20	3.00	5.00	1.00	0.513	0.135	21%
WB/EB existing inlet Sta. 70+57 median	3.00	RT	0.075	0.9	0.067	0.067	10	3.6	0.24			.0428 0 ess than				7.20	2.75	1.50	0.12	2.10	3.00	5.00	1.00	0.330	0.046	12%
EB 70+95 proposed scupper median	3.00	RT	0.040	0.90	0.036	0.036	3 10	3.6	0.12			.0170 0 ess than				7.20	3.19	1.50	0.09	2.01	0.50	2.00	0.98	0.139	0.035	20%
EB 71+40 proposed scupper median	3.00	RT	0.031		0.027	0.027				Spre	ad is le	.0170 0 ess than	allov	vable (ОK		2.89	1.50	• • • • • • • • • • • • • • • • • • • •	1.88 travels across brid	•				0.021	16%
EB 74+30.85 Proposed CB3A Inlet shoulder	73.00	RT			0.402				1.44	Spre	ad is le	.0375 0 ess than	allov	vable (ОK		4.33	1.41	0.35	4.19	2.42	5.50	1.000	0.957	0.513	35%
EB 74+37.85 Proposed CB3A Inlet shoulder	73.00	RT	0.030	0.90	0.027	0.027	10	3.6	0.09			.0375 0 ess than				9.70	3.11	1.41		3.36 scupper (acres) = unoff Coeff. (C) =		5.50 I (in/hr) = CA =	0.000	0.488 Q = to flume =	0.122 0.122 0.122	20% Is Q to flume 2 < 0.75?
EB Bridge 9 End of Bridge Shoulder Sta. 67+90	51.00	RT			0.018			•		Spre	ad is le	.0400 0 ess than	allov	vable (ок		1.46	0.00	R	1.50 at bridge (acres) = unoff Coeff. (C) =		5.00 I (in/hr) = CA =	0.000 5.1 0.009 Total Q	0.000 Q = to flume =	0.065 0.046 0.111	100% Is Q to flume 3 < 0.75?
EB Bridge 9 End of Bridge Shoulder Sta. 68+18	3.00	RT	0.074	0.9	0.066	0.066	5 10	3.6	0.23			.0300 0 ess than				6.20	3.47	0.00	0.08	1.45	0.00	5.00	0.000	0.000	0.239	100%

HNTB	Made by: PNS	Date:	8/15/2011	Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.
INID	Checked by: BH	Date:	8/15/2011	Use E=1-(1-w/t)^2.67*Q per HEC 12 for determining inlet intercept flow.
Job Number: 49633				where w = scupper width (ft), and t = design spread (ft).
	•			n = 0.015 Allowable Spread is spread that is less than the shoulder width for ultimate condition or shoulder width plus 1/3 traveled lane for Interim, whichever is greater.

			FVI	CTING	ED D	D A INI A	VCE C	ALCII	LATIO		0.015				·			ON Unimate condition					,	3	
			EXI	STING	FRL	KAINA	AGE C	ALCU	LATIO	N2 (OD	OI 10 1	rk KAI	NFAL	LCH				ON) using L&D	wanuai, v	oı z gulda	ance. 1103.				
LOCA	ATION														GUTT	ER ANALYSIS						INLET	ANALYSIS		
Station	offset (feet)	Side	Area (A) Side	Coeff	CA	Total CA	T (min.)	l (in/hr)	Q (cfs)	L-SI.	X-SI.	By-	Total Q	Y (ft)	Shoulder width	Spread	scupper or inlet width	Flow	Velocity (ft/s)	Length (flow dir.)		Reduction		By- Pass	By- Pass
				(C)								(cfs)	(cfs)		(ft)	(ft)	(ft)	(sq ft)		(ft)	(ft/s)		low (E) (cf:	(cfs)	%
EB existing scupper median Sta. 66+00	3.00	RT	0.106	0.9	0.095	0.095	10	5.1			0.0300 is greate					4.12	2.50	0.25	1.91	0.50	2.00	1.0	0.446	0.040	8%
EB Bridge 9 existing scupper median Sta. 65+30	3.00	RT	0.069	0.9	0.062	0.062	10	5.1	0.317		0.0300 is greate					3.53	2.50	0.19	1.91	0.50	2.00	1.0	0.344	0.013	4%
EB Bridge 9 existing scupper median Sta. 65+17	3.00	RT	0.019 0.194	0.9	0.017	0.017	10	5.1	0.087		0.0300 is less th				3.50	2.06	2.50	0.06	1.58	0.50	2.00	1.0	0.101	0.000	0%
WB/EB existing inlet Sta. 64+00 median	3.00	RT	0.098	0.9	0.088	0.088	10	5.1	0.45		0.0300 is greate					3.70	2.50	0.21	2.19	3.00	5.00	1.000	0.427	0.022	5%
WB/EB existing inlet Sta. 63+02 median	3.00	RT	0.101	0.9	0.091	0.091	10	5.1			0.0200 is greate					5.15	2.50	0.26	1.83	3.00	5.00	1.000	0.404	0.082	17%
WB/EB existing inlet Sta. 62+28 median	3.00	RT	0.086	0.9	0.077	0.077	10	5.1		Spread	0.0160 is greate	r than a	llowab	le NO	GOOD	5.88	2.50	0.28	1.73	3.00	5.00	1.000	0.368	0.108	23%
EB Bridge 9 spread checkpoint Shoulder Sta. 65+18	51.00	RT	0.049	0.9	0.044	0.044	10	5.1	0.224		0.0400 is less th				10.00	2.32	0.00	0.11 Area past checkpo	2.08 pint (acres) = f Coeff. (C) =		2.00 I (in/hr) = CA =	0.009	0.000 Q = to flume =	0.224 0.046 0.270	
EB 58+97 spread checkpoint shoulder	62.00	RT	0.4098	0.9	0.369	0.3688	10	5.1	1.881		0.0300 is less th				9.50	6.53	0.00	0.64	3.11	0.00	2.00	0.000	0.000	1.989	100%

UNTD	Made by: PNS	Date:	8/15/2011	Use spread equation from 1986 FHWA Bridge Deck Drainage Guidelines.
HNTB	Checked by: BH	Date:	8/15/2011	Use E=1-(1-w/t)^2.67*Q per HEC 12 for determining inlet intercept flow.
Job Number: 49633				where $w = \text{scupper width (ft)}$, and $t = \text{design spread (ft)}$.
				n = 0.015 Allowable Spread is spread that is less than the shoulder width for ultimate condition or shoulder width plus 1/3 traveled lane for Interim, whichever is greater.

-										n =	0.015) /	Allowa	ible Spi	read is spread th	at is less than tr	ne shoulder width f	for ultimate condition	or shoulder	width plus	1/3 traveled lar	ne for inter	im, wnicheve	er is greater.	
			EX	ISTING	G EB [DRAIN	AGE	CALC	JLATIO	NS (OE	OT 2 Y	'R RAIN	FAL	L CHE	ECK FOR INT	ERIM & FUT	URE CONDITIO	ON) using L&D N	lanual, V	ol 2 guida	nce. 1103.6	5.2			
LOCA	ATION														GUT	TER ANALYSIS						INLET	ANALYSIS		
Station	offset (feet)	Side	Area (A) Side	Runoff Coeff (C)	f CA	Total CA	T (min.	l) (in/hr)	Q (cfs)	L-SI. (ft/ft)	X-SI. (ft/ft)	Pass	Total Q (cfs)	Y (ft)	Shoulder width (ft)	Spread (ft)	scupper or inlet width	t Flow Area (sq ft)	Velocity (ft/s)	Length (flow dir.) (ft)	Splash Over Vel for L (ft/s)	·	Inlet Intercept low (E) (cf:	By- Pass (cfs)	By- Pass %
EB	3.00	RT	0.106	0.9	0.095	0.095	10	3.6	0.343	0.0108	0.0300	0.000	0.343	0.108	3.50	3.61	2.50	0.20	1.75	0.50	2.00	1.0	0.329	0.015	4%
existing scupper median Sta. 66+00								•		Spread	is greate	er than all	owab	le NO	GOOD										
EB Bridge 9	3.00	RT	0.069	0.9	0.062	0.062	10	3.6				0.015			3.50	3.04	2.50	0.14	1.72	0.50	2.00	1.0	0.236	0.002	1%
existing scupper median Sta. 65+30												nan allow						_							
EB Bridge 9	3.00	RT	0.019	0.9	0.017	0.017	10	3.6				0.002			3.50	1.74	2.50	0.05	1.41	0.50	2.00	1.0	0.064	0.000	0%
existing scupper median Sta. 65+17			0.194									nan allow													
WB/EB	3.00	RT	0.098	0.9	0.088	0.088	10	3.6				0.000			3.50	3.25	2.50	0.16	2.00	3.00	5.00	1.000	0.311	0.006	2%
existing inlet Sta. 64+00 median												nan allow									_				
WB/EB	3.00	RT	0.101	0.9	0.091	0.091	10	3.6	0.327			0.006				4.47	2.50	0.20	1.67	3.00	5.00	1.000	0.296	0.037	11%
existing inlet Sta. 63+02 median												er than all						_							
WB/EB	3.00	RT	0.086	0.9	0.077	0.077	10	3.6				0.037				5.04	2.50	0.20	1.56	3.00	5.00	1.000	0.265	0.051	16%
existing inlet Sta. 62+28 median												er than all								1					
EB Bridge 9	51.00	RT	0.049	0.9	0.044	0.044	10	3.6				0.000			10.00	2.04	0.00	0.08	1.91	0.00	2.00	1.0	0.000	0.158	100%
spread checkpoint Shoulder Sta. 65+18												nan allow							Coeff. (C) =	0.90		0.009 Total Q	Q = to flume =	0.046 0.204	Υ
EB 58+97	62.00	RT	0.4098	0.9	0.369	0.3688	10	3.6				0.051			9.50	5.69	0.00	0.49	2.84	0.00	2.00	0.000	0.000	1.378	100%
spread checkpoint shoulder										Spread	is less th	nan allow	able C	ok .											

PID: 49633 Date: 08/18/2011 Project: Cleveland Innerbelt Location: EB I90 Between bridge 9 and 7

Description : PR - EB median **Designer :** PNS

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 3.50 Allowable Depth (ft.) 0.00

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	TIME		SLOPE		SLOPE	WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
65+17	Begin																	
64+00	I-3B	117.00	0.00	0.00	0.00	0.00	0.00	0.0163	0.0300	0.0300	3.50	0.1670	0.00	0.36	0.00	0.36	0.102	3.40
63+02	I-3B	98.00	0.90	0.09	10.00	1.36	11.36	0.0127	0.0200	0.0200	3.50	0.1670	3.39	0.28	0.00	0.28	0.083	4.16
62+28	I-3B	74.00	0.90	0.09	10.00	1.10	11.10	0.0127	0.0160	0.0160	3.50	0.1670	3.43	0.27	0.00	0.27	0.075	4.70

PID: 49633 Date: 08/18/2011 Project: Cleveland Innerbelt Location: EB I90 Between bridge 9 and 7

Description : EX - EB median **Designer :** PNS

Rainfall Area: A Storm Frequency (yr.): 2 Total Allow. Spread (ft.): 3.50 Allowable Depth (ft.) 0.00

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME			SLOPE	SLOPE		WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
65+17	Begin																	
64+00	I-3B	117.00	0.00	0.00	0.00	0.00	0.00	0.0163	0.0300	0.0300	3.50	0.1670	0.00	0.32	0.00	0.32	0.097	3.24
63+02	I-3B	98.00	0.90	0.09	10.00	1.36	11.36	0.0127	0.0200	0.0200	3.50	0.1670	3.39	0.28	0.00	0.28	0.083	4.16
62+28	I-3B	74.00	0.90	0.09	10.00	1.10	11.10	0.0127	0.0160	0.0160	3.50	0.1670	3.43	0.27	0.00	0.27	0.075	4.70

PID: 49633 Date: 08/18/2011 Project: Cleveland Innerbelt Location: EB I90 Between bridge 9 and 7

Description : PR - 10 yr - EB median **Designer :** PNS

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 3.50 Allowable Depth (ft.) 0.00

STATION	C.B. Type	GUTTER LENGTH		_	TIME	TIME		SLOPE	SLOPE	SLOPE	WIDTH	LOCAL DEPRESS.	FALL	INTERCPTD FLOW	FLOW	FLOW	DEPTH FLOW	PAVT. SPREAD
65+17	Begin	(ft.)		(acres)	(11111.)	(11111.)	(11111.)	(11./11.)	(ft./ft.)	(ft./ft.)	(ft.)	(ft.)	(in./hrs.)	(cfs.)	(cfs.)	(cfs.)	(ft.)	(ft.)
64+00	I-3B	117.00	0.00	0.00	0.00	0.00	0.00	0.0163	0.0300	0.0300	3.50	0.1670	0.00	0.49	0.00	0.49	0.114	3.81
63+02	I-3B	98.00	0.90	0.09	10.00	1.24	11.24	0.0127	0.0200	0.0200	3.50	0.1670	4.84	0.40	0.00	0.40	0.095	4.76
62+28	I-3B	74.00	0.90	0.09	10.00	1.00	11.00	0.0127	0.0160	0.0160	3.50	0.1670	4.88	0.38	0.00	0.38	0.086	5.37

PID: 49633 Date: 08/18/2011 Project: Cleveland Innerbelt Location: EB I90 Between bridge 9 and 7

Description : EX - EB median **Designer :** PNS

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 3.50 Allowable Depth (ft.) 0.00

STATION	C.B. Type	GUTTER LENGTH (ft.)		NOFF AREA (acres)	TIME	TIME		SLOPE		SLOPE	WIDTH	LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
65+17	Begin														<u> </u>			
64+00	I-3B	117.00	0.00	0.00	0.00	0.00	0.00	0.0163	0.0300	0.0300	3.50	0.1670	0.00	0.45	0.00	0.45	0.111	3.69
63+02	I-3B	98.00	0.90	0.09	10.00	1.24	11.24	0.0127	0.0200	0.0200	3.50	0.1670	4.84	0.40	0.00	0.40	0.095	4.76
62+28	I-3B	74.00	0.90	0.09	10.00	1.00	11.00	0.0127	0.0160	0.0160	3.50	0.1670	4.88	0.38	0.00	0.38	0.086	5.37

For Resuffacing Gateway

Job no. 49633

Sheet no.

Made by PN Shedivy

Checked by BANESS

Backchecked by

Date

8/15/11

Date

HNTB

	HEC -	22	Cuch	Daga	m 6	1. 13 00	Grade	
	/_=	KG	0.42	0.3/	0.6		Grade	
		1,5	LADE CE	()	Sx)			
		(0.6)(027	cfs) 0.4	2 (0.01)	27)	1	٥. ٤
			16033				5)(0.0166)	
		5.6	6 ++	<	curbo	pening of	D ft bing	
				1	median	721	0 ++	
	ALL	Flow	Interc	epted	fori	nlets	on WB	
	0	sta.	64+00	()	.07	t 62	+28	
1				, 65	, +0-	0 82	, _ 0	
						4		

ME101-1202

Roadway Partial Gateway (Resurfacing BL-7/8-12) - Proposed and Existing Drainage Map - (note existing contains only Eastbound from Bridge 9 to 7 only)

EXISTING DRAINAGE AREA
PROPOSED DRAINAGE AREA

Cleveland Innerbelt Bridge Gateway Roadway Package

DRAINAGE DESIGN REPORT

APPENDIX L

For information only. Calculations have been RFC'd already.

waii i Drainage Calculations Summary

Existing & Proposed Drainage Conditions

Wall I is a new wall that will connect E. 14th Street to a new bridge that spans E. 9th Street. The 449 ft wall starts at E. 9th Street bridge abutment and travels northeast. The alignment of the existing E. 14th Street is shifting north towards the right of way line creating the need for the wall.

The existing E. 14th Street on-ramp was constructed from the 1959 Willow Innerbelt Freeway Part 6. This project had an existing No. 9 brick combined sewer being removed and rerouted through a proposed 66" concrete pipe along Webster Ave (See Willow Innerbelt Freeway Part 6 Plans & Figure 1). Figure 1 shows the existing drainage area for inlets that were constructed per the 1959 plans. The existing drainage enters in two manholes (A101 & A102) located along the 66" approximately 416 ft northwest of E. 9th Street. These two inlets have a combined tributary drainage area of 6.31 acres, runoff coefficient of 0.78, and a 10-year discharge rate of 31.4 cfs.

With the realignment of E. 14th Street on-ramp, drainage areas are being shifted, and additional pavement from Bridges 7 & 8 add additional flow to the 66" sewer. There are no impacts to CSO 094 because the additional 0.16 acre of pavement area drained onto E. 9th Street and was tributary to the 96" interceptor which the 66" drains into. The increase at A101 will be approve by the City of Cleveland to have an increase from 31.4 cfs to 33.3 cfs, since the 66" pipe has capacity. Downstream of A101, a 57"slip lining be installed to the 96" (see Wall I 66 Inch Drainage Report). Due to the height of the fill on the existing pipes connecting to manholes A101 & A102, a new storm sewer pipe will connect the existing/proposed inlets around Bridge 9 to manhole A101. The total drainage area is 6.47 acre, runoff coefficient of 0.82, and discharge rate of 33.3 cfs.

Made by: BAHess Checked by: PNShedivy Date: 6/30/2011 6/30/2011 Date:

Job Number: 49633
Cleveland Innerbelt 66 inch Existing 1959, Pre-Project and Proposed Drainage Areas and Runoff Coefficients

CN, Curve Number		•	98	98	74	94	1		
C, Rational Coefficient		0.30		0.9		0.8	4		
	Fair ROW	Fair ROW			D	les els esteis I/			
Terrain Description	_	grass < 10:1 slopes	Pavement	Sidewalk	Dense Residentual	Industrial/ Commercial	Area	CN	С
Pre-Project Pre-Project									
A84 - Existing Manhole - 22nd & Scovill-No. 7 (Broadway 14+50, 1350LT)		10.42	40.18				50.600	92.03	0.78
A88 - Existing Manhole - 14th-66" (14th 132+05, 10LT)	5.33	0.40	5.65				11.383	89.48	0.79
A101 - Existing Manhole - Ramp A3/Webster Street - 66" (A3 3004+15, 60RT)	3.32		2.99				6.310	89.58	0.79
Total A84, A88 & A101 Pre-Project Conditions	8.65	10.82	48.82				68.293	91.38	0.78
Existing 1959 - (A88 is same as Pre-Project)									
A84 - Existing 1959 Conditions - Estimated 25% Impervious			17.140		51.41		68.550	80.00	0.60
Proposed Conditions									
A101 - Wall I/Ramp A3 Proposed Conditions	2.59		3.880				6.470	91.60	0.82

T I I I I I I I I I I I I I I I I I I I	Market Ballet		D.:	10/00/0044
HNTR	Made by: BAHess Checked by: PNShedivy			e: 6/30/2011 e: 6/30/2011
Job Number: 49633	Checked by: PNShedivy		Date	e: 0/30/2011
30D Number: 43033				
Cleveland Innerbelt 66inch P	re and Post Drainage Areas and Runoff Coefficients:	TC CALCULATION/FLOW		
Analysis Condition	Existing/Proposed		Existing	Proposed
Outfall Name	A84 - Pre Project	A84 - 1959 Conditions	A101	A101
Sheetflow	Grass	Grass	Grass	Grass
Runoff Coefficient	0.300	0.300	0.700	0.700
length, ft (<100)	100.000	100.000	65.000	65.000
dz, ft	0.650	0.650	20.000	20.000
slope	0.007	0.007	0.308	0.308
Tain	40.004	46.604	4.050	1.050
Tt, min	16.624	16.624	1.852	1.852
Shallow Concentrated			Grass	Grass
length, ft			215.000	215.000
dz, ft			9.500	9.500
slope			1.838	1.838
Intercept Coefficient, k			0.430	0.430
avg velocity, ft/s			2.753	2.753
5				
Tt, min			1.417	1.417
Shallow Concentrated				
length, ft				
dz, ft				
slope				
Intercept Coefficient, k				
avg velocity, ft/s				
-				
Tt, min				
Pipe Flow	3200.000	3200.000	385.000	385.000
length, ft dz, ft	9.000	9.000	1.630	1.630
slope	0.003	0.003	0.004	0.004
Avg. Pipe Size	24"-No.8	24"-No.8	12"-15"	12"-15"
avg velocity, ft/s	4.000	4.000	3.500	3.500
avg velocity, its	4.000	4.000	5.500	0.000
Tt, min	13.333	13.333	1.833	1.833
		1 1 1 1		
Channel flow				
side slope, X:1				
side slope, X:1				
bank full depth, ft				
dz, ft				
length, ft				
manning's, n				
cross-sectional area, ft2				
wetted perimeter, ft				
hydraulic radius, ft				_
slope				
velocity, ft/s				
Tt, min				+
14, 11001			1	+
Total Tc, min	29.96	29.96	5.10	5.10
Regulated Total Tc, min	3.00	3.00	3.00	3.00
	5.55	5.55	5.55	3.55
Area, acres	50.600	68.550	6.310	6.470
C weighted	0.78	0.60	0.79	0.82
Intesities, in/hr				
15	2.410	2.410	5.500	5.500
I 10	2.760	2.760	6.270	6.270
125	3.210	3.210	7.170	7.170
Flores of	i			
Flows, cfs				
	04.004	20.100	07.500	00.470
Flows, cfs Q5	94.684	99.126	27.583	29.178
	94.684 108.435 126.114	99.126 113.522 132.031	27.583 31.444 35.958	29.178 33.262 38.037

Figure 1 - Wall I 66 Inch Combined Sewer Analysis Drainage Map

Description: Spread Calculation for end of Wall I - 3003+75 **Designer**: ELJ

Rainfall Area: A Storm Frequency (yr.): 10 Total Allow. Spread (ft.): 12.00 Allowable Depth (ft.) 0.25

STATION	C.B. Type	GUTTER LENGTH (ft.)				TIME		SLOPE	SLOPE	SLOPE		LOCAL DEPRESS. (ft.)		INTERCPTD FLOW (cfs.)	BYPASS FLOW (cfs.)	TOTAL FLOW (cfs.)	DEPTH FLOW (ft.)	PAVT. SPREAD (ft.)
3008+63	Begin																	
3003+75	CB-3A	488.00	0.90	0.40	1.00	2.91	10.00	0.0155	0.0475	0.0475	6.00	0.0417	5.10	1.39	0.45	1.83	0.225	4.74

STORM SEWER SYSTEM

PID: 49633 Date: 07/14/2011 Project: CUY-90-14.90 Location: Ramp A3 - SS 3003+73.5 RT

Description: 2011-07-14 Ramp A3- SS 3003+73.5 RT **Designer**: ELJ

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 667.37

JUNCTION From To		ΔAREA ΣAREA (acres)		TIME	RAINF INTENS (10 yrs.) (2	SITY	(cfs.	.)	DIAM. L	PIPE ENGTH (ft.)		F/L PIPE IN / OUT (ft.)	 JUST FULL CAPACITY (cfs.)			COVER IN / OUT (ft.)	MINUS		INLET TYPE MANNING'S 'n'
D22 FREE begin	3003+73 3003+73	0.40 0.40	0.36 0.36		5.10	6.20	1.8	2.2	15	34.0	0.3244 *	677.15 666.12	 34.30	0.0016	677.37 667.37	683.76 667.60	6.39	5.36	CB 3A 0.015

NOTE:

This is a broken back pipe consisting of three sections:

- first section: 5' @ 1.00%,

- middle section: 26' @ 35.97% and

- final section: 10' @ 1.00%

STORM SEWER SYSTEM

PID: 49633 Date: 09/26/2011 Project: Cleveland Innerbelt Location: Ramp A3 - 3002+87 LT to Ex. SS/Proposed 57"

Description: Ramp A3 - 3002+87 LT to Ex. SS /Proposed 57" - D23 **Designer**: ELJ

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 66.00 Tailwater Elevation (ft.): 650.51

	STATION	ΔAREA	_				_			PIPE				JUST FULL						INLET TYPE
From To	From To	Σ AREA (acres)	ΣCA		(10 yrs.) (2		(cfs 10 yrs.)(2	,	(in.)	ENGTH (ft.)	SLOPE (ft./ft.)	IN / OUT (ft.)	VEL (fps.)	CAPACITY (cfs.)	SLOPE (ft./ft.)	IN / OUT (ft.)	IN / OUT (ft.)		MINUS CROWN	MANNING'S 'n'
A84 A88 begin	72+50 71+83	50.60 50.60	39.47 39.47	30.00	2.79	3.23 1	110.2	127.3	66	276.0	0.0035	650.36 649.40	8.56	213.04	0.0014	654.40 654.01	664.56 668.76	10.16	8.70	MH 3 0.013
A88 A102	2 71+83 65+87	11.38 61.98	8.99 48.46		2.76	3.23 1	133.7	156.3	66	652.0	0.0038	649.38 646.90	9.27	222.79	0.0022	654.01 652.60	668.76 670.25	14.75	13.88	MH 3 0.013
A102 A10	1 65+87 3004+24	0.00 61.98	0.00 48.46	31.71	2.69	3.23 1	130.5 ⁻	156.3	66	122.0	0.0038	646.88 646.42	9.18	221.81	0.0022	652.60 652.33	668.75 671.29	16.15	16.37	MH 3 0.013
EXF1 D23	3002+50 3002+86	2.46 64.44	1.94 50.40	30.00	2.79	3.23	5.4	6.3	15 Warnin ថ		0.0030	652.46 652.01	4.42	3.30	0.0125	655.20 653.33	656.82 661.40	1.62	3.11	CB 2-6 0.015
D23 A10	1 3002+87 72+50	2.35 66.79	1.86 52.26		2.76	3.23	10.5	12.3	24	198.0	0.0066	652.01 650.70	5.42	17.15	0.0039	653.33 652.33	661.40 671.29	8.07	7.39	CB 8 0.015
A101 101A	3004+24 3006+93	1.50 68.29	1.18 53.44	31.93	2.68	3.23 1	143.2		57 Warnin g		0.0040	646.53 645.52	10.71	182.09	0.0041	652.33 651.29	671.29 675.05	18.96	20.01	MH 3 0.011
101A A100	3006+93 3008+48	0.00 68.29	0.00 53.44	32.33	2.66	3.23 1	142.1 ·	172.4	57	162.0	0.0040	645.52 644.87	10.74	182.92	0.0041	651.29 650.62	675.05 673.76	23.76	24.78	MH 3 0.011
A100 END	3008+48 3008+77	0.00 68.29	0.00 53.44	32.58	2.64	3.23 1	141.3	172.4	57	27.0	0.0040	644.87 644.76	10.68	181.79	0.0041	650.62 650.51	673.76 672.00	23.14	24.14	MH 3 0.011

STORM SEWER SYSTEM

PID: 49633 Date: 06/29/2011 Project: CUY-90-14.90 Location: I-90 / Ramp A3 SS 3004+39 LT

Description: I-90 / Ramp A3 SS to Ditch LT_3004+39 LT **Designer**: ELJ

Rainfall Area: A Just Full Capacity Frequency (yrs.): 10 Hydraulic Gradient Frequency (yrs.): 25

Minimum Pipe Size: 15.00 Tailwater Elevation (ft.): 0.00

JUNCTION From To		ΔAREA Σ AREA (acres)	TIME	INTENS	SITY	DISCHAI (cfs.) (10 yrs.)(25		DIAM. L		SLOPE (ft./ft.)						MINUS		INLET TYPE MANNING'S 'n'
D21 FREE begin	3004+39 3004+33	0.28 0.28	 10.00	5.10	6.19	1.3	1.6	15	54.0	0.2917	* 693.50 677.75	 32.52	0.0008	693.69 678.62	669.90 679.00	-23.79	-24.85	CB 3A 0.015

NOTE:

This is a broken back pipe consisting of three sections:

- first section: 10' @ 5.00%,

- middle section: 34' @ 43.72% and

- final section: 10' @ 1.00%

Description: Ramp A3 - 2999+90 LT to 3002+86 LT

Designer: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

 Permanent Mat
 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT BEGIN	TION END	SIDE	E LENGTH (ft.)	RADIUS WIDTH (ft.)	SLOPE		GRADE (ft./ft.)			RUNOFF COEFF.	CA (Sum)	PROTECT TYPE	RAIN INT. (in./hr.)	FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	
2999+90	3001+30		140.00	0.00	4.00	2.00	0.0040	0.20	0.20	0.70	0.14	Seed	3.3	8 5	0.030	17.24	1.03	0.10	0.47	0.39	2.35
												Seed	3.8	5 10	0.040	17.66	0.84	0.12	0.54	0.46	2.77
3001+30	3002+00	L	73.00	2.00	4.00	2.00	0.0186	0.14	0.34	0.70	0.24	Seed	3.3	1 5	0.030	17.91	1.81	0.20	0.78	0.17	3.03
												Seed	3.7	6 10	0.040	18.43	1.56	0.25	0.89	0.21	3.29
3002+00	3002+86	L	105.00	2.00	4.00	2.00	0.0593	0.26	0.60	0.70	0.42	Seed	3.20	6 5	0.030	18.45	3.23	0.63	1.37	0.17	3.02
												Jute Mat	3.2	5 5	0.040	18.57	2.65	0.74	1.37	0.20	3.19
												Temp. Mat	t 3.2	5 5	0.040	18.57	2.65	0.74	1.37	0.20	3.19
												Temp. Ma	t 3.6	8 10	0.040	19.07	2.75	0.79	1.55	0.21	3.28

Description: Ramp A3 - 3008+14 LT to 3002+86 LT **Designer**: PNS

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

 Permanent Mat
 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STATI BEGIN	ON END	SIDE	LENGTH (ft.)	RADIUS WIDTH (ft.)				AREA (acres)	AREA SUM (acres)	RUNOFF COEFF.	CA (Sum)	PROTECT TYPE	RAIN INT. (in./hr.)	FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)		WIDTH FLOW (ft.)
3008+14	Concent							0.31		0.90	0.28					10.00					
3008+14	3007+00	L	108.00	2.00	13.00	7.00	0.0175	0.28	0.59	0.75	0.48	Seed	3.5	1 5	0.030	15.99	1.80	0.24	1.70	0.22	6.46
												Seed	4.04	4 10	0.040	16.17	1.52	0.30	1.96	0.27	7.45
3007+00	3005+35	L	182.00	2.00	20.00	6.00	0.0242	0.43	1.02	0.76	0.81	Seed	3.3	7 5	0.030	17.36	2.18	0.37	2.74	0.24	8.34
												Seed	3.83	3 10	0.040	17.82	1.82	0.44	3.12	0.29	9.65
3005+35	3004+47	L	67.00	2.00	10.00	4.00	0.0227	0.28	1.30	0.76	1.03	Seed	3.32	2 5	0.030	17.79	2.59	0.45	3.41	0.31	6.40
												Jute Mat	3.3	1 5	0.040	17.89	2.09	0.51	3.40	0.36	7.04
												Temp. Mat	3.3	1 5	0.040	17.89	2.09	0.51	3.40	0.36	7.04
												Temp. Mat	3.7	7 10	0.040	18.33	2.17	0.54	3.87	0.38	7.35
3004+47	3003+35	L	116.00	2.00	5.00	3.00	0.1563*	0.30	1.59	0.70	1.23	Seed	3.28	8 5	0.030	18.21	6.04	2.24	4.05	0.23	3.84
												Jute Mat	3.28	8 5	0.040	18.29	4.93	2.61	4.04	0.27	4.14
												Temp. Mat	3.28	8 5	0.040	18.29	4.93	2.61	4.04	0.27	4.14
												Perm, Type	1 3.28	8 5	0.040	18.29	4.93	2.61	4.04	0.27	4.14

STATI BEGIN	ON END	SIDE I	LENGTH (ft.)	RADIUS WIDTH (ft.)	SLOPE		GRADE (ft./ft.)			RUNOFF COEFF.	CA (Sum)			FREQ.	MANN. COEFF.	TIME FLOW (min.)	VEL. FLOW (fps.)	SHEAR (lbs./ sq.ft.)	DESIGN FLOW (cfs.)	DEPTH FLOW (ft.)	
												Perm, Type	2 3.28	3 5	0.040	18.29	4.93	2.61	4.04	0.27	4.14
												Perm, Type	2 3.73	3 10	0.040	18.71	5.13	2.78	4.60	0.29	4.28
3003+35	3002+86	L	49.00	2.00	4.00	2.00	0.1653 *	0.15	1.75	0.70	1.34	Seed	3.20	6 5	0.030	18.41	6.59	2.51	4.38	0.24	3.46
												Jute Mat	3.20	6 5	0.040	18.44	5.39	2.94	4.38	0.28	3.71
												Temp. Mat	3.20	6 5	0.040	18.44	5.39	2.94	4.38	0.28	3.71
												Perm, Type	1 3.20	5	0.040	18.44	5.39	2.94	4.38	0.28	3.71
												Perm, Type	2 3.20	5 5	0.040	18.44	5.39	2.94	4.38	0.28	3.71
												Perm, Type	2 3.7	1 10	0.040	18.85	5.60	3.14	4.98	0.30	3.83

Description: Ramp A3-Wall I - 3007+44 RT to 3002+68 RT **Designer**: AHR

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

 Permanent Mat
 Type 1:
 2.00
 Type 2:
 3.00
 Type 3:
 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STATIO	ON END	SIDE	LENGTH (ft.)		IN SLOPE	BACK SLOPE		AREA (acres)	AREA SUM	RUNOFF COEFF.	CA (Sum)	PROTECT TYPE	RAIN INT.	STORM	MANN. COEFF.	TIME FLOW	VEL. FLOW	SHEAR (lbs./	DESIGN FLOW	DEPTH FLOW	WIDTH
220	,,_		(,	(ft.)		(ft./ft.)	(1427141)	(40.00)	(acres)	302	(Guiii)		(in./hr.)		552	(min.)	(fps.)	sq.ft.)	(cfs.)	(ft.)	(ft.)
3007+44	3007+12	R	32.00	0.00	2.00	2.00	0.0404	0.02	0.02	0.50	0.01	Seed	3.57	7 5	0.030	15.42	1.26	0.27	0.03	0.11	0.43
												Seed	4.13	3 10	0.040	15.52	1.01	0.32	0.03	0.13	0.52
3007+12 3	3006+70	R	42.40	2.00	2.00	2.00	0.0404	0.03	0.05	0.50	0.02	Seed	3.50	5 5	0.030	16.09	1.03	0.09	0.08	0.04	2.15
												Seed	4.02	2 10	0.040	16.27	0.91	0.12	0.09	0.05	2.19
3006+70	3004+98	R	171.70	2.00	2.00	2.00	0.0080	0.16	0.21	0.70	0.14	Seed	3.26	5 5	0.030	18.45	1.20	0.08	0.45	0.16	2.64
												Seed	3.69	9 10	0.040	18.98	1.03	0.10	0.51	0.20	2.82
3004+98	3004+44	R	53.60	2.00	2.00	2.00	0.0572	0.06	0.27	0.70	0.18	Seed	3.23	3 5	0.030	18.81	2.47	0.38	0.58	0.11	2.42
												Seed	3.6	5 10	0.040	19.40	2.15	0.48	0.65	0.13	2.54
3004+44	3004+10	R	34.20	2.00	2.00	2.00	0.0031	0.04	0.31	0.70	0.21	Seed	3.17	7 5	0.030	19.39	0.98	0.05	0.66	0.27	3.06
												Seed	3.58	3 10	0.040	20.08	0.83	0.06	0.74	0.33	3.33
3004+10 3	3003+75		35.00	2.00	2.00	2.00	0.0352	0.04	0.35	0.70	0.24	Seed	3.1	5 5	0.030	19.64	2.28	0.31	0.74	0.14	2.57
												Seed	3.5	5 10	0.040	20.38	1.96	0.40	0.83	0.18	2.72
3003+75 (Concent							0.40		0.90	0.60					5.00					

STATIO	N	SIDE I	ENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH	SLOPE	SLOPE	(ft./ft.)	(acres)	SUM	COEFF.	(Sum)	TYPE	INT.	FREQ.	COEFF.	FLOW	FLOW	(lbs./	FLOW	FLOW	FLOW
				(ft.)	(ft./ft.)	(ft./ft.)			(acres)				(in./hr.)	(yrs.)		(min.)	(fps.)	sq.ft.)	(cfs.)	(ft.)	(ft.)
3003+75 30	003+43	R	32.30	2.00	2.00	2.00	0.0352	0.07	0.82	0.80	0.65	Seed	3.14	4 5	0.030	19.81	3.22	0.55	2.03	0.25	3.01
												Jute Mat	3.13	3 5	0.040	19.85	2.63	0.65	2.03	0.30	3.19
												Temp. Mat	3.13	3 5	0.040	19.85	2.63	0.65	2.03	0.30	3.19
												Temp. Mat	3.53	3 10	0.040	20.57	2.72	0.70	2.29	0.32	3.27
3003+43 30	002+95	R	47.10	2.00	2.00	2.00	0.0173	0.10	0.92	0.80	0.73	Seed	3.11	1 5	0.030	20.15	2.60	0.35	2.26	0.33	3.31
												Seed	3.49	9 10	0.040	20.93	2.19	0.44	2.54	0.41	3.64
3002+95 30	002+68	R	28.00	2.00	2.00	2.00	0.0098	0.06	0.98	0.80	0.78	Seed	3.09	9 5	0.030	20.37	2.17	0.24	2.40	0.40	3.58
												Seed	3.47	7 10	0.040	21.18	1.83	0.30	2.69	0.49	3.97

Description: Ramp A3-Wall I - 3002+30 RT to 3002+68 RT(Ex. Inlet) TEMP **Designer**: ELJ

Rainfall Area: A Allowable Shears

 Seed:
 0.40
 Jute Mat:
 0.45
 Temporary Mat:
 1.00

Permanent Mat Type 1: 2.00 **Type 2:** 3.00 **Type 3:** 5.00

RCP Type B: 6.00

(*) Warning: Grade is steeper than allowable. If value is parantheses, design parameters have been exceeded. - See user manual.

STAT	ION	SIDE	LENGTH	RADIUS	IN	BACK	GRADE	AREA	AREA	RUNOFF	CA	PROTECT	RAIN	STORM	MANN.	TIME	VEL.	SHEAR	DESIGN	DEPTH	WIDTH
BEGIN	END		(ft.)	WIDTH (ft.)		SLOPE (ft./ft.)	(ft./ft.)	(acres)	SUM (acres)	COEFF.	(Sum)	TYPE	INT. (in./hr.)		COEFF.	FLOW (min.)	FLOW (fps.)	(lbs./ sq.ft.)	FLOW (cfs.)	FLOW (ft.)	FLOW (ft.)
3002+30	3002+68	R	37.32	0.00	2.00	3.00	0.0148	0.41	0.41	0.78	0.32	Seed	3.59	9 5	0.030	15.29	2.16	0.42	1.14	0.46	2.30
												Jute Mat	3.58	3 5	0.040	15.36	1.73	0.47	1.14	0.51	2.56
												Temp. Ma	t 3.58	3 5	0.040	15.36	1.73	0.47	1.14	0.51	2.56
												Temp. Ma	t 4.15	5 10	0.040	15.34	1.79	0.50	1.32	0.54	2.71

DIOI @ Stat 3004723.5, 58.71'PT, TopofPipe@ 652.7 & RungA3 Elev @3004723.5=686.5 D-23 @Status 3002+87.34 88.84 / LT Top of Pre 65/16 Ramp A3 - Determine Max Fill for .. Max FIlloveeppez Pipe Between 0101+ D-23 E RampA3 Elev @3002+87 ~ 6800 D. = STRUCTURE DEPTH EXISTING GROUND 62.578 21.878 MATCH I.R. 90 N STA: 510+51.06 ELEV = 694.08' 08.189 99.489 511 61. 289 10.469 PE.083 B RAMP A3 STA. 505+69.66, BLEV = 679.67'
B RAMP A2 STA. 418+60.74, ELEV = 716,06' 510 94. 269 197229 P. V. I. STA. 508+25.00 ELEV = 691.32 300.00' VC K = 91 SSD = 475.0' Vass = 50 MPH PROPOSED PROFILE RAMP 43 18.269 12.478 .22 509 £6769 £6729 *11* 069 60.078 508 ££..689 12.738 +4.54 19.788 48.399 507 29.289 *P9 999* MINIMUM VERTICAL CLEARANCE = 25.00 68.39 59'999 909 21789 *25* 699 98.878 672.53 505 85.978 91.929 MINIMUN VERTICAL CLEARANCE = 25.92---STREET PROFILE _ // 52.479 EE.873 . 501+43.08, . 414+47.29, 504 S.D. 90.578 78.978 P.V.I. STA. 502+35.00 ELEV = 664.56' 230.00' VC 82.699 92.878 +4.94 % # RAMP 43 ST4. ELEV = 665.54 # RAMP 42 ST4. ELEV = 695.39 503 K = 42 SSD = 220.6' $V_{0ES} = 30 MPH$ MATCH EAST 14TH S STA. 500+99.90 ELEV = 665.91' 18.799 £0.£78 95.999 99.019 A3 502 89.399 bl 699 -1.00 79.539 *79* 899 RAMP 501 16.599 0*F* 699 -2.19

STREET

720

740

EAST 19TH

700

089

099

640

. Perobot L+DVolume 2 Table 1008-10 40,29

- 650.71

10-23 pipe -- Max Eles ~ 691

Aporox1 ocation

81.699

79.699

620

500

OF D-10140

MAXIMUM ALLOWABLE HEIGHT OF COVER FOR REINFORCED CONCRETE PIPE WITH TYPE 2 BEDDING

1008-10

Reference Section 1008.2.1

		6	.02 Pipe	e-Minim	um Tes	t Load to	o Produ	ce a 0.0	1-Inch (Crack		
Pipe	Thick-						D-Le	oad				
Dia.	ness		1000	1250	1500	1750	2000	2250	2500	2750	3000	3250
Inches	Inches				-	Heig	ht of Fill	(Maxim	um)			
12	2		*	*	*	*	28	31	35	38	42	46
15	2.25		*	*	*	*	28	31	35	39	42	46
18	2.5		*	17	20	24	28	31	35	39	42	46
21	2.75		*	17	20	24	28	31	35	38	42	46
24	3		*	16	20	24	27	31	34	38	42	45
27	3.25		13	16	20	24	27	31	34	38	41	45
30	3.5		12	16	20	23	27	31	34	38	41	45
36	4		12	16	19	23	27	30	34	37	41	44
42	4.5		12	16	19	23	26	30	33	37	41	44
48	5		12	15	19	23	26	30	33	37	40	44
54	5.5		12	15	19	22	26	29	33	37	40	44
60	6		11	15	19	22	26	29	33	36	40	43
66	6.5		11	15	18	22	25	29	32	36	39	43
72	7		11	14	18	22	25	29	32	36	39	43
78	7.5		11	14	18	21	25	28	32	35	39	42
84	8		11	14	18	21	25	28	32	35	39	42
90	8		10	14	18	21	25	28	32	35	39	42
96	8.5	T	10	14	17	21	25	28	32	35	39	42
102	8.5	T	10	14	17	21	24	28	31	35	38	42
108	9		10	14	17	21	24	28	31	35	38	42
114	9.5	Ī	10	13	17	21	24	28	31	35	38	42
120	10	Ţ	10	13	17	20	24	27	31	34	38	42
126	10.5	Ţ	9	13	17	20	24	27	31	34	38	41
132	11	J	9	13	16	20	24	27	31	34	38	41
144	12	T	9	12	16	20	23	27	30	34	37	41

