Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	2/22/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

TITLE: Design Summary

Background:

	For purposes of this design, the front sign shall refer to the 29'-5" sign with the letters for TREMONT cut out, and the back sign refers to the 35'-5" sign with leaves around the edges.
	The front face of the back sign shall be 4' from the front face of the front sign.
<u>Materials:</u>	The front sign and its supports shall be made from 1" thick AISI 304 stainless steel. The front sign anchor bolts shall be ASTM A193 Type B8 stainless steel, which is the same as AISI Type 304 stainless steel.
	The back sign shall be made from 1 1/2" thick Cor-Ten A plate weathering steel. The back sign supports shall be made from 1" thick Cor-Ten A plate weathering steel. Cor-Ten A is equivalent to ASTM A242.
<u>References:</u>	AASHTO LRFD Bridge Design Specifications, 6th Edition, 2012
	AISC Steel Construction Manual, 13th Edition
	Welding of Stainless Steels and Other Joining Methods , produced by AISI, available at: http://www.ssina.com/download_a_file/weldingbook.pdf
	Stainless Steel for Structural Applications Designer Handbook , available at: http://www.ssina.com/download_a_file/applications.pdf
	Information on Cor-Ten Steel found at:
	http://www.centralsteelservice.com/fags.htm

Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	2/22/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

TITLE: Controlling Loads for Reinforcing Designs

NOTE: Input data is denoted by shading. All other values are calculations performed by the spreadsheet.

NOTE: Outlined cells indicate input for subsequent design.

REFERENCE: AASHTO LRFD 6th Edition, 2012

Service Loads

Self Weight - (DC)

	Front Sign	Back Sign
Height	4.00 ft	4.25 ft
Length	28.92 ft	29.42 ft
Area	115.67 sft	154.94 sft
Thickness	1.00 in	1.50 in
Volume	9.64 cft	19.37 cft
Unit Weight	0.49 kcf	0.49 kcf
Weight	4.72 k	9.49 k
Stem Length	29.08 ft	29.58 ft
Stem Width	1.17 ft	1.17 ft
Stem Height	3.00 ft	3.00 ft
Volume	101.79 cft	103.54 cft
Unit Weight	0.15 kcf	0.15 kcf
Weight	15.27 k	15.53 k
	Footing	_
Footing Length	29.58 ft	
Footing Width	7.50 ft	
Footing Depth	1.00 ft	
Volume	221.88 cft	
Unit Weight	0.15 kcf	
Weight	33.28 k]
		-
S)		

Note: The area of the back sign was taken as the area of the rectangle plus 0.4 sf/leaf (from Microstation) plus 10% to account for miscellaneous details such as the stems.

Wind Load - (WS)

P_z 40.00 psf 40.00 psf

AASHTO 3.8.1.2.3

Collision - (CT)

Note:

The sign is not a protective barrier nor is it located within an area of expected collision. Therefore, the collision load is not considered for this design.

Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	2/22/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

TITLE: Anchor Bolt Design NOTE: Input data is denoted by shading. All other values are calculations performed by the spreadsheet. NOTE: Outlined cells indicate input for subsequent design. REFERENCE: AASHTO LRFD 6th Edition, 2012

Anchor Bolt Design

Load	Combinations	&	Factors
------	--------------	---	---------

Service Loads & Moments:							
	Front Sign	Back Sign					
Sign Weight	0.16 k/ft	0.32 k/ft					
Wind Load	40.00 psf/ft	40.00 psf/ft					

Use Strength III for maximum moment at base plate Strength III Component Factors
DC 0.90

WS (Load)	1.40

Front Sign Anchor Design

			Moment about CL	
	Factored Load	Sign Height	Sign	
Sign Weight	0.15 k/ft	0.00 ft	0.00 kip-ft/ft	Note: Weight and moment
Wind Pressure	56.00 psf/ft	4.00 ft	0.45 kip-ft/ft	are neglected.
		Total Moment	0.45 kip-ft/ft	
Use ASTM A307 Grade C Anchor	Bolts per AASH	TO 6.4.3.1		
Anchor Bolt F _u	58 ksi			AISC 13th Ed. Table 2-5
Anchor Bolt Diameter	0.75 in			
A _{bolt}	0.442 sq in			
Bolt Spacing	4.00 ft			
Number of Bolts per Face	8			
Check Shear (AASHTO 6.13.2.12)				
Shear Force	0.22 k/ft			
Shear in Bolt	0.90 k/bolt	= (Shear Force)	x (Support Spacing)	
R _n	12.30 k/bolt			AASHTO 6.13.2.12-1
ΦR_n	9.22 k/bolt	For A30	7 Bolts in Shear, $\Phi = 0.75$	AASHTO 6.5.4.2
	OK in Shear			
Check Combined Tension and She	ear (AASHTO 6.	13.2.11 & AASHT	O 6.13.2.10)	
Dist. CL Sign to CL Bolt	3.00 in			
Moment about CL Sign	0.45 kip-ft/ft			
Force/Foot	1.79 k/ft			
Tension in Bolt	3.58 k/bolt			
P_u/R_n	0.07	< 0.33, Use AASH	HTO 6.13.2.11-1	
T _n	19.47 k/bolt			AASHTO 6.13.2.11-1
ΦT_n	15.58 k/bolt	For A307	Bolts in Tension, $\Phi = 0.8$	AASHTO 6.5.4.2
	OK in Tension			

Max bolt spacing = 4 ft

t of brace

Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	2/22/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

TITLE: Anchor Bolt Design NOTE: Input data is denoted by shading. All other values are calculations performed by the spreadsheet. NOTE: Outlined cells indicate input for subsequent design. REFERENCE: AASHTO LRFD 6th Edition, 2012

Back Sign Anchor Design

			Moment about CL		
	Factored Load	Sign Height	Sign		
Sign Weight	0.32 k/ft	0.00 ft	0.00 kip-ft/ft		
Wind Pressure	56.00 psf/ft	5.27 ft	0.78 kip-ft/ft		
		Total Moment	0.78 kip-ft/ft		
Use ASTM A307 Grade C Anchor	Bolts per AASH	ГО 6.4.3.1			
Anchor Bolt F _u	58 ksi				AISC 13th Ed. Table 2-5
Anchor Bolt Diameter	0.75 in				
A _{bolt}	0.442 sq in				
Bolt Spacing	4.00 ft				
Number of Bolts per Face	8				
Check Shear (AASHTO 6.13.2.12)					
Shear Force	0.29 k/ft				
Shear in Bolt	1.18 k/bolt	= (Shear Force)	x (Bolt Spacing)		
R _n	12.30 k/bolt				AASHTO 6.13.2.12-1
ΦR_n	9.22 k/bolt	For A30	7 Bolts in Shear, $\Phi = 0$	0.75	AASHTO 6.5.4.2
	OK in Shear				
Check Combined Tension and Sh	ear (AASHTO 6.	13.2.11 & AASHTO	O 6.13.2.10)		
Dist. CL Sign to CL Bolt	3.00 in				
Moment about CL Sign	0.78 kip-ft/ft				
Force/Foot	3.11 k/ft				
Tension in Bolt	6.21 k/bolt				
P_u/R_n	0.10	< 0.33, Use AASH	ITO 6.13.2.11-1		
T _n	19.47 k/bolt				AASHTO 6.13.2.11-1
ΦT_n	15.58 k/bolt	For A307	Bolts in Tension, $\Phi = 0$	0.8	AASHTO 6.5.4.2
-					
	OK in Tension				

Max bolt spacing = 4 ft

Calculations For	Innerbelt Tr	emont Sign	Job No.	49633	Sheet No.
Made by	JRE		Date	4/9/2013	
Checked by	ZTW		Date	3/5/2013	
Packshad1	IDE		Data	2/11/2012	
васкспескей бу	JRE		Date	3/11/2013	
TITLE:	Sign Bending	Check			
NOTE: Input data is	s denoted by sh	nading. All othe	r values are calcu	ulations performed by the sprea	adsheet.
NOTE: Outlined cel	ls indicate inp	ut for subsequer	nt design.		
REFERENCE: AASI	HTO LEED 6	h Edition 2012	U		
T					
Front Sign General	Information				
	Steel Type:	AISI 304	Stainless Steel		
	f _y =	42 ksi			Welding of Stainless Steels Table 1
	Φf_v	42.0 ksi		For Flexure, $\Phi = 1.0$	AASHTO 6.5.4.2
	,				
Check Panding of (Staal at Basa a	f Brant Sign (a		norta)	
Check behang of a		n Front Sign (a	issumes no supj	ports)	
Sign 11	hickness, h =	1.00 in			
Length	1 of Sign, b =	12.00 in	Use 1' width fo	or design	
	y =	0.50 in			
	I =	1.00 in^4			
	M., =	0.45 k-ft/ft			
	u	E 201			
	IvI _u =	5.38 K-IN			
	σ =	2.69 ksi	< 42 ksi OK.	AY	
Check Bending of S	Steel between	Supports of Fr	ont Sign (assur	nes no weld to baseplate)	
Sign Th	hickness. h =	1.00 in		······································	
Height	t of Sign b -	48.00 in			
Ticigii	t 01 31g11, 0 =	40.00 III			
	y =	0.50 in			
	I =	4.00 in^4			
Max. Length b/w S	Supports, L =	6.0 ft		Note: Supports should be pl	aced to avoid interference with letter cutouts. This
Win	d Pressure =	56.0 psf		represents the maximum sp	acing allowed.
Wir	nd Load, w =	0.22 k/ft	= Wind Pressu	re x Height of Sign	
				0 0	
	м –	1011-#			
	W _u =	1.01 K-II			
	$M_u =$	12.10 k-in			
	σ=	1.51 ksi	< 42 ksi OK	AY	
Back Sign General	Information				
Durin organ Gomeran	Steel Tymes	A STM A 242	waath aring sta	al aquivalant to Car Tan A star	1
	Steer Type.	A31M A242	weathering stee	el equivalent to Col-Tell A stee	
	I _y =	46 KS1			AISC 13th Ed. 1able 2-4
	Φf _y	46.0 ksi		For Flexure, $\Phi = 1.0$	AASHTO 6.5.4.2
Check Bending of S	Steel at Base o	of Back Sign (as	sumes no supp	orts)	
Sign Th	hickness h -	1.50 in			
J or -th	nof Sign h -	12.00 in	Llea l' midth fa	r design	
Length	1 01 01g11, D =	12.00 in	Use 1 width to	a acsign	
	y =	0.75 in			
	I =	3.38 in^4			
	$M_u =$	0.78 k-ft/ft			
	M., =	9.32 k-in			
	σ =	2.07 ksi	< 46 ksi OK.	AY	
Check Bending of S	Steel between	Supports of Ba	ıck Sign (assum	es no weld to baseplate)	
Sign Th	hickness, h =	1.50 in			
Height	t of Sign, b =	63.21 in			
0	- v =	0.75 in			
	, I –	17 78 in \4			
	1 -	17.70 III. 4			
		10-0			
Max. Length b/w S	upports, L =	4.25 ft			
Win	d Pressure =	56.0 psf			
Wir	nd Load, w =	0.29 k/ft	= Wind Pressu	re x Height of Sign	
	M., =	0.67 k-ft			
	u M	7.00 1			
	M _u =	7.99 k-in			
	σ=	0.34 ksi	< 46 ksi OK.	AY	

Calculations for INNERBELT TREMONT SIGN	Job No. 49633 Sheet No.	
Made by JRE	Date z/22/2013	
Checked by	Date 3/6/13	
Backchecked by JRE	Date 3/11/13	

REBAL DESIGN MOMENT	DESIGN MONENT FOR BACK SIGN
	PW HAS TWO COMPONENTS
	1) WIDD GD LEAVES (TOP 7-9")
	2) WIND ON GOUD SIGN (BOT A'-3")
4 0	P - 40 - 41
M A A	A BOAL & BLO'(35.67') = 285.3 SE
	285(3-125.0 = (60.3 SF
	ALEANES = 154.94-125.0 = 29.9 SF
	$LEAVES PATTO = \frac{29.1}{160.3} = 0.187$
	Pui = 400 x 0.181 = 7.48 ===
SO ARM = O Z M = C	$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$
WIND & EARTA PRESSURE	$\frac{1}{7} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$
	$F \in (\frac{3}{2}) = F(x)$ $M_{a} = 7.4P(3.75')(8.875') + 40(4.25)(5.75')$
+2214, = 0	$\pm 40(\frac{2}{2}) = 1.300 + 4(\frac{2}{2})$
$M_{a} = P_{s}(4)(\frac{1}{2}+3.0) + E_{s}(\frac{1}{2})$	USE MA= 1.37 2.F+ /F+ FROM IND. CHECK
$M_{A} = 4 \frac{1}{27} \frac{1}{5} \frac{1}{2} \frac{1}{2} \frac{1}{3} + 0.3 \frac{1}{20} \frac{1}{20} \frac{1}{2} \frac$	For STRENGTA (1+1)
$M_{A} = 600 + 100$	$M = [4(12) + 15(18) = 1838 \times 4^{1/1} f_{+}$
	USE MA = 19 & FAIRT FROM IND. CHER
For Streedgeth IN:	Vu = (4 748(3.75)+ 40(4.25)+ 40(3) ×15×0
Mu = 1/4(0/3) + 16(10)= 7.390 + f+1	3974
$V_{\mu} = 1.4(40)(4) + 0.30(20)(30) \times 0.520$	STEM PESIGIDS
	<u>┙╴┫╴╄╶╋╌╢┛╋╎╎╫┿╶╞╸╎╫╫╫╫╫╫╫╫╫╫╫╫╫╫</u> ╋┥┥╸┥╴╴╸╸╴╴╸

ME111-1204

 \bigcirc

ر کر در میں کر

 \bigcirc

Page 6 of 9

Calculations for INSERBELT TREMONT SIGN	Job No. 491033	Sheet No.	
Made by JEE	Date 3/11/2013		
Checked by ZTw	Date 3/12/13		
Backchecked by JRE	Date 3/12/13		

ME111-1204

 $\langle \rangle$

Calculations For	Innerbelt Tı	emont Sign	Job No.	49633	Sheet No.
Made by	JRE		Date	4/9/2013	
Checked by	ZTW		Date	3/5/2013	
Backchecked by	JRE		Date	3/11/2013	
TITLE	E: Support Che	ck			
NOTE: Input data	is denoted by s	hading. All othe	r values are cal	culations performed by the spreadsheet.	
NOTE: Outlined of	ells indicate inp	out for subseque	nt design.		
REFERENCE: AAS	SHTO LRFD 6	th Edition, 2012			
Front Sign Steel I	nformation				
	Steel Type:	AISI 304	Stainless Steel		
	$f_y =$	42 ksi			Welding of Stainless Steels Table 1
	Φf_v	42.0 ksi		For Flexure, $\Phi = 1.0$	AASHTO 6.5.4.2
Back Sign Steel In	formation				
•	Steel Type:	ASTM A242	weathering st	eel equivalent to Cor-Ten A steel	
	f _v =	50 ksi	-	-	AISC 13th Ed. Table 2-4
	φf.	50.0 ksi		For Flexure, $\Phi = 1.0$	AASHTO 6.5.4.2
	y				
Support Geometry					
Lei	, ngth in Plan =	5.25 in			
	Thickness =	1.00 in			
	v =	2.63 in			
	, I =	12.06 in^4			
	-	12.00 1			
Front Sign					
Moment taken abo	ut front of sign	at baseplate			
		1			
Wi	nd Pressure =	Pressure = 56.00 psf		ending between Supports Calculations)	
Suppor	t Spacing, S =	6.00 ft	(
Distributed W	ind Load, w =	0.34 k/ft			
Sie	n Height, L =	4.0 ft			
~-2	,				
Overturning 1	Moment, M, =	2.69 k-ft			
Overturning 1	Moment. M =	32 26 k-in			
	,u	52120 K III			
	<i>a</i> –	7.02 ksi	< 42 ksi Ok	AV	
	0 =	7.02 K31	< 42 K31 OF		
Back Sign					
Moment taken abo	ut front of sign	at baseplate			
woment aken abo	at none of sign	at basepiate			
Wi	nd Pressure =	56.00 psf	(From Sign B	ending between Supports Calculations)	
Suppor	t Spacing, S =	4.25 ft	(- 10111 01gh D	g cupports careulations)	
Distributed W	ind Load. w =	0.24 k/ft			
Sig	n Height, I. =	5.27 ft			
012		0.27 10			
Overturning 1	Moment, M., =	3.30 k-ft			
Overturning !	Moment M -	39.62 k-in			
Over turning i		57.02 K-III			

 $\sigma = \qquad 8.62 \text{ ksi} \qquad < 50 \text{ ksi} \dots \text{ OKAY}$

Calculations For	Innerhelt Tr	emont Sign	Job No	19633		Sheet No.
Made by	IRE	emont sign	Date	4/9/2013		Sheet NO.
Checked by	ZTW		Date	3/5/2013		
Backchecked by	JRE		Date	3/11/2013		
·						
TITLE	: Welding Che	ck				
NOTE: Input data	is denoted by sl	hading. All othe	r values are cal	culations performed by	the spreadsheet.	
NOTE: Outlined co	ells indicate inp	t for subseque	nt design.			
REFERENCE: AAS	SITIO LEFD 0	III Edition, 2012				
Front Sign Steel Ir	formation					
	Steel Type:	AISI 304	Stainless Stee	l		Welding of Stainless Steels Table 1
	$F_{exx} =$	42 ksi		Φ_{e2}	= 0.8	AASHTO 6.5.4.2
	$R_r =$	20.2 ksi	AASHTO 6.1	3.3.2.4b-1		
D 1 00 00 1 T	, ,,					
Back Sign Steel In	Steel Type:	4 STM 4 242	weathering st	eel equivalent to Cor. To	n A steel	AISC 13th Ed Table 2.4
	F =	50 ksi	weathering st	Φ.	= 0.8	A A SHTO 6 5 4 2
	- exx R. =	24.0 ksi	AASHTO 61	3 3 2 4b-1	0.0	11101110 0101112
	-4	2110 101	11101110 0.1	51512.10 1		
Weld Between Sur	port and Base	Plate				
Front Sign						
Fillet Le	g Thickness =	0.625 in				
Effecti	ve Throat, t =	0.4419 in				
wei	Weld Area -	4.75 III 4 20 sq in	- t * L * 2 Fac	es		
	Iwald =	7.89 in^4	$= t^* L^3 / 12^*$	2 Faces		
	v =	2.375 in		214000		
	,					
Wi	nd Pressure =	56.00 psf	(From Sign B	ending between Suppor	ts Calculations)	
Brac	e Spacing, S =	6.00 ft				
Distributed Wi	ind Load, w =	0.34 k/ft				
51g	n Height, L =	4.0 π				
	Shear, V., =	1.34 k				
She	ear Stress, $\sigma_v =$	0.32 ksi				
Overturning N	Aoment, M _u =	32.26 k-in	(From Stiffener Check)			
Bendi	ng Stress, $\sigma_B =$	9.70 ksi				
Result	ant Stress, σ =	9.71 ksi	< 20.16 ksi	OKAY		
Back Sign						
Fillet Les	g Thickness =	0.625 in				
Effecti	ve Throat, t =	0.4419 in				
Wel	d Length, L =	4.75 in				
	Weld Area =	4.20 sq in	= t * L * 2 Fac	es		
	I _{Weld} =	7.89 in^4	$= t * L^3 / 12 *$	2 Faces		
	y =	2.375 in				
Wi	nd Pressure –	56.00 psf	(From Sign B	ending between Suppor	ts Calculations)	
Suppor	t Spacing, S =	4.25 ft	(110m orgin D	enang between suppor	(a carculations)	
Distributed W	ind Load, w =	0.24 k/ft				
Sig	n Height, L =	5.27 ft				
	Char V	1 05 1				
	Shear, $V_u =$	1.25 k				
She	ear Stress, σ _v =	0.30 ksi				
Overturning M	Aoment. M. =	39.62 k-in	(From Stiffen	er Check)		
Bendi	ng Stress, $\sigma_n =$	11.92 ksi		Sheek,		
Denta	0	11.72 Rol				
Result	ant Stress, σ =	11.92 ksi	< 24 ksi OH	KAY		

Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	4/9/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

TITLE: Welding Check NOTE: Input data is denoted by shading. All other values are calculations performed by the spreadsheet. NOTE: Outlined cells indicate input for subsequent design. REFERENCE: AASHTO LRFD 6th Edition, 2012 Weld Between Sign and Base Plate

Front Sign

Fillet Leg Thickness =	0.3125 in	
Effective Throat, t =	0.221 in	
Weld Length, L =	12.00 in	(Assume 1' Design Section)
Weld Area =	5.30 sq in	= t * L * 2 Faces
$I_{Weld} =$	1.00 in^4	$= L * t^3 / 12 + A * d^2$
y =	0.6105 in	
Wind Pressure =	56.00 psf	(From Sign Bending between Supports Calculations)
Design Width =	1.00 ft	
Distributed Wind Load, w =	0.06 k/ft	
Sign Height, L =	4.0 ft	
Shear, $V_u =$	0.22 k	
Shear Stress, σ_v =	0.04 ksi	
Overturning Moment, M _u =	5.38 k-in	= V * L/2
Bending Stress, σ_B =	3.29 ksi	= M * y / I
Resultant Stress, σ =	3.29 ksi	< 20.16 ksi OKAY

Back Sign

-		
Fillet Leg Thickness =	0.3125 in	
Effective Throat, t =	0.221 in	
Weld Length, L =	12.00 in	
Weld Area =	5.30 sq in	= t * L * 2 Faces
$I_{Weld} =$	1.97 in^4	$= L * t^3 / 12 + A * d^2$
y =	0.8605 in	
Wind Pressure =	56.00 psf	(From Sign Bending between Supports Calculations)
Design Width =	1.00 ft	
Distributed Wind Load, w =	0.06 k/ft	
Sign Height, L =	5.27 ft	
Shear, $V_u =$	0.29 k	
Shear Stress, $\sigma_V =$	0.06 ksi	
Overturning Moment, M _u =	9.32 k-in	= V * L/2
Bending Stress, $\sigma_B =$	4.06 ksi	= M * y / I
0 -		
Resultant Stress, σ =	4.06 ksi	< 24 ksi OKAY

Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	4/24/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

TITLE: Deflection Check NOTE: Input data is denoted by shading. All other values are calculations performed by the spreadsheet. NOTE: Outlined cells indicate input for subsequent design. REFERENCE: AASHTO LRFD 6th Edition, 2012

Back Sign Steel Information

Steel Type:	ASTM A242	weathering steel equivalent to Cor-Ten	A steel	AISC 13th Ed. Table 2-4
$f_y =$	50 ksi	$\Phi_{e2} =$	0.8	AASHTO 6.5.4.2
$R_r =$	24.0 ksi	AASHTO 6.13.3.2.4b-1		

Front Sign Deflection

Treat support as cantilevered beam subject to uniform distributed load. Assume sign provides no resistance to bending.

Steel Type:	AISI 304	Stainless Steel
Modulus of Elasticity, E :	29000 ksi	
Wind Pressure =	56.00 psf	(From Sign Bending between Supports Calculations)
Support Spacing, S =	6.00 ft	
Distributed Wind Load =	0.34 k/ft	
Distributed Wind Load, w =	0.028 k/in	
Support Height =	3.75 ft	
Support Height =	45.00 in	
Support Length, h =	5.25 in	
Support Thickness, b =	1.00 in	
I =	12.06 in^4	
δ =	0.041 in	Deflection is negligible

Back Sign Deflection

Treat support as cantilevered beam subject to uniform distributed load. Assume sign provides no resistance to bending.

Steel Type:	ASTM A242	weathering steel equivalent to Cor-Ten A steel
Modulus of Elasticity, E :	29000 ksi	
Wind Pressure =	56.00 psf	(From Sign Bending between Supports Calculations)
Support Spacing, S =	4.25 ft	
Distributed Wind Load =	0.24 k/ft	
Distributed Wind Load, w =	0.020 k/in	
Support Height =	3.75 ft	
Support Height =	45.00 in	
Support Length, h =	5.25 in	
Support Thickness, b =	1.00 in	
I =	12.06 in^4	
$\delta =$	0.029 in	Deflection is negligible

Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	2/22/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

HNTB

TITLE: Stem Vertical Reinforcing Design

NOTE: Input data is denoted by shading. All other values are calculations performed by the spreadsheet. REFERENCE: 2012 AASHTO LRFD 5.7 & 5.8, 6th Ed.

AASHTO 5 8

10101110 0.0			
$V_u =$	0.39 kips		
Stirrup Size =	None		
No. Legs =	0		
d_v = Greater of 0.9 d_e , 0.72 h, or (d_e - a/2) =	11.603 in	Eq'n (5.8.2.9-1)	
b =	2.0	AASHTO 5.8.3.4.1	
$\phi V_c = 0.9 \ (0.0316) \ b \ \sqrt{f'_c} \ b \ d_v =$	15.84 kips	Eq'n (5.8.3.3-3)	
$V_{s,Req'd} =$	0.00 kips		
$v_c =$	0.00 ksi		
s =	N/A	Eq'ns (5.8.2.5-1) & (5.8.3.3-4)	Req'd Spacing = 0.00 in
s _{max} =	N/A	AASHTO 5.8.2.7	Actual Spacing = 0.00 in OK

Calculations For	Innerbelt Tremont Sign	Job No.	49633	Sheet No.
Made by	JRE	Date	2/22/2013	
Checked by	ZTW	Date	3/5/2013	
Backchecked by	JRE	Date	3/11/2013	

HNTB

TITLE: Footing Reinforcing Design NOTE: Input data is denoted by shading. All other values are calculations performed by the spreadsheet. REFERENCE: 2012 AASHTO LRFD 5.7 & 5.8, 6th Ed.

Height h =	12.00 in	(Thickness of Fo	oting) (lear Cover C =	3 00 in	
Width b =	12.00 in		oung)	Stirrup Size =	None	
Number of Bars in Row $1 =$	1.00	#4 bar	Vertic	al Row Spacing =	0.00 in	
Number of Bars in Row $2 =$	0	#4 bar	, ertie	f. =	60 ksi	
Number of Bars in Row $3 =$	0	#4 bar		f =	4 0 ksi	
Number of Bars in Row $4 =$	0	#4 bar		1 c -	7.56	
	U U	" I Oul			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Service Moment, M_{SL} =	3.17 k-ft		Factore	d Moment, M _u =	4.36 k-ft	
REINFORCEMENT DESIGN						
Minimum Reinfo	orcement				Maximum Re	einforcement
Α	AASHTO 5.7.3.3	3.2			This criteria w	vas eliminated in 2005 interims, see
	$1.2M_{cr} = 1.2$ (0	$.37 \sqrt{f'_c} 1/6 b h^2 =$	21.3 k-ft		Commentary i	in Section 5.7.3.3
Moment Capacity	Ÿ					
Α	AASHTO 5.7.3.2	2.2				
	Design Moment, M _{Design} =					
	Area of Steel, $A_s =$					
	Centroid of Re	einforcement, $C_R =$	3.250 in			
Effective Dep	$oth, d_e = h - C_v - C$	Stirrup Bar - $C_R =$	8.750 in			
	a = (A	$A_{s} f_{y}$ / (0.85 $f_{c} b$) =	0.294 in	AASHTO 5.7.2	.2	
	$\phi M_n = 0$	$A_{s} f_{y} (d_{e} - a/2) =$	7.7 k-ft	O.K., 5.8 k-ft •	<= 7.7 k-ft	
Service Load Che	ck: Crack Con	trol				
A	AASHTO 5.7.3.4	ł.				
	$r = A_s / b d_e =$					
	$k = (2 n \rho + (n \rho)^2)^{0.5} - n \rho =$					
j = 1 - k/3 =			0.948			
	$f_s = M_{SL} (12in/ft) / (A_s j d_e) =$					
	Ex	posure Factor, $\gamma_e =$	1.00 k/in			
	$d_c = C_V + Stir$	$rup Bar + d_{bar} / 2 =$	3.25 in			
Strain Ratio, $\beta_s = 1 + d_c / [0.7 (h - d_c)] =$		1.531				
Spacing Limit, $s_{max} = (700 \gamma_e / \beta_s f_s) - 2 d_c =$		13.45 in	Eq'n (5.7.3.4-1))		
		Actual Spacing =	12.00 in	OK! < Max sp	a	
Shear Design:						
-	AASHTO 5.8					
		$V_u =$	1.64 kips			
		Stirrup Size =	None			
		No. Legs =	0			

No. Legs =	0				
$\mathbf{d}_{\mathrm{v}} = \mathrm{Greater} \mbox{ of } 0.9 \mathbf{d}_{\mathrm{e}}, 0.72 \mbox{ h, or } (\mathbf{d}_{\mathrm{e}}$ - $\mathbf{a}/2) =$	8.640 in	Eq'n (5.8.2.9-1)			
b =	2.0	AASHTO 5.8.3.4.1			
$\phi V_c = 0.9 \ (0.0316) \ b \ \sqrt{f'_c} \ b \ d_v =$	11.79 kips	Eq'n (5.8.3.3-3)			
V _{s,Req'd} =	0.00 kips				
$v_c =$	0.02 ksi				
s =	N/A	Eq'ns (5.8.2.5-1) & (5.8.3.3-4)	Req'd Spacing =	0.00 in	_
s _{max} =	N/A	AASHTO 5.8.2.7	Actual Spacing =	0.00 in	OK
$V_{s,Req^{'}d} = v_c =$ $s = s_{max} =$	0.00 kips 0.02 ksi N/A N/A	Eq'ns (5.8.2.5-1) & (5.8.3.3-4) AASHTO 5.8.2.7	Req'd Spacing = Actual Spacing =	0.00 in 0.00 in	OK