RJ Watson, Inc - LRFD Masonry Plate Calculations - Model DB2650F Piers 6 & 7

tm := 2.50in	as designed thickness of masonry plate
tbp := 2.20in	minimum masonry plate thickness required
MPL := 59in	masonry plate length (longit)
MPW := 60in	masonry plate width (trans)
LBP = 42.00 in	lower bearing plate diameter

--> design masonry plate as a cantilever beam bending about the edge of lower bearing plate

A1 := $\frac{\pi \cdot (\min(\text{MPL}, \text{MPW}))^2}{4}$	$A1 = 2734 \text{ in}^2$	effective loaded area - assuming circular pressure distribution limited by smallest width of masonry plate	
$Ap := \frac{\pi}{4} \cdot LBP^2$	$Ap = 1385 \text{ in}^2$	bearing area of lower bearing plate	
Force := $\frac{Pu}{A1} \cdot (A1 - Ap)$	Force = 1874 kips	effective bending force	
$\operatorname{Arm} := \frac{\min(\operatorname{MPL}, \operatorname{MPW}) - \operatorname{LBP}}{4}$	Arm = 4.25 in	moment arm	
Mu := Force · Arm	$Mu = 7966 kips \cdot in$	factored bending moment	
$Z \coloneqq \pi \cdot \text{LBP} \cdot \frac{\text{tbp}^2}{4}$	$Z = 159.7 \text{ in}^3$	plastic section modulus	
¢f := 1.00	resistance factor for flexure at strength limit state (AASHTO LRFD 6.5.4.2)		
Fy := 50ksi	yield strength of plate (A	STM A709 Gr. 50)	
$Mn := Z \cdot Fy$	Mn = 7983 kips∙in	nominal flexural resistance	
$Mr := \phi f \cdot Mn$	$Mr = 7983 kips \cdot in$	factored flexural resistance	
$Mr = 7983 \text{ kips} \cdot \text{in} \geq$	Mu = 7966 kips∙in	check flexural capacity of plate OK	

RJ Watson, Inc - LRFD Masonry Plate Calculations - Model DB2650F Piers 6 & 7

Concrete Bearing Pressure

$A1 := \frac{\pi \cdot LBP^2}{4}$	$A1 = 1385 \text{ in}^2$	conservatively assume effective loaded area = lower bearing plate area	
w := 78in	conservatively assume pedestal width	effective concrete supporting area is limited by minimum	
$A2 := \frac{\pi \cdot w^2}{4}$	$A2 = 4778 \text{ in}^2$	area as defined by AASHTO LRFD 5.7.5	
$m := \min\left(\sqrt{\frac{A2}{A1}}, 2.0\right)$	m = 1.86	modification factor	
fc := 4.00ksi	concrete compressive strength		
$Pn := 0.85 \cdot fc \cdot A1 \cdot m$	Pn = 8748 kips	nominal concrete bearing resistance (AASHTO LRFD 5.7.5-2)	
$\phi := 0.70$	resistance factor for bearing on concrete (AASHTO LRFD 5.5.4.2.1)		
$Pr := \phi \cdot Pn$	factored concrete bear	ing strength (AASHTO LRFD 5.7.5-1)	
$Pr = 6124 kips \geq$	Pu = 3800 kips	check bearing capacity of concrete OK	