DISKTRON BEARING CALCULATIONS

FOR

WALSH CONSTRUCTION

PIER 6 MASONRY PLATE MODIFICATIONS

MAIN SPAN – UNIT 2
INNERBELT BRIDGE
I-90WB, BRIDGE NO. CUY-90-1566
CLEVELAND, OHIO
CUY-90-14.90
PID NO. 77332/85531

2687A

R.J. Watson, Inc.

Bridge & Structural Engineered Systems
11035 Walden Ave, Alden, NY 14004

Ph:716-901-7020 Fx:716-901-7015
E-mail: jconklin@rjwatson.com
www.rjwatson.com

RJ Watson, Inc - LRFD Masonry Plate Calculations - Model DB2650F Pier 6 G2-4

tbp := 2.50in new masonry plate thickness

MPL := 59in new masonry plate length (longit)

LBP = 42.00 in lower bearing plate diameter

off := 6.50in maximum lower bearing plate offset on masonry plate (trans)

$$Mmin := min \left[\frac{MPL}{2}, \left(\frac{MPW}{2} - off \right) \right]$$

minimum distance from centerline of lower bearing plate to edge of

Mmin = 27.5 in

--> design masonry plate as a cantilever beam bending about the edge of lower bearing plate

$$A1 := \pi \cdot (Mmin)^2$$
 $A1 = 2376 \, in^2$ effective loaded area - assuming circular pressure distribution limited by closest edge of masonry plate

$$Ap := \frac{\pi}{4} \cdot LBP^2$$
 $Ap = 1385 \text{ in}^2$ bearing area of lower bearing plate

Force :=
$$\frac{Pu}{A1} \cdot (A1 - Ap)$$
 Force = 1584 kips effective bending force

$$Arm := \frac{Mmin - \frac{LBP}{2}}{2}$$

$$Arm = 3.25 in$$
 moment arm

$$Mu := Force \cdot Arm$$
 $Mu = 5148 \, kips \cdot in$ factored bending moment

$$Z := \pi \cdot LBP \cdot \frac{tbp^2}{4}$$
 $Z = 206.2 \text{ in}^3$ plastic section modulus

$$\phi f := 1.00$$
 resistance factor for flexure at **strength** limit state (AASHTO LRFD 6.5.4.2)

$$F_y := 50 ksi$$
 yield strength of plate (ASTM A709 Gr. 50)

$$Mn := Z \cdot Fy$$
 $Mn = 10308 \text{ kips} \cdot in$ nominal flexural resistance

$$Mr := \phi f \cdot Mn$$
 $Mr = 10308 \text{ kips} \cdot in$ factored flexural resistance

RJ Watson, Inc - LRFD Masonry Plate Calculations - Model DB2650F Pier 6 G2-4

Concrete Bearing Pressure

$$A1 := \frac{\pi \cdot LBP^2}{4}$$

$$A1 = 1385 \, \text{in}^2$$

conservatively assume effective loaded area = lower

bearing plate area

w := 78in

conservatively assume effective concrete supporting area is limited by minimum

pedestal width

$$A2 := \frac{\pi \cdot w^2}{4}$$

$$A2 = 4778 \, \text{in}^2$$

area as defined by AASHTO LRFD 5.7.5

$$m := \min\left(\sqrt{\frac{A2}{A1}}, 2.0\right)$$

$$m = 1.86$$

modification factor

fc := 4.00ksi

concrete compressive strength

 $Pn := 0.85 \cdot fc \cdot A1 \cdot m$

 $Pn = 8748 \, kips$

nominal concrete bearing resistance (AASHTO LRFD 5.7.5-2)

 $\phi := 0.70$

resistance factor for bearing on concrete (AASHTO LRFD 5.5.4.2.1)

 $Pr := \phi \cdot Pn$

factored concrete bearing strength (AASHTO LRFD 5.7.5-1)

 $Pr = 6124 \, kips$

 $Pu = 3800 \, \text{kips}$

check bearing capacity of concrete OK

RJ Watson, Inc - LRFD Masonry Plate Calculations - Model DB2650F Piers 6 & 7

as designed thickness of masonry plate tm := 2.50in

minimum masonry plate thickness required tbp := 2.20in

masonry plate length (longit) MPL := 59inMPW := 60inmasonry plate width (trans) lower bearing plate diameter LBP = 42.00 in

--> design masonry plate as a cantilever beam bending about the edge of lower bearing plate

A1 :=
$$\frac{\pi \cdot (\min(MPL, MPW))^2}{4}$$
 A1 = 2734 in²

effective loaded area - assuming circular pressure distribution limited by smallest width of masonry plate

$$Ap := \frac{\pi}{4} \cdot LBP^2 \qquad \qquad Ap = 1385 \text{ in}^2$$

$$Ap = 1385 \, \text{in}^2$$

bearing area of lower bearing plate

Force :=
$$\frac{Pu}{A1}$$
·(A1 - Ap) Force = 1874 kips

Force =
$$1874 \, \text{kips}$$

effective bending force

$$Arm := \frac{min(MPL, MPW) - LBP}{4} \quad Arm = 4.25 \text{ in}$$

$$Arm = 4.25 in$$

moment arm

$$Mu := Force \cdot Arm$$

$$Mu = 7966 \, \text{kips} \cdot \text{in}$$

factored bending moment

$$Z := \pi \cdot LBP \cdot \frac{tbp^2}{4}$$

$$Z = 159.7 \text{ in}^3$$

plastic section modulus

 $\phi f := 1.00$

resistance factor for flexure at strength limit state (AASHTO LRFD 6.5.4.2)

Fy := 50ksi

yield strength of plate (ASTM A709 Gr. 50)

 $Mn := Z \cdot Fy$

$$Mn = 7983 \, \text{kips} \cdot \text{in}$$

nominal flexural resistance

 $Mr := \phi f \cdot Mn$

factored flexural resistance

 $Mr = 7983 \, \text{kips} \cdot \text{in}$

$$Mu = 7966 \, \text{kips} \cdot \text{in}$$

check flexural capacity of plate OK