

April 28, 2006

Mr. Jawdat Siddiqi, PE Office of Structural Engineering Ohio Department of Transportation 1980 W. Broad Street Columbus, Ohio 43223

(DUE DA	- makesam	
STRUC	TURAL	ENGINE	ERING
	MAY 0	1 2006	
WJK 🗆	sm 🗆	TJK 🗆	JEM 🗆
JAC 🗆	RZ 🗆	AW 🗆	
AD II	DAG 🗆	JCR 🗆	FILE

SUBJECT:

Structure Type Study Resubmission

Shumway Hollow Road over CSXT Railroad

SCI-823-0.00 Portsmouth Bypass

PID#19415

Dear Mr. Siddiqi:

Submitted for review and comment are two (2) copies of the revised Structure Type Study report for the proposed Shumway Hollow Road over CSXT Railroad. The initial report was included with the Preferred Alternative Verification Review (PAVR) submission in July 2005 and comments from Mr. Jeff Crace, dated 8/25/06, were provided to TranSystems.

Subsequent to the PAVR submission, a series of studies have been conducted to reduce fill heights over the drainage structures and minimize earthwork costs. As a result, the profile grade of SR 823 has been modified along most of the project length and the median width has been decreased from a 60' depressed section to a narrow median with concrete barrier. The profile of Shumway Hollow Road has been altered as well as carrying an additional turn lane on the bridge. The initial alternatives have been revised to reflect these modifications and to incorporate the 8/25/06 review comments, including the evaluation of MSE abutment walls. Additional alternatives have been developed and are included.

Please don't hesitate to call me if there are any questions.

Sincerely,

Michael D. Weeks, P.E., P.S.

Michael D. Weeks WSRC

Project Manager

Cc: D. Norris, P.E.(1 copy)

SCI-823-0.0

PID No. 19415

SHUMWAY HOLLOW ROAD OVER CSXT

RAILROAD

STRUCTURE TYPE STUDY SUBMITTAL

Prepared for: **OHIO DEPARTMENT OF TRANSPORTATION DISTRICT 9** 650 EASTERN AVE. CHILLICOTHE, OHIO 45601

APRIL 28, 2006

Prepared by:

TABLE OF CONTENTS

Table of Contents	<u>Page</u> <u>No.</u>
1. Introduction	1
2. Design Criteria	1
3. Subsurface Conditions and Foundation Recommendation	1-2
4. Roadway	2-3
5. Proposed Structure Configurations	3-5
6. Recommendations	6
APPENDIX A • Cost Comparison Summary (3 Alternatives)	11 Sheets
 APPENDIX B Preferred Alternative Site Plan – Alternative 1 (Sheet 1 of 3) Structural Details – Alternative 1 (Sheets 2 and 3 of 3) 	3 Sheets
APPENDIX C • Preliminary Vertical Clearance Calculations	18 Sheets
 APPENDIX D Preliminary Site Plan – Alternative 2 (Sheet 1 of 2) Preliminary Site Plan – Alternative 3 (Sheet 2 of 2) 	2 Sheets
APPENDIX E • Preliminary Geotechnical Report & Preliminary MSE Wall Evaluation	

BRIDGE TYPE STUDY NARRATIVE

1. Introduction

TranSystems Corporation is providing engineering services to the Ohio Department of Transportation for the design of a new overpass structure that will carry the proposed relocated Shumway Hollow Road over CSXT Railroad tracks (and railroad right-of-way) at the proposed Airport Interchange. As requested by the Scope of Services, a Structure Type Study report is to be submitted before any plan development. The purpose of this report is to investigate various span arrangements and superstructure and substructure types in order to determine the most appropriate and economical structure type that will meet the project requirements. An initial Structure Type Study report dated 7/15/2005 was submitted to the Department and comments, dated 8/25/2005, were in turn received by Transystems Corporation. However, since these dates, the entire SCI-823-0.00 project has experienced a change in profile – the original project profile presented in the Preferred Alternative Verification Report (PAVR) submitted July 2005 has been altered and the revised profile has been approved by the Department. With regards to the proposed relocated Shumway Hollow Road crossing over the CSXT Railroad, the profile grade has been revised/updated to a constant downward grade of 1.00% (as compared to the original downward profile grade of 3.35% followed by a 30' vertical curve with PVI at Station 38+00.00). Due to this change in profile, vertical and horizontal clearances had to be recomputed to ensure CSXT requirements for overhead structures were satisfied. These clearance requirements, when considered with the 8/25/2005 ODOT comments, resulted in a reevaluation of the bridge types for the proposed Shumway Hollow Road crossing over the CSXT Railroad. This follow-up Structure Type Study presents the outcomes of these reevaluations. Three (3) alternatives for construction were evaluated and are designated within this study as Alternatives 1, 2, and 3. Each alternative is evaluated with regard to estimated construction cost, projected maintenance costs, horizontal and vertical clearances, constructability, and maintenance of traffic. Discussion of these alternatives is presented later in this report.

2. Design Criteria

The proposed structure types are designed according to the most current version of the Ohio Department of Transportation Bridge Design Manual and the 2002 AASHTO Standard Specifications for Highway Bridges, 17th Edition. Horizontal and vertical clearances are based on the CSXT standard clearances for overhead structures published in the 2005 CSX Public Project Information Manual (last updated 12/07/2005).

3. Subsurface Conditions and Foundation Recommendation

DLZ Ohio, Inc. performed the subsurface exploration for the proposed bridge and prepared the Preliminary Bridge Foundation Recommendations which were presented in Section 3 and Appendix E of the original 7/15/2005 Structure Type Study report. An updated Preliminary Bridge Foundation Recommendation report by DLZ Ohio, Inc., updated boring logs for the two test borings (TR-27 and TR-28), and preliminary MSE wall evaluations – performed by DLZ Ohio, Inc. – may be found in Appendix E of this current (updated) version of the Structure Type Study Report. Note that DLZ recommends spread footings or drilled shafts as foundation types for the proposed abutments. Driven H-piles are not recommended due to the depth of overburden/fill that needs to be placed on the existing railroad rock cuts – the resulting depth of fill would provide insufficient lateral stability for driven H-piles.

Although test borings TR-27 and TR-28 were drilled above the railroad grade and approximately 85' west of the proposed rear MSE wall location and 45' east of the proposed forward MSE wall location, respectively, the soil profiles used for the preliminary MSE wall evaluations are based on the findings of these test borings. Note that soil types and thicknesses at the proposed wall locations will need to be confirmed with additional borings prior to final MSE wall analysis. For now, however, preliminary evaluations reveal that MSE walls can be used at the rear and forward abutment locations – based on the test borings and visibly exposed rock in the rock cuts, it is assumed that the MSE wall leveling pads are resting on high quality soil and/or bedrock (settlement and bearing capacity are consequently non-issues) and global stability analyses reveal stable wall systems. Refer to the preliminary MSE wall evaluation report for more details and information.

4. Roadway

The purpose of this project is to construct a new bypass state route around the town of Portsmouth Ohio. The proposed alignment of this bypass route will carry two lanes of traffic, 15 plus miles in either direction, from an interchange with US 52 just east of the town to another interchange with US 23 north of the town in Valley Township. As part of this project, the existing Shumway Hollow Road is relocated along its entire length. The proposed bridge that carries the relocated Shumway Hollow Road over the CSXT Railroad consists of four 12'-0" travel lanes (one eastbound through lane, one eastbound left turn lane, one westbound through lane, and one westbound right turn lane) with one 8'-0" and one 10'-0" outside shoulder. Total bridge deck width is 69'-0" out-to-out with 1'-6" outside straight face deflector parapets. Required vertical and horizontal clearances, in accordance with CSXT standards, have been provided over the railroad for all alternatives considered. The existing S.R. 335 will remain on its current horizontal and vertical alignment.

Vertical and Horizontal Design - Since this structure's vertical alignment is dictated by the intersection of the relocated Shumway Hollow Road with the existing S.R. 335 and the vertical clearance over CSXT railroad tracks, clearance was considered to be critical at this structure location. CSXT standard clearances for overhead structures are:

- (1) a minimum vertical clearance of 23'-0" from top of high rail to lowest point of overhead structure in the horizontal clearance area; and,
- (2) a horizontal clearance of 25'-0" measured perpendicular from centerline of track to face of pier or abutment (or wall). This 25'-0" distance applies to railroad tracks with ditches.

More than 23'-0" of vertical clearance is provided for all the alternatives considered in this study and the 25'-0" horizontal clearance described above is provided for each alternative as well. However, the horizontal positioning of abutments and MSE walls is truly dictated by the limits of the CSXT Railroad right-of-way – all proposed bridge elements must be located outside the railroad right-of-way. Positioning of the abutments and MSE walls for each alternative not only provides the 25'-0" of horizontal clearance, but also clears the railroad right-of-way and thus clears the ditches that run parallel to the CSXT tracks. Locating the abutments and MSE walls in this manner prevents any infringement on the railroad right-of-way and eliminates any construction on or near the railroad ditches and tracks.

Drainage Design - The collection of storm water runoff will be addressed off the bridge. The type of drainage system will be investigated as part of the preliminary design. It is anticipated that the two railroad ditches will not be required to carry any surface water discharge.

Utilities - No utilities will be placed on the bridge. However, lighting conduits will be provided if necessary.

Maintenance of Traffic – Rail traffic will be maintained on the tracks while the new bridge is under construction. It is anticipated that there will be no track closures during construction of the new structure.

5. Proposed Structure Configurations

Alignment & Profile: The proposed horizontal geometry is along a tangent alignment across the entire length of the structure. The proposed profile is located on the centerline of the relocated Shumway Hollow Road which, at the proposed crossing over the CSXT Railroad, is along a sloping grade of -1.00%. This sloping grade changes to -2.84% at Station 38+30.27. Due to the intersection with the existing S.R. 335 which is just east of the proposed crossing, the superelevations of the rear (west) approach and bridge deck must be transitioned so that the cross-slope of Shumway Hollow Road matches the existing longitudinal grade of S.R. 335 at the intersection. Details that display the superelevation transition along Shumway Hollow Road over the CSXT Railroad are presented in Appendix B of this report. Please note that the horizontal geometry, vertical geometry, and superelevation transition details for all alternatives considered are the same.

Structure: As per the Scope of Services, we investigated several bridge types and alternatives as part of the type study. A total of three (3) alternatives were considered and are outlined in the Structure Type Alternative Table below:

	STRUCTURE TYPE A	LTERNATIVE TABLE	
Structure Type Alternative	1	2	3
Structure Type Description	Tangent, Prestressed Concrete Girders Modified AASHTO Type 4 (72")	Tangent, Steel Plate Girders A709, Gr. 50W	Tangent, Prestressed Concrete Girders Modified AASHTO Type 4 (72")
Proposed Beam Spacing	8 Spaces @ 8'-0"	6 Spaces @ 10'-4"	7 Spaces @ 9'-0"
No. of Spans	1	1	1
Abutment Type	Semi-Integral Type on spread footing	Semi-Integral Type on spread footing	Semi-Integral Type on spread footing
No. of Piers	none	none	none
Pier Type	N/A	N/A	N/A
Substructure Orientation	0°00'00"	0°00'00"	0°00'00"
Approximate Bridge Length	119'-6"	119'-6"	110'-4"
Approx. Structure <u>Depth</u>			
Slab Haunch Beam	8.50" 2" 72"	9.00" 2" 53.625"	8.50" 2" 72"
Total	82.50" (6.875')	64.625" (5.385')	82.50" (6.875')

Alternative Discussion:

Alternative 1

This single span alternative is investigated in response to the updated project profile and to ODOT's 8/25/2005 comments to the original 7/15/2005 Structure Type Study. The CSXT Railroad right-of-way helps dictate the substructure unit locations. As mentioned earlier, 25'-0" of horizontal clearance is required between centerline of track to face of substructure unit, however, the substructure units must also clear the railroad right-of-way to prevent any infringement on railroad property (which includes the ditches alongside the railroad tracks). When proper clearance is considered along with the ODOT comments of 8/25/2005, a single span with a bearing-to-bearing length of 119'-6" is required. This span length is shorter than that proposed in the original 7/15/2005 Structure Type Study. The rear abutment and rear MSE wall have been moved closer to, yet maintain sufficient clearance with, the railroad tracks and right-of-way whereas the forward abutment remains in its originally proposed position, thus allowing it to be supported on a spread footing embedded in bedrock. Because MSE walls are used in conjunction with a bearing-to-bearing length of 119'-6" (< 400' total length) and no skew (0⁰00'00'), a semi-integral abutment type is selected for this alternative (refer to Section 204.6.2.1 and Figure 203 of the ODOT Bridge Design Manual). As with the semi-integral forward abutment, the semi-integral rear abutment will be supported on a spread footing. However, the rear abutment footing will bear directly on the engineered fill placed behind the MSE wall. During the TS&L stage, footing dimensions at the forward abutment location will be evaluated with respect to the allowable bearing capacity recommended by DLZ Ohio, Inc. (see Appendix E) whereas rear abutment footing dimensions will be proportioned according to ODOT BDM Section 204.6.2.1 which specifies a maximum allowable bearing pressure of 4 ksf for spread footing abutments placed on MSE wall embankments. Straight wingwalls will be provided at both abutments and all abutment and wingwall details will follow ODOT Standard Drawings.

The superstructure for this alternative consists of 9-72" deep Modified AASHTO Type 4 prestressed concrete I-beams spaced at 8'-0" on center. This satisfies the HS-25 and Alternate Military Loading as well as a Future Wearing Surface loading of 60 psf. Furthermore, by using 9 beams, each with a release strength (f'ci) of 5,000 psi and 28-day strength (f'c) of 7,000 psi, the service level stress requirements of AASHTO 9.15.2.1 and 9.15.2.2 are satisfied. Bridge width is 66'-0" from toe-to-toe of parapets with an overall bridge deck width of 69'-0". Deck thickness, including a 1" monolithic wearing surface, is 8½".

The initial bridge construction cost for Alternative 1 is estimated to be \$1,700,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$405,000, resulting in a total estimated ownership cost of \$2,105,000 in year 2008 dollars.

<u> Alternative 2</u>

Alternative 2 is identical to Alternative 1 except that the superstructure consists of 7-steel plate girders, Grade 50W, with 50" deep webs spaced at 10'-4" on center. Note that eliminating two girder lines permits greater structural participation of the reinforced concrete deck. Deck thickness, including a 1" monolithic wearing surface, is 9".

The initial bridge construction cost for Alternative 2 is estimated to be \$1,580,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$724,000, resulting in a total estimated ownership cost of \$2,304,000 in year 2008 dollars.

Alternative 3

Alternative 3 is another single span option that is investigated in response to ODOT's 8/25/2005 comments to the original 7/15/2005 Structure Type Study. This alternative provides a shorter single span length than Alternatives 1 and 2. The rear abutment and rear MSE wall locations are the same as those in Alternatives 1 and 2, however, the forward abutment is moved closer to the east edge of the railroad right-of-way through the use of an MSE wall. The forward MSE wall is positioned so that the required 25'-0" of horizontal clearance from the centerline of track is satisfied and that all bridge elements (including the MSE wall) are outside, or clear, the railroad right-of-way. The forward MSE wall allows the forward abutment to be positioned off the east rock cut, placed on engineered fill, and supported by a spread footing that bears directly on the fill. By repositioning the forward abutment in this manner, the single span bearing-to-bearing length is reduced to 110'-4". However, to ensure the forward MSE wall has proper stability, reinforcing straps of sufficient length must be placed behind and connected to the wall panels. To accomplish this, a significant quantity of rock must be excavated along the east rock cut. This quantity of excavated rock will exceed that required for the spread footing abutments of Alternatives 1 and 2 and will consequently increase the initial bridge construction costs of Alternative 3. Furthermore, considering the proximity of the railroad right-of-way with this rock excavation reveals that more complex construction logistics will be necessary for Alternative 3.

Because MSE walls are used in conjunction with a bearing-to-bearing length of 110'-4" (< 400' total length) and no skew (0⁰00'00"), a semi-integral abutment type is selected for this alternative. As with the semi-integral forward abutment, the semi-integral rear abutment will be supported on a spread footing. Dimensions for these spread footings will be evaluated according to ODOT BDM Section 204.6.2.1 which specifies a maximum allowable bearing pressure of 4 ksf for spread footing abutments placed on MSE wall embankments. Straight wingwalls will be provided at both abutments and all abutment and wingwall details will follow ODOT Standard Drawings.

The superstructure for this alternative consists of 8-72" deep Modified AASHTO Type 4 prestressed concrete I-beams spaced at 9'-0" on center. This satisfies the HS-25 and Alternate Military Loading as well as a Future Wearing Surface loading of 60 psf. Using 8 beams, each with a bearing-to-bearing length of 110'-4", a release strength (f'c) of 5,000 psi, and 28-day strength (f'c) of 7,000 psi, will also satisfy the service level stress requirements of AASHTO 9.15.2.1 and 9.15.2.2. As with Alternatives 1 and 2, bridge width is 66'-0" from toe-to-toe of parapets with an overall bridge deck width of 69'-0". A 9'-0" center-to-center beam spacing permits a total deck thickness of 8½", which includes a 1" monolithic wearing surface.

The initial bridge construction cost for Alternative 3 is estimated to be \$1,740,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$369,000, resulting in a total estimated ownership cost of \$2,109,000 in year 2008 dollars.

6	Re	com	ımen	da	tic	ms
v.	NG	aum.	шеп	ua	uu	ш

Based upon the above information and discussions, Transystems Corporation recommends Structure Type Alternative 1 (Single Span, 72" Modified AASHTO Type 4 prestressed concrete I-beams with semi-integral rear abutment behind MSE wall and semi-integral forward abutment on spread footing) for the bridge (see Appendix B for the Site Plan and Structure Details).

Although Alternatives 1 and 3 provide similar total estimated ownership costs, Alternative 1 is preferred, and thus recommended, based on the following items:

- 1. Alternative 1 offers lower initial construction costs, less rock excavation, and less complex construction methods. Alternative 1 is more economical from a construction standpoint;
- 2. Alternative 1 provides lower life-cycle maintenance costs;
- 3. Alternative 1 does provide lower total ownership costs than Alternative 3.

H slightly Lower maitonance cost

APPENDIX A
Cost Comparison Summary

Shumway Hollow Road over CSX Railroad

STRUCTURE TYPE STUDY

By: JRC Checked: MSL

Date: 4/25/2006

te: 4/27/2006

ALTERNATIVE COST SUMMARY

Alter	native	Span Arra No. Spans	angement Lengths	Total Span Length (ft.)	Framing Alternative	Proposed Stringer Section	Subtotal Superstructure Cost	Subtotal Substructure Cost	Structure Incidental Cost (16%)	Structure Contingency Cost (20%)	'Total Alternative Cost	Life Cycle Maintenance Cost	Total Relative Ownership Cost
<u>1</u> 1		1	119.5'	119.50	9 Prestressed I-Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$713,000	\$508,000	\$195,400	\$283,300	\$1,700,000	\$405,000	\$2,105,000
2		1	119.5'	119.50	7 Steel Girders /per BRIDGE	50" Web Grade 50W	\$697,000	\$436,000	\$181,300	\$262,900	\$1,580,000	\$724,000	\$2,304,000
3		1	110'-4"	110.33	8 Prestressed I-Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$631,000	\$621,000	\$200,300	\$290,500	\$1,740,000	\$369,000 🗹	\$2,109,000

NOTES:

- 1. Structure incidental cost allowance includes provision for structure excavation, porous backfill, sealing of concrete surfaces, structural steel painting, bearings, and crushed aggregate slope protection costs.
- 2. Estimated construction cost does not include existing structure removal (if any), which should be quantified seperately, if required.

Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 1 - SUPERSTRUCTURE

By: JRC Checked: MSL

Date: 4/25/2006 Date: 4/27/2006

SUPERSTRUCTURE

Alternative No.	Span Arra No. Spans	ingement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost	Framing Alternative	Proposed Girder Section	Concrete Girder Cost	Subtotal Superstructure Cost	Construction Complexity Factor	Subtotal Superstructure Cost
1	1	119.5'	119.50	121	279	\$162,700	\$70,000	\$91,900	\$ 0	9 Prestressed I-Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$388,000	\$713,000	0%	\$713,000

	COST	SUPPORT CALCULATIONS			
eck Cross-Sectional Area:					
Parapet	Prestressed Concrete Girders				
arapets: Individual Area	Unit Costs:	Year Annual	Year No.		
No. Area (sq. ft.) (sq. ft.)		2005 <u>Escalation</u>	2008 Required		
Parapets 2 4.26 8.52	440UTO T NVD				
Total	AASHTO Type IV Beams Type 4 I-Beams	\$16,000 ea. 3.5%	\$18.360 ea. 0	\$0	
lab: Slab Haunch & Concrete Area	Pier Diaphragms	\$1,800 ea. 3.5%	\$2,070 ea. 0	\$0	
	Abutment Diaphragms	\$1,300 ea. 3.5%	\$1,380 ea. 0	\$0	
<u>T (ft.) W (ft.) Area Overhang Area (sq. ft.)</u> Left Bridge 0.71 69.00 48.9 4.9 62.3	Intermediate Diaphragms	\$1,200 ea. 3.5%	\$1,380 ea. 24	\$33,120	
20.00.000	Modified Type 4 I-Beams (72")	\$300 per ft. 3.5%	\$330 ea. 1076	\$354,915	
Note: Deck width is out to out			TOTAL =	\$388,035	
10% of deck area allowed for haunches and overhangs.					
0.000					
IC/QA Concrete, Class QSC2	Construction Complexity Fact				
Init Cost (\$/cu. yd):	Percent of Superstructure	= 0% Due to Deck fo	rming, Screed and Varying Girder Space		
Year Annual Year					
<u>2004</u> <u>Escalation</u> <u>2008</u>					
eck \$491.00 3.5% \$563.00					
arapets \$615.00 3.5% \$706.00					
/eighted Average = \$583.00	Reinforced Concrete Approac	ch Slabs (T=17")			
ased on parapet and slab percentages	Unit Cost (\$/sq. yd.):				
f total concrete area	Length = 30 ft.	Width = 69 ft	Length = 30	ft. Width = 98 ft	
	Area = 230 sq. yd.		Area = 32	7 sq. yd.	
	Year	Annual Year			
poxy Coated Reinforcing Steel	<u>2004</u>	Escalation 2008			
Init Cost (\$/lb):	Approach				
ssume 285 lbs of reinforcing steel per cubic yard of deck concrete	Slabs \$144.00	3.5% \$165.00			
Year Annual Year	Expansion Joints				
<u>2004</u> <u>Escalation</u> <u>2008</u>	Unit Costs (\$/Lin.Ft.):	Cost Year	Annual Year		
eck		Ratio 2004	Escalation 2008		
	Modular Expansion Joints	1.00 \$863.00	3.5% \$1,097.98		

Shumway Hollow Road over CSX Railroad

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 1 - SUBSTRUCTURE

Pier

Abutment

Pier

By: JRC Checked: MSL Date: 4/25/2006 Date: 4/27/2006

Abutment

Pile

Additional

SUBSTRUCTURE

Alternative No.	Span <i>i</i> No. Span	Arrangement s Lengths		ning native	Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Cost	Additional Crane Cost		Subtotal Substructure Cost
1	1	119.5'		I I-Girders /per DGE	Modified AASHTO Type 4 (72")	\$0	\$0	\$174,400	\$28,600	\$0	\$230,100	\$75,000		\$508,000
						COST SUP	PORT CALCULATION	ONS						
Pier QC/QA C	Concrete, Class	QSC1 Cost: (Spre	ad Footing)				Pile Foundation	on Unit Cost (\$/ft.):	HP	12X53 Piles, Furnis	hed & Driven			
Component Cap Stem Footings	Volume (cu. yd.) 0 0 0	Year <u>2004</u> \$421.00 \$421.00	Annual Escalation 3.5% 3.5% 3.5%	Year 2008 \$483.00 \$483.00 \$483.00	Total <u>Cost</u> \$0 \$0 \$0			Number of Piles	SEE QUANTITY	CALCULATIONS	Total Pile <u>Length</u> 0			
Total Cost	0	QSC1 Cost: (Drille		φ463.00	\$0		Pile Foundation	on Unit Cost (\$/ft.):	Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year 2008			
Component Cap Columns Footings	Volume (cu. yd.) 0 0	Year <u>2004</u> \$421.00 \$421.00	Annual Escalation 3.5% 3.5% 3.5%	Year 2008 \$483.00 \$483.00 \$483.00	Total <u>Cost</u> \$0 \$0 \$0		Shaft Foundat	Furnished Driven Total ion Unit Cost (\$/ft.): Number of Shafts	\$20.15 \$9.24 36"	3.5% 3.5% Drilled Shaft	\$23.10 \$10.60 \$33.70	Total Shaft		
Total Cost		Class QSC1 Cost:	9.0%	1,00,00	\$0							<u>Length</u>		
Component Abutment Wingwalls	Volume (cu. yd.) 314 47	Year 2004 \$421.00 \$421.00	Annual Escalation 3.5% 3.5%	Year <u>2008</u> \$483.00 \$483.00	Total <u>Cost</u> \$151,700 \$22,700		<u>Unit Cost</u> \$300.00	ion Unit Cost (\$/ft.): Escalation 4.5%		CALCULATIONS	Temporary S Unit Costs (S	0 Shoring and Supp \$/sq. ft.): Temp. Shoring Area (sq. ft.)	oort Temp. Girder Support (lump sum)	A.T.
							Cost of Shafts:	\$ -			Alt. 1	0 Year 2004 <u>Unit Cost</u>	\$ - Annual Escalation	Year 2008
Unit Cost (\$/I Assume 125 lbs	of reinforcing ste	el per cubic yard of p	ier concrete.		MSE Abutment Unit Cost (\$/sq.	ft.): Year 2005	Annual	Year			Temporary Shoring Cofferdam	\$22.50 \$32.00	3.5% 3.5%	\$25.80 \$36.70
Assume 90 lbs	of reinforcing stee Year	I per cubic yard of ab	utment concrete. Year		(sq. ft.) Rear Abut. 4,153	Unit Cost \$50.00	Escalation 3.5%	2008 \$55.40		Additional Cra	1			
Pier	2004 \$0.77	Escalation 3.5%	2008 \$0.88		real Abut. 4,155	φ 3 U.UU	3.3%	φο ο.4 0		\$ 75,000	ne CDSL			
Abutment	\$0.77	3.5%	\$0.88											

Subtotal

Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE ALTERNATIVE 1 - QUANTITY CALCULATIONS

By: JRC Checked: MSL

		200		7-200			Pier	Quantities						
Pier Location	Length		C	ар				Stem				Footing		Total Volume
riei Location	Lengui	Width	Depth	Area	Volume	Width	Height	Length	Volume	Width	Depth	Length	Volume	Total Volume
Pier 1 (Spr Ftg)	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00	0	
Pier 2														
Pier 3														
Pier 4														
Pier 5								1						
Pier 6														
Pier 7								- 11						
Total (Cu.Ft.)					0			12.	0				0	
Total (Cu.Yd.)					0				0				0	

100								Abutme	ent Qu	antities		eller versi		S. 10 10 10 10 10 10 10 10 10 10 10 10 10	SECTION S		
	but Location	Length		Bac	ckwall				Beam	Seat				Footin	g		Total Volume
	out Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area		Volume	Width	Depth	Area	# Footi	Volume	Total Volume
R	ear Abut	69	3	6	18.00	1242	3	2	6.00		414	6	3	18	1	1242	2898
F۱	vd. Abut	79	3	6	18.00	1422	3	11.5	34.50		2726	6	3	18	1	1422	5570
To	otal (Cu.Ft.)					2664					3140					2664	8468
To	otal (Cu.Yd.)					99				*	116					99	314
_				Qty		99				,	116					99	314

Abut Location		V	/all			
Abut Location	Height	Length	Area	Volume		
Rear Abut	25.1	101	2535.1			
RA Wing (L)	20.2	40	808.0			
RA Wing (R)	20.25	40	810.0			
Fwd Abut	0	0	0.0			
FA Wing (L)	0	0	0.0			
FA Wing (R)	0	0	0.0			
Total (Sq.Ft.)			4153			

Date: 4/25/2006 4/27/2006

Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	0	0.0	0.0	0.0	12 × 12 × 12 × 12 × 12 × 12 × 12 × 12 ×
Pier 1	0	0	0	0	140	0	1	0	0	0	2.0	0
Pier 2	0	0	0	0	140	0	1	0	0	0	2.0	HARLANDER HARLANDE
Pier 3	0	0	0	0	140	0	1	0	0	0	2.0	Charles and Co
Pier 4	0	0	0	0	140	0	1	0	0	0	2.0	
Pier 5	0	0	0	0	140	0	1	0	0	0	2.0	
Pier 6	0	0	0	0	140	0	1	0	0	0	2.0	THE PROPERTY OF THE PARTY OF
Pier 7	0	0	0	0	140	0	1	CVARIENCE O	0	0	2.0	Attellion to the Co
Fwd. Abut.	0	0	0	0	140	0	1	A distributed 0	0	0	0.0	
TotaL								0				

			in a state of the state of		36" Dr	illed Sha	fts for Piers		76 P. P. B.			
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 1	0	0	0	0	0	0	1	0	0	0	2.0	
Pier 2	0	0	0	0	0	0	1	0	0	0	2.0	7-10-11-20-20-20-20-20-20-20-20-20-20-20-20-20-
Pier 3	0	0	0	0	0	0	1		. 0	0	0.0	2000 To a Ville 1982 1990
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	Market Market 1
Pier 6	0	0	0	0	0	0	. 1	0	0	0	0.0	
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0	0
Fwd. Abut.	0	10	0	0	0	0	1	0	0	0	0.0	0
Total								over the state of				to recommendation of

S	uperstructure	P/S Conc	rete Quantit	ies	1			
Lanation	Tuna of sindan	# Girders	Span Length	Total	Spacing	No. of Int	Number of Int	Total No. in
Location	Type of girder	# Girders	(ft.)	Length (ft.)	Int.	in span	Diap. 1 location	Span
Span 1	MOD TYPE 4 72	9	120	1076	39.83			24
Span 2		0	0	0	0.00			0
Span 3		0	0	0	0.00			0
Span 4		0	0	0	0.00			0
Span 5		0	0	0	0.00			0
Span 6		0	0	0	0.00			0
Span 7		0	0	0	0.00			0
Span 8		0	0	0	0.00			0
Span 9		0	0	0	0.00			0
					Total			24
TotaL	MOD TYPE 4 60	9		1076	1			

Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 2 - SUPERSTRUCTURE

By: JRC Checked: MSL

Date: 4/25/2006 Date: 4/27/2006

SUPERSTRUCTURE

Alternative No.	Span Arrar No. Spans	ngement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost	Framing Alternative	Proposed Stringer Section	Structural Steel Weight (Pounds)	Structural Steel Cost	Subtotal Superstructure Cost
2	1	119.5'	120	121	293	\$170,700	\$73,600	\$91,900	\$0	7 Steel Girders /per BRIDGE	50" Web Grade 50W	309,505	\$360,300	\$697,000

	COST SUPPORT CA	LCULATIONS				
Deck Cross-Sectional Area: Parapet Parapets: Parapets: Individual Area No. Area (sq. ft.) (sq. ft.) (sq. ft.) Parapets 2 4.26 8.52 Total Slab: Slab: Slab Haunch & Concrete Area T (ft.) W (ft.) Area Overhang Area (sq. ft.) 0.75 69.00 51.8 5.2 65.4	Structural Steel Unit Costs (\$/lb.): Rolled Beams - Grade 50 Level 4 Plate Girders - Grade 50W level 5 Plate Girders - Grade 50W	Cost <u>Ratio</u> n/a n/a n/a	Year 2005 \$0.74 \$1.05 \$1.20	Annual <u>Escalation</u> 3.5% 3.5% 3.5%	Year 2008 \$0.85 \$1.16 \$1.38	Straight Girders Curved Girders
Note: Deck width is out to out 10% of deck area allowed for haunches and overhangs.	Reinforced Concrete Approach Unit Cost (\$/sq. yd.): Length = 30 ft. Area = 230 sq. yd.	Slabs (T=17") Width = 69	ft.	Length = 3 Area = 3	90 ft. 27 sq. yd.	Width = 98 ft
QC/QA Concrete, Class QSC2 Unit Cost (\$/cu. yd): Year Annual Year 2004 Escalation 2008	Year <u>2004</u> Approach Slabs \$144.00	Annual <u>Escalation</u> 3.5%	Year 2008 \$165.00			
Deck \$491.00 3.5% \$563.00 Parapets \$615.00 3.5% \$706.00 Weighted Average = \$582.00 Based on parapet and slab percentages of total concrete area \$582.00	Expansion Joints Unit Costs (\$/Lin.Ft.):	Cost <u>Ratio</u>	Year <u>2003</u>	Annual <u>Escalation</u>	Year 2008	
Epoxy Coated Reinforcing Steel Unit Cost (\$/lb):	Strip Seal Expansion Joints	1.00	\$863.00	3.5%	\$1,097.98	2001 Price
Assume 285 lbs of reinforcing steel per cubic yard of deck concrete Year Annual Year 2004 Escalation 2008 Deck						
Reinforcing \$0.77 3.5% \$0.88						

Shumway Hollow Road over CSX Railroad

STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 2 - SUBSTRUCTURE

By: JRC Checked: MSL

Date: 4/25/2006 Date: 4/27/2006

SUBSTRUCTURE

Alternative No.	Span A No. Span	Arrangement s Lengths		ning native	Propo Stringer S		Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Cost			Subtotal Substructure Cost
2	1	119.5'	7 Steel Girders	s /per BRIDGE	50" Web G	rade 50W	\$0	\$0	\$166,600	\$27,300	\$0	\$242,500			\$436,000
							COST SUPP	ORT CALCULATION	ONS			er er			
Pier QC/QA C	oncrete, Class	QSC1 Cost: (Spre	ad Footing)					Pile Foundation	on Unit Cost (\$/ft.)	<u>):</u> HF	12X53 Piles, Furnis	ned & Driven			
Component Cap Stem Footings	Volume (cu. yd.) 0 0 0	Year <u>2004</u> \$421.00 \$421.00 \$421.00	Annual Escalation 3.5% 3.5% 3.5%	Year 2008 \$483.00 \$483.00 \$483.00	Alt 1 Total <u>Cost</u> \$0 \$0 \$0				Number of Piles	SEE QUANTITY	CALCULATIONS	Total Pile <u>Length</u> 0			
Total Cost	0	QSC1 Cost: (Drille		Ф 403.00	\$0 \$0			Pile Foundation	on Unit Cost (\$/ft.)	Year 2004 Unit Cost	Annual <u>Escalation</u>	Year 2008			
Component Cap Columns	Volume (cu. yd.) 0 0	Year <u>2004</u> \$421.00 \$421.00	Annual <u>Escalation</u> 3.5% 3.5%	Year 2008 \$483.00 \$483.00	Alt 1 Total <u>Cost</u> \$0 \$0			Shaft Foundat	Furnished Driven Total ion Unit Cost (\$/f	\$20.15 \$9.24 t.): 36	3.5% 3.5% ' Drilled Shaft	\$23.10 \$10.60 \$33.70			
Footings Total Cost	0	\$421.00 Class QSC1 Cost:	3.5%	\$483.00	\$0 \$0				Number of Shafts				Total Shaft Length		
Component	Volume (cu. yd.)	Year 2004	Annual <u>Escalation</u>	Year 2008	Total <u>Cost</u>			Alt. 1 Shaft Foundat	0 ion Unit Cost (\$/f		CALCULATIONS		0		
Abutment Wingwalls	300 45	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$144,900 \$21,700			<u>Unit Cost</u>	Escalation	<u>2008</u>		Temporary S Unit Costs (S			
								\$300.00 Cost of Shafts:	4.5% \$ -	\$358.00			Temp. Shoring Area (sq. ft.)	Temp. Girder Support (lump sum)	
												Alt. 1	0	\$	
												Temporary	Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year 2008
Epoxy Coated Unit Cost (\$/I	d Reinforcing S b):	<u>Steel</u>			MSE Abutment	: Unit Cost (\$/sq. f	<u>t.):</u>					Shoring	\$22.50	3.5%	\$25.80
Assume 125 lbs	of reinforcing ste	eel per cubic yard of pi el per cubic yard of abo				Total Area (sq. ft.)	Year 2005 Unit Cost	Annual Escalation	Year 2008			Cofferdam	\$32.00	3.5%	\$36.70
	Year 2004	Annual <u>Escalation</u>	Year 2008		Rear Abut.	4,377	\$50.00	3.5%	\$55.40						
Pier Abutment	\$0.77 \$0.77	3.5% 3.5%	\$0.88 \$0.88												

Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 2 - QUANTITY CALCULATIONS

By: JRC Checked: MSL

							Pie	r Quantitie	es .					SALES SELECT
Pier Location	Longth		(Сар				Stem				Footing	I	Total Volume
Pier Location	Length	Width	Depth	Area	Volume	Width	Height	Length	Volume	Width	Depth	Length	Volume	rotai voiume
Pier 1	0	0	0	0.00	0	0	0	0.00	0	0	0	0.00	0	
Pier 2								2.1						
Pier 3														7
Pier 4														
Pier 5								-						
Pier 6								+						
Pier 7								1						
Total (Cu.Ft.)					0				0		1		0	
Total (Cu.Yd.)			y		0				0				0	
	•		Qty		0			-	0	•	•		0	

Abutment Quantities																
Abut Location	Length		Ba	ckwall				Beam S	eat				Footin	g		Total Volume
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area		Volume	Width	Depth	Area	# Footin	Volume	Total Volume
Rear Abut	69	3	4.2	12.60	869	3	2	6.00		414	6	3	18	1	1242	2525
Fwd. Abut	79	3	4.2	12.60	995	3	13.3	39.90		3152	6	3	18	1	1422	5570
Total (Cu.Ft.)					1865					3566					2664	8095
Total (Cu.Yd.)					69					132					99	300
	Qty 69									132					99	300

Abut Location		٧	Vall	
Abut Location	Height	Length	Area	Volume
Rear Abut	26.7	101	2696.7	
RA Wing (L)	21	40	840.0	
RA Wing (R)	21	40	840.0	
Fwd Abut	0	0	0.0	
FA Wing (L)	0	0	0.0	1/
FA Wing (R)	0	0	0.0	
Total (Sq.Ft.)			4377	

Date: 4/25/2006 Date: 4/27/2006

Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	0	0.0	0.0	0.0	
Pier 1	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 2	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 3	0	0	0	0	140	0	1	0	0	0	0.0	SALTE SANDANINE CO
Pier 4	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 5	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 6	0	0	0	0	140	0	1	0	0	0	2.0	BARRIER BETTER
Pier 7	0	0	0	0	140	0	1	0	0	0	0.0	
Fwd. Abut.	0	0	0	0	140	0	1	0	0	0	0.0	olika saman da G
TotaL								0				on your as a market to

Includes 5' of additional length into rock

	36" Drilled Shafts for Piers														
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)			
Rear Abut.	0	0	0	0	0	0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0.0				
Pier 1	0	0	0	0	0	0	1	0	0	0	2.0	6 4 4 6 A 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
Pier 2	0	0	0	0	0	0	1	0 · ·	0	0	2.0				
Pier 3	0	. 0	0	0	0	0	1	0	0	0	0.0	School Charles of the O			
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	6			
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0				
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	0			
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0				
Fwd. Abut.	0	10	0	0	0	0	1	0 ***	0	. 0	0.0	**************************************			
Total								0				STATEMENT WED			

action bares	Superstruc	cture Ste	el Quantities	
Location	Wt.of girder (lb)/ft	# Girders	Span Length	Total Weight
Span 1	370	7	120	309505
Span 2	0	0	0	0
Span 3	0	0	0	0
Span 4	0	0	0	0
Span 5	0	0	0	0
Span 6	0	0	0	0
Span 7	0	0	0	0
Span 8	0	0	0	0
TotaL				309505

Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 3 - SUPERSTRUCTURE

By: JRC Checked: MSL

Date: 4/25/2006 Date: 4/27/2006

SUPERSTRUCTURE

Alternative No.	Span Arra No. Spans	ingement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost	Framing Alternative	Proposed Girder Section	Concrete Girder Cost	Subtotal Superstructure Cost	Construction Complexity Factor	Subtotal Superstructure Cost
3	1	110'-4"	110.33	112	258	\$150,400	\$64,700	\$91,900	\$0	8 Prestressed I-Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$323,500	\$631,000	0%	\$631,000

	COST SUP	PORT CALCULA	TIONS				
Deck Cross-Sectional Area:							
Parapet	Prestressed Concrete Girders						
Parapets: Individual Area	Unit Costs:	Year	Annual	Year	No.		
No. Area (sq. ft.) (sq. ft.)			Escalation	2008	Required		
Parapets 2 4.26 8.52				2000	rtoquilou		
	AASHTO Type IV Beams						
Total Total	Type 4 I-Beams	\$16,000 ea.	3.5%	\$18,360 ea.	0	\$0	
Slab: Slab Haunch & Concrete Area	Pier Diaphragms	\$1,800 ea.	3.5%	\$2,070 ea.	0	\$0	
<u>T (ft.)</u> <u>W (ft.)</u> <u>Area</u> <u>Overhang Area</u> <u>(sq. ft.)</u> Left Bridge 0.71 69.00 48.9 4.9 62.3	Abutment Diaphragms	\$1,200 ea.	3.5%	\$1,380 ea.	0	\$0	
Left bridge 0.71 69.00 46.9 4.9 62.3	Intermediate Diaphragms Modified Type 4 I-Beams (72")	\$1,200 ea. \$300 per ft.	3.5% 3.5%	\$1,380 ea. \$330 ea.	24 880	\$33,120 \$290,400	
	Woullied Type 4 I-Bealtis (72)	\$300 per it.	3.5%	\$330 ea.	000	\$290,400	
Note: Deck width is out to out					TOTAL =	\$323,520	
10% of deck area allowed for haunches and overhangs.							
00/04 0 4 01 0000							
QC/QA Concrete, Class QSC2	Construction Complexity Factor						
Unit Cost (\$/cu. yd):	Percent of Superstructure	= 0%	Due to Deck for	ming, Screed and Va	rying Girder Spac	es	
Year Annual Year 2004 Escalation 2008							
2004 Escalation 2006							
Deck \$491.00 3.5% \$563.00							
Parapets \$615.00 3.5% \$706.00							
Weighted Average = \$583.00	Reinforced Concrete Approach Sta	abs (T=17")					
Based on parapet and slab percentages	Unit Cost (\$/sq. yd.):						
of total concrete area	Length = 30 ft.	Width = 69	ft		Length = 3	0 ft.	Width = 98 ft
	Area = 230 sq. yd.				Area = 32	27 sq. yd.	
Epoxy Coated Reinforcing Steel	Year	Annual	Year				
	<u>2004</u>	Escalation	2008				
Unit Cost (\$/Ib): Assume 285 lbs of reinforcing steel per cubic yard of deck concrete	Approach	2.50/	\$40E.00				
Assume Zoo ibs of reinforcing steel per cubic yard of deck concrete	Slabs \$144.00	3.5%	\$165.00				
Year Annual Year	Expansion Joints						
2004 <u>Escalation</u> 2008	Unit Costs (\$/Lin.Ft.):	Cost	Year	Annual	Year		
Localdulii Z000	Ullit Gosts (#/Elli.Ft.j.	Ratio	2004	Escalation	2008		
		Ivalio	2004	Lacalation	2000		
Deck							
	Modular Expansion Joints	1.00	\$863.00	3.5%	\$1,097.98		

Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 3 - SUBSTRUCTURE

By: JRC Checked: MSL

Date: 4/25/2006 Date: 4/27/2006

SUBSTRUCTURE

Alternative No.	Span Arrai No. Spans	ngement Lengths	Framing Alternative	Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Cost	Additional Crane Cost	Additional Crane Cost	Subtotal Substructure Cost
3	1	110'-4"	8 Prestressed I-Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$0	\$0	\$120,500	\$19,800	\$0	\$351,500	\$75,000	\$54,223	\$621,000

								ORT CALCULATI							
Pier QC/QA	Concrete, Class (QSC1 Cost: (Spre	ad Footing)					Pile Foundation	on Unit Cost (\$/ft.):	HF	2 12X53 Piles, Furnish	ed & Driven			
Component Cap	Volume (cu. yd.) 0	Year <u>2004</u> \$421.00	Annual Escalation 3.5%	Year <u>2008</u> \$483.00	Total <u>Cost</u> \$0				Number of Piles			Total Pile Length			
Stem Footings Fotal Cost	0 0	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$0 \$0 \$0 \$0				0	SEE QUANTITY	CALCULATIONS	0			
					Ψ			Pile Foundation	on Unit Cost (\$/ft.):	Year 2004 Unit Cost	Annual <u>Escalation</u>	Year 2008	_139	5	
ier QC/QA	Concrete, Class (QSC1 Cost: (Drille	ed Shaft)												
	Volume	Year	Annual	Year	Total				Furnished Driven	\$20.15 \$9.24	3.5%	\$23.10 \$10.60			
Component Cap Columns	(cu. yd.) 0 0	2004 \$421.00 \$421.00	<u>Escalation</u> 3.5% 3.5%	2008 \$483.00 \$483.00	<u>Cost</u> \$0 \$0				Total			\$33.70			
Footings Total Cost	0	\$421.00	3.5%	\$483.00	\$0 \$0			Rock Excavat	ion Unit Cost	Year 2004 Unit Cost	Annual Escalation	Year 2008			
	C/QA Concrete, C	lass QSC1 Cost:			40				Rock Excavation	65	3.5%	\$74.60			
	Volume	Year	Annual	Year	Total										
Component	(cu. yd.)	2004	<u>Escalation</u>	2008	Cost										
Abutment	217	\$421.00	3.5%	\$483.00	\$104,800										
Wingwalls	33	\$421.00	3.5%	\$483.00	\$15,700										
												Temporary	Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year 2008
Epoxy Coate	d Reinforcing St	el										Shoring	\$22.50	3.5%	\$25.80
Jnit Cost (\$/					MSE Abutmen	t Unit Cost (\$/sq.	ft.):					Cholling	Ψ22.00	0.070	Ψ20.00
Assume 125 lb Assume 90 lbs	s of reinforcing stee of reinforcing steel	per cubic yard of pi per cubic yard of abo	er concrete. utment concrete.			Total Area (sq. ft.)	Year 2005 Unit Cost	Annual Escalation	Year 2008			Çofferdam	\$32.00	3.5%	\$36.70
	Year 2004	Annual <u>Escalation</u>	Year 2008		Rear & Fwd.Abut.	6,345	\$50.00	3.5%	\$55.40		Additional Cran	e Cost			
											\$ 75,000				
Pier Abutment	\$0.77 \$0.77	3.5% 3.5%	\$0.88 \$0.88												

Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE ALTERNATIVE 3 - QUANTITY CALCULATIONS

By: JRC Checked: MSL

Pier Location	Length		(Сар				Stem				Footing		Total Volume
riei Location	Lengui	Width	Depth	Area	Volume	Width	Height	Length	Volume	Width	Depth	Length	Volume	Total Volume
Pier 1 (Spr Ftg)	0	0	0	0.00	0	0	0	0.00	0	(0.00	0	
Pier 2														
Pier 3														
Pier 4														
Pier 5														
Pier 6														
Pier 7														
Total (Cu.Ft.)					0				0				0	
Total (Cu.Yd.)					0				0				0	
,			Qty		0				0	-			0	

STONE STATE	50000			uda elitek			Abutr	nent	Quantitie	S	na liberar		1000000	STEELS OF		
Abut Location	Length		Bac	ckwall				Beam	Seat				Footing			Total Volume
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area		Volume	Width	Depth	Area	# Footi	Volume	Total volume
Rear Abut	69	3	6	18.00	1242	3	2	6.00		414	6	3	18	1	1242	2898
Fwd. Abut	70.5	3	6	18.00	1269	3	2	6.00		423	6	3	18	1	1269	2961
Total (Cu.Ft.)					2511					837					2511	5859
Total (Cu.Yd.)					93				ý.,	31					93	217
	F-1		Qty		93					31					93	217

Abut Location		V	/all	
Abut Location	Height	Length	Area	Volume
Rear Abut	25.1	101	2535.1	
RA Wing (L)	20.2	40	808.0	
RA Wing (R)	20.25	40	810.0	
Fwd Abut	15.9	101	1605.9	
FA Wing (L)	15	20	300.0	
FA Wing (R)	14.3	20	286.0	
Total (Sq.Ft.)			6345	

Vol.
597.22
64.815
64.815

Date:	4/25/2006
Date:	4/27/2006

Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	0	0.0	0.0	0.0	
Pier 1	0	0	0	0	140	0	. 1	0	0	0	2.0	
Pier 2	0	0	0	0	140	0	1	0	0	0	2.0	
Pier 3	0	0	0	0	140	0	1	0	0	0	2.0	
Pier 4	0	0	0	0	140	0	1	0 ***	0	0	2.0	
Pier 5	0	0	0	0	140	0	1	- 0	0	0	2.0	
Pier 6	0	0	0	0	140	0	1	0	0	0	2.0	
Pier 7	0	0	0	0	140	0	1	0	0	0	2.0	anten en timentalen (
Fwd. Abut.	0	0	0	0	140	0	1	0	0	0	0.0	
TotaL								0				

					36" Di	illed Sha	fts for Piers	A STATE OF THE				
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	on the second second second
Pier 1	0	. 0	0	0	0	0	1	9 4 4 9 9 0	0	0	2.0	0
Pier 2	0	0	0	0	0	0	1	0	0	0	2.0	on the contract of the contrac
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	MARK SAUCH SAME STOP
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	presentable steps and 0
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	Nostra de Reservo
Pier 7	0	0	0	0	0	0	1	CL 76-0	0	0	0.0	MERSON CONTRACTOR
Fwd. Abut.	0	10	0	0	0	0	1	0	0	0	0.0	0
Total								A				

Sı	uperstructure	P/S Conc	rete Quantit	ies	l			
Location	Type of girder	# Girders	Span Length (ft.)	Total Length (ft.)	Spacing Int.	No. of Int in span	Number of Int Diap. 1 location	Total No. in Span
Span 1	MOD TYPE 4 72	8	110	880	36.67			24
Span 2		0	0	0	0.00			0
Span 3		0	0	0	0.00			0
Span 4		0	0	0	0.00			0
Span 5		0	0	0	0.00			0
Span 6		0	0	0	0.00			0
Span 7		0	0	0	0.00			0
Span 8		0	0	0	0.00			0
Span 9		0	0	0	0.00			0
					Total			24
TotaL	MOD TYPE 4 60	8		880]			

SCI-823-0.00 - PORTSMOUTH BYPASS Shumway Hollow Road over CSX Railroad STRUCTURE TYPE STUDY - LIFE CYCLE COSTS

By: JRC Checked: MSL

Date: 4/25/2006 Date: 4/27/2006

LIFE CYCLE MAINTENANCE COST

						ctural Steel Pain		Design of the last	Superstructure Seal											
Alt. No.		rangement Lengths		ming rnative	Cost Per Cycle	Number of Maintenance Cycles	Total Life Cycle Cost	Cost Per Cycle	Number of Maintenance Cycles	Total Life Cycle Cost										
1	1 1	119.50		irders /per BRIDGE	\$0	0	\$0	\$24,100	2	\$48,200										
2	1	119.50		rs /per BRIDGE	\$178,200	2	\$356,400	\$0	0	\$0										
=:	,																			
3	1	110.33	8 Prestressed I-G	irders /per BRIDGE	\$0	0	\$0	\$19,800	2	\$39,600										
					Deck	E	ridge Deck Overla	Number of	Total	Deck	Deck	Bridge Red Deck	decking (5) Deck	Number of	Total	Superstructure Life Cycle	Total Initial		Total Relative	
Alt.	Span Ar	rangement	Fra	ming	Demo &	Deck	Joint	Maintenance	Life Cycle	Concrete	Reinforcing	Joint	Removal	Maintenance	Life Cycle	Maintenance	Construction	on (Ownership	
No.	No. Spans	Lengths	Alter	rnative	Chipping	Overlay	Gland (2)	Cycles	Cost	Cost (3)	Cost (3)	Cost (2)	Cost	Cycles	Cost	Cost (1)	Cost		Cost	
1	1	119.5	9 Prestressed I-G	irders /per BRIDGE	\$25,000	\$30,300	n/a	1	\$55,300	\$162,700	\$70,000	n/a	\$68,300	1	\$301,000	\$405,000	\$1,700,00	0 :	\$2,105,000	
2	1	119.5	7 Steel Girde	rs /per BRIDGE	\$25,000	\$30,300	n/a	1	\$55,300	\$170,700	\$73,600	n/a	\$68,300	1	\$312,600	\$724,000	\$1,580,00	0 -	\$2,304,000	
3	1	110.33	8 Prestressed I-G	irders /per BRIDGE	\$23,100	\$28,000	n/a	1	\$51,100	\$150,400	\$64,700	n/a	\$63,000	1	\$278,100	\$369,000	\$1,740,00	0 :	\$2,109,000	
Structural St									Bridge Redect						NOTES:					
Structural Steel	Area:		Total	Assumed Ave.	Nominal	Secondary	Total		Bridge Deck Join	t Cost per foot:	Year	Annual	Year		 Life cycle mainte (2008 construction) 	enance costs assume a on year) dollars.	75 -ye	ear structure life, a	nd are expressed in	present value
	Web Depth (in.)	No. Stringers	Span Length (ft.)	Bot. Flange Width (in.)	Exposed Girder Area (sq. ft.)	Member Allowance	Exposed Steel Area (sq. ft.)		Structural Expansional Elastomeric Strip	sion Joint Including Seal	2005 \$250.00	Escalation 3.5%	2008 \$277.18	3		umed to have semi-integral a	outments, therefo	ore no strip seal de	ck joints will be req	uired except for Alt. 3.
Alt. 2	50	7	119.50	20.00	11,153	20%	13,400			Bridge Width	No. Joints			;	3. See Superstruct	ure Cost sheet.				
									Alt. 1 Alt. 2	90.00	0			1	4. See Alternative (Cost Summary sheet.				
Painting Cost p	er sq. ft.: Year	Annual	Year						710.2	30.00	· ·					deck overlay at Year 25 and I).	
Prep.	2005 \$6.75	Escalation 3.5%	2008 \$7.48						Bridge Deck Ren	noval Cost:					Assume complete	te bridge replacement at Yea	75.			
Prime	\$1.75	3.5%	\$1.94						Bridge Beak Nei		V	D 1 D 1				enance cost differences are a				re maintenance costs
Intermed. Finish Total	\$1.75 \$1.75 \$12.00	3.5% 3.5%	\$1.94 \$1.94 \$13.30							Deck Area (3) (sq. ft.)	Year 2008	Deck Removal <u>Cost</u>			Consequently, si	ubstructure litecycle mainten	ince costs are no	ot included in this a	inalysis.	
									Alt. 1 Alt. 2	8,246 8,246	\$8.28 \$8.28	\$68,300 \$68,300				rement Resurfacing: etual Asphalt Pavement:				
Superstructu PS Concrete I-I									Alt. 3	7,613	\$8.28	\$63,000			Resurfacing Unit			V	Amusi	V
72" Modified A															W.			Year 2004	Annual Escalation	Year 2008
Bot. Flange	H V 26	<u>Diag.</u>	No. Total 1 26.00 2 16.00							Overlay (Item 848): C Overlay Cost per sq. y	d.:				Pavement Planir (Item 254)	ng, Asphalt Concrete, per sq.	yd.	\$0.98	3.5%	\$1.12
Lower Fillets Web	9 9		2 25.46 2 92.00							ified Concrete Overlay	Year 2004	Annual	Year 2008					Year 2004	Annual Escalation	Year
Upper Fillets	3 3	4.24	2 8.49 2 22.36							olition (1.25" thick)	\$25.58	Escalation 3.5%	\$29.35		Asphalt Concrete	e Surface Course, per cu. yd		\$72.00	3.5%	2008 \$82.62
Top Flange Total Exposed	4		2 <u>8.00</u> 198.30 in	·					Using Hydrodem		\$22.85	3.5%	\$26.22		Asphalt Resurfac	oing Coata:				
51			130.30	•					Hand Chipping		\$37.07	3.5%	\$42.54		Aspiral Nesuria	Approach	Approach	5 ()		
54" AASHTO T	<u>H</u> 7	Diag.	No. Total							C Overlay Cost per cu. y	d.:					Roadway Length (ft.) (4)	Roadway Width (ft.)		Wearing Course Thickness (in.)	Wearing Course Volume (cu. yd.)
Bot. Flange	26	j a	1 26.00 2 16.00							ified Concrete Overlay ess), Material Only	\$144.00	3.5%	\$165.24			0.0	0.0	0	1.50	0.0
Lower Fillets Web	9 9		2 25.46 2 46.00									Hand	Variable							
Upper Fillets	6 6	8.49	2 16.97							Deck Area (3)	Deck Area	Chipping	Thickness							
Top Flange Total Exposed	8 Perimeter	ke.	2 16.00 146.43 in	1.						(sq. ft.)	(sq. yd.)	(sq. yd.)	Repair (cu. yd.)							
PS Concrete A	rea:								Alt. 1 Alt. 2	8,246 8,246	916 916	23 23	21 21							
	No.	Total Span	Nominal Exposed Beam		Total Exposed Concrete	•			Alt. 3	7,613	846	21	19							
	Stringers	Length (ft.)		Allowance	Area (sq. yd.)				Assume 25% of	deck area requires remo	val to depth of 4	1.5" (3.25" additior	nal removal).							
Alt. 1 Alt. 3	9 8	119.50 110.33	17,773 14,586	10% 10%	2,170 1,780				Bridge Deck Join	nt Gland Replacement C	ost per foot									
			. 1,000	/0	.,. 00				2ago 200k 00ll	J.a.i.a i topiadoment O	Year	Annual	Year							
Sealing Cost pe	ersq. yd.:	Year 2004	Annual Escalation	Year 2008					Elastomeric Strip		<u>2005</u> \$62.50	Escalation 3.5%	<u>2008</u> \$69.29							
Epoxy-Urethan	e Sealer	\$9.68	3.5%	\$11.11					Assume gland re	placement cost ∈quals 2	25% of original d	leck joint construc	tion cost.							

APPENDIX B Preferred Alternative Site Plan and Details

APPENDIX C
Vertical Clearance Calculations

ZANSYSTEMS 🔊	A	e By MTN		04/18/06	-	P40303006	
CORPORATION (III)	Checked			04/27/06	-		
-t-N 901.000.000	VERI	ICAL CLEARANG					
ob Name <u>SCI-823-0.00</u> escription <u>Shumway Hollow</u>	RD. over CSX			ture 19415		<u> </u>	
escription <u>onamicy riollon</u>	7.2. 070, 007		1 I D II	70-770			
Alternative 1 - 9-72" Type 4 Mod	dified Prestre	ssed I-Beams, 1 spa	<u>ın</u>		Point Location:	A	
Adjstment for Cross Slope							
Comment	<u>Grade</u>	Offset					
Profile grade line to critical pt.:	0.0113	x 37	-	0.4181	-		
		Total Adjustment	=	0.42			
					····	****	
Superstructure Depth						· 10000	
		•					
<u>Comment</u>	Depth (in)	Depth (ft)					
Deck Thickness:	8.5	0.71					
Haunch:	2	0.17					
Girder or Beam Depth:		6					
	82.5	6.88					
	Total Supe	erstructure Depth (ft)	=	6.88			
Vertical Clearance at Critical Pe	oint						
Vertical Clearance at Critical Pe		ion @ Critical Boint	_	27+26 66			
Vertical Clearance at Critical Po	Stati	ion @ Critical Point		37+36.66 27' LEET			
	Stati Offset Locati	ion @ Critical Point	==	37' LEFT			
Profi	Stati Offset Locati le Grade Eleva	ion @ Critical Point ation at Critical Point	=	37' LEFT 661.50			
Profi Adjustr	Stati Offset Locati le Grade Eleva ment for Cross	ion @ Critical Point ation at Critical Point Slopes to Beam CL	= -	37' LEFT 661.50 0.42			
Profi Adjustr	Stati Offset Locati le Grade Eleva ment for Cross	ion @ Critical Point ation at Critical Point	= -	37' LEFT 661.50			
Profi Adjustr	Stati Offset Locati le Grade Eleve ment for Cross f Deck Elevati	ion @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point	= = =	37' LEFT 661.50 0.42 661.92			
Profi Adjustr Top of	Stati Offset Locati le Grade Eleva ment for Cross f Deck Elevati Total S	ion @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point Superstructure Depth	= -	37' LEFT 661.50 0.42 661.92			
Profi Adjustr Top of	Stati Offset Locati le Grade Eleva ment for Cross f Deck Elevati Total S	ion @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point	= -	37' LEFT 661.50 0.42 661.92			
Profi Adjustr Top of Bottom of	Stati Offset Locati le Grade Eleva ment for Cross f Deck Elevati Total S Beam Elevati	ion @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point	= -	37' LEFT 661.50 0.42 661.92			
Profi Adjustr Top of	Stati Offset Locati le Grade Eleva ment for Cross f Deck Elevati Total S Beam Elevati	ion @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point and @ Critical Point	= -	37' LEFT 661.50 0.42 661.92 -6.88 655.04			
Profi Adjustr Top of Bottom of	Stati Offset Locati le Grade Eleva ment for Cross f Deck Elevati Total S Beam Elevati Existing Grou	ion @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point		37' LEFT 661.50 0.42 661.92 -6.88 655.04			

RANSYSTEMS CORPORATION		e By <u>M</u> d By M			04/18/06 04/27/06	•		P403030064
		-			ALCULATI	2	·-·	
b Name <u>SC/-823-0.00</u>			· · · · · · · · · · · · · · · · · · ·	Struct	ure			
escription Shumway Hollow I	RD. over CSX	CT R.R.		PID#	19415			
Alternative 1 - 9-72" Type 4 Mod	ified Prestre	ssed I-Bean	ns, 1 spa	<u>ın</u>		Point Locatio	n: B	·
Adjstment for Cross Slope								
				<u>.</u> .				
Comment	<u>Grade</u>	<u>Of</u>	<u>ffset</u>					
Profile grade line to critical pt.:	-0.016	x 2	27	=	-0.43			
				=	0.00			
				_	0			
		Total Adj	ustment	=	-0.43			
Superstructure Depth								
				· · · · · · · ·				
Comment	Depth (in)	<u>Der</u>	oth (ft)					
Deck Thickness:	8.5	0	.71					
Haunch:	2	0	.17					
Girder or Beam Depth:	72		6					
	82.5	6	88.					
	Total Supe	erstructure D	epth (ft)	=	6.88			
Vertical Clearance at Critical Po	int					****		
		ion @ Critic			37+36.78			
•	Offset Locati	ion @ Critic	ai Point	=	27' RIGHT			
D C)	e Grade Eleva	ation at Critic	al Point	=	661.50			
-			oom Cl	_	-0.43	_		
Adjustn	nent for Cross	•		-				
Adjustn	nent for Cross Deck Elevat	•		-	661.07			
Adjustn	Deck Elevat	ion @ Critic	al Point	=				
Adjustn Top of	Deck Elevati	ion @ Critic	al Point re Depth	= _	-6.88			
Adjustn Top of	Deck Elevat	ion @ Critic	al Point re Depth	= _				
Adjustm Top of Bottom of I	Deck Elevat Total S Beam Elevat	ion @ Critic Superstructur ion @ Critic	al Point re Depth al Point	= _	-6.88 654.19	-		
Adjustn Top of	Deck Elevati Total S Beam Elevati Existing Grou	ion @ Critic Superstructur ion @ Critic	al Point re Depth al Point ral Point	= _	-6.88			

Required Vertical Clearance =

23.0

TANSYSTEMS CORPORATION	Checke	e By MTN d By MSL	Date	04/18/06	Sheet No.	P4030300	-
		ICAL CLEARAN					
Job Name <u>SCI-823-0.00</u>							
Description Shumway Hollon	N RD. OVER CSX	I R.R.	PID #	19415			
Alternative 1 - 9-72" Type 4 M	odified Prestre	ssed I-Beams, 1 spa	<u>n</u>		Point Location:	С	
Adjstment for Cross Slope							
<u>Comment</u>	<u>Grade</u>	<u>Offset</u>					
Profile grade line to critical pt	.: 0.01435	x 37	_	0.53095			
		Total Adjustment	=	0.53			
Superstructure Depth							
<u>Comment</u>	Depth (in)	Depth (ft)					
Deck Thickness		0.71					
Haunch		0.17					
Girder or Beam Depth		6					
Cirdoi oi Bodini Bopn	82.5	6.88					
		erstructure Depth (ft)	=	6.88			
	Total Supe	sistractore Depth (it)	_	0.00			
Vertical Clearance at Critical	Point	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
	Ctati						
		ion @ Critical Boint	_	37+40 70			
		ion @ Critical Point		37+49.79			
Dec	Offset Locati	ion @ Critical Point	=	37' LEFT			
	Offset Locati	ion @ Critical Point ation at Critical Point	=	37' LEFT 661.36			
Adjus	Offset Location of the Grade Eleverstee of the Grade Elevers of the Grad	ion @ Critical Point ation at Critical Point s Slopes to Beam CL	= = -	37' LEFT 661.36 0.53	-	·	
Adjus	Offset Location of the Grade Eleverstee of the Grade Elevers of the Grad	ion @ Critical Point ation at Critical Point	= = -	37' LEFT 661.36	-		
Adjus	Offset Location of the Grade Elevation of Deck Elevation	ion @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point	= = -	37' LEFT 661.36 0.53	_		
Adjus To p	Offset Location of the Cross of Deck Elevation Total S	ion @ Critical Point ation at Critical Point s Slopes to Beam CL	= = =	37' LEFT 661.36 0.53 661.89	-		
Adjus To p	Offset Location of the Cross of Deck Elevation Total S	ion @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point Superstructure Depth	= = =	37' LEFT 661.36 0.53 661.89	-		
Adjus Top Bottom o	Offset Location of the Grade Elevation of Deck Elevation Total States of Beam Elevation of Beam Elevat	ion @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point Superstructure Depth	= -	37' LEFT 661.36 0.53 661.89	-		
Adjus Top Bottom o	Offset Location of the Grade Elevation of Deck Elevation Total States of Beam Elevation of Beam Elevation of Existing Ground States of Existing Grou	ion @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point	= -	37' LEFT 661.36 0.53 661.89 -6.88 655.01	-		
Adjus Top Bottom o	Offset Location of the Grade Elevation of Deck Elevation Total States of Beam Elevation of Existing Ground Actual	ion @ Critical Point ation at Critical Point s Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point und @ Critical Point	= -	37' LEFT 661.36 0.53 661.89 -6.88 655.01	-		

TEANS	STEMS DRATION	Ma <u>≒</u> Check VER
Job Name	SCI-823-0.00	
Description	Shumway Hollow F	RD. over CS
<u>Alternative 1</u>	- 9-72" Type 4 Mod	ified Prestr
Adjstment fo	or Cross Slope	
Profile grad	Comment de line to critical pt.:	<u>Grade</u> -0.016
Superstructe	ure Depth	
	Comment Deck Thickness: Haunch:	Depth (in) 8.5 2

Girder or Beam Depth:

Vertical Clearance at Critical Point

YSTEMS PRATION	Mad Checke	e By _	MTN MSL	_ Date Date	04/18/06 04/27/06	Job No Sheet No.	P403030064	
				-	LCULATIO	_		_
SCI-823-0.00				Structu	ıre			
Shumway Hollow Ri	D. over CSX	TR.R.		PID#	19415			
- 9-72" Type 4 Modif	ied Prestre	ssed I-L	3eams, 1 s _l	<u>pan</u>	F	Point Location:	D	
or Cross Slope				<u> </u>				
<u>Comment</u>	<u>Grade</u>		Offset					
de line to critical pt.:	-0.016	x	27	=	-0.43			
				=	0.00			
					0			

-0.43

6.88

37+50.10

27' RIGHT

661.36

-0.43

660.93

-6.88

654.05

630.53

23.52

23.0 23.0

Total Adjustment =

Depth (ft)

0.71

0.17

6

6.88

Total Superstructure Depth (ft) =

Station @ Critical Point =

Offset Location @ Critical Point =

Total Superstructure Depth

Actual Vertical Clearance

Preferred Vertical Clearance

Required Vertical Clearance

Profile Grade Elevation at Critical Point =

Top of Deck Elevation @ Critical Point =

Adjustment for Cross Slopes to Beam CL

Bottom of Beam Elevation @ Critical Point =

Approximate Top of Existing Ground @ Critical Point =

72

82.5

TRANSYSTEMS	Made	e By <i>MTN</i>	Date	04/18/06	Job No.	P403030064
CORPORATION ME	Checke	d By MSL	Date	04/27/06	Sheet No.	
	VERT	ICAL CLEARAN	CE C	ALCULATI	IONS	
Job Name SCI-823-0.00						
Description Shumway Hollow F	RD. over CSX	(T R.R.	PID#	19415		
Alternative 1 - 9-72" Type 4 Mod	ified Prestre	ssed I-Beams, 1 spa	<u>n</u>		Point Location:	E
Adjstment for Cross Slope						
<u>Comment</u>	<u>Grade</u>	<u>Offset</u>				
Profile grade line to critical pt.:		x 37		0.5809		
y tema grade into to trimoth pur		Total Adjustment		0.58	•	
		, otal , tajuotinoni				
Superstructure Depth						
Comment	Depth (in)	Donth (ft)				
Deck Thickness:	8.5	<u>Depth (ft)</u> 0.71				
Haunch:	2	0.17				
Girder or Beam Depth:	72	6				
	82.5	6.88				
	Total Supe	erstructure Depth (ft)	_			
	·		-	6.88		
Vertical Clearance at Critical Po		-	-	0.00		
Vertical Clearance at Critical Po	int	-				N - 100-111 -
. a namen y eye - n	<i>int</i> Stati	on @ Critical Point		37+55.79		W + 0X 20 -
	<i>int</i> Stati Offset Locati	on @ Critical Point	=	37+55.79 37' LEFT		N / W/C ()/L /
(Profile	int Stati Offset Locati e Grade Eleva	on @ Critical Point on @ Critical Point ation at Critical Point	= =	37+55.79 37' LEFT 661.30		
Profile Adjustm	int Stati Offset Locati Grade Eleva	on @ Critical Point ion @ Critical Point ation at Critical Point Slopes to Beam CL	= = =	37+55.79 37' LEFT 661.30 0.58	-	N - 100-211 -
Profile Adjustm	int Stati Offset Locati Grade Eleva	on @ Critical Point on @ Critical Point ation at Critical Point	= = =	37+55.79 37' LEFT 661.30	-	N - 100 - 101 - 1
Profile Adjustm	int Stati Offset Locati Grade Elevati Deck Elevati	on @ Critical Point ion @ Critical Point ation at Critical Point Slopes to Beam CL	= = = =	37+55.79 37' LEFT 661.30 0.58	-	900, 510
Profile Adjustm Top of	int Stati Offset Locati e Grade Eleva nent for Cross Deck Elevati	on @ Critical Point on @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point	= = = =	37+55.79 37' LEFT 661.30 0.58 661.88	-	
Profile Adjustm Top of Bottom of E	int Stati Offset Locati Grade Elevati Total S Beam Elevati	on @ Critical Point on @ Critical Point ation at Critical Point Slopes to Beam CL ion @ Critical Point Superstructure Depth ion @ Critical Point	= = = = = =	37+55.79 37' LEFT 661.30 0.58 661.88 -6.88	-	
Profile Adjustm Top of	int Stati Offset Locati Grade Elevati Total S Beam Elevati xisting Grou	on @ Critical Point on @ Critical Point ation at Critical Point Slopes to Beam CL on @ Critical Point Superstructure Depth ion @ Critical Point	= = = = =	37+55.79 37' LEFT 661.30 0.58 661.88 -6.88 655.00	-	
Profile Adjustm Top of Bottom of E	int Stati Offset Locati Grade Elevati Bent for Cross Deck Elevati Total S Beam Elevati xisting Grou	on @ Critical Point on @ Critical Point ation at Critical Point a Slopes to Beam CL on @ Critical Point cuperstructure Depth ion @ Critical Point and @ Critical Point Vertical Clearance	= = = = = =	37+55.79 37' LEFT 661.30 0.58 661.88 -6.88 655.00	-	
Profile Adjustm Top of Bottom of E	Stati Offset Locati e Grade Elevati nent for Cross Deck Elevati Total S Beam Elevati xisting Grou Actual Preferred	on @ Critical Point on @ Critical Point ation at Critical Point Slopes to Beam CL on @ Critical Point Superstructure Depth ion @ Critical Point	= = = = =	37+55.79 37' LEFT 661.30 0.58 661.88 -6.88 655.00	-	

.

RANS	YSTEMS		_	MTN		04/18/06		P403030
	DRATION III		-			04/27/06		·
ah Nama	SCI-823-0.00			CLEARAN				
	Shumway Hollow I					19415		
•					и	-		
	1 - 9-72" Type 4 Mod	ified Prestre	ssed l-	-Beams, 1 sp	an		Point Location:	<i>F</i>
Adjstment fo	or Cross Slope							
	Comment	<u>Grade</u>		Offset				
	Shoulder:	-0.016	x	27	=	-0.43		
					=	0.00		
					_	0		
			Tota	al Adjustment	=	-0.43		
								
Superstruct	ure Depth			~ !				
	_							
	Comment	Depth (in)		Depth (ft)				
	Deck Thickness:			0.71				
	Haunch:	2		0.17				
Gir	der or Beam Depth:	72		6				
		82.5		6.88				
		Total Supe	erstruct	ture Depth (ft)	=	6.88		
Vertical Clea	arance at Critical Po	int						
			_					
			_	Critical Point		37+56.10		
	•		_	Critical Point		27' RIGHT		
				t Critical Point		661.30		
	Adjustm	ent for Cross	Slope	s to Beam CL	= _	-0.43	-	
	Top of	Deck Elevati	ion @	Critical Point	=	660.87		
		-				0.00		
	_		•	ructure Depth	_	-6.88	-	
	Bottom of B	seam Elevati	ion @	Critical Point	=	653.99		
Aŗ	pproximate Top of E	xisting Grou	ınd @	Critical Point	= _	629.08	_	
		Actual	Vertic	al Clearance	=	24.91		
		Preferre	d Vertic	cal Clearance	=	23.0		
		Peguire	d Vertic	cal Clearance	=	23.0		

TANSYSTEMS	<i>\$111</i>	e By MTN		04/18/06	•	P403030064
CORPORATION,		d By <u>MSL</u> ICAL CLEARAN		04/27/06		
ob Name <i>SCI-823-0.00</i>		ICAL CLEARAN				
escription Shumway Holl				40445		
Alternative 2 - 7-53.625" Stee	ol Girdore 1 ens		- 1		Point Location:	Λ.
Adjstment for Cross Slope	er Girders, i spa	<u> </u>			Foint Location.	
	**			· · · · · · · · · · · · · · · · · · ·		
Comment	<u>Grade</u>	<u>Offset</u>				•
Profile grade line to critical p	ot.: 0.0113	x 36		0.4068		
		Total Adjustment	=	0.41		
Superstructure Depth						
Comment	Depth (in)	Depth (ft)				
Deck Thicknes	ss: 9	0.75				
Haund	ch: 2	0.17				
Girder or Beam Dep	th: <u>53.625</u>	4.47				
	64.625	5.39				
	Total Sup	erstructure Depth (ft)	=	5.39		
		M-7-1			1	
Vertical Clearance at Critical	l Point					
	Stat	ion @ Critical Point	=	37+36.66		
		ion @ Critical Point		36' LEFT		
P	rofile Grade Elev	ation at Critical Point	=	661.50		
Adju	ustment for Cross	s Slopes to Beam CL	=	0.41		
		ion @ Critical Point		661.91	-	
	Total S	Superstructure Depth	=	-5.39	_	
Bottom	of Beam Elevat	ion @ Critical Point	=	656.52		
Approximate Top	of Existing Grou	ınd @ Critical Point	= _	630.88	<u>.</u>	
	Actual	Vertical Clearance	=	25.64		

23.0

23.0

Preferred Vertical Clearance = Required Vertical Clearance =

TRANSYSTEMS CORPORATION

Made By MTN Checked By MSL

Date 04/18/06 Date 04/27/06 Sheet No.

Job No. <u>P403030</u>064

VERTICAL CLEARANCE CALCULATIONS

Job Name	SCI-823-0.00	Structure
Description	Shumway Hollow RD. over CSXT R.R.	PID#19415

Description Shumway Hollow RD. over CSXT R.R. PID # 19415	
Adjstment for Cross Slope Comment Grade Offset	
Comment Grade Offset	
Profile grade line to critical pt.: -0.016 x 26 = -0.42	
= 0.00	
Total Adjustment = -0.42	
Superstructure Depth	
Comment Depth (in) Depth (ft)	
Deck Thickness: 9 0.75	
Haunch: 2 0.17	
Girder or Beam Depth: 53.625 4.47	
64.625 5.39	
Total Superstructure Depth (ft) = 5.39	
Vertical Observation of Original Patrick	
Vertical Clearance at Critical Point	
Station @ Critical Point = 37+36.78	
İ	
Offset Location @ Critical Point = 26' RIGHT	
Offset Location @ Critical Point = 26' RIGHT Profile Grade Elevation at Critical Point = 661.50	
Profile Grade Elevation at Critical Point = 661.50	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42 Top of Deck Elevation @ Critical Point = 661.08	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42 Top of Deck Elevation @ Critical Point = 661.08 Total Superstructure Depth = -5.39	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42 Top of Deck Elevation @ Critical Point = 661.08 Total Superstructure Depth = -5.39	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42 Top of Deck Elevation @ Critical Point = 661.08 Total Superstructure Depth = -5.39 Bottom of Beam Elevation @ Critical Point = 655.69	
Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = -0.42 Top of Deck Elevation @ Critical Point = 661.08 Total Superstructure Depth = -5.39 Bottom of Beam Elevation @ Critical Point = 655.69 Approximate Top of Existing Ground @ Critical Point = 630.71	

Made By _ Checked By MTN MSL Date Date

04/18/06 04/27/06 Job No. Sheet No. P403030064

VERTICAL CLEARANCE CALCULATIONS

Job Name <u>SCI-823-0.00</u>

Structure

Description Shumway Hollow RD. over CSXT R.R.

PID# 19415

Alternative 2 - 7-53.625" Steel Girders, 1 span

Point Location:

C

Adjstment for Cross Slope

Comment

<u>Grade</u>

Offset

Profile grade line to critical pt.:

0.01435

36

0.5166

Total Adjustment =

0.52

Superstructure Depth

Comment

Depth (in)

Depth (ft)

Deck Thickness:

9

0.75

Haunch:

2

0.17

Girder or Beam Depth:

53.625

4.47

64.625

5.39

Total Superstructure Depth (ft) =

5.39

Vertical Clearance at Critical Point

Station @ Critical Point =

37+49.79

Offset Location @ Critical Point =

36' LEFT

Profile Grade Elevation at Critical Point =

661.36

Adjustment for Cross Slopes to Beam CL =

0.52

Top of Deck Elevation @ Critical Point =

661.88

Total Superstructure Depth

-5.39

Bottom of Beam Elevation @ Critical Point =

656.49

Approximate Top of Existing Ground @ Critical Point =

630.71

Actual Vertical Clearance =

25.78

Preferred Vertical Clearance =

23.0

Required Vertical Clearance

23.0

TRANS	YSTEMS DRATION	Made E Checked				04/18/06	•		P40303006
				CLEARAN		***************************************	•		
lob Name	SCI-823-0.00						0.10		
 Description	Shumway Hollow I					-			
Altornativo	2 - 7-53.625" Steel G	irdare 1 enan			П		Point Location:	D	
	or Cross Slope	ruers, r span					Font Location.		
Aujstineitt	or oross srope								
	<u>Comment</u>	<u>Grade</u>		<u>Offset</u>					
Profile gra	ade line to critical pt.:		х	26	=	-0.42			
	into ito dimedi pin	3.3.5	•		=	0.00			
						0			
			Tot	al Adjustment	=	-0.42	•		
			100	ai rajuotinone		0.11_			
Superstruct	tura Danth								
- Caperos aut							.		,
	Comment	Depth (in)		Depth (ft)					
	Deck Thickness:	. 9		0.75					
	Haunch:	2		0.17					
Gi	irder or Beam Depth:	53.625		4.47					
	•	64.625		5.39	•				
			struc	ture Depth (ft)	=	5.39			
				(· · ·					
Vertical Cle	earance at Critical Po	int					.	•	
								-	
		Statio	n @	Critical Point	=	37+50.10			
		Offset Locatio	_			26' RIGHT			
		e Grade Elevat	_			661.36			
		nent for Cross				-0.42			
		Deck Elevation			_	660.94	-		
,	·		_						
		Total Su	pers	tructure Depth	=	-5.39			
	Bottom of	Beam Elevatio	-	•	-	655.55	-		
			_						
Δ	Approximate Top of E	vistina Groun	.d @	Critical Point	=	630.53			

Actual Vertical Clearance

Preferred Vertical Clearance
Required Vertical Clearance

25.02 23.0

23.0

RANSYSTEMS CORPORATION	\					•		403030064
JORPORATION ///	<u>a</u> Checked	d By	MSL	Date	04/27/06	Sheet No.		
	VERTI	ICAL C	CLEARAN	CE CA	LCULATI	ONS		
b Name <u>SCI-823-0.00</u>				Struct	ure			
scription Shumway Hollow F	RD. over CSX	T R.R.		PID#	19415			
Mternative 2 - 7-53.625" Steel Gi	irders, 1 span	1				Point Location:	E	
Adjstment for Cross Slope								
<u>Comment</u>	<u>Grade</u>		<u>Offset</u>				4	
Profile grade line to critical pt.:	0.0157	x	36	<u></u>	0.5652			
		Total	Adjustment	=	0.57			
Superstructure Depth			1					
<u>Comment</u>	Depth (in)		Depth (ft)					
Deck Thickness:	9		0.75					
Haunch:	2		0.17					
Girder or Beam Depth:	53.625		4.47					
-	64.625		5.39	,				
	Total Super	rstructu	re Depth (ft)	=	5.39			
	•		•					
Vertical Clearance at Critical Po	int				·			
								-
	Static	on @ Cr	ritical Point	=	37+55.79			
(Offset Location	on @ Cr	ritical Point	=	36' LEFT			
Profile	e Grade Elevat	ition at C	Critical Point	=	661.30			
Adjustm	nent for Cross	Slopes	to Beam CL	=	0.57			
	Deck Elevation			•	661.87	•		
	Total Sı	uperstru	cture Depth	=	-5.39			
Bottom of E	Beam Elevatio			-	656.48	•		
		_						
Approximate Top of E	xisting Grour	nd @ Cı	itical Point	=	629.42			

Required Vertical Clearance =

23.0

Made By	
Checked By	

MTN MSL

Date 04/18/06

04/27/06

Job No. Sheet No. _ P403030064

VERTICAL CLEARANCE CALCULATIONS

Date

Job Name SCI-823-0.00 Structure

JOD Name			Silui	e	
Description Shumway Hollow	RD. over CSX	T.R.R.	PID#	19415	
Alternative 2 - 7-53.625" Steel G	irders, 1 span				Point Location: F
Adjstment for Cross Slope					
· -					
Comment	<u>Grade</u>	Offset			
Profile grade line to critical pt.:	-0.016	x 26	=	-0.42	
			=	0.00	
			_	0	_
		Total Adjustmen	t =	-0.42	
Superstructure Depth		····			- 140
				•	
<u>Comment</u>	Depth (in)	Depth (ft)			
Deck Thickness:	9	0.75			
Haunch:	2	0.17			
Girder or Beam Depth:	53.625	4.47			
	64.625	5.39	_		
	Total Super	structure Depth (ft) =	5.39	
					,
Vertical Clearance at Critical Po	int				
	Statio	on @ Critical Poin	t =	37+56.10	
1	Offset Locatio	on @ Critical Poin	t =	26' RIGHT	
Profil	e Grade Eleva	tion at Critical Poin	t =	661.30	

Adjustment for Cross Slopes to Beam CL = -0.42

Top of Deck Elevation @ Critical Point = 660.88

> -5.39 Total Superstructure Depth =

Bottom of Beam Elevation @ Critical Point = 655.49

Approximate Top of Existing Ground @ Critical Point = 629.08

> Actual Vertical Clearance 26.41

Preferred Vertical Clearance 23.0

23.0 Required Vertical Clearance

TANS	YSTEMS DRATION	Checked	d By _	MTN MSL CLEARAN	Date	ALCULAT	IONS
	SCI-823-0.00 Shumway Hollow	RD. over CSX	TR.R.	Struct PID #	ure 19415		
	r Cross Slope	lified Prestre	ssed I-I	Beams, 1 sp	an		Poi
Profile grad	Comment	<u>Grade</u>	x	Offset 36.5		0.41245	
T tomo grac	o ino to ontion pt	0.0110		i Adjustment	=	0.41	-
Superstructo	ure Depth						
	Comment	Depth (in)		Depth (ft)			
	Deck Thickness:	8.5		0.71			
	Haunch:	2		0.17			
Gir	der or Beam Depth:	72		6	_		
		82.5		6.88			
		Total Supe	erstructi	ure Depth (ft)	=	6.88	

Vertical Clearance at Critical Point

Station @ Critical Point = 37+36.66 Offset Location @ Critical Point = 36.5' LEFT Profile Grade Elevation at Critical Point = 661.50 Adjustment for Cross Slopes to Beam CL = 0.41 Top of Deck Elevation @ Critical Point = 661.91 Total Superstructure Depth = -6.88

Job No. P403030064

Sheet No.

Α

655.03

Point Location:

Approximate Top of Existing Ground @ Critical Point = 630.88 Actual Vertical Clearance 24.16 Preferred Vertical Clearance 23.0

Bottom of Beam Elevation @ Critical Point =

23.0 Required Vertical Clearance

Made By _ Checked By

MTN MSL Date <u>04</u>

04/18/06 04/27/06 Job No. _ Sheet No. P403030064

VERTICAL CLEARANCE CALCULATIONS

Job Name	SCI-823-0.00	Structure	
Description _	Shumway Hollow RD. over CSXT R.R.	PID# 19415	

Description	Shumway Hollow I	RD. over CSX	TR.R.		PID#	19415			
Alternative 3 - 8-72" Type 4 Modified Prestressed I-Beams, 1 span							Point Location:	В	
Adjstment for Cross Slope									
	Comment	<u>Grade</u>		<u>Offset</u>					
Profile gra	de line to critical pt.:	-0.016	x	26.5	=	-0.42			
					=	0.00			
					_	0	_		
ļ Į			Tota	i Adjustment	=	-0.42			
Superstruct	Superstructure Depth								
	Comment	Depth (in)		Depth (ft)					
	Deck Thickness:	8.5		0.71					

	<u> </u>	<u> </u>
Deck Thickness:	8.5	0.71
Haunch:	2	0.17
Girder or Beam Depth:	72	6
	82.5	6.88

Total Superstructure Depth (ft) = 6.88

Vertical Clearance at Critical Point

Station @ Critical Point = 37+36.78

Offset Location @ Critical Point = 26.5' RIGHT

Profile Grade Elevation at Critical Point = 661.50

Adjustment for Cross Slopes to Beam CL = -0.42

Top of Deck Elevation @ Critical Point = 661.08

Total Superstructure Depth = -6.88

Bottom of Beam Elevation @ Critical Point = 654.20

Approximate Top of Existing Ground @ Critical Point = 630.71

Actual Vertical Clearance = 23.50

Preferred Vertical Clearance = 23.0

Required Vertical Clearance = 23.0

Made By MTN Checked By

MSL

Date 04/18/06 Date 04/27/06

Job No. Sheet No.

P403030064

VERTICAL CLEARANCE CALCULATIONS

Structure _ PID#

Alternative 3 - 8-72" Type 4 Modified Prestressed I-Beams, 1 span

Point Location:

C

Adjstment for Cross Slope

Comment

<u>Grade</u>

Offset

Profile grade line to critical pt.:

0.01435

36.5

0.523775

19415

Total Adjustment =

0.52

Superstructure Depth

Comment

Depth (in)

Depth (ft)

Deck Thickness:

8.5

0.71

Haunch:

2

0.17

Girder or Beam Depth:

72

6

82.5

6.88

Total Superstructure Depth (ft) =

6.88

Vertical Clearance at Critical Point

Station @ Critical Point = 37+49.79

Offset Location @ Critical Point = 36.5' LEFT

Profile Grade Elevation at Critical Point = 661.36

Adjustment for Cross Slopes to Beam CL = 0.52

Top of Deck Elevation @ Critical Point = 661.88

> Total Superstructure Depth = -6.88

655.00 Bottom of Beam Elevation @ Critical Point =

Approximate Top of Existing Ground @ Critical Point = 630.71

> Actual Vertical Clearance 24.30

Preferred Vertical Clearance 23.0

Required Vertical Clearance 23.0

Made By ____MTN___ Checked By MSL

Date 04/18/06 Date <u>04/27/06</u>

Sheet No.

Job No. ______*P403030064*

VERTICAL CLEARANCE CALCULATIONS

Job Name	SCI-823-0.00	_ Structure				
Description _	Shumway Hollow RD. over CSXT R.R.	PID# _	19415			

Alternative 3 - 8-72" Type 4 Modified Prestressed I-Beams, 1 span						Point Location:	D	
Adjstment for Cross Slope								
<u>Comment</u>	<u>Grade</u>		Offset					
Profile grade line to critical pt.:	-0.016	x	26.5	=	-0.42			
				=	0.00			
					0	_		
	•	Tota	al Adjustment	=	-0.42			
Superstructure Donth	•							

Superstructure Depth

Comment	Depth (in)	Depth (ft)			
Deck Thickness:	8.5	0.71			
Haunch:	2	0.17			
Girder or Beam Depth:	72	6			
	82.5	6.88			
	Total Supe	rstructure Depth (ft)	=	6.88	

Vertical Clearance at Critical Point

Station @ Critical Point	=	37+50.10
Offset Location @ Critical Point	=	26.5' RIGHT
Profile Grade Elevation at Critical Point	=	661.36
Adjustment for Cross Slopes to Beam CL	=	-0.42
Top of Deck Elevation @ Critical Point	=	660.94
Total Superstructure Depth	=	-6.88
Bottom of Beam Elevation @ Critical Point	· =	654.06

Approximate Top of Existing Ground @ Critical Point	=	630.53
Actual Vertical Clearance	=	23.53
Preferred Vertical Clearance	=	23.0
Required Vertical Clearance	=	23.0

MSL RTICAL CLEARA CSXT R.R. Control of the second of the	NCE (Stru PID		Sheet No. ONS Point Location:	
Offset X 36.5 Total Adjustmen Depth (ft) 0.71 0.17 6	_ Stru _ PID : <u>pan</u>	cture		
Offset x 36.5 Total Adjustmen Depth (ft) 0.71 0.17 6	PID	# <u>19415</u> 		
Offset x 36.5 Total Adjustmer Depth (ft) 0.71 0.17 6			Point Location:	E
Offset x 36.5 Total Adjustmer Depth (ft) 0.71 0.17 6				
x 36.5 Total Adjustmen n) Depth (ft) 0.71 0.17 6	nt =			
x 36.5 Total Adjustmen n) Depth (ft) 0.71 0.17 6	nt =			u MAA
Total Adjustmer n)	nt =			
n) <u>Depth (ft)</u> 0.71 0.17 6	nt =	0.57		
0.71 0.17 6	A The second of			
0.71 0.17 6				
0.71 0.17 6				
0.71 0.17 6				
0.17				
6				
				
6.88				
Superstructure Depth (f	t) =	6.88		
			- 7 'N 1	
tation @ Critical Poir	nt =	37+55.79		
		36.5' LEFT		
levation at Critical Poi	nt =	661.30		
oss Slopes to Beam C	:L =	0.57		
vation @ Critical Poi	nt =	661.87	•	
al Superstructure Dept	th =	-6.88	-	
vation @ Critical Poir	nt =	654.99		
_				
	cation @ Critical Point levation at Critical Point ross Slopes to Beam Covation @ Critical Point ral Superstructure Deprivation @ Critical Point round @ Critical Clearance received Vertical Clearance received Vertical Clearance	cation @ Critical Point = Elevation at Critical Point = ross Slopes to Beam CL = vation @ Critical Point = tal Superstructure Depth = vation @ Critical Point = tround @ Critical Point = tround @ Critical Point =	cation @ Critical Point = 36.5' LEFT Elevation at Critical Point = 661.30 ross Slopes to Beam CL = 0.57 vation @ Critical Point = 661.87 cal Superstructure Depth = -6.88 vation @ Critical Point = 654.99 cround @ Critical Point = 629.42 tual Vertical Clearance = 23.0	cation @ Critical Point = 36.5' LEFT Elevation at Critical Point = 661.30 ross Slopes to Beam CL = 0.57 vation @ Critical Point = 661.87 cal Superstructure Depth = -6.88 vation @ Critical Point = 654.99 cround @ Critical Point = 629.42 tual Vertical Clearance = 23.0

TRANSI CORPC	STEMS PRATION
Job Name	SCI-823-0.00
Description	Shumway Hollow RE

Made By **Checked By**

MSL.

Date 04/18/06 Date 04/27/06

6.88

Job No. Sheet No.

VERTICAL CLEARANCE CALCULATIONS

Structure

Description _	Shumway Hollow I	RD. over CSX	T R.R.		PID#	19415		
Alternative 3	- 8-72" Type 4 Mod	ified Prestres	sed I-E	leams, 1 sr	oan 💮		Point Location:	F
Adjstment for	r Cross Slope				•			<u></u>
	Comment	<u>Grade</u>		<u>Offset</u>				
	Shoulder:	-0.016	x	26.5	=	-0.42		
					=	0.00		
	•					0	_	
			Total	Adjustmen	t =	-0.42	_	
Superstructu	re Depth							
	Comment	Depth (in)		Depth (ft)				
	Deck Thickness:	8.5		0.71				
	Haunch:	2		0.17				
Gird	der or Beam Depth:	72		6	_			
		82.5		6.88				

Vertical Clearance at Critical Point

Station @ Critical Point = 37+56.10

26.5' RIGHT Offset Location @ Critical Point =

Profile Grade Elevation at Critical Point = 661.30

Total Superstructure Depth (ft) =

-0.42Adjustment for Cross Slopes to Beam CL

Top of Deck Elevation @ Critical Point = 660.88

> -6.88 Total Superstructure Depth

Bottom of Beam Elevation @ Critical Point = 654.00

Approximate Top of Existing Ground @ Critical Point = 629.08

> Actual Vertical Clearance 24.92

Preferred Vertical Clearance 23.0

Required Vertical Clearance 23.0

APPENDIX D
Preliminary Structure Site Plan

TRANSYSTEMS

CORPORATION

APPENDIX E Preliminary Geotechnical Report & Preliminary MSE Wall Evaluation

April 26, 2006

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Dr., Suite 240 Dublin, OH 43017

Re: Preliminary Structural Foundation Recommendations (Revised)

SCI-823 over Relocated Shumway Hollow Road Relocated Shumway Hollow over CSX Railroad

SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03

Document # 0011

Dear Mr. Weeks:

This letter reports the revised findings of the subsurface exploration and preliminary foundation recommendations for the proposed structures at the SCI-823-0.00 Airport Interchange: SCI-823 over relocated Shumway Hollow Road and relocated Shumway Hollow Road over the CSX Railroad. It is anticipated that the proposed structure over Shumway Hollow Road will be a one-span elevated bridge. It is anticipated that the proposed abutments will be founded on a fill section, contained in MSE walls.

The proposed structure over the CSX Railroad is understood to be a one-span bridge. The proposed grade at the new bridge location is understood to be approximately 662 feet. It is anticipated that at least part of the structure will be placed on a fill section, using MSE walls to contain the embankments. See attached plan and profile drawings for both planned structures and boring locations.

The findings and recommendations presented in this report should be considered preliminary. It is understood that the final number and locations of substructure units have not been determined yet. After the substructure unit locations have been established, the results of the borings should be reviewed to determine if additional exploration is needed to finalize the foundation recommendations for the new structures.

Field Exploration

Three borings, TR-24 through TR-26, were drilled at the proposed structure for SCI-823-0.00 over the realigned Shumway Hollow Road between August 19 and 23, 2004. The borings were drilled to depths from 33.0 to 53.5 feet. The borings were extended into bedrock, which was verified by rock coring. Two borings, TR-27 and TR-28, were drilled at the proposed structure over the CSX Railroad on August 25, 2004 and February 2, 2005. The borings were drilled to depths of 17.5 and 30.0 feet, respectively. The borings were extended into bedrock, which was

verified by rock coring. Boring Logs for both structures and information concerning the drilling procedures are attached.

The boring locations were selected by TranSystems Corporation. Ground surface elevations have been accurately established by as-drilled surveys for this project.

Findings

The following text presents generalized subsurface conditions encountered by the borings. For more detailed information, please refer to the attached Boring Logs.

SCI-823-0.00 over Relocated Shumway Hollow

The borings for the structure crossing SCI-823-0.00 generally encountered up to 12 inches of topsoil at the surface. Underlying the surficial materials, the borings encountered stiff to hard silt and clay (A-6a), clay (A-7-6), sandy silt (A-4a) and loose to dense gravel with sand (A-1-b) and fine sand (A-3) to depths between 23.0 and 43.5 feet where bedrock was encountered.

Bedrock encountered at the proposed structure location was composed primarily of hard sandstone that was generally slightly fractured to intact. Recovery of the core samples ranged from 93 to 100% and RQD values ranged from 42 to 90% with an average RQD of 74%.

Seepage was encountered between depths of 6.0 and 21.0 feet below the ground surface. At completion of drilling, water levels ranged from 8.5 to 29.8 feet. However, the final water levels include drilling water and may not be representative of the actual groundwater conditions. Groundwater levels may vary seasonally.

Relocated Shumway Hollow over CSX Railroad

Boring TR-28 encountered 8 inches of asphalt concrete at the surface. Underlying the pavement, the boring encountered very stiff to hard silt and clay (A-6a) and loose to medium dense coarse and fine sand (A-3a) to a depth of 16.0 feet where bedrock was encountered. Boring TR-27 was drilled off the road, but did not encounter topsoil. Underlying the surface, the boring encountered hard sandy silt to a depth of 7.5 feet where bedrock was encountered.

Bedrock encountered at the proposed structure location was composed primarily of medium hard to hard sandstone that was generally slightly fractured to intact. Recovery of the core samples ranged from 50 to 100% and RQD values ranged from 12 to 100% with an average RQD of 76%.

Seepage was encountered at depths between 14.0 and 18.5 feet below the ground surface in boring TR-28. No seepage was encountered in boring TR-27. At completion of drilling, the water level in TR-28 was 10.0 feet. Boring TR-27 collapsed at a depth of 6.0 feet. It should be noted that the final water levels include drilling water and consequently may not be representative of the actual groundwater conditions. Groundwater levels may vary seasonally.

Conclusions and Recommendations

SCI-823-0.00 over Relocated Shumway Hollow

Due to the embankment fill, it appears that driven H-piles to bedrock will be the best-suited foundation type for support of the proposed structure. If high lateral or uplift loads are anticipated, drilled shafts founded in bedrock may be needed. The actual design lengths or rock sockets will need to be designed based upon actual loading conditions. A table summarizing the site conditions and foundation recommendations follows subsequently.

Additionally, since the SCI-823-0.00 mainline and the Relocated Shumway Hollow will be located on a relatively large embankment and could be potentially underlain by compressible soils, the abutment and pier locations may need special construction procedures, and/or an additional load applied to the design loads to account for any negative skin friction associated with the embankment loading.

It should be noted that if driven H-piles are selected, special pile-driving techniques may be required. Soils that have high silt and fine sand contents that also have high moisture contents, such as those encountered within this area, tend to produce exaggerated blow counts during pile driving, which do not reflect the actual load carrying ability of the strata due to pore pressures. Piles should be driven to their design capacity, allowed to sit at least 24 hours, then re-driven to ensure that the design capacity has been achieved. If the design capacity has not been achieved due to elevated pore pressures, continue to drive the pile until adequate capacity has been achieved with confirmation after 24 hours.

Because of the large potential lateral loads, embankment heights and depths of relatively compressible soils, differential settlement will also need to be evaluated. It is strongly recommended that we discuss the proposed foundation design after TranSystems has had a chance to review these recommendations.

No grain size analyses were performed for scour analysis since the proposed structure location is not located along a stream location.

Relocated Shumway Hollow over CSX Railroad

Based upon the amount of embankment fill required for the construction of the bridge over the CSX Railroad, spread footings or drilled shafts could be used to support the rear abutment. Grade is expected to remain near existing levels near the forward abutment; however, bedrock on the eastern side of the bridge is deeper so either spread footings on rock or drilled shafts to rock can be used to support the forward abutment. Any footings should be embedded into the bedrock. The table summarizing the site conditions and foundation recommendations follows subsequently. It should be noted that the plan location and elevation of the proposed abutments varies from the preliminary structural borings. It will be necessary to drill borings for the structures once the design has been set.

The railroad the structure crosses is located within a cut. The stability of this railroad cut section should be evaluated relative to the location of the anticipated abutment locations once the final design is complete.

Boring Number	Structural Element	Existing Ground Surface Elevation (Feet)	Approximate Bearing Elevation (Feet)	Recommended Foundation Type	Allowable Bearing Capacity
	SCI-8	23-0.00 over I	Relocated Shum	way Hollow Road	
TR-24	Rear (west) Abutment	686	643	H-Piles	90 tons
TR-25	Pier	675	643	H-Piles	90 tons
TR-26	Forward (east) Abutment	665	643	H-Piles	90 tons
	Reloc	ated Shumway	y Hollow Road o	over CSX Railroad	
TR-27	Rear Abutment	627*	630*	Drilled Shafts / Spread Footings	15 TSF
TR-28	Forward Abutment	649*	640*	Drilled Shafts / Spread Footings	15 TSF

^{*} Elevations are approximated from topographic surveys and provided plan and profile drawings. Preliminary boring locations and elevations vary from the currently proposed abutment locations.

No grain size analyses were performed for scour analysis since the proposed structure location is not located along a stream location.

Closing

If you have any questions, please contact our office for clarification.

Sincerely,

DLZ OHIO, INC.

Steven J. Riedy

Geotechnical Engineer

Arthur (Pete) Nix, P.E.

Senior Geotechnical Engineer

Attachments: Site Plan (2)

General Information - Drilling Procedures and Logs of Borings

Legend - Boring Log Terminology

Boring Logs TR-24, TR-25, TR-26, TR-27, TR-28

cc: File

M:\proj\0121\3070.03\Structures\Sumway Hollow\Shumway Hollow Preliminary Structural Foundation-SJR.doc

GENERAL INFORMATION

	DRILLING PROCEDURES AND LOGS OF BORINGS
8	Orilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.
3	Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.
	In borings where rock was cored, NXM or NQ size diamond coring tools were used.
1	In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.
٠	The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the

estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Geot\Forms\General Info English.doc

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils -- Compactness

	Biows/i-oot
<u>Term</u>	Standard Penetration
Very Loose	0-4
Loose	4 – 10
Medium Dense	10 – 30
Dense	30 – 50
Very Dense	over 50

Cohesive Soils - Consistency

Term Very Soft Soft Medium Stiff Stiff Very Stiff	Unconfined Compression tons/sq.ft. less than 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0	Blows/Foot Standard Penetration below 2 2 - 4 4 - 8 8 - 15 15 - 30	Hand Manipulation Easily penetrated by fist Easily penetrated by thumb Penetrated by thumb with moderate pressure Readily indented by thumb but not penetrated Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

- b. Color If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".
- c. Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows:

<u>Description</u>	<u>Size</u>	<u>Description</u>	<u>Size</u>
Boulders Cobbles Gravel - Coarse - Fine	Larger than 8" 8" to 3" 3" to %" %" to 2.0 mm	Sand – Coarse – Fine Silt Clay	2.0 mm to 0.42 mm 0.42 mm to 0.074 mm 0.074 mm to 0.005 mm smaller than 0.005 mm

į	d.	The main soil com	ponent is listed first. The minor components are listed in order of decreasing percentage of particle size.
	e.	Modifiers to main s	soil descriptions are indicated as a percentage by weight of particle sizes.
		trace 0 to little 10 to some 20 to "and" 35 to	20% 35%
	f.	Moisture content of	of cohesionless soils (sands and gravels) is described as follows:
		<u>Term</u>	Relative Moisture or Appearance
		Dry Damp Moist Wet	No moisture present Internal moisture, but none to little surface moisture Free water on surface Voids filled with free water
	g.	The moisture conf	tent of cohesive soils (silts and clays) is expressed relative to plastic properties.
		<u>Term</u>	Relative Moisture or Appearance
		Dry Damp Moist Wet	Powdery Moisture content slightly below plastic limit Moisture content above plastic limit but below liquid limit Moisture content above liquid limit
10.	Ro	ck Hardness and R	ock Quality Designation
•	a.	The following term	ns are used to describe the relative hardness of the bedrock.
		<u>Term</u>	Description
		Very Soft	Permits denting by moderate pressure of the fingers. Resembles hard soil but has rock structure. (Crushes under pressure of fingers and/or thumb)
		Soft	Resists denting by fingers, but can be abraded and pierced to shallow depth by a pencil point. (Crushes under pressure of pressed hammer)
		Medium Hard	Resists pencil point, but can be scratched with a knife blade. (Breaks easily under single hammer blow, but with crumbly edges.)
		Hard	Can be deformed or broken by light to moderate hammer blows. (Breaks under one or two strong hammer blow, but with resistant sharp edges.)
ŀ		Very Hard	Can be broken only by heavy and in some rocks repeated hammer blows.
	b.	Rock Quality De- obtained by sum- total length of the	signation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It ming the total length of all core pieces which are at least four inches long, and then dividing this sum by to core run.
11.	Gr	adation – when test	ts are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c
12.			med to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture conte s indicated graphically.
13.	Th	e standard penetra	tion (N) value in blows per foot is indicated graphically.
		·	

STANDARD PENETRATION (N) 0121-3070.03 Natural Moisture Content, % -Blows per foot Job No. 8/23/04 % Clay #IS % 의 GRADATION bns2 .7 % bna2 .M % % C. Sand DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 8/20/04 әјерэтррА % Stiff to very stiff brown CLAY (A-7-6), little fine to coarse sand, little silt, varved; moist. Hard brown SILT AND CLAY (A-6a), little fine to coarse sand; damp. Medium dense brown FINE SAND (A-3), trace gravel; damp. WATER
OBSERVATIONS: Water seepage at: 6.0'
Water level at completion: 29.8' (Includes drilling water) DESCRIPTION Project: SCI-823-0.00 Hand Penetro-meter 2.25 1.25 3.75 1.75 2.75 4.5+ (tst) 4.5+ 2.0 2.0 6. 5. Location Press /Core N, 9 7 'n ø ထ G F က ө√пО **TR-24** 9 8 Client: TranSystems, Inc. 8 5 (iii) үтөүоэвЯ Boring N Blows per 6" m 685.2 686.2 Elev. (ff) LOG OF: Depth (ff) 15 5 l 원 | ģ Ŕ 8

FILE: 0121-3070-03 [4/26/2006 10:27 AM]

Sample No. No. Core No. Core No.	Sample No. Onive	Project: SCI-823-0.00 Bate Drillect: 8/20/04 Hand WATER OBSERVATIONS: Water seepage at: 6.0' Medium dense brown FINE SAND (A-3), trace gravel; damp. Soft gray SILTY CLAY (A-6b), little fine to coarse sand, trace gravel; moist. Severely weathered gray SANDSTONE argillaceous. Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, micraceous, moderately to highly fractured. @ 43.0', slightly weathered, unfractured to slightly fractured. @ 47.0', slightly weathered, unfractured to slightly fractured.	Bottom of Boring - 53.5'
		9	

Location: Hand ON Hand Penetro- mater (tsf) (tsf) 1.25 2.0 2.0 2.0 2.0 2.5 2.55	Sample No. Hand No. H	S. Inc. TR-25 TR-25 TR-25 Location: No. 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Inc. IR-25 IR-25 Sample No. Penetron No. Penetron Inc. Inc. Inc. Inc. <th< th=""><th>840/04</th><th></th><th>GRADATION</th><th>ejager bne bne bne</th><th>(8) % (8) % (9) %</th><th>ttle fine to coarse sand,</th><th></th><th>4 6 - 13 37 40</th><th>trace fine sand; varved; 0 0 - 1 11 88</th><th></th><th></th><th></th><th></th><th>silt; damp.</th><th><u>- 4</u></th><th></th></th<>	840/04		GRADATION	ejager bne bne bne	(8) % (8) % (9) %	ttle fine to coarse sand,		4 6 - 13 37 40	trace fine sand; varved; 0 0 - 1 11 88					silt; damp.	<u>- 4</u>	
	δ θνήΩ - 2 ω 4 rv ω γ π ω τ π ω σ τ π σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	1	N	Project: SCI-823-0.00		WATER OBSERVATIONS: Water seepage at: 16.0, 21	Water tevel at completion: 16.4' (inc	DESCRIPTION	Hard brown SILT AND CLAY (A-6a), little fine to coarse sand,	Iface graver, damp.		Stiff to very stiff brown CLAY (A-7-6), trace fine sand; varved; damp to moist.		ARAF	5		Loose brown FINE SAND (A-3), trace silt; damp	@ 21.0', moist to wet.	
2 0 0 0 1 1 0 0 1 2 0 0 1 1 1 1 1 1 1 1	δ θνήΩ - 2 ω 4 rv ω γ ω φ 5 ± πο σ γ ω φ 5 ± πο σ γ ω φ 1 πο σ γ ω η σ	1	N		ocation:	Hand	Penetro- meter	(tsf)		4.0	4.5	2.0	1.25	1.75	2.5	2.25			
		α α	α α		7	ample No.	ഖരാ		1		2	ю ·	4	ហ	9	7	ω .		 7

Client: Trans	TranSystems,	ıs, Inc.				Project: SCI-823-0.00			Job No. 0121-3070.03	570.03
LOG OF: 1	Boring		ic.	F	f ocation:		2	70/06/8		
<u>:</u> _	_			1 8	Deallos.	WATER Dilled: Of 18704	GRADATION	0/2/0	£0.	
		· · · · · · · · · · · · · · · · · · ·	No.	eno C	Hand Penetro- meter	OBSERVATIONS: Water seepage at: 16.0', 21.0' Water level at completion: 16.4' (includes drilling water)	pu	ა გ 	STANDARD PENETRATION (N)	TION (N)
(ft) (ft)	e swola	Кесоиег	evin/Q)\ ssarq	(tsf)	DESCRIPTION DESCRIPTION	% M. San % F. San % Siit	% СІВУ	PL Blows per foot - 10 20 30	, T O
7	6- 27 50/5	σ	13	-		.1		:	<u>}</u>	./
35 - 35		E. 4	RQD 42%	Γ. Γ.		Hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, micaceous, argillaceous, massively bedded, slightly fractured. @ 32.0' to 37.0', highly fractured.				÷
\$ 	Core 72"	Rec 72"	ROD 90%	R-22		DRAFI				
42.0 632.6-						Bottom of Boring - 42.0'				
								* * * * * * * * * * * * * * * * * * * *		
25										
T T .								· · · · ·		

	Chem. Italicysteris, IIIC.	s, Inc.				Project: SCI-823-0.00			Job No. 01	0121-3070.03	ဗ
LOG OF: Boring TR-26	Boring	TR-2(700	Location:	Date Drilled: 8/19/04	1/04				
	·	(ui) /	Sample No.		Hand Penetro- meter	WATER OBSERVATIONS: Water seepage at: 8.5' Water level at completion: 8.4' (includes drilling water)	GRAD.	, s	STANDARD PENETRATION (N)	ETRATION	ટ્રે
Depth Elev. (ff) (ff)	Siows pe	Кесоуел	Ωήνθ	O\ szen9	(tst)	DESCRIPTION	6 Aggreg 6 M. Sand 6 F. Sand 6 Silt 6 Clay		Natural Moisture Content, % PL	Sontent, %	•
				-		Topsoil - 12"	6 6	-		\$ 	
1 1	5 5 8	18	-	·	4.5	Hard brown CLAY (A-7-6), some to "and" fine to coarse sand; damp to moist.			<u> </u>		
- L	8 7	18	N		4.5+		0 2 - 38 12 48	· · · · · · · · · · · · · · · · · · ·			
	7 7 8	18	ю.			Loose to medium dense orangish brown COARSE AND FINE SAND (A-3a), little silt; damp to moist.	0 0 1 8 1 2 2 2)	, No.	plastic
\$ 	4 9 7	20	4					: ::	r — -O		
1 7	3 4 6	18	ιΩ		-	4		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
15	4 5 10	18	9	·		N. S.		· · · · ·	· · · · · · · · · · · · · · · · · · ·		*******
1 1 - 1	ი 4 დ	18	۲			@ 16.0', wet.		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
	2 3 4	18	60	····				- :C	• • • • • • • • • • • • • • • • • • • •		
T 1	4 8 13	18	5 1			Medium dense gray GRAVEL WITH SAND (A-1-b); contains sandstone fragments; moist.)` . 	· · · · · · · · · · · · · · · · · · ·		
23.0—642.2						@ 23.0' to 25.5', moderately fractured. Hard gray SANDSTONE; very fine to fine grained, argillaceous, micaceous, slightly to moderately weathered, massively bedded, slightly fractured. @ 23.1', 23.5', thin clay seams.)		
	Core	Rec 111*	ROD R-1	-				•••••			

LOG OF: Boring TR-27	- R-27		Location: A		Job No. 0121-3070.03
		Sample	ļ 	WATER WATER OF THE STATE OF THE DESCRIPTION DATE DESCRIPTION OF THE DE	GRADATION
9 J6	(ii) V	I.	Hand Penetro-	Water level at completion: None (boring collapsed @ 6.0')	
q swola	Кесоиег	evinG)\ zzen9	Press /C	DESCRIPTION Sand	Natural Moisture Content, % -
25	18	-	4.5+	%	% %
13	18	η	4.5+		0
67	16	е	4.5+	@ 6.0' to 7.5', contains sandstone fragments.	- / · · · · · · · · · · · · · · · · · ·
				Medium hard to hard brown and gray SANDSTONE; very fine to fine grained, slightly to highly weathered, argillaceous, micaceous, massively bedded, slightly fractured. @ 7.5' to 10.0', rust stained. @ 7.8',8.9' and 15.6', low angle fractures.	
120°	120°	RQD R-1 98%		@ 14.9' to 15.2', high angle fractures.	
				Bottom of Daring 47 Et	
				C. /1 - Divide to House	
			-	DRATI DRATI	
{					

Project: SCI-823-0.00 Location: Approx. Sta. 38+20, 20 ft Rt. of Reloc. Shumway Hollowaste Drittee: WATER WATER WATER	Sample No. Hand No. Hand No. Hand Penetro- meter meter meter 7 (1st) (1st) 8 2% R-1 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	28
	A C C C C C C C C C C C C C C C C C C C	39.50 (in) Yevooey (in) 85 65 42 55 59.50 25.50

0.03	(N) NO	, t	
Job No. 0121-3070.03	STANDARD PENETRATION (N)	PL FOR Blows per foot - O	
ol	STAND		
	NOIL	% F. Sand % Siii % Clay	
	P P	% C. San	
	02-02 818	gan <u>p</u> gA %	
P. 65	Approx. Sta. 36+20, 20 ft Rt. of Reloc. Shurnway Hollowate Drilled: 02-02-05 WATER OBSERVATIONS: Water seepage at: 14.0', 18.5' Water level at completion: 10.0' (includes drilling water)	DESCRIPTION	Bottom of Boring - 30.5'
	Hand Penetro-	(tst)	
F	Sample No.	\ sear	
ŭ	_ 	Вул.О.	
, E	(in) V	Кесоvе	
oring	9.0	Blows t	
LOG OF: Boring TR-28	Flox		
		(E) (S)	

April 24, 2006

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Preliminary MSE Wall Evaluations

Relocated Shumway Hollow Road over CSXT Railroad

SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03

Document # 0010

Dear Mr. Weeks:

This letter includes the findings of a preliminary evaluation of mechanically stabilized earth (MSE) retaining walls on the above-referenced project. The findings included in this letter pertain only to the MSE walls at the bridge of relocated Shumway Hollow Road over CSXT Railroad. The findings of other preliminary MSE wall evaluations will be submitted in separate documents.

It is understood that MSE walls are proposed for Sta. 36+76 (rear abutment) and Sta. 37+75 (forward abutment). Based upon the proposed grade for Shumway Hollow, which was received in April 2006, this places the rear abutment wall within the valley cut for the CSXT railroad alignment and the forward abutment wall on the slope to the east and above the railroad. The base of the railroad cut lies approximately 20 feet below the existing grade to the west and approximately 30 feet below the existing grade to the east. Sandstone bedrock is exposed on the sides of the cut.

Because the proposed location of the forward abutment MSE wall is on an existing slope where bedrock is exposed, it is likely that considerable rock excavation will need to be performed to provide space for the reinforced fill. Based on this information and conversations with TranSystems personnel, it was concluded that an MSE wall would probably not be used at the forward abutment and no additional analysis was performed at this location.

A previous analysis for MSE walls was performed for this bridge in November 2005. The conditions assumed for the current analysis were essentially the same as the previous analysis, except that the height of the wall differed by a few feet. For the current analysis, it was assumed that 40 feet of fill would need to be placed for the MSE wall at the rear abutment, based on the proposed grade, and the top of the leveling pad was at elevation 622, which included a 3.0-foot embedment below existing grade. The length of the reinforcing was assumed to be 28 feet (0.7 times the wall height). The profile assumed for the analysis was based upon the findings of a preliminary structural boring, TR-27, which was drilled approximately 20 feet above the grade of the railroad and 75 feet west of the proposed wall location. An additional boring, TR-28, was also drilled near the bridge location. Logs of both borings are attached. Although no boring information at the MSE wall

Shumway Hollow over CSXT Railroad April 24, 2006 Page 2

location was available for the analysis, it was assumed that the amount of soil would be minimal, since bedrock is exposed in the cut adjacent to the wall location. Consequently, it was assumed there was a 7.5-foot thick soil layer at the wall location, the same as encountered in Boring TR-27. The soil type and thickness needs to be confirmed with an additional soil boring prior to performing the final wall analysis.

A global stability analysis was performed on the MSE wall at the rear abutment using the above assumptions. The analysis resulted in a critical factor of safety of 1.6, which is considered stable. The wall was not analyzed for bearing capacity, sliding, or settlement.

In order to complete the analysis for the MSE wall at this bridge, it is recommended that an additional soil boring to confirm the soil thickness be drilled at the location of the rear abutment after the bridge type is approved. It should be noted that this additional boring is also needed to provide information to finalize the bridge foundation recommendations. Another soil boring may be needed at the forward abutment, as well.

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted,

DLZ OHIO, INC.

Dorothy A. Adams, P.E.

Geotechnical Engineer

Arthur (Pete) Nix, P.E.

Geotechnical Division Manager

Attachments: Borings Logs for B-27 and B-28

cc: J. Cox, file

M:\proj\0121\3070.03\Stability Analyses\Documents\MSE Wall letters\07 Shumway Hollow Road\MSE Wall Findings - Shumway Hollow CSX Prelim 04-24-06.doc

Depth Elev. (in) (ft) (ft) (646.3 Blows per 6" (Accovery (in)	TR-2				Project: SCI-823-0.00	Job No. 01	0121-3070.03
				Location: Ap	Approx. Sta. 36+00, 5 ft Lt. of Reloc. Shumway Hollow Date Drilled: 8/25/04		
<u> </u>		Sample No.	e euc	Hand Penetro- meter	l	RADATION	TRATION (N)
	Кесолегу	evin□	O\ ssen9	(tsf)	DESCRIPTION Aggregation Sand	% A. Sand Natural Moisture Content, % A. Sand % A. S.	ontent, % - \Box
10] `[~		4.5+		66666	0,4
8 13 13	3 18	N		4.5+		C	
4 10 50	16	ო	 \	4.5+	@ 6.0' to 7.5', contains sandstone fragments.)	/
9					Medium hard to hard brown and gray SANDSTONE; very fine to fine grained, slightly to highly weathered, argillaceous, micaceous, massively bedded, slightly fractured. (2.5' to 10.0', rust stained. (2.8',8.9' and 15.6', low angle fractures.		8
Core 120"	120"	RQD 98% R-1	<u> </u>				
					@ 14.9' to 15.2', high angle fractures.		
628.8					Bottom of Boring - 17.5'		
					-		

Job No. 0121-3070.03		STANDARD PENETRATION (N)	Natural Moisture Content, % - • PL Blows per foot - •	30 40	Č) C))=		3		
02-02-05	GRADATION	p	% Aggreg % M. Sand % F. Sand % Silt % Clay	6 6 6				()					
Approx. Sta. 38+20, 20 ft Rt. of Reloc. Shumway Hollownate Ditliert: 02-02-05		Water seepage at: 14.0', 18.5' Water level at completion: 10.0' (includes drilling water)	DESCRIPTION	Asphalt Concrete Pavement - 8"	Very stiff to hard brown SILT AND CLAY (A-6a), trace fine to coarse sand; damp.	Medium dense reddish brown COARSE AND FINE SAND (A-3a); (residual soil); moist.					Severely weathered gray SANDSTONE argillaceous.	@ 18.5' to 24.0', broken.	Medium hard to hard gray SANDSTONE; very fine to fine grained, moderately to highly weathered, argillaceous, massively bedded, slightly fractured.	
Location: Ay] 	Hand Penetro- meter	(tst)		4.0									
7	Sample No.		Orive Press /C											RQD R-2
88	ιώ	<u></u>	Recover		0	N	<i>м</i>	4	r.	9			RQD 12%	
ems, Inc. og TR-28			ed swola	-	8 8 16	7 15	7 18	79,	4 4	4 13	- 2		. Rec	8 Rec 28 **
Client: TranSystems, Inc. LOG OF: Boring TR-2	<u>. </u>		(ff) (659.7 ©	659.0	4 4 8 4 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8	2	ဆ	6 4	မ က	<u>-</u> 4	7. 18 18		Core 60"	Core
Client: Tra	_			T	- - 		1 -1 -1	100	 	£;	5 44.74	1 -	20 20	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Job No. 0121-3070.03		STANDARD PENETRATION Natural Moisture Content, 5	Blows per foot -		
20-02-05	GRADATION	pue pue	% C. S. % M. S % F. S. % Silt % Clay	5	
Approx. Sta. 38+20, 20 ff Rt. of Reloc. Shimway Hollows-to Dalliot. 02-02-05		Water seepage at: 14.0', 18.5' Water level at completion: 10.0' (includes drilling water)	DESCRIPTION	Dottom of Basing 30 Et	Bottom of Boring - 30.59
Location: Ap		<u> </u>	(tsf)		
	Sample No.	ഖ രე/	evinQ seen9		
s, Inc. TR-28		ery (in)		+	
		bet 6"		+	
→	 	Elev.	(ff) 629.7	629.2	
TranSystem OF: Boring					

11. 12. 12. 12. 12. 12. 12. 12. 12. 12.	MATERIAL PROPERTIES	\vdash	WEIGHT UNDRAINED DRAINED	, b, c, de c,	120 0 34 0	120 0 30	UBANKNENT 120 4000 0 0	120 0 36 0	S. FOUNDATION SILTY CLAY 125 2000 0 0 30	HOTES	1. PROPERTIES OF FOUNDATION SILTY CLAY ARE ASSUMED	LAYEN THICKNESS WEED TO BE CONFINNED BY ADDITIONAL BORINGS.	 2. RAILHDAD AND FORWARD ABUTWENT AREA NOT SHOWN FOR CLARITY.											RELOCATED SHUWMAY HOLLOW	REAR ABUTWENT PROFILE BASED ON BORING TR-27	WSE WALL STABLITY ANALYSIS	PROJ. HO. 0121-3070.03 CALC! DAA DATE: 4/24/06
					1. NSE F	2. BACKF	3. EXISTI	4, BOCK F	S. FOUND.					CATOR OF SAETY ISO	. WSE WALL FACE	78-57 TR-52	→	1111	H .82-7	STATE CHING			BEDROCK			A STATE OF THE PARTY OF THE PAR	

MSE Walls at Shumway Hollow over CSXT Rallroad, Project SCI-823-0.00 Mike and Jon, It is understood from conversations with Steve Reidy that you had some questions about feasibility of an MSE wall at the forward abutment of the Relocated Shumway Hollow Brid over CSXT Railroad. As mentioned in the preliminary report submitted on April 24, 2006 the MSE walls at this location, an MSE wall at the forward abutment would likely be bearing on bedrock. Based on the information from the borings we have drilled (TR-27 an TR-28) and visual observation of the cut slopes adjacent to the bridge site, the bedroc at the bearing elevation is a hard sandstone. With such a competent material, the globs stability, bearing capacity, sliding, and settlement analysis results of the MSE fill this bedrock are expected to be much greater that the minimum required factors of safet Consequently, we feel that no further analysis is needed for an MSE wall bearing on bedrock. To estimate the amount of rock excavation required, you should plan on a reinforcing st length of 0.7 times the wall height plus allow an additional 5 to 10 feet of room arour all sides for construction equipment. In addition, an access ramp will likely need to the excavated because there probably will not be room to build an access ramp at the open sof the excavation adjacent to the railroad. We are working on an exhibit for the stability analysis at the rear abutment and will forward it to you as soon as it is ready, probably tomorrow morning. Please call if you have any questions or need additional information. Dorothy Adams, P.E. Geotechnical Engineer	From: Sent: To: Cc:	Dorothy Adams [dadams@dlzcorp.com] Wednesday, April 26, 2006 3:28 PM CN-Michael Lenett; CN-Jon Cox Steve Riedy; Pete Nix
It is understood from conversations with Steve Reidy that you had some questions about feasibility of an MSE wall at the forward abutment of the Relocated Shumway Hollow Brid over CSXT Railroad. As mentioned in the preliminary report submitted on April 24, 2006 the MSE walls at this location, an MSE wall at the forward abutment would likely be bearing on bedrock. Based on the information from the borings we have drilled (TR-27 at TR-28) and visual observation of the cut slopes adjacent to the bridge site, the bedroc at the bearing elevation is a hard sandstone. With such a competent material, the globs stability, bearing capacity, sliding, and settlement analysis results of the MSE fill of this bedrock are expected to be much greater that the minimum required factors of safet Consequently, we feel that no further analysis is needed for an MSE wall bearing on bedrock. To estimate the amount of rock excavation required, you should plan on a reinforcing st length of 0.7 times the wall height plus allow an additional 5 to 10 feet of room arour all sides for construction equipment. In addition, an access ramp will likely need to be excavated because there probably will not be room to build an access ramp at the open sof the excavation adjacent to the railroad. We are working on an exhibit for the stability analysis at the rear abutment and will forward it to you as soon as it is ready, probably tomorrow morning. Please call if you have any questions or need additional information. Dorothy Adams, P.E. Geotechnical Engineer DLZ Ohio, Inc. (614) 888-0040		MSE Walls at Shumway Hollow over CSXT Railroad, Project SCI-823-0.00
reasibility of an MSE Wall at the forward abutment of the Relocated Shumway Hollow Bride over CSXT Railroad. As mentioned in the preliminary report submitted on April 24, 2006 the MSE walls at this location, an MSE wall at the forward abutment would likely be bearing on bedrock. Based on the information from the borings we have drilled (TR-27 at TR-28) and visual observation of the cut slopes adjacent to the bridge site, the bedroc at the bearing elevation is a hard sandstone. With such a competent material, the global stability, bearing capacity, sliding, and settlement analysis results of the MSE fill of this bedrock are expected to be much greater that the minimum required factors of safet Consequently, we feel that no further analysis is needed for an MSE wall bearing on bedrock. To estimate the amount of rock excavation required, you should plan on a reinforcing st length of 0.7 times the wall height plus allow an additional 5 to 10 feet of room aroun all sides for construction equipment. In addition, an access ramp will likely need to be excavated because there probably will not be room to build an access ramp at the open sof the excavation adjacent to the railroad. We are working on an exhibit for the stability analysis at the rear abutment and will forward it to you as soon as it is ready, probably tomorrow morning. Please call if you have any questions or need additional information. Dorothy Adams, P.E. Geotechnical Engineer DLZ Ohio, Inc. (614) 888-0040	Mike and Jon,	
length of 0.7 times the wall height plus allow an additional 5 to 10 feet of room aroun all sides for construction equipment. In addition, an access ramp will likely need to be excavated because there probably will not be room to build an access ramp at the open so of the excavation adjacent to the railroad. We are working on an exhibit for the stability analysis at the rear abutment and will forward it to you as soon as it is ready, probably tomorrow morning. Please call if you have any questions or need additional information. Dorothy Adams, P.E. Geotechnical Engineer DLZ Ohio, Inc. (614) 888-0040	over CSXT Railroad the MSE walls at the bearing on bedrock TR-28) and visual at the bearing elestability, bearing this bedrock are e Consequently, we fi	MSE wall at the forward abutment of the Relocated Shumway Hollow Bridged. As mentioned in the preliminary report submitted on April 24, 2006 for this location, an MSE wall at the forward abutment would likely be as a Based on the information from the borings we have drilled (TR-27 and observation of the cut slopes adjacent to the bridge site, the bedrock evation is a hard sandstone. With such a competent material, the global capacity, sliding, and settlement analysis results of the MSE fill on expected to be much greater that the minimum required factors of safety.
Please call if you have any questions or need additional information. Dorothy Adams, P.E. Geotechnical Engineer DLZ Ohio, Inc. (614) 888-0040	all sides for cons excavated because	es the wall height plus allow an additional 5 to 10 feet of room around struction equipment. In addition, an access ramp will likely need to be there probably will not be room to build an access ramp at the open significant.
Dorothy Adams, P.E. Geotechnical Engineer DLZ Ohio, Inc. (614) 888-0040	We are working on forward it to you	an exhibit for the stability analysis at the rear abutment and will as soon as it is ready, probably tomorrow morning.
Geotechnical Engineer DLZ Ohio, Inc. (614) 888-0040	Please call if you	n have any questions or need additional information.
(614) 888-6415	Geotechnical Engin DLZ Ohio, Inc. (614) 888-0040	
	(614) 888-6415	