

SCI-823-0.00

PID No. 19415

S.R. 823 OVER PORTSMOUTH-

MINFORD ROAD (S.R. 139)

STRUCTURE TYPE STUDY SUBMITTAL

Prepared for:

OHIO DEPARTMENT OF TRANSPORTATION

DISTRICT 9

650 EASTERN AVE.

CHILLICOTHE, OHIO 45601

APRIL 14, 2005

Prepared by:

TABLE OF CONTENTS

Table of Contents	Page No.
1. Introduction	1
2. Design Criteria	1
3. Subsurface Conditions and Foundation Recommendation	1
4. Roadway	2
5. Hydraulic Report	2
6. Proposed Structure Configurations	3-6
7. Recommendations	7
APPENDIX A • Preliminary Probable Construction Cost	14 Sheets
 APPENDIX B Preliminary Site Plan – Alternative 1A (Sheet 1 of 4) Preliminary Site Plan – Alternative 1A (Sheet 2 of 4) Typical Transverse Section (Sheet 3 of 4) Abutment Details – Alternative 3 (Sheet 4 of 4) 	4 Sheets
APPENDIX C • Preliminary Vertical Clearance Calculations	8 Sheets
 APPENDIX D Conceptual Site Plan – Alternative 1 (Sheet 1 of 4) Conceptual Site Plan – Alternative 2 (Sheet 2 of 4) Conceptual Site Plan – Alternative 3 (Sheet 3 of 4) Conceptual Transverse Section – Alternative 2 and 3 (Sheet 4 of 4) 	4 Sheets
APPENDIX E	•
Preliminary Geotechnical Report	
APPENDIX F	

• Hydraulic Report

BRIDGE TYPE STUDY NARRATIVE

1. Introduction

TranSystems Corporation is providing engineering services to the Ohio Department of Transportation for the design of new left and right overpass structures that will carry the proposed S.R. 823 bypass over existing Portsmouth-Minford Road (SR 139) and Long Run Creek. As requested by the Scope of Services, a Bridge Type Study report is to be submitted before any plan development. The purpose of this report is to investigate various span arrangements and superstructure and substructure types in order to determine the most appropriate and economical structure type that will meet the project requirements. An initial Bridge Type Study report dated 7/15/2005 was submitted to the Department and comments, dated 9/1/2005, were in turn received by Transystems Corporation. However, since these dates, the entire project has experienced a change in profile - the original project profile presented in the Preferred Alternative Verification Report (PAVR) submitted July 2005 has been altered and the revised profile has been approved by the Department. The revised profile raises the elevations of the proposed S.R. 823 Mainline over Portsmouth-Minford Road (SR 139) from the elevations specified in the July 2005 PAVR. Built-up embankments are, therefore, increased which requires lengthening of the span lengths with the use of 2:1 embankment slopes. Due to the changes in span lengths, bridge types for the proposed S.R. 823 Mainline over Portsmouth-Minford Road were reevaluated. This follow-up Bridge Type Study presents the results of these reevaluations as well as alternative bridge types that are investigated in accordance with the 9/1/2005 ODOT comments. As a result, four (4) alternatives for construction of the proposed S.R. 823 Mainline over Portsmouth-Minford Road are evaluated in this study and are designated as Alternatives 1, 1a, 2 and 3. Each of these alternatives is evaluated with regard to estimated construction cost, projected maintenance costs, horizontal and vertical clearances, constructability, hydraulic performance and maintenance of traffic. Discussion of these alternatives is presented later in this report.

2. Design Criteria

The proposed structure will be designed according to the most current version of the Ohio Department of Transportation Bridge Design Manual and the 2002 AASHTO Standard Specifications for Highway Bridges, 17th Edition. Horizontal clearances (clear zone width and horizontal sight distance) are based on the Ohio Department of Transportation Location and Design Manual, Volume One – Roadway Design.

3. Subsurface Conditions and Foundation Recommendation

DLZ Ohio, Inc. performed the subsurface exploration for the proposed bridge and prepared the Preliminary Bridge Foundation Recommendations which were presented in Section 3 and Appendix E of the original 7/15/2005 Structure Type Study report. Per phone discussion with DLZ Ohio, Inc. on 7/06/05, an addendum will be submitted during the TS&L stage stating that substructures located in areas of new embankment construction should be founded on H-piles. Thus, for the abutments which are founded on fill, HP14x73 piles with a maximum design load of 95 tons should be used. Updated boring logs for the four test borings (TR-15, TR-16, TR-18 and TR-19) and preliminary MSE wall evaluations – performed by DLZ Ohio, Inc. – accompany this modified/updated Structure Type Study Report. The preliminary evaluations reveal that MSE walls can be used at the rear and forward abutment locations as long as the naturally occurring soils beneath the proposed MSE walls are overexcavated to top of rock and replaced with compacted, granular fill. Refer to the preliminary MSE wall evaluation report for more details and information.

4. Roadway

The purpose of this project is to construct a new bypass state route around the town of Portsmouth, Ohio. The proposed alignment will carry two lanes of traffic, 15 plus miles in either direction, from an interchange with US 52 just east of Portsmouth to another interchange with US 23, located north of Portsmouth in Valley Township.

Both the left and right structures are similar and will consist of two 12'-0" travel lanes with 6'-0" median shoulders and 12'-0" outside shoulders. Including a 1'-6" inside median parapet and a 1'-6" outside straight face deflector parapet yields a structure deck width of 45'-0" out to out.

The distance from the centerline of construction of SR 823 to the near edge of both the left and right structures is constant at 3'-6". Horizontal and vertical sight distances, in accordance with the design standards, have been provided over the bridge for all alternatives considered.

Vertical and Horizontal Design — Since the proposed vertical alignment for all overpass structures on this project was dictated by the overall design of the new bypass profile, vertical clearance was not a critical design issue for each alternative proposed herein. For this report, more than 17'-0" of preferred vertical clearance could be provided for each structure's alternatives considered. In accordance with the ODOT L&D manual, Volume 1, for the twin structures at Portsmouth-Minford Road, a minimum horizontal clear zone width of 23'-0" from edge of traveled way to face of obstruction.

The existing Portsmouth-Minford Road will remain on its current horizontal and vertical alignment. The cross section will remain unchanged.

Pavement Drainage - The collection of storm water runoff will be addressed off of the bridge, thus scuppers will not be required. The type of drainage system will be investigated as part of the preliminary design.

Utilities - No utilities will be placed on the bridge. However, lighting and ITS conduits will be provided as necessary. An existing waterline runs parallel to SR 139 approximately 30' off the east edge of pavement. The waterline is approximately 10'-0" in front of the MSE wall and it is preferred to relocate this waterline. There is an existing aerial electric line also on the east side of SR 139 that will need to be relocated. There are no other utilities known at this point in time.

Maintenance of Traffic - While the new bridges are under construction, traffic will be maintained on the existing Portsmouth-Minford Rd. It is anticipated that there will be limited closures during construction for beam setting.

5. Hydraulic Report

A Hydraulic Report has been prepared for the proposed structures alternatives over Long Run Creek in accordance with section 201.2.3 of the Bridge Design Manual. The hydraulic report shows that all concepts investigated will have minimal effect to the HW elevations when compared to the existing conditions. The report is available in Appendix F of this report.

6. Proposed Structure Configurations

Alignment & Profile: The proposed horizontal geometry is along a 1 degree curve to the right across the entire length of both the left and right structures. The section is superelevated at 3.6% for the given curve with a break at the high side shoulder in accordance with the BDM. The proposed mainline profile grade line is located on the inside edge of pavement for both bridges and begins in a tangent section at -2.9% leading into a 1500' sag vertical curve, PVI= 491+50, El. 675.94 and G2 = 4.5%. The horizontal and vertical geometry for all alternatives considered are the same. Embankment slopes will be a maximum of 2:1 in order to minimize right-of-way impacts.

Structure Types: As per the Scope of Services, we investigated several bridge types and alternatives as part of this type study. Various span configurations were investigated and were refined to the layouts discussed below. The location of the Long Run creek and Portsmouth-Minford Road dictated that either a 2-span or 4-span bridge would be most economical, with horizontal clearances to the roadway and hydraulic requirements of Long Run Creek affecting the locations of the piers and abutments. Three span structure alternatives were also investigated and dismissed. The 3-span arrangements provided for poorly balanced loading conditions to maintain clearances as well as being cost prohibitive in comparison to other options. The different alternatives discussed below modify the location and the number of piers, as well as the type of superstructure.

A preliminary bridge construction cost has been prepared for the four (4) Alternatives (See Appendix A). The unit prices were based on ODOT's Summary of Contracts Awarded Year 2004 inflated 3.5% each year to the 2008 sale date, unless different unit prices were recommended by ODOT in September 2005. This estimate will be used as a comparison between alternatives and as a guide to select the most economical structure. Maintenance costs such as painting, overlays and re-decking were included for each Alternative.

The structure types that were considered are outlined in the Structure Type Alternative Table below:

	BRIDGI	E TYPE ALTERNAT	TIVE TABLE	
Structure Type Alternative	1	1a	2	3
Superstructure Type Description	Straight, 66"web, continuous steel plate girders A709 Grade 50W	Prestressed Concrete Girders 72" Modified AASHTO Type 4 beams	Prestressed Concrete Girders 72" Modified AASHTO Type 4 beams	Curved, 68"web, continuous steel plate girders A709 Grade 50W
Proposed Beam Spacing	4 Spaces @ 9'-6"	4 Spaces @ 9'-9"	5 Spaces @ 7'-9"	4 Spaces @ 9'-6"
No. of Spans	2 (115'-115')	2 (115'-115')	4 -(112.5'-145'-110'-78.5')	4 -(112.5'-145'-110'-78.5')
Abutment Type	Stub Type abutments on MSE wall supported embankments (Semi-Integral)	Stub Type abutments on MSE wall supported embankments (Semi-Integral)	Stub Type abutments with 2:1 spill-through slopes (EXJ-6-06 Joint)	Stub Type abutments with 2:1 spill-through slopes (EXJ-4-87Joint)
No. of Piers	1	1	3	3
Pier Type	T-Type Pier	T-Type Pier	T-Type Pier	T-Type Pier
Substructure Orientation	19°00'00"	19°00'00"	19°30'00"	19°30'00"
Approximate Bridge Length	230'	230'	446'	446'
Approximate Structure Depth Slab Haunch Beam Total	8.75" 2" 70.0" 80.75" (6.729')	8.5" 2" 72.0" 82.5" (6.875')	8.5" 2" 72.0" 82.5" (6.875')	8.75" 2" 72.0" 82.75" (6.896')

Alternatives Discussion:

Alternative 1

This alternative is comprised of a 2-span structure with span lengths of 115'-0" and 115'-0", for an overall bridge length of 230'-0" from centerline bearings at abutments, as measured at the centerline of construction. The abutments and pier are oriented with a 19°00'00" skew with respect to the reference chord from intersection of centerline of construction and abutment bearing centerlines. Embankment slopes are supported by MSE walls approximately 40'-45' in height at both abutments. The MSE walls are founded 3' above the 500 year headwater elevation in accordance with the comments provided 9/1/05 on the original 7/15/05 Structure Type Study. The slopes in front of the MSE walls will need to be protected with rock channel protection according to the hydraulic analysis. The MSE walls are set to allow for the adequate hydraulic opening. A ditch will be required in front of the forward MSE wall to convey the roadway drainage and floodplain drainage of Long Run Creek. Details of the ditch will need to be coordinated with the nearby stream relocation.

The abutments will be semi-integral type supported on H-piles as they are located in new embankment fill. The piles shall be HP14x73 with a design capacity of 95-tons per pile, driven

to refusal on bedrock. The details of the abutments will follow ODOT Standard Construction drawings. Piles will need to be sleeved through the MSE wall embankment zone in accordance with the MSE wall Special Provisions.

The single pier will consist of a T-type pier supported on a spread footing founded on bedrock, with a design capacity of 15 tsf. The pier dimensions were assumed to estimate quantities and will need to be established in final design.

The preliminary design of this alternative consists of 5 - 66" web Grade 50W plate girders, spaced at 9'-6" with 3'-0" minimum and 4'-0" maximum deck overhangs. The design loading applied was HS-25 (Case I fatigue) with Alternate Military Loading and a future wearing surface of 60 psf. The girders will be detailed as straight and placed parallel to the reference chord causing the overhangs to vary to accommodate the large radius curve. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 45'-0". Deck thickness, including a 1" monolithic wearing surface, is 8 34".

The initial bridge construction cost for Alternative 1 is estimated to be \$5,100,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$2,138,000, resulting in a total estimated ownership cost of \$7,238,000 in year 2008 dollars.

Alternative 1a

Alternative 1a is similar to Alternative 1 except that the superstructures for the left and right structures consist of 5 - 72" Type 4 Modified prestressed beams, spaced at 9'-9" with 2'-10 1/2" minimum and 3'-1 1/2" maximum overhangs. The girders will be placed along chords between substructures to accommodate the large radius curve. The structures will be simple span for non-composite dead loads and continuous for composite dead loads and live loads. In accordance with the BDM, the beams were checked for a simply supported condition under under all loads except the future wearing surface. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 45'-0". Deck thickness, including a 1" monolithic wearing surface, is 8 1/2". Standard beam strengths from the BDM were used for this alternative. However, a 1 ksi increase in final and release strengths may allow the use of a smaller 66" beam.

The initial bridge construction cost for Alternative 1a is estimated to be \$5,320,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$1,102,000, resulting in a total estimated ownership cost of \$6,422,000 in year 2008 dollars.

Alternative 2

This alternative is comprised of a 4-span structure with span lengths of 112'-6", 145'-0", 110'-0" and 78'-6", for an overall bridge length of 446'-0" from centerline bearings at abutments, measured along the centerline of construction. The abutments and piers are oriented with a 19°30'00" skew with respect to the reference chord from intersection of centerline of construction and abutment bearing centerlines. Embankment slopes of 2:1 are used for both abutments. The rear embankment toe of slope was set to extend to a minimum elevation of approximately 632.0 to minimize the amount of fill with below the 100 year flood event. The forward embankment is set to begin at the 23'-0" clear zone allowing for a traversable roadway ditch within that zone.

Both the forward and rear abutments will be stub type supported on H-piles as they are located in new embankment fill. The piles shall be HP14x73 with a design capacity of 95-tons per pile, driven to refusal on bedrock. The details of the abutments will follow ODOT Standard Construction drawings.

The three piers will consist of a T-type piers, each supported on a single spread footing founded on bedrock, with a design capacity of 15 tsf. The pier dimensions were assumed to estimate quantities and will need to be established in final design.

The preliminary design of this alternative consists of 6-72" Type 4 Modified prestressed beams, spaced at 7'-9" with 3'-0" minimum and 4'-0" maximum overhangs. The design loading applied was HS-25 with Alternate Military Loading and a future wearing surface of 60 psf. The girders will be placed along chords between substructures to accommodate the large radius curve. The structures will be simple span for non-composite dead loads and continuous for superimposed and live loads. In accordance with the BDM the beams are also checked for a simply supported condition under all loads except the future wearing surface. This analysis indicates that concrete strengths of 6000 psi at release and 8000 psi final are required. Preliminary discussions with a precaster indicate concrete strength and shipping feasibility were not of particular concern or reason for additional cost. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 45'-0". Deck thickness, including a 1" monolithic wearing surface, is 8 1/2".

The initial bridge construction cost for Alternative 2 is estimated to be \$6,570,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$2,062,000, resulting in a total estimated ownership cost of \$8,632,000 in year 2008 dollars.

Alternative 3

Alternative 3 is similar to Alternative 2 except that the superstructures for the left and right structures are 5-68" web Grade 50W curved plate girders, spaced at 9'-6" with 3'-6" overhangs, would be required to accommodate the HS25 design loading. Both the left and right bridge width will be 42'-0" from toe to toe of parapets with an overall bridge deck width of 45'-0". Transverse stiffeners will be used in approximately 3 locations. This provides for a significant savings in the steel for the web and minimal use of the stiffeners.

The initial bridge construction cost for Alternative 3 is estimated to be \$5,990,000 in year 2008 dollars. The present value life cycle maintenance costs for this alternative are estimated to be \$4,187,000, resulting in a total estimated ownership cost of \$10,177,000 in year 2008 dollars.

7	7. Recommendations:
_]	Based upon the above information and discussions, we recommend Structure Type Alternative 1a , which consists of 2-Span 72" Type 4 Modified prestressed beams with semi-integral abutments, on MSE wall supported embankments and T-Type piers, for both the left and right structures. (See Appendix B for the Site Plan and Structure Details).
	Our recommendation for Alternative 1a is based on the following items:
	a. This Alternative appears to be economical when considering the construction costs.b. Lowest life cycle costs.
	c. Lowest total ownership costs.

APPENDIX A

TRANSYSTEMS
CORPORATION

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY

By: PJP Checked: JRC Date: 4/10/2006

ate: 4/11/2006

¬ALTERNATIVE COST SUMMARY

	Alternative No.	Span Ar No. Spans	rangement Lengths	Total Span Length (ft.)	Framing Alternative	Proposed Stringer Section	Subtotal Superstructure Cost	Substotal Substructure Cost	Structure Incidental Cost (16%)	Structure Contingency Cost (20%)	Alternative Const. Cost	Life Cycle Maintenance Cost	Total Relative Ownership Cost
	1	2	115' - 115'	230.00	5 Steel Girders /per BRIDGE	66" Web Grade 50W	\$1,933,000	\$1,729,000	\$585,900	\$849,600	\$5,100,000	\$2,138,000	\$7,238,000
	1a	2	115' - 115'	230.00	5 Prestressed Concrete Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$1,978,000	\$1,844,000	\$611,500	\$886,700	\$5,320,000	\$1,102,000	\$6,422,000
	2	4 1	12.5' - 145' - 110' - 78.5'	446.00	6 Prestressed Concrete Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$3,397,000	\$1,325,000	\$755,500	\$1,095,500	\$6,570,000	\$2,062,000	\$8,632,000
	3	4 1	12.5' - 145' - 110' - 78.5'	446.00	5 Steel Girders /per BRIDGE	68" Web Grade 50W	\$3,203,000	\$1,098,000	\$688,200	\$997,800	\$5,990,000	\$4,187,000	\$10,177,000
1						· · · · · · · · · · · · · · · · · · ·							

NOTES:

- 1. Structure incidental cost allowance includes provision for structure excavation, porous backfill, sealing of concrete surfaces, structural steel painting, bearings, and crushed aggregate slope protection costs.
- 2. Estimated construction cost does not include existing structure removal (if any), which should be quantified seperately, if required.

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 1 - SUPERSTRUCTURE

By: PJP Checked: JRC

Date: 4/10/2006 Date: 4/11/2006

SUPERSTRUCTURE

Alternative No.	Span Arra No. Spans	ngement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost	Framing Alternative	Proposed Girder Section	Structural Steel Weight (Pounds)	Steel Girder Cost	Subtotal Superstructure Cost	Construction Complexity Factor	Subtotal Superstructure Cost
1	2	115' - 115'	230.00	233	770	\$454,300	\$193,100	\$99,000	\$309,100	5 Steel Girders /per BRIDGE	66" Web Grade 50W	675000	\$785,804	\$1,841,000	5%	\$1,933,000

	COST SUPPORT CALCULATIONS	
Deck Cross-Sectional Area:		
Parapet Parapets: Individual Area No. Area (sq. ft.) (sq. ft.)	Structural Steel Unit Costs (\$/lb.): Cost Year Annual Year Ratio 2005 Escalation 2008	
Parapets 1 4.26 4.26 Parapets 1 4.26 4.26 Total	Rolled Beams - Grade 50 n/a \$0.74 3.5% \$0.85 Level 4 Plate Girders - Grade 50W n/a \$1.05 3.5% \$1.16 Straight Girders	
Slab	level 5 Plate Girders - Grade 50W n/a \$1.20 3.5% \$1.38 Curved Girders	
Note: Deck width is out to out 10% of deck area allowed for haunches and overhangs.		
QC/QA Concrete, Class QSC2 Unit Cost (\$/cu. yd): Year Annual Year , 2004 Escalation 2008	Construction Complexity Factor Percent of Superstructure = 5% Due to Deck forming, Screed and Varying Girder Spaces	
Deck \$491.00 3.5% \$563.00 Parapets \$615.00 3.5% \$706.00 Weighted Average = \$590.00		
Based on parapet and slab percentages of total concrete area	Reinforced Concrete Approach Slabs (T=17") Expansion Joints Unit Cost (\$/sq. yd.): Unit Costs (\$/Lin.Ft.): Cost Year Annual Year Length = 30 ft. Width = 90 ft Ratio 2004 Escalation 2008 Area = 300 sq. yd.	
Epoxy Coated Reinforcing Steel Unit Cost (\$/lb): Assume 285 lbs of reinforcing steel per cubic yard of deck concrete	Strip Seal Expansion Joints 1.00 ##### 3.5% ##### Year Annual Year <u>2004 Escalation</u> 2008 Approach Slabs \$144.00 3.5% \$165.00	
Year Annual Year 2004 <u>Escalation</u> 2008	Approach Roadway Year Annual Year	
Deck Reinforcing \$0.77 3.5% \$0.88	Feat Altitual Feat Part Part	

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 1 - SUBSTRUCTURE

By: PJP Checked: JRC

Date: 4/10/2006 Date: 4/11/2006

SUBSTRUCTURE

Alternative No.	Span Arra No. Spans	angement Lengths	Framing Alternative	Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	MSE Wall Cost	Additional Crane Cost	Subtotal Substructure Cost
1	2	115' - 115'	5 Steel Girders /per BRIDGE	66" Web Grade 50W	\$200,900	\$45,800	\$173,400	\$28,400	\$184,000	\$1,096,900	\$0	\$1,729,000

_						1699 8 121 17 7		COST SUPP	ORT CALCULATION	ONS .					
	Pier QC/QA C	oncrete, Class (QSC1 Cost: (Sprea	ad Footing)					Pile Foundatio	unit Cost (\$/ft.):	HP 14X73 Piles, Furn	ished & Driven			
1															
П	Component	Volume (cu. yd.)	Year <u>2004</u>	Annual Escalation	Year 2008	Total <u>Cost</u>				Number of Piles		Total Pile <u>Length</u>			
Н	Cap	88	\$421.00	3.5%	\$483.00	\$42,500						<u>Lengui</u>			
_	Stem	216	\$421.00	3.5%	\$483.00	\$104,330				80	SEE QUANTITY CALCULATIONS	4,600			
	Footings Fotal	112 416	\$421.00	3.5%	\$483.00	\$54,100 \$200,900									
П	IOIAI	710				\$200,900			Pile Foundatio	n Unit Cost (\$/ft.):	Year 2005 Annual	Year			
											Unit Cost Escalation	2008			
П	Pier QC/QA C	oncrete, Class (QSC1 Cost: (Drille	d Shaft)											
										Furnished	\$26.47 3.5%	\$29.30			
	Component	Volume (cu. yd.)	Year 2004	Annual Escalation	Year 2008	Total <u>Cost</u>				Driven Total	\$9.62 3.5%	\$10.70			
	Cap	<u>(cu. yu.)</u> 0	\$421.00	3.5%	\$483.00	\$0			Shaft Foundati	on Unit Cost (\$/ft.):	36" Drilled Shaft	\$40.00			
	Columns	0	\$421.00	3.5%	\$483.00	\$0			<u>Oliciti Collidat</u>	ON OTHE GOST (Q/IL.).	30 Drilled Griatt				
	Footings	0	\$421.00	3.5%	\$483.00	\$0				Number of Shafts			Total Shaft		
	Total	IOA Camarata (Class QSC1 Cost:			\$0							<u>Length</u>		
	Abutment QC	A Concrete, C	Jiass QSC1 Cost.						Alt. 1	0	SEE QUANTITY CALCULATIONS		0		
4		Volume	Year	Annual	Year	Total			AL 1		SEE QUANTITY CAECULATIONS		Ü		
	Component	(cu. yd.)	<u>2004</u>	Escalation	<u>2008</u>	Cost			Shaft Foundat	on Unit Cost (\$/ft.):					
	Abutment	312	\$421.00	3.5%	\$483.00	\$150,700			<u>Unit Cost</u>	<u>Escalation</u>	<u>2008</u>		horing and Supp	<u>ort</u>	
4	Wingwalls	47	\$421.00	3.5%	\$483.00	\$22,700						Unit Costs (S			
		Note: 15%	of abutment volume	allowed for wingwal	ls				\$300.00	4.5%	\$358.00		Temp. Shoring Area (sq. ft.)	Temp. Girder Support (lump sum)	
									Cost of Shafts:	\$ -			Area (sq. it.)	Support (lump sum)	
												Alt. 1	0	\$ -	
													Year 2004	Annual	Year
													Unit Cost	<u>Escalation</u>	2008
	Enovy Costo	d Reinforcing St	tool									Temporary			
	Unit Cost (\$/I		(ee)		9	MSE Abutmen	t Unit Cost (\$/sq.	# \}·				Shoring	\$22.50	3.5%	\$25.80
			el per cubic yard of p	ier concrete.		MOL Abdillel	Total Area	Year 2005	Annual	Year		Cofferdam	\$32.00	3.5%	\$36.70
_			per cubic yard of ab				(sq. ft.)	Unit Cost	Escalation	2008				0.0%	Ψου.το
		Year	Annual	Year		Alt. 1	19,800	\$50.00	3.5%	\$55.40	Additional C	rane Cost			
		2004	<u>Escalation</u>	<u>2008</u>											
	Pier	\$0.77	3.5%	\$0.88							s -				
	Abutment	\$0.77 \$0.77	3.5%	\$0.88											

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 1 - QUANTITY CALCULATIONS

By: PJP Checked: JRC

			C	ар				Sten	1				Footing		
Pier Location	Length	Width			Volume	Width	Height			Volume	Width	Depth	Length	Volume	Total Volume
Pier 1 (Spr Ftg)	46	3	8.67	26.01	1196			19.00		2907	15			1500	5603
Pier 2															
Pier 3															C
Pier 4															(
Pier 5									1						(
Pier 6									W						(
Pier 7									¥ 1						(
Total (Cu.Ft.)					1196					2907				1500	5603
Total (Cu.Yd.)					44					108				56	
		-	Qty x 2 (L/R)	88					216				112	

	14		0 (0) (0)				Abutm	ent Q	uantitie	5						
Abut Location	Length		Bac	kwall		Beam Seat						Footing				
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area		Volume	Width	Depth	Area	# Footi	Volume	Total Volume
Rear Abut	47.5	3	6.75	20.25	962	3	2	6.00	(A) (A)	285	6	3	18	1	855	2102
Fwd. Abut	47.5	3	6.75	20.25	962	3	2	6.00		285	6	3	18	1	855	2102
Total (Cu.Ft.)					1924					570					1710	4204
Total (Cu.Yd.)					71				5.4	21					63	156
			Qty x 2 (L/R)	142				-	42					126	312

	butment W		/all	
Abut Location	Height	Length	Area	Volume
Rear Abut	40		0.0	
RA Wing (L)			0.0	
RA Wing (R)			0.0	
Fwd Abut	40		0.0	
FA Wing (L)			0.0	
FA Wing (R)			0.0	
Total (Sq.Ft.)			19800	

Note: MSE wall area from CAD.

Date: 4/10/2006 Date: 4/11/2006

Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	20	690.0	631.0	60.0	1200
Pier 1	0	0	0	0	140	0	1		0	0	0.0	0
Pier 2	0	0	0	0	140	0	1	1916 A 1916 O	0	0	0.0	STATE OF THE PARTY
Pier 3	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 4	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 5	0	0	0	0	140	0	1	0	0	0	0.0	at Advantage Co
Pier 6	0	0	0	0	140	0	1	0	0	0	0.0	
Pier 7	0	0	0	0	140	0	1	0	0	0	0.0	
Fwd. Abut.	0	0	0	0	140	0	1	20	678.5	626	55.0	1100
Total								40				2300
						-	Qtv x 2 (L/R)	80				460

Qty x 2 (L/R)	80	46
acy x z (Dit)		40

					36 DL	illed Sna	fts for Piers					
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 1	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 2	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 3	0	0	0	0	0	0	1	6 Mary 198	0	0	0.0	
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	ESTABLE THE NAME OF
Pier 5	0	0	0	C	0	0	1	oles de la co	0	0	0.0	evanies so sever o
Pier 6	0	0	0	C	0	0	1	0.00	0	0	0.0	
Pier 7	0	0	0	C	0	0	1	0	0	0	0.0	
Fwd. Abut.	0	10	0	C	0	0	1	0	0	0	0.0	
Total								0				CONTRACTOR OF THE PARTY OF THE

	Superstructu	ure Steel	Quantities	70.000 CHES
Location	Wt.of girder (lb)/ft	# Girders	Span Length	Total Weight
Span 1	293	10	115	337500
Span 2	293	10	115	337500
Span 3	0	0	0	0
Span 4	0	0	0	0
Span 5	0	0	0	0
Span 6	0	0	0	0
Span 7	0	0	0	0
Span 8	0	0	0	0
Total				675000

total steel weight per girder (lb.) = Total Span length (ft.)= Weight Per ft. =

67500 230.00 293

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 1a - SUPERSTRUCTURE

By: PJP Checked: JRC Date: 4/10/2006 Date: 4/11/2006

SUPERSTRUCTURE

Alternative No.	Span Arra No. Spans	angement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost	Framing Alternative	Proposed Stringer Section	Prestressed Concrete Cost	Subtotal Superstructure Cost	Construction Complexity Factor	Subtotal Superstructure Cost
1a	2	115' - 115'	230	233	752	\$444,600	\$188,700	\$99,000	\$309,100	5 Prestressed Concrete Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$842,100	\$1,884,000	5%	\$1,978,000

	COST SUP	PORT CALCUL	ATIONS			
Deck Cross-Sectional Area: Parapet Parapets: Individual Area	Prestressed Concrete Girders Unit Costs:	Year 2005	Annual Escalation	Year 2008	No. <u>Required</u>	
No. Area (sq. ft.) (sq. ft.) Parapets 1 4.26 4.26 Parapets 1 4.26 4.26 Total Slab: Slab Haunch & Concrete Area	AASHTO Type IV Beams Pier Diaphragms Abutment Diaphragms Intermediate Diaphragms Modified Type 4 I-Beams (72")	\$1,800 ea. \$1,200 ea. \$905 ea. \$300 per ft.	3.5% 3.5% 3.5% . 3.5%	\$2,070 ea. \$1,380 ea. \$1,040 ea. \$330 ea.	10 0 60 2300	\$20,700 \$0 \$62,400 \$759,000
T (ft.) W (ft.) Area Overhang Area (sq. ft.) Left Bridge 0.71 45.00 31.9 3.2 43.6 Right Bridge 0.71 45.00 31.9 3.2 43.6	Construction Complexity Factor Percent of Superstructure			ing, Screed and Vary		\$842,100
Note: Deck width is out to out 10% of deck area allowed for haunches and overhangs.	Reinforced Concrete Approach S Unit Cost (\$/sq. yd.): Length = 30 ft. Area = 300 sq. yd.	Midth = 90	ft			
QC/QA Concrete, Class QSC2 Unit Cost (\$/cu. yd): Year Annual Year 2004 Escalation 2008 Deck \$491.00 3.5% \$563.00	Year 2004 Approach Slabs \$144.00	Annual Escalation 3.5%	Year 2008 \$165.00			
Parapets \$615.00 3.5% \$706.00 Weighted Average = \$591.00 Based on parapet and slab percentages of total concrete area	Expansion Joints Unit Costs (\$/Lin.Ft.):	Cost <u>Ratio</u>	Year 2003	Annual Escalation	Year 2008	
Epoxy Coated Reinforcing Steel Unit Cost (\$/lb): Assume 285 lbs of reinforcing steel per cubic yard of deck concrete	Strip Seal Expansion Joints	1.00	\$250.00	3.5%	\$318.07	
Year Annual Year 2004 Escalation 2008 Deck Reinforcing \$0.77 3.5% \$0.88	Approach Roadway	Year 2005	Annual Escalation	Year 2008		
	Embankment fill 45,000.00 cu.y Roadway incl. base 2,250.00 sq.y Barrier (single faced) 450 ft. Barrier (dble faced) 225 ft.	d. \$4.00 d. \$26.00 \$50.00 \$80.00	3.5% 3.5% 3.5% 3.5%	\$4.43 \$28.83 \$55.44 \$88.70		

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 1a - SUBSTRUCTURE

By: PJP Checked: JRC

Date: 4/10/2006 Date: 4/11/2006

SUBSTRUCTURE

oobo						Dian	Dior	Abutment	Abutment	Pile	MSE	Additional		Subtotal
Alternative No.	Span A No. Spans	rrangement Lengths	Frami Alterna		Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Reinforcing Cost	Foundation Cost	Wall Cost	Crane Cost		Substructure Cost
1a	2	115' - 115'	5 Prestressed Co /per BRI		Modified AASHTO Type 4 (72")	\$231,900	\$52,800	\$173,400	\$28,400	\$186,000	\$1,096,900	\$75,000		\$1,844,000
						COST SUPPO	ORT CALCULATION	ONS						42.3
Pier QC/QA C	Concrete, Class	QSC1 Cost: (Spre	ad Footing)				Pile Foundation	on Unit Cost (\$/ft.):	Н	P 12X53 Piles, Furnis	hed & Driven			
			Annual	Year	Alt 1 Total			Number of Piles			Total Pile			
Component	Volume (cu. yd.)	Year 2004	Escalation	2008	Cost						<u>Length</u>			
Cap Stem	132 216	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$63,760 \$104,330			96	SEE QUANTIT	Y CALCULATIONS	5,520			
Footings	132	\$421.00	3.5%	\$483.00	\$63,760 \$231,900									
Total	480				\$231,900		Pile Foundation	on Unit Cost (\$/ft.):		Annual	Year			
									<u>Unit Cost</u>	Escalation	<u>2008</u>			
Pier QC/QA (Concrete, Class	QSC1 Cost: (Drille	ed Shaft)		Alt 1			Furnished	\$20.15	3.5%	\$23,10			
	Volume	Year	Annual	Year	Total			Driven Total	\$9.24	3.5%	\$10.60 \$33.70			
Component	(cu. yd.) 0	<u>2004</u> \$421.00	Escalation 3.5%	2008 \$483.00	Cost \$0		Shaft Founda	tion Unit Cost (\$/ft.	<u>.):</u> 3	6" Drilled Shaft	φοσσ			
Cap Columns	0	\$421.00	3.5%	\$483.00	\$0			Number of Shafts				Total Shaft		
Footings Total	0	\$421.00	3.5%	\$483.00	\$0 \$0			Number of Shares				Length		
	C/QA Concrete,	Class QSC1 Cost	<u>i</u>				Alt. 1a	0	SEE OLIANTIT	Y CALCULATIONS		0		
	Volume	Year	Annual	Year	Total					TOREOGENITORIO				
Component	(cu. yd.)	<u>2004</u>	<u>Escalation</u>	2008	<u>Cost</u>		THE RESIDENCE OF THE PARTY OF T	ation Unit Cost (\$/ft.	<u>.):</u> 2008		Temporary S	Shoring and Supp	ort	
Abutment	312 47	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$150,700 \$22,700		<u>Unit Cost</u>	Escalation	<u>2006</u>		Unit Costs (\$	6/sq. ft.):		
Wingwalls							\$300.00	4.5%	\$358.00			Temp. Shoring Area (sq. ft.)	Temp. Girder Support (lump sum)	
	Note: 15	% of abutment volum	e allowed for wingwall	ls.			Cost of Shafts:	\$ -						
											Alt. 1a	0	 	
												Year 2004	Annual	Year
												Unit Cost	Escalation	<u>2008</u>
											Temporary Shoring	\$22.50	3.5%	\$25.80
Epoxy Coate Unit Cost (\$	ed Reinforcing	<u>Steel</u>			MSE Abutment Unit Cost (\$/s	sq. ft.):								
Assume 125 II	bs of reinforcing st	teel per cubic yard of	pier concrete.		Total Area	Year 2005	Annual	Year 2008			Cofferdam	\$32.00	3.5%	\$36.70
Assume 90 lbs	s of reinforcing ste	eel per cubic yard of a	butment concrete.		(sq. ft.)	<u>Unit Cost</u>	Escalation							
	Year	Annual	Year		Alt. 2 19,800	\$50.00	3.5%	\$55.40		Additional Cr	ane Cost			
	<u>2004</u>	Escalation	<u>2008</u>											
Pier	\$0.77	3.5%	\$0.88 \$0.88		计算数据 100 元直 取					\$ 75,000				
Abutment	\$0.77	3.5%	Φυ.ΘΟ											

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE1a - QUANTITY CALCULATIONS

By: PJP Checked: JRC

			C	ар				Stem	***************************************	02		Footing		Total Volume
Pier Location	Length	Width	Depth	Area	Volume	Width	Height	Length	Volume	Width	Depth	Length	Volume	Total Volume
Pier 1 (Spr Ftg)				39.02	1795		51	19.00	2907	16	4	28.00	1792	6494
Pier 2				1 10.00										. (
Pier 3								0.7	-					(
Pier 4														(
Pier 5														
Pier 6														9
Pier 7								1						
Total (Cu.Ft.)					1795				2907				1792	
Total (Cu.Yd.)					66				108				66	
	-		Qty x 2 (L/R)	132			161	216				132	482

GPM Sales Service					de Hessel		Abutm	ent Qua	antities							
And the second second second	Length		Bac	ckwall				Beam S	eat		-1		Footin	g		Total Volume
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area .		Volume	Width	Depth	Area	# Footin	Volume	Total Volume
Rear Abut	47.5	3	6.75	20.25	962	3	2	6.00		285	6	3	18	1	855	2102
Fwd. Abut	47.5		6.75				2	6.00		285	6	3	18	1	855	2102
Total (Cu.Ft.)	17.0	-			1924					570				7	1710	4204
Total (Cu.Yd.)	_				71					21					63	156
Total (Surrai)			Otv x 2 ((L/R)	142		-			42		•			126	312

MSE Abutment Wall Quantities											
Al al Lacation		W	/all								
Abut Location	Height	Length	Area	Volume							
Rear Abut	40	0	0.0								
RA Wing (L)	0	0	0.0								
RA Wing (R)	0	0	0.0								
Fwd Abut	40	0	0.0								
FA Wing (L)	0	0	0.0								
FA Wing (R)	0	0	0.0								
Total (Sq.Ft.)			19800								

Note: MSE wall area from CAD.

Date: 4/10/2006 Date: 4/11/2006

Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.			(Feet)
Rear Abut.	0	0	0	0	140	0	1	24	690.0	631.0	60.0	1440
Pier 1	0	0	0	0	140	0	1	0	0	0	0.0	C
Pier 2	0	0	0	0	140	0	1	0	0	0	0.0	0
Pier 3	0	0	0	0	140	0	1	0	0	0	0.0	CONTRACTOR OF
Pier 4	0	0	0	0	140	0	0 1	0	0	0	0.0	
Pier 5	0	0	0	C	140	0	1	0	0	0	0.0	
Pier 6	0	0	0	C	140	0	1	0	0	0	0.0	
Pier 7	0	0	0	C	140	0	1	0	0	0	0.0	
Fwd. Abut.	0	0	0	C	140	0	1	24	678.5	626	55.0	1320
Total								48				276
Total							Qty x 2 (L/R)	96	The Alberta			552

Includes 5' of additional length into rock

					36"	Orilled Sh	nafts for Piers					
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	(Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	
Pier 1	0	0	0	0	0	- 0	1	0	0	0	2.0	0
Pier 2	0	0	0	0	0	0	1	0	0	0	2.0	O Allendaria
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	等於全角的學生在對於 0
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	o de la companya della companya della companya de la companya della companya dell
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	在我是一个数据中的。1970
Pier 7	0	0	0	0	0	0	1	0	0	C	0.0	0
Fwd. Abut.	0	10	0	0	0	0	1	0	0	C	0.0	0
Total												

Superstructure Steel Quantities											
Location	Wt.of girder (lb)/ft		Span Length	Total Weight							
Span 1	0	0	100	0							
Span 2	0	0	100	0							
Span 3	0	0	0	0							
Span 4	0	0	0	C							
Span 5	0	0	0	C							
Span 6	0	0	0	C							
Span 7	0	0	0	C							
Span 8	0	0	0	C							
Total				(

total steel weight per girder (lb.) = 0
Total Span length (ft.)= 230.00
Weight Per ft. = 0

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 2 - SUPERSTRUCTURE

By: PJP Checked: JRC Date: 4/10/2006 Date: 4/11/2006

SUPERSTRUCTURE

Alternative No.	Span Arr No. Spans	angement Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Approach Roadway Cost	Framing Alternative	Proposed Stringer Section	Prestressed Concrete Cost	Expansion Joint Cost	Subtotal Superstructure Cost	Construction Complexity Factor	Subtotal Superstructure Cost
2	4 11	2.5' - 145' - 110' - 78.5'	446	449	1450	\$856,700	\$363,500	\$82,500	\$0	6 Prestressed Concrete Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$1,932,260	\$52,664	\$3,235,000	5%	\$3,397,000
								COST SUPPOR				70 W S S S S S S S S S S S S S S S S S S				

Presidence Concrete Circles Value Const. Value Value Const. Value Const.		COST SUPPORT CALCULATIONS
Personal P		
No. Aparticist According According		Unit Costs: Year Annual Year No.
Note: Deck width is out to out	No. Area (sq. ft.) (sq. ft.) Parapets 1 4.26 4.26 Parapets 1 4.26 4.26 Slab: Slab Haunch & Concrete Area T (ft.) W (ft.) Area Overhang Area (sq. ft.) Left Bridge 0.71 45.00 31.9 3.2 43.6	Pier Diaphragms \$1,800 ea. 3.5% \$2,070 ea. 30 \$62,100 Abutment Diaphragms \$1,200 ea. 3.5% \$1,380 ea. 0 \$0 Intermediate Diaphragms \$905 ea. 3.5% \$1,040 ea. 100 \$104,000 Modified Type 4 I-Beams (72") \$300 per ft. 3.5% \$330 ea. 5352 \$1,766,160
Unit Cost Siculary Scalation 2008	Note: Deck width is out to out	Unit Cost (\$/sq. yd.): Length = 25 ft. Width = 90 ft
Parapets \$615.00 3.5% \$706.00	Unit Cost (\$/cu. yd): Year Annual Year	2004 <u>Escalation</u> 2008 Approach
Strip Seal Expansion Joints	Parapets \$615.00 3.5% \$706.00 Weighted Average = \$591.00 Based on parapet and slab percentages	Unit Costs (\$/Lin.Ft.): Cost Year Annual Year
Epoxy Coated Reinforcing Steel Unit Cost (\$/Ib): Assume 285 lbs of reinforcing steel per cubic yard of deck concrete Year Annual Year 2004 Escalation 2008 Reinforcing \$0.77 3.5% \$0.88 Embankment fill 0.00 cu.yd. \$4.00 3.5% \$4.43 Roadway incl. base 0.00 sq.yd. \$26.00 3.5% \$28.83 Barrier (single faced) 0 ft. \$50.00 3.5% \$55.44		Strip Seal Expansion Joints 1.00 \$250.00 3.5% \$277.18
Year Annual Year	Unit Cost (\$/lb):	
Reinforcing \$0.77 3.5% \$0.88 Embankment fill 0.00 cu.yd. \$4.00 3.5% \$4.43 Roadway incl. base 0.00 sq.yd. \$26.00 3.5% \$28.83 Barrier (single faced) 0 ft. \$50.00 3.5% \$55.44	<u>2004</u> <u>Escalation</u> <u>2008</u>	Year Annual Year 2005 <u>Escalation</u> 2008
	Reinforcing \$0.77 3.5% \$0.88	Embankment fill 0.00 cu.yd. \$4.00 3.5% \$4.43 Roadway incl. base 0.00 sq.yd. \$26.00 3.5% \$28.83 Barrier (single faced) 0 ft. \$50.00 3.5% \$55.44

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 2 - SUBSTRUCTURE

By: PJP Checked: JRC Date: 4/10/2006 Date: 4/11/2006

MSE

SUBSTRUCTURE

Alternative No.	Sp No. S	an Arrangement pans Lengths	Framing Alternative	Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	Abutment & Wingwall Cost	Additional Crane Cost		Subtotal Substructure Cost
2	4	112.5' - 145' - 110' - 78.5'	6 Prestressed Concrete Girders /per BRIDGE	Modified AASHTO Type 4 (72")	\$696,500	\$158,600	\$165,500	\$27,100	\$202,200	\$0	\$75,000		\$1,325,000
					COST SUPP	ORT CALCULATION	ONS						
Pier QC/QA C	oncrete, Cl	ass QSC1 Cost: (Spread	l Footing)			Pile Foundation	on Unit Cost (\$/ft.):	: Н	P 12X53 Piles, Furnish	ned & Driven			
Component Cap Stem	Volume (cu. yd.) 398 646 398	Year <u>2004</u> \$421.00 \$421.00 \$421.00	Annual Year <u>Escalation</u> 2008 3.5% \$483.00 3.5% \$483.00 3.5% \$483.00	Alt 1 Total <u>Cost</u> \$192,230 \$312,020 \$192,230			Number of Piles	SEE QUANTIT	Y CALCULATIONS	Total Pile <u>Length</u> 6,000			
Footings Total	1442			\$696,500		<u>Pile Foundati</u>	on Unit Cost (\$/ft.):	Year 2004 Unit Cost	Annual Escalation	Year 2008			
Component Cap	Volume (cu. yd.) 0	Year 2004 \$421.00	Annual Year <u>Escalation</u> 2008 3.5% \$483.00	Alt 1 Total Cost \$0		Shaft Founda	Furnished Driven Total tion Unit Cost (\$/ft	\$20.15 \$9.24 <u>i.):</u> 3	3.5% 3.5% 6" Drilled Shaft	\$23.10 \$10.60 \$33.70			
Columns Footings Total	0 0	\$421.00 \$421.00	3.5% \$483.00 3.5% \$483.00	\$0 \$0 \$0			Number of Shafts	3			Total Shaft <u>Length</u>		
Abutment Q0		rete, Class QSC1 Cost:		Total		Alt 2	0	SEE QUANTIT	Y CALCULATIONS		0		
Component Abutment Wingwalls	Volume (cu. yd.) 298 45	Year <u>2004</u> \$421.00 \$421.00	Annual Year Escalation 2008 3.5% \$483.00 3.5% \$483.00	Cost \$143,900 \$21,600		<u>Unit Cost</u>	tion Unit Cost (\$/ft	<u>2008</u>		Temporary Sl Unit Costs (\$			
		: 15% of abutment volume a	等等的 医外侧性 医肾上腺			\$300.00 Cost of Shafts:	4.5% \$ -	\$358.00			Temp. Shoring Area (sq. ft.)	Temp. Girder Support (lump sum)	
										Alt 2	0	\$	
										Temporary	Year 2004 <u>Unit Cost</u>	Annual Escalation	Year 2008
Epoxy Coate	the state of the s	ing Steel		MSE Abutment Unit Cost (\$/s	a. #4 \:					Shoring	\$22.50	3.5%	\$25.80
Unit Cost (\$/ Assume 125 lb Assume 90 lbs	s of reinforci	ng steel per cubic yard of pie g steel per cubic yard of abu	er concrete. tment concrete.	Total Area (sq. ft.)	Year 2005 Unit Cost	Annual Escalation	Year 2008			Cofferdam	\$32.00	3.5%	\$36.70
	Year 2004	Annual <u>Escalation</u>	Year 2008	Alt. 2 0	\$50.00	3.5%	\$55.40		Additional Cra	ine Cost			
Pier Abutment	\$0.77 \$0.77	3.5% 3.5%	\$0.88 \$0.88						\$ 75,000			10	

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - PRESTRESSED CONCRETE GIRDER ALTERNATIVE 2 - QUANTITY CALCULATIONS

By: PJP Checked: JRC

		HE WALL					1.16	r Quant	ACCUPATION OF				Footing		
Pier Location	Length			ар				Stem	1					100.0	Total Volume
Fiel Location	Lengui	Width	Depth	Area	Volume	Width	Height	Length	Air	Volume	Width	Depth	Length	Volume	
Pier 1 (Spr Ftg)	46	4.5	8.67	39.02	1795	3	53	19.00	~	3021	16	4	28.00	1792	
Pier 2 (Spr Ftg)		4.5	8.67	39.02	1795	3	51	19.00	-	2907	16	4	28.00	1792	6494
Pier 3 (Spr Ftg)			8.67	39.02	1795	3	49	19.00	+	2793	16	4	28.00	1792	6380
Pier 4									4.0-						
Pier 5															
Pier 6									F)-))
Pier 7									44						3
Total (Cu.Ft.)					5384				4-1	8721				5376	
Total (Cu.Yd.)					199				-	323				199	72
rotal (Julian)			Qty x 2	(L/R)	398	-			Ű=	646				398	144

			10 11 20				Abutm	ent Qua	ntitie	es					5240	
	Length		Ba	ckwall				Beam S	eat				Footin	g		Total Volume
Abut Location	(feet)		Depth	Area	Volume	Width	Height	Area	Di.	Volume	Width	Depth	Area	# Footin	Volume	Total Volume
Rear Abut	47.5	1.75	7	12.25	582	3.75	3	11.25	8	534	6.25	3	18.75	1	891	2007
Fwd. Abut	47.5			12.25		3.75	3	11.25	0	534	6.25	3	18.75	1	891	2007
Total (Cu.Ft.)					1164				er.	1069	11				1781	4014
Total (Cu.Yd.)					43				*	40					66	149
1000.			Qtv x 2	(L/R)	86				VI.	80					132	298

		W	all	
Abut Location	Height	Length	Area	Volume
Rear Abut	0	0	0	
RA Wing (L)	0	0	0	
RA Wing (R)	0	0	0	
Fwd Abut	0	0	0	
FA Wing (L)	0	0	0	
FA Wing (R)	0	0	0	
Total (Sq.Ft.)			0	

Date: 4/10/2006 Date: 4/11/2006

						Pile Qu	antities	164 X 184 X				
Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	24	690.0	631.0	65.0	1560
Pier 1	0	0	0	0	140	. 0	1	0	0	0	2.0	0
Pier 2	0	0	0	0	140	0	1	0	0	0	2.0	0 1
Pier 3	0	0	0	0	140	. 0	1	0	0	0	2.0	0
Pier 4	0	0	0	0	140	0	1	- 0	0	0	2.0	0
Pier 5	0	0	0	0	140	0	1	0	0	0	2.0	0
Pier 6	C	0	0	0	140	0	1	0	0	0	2.0	0
Pier 7	0	0	0	0	140	0	1	0	0	0	2.0	
Fwd. Abut.	1 0	0	0	C	140		1	24	678.5	626	60.0	1440
Total		1					-	48				3000
							Qty x 2 (L/R)	96				6000

STATE OF THE PARTY					36"	Drilled St	nafts for Piers					
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	0 (1986)
Pier 1	0	0	0	0	0	0	1	0	0	0	2.0	0 (1988)
Pier 2	0	0	0	0	0	0	1	0	0	0	2.0	
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	AND THE PROPERTY OF THE PARTY OF
Pier 4	0	0	0	0	0	0	1	0	0	0	0.0	O
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	0 1 1 1 1 1 1 1 1 1 1
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 7	0	0	0	C	0	0	1	0	0	0	0.0	0
Fwd. Abut.	0	10	0	C	0	0	1	0	0	0	0.0	0
Total								0				0

	Superstruc	cture Stee	el Quantities	
Location	Wt.of girder (lb)/ft	# Girders	Span Length	Total Weight
Span 1	0	0	0	0
Span 2	0	0	0	0
Span 3	0	0	0	0
Span 4	0	0	0	0
Span 5	0	0	0	0
Span 6	0	0	0	0
Span 7	0	0	0	0
Span 8	0	0	0	0
Total				0

total steel weight per girder (lb.) = Total Span length (ft.)= Weight Per ft. =

230.00

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 3 - SUPERSTRUCTURE

By: PJP Checked: JRC Date: 4/10/2006 Date: 4/11/2006

SUPERSTRUCTURE

Alternative No.	Span Arrangement No. Spans Lengths	Total Span Length (ft.)	Deck Length (ft.)	Deck Volume (cu. yd.)	Deck Concrete Cost	Deck Reinforcing Cost	Approach Slab Cost	Framing Alternative	Proposed Girder Section	Structural Steel Weight (Pounds)	Structural Steel Cost	Expansion Joint Cost	Subtotal Superstructure Cost
3	4 112 5' - 145' - 110' - 78.	5' 446.00	449.00	1484	\$875,500	\$372,100	\$82,500	5 Steel Girders /per BRIDGE	68" Web Grade 50W	1,322,000	\$1,820,400	\$52,664.10	\$3,203,000

	COST SUPPORT C	ALCULATIONS				
			April 1985			
ck Cross-Sectional Area:						
Parapet						
rapets: Individual Area						
No. Area (sq. ft.) (sq. ft.)	Structural Steel					
Parapets 1 4.26 4.26	Unit Costs (\$/lb.):	Cost	Year	Annual	Year	
Parapets 1 4.26 4.26		<u>Ratio</u>	2005	Escalation	<u>2008</u>	
Total	Rolled Beams - Grade 50	n/a	\$0.74	3.5%	\$0.85	
b: Slab Haunch & Concrete Area	Level 4 Plate Girders - Grade 50W	n/a	\$1.05	3.5%	\$1.16	Straight Girders
<u>T (ft.) W (ft.) Area Overhang Area (sq. ft.)</u> Left Bridge 0.73 45.00 32.8 3.3 44.6	level 5 Plate Girders - Grade 50W	n/a	\$1.20	3.5%	\$1.38	Curved Girders
Left Bridge 0.73 45.00 32.8 3.3 44.6 Right Bridge 0.73 45.00 32.8 3.3 44.6	Diction las chacle class con					
Night Bridge 0.70 40.00 52.0						
Note: Deck width is out to out						
10% of deck area allowed for haunches and overhangs.	Reinforced Concrete Approach	Slabs (T=15")				
	Unit Cost (\$/sq. yd.):					
	Length = 25 ft.	Width = 9	0 π			
C/QA Concrete, Class QSC2	Area = 250 sq. yd.					
nit Cost (\$/cu. yd):						
Year Annual Year	Year	Annual	Year			
<u>2004</u> <u>Escalation</u> <u>2008</u>	<u>2004</u>	<u>Escalation</u>	<u>2008</u>			
	Approach Slabs \$144.00	3.5%	\$165.00			
eck \$491.00 3.5% \$563.00	Slabs \$144.00	3.376	Ψ100.00			
arapets \$615.00 3.5% \$706.00 eighted Average = \$590.00						
eighted Average = \$590.00 ased on parapet and slab percentages						
total concrete area	Expansion Joints					
(Utal Culturate area	Unit Costs (\$/Lin.Ft.):	Cost	Year	Annual	Year	
		<u>Ratio</u>	<u>2005</u>	<u>Escalation</u>	2008	
poxy Coated Reinforcing Steel	Strip Seal Expansion Joints	1.00	\$250.00	3.5%	\$277.18	
nit Cost (\$/lb):						
ssume 285 lbs of reinforcing steel per cubic yard of deck concrete						
	Strip Seal Expansion Joints Length	190 ft.				
Year Annual Year						
<u>2004</u> <u>Escalation</u> <u>2008</u>						
eck einforcing \$0.77 3.5% \$0.88						
einforcing \$0.77 3.5% \$0.88						

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 3 - SUBSTRUCTURE

By: PJP Checked: JRC Date: 4/10/2006 Date: 4/11/2006

SUBSTRUCTURE

Alternative No.	Span Arrangement No. Spans Lengths	Framing Alternative	Proposed Stringer Section	Pier Concrete Cost	Pier Reinforcing Cost	Abutment Concrete Cost	Abutment Reinforcing Cost	Pile Foundation Cost	Additional Crane Cost	Subtotal Substructure Cost
3	4 112.5' - 145' - 110' - 78.5'	5 Steel Girders /per BRIDGE	68" Web Grade 50W	\$601,800	\$137,100	\$163,300	\$26,800	\$168,500	\$0	\$1,098,000

32								COST SUPP	ORT CALCULATIO	NS						
E	ier QC/QA Co	oncrete, Class (QSC1 Cost: (Sprea	nd Footing)					Pile Foundation	unit Cost (\$/ft.):	HP	12X53 Piles, Furnish	ed & Driven			
	omponent	Volume (cu. yd.)	Year 2004	Annual Escalation	Year 2008	Total Cost				Number of Piles			Total Pile <u>Length</u>			
S	ap Item Jootings	266 646 334	\$421.00 \$421.00 \$421.00	3.5% 3.5% 3.5%	\$483.00 \$483.00 \$483.00	\$128,480 \$312,020 \$161,320				80	SEE QUANTITY	CALCULATIONS	5,000			
	otal	1246				\$601,800			Pile Foundatio	n Unit Cost (\$/ft.):	Year 2004 <u>Unit Cost</u>	Annual <u>Escalation</u>	Year 2008			
. I <u>l</u>	Pier QC/QA Co	oncrete, Class	QSC1 Cost: (Drille	d Shaft)							LOS DESCRIPTIONS OF		000.40			
No.										Furnished	\$20.15	3.5%	\$23.10			
1. 1		Volume	Year	Annual	Year	Total				Driven Total	\$9.24	3.5%	<u>\$10.60</u> \$33.70			
100	Component	(cu. yd.)	<u>2004</u>	<u>Escalation</u>	2008	Cost \$0			Shaff Foundati	on Unit Cost (\$/ft.):	36'	" Drilled Shaft	Ψοσ. το			
	Cap	0	\$421.00 \$421.00	3.5% 3.5%	\$483.00 \$483.00	\$0 \$0			Shall roundat	on one cost (whe.).	00	Dillica Grian				
1	Columns Footings Fotal	0	\$421.00	3.5%	\$483.00	\$0 \$0				Number of Shafts				Total Shaft <u>Length</u>		
ı	Abutment QC	QA Concrete, 0	Class QSC1 Cost:								AA			0		
}										0	SEE QUANTITY	CALCULATIONS		U		
1		Volume	Year	Annual	Year	Total			Shaft Foundat	ion Unit Cost (\$/ft.):						
and the same	Component	(cu. yd.)	<u>2004</u>	<u>Escalation</u>	2008	<u>Cost</u> \$142,000			Unit Cost	Escalation	2008		Temporary S	Shoring and Suppo	ort	
	Abutment	294	\$421.00	3.5%	\$483.00	\$142,000			OHIL COSE	Listalation	<u>= </u>		Unit Costs (
	Wingwalls	44 Note: 15%	\$421.00 % of abutment volume	3.5%	\$483.00	φ21,300			\$300.00	4.5%	\$358.00			Temp. Shoring Area (sq. ft.)	Temp. Girder Support (lump sum)	
		Note: 107	of abdunctic volume	. unonea joi mingwa					Cost of Shafts:	\$			Alt. 3	0	\$ -	
														Year 2004 Unit Cost	Annual Escalation	Year 2008
1													Temporary	OHIK GOOK		
	Epoxy Coated Unit Cost (\$/I	d Reinforcing S	<u>iteel</u>			MSE Abutmen	t Unit Cost (\$/sq. ft	·)•					Shoring	\$22.50	3.5%	\$25.80
J (Assume 125 lbs	of reinforcing ste	eel per cubic yard of pel per cubic yard of ab		10 (17.1) 17. 1		Total Area (sq. ft.)	Year 2004 Unit Cost	Annual <u>Escalation</u>	Year 2008			Cofferdam	\$32.00	3.5%	\$36.70
		Year 2004	Annual <u>Escalation</u>	Year 2008		Alt. 3		\$50.00	3.5%	\$57.40		Additional Cra	ne Cost			
		<u> 2004</u>	Localation									\$				
	Pier Abutment	\$0.77 \$0.77	3.5% 3.5%	\$0.88 \$0.88												

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - STEEL PLATE GIRDER ALTERNATIVE 3 - QUANTITY CALCULATIONS

By: PJP Checked: JRC

	機可以を						Pier	Quant	ties			40.000			
Pier Location	Length		С	ар				Stem	Y T				Footing		Total Volume
rier Location	Lengui	Width	Depth	Area	Volume	Width	Height	Length		Volume	Width	Depth	Length	Volume	i otai voiume
Pier 1 (Spr Ftg)	46	3	8.67	26.01	1196	3	53	19.00	- 61	3021	15	4	25.00	1500	5717
Pier 2 (Spr Ftg)	46	3	8.67	26.01	1196	3	51	19.00	Y	2907	15	4	25.00	1500	5603
Pier 3 (Spr Ftg)	46	3	8.67	26.01	1196	3	49	19.00		2793	15	4	25.00	1500	5489
Pier 4									10						(
Pier 5							701-1-		100						(
Pier 6									1.						
Pier 7									45						
Total (Cu.Ft.)					3589				ŽĒ.	8721				4500	1681
Total (Cu.Yd.)					133				T.	323				167	62:
			Qty x 2 (L/R)	266	•			7	646				334	124

	23 (8) (8)						Abutme	ent Qı	ıantitie	S B B B B B B B B B B B B B B B B B B B						
Abut Location	Length		Bac	kwall				Beam	Seat				Footin	q		I -
Abut Location	(feet)	Width	Depth	Area	Volume	Width	Height	Area	42	Volume	Width	Depth	Area	# Footi	Volume	Total Volume
Rear Abut	47.5	1.75	6.8	11.90	565	3.75	3	11.25	11	534	6.25	3	18.75	1	891	1990
Fwd. Abut	47.5	1.75	6.8	11.90	565	3.75	3	11.25	12	534	6.25	3	18.75	1	891	1990
Total (Cu.Ft.)					1131				35	1069					1781	3981
Total (Cu.Yd.)					42					40					66	
			Qty x 2 (L/R)	84		***************************************		H	80					132	294

Date: 4/10/2006 Date: 4/11/2006

		College Land				Pile Quai	ntities					
Location	Load/girder (Kips)	# Girders	Total Girder Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Piles	Top Elev.	Bot Elev.	Pile Length	Total Pile Length (Feet)
Rear Abut.	0	0	0	0	140	0	1	20	690.0	631.0	65.0	1300
Pier 1	0	0	0	C	140	0	1	0	0	0	2.0	
Pier 2	0	0	0	C	140	0	1	0	0	0	2.0	0
Pier 3	0	0	0	C	140	0	1	0	0	0	2.0	200.50
Pier 4	0	0	0	C	140	0	1	900000000000000000000000000000000000000	0	0	2.0	
Pier 5	0	0	0	C	140	0	1	1956/1961/6-10	0	0	2.0	0
Pier 6	0	0	0	C	140	0	1	0	0	0	2.0	0
Pier 7	0	0	0		140	0	1	0	0	0	2.0	DEPOSITS OF WORLD O
Fwd. Abut.	0	0	0	C	140	0	1	20	678.5	626	60.0	1200
Total								40				2500
						NI CONTRACTOR OF THE CONTRACTO	Qtv x 2 (L/R)	80				5000

					36" Dr	illed Sha	fts for Piers					
Location	Load/girder (Kips)	# Girders	Total Load	Subst Wt (kips)	Pile Cap.(Kips	No. Piles	Increase Factor	Total Shafts	Top Elev.	Bot Elev.	Pile Length	Total Shaft Length (Feet)
Rear Abut.	0	0	0	0	0	0	1	0	0	0	0.0	at a second of the contract of
Pier 1	0	0	0	0	0	0	1	sexmestable 0	0	0	2.0	0
Pier 2	0	0	0	0	0	0	1	0	0	0	2.0	0
Pier 3	0	0	0	0	0	0	1	0	0	0	0.0	0
Pier 4	0	0	0	0	0	0	1	0	0	0	- 0.0	0
Pier 5	0	0	0	0	0	0	1	0	0	0	0.0	Alexander of the O
Pier 6	0	0	0	0	0	0	1	0	0	0	0.0	-0
Pier 7	0	0	0	0	0	0	1	0	0	0	0.0	
wd. Abut.	0	10	0	0	0	0	1	0	0	0	0.0	
Total								0				STANSACTOR STATE OF

	Superstructi	ure Steel	Quantities	
Location	Wt.of girder (lb)/ft	# Girders	Span Length	Total Weight
Span 1	296	10	113	333464
Span 2	296	10	145	429798
Span 3	296	10	110	326054
Span 4	296	10	79	232684
Span 5	0	0	0	0
Span 6	0	0	0	0
Span 7	0	0	0	0
Span 8	0	0	0	0
Total				1322000

total steel weight per girder (lb.) = 132200
Total Span length (ft.)= 446.00
Weight Per ft. = 296

Quantity Calculation (Steel Alt 3)

S.R. 823 over Portsmouth - Minford Road (S.R. 139) L&R

STRUCTURE TYPE STUDY - LIFE CYCLE COSTS

By: PJP Checked: JRC Date: 4/10/2006 Date: 4/11/2006

LIFE CYCLE MAINTENANCE COST

					Cost	tural Steel Paint Number of	Total		uperstructure Seali			ch Pavement Resi	
Alt. No.	Span Arra No. Spans	ngement Lengths	Fram Alterna		Per Cycle	Maintenance Cycles	Life Cycle Cost	Cost Per Cycle	Number of Maintenance Cycles	Total Life Cycle Cost	Cost Per Cycle	Number of Maintenance Cycles	Total Life Cycle Cost
1	2	230.00	5 Steel Girders	/per BRIDGE	\$569,200	2	\$1,138,400	\$0	0	\$0	\$4,200	10	\$42,000
1a	2	230.00	5 Prestressed Concrete	Girders /per BRIDGE	\$0	0	\$0	\$58,200	2	\$116,400	\$4,200	10	\$42,000
2	4	446.00	6 Prestressed Concrete	Girders /per BRIDGE	\$0	0	\$0	\$120,100	2	\$240,200	\$0	10	\$0
3	4	446.00	5 Steel Girders	/per BRIDGE	\$1,162,400	2	\$2,324,800	\$0	0	\$0	\$0	10	\$0
				6		E	Bridge Deck Overlay	y (5)				Bridge Rede	ecking (5)
			1220000	¥	Deck	290 30	Deck	Number of	Total	Deck	Deck	Deck	Deck
Alt. No.	Span Arra No. Spans	ingement Lengths	Fram Altern		Demo & Chipping	Deck Overlay	Joint Gland (2)	Maintenance Cycles	Life Cycle Cost	Concrete Cost (3)	Reinforcing Cost (3)	Joint Cost (2)	Removal Cost
1	2	230	5 Steel Girders		\$62,800	\$76,100	n/a	1	\$138,900	\$454,300	\$193,100	n/a	\$171,400
1a	2	230	5 Prestressed Concrete	Girders /per BRIDGE	\$62,800	\$76,100	n/a	1	\$138,900	\$444,600	\$188,700	n/a	\$171,400
2	4	446	6 Prestressed Concrete	Girders /per BRIDGE	\$121,700	\$147,500	\$12,819	1	\$269,200	\$856,700	\$363,500	\$52,664	\$332,400
3	4	446	5 Steel Girders		\$121,700	\$147,500	\$12,819	1	\$282,019	\$875,500	\$372,100	\$52,664	\$332,400
ructural Steel	eel Painting: Area:				ensecoles (M. M.) Tallis	2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	outer the transfer	•	Bridge Redect	king:			7-52,700
	Web Depth (in.)	No. Stringers	Total Span Length (ft.)	Assumed Ave. Bot. Flange Width (in.)	Nominal Exposed Girder Area (sq. ft.)	Secondary Member <u>Allowance</u>	Total Exposed Steel Area (sq. ft.)		20022 02 (04024144	sion Joint Including	Year 2005 \$250.00	Annual Escalation 3.5%	Year <u>2008</u> \$277.18
lt. 1 lt. 3	66 68	10 10	230.00 446.00	18.00 20.00	35,650 72,847	20% 20%	42,800 87,400		Alt. 1	Bridge Width 90.00	No. Joints 0		
nting Cost p	er sq. ft.: Year	Annual	Year						Alt. 1a Alt. 2 Alt. 3	90.00 90.00 90.00	0 2 2		
ep.	2005 \$6.75	Escalation 3.5%	\$7.48	36					Bridge Deck Rer				
ime termed. nish otal	\$1.75 \$1.75 \$1.75 \$12.00	3.5% 3.5% 3.5%	\$1.94 \$1.94 <u>\$1.94</u> \$13.30	*						Deck Area (3) (sq. ft.)	Year 2008	Deck Removal Cost	
	V12.00		\$10.00						Alt. 1	20,700	\$8.28	\$171,400	
uperstructu Concrete I-E " Modified AA				<i>*</i>					Alt. 1a Alt. 2 Alt. 3	20,700 40,140 40,140	\$8.28 \$8.28 \$8.28	\$171,400 \$332,400 \$332,400	
t. Flange	<u>H</u> ⊻ 26 8	Diag.	No. Total 1 26.00 2 16.00	¥						Overlay (Item 848): C Overlay Cost per sq.	yd.:		
wer Fillets eb	9 9 46	12.73	2 25.46 2 92.00						Micro Silica Moo	dified Concrete Overlay	Year 2004	Annual Escalation	Year 2008
per Fillets	3 3 11 2	4.24 11.18	2 8.49 2 22.36							nolition (1.25" thick)	\$25.58	3.5%	\$29.35
p Flange tal Exposed I	4 Perimeter		2 <u>8.00</u> 198.30 in.						Using Hydroden		\$22.85	3.5%	\$26.22
' Modified AA	ASHTO Type 4			-					Hand Chipping		\$37.07	3.5%	\$42.54
t. Flange	<u>H</u> ⊻ 26	Diag.	No. <u>Total</u> 1 26.00	ž.					Micro Silica Mod	C Overlay Cost per cu. dified Concrete Overlay			
wer Fillets	9 9	12.73	2 16.00 2 25.46	1					(Variable Thickn	ness), Material Only	\$144.00	3.5%	\$165.24
eb per Fillets	40 3 3	4.24	2 80.00 2 8.49							Deck Area (3)	Deck Area	Hand Chipping	Variable Thickness
op Flange otal Exposed I	11 2 4 Perimeter	11.18	2 22.36 2 8.00 in. 186.30						Alt. 1	(sq. ft.) 20,700	(sq. yd.) 2,300	(sq. yd.) 58	Repair (cu. yd
Concrete Ar	rea:	Total	Nominal	Control	4.111				Alt. 1a	20,700	2,300	58	52
	No.	Total Span	Nominal Exposed Beam	Secondary Member	Total Exposed Concrete				Alt. 2 Alt. 3	40,140 40,140	4,460 4,460	112 112	101 101
	Stringers	Length (ft.	F	Allowance	Area (sq. yd.)				Assume 25% of	deck area requires rem	oval to depth of	4.5" (3.25" addition	al removal).
t. 1a lt. 2	12 12	230.00 446.00	42,849 88,443	10% 10%	5,240 10,810				Bridge Deck Joi	nt Gland Replacement (Cost per foot:		
11. Z													1/
	er sa. vd ·										Year	Annual	Year
ealing Cost pe	er sq. yd.:	Year 2004	Annual Escalation	Year 2008					Elastomeric Stri	p Seal Gland	2005 \$62.50	Escalation 3.5%	2008 \$69.29

\$1,580,000 NOTES:

Total

Life Cycle

Cost

\$818,800

\$804,700

\$1,552,600

Number of

Maintenance

Cycles

Life cycle maintenance costs assume a 75 -year structure life, and are expressed in present value (2008 construction year) dollars.

Total

Initial

Construction

Cost

\$5,100,000

\$5,320,000

\$6,570,000

\$5,990,000

Total Relative

Ownership

\$6,422,000 \$8,632,000

\$10,177,000

\$7,238,000

- 2. Bridges are assumed to have semi-integral abutments, therefore no strip seal deck joints will be required except for Alt. 3.
- 3. See Superstructure Cost sheet.
- 4. See Alternative Cost Summary sheet.
- Assume bridge deck overlay at Year 25 and bridge deck replacement at Year 50. Assume superstructures are painted or sealed on a 25-year recurrence interval. Assume complete bridge replacement at Year 75.

Superstructure

Life Cycle

Maintenance

Cost (1)

\$2,138,000

\$1,102,000

\$2,062,000

\$4,187,000

Life cycle maintenance cost differences are assumed to be predominately a function of superstructure maintenance costs.
 Consequently, substructure lifecycle maintenance costs are not included in this analysis.

Approach Pavement Resurfacing: Resurface Perpetual Asphalt Pavement:

Resurfacing Units Costs:

	2004	Escalation	2008
Pavement Planing, Asphalt Concrete, per sq. yd. (Item 254)	\$0.98	3.5%	\$1.12
	Year	Annual	Year
	2004	Escalation	2008
Asphalt Concrete Surface Course, per cu. yd.	\$72.00	3.5%	\$82.62
Asphalt Concrete Surface Course, per cu. yd.	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P		

Approach

Asphalt Resurfacing Costs:

Approach

Roadway Length (ft.) (4)	Roadway Width (ft.)			Wearing Cours Volume (cu. yo
216.0	38.0	912	1.50	38.0
216.0	38.0	912	1.50	38.0
0.0	38.0	0	1.50	0.0
0.0	38.0	0	1.50	0.0
	Length (ft.) (4) 216.0 216.0 0.0	Length (ft.) (4) Width (ft.) 216.0 38.0 216.0 38.0 0.0 38.0	Length (ft.) Width (ft.) Area (sq. yd.) 216.0 38.0 912 216.0 38.0 912 0.0 38.0 0	Length (ft.) (4) Width (ft.) Area (sq. vd.) Thickness (in.) 216.0 38.0 912 1.50 216.0 38.0 912 1.50 0.0 38.0 0 1.50

APPENDIX B

TRANSYSTEMS CORPORATION

APPENDIX C

TRANSYSTEMS CORPORATION

TRANS	YSTEMS PRATION	Checked	By _	MTN PJP CLEARAN	IC
Job Name _	SCI-823-0.00				S
Description	S.R. 823 OVER PO	ORTSMOUTH	-MINF	ORD ROAD	P
Alternative 1	- 5-66" Grade 50W	Plate Girders	, 2-spa	<u>an</u>	
Adjstment fo	or Cross Slope				
Profile grad	Comment de line to critical pt.:	<u>Grade</u> -0.036	x Tota	<u>Offset</u> 4.5 Il Adjustment	į ;
Superstructi	ure Depth				
Gir	Comment Deck Thickness: Haunch: der or Beam Depth:	Depth (in) 8.75 2 70		Depth (ft) 0.73 0.17 5.83	
	· -	80.75	-	6.73	-

Job No. *P403030064* **Date** 04/11/06 Date 04/11/06 Sheet No. E CALCULATIONS tructure ___ ID# 19415 Point Location: A -0.162 -0.16 Total Superstructure Depth (ft) = 6.73 Vertical Clearance at Critical Point Station @ Critical Point = 485+64.26 Offset Location @ Critical Point = 6.5 LEFT Profile Grade Elevation at Critical Point = 693.60 Adjustment for Cross Slopes to Beam CL = -0.16 Top of Deck Elevation @ Critical Point = 693.44 Total Superstructure Depth = -6.73 Bottom of Beam Elevation @ Critical Point = 686.71 635.03 Approximate Top of Existing Ground @ Critical Point =

51.68

15.0 14.5

Actual Vertical Clearance Preferred Vertical Clearance

Required Vertical Clearance =

Made By Checked By

MTN

Date 04/11/06
Date 04/11/06

Job No. <u>P403030064</u> Sheet No.

				CLEARAN			•		
Job Name _	SCI-823-0.00				Struc	cture			
Description	S.R. 823 OVER PO	ORTSMOUTH	i-MINI						
<u>Alternative</u>	1 - 5-66" Grade 50W	Plate Girders	s, 2-s _l	oan e			Point Location:	В	
Adjstment f	or Cross Slope								
				-					
	Comment	<u>Grade</u>		<u>Offset</u>					
	Shoulder:	-0.036	x	34.5	=	-1.24			
					=	0.00			
				,		0			
			Tot	tal Adjustment	=	-1.24			
Superstruct	turo Donéh								
Superstruct	ure Depur								
	Comment	Depth (in)		Depth (ft)					
	Deck Thickness:	8.75		0.73					
	Haunch:	2		0.17					
Gir	rder or Beam Depth:	70		5.83					
		80.75	-	6.73	-				
		Total Supe	erstruc	ture Depth (ft)	=	6.73			
Vertical Cle	arance at Critical Po	int		<u> </u>			•		
	•	Stati	ion @	Critical Point	_	485+47.00			
	•		_	Critical Point		45.5 RIGHT			
			_	at Critical Point		693.96			
				es to Beam CL		-1.24			
	•		•	Critical Point		692.72	-		
		Total S	Supers	tructure Depth	=	-6.73	_		
	Bottom of I	Beam Elevat	ion @	Critical Point	=	685.99			
Λ	pproximate Top of E	ivistina Gra	ınd @	Critical Point	. =	635.37			
^	Philoritiate tob of E	_	_	cal Clearance		50.62	-		
				ical Clearance		15.0			
	•			ical Clearance ical Clearance		14.5			
		Nequire	A AGII	icai Oigalalice	_	17.0			

L	e By MTN				
È Chacka	•	_	04/11/06		P403030064
	d By PJP	_	9 <u>04/11/06</u>		
VERI	ICAL CLEARA				
ORTSMOUTH	LMINEORD ROA				
OKTOWICO III	PWINI OND ROA	<u> </u>	19410		
odified Prestr	ressed I-Beams,	2 spans		Point Location:	A
	-11-111-11				
-0.036	x 4.5				
	Total Adjustme	ent =	-0.16		
Depth (in)	<u>Depth (ft</u>	1			
8.5	0.71				
2	0.17				
72	6				
82.5	6.88	• • • • • • • • • • • • • • • • • • • •			
Total Supe	erstructure Depth	(ft) =	6.88		
int					
Stati	on @ Critical Po	int =	485+64.26		
Offset Locati	int =	6.50 LEFT			
e Grade Eleva	oint =	693.60			
nent for Cross	CL =	-0.16	-		
Top of Deck Elevation @ Critical Point					
Total S	Superstructure De	pth =	-6.88		
Bottom of Beam Elevation @ Critical Point					
tuladia - O	d @ Ot 1 5	.i4 —	COE AO		
Approximate Top of Existing Ground @ Critical Point					
	Grade -0.036 Depth (in) 8.5 2 72 82.5 Total Superint Stati Offset Location e Grade Elevation e Grade Elevation Total Signature Existing Ground Existing Ground Control Signature Con	Grade Offset -0.036 x 4.5 Total Adjustme Depth (in) Depth (ft) 8.5 0.71 2 0.17 72 6 82.5 6.88 Total Superstructure Depth Int Station @ Critical Potential Formula Superstructure Depth e Grade Elevation at Critical Potent for Cross Slopes to Beam Deck Elevation @ Critical Potential Superstructure Depth Total Superstructure Depth Total Superstructure Depth Total Superstructure Description of Critical Potential Superstruct	Grade Offset -0.036 x 4.5 Total Adjustment = Depth (in) Depth (ft) 8.5 0.71 2 0.17 72 6 82.5 6.88 Total Superstructure Depth (ft) = Offset Location @ Critical Point = e Grade Elevation @ Critical Point = nent for Cross Slopes to Beam CL = Deck Elevation @ Critical Point = Total Superstructure Depth = Beam Elevation @ Critical Point =	Structure	VERTICAL CLEARANCE CALCULATIONS Structure ORTSMOUTH-MINFORD ROAD PID # 19415 Dedified Prestressed I-Beams, 2 spans Point Location: Grade Offset -0.036 x 4.5 -0.162 Total Adjustment = -0.16 -0.16 Depth (in) Depth (ft) 8.5 0.71 2 0.17 72 6 82.5 6.88 Total Superstructure Depth (ft) = 6.88 Interior Cross Slopes to Beam CL = 693.60 -0.16 Deck Elevation @ Critical Point = 693.44 -0.16 Total Superstructure Depth = 686.56 -6.88 Beam Elevation @ Critical Point = 686.56 -6.86 Existing Ground @ Critical Point = 635.03 -6.85.03

15.0

14.5

Preferred Vertical Clearance =

Required Vertical Clearance =

TANSYSTI CORPORA	EMS			MTN PJP		04/11/06 04/11/06	,		P40303006
		VERT	ICAL	CLEARAN			ONS		
lob NameSCI-					Struct				
Description <u>S.R.</u>	823 OVER PO	PRTSMOUTH	I-MINE	ORD ROAD	PID#	19415			
Alternative 1a - 5- 7	2" Type 4 Mo	dified Presti	ressed	I-Beams, 2	spans		Point Location:	В	
Adjstment for Cros	s Slope								
							····	,	
Comn	<u>nent</u>	Grade		<u>Offset</u>					•
	Shoulder:	-0.036	x	34.5	=	-1.24			
					=	0.00			
						0			
			Tota	al Adjustment	- + =	-1.24	•		
			100	ar 7 tajatoti iloni	-				
Superstructure Dep	oth		<u> </u>			· · · · · · · · · · · · · · · · · · ·			
Comn	nent	Depth (in)		Depth (ft)				-	
Dec	k Thickness:	8.5		0.71					
	Haunch:	2		0.17					
Girder or E	Beam Depth:	72		6	_				
		82.5		6.88	_				
		Total Supe	erstruct	ure Depth (ft) =	6.88			
		•			•				
Vertical Clearance	at Critical Po	int		•					
		Stati	ion @ (Critical Poin	t =	485+47.00			
	1		_	Critical Poin		45.5 RIGHT			
				t Critical Poin		693.96			
	Profile	S Grade Elevi	ลแบก สา	Chacai Poin	ı. =	083.80			

Adjustment for Cross Slopes to Beam CL = -1.24

Top of Deck Elevation @ Critical Point = 692.72

Total Superstructure Depth = _____-6.88

Bottom of Beam Elevation @ Critical Point = 685.84

Approximate Top of Existing Ground @ Critical Point = 635.37

Actual Vertical Clearance = 50.47

Preferred Vertical Clearance = 15.0

Required Vertical Clearance = 14.5

TRANSYSTEMS CORPORATION	Checked	e By <u>MTN</u> d By <u>PJP</u> ICAL CLEARANG	Date	04/11/06 04/11/06 ALCULATIO	Sheet No.	P403030064			
Job Name SCI-823-0.00									
Job Name SCI-823-0.00 Structure Description S.R. 823 OVER PORTSMOUTH-MINFORD ROAD PID # 19415									
Alternative 2 - 6-72" Type 4 Modified Prestressed I-Beams, 4 spans Point Location: A									
Adjstment for Cross Slope Adjstment for Cross Slope									
<u>Comment</u>	<u>Grade</u>	Offset							
Profile grade line to critical pt.:		·		-0.162					
		Total Adjustment	= -	-0.16					
		•							
Superstructure Depth		<u> </u>							
<u>Comment</u>	Depth (in)	Depth (ft)							
Deck Thickness:	8.5	0.71							
Haunch:	2	0.17							
Girder or Beam Depth:	72	6							
	82.5	6.88							
	Total Supe	erstructure Depth (ft)	=	6.88					
Vertical Clearance at Critical Po	int								
	Stati	on @ Critical Point	=	485+64.26					
	Offset Locati	on @ Critical Point	=	6.5 LEFT					
Profile	e Grade Eleva	ation at Critical Point	=	693.60					
Adjustm	ent for Cross	Slopes to Beam CL	= .	-0.16		•			
Top of	Top of Deck Elevation @ Critical Point								
	superstructure Depth	= .	-6.88						
Bottom of I	on @ Critical Point	=	686.56						
Approximate Top of E	xisting Grou	nd @ Critical Point	= .	635.03					
	Vertical Clearance	=	51.53						
	Preferred	d Vertical Clearance	=	15.0					
	Required	d Vertical Clearance	=	14.5					

TRANS	YSTEMS DRATION
Job Name	SCI-823-0.00

Made By __ Checked By

MTN PJP Date 04/11/06 Date 04/11/06 Job No. __ Sheet No. __

P403030064

VERTICAL CLEARANCE CALCULATIONS

 Job Name
 SCI-823-0.00
 Structure

 Description
 S.R. 823 OVER PORTSMOUTH-MINFORD ROAD
 PID # 19415

Description				n			
Alternative 2 - 6-72" Type 4 Modified Prestressed I-Beams, 4 spans					Point Location:	В	
Adjstment for Cross Slope							
Comment	<u>Grade</u>		<u>Offset</u>				
Shoulder:	-0.036	x	34.5	=	-1.24		
				=	0.00		
					0	_	
		Tota	al Adjustment	=	-1.24		
Superstructure Depth							
<u>Comment</u>	Depth (in)		Depth (ft)				
Deck Thickness:	8.5		0.71				
Haunch:	2		0.17				
Girder or Beam Depth:	72		6				
	82.5		6.88				
Total Superstructure Depth (ft) =					6.88		
							1

Vertical Clearance at Critical Point

Station @ Critical Point = 485+47.00

Offset Location @ Critical Point = 45.50 RIGHT

Profile Grade Elevation at Critical Point = 693.96

Adjustment for Cross Slopes to Beam CL = -1.24

Top of Deck Elevation @ Critical Point = 692.72

Total Superstructure Depth = ____-6.88

Bottom of Beam Elevation @ Critical Point = 685.84

Approximate Top of Existing Ground @ Critical Point = 635.37

Actual Vertical Clearance = 50.47

Preferred Vertical Clearance = 15.0

Required Vertical Clearance = 14.5

ZANS	YSTEMS	L .	le By MTN			•	P40303006	34
JORPC	ORATION (I)		Id By <i>PJP</i> FICAL CLEARAN		9 <u>04/11/06</u>	Sheet No.		—
b Name	SCI-823-0.00	VERI						
	S.R. 823 OVER PC	 ORTSMOUTI			•			
	·							_
	3 - 5-68" web cont. st	teel plate gir	ders (A709, Gr. 50W	/). 4 s	<u>pans</u>	Point Location:	<u>A</u>	_
djstment r	for Cross Slope							
	Comment	<u>Grade</u>	<u>Offset</u>					
Profile gra	ade line to critical pt.:				-0.144			
1 101110 9.5	no mo to omosa par	0.000	Total Adjustment	= -	-0.14			
			(Old) Aujuosinons	-	- v ii-,			
Superstruct	ture Depth						<u> </u>	—

	Comment	Depth (in)	Depth (ft)				•	
	Deck Thickness:	8.75	0.73					
	Haunch:	2	0.17					
Gi	irder or Beam Depth:	72	6					
	-	82.75	6.9	*				
		Total Sup	erstructure Depth (ft)	=	6.90			
Vertical Cle	earance at Critical Po	int						
		Stat	tion @ Critical Point	=	485+64.41			
	(Offset Locat	tion @ Critical Point	=	7.00' LEFT			
	Profile	e Grade Elev	ation at Critical Point	=	693.59			
	Adjustm	nent for Cross	s Slopes to Beam CL	=	-0.14	-		
	Top of	Deck Elevat	tion @ Critical Point	=	693.45			
		Total ?	Superstructure Depth	=	-6.90	-		
	Bottom of F	Beam Elevat	tion @ Critical Point	=	686.55			
A	Approximate Top of E	existing Gro	und @ Critical Point	. =	635.02	_		
		Actua	l Vertical Clearance	=	51.53			
		Preferre	ed Vertical Clearance	=	15.0			
		Require	ed Vertical Clearance	=	14.5			

RANS CORP	YSTEMS ORATION		e By <u>MTN</u> d By <u>PJP</u>		e <u>04/11/06</u> e <u>04/11/06</u>		P403030064
		VERT	ICAL CLEARANG	CE (CALCULATION	ONS	
ob Name _	SCI-823-0.00			Stru	cture		
escription	S.R. 823 OVER PO	ORTSMOUTH	I-MINFORD ROAD	PID :	# <u>19415</u>		<u> </u>
Alternative	3 - 5-68" web cont. s	teel plate gir	ders (A709, Gr. 50W), 4 s	pans	Point Location:	В
	for Cross Slope						
							-
	Comment	<u>Grade</u>	Offset				
	Shoulder:	·	·	=	-1.22		
				=	0.00		
					0		
			Total Adjustment	_	-1.22		
			rotal Adjustinent		-1.22		
Suporetrue	cture Depth						
ouperstruc	tare beput						
	Comment	Depth (in)	Depth (ft)				
	Deck Thickness:	8.75	0.73				
	Haunch:	2	0.17				
٠	Girder or Beam Depth:	72	- 6				
		82.75	6.9				
		Total Supe	erstructure Depth (ft)	=	6.90		
Vertical CI	leavener of Critical Ba	·Imd					
vertical Ci	earance at Critical Po	oint		·			
		Stat.	ion @ Critical Point	_	485+47.17		
			_		45.00' RIGHT		
			ion @ Critical Point				
			ation at Critical Point		693.96		
	_		Slopes to Beam CL		-1.22		
	Top of	Deck Elevat	ion @ Critical Point	=	692.74		
			Superstructure Depth		-6.90	•	
	Bottom of	Beam Elevat	ion @ Critical Point	=	685.84		
•	Approximate Top of E	Existing Grou	und @ Critical Point	=	635.37	-	
		Actual	l Vertical Clearance	=	50.47		

15.0

14.5

Preferred Vertical Clearance =

Required Vertical Clearance =

APPENDIX D

TRANSYSTEMS

APPENDIX E

March 27, 2006

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Preliminary MSE Wall Evaluations

Portsmouth – Minford Road SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03

Document # 0007

Dear Mr. Weeks:

This letter includes the findings of preliminary evaluations of mechanically stabilized earth (MSE) retaining walls on the above-referenced project. The findings included in this letter pertain to the MSE walls at the intersection of proposed 823 and Portsmouth – Minford Road. The findings of other preliminary MSE wall evaluations will be submitted in separate documents at a later date.

It should be noted that the results of these evaluations are based upon the findings of four preliminary structural borings. Boring logs for borings TR-15, TR-16, TR-18, and TR-19 are attached. After the bridge design is finalized, it will be necessary to drill additional borings in the area of the proposed MSE walls in accordance with ODOT's specifications for subsurface investigations in order to finalize the MSE wall evaluations.

An MSE retaining wall essentially consists of good quality backfill material with layers of metal or plastic reinforcing that are attached to concrete facing panels. The MSE wall and associated backfill should be constructed in accordance with the specifications of the manufacturer of the MSE wall.

At the time this letter was prepared, it was understood that the plan location of the bridge structure for proposed 823 over Portsmouth – Minford Road is similar to the location shown on the plan and profile drawings dated 07/09/05. See attached plan and profile drawing. It is understood that the planned structure is being modified as follows: placing MSE walls at approximately stations 484+08 and 486+08 to contain the abutments and hold back the roadway embankment, thus shortening the bridge structure. Furthermore, it is understood that the height of the MSE wall at station 484+08 (Rear Abutment) will be approximately 64 feet high, while the MSE wall at station 486+08 (Forward Abutment) will be approximately 61.5 feet high.

Michael D. Weeks, P.E., P.S. March 27, 2006 Page 2

A preliminary global stability analysis and preliminary bearing capacity analysis was performed for the MSE walls at this bridge location in accordance with ODOT and AASHTO guidelines. The MSE walls were also analyzed for sliding and overturning. At the time this letter was prepared, it was not known what foundation type was to be used at this site to support the bridge abutments. However, the use of MSE walls at this site does not preclude the use of most common foundation types. Once a foundation type has been selected, DLZ should be informed so that the analyses may be revised as necessary.

Preliminary calculations for bearing capacity, sliding and overturning, as well as the results of the global stability analyses are attached. Other external and internal stability analyses are required for the design of an MSE wall, but are considered outside the scope of this report. The parameters required to perform the stability analyses are presented below.

In accordance with ODOT guidelines, a unit weight of 120 pcf and a friction angle of 34 degrees was selected for the backfill material in the reinforced zone. Similarly, the fill material used to construct the roadway embankments is assumed to have a unit weight of 120 pcf and a friction angle of 30 degrees. If the embankment fill material or backfill material for the reinforcing zone has properties significantly different from these values, DLZ should be informed so that the analyses may be revised as necessary.

The results of analyses for the MSE walls at station 484+08 (Rear Abutment) and station 486+08 (Forward Abutment) will be presented separately in this letter.

MSE Wall Evaluation at Station 484+08 (Rear Abutment)

In the area of this proposed MSE wall, boring TR-18 encountered 12 inches of topsoil at the surface. Below the topsoil layer, primarily loose brown silt (A-4b) was encountered to a depth of 3.0 feet below ground surface. Below 3.0 feet, primarily loose brown sandy silt (A-4a) was encountered to a depth of approximately 7.3 feet below ground surface at the top of bedrock. Underlying the soil, this boring encountered hard, slightly weathered sandstone to the bottom of the boring, at a depth of 20.3 feet.

The MSE wall at the rear abutment is understood to be approximately 64.0 feet high. The minimum required embedment depth for this wall is H/10 or 6.4 feet.

Analyses for the MSE wall bearing on natural soils at this location yielded acceptable factors of safety for global stability, bearing capacity, sliding and overturning. It should be noted the minimum embedment depth is only slightly above the bedrock surface. Therefore, it should be anticipated that bedrock may be encountered while excavating for the leveling pad. It should be noted that variations in the topography may be encountered within the proposed footprint of the proposed MSE wall, causing the bedrock elevation to vary significantly. If soft soils are encountered while excavating for the MSE wall leveling pad, these soils should be removed and replaced with compacted granular fill. In

Michael D. Weeks, P.E., P.S. March 27, 2006 Page 3

areas where compacted granular fill is to be placed on bedrock, a level bench must be cut into the rock to place the fill for stability purposes. For stability, preliminary calculations have shown that a minimum reinforcement length of 0.8H or 49.0 feet is required for stability.

It should be noted that the foundation leveling pad of the MSE wall at the rear abutment is in close proximity to Long Run Creek, which is running essentially parallel to Portsmouth - Minford Road. The approximate elevation of bedrock under the MSE wall is 624 feet, which is near the bottom of the creek. If scour and erosion near the TOE of the MSE wall are a concern, then slope protection should be provided with riprap.

MSE Wall Evaluation at Station 486+08 (Forward Abutment)

In the area of this proposed MSE wall, boring TR-15 encountered two inches of topsoil at the surface. Below the topsoil layer, primarily very soft to stiff brown sandy silt (A-4a) was encountered to a depth of 7.0 feet below ground surface, at the top of bedrock. Underlying the soil, this boring encountered medium hard to hard, slightly to moderately weathered sandstone to the bottom of the boring, at a depth of 18.0 feet.

The MSE wall at the forward abutment is understood to be approximately 61.5 feet high. The minimum required embedment depth for this wall is H/10 or 6.2 feet.

Initial analyses for the MSE wall bearing on natural soils at this location yielded inadequate factors of safety for undrained bearing capacity, undrained sliding, and undrained global stability. Consequently, analyses were performed assuming overexcavation to the top of bedrock and backfilled with compacted, granular fill. These analyses indicated adequate safety factors for both undrained and drained conditions. As a result, it is recommended that the soils beneath the proposed MSE wall be overexcavated to rock and replaced with compacted, granular fill. It should be anticipated that variations in the topography may be encountered within the footprint of the proposed MSE wall, causing the bedrock elevations to vary significantly. In areas where compacted granular fill is to be placed on bedrock, a level bench must be cut into the rock to place the fill for stability purposes. A minimum reinforcing length of 0.7H or 47 feet is required for the MSE wall at this location.

Settlement calculations are not necessary for the MSE walls at this site. The MSE walls will either bear on or near bedrock resulting in negligible settlement.

Calculations for bearing capacity, overturning, and sliding are attached for both MSE wall locations. A drawing showing the results of the global stability analyses is also attached.

A summary of soil properties, summary of the results of calculations, and results of global stability analyses are attached.

Michael D. Weeks, P.E., P.S. March 27, 2006 Page 4
We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.
Respectfully submitted,
DLZ OHIO, INC.
Steven J. Riedy
Geotechnical Engineer
Arthur (Pete) Nix, P.E. Geotechnical Division Manager
Encl: As noted
cc: file
M:\proj\0121\3070.03\Stability Analyses\Documents\MSE Wall letters\04 Portsmouth-Minford Road\MSE Wall Findings - Portsmouth-Minford Rd 03-27-06 SJR.doc

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -7 Blows per foot ď % Clay 1!!S % GRADATION bns2.∃% % M. Sand % C. Sand DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 7/9/04 əlsgərggA % Stiff to very stiff brown SANDY SILT (A-4a), trace gravel; moist. Severely weathered brownish-gray SILTSTONE fragments. Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, micaceous, massively bedded, slightly fractured. @ 8.0' to 9.0', probable core loss. @ 3.5' to 5.0', very soft, contains rust stains. Bottom of Boring - 18.0' DESCRIPTION Water level at completion: none Water seepage at: 6.0' Project: SCI-823-0.00 OBSERVATIONS: Topsoil - 2" WATER Hand Penetro-meter <0.25 3.25 (tst) . Location: RQD R-1 70% Press / Core Sample No. N 38 38 θνiτQ TR-15 Вес 99° Client: TranSystems, Inc. 8 Несоvелу (in) <u>ლ</u> 20 50/2 Core 120* Boring Blows ber 6" Q 624.3 631.3 623.3 Elev. (#) -0G OF: Depth (ft) 5 15 4.6 80 ġ ġ

LIFE: 0151-3010-03 [3\58\5000 TO:08 VW]

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -Blows per foot 20 7 % Clay 1IIS % GRADATION % F. Sand % M. Sand % C. Sand DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 7/9/04 % Aggregate grained, slightly weathered, micaceous, argillaceous, massively bedded, slightly fractured. Medium hard to hard gray SANDSTONE; very fine to fine Medium stiff brown SANDY SILT (A-4a); moist. DRAFI @ 17.0', contains few argillaceous laminations. Bottom of Boring - 18.5' DESCRIPTION @ 6.0' to 7.4', contains rock fragments. WATER
OBSERVATIONS: Water seepage at: 6.0'
Water level at completion: 6.5' Project: SCI-823-0.00 Hand Penetro-meter 0.75 (tst) . Location: RQD 85% R-1 Press / Core Sample No. ə∧ü@ N က TR-16 78c 18 Client: TranSystems, Inc. цесолеці (ш) 5 걸 10 50/5 Sore 120" Boring Blows ber 6" က 631.9 Elev. (#) 622.7 LOG OF: Depth (ff) 101 15 85 ង ġ

EIFE: 0757-3010-03 (3\58\5000 10:08 VW |

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -7 Blows per foot <u>ლ</u> 12 10 % Clay 25 11!S % 58 સ GRADATION 9 4 8 pues '4 % ; pues .M % ; ţ 7 ଛ % C. Sand ო DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 8/17/04 әтьедэгедА % Ξ 13 0 Loose brown SILT (A-4b), little fine to coarse sand, little gravel; weathered, argillaceous, micaceous, slightly to moderately fractured. @ 7.3' to 7.6', broken. @ 7.3' to 7.8',8.0',8.6' to 8.8', brown, rust-stained fracture. Loose brown SANDY SILT (A-4a), little clay, trace to little gravel; damp. Hard gray SANDSTONE; very fine to fine grained, slightly Water level at completion: 9.4' (includes drilling water) DRAFT Bottom of Boring - 20.3' DESCRIPTION Water seepage at: None Project: SCI-823-0.00 @ 7.3' to 7.8', vertical fracture. contains roots; dry to damp. WATER OBSERVATIONS: Topsoil - 12' Hand Penetro-meter (tst) Location. ROD R-2 94% H-1 Press / Core Sample No. 88% 8% 9VI10 N ო TR-18 . 84. Rec 71 Cilent: TranSystems, Inc. Несочелу (in) 8 9 껕 Core 84. Core Boring glows ber 6" ო 630.3 631.3 628.3 Elev. (ft) LOG OF: Depth (ft) S I 15 101 ß

[3\28\2006 10:08 AM]

EIFE: 0151-3040-03

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -77 Blows per foot ۲ 8/17/04 % Clay **IIIS** % 2 GRADATION pues '4 % pues 'W % pues 'O % DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 8/16/04 өүкөдүү % Medium dense brown SANDY SILT (A-4a), trace gravel, trace Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly to moderately weathered, argillaceous, micaceous, massively bedded, slightly fractured. @ 9.2' to 9.4', decomposed. @ 8.8' to 9.0', brown. @ 13.1' to 13.3', vertical fracture. Water level at completion: 16.3' (includes drilling water) DRAFI clay; contains sandstone fragments; damp. Bottom of Boring - 20.2' @ 13.9' to 14.0', vertical fracture. @ 15.5', unfractured to slightly fractured. @ 14.7' to 15.5', broken zone. @ 15.4' to 15.5', clay filled fracture. DESCRIPTION Water seepage at: None Project: SCI-823-0.00 WATER OBSERVATIONS: Topsoil - 12" Hand Penetrometer (tst) Location ROD R-2 70% R-2 RQD 57% R-1 Press / Core Ş θλμΩ N ო TR-19 Rec 108 30 <u>%</u> Client: TranSystems, Inc. \$ цесолеці (іп) 8 8 Sore Core 108 LOG OF: Boring Blows per 6" 633.0 612.8 632.0 Elev. (#) Depth (ft). 5 5 5 ç ሴ ۲ Ś

EITE: 0151-3010-03 [3\38\5006 IO:08 VM]

Soil Parameters Used in MSE Wall Stability Analyses
Portsmouth – Minford Road

-		TT *4 XX7 * 1.4	Strength Parameters				
Zone	Soil Type	Unit Weight	Undr	ained	Drained		
	(pcf)		c	ф	c'	ф'	
Reinforced Fill	Compacted Granular Fill	120	0	34	0	34	
Retained Soil	Compacted Embankment Fill	120	0	30	0	30	
Foundation Soil (Rear Abutment) (Borings TR-18&19)	Loose to Medium Dense Sandy Silt	125	0	29	0	29	
Foundation Soil (Forward Abutment) (Boring TR-15&16)	Very Soft to Stiff Sandy Silt	125	500	0	0	29	
Foundation Soil (Forward Abutment)	Compacted Granular Fill	125	0	36	0	36	

MSE Retaining Wall Parameters and Analyses Results Portsmouth – Minford Road (Rear Abutment) Natural Soil foundation

Portsmouth - Minford Road (Rear Abutment) Natural Soil foundation
Retained Soil (New Embankment)
Unit Weight = 120 pcf
Coefficient of Active Earth Pressure $(K_a) = 0.33$
(Based on $\Phi = 30^{\circ}$)
Sliding along base of MSE wall
Sliding Coefficient $(\mu)(0.67) = \tan 29^{\circ}(0.67) = 0.37$ Use $(\mu)(0.67)$
Use $(\mu)(0.67) = 0.35$ as a maximum value as per AASHTO, BDM,303.4.1.1
Allowable Bearing Capacity - Undrained Condition
$q_{all} = 12,695 \text{ psf}$
For MSE wall with minimum 56-foot long reinforcing
Allowable Bearing Capacity - Drained Condition
$q_{all} = 12,695 \text{ psf}$
For MSE wall with minimum 56-foot long reinforcing
Global Stability
Factor of Safety – Undrained Condition = NA (Sandy Silt – Drained Condition)
Factor of Safety – Drained Condition = 2.0
Factor of Safety – Seismic Condition = 1.9
For MSE wall with 56-foot long reinforcing
Estimated Settlement of MSE volume
Total settlement = 0 inches
Differential settlement = $0 < 1/100$
Full Height of MSE Wall = 64.0 feet
Minimum Embedment Depth = 6.4 feet
Minimum Length of Reinforcement for External Stability = 56 feet

MSE Retaining Wall Parameters and Analyses Results Portsmouth – Minford Road (Forward Abutment)

Compacted Granular Fill Foundation
Retained Soil (New Embankment)
Unit Weight = 120 pcf
Coefficient of Active Earth Pressure $(K_a) = 0.33$
(Based on $\Phi = 30^{\circ}$)
Sliding along base of MSE wall
Sliding Coefficient $(\mu)(0.67) = \tan 29^{\circ}(0.67) = 0.49$ Use $(\mu)(0.67)$
Use $(\mu \iota)(0.67) = 0.55$ as a maximum value as per AASHTO, BDM,303.4.1.1
Allowable Bearing Capacity - Undrained Condition
$q_{all} = 28,843 \text{ psf}$
For MSE wall with minimum 47-foot long reinforcing
Allowable Bearing Capacity - Drained Condition
$q_{all} = 28,843 \text{ psf}$
For MSE wall with minimum 47-foot long reinforcing
Global Stability
Factor of Safety – Undrained Condition = 2.4
Factor of Safety – Drained Condition = 2.4
Factor of Safety – Seismic Condition = 2.3
For MSE wall with 47-foot long reinforcing
Estimated Settlement of MSE volume
Total settlement = 0 inches
Differential settlement = $0 < 1/100$
Full Height of MSE Wall = 61.5 feet
Minimum Embedment Depth = 6.2 feet
Minimum Length of Reinforcement for External Stability = 47 feet

SUBJECT

Client	TranSystems / ODOT D-9	JOB NUMBER
Project	SCI 823-0.00 Portsmouth Bypass	SHEET NO.
Item	Bearing Capacity (Rear Abutment)	COMP. BY
04 - 823 c	over Portsmouth - Minford Rd.	CHECKED BY

Borings TR-18 & TR-19

BEARING CAPACITY OF A MSE WALL

Ref: {AASHTO; STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, 17th Edition, 2002}

Effective Bearing Pressure

$$\sigma_{v} = \frac{W_{t} + W_{MSE}}{L - 2e}$$

$$\sigma_{v} = 10,614 \text{ psf}$$

Ultimate undrained bearing capacity, quit

$$q_{ULT} = c N_c + \sigma'_D N_q + \frac{1}{2} \gamma' B N_\gamma$$
 $q_{ULT} = 31,738 \text{ psf}$

$$q_{ALL} = \frac{q_{ULT}}{FS}$$

$$q_{ALL} = 12,695 \text{ psf}$$

Ultimate drained bearing capacity, q ut

$$q_{ULT} = c'N_c + \sigma'_D N_q + \frac{1}{2} \gamma' B N_{\gamma}$$

$$q_{ULT} = 31,738 \text{ psf}$$

$$q_{ALL} = \frac{q_{ULT}}{FS}$$

$$q_{ALL} = 12,695 \text{ psf}$$

Soil Properties

У ЕМВ	=	120 · pcf	Unit weight	Embankment fill
$\varphi^{\iota}_{\text{EMB}}$	= '	30 deg.	Friction ang.	Embankment fill
YFDN	=	120 pcf	Unit weight	Foundation soil
c	=	0 psf	Cohesion	Foundation soil
ф	=	29 deg.	Friction ang.	Foundation soil
c'	=	0 psf	Cohesion	Foundation soil
φ′	=	29 deg.	Friction ang.	Foundation soil

0121-3070.03

OF

DATE

DATE

3/23/06

SJR

Loads and Parameters

$\omega_{\rm t}$	=	240	psf	Traffic	loading
L=B	=	56.32	ft	Length	of MSE reinforcement
L factor	=	0.8		Length	factor-range (0.7 - 1.0)
D	=	6.4	ft	Embedr	ment depth
Dw	=	0	ft	Ground	water depth
H+D	=	70.4	ft		
Н	=	64	ft	Height	of wall
Ka	=	0.33			
Г Ра	=	23.467	ft	Momen	t arm
F Wt	=	35.2	ft	Momen	t arm
B'	=	46.10	ft		
γ'	=	57.6	pcf		
W_t		13,517	lb/ft of	wall	Weight from traffic
W_{mse}	=	475,791	lb/ft of	wali	Weight from MSE wall

Bearing Capacity Factors for Equations

Undrai	Undrained		ned
N_c	27.86	N_c	27.86
$N_{\mathfrak{q}}$	16.44	N_q	16.44
N.	19.34	N,	19.34

Ecce	ntricity c	f Resu	Itant Force	<u>Kern</u>		
e	=	5.11	ft	e < L/6 =	9.39	ft

TranSystems / ODOT D-9
SCI 823-0.00 Portsmouth Bypass
MSE Wall Stability (Rear Abutment)

JOB NUMBER 0121-3070.03 SHEET NO. OF COMP. BY DATE 03/23/06 CHECKED BY DATE

Borings TR-18 & TR-19

STABILITY OF MSE WALL

Assumptions:

- 1 Estimated height of embankment; H=64'
- 2 It is assumed that the bridge is supported on piles
- 3 Ground water; Dw=0.0'
- 4 Traffic loading is neglacted in resisting forces

Wall Properties

$$H+D = 70.4$$
 feet
 $\gamma_{\text{mse}} = 120$ pcf

$$L = 56.32$$
 feet

L factor =
$$0.80$$

 $\phi = 30$ deg

Foundational Soil Properties

$$c = 0$$
 psf Cohesion
 $\phi' = 29$ deg Friction angle
 $\omega_T = 240$ psf Traffic loading

Length factor-range (0.7 - 1.0)

Friction Angle of Embankment Fill

RESISTANCE AGAINST SLIDING ALONG BASE

Thrust:
$$P_a = K_a \left[\frac{1}{2} \gamma H^2 + \omega_T H \right]$$

where;
$$K_a = \tan^2(45 - \frac{\phi}{2})$$
 $K_a =$

$$K_a = 0.33$$

$$P_a = 103,708$$
 lbs per foot of wall

Resistance:
$$P_r = W(0.67)(\mu)$$

(Drained)

where;
$$\mu = \tan(\phi)$$

$$0.67\mu = 0.37$$

$$0.67\mu$$
 Max. =

0.35 (AASHTO, Bridge Design Manual, 303.4.1.1)

$$P_r = 1$$

166,527 lbs per foot of wall

USE THIS VALUE

$$P_r = L(c)$$

(Undrained)

lbs per foot of wall

Use Drained Value

$$FS = \frac{P_r}{P_u}$$

Calculated

Required

$$FS = 1.50$$

Resistance Against Sliding is

OK

RESISTANCE AGAINST OVERTURNING

- * Summation of Moments about point "O" (base of wall).
- * Traffic loading is neglected in resisting forces

$$\sum M_{overturning}$$

$$\Sigma M_{resisting} = \gamma HL \left(\frac{L}{2}\right)$$

$$\sum M_{overturning} = K_a \left[\frac{1}{2} \gamma H^2 \left(\frac{H}{3} \right) + \omega_T H \left(\frac{H}{2} \right) \right]$$

$$FS = \frac{\sum M_{resisting}}{\sum M}$$
 FS = 5.36

Client	TranSystems / ODOT D-9	JOB NUMBER	C	121-307	0.03
Project	SCI 823-0.00 Portsmouth Bypass	SHEET NO.		OF	
Item	Bearing Capacity (Forward Abutment)	COMP. BY	SJR	DAŢE	3/23/06
04 - 823 c	over Portsmouth - Minford Rd.	CHECKED BY		DATE	

Borings TR-15 & TR-16

BEARING CAPACITY OF A MSE WALL

Ref: {AASHTO; STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, 17th Edition, 2002}

Effective Bearing Pressure

$$\sigma_{v} = \frac{W_{i} + W_{MSE}}{L - 2e}$$

$$\sigma_{v} = 10,221 \text{ psf}$$

Ultimate undrained bearing capacity, q ,ut

$$q_{ULT} = c N_c + \sigma'_D N_q + \frac{1}{2} \gamma' B N_\gamma$$
 $q_{ULT} = 2,927 \text{ psf}$

$$q_{ALL} = \frac{q_{ULT}}{FS}$$

Factor of Safety =

0.29

No Good

Ultimate drained bearing capacity, q ut

$$q_{ULT} = c^i N_c + \sigma^i_D N_q + \frac{1}{2} \gamma^i B N_\gamma$$
 $q_{ULT} = 30,557 \text{ psf}$

$$q_{ALL} = \frac{q_{ULT}}{FS}$$

$$q_{ALL} = 12,223 \text{ psf}$$

Factor of Safety = 2.99 OK

Soil Properties

_{Уемв}	=	120	pcf	Unit weight	Embankment fill
ϕ'_{EMB}	=	[*] 30	deg.	Friction ang.	Embankment fill
Yfdn	=	120	pcf	Unit weight	Foundation soil
c	=	500	psf	Cohesion	Foundation soil
ф	=	0	deg.	Friction ang.	Foundation soil
c'	=	0	psf	Cohesion	Foundation soil
φ′	=	-29	deg.	Friction ang.	Foundation soil

Loads and Parameters

$\omega_{\rm t}$	=	240	psf	Traffic l	loading
L=B	=	54.16	ft	Length (of MSE reinforcement
L factor	=	0.8		Length 1	factor-range (0.7 - 1.0)
D	=	6.2	ft	Embedn	nent depth
Dw	=	0	ft	Ground	water depth
H+D	=	67.7	ft		
Н	=	61.5	ft	Height o	of wall
Ka	=	0.33			
ГРа	=	22.567	ft	Moment	t arm
Γ Wt	=	33.85	ft	Moment	t arm
B'	=	44.32	ft		
γ '	=	57.6	pcf		
W_{t}		12,998	lb/ft of	wall	Weight from traffic
W_{mse}	=	439,996	lb/ft of	wall	Weight from MSE wall

Bearing Capacity Factors for Equations

Undrained		Drai	ned
N_c	5.14	$N_{\rm c}$	27.86
N_{q}	1.00	N_{q}	16.44
Ν,	0.00	N,	19.34

Eccentricity of Resultant Force

Kern

4.92 ft

e < L/6 = 9.03 ft

SUBJECT

Client TranSystems / ODOT D-9 Project SCI 823-0.00 Portsmouth Bypass Item MSE Wall Stability (Forward Abutment)

04 - 823 over Portsmouth - Minford Rd.

JOB NUMBER 0121-3070.03 SHEET NO. OF COMP. BY DATE 03/23/06 CHECKED BY DATE

Borings TR-15 & TR-16

STABILITY OF MSE WALL

Assumptions:

- 1 Estimated height of embankment; H=61.5'
- 2 It is assumed that the bridge is supported on piles
- 3 Ground water; Dw=0.0'
- 4 Traffic loading is neglacted in resisting forces

Wall Properties H+D =67.7 120 $\gamma_{\rm mse} =$ pcf

54.16 feet

L factor = 0.8030 deg

EMBANKMENT

FILL

Foundational Soil Properties

500 psf Cohesion 29 deg Friction angle 240 psf Traffic loading $\omega_T =$

Length factor-range (0.7 - 1.0)

Friction Angle of Embankment Fill

TRAFFIC LOADING

REINFORCED

ZONE

W

RESISTANCE AGAINST SLIDING ALONG BASE

$$P_a = K_a \left[\frac{1}{2} \mathcal{H}^2 + \omega_T H \right]$$

where;
$$K_a = \tan^2(45 - \frac{\phi}{2})$$
 $K_a =$

$$K_a = 0.33$$

$$P_a = 96,111$$
 lbs per foot of wall

Resistance:
$$P_r = W(0.67)(\mu)$$

(Drained)

where;
$$\mu = \tan(\phi)$$

$$0.67\mu = 0.37$$

$$0.67\mu$$
 Max. =

0.35 (AASHTO, Bridge Design Manual, 303.4.1.1)

$$P_{\rm r} = 153,$$

153,999 lbs per foot of wall

Use Undrained Value

$$P_r = L(c)$$

(Undrained)

27,080 lbs per foot of wall

USE THIS VALUE

$$FS = \frac{P_r}{P}$$

Calculated

Required

Resistance Against Sliding is | No Good

$$FS = 1.50$$

RESISTANCE AGAINST OVERTURNING

- * Summation of Moments about point "O" (base of wall).
- * Traffic loading is neglected in resisting forces

$$\Sigma M_{resisting} = \gamma HL \left(\frac{L}{2}\right)$$

$$\Sigma M_{overturning} = K_a \left[\frac{1}{2} \gamma H^2 \left(\frac{H}{3} \right) + \omega_T H \left(\frac{H}{2} \right) \right]$$

$$FS = \frac{\sum M_{resisting}}{\sum M}$$

$$FS = \frac{\gamma_{estimag}}{\sum M_{overturnin\ g}}$$

Client	TranSystems / ODOT D-9
Project	SCI 823-0.00 Portsmouth Bypass
Item	Bearing Capacity (Forward Abutment)
04 - 823 c	ver Portsmouth - Minford Rd.

JOB NUMBER 0121-3070.03 SHEET NO. COMP. BY SJR DATE 3/23/06 CHECKED BY DATE

Granular Fill Foundation

BEARING CAPACITY OF A MSE WALL

Ref: {AASHTO; STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, 17th Edition, 2002}

Effective Bearing Pressure

$$\sigma_{v} = \frac{W_{t} + W_{MSE}}{L - 2e}$$

$$\sigma_{\rm v} = 10,965 \text{ psf}$$

Ultimate undrained bearing capacity, q ,ut

$$q_{ULT} = c N_c + \sigma_D^t N_q + \frac{1}{2} \gamma B N_{\gamma}$$
 $q_{ULT} = 72,107 \text{ psf}$

$$q_{\scriptscriptstyle ALL} = \frac{q_{\scriptscriptstyle ULT}}{FS}$$

$$q_{ALL} = 28,843 \text{ psf}$$

Ultimate drained bearing capacity, q ,ut

$$q_{ULT} = c' N_c + \sigma'_D N_q + \frac{1}{2} \gamma' B N_{\gamma}$$

$$q_{ULT} = 72,107 \text{ psf}$$

$$q_{ALL} = \frac{q_{ULT}}{FS}$$

$$q_{ALL} = 28,843 \text{ psf}$$

OK

Soil Properties

Ү ЕМВ	=	120	pcf	Unit weight	Embankment fill
ϕ'_{EMB}	= .	30	deg.	Friction ang.	Embankment fill
YFDN	=	120	pcf	Unit weight	Foundation soil
c	=	0	psf	Cohesion	Foundation soil
ф	=	36	deg.	Friction ang.	Foundation soil
c'	=	. 0	psf	Cohesion	Foundation soil
φ′	=	36	deg.	Friction ang.	Foundation soil

Loads and Parameters

$\langle a \rangle_{\mathbf{t}}$	=	240	psf	Traffic loading
L=B	=	47.39	ft	Length of MSE reinforcement
L factor	=	0.7		Length factor-range (0.7 - 1.0)
D	=	6.2	ft	Embedment depth
Dw	=	0	ft	Groundwater depth
H+D	=	67.7	ft	
Н	=	61.5	ft	Height of wall
Ka	=	0.33		
Г Ра	=	22.567	ft	Moment arm
Γ Wt	=	33.85	ft	Moment arm
B'	=	36.15	ft	
γ'	=	57.6	pcf	
W_t		11,374	lb/ft of v	vall Weight from traffic

Bearing Capacity Factors for Equations

 W_{mse}

384,996 lb/ft of wall

Undrained		Drai	ned
N_c	50.59	N_c	50.59
$N_{\mathfrak{q}}$	37.75	N_q	37.75
N,	56.31	N,	56.31

Eccentricity of Resultant Force

5.62 ft

<u>Kern</u>

e < L/6 = 7.90

Weight from MSE wall

Client	TranSystems / ODOT D-9
Project	SCI 823-0.00 Portsmouth Bypass
Item	MSE Wall Stability (Forward Abutment)

04 - 823 over Portsmouth - Minford Rd.

JOB NUMBER		0121-3070.	03
SHEET NO.		OF.	
COMP. BY	SJR	DATE	03/23/06
CHECKED BY		DATE	

Granular Fill Foundation

STABILITY OF MSE WALL

Assumptions:

- 1 Estimated height of embankment; H=61.5'
- 2 It is assumed that the bridge is supported on piles
- 3 Ground water; Dw=0.0'
- 4 Traffic loading is neglacted in resisting forces

Wall Pro	Fo		
H+D =	67.7	feet	c
202			4.0

EMBANKMENT

FILL

$$L = 47.39$$
 feet

L factor =
$$0.70$$

 $\phi = 30$ deg

oundational Soil Properties

$$c = 0$$
 psf Cohesion
 $\phi' = 36$ deg Friction angle
 $\omega_T = 240$ psf Traffic loading

Length factor-range (0.7 - 1.0)

Friction Angle of Embankment Fill

TRAFFIC LOADING

REINFORCED

ZONE

W

RESISTANCE AGAINST SLIDING ALONG BASE

Thrust:
$$P_a =$$

$$P_a = K_a \left[\frac{1}{2} \mathcal{H}^2 + \omega_T H \right]$$

where;
$$K_a = \tan^2(45 - \frac{\phi}{2})$$
 $K_a =$

$$K_a = 0.33$$

$$P_a = 96,111$$
 lbs per foot of wall

Resistance:
$$P_r = W(0.67)(\mu)$$

(Drained)

where;
$$\mu = \tan(\phi)$$

$$0.67\mu = 0.49$$

$$0.67\mu$$
 Max. =

0.55 (AASHTO, Bridge Design Manual, 303.4.1.1)

$$P_r = 188,648$$
 lbs per foot of wall

USE THIS VALUE

$$P_r = L(c)$$

(Undrained)

$$P_r = 0$$
 lbs per foot of wall

$$FS = \frac{P_r}{P}$$
 FS = 1.96

Resistance Against Sliding is

RESISTANCE AGAINST OVERTURNING

- * Summation of Moments about point "O" (base of wall).
- * Traffic loading is neglected in resisting forces

$$\sum \mathbf{M}_{\text{resisting}}$$

$$\Sigma M_{resisting} = \gamma HL \left(\frac{L}{2}\right)$$

$$\Sigma M_{overturning} = K_a \left[\frac{1}{2} \gamma H^2 \left(\frac{H}{3} \right) + \omega_T H \left(\frac{H}{2} \right) \right]$$

$$FS = \frac{\sum M_{resisting}}{\sum M_{resisting}}$$

$$FS = rac{\sum M_{resisting}}{\sum M_{overturnin\ g}}$$
 FS = 4.09

$$FS = 2.0$$

March 31, 2005

Mr. Greg Parsons, P.E. Project Manager TranSystems Corporation 5747 Perimeter Dr., Suite 240 Dublin, OH 43017

Re: SCI-823-0.00 over Portsmouth-Minford Rd (SR 139)

Preliminary Structural Foundation Recommendations

Project SCI-823-0.00

DLZ Job No.: 0121-3070.03

Dear Mr. Parsons:

This letter reports the findings of the subsurface exploration and preliminary foundation recommendations for the proposed structure on SCI-823-0.00 over Portsmouth-Minford Rd. (SR 139). It is anticipated that the proposed structure will be a four-span, elevated bridge with embankment fills for both abutments. At the present time, it is understood that the forward abutment will be founded on an embankment with a maximum height of 46 feet. The grade at the proposed location of the rear abutment varies along the cross section. The embankment fill is understood to vary from 0 feet to the far left of centerline and up to 35 feet to the right of centerline. It is anticipated that the piers for the structure will be located at elevations similar to those existing at State Route 139 and will be generally 45 feet in height. Currently Portsmouth-Minford Rd. (SR 139) is located along the north side of Long Run.

The findings and recommendations presented in this report should be considered preliminary. It is understood that the final number and locations of substructure units have not been determined yet. After the substructure unit locations have been established, the results of the borings should be reviewed to determine if additional exploration is needed to finalize the foundation recommendations for the new structure.

Mr. Greg Parsons, P.E. March 31, 2005 Page 2

Field Exploration

A total of five borings, TR-15 through TR-19, were drilled at the proposed structure between July 9, 2004 and February 23, 2005. The borings were drilled to depths from 18.0 to 27.0 feet. The borings were extended into bedrock, which was verified by rock coring. Boring Logs and information concerning the drilling procedures are attached.

The boring locations were selected by TranSystems Corporation. Ground surface elevations at the boring locations were estimated from the established topographic mapping for the project and are presented on the attached Boring Logs.

Findings

The following text presents generalized subsurface conditions encountered by the borings. For more detailed information, please refer to the attached Boring Logs.

The borings generally encountered 2 to 12 inches of topsoil at the surface. Boring TR-16 did not encounter topsoil. Underlying the surficial materials, the borings encountered loose to very dense silt (A-4b) and gravel with sand and silt (A-2-4) and medium stiff to very stiff sandy silt (A-4a) and silt and clay (A-6a) to depths between 6.0 and 8.7 feet where bedrock was encountered.

The bedrock encountered at the proposed structure location was composed primarily of medium hard to hard sandstone and siltstone that was generally slightly fractured to intact. Recovery of the core samples ranged from 83 to 100% and RQD values ranged from 57 to 97% with an average RQD of 83%.

Seepage was encountered in borings TR-15, TR-16, and TR-17 between depths of 6.0 and 7.0 feet. The remaining borings did not encounter seepage. At completion of drilling, water levels ranged from 1.6 to 16.3 feet. However, the final water levels include drilling water and may not be representative of the actual groundwater conditions. Groundwater levels may vary seasonally and should be expected to correspond with the level of Long Run.

Mr. Greg Parsons, P.E. March 31, 2005 Page 3

Conclusions and Recommendations

Based on existing proposed cross section plans, it would appear that deep foundations would be necessary for the abutments and shallow foundations would be appropriate for the pier foundations. The following is a brief discussion of the recommendations for the substructures.

Due to the large amount of embankment fill, it appears that drilled shafts bearing on bedrock will be the best-suited foundation type for the support of the proposed structural abutments. If high lateral or uplift loads are anticipated, deeper rock sockets may be needed. The actual design lengths or rock sockets will need to be designed based upon actual loading conditions.

Competent bedrock was encountered at shallow depths at the expected pier locations. Therefore, the use of spread footings on rock should be the best-suited foundation type for support of the proposed structure's piers. The footings should be embedded into the bedrock. If an alternative foundation type is required due to lateral or uplift loads, drilled shafts with rock sockets can be utilized.

The following table summarizes the site conditions and foundation recommendations.

Boring Number	Structural Element	Existing Ground Surface Elevation* (Feet)	Approximate Bearing Elevation* (Feet)	Recommended Foundation Type	Allowable Bearing Capacity
TR-15	Forward Abutment	637	630	Drilled Shafts	15 TSF
TR-16	Pier	636	627	Spread Footing	15 TSF
TR-17	Pier	631	625	Spread Footing	15 TSF
TR-18	Pier	635	628	Spread Footing	15 TSF
TR-19	Rear Abutment	644	635	Drilled Shafts	15 TSF

^{*}Existing ground surface elevation was estimated from the established topographic mapping.

Mr. Greg Parsons, P.E. March 31, 2005 Page 4

Grain-size analyses were performed for scour analysis since the proposed structure location is located perpendicular to Long Run. The following table outlines the D85 and D50 particle sizes from the grain-size analysis. The laboratory data sheets for the grain-size analyses are attached.

Doring	Sample	Donth	Grain Size	
Boring	Sample	Depth	D_{85}	D_{50}
TR-18	S-1	1.0' 2.5'	1.23 mm	0.0297 mm
TR-18	S-2	3.5' – 5.0'	0.207 mm	0.0574 mm
TR-18	S-3	6.0' - 7.5'	1.24 mm	0.13 mm

Closing

If you have any questions, please contact our office for clarification.

Sincerely,

DLZ OHIO, INC.

Richard Hessler

Geotechnical Engineer

Arthur (Pete) Nix, P.E.

Senior Geotechnical Engineer

Mr. Greg Parsons, P.E. March 31, 2005 Page 5

Attachments: General Information - Drilling Procedures and Logs of Borings

Legend – Boring Log Terminology

Site Plan

Boring Logs TR-15, TR-16, TR-17, TR-18, TR-19

Particle Size Distribution Test Reports

cc: File

S:\Dept\Geotech\Projects\0121\307003 Portsmouth Structures\SR139 letter.doc

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a soils engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Dept\Geotech\Misc\Legends\Geninfo.eng

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.
 - 50/n indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.
- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

Terms .	Blows/Foot Standard <u>Penetration</u>
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Cohesive Soils - Consistency

<u>Term</u>	Unconfined Compression tons/sq.ft.	Blows/Foot Standard <u>Penetration</u>	Hand <u>Manipulation</u>
Very Soft less tha	an 0.25	below 2	Easily penetrated by fist
Soft	0.25 - 0.50	2 - 4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.00	4 - 8	Penetrated by thumb w/ moderate effort
Stiff	1.0 - 2.0	8 - 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 - 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

- b. Color If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".
- c. Texture is based on the ODOT Classification System. Soil particle size definitions are as follows:

<u>Description</u>	<u>Size</u>	Description	Size
Boulders	Larger than 8"	Sand-Coarse	2.00 mm. to 0.42 mm.
Cobbles	8" to 3"	-Fine	0.42 mm. to 0.074 mm.
Gravel-Coarse	3" to 3/4"	Silt	0.074 mm. to 0.005 mm.
-Fine	3/4" to 2.00" mm.	Clay	Smaller than 0.005 mm.

d. The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

		e.	Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes.		
1			trace - 0 t	o 10%	
				0 20%	
_ I			,,	io 35%	
				to 50%	
			una		
\sqcap		f.	The moisture content of c	cohesive soils (silts and clays) is expressed relative to plastic properties.	
			<u>Term</u>	Relative Moisture or Appearance	
~ I			Dry	Powdery	
1 1			Damp	Moisture content slightly below plastic limit	
			Moist	Moisture content above plastic limit, but below liquid limit	
			Wet	Moisture content above liquid limit	
\prod		g.	Moisture content of cohe	esionless soils (sands and gravels) is described as follows:	
		3.		Relative Moisture or Appearance	
л			<u>Term</u>		
			Dry	No moisture present	
<u> </u>			Damp	Internal moisture, but none to little surface moisture	
			Moist	Free water on surface	
			Wet	Voids filled with free water	
	10.	Rock ha	ock hardness and rock quality description.		
		a.	The following terms are	used to describe the relative hardness of the bedrock.	
ļJ.			<u>Term</u>	<u>Description</u>	
			Very Soft	Difficult to indent with thumb nails; resembles hard soil but has rock structure	
ا إليا			Soft	Resists indentation with thumb nail but can be abraded and pierced to a shallow depth by a pencil point.	
			Medium Hard	Resists pencil point, but can be scratched with a knife blade.	
البا			Hard	Can be deformed or broken by light to moderate hammer blows.	
			Very Hard	Can be broken only by heavy blows, and in some rocks, by repeated hammer blows.	
		b.	Rock Quality Designati summing the total lengt run.	ion, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by the of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core	
Ļ.	11.	Gradati	ion - when tests are perfo	rmed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).	
	12.	When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated graphically.			
	13.	The sta	The standard penetration (N) value in blows per foot is indicated graphically.		
Ц.		•			
<u> </u>	S:\De	ot\Geotech	\Legends Manuals Misc\L	egends\Legeng.odt	
m					

STANDARD PENETRATION (N) 0121-3070.03 Natural Moisture Content, % 0 Blows per foot -Job No. Ы % Clay 11!S % GRADATION bne2 .∃ % pues 'W % % C. Sand DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 7/9/04 өзебалббү % Hard gray SANDSTONE; fine grained, contains occasional rust stains. Topsoil-2" Stiff to very stiff brown SANDY SILT (A-4a), trace gravel; moist. Medium hard to hard gray SILTSTONE; arenaceous, slightly micaceous. Severely weathered brownish-gray SILTSTONE fragments. Bottom of Boring - 18.0' DESCRIPTION JNS: Water seepage at: 6.0' Water level at completion: 18' Project: SCI-823-0.00 @8.0' - 9.0', probable core loss. @13.0' - 14.0', argilllacious. @3.5' - 5.0', very soft. Location: Station 492+40, 35' Right WATER OBSERVATIONS: Hand Penetro-meter <0.25 3.25 (tst) 5. Rab R-1 70% Press / Core Sample No. 3A 3B 7 əνμα TR-15 Rec 99" 5 Client: TranSystems, Inc. Кесочегу (іп) Core 120" Boring Blows per 6" 619.0-630.0<u>1</u> 637.0 636.8 Elev. (ff) LOG OF: Depth (ft) . م 18.0 P ا. ا 5 15 8 [3/37/5005 TS:35 BW] LIFE: OIST-3^T

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -Blows per foot % Clay 1!!S % GRADATION % F. Sand bne2 .M % % C. Sand DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 7/9/04 өзебөлббү % Medium stiff to stiff brown SANDY SILT (A-4a); moist. Medium hard to hard gray SILTSTONE; arenaceous. Medium hard to hard gray SILTSTONE. @8.9'-9.2', possible clay seam, washed out. Hard gray SANDSTONE; fine grained. Bottom of Boring - 18.5 DESCRIPTION @ 6.0'-7.4', contains rock fragments. WATER
OBSERVATIONS: Water seepage at: 6.0'
Water level at completion: 6.5' Project: SCI-823-0.00 Location: Station 491+60, 35' Left Hand Penetro-meter 0.75 (tst) 1:0 RQD 85% R-1 Press / Core Sample No. ന evn⊄ ~ TR-16 78c 118" Кесоvелу (іп) Client: TranSystems, Inc. Core 120" Boring Blows per 6" 636.0 Elev. (ft) LOG OF: Depth (ft) 햔 23 8 [WA ZE:ZT SOOZ/TE/E]

SIPE: OTST-3^T

STANDARD PENETRATION (N) 0121-3070.03 Natural Moisture Content, % -0 Blows per foot Job No. % Clay 11!S % GRADATION pues :∃ % % M. Sand % C. Sand DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 2/23/05 % Aggregate Loose brown GRAVEL WITH SAND AND SILT (A-2-4); damp. moderately weathered, slightly micaceous, slightly fractured. @ 7.3-7.4', very soft, highly weathered. @ 8.5', irregular fracture. @ 8.7', gray. Water level at completion: 1.6' (inside hollowstem augers after Medium dense brown SILT (A-4b), little fine to coarse sand, @ 22.8'-23.0', very soft, highly weathered siltstone seam. @ 23.0'-23.2', siltstone seam. Hard brown and gray SANDSTONE; fine grained, slightly Medium hard brown and gray SANDSTONE; fine grained weathered, slightly micaceous, slightly fractured Bottom of Boring - 27.0' Very dense brown SANDY SILT (A-4a); wet WATER OBSERVATIONS: Water seepage at: 6.3' - 7.0' DESCRIPTION @ 16.0', 1" soft, weathered zone. Project: SCI-823-0.00 Weathered SILTSTONE, gray Station 490+80, 35' Right trace clay; damp. Topsoil - 5" Hand Penetrometer (tst) Location: RQD R-2 97% RQD R-1 83% Press / Core Sample No. 38 38 evnQ N Rec 120" Rec 120" LOG OF: Boring TR-17 Recovery (in) 8 Client: TranSystems, Inc. Core 120" Core 120" , 20 20 21 Blows ber 6" -624.7--624.0 631.0 **-628.0** -625.F 630.6 Elev. (#) Depth (ft) 阜 5 ġ 2 SIPE: OTST-3^T [WE ZE:ZT SOOZ/TE/E).

STANDARD PENETRATION (N) 0121-3070.03 7 Natural Moisture Content, % Blows per foot Job No. 거 13 10 12 % Clay 28 45 8 **11**!S % GRADATION 28 D 40 % F. Sand ŀ bns2 .M % 1 l 20 ന % C. Sand 7 DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 8/17/04 7 өрвөөрү % У 13 0 Hard dark gray SILTSTONE; fine grained, slightly micaceous, arenaceous. Severely weathered brown and gray SILTSTONE fragments, Hard gray SANDSTONE; fine grained, slightly micaceous. @ 7.3-7.8',8.0',8.6'-8.8', brown rust-stained. @ 7.3' - 7.6'; vertical fracture. Loose brown SILT (A-4b), some fine sand; dry. S-1 contains roots. Bottom of Boring - 20.3' DESCRIPTION WATER OBSERVATIONS: Water seepage at: None Water level at completion: 9.4' Project: SCI-823-0.00 Location: Station 490+00, 35' Left Topsoil - 12" rust stains. Hand Penetro-meter (tst) ROD R-2 94% RQD R-1 95% Press / Core Ş 7 θνΫΩ LOG OF: Boring TR-18 Rec 72" Rec 84" Client: TranSystems, Inc. 38 8 Кесочелу (in) Core 72" Core Blows per 6" #1.71 635.0 634.₽ 629.0 Elev. (ft) 7.5 Depth (ft) 흔 15-3 9 ņ [WE ZE: ZT SOOZ/TE/E] SIFE: OTST-3^T

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -Blows per foot 0 20 3 'n 8/17/04 % Clay #!S % 2 GRADATION % E. Sand bne2 .M % % C. Sand DLZ OHIO INC. $^{\star}~$ 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 $^{\star}~$ (614)888-0040 Date Drilled: 8/16/04 өзе<u>р</u>өт<u>өр</u>А % Medium dense brown SILT (A-4b), some fine to coarse sand; Medium hard to hard gray SILTSTONE; fine grained, slightly Stiff to very stiff brown SILT AND CLAY (A-6a), little fine to Hard gray SANDSTONE; fine grained, slightly micaceous, Bottom of Boring - 20.0' @ 8.5'; contains siltstone/shale fragments. occasional black lamination. @ 8.8'-9.0',9.2'-9.4', brown rust-stained. DESCRIPTION Water seepage at: None Water level at completion: 16.3' micaceous, arenaceous. @ 13.9-14.0', 45 degree fracture. @ 14.7'-15.5', broken zone. @ 14.8'-15.0', sandstone seam. @ 15.4'-15.5', clay seam. @ 13.1'-13.3', 45 degree fracture. Project: SCI-823-0.00 Location: Station 489+10, 35' Right coarse sand; damp. @ 3.5'; trace gravel. WATER OBSERVATIONS: Topsoil-12" damp. Hand Penetro-meter (tst) ROD R-2 70% RQD R-1 57% Press / Core Sample Ş θνħΩ N ന Boring TR-19 Rec 108 30" 18 Cilent: TranSystems, Inc. 9 Кесоvегу (in) Core 108" Core 30" Blows per 6" 630.3 635.3 644.0 638.0 Elev. (ft) .0G OF: Depth (ft) ပ္ပ 6 73.7 15 မှ 2 [9/37/2002 TS:35 BW] FILE: OLZI-31

·	% GR	AVEL		% SAND		% FINI	<u> </u>
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	4.7	7.6	0.8	7.0	8.5	58.1	13.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1 in. .75 in. 3/8 in. #4 #10 #200	100.0 95.3 89.9 87.7 86.9 79.9 71.4		

	Soil Description	
PL= 22	Atterberg Limits LL= 25	PI=, 3
D ₈₅ = 1.23 D ₃₀ = 0.0143 C _u =	Coefficients D60= 0.0433 D15= 0.0063 C _c =	D ₅₀ = 0.0297 D ₁₀ =
USCS= ML	Classification AASH	ΓO= A-4(1)
Moisture Conten	Remarks = 8.9%	

(no specification provided)

Sample No.: 1 Location: Source of Sample: TR-18

Date: 3/24/05

Elev./Depth: 1.0

ODLZ

Client: TranSystems, Inc.
Project: SCI-823-0.00

Project No: 0121-3070.03

Figure

	% GR	AVFI	$\overline{}$	% SAND)	% FINE	S
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	0.0	0.0	2.8	40.0	45.1	12.1

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4 #10 #40 #200	100.0 100.0 97.2 57.2		

	Soil Description	
PL≃ NP	Atterberg Limits LL= NP	PI= NP
D ₈₅ = 0.249 D ₃₀ = 0.0223 C _u =	<u>Coefficients</u> D60= 0.0845 D15= 0.0082 C _c =	D ₅₀ = 0.0553 D ₁₀ =
USCS= ML	Classification AASHT	TO= A-4(0)
Moisture Conter	Remarks at= 12.2%	
	·	

(no specification provided)

Sample No.: 2 Location: Source of Sample: TR-18

Date: 3/24/05

Elev./Depth: 3.5

WDLZ

Client: TranSystems, Inc. Project: SCI-823-0.00

Project No: 0121-3070.03

Figure

	% GR	AVEL		% SAND		% FINE	S
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	8.8	2.0	20.0	28.0	31.4	9.8

s	IEVE	PERCENT	SPEC.*	PASS?
:	SIZE	FINER	PERCENT	(X≃NO)
.37	75 in. 75 in. #4 #10 #40 #200	100.0 93.7 91.2 89.2 69.2 41.2		

	Soil Description	
PL= NP	Atterberg Limits	PI= NP
D ₈₅ = 1.24 D ₃₀ = 0.0368 C _u = 45.38	Coefficients D60= 0.241 D15= 0.0114 C _C = 1.06	D ₅₀ = 0.130 D ₁₀ = 0.0053
USCS= SM	<u>Classification</u> AASHT	O= A-4(0)
Moisture Conten	Remarks t= 10.6%	

(no specification provided)

Sample No.: 3 Location: Source of Sample: TR-18

Date: 3/24/05

Elev./Depth: 6

ODLZ

Client: TranSystems, Inc.
Project: SCI-823-0.00

Project No: 0121-3070.03

Figure

APPENDIX F TRANSYSTEMS CORPORATION

Table of Contents

SUPLEMENTAL SITE PLAN	1
DRAINAGE AREA	2
CHANNEL PHOTOGRAPHS	3-4
RUNOFF CALCULATION	5
HYDRAULIC BRIDGE CALCULATION FROM HEC-RAS	6
STREAM CROSS SECTION OUTPUT FROM HEC-RAS	7-14
SCOUR ANALYSIS	15-16
HYDRAULIC NARRATIVE	1
FLOOD HAZARD EVALUATION	15

SUPPLEMENTAL SITE PLAN	

Looking downstream from west of culvert

Looking upstream from west of culvert

Looking upstream across culvert that is to be relocated

Looking at the Long Run stream bank. Photo shows channel cut in rock.

1 1		
	RUNOFF CALCULATION	

TECHNIQUES FOR ESTIMATING FLOOD-PEAK DISCHARGES OF RURAL, UNREGULATED STREAMS IN OHIO AREA A

U.S. GEOLOGICAL SURVEY Water Resources Investigations Report 89-4126

	Values	Units	Definitions
	374226426.10	SQ. FT.	
	13.424	SQ. MI.	CONTDA = Contributing Drainage Area
	0.00	SQ. FT.	
	0.00	%	STORAGE = Storage Area
	31530.00	FT.	TOTAL CHANNEL LENGTH
	3153.00	FT.	L ₁₀ = 10% of the Distance along channel
	743	FT.	Elev ₁₀ = Elevation at point L ₁₀
-	26800.50	FT.	L ₈₅ = 85% of the Distance along channel
	810	FT.	Elev ₈₅ = Elevation at point L ₈₅
	23647.50	FT.	Length = L_{85} - L_{10}
	14.96	FT./MI.	SLOPE = (Elev ₁₀ -Elev ₈₅)/Length
		CFS	Q _# = Flood-Peak Discharge
			# = Frequency of Storm
Q_2	680.83	CFS	= 56.1(CONTDA) 0.782(SLOPE) 0.172(STORAGE+1)-0.297
Q_5	1131.99	CFS	= 84.5(CONTDA) 0.769(SLOPE) 0.221(STORAGE+1)-0.322
~5		0, 0	(2.2.2)
\mathbf{Q}_{10}	1463.54	CFS	= 104(CONTDA) 0.764(SLOPE) 0.244(STORAGE+1)-0.335
Q_{25}	1896.48	CFS	= 129(CONTDA) ^{0.760} (SLOPE) ^{0.264} (STORAGE+1) ^{-0.347}
Q_{50}	2230.16	CFS	= 148(CONTDA) 0.757(SLOPE) 0.276(STORAGE+1)-0.355
Q ₁₀₀	2571.80	CFS	= 167(CONTDA) 0.756(SLOPE) 0.285(STORAGE+1)-0.363

다-1
h: Rea
Reach: Reach-1
9 River: RIVER-1
iver: RI
19 R
i: Plan
3 Plan
HEC-RAS Plan: Plan 19
뿌

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Fronde # Chl
			(cfs)	(ft)	(ff)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Reach-1	2253	2 Year	680.80	626.70	630.79		631.32	0.005926	5.83	116.69	34.68	0.56
Reach-1	2253	50 Year	2230.20	626.70	634.62		635.32	0.005599	7.06	383.67	191.70	0.57
Reach-1	2253	100 Year	2571.80	626.70	634.90		635.62	0.005581	7.29	438.79	199.87	0.58
Reach-1	2253	500 Year	3600.50	626.70	635.61		636.38	0.005508	7.84	587.73	217.77	0.58
Reach-1	2033	2 Year	680.80	625.60	629.54		630.05	0.006027	5.74	118.61	34.95	0.55
Reach-1	2033	50 Year	2230.20	625.60	633.08	631.25	633.98	0.007953	7.79	325.83	176.38	0.66
Reach-1	2033	100 Year	2571.80	625.60	633.68		634.37	0.005645	7.11	453.04	220.86	0.56
Reach-1	2033	500 Year	3600.50	625.60	634.65		635.23	0.004266	06.9	677.61	245.26	0.50
Reach-1	1782	2 Year	680.80	624.70	628.74	626.82	628.96	0.002307	3.74	181.89	53.91	0.36
Reach-1	1782	50 Year	2230.20	624.70	631.84	629.14	632.39	0.002975	5.96	393.42	118.15	0.44
Reach-1	1782	100 Year	2571.80	624.70	632.33	629.55	632.90	0.003011	6.18	456.38	141.96	0.45
Reach-1	1782	500 Year	3600.50	624.70	633.60	630.61	634.14	0.002445	6.34	741.00	318.17	0.42
Reach-1	1736		Bridge									
Reach-1	1690	2 Year	680.80	624.40	628.51		628.67	0.001500	3.19	213.45	57.07	0.29
Reach-1	1690	50 Year	2230.20	624.40	631.62		631.99	0.001795	2.08	511.16	147.02	0.35
Reach-1	1690	100 Year	2571.80	624.40	632.11		632.49	0.001744	5.25	587.10	163.41	0.35
Reach-1	1690	500 Year	3600.50	624.40	633.30		633.71	0.001657	5.67	870.44	304.70	0.35
Reach-1	1583	2 Year	080.80	624.00	628.16		628.39	0.003138	3.88	175.26	61.51	0.41
Reach-1	1583	50 Year	2230.20	624.00	631.14		631.66	0.003144	5.83	416.42	141.92	0.45
Reach-1	1583	100 Year	2571.80	624.00	631.65		632.18	0.002993	5.98	496.87	178.63	0.44
Reach-1	1583	500 Year	3600.50	624.00	632.92		633.44	0.002455	6.16	760.64	230.79	0.41
Reach-1	1297	2 Year	680.80	622.92	626.36	624.91	626.60	0.003101	3.93	173.15	58.63	0.40
Reach-1	1297	50 Year	2230.20	622.92	629.68	626.98	630.16	0.003106	5.56	401.76	83.78	0.44
Reach-1	1297	100 Year	2571.80	622.92	630.14	627.36	630.67	0.003102	5.87	441.77	22.66	0.44
Reach-1	1297	500 Year	3600.50	622.92	631.27	628.47	631.92	0.003105	6.59	599.45	160.57	0.45

The scour calculations indicate a scour depth of approximately 17 feet. The elevations to top of rock as per the borings, range from 628 to 625. The existing channel bottom is near elevation 624. These differences elevations indicate the channel is in rock. Therefore the scour calculations would not be applicable to this part
of the stream. The last photograph in the Channel Photo Section shows the channel in the rock.

Currently there are no FEMA Flood Studies or Flood Insurance Studies available for this section of Long Run.
Runoff calculations were performed using the Report produced by the United States Geological Survey (USGS) titled "TECHNIQUES FOR ESTIMATING FLOOD-PEAK DISCHARGES OF RURAL, UNREGULATED
STREAMS IN OHIO AREA A U.S. GEOLOGICAL SURVEY Water Resources Investigations Report 89-4126".
These calculations were input into a spread sheet <823 Flood-Peak Discharge Area 32.xls> to facilitate ease of use. A survey of the area was incorporated into the tin file for the project. Cross sections were cut from the aforementioned tin file using the GEOPAK software program. These cross sections were the basis of the
hydraulic model. A HEC-RAS model was performed to calculate the existing the Hydraulic Data. This model was then modified to incorporate the site changes caused by the proposed bridge. The purpose of the Flood Hazard Flood Evaluation is to evaluate any flooding concerns with Long Run and any effect the proposed
bridge structures might have on existing Long Run.
There is an existing culvert that crosses under existing SR 139 (Portsmouth-Minford Road) and drains into the main channel. This culvert located under the proposed SR 823 bridge, is to be relocated downstream of it's current location. The stream that the culvert carries is to be relocated so that the stream passes under the bridge
on it's way to the relocated culvert. The slope of the main channel remains unchanged as the span of the bridge was utilized to the allow flow of the main channel.
The design year storm was selected as the 50 year as per the Ohio Department of Transportation (ODOT) criteria. As a check of the conditions of the 100 year storm was to be modeled. The ODOT Office of Structural Engineering (OSE) requested a 500 year storm was to be modeled for the MSE wall alternative (Alternative
1A). The 500 year runoff is not contained in the within the modeling parameters of the Water Resources Investigation Report 89-4126. Common practice is to calculate the flow 500year flow (Q) by multiplying 1.4 times the 100 year Q. This common practice was utilized for the analysis.

Local residents spoken to, have seen water over the road on a few occasions. It is not a common occurrence and has happened only a few times in a resident's life. The highwater marks are approximately 8 feet from the channel bottom. This is consistent with the HEC-RAS model for the 50 year storm. In this area, the existing flood plain includes one house. This house will be removed for the construction of proposed SR 823. The proposed structures raise the existing 100 year flood from 632.1 to 632.3 a difference of 0.2 feet. The existing 500 year flood elevation is 633.3 the proposed structure will raise the flood to 633.6. This is a difference of 0.3 feet.