

Report of:

Subsurface Exploration SR 823 Bridge Over Lucasville-Minford Road (CR 28)

(SCI-823-1018 L&R)

SCI-823-10.13 Portsmouth Bypass Scioto County, Ohio

STRUCTURAL ENGINEERING

FEB 29 2008

RECEIVED

Prepared for:

TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, Ohio 43017

DLZ Ohio, Inc. 6121 Huntley Road Columbus, OH 43229 Phone: (614) 888-0040 Fax: (614) 436-0161

DLZ Job No. 0121-3070.03 June 27, 2007

Ohio Department of Transportation

District 9

Prepared by:

REPORT

OF

SUBSURFACE EXPLORATION

FOR

SR 823 BRIDGE OVER LUCASVILLE-MINFORD ROAD (CR 28)

(SCI-823-1018 L&R)

PROJECT SCI-823-10.13 PORTSMOUTH BYPASS

SCIOTO COUNTY, OHIO

For:

TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, Ohio 43017

DLZ Job. No. 0121-3070.03

June 27, 2007

TABLE OF CONTENTS

Dane

		1 ago
1.0	INTRODUCTION	1
2.0	GENERAL PROJECT INFORMATION	1
3.0	FIELD EXPLORATION	
4.0	FINDINGS 4.1 Geology of the Site 4.2 Subsurface Conditions 4.2.1 Soil Conditions 4.2.2 Bedrock Conditions 4.2.3 Groundwater Conditions	2
5.0	CONCLUSIONS AND RECOMMENDATIONS 5.1 Bridge Foundation Recommendations-Rear and Forward Abutments 5.2 Bridge Foundation Recommendations-Piers 1 and 2 5.3 General Drilled Shaft Recommendations 5.4 Embankment Stability Analysis 5.5 Groundwater Considerations 5.6 General Earthwork Recommendations	5 7 8 10
6.0	CLOSING REMARKS	11

APPENDIX I

Structure Plan and Profile Drawing - 11"x17"

APPENDIX II

General Information – Drilling Procedures and Logs of Borings

Legend – Boring Log Terminology

Boring Logs – Four (4) Borings

APPENDIX III

Laboratory Test Results

APPENDIX IV

Slope Stability Analysis
Settlement Analysis
Downdrag Forces
Drilled Shaft – End Bearing and Side Resistance Calculations

APPENDIX V

Prefabricated Vertical (Wick) Drain Instrumentation Plan Instrumentation Details

REPORT OF

SUBSURFACE EXPLORATION

FOR

SR 823 BRIDGE OVER LUCASVILLE-MINFORD ROAD (CR 28) (SCI-823-1018 L&R)

PROJECT SCI-823-10.13 PORTSMOUTH BYPASS SCIOTO COUNTY, OHIO

1.0 INTRODUCTION

This report includes the findings of evaluations of foundations for the proposed bridges at the above-referenced project location. The findings included in this report pertain to the structures at proposed SR 823 over Lucasville-Minford Road only. The findings of other structure evaluations will be submitted in separate documents.

The project consists in part of placing twin structures for the proposed SR 823 over Lucasville-Minford Road (CR 28). The two structures as planned, are both three-span structures with spill through slopes at the abutments. The proposed spill through slopes are characterized by 2H:1V slopes.

The purpose of this exploration was to 1) determine the subsurface conditions to the depths of the borings, 2) evaluate the engineering characteristics of the subsurface materials, and 3) provide information to assist in the design of the structure foundations and the roadway embankments. The exploration presented in this report was performed essentially in accordance with DLZ Ohio, Inc.'s (DLZ) proposal for the project.

The geotechnical engineer has planned and supervised the performance of the geotechnical engineering services, considered the findings, and prepared this report in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are made as to the professional advice included in this report.

2.0 GENERAL PROJECT INFORMATION

It is understood that pile foundations are preferred to support the abutments of the proposed structures. It is understood that spill through slopes will be used at the abutments.

Furthermore, it is assumed that the maximum height of the embankment at stations 537+32.50 (Rear Abutment) and 539+92.25 (Forward Abutment) will be approximately 43.0 and 40.0 feet, respectively. Those heights are based upon the maximum difference between the proposed grade of SR 823 and the existing grade, as shown on the cross section drawings provided by TranSystems Corporation.

The analyses and recommendations presented in this report have been made on the basis of the foregoing information. If the proposed locations or structural concepts are changed or differ

from that assumed, DLZ should be informed of the changes so that recommendations and conclusions presented in this report may be revised as necessary.

3.0 FIELD EXPLORATION

The field exploration consisted of four structural borings. The structural borings (TR-11 through TR-14) were drilled between June 7, 2004 and March 17, 2005. The as-drilled boring locations are shown on the Structure Plan and Profile drawing presented in Appendix I. Boring logs for borings TR-11 through TR-14 are presented in Appendix II. Information concerning the drilling procedures is also presented in Appendix II.

The boring locations were determined by representatives of DLZ. The surveyed locations and ground surface elevations of the borings were determined by representatives from Lockwood, Lanier, Mathias & Noland, Inc. (2LMN).

4.0 FINDINGS

4.1 Geology of the Site

The area of this structure is characterized by gently sloping to steeply sloping topography. The project area is located in the Shawnee-Mississippian Plateau of the unglaciated portion of the Appalachian Plateau Physiographic Region. The Shawnee-Mississippian Plateau is characterized by Devonian aged to Pennsylvanian aged rocks and contains residual colluvial, glacial, alluvial, and lacustrine soils.

The genesis of the soils varies across the site. Soils at the proposed bridge site are composed primarily of alluvial and lacustrine soils. These soils are moderately thick, covering moderate to steep slopes. Lacustrine soils in this area are commonly known as "Minford Silts" or the Minford Complex. These deposits were formed during the early to middle Pleistocene age when the northward flowing Teays River system was blocked by the southward advance of the Kansan aged ice sheets. As the glaciers advanced, the course of the Teays River was blocked south of Chillicothe and a large lake was formed from the impoundment of the waterways. As a result of the impoundment, vast quantities of sediments were deposited ranging from 10 to 80 feet in thickness, thinning towards the margins. Bedrock within the structure area is primarily sandstone of the Cuyahoga Formation of Mississippian age. Bedrock of the Mississippian Logan and the Pennsylvanian Breathitt Formation can be found on the slopes north and east of the structures roughly above elevations 800 and 1020, respectively. In the area of the structure, the bedrock was covered by moderately thick overburden ranging in thickness between 33 and 43 feet.

4.2 Subsurface Conditions

The following sections present the generalized subsurface conditions encountered by the borings. For more detailed information, refer to the boring logs presented in Appendix II. Laboratory test results are presented on the boring logs and also in Appendix III.

4.2.1 Soil Conditions

The results of this investigation indicated that soil conditions at the site were somewhat uniform. In general, the subsoil stratigraphy consisted of shallow surficial materials consisting of topsoil underlain by native cohesive and granular soil deposits.

Boring TR-11 was drilled for the north (forward) abutment. Boring TR-14 was drilled for the south (rear) abutment, while borings TR-13 and TR-12 were drilled for Piers 1 and 2, respectively.

All borings encountered surficial material consisting of 4 to 6 inches of topsoil. The topsoil was underlain by native soil deposits. All borings encountered native cohesive and granular soil deposits below the surficial material except boring TR-12 where possible fill was encountered consisting of medium stiff to stiff sandy silt (A-4a).

The cohesive deposits generally consisted of stiff to very stiff silt and clay (A-6a), stiff sandy silt (A-4a), stiff to very stiff silty clay (A-6b), and soft to very stiff clay (A-7-6), while the granular soil deposits consisted mainly of very dense sandy silt (A-4a). The native soil deposits extended to an approximate depth ranging between 33.5 and 43.0 feet below the ground surface where bedrock was encountered.

4.2.2 Bedrock Conditions

In the area of the proposed structure, bedrock was encountered in all borings. A layer of severely weathered rock, ranging in thickness between 3.0 to 4.0 feet, was encountered above the more competent cored bedrock in borings TR-11 and TR-12, while a 10.5-foot thick severely weathered siltstone layer was encountered in boring TR-14. The bedrock consisted of medium hard, broken to highly fractured sandstone and siltstone. The amount of rock recovered in each core run varied between 51 and 100 percent. In boring TR-13, core loss was encountered between approximate depths of 40.0 and 44.9 feet below the ground surface corresponding to elevations 673.5 and 668.9, respectively. The rock quality designation (RQD) of the bedrock ranged between 25 and 92 percent with an average of 71 percent, indicating fair rock.

4.2.3 Groundwater Conditions

Seepage was encountered in all borings between approximate depths of 10.5 and 38.5 feet. Measurable water levels in the borings prior to rock coring were encountered only in boring TR-14 at an approximate depth of 24.8 feet. Water

was used during rock coring operations and masked any seepage zones that might exist in the rock. Measurable water levels, upon the completion of coring, were present in all borings between approximate depths of 8.9 and 28.6 feet.

It should be noted that groundwater levels may fluctuate with seasonal variations and following periods of heavy or prolonged precipitation, and therefore, the readings indicated on the boring logs may not be representative of the long-term groundwater level. Long-term monitoring would be needed to obtain a more accurate estimate of the groundwater table elevation.

5.0 CONCLUSIONS AND RECOMMENDATIONS

It is understood that the proposed bridges will consist of three spans utilizing spill through abutment slopes (2H:1V). It is understood through comments from ODOT's Office of Structural Engineering (OSE) that integral abutments supported on piles are preferred to support the proposed structure. Consequently, driven piles have also been considered for the support of the piers.

In addition to piles, drilled shafts have also been considered to support the proposed structure. Given the abutment type and settlement considerations, spread footings were not considered a reasonable alternative to deep foundations, and therefore were not considered in this report.

A summary of the bridge foundation recommendations is presented in Table 1. Detailed recommendations for the bridge foundations and embankment construction are presented in the following sections, and calculations are presented in Appendix IV.

It should be noted that the bedrock surface varies across the project area. The approximate bearing elevations presented below indicate the elevations at the boring locations only. Variations in the elevation at which competent bedrock is encountered should be anticipated.

Table 1-Summary of Foundation Recommendation

Structural Element	Structure / Boring	Existing Ground Elevation (Feet)	Foundation Type	Approximate Bearing Elevation (Feet)	Allowable Bearing Capacity
Rear	Left & Right	713.6	HP 14x73 piles	674.6	Pile Capacity ⁺
Abutment	/ TR-14	/13.0	Drilled Shafts	664.1	40 ksf*
Pier 1	Left & Right	713.5	HP 14x73 piles	673.8	Pile Capacity ⁺
Pier i	/ TR-13	/13.3	Drilled Shafts	668.0	40 ksf*
D: 2	Left & Right	712.0	HP 14x73 piles	673.2	Pile Capacity ⁺
Pier 2	/ TR-12	713.0	Drilled Shafts	668.0	40 ksf*
Forward	Left & Right	722.5	HP 14x73 piles	678.6	Pile Capacity ⁺
Abutment	/ TR-11	722.5	Drilled Shafts	670.5	40 ksf*

^{*} Includes 5-foot socket into competent rock, end bearing capacity only.

⁺ Allowable pile capacity may be reduced by downdrag forces.

See following section for additional information regarding downdrag forces.

5.1 Bridge Foundation Recommendations-Rear and Forward Abutments

It is understood through comments from OSE that pile foundations are preferred for the support of the abutments. Additionally, it is understood that integral abutments are preferred due to the anticipated downdrag forces, which would be detrimental to battered piles typically used with semi integral abutments.

Pile foundation analyses indicate that displacement type (pipe) piles cannot fully develop resistance prior to encountering bedrock. Prior to contacting bedrock, analyses indicate that 14-inch CIP piles could develop allowable capacities of 41 and 26 tons at the rear and forward abutments, respectively. Consequently, it is recommended that H-piles driven to refusal on bedrock be used to support the structures. The full structural capacity of the piles can be used in this configuration. However, it should be noted that the full allowable capacity of the piles may be reduced by downdrag forces. If piles are driven to refusal on bedrock, it is recommended that reinforced piles points be used to protect the pile while driving.

Significant consolidation of the foundation soils is expected at the abutments under the loading of the new embankment fill. In order to minimize the downdrag forces that would develop along the length of the piles during consolidation of the foundation soils, it is recommended that the embankment be fully constructed to the proposed grade elevation using staged construction and allowed to consolidate prior to driving piles. To accelerate the consolidation of the foundation soils, it is recommended that wick drains with a 2 to 3 foot granular blanket be installed prior to placing any embankment fill. The embankment should be constructed, and wick drains and instrumentation should be installed as outlined in the Report of Subsurface Investigation for the Lucasville-Minford Road Interchange, dated November 29, 2006. The details of the embankment stability are discussed further in section 5.4 of this document.

If, however, some downdrag force can be tolerated, piles can be driven after a shorter waiting period (prior to full consolidation of foundation soils). Based upon the soil profile encountered by boring TR-11, the total primary consolidation was estimated to be approximately 28 inches. Downdrag forces were estimated given various waiting periods prior to driving piles, and are presented in Table 2. Because piles are driven to refusal on bedrock at this site, piles cannot be driven to a higher capacity. Consequently, the downdrag forces will reduce the allowable structural capacity of the piles. Estimates of downdrag forces are provided for HP 14x73 piles. Estimates for other pile sizes can be provided upon request.

Table 2- Unfactored Downdrag Forces Applied to Driven Piles

Waiting Period (days)*	Percent Consolidation	Downdrag Force (kips)
0	0	152
90	78.4	132
180	93.3	92
280	98.6	0

^{*}Waiting period after construction of approach embankment, prior to driving piles. Estimates provided for HP 14x73 piles.

Prior to installing the piles, the bridge approach embankments behind the abutments should be constructed up to subgrade elevation for a minimum distance of 200 feet behind the abutments. The foundation soils should then be allowed to consolidate a sufficient amount to reduce the downdrag forces to acceptable levels, depending on the required structural design capacity of the piles.

The ODOT construction representative may adjust the required waiting period (for a specified degree of consolidation) in the field based upon observations of instrumentation installed for the purposes of monitoring the consolidation of the foundation soils.

As an alternative to pile foundations, drilled shafts may also be considered for the support of the abutments. Based upon the subsurface conditions encountered by the borings, it is recommended that drilled shafts be socketed a minimum of 5 feet into competent rock. The drilled shafts should be straight (not belled) and may be designed based on an allowable bearing pressure of 40 ksf (20 tsf). Recommended bearing elevations for drilled shaft foundations are presented in Table 1. It should be noted that drilled shaft foundations will also be subjected to downdrag forces. Negative skin friction in the consolidating soil layers will be mobilized as a downdrag force. Design values for these downdrag forces can be provided upon request.

5. 2 Bridge Foundation Recommendations-Piers 1 and 2

Based upon the subsurface conditions encountered by the borings drilled for this structure, it is recommended that deep foundations be used to support Piers 1 and 2 of the proposed structure.

Pile foundation analyses indicate that displacement type (pipe) piles cannot fully develop resistance prior to encountering bedrock. Prior to contacting bedrock, analyses indicate that 14-inch CIP piles could develop allowable capacities of 41 and 26 tons based on borings drilled for the rear and forward abutments, respectively. Similar capacities are anticipated at the piers. Consequently, it is recommended that H-piles driven to refusal on bedrock be used to support the structures. The full structural capacity of the piles can be used in this configuration. However, it should be noted that the full allowable capacity of the piles may be reduced by downdrag forces. If piles are driven to refusal on bedrock, it is recommended that reinforced piles points be used to protect the pile while driving.

Total primary consolidation at the toe of the proposed embankments (pier locations) was estimated to be approximately 2.5 inches under the loading of the new approach embankments. As per the Structure Plan and Profile Drawing, it is anticipated that battered piles will be utilized to support the piers. Battered piles are particularly sensitive to the effects of downdrag forces. To minimize the amount of negative skin friction that is mobilized and acting on the piles as a downdrag force, it is recommended that piles not be installed until at least 84 percent of primary consolidation has occurred.

Time-rate of consolidation calculations indicate that a waiting period prior to driving piles of approximately 110 days will be required to achieve 84 percent of primary consolidation if the approach embankments are constructed as described in Section 5.1 of this document. The ODOT construction representative may adjust the required waiting period in the field based upon observations of instrumentation installed for the purposes monitoring the consolidation of the foundation soils.

As an alternative to pile foundations, drilled shafts may also be considered for the support of the piers. Based upon the subsurface conditions encountered by the borings, it is recommended that drilled shafts be socketed a minimum of 5 feet into competent rock. The drilled shafts should be straight (not belled) and may be designed based on an allowable bearing pressure of 40 ksf (20 tsf). Recommended bearing elevations for drilled shaft foundations are presented in Table 1. It should be noted that drilled shaft foundations will also be subjected to downdrag forces. Negative skin friction in the consolidating soil layers will be mobilized as a downdrag force. Design values for these downdrag forces can be provided upon request.

5.3 General Drilled Shaft Recommendations

For end-bearing drilled shafts, it is recommended that skin friction in the overburden soil/fill and shallow rock socket be neglected. The bearing surface should be clean and free of loose material and water prior to placement of concrete. The drilled center-to-center spacing of drilled shafts should generally be no less than 2.5 times their diameter. A qualified representative of the Geotechnical Engineer should field verify that the drilled shafts are founded on competent bearing materials and the installation procedures meet specifications.

If adequate capacity cannot be developed with reasonable shaft diameter, drilled shafts should be designed as friction-type shafts. Neglecting the overburden, upper two feet and bottom length equal to one diameter of the socket, allowable sidewall shear stress/adhesion of 5,000 pounds per square foot (psf) may be used for the rock socket. If designed as friction-type shafts, the shafts should be designed such that design loads are carried entirely by the rock socket resistance, ignoring any end bearing.

Shafts that are installed as friction-type piles must have good sidewall contact with the concrete with preferably rough sides. If any shaft is allowed to sit over 12 hours filled with fluid (water or slurry), the potential for sidewall softening develops. This is especially true with the rock sockets and granular materials. The bedrock material encountered across the site contains siltstone and argillaceous sandstone that could deteriorate quickly when exposed to water or left to desiccate, losing its strength quickly. If it is anticipated that a drilled shaft excavation will be allowed to remain open for longer than 12 hours, the shaft excavation should be drilled at least 6 inches smaller in diameter and reamed to the design diameter immediately prior to placement of concrete. If a drilled shaft excavation does not have concrete placed within 12 hours of completion of the excavation, the shaft should be oversized 6 inches in diameter.

Drilled shafts that are end bearing and are allowed to remain open for more than 12 hours should be drilled short by at least 12 inches and reamed out to the design bearing depth immediately prior to placement of concrete to prevent softening of the bearing material. If a drilled shaft excavation does not have concrete placed within 12 hours of completion of the excavation, the shaft should be extended 12 inches in depth prior to the placement of concrete.

Precautions should be taken to permit the shafts to be drilled and the concrete placed under relatively dry conditions. Although no significant seepage was encountered by any of the borings drilled for this project, water could flow into the drilled shaft excavations during installation, particularly within wet zones that may be present in the rock. It is anticipated that materials across the site could vary considerably and temporary casing will be required during the drilling and concrete placement to seal out water seepage in the overburden and prevent cave-in. During simultaneous concrete placement and casing removal operations, sufficient concrete should be maintained inside the casing to offset the hydrostatic head of any groundwater. Extreme care must be exercised during concrete placement and removal of the casing so that soil intrusion is avoided.

5.4 Embankment Stability Analysis

Based on the borings drilled for the structure, the embankment foundation was assumed to consist of 13.0 feet of stiff silty clay (A-6b) or clay (A-7-6) to a depth of 13.0 feet below the ground surface. Beneath this layer, soft to medium stiff clay (A-7-6) was encountered to a depth of 37 feet below the ground surface. Below this layer, stiff silt and clay (A-6a) was encountered to a depth of 43 feet, at the top of severely weathered bedrock.

The maximum embankment height within the limits of the structure or approach embankment is assumed to be 43.0 feet, near the rear abutment of the proposed structure. Consequently, a height of 43.0 feet is assumed for the analyses at this site.

Stability analyses were performed to determine the stability of the embankments and spill through slopes within the limits of the proposed structure. It should, however, be noted, that the analyses performed for embankments within the interchange have been found to be slightly more critical than those for the spill through slopes. The developed cross sections were characterized by 2H:1V side slopes. Consequently, it is recommended that the approach embankments and spill through slopes be constructed according to the recommendations outlined in the Report of Subsurface Investigation for the Lucasville-Minford Road Interchange, dated November 29, 2006. Some of the results contained within the cited interchange report are reproduced in this report for reference, for additional information, please refer to the cited document.

Stability analyses performed for the interchange embankments indicate that undrained stability is a concern at this site. Subsequent analyses have indicated that the embankments could be constructed with staged construction while using wick drains to accelerate consolidation times. For the purposes of the recommendations presented in

this document, it is assumed that staged construction and wick drains will be used to construct the embankments contained within the interchange area. If a construction method or sequence other than that which was assumed is used, DLZ should be informed so that the analyses and recommendations presented here can be revised as necessary.

Slope stability analyses were performed for the proposed State Route 823 near station 538+00 in order to determine the height of the embankment that could be initially constructed assuming no significant removal of existing poor soils. Undrained analyses were performed for a 32-foot height first stage embankment, assuming a cross section characterized by 2H:1V side slopes. The critical factor of safety assuming end-of-construction (undrained) conditions was found to be 1.32. This critical factor of safety meets the generally recommended minimum factor of safety of 1.30 for highway embankments.

Drained analyses were then performed for the 32-foot stage embankment assuming excess pore pressures in the foundation soils. This analysis would reflect the conditions during construction with instrumentation to verify the subsurface conditions. The pore water pressure head during stage 1 and stage 2 construction should not rise above the existing ground surface elevation. If pore pressures rise above this level, fill placement should halt immediately. Construction may continue after pore pressures in the clay layers have dissipated. The waiting period time between stage 1 (32-foot embankment) and stage 2 (45-foot embankment) should be more than 60 days (assumes wick drains) to allow dissipation of the excess pore water pressures.

The excess pore water pressures will dissipate near the toe of the new embankment due to the decreasing embankment load. In the analyses, it was assumed that the excess pore pressures dissipated along the outside slope of the new embankment. The assumed excess pore pressure distribution is shown on the stability analyses results in Appendix IV. Based on the findings of these analyses, it is recommended that at least 70 percent of the excess pore water pressures be allowed to dissipate before the remainder of the embankment is constructed, this corresponds to an approximate waiting period of 60 days, as cited above. The results of the stability analyses are presented in the Appendix IV.

Settlement analyses indicate that the embankment will undergo an approximate settlement of 28 inches. It is anticipated that wick drains and staged construction will be used to expedite the consolidation process. Embankment settlements and pore water pressures should be monitored during construction using settlement platforms and piezometers. The settlement platforms should be installed at representative locations as approved by the ODOT construction representative. Copies of the instrumentation plan from the interchange report are included in Appendix V for reference. Note that the locations shown from piezometers and settlement plates 3 and 4 (P-3, P-4, S-3, S-4) have been adjusted slightly so they are under the maximum height of the embankment.

5.5 Groundwater Considerations

Water seepage was encountered in all borings between approximate depths of 10.5 and 38.5 feet below the ground surface. Measurable water levels in the borings prior to rock coring were encountered only in boring TR-14 at an approximate depth of 24.8 feet. Representative final water levels could not be obtained due to the use of water during rock coring operations. Excavations for the pier foundations are expected to be limited to ten feet or less, and will likely only encounter minor seepage in the soil layers. However, shafts extending below the top of rock may encounter more significant seepage through fractured zones in the rock. The contractor should be prepared to deal with seepage, water flow, or precipitation that may enter any excavations.

5.6 General Earthwork Recommendations

The proposed alignment of SR 823 over Lucasville Minford Road (CR 28) traverses a relatively flat area. Consequently, fill placement will be required to construct the approach embankments for the bridges. The maximum fill anticipated is approximately 43 feet.

Between 4 and 6 inches of topsoil were encountered at the ground surface. All topsoil and vegetation within the footprint of the new embankment and roadway should be removed prior to new fill placement. All pavement, and organic soil within 3 feet of subgrade level should also be removed prior to placing fill or pavement materials.

Organic soils were not encountered in any of the borings. However, if organic soils are encountered, it is recommended that at least the top three feet of subgrade soil be removed prior to the construction of the new embankment. Overexcavation may need to be deeper if organic soils are encountered at depths greater than three feet.

The embankments should be constructed in accordance with ODOT Items 203. It is anticipated that the embankments will be constructed with side slopes of 2H:1V or flatter. Based on the materials encountered by the borings, the foundation soils are considered adequately stable under the proposed embankment loads, if constructed as presented in the Report of Subsurface Investigation for the Lucasville-Minford Road Interchange, dated November 29, 2006.

Excavations deeper than 5.0 feet must be sloped or shored to protect workers entering the excavations. Refer to OSHA regulations (29CFR Part 1926) concerning sloping and shoring requirements for excavations.

Relative to the footing excavations, the following additional recommendations are presented:

1. All footings should be founded deep enough for frost protection, considered to be 36 inches in this area.

- 2. Excavation bottoms should be examined by the geotechnical engineer prior to placement of reinforcing steel and concrete in order to determine the suitability of the supporting soils.
- 3. If the footings are not supported by piles/drilled shafts, excavations should be undercut to suitable bearing material if such material is not encountered at the planned footing level. Such undercuts may be backfilled with a lean mix concrete (1,500 psi @ 28 days) or footing concrete.
- 4. All footing excavations should be cut to stable side walls and flat bottoms with the bottoms comprised of firm soil undisturbed by the method of excavation or softened by standing water. Concrete should be placed the same day that the footings are excavated.

6.0 CLOSING REMARKS

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our report.

Respectfully submitted,

DLZ OHIO, INC.

Steven J. Riedy

Geotechnical Engineer

Dorothy A. Adams, P.E.

Senior Geotechnical Engineer

Dorothy a. adams

sjr

M:\proj\0121\3070.03\Structures\Lucasville-Minford SR 728\Final\REVISED\Lucasville Minford Road 6-27-07 SJR.doc

APPENDIX IStructure Plan and Profile Drawing – 11"x17"

APPENDIX II

General Information – Drilling Procedures and Logs of Borings Legend – Boring Log Terminology Boring Logs – Four (4) Borings

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Geot\Forms\General Info English.doc

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n – indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot
<u>Term</u>	Standard Penetration
Very Loose	0 – 4
Loose	4 — 10
Medium Dense	10 – 30
Dense	30 – 50
Very Dense	over 50

Cohesive Soils - Consistency

	Unconfined	Blows/Foot	
	Compression	Standard	
<u>Term</u>	tons/sq.ft.	<u>Penetration</u>	Hand Manipulation
Very Soft	less than 0.25	below 2	Easily penetrated by fist
Soft	0.25 - 0.50	2 – 4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.0	4 – 8	Penetrated by thumb with moderate pressure
Stiff	1.0 - 2.0	8 – 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

- b. Color If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".
- c. Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows:

<u>Description</u>	<u>Size</u>	<u>Description</u>	<u>Size</u>
Boulders	Larger than 8"	Sand — Coarse	2.0 mm to 0.42 mm
Cobbles	8" to 3"	— Fine	0.42 mm to 0.074 mm
Gravel – Coarse	3" to ¾"	Silt	0.074 mm to 0.005 mm
– Fine	¾" to 2.0 mm	Clay	smaller than 0.005 mm

The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size. Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes. 0 to 10% trace 10 to 20% little 20 to 35% some "and" 35 to 50% Moisture content of cohesionless soils (sands and gravels) is described as follows: Term Relative Moisture or Appearance Dry No moisture present Internal moisture, but none to little surface moisture Damp Moist Free water on surface Voids filled with free water Wet The moisture content of cohesive soils (silts and clays) is expressed relative to plastic properties. Relative Moisture or Appearance Term Dry Damp Moisture content slightly below plastic limit Moist Moisture content above plastic limit but below liquid limit Wet Moisture content above liquid limit Rock Hardness and Rock Quality Designation The following terms are used to describe the relative hardness of the **bedrock**. <u>Term</u> Description Very Soft Permits denting by moderate pressure of the fingers. Resembles hard soil but has rock structure. (Crushes under pressure of fingers and/or thumb) Soft Resists denting by fingers, but can be abraded and pierced to shallow depth by a pencil point. (Crushes under pressure of pressed hammer) Medium Hard Resists pencil point, but can be scratched with a knife blade. (Breaks easily under single hammer blow, but with crumbly edges.) Hard Can be deformed or broken by light to moderate hammer blows. (Breaks under one or two strong hammer blow, but with resistant sharp edges.) Very Hard Can be broken only by heavy and in some rocks repeated hammer blows. Rock Quality Designation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core run. 11. Gradation – when tests are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c). 12. When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated graphically. 13. The standard penetration (N) value in blows per foot is indicated graphically.

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English.doc

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -Blows per foot 3/17/05 % Clay 79 86 20 4 IIIS % 2 GRADATION 0 bns2 .7 % _ bns2 .M % 1 1 0 O pues 'O % 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 3/16/05 % Aggregate 0 0 Date Drilled: Stiff to very stiff light brown CLAY (A-7-6), little to some silt, WATER
OBSERVATIONS: Water seepage at: 23.5'
Water level at completion: 21.9' (Includes drilling water) @ 28.5', contains sandstone fragments. DESCRIPTION Medium stiff gray CLAY (A-7-6); moist Location: Sta. 539+75.3, 37.2 ft. RT of SR 823 CL trace fine sand; damp. @ 11.0', gray. Topsoil - 4" DLZ OHIO INC. Hand Penetro-meter (tsf) / Point-Load Strength (psi) 0.75 0.75 25 25 55 2.0 2.5 0.5 0.5 0.5 0.51 0.5 Press / Core Sample Ş ~ 유 Ξ $\overline{\alpha}$ Drive N ന 4 Ŋ ဖ ر Φ LOG OF: Boring TR-11 Client: TranSystems, Inc. цесолеці (іп) 8 3 8 <u>@</u> 8 8 2 8 <u>∞</u> 9 લ WOH MON HOW ₽° Blows per 6" က Ŋ Q a 722.5 -709.FT Elev. (#) Depth (ft) ب م ť 'n Ç ន 뙶 ELLE: 0121-3070-03 [6/18/2007 11:10 AM]

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % foot Blows per P2 T 3/17/05 % Clay 8 20 **IIIS** % 2 GRADATION % F. Sand Τ--% W. Sand ŀ 0 % C. Sand 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 3/16/05 әтьрэтррА % 0 Very stiff gray SILT AND CLAY (A-6a), trace fine sand; damp to moist. slightly to moderately weathered, argillaceous, micaceous, thinly laminated to very thinly bedded, slightly fractured, contains Medium hard gray SANDSTONE; very fine to fine grained, Water seepage at: 23.5'
Water level at completion: 21.9' (Includes drilling water) Medium stiff light brown CLAY (A-7-6); moist Bottom of Boring - 57.0 DESCRIPTION abundant argillaceous laminations. ocation: Sta. 539+75.3, 37.2 ft. RT of SR 823 Cl Project: SCI-823-0.00 Severely weathered gray SHALE. WATER OBSERVATIONS: DLZ OHIO INC. Point-Load Strength (psi) Hand Penetro-meter (tsf) / 0.75 2 23 0.5 ROD H1 91% Press / Core Sample No. 4 <u>ღ</u> 5 φ Ðιἰν⊛ **TR-11** Rec 120" TranSystems, Inc. Несочету (іп) 8 8 8 8 15 Core 120° LOG OF: Boring Blows ber 6" ထ 685.57 679.5 675.5 Elev. (#) Depth (ft) -37.0 ဗ္ဂ 습 | 45-4.74 9.74 В ន 55 [MA 01:11 T002\81\8] LIFE: 0151-3010-03

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % toof Blows per 8 % Clay 17 8 9 27 F IIIS % GRADATION 11 0 0 pueS ∴ 8 ; % M. Sand ŧ ; ξ. 0 0 % C. Sand 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 3/17/05 39 % Аддгеда*і*е 0 0 POSSIBLE FILL: Medium stiff brown SANDY SILT (A-4a), some Date Drilled: Water level at completion: 10.1' (includes drilling water) Very stiff brown and gray CLAY (A-7-6); varved; moist @ 11.0'-30.0', soft to medium stiff, brownish gray. WATER OBSERVATIONS: Water seepage at: 10.5'-30.5' DESCRIPTION Location: Sta. 539+22.5, 28.9 ft. LT of SR 823 CL Project: SCI-823-0.00 gravel, little clay; damp to moist. Topsoil - 5" DLZ OHIO INC. Hand
Penetrometer
(tsf) /
Point-Load
Strength
(psi) 0.75 0.75 0.75 2.25 0.75 2.5 0.5 0.5 0.5 0.5 0.5 ₽ress / Core Sample No. 9 --- 얼 ӘлілО Ø ო 4 Ŋ ဖ ^ ∞ O TR-12 Client: TranSystems, Inc. Несочелу (іп) 16 ₽ 8 8 <u>æ</u> 3 8 8 9 VOH 2 2 WOH 2 2 VOH POH A F MOH HOH Ę~ LOG OF: Boring Blows ber 6" က -712.0 713.0 Elev. (ft) Depth (ft) 5.5 阜 15 Ю ಜ EIFE: OTST-3010-03 . [6/18/8001 31:10 PM]

STANDARD PENETRATION (N) Job No. 0121-3070.03 Natural Moisture Content, % -Blows per foot % Clay 28 59 11!S % GRADATION 8 % E. Sand % W. Sand ŀ % C. Sand ιΩ 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 Date Drilled: 3/17/05 % ∀ддгедаtе Stiff gray and brown SILTY CLAY (A-6b), little fine to coarse sand, trace gravel; varved; damp to moist. weathered to decomposed, argillaceous, micaceous, slightly fractured, contains ferric bands and abundant argillaceous Medium hard gray SANDSTONE; very fine grained, highly Water level at completion: 10.1' (includes drilling water) Bottom of Boring - 50.0' WATER
OBSERVATIONS: Water seepage at: 10.5'-30.5' @ 45.9'-48.2', light brown siltstone layer. DESCRIPTION laminations, fissile after desiccation. Location: Sta. 539+22.5, 28.9 ft. LT of SR 823 CL SCI-823-0.00 Severely weathered gray SHALE. Project: DLZ OHIO INC. Hand
Penetrometer
(tsf) /
Point-Load
Strength
(psi) 5. RQD R1 92% Press / Core Sample Ş က္ 4 *θ*ΛμΩ TR-12 Pec 120" Ciient: TranSystems, Inc. Несочелу (іп) 8 16 Core 120 LOG OF: Boring Blows ber 6" က €76.0H 683.0 683.0 Elev. (ft) Depth (ft) 37.0 35 9.04 5 없 [MA OI:II 1 6/18/2007 EIFE: 01S1-30A0-03

STANDARD PENETRATION (N) 0121-3070.03 Natural Moisture Content, % -Blows per foot Job No. 80 % Clay ō **#!\$** % GRADATION % F. Sand pues 'W % ł 0 % C. Sand * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040 6/8/04 % ∀ддкедаіе 0 Stiff gray SANDY SILT (A-4a), some clay, trace gravel; moist. Date Drilled: Stiff to very stiff mottled brown and gray CLAY (A-7-6), trace fine to coarse sand; moist. Stiff to very stiff brown SILT AND CLAY (A-6a), little fine to WATER
OBSERVATIONS: Water seepage at: 33.5'-35.0'
Water level at completion: 28.6' (includes drilling water) coarse sand, trace to little gravel; moist DESCRIPTION @ 6.0'-7.5', mottled brown and gray. Location: Sta. 537+97.9, 36.5 ft. RT of SR 823 CL Project: SCI-823-0.00 @ 26.0', contains sand seams. @ 21.0'-22.5', medium stiff. @ 16.0'-27.5', gray. Topsoil - 6" DLZ OHIO INC. Hand
Penetrometer
(tsf) /
Point-Load
Strength
(psf) 1.75 1.25 3.25 2.25 1.25 0.75 3.5 20 ī. 0. ιċ πi eress / Core Sample No. Ç --- <u>ي</u> ЭνілΩ Q က 4 ß φ **/** Ø Ġ, TR-13 Client: TranSystems, Inc. Песочелу (іп) 9 8 9 8 18 8 48 18 NOH 3 3 ď LOG OF: Boring Blows per 6" Q S ĝ Ø -713.0-713.5 Elev. (ft) Depth (ft) ρ Ϋ́ 햔 8 23 TA: 10 AM J (6/18/2007 EIFE: 0151-3010-03

		Bottom of Boring - 50.0'		49 16 14			Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	% Agglegate % C. Sand %	s drilling water) St. damp to moist. St. damp to moist.	. 537+97. WATER OBSERVA GE trace gr trace gr (@ 46.6' @ 47.8' seams.	Press / Core meter (ss), Streng (ps)
			Rec RQD R-1 @46.6'	Medium Rec RQD R-1 @46.0'	16 14 Medium Med	14 Medium hard gray SILTSTONE; fissile. @40.0' - 44.9', core loss. POD P- 20 48 12 @40.0' - 44.9', core loss. @46.6' - 46.8', clay seam.	13 Medium hard gray SILTSTONE; fissile. @40.0' - 44.9', core loss. ROD 25% R-1 @46.6' - 46.8', clay seam.		ith occasional clay	@47.8' - 50.0', broken to highly fractured w seams.	
seams.	seams.		Rec RQD R-1	Medium hard gray SIL.T @40.0' - 44.9', core los Rec RQD R-1	16 14 Medium hard gray SIL.T Medium hard los	14	13 Medium hard gray SILTSTONE; fissile. ROD R-1 ROD R-1 ROD R-1		ith occasional clay	@46.6' - 46.8', clay seam. @47.8' - 50.0', broken to highly fractured w	
@46.6' - 46.8', clay @47.8' - 50.0', brok seams.	@46.6' @47.8' seams.	@46.6' - 46.8', clay seam. @47.8' - 50.0', broken to highly fractured with occasional clay seams.	@40.0' - 44.9', core loss.	Medium hard gray SILT @40.0' - 44.9', core los	16 Medium hard gray SILT @40.0' - 44.9', core los	Medium hard gray SILTSTONE; fissile.	13 Medium hard gray SILTSTONE; fissile. @40.0' - 44.9', core loss.				OD R-1
RQD R-1 @46.6' @46.6' @47.8' seams.	Rec RQD R-1 @46.6' @47.8' seams.	RQD 25% R-1 @46.6' @47.8' @47.8' seams.		Medium hard gray SILT	16 14 Medium hard gray SILT	Medium hard gray SILTSTONE; fissile.	13			@40.0' - 44.9', core loss.	
Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist. Medium hard gray SILTSTONE; fissile. @40.0' - 44.9', core loss. @46.6' - 46.8', clay seam. @47.8' - 50.0', broken to highly fractured with occasional clay seams. Bottom of Boring - 50.0'	13 14 Medium hard gray SILTSTONE; fissile. (240.0' - 44.9', core loss. ROD R-1 (24.4a) (247.8' - 50.0', broken to highly fractured with occasional clay seams. (25.10 - 25.48 12 (26.40.0' - 44.9', core loss. (27.8' - 50.0', broken to highly fractured with occasional clay seams.	13 Wedurm hard gray SILTSTONE; fissile. Rod Rod Rod Rod Rod Rod Rod Rod Rod Ro	13 Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments, damp to moist. 5 10 25 48 12	Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.		Sand Sand (Sand Watural Moisture Content, % Sand (Sand Watura) Sand (Sand Wa			Press / Co
DESCRIPTION Tace gravel, contains sendstone fragments, damp to moist. A G. G. A. G. G. A. G. G. G. A. G.	14 Popple Poppl	Pool Point Load Character Content 25. Chara	Natural Moisture Content, %- Strength DESCRIPTION Not dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist. 13 14 15 16 17 17 18 18 19 10 10 10 10 10 10 11 11 11	Natural Moisture Content, %— Strength DESCRIPTION Nery dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist. 13 PL H H Blows per foot - O 30 44 Noty dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	Continue Content, % Content	Signatural Moisture Content, % Signatural Moisture Content & State Content, % Signatural Moisture Content, % Signature Content, % Si	Content, % Content C	t p	s drilling water)		
Peneticon Water level at completion: 26.5 (includes drilling water) Peneticon (200 (15) / (200	Content	Penetic	Penetro-Water Seepage at 33.5-35.0 Penetro-Water Beyel at 35.5-35.0 Penetro-Water Beyel at 35.5-35.0 Point-Load (15t)	Penetro-Water Seepage at: 33.3-35.0 (iii) Penetro-Water Seepage at: 33.3-35.0 (iv) Penetro-Penet	Fenetro-Water Seepage at: 33.5-35.0 (if) Matural Moisture Content, %- Point-Load Natural Moisture Content, %- Content,	Penetro- Water level at completion: 28.6' (includes drilling water) (Isf) / (Penetro- Water Seepage at: 33.5-35.0 Mater level at completion: 28.6' (includes drilling water) Water level at completion: 28.6' (includes drilling wa			WATER OBSERVATIONS:	
Sample Hand MATER TOWNS: Water seepage att 33.6-35.0 Pending water) Pending Water Pending water) Pe	Sumple Head WATER Water seepage at 33.5.35.0 No. 1	Hand MALEH MANDER PENETRATION MALEY Seepage at 38.5°.35.0	Sample Hand WATEH No. Perietro- No. Mater seepage at: 33.5'-35.0' Strongth DESCRIPTION Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist. 13 14 14 14 14 14 16 16 17 17 17 18 18 19 10 10 10 10 10 10 10 10 10	Hand OBSERVATIONS: Water seepage at: 33.5-35.0 Penetro- Penetro- Water level at completion: 28.6' (includes drilling water) Penetro- Water level at completion: 28.6' (includes drilling water) Penetro- Water level at completion: 28.6' (includes drilling water) Penetro- Water level at completion: 28.6' (includes drilling water) Penetro- Water level at completion: 28.6' (includes drilling water) Penetro- Water level at completion: 28.6' (includes drilling water) Penetro- Water level at completion: 28.6' (includes drilling water) Penetro- Natural Moisture Content, % PL Blows per foot - 10 20 30 4 11 Nery dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	Annue Hand OBSERVATIONS: Water seepage at: 33.5'-35.0' Penetro- Penetro- Water level at completion: 28.6' (includes drilling water) (1st) / C - Point-Load Strength DESCRIPTION Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	Sample Hand WATER No. Penetro- Penetro- Water seepage at: 33.5-35.0' C Point-Load C Strength C C Point-Load C Strength C C St	Sample Hand WATER No. Penetro- Penetro- Water seepage at: 33.5'-35.0' Penetro- Mater level at completion: 28.6' (includes drilling water) 10	GHADATION	Care Cimea.		Location:
Location: Sia. 537+97.9, 36.5 ft. RT of SR 823 CL Date Dullet: 68/04 MATER WATER States seepage at: 33.5.35.0 Elevator Mater level at completion: 28.6 (includes drilling water) Elevator Mater level at completion: 28.6 (includes drilling water) Elevator Mater level at completion: 28.6 (includes drilling water) Elevator Mater level at completion: 28.6 (includes drilling water) Elevator Mater level at completion: 28.6 (includes drilling water) Elevator Mater level at completion: 28.6 (includes drilling water) Elevator Elev	100cation State 100c	Location: Sta. 257-97.9, 36.5 ft. RT of SH 823 CL Date Drilled: 6/8004 Responsible	Sample Hand OBSERVATIONS: Water seepage at: 33.5-35.0° No. Penetro-Mater level at completion: 28.0° (includes drilling water) Strandard OBSERVATIONS: Water seepage at: 33.5-35.0° Strength Strength (ps) Strandard OBSERVATIONS: Water seepage at: 33.5-35.0° Strength Strength (ps) Very dense gray and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	Sample Hand WATER No. Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at completion: 28.6' (includes drilling water) Penatro- Mater level at	Sample Hand WATER No. Penetro- No. Water level at completion: 28.6' (includes drilling water) No. Penetro- No. Penetro- No. Water level at completion: 28.6' (includes drilling water) No. Penetro- No. Penetro- No. Water level at completion: 28.6' (includes drilling water) No. Penetro- No. Penetro- No. Mater level at completion: 28.6' (includes drilling water) No. Penetro- No. No. Penetro- No. Strangth No. Strangth DESCRIPTION STANDARD PENETRATION Region of Strangth and brown SANDY SILT (A-4a), little clay, trace gravel; contains sandstone fragments; damp to moist.	Sample Hand OBSERVATIONS: Water seepage at: 33.5'-35.0' Penetro-meter Water level at completion: 28.6' (includes drilling water) Completion: 28.6' (include	Location: Sta. 537+97.9, 36.5 ft. RT of SR 823 CL Date Drilled: 6/8/04 Sample		Date Drilled: 6/8		

Job No. 0121-3070.03	6/1/04	STANDARD PENETRATION (N)	PL 11 11 12 13 14 15 15 15 15 15 15 15												
		pt pt	% Aggreg % C. San % F. San # F. San						0 0 2						
Project: SCI-823-0.00	Location: 5(a. 537+32.3, 46.2 II. L.1 01 SH 823 CL. Date Drilled: 0/4/04	OBSERVATIONS: Water seepage at: 33.5', 38.5' Water level at completion: 24.8' (Prior to coring) 8.9' (includes drilling water)		\times \text{Topsoil - 4"} Very stiff brown and gray SILTY CLAY (A-6b), little fine to coarse sand; moist.		@ 6.0'-7.5', gray.	Stiff to very stiff brown CLAY (A-7-6), trace to little fine to coarse sand; varved; damp to moist.		@13.5', gray; qu=3820 psf.				@ 23.5', gray and brown.		@ 28.5', contains sand seams.
,	ocation: Of	Hand Penetro- meter (tsf) /	* Point-Load Strength (psl)	2.25	3.75	2.75	2.75	2.25	1.0	1.5	1.25	1.25	t. 3:	1.25	c
		No. No. No.	Drive Press / C	, 	-N	හ	4	က	ST- 6 1	2	ω	o	. 6	-	ç
			Песочелу	18	80	80	8	8	88	82	<u>∞</u>	80	88	8	,
ems, Inc.			ed swolg	ဗ	2 4	6	3 4	6 4	WOH 2 2 1	WOH 3 1	2 3	2 3	2 3	2 3 1	+
TranSystems, Inc.	LOG Or: boring		Elev. (ft) 713.6	713.3-	0	[i i	705.1-2	[0]	\$	<u> </u>	 - 	-	F	Q	Q
Client:			Depth (ff)	က က ဗ	22	1 1 "T	10 -	1	15	1 1 1	20	1 1	25		ı

Client: Trar	TranSystems, Inc.	ms, Ir	زو				Project							Job No.	0121-3070.03	ဗ
LOG OF: Boring	Borin	g TH	TR-14		Ţ	Location: Ste	ft. LT of SR 823 CL	Date Drilled: 6/4	6/4/04			ᅌ	6/7/04			
				Sample No.		Hand	WATER OBSERVATIONS:		·	GRA	GRADATION	<u> </u>				
			(uj) Ki			Penetro- meter (tsf) /	water seepage at: -33.5, -36.5 Water level at completion: 24.8' (Prior to coring) 8.9' (includes drilling water)	er)					STA Natu	STANDARD PENETRATION (N) Natural Moisture Content, % - (ETRATION ontent, %	(N) 7
	(#) (#) (#) (#) (#) (#) (#) (#) (#) (#)	d swola	ЭлоээН	Биіvе	Vress /	Strength (psi)	DESCRIPTION		<i>166</i> ∀ %	% C' 25	% F. Sa	₩S %	% Clay	PL Blows per foot 10 20 3	30 - FE	0; 7
-							Stiff to very stiff gray and brown CLAY (A-7-6), trace to little fine to coarse sand; varved; contains sand seams; damp to moist.	to little fine to to moist.						/- /-		
1 1															' -/ /	7
33.5	1	14 28 40	8	<u>د</u>			Severely weathered gray SILTSTONE.									/
8																<u> </u>
1 1																
ı	40 50/4	-	12	4	<u></u>			,								2,0
4																
T				-				:								
7	50/4		4	5												 b
45	 O						Medium hard gray SILTSTONE; fissile.									}
T I	. გ _დ	Core B	Rec 54*	ROD 72%	듄		@ 45.7', 46.4', 49.3', 50.7', 53.0', clay seams. @ 46.1'-46.7', 49.0'-49.3', broken to highly fractured.									
(MA (:					
) 8																
7002/		Core B	Rec "a"	ROD 1	R-2					···						
81/9				?			: ; ; ;									
-	650						@ 53.5-53.7', Vertical fracture.									
35) n				·		Bottom of Boring - 54.0'									
157-30																
ו ו												-				
я 1																
90	1	-			-				-		_		-	1111111		- 7 - 3

APPENDIX IIILaboratory Test Results

Project No.: 0121-3070.03 Project: SCI-823-0.00

Source: B-1223

Sample No.: PI

Elev./Depth: 8.0

Project No.: 0121-3070.03 Project: SCI-823-0.00

Source: B-1223

Sample No.: P1

Elev./Depth: 8.0

Project No.: 0121-3070.03 Project: SCI-823-0.00

Source: B-1223

Sample No.: P1

Elev./Depth: 8.0

Project No.: 0121-3070.03 Project: SCI-823-0.00

Source: B-1223

Sample No.: PI

Elev./Depth: 8.0

Dial Reading vs. Time

Project No.: 0121-3070.03 Project: SCI-823-0.00

Source: B-1223

Sample No.: P2

Elev./Depth: 18.0

Figure

Dial Reading vs. Time

Project No.: 0121-3070.03 Project: SCI-823-0.00

Source: B-1223

Sample No.: P2

Elev./Depth: 18.0

Dial Reading vs. Time

Project No.: 0121-3070.03 Project: SCI-823-0.00

Source: B-1223

Sample No.: P2

Elev./Depth: 18.0

APPENDIX IV

Slope Stability Analysis
Settlement Analysis
Downdrag Forces
Drilled Shaft – End Bearing and Side Resistance Calculations

					C	LIENT		1 ra:	<u>15y</u>	sten	225 	<u>('e</u> ()	rp	-/-	0.	007	<u> </u>	<u>U-9</u>	<u> </u>	PROJE	CT N	10		012	<u> 27 -</u>	307	70.0	<u>23</u>
ENGINEERS					STS P	ROJE	CT	<u>58</u>	<u>-1-</u>	82	<u>3</u> 1	1.	<u>~f:</u>	Sme D	uth	1	RYK	04.55	<u> </u>	HEET	NO.		<u> </u>	1 A W	(OF DATE		15
PI.A	NNERS	• SUI	RVEYO	RS	51	OBJE	પા 32:	<u>ل ل</u> حر	<u> </u>	د ا	1 a.	<i></i>	<u>.</u> 11	Ho.	a = m	<u>را</u>	675 R-	1	_ (ישברי ישברי	RA T	2V	<u>ら</u> つ	10	<u></u>	date . Date .	6-	-15 25
1,,	١.	j	1		,	!	:	1	1	į	i	1.	,	Ŧ	•		!	<u> </u>		I	ובט נ	?"— !		7173	'	JAIC		i
*													=			 	<u> </u>	; 		ļ		} 	i L	<u> </u>	; ; ; !			
	į 1 !			H	<i>5f</i>	a 17	on	ļ:	53	37+	60)	60	2	<i>y</i>	i) - - 		ļ.,	ļ			ļ	<u> </u>	1		 	<u> </u>
		L	ļ		ļ <u>.</u> .	ļ	,		-	ļ	-	-	-	-	; ; ;			ļ		,	ļ.,.			; ! 	ļ		<u></u>	
	201/		-0+	, Le	b	ase	4	upo	<u>h</u>	Oot	in	-	TR	11	<u> </u>	(1	205	7	Cris	مين زم	!/	at	7	2015	51	1/2 8,	2	<u> </u>
(ons	ak	dat	on	l e	rai	ne	ters		tak	en.	fo	om_		DOC	ag		<u>B-</u> ,	122	3	(5	ta.	5	35	+2	8,	2.1	14
Hansanga bija		<u> </u>	<u> </u>		} 		<u> </u> 		<u> </u>		ļ	ļ									ļ	! ! !	<u> </u> 	ļ	 			-
	ļ	 - 				ļ 	ļ	<u> </u>	-	<u> </u>		ļ	 	ļ	! } 		<u> </u>	ļ	ļ	 		ļ 		ļ	ļ		 	
			-	A					ļ	<u> </u>			ļ	 	 				ļ			<u> </u>	ļ				ļ	
		ļ		I	E	mba	nkm	ent		-	ļ	 		ļ	ļ	i !			ļ	ļ		ļ	<u> </u>	<u></u>	<u> </u>			
		<u> </u>	<u> </u>	H3'	F	:11	∀ =	120	pcs				<u> </u>		ļ									ļ	ļ			ļ
Depth	,	 		+	<u> </u>				_	-	 	-												ļ				
	0	ے ا	lay	(A-	<u>7-6</u>)	LL	= 5	0	F	<u>L=</u>	19			\	Fr	om	B-	122	3,1	-1:	X	-12	2 00	£,	Po	05	9
3			<u> "</u>	<u> </u>		<u> </u>	W	† 3	0 %	<u> </u>					<u> </u>											.79		
	2	C.	العالم.	(A	-7-	(·)_	 	= 5	8	F	<u>L=</u>	25)			<u> </u>										
					ļ		ಬ	= 3	71	r 		<u> </u>	<u> </u>	ļ	}	Fr	om	B-	223	1	-2	8=	110	pe	f 1	=	5.4	ተ
37																									1.12			
	3	3	;]+	G.AC	C	lang	1	<u></u>	37		<u> </u>	22	ļ		1	1		ł	1 '		ı		I •	, -	Be.	1 1]	
 3/			(A	-600)		L	7=	23	1/0					\	Es	tim	atec	1	ron	F	HW	1 A) HI-	00	-04	5	
713					134	d R	حد													-								
	* <	am	ple		اعد	cul	ati	n.																				
							<u></u>											ļ										
	1)	C	heel	<u>د</u>	Pro	- 40	nsc	110	at	ion	F	12.55	ure.	<u>;</u>														
				<u>ں</u> -	PI				3-	1				ł .	D. C	10	, .	<	0. 3	2								
				LL	PL			7	7-	22	<u> </u>	15																
								,	We	N	acre	a.	 \$5 4	me.	. 5	0,1	, <	,	712	ion	501	icla	fre	1				
									60	ion	/	O	ł									•						
				 									7				£] 				
	2)		1:4	al	V	D 10	l	Ra	Lo			1	ssu	lue s		au!	les	Sa	tu	vat	col)	 					1
							2. 2				•						7								1			
				e		***	,	10	o	- =		0.	63	3									eft eft an se					
								} }		1) 				
The late of the late of	3)		٥,		ln o		٥,				}												ah daman					
					•			712	~							and married by		•	way - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1	of termes								
office Manager and State			C_c	<i>=</i>	100	5 =		<u>23</u> .	=	0,	23	[~~~~ 			0	ء م	7	ω 00Λ	=	٥.	02	M 12-10-10-10-1						
	a 11 ment aur 1112	**************************************			.h - 6			- 		, iii f			L			ایر ت درا≛	L. J.	0										
51	17				1			-		 			ļ ļ															

Client TranSystems Inc. Project SCI-823 Portsmouth Bypass Settlement Analysis

JOB NUMBER SHEET NO. COMP. BY

CHECKED BY

0121-3070-03

q = 5,160 psf

Lucasville-Minford Road

Profile based upon TR-11, Settlement parameters taken from similar soil layers encountered in B-1223

SETTLEMENT ANALYSIS - EMBANKMENT

D=10.0 ft Groundwater Table: H = 43

Embankment Height: 120 pcf Fill Unit Weight: $\gamma_{\rm emb} =$

Width of Slope:

Top half-width of Emb: b =

Distance from CL:

0. 43 · ft Output Range:

*See Data output Attached

$$\sigma_{\gamma}(z) := \left(\frac{q}{\pi a}\right) \left(a \left(\alpha(z) + \beta(z) + \alpha'(z)\right) + b \left(\alpha(z) + \alpha'(z)\right) + x \left(\alpha(z) - \alpha'(z)\right)\right)$$

$$\beta(z) := atan \left[\frac{(b-x)}{z} \right] + atan \left[\frac{(b+x)}{z} \right]$$

$$\alpha'(z) := \operatorname{atan}\left[\frac{(a+b-x)}{z}\right] - \operatorname{atan}\left[\frac{(b-x)}{z}\right]$$

$$\alpha'(z) := \operatorname{atan}\left[\frac{(a+b-x)}{z}\right] - \operatorname{atan}\left[\frac{(b-x)}{z}\right] \qquad \alpha(z) := \operatorname{atan}\left[\frac{(a+b+x)}{z}\right] - \operatorname{atan}\left[\frac{(b+x)}{z}\right]$$

Cohesionless

Reference: US Army Corps of Engineers EM 1110-1-1904 "Settlement Analysis", Table C-1

					•				Concatome	.33		
7	Soil Pro	pperite	es: Settleme	ent is calculated at mid-	point of layer				Soils	Co	hesive Sc	oils
μ√ο (.Bot. of		Soil Type	$\gamma_{\rm soil}$ (pcf)	σ' _c (psf)	σ' _o (psf)	$\Delta \sigma$ z (psf)	σ' _f (psf)	C'	Cr	C _c	eo
\lfloor_1	13.0	ft	Clay	122	1,780	793	5,159	5,952	0.0	0.10	0.27	0.790
2	23.0	ft	Clay	116	10,800	1,667	5,145	6,812	0.0	0.16	0.37	1.124
3	33.0	ft	Clay	116	10,800	2,203	5,104	7,307	0.0	0.16	0.37	1.124
Ŋ.	37.0	ft	Clay	116	10,800	2,578	5,059	7,637	0.0	0.16	0.37	1.124
. J	43.0	ft	Clay	120	10,800	2,858	5,016	7,874	0.0	0.02	0.23	0.630
6	0.0			0	0							
7	0.0			0	0							
1 8	0.0			0	0	·			•			
ورا	0.0			0	0 .	-						
10	0.0			0	0							

lo. Settlement: **Total Settlement**

1.283 0.461 ft 0.392

2.315

0.142

0.037

27.8 in Reference: Geotechnical Engineering Principles and Practices; Coduto, 1999

Overconsolidated Soils - Case I ($\sigma'_0 < \sigma'_c$) Eqn:11.24

$$(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log \left(\frac{\sigma'_f}{\sigma'_0} \right)$$

Overconsolidated Soils - Case II ($\sigma'_0 < \sigma'_c < \sigma_t$) Eqn:11.25

$$(\delta_c)_{ah} = \sum \left[\frac{C_r}{1 + e_0} H \log \left(\frac{\sigma'_c}{\sigma'_0} \right) + \frac{C_c}{1 + e_0} H \log \left(\frac{\sigma'_f}{\sigma'_c} \right) \right]$$

Normally Consolidated Soils ($\sigma'_0 = \sigma'_c$) Eqn: 11.23

$$\left(\delta_{c}\right)_{ult} = \sum \frac{C_{c}}{1 + e_{0}} H \log \left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$$

Cohesionless Soils ($\sigma'_{\theta} = \sigma'_{c}$)

$$\left(\delta_{c}\right)_{ult} = \sum \frac{1}{C'} H \log \left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$$

TranSystems Inc.
SCI-823 Portsmouth Bypass
Settlement Analysis

JOB NUMBER		121-	3070.03
SHEET NO.	3	OF	33
COMP. BY	51K	DATE	6-13-07
CHECKED BY	DAA	DATE	6-25-07

$$\sigma_{\nabla}(z) := \left(\frac{q}{\pi a}\right) \left(a \cdot (\alpha(z) + \beta(z) + \alpha'(z)) + b \cdot (\alpha(z) + \alpha'(z)) + x \cdot (\alpha(z) - \alpha'(z))\right)$$

$$\beta(z) := \operatorname{atan} \left[\frac{(b-x)}{z} \right] + \operatorname{atan} \left[\frac{(b+x)}{z} \right] ; \quad \alpha'(z) := \operatorname{atan} \left[\frac{(a+b-x)}{z} \right] - \operatorname{atan} \left[\frac{(b-x)}{z} \right] \quad \alpha(z) := \operatorname{atan} \left[\frac{(a+b+x)}{z} \right] - \operatorname{atan} \left[\frac{(b+x)}{z} \right]$$

Reference: US Army Corps of Engineers EM 1110-1-1904 "Settlement Analysis", Table C-1

Client TranSystems Inc.

Project SCI-823 Portsmouth Bypass

Settlement Analysis

COMP, BY

0121-3070-03

Lucasville-Minford Road Embankment TOE

CHECKED BY

JOB NUMBER

SHEET NO.

Profile based upon TR-11, Settlement parameters taken from similar soil layers encountered in B-1223

SETTLEMENT ANALYSIS - EMBANKMENT

10.0Groundwater Table: D=ft

Embankment Height: H =43

120 pcf q = 5,160 psfFill Unit Weight: $\gamma_{\rm emb} =$

Width of Slope: 86 a =

Top half-width of Emb: b =100

Distance from CL: 186 x =

Output Range: 0 43

*See Data output Attached

$$\sigma_{\psi}(z) := \left(\frac{q}{\pi a}\right) \left(a \left(\alpha(z) + \beta(z) + \alpha'(z)\right) + b \left(\alpha(z) + \alpha'(z)\right) + x \left(\alpha(z) - \alpha'(z)\right)\right)$$

$$\beta(z) := atan \left[\frac{(b-x)}{z} \right] + atan \left[\frac{(b+x)}{z} \right]$$

$$\alpha'(z) := atan \left[\frac{(a+b-x)}{z} \right] - atan \left[\frac{(b-x)}{z} \right]$$

$$\alpha'(z) \coloneqq \text{atan} \left[\frac{(a+b-x)}{z} \right] - \text{atan} \left[\frac{(b-x)}{z} \right] \qquad \alpha(z) \coloneqq \text{atan} \left[\frac{(a+b+x)}{z} \right] - \text{atan} \left[\frac{(b+x)}{z} \right]$$

Reference: US Army Corps of Engineers EM 1110-1-1904 "Settlement Analysis", Table C-1

Cohesionless

\bigcap	Soil Pro	perit	es: Settlement	is calculated at mid-	point of layer				Soils	Co	hesive Sc	oils
	o. Bot. of		Soil Type	$\gamma_{\rm soil}$ (pcf)	$\sigma'_{\rm c}$ (psf)	σ (psf)	$\Delta \sigma z$ (psf)	σ' _f (psf)	C'	C _r	C _c	e _o
L_{1}	1 13.0	ft	Clay	122	1,780	793	123	916	0.0	0.10	0.27	0.790
	2 23.0	ft	Clay	116	10,800	1,667	332	1,999	0.0	0.16	0.37	1.124
	3 33.0	ft	Clay	116	10,800	2,203	515	2,718	0.0	0.16	0.37	1.124
	4 37.0	ft	Clay	116	10,800	2,578	631	3,209	0.0	0.16	0.37	1.124
	5 43.0	ft	Clay	120	10,800	2,858	713	3,571	0.0	0.02	0.23	0.630
. (5 0.0			0	0							
	7 0.0			0	0							
ل ع	8 0.0			0	0							
چکے	9 0.0			0	0	•						
	0.0			0	0							

Reference: Geotechnical Engineering Principles and Practices; Coduto, 1999

Overconsolidated Soils - Case I ($\sigma'_0 < \sigma'_c$) Eqn:11.24

$$\left(\delta_{c}\right)_{ult} = \sum \frac{C_{r}}{1 + e_{0}} H \log \left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$$

Overconsolidated Soils - Case II ($\sigma'_0 < \sigma'_c < \sigma_f$) Eqn:11.25

$$\left(\delta_{c}\right)_{ult} = \sum \left[\frac{C_{r}}{1 + e_{0}} H \log \left(\frac{\sigma'_{c}}{\sigma'_{0}}\right) + \frac{C_{c}}{1 + e_{0}} H \log \left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)\right]$$

Normally Consolidated Soils ($\sigma'_0 = \sigma'_c$) Eqn: 11.23

$$\left(\delta_{c}\right)_{ult} = \sum \frac{C_{c}}{1 + e_{0}} H \log \left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$$

Cohesionless Soils ($\sigma'_0 = \sigma'_c$)

$$\left(\delta_{c}\right)_{ult} = \sum \frac{1}{C'} H \log \left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$$

Total Settlement o. Settlement:

0.210

2.5

ft

in

0.045 0.059

0.069

0.029

0.008

Client TranSystems Inc.

Project SCI-823 Portsmouth Bypass

Item Settlement Analysis

Lucasville-Minford Road Embankment TOE

 JOB NUMBER
 0121 · 3070.03

 SHEET NO.
 5
 0F
 33

 COMP. BY
 51 k DATE
 6-13-07

 CHECKED BY DAA
 DATE
 6-25-07

INCREASE IN VERTICAL STRESS DUE TO EMBANKMENT LOADING

q = 5160 load
a = 86 width of slope
b = 100 top half-width of embankment
x = 186 distance from CL
z = 0 to 43 depth range

$$\sigma_{\sqrt{z}}(z) := \left(\frac{q}{\pi a}\right) \left(a \cdot (\alpha(z) + \beta(z) + \alpha'(z)) + b \cdot (\alpha(z) + \alpha'(z)) + x \cdot (\alpha(z) - \alpha'(z))\right)$$

$$\beta(z) := \operatorname{atan} \left[\frac{(b-x)}{z} \right] + \operatorname{atan} \left[\frac{(b+x)}{z} \right] \ ; \ \alpha'(z) := \operatorname{atan} \left[\frac{(a+b-x)}{z} \right] - \operatorname{atan} \left[\frac{(b-x)}{z} \right] \quad \alpha(z) := \operatorname{atan} \left[\frac{(a+b+x)}{z} \right] - \operatorname{atan} \left[\frac{(b+x)}{z} \right]$$

Reference: US Army Corps of Engineers EM 1110-1-1904 "Settlement Analysis", Table C-1

CLIENT Transytems Corp / ODOT D-9 PROJECT NO. 0121-3070.03 PROJECT 561-823 Portismouth By pass SHEET NO. ______ SUBJECT Down drag Forces on Riles COMP. BY 150116 _DATE_6-14-07 PLANNERS • SURVEYORS 5.R.728, Abutment Piles DATE 6-25-0 7 1) Soil profile encounfered by boring TR-11 is assumed to be the most chifical with respect to sattlement 2) Analysis for TRII is defined to be copresentative of rear and forward aboutment driven piles 3) Analysis assumes no waiting period prior to driving piles. 4) HP-14×73 piles, driven to refusal on bedrack are assumed. From Sattlement analysis of foundation soils under embankment loading, determine depth which settlements are limited to 0.4" or lass @t=0 StHAment from 38.0 to 43.0 50.4" Depth = 38.6' From Driven enalysis we can estimate the skin Friction resistance component from a depth of 01+0 38.0. From 0 - 380' Skin friction = 152.4 K * If piles are istalled prior to a consolidation the skin friction would be mobilined down drag force DU = 152 E downdray forces from reducing the allowable 280 days (V=98.6%) of the piles, a wasting period of Drains B should be observed. (Assumes Wick * Alternate waiting periods and associated doundrag forces Downdrag* Time * Note: Unfactored Downdrag Force Consolidation (days) Force (Kips) 152 4 0 784 90 13Z K 180 92 \$ 93.3 98.6 280 SIK

TranSystems Corp / ODOT D-9	JOB NUMBER	0	121-3070	0.03
SCI-823 Portsmouth Bypass	SHEET NO.	8	of	33
Lucasville-Minford Road	COMP. BY	SIL	Date	6-14-07
Estimation of Downdrag Forces	CHECKED BY	DAA	Date	6-25-07
α - Method			•	-

Analyses based upon Driven pile analysis for HP 14x73 piles, assuming soil profile based on TR-11 Assumes 3 foot wick drain spacing for time-rate of consolidation calculations

				it Remainir ayer (inche it Consolid	s)
	Depth of Layer (ft)	Total Primary Consolidation	78.4	93.3	98.6
ľ	0.0-13.0	15.40	3.33	1.03	0.22
١	13.0-23.0	5.53	1.19	0.37	0.08
I	23.0-33.0	4.70	1.02	0.32	0.07
١	33.0-37.0	1.70	0.37	0.11	0.02
	37.0-43.0	0.45	0.10	0.03	0.01

Depth Below		ulative Ren ement (inc	II I. C. HOS OUR CONTRACTOR					
Ground	Percent Consolidation %							
Surface (ft)	78.4	93.3	98.6					
0.00	6.00	1.86	0.39					
13.00	2.68	0.83	0.17					
23.00	1.48	0.46	0.10					
33.00	0.46	0.14	0.03					
37.00	0.10	0.03	0.01					
43.00	0.00	0.00	0.00					

1) At 90 days (U=78.4%), Remaining settlements greater than 0.4" will occur from depths of 0 to 34' below the existing ground surface.

Skin friction at these depths will be mobilized as a downdrag force on the piles DD=132 kips

2) At 180 days (U=93.3%), Remaining settlements greater than 0.4" will occur from depths of 0 to 25' below the existing ground surface.

Skin friction at these depths will be mobilized as a downdrag force on the piles DD=92 kips

2) At 280 days (U=98.6%), Remaining settlement is approximately equal to 0.4" It is assumed that no skin friction will be mobilized as a downdrag force. DD=0 kips

Actual waiting periods may be modified in the field by the Engineer based upon readings from settlement platforms and piezometers.

Time Rate of Consolication of Foundation Soils with Wick Drians Lucasville-Minford Rd Based upon boring TR-11

Reference: FHWA-RD-86-168

Sheet 9 of 33 51K 6-14-07 DAA 6-25-07

				FHWA-RD-8	86-168				V	AA (O
Wick Drain	Spacing	3.0	feet	Use $\eta = 10$			Remaining				
t (days)	TR	T _V	UR	U _V	Uc	δ (inches)	$\delta(inches)$	d_e	Cv	H_{v}	$\delta_{\sf max}$
0	0.0000	0.0000	0.00	0.00	0.0	0.0	27.8	3,15	0.03	21.5	27.8
5	0.0151	0.0003	0.09	0.08	16.8	4.7	23.1				
10	0.0302	0.0006	0.16	0.08	22.9	6.4	21.4				
15	0.0454	0.0010	0.22	0.08	28.6	7.9	19.9	Assume	s double	e draina	ge
20	0.0605	0.0013	0.28	0.09	33.9	9.4	18.4	Spacing	g = 3 ft (t	riangula	ir)
25	0.0756	0.0016	0.33	0.09	38.8	10.8	17.0				
30	0.0907	0.0019	0.38	0.09	43.4	12.1	15.7				
35	0.1058	0.0023	0.43	0.09	47.7	13.3	14.5				
40	0.1209	0.0026	0.47	0.09	51.7	14.4	13.4				
45	0.1361	0.0029	0.51	0.09	55.5	15.4	12.4				
50	0.1512	0.0032	0.55	0.09	58.9	16.4	11.4				
55	0.1663	0.0036	0.58	0.09	62.1	17.3	10.5				
60	0.1814	0.0039	0.61	0.09	65.1	18.1	9.7				
65	0.1965	0.0042	0.64	0.10	67.8	18.8	9.0				
70	0.2116	0.0045	0.67	0.10	70.3	19.5	8.3				
75	0.2268	0.0049	0.70	0.10	72.6	20.2	7.6				
80	0.2419	0.0052	0.72	0.10	74.7	20.8	7.0				
85	0.2570	0.0055	0.74	0.10	76.7	21.3	6.5				
90	0.2721	0.0058	0.76	0.10	78.4	21.8	6.0				
95	0.2872	0.0062	0.78	0.10	80.1	22.3	5.5				
100	0.3023	0.0065	0.79	0.10	81.5	22.7	5.1				
105	0.3175	0.0068	0.81	0.10	82.9	23.0	4.8				
110	0.3326	0.0071	0.82	0.11	84.1	23.4	4.4				
115	0.3477	0.0075	0.83	0.11	85.3	23.7	4.1				
120	0.3628	0.0078	0.85	0.11	86.3	24.0	3.8				
125	0.3779	0.0081	0.86	0.11	87.2	24.2	3.6				
130	0.3930	0.0084	0.87	0.11	88.0	24.5	3.3				
135	0.4082	0.0088	0.87	0.11	88.8	24.7	3.1				
140	0.4233	0.0091	0.88	0.11	89.5	24.9	2.9				
145	0.4384	0.0094	0.89	0.11	90.1	25.1	2.7				
150	0.4535	0.0097	0.89	0.11	90.7	25.2	2.6				
155	0.4686	0.0101	0.90	0.11	91.2	25.4	2.4				
160	0.4837	0.0104	0.91	0.12	91.7	25.5	2.3				
165	0.4989	0.0107	0.91	0.12	92.1	25.6	2.2				
170	0.5140	0.0110	0.92	0.12	92.6	25.7	2.1				
175	0.5291	0.0114	0.92	0.12	92.9	25.8	2.0			PARKERA PER	Maria Constitution of the
180	0.5442	0.0117	0.92	0.12	93.3	25.9	1.9				
185	0.5593	0.0120	0.93	0.12	93.6	26.0	1:8				
190	0.5745	0.0123	0.93	0.12	93.9	26.1	1.7				
195	0.5896	0.0127	0.93	0.12	94.3	26.2	1.6				
200	0.6047	0.0130	0.94 0.94	0.12 0.13	94.5 94.8	26.3 26.4	1.5 1.4				
205	0.6198	0.0133 0.0136	0.94	0.13	95.1	26.4	1.4				
210 215	0.6349 0.6500	0.0136	0.94	0.13	95.1	26.5	1.3				
220	0.6652	0.0140	0.95	0.13	95.7	26.6	1.2				
225	0.6803	0.0146	0.95	0.13	95.9	26.7	1.1				
230	0.6954	0.0149	0.96	0.13	96.2	26.7	1.1				
235	0.7105	0.0143	0.96	0.13	96.5	26.8	1.0				
240	0.7105	0.0156	0.96	0.13	96.7	26.9	0.9				
245	0.7407	0.0159	0.97	0.13	97.0	27.0	0.8				
250	0.7559	0.0159	0.97	0.13	97.2	27.0	0.8				
255	0.7339	0.0165	0.97	0.13	97.5	27.1	0.7				
260	0.7710	0.0169	0.97	0.14	97.7	27.2	0.6				
265	0.8012	0.0172	0.98	0.14	98.0	27.2	0.6				
270	0.8163	0.0172	0.98	0.14	98.2	27.3	0.5				
275	0.8314	0.0178	0.98	0.14	98.4	27.4	0.4				
280	0.8466	0.0178	0.98	0.14	98.6	27.4	0.4			ALC: N	
285	0.8617	0.0185	0.99	0.14	98.8	27.5	0.3	nicoletalethia 2	assembly (A)	APPENDICATION OF	THE PARTY OF THE PARTY.
290	0.8768	0.0188	0.99	0.14	98.9	27.5	0.3				
			7.7	S.10 F	45705 0 10574						

DRIVEN 1.0

GENERAL PROJECT INFORMATION

Sheet 11 of 33

SAK 6-14-07 DAA 6-25-07

Filename: C:\DRIVEN\728TR11.DVN

Project Name: SCI-823

Project Date: 06/15/2007

Board upon TR-11

Project Client: TranSystems Corp / ODOT

Computed By: sjr Project Manager: Nix

PILE INFORMATION

Pile Type: H Pile - HP14X73

Top of Pile: 5.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	10.00 ft
•	 Driving/Restrike 	10.00 ft
	- Ultimate:	10.00 ft
Ultimate Considerations:	- Local Scour:	0.00 ft
	- Long Term Scour:	0.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	13.00 ft	0.00%	120.00 pcf	2000.00 psf	T-79 Steel
2	Cohesive	24.00 ft	0.00%	120.00 pcf	1000.00 psf	T-79 Steel
3	Cohesive	6.00 ft	0.00%	120.00 pcf	2000.00 psf	T-79 Steel
					•	

Analysis HP-14x73, 95 ton piles

Sheet	13	of	33
A 5 1 - 4 - 4 - 4		•	

		ULTIMATE - SK	IN FRICTION	Sheet	13 of 33
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft 9.01 ft 12.99 ft 13.01 ft 22.01 ft 31.01 ft 36.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 1165.00 psf 1165.00 psf 1165.00 psf 803.52 psf 840.55 psf 877.57 psf 902.17 psf	0.00 Kips 0.00 Kips 0.00 Kips 21.95 Kips 43.74 Kips 43.83 Kips 79.38 Kips 2.2 118.07 Kips 31 145.50 Kips
37.01 ft 42.99 ft	Cohesive Cohesive	N/A N/A	N/A N/A	1403.59 psf 1460.99 psf	145.61 Kips 186.67 Kips
		<u> ULTIMATE - EI</u>	ND BEARING		
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 4.99 ft 5.00 ft 9.01 ft 12.99 ft 13.01 ft 22.01 ft 31.01 ft 36.99 ft 37.01 ft	Cohesive	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 24.81 Kips 24.81 Kips 24.81 Kips 12.41 Kips 12.41 Kips 12.41 Kips 12.41 Kips 24.81 Kips
42.99 ft	Cohesive	N/A	N/A	N/A	24.81 Kips

	ULTIMATE - SUMN	MARY OF CAPAC	CITIES Sheet 14 of 33
Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft 4.99 ft 5.00 ft	0.00 Kips 0.00 Kips 0.00 Kips	0.00 Kips 0.00 Kips 24.81 Kips	0.00 Kips 0.00 Kips 24.81 Kips
9.01 ft 12.99 ft	21.95 Kips 43.74 Kips	24.81 Kips 24.81 Kips	46.77 Kips 68.55 Kips
13.01 ft 22.01 ft 31.01 ft 36.99 ft	43.83 Kips 79.38 Kips 118.07 Kips 145.50 Kips	12.41 Kips 12.41 Kips 12.41 Kips 12.41 Kips	56.24 Kips 91.79 Kips 130.47 Kips 157.91 Kips
37.01 ft 42.99 ft	145.61 Kips 186.67 Kips	24.81 Kips 24.81 Kips	170.43 Kips 211.48 Kips
,		:	

DRIVEN 1.0 GENERAL PROJECT INFORMATION

sheet 15 of 33 SAK 6-14-07 DAA 6-25-07

Filename: C:\DRIVEN\728TR14.DVN

Project Name: SCI-823

Project Client: TranSystems Corp

Computed By: sir Project Manager: Nix Project Date: 06/15/2007

Based upon TR-14

PILE INFORMATION

Pile Type: H Pile - HP14X73

Top of Pile: 5.00 ft Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

- Drilling:

10.00 ft

- Driving/Restrike

10.00 ft

Ultimate Considerations:

- Ultimate: - Local Scour: 10.00 ft 0.00 ft

- Long Term Scour:

0.00 ft

- Soft Soil:

0.00 ft

ULTIMATE PROFILE

Laver Type Cohesive 1 2 Cohesive Thickness 8.50 ft 25.00 ft

Driving Loss 0.00% 0.00%

Unit Weight 120.00 pcf 120.00 pcf

Strength 2000.00 psf 1000.00 psf **Ultimate Curve** T-79 Steel

T-79 Steel

		<u>ULTIMATE - SK</u>	IN FRICTION	Sheet	17 of 33
Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft 8.49 ft 8.51 ft 17.51 ft 26.51 ft 33.49 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A ULTIMATE - EN	N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 1165.00 psf 1165.00 psf 800.00 psf 822.03 psf 859.06 psf 887.77 psf	0.00 Kips 0.00 Kips 0.00 Kips 19.11 Kips 19.20 Kips 53.97 Kips 91.86 Kips 123.41 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 4.99 ft 5.00 ft 8.49 ft 8.51 ft 17.51 ft 26.51 ft 33.49 ft	Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 24.81 Kips 24.81 Kips 12.41 Kips 12.41 Kips 12.41 Kips 12.41 Kips

		<u>ULTIMATE - SU</u>	MMARY OF CAPA	ACITIES Sheet 18 of 33
	Depth	Skin Friction	End Bearing	Total Capacity
	0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
	4.99 ft 5.00 ft 8.49 ft 8.51 ft	0.00 Kips 0.00 Kips 19.11 Kips 19.20 Kips	0.00 Kips 24.81 Kips 24.81 Kips 12.41 Kips	0.00 Kips 24.81 Kips 43.92 Kips 31.60 Kips
\cap	17.51 ft 26.51 ft	53.97 Kips 91.86 Kips	12.41 Kips 12.41 Kips	66.37 Kips 104.27 Kips
	33.49 ft	123.41 Kips	12.41 Kips	135.82 Kips
	·			

DRIVEN 1.0 GENERAL PROJECT INFORMATION

Sheet 19 of 33 SAK 6-14-07 DAA 6-25-07

Filename: C:\DRIVEN\728TR11P.DVN

Project Name: SCI-823

Project Date: 06/15/2007

Project Client: TranSystems Corp / ODOT

Computed By: sjr Project Manager: Nix Based upon boing TR-11

PILE INFORMATION

Pile Type: Pipe Pile - Closed End

Top of Pile: 5.00 ft

Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:
- Drilling:
- Driving/Restrike
10.00 ft

- Ultimate: 10.00 ft

Ultimate Considerations: - Local Scour: 0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer 1	Type Cohesive	Thickness 13.00 ft	Driving Loss 0.00%	Unit Weight 120.00 pcf	Strength 2000.00 psf	Ultimate Curve T-79 Steel
2	Cohesive	24.00 ft	0.00%	120.00 pcf	1000.00 psf	T-79 Steel
3	Cohesive	6.00 ft	0.00%	120.00 pcf	2000.00 psf	T-79 Steel

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Stiding Friction Angle	Adhesion	Skin Friction
0.01 ft 4.99 ft 5.00 ft	Cohesive Cohesive Cohesive	N/A N/A N/A	N/A N/A N/A	0.00 psf 0.00 psf 1165.00 psf	0.00 Kips 0.00 Kips 0.00 Kips
9.01 ft 12.99 ft 13.01 ft	Cohesive Cohesive Cohesive	N/A N/A N/A	N/A N/A N/A	1165.00 psf 1165.00 psf 805.76 psf	17.12 Kips 34.12 Kips 34.19 Kips
22.01 ft 31.01 ft	Cohesive Cohesive Cohesive	N/A N/A N/A	N/A N/A N/A	844.33 psf 882.90 psf 908.53 psf	62.04 Kips 92.44 Kips 114.04 Kips
36.99 ft 37.01 ft 42.99 ft	Cohesive Cohesive	N/A N/A	N/A N/A	1418.43 psf 1478.23 psf	114.13 Kips 146.54 Kips
,	•	<u>ULTIMATE - EN</u>	ID BEARING		•
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 4.99 ft 5.00 ft 9.01 ft 12.99 ft	Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 19.24 Kips 19.24 Kips 19.24 Kips
13.01 ft 22.01 ft 31.01 ft 36.99 ft	Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	9.62 Kips 9.62 Kips 9.62 Kips 9.62 Kips
37.01 ft 42.99 ft	Cohesive Cohesive	N/A N/A	N/A N/A	N/A N/A	19.24 Kips 19.24 Kips

ULTIMATE -	SUMMARY OF	CAPACITIES

Sheet 22 of 33

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
4.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.00 ft	0.00 Kips	19.24 Kips	19.24 Kips
9.01 ft	17.12 Kips	19.24 Kips	36.36 Kips
12.99 ft	34.12 Kips	19.24 Kips	53.36 Kips
13.01 ft	34.19 Kips	9.62 Kips	43.81 Kips
22.01 ft	62.04 Kips	9.62 Kips	71.66 Kips
31.01 ft	92.44 Kips	9.62 Kips	102.06 Kips
36.99 ft	114.04 Kips	9.62 Kips	123.67 Kips
37.01 ft	114.13 Kips	19.24 Kips	133.38 Kips
42.99 ft	146.54 Kips	19.24 Kips	165.78 Kips

$$Q_{allow} = \frac{465.8 \, \text{k}}{Z} = 82.9 \, \text{k}$$

DRIVEN 1.0 GENERAL PROJECT INFORMATION

Sheet 23 of 33 SIK 6-14-07 DAA 6-25-07

Filename: C:\DRIVEN\728TR14P.DVN

Project Name: SCI-823

Project Client: TranSystems Corp

Computed By: sjr Project Manager: Nix Project Date: 06/15/2007 Bosed upon TR-14

PILE INFORMATION

Pile Type: Pipe Pile - Closed End

Top of Pile: 5.00 ft

Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:
- Drilling:
- Driving/Restrike
10.00 ft

- Ultimate: 10.00 ft

Ultimate Considerations:
- Local Scour:
- Long Term Scour:
0.00 ft
0.00 ft

- Long Term Scour: 0.00 ft - Soft Soil: 0.00 ft

ULTIMATE PROFILE

Layer	Type	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	8.50 ft	0.00%	120.00 pcf	2000.00 psf	T-79 Steel
2	Cohesive	25.00 ft	0.00%	120.00 pcf	1000.00 psf	T-79 Steel

	<u>ULTIMATE - SK</u>	IN FRICTION	Official	K3 0) 00
Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A ULTIMATE - EI	N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf 1165.00 psf 1165.00 psf 800.00 psf 825.04 psf 863.61 psf 893.53 psf	0.00 Kips 0.00 Kips 0.00 Kips 14.90 Kips 14.97 Kips 42.19 Kips 71.95 Kips 96.79 Kips
Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 19.24 Kips 19.24 Kips 9.62 Kips 9.62 Kips 9.62 Kips 9.62 Kips
	Cohesive	Soil Type Effective Stress At Midpoint Cohesive N/A	Cohesive N/A N/A	Soil Type

III TIMATE	- SUMMARY	OF CAPACITIES
ULIMAIL	- OCIVITALIA	OI OWI VOILIFO

sheet 26 of 33

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
4.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.00 ft	0.00 Kips	19.24 Kips	19.24 Kips
8.49 ft	14.90 Kips	19.24 Kips	34.14 Kips
8.51 ft	14.97 Kips	9.62 Kips	24.60 Kips
17.51 ft	42.19 Kips	9.62 Kips	51.81 Kips
26.51 ft	71.95 Kips	9.62 Kips	81.57 Kips
33.49 ft	96.79 Kips	9.62 Kips	106.41 Kips

DELINGER - AND THE TOTAL COMP BY SUBJECT Delivery SUBJECT Delive								PROJE	<i></i>	sc.	343 1-8	zz Zz	75 F	ect:	sinc	y cut	L L	21 R.	, Da	9	ا									
## Similar Reck Cons to sked on SCL 828 project, 9 m. Part Similar Reck Cons to 7,000 ps. Part of 7,000 ps. Part of 7,000 ps. Soft to 7,000 ps. From 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,							ists S	UBJE	CT_	Dr	llan	1 5	Sha	ft	E.	d	be	د است. دارساس	~e ₁		_ (
Sept to Medican Hard Sondstone 1 Sitts from any Massime 2 = 2000 psi was thereof. "Assume 2 = 2000 psi post for this figural stack. Typically 2 How = 50 ksf to 40 ksf for this figural shorts. None 2 = 40 ksf for End Bearing Dilled Shorts. Side Triction							_	ain	1_	sid	ف	frie	tic	<u>^</u>	<u>-5</u>	<u>R.7</u>	28	3	ŧ							7.				
Seft to Millian Hard Soudstone Silfston. argitlescous, Imply weathered. *Assume 7 = 2000 psi PROD: 25% to 92%. Typically 3How = 30 ksf to 40 ksf for this type of rock. Non 92 = 40 ksf for End Bearing Dilled Shofts. Side Friction							1	-				***		}		!			1			!		ļ 		 		1		
Seft to Medical Hard Soudstone 1 Sitts from any illeracius, Iringly was thread. "Assume 2 = 2000 pri POD: 25 16 to 92 16 Typically 2 How = 30 ksf to 40 ksf for this type of rock Non 2 = 40 ksf for End Bearing Dilled Shofts Side Frietion # Assumes smooth Rock Specket Side Frietion # As	***************************************	×	F	ا	s:,	مانه	1	2		0	me	_	1		ام	0	h	51	<u></u>	87	13	0-	وزه	, +		- C	,			
Soft for Midway Hard Sandshow Silfston argillaceous, highly weathered. "Assume g = 2000 pei. "RDD: 25% to 92% Typically gallow = 30 kef to 40 kef for this type of rock Use g = 40 kef for Eool Bearing Drilled Shofts Side Friction * Assumes smooth Rock socket Finax = 0.65 pa [2/p_1 0.5 \frac{5}{2} \frac{6}{2} \frac{7}{2} \frac{1}{2} \frac{5}{2} \frac{1}{2} \f			Γa	nae	, C	P	1.NV	n	2	00	ව ව	4,		7	000	3	20	,	Ĩ	-5-6-4-4				. i.,		8	· ·			
egillaceous Inights weathered * Assume 9 = 2000 pri ROD: 25% to 92% Typerally gallon = 30 ksf to 40 ksf for this type of rock. Use ga = 40 ksf for Ead Breing Drilled Shafts Side Frietien			4 1917	1273															14	Fan		-	<u> </u>	∳ } }		=				
* Assume 20 = 2000 psi ROD: 25% to 92% Typically gallos = 30 ksf to 40 ksf for this type of rock Use 9 = 40 ksf for End Bearing Drilled Shofts Frex = 0.05 pa [8] ps = 0.65 p [8] ps = 0.5 p [8] ps = 0.65			-metted her			, ,	n .	. !	1	1	:	1	.ì	1		5	1 :	1	19-42	1		 		1	1		<u> </u>	-		
Rap : 25% to 92% Typically gallow = 30 ksf to 40 ksf for this type of rock When ga = 40 ksf for End Bearing Doilled Shafts Side Triction						10						1	7				F	1	<u> </u>	1	-	†) 	¦	
ROD : 25% to 92%				*	Ac	2122	ما	σ,	=	20	200	0			Ì	-		}	-	· · · · · ·		ļ			 	<u> </u>	ļ —	ļ 		
Typically gallow = 30 Ksf to 40 ksf for this type of rock. 1052 $g_a = 40$ ksf for End Bearing Drilled Shafts Side Friction * Assumas Smooth Rock Socket Frank = 0.65 Pa [$\frac{3}{2}$					P			16		1-3.5		-/-			<u> </u>	-		<u> </u>	1	1		<u> </u>	<u></u>		†		<u> </u>			
Typically gallow = 30 ksf to 40 ksf for this type of rock. Use $g_a = 40$ ksf for End Bearing Drilled Shafts Side Frietien * Assumes Smooth Rock Socket frax = 0.65 pa $\begin{bmatrix} 2a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ = 0.65 pa $\begin{bmatrix} 5a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ And $\begin{bmatrix} 5a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ = 116 psi $\begin{bmatrix} 2a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ = 111 psi $\begin{bmatrix} 2a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ = 111 psi $\begin{bmatrix} 2a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ = 111 psi $\begin{bmatrix} 2a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ = 111 psi $\begin{bmatrix} 2a & 0.5 \\ 2a & 0.5 \end{bmatrix}$ = 5,350 psf. Use $\begin{bmatrix} 2a & 0.6 \\ 2a & 0.5 \end{bmatrix}$ = 5,000 psf.					 	P	27) :	1	25	1/	40		92	1	 		-	1	<u> </u>		 			 	<u> </u>		ļ		
$V_{SE} = g_{a} = 40 \text{ ssf} for \mathcal{E}_{col} \mathcal{B}_{earing} \mathcal{D}_{elled} \mathcal{S}_{ha}fts$ $\leq id_{c} Friction \qquad * Assumes Smooth Rock Socket$ $f_{max} = 0.65 Fa \left[\frac{9}{6} \right]_{p_{a}} \leq 0.65 Pa \left[\frac{9}{6} \right]_{p_{a}} S$ $P_{a} = 14.7 p_{a} P_{a} = 4500 p_{a} S_{a} = 2000 p_{a} S_{a} = 2000$							عجيدا				70			<u> </u>					ļ	1						-	 			
Use $g_a = 40 \text{ ssf}$ for End Bearing Dilled Shafts Side Friction * Assumes smooth Rock socket from = 0.65 pa $\left[\frac{9}{9}\right]_{0.5} = 0.65 \text{ pc}\left[\frac{9}{9}\right]_{0.5}$ Ref FHWA-IF-99-425 Eq. 146 $p_a = 14.7 \text{ psi}$ $f_0 = 4500 \text{ psi}$ $g_a = 2000 \text{ psi}$ $f_{max} = 0.65 \left(14.7 \text{ psi}\right) \left[\frac{200000 \text{ psi}}{14.7 \text{ psi}}\right] = 1111 \text{ psi}$ $f_{max} = 111 \text{ psi} = 110,047 \text{ psk}$ Use $f_{allow} = 5,350 \text{ psf}$				て	0 2-1	الم],	G	11	-	-	30	Ksi		-0	4	<i> </i>	ks f	4	6		6.	1			,	a.l			
Side Friction * Assumes smooth Reck socket $ f_{max} = 0.65 \text{ pn} \left[\frac{9}{6} \right] = 0.55 \text{ pc} \left[\frac{9}{6} \right] = 0.65 \text{ pc} \left[\frac{9}{6} \right] = 0$				-/-/-			7	1-6	410	10			,						1	70				P	07			·		
Side Friction * Assumes Smooth Reck Socket $ f_{max} = 0.65 \text{ pn} \left[\frac{9}{9} \right] 0.5 \\ \text{Ref: } FHWH \cdot TF \cdot 98 \cdot 025 \\ \text{Pa = 14.7 psi: } f_0 = 4500 \text{ psi: } g_0 = 2000 ps$							1	150		7 =	4	0	Ksf		1	-	2	_/		B.	د مدن م		Λ	:11.	-/	0	6.1	7.	Ì	
$ \begin{aligned} & f_{max} = 0.65 & \rho_{n} \left[\frac{\partial^{n}}{\partial \rho_{n}} \right] & 0.5 & \rho_{n} \left[\frac{\partial^{n}}{\partial \rho_{n}} \right] & 0.65 $			w helmon						1	5			1=-7-		 	1		1	 `		0			1.524		2.0.2	Ja.			
$ \begin{aligned} & f_{\text{max}} = 0.65 & \rho_{\text{n}} \left[\frac{\partial}{\partial \rho_{\text{n}}} \right] = 0.55 & \rho_{\text{n}} \left[\frac{\partial}{\partial \rho_{\text{n}}} \right] = 0.65 & \rho_{\text{n}} \left[\frac{\partial}{\partial \rho_{\text{n}}} \right] \\ & R_{\text{n}} = 14.7 & \rho_{\text{n}} = 1.7 & \rho_{\text{n}} = 1.$																														
$ \begin{aligned} & f_{max} = 0.65 & \rho_{n} \left[\frac{\partial^{n}}{\partial \rho_{n}} \right] & 0.5 & \rho_{n} \left[\frac{\partial^{n}}{\partial \rho_{n}} \right] & 0.65 $						1															ļ								1	
$ \begin{aligned} & f_{max} = 0.65 & p_{n} \left[\frac{9}{9} p_{n} \right] & \leq 0.65 & p_{n} \left[\frac{9}{9} p_{n} \right] \\ & R_{n} f_{n} & FHWH \cdot TF \cdot 99 \cdot 025 & \mathcal{E}_{5} = 11.66 \end{aligned} $ $ \begin{aligned} & P_{n} = 14.7 & p_{n} = f_{0} = 4500 & p_{n} = 2000 & p_{n} = $		*	S/c	1,	7	ient	ion				×	Ass	um	4.5	<	ms	, uptary	4	R	12	5	د سرما	1							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							1	1						1	8	-					-	,	1	1	}					pr-99
$R_{1} = 14.7 \text{ ps.i.} \qquad F_{0} = 4500 \text{ ps.i.} \qquad g_{n} = 2000 \text{ ps.i.}$ $F_{max} = 0.65 \left(14.7 \text{ ps.i.}\right) \left[\frac{2000 \text{ ps.i.}}{14.7 \text{ ps.i.}}\right] = 111 \text{ ps.i.}$ $F_{max} = 11. \text{ ps.i.} = 16,047 \text{ ps.f.}$ $V_{22} = f_{allow} = 5,350 \text{ ps.f.}$						4	ما س	=	0.	65	F	a /	16/	Ž,		<u> </u>		0.6	5	R	//	2/Q								
$ \begin{aligned} \rho_{\alpha} &= 14.7 \text{ ps.i.} & f_{0}' &= 4500 \text{ ps.i.} \\ F_{max} &= 0.05 \left(14.7 \text{ ps.i.}\right) \left[\frac{2000 \text{ ps.i.}}{14.7 \text{ ps.i.}}\right]^{2.5} &= 111 \text{ ps.i.} \\ F_{max} &= 11 \text{ ps.i.} &= 100,047 \text{ ps.k.} \\ F_{allow} &= 5,350 \text{ ps.f.} \end{aligned} $ Use $f_{allow} = 5,000 \text{ ps.f.}$						7.75	MV					1		ra.						7	-		7							
$ \begin{aligned} \rho_{\alpha} &= 14.7 \text{ ps.i.} & f_{0}' &= 4500 \text{ ps.i.} \\ F_{max} &= 0.05 \left(14.7 \text{ ps.i.}\right) \left[\frac{2000 \text{ ps.i.}}{14.7 \text{ ps.i.}}\right]^{2.5} &= 111 \text{ ps.i.} \\ F_{max} &= 11 \text{ ps.i.} &= 100,047 \text{ ps.k.} \\ F_{allow} &= 5,350 \text{ ps.f.} \end{aligned} $ Use $f_{allow} = 5,000 \text{ ps.f.}$						1	2f	ļ	FA	WA	- :	F	99	• 6	25			3	4	11.	6									
$f_{max} = 0.65 (14.7 psi) \left[\frac{2000 psi}{14.7 psi} \right] = 111 psi$ $f_{max} = 111 psi = 160,047 psf$ $f_{allow} = 5,350 psf$ $V_{SR} = f_{allow} = 5,000 psf$			any salina															<												
$f_{max} = 0.65 (14.7 \rho_{si}) \left[\frac{2000 \rho_{si}}{14.7 \rho_{si}} \right] = 111 \rho_{si}$ $f_{max} = 11. \rho_{si} = 16,047 \rho_{sf}$ $f_{allow} = 5,350 \rho_{sf}$ $V_{se} = f_{allow} = 5,000 \rho_{sf}$					<u></u>	Pa		14.	2 0	5		6	=	4:	300	دهر	i			5.	=	200	0	<i>1</i> 05						
$f_{max}^{=}$ 11 psi = 16,049 psf $f_{\pi 1100} = 5,350$ psf Use $f_{a1100} = 5,000$ psf			r"më boos									,,,				<u>'</u>				0				/						
$f_{allow} = 5,350 \text{ psf}$ $V_{se} = f_{allow} = 5,000 \text{ psf}$				ata tawata w									<u></u>	AA23	2	סר	5													
$f_{max}^{=} II. p_{5i} = 10,049 p_{5}$ $f_{allow} = 5,350 p_{5}$ $V_{5e} f_{allow} = 5,000 p_{5}$			- particular particula	ad Nord Income man	-) ma	=	0.	65	(14	1.70	(نە	~	4.7	PSZ		hr w-tno som	_		1	1	PSI	,	'merka ma						
$f_{allow} = 5,350 \text{ psf}$ $V_{52} = f_{allow} = 5,000 \text{ psf}$						ı	3	1	ι	•	1	i	\$			į.			<u> </u>		<u> </u>					 				
$f_{allow} = 5,350 \text{ psf}$ $V_{\text{se}} = f_{\text{allow}} = 5,000 \text{ psf}$	Marketonies Landon			er barr mila basa		Cond	=		11	052	=		16,	04	2	051	2				 			ther au er						101 100
Use fallow = 5,000 psf						ľ	! !	1			ì		!				May at Mayard Tayong Tayo	! !												
Use fallow = 5,000 psf			*** *** ***			EI) 	=	5,	3.5	0	٥S	£		1 1 1				} 											. A.R.L. MM
						,,,,			ļ			ot broat	c' 101 11 11				tr'in mi m				t 									
					en ses bro-			U	se		Calle			5,	000	_γ	sf	,	 			jugo pas regio no								-ten, can
51E										ĺ		w											,,					-		
		4	50	L				<u></u>							. (al. va. . .				nude i di soto											
the state of the s			1					ļ			-4- 4													s ₂₀ teng Win yeb.			P.			
The second secon	į		1					1		i				1				"	1	1					1		7			

Safety Factors Are Calculated By The Modified Bishop Method

Safety Factors Are Calculated By The Modified Bishop Method

Safety Factors Are Calculated By The Modified Bishop Method

APPENDIX V

Prefabricated Vertical (Wick) Drain Instrumentation Plan Instrumentation Details

