

Proj.: **BEL-7-8.21**

PID: 119797

Calc'd By: MVC
Chk'd By: MJH

Date: 2/3/2025

Date: 2/4/2025

End X-Frames (Rear Abut.) = (5 angles + 1 plate per location) x 8 locations = 48 each

202 E 11501 PORTIONS OF STRUCTURE REMOVED, AS PER PLAN (SECONDARY MEMBERS)

End X-Frames (Fwd. Abut.) = (5 angles + 1 plate per location) x 8 locations = 48 each

No of Int. X-Frames = 3 crossframe angles x 2 locations = 6 each

LUMP

<u>512 E 10100 SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)</u>

SEE CALCULATION SHT. 4 OF 4

Sht:

512 E 10600 - CONCRETE REPAIR BY EPOXY INJECTION

Rear Abutment

Carried from Sheet 4|9 = 58.75 ft

Forward Abutment

Carried from Sheet 5|9 = 23.25 ft

Item Total

T = Rear Abutment + Forward Abutment

T = 58.75 ft + 23.25 ft = 82 ft

USE 82 FT

<u>512 E 74000 REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES</u>

SEE CALCULATION SHT. 4 OF 4

<u>513 E 10201 STRUCTURAL STEEL MEMBERS, LEVEL UF, AS PER PLAN</u>

Typical End X-Frame Assembly: 8 Rear Abutment Locations & 8 Forward Abutment Locations

End X-Frames (4x4x3/8) = A = 2.86 sq. in.

Vexf1 = Angles = (Total Length x A)

Vexf1 = $(3.65 \text{ ft} + 2.52 \text{ ft} + 2.55 \text{ ft} + 3.59 \text{ ft} + 9.22 \text{ ft}) \times 2.86 \text{ sq. in. } \times (1/144) = 0.43 \text{ cu ft}$

Vexf2 = 1/2" thick plate = 1 ft x 1.5 ft x 0.5 in / 12 = 0.06 cu ft

Wexf = (Vexf1 + Vexf2) x Unit Weight of Steel x Total No. of Assemblies

Wexf = $(0.43 \text{ cu ft} + 0.06 \text{ cu ft}) \times 490 \text{ lbs} / \text{ cu ft x } 16 \text{ Assemblies}) = 3841.6 \text{ lbs}$

Typical Intermediate X-Frame Assembly: 2 Locations

Int X-Frames (3x3x5/16) = A = 1.78 sq. in.

Vixf = Angles = (Total Length x A)

 $Vixf = (8.56 \text{ ft} + 8.56 \text{ ft} + 8.29 \text{ ft}) \times 1.78 \text{ sq. in.} \times (1 / 144) = 0.31 \text{ cu ft}$

Wixf = Vixf x Unit Weight of Steel x Total No. of Assemblies

Wixf = $(0.31 \text{ cu ft}) \times 490 \text{ lbs} / \text{ cu ft } \times 2 \text{ Assemblies}) = 303.8 \text{ lbs}$

Item Total = Wexf + Wixf = 3841.6 + 303.8 = 4145.4 lbs

Use 4145 lbs

Proj.: BEL-7-8.21
PID: 119797

 Cale'd By:
 MVC

 Chk'd By:
 MJH

 Sht:

Date: 2/3/2025
Date: 2/4/2025
2 of 4

513 E 95000 STRUCTURAL STEEL, MISC.: REPAIR OF DAMAGED SECONDARY MEMBERS (FILLET WELDING)

Typical End X-Frame Assembly: 8 Rear Abutment Locations & 8 Forward Abutment Locations = 16 each Given = 4 in. per leg; 5.44 in. per 45° convex welds; 10 in. per work line weld; 24 in. per plate weld 8 legs; 2 each 45° convex welds; 6 work line welds; 1 plate weld End X-Frames Lexf = (4 in. x 8 legs) + (5.44 in. x 2 45° convex welds) + (10 in. x 6 work line welds) + (24 in. x 1 plate welds) = 126.88 in. x (1 / 12) x 16 assemblies = 169.17 ft

Typical Intermediate X-Frame Assembly 2 Locations
Int X-Frames Lixf = 3 in. per leg x 2 legs x 3 angles x 2 ends x 2 locations = 72 in. x (1 / 12) = 6 ft

Item Total = Lexf + Lixf = 169.17 ft + 6 ft = 175.17 ft

Use 175 ft

514 E 00050 SURFACE PREPARATION OF EXISTING STRUCTURAL STEEL
514 E 00056 FIELD PAINTING OF EXISTING STRUCTURAL STEEL, PRIME COAT
514 E 00060 FIELD PAINTING STRUCTURAL STEEL, INTERMEDIATE COAT
514 E 00066 FIELD PAINTING STRUCTURAL STEEL, FINISH COAT

18 W36 x 230 Beams

Ab1 = $[(2 \times 34.63 \text{ in.}) + (3 \times 16.5 \text{ in.})] / 12 \times 133.58 \text{ ft } \times 9 \text{ beams} = 11897.97 \text{ sq ft}$ 9 W36 x 260 Beams

 $Ab2 = [(2 \times 34.81 \text{ in.}) + (3 \times 16.56 \text{ in.})] / 12 \times 32 \text{ ft } \times 9 \text{ beams} = 2863.2 \text{ sq ft}$

Ab = Ab1 + Ab2 = 11897.97 sq ft + 2863.2 sq ft = 14761.17 sq ft

Pay Quantity

A = Ab plus 25% for crossframes, bearings and plates = 14761.17 sq ft x 1.25 = 18451.46 sq ft

Use 18451 sq ft

514 E 00504 GRINDING FINS, TEARS, SLIVERS ON EXISTING STRUCTURAL STEEL

T = Length x No. beams x 1 min / ft = 165.58 ft x 9 beams x (1 hr / 60 min) = 25 hrs

Use 25 hrs

514 E 10000 FINAL INSPECTION REPAIR

N beams = 1 per 300 feet of beam = 165.58 ft / 300 ft per each = 0.5519 --> round up = 1 each x 9 beams = 9 each N X-Frames = 1 per 2.5% of all cross frame locations = (2.5 / 100) x 113 X-Frames = 2.825 --> round up = 3 each

N total = 9 + 3 each = 12 each

Use 12 each

Proj.: **BEL-7-8.21**

PID: 119797

Calc'd By: MVC
Chk'd By: MJH

Date: 2/3/2025
Date: 2/4/2025
3 of 4

516 E 47001 JACKING AND TEMPORARY SUPPORT OF SUPERSTRUCTURE, AS PER PLAN

<u>LUMP</u>

519 E 11101 - PATCHING CONCRETE STRUCTURE, AS PER PLAN

Forward Abutment

Carried from Sheet 5 | 9 = 27.8 sq ft

Use 28 Sq Ft

Sht:

625 E 33000 STRUCTURE GROUNDING SYSTEM

Use 1 Each

844 E 20000 - GALVANIC ANODE PROTECTION

Forward Abutment

Carried from Sheet 5|9 Patch A1 = 6 each Patch A4 = 12 each

Item Total

T = Patch A1+ Patch A4 T = 6 + 12 = 18each

Use 18 Each

849 E 10000 DAMAGE ASSESSMENT

LUMP

849 E 10500 SURFACE PREPARATION

LUMP

849 E 10600 REPAIRING DAMAGED MEMBERS BY GRINDING

T = 0.1 hrs / length repaired x (20 ft Beam 9) = 2 hrs

Use 2 hours

849 E 10700 STRAIGHTENING DAMAGED MEMBERS

LUMP

PID: 119797

Proj.: BEL-7-8.21

Calc'd By: MJH Chk'd By: MVC Sht: Date: 2/4/2025 Date: 2/5/2025

512 E 10100 SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)

*CADD Measured Areas

Abutments

Rear Abutment

*Arear = 498.52 sq ft

Forward Abutment

*Afwd = 580.73 sq ft

Item Total

Atotal = *Arear + *Afwd

Atotal = 498.52 sq ft + 580.73 sq ft = 1079.25 sq ft

Atotal = 1079.25 sq ft x (1/9) = 119.92 sq yd

Use 120 sq yd

512 E 74000 REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES

*CADD Measured Areas

Abutments

Rear Abutment

*Arear = 498.52 sq ft

Deductions for 519 E 11101 PATCHING CONCRETE STRUCTURE, AS PER PLAN

Arear = *Arear - Apcs

Arear = 498.52 sq ft - 0 sq ft = 498.52 sq ft

Forward Abutment

*Afwd = 580.73 sq ft

Deductions for 519 E 11101 PATCHING CONCRETE STRUCTURE, AS PER PLAN

Afwd = *Afwd - Apcs

Afwd = 580.73 sq ft - 27.8 sq ft = 552.93 sq ft

<u>Item Total</u>

Aabut = Arear + Afwd

Aabut = 498.52 sq ft + 552.93 sq ft = 1051.45 sq ft

Aabut = 1051.45 sq ft / 9 = 116.83 sq yd

Use 117 sq yd