INTRODUCTION

The project consists of the proposed construction of 4,8 miles of SR 1 (1R 71), as well as associated roadways, beginning approximately 3,5 miles south of Harveysburg, 1100 feet southwest of Sherrod Road, extending northeastward, terminating 1000 feet northeast of SR 300.

The proposed grades indicate the following:

Haintine - cut maximum 13 feet in depth; fill embankment, maximum 8 feet in height.

Harveysburg Pike - fill embankment, maximum 25 feet in height.

Doster Road - fill empankment, maximum 18 féet in height.

SR'73 - fill embankment, maximum 21 feet in height.

SR 300 - fill embankment, maximum 21 feet in height.

GEOLOGY OF THE PROJECT

The alignment is situated within the glaciated lipland Till Plain region, where norminal deposits are reportedly in excess of forty feet in thickness. Local bedrock consists of shales and limestones, Silurian in age.

EXPLORATION

Exploratory portings were made by means of truck-mounted mechanical earth auger and hand auger Un areas of difficult access), between January 1 and 30, 1962.

INVESTICATIONAL DISCLOSURES

Hainline

Inmediately below grade, solis consist predominantly of silts and silt clays, in the A-4 and A-6a classifications. Met silts and silt clays were found within eight feet pelow ground surface, between stations 379400 and 383400, at stations 400400, 1001Lt, 150400, 150400, 150400, 175400 and 183400. Frost susceptible silts were encountered within three feet below grade at stations 306400, 310400, 315400, 3

In the embankment foundation, materials are comprised predominantly of slit clay and clay, in the A-6 and A-7-6 classifications. Net soils, generally less than five feet in thickness, were encountered throughout the project, but most predominant between stations 320+00 and 375+00.

Harveysburg Pike

Haterials immediately below grade and in the embankment foundation consist predominantly of slit, in the A-N classification. Frost susceptible slit was encountered within three feet below grade at stations 3+00 and 33+00.

Doster Road

innediately below grade, soil, consists of silt clay, in the A-6a classification.

In the embankment foundation, materials consist of sandy silt, silty clay and clay, in the A-la, A-for and A-7-ficlassifications.

-	Immediately below grade, soil consists of silt clay, in the A-Ba classification.	STATION & OFFSET					
The state of the s	In the embankment foundation, solls are comprised of sandy slit and slit clay, in the A-Ma and A-Ga classifications.	3+00	isitt				
Constitution of the last	SR 300	8+00	IŽ'Rt ≠				
The second name of	Inmediately below grade, solls are comprised of frost susceptible sandy silt and clay, in the A-Mand A-7-4 classifications.		. ,				
-	In the embankment foundation areas, materials are comprised of sandy silt, silt clay and clay, in the A-Na, A-B and A-7-B classifications.	12+00	12'Lt /				
-	3	16+00	IZIRt /				

1:			6.0-10.0	18		10 Ooster	1	22	20	1.	18	A-4a	
į	33+00	IZ'Rt	0.5-6.0	24	5 3	16	1137	33 22	20	5	19	A-la*	
The second second second	29+00	isitt (0.5-3.0 3.0-7.0 7.0-10.0	13	087	19 15	83 35	20 27 34	31 19 23	8	28 15 13	A-110 A-11a A-6a	***************************************
	** /		6.0-8.0 8.0-12.0 12.0-15.0	128	52574	20	35 55 35 35 35 35	14 35 33 39 37	**************************************	5	23 27 15 17	A-11a A-6a A-6a	
	25+00	12'Rt /	0.5-2.0	34	5	8	30	174	31	9 16	17	A-Ha A-60	
	to the		8.0-12.0 12.0-15.0	. 8	67	15 17	22755	33 10 31	50 50 50 50 50 50 50 50 50 50 50 50 50 5	54	17	A-116 A-11a	
	16+00	IZIRt /	0.5-5.0 5.0-8.0	7 6 7	7	18 18 15	122	25	23	7	16 17	A-11a A-6a	
are In	12+00	izilt (0.5-3.0 3.0-8.0 8.0-11.0 11.0-15.0	Brown 0 17 15	SIIt	v Sánd 13 19 16	& Gra 110 27 35	el 36 26 23	३३ ३३ ३३	17 14 7	23 23 15	Visual A-6b A-6a A-1a	
of	8+00	lžiRt 🗸	0.0-4.0 4.0-8.0 8.0-10.0	16 11 11	6	16 17 17	30 30 31	28 20 31	51 57 52	7 6 7	15 15	A-lia A-lia A-lia	-
	and the	- ^	4.0-7.0 7.0-10.0	13	7,	17 15	30	25 27	SS SS	8	19 17	A-lia A-lia	

AGG. C.S. F.S. SILT CLAY

FROIT-TO.

DESCRIPTION	JECT-AV	OHIO	%				ESTS %	307 Liquid	PLASTICITY	PLES T	SAMPLE
	CLASS	CLASS	AGG.	C. SAND	F. SAND	% SILT	CĹÃY	LIMIT	INDEX	CONTENT	TESTED
Gravel	A-1-a(0)	A-I-a	60	27	8	- 3 -		1.P	ΗP	13	1
Sandy silt	A-14(5)	A-Ha	· 11	10.	18	-32	20	22	6	15	117
Silt	A-)(8)	A-1(o	5	3	7	56	35	25	5	. 22	29
Silt and clay	A-6(9)	A-6a	Įŧ	. 5	13	38	110	31	15	23	99
Silty clay	A-6(II)	A-60	**	3	111	113	715	37	18	5/1	18
Elastic clay (time as a second	A-7-5(16)	A-7-5	f /		5	de j	5 5	53	23	30	2
Clay	A-7-6(13)	A-7-6	0	. 3	5	18	47	145	21	233	Lif
Sod and/or Topsoll=X1=Approxim	ate depth.	₩Vo.	rious Other	_ Materials		1 1/6	VIŠUAL	CLASSIFIC	ATION	t ·	
Perm material.		-11-11		yw?	Metercil	٠	*				
Auger boring: - plan view.		. 90	egapear 10	1		·					
Auger boring platted to vertic	al chala nalv	* *							s.		

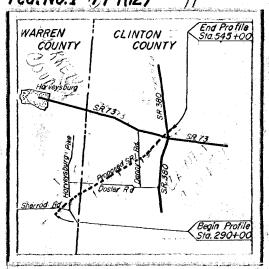
SUMMARY OF SCIL TEST CATA

NOTE: NP shown in Liquid Limit and Plasticity Index columns indicates that the material is non-plastic.
**Denotes sample taken at or near grade.

Indicates a non-plastic material with high water content.

California Flgures: beside: borings indicate water: content in percent, e.g. 15

ILC. OLASS.


STATION	& OFFSET	[EPTH	%	%	*	%	3	L.L.	P. II.	95	SITL
-		frou-To	AGG.	C.S. Doste	F.S. Road	SILT Conti				N.C.	CLASS.
15+00	läire	0.5-5.0 5.0-10.0 (0.0-15.0	5	37	5 27 (8	51 59 20	35 50 10	30 25 22	7 6 7	2 5	A-1 a A-1 a
20+00	lziLt	0.5-5.0 5.0-10.0 10.0-15.0	0 15 20	oga	19	57 27 27	112 27 30	उरुह	17 5 11	30 15 15	A-7-8* A-1 a * A-6a
25+0 d	(2)Rt	0.3-5.0 5.0-10.0 10.0-13.0	. 8 3	7 1 8	17	31 54 10	23 140 32	24 111 24	6 15 6	15 30 (6	A-4a A-7-B A-4a
					SR 73						
8+00	PALKE Y	0.0-5.0	174	14	35	15 15	39 21	50 NP	23 1 P	27 17	A-7-8 × A-1{a
13+00	WRt.	8.0-12.0 3.0-8.0 8.0-12.0	0 07	10	2 9 17	30 110 110	35.55 15.55	37 35 19	11 11 14	30 27 20	A-6a A-6a A-1a
17+00	141Rt /	0.3-5.0 5.0-10.0 10.0-15.0	50 13 15	10	16	35 31 50	33.	51 50 5)†	7 7 8	15 15 53	A-la A-la A-la
20+00	14'Rf.	0.3-5.0 5.0-10.0 10.0-15.0	13 25	10 8	11 17 18	147 20 27	31 31 38	55 150	18	24 14 15	A-Go A-lia A-lia
5/1+00.	iurt /	0.5-5.0 5.0-10.0 10.0-15.0	,30 13 15	987	13	31 27 28	35 35 27	27 25 27	11	16 16 16	A-Ga A-Ga A-Ga
20+00	prit :	0.0-5.0 5.0-9.0 9.0-12.0	300	207	6 18	ଅଧୟ	35 30 34	37 24 26	13	25 15 21	A-6a A-1a A-1a

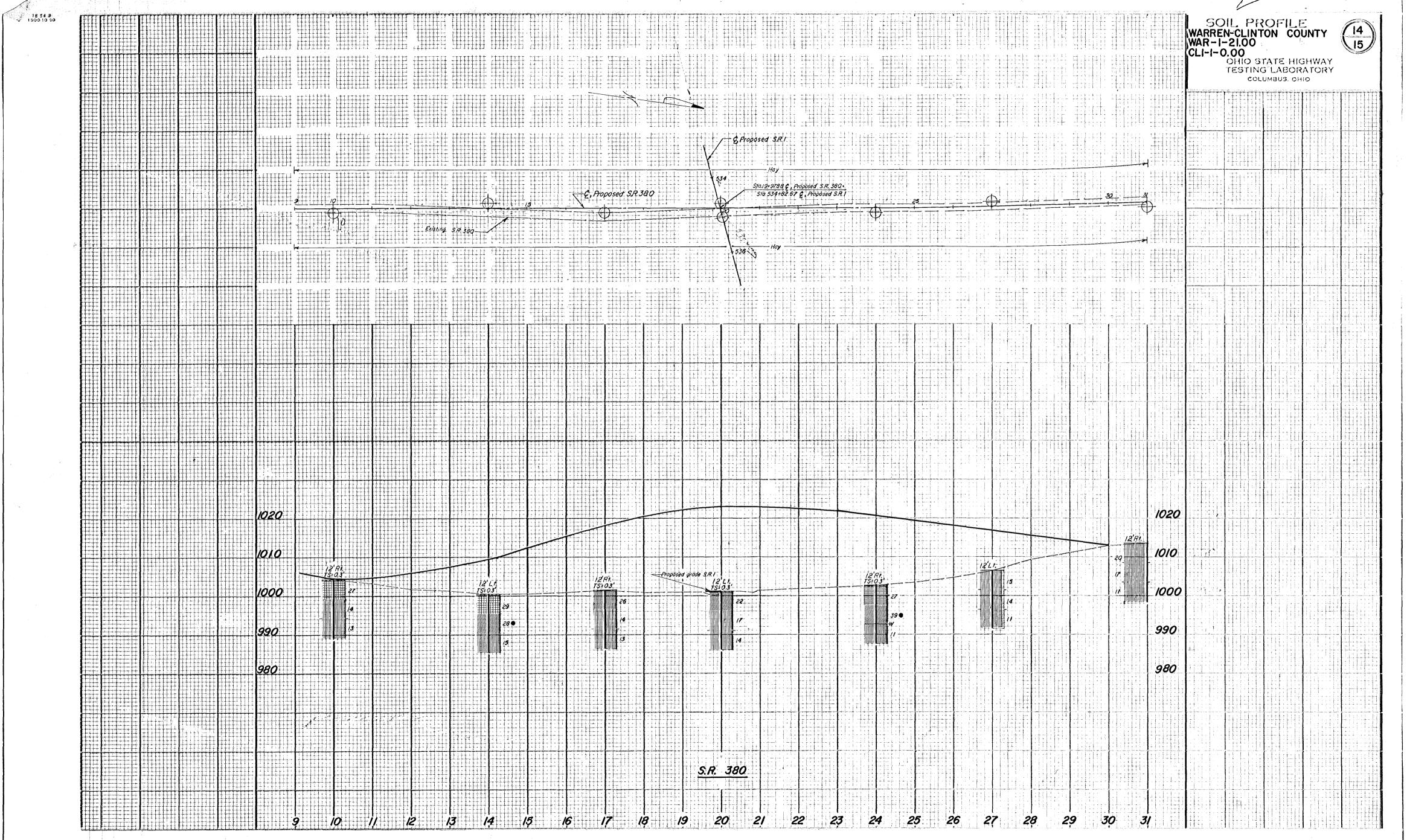
4 *	SOIL PE	ROF TON	COUN	TIES
	WAR-1-21.00 CL1-1-000	*		

OHIO STATE HIGHWAY TESTING LABORATORY COLUMBUS, OHIO

FILE WAS OBTAINED SOLELY FOR USE IN ESTABLISHING DESIGN CONTROLS FOR THE PROJECT. THE STATE OF OHIO DOES NOT GUARANTEE THE ACCURACY OF THIS DATA AND IT IS NOT TO BE CONSTRUED AS A PART OF THE PLANS GOVERNING CONSTRUCTION OF THE PROJECT.

Fed. No. 1-71-1(12)

LOCATION MAP


Recon - N.P.L - 12-29-61

Orilling LMD, B.D.L., F.D.C., 1-4-62 10 1-30-62

		.7	,	Doste	Road	Cont'd)			,							SR 73	(Cont	<u>a)</u>						
+00	läirt	0.5-5.0 5.0-10.0 10.0-15.0	11 S	37	5 27 (8	51 33 33	35 52 70	30 25 22	7 6 7	25 22 111	A-1 a A-1 a	•	32+00	PURE	0.3-5.0 5.0-0.0 8.0-10.0	11 14 20	10 10 8	12 17 17	3 5 30 2 5	34 20 27	33 33 33	13 87	24 14 11	A-6a * A-1!a A-1!a	
+00	l2'Lt	0.5-5.0 5.0-10.0 10.0-15.0	0 15 20	13	19	57 27 27	113 30	PNS FNS	17 5 11	30 15 15	A-7-8× A-1 a * A-6a		(0+00	12'Rt	0.0-5.0	0	<u>SR 30</u> 2	11	145)f0	113	21	27	A-7-B	
+0 d	lart	0.3-5.0	. 8	7	17	24 10	23 140	214 214	ß	15	A-4a A-7-B			d 3	5.0-10.0	17	15 10 5	16 17	33 33 35	27 23	20	7	13 14 27	A-lia A-lia	l
		5.0-10.0 10.0-13.0	11	ŝ	18 SR 73	ર્કો	35	24	15 6	Ĭň	A-lia	*	14+00	12'Lt	0.3-5.0 5.0-10.0 10.0-15.0	055	1 5 10	년 [1 [기	S S S	33.33	38 30 30 31	23 11 5	29 28 15	A-7-8 A-6a A-11a	
οός	14186	0.0-5.0 5.0-10.0	1)\$	14	35	रहेस्ट	39 21	50 NP	23 1 P	27 17	A-7-8 × A-14a		17+00	iziRt (0.0-5.0 5.0-10.0 10.0-15.0	9 14 0	11	3 6 9	145 233 145	51 31 17	37 24 21	15 9	25 13	A-6a A-1 a A-1 a	
+00	WRt.	8.0-12.0 3.0-8.0 0.3-3.0	0 17	1 3 10	2 9 17	30 16 19	52 155 150	37 35 19	7. 1.1	30 27 20	A-6a A-6a A-1a		20+00	12'Lt	0.0-5.0 5.0-10.0 10.0-15.0	3 13	11 9 10	9 18 17	88 73 73 73 73	41. 30. 27.	39 21 19	15 15 5	287	A-Ga A-Ha A-Ha	
+0 0 '	IATRE (0.3-5.0 5.0-10.0 10.0-15.0	13	10	16	35 31 30	388	SO 54	7 7 8	15 53 53	A-lia A-lia A-lia		24:+00	IŹ'Rŧ	0.3-5.0 5.0-10.0 10.0-15.0	11 025	2 1 7	8 5 5	31 25	27 53 21	150 150 150	17 11 3	27 39	A-6b A-6a A-14a	
+00	14'Rt.	0.3-5.0 5.0-10.0 10.0-15.0	13 25	8 10 5	11 17 18	147 20 27	31 31	50 55 70	18	24 14 15	A-Go A-lia A-lia		27+00	12'Lt	0.0-5.0 5.0-10.0	20	9 10 9	16 17 16	35 35 29	19 27:	25 25 25 25	8	15 14	A-) a A-) a	
+60°	HIRE /	0.5-5.0 5.0-10.0 10.0-15.0	12 19 ,30	9 8 7	13	31 27 28	35 35 27	27 25 27	11	16 16 16	A-6a A-6a A-6a		31+00	l2'Rt /	0.0-5.0 5.0-10.0	0 0	8	19 17	145 30	28	50 58	6 8	20 17	A-14a A-14a * A-14a	
+0 0	prif ()	0.0-5.0 5.0-9.0 9.0-12.0	300	2 10 7	6 13	ଅଧ୍ୟ ଅଧ୍ୟ	30 30	37 24 25	(377	25 15 21	A-6a A-11a A-14a				10.0-15.0			18	35	89	19	9	11	A-1la	

Wenny meets

