T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

Item 202 - Approach Slab Removed

Existing Approach slab width (ft);
Existing approach slab length (ft);
$W_{\text {ex_app }}=54$
Lex_app $=20$

Total Area of 202 (SY);
Tex_app $=\mathbf{c e i l i n g}\left(\mathbf{2} \times\right.$ Wex_app $\left.\times L_{\text {ex_app }} / 9,1\right)=\mathbf{2 4 0 . 0 0 0}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.2	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

Item 202 - Wearing Course Removed

See calculation for Approach Slab Removed
Total Area of 202 (SY);
$\mathrm{T}_{\text {ex_app }}=\mathbf{2 4 0 . 0 0 0}$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 202 - CONCRETE SLOPE PROTECTION REMOVED, AS PER PLAN

*At undermined area at rear abutment (5 'x5' panels, replace 3 across, 5 down)

Concrete panel area (sq ft);
Panels to be replaced (each)

Apanel $=25$
$\mathrm{N}_{\text {repl }}=15$

TOTAL AREA OF SLOPE PROTECTION REMOVED (SQ YD); $\quad T_{\text {sp_rem }}=$ ceiling $\left(A_{\text {panel }} \times N_{\text {repl }} / 9,1\right)=42.000$

	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.	4
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	Date 10/15/19	App'd by	Date

ITEM 503 - UNCLASSIFIED EXCAVATION, AS PER PLAN

*Unclassified excavation includes areas required to be excavated for the removal and replacement of backwalls and pier fiber wrap.

ABUTMENTS

Offset for new porous backfill (ft);
Existing approach slab thickness (ft);

Average existing backwall height - RA (ft); $\quad h_{\text {avg_RAex }}=7.22$
Average existing backwall height - FA (ft);
havg_FAex $=7.08$
Additional excavation below backwall for new porous backfill (ft);
$h^{\prime}=2$
Abutment length (inside of WW-to-WW) (ft);
Labut $=62.167$

Area of 503 at rear abutment (sq ft);

$$
A_{503 _R A}=\left(W_{P B} \times\left(h^{\prime}+h_{\text {avg_RAex }}-t_{\text {ex_app }}\right)\right)+0.5 \times\left(h^{\prime}+h_{\text {avg_RAex }}-t_{\text {ex_app }}\right)^{2}=
$$

50.224

Area of 503 at forward abutment (sq ft)

$$
A_{503 _F A}=\left(W_{\text {PB }} \times\left(h^{\prime}+h_{\text {avg_FAex }}-t_{\text {ex_app }}\right)\right)+0.5 \times\left(h^{\prime}+h_{\text {avg_FAex }}-t_{\text {ex_app }}\right)^{2}=
$$

Project				Job Ref.	
	CUY-21-09.09 PID 104000			J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				5	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

PIERS

Truncated cone volume $=\pi h / 3\left(R^{2}+R r+r^{2}\right)$

Pier column diameter (ft);
Bottom cone radius (ft);

Pier 1:

Top cone radius (avg) (ft);
Average height of fill over footing (ft);
Pier 1 volume (CF);
$\left.h_{\text {P1fill }}\right)=709.313$

Pier 2:

Top cone radius (avg) (ft);
Average height of fill over footing (ft);
Pier 2 volume (CF);
$\left.h_{\text {P2fill }}\right)=\mathbf{2 9 8 . 2 2 1}$

$$
\begin{aligned}
& d_{\text {col }}=3.5 \\
& r_{\text {cone }}=\left(d_{\text {col }}+2\right) / 2=\mathbf{2 . 7 5 0}
\end{aligned}
$$

$$
R_{P 1}=14 / 2=\mathbf{7 . 0 0 0}
$$

$$
h_{P_{1 \text { fill }}}=4.25
$$

$V_{\text {P1_503 }}=3 \times\left(\left(p i() \times h_{\text {P1fill }} / 3\right) \times\left(R_{P 1}{ }^{2}+R_{P 1} \times r_{\text {cone }}+r_{\text {cone }}{ }^{2}\right)-p i() \times r_{\text {cone }}{ }^{2} \times\right.$

$$
R_{P 2}=11.33 / 2=\mathbf{5 . 6 6 5}
$$

$h_{\text {P2fill }}=2.9167$
$V_{\text {P2_ }}$ 503 $=3 \times\left(\left(p i() \times h_{\text {P2fill }} / 3\right) \times\left(R_{P 2}{ }^{2}+R_{P 2} \times r_{\text {cone }}+r_{\text {cone }}{ }^{2}\right)-p i() \times r_{\text {cone }}{ }^{2} \times\right.$

Pier 3:

Top cone radius (avg) (ft);
Average height of fill over footing (ft);
Pier 2 volume (CF);
$\left.h_{\text {P3fill }}\right)=553.344$
$R_{P 3}=13.12 / 2=\mathbf{6 . 5 6 0}$
$h_{\text {P3ill }}=3.8333$
$V_{P 3}$ _503 $=3 \times\left(\left(\mathrm{pi}() \times h_{P 3 \text { fill }} / 3\right) \times\left(R_{P 3}{ }^{2}+R_{P 3} \times r_{\text {cone }}+r_{\text {cone }}{ }^{2}\right)-\mathrm{pi}() \times r_{\text {cone }}{ }^{2} \times\right.$

Volume at piers (CF); $\quad V_{\text {piers_503 }}=V_{P 1 _503}+V_{\text {P2_503 }}+V_{P 3 _503}=1560.878$

TOTAL VOLUME (CY); $\quad T_{503}=\operatorname{ceiling}\left(\left(V_{\text {abut_503 }}+V_{\text {piers_503 }}\right) / 27,1\right)=\mathbf{2 8 6 . 0 0 0}$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 509 - EPOXY COATED REINFORCING STEEL, AS PER PLAN

Substructures
Abutment and wingwall rebar (lb); T509_sub $=13094$

Bridge Deck including sidewalk

Superstructure rebar (lb);

Parapet

Parapet rebar (lb);

Slope Protection Repairs
Slope protection rebar (lb);
$T_{509 _ \text {super }}=226303$
$T_{509 _ \text {par }}=22727$
$\mathrm{T}_{509 \text { slope }}=83$

	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section Structure Estimated Qua				Sheet no./rev.7	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 509 - REINFORCING STEEL, REPLACEMENT OF EXISTING REINFORCING STEEL, AS PER PLAN

TOTAL WEIGHT OF REPLACEMENT STEEL (LB);
 $\mathrm{T}_{509 \text { rep }}=500$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 510 - DOWEL HOLES WITH NON-SHRINK, NON-METALLIC GROUT

Substructures

RA Backwall (A621 bars); dowra $=136$
FA Backwall (A621 bars); \quad dow $_{F A}=136$
SE Wingwall (A503 \& A622 bars);
SW Wingwall (A622, A623, A624, A625);
NW Wingwall (A622, A623, A626, A627);
NE Wingwall (A503);

General
Concrete Slope Protection (CP501);
$\operatorname{dow}_{c p}=40$

TOTAL DOWEL HOLES FOR REBAR (EA);
$\mathrm{T}_{510 \text { sub }}=$ ceiling $\left(\right.$ dow $_{\text {RA }}+$ dow $_{F A}+$ dow $_{\text {se }}+$ dow $_{\text {sw }}+$ dow $_{\text {nw }}+$ dow $_{\text {ne }}+$ dow $_{\text {cp }}$), 1) $\mathbf{4 9 2 . 0 0 0}$

Project				Job Ref.	
	CUY-21-09.09 PID 104000			J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				9	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

ITEM 511 - CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK, AS PER PLAN

Primary Deck

Proposed deck width (ft);
Proposed bridge limits (ft);
Proposed deck thickness (in);

Volume of primary deck (cu ft);

Sidewalk

Sidewalk width (ft);
Parapet width (ft);
Sidewalk overhang (ft);
Curb height (ft);
Sidewalk cross-slope (ft/ft);

Average walk thickness (ft);
Walk thickness under parapet (ft);
Walk c-s area (sq ft);
Volume of sidewalk (cu ft);

Haunches

Average haunch (all beams) (in);

$$
\begin{aligned}
& \text { Wdeck }=66 \\
& \text { Ldeck }=414.4167 \\
& \text { tdeck }=8.75
\end{aligned}
$$

$$
V_{\text {deck }}=\left(\text { Wdeck } \times L_{\text {deck }} \times t_{\text {deck }} / 12\right)=19943.804
$$

$$
W_{\text {walk }}=6
$$

$$
w_{\mathrm{par}}=1.167
$$

$$
\text { over }=2 / 12=\mathbf{0 . 1 6 7}
$$

$$
\text { curb }=8 / 12
$$

$$
\text { cross }_{\text {walk }}=0.02
$$

$t_{\text {walk_avg }}=$ curb + cross $_{\text {walk }} \times W_{\text {walk }} / 2=0.727$
$\mathrm{t}_{\text {walk_par }}=$ curb + cross $_{\text {walk }} \times$ Wwalk $=0.787$
$A_{\text {walk }}=\mathrm{t}_{\text {walk_avg }} \times \mathrm{W}_{\text {walk }}+\mathrm{t}_{\text {walk_par }} \times\left(\mathrm{w}_{\text {par }}+\right.$ over $)=\mathbf{5 . 4 0 9}$
$\mathrm{V}_{\text {walk }}=2 \times \mathrm{L}_{\text {deck }} \times \mathrm{A}_{\text {walk }}=4483.285$

$$
h_{\text {avg }}=3.08
$$

Top flange width (ft);

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{f}}=16 / 12=1.333 \\
& \mathrm{t}_{\mathrm{f}}=((1.5 \times 152)+(2.25 \times 124)+(1.25 \times 139)) /(152+124+139)=
\end{aligned}
$$

Average flange thickness (weighted over length) (in);

1.640

Fascia overhang (ft);

$$
L_{\text {fascia }}=4
$$

Number of interior beams (each);
$N_{\text {int }}=5$
Number of fascia beams (each);
$N_{\text {ext }}=2$

Haunch volume - interior beams (cu ft); Vhaunch_int $=\mathrm{b}_{\mathrm{f}} \times(\mathrm{havg} / 12) \times$ Leck $\times \mathrm{N}_{\text {int }}=\mathbf{7 0 9 . 1 1 3}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.10	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

Haunch volume - fascia beams (cu ft); $\quad V_{\text {haunch_ext }}=\left(b_{f} \times\left(h_{\text {avg }} / 12\right)+\left(L_{\text {fascia }}-\left(b_{f} / 2\right)\right) \times\left(\left(h_{\text {avg }}+t_{f}\right) / 12\right)\right) \times L_{\text {deck }} \times N_{\text {ext }}=$ 1370.421

TOTAL VOLUME OF CONCRETE (CU YD); $\quad T_{\text {deck }}=$ ceiling $\left(\left(V_{\text {deck }}+V_{\text {walk }}+V_{\text {haunch_int }}+V_{\text {haunch_ext }}\right) / 27,5\right)=985.000$

Tekla

Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

Project	CUY-21-09.09 PID 104000			Job Ref.J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				11	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

ITEM 511 - CLASS QC2 CONCRETE WITH QCIQA, BRIDGE DECK (PARAPET), AS PER PLAN

Proposed bridge limits (ft);
SW Wingwall length (ft);
SE Wingwall length (ft);
NW Wingwall length (ft);
NE Wingwall length (ft);
$L_{\text {deck }}=414.417$
$L_{\text {sw }}=44-2.25=\mathbf{4 1 . 7 5 0}$
$L_{\text {se }}=34.5-2.25=\mathbf{3 2 . 2 5 0}$
$L_{n w}=39.5-2.25=\mathbf{3 7 . 2 5 0}$
$\mathrm{L}_{\text {ne }}=25.5-2.25=\mathbf{2 3 . 2 5 0}$

1) Primary Parapet Concrete

Total Parapet width (ft);
Parapet formliner thickness (each face) (ft);

$$
\mathrm{w}_{\mathrm{par}}=1.167
$$

Parapet height (ft);
tformliner $=1 / 12=\mathbf{0 . 0 8 3}$
$h_{\text {par }}=2+8 / 12=\mathbf{2 . 6 6 7}$

Parapet area (sq ft);
$A_{\text {par }}=\left(W_{\text {par }}-2 \times t_{\text {formliner }}\right) \times h_{\text {par }}=\mathbf{2 . 6 6 8}$

Parapet volume (cu ft);
$V_{\text {par }}=A_{\text {par }} \times\left(2 \times L_{\text {deck }}+L_{\text {sw }}+L_{\text {se }}+L_{\text {nw }}+L_{\text {ne }}\right)=\mathbf{2 5 6 9 . 7 4 5}$
2) Light Pole Pilaster Concrete

Light pole pilaster stem width (ft);
$W_{\text {pil }}=2.6667$
Light pole pilaster stem thickness (ft);
$\mathrm{t}_{\text {pil }}=1.8333$
Pilaster stem height (ft);
$h_{\text {pil }}=3+11.5 / 12=\mathbf{3 . 9 5 8}$
Number of light poles (each);
$\mathrm{N}_{\text {poles }}=10$
Light pole pilaster cap height (ft);
$h_{\text {pil_cap }}=0.5$
Pilaster cap overhang (ft);
Average slab thickness at overhangs (ft);
$0 V_{\text {pii_cap }}=2 / 12=\mathbf{0 . 1 6 7}$
$\mathrm{t}_{\text {ovhg }}=\left(\mathrm{t}_{\text {deck }}+\mathrm{havg}+\mathrm{t}_{\mathrm{f}}\right) / 12=1.123$

Pilaster volume (cu ft);
$\mathrm{V}_{\text {pil }}=\mathrm{N}_{\text {poles }} \times\left(\mathrm{w}_{\text {pil }} \times \mathrm{t}_{\text {pil }} \times \mathrm{h}_{\text {pil }}+\mathrm{h}_{\text {pil_cap }} \times\left(\left(\mathrm{W}_{\text {pil }}+2 \times \mathrm{ov}_{\text {pil_cap }}\right) \times\left(\mathrm{t}_{\text {pil }}+\mathrm{o} \mathrm{V}_{\text {pil_cap }}\right)\right)+\right.$
$\mathrm{t}_{\text {ovhg }} \times\left(\mathrm{t}_{\text {pil }}+\mathrm{ov}\right.$ pil_cap $\left.)\right)=245.967$
3) Additional concrete required for parapet formliner \& lettering (both faces)

Parapet formliner thickness (ft);
Parapet formliner band width (ft);
Vertical formliner band height (ft);
tformliner $=\mathbf{0 . 0 8 3}$
Wform_band $=0.5$
$\mathrm{h}_{\text {form_band }}=\mathrm{h}_{\text {par }}-2 \times$ Wform_band $=1.667$

> Number of vertical formliner bands (outside face) (see elev view); Number of vertical formliner bands (inside face) (see elev view); Number of vertical formliner bands (both faces) (all wingwalls); Total number of vertical formliner bands;

Nform_band_out $=3+17+22+7+1+1+6+17+3=\mathbf{7 7 . 0 0 0}$
Nform_band_in $=2+17+22+7+8+6+17+2=\mathbf{8 1 . 0 0 0}$
Nform_band_ww $=2 \times(7+6+7+9)=\mathbf{5 8 . 0 0 0}$
Nform_band $=2 \times($ Nform_band_out + Nform_band_in $)+$ Nform_band_ww $=$

374.000

Primary formliner volume (cu ft);

$\left.\left.+L_{s e}+L_{n w}+L_{n e}\right) \times t_{\text {formliner }} \times W_{\text {form_band }}\right)=186.528$

Additional width at light pilasters (outside);
Number of light poles (each);

$$
\mathbf{V}_{\text {form1 }}=\left(\mathbf{h}_{\text {form_band }} \times \mathbf{W}_{\text {form_band }} \times \mathrm{t}_{\text {formliner }} \times \mathbf{N}_{\text {form_band }}\right)+\left(4 \times\left(2 \times \text { Ldeck }+L_{\text {sw }}\right.\right.
$$

$$
\begin{aligned}
& \text { Wform_LP }=2.167-0.5=\mathbf{1 . 6 6 7} \\
& N_{\text {poles }}=\mathbf{1 0 . 0 0 0}
\end{aligned}
$$

	Project \quad CUY-21-09.09 PID 10400				Job Ref.J2070709.000	
	Section				Sheet no./rev.12	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

Additional formliner volume (cu ft);

Additional thickness at parapet lettering (outside);
Parapet height at lettered section (ft);
Length of lettered section (ft);

Additional lettering volume (cu ft);

Total Aesthetic concrete (CU YD);

TOTAL VOLUME OF CONCRETE (CU YD);
$\mathrm{V}_{\text {form2 }}=\mathbf{2} \times \mathbf{N}_{\text {poles }} \times \mathbf{h}_{\text {form_band }} \times \mathbf{W}_{\text {form_LP }} \times$ tformliner $=\mathbf{4 . 6 3 1}$
tietters $=2 / 12=\mathbf{0 . 1 6 7}$
$h_{\text {letters }}=3.45833$
Lletters $=45$
$\mathrm{V}_{\text {form3 }}=\mathbf{2 \times}$ Lletters $\times \mathrm{t}_{\text {letters }} \times \mathrm{h}_{\text {letters }}=51.875$
$\mathrm{V}_{\text {par_form }}=\mathrm{V}_{\text {form1 }}+\mathrm{V}_{\text {form2 }}+\mathrm{V}_{\text {form3 }}=\mathbf{2 4 3 . 0 3 3}$
$\mathrm{T}_{\text {par }}=$ ceiling $\left(\left(\mathrm{V}_{\text {par }}+\mathrm{V}_{\text {pil }}+\mathrm{V}_{\text {par_form }}\right) / 27,5\right)=115.000$

Tekla
Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300
Cleveland, Ohio 44114

Project	CUY-21-09.09 PID 104000			Job Ref.J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				13	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

ITEM 511 - CLASS QC1 CONCRETE, ABUTMENT NOT INCLUDING FOOTING

Proposed approach slab thickness (ft);
Abutment length (inside face WW to WW) (ft);
$t_{\text {app }}=17 / 12=\mathbf{1 . 4 1 7}$
$L_{\text {abut }}=\mathbf{6 2 . 1 6 7}$

Wingwall thickness at abutment (NW \& SW only) (ft);
$t_{\text {ww_abut }}=2$
Wingwall thickness primary (ft);
$t_{w w}=1.5$
Abutment length (o/o of wingwalls) (ft); $\quad L_{\text {abut_oo }}=L_{\text {abut }}+\mathrm{t}_{\mathrm{ww} _ \text {_abut }}+\mathrm{t}_{\mathrm{ww}}=\mathbf{6 5 . 6 6 7}$
Sidewalk c-s area (sq ft);
$A_{\text {walk }}=5.409$

Rear Abutment

RA backwall thickness (ft);
tback_RA $=1.75$
Average backwall height (elev area from CAD / abut length) (ft);
$\mathrm{h}_{\text {RA }}=472.7 /$ Labut_oo $=\mathbf{7 . 1 9 8}$

Volume RA (cu ft);
$V_{\text {back_RA }}=L_{\text {abut_oo }} \times\left(\right.$ tback_RA $\times\left(\mathrm{h}_{\text {RA }}-\mathrm{t}_{\text {app }}\right)+($ tback_RA -0.5$\left.) \times \mathrm{t}_{\text {app }}\right)+2 \times \mathrm{A}_{\text {walk }}$
$\times($ tback_RA -0.5$)=794.234$

Forward Abutment

FA backwall thickness (ft);
$t_{\text {back_FA }}=1.75$
Average backwall height (elev area from CAD / abut length) (ft);
$h_{\text {FA }}=460.0 /$ Labut_oo $=7.005$

Volume FA (cu ft);
$V_{\text {back_FA }}=L_{\text {abut_oo }} \times\left(\right.$ tback_FA $\times\left(\mathrm{h}_{\text {FA }}-\mathrm{t}_{\text {tapp }}\right)+($ tback_FA -0.5$\left.) \times \mathrm{tapp}\right)+2 \times$ Awalk \times
(taack_FA -0.5) $\mathbf{= 7 7 2 . 0 0 9}$

Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

Project	CUY-21-09.09 PID 104000			Job Ref.	
				J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				14	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

Wingwalls
Typical WW section:
WW Section at full backwall height replacement (SW \& NW only):

SE Wingwall:
SE Wingwall length (ft);
Replacement thickness (ft);
Replacement area (sq ft);
$\mathrm{L}_{\text {se }}=\mathbf{3 2 . 2 5 0}$
$\mathrm{h}_{\text {se }}=11.5 / 12=0.958$

Vol for SE wingwall (cu ft);
$A_{\text {se }}=\left(h_{s e} \times t_{w w}\right)+\left(9.5 \times\left(t_{w w}+2 / 12\right) / 12\right)=2.757$
$V_{\text {se }}=A_{\text {se }} \times\left(L_{\text {se }}-t_{\text {back_RA }}\right)=84.087$

SW Wingwall:

SW Wingwall length (ft);
Area 1 (sq ft);
Area 2 (sq ft);
Area 3 (sq ft);
Area 4 (sq ft);
Vol for SW wingwall (cu ft);
$L_{\text {sw }}=41.750$
$\mathrm{A} 1_{\mathrm{sw}}=31.5$
$\mathrm{A} 2_{\text {sw }}=38.7$
$A 3_{\text {sw }}=4.2$
$A 4_{\text {sw }}=22.8$
$\mathrm{V}_{\mathrm{sw}}=\left(\mathrm{A} 1_{\mathrm{sw}} \times 1.833\right)+\left(\mathrm{A} 2_{\mathrm{sw}} \times 1.667\right)+\left(\mathrm{A} 3_{\mathrm{sw}} \times 1.5\right)+\left(\mathrm{A} 4_{\mathrm{sw}} \times 2\right)=174.152$

NE Wingwall: No new concrete - approach slab extends over existing portion of wingwall to remain.

© Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project$\text { CUY-21-09.09 PID } 104000$				Job Ref.J2070709.000	
	Section				Sheet no./rev.	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

Vol for NW wingwall (cu ft);
$V_{\text {ne }}=0$

NW Wingwall: See diagram for SW Wingwall, replacement areas are similar

NW Wingwall length (ft);
Area 1 (sq ft);
Area 2 (sq ft);
Area 3 (sq ft);
Area 4 (sq ft);
Vol for NW wingwall (cu ft);
$L_{n w}=37.250$
A1nw $=27.9$
$\mathrm{A} 2_{\mathrm{nw}}=35.8$
$A 3_{n w}=3.9$
$A 4_{n w}=21.2$
$\mathrm{V}_{\mathrm{sw}}=\left(\mathrm{A} 1_{\mathrm{nw}} \times 1.833\right)+\left(\mathrm{A} 2_{\mathrm{nw}} \times 1.667\right)+\left(\mathrm{A} 3_{\mathrm{nw}} \times 1.5\right)+\left(\mathrm{A} 4_{\mathrm{nw}} \times 2\right)=159.069$

Total Vol of concrete for substructures (CY); $\quad T_{511 s u b}=\mathbf{c e i l i n g}\left(\left(V_{\text {back_RA }}+V_{\text {back_FA }}+V_{\text {sw }}+V_{\text {se }}+V_{n w}+V_{\text {ne }}\right) / 27,5\right)=$ 75.000

Tekla
Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300
Cleveland, Ohio 44114

Project				Job Ref.	
	CUY-21-09.09 PID 104000			J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				16	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

ITEM 512 - SEALING CONCRETE SURFACES (EPOXY-URETHANE)

Abutments

*Top of backwall to ground line

Rear abutment elevation area $(C A D)(s q ~ f t) ; \quad A_{512 _R A}=1124.4$
Forward abutment elevation area (CAD) (sq ft); $\quad \mathrm{A}_{512 \mathrm{FA}}=971.5$

Abutment length (ft);
RA beam seat depth (ft);
FA beam seat depth (ft);

Total abutment area (sq ft);

Wingwalls

*Top of wingwall to ground line

SW Wingwall elevation area (sq ft);
SE Wingwall elevation area (sq ft);
NW Wingwall elevation area (sq ft);
NE Wingwall elevation area (sq ft);

Wingwall end area (sq ft);

Total wingwall area (sq ft);

A512_sw $=435.7$
$A_{512 \text { _SE }}=217.4$
A512_Nw $=382.4$
A512_NE $=123.2$
$A_{w w _e n d}=t_{w w} \times 11 / 12=1.375$
$A_{512 _w w}=A_{512 _ \text {_ }}+A_{512 _S E}+A_{512 _N W}+A_{512 _N E}+\left(4 \times A_{w w _e n d}\right)=1164.200$

Piers

*Piers to be fiber-wrapped and sealed with urethane only sealer.
Deck and Parapet (on bridge deck)

	Project \quad CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Structure Estimated Quantities				17	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & \text { 10/10/19 } \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

Proposed bridge limits (ft);	$L_{\text {deck }}=414.417$
Sidewalk width (ft);	$\mathrm{w}_{\text {walk }}=6.000$
Parapet width (ft);	$\mathrm{W}_{\text {par }}=1.167$
Parapet height (ft);	$\mathrm{h}_{\text {par }}=2.667$
Sidewalk overhang (ft);	over $=0.167$
Curb height (ft);	curb $=0.667$
Sidewalk thickness under parapet (ft);	$\mathrm{t}_{\text {walk_par }}=0.787$
Average haunch (all beams) (in);	$\mathrm{havg}^{\text {a }} 3.080$
Average flange thickness (weighted over length) (in);	; $\quad \mathrm{tf}_{\mathrm{f}}=1.640$
Proposed deck thickness (in);	$t_{\text {deck }}=8.750$
Fascia overhang (ft);	$L_{\text {fascia }}=4.000$
Girder flange width (ft);	$\mathrm{b}_{\mathrm{f}}=1.333$
Sealing perimeter (ft); $\left.b_{f} / 2\right)=\mathbf{1 2 . 0 7 6}$	$P_{\text {deck }}=\left(2 \times h_{\text {par }}\right)+\mathrm{w}_{\text {par }}+(2 \times$ over $)+t_{\text {walk_par }}+\left(h_{\text {avg }}+t_{f}+t_{\text {deck }}\right) / 12+\left(L_{\text {fascia }}-\right.$

$$
\text { Total sealing area on bridge deck }(\mathrm{sq} \mathrm{ft}) ; \quad \mathrm{A}_{512 _ \text {deck }}=P_{\text {deck }} \times L_{\text {deck }} \times 2=\mathbf{1 0 0 0 9 . 1 5 5}
$$

Parapets (on wingwalls)

*Top of wingwall to toe of parapet at sidewalk

SW Wingwall length (ft);
SE Wingwall length (ft);
NW Wingwall length (ft);
NE Wingwall parapet length (ft);

Perimeter of parapet (ft);
End area of parapet (sq ft);
$\mathrm{L}_{\text {sw }}=41.750$
$L_{\text {se }}=32.250$
$L_{\text {nw }}=37.250$
$L_{\text {ne_par }}=23.5$

$$
\mathrm{P}_{\mathrm{par}}=\left(2 \times \mathrm{h}_{\mathrm{par}}\right)+\mathrm{w}_{\mathrm{par}}=\mathbf{6 . 5 0 0}
$$

$A_{\text {par }}=2.668$

Total sealing area of parapets on wingwalls $(\mathrm{sq} \mathrm{ft}) ; \quad A_{512 _p a r}=\left(4 \times A_{\text {par }}\right)+P_{p a r} \times\left(L_{s w}+L_{s e}+L_{n w}+L_{n e _p a r}\right)=\mathbf{8 8 6 . 5 9 0}$

TOTAL AREA OF SEALING (SY);
$\mathrm{T}_{512}=$ ceiling $\left(\left(A_{512 _ \text {abut }}+A_{512 _w w}+A_{512 _d e c k}+A_{512 _p a r}\right) / 9,1\right)=1606.000$

Tekla
Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300
Cleveland, Ohio 44114

Project				Job Ref.	
	CUY-21-09.09 PID 104000			J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				18	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

ITEM 512 - SEALING CONCRETE SURFACES (NON-EPOXY)

*All sidewalks and faces of curbs

Sidewalk on bridge deck

Proposed bridge limits (ft);
Sidewalk width (ft);
Curb height (ft);

Sealing perimeter (ft);

Total sealing area on bridge deck (sq ft);

Approach sidewalks (on wingwalls and approach slabs

Length of approach slabs (Ft);
Width of Type C installation header (ft);
$L_{\text {app }}=30$
$W_{\text {type_c }}=2$

NE Wingwall sidewalk plan area (CAD) (sq ft);
Ane_walk $=249.5$

Total sealing area on approaches $(\mathrm{sq} \mathrm{ft}) ; \quad \mathrm{A}_{512 _ \text {appsw }}=\left(\right.$ Ane_walk $+\mathrm{curb} \times\left(\right.$ Lapp $\left.\left.+\mathrm{W}_{\text {type_c }}\right)\right)+3 \times \mathrm{P}_{\text {walk }} \times\left(\right.$ Lapp $\left.+\mathrm{W}_{\text {type_c }}\right)=$ 910.833

TOTAL AREA OF SEALING (SY);
$T_{512 _n o n}=\operatorname{ceiling}\left(\left(A_{512 _d e c k s w}+A_{512 _a p p s w}\right) / 9,1\right)=716.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

TEM 512 - TYPE 2 WATERPROOFING

*3'-0" wide at backwall-to-seat joint and $3^{\prime}-0$ ' wide vertically at NE \& SE wingwall contraction joint

Width of waterproofing (ft);

Abutment length (ft);
Backwall height wingwall replacement section (ft);
SE Wingwall replacement height (ft);
NE Wingwall replacement height (ft);

Total Area of Type 2 Waterproofing (SY);
$W_{\text {Type2 }}=3$
$L_{\text {abut }}=\mathbf{6 2 . 1 6 7}$
$\mathrm{L}_{\text {ww }}=4$
$\mathrm{H}_{\text {se }}=8.13$
$\mathrm{H}_{\mathrm{ne}}=7.58$
$A_{\text {Type2 }}=$ ceiling $\left(W_{\text {Type2 }} \times\left(2 \times\left(L_{\text {abut }}+L_{\text {ww }}\right)+H_{s e}+H_{n e}\right) / 9,1\right)=50.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.20	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	Date 10/15/19	App'd by	Date

ITEM 512 - CONCRETE REPAIR BY EPOXY INJECTION

*From Repair Plan

Total Length of Epoxy Injection (Ft); $\mathrm{T}_{\text {epox }}=\mathbf{2 5 2}$

Tekla

Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

Project	CUY-21-09.09 PID 104000			Job Ref.	
				J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				21	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

ITEM 512 - URETHANE TOP COAT SEALER

*Sealer applied over FRP wrap at piers. Fiber wrap around columns from top of footing to bottom of cap and around cap sides and bottom face with assumed 6 " return on top face at both sides.

Pier cap length (ft);
Pier cap width (ft);
Pier cap end height (ft);
Pier column diameter (ft);
Top of pier cap area sealed (sq ft);
Bottom of cap area (CAD) (sq ft);
End of cap area (sq ft);

Pier 1:

Cap elevation area (CAD) (sq ft);
Total cap area (sq ft);

Average column height (to top of footing) (ft);
Total column area (sq ft);

Total area Pier 1 (sq ft);

Pier 2:

Cap elevation area (CAD) (sq ft);
Total cap area (sq ft);

Average column height (to top of footing) (ft);
Total column area (sq ft);

Total area Pier 2 (sq ft);

Pier 3:
Cap elevation area (CAD) (sq ft);
Total cap area (sq ft);

Average column height (to top of footing) (ft);
Total column area (sq ft);

Total area Pier 3 (sq ft);

Total Area of Urethane Top Coat (SY);
$L_{\text {cap }}=62$
$W_{\text {cap }}=3.5$
$h_{\text {cap_end }}=3.75$
dcol $=3.5$
$A_{\text {cap_top }}=\mathrm{L}_{\text {cap }} \times(0.5+0.5)=\mathbf{6 2 . 0 0 0}$
Acap_bott $=\left(\mathrm{L}_{\text {cap }} \times \mathrm{W}_{\text {cap }}\right)-3 \times \mathrm{pi}() \times \mathrm{d}_{\text {col }}{ }^{2} / 4=188.137$
Acap_end $=\mathrm{w}_{\text {cap }} \times \mathrm{h}_{\text {cap_end }}=13.125$

AP1_el $=298.13$
$A_{P 1 _c a p}=\left(2 \times\right.$ AP1_el $\left.+2 \times A_{\text {cap_end }}+A_{\text {cap_top }}+A_{\text {cap_bott }}\right)=\mathbf{8 7 2 . 6 4 7}$

HP1_col $=27.75$
$A_{\text {P1_col }}=3 \times$ pi ()$\times d_{\text {col }} \times$ HP1_col $=915.382$
$A_{P 1}=A_{P 1 _c a p}+A_{P 1 _c o l}=\mathbf{1 7 8 8 . 0 2 8}$

AP2_el $=300.12$
AP2_cap $=(2 \times$ Ap2_el $+2 \times$ Acap_end + Acap_top + Acap_bott $)=\mathbf{8 7 6 . 6 2 7}$

HP2_col $=27.25$
AP2_col $=3 \times \mathrm{pi}() \times \mathrm{d}_{\text {col }} \times \mathrm{H}_{\text {P2_col }}=\mathbf{8 9 8 . 8 8 8}$
$A_{\text {P2 }}=$ AP2_cap + AP2_col $=\mathbf{1 7 7 5 . 5 1 5}$

AP3_el $=297.31$
AP3_cap $=\left(2 \times\right.$ AP3_el $\left.+2 \times A_{\text {cap_end }}+A_{\text {cap_top }}+A_{\text {cap_bott }}\right)=\mathbf{8 7 1 . 0 0 7}$
$H_{\text {P3_col }}=22.583$
AP3_col $=3 \times \mathrm{pi}() \times \mathrm{d}_{\text {col }} \times \mathrm{H}_{\text {P3_col }}=744.939$
$A_{\text {P3 }}=$ AP3_cap + AP3_col $=1615.946$

	Project \quad CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Structure Estimated Quantities				22	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & \text { 10/10/19 } \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 512 - REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES

*Removal at the following locations:

- Abutment breastwalls from top of slope protection to and including beam seat.
- Wingwalls from existing ground line up to removal line
- None at piers as existing coating removals is included with surface prep for fiber wrap system.

Abutments

Rear abutment elevation area (CAD) (sq ft); \quad Arem_RA $=662.5$
Forward abutment elevation area (CAD) (sq ft); $\quad A_{\text {rem_FA }}=519.9$

Abutment length (ft);
RA beam seat depth (ft);
FA beam seat depth (ft);

Total abutment area (sq ft);

Wingwalls
SW Wingwall elevation area (sq ft);
SE Wingwall elevation area (sq ft);
NW Wingwall elevation area (sq ft);
NE Wingwall elevation area (sq ft);

Total wingwall area (sq ft);

Total Area of Coating Removed (SY);

Labut_oo $=65.667$
$\mathrm{d}_{\mathrm{RA}}=\mathbf{2 . 2 5 0}$
$\mathrm{d}_{\mathrm{FA}}=\mathbf{2 . 2 5 0}$
$A_{\text {rem_abut }}=A_{\text {rem_RA }}+A_{\text {rem_FA }}+\left(d_{R A}+d_{\text {FA }}\right) \times$ Labut_oo $=1477.902$

Arem_sw $=324.5$
Arem_SE $=152.2$
Arem_Nw $=278.5$
Arem_Ne $=62.7$
$A_{\text {rem_ww }}=$ Arem_sw + Arem_SE $+A_{\text {rem_Nw }}+A_{\text {rem_NE }}=\mathbf{8 1 7 . 9 0 0}$

Acoating_removed $=\operatorname{ceiling}(($ Arem_abut + Arem_ww $) / 9,1)=256.000$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 10400				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { J2070709.000 } \end{array}$	
	Section				Sheet no./rev.23	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 513 - STRUCTURAL STEEL MEMBERS, LEVEL UF, AS PER PLAN

*Item includes steel for new utility conduit supports to be paid for by utility owners.

$\mathrm{L} 2 \times 2 \times 3 / 8$ " unit weight per $\mathrm{ft}(\mathrm{lb} / \mathrm{ft})$;
Total Length of steel per support location (ft);
Total number of support locations;

TOTAL WEIGHT OF STEEL (LB);
$w t_{\text {ang }}=4.7$
Lang $=2 \times 2.167+4 \times 1.833=\mathbf{1 1 . 6 6 6}$
Nutil $=29$
T_{513} util $=$ ceiling $($ Lang \times wtang \times Nutil, 10$)=1600.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.24	
	Calc. by EIW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 10 / 19 \end{array}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 513 - REPLACEMENT OF DETERIORATED END CROSSFRAMES

Typical End Crossframe:

Total number of typical end cross-frames (each);
Girder web height (ft);
Beam spacing (ft);
L4x4x3/8" unit weight per ft (lb/ft);
Plate thickness (in);
Top plate area ($\mathrm{sq} \mathrm{ft);}$
Bottom plate area (sq ft);
Unit weight of steel (pcf);

Bottom member length (ft);
Outside diagonal length (ft);
Inside diagonal length (ft);

Total weight of typical crossframe (lb);
$=422.844$
$\mathrm{T}_{\text {CF }}=8$
$h_{\text {web }}=54 / 12=4.500$
$C_{\text {spa }}=9+8 / 12=\mathbf{9 . 6 6 7}$
$w t_{L}=9.8$
$\mathrm{t}_{\mathrm{cf} \text { _pl }}=0.5$
Acf_pl1 $=2.61$
Acf_pl2 $=1.78$
$w t_{\text {stt }}=490$
$L_{\text {bott }}=C_{\text {spa }}=9.667$
$L_{\text {diag1 }}=\operatorname{sqrt}\left(\left(C_{\text {spa }} / 3\right)^{2}+\left(h_{\text {web }}-6 / 12\right)^{2}\right)=5.136$
$L_{\text {diag2 }}=\operatorname{sqrt}\left(\left(C_{\text {spa }} / 6\right)^{2}+\left(h_{\text {web }}-6 / 12\right)^{2}\right)=4.312$
$w t c F=W t L \times\left(L_{\text {bott }}+2 \times\left(L_{\text {diag1 }}+L_{\text {diag2 } 2}\right)\right)+w_{t s t l} \times t_{\text {cf_pl }} \times\left(2 \times A_{\text {cf_pl1 }}+A_{\text {cf_pl2 }}\right) / 12$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 10400				Job RefJ2070709.000	
	Section				Sheet no./rev.25	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

Special End Crossframe (at Girder B-C Bay \& Girder C-D Bay, both ends to allow for proposed fiber conduits):

Total number of special end cross-frames (each);
Top plate area (sq ft);
Bottom plate area (sq ft);

Bottom member length (ft);
Left diagonal length (ft);
Inside diagonal length (ft);
Right diagonal length (ft);

Total weight of typical crossframe (lb);
$\left.\mathrm{A}_{\text {cf_pl2 }}+\mathrm{A}_{\text {cf_pl3 }}+\mathrm{A}_{\text {cf_pl4 }}\right) / 12=\mathbf{4 3 4 . 4 2 9}$

TcFs $=4$
Act_pl3 $=2.08$
$A_{\text {cf_pl4 }}=1.36$
$L_{\text {bott }}=C_{\text {spa }}=9.667$
$L_{\text {diag3 }}=L_{\text {diag1 }}=5.136$
$L_{\text {diag4 }}=L_{\text {diag2 }}=4.312$
$L_{\text {diag5 }}=\operatorname{sqrt}\left((2.25)^{2}+\left(h_{\text {web }}-6 / 12\right)^{2}\right)=4.589$
$w t_{c F S}=W t L \times\left(L_{\text {bott }}+L_{\text {diag3 }}+\left(2 \times L_{\text {diag4 }}\right)+L_{\text {diag5 }}\right)+w_{t s t 1} \times t_{c f f}$ pl $\times\left(\mathrm{A}_{\text {cf_pl1 }}+\right.$
$\mathrm{T}_{513}=$ ceiling $\left(\mathrm{T}_{\mathrm{cf}} \times\right.$ wtcf + Tcfs \times wtcfs, 5$)=5125.000$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 104000				Job RefJ2070709.000	
	Section				Sheet no./rev.26	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 513 - WELDED SHEAR STUD CONNECTORS

Studs per location;
Locations per beam line;

Number of interior beams (each);
Number of fascia beams (each);

TOTAL NUMBER OF SHEAR STUDS (EA);
stud $=4$
loc $=210$
$N_{\text {int }}=5.000$
$N_{\text {ext }}=2.000$
$T_{\text {stud }}=\left(\operatorname{stud} \times \operatorname{loc} \times\left(N_{\text {int }}+N_{\text {ext }}\right)\right)=5880.000$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.27	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	Date 10/15/19	App'd by	Date

ITEM 513 - TRIMMING OF BEAM ENDS, AS PER PLAN

TOTAL NUMBER OF BEAM ENDS TRIMMED (EA);
$\mathrm{T}_{\text {trim }}=9$

Tekla

Tedds
Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

Project	CUY-21-09.09 PID 104000			Job Ref.J2070709.000	
Section				Sheet no./rev.	
Structure Estimated Quantities				28	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	10/10/19	PJW	10/15/19		

ITEM 514 - SURFACE PREPARATION OF EXISTING STRUCTURAL STEEL
ITEM 514 - FIELD PAINTING OF EXISTING STRUCTURAL STEEL, PRIME COAT
ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, INTERMEDIATE COAT
ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, FINISH COAT, AS PER PLAN

Girder web height (ft);
Flange width (ft);
Web thickness (ft);
Number of interior beams (each);
Number of fascia beams (each);

Girder Section 1

Length of Section 1 per beam line (ft);
Flange thickness (ft);
Girder perimeter (ft);

Girder Section 2
Length of Section 2 per beam line (ft);
Flange thickness (ft);
Girder perimeter (ft);

Girder Section 3
Length of Section 3 per beam line (ft);
Flange thickness (ft);
Girder perimeter (ft);

Stiffeners

Stiffener thickness (ft);
Stiffener width (ft);
Stiffener area (sq ft);
$h_{\text {web }}=4.500$
$b_{f}=1.333$
$\mathrm{t}_{\text {web }}=0.375 / 12=\mathbf{0 . 0 3 1}$
$N_{\text {int }}=5.000$
$N_{\text {ext }}=\mathbf{2 . 0 0 0}$
$\mathrm{L}_{\mathrm{G} 1}=75+75+1+1=\mathbf{1 5 2 . 0 0 0}$
$\mathrm{t}_{\mathrm{f} 1}=1.5 / 12=\mathbf{0 . 1 2 5}$
$P_{G 1}=b_{f}+2 \times\left(h_{\text {web }}+2 \times t_{f 1}+\left(b_{f}-t_{\text {web }}\right)\right)=13.438$
$L_{\mathrm{G} 2}=42+3.46 / 2+40+3.46 / 2+42+3.46 / 2=\mathbf{1 2 9 . 1 9 0}$
$\mathrm{t}_{\mathrm{t} 2}=2.25 / 12=\mathbf{0 . 1 8 8}$
$\mathrm{P}_{\mathrm{G} 2}=\mathrm{b}_{\mathrm{f}}+2 \times\left(\mathrm{h}_{\text {web }}+2 \times \mathrm{t}_{\mathrm{f} 2}+\left(\mathrm{b}_{\mathrm{f}}-\mathrm{t}_{\text {web }}\right)\right)=13.688$
$L_{G 3}=71.5-3.46 / 2+67.5-3.46=\mathbf{1 3 3 . 8 1 0}$
$\mathrm{t}_{\mathrm{f} 3}=1.25 / 12=\mathbf{0 . 1 0 4}$
$P_{G 3}=b_{f}+2 \times\left(h_{\text {web }}+2 \times t_{f 3}+\left(b_{f}-t_{\text {web }}\right)\right)=13.354$
$\mathrm{t}_{\text {stiff }}=1.25 / 12=\mathbf{0 . 1 0 4}$
$W_{\text {stiff }}=7 / 12=\mathbf{0 . 5 8 3}$
$A_{\text {stiff }}=\left(t_{\text {stiff }} \times h_{\text {web }}\right)+\left(2 \times h_{\text {web }} \times W_{\text {stiff }}\right)=5.719$

Total stiffeners per beam line (inclu CF plates) (each); $\quad N_{\text {stiff }}=254$

TOTAL AREA OF PAINTING (SQ FT); $\quad T_{514}=\operatorname{ceiling}\left(\left(N_{i n t}+N_{e x t}\right) \times\left(\left(P_{G 1} \times L_{G 1}+P_{G 2} \times L_{G 2}+P_{G 3} \times L_{G 3}\right)+\left(A_{s t i f f} \times\right.\right.\right.$
$\left.\mathrm{N}_{\text {stiff }}\right) \times \mathbf{1 . 2 0}, 1$) $=59223.000$
*Includes 20\% additional for cross-frames and incidentals

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.29	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 514 - GRINDING FINS, TEARS, SLIVERS ON EXISTING STRUCTURAL STEEL

*Per BDM, one (1) minute per linear foot of beam

Length of beams (ft);
Number of interior beams (each);
Number of fascia beams (each);

TOTAL TIME GRINDING (HRS);

Lbeam $=415$
$N_{\text {int }}=5.000$
$\mathrm{N}_{\text {ext }}=\mathbf{2 . 0 0 0}$
$T_{\text {grind }}=\operatorname{ceiling}\left(\left(N_{\text {int }}+N_{\text {ext }}\right) \times L_{\text {beam }} / 60,1\right)=49.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.30	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 514 - FINAL INSPECTION REPAIR

*Per CMS, one location per 150 linear foot of girder \& 5\% of all crossframes

Length of beams (ft);
Number of interior beams (each);
Number of fascia beams (each);
Number of crossframes per beam;
Total number of crossframes;

Number of locations per beam line (each);
Number of locations on crossframes (each);
$L_{\text {beam }}=415.000$
$N_{\text {int }}=5.000$
$N_{\text {ext }}=\mathbf{2 . 0 0 0}$
$\mathrm{N}_{\mathrm{cf}}=31$
$N_{\text {cf_tot }}=N_{c f} \times\left(N_{\text {int }}+N_{\text {ext }}-1\right)=\mathbf{1 8 6 . 0 0 0}$

Ninspec_bm $=$ ceiling $\left(L_{\text {beam }} / 150,1\right)=3.000$
$N_{\text {inspec_cf }}=\operatorname{ceiling}(0.05 \times$ Ncf_tot, 1$)=\mathbf{1 0 . 0 0 0}$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.31	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 516 - STRUCTURAL EXPANSION JOINT INCLUDING ELASTOMERIC STRIP SEAL

Proposed deck width (ft);

TOTAL LENGTH OF JOINT (FT);
$W_{\text {deck }}=\mathbf{6 6 . 0 0 0}$
$L_{\text {ExP }}=\operatorname{ceiling}\left(2 \times W_{\text {deck }}, 1\right)=132.000$

	Project \quad CUY-21-09.09 PID 10400				Job Ref.J2070709.000	
	Section				Sheet no./rev.32	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 516 - ARMORLESS PREFORMED JOINT SEAL
*At Approach Slab Installation Type C

Rear approach slab width(ft);
Fwd approach slab width at end (ft);

Wrear_app $=62.5$
Wfwd_app $=63.083$
$L_{\text {PJS }}=$ ceiling $\left(w_{\text {rear_app }}+w_{\text {fwd_app }}, 1\right)=126.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.33	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 516-1/2" PREFORMED EXPANSION JOINT FILLER

*At wingwall contraction joint at NW and SW corners

SW hieght of joint (ft);
NW height of joint (ft);
Width of joint (ft);
Height of parapet (ft);
Width of parapet (Ft);

TOTAL AREA OF PEJF (SQ FT);
$h_{\text {cont_sw }}=8.12$
$h_{\text {cont_nw }}=7.63$
$W_{\text {cont }}=2$
$h_{\text {par }}=2.667$
$W_{\text {par }}=1.167$
$A_{\text {pejf_12 }}=$ ceiling $\left(\left(h_{\text {cont_sw }}+h_{\text {cont_nw }}\right) \times W_{\text {cont }}+2 \times h_{\text {par }} \times W_{\text {par }}, 1\right)=\mathbf{3 8 . 0 0 0}$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.34	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 516-1" PREFORMED EXPANSION JOINT FILLER

*Between inside face of wingwalls and integral approach slab sidewalk.

Length of approach slabs (Ft);
Width of Type C installation header (ft);
Typical approach slab thickness (ft);
Width of sidewalk on approach slab (ft);
Curb height (ft);
Approach slab thickness at joint (ft);

TOTAL AREA OF PEJF (SQ FT);
$L_{\text {app }}=\mathbf{3 0 . 0 0 0}$
$W_{\text {type_c }}=2.000$
$t_{\text {tapp }}=\mathbf{1 . 4 1 7}$
$W_{\text {app_walk }}=5.5$
curb $=0.667$
tapp_pejf $=$ tapp + curb $+0.02 \times$ Wapp_walk $=\mathbf{2 . 1 9 3}$
$A_{\text {pejf1 }}=\operatorname{ceiling}\left(3 \times\left(L_{\text {app }}+w_{\text {type_c }}\right) \times t_{\text {app_pejf }} 1\right)=211.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.35	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 516 - 2" PREFORMED EXPANSION JOINT FILLER

*Under approach slab, above wingwall at SW \& NW corners and full length of NE wingwall

Plan area of overlap at SW \& NW corners (CAD) (sq ft);

NE WW length (ft);
Backwall thickness (ft);
NE WW length (beyond backwall) (ft);
NE WW thickness (ft);

TOTAL AREA OF PEJF (SQ FT);
$L_{\text {ne }}=23.250$
$\mathrm{t}_{\text {back_RA }}=1.750$
$L_{\text {ne_pejf }}=L_{\text {ne }}-$ tback_RA $=\mathbf{2 1 . 5 0 0}$
$\mathrm{t}_{\mathrm{ww}}=1.500$
$A_{\text {pejf2 }}=\operatorname{ceiling}\left(2 \times A_{c o r n}+L_{\text {ne_pejf }} \times t_{w w}, 1\right)=39.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.36	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 516 - RESET BEARINGS

*At rocked bearings at rear abutment Beams A - E, and abutment bearings with beam seat deterioration (RA Beam F, FA Beams B - D)

TOTAL NUMBER OF BEARINGS RESET (EA); $\quad T_{\text {reset }}=9$

	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section Structure Estimated Quan				Sheet no./rev.37	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	Date 10/15/19	App'd by	Date

ITEM 516 - ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPRENE), AS PER PLAN
*At existing bolster locations

TOTAL NUMBER OF BEARINGS REPLACED (EA); $\quad T_{\text {FIXED }}=14$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 518 - POROUS BACKFILL WITH GEOTEXTILE FABRIC

*Item includes 2'-0" thick porous backfill behind backwalls

Proposed approach slab thickness (ft);
Abutment length (ft);
Average backwall height RA (ft);
Average backwall height FA (ft);
Additional excavation below backwall for new porous backfill (ft);

$$
h^{\prime}=2.000
$$

$t_{518}=2$

TOTAL VOL POROUS BACKFILL (CY);
$T_{518}=\operatorname{ceiling}\left(L_{\text {abut }} \times\left(\left(h_{R A}+h^{\prime}\right)+\left(h_{F A}+h^{\prime}\right)-2 \times t_{\text {app }}\right) \times t_{518} / 27,1\right)=$ 71.000

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 10400				Job Ref.J2070709.000	
	Section				Sheet no./rev.39	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 519 - PATCHING CONCRETE STRUCTURE, AS PER PLAN
*From repair plan

TOTAL PATCHING AREA (SF);
$\mathrm{T}_{\text {patch }}=383$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 10400				$\begin{array}{\|l\|} \text { Job Ref. } \\ \text { J2070709.000 } \end{array}$	
	Section				Sheet no./rev.40	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 519 - COMPOSITE FIBER WRAP SYSTEM

*See calculation for Item 512 - Urethane Top Coat Sealer

TOTAL FIBER WRAP AREA (SQ FT);
$A_{\text {fiber }}=$ Aurethane $\times \mathbf{9}=5184.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section Structure Estimated Quantities				Sheet no./rev.41	
	Calc. by EIW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 10 / 19 \end{array}$	Chk'd by PJW	Date 10/15/19	App'd by	Date

ITEM 526 - REINFORCED CONCRETE APPROACH SLABS WITH QCIQA (T=17"), AS PER PLAN

*Approach slabs with integral sidewalk

Length of approach slabs (Ft);
Rear approach slab width(ft);

Fwd approach slab plan area (CAD) (sq ft);

TOTAL APPROACH SLAB AREA (SQ YD);
$L_{\text {app }}=\mathbf{3 0 . 0 0 0}$
$W_{\text {rear_app }}=62.500$

Afwd_app $=1967.7$

Aapp $=$ ceiling $\left(\left(L_{\text {app }} \times\right.\right.$ Wrear_app + Afwd_app $\left.) / 9,1\right)=427.000$

© Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 10400				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { J2070709.000 } \end{array}$	
	Section				Sheet no./rev.42	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 526 - TYPE C INSTALLATION, AS PER PLAN

*See calculation form Item 516 - Armorless Preformed Joint Seal

TOTAL INSTALLATION LENGTH (FT);
$L_{\text {install }}=L_{\text {PJS }}=126.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 104000				Job Ref.J2070709.000	
	Section				Sheet no./rev.43	
	Calc. by EIW	$\begin{aligned} & \hline \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 601 - CONCRETE SLOPE PROTECTION, AS PER PLAN

*At undermined area at rear abutment
*Include subgrade placement and compaction, and polystyrene backer and silicone sealer at breastwall joint with this item.

Concrete panel area (sq ft);
Panels to be replaced (each);

$$
\begin{aligned}
& A_{\text {panel }}=\mathbf{2 5 . 0 0 0} \\
& N_{\text {repl }}=15.000
\end{aligned}
$$

\qquad	Project CUY-21-09.09 PID 10400				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { J2070709.000 } \end{array}$	
	Section				Sheet no./rev.44	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	Date 10/15/19	App'd by	Date

ITEM 607 - VANDAL PROTECTION FENCE, 6' STRAIGHT, COATED FABRIC

ITEM 607 - FENCE, MISC.: DECORATIVE VANDAL PROTECTION FENCE

Proposed bridge limits (ft);
SW Wingwall length (ft);
SE Wingwall length (ft);
NW Wingwall length (ft);
NE Wingwall length (ft);

Fence on SW Wingwall (ft);
Fence on SE Wingwall (ft);
Fence on NW Wingwall (ft);
Fence on NE Wingwall (ft);

TOTAL LENGTH OF FENCE (FT);
$L_{\text {deck }}=414.417$
$\mathrm{L}_{\mathrm{sw}}=41.750$
$L_{\text {se }}=32.250$
$L_{n w}=37.250$
$\mathrm{L}_{\mathrm{ne}}=\mathbf{2 3 . 2 5 0}$
$F_{s w}=L_{s w}-11 / 12=40.833$
$F_{\text {se }}=L_{\text {se }}-1.4167=30.833$
$F_{n w}=L_{n w}-10 / 12=36.417$
$F_{n e}=L_{n e}-10 / 12=22.417$
$T_{\text {VPF }}=\boldsymbol{c e i l i n g}\left(\left(2 \times L_{\text {deck }}+F_{\text {sw }}+F_{\text {se }}+F_{n w}+F_{n e}\right), \mathbf{1}\right)=\mathbf{9 6 0 . 0 0 0}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad CUY-21-09.09 PID 10400				$\begin{array}{\|l\|} \hline \text { Job Ref. } \\ \text { J2070709.000 } \end{array}$	
	Section				Sheet no./rev.45	
	Calc. by EIW	Date 10/10/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 607 - TEMPORARY VANDAL FENCE, TYPE B

*At PCB during phase construction on bridge deck only.

Proposed bridge limits (ft);
$L_{\text {deck }}=414.417$

TOTAL LENGTH OF TEMPORARY FENCE (FT); \quad TVPF_temp $=\boldsymbol{c e i l i n g}\left(2 \times L_{\text {deck }}, \mathbf{1}\right)=\mathbf{8 2 9 . 0 0 0}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project CUY-21-09.09 PID 10400				Job Ref.J2070709.000	
	Section				Sheet no./rev.46	
	Calc. by EIW	$\begin{aligned} & \text { Date } \\ & 10 / 10 / 19 \end{aligned}$	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 15 / 19 \end{array}$	App'd by	Date

ITEM 625 - CONDUIT, 4", 725.04, AS PER PLAN

*Item includes new City of Indpendence, Windstream, Crown Castle, Century Link and Charter conduits.

Windstream: Conduit limits - 3' beyond each backwall;
COI: Conduit limits - JB @ Sta. 106+08.22 to 111+25.00;
1033.560

Crown Castle: Conduit limits - 3' beyond each backwall;
Centurylink: Conduit limits - 3' beyond each backwall;
Charter Comm.: Conduit limits - 3 ' beyond each backwall;

```
Lwind}=2\times425=850.000
Lcol }=2\times(11125-10608.22)
Lcrun = 2 x 425 = 850.000
Lctlk = 1 <425 = 425.000
Lchtr = 1 <425=425.000
```

