	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities					1
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

Item 202 – Approach Slab Removed

Existing Approach slab width (ft); Existing approach slab length (ft); $W_{ex_app} = 54$ $L_{ex_app} = 20$

Total Area of 202 (SY);

 $\textbf{T}_{\textbf{ex_app}} = \textbf{ceiling(2 \times W_{ex_app} \times L_{ex_app} / 9, 1) = \textbf{240.000}}$

🟉 Tekla	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section	Sheet no./rev.				
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				2	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

Item 202 – Wearing Course Removed

See calculation for Approach Slab Removed

Total Area of 202 (SY);

T_{ex_app} = 240.000

🗲 Tekla	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section		Sheet no./rev.			
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				3	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 202 - CONCRETE SLOPE PROTECTION REMOVED, AS PER PLAN

*At undermined area at rear abutment (5'x5' panels, replace 3 across, 5 down)

Concrete panel area (sq ft);
Panels to be replaced (each);

A_{panel} = 25 N_{repl} = 15

TOTAL AREA OF SLOPE PROTECTION REMOVED (SQ YD); T_{SP_REM} = ceiling(A_{panel} × N_{repl} / 9, 1) = 42.000

🗲 Tekla	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section		Sheet no./rev.			
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				4	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 503 - UNCLASSIFIED EXCAVATION, AS PER PLAN

*Unclassified excavation includes areas required to be excavated for the removal and replacement of backwalls and pier fiber wrap.

ABUTMENTS

Offset for new porous backfill (ft);	$W_{PB} = 2$
Existing approach slab thickness (ft);	t _{ex_app} = 1

Average existing backwall height – RA (ft); Average existing backwall height – FA (ft);	$h_{avg_RAex} = 7.22$ $h_{avg_FAex} = 7.08$
Additional excavation below backwall for new porou	
Abutment length (inside of WW-to-WW) (ft);	L _{abut} = 62.167
Area of 503 at rear abutment (sq ft);	$A_{503_RA} = (w_{PB} \times (h' + h_{avg_RAex} - t_{ex_app})) + 0.5 \times (h' + h_{avg_RAex} - t_{ex_app})^2 =$
50.224	
Area of 503 at forward abutment (sq ft);	$A_{503_FA} = (w_{PB} \times (h' + h_{avg_FAex} - t_{ex_app})) + 0.5 \times (h' + h_{avg_FAex} - t_{ex_app})^2 =$
48.803	

Volume at abutments (CF); V_{abut_503} = (A_{503_RA} + A_{503_FA}) ×L_{abut} = 6156.236

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section		Sheet no./rev.			
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities					5
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

<u>PIERS</u>

Truncated cone volume = $\pi h / 3 (R^2 + Rr + r^2)$

Pier column diameter (ft); Bottom cone radius (ft);

Pier 1:

Top cone radius (avg) (ft); Average height of fill over footing (ft); Pier 1 volume (CF); hP1fill) = **709.313**

Pier 2:

Top cone radius (avg) (ft); Average height of fill over footing (ft); Pier 2 volume (CF); h_{P2fill}) = **298.221**

Pier 3:

Top cone radius (avg) (ft); Average height of fill over footing (ft); Pier 2 volume (CF); hP3fill) = **553.344** $d_{col} = 3.5$ r_{cone} = (d_{col} + 2) / 2 = **2.750**

$$\begin{split} & R_{P1} = 14 \ / \ 2 = \textbf{7.000} \\ & h_{P1fill} = 4.25 \\ & V_{P1_503} = 3 \times ((pi() \times h_{P1fill} \ / \ 3) \times (R_{P1}^2 + R_{P1} \times r_{cone} + r_{cone}^2) - pi() \times r_{cone}^2 \times \end{split}$$

$$\begin{split} & \text{R}_{\text{P2}} = 11.33 \ / \ 2 = \textbf{5.665} \\ & \text{h}_{\text{P2fill}} = 2.9167 \\ & \text{V}_{\text{P2}_503} = 3 \times ((\text{pi}() \times \text{h}_{\text{P2fill}} \ / \ 3) \times (\text{R}_{\text{P2}}^2 + \text{R}_{\text{P2}} \times \text{r}_{\text{cone}} + \text{r}_{\text{cone}}^2) - \text{pi}() \times \text{r}_{\text{cone}}^2 \times \text{r}_{\text{cone}}^2) \end{split}$$

$$\begin{split} R_{P3} &= 13.12 \ / \ 2 = \textbf{6.560} \\ h_{P3fill} &= 3.8333 \\ V_{P3_503} &= 3 \times ((pi() \times h_{P3fill} \ / \ 3) \times (R_{P3}^2 + R_{P3} \times r_{cone} + r_{cone}^2) - pi() \times r_{cone}^2 \times \end{split}$$

Volume at piers (CF); $V_{piers_{503}} = V_{P1_{503}} + V_{P2_{503}} + V_{P3_{503}} = 1560.878$

TOTAL VOLUME (CY); T_{503} = ceiling(($V_{abut_{503}} + V_{piers_{503}}$) / 27,1) = 286.000

🚛 Tekla	Project				Job Ref.	
Tedds		CUY-21-09.0	J2070709.000			
	Section					
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities					6
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

<u>11</u>	ITEM 509 – EPOXY COATED REINFORCING STEEL, AS PER PLAN					
	<u>Substructures</u> butment and wingwall rebar (lb);	T _{509_sub} = 13094				
	ridge Deck including sidewalk uperstructure rebar (lb);	T _{509_super} = 226303				
	<u>Parapet</u> arapet rebar (lb);	T _{509_par} = 22727				
	lope Protection Repairs lope protection rebar (lb);	T _{509_slope} = 83				

TOTAL WEIGHT OF REINFORCING STEEL (LB); T₅₀₉ = ceiling(T_{509_sub} + T_{509_super} + T_{509_par} + T_{509_slope}, 1) = 262207.000

🟉 Tekla	Project				Job Ref.	
Tedds Osborn Engineering 1100 Superior Avenue - Suite 300	CUY-21-09.09 PID 104000				J2070709.000	
	Section		Sheet no./rev.			
	Structure Estimated Quantities				7	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 509 - REINFORCING STEEL, REPLACEMENT OF EXISTING REINFORCING STEEL, AS PER PLAN

TOTAL WEIGHT OF REPLACEMENT STEEL (LB); T_{509_rep} = 500

🗲 Tekla [®]	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Structure Estimated Quantities					8
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 510 - DOWEL HOLES WITH NON-SHRINK, NON-METALLIC GROUT

Substructures

RA Backwall (A621 bars);	dow _{RA} = 136
FA Backwall (A621 bars);	dow _{FA} = 136
SE Wingwall (A503 & A622 bars);	dow _{se} = 42 + 12 = 54.000
SW Wingwall (A622, A623, A624, A625);	dow _{sw} = 46 + 6 + 6 + 3 = 61.000
NW Wingwall (A622, A623, A626, A627);	$dow_{nw} = 40 + 6 + 6 + 3 = 55.000$
NE Wingwall (A503);	dow _{ne} = 10
<u>General</u>	
Concrete Slope Protection (CP501);	$dow_{cp} = 40$

TOTAL DOWEL HOLES FOR REBAR (EA); dow_{cp}), 1) = 492.000

T_{510_sub} = ceiling((dow_{RA}+ dow_{FA} + dow_{se} + dow_{sw} + dow_{nw} + dow_{ne} +

	Project	CUY-21-09	.09 PID 104000	0	Job Ref. J20	70709.000
Osborn Engineering	Section				Sheet no./rev	Ι.
1100 Superior Avenue - Suite 300		Structure Es	timated Quanti	ties		9
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		
M 511 – CLASS QC2 CONCRETE	<u>WITH QC/QA,</u>	BRIDGE DECK,	AS PER PLAN	<u>N</u>		
Primary Deck						
Proposed deck width (ft);		$W_{deck} = 66$				
Proposed bridge limits (ft);		$L_{deck} = 414.41$	67			
Proposed deck thickness (in);		t _{deck} = 8.75				
Volume of primary deck (cu ft);		V _{deck} = (w _{deck} >	imes L _{deck} $ imes$ t _{deck} / 1	12) = 19943.804		
<u>Sidewalk</u>						
Sidewalk width (ft);		$w_{walk} = 6$				
Parapet width (ft);		w _{par} = 1.167				
Sidewalk overhang (ft);		over = 2/12 =	0.167			
Curb height (ft);		curb = 8/12				
Sidewalk cross-slope (ft/ft);		cross _{walk} = 0.0	2			
Average walk thickness (ft);		t _{walk_avg} = curb	+ Cross _{walk} \times W	walk / 2 = 0.727		
Walk thickness under parapet (ft);		t _{walk_par} = curb	+ Crosswalk × W	walk = 0.787		
Walk c-s area (sq ft);		A _{walk} = t _{walk_avg}	\times Wwalk + twalk_p	oar × (wpar + over) :	= 5.409	
Volume of sidewalk (cu ft);		$V_{\text{walk}} = 2 \times L_{\text{dev}}$	$_{ck} \times A_{walk} = 448$	3.285		
Haunches						
Average haunch (all beams) (in);		h _{avg} = 3.08				
	© GIRDER			© GIRDER		
				h		
	h –		. 7	• • A. • • • 7 •	• • •	
	A1				t V	
		<u></u>				
-	b _f	t _f	b _f			
L L						
Top flange width (ft);		h _f = 16	6/12 = 1.333			
Average flange thickness (weighter	d over length) (25 × 124) + (1.25 :	× 139)) / (152	2+124+130
1.640		un), u - ((1	.0 × 102) 1 (2.2	-0 × 124) 1 (1.20	× 100))7 (102	
Fascia overhang (ft);		L _{fascia} =	= 4			
Number of interior beams (each);		N _{int} = 5	5			
Number of fascia beams (each);		$N_{ext} = 2$	2			
Haunch volume – interior beams (o	uft)• V⊾	$ch_{int} = b_f \times (h_{avg}/12)$	2) × Jacob × NI	= 709 113		

	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	s		10
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

 $Haunch volume - fascia beams (cu ft); V_{haunch_ext} = (b_f \times (h_{avg}/12) + (L_{fascia} - (b_f / 2)) \times ((h_{avg} + t_f)/12)) \times L_{deck} \times N_{ext} = (b_f \times (h_{avg}/12) + (L_{fascia} - (b_f / 2)) \times (h_{avg} + t_f)/12)) \times L_{deck} \times N_{ext} = (b_f \times (h_{avg}/12) + (h_{avg}/12) + (h_{avg}/12)) \times (h_{avg} + t_f)/12)) \times L_{deck} \times N_{ext} = (b_f \times (h_{avg}/12) + (h_{avg}/12) + (h_{avg}/12)) \times (h_{avg} + t_f)/12)) \times L_{deck} \times N_{ext} = (b_f \times (h_{avg}/12) + (h_{avg}/12) + (h_{avg}/12)) \times (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_{avg}/12) + (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_{avg}/12) + (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_{avg}/12) + (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_{avg}/12) + (h_{avg}/12)) \times L_{deck} \times N_{ext} = (h_f \times (h_{avg}/12) + (h_$ 1370.421

TOTAL VOLUME OF CONCRETE (CU YD); $T_{deck} = ceiling((V_{deck} + V_{walk} + V_{haunch_int} + V_{haunch_ext})/27, 5) = 985.000$

두 јекја	Project	CUY-21-09.	09 PID 104000	1	Job Ref. J20	70709.000	
Tedds	Section				Sheet no./rev		
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Es		11			
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	10/10/19	PJW	10/15/19			
ITEM 511 - CLASS QC2 CONCRET	E WITH QC	QA, BRIDGE DE	CK (PARAPET), AS PER PLAN	1		
Proposed bridge limits (ft);		L _{deck} = 414.41	7				
SW Wingwall length (ft);		$L_{sw} = 44-2.25$	= 41.750				
SE Wingwall length (ft);		$L_{se} = 34.5 - 2.$	25 = 32.250				
NW Wingwall length (ft);		$L_{nw} = 39.5-2.2$	5 = 37.250				
NE Wingwall length (ft);		$L_{ne} = 25.5 - 2.23$	5 = 23.250				
1) Primary Parapet Concrete							
Total Parapet width (ft);		W _{par} = 1.167					
Parapet formliner thickness (each fac	;e) (ft);	t _{formliner} = 1/12	= 0.083				
Parapet height (ft);		$h_{par} = 2 + 8/12$	= 2.667				
Parapet area (sq ft);		A _{par} = (w _{par} - 2	$2 \times t_{formliner}) \times h_{pa}$	ar = 2.668			
Parapet volume (cu ft);		$V_{par} = A_{par} \times (2$	$2 \times L_{deck} + L_{sw} +$	L _{se} + L _{nw} + L _{ne}) =	= 2569.745		
2) Light Pole Pilaster Concrete							
Light pole pilaster stem width (ft);		$w_{\text{pil}} = 2.6667$					
Light pole pilaster stem thickness (ft);		t _{pil} = 1.8333					
Pilaster stem height (ft);		$h_{pil} = 3 + 11.5/$	12 = 3.958				
Number of light poles (each);		N _{poles} = 10					
Light pole pilaster cap height (ft);		$h_{\text{pil}_\text{cap}} = 0.5$					
Pilaster cap overhang (ft);		ov _{pil_cap} = 2/12	= 0.167				
Average slab thickness at overhangs	(ft);	$t_{ovhg} = (t_{deck} + t_{deck})$	$n_{avg} + t_{f}) / 12 =$	1.123			
Pilaster volume (cu ft); t _{ovhg} × (t _{pil} + ov _{pil_cap})) = 245.967		$V_{pil} = N_{poles} \times (V_{poles})$	$w_{\text{pil}} imes t_{\text{pil}} imes h_{\text{pil}} +$	h _{pil_cap} × ((w _{pil} + 2	× OVpil_cap)×((t _{pil} + OV _{pil_cap}	
 Additional concrete required for p 	parapet form	liner & letterina (h	oth faces)				
Parapet formliner thickness (ft);		$t_{formliner} = 0.083$	-				
Parapet formliner band width (ft);		Wform_band = 0.5					
Vertical formliner band height (ft);			$-2 imes W$ form_band	= 1.667			
Number of vertical formliner bands (o	utside face)	(see elev view);	N _{form_band_out} :	= 3+17+22+7+1+	1+6+17+3 =	77.000	
Number of vertical formliner bands (ir	nside face) (s	see elev view);	Nform_band_in =	2+17+22+7+8+6	6+17+2 = 81. 0	000	
Number of vertical formliner bands (b	oth faces) (a	II wingwalls);	Nform_band_ww =	= 2 × (7 + 6 + 7 +	9) = 58.000		
Total number of vertical formliner bar				(Nform_band_out + N		Vform_band_ww	
.000					- /		
Primary formliner volume (cu ft);		V _{form1} = (h _{form_}	_band × Wform_ban	$_{\rm d} imes {f t}_{ m formliner} imes {f N}_{ m formliner}$	m_band) + (4 ×	(2 × L_{deck} +	
+ Lse + Lnw + Lne) \times tformliner \times Wform_band) = 186.528						
Additional width at light pilasters (out	side);	$W_{form_{LP}} = 2.16$	7 – 0.5 = 1.667				

🐙 Tekla	Project				Job Ref.		
		CUY-21-09.09 PID 104000					
Osborn Engineering	Section				Sheet no./rev		
1100 Superior Avenue - Suite 300		Structure Es	timated Quanti	ties		12	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	10/10/19	PJW	10/15/19			
Additional formliner volume (c				I × Wform_LP × tform	iner = 4.631		
Additional formliner volume (c Additional thickness at parapet le	u ft);		poles × hform_banc	I × Wform_LP × tform	iner = 4.631		
·	u ft); ettering (outside);	$V_{form2} = 2 \times N$	poles × h _{form_banc}	i × Wform_LP × tformi	_{iner} = 4.631		

Additional lettering volume (cu ft); $V_{form3} = 2 \times L_{letters} \times t_{letters} \times h_{letters} = 51.875$

Total Aesthetic concrete (CU YD);

 $V_{par_form} = V_{form1} + V_{form2} + V_{form3} = 243.033$

TOTAL VOLUME OF CONCRETE (CU YD); $T_{par} = ceiling((V_{par} + V_{pil} + V_{par_form}) / 27, 5) = 115.000$

Tadda	Project	CUY-21-09.(09 PID 104000		Job Ref. J207	0709.000
Tedds	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Est	mated Quantitie	s		13
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		
ITEM 511 - CLASS QC1 CONCRE	TE, ABUTMEN		NG FOOTING			
Proposed approach slab thickness	(ft);	t _{app} = 17/12 = 1	.417			
Abutment length (inside face WW to		L _{abut} = 62.167				
Wingwall thickness at abutment (NV	N & SW only) (ft));		$t_{ww_abut} = 2$		
Wingwall thickness primary (ft);				$t_{ww} = 1.5$		
Abutment length (o/o of wingwalls)	(ft);	$L_{abut_{oo}} = L_{abut} +$	$-t_{ww_abut} + t_{ww} =$	65.667		
Sidewalk c-s area (sq ft);		A _{walk} = 5.409				
Rear Abutment						
RA backwall thickness (ft);				$t_{back_RA} = 1.$	75	
Average backwall height (elev area	from CAD / abut	: length) (ft);		h _{RA} = 472.7	/ Labut_oo = 7	.198
Volume RA (cu ft);		Vback_RA = Labut	_oo × (tback_RA × (t	NRA — t _{app}) + (t _{back}	s_ra − 0.5) × ta	app) + 2 × Aw
\times (t _{back_RA} - 0.5) = 794.234						
Forward Abutment						
				$t_{back}FA = 1.$	75	
FA backwall thickness (ft);		(ft)		$b_{-1} = 460.0$	/ L _{abut_oo} = 7.	005
	from CAD / abut	(it);		$H_{FA} = 400.0$.005
FA backwall thickness (ft);			$_{00} imes$ (tback_FA $ imes$ (t	$TFA - t_{app}$) + (t_{back}		

두 Tekla	Project				Job Ref.		
		CUY-21-09.09 PID 104000					
Osborn Engineering	Section Structure Estimated Quantities					Sheet no./rev. 15	
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	10/10/19	PJW	10/15/19			
0 0	SW Wingwall, repi	lacement areas a L _{nw} = 37.250	are similar				
NW Wingwall length (ft);	SW Wingwall, repi		are similar				
NW Wingwall length (ft); Area 1 (sq ft);	SW Wingwall, repi	Lnw = 37.250	are similar				
NW Wingwall length (ft); Area 1 (sq ft); Area 2 (sq ft);	SW Wingwall, repi	L _{nw} = 37.250 A1 _{nw} = 27.9	are similar				
NW Wingwall: See diagram for S NW Wingwall length (ft); Area 1 (sq ft); Area 2 (sq ft); Area 3 (sq ft); Area 4 (sq ft);	SW Wingwall, repi	L _{nw} = 37.250 A1 _{nw} = 27.9 A2 _{nw} = 35.8	are similar				

Total Vol of concrete for substructures (CY); $T_{511sub} = ceiling((V_{back_RA} + V_{back_FA} + V_{sw} + V_{se} + V_{nw} + V_{ne})/27, 5) = 75.000$

🐙 Tekla	Project	CUY-21-09	.09 PID 104000)	Job Ref.	70709.000		
Tedds	Section	Section						
Osborn Engineering	Coolon	Sheet no./rev. 16						
1100 Superior Avenue - Suite 300	Calc. by	Structure Es	App'd by	Date				
Cleveland, Ohio 44114	EIW	10/10/19	Chk'd by PJW	Date 10/15/19	, the d by	Duic		
ITEM 512 - SEALING CONCRE	TE SURFACES (EPOXY-URETH	ANE)					
<u>Abutments</u>								
*Top of backwall to ground line								
Rear abutment elevation area (C		A _{512_RA} = 1124						
Forward abutment elevation area	(CAD) (sq ft);	A _{512_FA} = 971.	5					
Abutment length (ft);		L _{abut_oo} = 65.6	67					
RA beam seat depth (ft);		d _{RA} = 2.25						
FA beam seat depth (ft);		dfa = 2.25						
Total abutment area (sq ft);		$A_{512_abut} = A_{51}$	2_ra + A 512_fa +	$(d_{RA} + d_{FA}) \times L_{abu}$	t_oo = 2391.4 0	02		
<u>Wingwalls</u>								
*Top of wingwall to ground line								
SW Wingwall elevation area (sq f	t);	A _{512_sw} = 435	.7					
SE Wingwall elevation area (sq ft);	A _{512_SE} = 217.4						
NW Wingwall elevation area (sq f	t);	$A_{512_NW} = 382.4$						
NE Wingwall elevation area (sq ft);	A _{512_NE} = 123.	.2					
Wingwall end area (sq ft);		A _{ww_end} = t _{ww} >	< 11/12 = 1.375					
Total wingwall area (sq ft);		A _{512_ww} = A ₅₁₂	_sw + A _{512_se} +	A512_NW + A512_NE	+ (4 \times A _{ww_en}	ud) = 1164.20		
Piers								
*Piers to be fiber-wrapped and se	alad with uratha	a only sociar						

Deck and Parapet (on bridge deck)

	Project	CUY-21-09.	09 PID 104000)	Job Ref. J20	70709.000
10000	Section				Sheet no./rev	<i>'</i> .
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Es	timated Quantit	ties		17
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		
Proposed bridge limits (ft);		L _{deck} = 414.41	7			
Sidewalk width (ft);		Wwalk = 6.000				
Parapet width (ft);		w _{par} = 1.167				
Parapet height (ft);		h _{par} = 2.667				
Sidewalk overhang (ft);		over = 0.167				
Curb height (ft);		curb = 0.667				
Sidewalk thickness under parapet	(ft);	t _{walk_par} = 0.78 7	7			
Average haunch (all beams) (in);		h _{avg} = 3.080				
Average flange thickness (weight	ed over length) (ir); t _f = 1.6	40			
Proposed deck thickness (in);		t _{deck} = 8.750				
Fascia overhang (ft);		L _{fascia} =	4.000			
Girder flange width (ft);		b _f = 1.	333			
_						
Sealing perimeter (ft);		$P_{deck} = (2 \times h_{pac})$	$ar) + W_{par} + (2 \times$	over) + t _{walk_par} +	(h _{avg} + t _f + t _{de}	ck)/12 + (L _{fas}
b _f / 2) = 12.076						
Total sealing area on bridge deck	(sq ft);	A _{512_deck} = P _{dec}	$_{ck} \times L_{deck} \times 2 = 1$	10009.155		
Parapets (on wingwalls)						
*Top of wingwall to toe of parapet	at sidewalk					
SW Wingwall length (ft);		L _{sw} = 41.750				
SW Wingwall length (ft); SE Wingwall length (ft);		L _{sw} = 41.750 L _{se} = 32.250				
SE Wingwall length (ft);						
SE Wingwall length (ft);		L _{se} = 32.250				
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft);		L _{se} = 32.250 L _{nw} = 37.250 L _{ne_par} = 23.5) + w _{par} = 6.500			
SE Wingwall length (ft); NW Wingwall length (ft);		L _{se} = 32.250 L _{nw} = 37.250 L _{ne_par} = 23.5) + w _{par} = 6.500)		
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft);		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par})$ $A_{par} = 2.668$				
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft);	wingwalls (sq ft);	$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par})$ $A_{par} = 2.668$			ne_par) = 886. \$	590
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft);		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par}$ $A_{par} = 2.668$ $A_{512_par} = (4 \times h_{par})$	A _{par}) + P _{par} × (L			
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft); Total sealing area of parapets on		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par}$ $A_{par} = 2.668$ $A_{512_par} = (4 \times h_{par})$	A _{par}) + P _{par} × (L	.sw + Lse + Lnw + L		
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft); Total sealing area of parapets on		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par}$ $A_{par} = 2.668$ $A_{512_par} = (4 \times h_{par})$	A _{par}) + P _{par} × (L	.sw + Lse + Lnw + L		
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft); Total sealing area of parapets on		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par}$ $A_{par} = 2.668$ $A_{512_par} = (4 \times h_{par})$	A _{par}) + P _{par} × (L	.sw + Lse + Lnw + L		
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft); Total sealing area of parapets on		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par}$ $A_{par} = 2.668$ $A_{512_par} = (4 \times h_{par})$	A _{par}) + P _{par} × (L	.sw + Lse + Lnw + L		
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft); Total sealing area of parapets on		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par}$ $A_{par} = 2.668$ $A_{512_par} = (4 \times h_{par})$	A _{par}) + P _{par} × (L	.sw + Lse + Lnw + L		
SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall parapet length (ft); Perimeter of parapet (ft); End area of parapet (sq ft); Total sealing area of parapets on		$L_{se} = 32.250$ $L_{nw} = 37.250$ $L_{ne_par} = 23.5$ $P_{par} = (2 \times h_{par}$ $A_{par} = 2.668$ $A_{512_par} = (4 \times h_{par})$	A _{par}) + P _{par} × (L	.sw + Lse + Lnw + L		

	Project	CUY-21-09	09 PID 104000)	Job Ref. J20	70709.000
Osborn Engineering	Section				Sheet no./rev	
1100 Superior Avenue - Suite 300			timated Quantit			18
Cleveland, Ohio 44114	Calc. by EIW	Date 10/10/19	Chk'd by PJW	Date 10/15/19	App'd by	Date
ITEM 512 – SEALING CONCRET *All sidewalks and faces of curbs Sidewalk on bridge deck	LIMIT OF SEA					
Proposed bridge limits (ft); Sidewalk width (ft); Curb height (ft);		L _{deck} = 414.41 w _{walk} = 6.000 curb = 0.667				
Sealing perimeter (ft);		$P_{walk} = W_{walk} +$	curb = 6.667			
Total sealing area on bridge deck	(sq ft);	$A_{512_decksw} = P$	$_{walk} imes L_{deck} imes 2 =$	= 5525.556		
Approach sidewalks (on wingwalls	and approach	<u>slabs</u>				
Length of approach slabs (Ft);		$L_{app} = 30$				
Width of Type C installation heade	er (ft);	$W_{type_c} = 2$				
NE Wingwall sidewalk plan area (CAD) (sq ft);	$A_{ne_walk} = 249.$	5			
Total sealing area on approaches 910.833	(sq ft);	A _{512_appsw} = (A	ne_walk + Curb $ imes$	(L _{app} + W _{type_c})) +	$3 imes P_{walk} imes$ (L	.app + W type_c)
TOTAL AREA OF SEALING (SY);	T _{512_non} = ceil	ing((A _{512_decksw}	+ A _{512_appsw}) / 9,	1) = 716.000)

🗾 Tekla	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	S		19
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 512 - TYPE 2 WATERPROOFING

*3'-0" wide at backwall-to-seat joint and 3'-0' wide vertically at NE & SE wingwall contraction joint

Width of waterproofing (ft);	W _{Type2} = 3
Abutment length (ft);	L _{abut} = 62.167
Backwall height wingwall replacement section (ft);	$L_{ww} = 4$
SE Wingwall replacement height (ft);	H _{se} = 8.13
NE Wingwall replacement height (ft);	$H_{ne} = 7.58$

Total Area of Type 2 Waterproofing (SY); $A_{Type2} = ceiling(W_{Type2} \times (2 \times (L_{abut} + L_{ww}) + H_{se} + H_{ne}) / 9, 1) = 50.000$

	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	s	:	20
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 512 - CONCRETE REPAIR BY EPOXY INJECTION

*From Repair Plan

Total Length of Epoxy Injection (Ft); Tepo

 $T_{epox} = 252$

📮 Tekla	Project		09 PID 104000		Job Ref.	70709.000		
Tedds	Section	COT-21-09.	09 FID 104000		Sheet no./rev			
Osborn Engineering	Osborn Engineering		Structure Estimated Quantities					
1100 Superior Avenue - Suite 300	Calc. by	Date	Chk'd by	Date	App'd by	21 Date		
Cleveland, Ohio 44114	EIW	10/10/19	PJW	10/15/19	, ipp a 2)	2410		
ITEM 512 – URETHANE TOP CO								
*Sealer applied over FRP wrap at and bottom face with assumed 6"	-	-	s from top of fo	oting to bottom of	cap and aro	und cap sid		
Pier cap length (ft);		L _{cap} = 62						
Pier cap width (ft);		$w_{cap} = 3.5$						
Pier cap end height (ft);		$h_{cap_end} = 3.75$						
Pier column diameter (ft);		$d_{col} = 3.5$						
Top of pier cap area sealed (sq ft)	• ,		< (0.5 + 0.5) = 6					
Bottom of cap area (CAD) (sq ft);		$A_{cap_bott} = (L_{cap})$	\times w _{cap})– 3 \times pi	$() \times d_{col}^2 / 4 = 188.7$	137			
End of cap area (sq ft);		$A_{cap_end} = W_{cap}$	\times h _{cap_end} = 13.	125				
Pier 1:								
Cap elevation area (CAD) (sq ft);		A _{P1_el} = 298.13	3					
Total cap area (sq ft);		$A_{P1_cap} = (2 \times A_{P1_el} + 2 \times A_{cap_end} + A_{cap_top} + A_{cap_bott}) = 872.647$						
Average column height (to top of f	ooting) (ft);	H _{P1_col} = 27.75						
Total column area (sq ft);		$A_{P1_{col}} = 3 \times pi$	() $\times d_{col} \times H_{P1_col}$	bl = 915.382				
Total area Pier 1 (sq ft);		Ap1 = Ap1_cap +	+ A _{P1_col} = 1788.028					
Pier 2:								
Cap elevation area (CAD) (sq ft);		$A_{P2_{el}} = 300.12$						
Total cap area (sq ft);		$A_{P2_cap} = (2 \times A)$	$A_{P2_{el}} + 2 \times A_{cap}$	_end + A _{cap_top} + A	cap_bott) = 876	.627		
Average column height (to top of f	ooting) (ft);	$H_{P2_{col}} = 27.25$						
Total column area (sq ft);		$A_{P2_col} = 3 \times pi$	() $\times d_{col} \times H_{P2_co}$	bl = 898.888				
Total area Pier 2 (sq ft);		$A_{P2} = A_{P2_cap} +$	• A _{P2_col} = 1775.	515				
Pier 3:								
Cap elevation area (CAD) (sq ft);		A _{P3_el} = 297.31						
Total cap area (sq ft);		$A_{P3_cap} = (2 \times A_{P3_cap})$	$A_{P3_{el}} + 2 \times A_{cap}$	_ _{end} + A _{cap_top} + A	cap_bott) = 871	.007		
Average column height (to top of f	ooting) (ft);	H _{P3_col} = 22.58	= 22.583					
Total column area (sq ft);		$A_{P3_col} = 3 \times pi() \times d_{col} \times H_{P3_col} = 744.939$						
Total area Pier 3 (sq ft);		Ap3 = Ap3_cap +	· A _{P3_col} = 1615.	946				
Total Area of Urethane Top Coa	+ (SV)-	Aurothana – Ceil	$ing/(A_{Pl} + A_{Pl})$	+ А _{Р3}) / 9, 1) = 57	76.000			

M Tekla [®]	Project Project					Job Ref.		
		CUY-21-09.0	9 PID 104000		J2070709.000			
Osborn Engineering	Section				Sheet no./rev.			
1100 Superior Avenue - Suite 300		Structure Esti	mated Quantiti	es		22		
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	EIW	10/10/19	PJW	10/15/19				
ITEM 512 – REMOVAL OF EXIS		S FROM CONCR	ETE SURFACE	<u>=S</u>				
*Removal at the following location	าร:							
- Abutment breastwalls from top of	of slope protection	n to and including	beam seat.					
- Wingwalls from existing ground	line up to remova	al line						
- None at piers as existing coating	g removals is incl	uded with surface	prep for fiber v	wrap system.				
<u>Abutments</u>								
Rear abutment elevation area (C		$A_{\text{rem}_RA} = 662.5$						
Forward abutment elevation area	(CAD) (sq ft);	t); A _{rem_FA} = 519.9						
Abutment length (ft);		L _{abut_oo} = 65.667						
RA beam seat depth (ft);		d _{RA} = 2.250						
FA beam seat depth (ft);		dfa = 2.250						
Total abutment area (sq ft);		$A_{rem_abut} = A_{rem_RA} + A_{rem_FA} + (d_{RA} + d_{FA}) \times L_{abut_oo} = \textbf{1477.902}$						
<u>Wingwalls</u>								
SW Wingwall elevation area (sq f	t);	$A_{rem_SW} = 324.5$						
SE Wingwall elevation area (sq ft);	A _{rem_SE} = 152.2						
NW Wingwall elevation area (sq f	t);	$A_{rem_NW} = 278.5$						
NE Wingwall elevation area (sq ft	ft); $A_{\text{rem_NE}} = 62.7$							
Total wingwall area (sq ft);		A _{rem_ww} = A _{rem_s}	sw + A _{rem_SE} + A	A _{rem_NW} + A _{rem_NE}	= 817.900			

	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	s	:	23
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 513 - STRUCTURAL STEEL MEMBERS, LEVEL UF, AS PER PLAN

*Item includes steel for new utility conduit supports to be paid for by utility owners.

L2x2x3/8" unit weight per ft (lb/ft); Total Length of steel per support location (ft); Total number of support locations;

TOTAL WEIGHT OF STEEL (LB);

$$\label{eq:wtang} \begin{split} wt_{ang} &= 4.7 \\ L_{ang} &= 2 \times 2.167 + 4 \times 1.833 = \textbf{11.666} \\ N_{util} &= 29 \end{split}$$

 $T_{513_util} = ceiling(L_{ang} \times wt_{ang} \times N_{util}, 10) = 1600.000$

	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				24	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 513 – REPLACEMENT OF DETERIORATED END CROSSFRAMES Typical End Crossframe: STRINGER G/3 C/3 G/3 WORK POINT Typical End Crossframe: STRINGER WORK POINT Type: Jame WORK POINT Type: Jame Type: Jame

Total number of typical end cross-frames (each); Girder web height (ft); Beam spacing (ft); L4x4x3/8" unit weight per ft (lb/ft); Plate thickness (in); Top plate area (sq ft); Bottom plate area (sq ft); Unit weight of steel (pcf);

Bottom member length (ft); Outside diagonal length (ft); Inside diagonal length (ft);

Total weight of typical crossframe (lb);

$T_{CF} = 8$

h _{web} = 54/12 = 4.500
C _{spa} = 9+8/12 = 9.667
$wt_L = 9.8$
$t_{cf_pl} = 0.5$
$A_{cf_{pl1}} = 2.61$
$A_{cf_{pl2}} = 1.78$
$wt_{stl} = 490$

$$\begin{split} &L_{bott} = C_{spa} = \textbf{9.667} \\ &L_{diag1} = sqrt((C_{spa} / 3)^2 + (h_{web} - 6/12)^2) = \textbf{5.136} \\ &L_{diag2} = sqrt((C_{spa} / 6)^2 + (h_{web} - 6/12)^2) = \textbf{4.312} \end{split}$$

 $wt_{CF} = wt_{L} \times (L_{bott} + 2 \times (L_{diag1} + L_{diag2})) + wt_{stl} \times t_{cf_pl} \times (2 \times A_{cf_pl1} + A_{cf_pl2})/12$

= 422.844

	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	S		25
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

 $\begin{array}{ll} \mbox{Total number of special end cross-frames (each);} & $T_{CFS} = 4$ \\ \mbox{Top plate area (sq ft);} & $A_{cf_pl3} = 2.08$ \\ \mbox{Bottom plate area (sq ft);} & $A_{cf_pl4} = 1.36$ \\ \end{array}$

Bottom member length (ft); Left diagonal length (ft); Inside diagonal length (ft); Right diagonal length (ft);

Total weight of typical crossframe (lb); $A_{cf_pl2} + A_{cf_pl3} + A_{cf_pl4})/12 = 434.429$

TOTAL WEIGHT OF STEEL (LB);

$$\begin{split} L_{bott} &= C_{spa} = \textbf{9.667} \\ L_{diag3} &= L_{diag1} = \textbf{5.136} \\ L_{diag4} &= L_{diag2} = \textbf{4.312} \\ L_{diag5} &= sqrt((2.25)^2 + (h_{web} - 6/12)^2) = \textbf{4.589} \end{split}$$

 $wt_{CFS} = wt_L \times (L_{bott} + L_{diag3} + (2 \times L_{diag4}) + L_{diag5}) + wt_{stl} \times t_{cf_pl} \times (A_{cf_pl1} + L_{diag5}) + wt_{stl} \times t_{cf_pl1} \times (A_{cf_pl1} + L_{diag5}) + wt_{stl} \times (A_{cf_pl1} + L_{diag5}) + wt_{stl} \times t_{cf_pl1} \times (A_{cf_pl1} + L_{diag5}) + wt_{stl} \times t_{cf_pl1} \times (A_{cf_pl1} + L_{diag5}) + wt_{stl} \times (A_{cf_pl1} + L_{diag5}) + wt_{stl} \times (A_{cf_pl1} + L_{diag5}) + wt_{stl} \times (A_{cf_pl1} + L_{diag5}) + wt_{s$

 $T_{513} = ceiling(T_{CF} \times wt_{CF} + T_{CFS} \times wt_{CFS}, 5) = 5125.000$

🐙 Tekla	Project				Job Ref.		
		CUY-21-09	.09 PID 10400	0	J20	J2070709.000	
	Section				Sheet no./rev	Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Es	timated Quanti	ties	26		
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	10/10/19	PJW	10/15/19			
ITEM 513 – WELDED SHEAR S		ORS					
Studs per location;		stud = 4					
Locations per beam line;	loc = 210						

Number of interior beams (each);	N _{int} = 5.000
Number of fascia beams (each);	Next = 2.000

TOTAL NUMBER OF SHEAR STUDS (EA); $T_{stud} = (stud \times loc \times (N_{int} + N_{ext})) = 5880.000$

	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	s		27
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 513 – TRIMMING OF BEAM ENDS, AS PER PLAN

TOTAL NUMBER OF BEAM ENDS TRIMMED (EA); T_{trim} = 9

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	28			
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 514 – SURFACE PREPARATION OF EXISTING STRUCTURAL STEEL ITEM 514 – FIELD PAINTING OF EXISTING STRUCTURAL STEEL, PRIME COAT ITEM 514 – FIELD PAINTING STRUCTURAL STEEL, INTERMEDIATE COAT ITEM 514 – FIELD PAINTING STRUCTURAL STEEL, FINISH COAT, AS PER PLAN

Girder web height (ft);	h _{web} = 4.500
Flange width (ft);	b _f = 1.333
Web thickness (ft);	$t_{web} = 0.375/12 = 0.031$
Number of interior beams (each);	N _{int} = 5.000
Number of fascia beams (each);	N _{ext} = 2.000

Length of Section 1 per beam line (ft);	$L_{G1} = 75 + 75 + 1 + 1 = 152.000$
Flange thickness (ft);	$t_{f1} = 1.5/12 = 0.125$
Girder perimeter (ft);	$P_{G1} = b_f + 2 \times (h_{web} + 2 \times t_{f1} + (b_f - t_{web})) = \textbf{13.438}$

<u>Girder Section 3</u> Length of Section 3 per beam line (ft); Flange thickness (ft); Girder perimeter (ft);

<u>Stiffeners</u> Stiffener thickness (ft); Stiffener width (ft); Stiffener area (sq ft);

Girder Section 1

$$\begin{split} L_{G3} &= 71.5 - 3.46/2 + 67.5 - 3.46 = \textbf{133.810} \\ t_{f3} &= 1.25/12 = \textbf{0.104} \\ P_{G3} &= b_f + 2 \times (h_{web} + 2 \times t_{f3} + (b_f - t_{web})) = \textbf{13.354} \end{split}$$

$$\begin{split} t_{stiff} &= 1.25/12 = \textbf{0.104} \\ w_{stiff} &= 7/12 = \textbf{0.583} \\ A_{stiff} &= (t_{stiff} \times h_{web}) + (2 \times h_{web} \times w_{stiff}) = \textbf{5.719} \end{split}$$

Total stiffeners per beam line (inclu CF plates) (each); Nstiff = 254

TOTAL AREA OF PAINTING (SQ FT);

 $T_{514} = ceiling((N_{int} + N_{ext}) \times ((P_{G1} \times L_{G1} + P_{G2} \times L_{G2} + P_{G3} \times L_{G3}) + (A_{stiff} \times L_{G1} + P_{G2} \times L_{G2}) + (A_{stiff} \times L_{G2}$

Nstiff)) × 1.20, 1) = 59223.000 *Includes 20% additional for cross-frames and incidentals

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section			Sheet no./rev.		
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				29	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 514 - GRINDING FINS, TEARS, SLIVERS ON EXISTING STRUCTURAL STEEL

*Per BDM, one (1) minute per linear foot of beam

Length of beams (ft);

Number of interior beams (each); Number of fascia beams (each);

L_{beam} = 415 N_{int} = **5.000** N_{ext} = **2.000**

TOTAL TIME GRINDING (HRS);

 $T_{grind} = ceiling((N_{int} + N_{ext}) \times L_{beam} / 60, 1) = 49.000$

	Project				Job Ref.	
	Tedds CUY-21-09.09 F) PID 104000		709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				30	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 514 – FINAL INSPECTION REPAIR

*Per CMS, one location per 150 linear foot of girder & 5% of all crossframes

Length of beams (ft); Number of interior beams (each); Number of fascia beams (each); Number of crossframes per beam; Total number of crossframes;	$\label{eq:lbeam} \begin{split} L_{beam} &= \textbf{415.000} \\ N_{int} &= \textbf{5.000} \\ N_{ext} &= \textbf{2.000} \\ N_{cf} &= \textbf{31} \\ N_{cf_tot} &= N_{cf} \times (N_{int} + N_{ext} - 1) = \textbf{186.000} \end{split}$
Number of locations per beam line (each);	$N_{inspec_bm} = ceiling(L_{beam} / 150, 1) = 3.000$
Number of locations on crossframes (each);	$N_{inspec_cf} = ceiling(0.05 \times N_{cf_tot}, 1) = 10.000$

TOTAL NUMBER OF INSPECTION LOCATIONS (EA); Tinspec = ((Nint + Next) × Ninspec_bm) + Ninspec_cf = 31.000

🗲 Tekla	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities			:	31	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 516 - STRUCTURAL EXPANSION JOINT INCLUDING ELASTOMERIC STRIP SEAL

Proposed deck width (ft);

W_{deck} = **66.000**

TOTAL LENGTH OF JOINT (FT);

 $L_{EXP} = ceiling(2 \times w_{deck}, 1) = 132.000$

	Project				Job Ref.		
	CUY-21-09.09 PID 104000				CUY-21-09.09 PID 104000 J2070709.000		709.000
	Section			Sheet no./rev.			
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				32		
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	10/10/19	PJW	10/15/19			

ITEM 516 - ARMORLESS PREFORMED JOINT SEAL

*At Approach Slab Installation Type C

Rear approach slab width(ft); $w_{rear_app} = 62.5$ Fwd approach slab width at end (ft); $w_{fwd_app} = 63.083$

TOTAL LENGTH OF JOINT (FT);

L_{PJS} = ceiling(w_{rear_app} + w_{fwd_app}, 1) = 126.000

🗲 Tekla	Project				Job Ref.	
	CUY-21-09.09 PID 104000			J20707	709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				33	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 516 - 1/2" PREFORMED EXPANSION JOINT FILLER

*At wingwall contraction joint at NW and SW corners

SW hieght of joint (ft);	h _{cont_sw} = 8.12
NW height of joint (ft);	h _{cont_nw} = 7.63
Width of joint (ft);	$w_{cont} = 2$
Height of parapet (ft);	h _{par} = 2.667
Width of parapet (Ft);	w _{par} = 1.167

TOTAL AREA OF PEJF (SQ FT);

A_{pejf_12} = ceiling((h_{cont_sw} + h_{cont_nw}) × w_{cont} + 2 × h_{par} × w_{par}, 1) = 38.000

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				34	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 516 - 1" PREFORMED EXPANSION JOINT FILLER

*Between inside face of wingwalls and integral approach slab sidewalk.

Length of approach slabs (Ft);				
Width of Type C installation header (ft);				
Typical approach slab thickness (ft);				
Width of sidewalk on approach slab (ft);				
Curb height (ft);				
Approach slab thickness at joint (ft);				

 $L_{app} = 30.000$ $w_{type_c} = 2.000$ $t_{app} = 1.417$ $W_{app_walk} = 5.5$ curb = 0.667 $t_{app_pejf} = t_{app} + curb + 0.02 \times W_{app_walk} = 2.193$

TOTAL AREA OF PEJF (SQ FT);

 $A_{pejf1} = ceiling(3 \times (L_{app} + w_{type_c}) \times t_{app_pejf}, 1) = 211.000$

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				35	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

Lne = **23.250**

ITEM 516 - 2" PREFORMED EXPANSION JOINT FILLER

*Under approach slab, above wingwall at SW & NW corners and full length of NE wingwall

Plan area of overlap at SW & NW corners (CAD) (sq ft);

 $A_{corn} = 0.5 \times 5.5 + 0.5 \times 0.5 \times 1 = 3.000$

NE WW length (ft); Backwall thickness (ft); NE WW length (beyond backwall) (ft); NE WW thickness (ft);

$$\label{eq:tback_RA} \begin{split} t_{back_RA} &= \textbf{1.750} \\ L_{ne_pejf} &= L_{ne} - t_{back_RA} = \textbf{21.500} \\ t_{ww} &= \textbf{1.500} \end{split}$$

TOTAL AREA OF PEJF (SQ FT);

 $A_{\text{pejf2}} = ceiling(2 \times A_{\text{corn}} + L_{\text{ne_pejf}} \times t_{\text{ww}}, 1) = 39.000$

🗾 Tekla	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J2070709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities				36	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 516 - RESET BEARINGS

*At rocked bearings at rear abutment Beams A – E, and abutment bearings with beam seat deterioration (RA Beam F, FA Beams B – D)

TOTAL NUMBER OF BEARINGS RESET (EA); Treset = 9

	Project				Job Ref.	
		CUY-21-09.0	9 PID 104000		J2070709.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Estimated Quantities 37				
Cleveland, Ohio 44114	Calc. by Date Chk'd by Date A				App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 516 - ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPRENE), AS PER PLAN

*At existing bolster locations

TOTAL NUMBER OF BEARINGS REPLACED (EA); T_{FIXED} = 14

두 Tekla	Project			,	Job Ref.	70700 000
Tedds		CU1-21-09.	.09 PID 104000	J		70709.000
Osborn Engineering 1100 Superior Avenue - Suite 300	Section	Structure Es	timated Quanti	ties	Sheet no./rev.	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		
ITEM 518 – POROUS BACKFIL	L WITH GEOTE	TILE FABRIC				
*Item includes 2'-0" thick porous	backfill behind ba	ackwalls				
Proposed approach slab thicknes	ss (ft);	t _{app} = 1.417				
	ss (ft);	t _{app} = 1.417 L _{abut} = 62.167				
Abutment length (ft);						
Abutment length (ft); Average backwall height RA (ft);		L _{abut} = 62.167				
Abutment length (ft); Average backwall height RA (ft); Average backwall height FA (ft);		L _{abut} = 62.167 h _{RA} = 7.198 h _{FA} = 7.005		h' = 2.000		
Proposed approach slab thicknes Abutment length (ft); Average backwall height RA (ft); Average backwall height FA (ft); Additional excavation below back Porous backfill thickness (ft);		L _{abut} = 62.167 h _{RA} = 7.198 h _{FA} = 7.005		h' = 2.000		
Abutment length (ft); Average backwall height RA (ft); Average backwall height FA (ft); Additional excavation below back	wall for new porc	$L_{abut} = 62.167$ $h_{RA} = 7.198$ $h_{FA} = 7.005$ bus backfill (ft); $t_{518} = 2$		h' = 2.000 h') + (h _{FA} + h') –	2 × t _{app}) × t51	₈ / 27, 1) =

	Project				Job Ref.		
	CUY-21-09.09 PID 104000				J2070709.000		
	Section				Sheet no./rev.		
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	S	39		
Cleveland, Ohio 44114	Calc. by Date Chk'd by Date				App'd by	Date	
	EIW	10/10/19	PJW	10/15/19			

ITEM 519 – PATCHING CONCRETE STRUCTURE, AS PER PLAN

*From repair plan

TOTAL PATCHING AREA (SF);

T_{patch} = 383

	Project			Job Ref.		
	CUY-21-09.09 PID 104000				J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	S	40	
Cleveland, Ohio 44114	Calc. by	Calc. by Date Chk'd by Date				Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 519 – COMPOSITE FIBER WRAP SYSTEM

*See calculation for Item 512 – Urethane Top Coat Sealer

TOTAL FIBER WRAP AREA (SQ FT); A_{fiber} = A_{urethane} × 9 = 5184.000

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	s	41	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 526 – REINFORCED CONCRETE APPROACH SLABS WITH QC/QA (T=17"), AS PER PLAN *Approach slabs with integral sidewalk						
Length of approach slabs (Ft); Rear approach slab width(ft);	L _{app} = 30.000 w _{rear_app} = 62.500					
Fwd approach slab plan area (CAD) (sq ft);	A _{fwd_app} = 1967.7					
TOTAL APPROACH SLAB AREA (SQ YD);	$A_{app} = ceiling((L_{app} \times w_{rear_app} + A_{fwd_app}) / 9, 1) = 427.000$					

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantities	S	42	
Cleveland, Ohio 44114	Calc. by Date Chk'd by Date				App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 526 - TYPE C INSTALLATION, AS PER PLAN

*See calculation form Item 516 – Armorless Preformed Joint Seal

TOTAL INSTALLATION LENGTH (FT); Linstall = L_{PJS} = 126.000

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	S	43	
Cleveland, Ohio 44114	Calc. by Date Chk'd by Date				App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 601 - CONCRETE SLOPE PROTECTION, AS PER PLAN

*At undermined area at rear abutment

*Include subgrade placement and compaction, and polystyrene backer and silicone sealer at breastwall joint with this item.

Concrete panel area (sq ft);	A _{panel} = 25.000
Panels to be replaced (each);	N _{repl} = 15.000

TOTAL AREA OF SLOPE PROTECTION REMOVED (SQ YD); T_{SP_REM} = ceiling(A_{panel} × N_{repl} / 9, 1) = 42.000

	Project				Job Ref.		
	CUY-21-09.09 PID 104000				J20707	709.000	
	Section				Sheet no./rev.		
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	S	44		
Cleveland, Ohio 44114	Calc. by Date Chk'd by Date				App'd by	Date	
	EIW	10/10/19	PJW	10/15/19			

Ldeck = **414.417**

L_{sw} = **41.750** L_{se} = **32.250**

Lnw = 37.250

L_{ne} = **23.250**

ITEM 607 – VANDAL PROTECTION FENCE, 6' STRAIGHT, COATED FABRIC ITEM 607 – FENCE, MISC.: DECORATIVE VANDAL PROTECTION FENCE

---- OR ----

Proposed bridge limits (ft); SW Wingwall length (ft);

SE Wingwall length (ft); NW Wingwall length (ft); NE Wingwall length (ft);

Fence on SW Wingwall (ft); Fence on SE Wingwall (ft); Fence on NW Wingwall (ft); Fence on NE Wingwall (ft);
$$\begin{split} F_{sw} &= L_{sw} - 11/12 = \textbf{40.833} \\ F_{se} &= L_{se} - 1.4167 = \textbf{30.833} \\ F_{nw} &= L_{nw} - 10/12 = \textbf{36.417} \\ F_{ne} &= L_{ne} - 10/12 = \textbf{22.417} \end{split}$$

TOTAL LENGTH OF FENCE (FT);

 $T_{VPF} = ceiling((2 \times L_{deck} + F_{sw} + F_{se} + F_{nw} + F_{ne}), 1) = 960.000$

	Project				Job Ref.	
	CUY-21-09.09 PID 104000				J20707	709.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Esti	mated Quantitie	S		45
Cleveland, Ohio 44114	Calc. by Date Chk'd by Date				App'd by	Date
	EIW	10/10/19	PJW	10/15/19		

ITEM 607 - TEMPORARY VANDAL FENCE, TYPE B

*At PCB during phase construction on bridge deck only.

Proposed bridge limits (ft);

L_{deck} = **414.417**

TOTAL LENGTH OF TEMPORARY FENCE (FT); $T_{VPF_temp} = ceiling(2 \times L_{deck}, 1) = 829.000$

	Project				Job Ref.		
		CUY-21-09.0	J207	70709.000			
	Section				Sheet no./rev		
Osborn Engineering 1100 Superior Avenue - Suite 300		Structure Est	imated Quantit	ies	46		
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	10/10/19					

ITEM 625 - CONDUIT, 4", 725.04, AS PER PLAN

*Item includes new City of Indpendence, Windstream, Crown Castle, Century Link and Charter conduits.

Windstream: Conduit limits - 3' beyond each backwall;	$L_{wind} = 2 \times 425 = 850.000$
COI: Conduit limits – JB @ Sta. 106+08.22 to 111+25.00;	L _{COI} = 2 × (11125-10608.22) =
1033.560	
Crown Castle: Conduit limits - 3' beyond each backwall;	L _{crwn} = 2 ×425 = 850.000
Centurylink: Conduit limits - 3' beyond each backwall;	L _{ctlk} = 1 ×425 = 425.000