FINAL REPORT STRUCTURE FOUNDATION EXPLORATION NOISE WALLS FRA-71-0.00 IMPROVEMENTS FRANKLIN COUNTY, OHIO PID#: 93496

For:

Mead & Hunt, Inc.

5900 Wilcox Place Dublin, OH 43016

Submitted by:

2800 Corporate Exchange Drive, Suite 240 Columbus, OH 43231

March 27, 2017

TABLE OF CONTENTS

EXECUT	TIVE SUMMARY	1
1.1. (1.2. I	RODUCTION	2
2.1. C 2.2. S 2.3. S 2.4. I 2.5. I 2.6. S	DLOGY AND OBSERVATIONS OF THE PROJECT	2 3 3 3 3
3.1. I 3.2. I	HISTORICAL BORING PROGRAMS FIELD EXPLORATION LABORATORY TESTING PROGRAM Classification Testing	8 8 9 9
	DINGS	
5.1. I	ALYSIS AND RECOMMENDATIONS	1
6. QUA	ALIFICATIONS1	3
REFERE	ENCES1	4
TABLE 1: TABLE 2:	LIST OF TABLES BORING SUMMARY FRA-71-0.00 Noise Wall Foundation Design	-
	LIST OF FIGURES	
FIGURE 1:	SCHEMATIC OF SITE STRATIGRAPHY	0

LIST OF PHOTOGRAPHS

PHOTOGRAPH 1:	VIEW OF THE PROPOSED WALL SITE LOOKING EAST FROM THE LAMBERT RD OVERPASS	. 5
PHOTOGRAPH 2:	VIEW OF SLOPE AT THE WESTERN END OF THE WALL.	. 5
PHOTOGRAPH 3:	VIEW OF WALL SITE AT THE EASTERN END LOOKING WEST	. 6
PHOTOGRAPH 4:	LOOKING EAST ALONG TOP OF SLOPE.	. 6
PHOTOGRAPH 5:	VIEW OF CORRODED CULVERT.	. 7
PHOTOGRAPH 6:	CULVERT BENEATH IR-71.	. 7

LIST OF EXHIBITS

1. BORING LOCATIONS

LIST OF APPENDICES

APPENDIX A: LOGS OF BORINGS AND LABORATORY TESTING RESULTS

FINAL REPORT STRUCTURE FOUNDATION EXPLORATION NOISE WALLS FRA-71-0.00 IMPROVEMENTS FRANKLIN COUNTY, OHIO

PID#: 93496

EXECUTIVE SUMMARY

This report presents the results of a structure foundation exploration for noise walls that will parallel Interstate 71 (IR-71) between Lambert Road (Rd) north to approximately 900 ft south of the IR-71-0308 Bridge in southwestern Franklin County. The noise wall is a component of the larger IR-71 widening program, FRA-71-0.00, that includes ~6 miles of roadway and widening of three bridges.

The noise wall will be designed using the Load and Resistance Factor Design (LRFD) method as set forth in the American Association of State Highway and Transportation Officials (AASHTO) Publication AASHTO LRFD Bridge Design Specifications 7th Edition (AASHTO, 2014) and Ohio Department of Transportation (ODOT) Bridge Design Manual (BDM), [ODOT, 2007 (revised 2014)].

The site is located in the Darby Plain portion of the Southern Ohio Loamy Till Plain, which is part of the Central Lowlands, which is characterized by hummocky ground moraine of moderate relief and poorly drained swales, which previously held wet prairies/meadows, and a few large streams. Bedrock is mapped as Devonian-age Columbus Limestone mapped at a depth of ~100 ft.

Subsurface conditions were characterized on the basis of 14 borings drilled to a depth of 25 ft deep. The geotechnical conditions at the wall site are good very stiff to hard glacial till present at shallow depth.

Parameters to be used in the application of ODOT BDM Section 802 noise wall foundation design methodology are provided.

1. INTRODUCTION

1.1. General

This report presents the results of a structure foundation exploration for a two-segment noise wall that will parallel IR-71 between Lambert Rd north to approximately 900 ft south of the IR-71-0308 Bridge in southwestern Franklin County.

The exploration was conducted in general accordance with National Engineering & Architectural Services, Inc.'s (NEAS) ¹ proposal to Mead & Hunt, Inc. dated October 16, 2014, and ODOT *Specifications for Geotechnical Explorations, 2013* (ODOT, 2013). The noise wall will be designed using the LRFD method as set forth in *AASHTO LRFD Bridge Design Specifications 7th Edition* (AASHTO, 2014) and ODOT's *Bridge Design Manual* (BDM), [ODOT, 2007 (revised 2014)].

1.2. Proposed Construction

The noise wall will consist of two segments ~1,900 ft and ~600 ft in length, as shown in Exhibit 1. The longer wall will be constructed at the top of a ~15 ft high 2:1 cut slope that extends from the edge of the freeway up to the residential properties above. The shorter wall will be located immediately adjacent to the freeway. At the east end of the shorter wall, the natural terrain drops away into a heavily wooded drainage and the freeway is built on embankment across this small valley.

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Geology and Physiology

The site is located in the Darby Plain portion of the Southern Ohio Loamy Till Plain, which is part of the Central Lowlands (Brockman, 1998). The area is characterized by hummocky ground moraine of moderate relief and poorly drained swales, which previously held wet prairies/meadows, and a few large streams.

The terrain at the wall site and to the east is flat at about elevation 870-875 ft (US Department of the Interior, 1966). To the west the land dips to 780 ft at Big Darby Creek approximately 0.8 mile away.

The surficial geology is mapped as 40 feet of Wisconsinan Loam Till, with high carbonate content,

¹ On October 19, 2014 Barr & Prevost Inc. (B&P) separated into two entities; Barr Engineering Inc. (BEI), the predecessor company to B&P and Barr & Prevost, a JMT Division. BEI has retained the geotechnical exploration services for this project. On November 23, 2016, BEI was renamed to National Engineering & Architectures, Inc (NEAS).

overlying up to 130 feet (ft) of undifferentiated till of indeterminate age characterized primarily by it high density. Bedrock consists of Devonian-age Columbus Limestone mapped at a depth of ~100 ft. [Brockman et. al., 2005 and Shrake, 1994) at the wall site.

2.2. Soils

Based on the Natural Resources Conservation Service (U.S. Department of Agriculture, 2015) mapping the wall site lies between the boundary of four soil groups: Udorthents-Urban land complex (Ut), Celina-Urban land complex, 2 to 6 percent slopes (CfB) in the south and Kokomo silty clay loam, 0 to 2 percent slopes (Ko) and Kokomo-Urban land complex (Ku) in the north. Ut and CfB are not rated. Ko and Ku are rated as very limited for local road and street construction because of flooding, frost susceptibility, and low strength.

2.3. Seismicity

Earthquake hazard analysis in this part of the country is dominated by proximity to the New Madrid Fault Zone (NMFZ) approximately 400 miles to the southwest. Possible future movements along this fault could generate earthquakes of magnitude 7.0-8.0 with a recurrence period of 500-1,500 years (USGS, 2008). The resulting ground motion would be experienced over a wide area, with the Harrisburg area located within the possible zone of influence. In addition, earthquake epicenters of lesser magnitude (< ~ magnitude 5) occurred in southern Fairfield County (~30 miles southeast) in 1848/1870 and 1967, which indicate other potential earthquake sources that are contributory to seismic risk (ODNR, 2012 and 2013⁽¹⁾).

2.4. Hydrogeology

Surface water drainage in the area is dominated by the south flowing Big Darby Creek, a tributary to the Scioto River, located approximately 0.8 mile west. The creek is at an elevation of about 780 ft at this location and likely represents the regional ground water elevation.

2.5. Mining and Oil/Gas Production

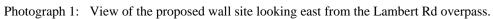
No abandoned mines are noted on ODNR's Abandoned Underground Mine Locator in the vicinity of the wall site (ODNR, 2015⁽²⁾).

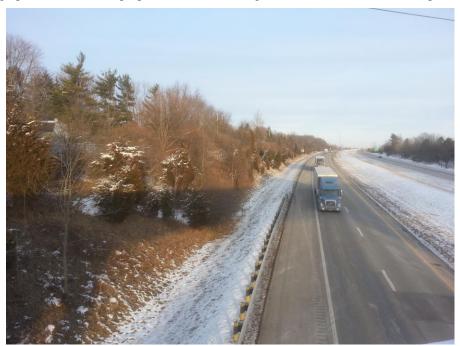
No oil or gas wells are noted within the immediate vicinity of the wall site (ODNR, 2015⁽³⁾).

2.6. Site Reconnaissance

A preliminary site reconnaissance was conducted during the field operation planning phase of the project

FRA-71-0.00 Noise Wall March 27, 2017

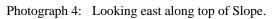

and, as expected revealed the need for extensive brush and vegetation clearance to provide access for the drilling equipment. Co-ordination with adjacent home owners was required where their landscaping extended onto the ODOT right-of-way.


The project site reconnaissance was conducted on January 28, 2015 at which time snow covered much of the surface up to 2" thick. Land use to the north of the proposed wall consists of single-family residences. Agricultural fields are located to the south of IR-71.

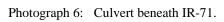
The noise wall alignment parallels a slope that may exceed 2:1 in places (Photographs 1, 2 & 3), but decreases in steepness to the east. The trees on the slope appear to be close to vertical, so creep does not seem to have occurred, indicating stable slopes. The upper portion of the slope is covered in thick vegetation, composed of trees, bushes, and grass. The remainder of the slope has a well-established grass coverage, with trees interspersed throughout. Properties to the north of the site at the top of the slope appear to be relatively flat (Photograph 4). Power lines and fiber optic cable markers were observed along the top of the slope at the rear of the residential properties.

An old culvert pipe was encountered at the east end of the site along an intermittent tributary to Big Darby Creek (Photograph 5); the bottom half was corroded. The nearby culvert carrying the tributary beneath IR-71 was observed to be in good condition (Photograph 6).

Site drainage appeared to be adequate, as snow was melting and no large pools of water were encountered.



Photograph 2: View of slope at the western end of the wall.


Photograph 3: View of wall site at the eastern end looking west.

Photograph 5: View of corroded culvert.

3. EXPLORATION

3.1. Historical Boring Programs

No historical subsurface investigations or borings were identified in the vicinity of the wall.

3.2. Field Exploration

Subsurface drilling was conducted between December 17 and 31, 2014 and consisted of 14 borings drilled to 25.0 ft below ground surface. The locations of these borings are provided on Exhibit 1 and summarized below in Table 2. The Logs of Borings are provided in Appendix A.

Table 1: Boring Summary

Boring Number	Boring Location (Lat/Long)	NAVD 88 Surface Elevation (ft)	Depth (ft)	Bottom of Hole Elevation (ft)	Depth to Groundwater (ft)	Depth to Bedrock (ft)
B-032-1-14	39.825329, -83.154778	859.8	25.0	834.8	NE	NE
B-033-1-14	39.825393, -83.154073	862.5	25.0	837.5	NE	NE
B-033-2-14	39.825453, -83.153308	865.9	25.0	840.9	NE	NE
B-034-1-14	39.325483, -83.152655	866.7	25.0	841.7	NE	NE
B-034-2-14	39.825512, -83.151937	867.7	25.0	842.7	NE	NE
B-035-1-14	39.825542, -83.150955	869.5	25.0	844.5	NE	NE
B-035-2-14	39.825583, -83.150227	869.7	25.0	844.7	NE	NE
B-036-1-14	39.825609, -83.149524	870.3	25.0	845.3	NE	NE
B-036-2-14	39.825429, -83.149086	865.9	25.0	840.9	NE	NE
B-036-3-14	39.825592, -83.148754	868.9	25.0	843.9	NE	NE
B-037-1-14	39.825428, -83.148321	870.4	25.0	845.4	NE	NE
B-037-2-14	39.825595, -83.147906	866.8	25.0	841.8	NE	NE
B-037-3-14	39.825402, -83.147274	876.5	25.0	851.5	NE	NE
B-038-1-14	39.825380, -83.146518	880.6	25.0	855.6	NE	NE

NE – not encountered.

The borings were drilled using a truck-mounted CME 550X rig with 3.25-inch diameter hollow stem augers (HSA). Soil samples were recovered at 2.5-ft intervals using a split spoon sampler (AASHTO T-206 "Standard Method for Penetration Test and Split Barrel Sampling of Soils").

The standard penetration test (SPT) was conducted during sampling using an auto-hammer that was calibrated January 26, 2014 as 85.3% efficient. Field boring logs were prepared by the BEI field supervisor, including lithological description and standard penetration test results, recorded as blows per 6-inch

increment of penetration. Groundwater observations were recorded during the investigation. Hand penetrometer testing was conducted on a majority of SPT samples prior to removal from the sampler. Each boring was backfilled with soil cuttings.

3.3. Laboratory Testing Program

The laboratory testing program consisted primarily of classification testing and moisture content determinations. Data from the laboratory-testing program were incorporated onto the logs of borings (Appendix A). Soil samples are retained at the laboratory for 60 days following report submittal, after which time they will be discarded.

3.3.1. Classification Testing

Natural moisture content tests were performed on all soil samples. Representative soil samples were selected for index property (Atterberg Limits) and gradation testing for classification purposes. The results are presented on the log of the boring. Mechanical soil classification (Plastic Limit, Liquid Limit and gradation testing) was conducted on 48% of the recovered samples enabling identification and testing of all significant soil units.

Final classification of soil strata in accordance with AASHTO M-145 "Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes," as modified by ODOT "Classification of Soils" was made once laboratory test results became available. Samples that were not tested were classified visually on the basis of comparison to those that were.

3.3.2. Standard Penetration Test Results

Standard Penetration Tests (SPT) and split-barrel (commonly known as split-spoon) sampling of soils was performed at 2.5-foot intervals in all borings using a calibrated auto-hammer. The resulting N-values must then be adjusted to account for the high efficiency of the hammer, compared to those used historically when many of the correlations of N-value with engineering properties of soils were developed. Manual hammers used in the past are considered to have been approximately 60% efficient and so the field measured N-values are adjusted by a factor equal to the calibrated efficiency/60. The resulting N_{60} values are shown on the log of borings.

4. FINDINGS

The following interpretation of the subsurface conditions is based on results of a field exploration, laboratory testing, and consideration of the geological history of the site.

4.1. General

The stratigraphy at the site is generally consistent with the geological model discussed above, with over 25 ft of glacial till overburden to the depth explored. Bedrock was not encountered in any of the borings and is estimated to be on the order of 100 ft deep. Groundwater was not encountered in any of the borings. Figure 1 provides a schematic profile of the stratigraphy along the walls.

The soil profile is dominated by hard sandy silt (A-4a) that is overlain by up to about 10 ft of very stiff to hard clay and silt/clay mixtures (A-6a, A-7-6). Much of the alignment is mantled by 2-7 ft of fill consisting of the finer grained clay/silt mixtures described above. The thickness of fill at the east end of the shorter wall increases to about 15 ft reflecting the presence of embankment crossing the small valley. A schematic subsurface profile along the alignments of the two walls is provided in Figure 1.

Figure 1: Schematic of Site Stratigraphy

5. ANALYSIS AND RECOMMENDATIONS

5.1. Noise Barrier Foundation Design

This section provides information required to complete the design of 30"-diameter drilled shaft noise barrier supports. The geotechnical information has been developed in accordance with the ODOT Bridge Design Manual, Section 802.1.2. ODOT design methodology requires that the N₆₀ values be corrected using a factor to account for the depth of each test, and the results analyzed to determine a mean or minimum depending on the trend of the data. Using the broad distinction between cohesive and granular soils, the mean or minimum is then used (designated N1₆₀ herein), together with proposed barrier geometry, in a look-up table to determine the depth of shaft required at that boring location. This analysis is presented below in Table 2.

The ODOT shaft design method should be a two-step process if the design is to be optimized. This is described below using the example of Boring B-037-3-14 and a proposed noise wall with post spacing of 24 ft and a height of 12 ft. Level ground is assumed.

The results of the analysis of $N1_{60}$ values for all the borings are presented in Table 2. The design $N1_{60}$ value for B-037-3-14 is 14, based on the lower of the lowest value or the average for the whole boring, since the values are dissimilar and do not increase with depth. As shown on the log of the boring, the plasticity index is not less than 7, and the material is considered cohesive. Consulting BDM Figure 802.1.2-2, the shaft length for level ground is 9.5 ft.

Reviewing Table 2 for a situation where the foundation depth is 9.5 ft shows that the design $N1_{60}$ for a shaft of this specific length is actually 30. Returning to Figure 802.1.2-2, $N1_{60}$ of 30 moves the design into the next $N1_{60}$ range where the design depth is 6.5 ft. This is selected as the design length for the shaft at this location.

The soils along the alignment are generally cohesive; exceptions being B-036-1-14, B-036-2-14 and B-037-2-14 where they are relatively fine grained, but non-plastic and therefore classified as 'granular'. The slope in front of the long wall is about ~2:1, and at the rear of the short wall the embankment slope is also on the order of 2:1. The foundation design should reflect the actual slopes at the location of the supports when using the ODOT BDM design charts.

The conditions reflected at each boring in Table 2 were observed at those locations only and may not be indicative of conditions at intermediate points between borings. However, for purposes of design it is recommended that the supports be sized based on conditions at the nearest boring. Put another way, each boring may, for design purposes, be considered representative of sub-surface conditions up to half the distance to the next nearest boring away.

Table 2: FRA-71-0.00 Noise Wall Foundation Design

Depth of	Correction	B-03	2-1-14	B-03	3-1-14	B-03	3-2-14	B-03	4-1-14	Depth of	Correction	B-03	6-2-14	B-03	6-3-14	B-03	7-1-14
SPT	Factor	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	SPT	Factor	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀
2.5	1.6	67	107	60	96	31	50	43	69	2.5	1.6	26	42	33	53	50	80
5	1.4	53	74	75	105	30	42	50	70	5	1.4	26	36	33	46	26	36
7.5	1.2	33	40	28	34	21	25	30	36	7.5	1.2	13	16	21	25	16	19
10	1.1	30	33	31	34	53	58	18	20	10	1.1	23	25	21	23	18	20
12.5	1.1	17	19	16	18	27	30	11	12	12.5	1.1	27	30	21	23	28	31
15	1	23	23	17	17	16	16	10	10	15	1	27	27	36	36	37	37
17.5	0.96	31	30	18	17	26	25	24	23	17.5	0.96	43	41	48	46	24	23
20	0.91	38	35	23	21	21	19	18	16	20	0.91	48	44	34	31	31	28
23.5	0.86	34	29	40	34	30	26	33	28	23.5	0.86	51	44	28	24	30	26
		Average	43		42		32		32			Average	34		34		33
		Lowest	19		17		16		10		1	Lowest	16		23		19
Depth of		Min or	0 11 1	Min or	0 11 1	Min or	0 11 1	Min or	0 11 1	Depth of		Min or	0 11 1	Min or	0 11 1	Min or	0 11 1
Shaft		Ave N1 ₆₀	Soil type ¹	Ave N1 ₆₀	Soil type ¹	Ave N1 ₆₀	Soil type ¹	Ave N1 ₆₀	Soil type ¹	Shaft		Ave N1 ₆₀	Soil type ¹	Ave N1 ₆₀	Soil type ¹	Ave N1 ₆₀	Soil type ¹
6		40	С	34	С	25	С	36	С	6		16	С	25	С	19	С
8		33	С	34	С	25	С	20	С	8		16	g	23	С	19	С
10		33	С	34	С	25	С	20	С	10	ļ	16	g	23	С	19	С
12		19	С	17	С	16	С	10	С	12		16	g	23	g	19	С
14		19	С	17	С	16	С	10	С	14		16	g	23	g	19	С
16		19	С	17	С	16	С	10	С	16		16	g	23	g	19	С
18		19	С	17	С	16	С	10	С	18		16	g	23	g	19	С
20		19	С	17	С	16	С	10	С	20		16	g	23	С	19	С
	Correction									Denth of	Correction						
	Correction Factor	B-034-2-14	1	B-035-1-14	4	B-035-2-14	4	B-036-1-14	 I	Depth of SPT	Correction	B-037-2-14	1	B-037-3-14	1	B-038-1-14	4
Depth of SPT	Correction Factor		ç	3	g	γ	·	·	ķ	Depth of SPT	Correction Factor		,	ş	,	Y	ş
	Correction Factor	B-034-2-14 N ₆₀ 20	N1 ₆₀	B-035-1-14 N ₆₀ 36	N1 ₆₀	B-035-2-14 N ₆₀ 34	N1 ₆₀	B-036-1-14 N ₆₀ 27	N1 ₆₀		Correction Factor	B-037-2-14 N ₆₀ 38	N1 ₆₀	B-037-3-14 N ₆₀ 40	N1 ₆₀	B-038-1-14 N ₆₀ 30	N1 ₆₀
SPT	1 dotoi	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	SPT	1 actor	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀
SPT 2.5	1.6	N ₆₀	N1 ₆₀ 32	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀	SPT 2.5	1.6	N ₆₀	N1 ₆₀ 61	N ₆₀	N1 ₆₀	N ₆₀	N1 ₆₀
2.5 5	1.6 1.4	N ₆₀ 20 14	N1 ₆₀ 32 20	N ₆₀ 36 30	N1 ₆₀ 58 42	N ₆₀ 34 31	N1 ₆₀ 54 43	N ₆₀ 27 51	N1 ₆₀ 43 71	2.5 5.0	1.6 1.4	N ₆₀ 38 48	N1 ₆₀ 61 67	N ₆₀ 40 38	N1 ₆₀ 64 53	N ₆₀ 30 34	N1 ₆₀ 48 48
2.5 5 7.5	1.6 1.4 1.2	N ₆₀ 20 14 16	N1 ₆₀ 32 20 19	N ₆₀ 36 30 24	N1 ₆₀ 58 42 29	N ₆₀ 34 31 21	N1 ₆₀ 54 43 25	N ₆₀ 27 51 23	N1 ₆₀ 43 71 28	2.5 5.0 7.5	1.6 1.4 1.2	N ₆₀ 38 48 21	N1 ₆₀ 61 67 25	N ₆₀ 40 38 31	N1 ₆₀ 64 53 37	N ₆₀ 30 34 24	N1 ₆₀ 48 48 29
2.5 5 7.5 10	1.6 1.4 1.2 1.1	N ₆₀ 20 14 16 67	N1 ₆₀ 32 20 19 74	N ₆₀ 36 30 24 28	N1 ₆₀ 58 42 29 31	N ₆₀ 34 31 21 11	N1 ₆₀ 54 43 25 12	N ₆₀ 27 51 23 13	N1 ₆₀ 43 71 28 14	2.5 5.0 7.5 10.0	1.6 1.4 1.2 1.1	N ₆₀ 38 48 21 33	N1 ₆₀ 61 67 25 36	N ₆₀ 40 38 31 27	N1 ₆₀ 64 53 37 30	N ₆₀ 30 34 24 33 27 21	N1 ₆₀ 48 48 29 36 30 21
2.5 5 7.5 10 12.5	1.6 1.4 1.2 1.1	N ₆₀ 20 14 16 67 21	N1 ₆₀ 32 20 19 74 23	N ₆₀ 36 30 24 28 18	N1 ₆₀ 58 42 29 31 20	N ₆₀ 34 31 21 11	N1 ₆₀ 54 43 25 12	N ₆₀ 27 51 23 13 23	N1 ₆₀ 43 71 28 14 25	2.5 5.0 7.5 10.0 12.5	1.6 1.4 1.2 1.1	N ₆₀ 38 48 21 33 23 30 17	N1 ₆₀ 61 67 25 36 25 30 16	N ₆₀ 40 38 31 27 13 18	N1 ₆₀ 64 53 37 30 14 18	N ₆₀ 30 34 24 33 27 21 17	N1 ₆₀ 48 48 29 36 30
2.5 5 7.5 10 12.5 15	1.6 1.4 1.2 1.1 1.1	N ₆₀ 20 14 16 67 21 14 17	N1 ₆₀ 32 20 19 74 23 14 16 15	N ₆₀ 36 30 24 28 18	N1 ₆₀ 58 42 29 31 20 14 17 24	N ₆₀ 34 31 21 11 11 20 23	N1 ₆₀ 54 43 25 12 12	N ₆₀ 27 51 23 13 23 16	N1 ₆₀ 43 71 28 14 25 16 23	2.5 5.0 7.5 10.0 12.5 15.0	1.6 1.4 1.2 1.1 1.1	N ₆₀ 38 48 21 33 23 30 17 18	N1 ₆₀ 61 67 25 36 25 30 16	N ₆₀ 40 38 31 27 13 18 17	N1 ₆₀ 64 53 37 30 14 18 16	N ₆₀ 30 34 24 33 27 21 17 18	N1 ₆₀ 48 48 48 29 36 30 21 16
2.5 5 7.5 10 12.5 15 17.5	1.6 1.4 1.2 1.1 1.1 1.0.96	N ₆₀ 20 14 16 67 21 14 17 16 26	N1 ₆₀ 32 20 19 74 23 14 16 15	N ₆₀ 36 30 24 28 18 14 18	N1 ₆₀ 58 42 29 31 20 14 17 24	N ₆₀ 34 31 21 11 11 16 20	N1 ₆₀ 54 43 25 12 12 16 19 21 31	N ₆₀ 27 51 23 13 23 16 24	N1 ₆₀ 43 71 28 14 25 16 23 15	2.5 5.0 7.5 10.0 12.5 15.0 17.5	1.6 1.4 1.2 1.1 1.1 1.0.96	N ₆₀ 38 48 21 33 23 30 17 18	N1 ₆₀ 61 67 25 36 25 30 16 16	N ₆₀ 40 38 31 27 13 18	N1 ₆₀ 64 53 37 30 14 18 16 18	N ₆₀ 30 34 24 33 27 21 17	N1 ₆₀ 48 48 29 36 30 21 16 16
2.5 5 7.5 10 12.5 15 17.5 20	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17	N1 ₆₀ 32 20 19 74 23 14 16 15 22	N ₆₀ 36 30 24 28 18 14 18 26	N1 ₆₀ 58 42 29 31 20 14 17 24 29	N ₆₀ 34 31 21 11 11 20 23	N1 ₆₀ 54 43 25 12 12 16 19 21 31	N ₆₀ 27 51 23 13 23 16 24	N1 ₆₀ 43 71 28 14 25 16 23 15 29	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18	N1 ₆₀ 61 67 25 36 25 30 16 16 18	N ₆₀ 40 38 31 27 13 18 17	N1 ₆₀ 64 53 37 30 14 18 16 18 17	N ₆₀ 30 34 24 33 27 21 17 18	N1 ₆₀ 48 48 48 29 36 30 21 16 16 11 28
2.5 5 7.5 10 12.5 15 17.5 20 23.5	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest	N1 ₆₀ 32 20 19 74 23 14 16 15	N ₆₀ 36 30 24 28 18 14 18 26 28	N1 ₆₀ 58 42 29 31 20 14 17 24	N ₆₀ 34 31 21 11 11 16 20 23 36	N1 ₆₀ 54 43 25 12 12 16 19 21 31	N ₆₀ 27 51 23 13 23 16 24 16 34	N1 ₆₀ 43 71 28 14 25 16 23 15	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 23.5	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest	N1 ₆₀ 61 67 25 36 25 30 16 16	N ₆₀ 40 38 31 27 13 18 17 20 20	N1 ₆₀ 64 53 37 30 14 18 16 18	N ₆₀ 30 34 24 33 27 21 17 18 13	N1 ₆₀ 48 48 29 36 30 21 16 16
2.5 5 7.5 10 12.5 15 17.5 20 23.5	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 6 26 Average	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14	N ₆₀ 36 30 24 28 18 14 18 26 28	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14	N ₆₀ 34 31 21 11 11 16 20 23 36	N1 ₆₀ 54 43 25 12 12 16 19 21 31 26 12	N ₆₀ 27 51 23 13 23 16 24 16 34	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 23.5	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average	N1 ₆₀ 61 67 25 36 25 30 16 16 18 33	N ₆₀ 40 38 31 27 13 18 17 20 20	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14	N ₆₀ 30 34 24 33 27 21 17 18 13	N1 ₆₀ 48 48 29 36 30 21 16 16 11 28 11
2.5 5 7.5 10 12.5 15 17.5 20 23.5	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14	N ₆₀ 36 30 24 28 18 14 18 26 28	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14	N ₆₀ 34 31 21 11 11 16 20 23 36	N1 ₆₀ 54 43 25 12 12 16 19 21 31	N ₆₀ 27 51 23 13 23 16 24 16 34	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 23.5	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest	N1 ₆₀ 61 67 25 36 25 30 16 18 33 16	N ₆₀ 40 38 31 27 13 18 17 20 20	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14	N ₆₀ 30 34 24 33 27 21 17 18 13	N1 ₆₀ 48 48 48 29 36 30 21 16 16 11 28
2.5 5 7.5 10 12.5 15 17.5 20 23.5 Depth of Shaft	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest Min or Ave N1 ₆₀	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14	N ₆₀ 36 30 24 28 18 14 18 26 28	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14	N ₆₀ 34 31 21 11 11 16 20 23 36 Min or Ave N1 ₆₀	N1 ₆₀ 54 43 25 12 12 16 19 21 31 26 12	N ₆₀ 27 51 23 13 23 16 24 16 34 Min or Ave N1 ₆₀ 28	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 23.5 Depth of Shaft 6	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest Min or Ave N1 ₆₀	N1 ₆₀ 61 67 25 36 25 30 16 18 33 16	N ₆₀ 40 38 31 27 13 18 17 20 20	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14	N ₆₀ 30 34 24 33 27 21 17 18 13	N1 ₆₀ 48 48 29 36 30 21 16 16 11 28 11
2.5 5 7.5 10 12.5 15 17.5 20 23.5 Depth of Shaft 6 8	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest Min or Ave N1 ₆₀ 19	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14 Soil type ¹ c	N ₆₀ 36 30 24 28 18 14 18 26 28 Min or Ave N1 ₆₀ 29	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14 Soil type ¹ c	N ₆₀ 34 31 21 11 11 16 20 23 36 Min or Ave N1 ₆₀	N1 ₆₀ 54 43 25 12 12 16 19 21 31 26 12 Soil type ¹ c	N ₆₀ 27 51 23 13 23 16 24 16 34 Min or Ave N1 ₆₀ 28	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14 Soil type ¹	2.5 5.0 7.5 10.0 12.5 15.0 20.0 23.5 Depth of Shaft 6	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest Min or Ave N1 ₆₀ 25 25	N1 ₆₀ 61 67 25 36 25 30 16 16 18 33 16 Soil type ¹ c	N ₆₀ 40 38 31 27 13 18 17 20 20 Min or Ave N1 ₆₀ 37	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14 Soil type ¹ c	N ₆₀ 30 34 24 33 27 21 17 18 13	N1 ₆₀ 48 48 29 36 30 21 16 16 11 28 11 Soil type ¹ c
2.5 5 7.5 10 12.5 15 17.5 20 23.5 Depth of Shaft 6 8 10	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest Min or Ave N1 ₆₀ 19 19	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14 Soil type ¹	N ₆₀ 36 30 24 28 18 14 18 26 28 Min or Awe N1 ₆₀ 29 29	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14 Soil type ¹ c c c	N ₆₀ 34 31 21 11 11 16 20 23 36 Min or Awe N1 ₆₀ 25 12	N1 ₆₀ 54 43 25 12 12 16 19 21 31 26 12 Soil type ¹ c c	N ₆₀ 27 51 23 13 23 16 24 16 34 Min or Ave N1 ₆₀ 28 14	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14 Soil type ¹	2.5 5.0 7.5 10.0 12.5 15.0 20.0 23.5 Depth of Shaft 6 8	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest Min or Ave N1 ₆₀ 25 25	N1 ₆₀ 61 67 25 36 25 30 16 16 18 33 16 Soil type ¹ c c	N ₆₀ 40 38 31 27 13 18 17 20 20 Min or Ave N1 ₆₀ 37 30 30	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14 Soil type ¹ c c	N ₆₀ 30 34 24 33 27 21 17 18 13 Min or Ave N1 ₆₀ 29 29	N1 ₆₀ 48 48 29 36 30 21 16 16 11 28 11 Soil type ¹ c c
SPT 2.5 5 7.5 10 12.5 15 17.5 20 23.5 Depth of Shaft 6 8 10 12	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest Min or Ave N1 ₆₀ 19 19	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14 Soil type ¹ c c c c	N ₆₀ 36 30 24 28 18 14 18 26 28 Min or Ave N1 ₆₀ 29 29 29	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14 Soil type ¹ C C C C	N ₆₀ 34 31 21 11 11 16 20 23 36 Min or Ave N1 ₆₀ 25 12 12 12	N1 ₆₀ 54 43 25 12 12 16 19 21 31 26 12 Soil type ¹ c c c c	N ₆₀ 27 51 23 13 23 16 24 16 34 Min or Ave N1 ₆₀ 28 14 14	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14 Soil type ¹ c c g g	2.5 5.0 7.5 10.0 17.5 20.0 23.5 Depth of Shaft 6 8 10	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest Min or Ave N1 ₆₀ 25 25 25	N1 ₆₀ 61 67 25 36 25 30 16 16 18 33 16 Soil type ¹ c c c	N ₆₀ 40 38 31 27 13 18 17 20 20 Min or Ave N1 ₆₀ 37 30 30 14	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14 Soil type ¹ c c c c	N ₆₀ 30 34 24 33 27 21 17 18 13 Min or Ave N1 ₆₀ 29 29 29	N1 ₆₀ 48 48 48 29 36 30 21 16 16 11 28 11 Soil type ¹ c c c
2.5 5 7.5 10 12.5 15 17.5 20 23.5 Depth of Shaft 6 8 10 12 14	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest Min or Awe N1 ₆₀ 19 19 19	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14 Soil type ¹ c c c c c	N ₆₀ 36 30 24 28 18 14 18 26 28 Min or Ave N1 ₆₀ 29 29 29 14	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14 Soil type ¹ c c c c c c	N ₆₀ 34 31 21 11 11 16 20 23 36 Min or Ave N1 ₆₀ 25 12 12 12 12	N1 ₆₀ 54 43 25 12 12 16 19 21 31 26 12 Soil type ¹ c c c c c	N ₆₀ 27 51 23 13 23 16 24 16 34 Min or Ave N1 ₆₀ 28 14 14 14	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14 Soil type ¹ c c g g	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 23.5 Depth of Shaft 6 8 10 12	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest Min or Ave N1 ₆₀ 25 25 25	N1 ₆₀ 61 67 25 36 25 30 16 16 18 33 16 Soil type ¹ c c c g g	N ₆₀ 40 38 31 27 13 18 17 20 20 Min or Ave N1 ₆₀ 37 30 30 14	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14 Soil type ¹ c c c c	N ₆₀ 30 34 24 33 27 21 17 18 13 Min or Ave N1 ₆₀ 29 29 21 21	N1 ₆₀ 48 48 29 36 30 21 16 16 11 28 11 Soil type ¹ c c c c
2.5 5 7.5 10 12.5 15 17.5 20 23.5 Depth of Shaft 6 8 10 12 14 16	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest Min or Ave N1 ₆₀ 19 19 19 14	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14 Soil type ¹ c c c c c	N ₆₀ 36 30 24 28 18 14 18 26 28 Min or Ave N1 ₆₀ 29 29 29 14 14	N1 ₆₀ 58 42 29 31 20 14 17 24 29 14 Soil type ¹ c c c c c c	N ₆₀ 34 31 21 11 11 16 20 23 36 Min or Ave N1 ₆₀ 25 12 12 12 12 12	N1 ₆₀ 54 43 25 12 16 19 21 31 26 12 Soil type ¹ c c c c	N ₆₀ 27 51 23 13 23 16 24 16 34 Min or Ave N1 ₆₀ 28 14 14 14 14	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14 Soil type ¹ c c g g g	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 23.5 Depth of Shaft 6 8 10 12 14	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest Min or Ave N1 ₆₀ 25 25 25 25 16	N1 ₆₀ 61 67 25 36 25 30 16 18 33 16 Soil type ¹ c c g g g	N ₆₀ 40 38 31 27 13 18 17 20 20 Min or Ave N1 ₆₀ 37 30 30 14 14	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14 Soil type ¹ c c c c c	N ₆₀ 30 34 24 33 27 21 17 18 13 Min or Ave N1 ₆₀ 29 29 29 21 21 16	N1 ₆₀ 48 48 29 36 30 21 16 16 17 28 11 Soil type ¹ C C C C
2.5 5 7.5 10 12.5 15 17.5 20 23.5 Depth of Shaft 6 8 10 12 14	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 20 14 16 67 21 14 17 16 26 Average Lowest Min or Awe N1 ₆₀ 19 19 19	N1 ₆₀ 32 20 19 74 23 14 16 15 22 26 14 Soil type ¹ c c c c c	N ₆₀ 36 30 24 28 18 14 18 26 28 Min or Ave N1 ₆₀ 29 29 29 14	N1 ₆₀ 58 42 29 31 20 14 17 24 24 29 14 Soil type ¹ c c c c c c	N ₆₀ 34 31 21 11 11 16 20 23 36 Min or Ave N1 ₆₀ 25 12 12 12 12	N1 ₆₀ 54 43 25 12 12 16 19 21 31 26 12 Soil type ¹ c c c c c	N ₆₀ 27 51 23 13 23 16 24 16 34 Min or Ave N1 ₆₀ 28 14 14 14	N1 ₆₀ 43 71 28 14 25 16 23 15 29 29 14 Soil type ¹ c c g g	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 23.5 Depth of Shaft 6 8 10 12	1.6 1.4 1.2 1.1 1.1 1 0.96 0.91	N ₆₀ 38 48 21 33 23 30 17 18 21 Average Lowest Min or Ave N1 ₆₀ 25 25 25	N1 ₆₀ 61 67 25 36 25 30 16 16 18 33 16 Soil type ¹ c c c g g	N ₆₀ 40 38 31 27 13 18 17 20 20 Min or Ave N1 ₆₀ 37 30 30 14	N1 ₆₀ 64 53 37 30 14 18 16 18 17 30 14 Soil type ¹ c c c c	N ₆₀ 30 34 24 33 27 21 17 18 13 Min or Ave N1 ₆₀ 29 29 21 21	N1 ₆₀ 48 48 29 36 30 21 16 16 11 28 11 Soil type ¹ c c c c

¹ c = cohesive soil BDM Figure 802.1.2-2 g = granular soil BDM Figure 802.1.2-1

5.2. Construction

The hard, fine-grained glacial till soils are stable and no caving of the exploration bore holes was observed. It is expected that the holes bored for shaft construction will remain stable without the need for casing. Groundwater was not encountered in any of the borings and is not expected to be present in the drilled shaft bores.

6. QUALIFICATIONS

This investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of characterizing the subsurface conditions at the noise wall sites, performing geotechnical engineering analyses, and providing recommendations for the design and construction of the foundations only. The analyses and recommendations submitted in this report are based upon data obtained from borings drilled at the locations shown on Exhibit 1 and as presented on the Log of Boring (Appendix A). This report does not reflect any variations that may occur between the borings or elsewhere on the site, or variations whose nature and extent may not become evident until a later stage of construction. In the event that any changes in the nature, design or location of the proposed wall is made, the conclusions and recommendations contained in this report should not be considered valid until they are reviewed, and have been modified or verified in writing by a geotechnical engineer.

It has been a pleasure to be of service to Mead & Hunt, Inc. performing this geotechnical exploration for the noise wall for the FRA-71-0.00 project.

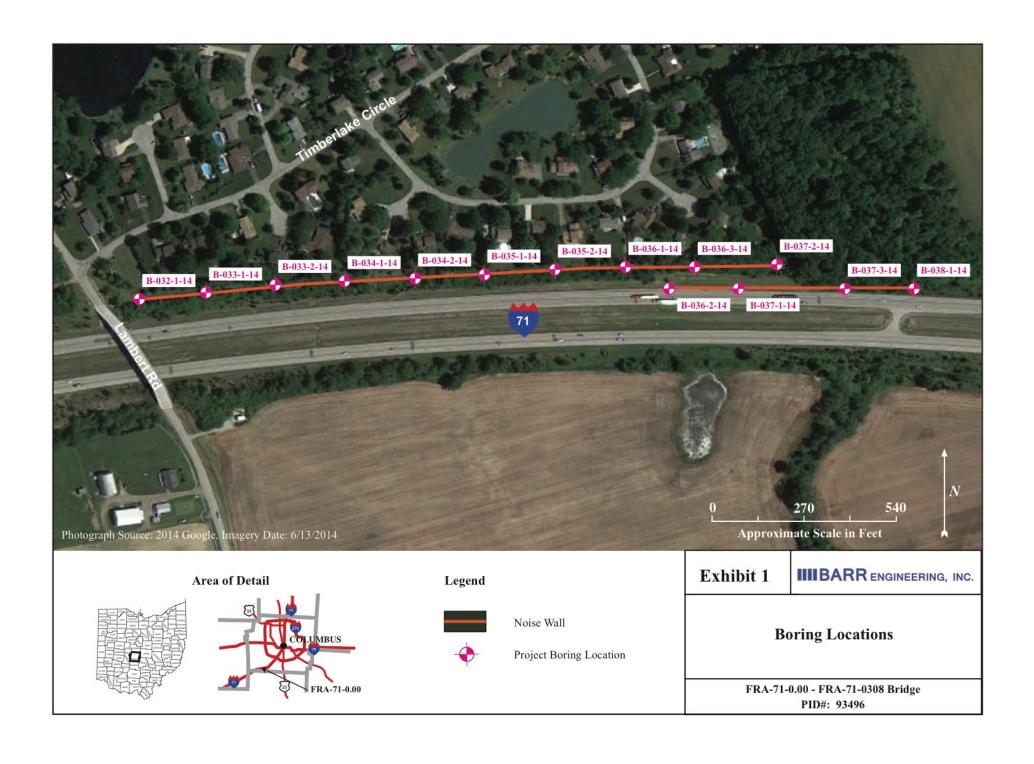
Respectfully Submitted,

Enoch Chipukaizen

NEAS, Inc.

Enoch Chipukaizer

Principal


CHUNMEI HE E-90190

3/27/17

Chunmei (Melinda) He, P.E. Geotechnical Engineer

REFERENCES

- AASHTO, 2014. *LRFD Bridge Design Specifications* 7th *Edition*. American Association of State Highway and Transportation Officials, Inc., Washington, D.C.
- Brockman S.C., 1998. *Physiographic Regions of Ohio*. Ohio Department of Natural Resources Division of Geological Survey.
- H. C. Nutting Company, 1962. Report of Foundation Investigation, Interstate 71 Bridge No. FRA-1-0310 R & L, SR-1 (I-71) over State Route No. 3, Franklin Co. August 24, 1962.
- ICE, 2012. *ICE Manual of Geotechnical Engineering, Volume 1 Geotechnical Engineering Principles, Problematic Soils and Site Investigation.* Edited by J. Burland, T, Chapman, H. Skinner and M. Brown. Institute of Civil Engineers. London, England.
- Ohio Department of Natural Resources, 1994. *Reconnaissance Bedrock Geology of the Harrisburg, Ohio Quadrangle*. Division of Geological Survey. D. L. Shrake. Open-File Map: BG-B4G2.
 - 1993. *Bedrock Topography of the Harrisburg, Ohio Quadrangle*. Division of Geological Survey, D. L. Shrake. Open-File Map: BT-B4G2.
 - 2005. Surficial Geology of the Springfield 30 x 60 Minute Quadrangle. Brockman, C.S, Schumacker, G.A., Shrake, D.L. Swinford, E.M. and Larsen, G. E. SG-2. Scale 1:100,000.
 - 2015⁽¹⁾. *Ohio Earthquake Epicenters*. Division of Geological Survey Interactive Map. January 28, 2015. https://gis.ohiodnr.gov/website/dgs/earthquakes/
 - 2015⁽²⁾. *Abandoned Underground Mine Locater*. Ohio Geological Survey. January 28, 2015. https://gis.ohiodnr.gov/website/dgs/MINES/
 - 2015⁽³⁾. Emergency Oil and Gas Well Locator. Ohio Geological Survey. January 28, 2015. https://gis.ohiodnr.gov/website/dog/oilgasviewer/
- Ohio Department of Transportation. 2007 (revised 2014). ODOT Bridge Design Manual. Office of Structural Engineering.
 - http://www.dot.state.oh.us/Divisions/Engineering/Structures/standard/Bridges/Pages/BDM2007.aspx
- State of Ohio, 2013. FALCON Geotechnical Document Management System (GDMS). Office of Geotechnical Engineering. Files on 2506963 Bridge and Geotechnical Exploration. http://www.dot.state.oh.us/Divisions/ProdMgt/Geotechnical/Pages/GDocMS.aspx#GRSR16
- U.S. Department of Agriculture, 2015. Web Soil Survey, National Cooperative Soil Survey. Natural Resource Conservation Service. January 28, 2015. Scale: 1:7,560

APPENDIX A LOGS OF BORINGS AND LABORATORY TESTING RESULTS

LEGEND

SYMBOL	DESCRIPTION	ODOT CLASSIFICATION	SYMBOL	DESCRIPTION	ON ODOT CLASSIFICATION
0000	Gravel and/or Stone Fragments	A-1-a		Shale	Visual
	Gravel and/or Stone Fragments with Sand	A-1-b		Weathered Sha	le Visual
FS	Fine Sand	A-3		Sandstone	Visual
	Coarse and Fine Sand	A-3a			
	Gravel and/or Stone Fragme with Sand and Silt	nts A-2-4 A-2-5		GRADATIO GR Gravel	
	Gravel and/or Stone Fragme with Sand, Silt and Clay	nts A-2-6 A-2-7		CS Coars MS Mediu FS Fine S	e Sand m Sand
	Sandy Silt	A-4a		SI Silt CL Clay (
+ + + + + + + + + + + + + + + +	Silt	A-4b		SAMPLER	SYMBOLS
	Elastic Silt and Clay	A-5		She	elby Tube
	Silt and Clay	A-6a		Roo	ck Core
	Silty Clay	A-6b			on out
	Elastic Clay	A-7-5		Spl	it Spoon Sample (SS)
	Clay	A-7-6			icates a Sample Taken
+ + + + + + + +	Organic Silt	A-8a		VVII	hin 3 ft of Proposed Grade
	Organic Clay	A-8b			

ABBREVIATIONS

LL	LIQUID LIMIT (%)	HP	HAND PENETROMETER
PI	PLASTIC INDEX (%0	PID	PHOTOIONIZATION DETECTOR
WC	MOISTURE CONTENT (%)	UC	UNCONFINED COMPRESSION
SPT	STANDARD PENETRATION TEST	ppm	PARTS PER MILLION
NP	NON PLASTIC	w	WATER FIRST ENCOUNTERED
-200	PERCENT PASSING NO. 200 SIEVE	▼	WATER LEVEL UPON COMPLETION
N ₆₀	ADJUSTED SPT RESULT	_	
EOB	END OF BORING		

MATERIAL CLASSIFIED BY VISUAL INSPECTION

Sod and Topsoil
Pavement or Base
Concrete

ontrolled Describe)

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS