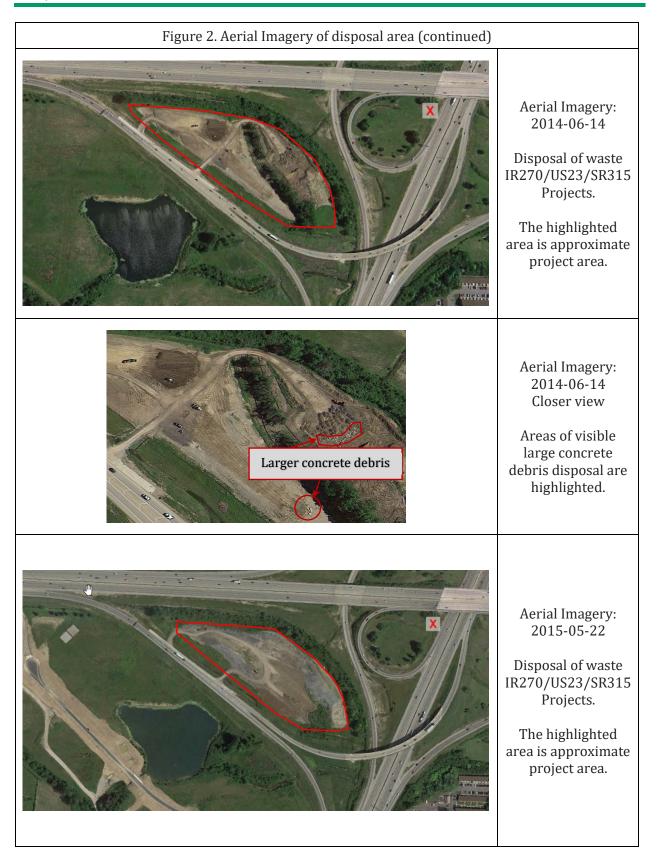
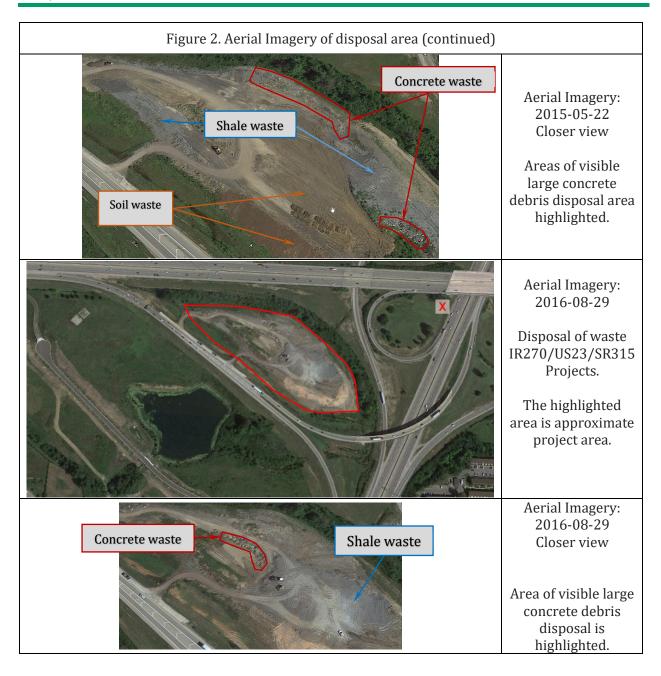
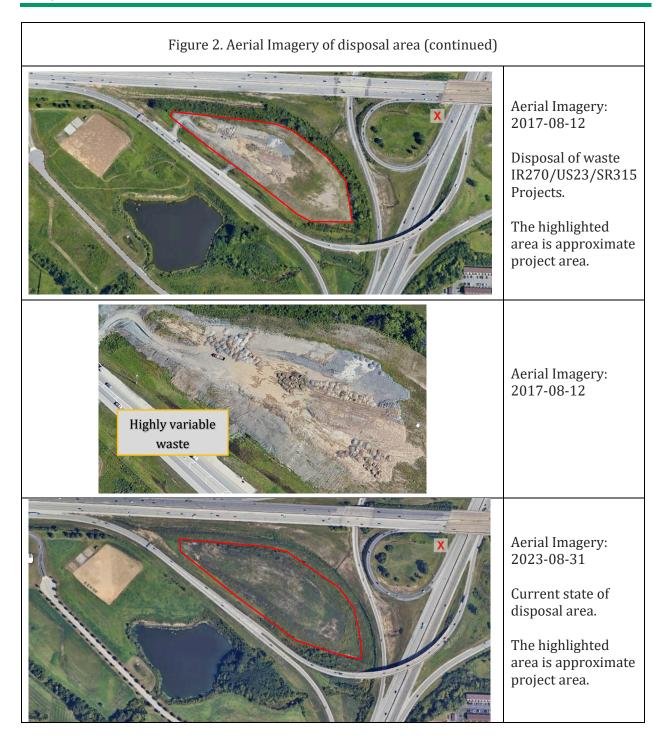
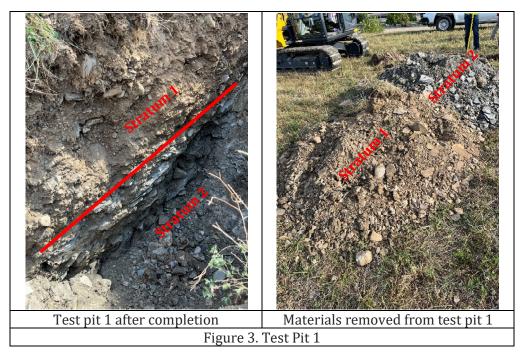

INTEROFFICE COMMUNICATION


To:	Richard Ortman, P.E., District 6 – Capital Programs
COPY:	Jeff Hipp, P.E. & Jeremiah Masey, P.E., District 6 Geotechnical Engineering
FROM:	P. Paul Painter, Office of Geotechnical Engineering
DATE:	October 28, 2024
SUBJECT:	FRA-71-8.91, PID 105435, Waste area evaluation


Pursuant to your request, the Office of Geotechnical Engineering (OGE) has completed a preliminary evaluation of the waste area located in the southwest quadrant of the FRA71/270 interchange. This limited exploration was performed to evaluate the conditions of materials found within the infields for potential use as fill material for upcoming work at the FRA71/270 interchange. Figure 1 presents the study area.

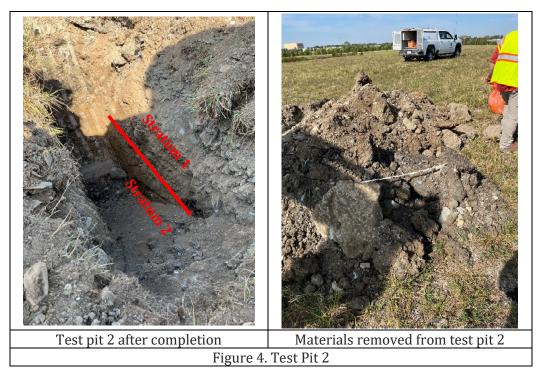


The study waste area has been generated through multiple projects. The western base was initially generated during the construction of the current ramp configurations from eastbound IR270 to IR71 north and southbound. The majority of the remaining waste materials were generated during the IR270/US23/SR315 reconfiguration projects. The core of the waste area was anticipated to consist of shale covered by soil. OGE reviewed historical aerial imagery via Google Earth in an attempt to determine potential composition of the waste area. Aerial imagery from 2005 through 2023 was accessed on September 23, 2024, for review. From the imagery obtained it appears that multiple types of construction waste, (shale, soils, asphalt, and concrete) were placed within the disposal area. Figure 2 presents a summary of the aerial review.

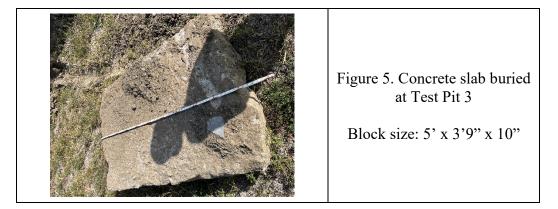


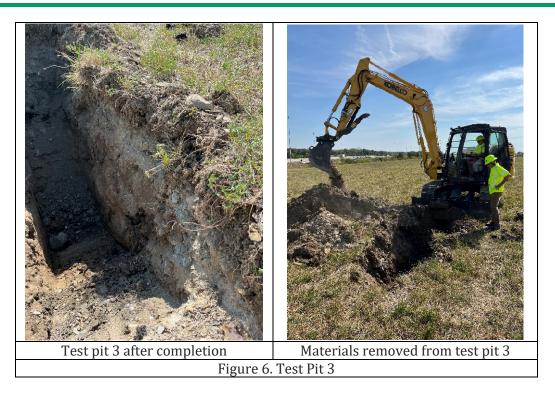
Four (4) test pits, T-001-0-24 through T-004-0-24, were completed across the top of the waste area to explore the upper portion conditions of the project area. The excavations were completed on September 13, 2024, utilizing a Kobelco 85 mini excavator. The test pit excavations extend to depths of between 4.4 and 6.2 feet below existing grade. Bulk samples were collected from each exposed stratum within the test pit for testing. Classification testing was completed on soil and shale/soil

materials encountered within the test pits. When larger shale particles were present, bucket slake tests (bucket) were run in accordance with CMS 703.16 as well as two-cycle slake durability (SDI) testing in accordance with ASTM D4644. Strength testing by point load strength index testing (PL) was completed on block samples prepared from the larger samples collected in accordance with ASTM D5731. Below is a summary of the findings for each test pit location.


Test Pit 1:

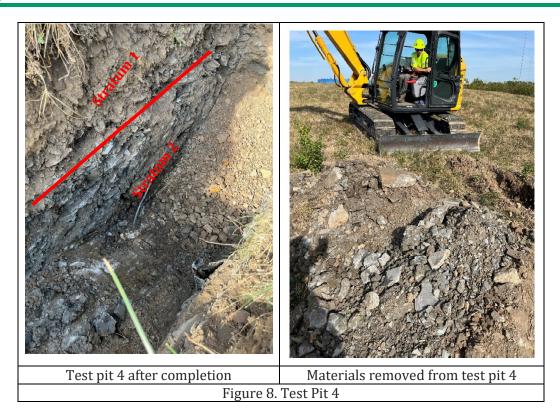
Test pit #1 was completed at the western end of the waste area. This location encountered 4-inches of topsoil underlain by approximately 2.5 feet of Gravel and Stone Fragments with Sand, Silt, and Clay (A-2-6) which was moderately organic. Beneath this upper stratum the test pit encountered Stone Fragments with Sand, Silt, and Clay (A-2-6) which was slightly organic and extended to the base of the excavation. Within the lower stratum large shale, limestone, and glacial erratic particles were also encountered. Moisture density curves were completed from both strata with oversize correction. From the lower strata the shale was tested for durability utilizing the bucket, SDI, and PL tests with additional PL testing of the limestone and glacial erratic pieces. Figure 3 presents photos of the completed test pit and materials removed during the excavation, and a log of test pit excavation is attached which summarizes the findings.


Test Pit #2


Test pit #2 was completed within the western third of the waste area. This location encountered 2inches of topsoil underlain by approximately 3.8 feet of Gravel and Stone Fragments with Sand and Silt (A-2-4) which was slightly organic and contained large shale, asphalt, and concrete particles. At a depth of 2-ft. a large slab of asphalt (35"x32"x7") was encountered. Beneath this upper stratum the test pit encountered Silt and Clay (A-6a) which was slightly organic and contained large shale particles which extended to the base of the excavation. Moisture density curves were completed from only the lower stratum with oversize correction. Additionally, from the lower stratum, the shale was tested for durability utilizing the bucket, SDI, and PL tests. Figure 4 presents photos of the completed test pit and materials removed during the excavation, and a log of test pit excavation is attached which summarizes the findings.

<u>Test Pit #3</u>

Test pit #3 was completed within the eastern third of the waste area. This location encountered 2inches of topsoil underlain by Silt and Clay (A-6a) which was slightly organic and contained large shale, asphalt, and concrete cobble and boulder sized particles which became more prevalent near the base of the excavation. A large concrete slab was encountered near the surface presented in Figure 5. A Moisture density curve was completed with oversize correction. Figure 6 presents photos of the completed test pit and materials removed during the excavation, and a log of test pit excavation is attached which summarized the findings.



<u>Test Pit #4</u>

Test pit #4 was completed within the outer third of the waste area. Scattered along the surface were large asphalt, concrete, and glacial erratic boulder sized particles. Figure 6 presents some of these items found at the ground surface. This location encountered 3 inches of topsoil underlain by approximately 2.1 feet of Silt and Clay (A-6a) that contained gravel and stone fragments which was moderately organic. Below the upper stratum, the test pit encountered Gravel and Stone Fragments with Sand, Silt, and Clay (A-2-6) that contains large shale, asphalt, and concrete particles extending to the base of the excavation. Occasional general construction waste was noted within the lower stratum. From the lower stratum, the shale was tested for durability utilizing the bucket, SDI, and PL tests. Figure 7 presents photos of the completed test pit and materials removed during the excavation, and a log of test pit excavation is attached which summarizes the findings.

Summary of Testing

Bulk samples were collected from test pits T-001-0-4 through T-004-0-24 from each identified stratum. For strata that contained a significant amount of soil a standard proctor was completed to determine the maximum dry density and optimum moisture content. Since all strata contained rock, shale, asphalt, and concrete particles, oversize correction was applied. Results of this testing indicate corrected maximum dry densities of the waste materials range from 120.9 to 131.7 pounds per cubic foot (pcf) and corrected optimum moisture contents range from 10.0% to 15.4%. The Standard Proctor testing results are presented in Table 1.

	Table 1. Standard Proctor Test Results									
Test Pit	Sa	mple	ODOT	Max. Dry	Optimum	Corrected	Corrected			
Location	Dep	th (ft)	Soil	Density	Moisture	Max. Dry	Optimum			
LUCATION	То	From	Class	(PCF)	(%)	Density (PCF)	Moisture (%)			
T-001-0-24	0.4	2.6	A-2-4	117.2	10.8	124.2	10.0			
T-001-0-24	2.6	5.4	A-2-6	122.3	11.6	131.7	10.8			
T-002-0-24	3.8	6.2	A-6a	111.8	15.4	120.9	15.4			
T-003-0-24	0.1	6.8	A-6a	119.1	13.8	127.5	12.8			

Materials which appeared slightly organic or higher had organic content determination through completion of Loss on Ignition (LOI) testing in accordance with AASHTO T 267. Results of this testing are presented in Table 2.

Page 11 of 12
Date: October 28, 2024
Subject: FRA-71-8.91, PID 105435, Waste area evaluation

		Т	able 2. LOI Test	Results	
Test Pit Location	Sample (f	Depth t)	ODOT Soil Class	LOI (%)	Modifier*
Location	То	From	Class		
T-001-0-24	0.4	2.6	A-2-4	4.6	Moderately
T-001-0-24	2.6	5.4	A-2-6	2.5	Slightly
T-002-0-24	0.1	3.8	A-2-6	3.9	Slightly
T-002-0-24	3.8	6.2	A-6a	3.2	Slightly
T-003-0-24	0.1	6.8	A-6a	3.0	Slightly
T-004-0-24	0.3	2.1	A-6a	4.7	Moderately
T-004-0-24	2.1	4.4	A-2-6	3.7	Slightly
'* Per ODOT Spe	cificatio	ns for Ge	eotechnical Explo	orations Section 603	3.5 (Table 600-7)

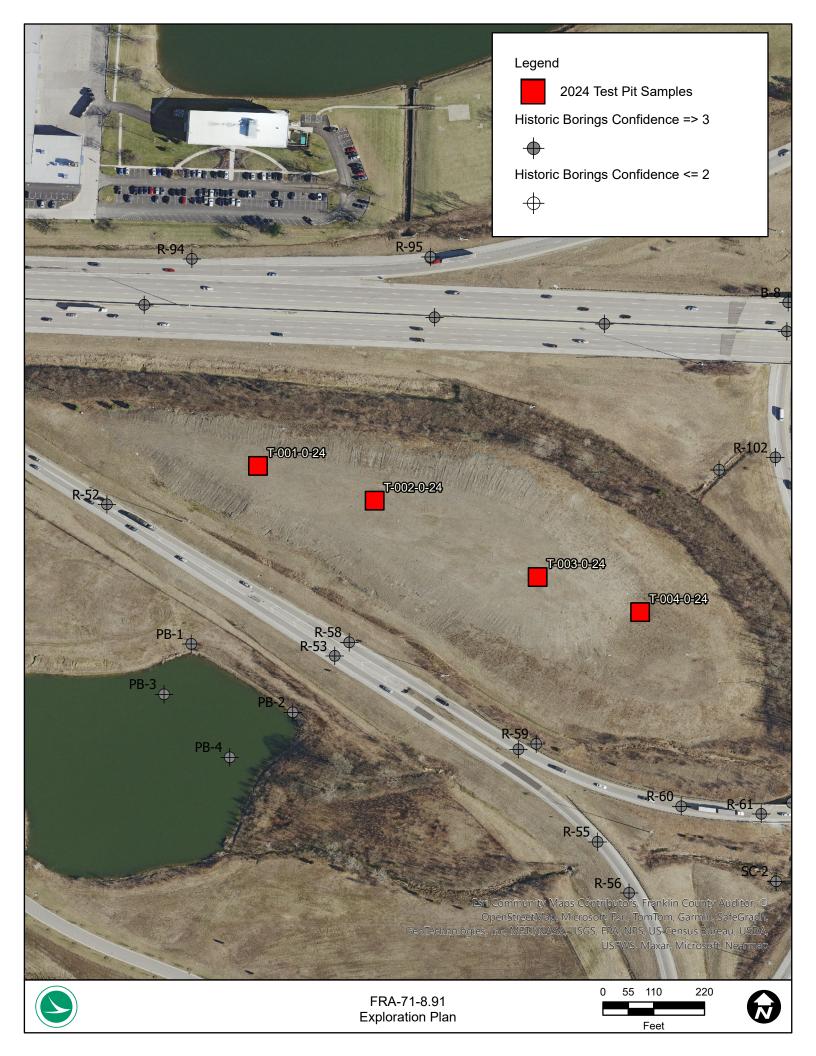
Due to the significant amount of shale waste, characterization of the shale relative to determining if the material should be considered a durable or nondurable shale was completed. When larger shale pieces were present within the excavated materials, individual blocks were collected from which individual specimens were prepared. These specimens were then tested for bucket slake tests (bucket), two cycle slake durability (SDI) testing and point load strength index testing (PL). Samples were collected from T-001-0-24, T-002-0-24, and T-004-0-24. Samples collected for the bucket test had results ranging from 93% to 98% retained on the ¾-inch sieve, which is greater than the target of 75%. In addition to the bucket test, samples were also prepared for SDI testing. The second cycle (Id₂) results of the SDI tests ranged from 94.3% to 96.2% with fragments representing Type I to Type III materials. Test reports for each individual test are attached. PL testing completed yielded strength result between 627 psi and 1,838 psi. Additionally, PL testing was also completed on limestone and glacial erratic (granite) samples collected from T-001-0-24 with results of 5,601 and 4,735 psi, respectively. Bedrock testing results are summarized and presented in Table 3.

		Tab	le 3. Bedrock	c Testing R	lesults		
Test Pit		nple th (ft)	Rock Type	Bucket ¹	SD	I ²	PL ³ (psi)
Location	То	From		(%)	$Id_2(\%)$	Туре	
T-001-0-24	2.6	5.4	Shale	98	96.2	II	1,509
T-001-0-24	2.6	5.4	Limestone	NT	NT	NT	5,601
T-001-0-24	2.6	5.4	Glacial (granite)	NT	NT	NT	4,735
T-002-0-24	3.8	6.2	Shale	98	94.3	II	1,289
1-002-0-24	5.0	0.2	Silale	90	99.2	Ι	1,838
T-004-0-24	2.1	4.4	Shale	93	95.5	II	627
¹ Bucket testin ² SDI in accord ³ PL in accord	dance v	vith ASI	CM D 4644	C&MS 70	3.16; excl	uding ro	ller pass
NT: Not Teste	ed						

Historical Geotechnical Testing

Geotechnical explorations were conducted for the various construction projects which produced waste materials located within the project area. Data located within ODOT's Transportation Information Mapping System (TIMS) were identified as FRA-270-24.47, subbatch 17936, completed in 2004 for the relocation of the ramps from IR270 to IR71 and widening of existing IR270; FRA-270-21.63, subbatch 20100, completed in 2005 for improvement to the IR270/US23/SR315 interchanges; FRA-270-34.240 (metric), subbatch 17990, completed in 1995 for IR270/SR315 improvements.

Borings completed for the ramp relocation encountered 1 to 14 inches of topsoil, which from aerial photography appears to have been stripped and wasted within the western base of the current project area. The soils encountered were predominately cohesive soils ranging from Sandy Silt (A-4a) to Silty Clay (A-6b). Borings encountered for the widening of IR270 encountered shale fill within the embankment core which exhibited minimal degradation since the original construction.


Borings completed for the US23 and SR315 improvements were typically advanced into the weathered bedrock through augering and SPT sampling prior to coring. Limited testing was conducted on the core samples collected with variability within the compressive strength testing ranging from 1,620 psi to 13,750 psi. and SDI testing ranged from 97.6% to 98.2% with all material types being identified as Type I.

Conclusion

To evaluate the material currently stockpiled between IR270EB and ramp to IR71NB/SB a limited number of test pits were completed. These test pits disclosed highly variable materials ranging from cohesive and noncohesive soils, glacial erratics (cobbles and boulders), shale, concrete, and asphalt. Based on preliminary bucket durability testing, the shale material appears to be considered durable shale (greater than 75% retained on a 3/4-inch sieve after a 48-hr. soaking). The size of many of the shale pieces, boulders, concrete and asphalt slabs are greater than the allowable size to be incorporated into an engineered construction lift. However, with effort, such as utilization of an on-site crusher, these materials can be dimensioned so that they can be incorporated into a fill lift. Limited Standard Proctor testing and classification testing did not disclose materials with a liquid limit exceeding 65, classified as A-5 or A-7-5, or a maximum dry density less than 90 pcf.

Attachments:

Exploration Location Plan Log of Test Pit: T-001-0-24, T-002-0-24, T-003-0-24, T-004-0-24 Slake Durability Test Results Point Load Strength Index Test Results Laboratory Compaction Characteristics of Soil Using Standard Effort (AASHTO T99) Reports

ROJECT: FRA-71-08.91 YPE: ROADWAY	_ DRILLING FIRM / OPER/ SAMPLING FIRM / LOGO		ODOT DDOT / PAINTER	-	L RIG: MER:	-	KOBELCO NONE			STAT ALIG			SET:						RATION ID 01-0-24
ID: <u>105435</u> SFN:	_ DRILLING METHOD:				BRATIO			N/A										.4 ft.	PAG
TART: <u>8/13/24</u> END: <u>8/13/24</u>	_ SAMPLING METHOD: _			_ ENER	RGY R			60		LAT /				40.1	09732	2, -82	.9835	45	1 OF
MATERIAL DESCRI	PTION	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE			GRAE					ERBE			ODOT	ABA
AND NOTES		938.9		RQD	. 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	DON
AND NOTES TOPSOIL (4") BROWN, GRAVEL AND STONE FRAGME AND SILT, TRACE CLAY, MODERATELY 4.6%), MAXIMUM SHALE FRAGMENT 7" @1.5'; MAXIMUM DRY DENSITY = 117.2 OPTIMUM MOISTURE, OVERSIZED DRY 10.0% OPTIMUM MOISTURE BROWN, STONE FRAGMENTS WITH SA CLAY, SLIGHTLY ORGANIC (LOI = 2.5%) SIZE 15"X36"X24", AVERAGE 15"X7"X3", @3.5'; MAXIMUM DRY DENSITY = 122.3 OPTIMUM MOISTURE, OVERSIZED DRY 10.8% OPTIMUM MOISTURE.	ORGANIC (LOI = (6.5"X24", DAMP PCF @ 10.8% ' DENSITY = 124.2 @	938.5 938.5 936.3	- 1 - - 1 - - 2 - - 3 - - 3 - - 4 - - 5 -			100	BS-1 BS-2	-	66	7	6	12	9	32	22	10	7	A-2-4 (0) A-2-6 (0)	-
SHALE BUCKET TEST PER 703.16 = 98% SIEVE SHALE = S _c = 1,509 psi; Id2 = 96.2% LIMESTONE = S _c = 5,601 GRANITE = S _c = 4,735	RETAINED ON 3/4"	<u>a 933.5</u>	EOB																

D: 106435 SFN: Image: SFN:	PROJECT: TYPE:	FRA-71-08.91 ROADWAY	DRILLING FIRM / OPERATOR: ODOT SAMPLING FIRM / LOGGER: ODOT / PAINTER					L RIG: MER:	-	KOBELCO						SET:			_ STATION / OFFSET: ALIGNMENT:							
CART: B1324 END: EINERV PATIO (%): 00 LAT / LON: 40,10506, 82,82823 1 O MATERIAL DESCRIPTION AND NOTES ELEV. DEPTHS ROD No (%) DU (%) QL LT / LON: 40,10506, 82,82823 CO CO IFOUN INTI CRAVELAND STONE FRAGMENTS H42,1 DEPTHS ROD No (%) DU (%) QL LT REVENTION: ALT REVENTION: AUDICATION (%) QL LT REVENTION: AUDICATION (%) QL LT REVENTION: AUDICATION (%) AUDICATION (%) QL LT REVENTION: AUDICATION (%) AUDI																942.1	I (MS	L) E	EOB:	6	.2 ft.	PAGE				
AND NOTES DEPTRS ROD No. (%) ID (lef) Rot Ro No. (%) ID (lef) Rot Rot							ENE	RGY R	ATIO	(%):	60										53	1 OF 1				
AND NOTES DEPTRS ROD No. (%) ID (lef) Rot Ro No. (%) ID (lef) Rot Rot		MATERIAL DESCRIP	TION	ELEV.			SPT/		REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERB	ERG			ABAN-				
OPESOL(2) WITSAND, SLT, AND CLAY, SLGFITLY OF FRACMENTS WITSAND, SLT, AND CLAY, SLGFITLY OF RANCE (LOI- B), CONTAINS STREES, CLAP, MACHINES SPINLT SUB 375ETES, SUB 375 SPINLT SUB 375 S					DEPTH	IS		N ₆₀										-		wc	CLASS (GI)	DONED				
RECYM WITH GRAY, GRAVEL AND STONE FRAGMENTS J980, DURANS SHALE, SAPHAIT AND CONCETTE SLABS SHALT CONSTRUCT SHALE, SAPHAIT AND CONCETTE SLABS SHALT CONSTRUCT SHALE SLAB STATUS OF THE SAME STONE FRAGMENTS STATUS OF THE SAME STATUS OF THE SAME STONE FRAGMENTS STATUS OF THE SAME STONE FRAGMENTS STATUS OF THE SAME STATUS OF THE SAME STONE FRAGMENTS STATUS OF THE SAME STATUS OF THE SAME STONE FRAGMENTS STATUS OF THE SAME STATUS OF THE SAME STONE FRAGMENTS STATUS OF THE SAME STATUS OF THE SAME STATUS OF THE SAME STONE FRAGMENTS STATUS OF THE SAME STATUS OF THE	TOPSOIL (2")		<u> </u>																							
ROWN, SILT AND CLAY, "AND' GRAVEL AND STONE FROMENS, LITTLE SAND, SLIGHTLY ORGANIC (LOI = 12%), DAMP - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	WITH SAND, SI 3.9%), CONTAII MAXIMUM CON ASPHALT SALE	LT, AND CLAY, SLIGHTLY NS SHALE, ASPHALT AND ICRETE SLAB 15"X12"X9", 3 35"X32"X7", MAXIMUM SH	ORGANIC (LOI = CONCRETE SLABS;			- 2 -	-		100	BS-1	-	54	8	7	15	16	33	19	14	5	A-2-6 (1)					
SIEVE SHALE = S _c = 1,838 psi; Id2 = 99.2% SHALE = S _c = 1,289 psi; Id2 = 94.3% NOTES: NONE	FRAGMENTS, L 3.2%), DAMP @4.5'; MAXIMU OPTIMUM MOIS	.ITTLE SAND, SLIGHTLY O M DRY DENSITY = 111.8 F STURE, OVERSIZED DRY I	RGANIC (LOI = PCF @ 15.4%		EOB	- 5 -	-		100	BS-2	-	48	8	7	18	19	31	20	11	15	A-6a (1)					
	SIEVE SHALE = S₀ = 1	,838 psi; Id2 = 99.2%	RETAINED ON 3/4"																							
		-																								

ABANDONMENT METHODS, MATERIALS, QUANTITIES: NOT RECORDED

PROJECT: FRA-71-08.91 TYPE: ROADWAY	DRILLING FIRM / OPER				L RIG: MER:		KOBELCO NONE			STAT ALIG		EXPLORATION II T-003-0-24							
PID: 105435 SFN:	DRILLING METHOD:				BRATI			N/A						7 (MS	L) E	OB:	6	.8 ft.	PA
START: 8/13/24 END: 8/13/24	SAMPLING METHOD:				RGY R			60		LAT							.9818	36	10
MATERIAL DESCRIPT		ELEV.		SPT/			SAMPLE	HP		GRAD					ERB			ODOT	AB
AND NOTES		943.7	DEPTHS	RQD	N ₆₀	(%)	ID			CS					PL		wc	CLASS (GI)	DO
TOPSOIL (2")	\square	943.5																	
BROWN, SILT AND CLAY , "AND" GRAVEL FRAGMENTS, LITTLE SAND, SLIGHTLY OF 3.0%), CONTAINS COBBLES AND BOULDE ASPHALT 29"X29"X7", AVERAGE CONCRE DAMP	RGANIC (LOI = ERS; AVERAGE		1																
@2.0'; CONCRETE SLAB 72"X45"X10"			- 2 -																
@2.5'; MAXIMUM DRY DENSITY = 119.1 P OPTIMUM MOISTURE, OVERSIZED DRY D 12.8%	CF @ 13.8% ENSITY = 127.5 @		- 3 -																
						100	BS-1	-	50	6	7	19	18	30	19	11	9	A-6a (1)	
			4																
@5.5'; CONCRETE AND ASPHALT PIECES			- 5 -																
			- 6 -																
		936.9	EOB																
NOTES: NONE ABANDONMENT METHODS, MATERIALS, (

PROJECT: TYPE:	FRA-71-08.91 ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ODO DOT / PAI		HAM	L RIG		KOBELCO NONE			STAT ALIG	NME	NT: _						EXPLOR T-004	-0-24
PID: <u>105435</u>		DRILLING METHOD:								N/A		ELEV								.4 ft.	PAGE 1 OF 1
START: 8/13/2		SAMPLING METHOD:					RGY F			60	<u></u>	LAT /							.98127		1
	MATERIAL DESCRIPT AND NOTES	ION	ELEV. 937.6	DEPT	THS	SPT/ RQD		(%)	SAMPLE ID	HP (tsf)		GRAD cs		SI (%) CL		ERBE PL	PI	wc	ODOT CLASS (GI)	ABAN-
TOPSOIL (3")	AND NOTES	$\sum_{i=1}^{n}$	937.6			TIGE		(/0)				00	10	01	0L						DONED
BROWN, SILT A	ND CLAY, SOME GRAVEL ITTLE SAND, MODERATEL				- 1 -	-		100	BS-1	-	32	6	9	28	25	35	21	14	8	A-6a (5)	-
WITH SAND, SIL 3.7%), SHALE A	WN, GRAVEL AND STONE T, AND CLAY , SLIGHTLY (ND CONSTRUCTION DEBR	DRGANIC (LOI = 🛛 🔛	935.5	ЕОВ-	- 2 - - 3 - - 4 -			100	BS-2	-	67	4	4	14	11	33	21	12	7	A-2-6 (0)	-
SIEVE	TEST PER 703.16 = 93% R	AETAINED ON 3/4																			
NOTES: NONE																					

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

10/28/24

 \odot

T-003-0-24

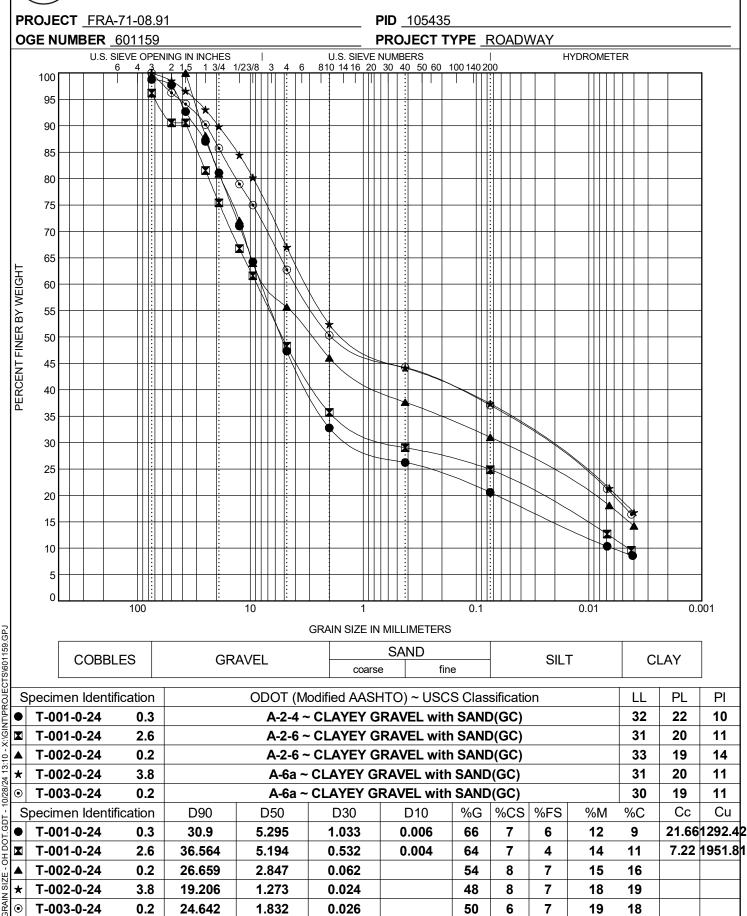
0.2

24.642

1.832

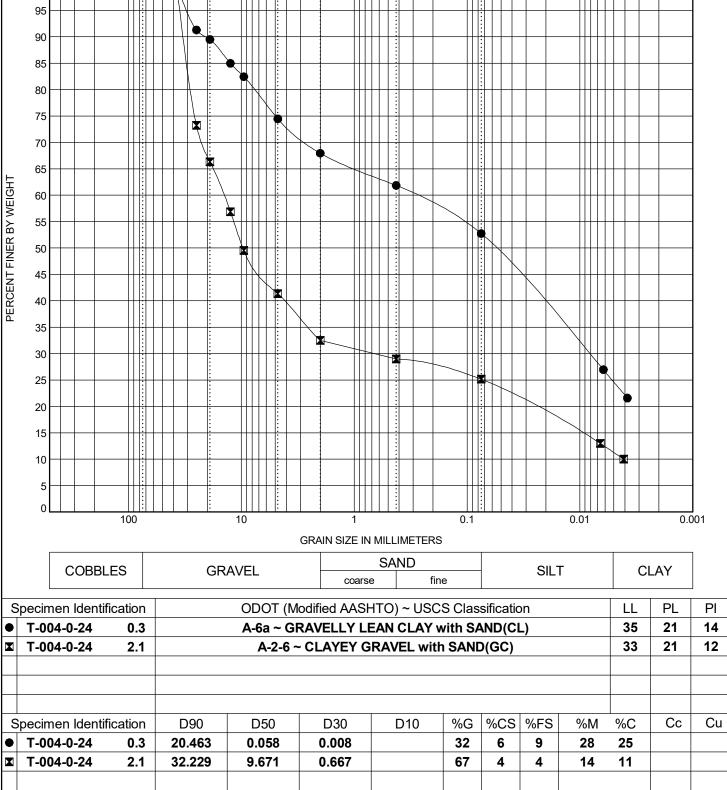
0.026

GRAIN SIZE DISTRIBUTION


7

6

50


19

18

OHIO DEPARTMENT OF TRANSPORTION OFFICE OF GEOTECHNICAL ENGINEERING

PID 105435 PROJECT TYPE ROADWAY U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 810 14 16 20 30 40 50 60 100 140 200 3 1 3/4 1/23/8 4 5 6

13:10 - X:\GINT\PROJECTS\601159.GPJ - 10/28/24 - TOD. OH DOT **GRAIN SIZE**

100

PROJECT FRA-71-08.91

4 3 2

6

OGE NUMBER _ 601159

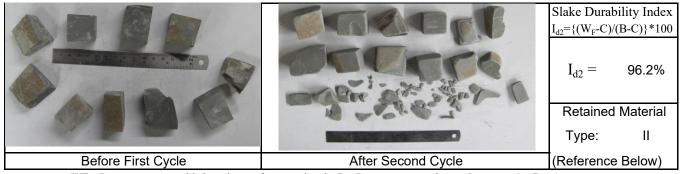
GRAIN SIZE DISTRIBUTION

ASTM D 4644

Office of Geotechnical Engineering

Lab No.:	
Report Date:	10/15/2024
Tech:	C. B

County	FRA	Route	71	Section	8.91
Boring Number	T-001-0-24	Distirict	6	PID	105435
Station		Offset	NA	Offsest Direction	NA
Latitude	NA	Longitude	NA	Ground Elev. (Ft)	NA
Sample Number	1	Top Depth		Bottom Depth	


Geologic Unit	Ohio Shale
Description	Shale

NATURAL MOISTURE DETERMINATION

Pan ID	Sample Weight (g)	Tare Weight (g)		IN: 10/08/24	OUT: 10/09/24	Moisture Content (%)
1	503.09	1233.06	Time	14:10	7:15	Moisture Content (76)
1	505.09	1255.00	Mass	1736.15	1726.28	2.00%

Start Time (mil):	End Time (mil):					First Cycle	(I _{d1})	
11:25	11:35		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/09/24	
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	1	1233.06	Time	11:41	2:50	Final Dry Mass (g)
23.1	23.2	23.15			Mass	1730.91	1717.42	484.36

Start Time (mil):	End Time (mil):				S	Second Cycle	e (Id2)	
15:12	15:22		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/10/24	
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	1	1233.06	Time	15:25	7:40	Final Dry Mass (g)
23.2	23.2	23.2			Mass	1723.13	1707.46	474.4

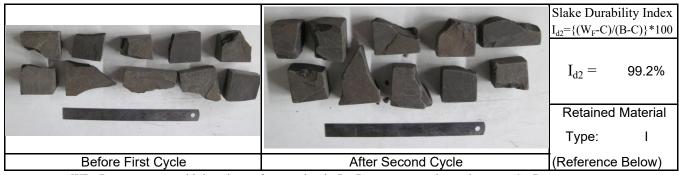
WF = Drum mass + oven dried specimum after second cycle; B = Drum mass + specimen prior to test; C = Drum mass

From STM D4644		L BANK			r a gan gan	rational and the second s
V	T 1	Retained pieces remain virtually unchanged	Т2	Retained material consists of large and small pieces	T 3	Retained material is exclusively small pieces

ASTM D 4644

Office of Geotechnical Engineering

Lab No.:	
Report Date:	10/15/2024
Tech:	C. B


County	FRA	Route	71	Section	8.91
Boring Number	T-002-0-24	Distirict	6	PID	105435
Station		Offset	NA	Offsest Direction	NA
Latitude	NA	Longitude	NA	Ground Elev. (Ft)	NA
Sample Number	1	Top Depth		Bottom Depth	

Geologic Unit	Ohio Shale
Description	Unweathered Shale

		NATURAL MOISTURI		ERMINATI	JN	
Pan ID	Sample Weight (g)	Tare Weight (g)		IN: 10/08/24	OUT: 10/09/24	Moisture Content (%)
510.17	518.17	1222 52	Time	14:10	7:20	Moisture Content (70)
/	516.17	1232.32	Mass	1750.69	1744.21	1.27%

Start Time (mil):	End Time (mil):					First Cycle	(I _{d1})	
11:25	11:35		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/09/24	
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	7	1232.52	Time	11:41	2:50	Final Dry Mass (g)
22.6	22.5	22.55			Mass	1730.91	1717.42	484.9

Start Time (mil):	End Time (mil):				S	Second Cycle	e (Id2)	
15:12	15:22		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/10/24	
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	7	1232.52	Time	15:25	7:40	Final Dry Mass (g)
23.0	22.8	22.9			Mass	1753.48	1740.36	507.84

WF = Drum mass + oven dried specimum after second cycle; B = Drum mass + specimen prior to test; C = Drum mass

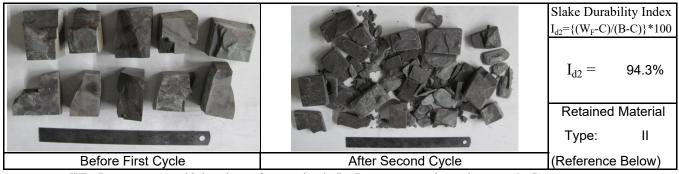
From STM D4644		L BANK			r a gan gan	rational and the second s
V	T 1	Retained pieces remain virtually unchanged	Т2	Retained material consists of large and small pieces	T 3	Retained material is exclusively small pieces

NATURAL MOISTURE DETERMINATION

ASTM D 4644

Office of Geotechnical Engineering

Lab No.:	
Report Date:	10/15/2024
Tech:	C. B


County	FRA	Route	71	Section	8.91
Boring Number	T-002-0-24	Distirict	6	PID	105435
Station		Offset	NA	Offsest Direction	NA
Latitude	NA	Longitude	NA	Ground Elev. (Ft)	NA
Sample Number	2	Top Depth		Bottom Depth	

Geologic Unit	Ohio Shale
Description	Weathered Shale

_	NATURAL MOISTURE DETERMINATION										
	Pan ID	Sample Weight (g)	Tare Weight (g)		IN: 10/08/24	OUT: 10/09/24	Moisture Content (%)				
	0	497.57	1232.70	Time	14:10	7:20	Moisture Content (76)				
	0	497.57	1232.70	Mass	1730.27	1722.60	1.57%				

Start Time (mil):	End Time (mil):		First Cycle (I _{d1})						
11:25	11:35		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/09/24		
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	8	1232.7	Time	11:41	2:50	Final Dry Mass (g)	
22.6	22.5	22.55			Mass	1726.19	1712.15	479.45	

Start Time (mil):	End Time (mil):			Second Cycle (Id2)						
15:12	15:22		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/10/24			
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	8	1232.7	Time	15:25	7:40	Final Dry Mass (g)		
22.9	22.6	22.75			Mass	1712.30	1694.73	462.03		

WF = Drum mass + oven dried specimum after second cycle; B = Drum mass + specimen prior to test; C = Drum mass

From STM D4644	L BAVA	No.			r a gan gan	rie 1 Manarel 2. Annexe
4	T 1	Retained pieces remain virtually unchanged	Т2	Retained material consists of large and small pieces	T 3	Retained material is exclusively small pieces

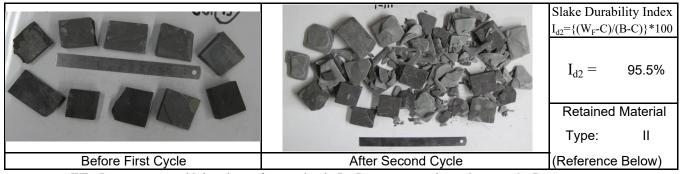
NATURAL MOISTURE DETERMINATION

ASTM D 4644

Office of Geotechnical Engineering

Lab No.:	
Report Date:	10/15/2024
Tech:	C. B

County	FRA	Route	71	Section	8.91
Boring Number	T-004-0-24	Distirict	6	PID	105435
Station		Offset	NA	Offsest Direction	NA
Latitude	NA	Longitude	NA	Ground Elev. (Ft)	NA
Sample Number	1	Top Depth		Bottom Depth	


Geologic Unit	Ohio Shale
Description	Shale

NATURAL MOISTURE DETERMINATION

Pan ID	Sample Weight (g)	Tare Weight (g)		IN: 10/08/24	OUT: 10/09/24	Moisture Content (%)
2	510.50	1221.16		14:10	7:20	Moisture Content (76)
5	519.59	1231.16	Mass	1750.75	1737.38	2.64%

Start Time (mil):	End Time (mil):			First Cycle (I _{d1})						
11:25	11:35		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/09/24			
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	3	1231.16	Time	11:41	2:50	Final Dry Mass (g)		
23.6	23.5	23.55			Mass	1744.74	1727.72	496.56		

Start Time (mil):	End Time (mil):			Second Cycle (Id2)						
15:12	15:22		Drum ID	Tare Weight (g)		IN: 10/9/24	OUT: 10/10/24			
Start Temp (°C):	End Temp (°C):	Avg. Temp (°C)	3	1231.16	Time	15:25	7:40	Final Dry Mass (g)		
22.3	22.8	22.55			Mass	1740.13	1714.48	483.32		

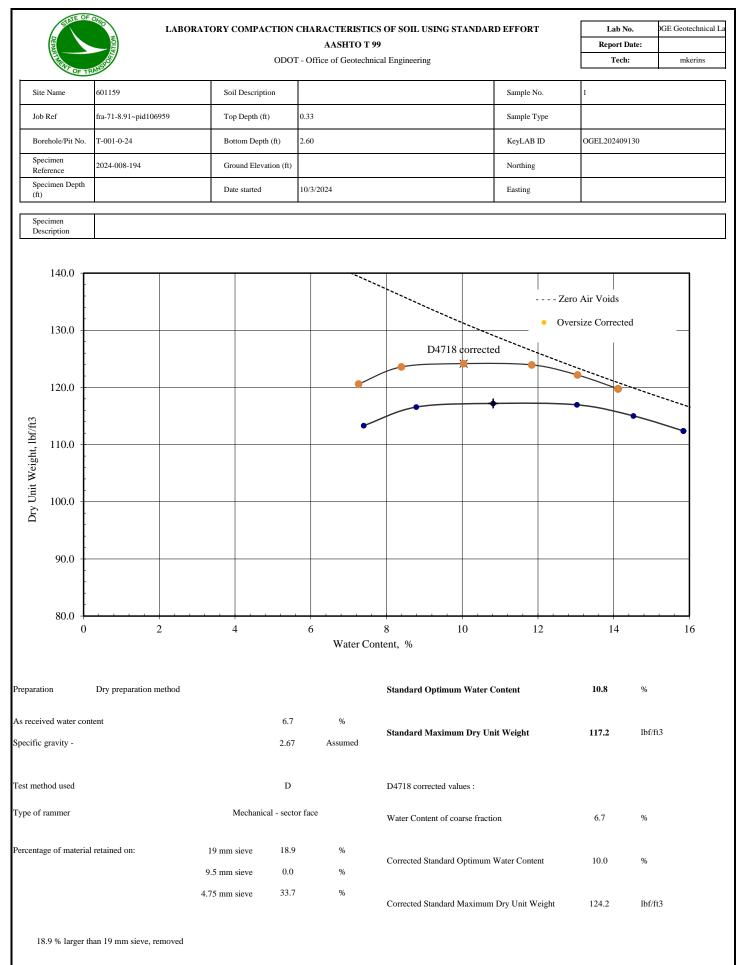
WF = Drum mass + oven dried specimum after second cycle; B = Drum mass + specimen prior to test; C = Drum mass

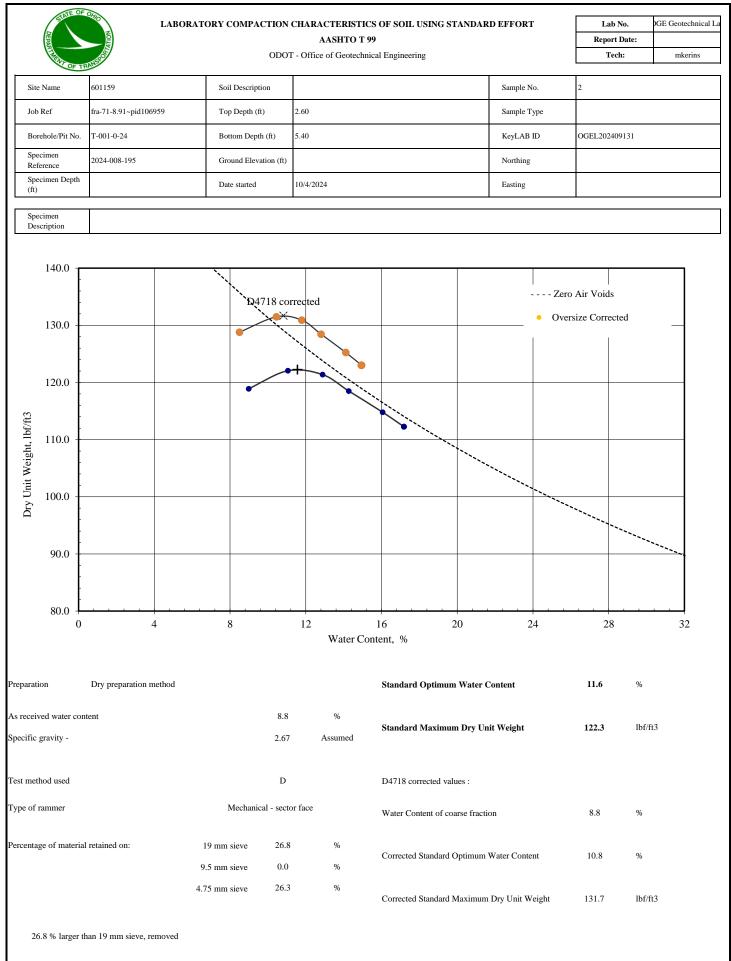
From \STM D4644		No.			р нат 12 - 1 јани	ren al and and a Analysis
\checkmark	T 1	Retained pieces remain virtually unchanged	T 2	Retained material consists of large and small pieces	T 3	Retained material is exclusively small pieces

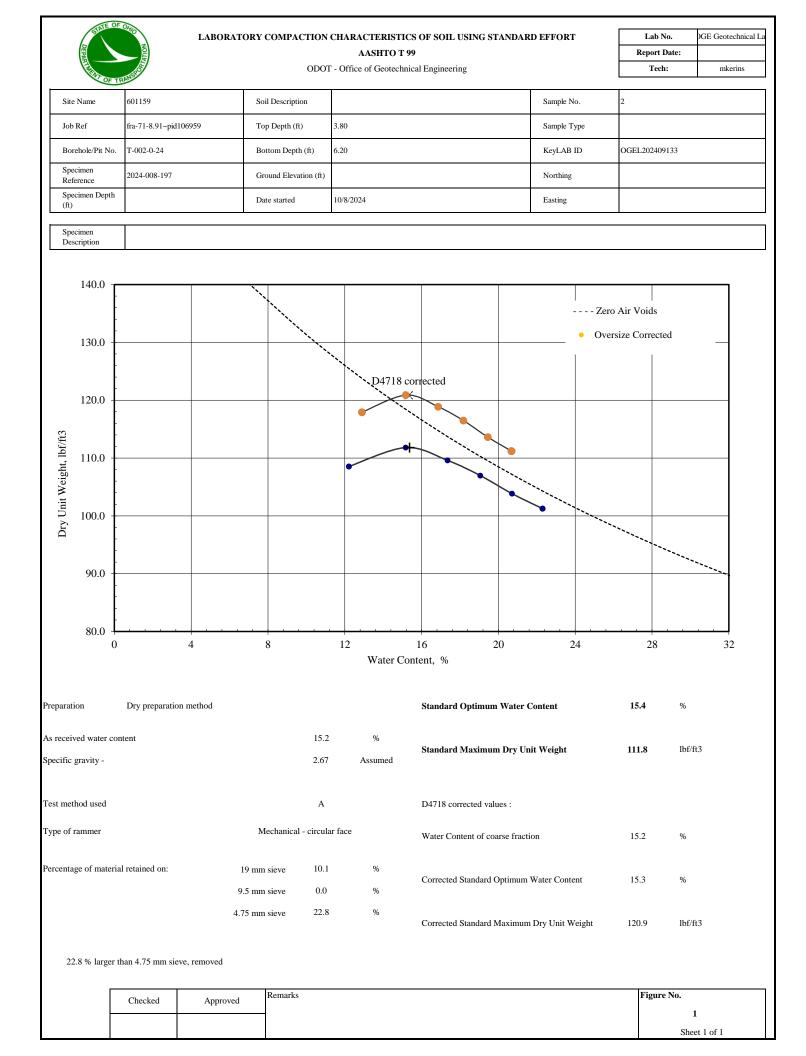
PROJECT:	F	RA-71-8.91			DIST	RICT No.:	6			PID No.	106	959		Tech:	AW
Point L	.oad Streng	th Calc*:	ls = P / (I	D _e ²)	$D_e^2 = $	4Α/π	A =	(WD')	F = (D _e /5	50) ^{0.45}	Strength =	= ls * K	K =	24]
Sample #	Approx. El. (Ft.)	Material Type	D (mm) Initial	D (mm) Final	D' (mm) Avg	L (mm)	W (mm)	D _e ²	F	D _e ² (50)	Failure Load (kN)	ls ₅₀ (MPa)	ls ₅₀ (psi)	Strength S _c (MPa)	Strength S _c (psi)
T-001-0-24		Shale	28.50	26.00	27.250	29.72	21.27	737.98	3.36	2478.15	1.551	0.49	71	12	1711
			20.00	17.00	18.500	32.00	31.73	747.40	3.38	2524.15	2.42	0.75	109	18	2620
			36.00	28.00	32.000	38.65	28.39	1156.71	4.11	4754.90	3.428	0.57	82	14	1970
			33.00	25.50	29.250	38.30	28.53	1062.52	3.96	4203.91	3.338	0.62	90	15	2170
			33.00	28.50	30.750	29.74	26.13	1023.05	3.89	3979.34	1.343	0.27	38	6	922
			30.00	22.50	26.250	28.85	26.04	870.32	3.62	3147.75	2.765	0.69	100	17	2401
			29.50	21.00	25.250	40.00	46.22	1485.94	4.60	6837.01	6.053	0.70	101	17	2420
			19.00	12.00	15.500	33.00	24.40	481.54	2.77	1334.38	0.525	0.31	45	7	1075
			24.00	19.50	21.750	33.80	27.55	762.94	3.41	2600.61	1.167	0.35	51	8	1226
			28.00	26.00	27.000	40.00	30.22	1038.89	3.92	4069.00	0.038	0.01	1	0	26
			28.00	24.00	26.000	30.00	25.78	853.43	3.58	3059.53	0.646	0.17	24	4	577
			24.50	20.00	22.250	26.50	23.90	677.08	3.23	2187.20	0.257	0.09	13	2	321
												Avera	ige Stren	yth (Sc)	1509
Comments values excl		-			•	and pre	pared a	s Block sa	mples.	1	1		<u> </u>		ighted Sc

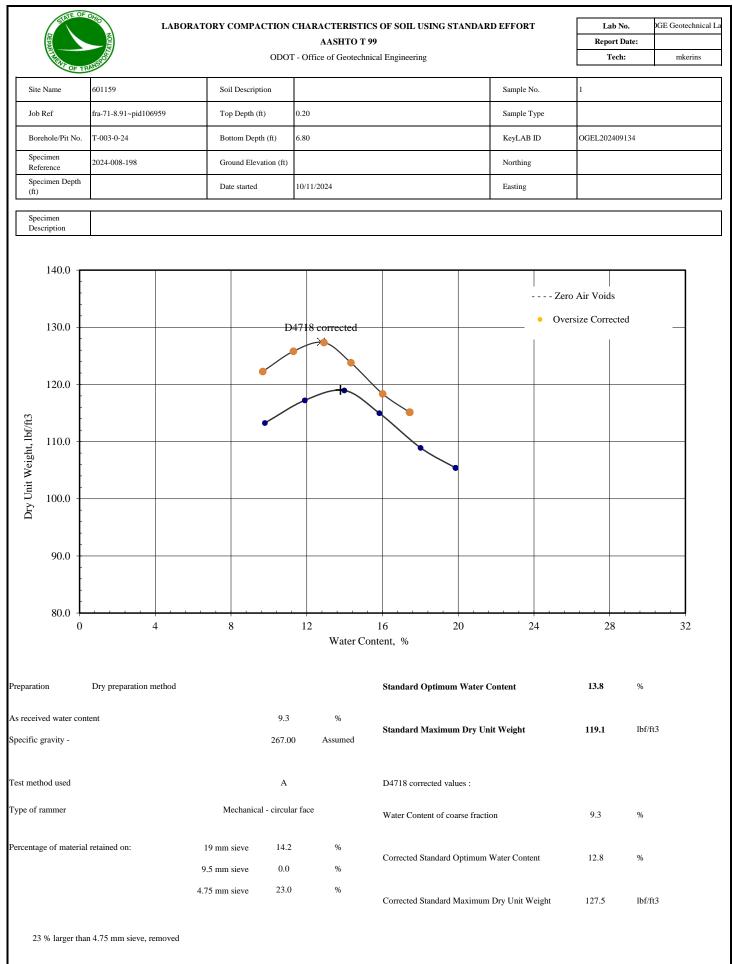
PROJECT:	F	RA-71-8.91			DIST	RICT No.:	6			PID No.	106	959		Tech:	AW
Point L	.oad Streng	th Calc*:	ls = P / (I	D _e ²)	$D_e^2 = $	4Α/π	A =	(WD')	F = (D _e /5	50) ^{0.45}	Strength =	s * K	K =	24]
Sample #	Approx. El. (Ft.)	Material Type	D (mm) Initial	D (mm) Final	D' (mm) Avg	L (mm)	W (mm)	D _e ²	F	D _e ² (50)	Failure Load (kN)	ls ₅₀ (MPa)	ls ₅₀ (psi)	Strength S _c (MPa)	Strength S _c (psi)
T-001-0-24		Limestone	31.00	27.00	29.000	41.57	35.72	1318.92	4.36	5751.52	12.307	1.68	244	40	5848
			45.00	42.00	43.500	41.38	34.07	1887.00	5.12	9667.91	7.31	0.59	86	14	2067
			30.00	25.00	27.500	37.36	39.74	1391.46	4.47	6215.79	11.66	1.47	214	35	5127
			27.50	23.00	25.250	35.76	37.60	1208.81	4.19	5068.57	11.313	1.75	254	42	6100
			30.50	26.50	28.500	36.78	37.59	1364.04	4.43	6038.98	13.404	1.74	253	42	6067
			27.00	23.50	25.250	39.03	33.22	1068.00	3.97	4235.38	10.851	2.01	292	48	7002
			29.50	25.00	27.250	35.58	33.54	1163.70	4.12	4796.58	9.73	1.59	231	38	5544
			29.50	26.00	27.750	33.07	26.54	937.72	3.74	3507.29	6.019	1.35	195	32	4 691
			26.00	21.50	23.750	37.47	32.99	997.60	3.85	3836.63	9.088	1.86	270	45	6474
			36.00	32.50	34.250	32.97	26.46	1153.88	4.11	4738.02	8.48	1.41	204	34	4892
			26.50	23.00	24.750	39.16	24.46	770.80	3.42	2639.55	8.568	2.55	370	61	8872
			28.50	25.00	26.750	37.51	19.87	676.76	3.23	2185.70	3.805	1.37	198	33	4758
												Avera	ige Stren	l gth (Sc)	5601

PROJECT:	F	RA-71-8.91			DIST	RICT No.:	6			PID No.	106	959		Tech:	AW
Point L	oad Streng	th Calc*:	Is = P / (I	D _e ²)	$D_e^2 = $	4Α/π	A =	(WD')	F = (D _e /5	50) ^{0.45}	Strength =	: Is * K	K =	24]
Sample #	Approx. El. (Ft.)	Material Type	D (mm) Initial	D (mm) Final	D' (mm) Avg	L (mm)	W (mm)	${\sf D_e}^2$	F	D _e ² (50)	Failure Load (kN)	ls ₅₀ (MPa)	ls ₅₀ (psi)	Strength S _c (MPa)	Strength S _c (psi)
T-001-0-24		Glacial	32.00	30.50	31.250	36.00	51.08	2032.41	5.30	10766.64	5.658	0.41	60	10	1436
		(Granite)	29.00	23.50	26.250	37.72	52.86	1766.72	4.97	8787.30	19.109	1.71	248	41	5944
			28.50	24.00	26.250	37.53	62.94	2103.62	5.38	11317.88	20.103	1.40	202	33	4855
			24.00	21.00	22.500	34.87	50.33	1441.85	4.54	6544.82	11.204	1.34	195	32	4679
			22.50	18.50	20.500	35.44	50.73	1324.13	4.37	5784.43	9.589	1.30	189	31	4531
			27.50	22.50	25.000	34.44	53.51	1703.28	4.89	8333.50	16.269	1.53	222	37	5336
			24.00	20.00	22.000	36.63	53.30	1493.00	4.61	6884.16	16.616	1.90	275	45	6597
			27.50	23.00	25.250	32.61	59.36	1908.38	5.15	9827.18	17.606	1.41	204	34	4897
			28.00	24.00	26.000	28.00	55.22	1828.02	5.05	9232.83	18.412	1.57	227	38	5450
			27.00	22.50	24.750	33.89	67.28	2120.17	5.40	11447.28	18.122	1.24	180	30	4327
			30.50	26.50	28.500	35.15	67.22	2439.24	5.75	14027.54	19.453	1.09	158	26	3790
			30.00	26.00	28.000	35.44	66.77	2380.40	5.69	13539.60	18.869	1.09	159	26	3809
												Avera	ige Streng	th (Sc)	4735
Comments Sc values e		•			•	•	pared a	s Block sa	imples.	•				. /	lighted

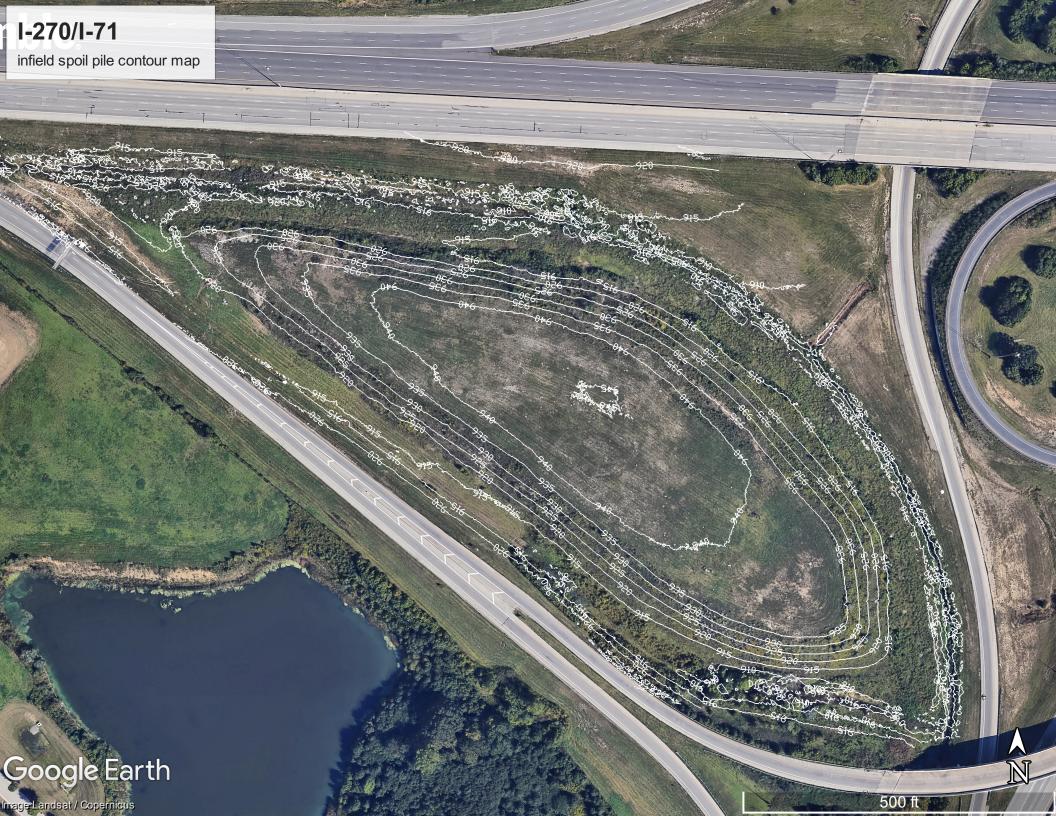

PROJECT:	F	RA-71-8.91			DISTI	RICT No.:	6			PID No.	106	959		Tech:	AW
Point L	oad Streng	th Calc*:	ls = P / (I	D _e ²)	$D_e^2 =$	4Α/π	A =	(WD')	F = (D _e /5	60) ^{0.45}	Strength =	: Is * K	K =	24]
Sample #	Approx. El. (Ft.)	Material Type	D (mm) Initial	D (mm) Final	D' (mm) Avg	L (mm)	W (mm)	D _e ²	F	D _e ² (50)	Failure Load (kN)	Is ₅₀ (MPa)	ls ₅₀ (psi)	Strength S _c (MPa)	Strength S _c (psi)
T-002-0-24	Unweath	ered Shale	23.00	21.00	22.000	32.27	59.22	1658.83	4.83	8020.03	2.629	0.26	37	6	896
			17.00	16.00	16.500	28.97	44.07	925.84	3.72	3443.05	4.792	1.09	159	26	3804
			40.00	36.00	38.000	30.97	33.94	1642.12	4.81	7903.18	5.495	0.55	79	13	1900
			25.00	23.00	24.000	32.08	41.19	1258.67	4.27	5374.50	2.76	0.40	58	10	1404
			22.00	20.00	21.000	23.83	45.31	1211.50	4.20	5084.91	4.718	0.73	106	17	2536
			41.00	39.00	40.000	32.08	32.96	1678.64	4.86	8159.29	4.329	0.42	60	10	1450
			42.00	38.00	40.000	32.07	44.42	2262.29	5.56	12576.49	5.884	0.37	53	9	1279
			24.00	20.00	22.000	29.46	44.53	1247.34	4.25	5304.48	5.229	0.77	112	19	2694
			24.00	23.00	23.500	27.37	41.08	1229.16	4.22	5192.74	1.509	0.23	33	5	794
			15.00	22.00	18.500	27.98	42.78	1007.68	3.86	3892.98	4.474	0.90	131	22	3141
			35.00	30.00	32.500	31.82	38.84	1607.21	4.77	7660.72	4.497	0.46	67	11	1604
Comments												Avera	ige Stren	gth (Sc)	1838


PROJECT:	F	RA-71-8.91			DIST	RICT No.:	6			PID No.	106	959		Tech:	AW
Point L	oad Streng	th Calc*:	ls = P / (I	D _e ²)	$D_e^2 = $	4Α/π	A =	(WD')	F = (D _e /5	60) ^{0.45}	Strength =	: Is * K	K =	24]
Sample #	Approx. El. (Ft.)	Material Type	D (mm) Initial	D (mm) Final	D' (mm) Avg	L (mm)	W (mm)	D _e ²	F	D _e ² (50)	Failure Load (kN)	Is ₅₀ (MPa)	ls ₅₀ (psi)	Strength S _c (MPa)	Strength S _c (psi)
T-002-0-24	Weath	ered Shale	38.00	36.00	37.000	24.53	38.44	1810.90	5.03	9107.77	2.321	0.20	29	5	697
			37.00	35.00	36.000	19.83	34.73	1591.91	4.75	7555.17	1.784	0.19	27	4	645
			27.00	14.00	20.500	28.84	40.29	1051.63	3.94	4141.55	2.342	0.44	64	11	1546
			22.00	19.00	20.500	22.55	27.34	713.61	3.31	2360.39	1.981	0.66	96	16	2294
			32.00	30.00	31.000	25.05	34.96	1379.89	4.45	6140.97	1.058	0.14	20	3	471
			22.00	19.00	20.500	29.85	37.33	974.37	3.81	3707.75	3.825	0.81	117	19	2820
			25.00	22.00	23.500	24.78	38.81	1161.24	4.12	4781.90	3.963	0.65	94	16	2265
			40.00	37.00	38.500	22.40	37.36	1831.38	5.05	9257.46	2.837	0.24	35	6	838
			20.00	19.00	19.500	20.65	35.75	887.61	3.65	3238.80	0.681	0.17	24	4	575
			19.00	16.00	17.500	32.10	33.63	749.33	3.38	2533.63	1.532	0.47	69	11	1653
			21.00	20.00	20.500	34.65	38.63	1008.30	3.86	3896.44	1.259	0.25	37	6	883
			22.00	20.00	21.000	38.82	35.52	949.74	3.76	3572.63	2.3	0.51	73	12	1760
												Aver	an Strop	ath (Sc)	1289
Comments	: Point Lo	ad sample	collect	ed from	test pit	and pre	pared a	s Block sa	mples.			Avera	ige Stren		ighted Sc


PROJECT:	F	RA-71-8.91			DIST	RICT No.:	6			PID No.	106	959		Tech:	AW
Point L	oad Streng	th Calc*:	ls = P / (I	D _e ²)	$D_e^2 = c$	4Α/π	A =	(WD')	F = (D _e /5	50) ^{0.45}	Strength =	: Is * K	K =	24]
			D	D							Failure			Character 1	
Sample #	Approx. El. (Ft.)	Material Type	(mm) Initial	(mm) Final	D' (mm) Avg	L (mm)	W (mm)	${\sf D_e}^2$	F	D _e ² (50)	Load (kN)	ls ₅₀ (MPa)	ls ₅₀ (psi)	Strength S _c (MPa)	Strength S _c (psi)
T-004-0-24		Shale	19.00	17.00	18.000	39.99	31.31	717.57	3.32	2379.41	1.242	0.41	59	10	1427
			31.00	22.00	26.500	32.42	40.18	1355.71	4.42	5985.56	1.293	0.17	25	4	590
			16.00	13.50	14.750	39.56	28.44	534.11	2.90	1550.71	0.041	0.02	3	0	72
			27.00	23.00	25.000	38.65	32.92	1047.88	3.93	4120.15	0.083	0.02	2	0	55
			19.00	12.00	15.500	39.21	32.73	645.93	3.16	2042.85	1.126	0.43	63	10	1507
			26.50	22.00	24.250	38.32	33.58	1036.82	3.91	4057.26	0.29	0.06	8	1	195
			23.50	17.00	20.250	34.17	35.75	921.75	3.71	3420.98	0.54	0.12	18	3	431
			25.50	23.00	24.250	38.12	35.28	1089.31	4.00	4358.45	0.585	0.11	15	3	367
			12.50	10.00	11.250	36.97	29.31	419.84	2.61	1093.77	1.374	0.99	143	24	3433
			13.00	10.00	11.500	37.28	40.83	597.84	3.05	1826.06	0.77	0.33	48	8	1153
			13.00	11.00	12.000	31.67	36.97	564.86	2.98	1681.81	0.074	0.03	5	1	120
			19.00	17.00	18.000	29.14	34.08	781.06	3.44	2690.63	0.057	0.02	2	0	58
			21.00	19.00	20.000	34.33	29.38	748.16	3.38	2527.86	0.515	0.16	23	4	557
			14.00	12.00	13.000	32.34	27.94	462.47	2.72	1258.43	0.623	0.39	56	9	1353
												Avera	ige Streng	gth (Sc)	627
Comments	Point Lo	ad sample	collect	ed from	test pit	and pre	pared a	s Block sa	mples.	-	-			Highl	ighted Sc



Checked	Approved	Remarks	Figure No.
			1
			Sheet 1 of 1



Checked	Approved	Remarks	Figure No.
			I Sheet 1 of 1

Checked	Approved	Remarks	Figure No.
			I Sheet 1 of 1

Stockpile Report

Coordinate System	
Name:	United States/NAD83
Zone:	Ohio South 3402
Datum:	NAD83(2011)
Global reference datum:	NAD83(2011)
Global reference epoch:	2010
Geoid:	GEOID18 (Conus)
Vertical datum:	
Calibrated site:	
	Name: Zone: Datum: Global reference datum: Global reference epoch: Geoid: Vertical datum:

Stockpile Volume Report

Name	Base Area	Slope Area	Volume	Date	Initial Surface	Final Surface
_Minimum_elev ation_Average_ elevation	494764.8 ft ²	510449.4 ft ²	269442.2 yd³	10/24/2024	Generated Initial1	Generated Final1

10/24/2024 3:47:56	Trimble Business Center
PM	