FRA-70-12.68 PROJECT 4R FRA-70-1390C RAMP C5 OVER I-70/71 PID NO. 105523 FRANKLIN COUNTY, OHIO

STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For: GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

> Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

> > Rii Project No. W-13-045

July 2018

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990

August 19, 2016 (Revised July 10, 2018)

Mr. Christopher W. Luzier, P.E. Project Manager GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

Re: Structure Foundation Exploration Report FRA-70-12.68 Project 4R FRA-70-1390C – Ramp C5 over I-70/71 PID No. 105523 Rii Project No. W-13-045

Mr. Luzier:

Resource International, Inc. (Rii) is pleased to submit this structure foundation exploration report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of the proposed FRA-70-1390C bridge structure carrying Ramp C5 over I-70/71 as part of the FRA-70-12.68 Project 4R in Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the structure foundation exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Brian R. Trenner, P.E. Director – Geotechnical Programming

Jonathan P. Sterenberg, P.E. Director – Geotechnical Planning

Enclosure: Structure Foundation Exploration Report

6350 Presidential Gateway Columbus, Ohio 43231 Phone: 614.823.4949 Fax: 614.823.4990 Planning

Engineering

Construction Management

Technology

Section	Page
EXECUTIVE SUMMARY	I
	si ndationsiii
1.0 INTRODUCTION	1
2.0 GEOLOGY AND OBSER	ATIONS OF THE PROJECT1
3.0 EXPLORATION	
4.0 FINDINGS	6
4.2 Subsurface Soils4.3 Bedrock4.4 Groundwater	6
5.0 ANALYSES AND RECOM	IMENDATIONS10
5.1.1 Group Effic 5.1.2 Lateral Des	mmendations
5.2 Lateral Earth Pres 5.3 Construction Cons 5.3.1 Excavation	ft Considerations
6.0 LIMITATIONS OF STUDY	

TABLE OF CONTENTS

APPENDICIES

- Appendix I Vicinity Map and Boring Plan
- Appendix II Description of Soil Terms
- Appendix III Project Boring Logs: B-023-1-13 through B-026-3-13
- Appendix IV Historic Boring Logs: B-001-C-59, B-002-F-59, B-003-A-59 and B-005-F-59
- Appendix V Laboratory Test Results
- Appendix VI Drilled Shaft Calculations
- Appendix VII Lateral Design Parameters

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a structure foundation exploration for the design and construction of the proposed FRA-70-1390C bridge structure carrying the proposed Ramp C5 over I-70/71, as shown on the vicinity map and boring plan presented in Appendix I. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. Based on information provided by GPD GROUP, the proposed structure will consist of two single-span reinforced concrete deck structures supported transversely by simple span welded steel plate girders with reinforced concrete substructures. The proposed structure will have an approximate span length of approximately 92.5 feet where it will span over I-70 westbound, as measured from the centerline of abutment bearings to the centerline of the pier. The east end of the bridge deck spanning over I-70 westbound will also be integrated with the FRA-70-1395 Front Street bridge deck at the northwest corner of that structure, where the ramp will be aligned with Fulton Street.

Exploration and Findings

Between August 6, 2013, and February 14, 2015, six (6) structural borings, designated as B-023-1-13, B-024-1-13, B-024-2-14, B-026-1-13, B-026-2-13 and B-026-3-13, were advanced to completion depths ranging from 48.1 to 90.0 feet below the existing ground surface. In addition to the borings performed by Rii as part of the current exploration, three (3) borings, designated as B-024-0-08, B-025-0-08 and B-026-0-08, were drilled to a completion depth of 111.5, 59.3 and 115.0 feet below the existing ground surface, respectively, by DLZ as part of the FRA-70-8.93 preliminary exploration (PID 77369). In addition to the project borings, four (4) borings, designated as B-001-C-59, B-002-F-59, B-003-A-59 and B-005-F-59, were drilled to completion depths ranging from 55.0 to 73.0 feet below the existing grade at the respective boring location at the time of the exploration by the Department of Highways as part of the FRA-40-12.89 project.

Borings B-023-1-13 and B-024-0-08 were performed along the south side of W. Fulton Street, and no discernable surface material was present at the ground surface. Borings B-024-1-13 and B-024-2-14 were drilled in the existing I-70 eastbound ramp to Front Street and encountered 14.0 and 5.0 inches of asphalt, respectively, overlying 6.0 inches of aggregate base in boring B-024-1-13 and 13.0 inches of concrete in boring B-024-2-14 at the ground surface. Borings B-025-0-08 and B-026-2-13 were drilled in the existing shoulders of I-70 eastbound and westbound and encountered 7.0 and 9.0 inches of asphalt overlying 7.0 and 6.0 inches of aggregate base, respectively. Boring B-026-0-08 was performed at the top of the slope along the north side of I-70/I-71 and encountered 4.0 inches of topsoil at the ground surface. Boring B-026-1-13 was performed in the existing pavement along S. Ludlow Street and encountered 4.0 inches of asphalt overlying 8.0 inches of aggregate base. Boring B-026-3-13 was performed within the existing sidewalk along the west side of S. Front

Street, at the intersection with W. Fulton Street on the north side of I-70/I-71 and encountered 6.0 inches of concrete overlying 6.0 inches of aggregate base.

Beneath the pavement materials in borings B-025-0-08, B-026-1-13 and B-026-2-13, material identified as existing fill or possible fill was encountered extending to depths ranging from 3.5 to 15.5 feet below exiting grade, which corresponds to elevations ranging from 731.3 to 736.9 feet msl. The fill material was described as medium dense to very dense, brown and gray gravel, gravel and sand, gravel with sand and silt (ODOT A-1-a, A-1-b, A-2-4), and hard, brown silt and clay (ODOT A-6a) and contained brick fragments throughout.

Underlying the surficial materials and existing fill, where encountered, natural soils were encountered consisting of both granular and cohesive material. The granular soils were generally described as loose to very dense brown, gray, brownish gray and dark gray gravel, gravel and sand, gravel with sand and silt, fine sand, coarse and fine sand, sandy silt and silt (ODOT A-1-a, A-1-b, A-2-4, A-3, A-3a, A-4a, A-4b). The cohesive materials were generally described as soft to hard, brown, brownish gray and dark gray sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6b, A-7-6).

Cobbles and boulders were encountered in the majority of the borings at and below elevations ranging from 700 to 710 feet msl. At depths below this elevations range, drilling conditions were typically more challenging and high blow counts, including split spoon sampler refusal, were obtained throughout these deposits. Split spoon sampler refusal is defined as exceeding 50 blows from the hammer with less than 6.0 inches of penetration by the split spoon sampler. Additionally, heaving sands were encountered in the majority of the borings at elevations ranging from 685 to 700 feet msl. The height of sand heave within the augers was approximately 1.0 to 3.0 feet and was able to be controlled through the addition of water or mud to the boreholes during drilling.

Top of bedrock was encountered in borings B-024-0-08 and B-026-0-08 at a depth of 91.8 and 90.0 feet below existing grade, respectively, which corresponds to an elevation of 651.6 and 664.0 feet msl. The upper portion of the bedrock in boring B-026-0-08 consisted of brown, severely weathered claystone that extended to a depth of 97.8 feet (EI. 656.2 feet msl) overlying blueish gray to dark gray, moderately to highly weathered shale.

In general, the historic borings, designated B-001-C-59, B-002-F-59, B-003-A-59 and B-005-F-59, encountered loose to very dense granular soils with intermittent seams of medium stiff to hard cohesive soils. The granular soils were generally described as brown and gray gravel, gravel and sand, gravel with sand and silt, coarse and fine sand and sandy silt (ODOT A-1-a, A-1-b, A-2-4, A-3a, A-4a), and the cohesive soils were generally described as brown, gray and brownish gray sandy silt, silt and silt and clay (ODOT A-4a, A-4b, A-6a). In general, the subsurface conditions encountered in the historic borings matched relatively closely with the subsurface conditions encountered in the preliminary engineering or current exploration borings

Analyses and Recommendations

Design details of the structure proposed were provided by GPD GROUP. Based on the information provided, it is understood that the proposed structure will consist of two single-span reinforced concrete deck structures supported transversely by simple span welded steel plate girders with reinforced concrete substructures supported on drilled shafts tied into footings or tangent drilled shafts. The proposed structure will have an approximate span length of approximately 92.5 feet where it will span over I-70 eastbound and 96.3 feet where it will span over I-70 westbound, as measured from the centerline of abutment bearings to the centerline of the pier. The east end of the bridge deck spanning over I-70 westbound will also be integrated with the FRA-70-1395 Front Street bridge deck at the northwest corner of that structure, where the ramp will be aligned with Fulton Street.

Consideration was given to a driven pile foundation, but given the dense, granular nature of the soil and the presence of cobbles and boulders that are common in the area, as well as the close proximity to existing underground utilities, this type of foundation system is not recommended due to the potential of damaging the pile elements or existing utilities during installation. Consideration was also given to supporting the structure on shallow foundations, but due to the close proximity to existing utilities at all of the substructure locations, this type of foundation system is not recommended due to the potential of damaging the additional pressures from the foundation loading.

Drilled Shaft Recommendations

It is understood that a combination of drilled shafts tied into footings or tangent drilled shafts foundations are being utilized to support the substructure units. To achieve the most economical design, the drilled shafts should extend to bear in the dense to very dense gravel, gravel and sand, gravel with sand and silt, coarse and fine sand (ODOT A-1-a, A-1-b, A-2-4, A-3a) or hard sandy silt, silt or silt and clay (ODOT A-4a, A-4b, A-6a) at or below elevation 705.0 feet msl in order to maximize the end bearing resistance. It is recommended that the drilled shafts be designed using the axial design parameters provided in the following tables.

Boring	Elevation ¹	Shaft Length	Soil	Nominal R (k:	esistance		ce Factor
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	728.6-724.4	0.0-4.2	A-7-6	19	1.51	0.40	0.45
	724.4-719.4	4.2-9.2	A-6a	15	1.03	0.40	0.45
	719.4-714.4	9.2-14.2	A-7-6	19	1.16	0.40	0.45
B-023-1-13	714.4-710.4	14.2-18.2	A-1-b	39	1.73	0.50	0.55
	710.4-695.4	18.2-33.2	A-1-b	60	2.81	0.50	0.55
	695.4-690.4	33.2-38.2	A-6b	45	2.32	0.40	0.45
	690.4-684.4	38.2-44.2	A-1-a	60	4.76	0.50	0.55
	728.6-715.4	0.0-13.2	A-4a	21	1.30	0.40	0.45
	715.4-711.4	13.2-17.2	A-4b	33	2.02	0.50	0.55
	711.4-706.4	17.2-22.2	A-1-a	44	1.93	0.50	0.55
D 004 0 00	706.4-701.4	22.2-27.2	A-4a	72	3.60	0.40	0.45
B-024-0-08	701.4-691.4	27.2-37.2	A-3a	60	2.29	0.50	0.55
	691.4-686.4	37.2-42.2	A-1-b	60	4.76	0.50	0.55
	686.4-681.4	42.2-47.2	A-4a	60	4.67	0.50	0.55
	681.4-651.6	47.2-77.0	A-1-a	60	5.36	0.50	0.55
	728.6-720.9	0.0-7.7	A-4a	41	2.37	0.40	0.45
	720.9-714.4	7.7-14.2	A-6a	45	2.32	0.40	0.45
D 004 4 40	714.4-694.4	14.2-34.2	A-1-a	60	4.41	0.50	0.55
B-024-1-13	694.4-689.4	34.2-39.2	A-3a	52	2.05	0.50	0.55
	689.4-684.4	39.2-44.2	A-4a	72	3.60	0.40	0.45
	684.4-682.4	44.2-46.2	A-1-b	60	5.04	0.50	0.55
	728.6-717.2	0.0-11.4	A-4a	29	1.82	0.40	0.45
	717.2-710.7	11.4-17.9	A-4b	25	1.66	0.50	0.55
D 004 0 44	710.7-705.7	17.9-22.9	A-1-b	20	1.10	0.50	0.55
B-024-2-14	705.7-700.7	22.9-27.9	A-1-b	60	2.54	0.50	0.55
	700.7-695.7	27.9-32.9	A-4a	58	2.92	0.40	0.45
	695.7-683.7	32.9-44.9	A-1-b	60	4.68	0.50	0.55
	728.6-719.0	0.0-9.6	A-1-b	46	1.37	0.50	0.55
B-026-1-13	719.0-714.0	9.6-14.6	A-1-b	60	2.19	0.50	0.55
	714.0-697.0	14.6-31.6	A-1-b	60	3.46	0.50	0.55

Drilled Shaft Axial Design Parameters – Rear Abutment

2. Side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the top of shaft elevation if the shafts are not tied into an embedded pile cap.

Boring	Elevation ¹	Shaft Length	Soil	Nominal R (ks	esistance	Resistan	ce Factor
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	728.5-720.9	0.0-7.6	A-4a	43	2.37	0.40	0.45
	720.9-714.4	7.6-14.1	A-6a	45	2.32	0.40	0.45
B-024-1-13	714.4-694.4	14.1-34.1	A-1-a	60	4.45	0.50	0.55
В-024-1-13	694.4-689.4	34.1-39.1	A-3a	52	2.06	0.50	0.55
	689.4-684.4	39.1-44.1	A-4a	72	3.60	0.40	0.45
	684.4-682.4	44.1-46.1	A-1-b	60	5.07	0.50	0.55
	729.5-717.2	0.0-12.3	A-4a	30	1.82	0.40	0.45
	717.2-710.7	12.3-18.8	A-4b	25	1.71	0.50	0.55
B-024-2-14	710.7-705.7	18.8-23.8	A-1-b	20	1.13	0.50	0.55
D-024-2-14	705.7-700.7	23.8-28.8	A-1-b	60	2.58	0.50	0.55
	700.7-695.7	28.8-33.8	A-4a	58	2.92	0.40	0.45
	695.7-683.7	33.8-45.8	A-1-b	60	4.74	0.50	0.55
	728.5-715.4	0.0-13.1	A-4a	24	1.51	0.40	0.45
	715.4-711.9	13.1-16.6	A-6b	25	1.58	0.40	0.45
	711.9-701.9	16.6-26.6	A-1-b	60	3.64	0.50	0.55
B-025-0-08	701.9-696.9	26.6-31.6	A-4a	72	3.60	0.40	0.45
	696.9-690.4	31.6-38.1	A-1-b	60	3.50	0.50	0.55
	690.4-683.4	38.1-45.1	A-6a	67	3.37	0.40	0.45
	683.4-681.4	45.1-47.1	A-3a	60	3.04	0.50	0.55
	726.0-716.3	0.0-9.7	A-1-b	24	0.78	0.50	0.55
	716.3-695.3	9.7-30.7	A-1-b	60	3.61	0.50	0.55
	695.3-689.8	30.7-36.2	A-3a	16	1.15	0.50	0.55
B 026 2 42	689.8-684.8	36.2-41.2	A-3a	60	2.09	0.50	0.55
B-026-2-13	684.8-674.8	41.2-51.2	A-3a	60	2.52	0.50	0.55
	674.8-664.8	51.2-61.2	A-4a	72	3.60	0.40	0.45
	664.8-654.8	61.2-71.2	A-3a	60	3.01	0.50	0.55
	654.8-647.3	71.2-78.7	A-6b	72	3.60	0.40	0.45
	724.5-712.1	0.0-12.4	A-1-b	60	2.81	0.50	0.55
B-002-F-59	712.1-691.1	12.4-33.4	A-1-a	60	4.05	0.50	0.55
	691.1-681.1	33.4-43.4	A-3a	60	2.84	0.50	0.55

Drilled Shaft Axial Design Parameters – Pier

Boring	Elevation ¹	Shaft Length	Soil	(KSI)		Resistance Factor	
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	729.5-717.9	0.0-11.6	A-4a	20	1.23	0.40	0.45
	717.9-712.9	11.6-16.6	A-4b	39	2.08	0.50	0.55
	712.9-701.9	16.6-27.6	A-1-a	60	2.95	0.50	0.55
B-003-A-59	701.9-696.9	27.6-32.6	A-3a	60	2.70	0.50	0.55
B-003-A-59	696.9-691.9	32.6-37.6	A-4a	72	3.60	0.40	0.45
	691.9-686.9	37.6-42.6	A-2-4	60	3.53	0.50	0.55
	686.9-682.4	42.6-47.1	A-4b	69	3.48	0.40	0.45
	682.4-679.9	47.1-49.6	A-3a	60	3.04	0.50	0.55

2. Side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the top of shaft elevation if the shafts are not tied into an embedded pile cap.

Drilled Shaft Axial Design Parameters – Forward Abutment

Boring	Elevation ¹	Shaft Length	Soil		lesistance sf)	Resistan	ce Factor
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	732.0-715.4	0.0-16.6	A-4a	24	1.51	0.40	0.45
	715.4-711.9	16.6-20.1	A-6b	25	1.58	0.40	0.45
	711.9-701.9	20.1-30.1	A-1-b	60	3.84	0.50	0.55
B-025-0-08	701.9-696.9	30.1-35.1	A-4a	72	3.60	0.40	0.45
	696.9-690.4	35.1-41.6	A-1-b	60	3.64	0.50	0.55
	690.4-683.4	41.6-48.6	A-6a	67	3.37	0.40	0.45
	683.4-681.4	48.6-50.6	A-3a	60	3.13	0.50	0.55
	732.0-723.0	0.0-9.0	A-6a	20	1.37	0.40	0.45
	723.0-712.0	9.0-20.0	A-4a	23	1.44	0.40	0.45
	712.0-704.0	20.0-28.0	A-2-4	60	3.31	0.50	0.55
B-026-0-08	704.0-697.0	28.0-35.0	A-6a	72	3.60	0.40	0.45
Б-020-0-08	697.0-687.0	35.0-45.0	A-1-b	60	4.41	0.50	0.55
	687.0-679.0	45.0-53.0	A-6a	50	2.53	0.40	0.45
	679.0-672.0	53.0-60.0	A-1-a	60	5.30	0.50	0.55
	672.0-664.0	60.0-68.0	A-4a	72	3.60	0.40	0.45

Boring	Elevation ¹	Shaft Length	Soil	Nominal R (k:	esistance sf)	Resistan	ce Factor
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	728.4-726.3	0.0-2.1	A-2-4	34	0.67	0.50	0.55
	726.3-716.3	2.1-12.1	A-1-b	24	0.91	0.50	0.55
	716.3-695.3	12.1-33.1	A-1-b	60	3.77	0.50	0.55
	695.3-689.8	33.1-38.6	A-3a	16	1.20	0.50	0.55
B-026-2-13	689.8-684.8	38.6-43.6	A-3a	60	2.15	0.50	0.55
	684.8-674.8	43.6-53.6	A-3a	60	2.58	0.50	0.55
	674.8-664.8	53.6-63.6	A-4a	72	3.60	0.40	0.45
	664.8-654.8	63.6-73.6	A-3a	60	3.07	0.50	0.55
	654.8-647.3	73.6-81.1	A-6b	72	3.60	0.40	0.45
	730.0-724.9	0.0-5.1	A-1-b	40	0.97	0.50	0.55
	724.9-719.9	5.1-10.1	A-4a	66	3.54	0.40	0.45
	719.9-704.9	10.1-25.1	A-1-b	60	3.21	0.50	0.55
B-026-3-13	704.9-694.9	25.1-35.1	A-4a	72	3.60	0.40	0.45
	694.9-689.9	35.1-40.1	A-2-4	60	4.64	0.50	0.55
	689.9-669.9	40.1-60.1	A-1-b	60	4.07	0.50	0.55
	669.9-666.9	60.1-63.1	A-3a	60	3.23	0.50	0.55
	730.0-723.4	0.0-6.6	A-2-4	60	1.65	0.50	0.55
	723.4-713.4	6.6-16.6	A-3a	60	1.95	0.50	0.55
B-001-C-59	713.4-705.4	16.6-24.6	A-1-a	60	3.12	0.50	0.55
	705.4-694.4	24.6-35.6	A-1-b	60	4.43	0.50	0.55
	694.4-691.4	35.6-38.6	A-4a	60	5.45	0.50	0.55
	730.0-720.7	0.0-9.3	A-4a	65	3.60	0.40	0.45
B-005-F-59	720.7-709.7	9.3-20.3	A-1-a	60	3.89	0.50	0.55
D-000-E-98	709.7-699.7	20.3-30.3	A-1-b	60	4.34	0.50	0.55
	699.7-691.7	30.3-38.3	A-6a	72	3.60	0.40	0.45

2. Side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the top of shaft elevation if the shafts are not tied into an embedded pile cap.

Drilled shaft lengths should measure a minimum of three (3) times the shaft diameter. Per Section 10.8.3.5.1b of the AASHTO LRFD BDS, side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the bottom of footing/top of shaft elevation. Total settlement of the drilled shafts is estimated to be less than 1.0 inch for shafts bearing at or below elevation 705.0 feet msl.

The axial resistance of a group of shafts may be less than the sum of the individual shaft resistance within a group of shafts. Per Section 10.8.3.6.3 of the AASHTO LRFD BDS, for soil profiles that consist of primarily granular soils, the individual nominal resistance of each drilled shaft shall be reduced by applying an adjustment factor, η , as defined in Table 10.8.3.6.1-1 of the AASHTO LRFD BDS. The following criteria are recommended for the group resistance of any shaft groups.

For a single row of drilled shafts:

- $\eta = 0.9$ for a center-to-center spacing of 2.0 diameters or less,
- $\eta = 1.0$ for a center-to-center spacing of 3.0 diameters or greater.

For multiple rows of drilled shafts:

- $\eta = 0.67$ for a center-to-center spacing of 2.5 diameters or less,
- $\eta = 0.8$ for a center-to-center spacing of 3.0 diameters,
- $\eta = 1.0$ for a center-to-center spacing of 4.0 diameters or greater.

For intermediate spacing under either scenario, the value of η may be determined by liner interpolation. Please note that the adjustment factor should be applied to the total individual nominal shaft resistance (including both end bearing side resistance along the shaft length).

Given that the drilled shafts at the abutments will be constructed tangent to each other, the shaft group capacity should also be checked using the block failure mechanism. Since the soil profile consists primarily of dense granular soils, the analysis should be performed considering the entire drilled shaft group as an equivalent strip footing with a length equal to the length of the tangent shaft wall and equivalent width equal to the total end area of the drilled shafts divided by the length of the drilled shaft wall. A resistance factor of $\varphi_b = 0.45$ should be utilized in calculating the factored bearing resistance for the this failure mode at the strength limit state.

The total group resistance shall be the lesser of the sum of the individual drilled shafts multiplied by the applicable group efficiency factor, η , or the resistance of the group in block failure mode.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70-12.68/13.11/14.05C (Project 4R/4H/4A) projects in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project. The FRA-70-12.68 (Project 4R) phase will consist of all work associated with the construction of Ramp C5, starting at the bridge over Souder Avenue and extending east to Front Street. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and SR-315 southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. This project includes the construction of six (6) new bridge structures for the proposed Ramp C5 alignment and replacement of three (3) bridge structures, two along I-70 and the Front Street Structure over I-70, as well as the construction of fourteen (14) new retaining walls and a culvert structure to accommodate the new configuration.

This report is a presentation of the structure foundation exploration performed for the design and construction of the proposed FRA-70-1390C bridge structure carrying the proposed Ramp C5 over I-70/71, as shown on the vicinity map and boring plan presented in Appendix I. Based on information provided by GPD GROUP, the proposed structure will consist of two single-span reinforced concrete deck structures supported transversely by simple span welded steel plate girders with reinforced concrete substructures. The proposed structure will have an approximate span length of approximately 92.5 feet where it will span over I-70 eastbound and 96.3 feet where it will span over I-70 westbound, as measured from the centerline of abutment bearings to the centerline of the pier. The east end of the bridge deck spanning over I-70 westbound will also be integrated with the FRA-70-1395 Front Street bridge deck at the northwest corner of that structure, where the ramp will be aligned with Fulton Street.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size

particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone Formation. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules. Just east of Scioto River, the Upper Devonian Ohio Shale Formation overlies the Columbus Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits. However, shale bedrock was encountered in two of the borings performed for this structure at elevations ranging from 651.6 to 664.0 feet msl.

2.2 Existing Conditions

The proposed FRA-70-1390C structure is located just west of the existing S. Front Street over I-70/71 overpass, approximately 0.7 miles east of the Scioto River. The existing I-70/I-71 in the vicinity of the structure is a six-lane, bi-directional, composite asphalt and concrete paved roadway that is generally east-west aligned through downtown Columbus, Ohio. The existing S. Front Street crossing is a three-lane, asphalt paved roadway with northbound parking lane against the eastern curb. The existing I-70 profile grades down from west to east into the downtown area, and is generally lower in elevation with respect to the surrounding terrain, as the existing corridor was cut approximately 20 to 25 below the existing grade of S. Front Street and the surrounding downtown area. Portions of the proposed rear abutment substructure will be located within the grass area between W. Fulton Avenue and an apartment complex, and will also cross a portion of the parking at the southeast corner of W. Fulton Avenue and S. 2nd Street. The traffic volume along the project alignment is very high, and the alignment traverses primarily commercial and government properties. The surrounding terrain across grades down gently to the west out of the downtown area.

3.0 EXPLORATION

Between August 6, 2013, and February 14, 2015, six (6) structural borings, designated as B-023-1-13, B-024-1-13, B-024-2-14, B-026-1-13, B-026-2-13 and B-026-3-13, were advanced to completion depths ranging from 48.1 to 90.0 feet below the existing ground surface. In addition to the borings performed by Rii as part of the current exploration, three (3) borings, designated as B-024-0-08, B-025-0-08 and B-026-0-08, were performed DLZ in the vicinity of the bridge structure as part of the FRA-70-8.93 preliminary exploration (PID 77369), and their findings were published in a report dated September 24, 2009. The borings were advanced to a completion depth of 111.5, 59.3 and 115.0 feet below the existing ground surface, respectively. The current project boring locations are shown on the boring plan provided in Appendix I of this report and summarized in Table 1 below.

Boring Number	Reference Alignment	Station	Offset	Latitude	Longitude	Ground Elevation (feet msl)	Boring Depth (feet)
B-023-1-13	BL Ramp C5	5084+74.16	15.0' Rt.	39.952844807	-83.003019835	732.4	48.1
B-024-0-08	BL Ramp C5	5085+90.21	3.1' Lt.	39.952928381	-83.002605586	743.4	111.5
B-024-1-13	BL Ramp C5	5087+81.22	64.3' Rt.	39.952930262	-83.001880690	746.4	64.3
B-024-2-14	BL Ramp C5	5086+86.08	34.9' Lt.	39.953082824	-83.002320685	742.7	59.2
B-025-0-08	BL Ramp C5	5088+53.62	76.0' Lt.	39.953359121	-83.001796370	740.4	59.3
B-026-0-08	BL Ramp C5	5088+59.96	128.9' Lt.	39.953503747	-83.001825833	754.0	115.0
B-026-1-13	BL I-70 EB	184+88.08	111.1' Rt.	39.952673289	-83.001473185	747.0	50.0
B-026-2-13	BL Ramp C5	5089+73.78	16.5' Rt.	39.953112248	-83.001308349	736.8	89.5
B-026-3-13	BL Ramp C5	5091+04.93	11.5' Lt.	39.953296762	-83.000848553	756.9	90.0

 Table 1. Test Boring Summary

The locations for the current exploration borings performed by Rii were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain geographic latitude and longitude coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by GPD Group.

The borings performed by Rii for the current exploration were drilled using a truck or an all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing either a 3.25 or 4.25-inch inside diameter, hollow stem auger to advance the holes. The borings performed by DLZ were drilled using a truck or an all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing either a 3.25-inch inside diameter, hollow stem auger or a 4.0-inch flush joint casing to advance the holes. In general, standard penetration test

(SPT) and split spoon sampling were performed in the borings at 2.5-foot increments of depth to 20.0 or 30.0 feet, and at 5.0-foot increments thereafter to the boring termination depth. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blows per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation. Both values are represented on boring logs in Appendix III.

$N_{60} = N_m^*(ER/60)$

Where:

 N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

The hammers for the Mobile B-53 and CME 750 drill rigs operated by Rii were calibrated on April 26, 2013, and have drill rod energy ratios of 77.7 and 82.6 percent, respectively. The hammer for the CME 55 drill rig operated by Rii was calibrated on October 20, 2014, and has a drill rod energy ratio of 92.0 percent. The hammers for the CME 75 and CME 750X drill rigs operated by DLZ have drill rod energy ratios of 61.2 and 63.1 percent, respectively. No calibration date is available for the DLZ rig calibrations.

During drilling for the borings performed by Rii, field logs were prepared by Rii personnel showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	113
Plastic and Liquid Limits	AASHTO T89, T90	38
Gradation – Sieve/Hydrometer	AASHTO T88	38
One-Dimensional Consolidation	ASTM D2435	1
Unconfined Compressive Strength of Cohesive Soil	ASTM D2166	1

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented, in part, on the boring logs in Appendix III and also in Appendix V. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N₆₀). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

Where borings that were performed by DLZ were extended into the underlying bedrock, an NXM or NQ double-tube diamond bit core barrel (utilizing wire line equipment) was used to core the bedrock. Coring produced 1.85 inch diameter cores from which the type of rock and its geological characteristics were determined.

Rock cores were analyzed to identify the type of rock, color, mineral content, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each rock core run was calculated according to the following equation:

$$RQD = \frac{\sum segments \ equal \ to \ or \ longer \ than \ 4.0 \ inches}{core \ run \ length} x100$$

In addition to the borings performed as part of the preliminary engineering and current explorations, historic borings performed in 1959 by the Department of Highways as part of the original FRA-40-12.82 project were also obtained from the construction documents on record. Two (2) borings, designated as B-002-F-59 and B-005-F-59, were obtained at the rear and forward abutment of the existing adjacent Front Street bridge structure over I-70/I-71 (FRA-40-1300). One (1) boring, designated as B-001-C-59, was obtained along the alignment of the existing retaining wall on the north side of I-70 westbound between the Front Street and High Street bridge structures (Retaining Wall C). One (1) boring, designated as B-003-A-59, was obtained along the alignment of the existing retaining wall between I-70 eastbound and W. Fulton Avenue (Retaining Wall A). Based on the elevations provided on the boring logs, it is anticipated that the borings for the Front Street bridge structure and Retaining Walls C were performed from the then-existing ground surface and that the profile for the then-proposed US 40 (existing I-70/71) was lowered to provide sufficient clearance for the bridge to be constructed at the then-existing ground surface. The borings were extended to depths ranging from 55.0 to 73.0 feet below the ground surface at the time the borings were obtained. Please note that the elevations provided on the historic

boring logs were referenced to the North American Datum (NAD) 27. The current design survey is referenced to NAD 83. The NAD 27 datum is 0.6 feet lower than the NAD 83 datum. Therefore, all elevations noted in this report with respect to the historic borings are adjusted to the current NAD 83 datum. The historic boring locations are shown on the boring plan provided in Appendix I of this report and the historic boring logs are provided in Appendix IV.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings performed as part of the preliminary engineering phase and current exploration and what is represented on the boring logs.

4.1 Surface Materials

Borings B-023-1-13 and B-024-0-08 were performed along the south side of W. Fulton Street, and no discernable surface material was present at the ground surface. Borings B-024-1-13 and B-024-2-14 were drilled in the existing I-70 eastbound ramp to Front Street and encountered 14.0 and 5.0 inches of asphalt, respectively, overlying 6.0 inches of aggregate base in boring B-024-1-13 and 13.0 inches of concrete in boring B-024-2-14 at the ground surface. Borings B-025-0-08 and B-026-2-13 were drilled in the existing shoulders of I-70 eastbound and westbound and encountered 7.0 and 9.0 inches of asphalt overlying 7.0 and 6.0 inches of aggregate base, respectively. Boring B-026-0-08 was performed at the top of the slope along the north side of I-70/I-71 and encountered 4.0 inches of topsoil at the ground surface. Boring B-026-1-13 was performed in the existing sidewalk along the west side of S. Front Street, at the intersection with W. Fulton Street on the north side of I-70/I-71 and encountered within the existing sidewalk along the west side of S. Front Street, at the intersection with W. Fulton Street on the north side of I-70/I-71 and encountered within the existing sidewalk along the west side of S. Front Street, at the intersection with W. Fulton Street on the north side of I-70/I-71 and encountered 6.0 inches of concrete overlying 6.0 inches of aggregate base.

4.2 Subsurface Soils

Beneath the pavement materials in borings B-025-0-08, B-026-1-13 and B-026-2-13, material identified as existing fill or possible fill was encountered extending to depths ranging from 3.5 to 15.5 feet below exiting grade, which corresponds to elevations ranging from 731.3 to 736.9 feet msl. The fill material was described as medium dense to very dense, brown and gray gravel, gravel and sand, gravel with sand and silt (ODOT A-1-a, A-1-b, A-2-4), and hard, brown silt and clay (ODOT A-6a) and contained brick fragments throughout.

Underlying the surficial materials and existing fill, where encountered, natural soils were encountered consisting of both granular and cohesive material. The granular soils were generally described as loose to very dense brown, gray, brownish gray and dark gray gravel, gravel and sand, gravel with sand and silt, fine sand, coarse and fine sand, sandy silt and silt (ODOT A-1-a, A-1-b, A-2-4, A-3, A-3a, A-4a, A-4b). The cohesive materials were generally described as soft to hard, brown, brownish gray and dark gray sandy silt, silt and clay, silty clay and clay (ODOT A-4a, A-6a, A-6b, A-7-6).

Cobbles and boulders were encountered in the majority of the borings at and below elevations ranging from 700 to 710 feet msl. At depths below this elevations range, drilling conditions were typically more challenging and high blow counts, including split spoon sampler refusal, were obtained throughout these deposits. Split spoon sampler refusal is defined as exceeding 50 blows from the hammer with less than 6.0 inches of penetration by the split spoon sampler. Additionally, heaving sands were encountered in the majority of the borings at elevations ranging from 685 to 700 feet msl. The height of sand heave within the augers was approximately 1.0 to 3.0 feet and was able to be controlled through the addition of water or mud to the boreholes during drilling.

The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soil encountered ranged from loose ($5 \le N_{60} < 10$ blows per foot [bpf]) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 6 bpf to split spoon sampler refusal. The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soil encountered ranged from soft (0.25 < HP \le 0.5 tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 0.5 to over 4.5 tsf (limit of instrument).

Natural moisture contents of the soil samples tested ranged from 3 to 30 percent. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 7 percent below to 5 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be moderately below to moderately above optimum moisture levels.

4.3 Bedrock

Bedrock was encountered in borings B-024-0-08 and B-026-0-08 as presented in Table 3.

Boring	Ground Surface	Top of Bedrock		Top of Be	drock Core
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)
B-024-0-08	743.4	91.8	651.6	90.0	653.4
B-026-0-08	754.0	90.0	664.0	90.0	664.0

Table 3. Top of Bedrock Elevations

Top of bedrock was encountered in borings B-024-0-08 and B-026-0-08 at a depth of 91.8 and 90.0 feet below existing grade, respectively, which corresponds to an elevation of 651.6 and 664.0 feet msl. The upper portion of the bedrock in boring B-026-0-08 consisted of brown, severely weathered claystone that extended to a depth of 97.8 feet (EI. 656.2 feet msl) overlying blueish gray to dark gray, moderately to highly weathered shale. The shale is described as blueish gray to dark gray, moderately to highly weathered, weak, laminated to thinly laminated, calcareous, pyritic, fissile, friable, jointed and moderately to highly fractured with tight, slightly rough apertures. The shale bedrock contains thin seams of interbedded limestone throughout.

The percent recovery, RQD values and unconfined compressive strengths of the bedrock core runs are summarized in Table 4.

Boring	Core No.	Depth (feet)	Elevation (feet msl)	Recovery (%)	RQD (%)	Unconfined Compressive Strength
	R-1	90.0 to 91.5	653.4 to 651.9	0	0	N/A
B-024-0-08	R-2	91.5 to 101.5	651.9 to 641.9	97	81	q _u @ 97.7' = 1,650 psi
	R-3	101.5 to 111.5	641.9 to 631.9	63	48	N/A
	R-1	90.0 to 95.0	664.0 to 659.0	8	0	N/A
	R-2	95.0 to 100.0	659.0 to 654.0	100	80	N/A
B-026-0-08	R-3	100.0 to 105.0	654.0 to 649.0	100	85	q _u @ 100.5' = 2,391 psi
	R-4	105.0 to 110.0	649.0 to 644.0	100	90	N/A
	R-5	110.0 to 115.0	644.0 to 639.0	100	83	N/A

Table 4. Rock Core Summary

It should be noted that bedrock can experience mechanical breaks during the drilling and coring processes. It is anticipated that DLZ attempted to account for fresh, manmade breaks during tabulation of the RQD analysis, per ODOT SGE specifications. The quality of the weathered claystone bedrock, according to the RQD values, was very poor (RQD $\leq 25\%$), and the quality of the shale bedrock ranged from poor (25 < RQD $\leq 50\%$) to good (75 < RQD $\leq 90\%$). High angle factures were noted in the

shale bedrock in boring B-026-0-08 at depths ranging from 110.2 to 114.2 feet below existing grade.

4.4 Groundwater

Groundwater was encountered in the borings as presented in Table 5.

Boring	Ground Surface	Initial Gro	oundwater	Upon Completion					
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)				
B-023-1-13	732.4	32.0	700.4	18.0	714.4				
B-024-0-08	743.4	28.0	715.4	16.5 ¹	726.9				
B-024-1-13	746.4	34.0	712.4	N/A ²	N/A				
B-024-2-14	742.7	26.0	716.7	N/A ²	N/A				
B-025-0-08	740.4	26.0	714.4	39.0	701.4				
B-026-0-08	754.0	41.0	713.0	29.1 ¹	724.9				
B-026-1-13	747.0	28.5	718.5	N/A ²	N/A				
B-026-2-13	736.8	18.5	718.3	N/A ²	N/A				
B-026-3-13	756.9	36.0	720.9	N/A ²	N/A				

Table 5. Groundwater Levels

1. The groundwater level at completion was measured prior to introduction of water as a circulating fluid for the rock coring process.

2. The groundwater level at completion could not be obtained due to the addition of water or mud as a drilling fluid.

Groundwater was encountered initially during the drilling process in all of the borings performed as part of the current or preliminary explorations at depths ranging from 18.5 to 41.0 feet below existing grade, which corresponds to elevations ranging from 700.4 to 720.9 feet msl. The groundwater level at the completion of drilling in borings B-023-1-13, B-024-0-08, B-026-0-08 and B-026-0-08 ranged from 18.0 to 39.0 feet below existing grade, which corresponds to elevations ranging from 701.4 to 726.9 feet msl. The groundwater levels at the completion of drilling could not be measured in the remainder of the borings due to the addition of mud or water to counteract heaving sands.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

4.5 Historic Borings

In general, the historic borings, designated B-001-C-59, B-002-F-59, B-003-A-59 and B-005-F-59, encountered loose to very dense granular soils with intermittent seams of medium stiff to hard cohesive soils. The granular soils were generally described as brown and gray gravel, gravel and sand, gravel with sand and silt, coarse and fine sand and sandy silt (ODOT A-1-a, A-1-b, A-2-4, A-3a, A-4a), and the cohesive soils were generally described as brown, gray and brownish gray sandy silt, silt and silt and clay (ODOT A-4a, A-4b, A-6a). A boulder zone was encountered in boring B-001-C-59 beginning at elevation 753.2 feet msl and extending to the boring termination depth at elevation 692.0 feet msl. Boulders were also encountered in boring B-003-A-59 beginning at elevation 713.0 feet msl and extending to the boring termination depth at 680.5 feet msl. Boulders were not noted on the log for borings B-002-F-59 or B-005-F-59; however, high blow counts were encountered for the majority of the boring depths, which is typically an indication of large aggregate, cobbles or boulders being present in the soil. Bedrock was not encountered in the historic borings prior to the termination depths. Groundwater levels were not noted in the borings performed during the 1959 exploration. In general, the subsurface conditions encountered in the historic borings matched relatively closely with the subsurface conditions encountered in the preliminary engineering or current exploration borings.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the historical and current subsurface explorations have been used to determine the foundation support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the design of foundation systems for the subject bridge, as well as the construction specifications related to the placement of foundation systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the structure proposed were provided by GPD GROUP. Based on the information provided, it is understood that the proposed structure will consist of two single-span reinforced concrete deck structures supported transversely by simple span welded steel plate girders with reinforced concrete substructures supported on drilled shafts tied into footings or tangent drilled shafts. The proposed structure will have an approximate span length of approximately 95.8 feet where it will span over I-70 eastbound and 99.0 feet where it will span over I-70 westbound, as measured from the centerline of abutment bearings to the centerline of the pier. The east end of the bridge deck spanning over I-70 westbound will also be integrated with the FRA-70-1395 Front Street bridge deck at the northwest corner of that structure, where the ramp will be aligned with Fulton Street. Proposed structural data was obtained from design details provided by GPD GROUP and are included in Table 6.

SubstructureStructureUnitComponent 1		Elevation ^{1,2} (feet msl)	Design Maximum Factored Load ¹			
Rear Abutment	Top of Shaft	728.6	1,483 kips/shaft			
Pier	Top of Shaft	729.5 / 724.5	878 kips/shaft			
Forward Abutment	Top of Shaft ³	728.4 / 732.0	703 / 728 kips/shaft			

Table 6. Structure and Bridge Design Elevations

1. Proposed foundation elevations and structural loading based on structure information provided by GPD GROUP.

2. Multiple values indicate the maximum and minimum top of shaft elevation along the substructure unit.

3. For the tangent shaft section of the forward abutment, the elevation of the bottom of the cantilever section of the drilled shafts is included in the elevation range.

Consideration was given to a driven pile foundation, but given the dense, granular nature of the soil and the presence of cobbles and boulders that are common in the area, as well as the close proximity to existing underground utilities, this type of foundation system is not recommended due to the potential of damaging the pile elements or existing utilities during installation. Consideration was also given to supporting the structure on shallow foundations, but due to the close proximity to existing utilities at all of the substructure locations, this type of foundation system is not recommended due to the potential of damaging the additional pressures from the foundation loading.

5.1 Drilled Shaft Recommendations

It is understood that a combination of drilled shafts tied into footings or tangent drilled shafts foundations are being utilized to support the substructure units. To achieve the most economical design, the drilled shafts should extend to bear in the dense to very dense gravel, gravel and sand, gravel with sand and silt, coarse and fine sand (ODOT A-1-a, A-1-b, A-2-4, A-3a) or hard sandy silt, silt or silt and clay (ODOT A-4a, A-4b, A-6a) at or below elevation 705.0 feet msl in order to maximize the end bearing resistance. It is recommended that the drilled shafts be designed using the axial design parameters provided in Table 7 through Table 9.

Table 7. Drilled Shaft Axial Design								
Boring	umber (feet mel) Length Type		Nominal R (k:		Resistance Factor			
Number	(leet list)	(feet)	туре	End	Side	End	Side	
	728.6-724.4	0.0-4.2	A-7-6	19	1.51	0.40	0.45	
	724.4-719.4	4.2-9.2	A-6a	15	1.03	0.40	0.45	
	719.4-714.4	9.2-14.2	A-7-6	19	1.16	0.40	0.45	
B-023-1-13	714.4-710.4	14.2-18.2	A-1-b	39	1.73	0.50	0.55	
	710.4-695.4	18.2-33.2	A-1-b	60	2.81	0.50	0.55	
	695.4-690.4	33.2-38.2	A-6b	45	2.32	0.40	0.45	
	690.4-684.4	38.2-44.2	A-1-a	60	4.76	0.50	0.55	
	728.6-715.4	0.0-13.2	A-4a	21	1.30	0.40	0.45	
	715.4-711.4	13.2-17.2	A-4b	33	2.02	0.50	0.55	
	711.4-706.4	17.2-22.2	A-1-a	44	1.93	0.50	0.55	
D 004 0 00	706.4-701.4	22.2-27.2	A-4a	72	3.60	0.40	0.45	
B-024-0-08	701.4-691.4	27.2-37.2	A-3a	60	2.29	0.50	0.55	
	691.4-686.4	37.2-42.2	A-1-b	60	4.76	0.50	0.55	
	686.4-681.4	42.2-47.2	A-4a	60	4.67	0.50	0.55	
	681.4-651.6	47.2-77.0	A-1-a	60	5.36	0.50	0.55	
	728.6-720.9	0.0-7.7	A-4a	41	2.37	0.40	0.45	
	720.9-714.4	7.7-14.2	A-6a	45	2.32	0.40	0.45	
B-024-1-13	714.4-694.4	14.2-34.2	A-1-a	60	4.41	0.50	0.55	
Б-024-1-13	694.4-689.4	34.2-39.2	A-3a	52	2.05	0.50	0.55	
	689.4-684.4	39.2-44.2	A-4a	72	3.60	0.40	0.45	
	684.4-682.4	44.2-46.2	A-1-b	60	5.04	0.50	0.55	
	728.6-717.2	0.0-11.4	A-4a	29	1.82	0.40	0.45	
	717.2-710.7	11.4-17.9	A-4b	25	1.66	0.50	0.55	
B 024 2 14	710.7-705.7	17.9-22.9	A-1-b	20	1.10	0.50	0.55	
B-024-2-14	705.7-700.7	22.9-27.9	A-1-b	60	2.54	0.50	0.55	
	700.7-695.7	27.9-32.9	A-4a	58	2.92	0.40	0.45	
	695.7-683.7	32.9-44.9	A-1-b	60	4.68	0.50	0.55	
	728.6-719.0	0.0-9.6	A-1-b	46	1.37	0.50	0.55	
B-026-1-13	719.0-714.0	9.6-14.6	A-1-b	60	2.19	0.50	0.55	
	714.0-697.0	14.6-31.6	A-1-b	60	3.46	0.50	0.55	

 Table 7. Drilled Shaft Axial Design Parameters – Rear Abutment

2. Side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the top of shaft elevation if the shafts are not tied into an embedded pile cap.

Table 8. Drilled Shaft Axial Design Parameters – Pie
--

Boring	Elevation ¹ Shaft (feat mail)		Soil		Nominal Resistance (ksf)		ce Factor
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	728.5-720.9	0.0-7.6	A-4a	43	2.37	0.40	0.45
	720.9-714.4	7.6-14.1	A-6a	45	2.32	0.40	0.45
B-024-1-13	714.4-694.4	14.1-34.1	A-1-a	60	4.45	0.50	0.55
D-024-1-13	694.4-689.4	34.1-39.1	A-3a	52	2.06	0.50	0.55
	689.4-684.4	39.1-44.1	A-4a	72	3.60	0.40	0.45
	684.4-682.4	44.1-46.1	A-1-b	60	5.07	0.50	0.55
	729.5-717.2	0.0-12.3	A-4a	30	1.82	0.40	0.45
	717.2-710.7	12.3-18.8	A-4b	25	1.71	0.50	0.55
B-024-2-14	710.7-705.7	18.8-23.8	A-1-b	20	1.13	0.50	0.55
B-024-2-14	705.7-700.7	23.8-28.8	A-1-b	60	2.58	0.50	0.55
	700.7-695.7	28.8-33.8	A-4a	58	2.92	0.40	0.45
	695.7-683.7	33.8-45.8	A-1-b	60	4.74	0.50	0.55
	728.5-715.4	0.0-13.1	A-4a	24	1.51	0.40	0.45
	715.4-711.9	13.1-16.6	A-6b	25	1.58	0.40	0.45
	711.9-701.9	16.6-26.6	A-1-b	60	3.64	0.50	0.55
B-025-0-08	701.9-696.9	26.6-31.6	A-4a	72	3.60	0.40	0.45
	696.9-690.4	31.6-38.1	A-1-b	60	3.50	0.50	0.55
	690.4-683.4	38.1-45.1	A-6a	67	3.37	0.40	0.45
	683.4-681.4	45.1-47.1	A-3a	60	3.04	0.50	0.55
	726.0-716.3	0.0-9.7	A-1-b	24	0.78	0.50	0.55
	716.3-695.3	9.7-30.7	A-1-b	60	3.61	0.50	0.55
	695.3-689.8	30.7-36.2	A-3a	16	1.15	0.50	0.55
B-026-2-13	689.8-684.8	36.2-41.2	A-3a	60	2.09	0.50	0.55
D-020-2-13	684.8-674.8	41.2-51.2	A-3a	60	2.52	0.50	0.55
	674.8-664.8	51.2-61.2	A-4a	72	3.60	0.40	0.45
	664.8-654.8	61.2-71.2	A-3a	60	3.01	0.50	0.55
	654.8-647.3	71.2-78.7	A-6b	72	3.60	0.40	0.45
	724.5-712.1	0.0-12.4	A-1-b	60	2.81	0.50	0.55
B-002-F-59	712.1-691.1	12.4-33.4	A-1-a	60	4.05	0.50	0.55
	691.1-681.1	33.4-43.4	A-3a	60	2.84	0.50	0.55

Rii

13

Boring	Elevation ¹	Shaft Length	Length Soil		Nominal Resistance (ksf)		Resistance Factor		
Number	(feet msl)	(feet)	Туре	End	Side	End	Side		
	729.5-717.9	0.0-11.6	A-4a	20	1.23	0.40	0.45		
	717.9-712.9	11.6-16.6	A-4b	39	2.08	0.50	0.55		
	712.9-701.9	16.6-27.6	A-1-a	60	2.95	0.50	0.55		
B-003-A-59	701.9-696.9	27.6-32.6	A-3a	60	2.70	0.50	0.55		
B-003-A-59	696.9-691.9	32.6-37.6	A-4a	72	3.60	0.40	0.45		
	691.9-686.9	37.6-42.6	A-2-4	60	3.53	0.50	0.55		
	686.9-682.4	42.6-47.1	A-4b	69	3.48	0.40	0.45		
	682.4-679.9	47.1-49.6	A-3a	60	3.04	0.50	0.55		

2. Side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the top of shaft elevation if the shafts are not tied into an embedded pile cap.

Table 9. Drilled Shaft Axial Design Parameters – Forward Abutment

Boring	Elevation ¹	Shaft Length	Snant Soil		Resistance sf)	Resistan	ce Factor
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	732.0-715.4	0.0-16.6	A-4a	24	1.51	0.40	0.45
	715.4-711.9	16.6-20.1	A-6b	25	1.58	0.40	0.45
	711.9-701.9	20.1-30.1	A-1-b	60	3.84	0.50	0.55
B-025-0-08	701.9-696.9	30.1-35.1	A-4a	72	3.60	0.40	0.45
	696.9-690.4	35.1-41.6	A-1-b	60	3.64	0.50	0.55
	690.4-683.4	41.6-48.6	A-6a	67	3.37	0.40	0.45
	683.4-681.4	48.6-50.6	A-3a	60	3.13	0.50	0.55
	732.0-723.0	0.0-9.0	A-6a	20	1.37	0.40	0.45
	723.0-712.0	9.0-20.0	A-4a	23	1.44	0.40	0.45
	712.0-704.0	20.0-28.0	A-2-4	60	3.31	0.50	0.55
B-026-0-08	704.0-697.0	28.0-35.0	A-6a	72	3.60	0.40	0.45
Б-020-0-08	697.0-687.0	35.0-45.0	A-1-b	60	4.41	0.50	0.55
	687.0-679.0	45.0-53.0	A-6a	50	2.53	0.40	0.45
	679.0-672.0	53.0-60.0	A-1-a	60	5.30	0.50	0.55
	672.0-664.0	60.0-68.0	A-4a	72	3.60	0.40	0.45

Boring	Elevation ¹	Shaft Length	Soil	Nominal R (k:	esistance sf)	Resistan	ce Factor
Number	(feet msl)	(feet)	Туре	End	Side	End	Side
	728.4-726.3	0.0-2.1	A-2-4	34	0.67	0.50	0.55
	726.3-716.3	2.1-12.1	A-1-b	24	0.91	0.50	0.55
	716.3-695.3	12.1-33.1	A-1-b	60	3.77	0.50	0.55
	695.3-689.8	33.1-38.6	A-3a	16	1.20	0.50	0.55
B-026-2-13	689.8-684.8	38.6-43.6	A-3a	60	2.15	0.50	0.55
	684.8-674.8	43.6-53.6	A-3a	60	2.58	0.50	0.55
	674.8-664.8	53.6-63.6	A-4a	72	3.60	0.40	0.45
	664.8-654.8	63.6-73.6	A-3a	60	3.07	0.50	0.55
	654.8-647.3	73.6-81.1	A-6b	72	3.60	0.40	0.45
	730.0-724.9	0.0-5.1	A-1-b	40	0.97	0.50	0.55
	724.9-719.9	5.1-10.1	A-4a	66	3.54	0.40	0.45
	719.9-704.9	10.1-25.1	A-1-b	60	3.21	0.50	0.55
B-026-3-13	704.9-694.9	25.1-35.1	A-4a	72	3.60	0.40	0.45
	694.9-689.9	35.1-40.1	A-2-4	60	4.64	0.50	0.55
	689.9-669.9	40.1-60.1	A-1-b	60	4.07	0.50	0.55
	669.9-666.9	60.1-63.1	A-3a	60	3.23	0.50	0.55
	730.0-723.4	0.0-6.6	A-2-4	60	1.65	0.50	0.55
	723.4-713.4	6.6-16.6	A-3a	60	1.95	0.50	0.55
B-001-C-59	713.4-705.4	16.6-24.6	A-1-a	60	3.12	0.50	0.55
	705.4-694.4	24.6-35.6	A-1-b	60	4.43	0.50	0.55
	694.4-691.4	35.6-38.6	A-4a	60	5.45	0.50	0.55
	730.0-720.7	0.0-9.3	A-4a	65	3.60	0.40	0.45
B-005-F-59	720.7-709.7	9.3-20.3	A-1-a	60	3.89	0.50	0.55
D-000-E-98	709.7-699.7	20.3-30.3	A-1-b	60	4.34	0.50	0.55
	699.7-691.7	30.3-38.3	A-6a	72	3.60	0.40	0.45

2. Side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the top of shaft elevation if the shafts are not tied into an embedded pile cap.

Drilled shaft lengths should measure a minimum of three (3) times the shaft diameter. Per Section 10.8.3.5.1b of the AASHTO LRFD BDS, side resistance should be neglected for the upper 5.0 feet of the shaft length where cohesive soils (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6) are present below the top of shaft elevation if the shafts are not tied into an embedded pile cap. Total settlement of the drilled shafts is estimated to be less than 1.0 inch for shafts bearing at or below elevation 705.0 feet msl.

Per Section 10.8.3.5.3 of the AASHTO LRFD BDS, where drilled shafts are extended to end bear in a strong soil layer overlying a weaker soil layer, the end bearing resistance shall be reduced if the tip elevation is within 1.5 times the diameter of the drilled shaft above the top of the weaker soil layer. A weighted average that varies linearly from the full end bearing resistance in the overlying strong soil layer at a distance of 1.5 times the diameter of the drilled shaft above the top of the weak soil layer to the end bearing resistance of the weak soil layer at the top of the weak soil layer should be used to determine the end bearing resistance utilized in the design. Therefore, the end bearing resistance utilized in the design will need to be adjusted accordingly if the tip elevation of the drilled shafts will be within 1.5 times the diameter of the drilled shaft above the underlying weaker soil layer. Drilled shaft calculations are provided in Appendix VI.

5.1.1 Group Efficiency

The axial resistance of a group of shafts may be less than the sum of the individual shaft resistance within a group of shafts. Per Section 10.8.3.6.3 of the AASHTO LRFD BDS, for soil profiles that consist of primarily granular soils, the individual nominal resistance of each drilled shaft shall be reduced by applying an adjustment factor, η , as defined in Table 10.8.3.6.1-1 of the AASHTO LRFD BDS. The following criteria are recommended for the group resistance of any shaft groups.

For a single row of drilled shafts:

- $\eta = 0.9$ for a center-to-center spacing of 2.0 diameters or less,
- $\eta = 1.0$ for a center-to-center spacing of 3.0 diameters or greater.

For multiple rows of drilled shafts:

- $\eta = 0.67$ for a center-to-center spacing of 2.5 diameters or less,
- $\eta = 0.8$ for a center-to-center spacing of 3.0 diameters,
- $\eta = 1.0$ for a center-to-center spacing of 4.0 diameters or greater.

For intermediate spacing under either scenario, the value of η may be determined by liner interpolation. Please note that the adjustment factor should be applied to the total individual nominal shaft resistance (including both end bearing side resistance along the shaft length).

Given that the drilled shafts at the abutments will be constructed tangent to each other, the shaft group capacity should also be checked using the block failure mechanism. Since the soil profile consists primarily of dense granular soils, the analysis should be performed considering the entire drilled shaft group as an equivalent strip footing with a length equal to the length of the tangent shaft wall and equivalent width equal to the total end area of the drilled shafts divided by the length of the drilled shaft wall. A resistance factor of $\varphi_b = 0.45$ should be utilized in calculating the factored bearing resistance for the this failure mode at the strength limit state.

The total group resistance shall be the lesser of the sum of the individual drilled shafts multiplied by the applicable group efficiency factor, η , or the resistance of the group in block failure mode.

5.1.2 Lateral Design

If lateral load or moments are expected to be applied on the foundation elements, they should be analyzed to verify the shaft has enough lateral and bending resistance against these loads. A boring-by-boring tabulation of parameters that should be used for lateral loading design is provided in Appendix VII. In order to evaluate the lateral capacity, it is recommended that a derivation of COM624, such as LPILE, be utilized to determine the proper embedment depth and cross section required to resist the lateral load for a given end condition and deflection. Table 10 lists the eleven different soil types internal to the LPILE program. These strata were utilized to define the soil strata in the soil profile for each boring provided in Appendix VII.

Strata	Description
1	Soft Clay
2	Stiff Clay with Water
3	Stiff Clay without Free Water
4	Sand (Reese)
5	User Defined
6	Vuggy Limestone (Strong Rock)
7	Silt (with cohesion and internal friction angle)
8	API Sand
9	Weak Rock
10	Liquefiable Sand (Rollins)
11	Stiff Clay without free water with a specified initial K (Brown)

 Table 10. Subsurface Strata Description

For the case of closely spaced drilled shafts, a pile group reduction factor will need to be applied to the p-y curves that are internally generated by the lateral analysis software. Reese, Isenhower, and Wang published an equation for the pile group p-reduction factor, otherwise known as p-multiplier (β_a), for a single row of piles placed side by side in the publication "Analysis and Design of Shallow and Deep Foundations" (2006), as follows:

$$\beta_{a} = 0.64(S/D)^{0.34}$$

In which:

$$1 \le S/D < 3.75$$
 and $0.5 \le \beta_a \le 1.0$

Where:

S = center to center spacing of the drilled shafts

D = diameter of drilled shafts

5.1.3 Drilled Shaft Considerations

The minimum requirements for proper inspection of drilled shaft construction are as follows:

- A qualified inspector should record the material types being removed from the hole as excavation proceeds.
- When the bearing material has been encountered and identified and/or the design tip elevation has been reached, the shaft walls and base should be observed for anomalies, unexpected soft soil conditions, obstructions or caving.
- Concrete placed freefall should not be allowed to hit the sidewalls of the excavation or the rebar cage and should not pass through any water.
- Structural stability of the rebar cage should be maintained during the concrete pour to prevent buckling.
- The volume of concrete should be checked to ensure voids did not result during extraction of the casing (if utilized).
- The placement of all concrete for the drilled shafts shall follow the American Concrete Institute's Design and Construction of Drilled Piers (ACI 336.3R-93).
- If concrete is placed by tremie method, it must be done so with an adequate head to displace water or slurry if groundwater has entered the caisson (all tremie procedures shall follow applicable ACI specifications).
- Pulling casing with insufficient concrete inside should be restricted.

• The bottom of drilled shaft excavation should be clean and free of loose material. Any loose material observed should be removed using a clean-out bucket (muck bucket).

The use of casing for drilled shafts is recommended under any of the following conditions:

- Caving material is encountered at any time during the drilling of the shaft.
- Groundwater is encountered at any time during the drilling of the shaft, or groundwater seepage occurs in the drilled shaft.
- Down hole inspection is planned (casing is required for this instance).

In addition, it is recommended that if casing is used, it be pulled immediately after the concrete is placed, allowing for re-use of the casing and eliminating reduction of side resistance (between soil and concrete).

It is anticipated that conventional drilled shaft equipment (with a standard soil bit) will be able to penetrate the surficial soils to the required tip elevation. Although not encountered in any of the borings performed for this structure, boulders were encountered in several of the borings performed in the area of this structure and should be anticipated to be encountered during installation of the drilled shafts. If boulders are encountered during installation of the drilled shafts, specialized drilling/coring equipment may be required to advance the drilled shaft excavation beyond the obstruction.

5.2 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (ϕ '), and lateral earth pressure coefficients for at-rest conditions (k_o), active conditions (k_a), and passive conditions (k_p) have been estimated and are provided in Table 11 and Table 12.

Soil Type	γ (pcf) 1	c (psf)	φ	<i>k</i> a	k _o	k_p
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

Table 11. Estimated Undrained (Short-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Table 12. Estimated Drained	Long-ter	III) 3011 F	arame		i Desi	<u>yn</u>
Soil Type	γ (pcf) ¹	c (psf)	φ'	ka	ko	k_p
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53
Very Stiff to Hard Cohesive Soil	125	50	28°	0.32	0.53	5.07
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

 Table 12. Estimated Drained (Long-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.3 Construction Considerations

All site work shall conform to local codes and to the latest ODOT Construction and Materials Specifications (CMS), including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.3.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Soil	Maximum Back Slope	Notes			
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage			
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage			
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage			
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None			

 Table 13. Excavation Back Slopes

5.3.2 Groundwater Considerations

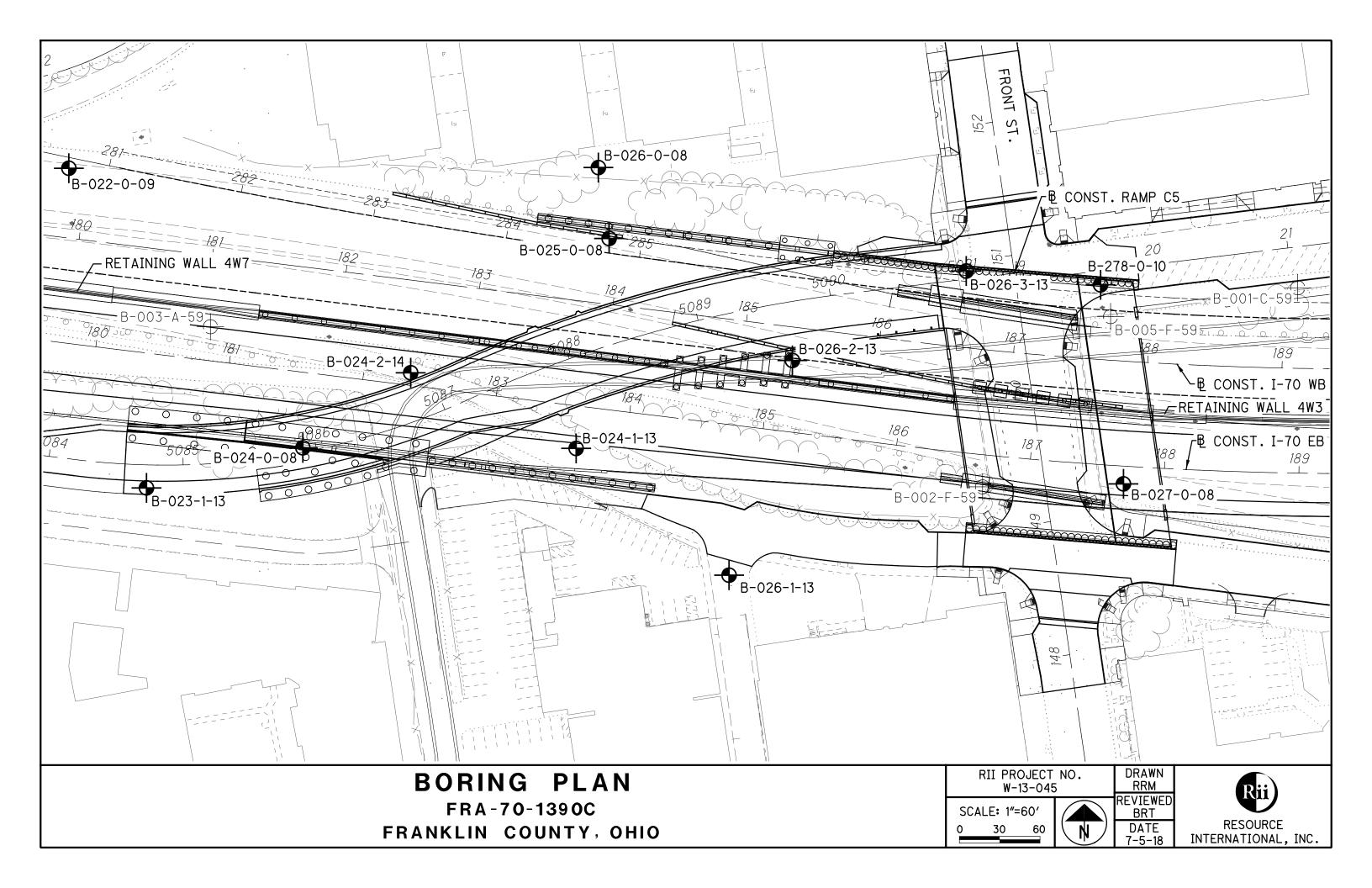
Based on the groundwater observations made during drilling, groundwater is anticipated during construction of the drilled shafts. Where groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. In the case of drilled shafts, the utilization of casing will be required below the water table to maintain an open hole and prevent the sidewalls from collapse. In addition, concrete placed below the water table should be placed by tremie method using a rigid tremie pipe. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.


The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

VICINITY MAP AND BORING PLAN

APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>**Granular Soils**</u> – ODOT A-1, A-2, A-3, A-4 (non-plastic) The relative compactness of granular soils is described as:

Description	Blows per	foot - S	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

Cohesive Soils - ODOT A-4, A-5, A-6, A-7, A-8

The relative consistency of cohesive soils is described as:

Description	Unconfined Compression (tsf)		
Very Soft	Less than		0.25
Soft	0.25	-	0.5
Medium Stiff	0.5	-	1.0
Stiff	1.0	-	2.0
Very Stiff	2.0	-	4.0
Hard	Over		4.0

Gradation - The following size-related denominations are used to describe soils:

<u>Soil Fra</u> Boulders Cobbles		<u>Size</u> Larger than 12" 12" to 3"
Gravel	coarse fine	3" to ¾" ¾" to 2.0 mm (¾" to #10 Sieve)
Sand	coarse fine	2.0 mm to 0.42 mm (#10 to #40 Sieve) 0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt Clay		0.074 mm to 0.005 mm (#200 to 0.005 mm) Smaller than 0.005 mm

Modifiers of Components - The following modifiers indicate the range of percentages of the minor soil components:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	<u>Range - ODOT</u>
Dry	Well below Plastic Limit
Damp	Below Plastic Limit
Moist	Above PL to 3% below LL
Wet	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe the relative strength of bedrock:

Description	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	ation OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
	Gravel and/or Stone Fragments	A-			30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and∕or Stone Fragments with Sand	Α-	1-Ь		50 Max.	25 Max.		6 Max.	0	
FS	Fine Sand	A	- 3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
<u>4.0.0.0</u> <u>6.0.0.0</u> <u>6.0.0</u>	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.000 0.000 0.000 0.000 0.000 0.000	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{r} + + + + + + + + + + + + + + + + + + + $	Silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Sil†y Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	A-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MATERIAL CLASSIFIED BY VISUAL INSPECTIONSod and Topsoil $\begin{pmatrix} A \rightarrow Y \\ - & C \\ - & A \end{pmatrix}$ Uncontrolled Fill (Describe)Bouldery ZonePavement or Base $\begin{pmatrix} A \rightarrow Y \\ - & C \\ - & A \end{pmatrix}$									

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Description	Field Parameter
Unweathered	No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a right appearance with no discoloration. Fractures show little or not staining on surfaces.
Slightly Weathered	Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% of the rock volume presents alteration.
Moderately Weathered	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15% of the rock volume presents alterations.
Highly Weathered En	tire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may be present and some areas of severely weathered materials may be present.
Severely Weathered	Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of more resistant rock may be present but the material can generally be molded and crumbled by hand pressures.

Strength of Bedrock – The following terms are used to describe the relative strength of bedrock:

<u>Description</u> Very Weak	<u>Field Parameter</u> Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description	<u>Thickness</u>
Very Thick	Greater than 36 inches
Thick	18 to 36 inches
Medium	10 to 18 inches
Thin	2 to 10 inches
Very Thin	0.4 to 2 inches
Laminated	0.1 to 0.4 inches
Thinly Laminated	Less than 0.1 inches

Fracturing – Describes the degree and condition of fracturing (fault, joint, or shear):

Very Poor Poor Fair Good Very Good

Degree of Fracturing	
Description	<u>Spacing</u>
Unfractured	Greater than 10 feet
Intact	3 to 10 feet
Slightly Fractured	1 to 3 feet
Moderately Fractured	

Aperture Widt	h	Surface Rough	ness
Description	Width	Description	Criteria
Open	Greater than 0.2 inches	Very Rough	Near vertical steps and ridges occur on surface
Narrow	0.05 to 0.2 inches	Slightly Rough	Asperities on the surfaces distinguishable
Tight	Less than 0.05 inches	Slickensided	Surface has smooth, glassy finish, evidence of Striations

<u>RQD</u> – Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006): <u>RQD %</u> <u>Rock Index Property Classification (based on RQD, not slake durability index)</u>

APPENDIX III

PROJECT BORING LOGS:

B-023-1-13 through B-026-3-13

BORING LOGS

Definitions of Abbreviations

- AS=Auger sampleGI=Group index as determined from the Ohio Department of Transportation classification systemHP=Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
- LL_o = Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL_o/LL is less than 75 percent, soil is classified as "organic".
- LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
- PID = Photo-ionization detector reading (parts per million)
- QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
- QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
- RC = Rock core sample
- REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
- RQD = Rock quality designation estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

 \sum segments equal to or longer than 4.0 inches x100

core run length

- S = Sulfate content (parts per million)
- SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m).
- N_{60} = Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
- SS = Split spoon sample
- 2S = For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N₆₀ values.
- 3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.
- TR = Top of rock
- W = Initial water level measured during drilling
- ▼ = Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR	=	% Gravel
SA	=	% Sand
SI	=	% Silt
CL	=	% Clay

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
ΡI	=	Plasticity Index

WC = Water content (%)

PROJECT: FRA-70-12.68 - PHASE 4A	DRILLING FIRM /	OPERATO	R:	I / S.M.	DRI	LL RIG:	C	CME-750 (SI	N 98048	3)	STAT	TION /	OFFS	SET:	5084	+74.1	6 / 15	.0' RT	EXPLO	RATION
	SAMPLING FIRM	LOGGER:		/ K.R.		MMER:		CME AUTO	MATIC			NMEN				RAMP			D-02	
	DRILLING METHO		3.25" H			IBRATI			4/26/13			/ATIOI			4 (MSL				18.1 ft.	PAG
START: <u>8/6/13</u> END: <u>8/6/13</u>	SAMPLING METH	OD:	SPT	•	ENE	ERGY R	ratio (%):	82.6		LAT /	LONG	G:	3	9.9528	4480	7, -83	.003019	9835	1 OF
MATERIAL DESCRIPTION		ELEV.	DEPT		SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATTE	ERBI	ERG		ODOT	BAC
AND NOTES		732.4	DLFI	113	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILI
VERY STIFF TO HARD, BROWN CLAY, "AND" SILT,																				7 LV -
LITTLE COARSE TO FINE SAND, TRACE FINE GRA	VEL,			- 1 -	5															1<1-
DAMP.				- 2 -	7	28	53	SS-1	4.5+	-	-	-	-	-	-	-	-	14	A-7-6 (V)	76-
					13															- < , v
				- 3 -																76.
					4						_									ΞĹΥ.
					4 6	14	58	SS-2	3.50	10	5	11	37	37	42	21	21	16	A-7-6 (13)) 1 > 1 .
				- 5 -	0															- 7 LV .
				6 -																125
					6 8	25	53	SS-3	4.5+	_		_	_	_	_	-	_	16	A-7-6 (V)	12.
				- 7 -	10															
		724.4		- 8 -																125
VERY STIFF TO HARD, BROWN SILT AND CLAY, SU COARSE TO FINE SAND, LITTLE FINE GRAVEL, MO							~	OT 4		10		4-	.	<u>.</u>		40	44	~~~	A 0- (5)	JLV
-COBBLES PRESENT @ 9.0'				- 9 -			60	ST-4	4.5+	16	11	15	34	24	29	18	11	22	A-6a (5)	1 > 1
-QU @ 8.3' = 2.95 TSF				_ 10 _																$\frac{1}{7}L^{\vee}$
-CONSOLIDATION TEST PERFORMED @ 8.9'				- 11 -	4															$= \frac{1}{7} L^{V}$
-CONSOLIDATION TEST FERI ORMED @ 8.9				- 12 -	5	15	78	SS-5	3.00	-	-	-	-	-	-	-	-	18	A-6a (V)	1<1
		719.4		- 4	6															76
STIFF TO VERY STIFF, BROWN CLAY, SOME SILT,		113.4		— 13 —																<, v
SOME COARSE TO FINE SAND, SOME FINE GRAV				- 14 -	4	47						4.0	<u> </u>	. -				10		12
DAMP TO MOIST.					6 6	17	81	SS-6	2.00	25	13	12	25	25	48	19	29	16	A-7-6 (10)	$) \leq L^{\vee}$
				_ 15 _																1<1
				- 16 -																7.6
																				1>1
			_	- 17 -			98	ST-7	3.00	-	-	-	-	-	-	-	-	21	A-7-6 (V)	12
		714.4	<u> </u>	- 18 -																- ZLV
DENSE TO VERY DENSE, BROWN TO GRAY GRAV AND SAND, LITTLE SILT, TRACE CLAY, MOIST TO			W		4															1<1
AND GATE, ETTLE GET, TRACE CEAT, WORT TO				- 19 -	8	33	100	SS-8	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	7 LV
				- 20 -	16															- 1>V
	$\circ \bigcirc \circ$			_ 21 _																76
	00																			< , v
	ې د م			- 22																12
	$\langle \mathcal{O} \rangle$			23																5 LV
	000				1															1<1
				- 24 -	+ 17	51	100	SS-9	-	-	_	-	-	-	_	-	-	13	A-1-b (V)	7 LV
	P. C.			_ 25 _	20															1721
-COBBLES PRESENT THROUGHOUT																				
				- 26																Y LV
				_ 27 _																1<1
																				ZLV J>C
	ه (۲۰			_ 28 _																1<1
	Po-D			- 29 -	22 50/5"	-	0	SS-10	-	-	-	-	-	-	-	-	-	-		
	10.	4 1			45			3S-10A	1								3	12	1	- 1 > r . - < . v

ID: <u>77372</u>	BR ID:				<u>-10-12.00</u>	3 - PHASE						74.16 / 15 SAMPLE			RAD	_			ATT			G 2 OI		
	IVIA I	ERIAL DESC AND NOTE				ELEV. 702.4		EPTHS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)			FS	SI	CL		PL	PI	wc	ODOT CLASS (GI)	BA FI
DENSE TO V AND SAND, L (same as abov -HEAVING S	ITTLE SILT /e)	E, BROWN I , TRACE CL	to gray .Ay, mois			? .ไ	_w	31 32 33	-															
-COBBLES I	PRESENT ⁻	HROUGHO	DUT					_ 34 _ 35 _ 36	17 18 22	55	100	SS-11	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
/ERY STIFF, TO FINE SAN					E	695.4	_	- 37 - 38 - 39	-	40	100	SS-12	3.50	4	8	20	46	22	36	16	20	11	A-6b (11)	- 7 < 1 × 1 7 < 7 × 7 × 7
/ERY DENSE								- 40 41 42	23			55-12	3.50	4	0	20	40	22	30	10	20			
SAND, TRAC	E SILT, DA	MP.	LECOAR	SE TO FII				- 43 44 45	12 30	91	78	SS-13	-	-	-	-	-	-	-	-	-	6	A-1-a (V)	
-COBBLES I	PRESENT (2 46.0'				70	EC	- 46 - 47 - 48	-			SS-14					/							
									<u> 20/1</u>					<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		
OTES: SEEF								22 0' VNIC AT			19.01													

PROJECT: FRA-70-12.68 - PHASE 4A TYPE: STRUCTURE	DRILLING FIRM /			-	.L RIG: IMER:		CME 55 (SN CME AUTO		,		MENT:		BL	RAMF	P C5	.3' RT	-	RATION ID 4-1-13
PID:			4.25" HSA					0/20/14	•	ELEVA							4.3 ft.	PAGE 1 OF 3
START: <u>2/11/15</u> END: <u>2/14/15</u> MATERIAL DESCRIPTION	SAMPLING METH		SPT				%): SAMPLE	92 LLD		LAT / L GRADA			-	ERB		001880		
AND NOTES		746.4		SPT/ RQD	N ₆₀	(%)	ID	(tsf)	-		-	()	_	-	PI	WC	ODOT CLASS (GI)	HOLE
1.2' - ASPHALT (14.0")	\times																	
0.5' - AGGREGATE BASE (6.0")		745.2	- 1 -															
VERY STIFF TO HARD, BROWN SILT AND CLAY, L		1 1 1 1	- 2 - 8															
COARSE TO FINE SAND, TRACE TO LITTLE FINE			- 3 -	6	17	33	SS-1	4.50	-	-	- -	-	-	-	-	12	A-6a (V)	
GRAVEL, DAMP.			4 2	5														
				6 7	20	100	SS-2	3.50	-	-	- -	-	-	-	-	15	A-6a (V)	
VERY DENSE, GRAY GRAVEL , TRACE COARSE TO		740.9	- 5 -															
SAND, TRACE SILT, TRACE CLAY, DAMP.			6 9		00					_						•		
			- 7 -	19 20	60	33	SS-3	-	83	7	3 5	2	NP	NP	NP	3	A-1-a (0)	
HARD, GRAY SANDY SILT, SOME FINE GRAVEL, L		738.4	- 8 -															
			_ 9 _ 1	2	40		00.4	4.5.	00	10	11 0		00	10	10	0	A 4= (0)	
5			- 10	17 13	46	89	SS-4	4.5+	23	13	14 3	1 19	23	13	10	8	A-4a (3)	
DENSE, GRAY GRAVEL , TRACE COARSE TO FINE		735.9																
SAND, TRACE SILT, TRACE CLAY, DAMP.	$[\circ \bigcirc \circ$						00 5									0		
			- 12 -	16 13	44	39	SS-5	-	-	-		-	-	-	-	3	A-1-a (V)	
2 L HARD, GRAY TO DARK GRAY SANDY SILT , LITTLE		733.4	- 13 -															
CLAY, LITTLE FINE GRAVEL, DRY TO DAMP.	-		- 14 - 9	10	25	100	00.0	4.5.								~	A 4= () ()	
-SS-6: SULFATE CONCENTRATION = 1,447 PPM			- 15	10 13	35	100	SS-6	4.5+	-	-		-	-	-	-	5	A-4a (V)	
			161	6	61	20	00.7									7	A 4= () ()	
			- 17 -	22 18	61	39	SS-7	-	-	-		-	-	-	-	7	A-4a (V)	
			- 18 -															
õ 			- 19 - ⁶	13	37	67	00.0	4.5.	10	4.4	17 0	10		10	•	0	A 4= (2)	
2 2			20	13	57	07	SS-8	4.5+	18	14	17 3	2 19	22	13	9	9	A-4a (3)	
3																		
			_ 21 _ 9		28	100	SS-9	4.50	-	_						10	A-4a (V)	
2			- 22 -	°10	20	100	55-9	4.50	-	-		-	-	-	-	10	A-4a (V)	
VERY DENSE, DARK GRAY GRAVEL AND SAND, T		723.4	- 23 -															
VERY DENSE, DARK GRAY GRAVEL AND SAND, T SILT, TRACE CLAY, DAMP.			- 24 - 1	4	75	100	SS-10		21	20	27 9	E			NP	F	A 1 h (0)	
			25	30 19	15	100	33-10	-	51	28	21 8	5		INP		5	A-1-b (0)	
6 HARD, GRAY SILT AND CLAY , TRACE FINE SAND,		720.9																
MOIST.			267	10	12	100	CC 11	1 5 1								10	A 6c (\/)	
			27	10 18	43	100	SS-11	4.5+	-	-		-	-	-	-	18	A-6a (V)	
			- 28 -		Τ													
HARD, GRAY SILT AND CLAY , TRACE FINE SAND, MOIST.				10	20	100	00.40	4 5 .	0		2 4	10	20	4-	45	10	A 65 (10)	
				10 15	38	100	SS-12	4.5+	0	0	3 4	9 48	30	15	15	18	A-6a (10)	

MATERIAL DESCRIPTION	ELEV.		PTHS	SPT/	N	REC	SAMPLE	HP	G	RAD	ATIO	N (%))	ATT	ERBEI	RG	ODOT
AND NOTES	716.4		THS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI W	
IARD, GRAY SILT AND CLAY , TRACE FINE SAND, IOIST. (<i>same as above</i>)	714.4	_	- 31 - - 32 -	-													
		w	- 33 -	21													_
			- 34 35	30 24	83	89	SS-13	-	-	-	-	-	-	-	-	- 8	A-1-a (V)
	0		- 36 - - 37 -	-													
			- 38 -	4													
			- 39 - - 40 -	15 50/4"	-	81	SS-14	-	72	16	5	4	3	17	13	4 8	A-1-a (0)
			- 41 - - 42 -														
			- 43 - - 44 -	14 50/3"	_	44	SS-15	-	_	-	-	_	-	-	-	- 8	A-1-a (V)
			_ 45 _	50/3"													
			- 46 - 														
			- 48 -	-50/3"		~ <u>100</u> ~	SS-16	 /					-			5	A-1-a (V)
			50	-													
ENSE, GRAY COARSE AND FINE SAND, SOME FINE	<u>694.4</u>	-	- 51 - - 52 -														
INAVEL, TRACE SILT, TRACE CLAY, MOIST. HEAVING SANDS ENCOUNTERED @ 53.5' INTRODUCED WATER @ 53.5'			- 53 - - 54 -	12	4.4	00	00.47										
-PETROLEUM ODOR PRESENT IN SS-17			_ 55 _	14 15	44	89	SS-17	-	-	-	-	-	-	-	-	- 1	3 A-3a (V)
ARD, GRAY SILT AND CLAY, SOME FINE GRAVEL,	689.4	_	56 57														
OMÉ COARSE TO FINE SAND, DAMP.			- 58 - - 59 -	50/5"	-	80	SS-18	4.5+	34	_14	13	25	14	23	13	10 6	A-4a (1)
			- 60 -														
	684.4		61 -	1													

ID: 77372 BR ID: FRA-70-1390	PROJECT: FRA-70-12.0	68 - PHASE	<u>4A</u> [8	STATION / OFFSI	EI: _{	5087+8	81.22 / 64.3	<u>3 RI</u>	1 3	STAR	1: 2/	11/15	ENI	D: <u>2</u> /	14/15		G 3 O	F3 B-0)24-1-1
MATERIAL DESCR		ELEV.		THS SPT/	N		SAMPLE			RAD				ATT		RG		ODOT	HOL
AND NOTES		684.3		RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI) SEAL
VERY DENSE, BROWN GRAVEL AND SILT, TRACE CLAY, MOIST. <i>(same as a</i>	SAND, TRACE	0 682.1		- 63 - - 64 - 47 50/3" -	-	100	SS-19	-	-	-	-	-	-	-	-	-	11	A-1-b (V	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		EOB		-														
NOTES: GROUNDWATER ENCOUNTERED																			

Client:	: ms c	onsu	Itants	;			<i>Project:</i> FRA-70-8.93							Jol	b No. 0221-1	004.01
LOG	OF: B	oring	B-02	24-0-(	)8	Lo	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te I	Drill	ed:	7/1/20	08 to 7/2/20	08
Depth (ft)	Elev. (ft) 743.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate		M. Sand	F. Sand	% Sit	Na Blow	atural Moisture PL ⊢	ETRATION (N60 Content, % - ¶ // Non-Plastic - N 30 40
-	-	3 4 7 12 11 5	11	1 2		 4.5+	Stiff to very stiff brown SILTY CLAY (A-6b), trace to little fine to coarse sand, little gravel; damp to moist. @ 0.0 - 3.0', contains roots. @ 1.5', hard.		11	9		11		7		
- _5 		7 8 4 6 14	16 13	3		4.0 3.75	@ 3.0', very stiff to hard.						33 3 31 3			
- - <u>10</u> -	-	4 4 8	15	5		4.5										
- - - 15.5		14 21 22 17 14 15	9	6 7			@ 11.0', encountered rock fragments.									
 	727.9	4 7 7 2	18	8		3.5	Very stiff brownish gray SANDY SILT (A-4a), little to some fine to coarse sand, trace gravel; damp to moist.									
- 20 -	-	4 7 13 16	18	9 10		3.0	@ 21.5', encountered possible large rock fragments, cobbles.		9	15		19	35 2	2		
- 25		3 7 8	18	11		3.25										

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus	Ohio 43229 * (614) 888-0040
----------------------------------------------	-----------------------------

Client:	ms c	onsul	tants	;			<i>Project:</i> FRA-70-8.93							Jo	ob No. 0221-10	04.01
LOG	DF: Bo	oring	B-02	24-0-0	)8	Loc	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te L	Drille	ed: 7	7/1/2	008 to 7/2/2008	3
Depth (ft)	Elev. (ft) 718.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate	Sand	and	% F. Sand			TANDARD PENE Vatural Moisture ( PL ↓ wws per foot - ○ / 10 20	Content, % - 🕷
- - 28.0	715.4	8 10 14	18	12			Very stiff brownish gray SANDY SILT (A-4a), little to some fine to coarse sand, trace gravel; damp to moist.									
- <u>30</u> -	-	3 12 15	16	13			Medium dense brownish gray SILT (A-4b), little fine sand; wet.		- - - -	0		17 -	83	-        N P               		
2.0 - 3 <u>5</u> -		7 18 18	11	14			Dense brown GRAVEL (A-1-a), some fine to coarse sand, trace to little silty clay; wet.		60	22		8 -	10	-              NP -               		
7.0 - <u>40</u> -		13 26 45	15	15			Hard brownish gray SANDY SILT (A-4a), little gravel, trace clay; damp.		12	14		27 3	33 14	4                               		
2.0 - <u>45</u> -	701.4	17 26 45	18	16			Very dense brownish gray COARSE AND FINE SAND (A-3a), little silty clay, little gravel; wet. @ 43.5', 2.0 feet sand heave.		16	25		47 -	12	                         		
<u>7.0</u> - -	696.4 693.4	26 30 27	13	17			Very dense brownish gray SANDY SILT (A-4a), little gravel; wet.		-						1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1

DLZ Ohio, Inc.	* 6121 Huntley Road,	Columbus, Ohio 43229 *	(614) 888-0040
----------------	----------------------	------------------------	----------------

Client:	ms c	onsul	Itants	6			Project: FRA-70-8.93							J	ob Nc	. 0221	-1004	I.01	
LOG	DF: Bo	oring	B-02	24-0-(	08	Lo	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te l	Dril	led:	7/1/2	2008 t	o 7/2/2	2008		
Depth (ft)	Elev. (ft) 693.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	Aggregate	Sand	Sand	F. Sand	% Silt 0	Clay BI	Natura. PL	ARD PI Moistu foot - 20	ure Col	ntent, 9 on-Plas	% - 单 LL
- - - 55		15 40 50/4	13	18			Very dense brownish gray GRAVEL WITH SAND (A-1-b), some silty clay; wet. @ 50.0'-60.0', difficulty advancing boring due to obstruction inside augers blocking rods; possible boulder zone.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	30	31		16	15	8					                             <b>50 +</b>         <b>(</b>
<u>57.0</u> - <u>60</u>	686.4	37 21 50	13	19			Very dense brownish gray SANDY SILT (A-4a), some gravel, some fine to coarse sand; damp.	<u>.</u>		19		10	28	13					                                                 
62.0 - 65		11 50/4	10	20			Very dense brown and gray GRAVEL (A-1-a), some fine to coarse sand, trace silt; wet. @ 63.5', one foot sand heave; encountered black shale fragments.		73	17		5	5-	-                	PI III III III III III III III				            50 + 
- - <u>70</u> -	1	50/3	0	21			@ 68.5', possible cobbles or boulders.												            50 +        0         0
75	1	50 50/3	6	22			@ 73.5', 6.0 feet sand heave; washed out with tricone.	°0 0 <u>/</u> 0 0											              50 +

DLZ Ohio, Inc.	* 6121 Huntley Roa	d, Columbus, Ohio 43229 *	(614) 888-0040
----------------	--------------------	---------------------------	----------------

Client:	ms c	onsu	Itants	;			<i>Project:</i> FRA-70-8.93								Job I	√o. 02	21-10	04.01	
LOG C	DF: Bo	oring	B-02	24-0-0	)8	Lo	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			Da	te l	Dril	led:	7/1	1/2008	to 7/2	2/2008	3	
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	a				% Silt O		Natu Pi Blows p	ral Moi L ⊢— per foot	<i>isture</i> C - ○ /	Non-Plas	% - ♠ LL tic - NP
	668.4	39 50/3 50/0 50/0 Core 18"	Ω 9 9 0 Rec 0" Rec 116"	23 24 25 RQD 0%	R1		<ul> <li>Very dense brown and gray GRAVEL (A-1-a), some fine to coarse sand, trace silt; wet.</li> <li>@ 78.5', 3.0 feet sand heave.</li> <li>@ 80.0'-90.0', difficult drilling; possible cobbles.</li> <li>@ 80.0'-90.0', difficult drilling; possible cobbles.</li> <li>@ 90.0' - 91.5', core loss.</li> <li>@ 91.5' - 91.8', encountered igneous-plutonic cobble/boulder; likely peridotite or gabbro.</li> <li>Interbedded Shale (90%) and Limestone (10%) RQD 60%, LOSS 26%; Shale, blue-gray, highly weathered, weak, laminated, slightly calcareous, contains abundant pyritic inclusions, moderately to highly fractured; Limestone, light gray, moderately weathered, moderately strong to strong, fractured.</li> </ul>			36		5	%4-	-				30 	
9 <u>5</u>   100		120"		RQD 81%	R2														

Client:	maa	oncui	Itanto				<i>Project:</i> FRA-70-8.93								Job No. 0221-1004.01
LOG C					18	1.00	cation: Sta. 5085+90.21, 3.1' LT., BL RAMP C5			יח	ate	וייח	المطا	. 7/	1/2008 to 7/2/2008
	л. D(	ning 	D-U4	<b>Sam</b>		LOC	WATER OBSERVATIONS:								
Depth (ft)	Elev. (ft) 643.4	Blows per 6"	Recovery	Drive		Hand Penetro- meter (tsf)	Water seepage at: 28.5'-80.0' Water level at completion: 16.5' (prior to coring) FIELD NOTES: 10.7' (includes drilling water) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate		% M. Sand		Silt	Clay	STANDARD PENETRATION (N60) Natural Moisture Content, % - • PL
- - 1 <u>05</u> - - 1 <u>10</u> 110	631.9	Core 120"	Rec 76"	RQD 48%	R3		Interbedded Shale (90%) and Limestone (10%) RQD 60%, LOSS 26%; Shale, blue-gray, highly weathered, weak, laminated, slightly calcareous, contains abundant pyritic inclusions, moderately to highly fractured; Limestone, light gray, moderately weathered, moderately strong to strong, fractured. @ 101.2', dark gray (shale). @ 107.8' - 111.5', core loss due to pyritic inclusion lodged in core barrel.								
- - 1 <u>15</u> - - 1 <u>20</u> - - - - - - - - - - - - - - - - - - -							Bottom of Boring - 111.5'								

PROJECT:FRA-70-12.68 - PH TYPE:STRUCTURE	SAMPLING FIR		RII / S.B. RII / N.A.	DRILL R HAMME		DBILE B-53 ( AUTOMA		400)	STATION	NT:		BL RA	MP C5			RATION II 24-2-14
PID: <u>77372</u> BR ID: <u>FR</u> START: 2/11/15 END:			3.25" HSA SPT				4/26/13		ELEVATI						59.2 ft.	PAGE 1 OF 2
START: <u>2/11/15</u> END: <u>MATERIAL DESCRII</u>	2/13/15 SAMPLING ME	ELEV.	(			(%). SAMPLE	77.7 HP		GRADATI			9.953082 ATTEF		-	ODOT	HOLE
AND NOTES	non	742.7			) (%)	ID			CS FS		, CL		PL PI	-	CLASS (GI)	SEALE
_0.4' - ASPHALT (5.0")		742.3														
1.1' - CONCRETE (13.0")		741.2	- 1 -													
VERY STIFF TO HARD, BROWN TO GR SOME CLAY, LITTLE FINE GRAVEL, DA			_ 2 _ ⁸ _ 3 _	12 32 13	78	SS-1	4.00	-		-	-	-		12	A-4a (V)	
			4 ⁵ 5	6 17 7	100	SS-2	4.5+	-		-	-	-		10	A-4a (V)	
				7 21 9	100	SS-3	2.75	16	17 17	30	20	22 1	3 9	11	A-4a (3)	
			- 8 - - 9 - ³	5 17	100	SS-4	4.5+	-		-	-	-		10	A-4a (V)	
			10 		100	SS-5	4.5+	_		_	_			10	A-4a (V)	
			- 12 - - 13 - - 14 - 5	5												
			_ 14 _ ³ _ 15	9 27 12	100	SS-6	4.5+	14	15 18	30	23	21 1	3 8	9	A-4a (4)	
		724.7	168 17	12 34 14	100	SS-7	4.5+	-		-	-	-		9	A-4a (V)	
MEDIUM DENSE, GRAY <b>SANDY SILT</b> , T MOIST.	RACE CLAY,		— 18 — — 19 — ⁹	10 26 10	100	SS-8	-	0	0 47	48	5	NP N	IP NP	20	A-4a (4)	
		722.2	20		1									1		
VERY STIFF, DARK GRAY <b>SANDY SILT</b> MOIST.			215 22	10 27 11	100	SS-9	4.00	-		-	-	-		17	A-4a (V)	
			- 23 - - 24 - ⁵ - 25 -	9 23 9	100	SS-10	3.00	0	0 18	48	34	22 1	4 8	19	A-4a (8)	
MEDIUM DENSE, GRAY <b>SILT</b> , LITTLE F CLAY, TRACE FINE GRAVEL, WET.	INE SAND, LITTLE	++ 1	₩26 - 26 - 27 -	5 14 6	100	SS-11	-	-		-	-	-		30	A-4b (V)	
	+ + + + + + + +		28	0	+									1		
	+ + + + + + + + + + + + + +	+ + + + + + + + + +	29 ⁹	10 27 11	100	SS-12	-	1	0 17	67	15	NP N	IP NP	22	A-4b (8)	

MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	N		SAMPLE	HP	Ģ	GRAD	ATIO	)N (%	)	ATTE	ERBEI	RG		ODOT
AND NOTES	712.7	DEPIHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) S
SEAT, TRACE THE GRAVEL, WET. (Same as above)	+++ +++ +++ 710.7	31	-														
MEDIUM DENSE TO VERY DENSE, GRAY <b>GRAVEL AND SAND</b> , TRACE SILT, TRACE CLAY, MOIST TO WET.		- 33 -															
		— 34 — — 35 —	3 4 9	17	100	SS-13	-	-	-	-	-	-	-	-	-	19	A-1-b (V)
		- 36 -	-														
D a a		- 37 - - - 38 -	-														×
		39 40	12 18 21	51	100	SS-14	-	40	23	27	6	4	NP	NP	NP	11	A-1-b (0)
		41															
IARD, GRAY <b>SANDY SILT</b> , TRACE CLAY, TRACE FINE GRAVEL, DAMP.		- 42 - - 43 -															
		- 44 - - - 45 -	15 19 21	52	100	SS-15	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)
	695.7	46	-														
/ERY DENSE, GRAY <b>GRAVEL AND SAND</b> , TRACE SILT, RACE CLAY, MOIST.		— 47 — — 48 —	-														
-HEAVING SANDS ENCOUNTERED @ 48.5'		- 49 - - 50 -	25 32 41	95	100	SS-16	-	-	-	-	-	-	-	-	-	12	A-1-b (V)
		51	-														
		- 52 - - - 53 -															
		54 55	50/5"	-	0	SS-17	-	_	_	-	_	-	-	-	-	-	
-NO RECOVERY IN SS-17 AND SS-18. SOIL TYPE DETERMINED BASED ON VISUAL DESCRIPTION OF SOIL CUTTINGS ON FIELD LOG.																	
		- 58 -	50	-	0	SS-18	_	_	_	_	-	_	_	_	-	_	
		—EOB <u>—</u> 59 <u>—</u>	<u>=, 50/2</u> ",⊨						·l				• <b>•</b> •••••••	!			
IOTES: GROUNDWATER INITIALLY ENCOUNTERED @ 26.0'																	

DLZ Ohio, Inc.	* 6121 Huntley Road,	Columbus, Ohio 43229 *	(614) 888-0040
----------------	----------------------	------------------------	----------------

Client:	ms c	onsu	Itants	5			Project: FRA-70-8.93								Jol	o No	. 022	21-10	004.0	)1	
LOG	DF: Bo	oring	B-02	25-0-0	8	Lo	cation: Sta. 5088+53.62, 76.0' LT., BL RAMP C5			Da	ate	Dri	lled	:7/2	24/2	800					
Depth (ft)	Elev. (ft) 740.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 26.0' Water level at completion: 39.0' FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	Aggregate	nd	M. Sand	F. Sand	% Siit 0		Na	tural PL	Mois	ture	TRA Conte Non- 30	ent, % → L	<i>L</i> c - NP
1.2 -	739.2						Asphalt Concrete - 7" Aggregate Base - 7"														
- 3.5	736.9	14 13 17	15	1		4.5+	FILL: Hard brown SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; contains few brick fragments; damp.														
5	-	11 10 14	14	2		4.5+	Hard gray SANDY SILT (A-4a), some to "and" fine to coarse sand, trace to little gravel; damp.														
-	-	6 8 11	14	3		4.5+															
- <u>10</u>	-	7 10 11	18	4		4.5+			18	12		16	32	22							
11.5 -	728.9	10 11	18	5		4.5+			8	15		20	36	21		i e i					
- 13.5	726.9	14 16 17	4	6		4.5+	Hard gray SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; damp to moist.		12	16		18	34	20			 - <b>-</b>	)       		             	
- 15	-	5 8 12	18	7		4.5+	Very stiff to hard gray SANDY SILT (A-4a), some to "and" fine to coarse sand, trace to little gravel; damp.														
-	-	5 7 12	18	8		4.5+			15	14		19	31	21				                               			
- <u>20</u>	-	4 6 9	18	9		2.75															
-	-	5 9 12	18	10		4.5															
- 25	715.4	5 6 9	18	11		2.5											i i /				

Client:	: ms c	onsu	Itants	5			Project: FRA-70-8.93	000-00							Job	No.(	)221-	1004	1.01	
LOG	DF: Bo	oring	B-02	25-0-0	8	Lo	cation: Sta. 5088+53.62, 76.0' LT., BL RAMP C5			Da	te	Drill	led.	:7/2	24/20	)08				
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam, No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 26.0' Water level at completion: 39.0' FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate	and	and	% F. Sand A		lay	Natu F Blows	ural M PL ⊢	loistur	re Co	ntent, i on-Plasi	LL
							Very stiff gray SILTY CLAY (A-6b), little fine sand; moist.													
- 28.5	711.9	3 6 17	13	12		3.5			-											
- 30	_	17 29 37	10	13			Very dense brown GRAVEL WITH SAND (A-1-b), some fine to coarse sand, little silty clay; wet.	0												
-	-						@ 30.0'-38.5', encountered cobbles while augering.													
- <u>35</u> -		29 50/5	6	14					50	21		10	14	5	INIP                               	A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1     A = 1				   <b> 50 +</b>           (           
38.5 -	701.9	23						0	7											
- <u>40</u> - 43.5	696.9	23 50/6	10	15		4.5+	Hard gray SANDY SILT (A-4a), some fine to coarse sand, trace gravel; damp.													<b> 50 +</b>          (                         
<u>43.3</u> - 4 <u>5</u> - -	_	9 30 37	12	16			Very dense gray GRAVEL WITH SAND (A-1-b), "and" fine to coarse sand, little silt; wet.													
- 50	690.4	22 39 30	15	17				1. 4	39	26		22	13		N P       ●    					       <b> </b> 7          (

DLZ Ohio, Inc.	* 6121 Huntley Road	, Columbus, Ohio 43229 '	(614) 888-0040
----------------	---------------------	--------------------------	----------------

Client:	ms c	onsu	Itants	;			Project: FRA-70-8.93	888-00							Job No. 0221-1004.01
LOG	)F: Bo	ring	B-02	25-0-0	8	Loc	eation: Sta. 5088+53.62, 76.0' LT., BL RAMP C5			Da	te l	Drill	ed:	7/2	24/2008
Depth (ft)	Elev. (ft) 690.4	Blows per 6"	Recovery	Sam, No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 26.0' Water level at completion: 39.0' FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	Aggregate	Sand	Sand	pu	% Sit NO		STANDARD PENETRATION (N60) Natural Moisture Content, % - $\bigcirc$ PL $\leftarrow$ LL Blows per foot - $\bigcirc /$ Non-Plastic - NP 10 20 30 40
- - - 55		22 33 26	13	18		2.5	Very stiff gray SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; moist.								
- 57.0 -	683.4	48					Very dense brown COARSE AND FINE SAND (A-3a), some silt, little gravel; wet.		•						
<u>59.3</u> 60   65   70             	681.1	50/3	9	19			Bottom of Boring - 59.3'	• • •							

DLZ Ohio, Inc.	* 6121 Huntley Road,	Columbus, Ohio 43229 *	(614) 888-0040
----------------	----------------------	------------------------	----------------

Client.	: ms c	onsu	Itants	5			Project: FRA-70-8.93								Job	<i>No.</i> 0	221-1	004.0	1
LOG	DF: Bo	oring	B-02	26-0-0	8	Lo	cation: Sta. 5088+59.96, 128.9' LT., BL RAMP C5			Da	ate	Dri	llea	1:8/	1/200	8 to 8	3/6/20	800	
Depth (ft)	Elev. (ft) 754.0	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 41.0', 58.0', 77.0' Water level at completion: 29.1' (beginning of shift, 8/5/08) 30.7' (includes drilling water) Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	% Aggregate	Sand		% F. Sand	It		Natu I Blows	ıral Mo ⊃L ⊢	oisture	e Conte	TION (N60) nt, % - ● ⊣ LL Plastic - NP 40
0.3 /	753.7/						Topsoil - 4"	$\rightarrow$	Ž										
- 2.0	752.0	8 11 8	18	1A 1B		1.5 0.5	Stiff brown SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; moist.												
3.5	750.5	5				0.5	Soft brown SANDY SILT (A-4a), some fine to coarse sand, little gravel; wet.												
_5	-	4 5	18	2		2.75	Very stiff to hard brown CLAY (A-7-6), little to some fine to coarse sand, trace to little gravel; moist.		5	6		13	37	39					
-		5 8 11	18	3		4.25													
- <u>10</u>	-	11 8 8	18	4		0.5	@ 8.5'-10.0', soft, wet.												
-		8 10 20	4	5		2.5													
- <u>15</u>	-	5 10 20	2	6		1.5	@ 13.5', becomes gray. @ 13.5'-15.0', stiff.												
- - 18.5	735.5	19 23 22	0	7															
<u>-</u> 20		11 8 14	18	8		3.0	Very stiff to hard gray SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; damp to moist.												
-	-	11 12 10	18	9		2.5			9	14		16	35				i   i i + + +++ -   Ø		
- 25	729.0	7 5 8	18	10		4.5+													

DLZ Ohio, Inc.	* 6121 Huntley Road	, Columbus, Ohio 43229 [°]	(614) 888-0040
----------------	---------------------	-------------------------------------	----------------

Client:	: ms c	onsul	tants	3			Project: FRA-70-8.93		-					Job No. 0221-1004.01
LOG	DF: Bo	oring	B-02	26-0-0	8	Loc	cation: Sta. 5088+59.96, 128.9' LT., BL RAMP C5			Da	te l	Drill	ed:8	8/1/2008 to 8/6/2008
Depth (ft)	Elev. (ft) 729.0	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 41.0', 58.0', 77.0' Water level at completion: 29.1' (beginning of shift, 8/5/08) 30.7' (includes drilling water) Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	Aggregate	Sand	and	% F. Sand		STANDARD PENETRATION (N60) Natural Moisture Content, $\% - \bullet$ PL $\mapsto$ LL Blows per foot $\sim \bigcirc / Non-Plastic - NP$
-	-	9 10 8	18	11		3.5	Very stiff gray SILT AND CLAY (A-6a), little to some fine to coarse sand, trace gravel; moist.							
- <u>30</u> 31.0	723.0	8 12 10	10	12		2.25								
-	-	21 21 23 4	18	13		1.5	Stiff to very stiff gray SANDY SILT (A-4a), little to some fine to coarse sand, trace to little gravel; damp to moist.							
- -		8 11 12 8	18	14		3.0			10	13		18	36 23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
- 38.5 ⁻	715.5	8 7 6 9	18	15 16		3.25	Stiff gray SILTY CLAY (A-6b), trace fine sand; damp.		0	0		1	39 6	
<u>40</u> - 42.0	712.0	18	16											
-	1	29 34	10	17			Very dense gray GRAVEL WITH SAND AND SILT (A-2-4), some fine to coarse sand, some silty clay; wet.	0000						
<u>45</u> - - -	-	32 19 35	18	18										

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-0040

Client	: ms c	onsu	Itants	6			Project: FRA-70-8.93		-						Jok	No	. 022	1-10	04.01	
LOG	OF: Bo	oring	B-02	26-0-0	8	Lo	cation: Sta. 5088+59.96, 128.9' LT., BL RAMP C5			Da	te	Drill	led:	8/1	/20	08 to	o 8/6	/2008	3	
Depth (ft)	Elev. (ft) 704.0	Blows per 6"	Recovery	Sam, No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 41.0', 58.0', 77.0' Water level at completion: 29.1' (beginning of shift, 8/5/08) 30.7' (includes drilling water) Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	% Aggregate		Sand	% F. Sand	Silt	lay	Nat	ural PL	Moist	ure C	ontent,	LL
- - - 55 - -		21 23 50/5	17	19		4.5+	Hard gray SILT AND CLAY (A-6a), some fine to coarse sand, trace to little gravel; contains sand seams; damp.		10	13		22	35 :							
<u>57.0</u> - <u>60</u> -	<u>697.0</u>	19 30 44	18	20			Very dense gray GRAVEL WITH SAND (A-1-b), trace to little silt; wet.		30	41		21	8-		                             					
- <u>65</u> - <u>67.0</u>	687.0	29 50/4	2	21										- i						    50 +           (                     
- - - -	 	8 20 23	2	22		4.5	Hard gray SILT AND CLAY (A-6a), some fine to coarse sand, trace to little gravel; damp to moist.													
-	679.0	13 50/5	10	23		4.5+			9	10		19	40	22						     <b> 50 +</b>

82.0       672.0         82.0       672.0         82.0       672.0         85       7         25       1.75         87.0       667.0         13       13         90.0       9         667.0       1.5         Claystone, brown, severely weathered, very weak, fractured, RDD 14%, Loss 67%.         @ 90.0°-97.8° lost recovery.	Client: ms cons	ultants	;			Project: FRA-70-8.93	888-0	-						Job N	Vo. 0	221-	1004	1.01	
Depth (ft)         No. (ft)         Hand (ft)         Water seepage at: (ft)         41 (1, 58) (77) (2') (beginning of shift, 15/308) 30.7 (includes drilling water)         STANDARD PI Natural Moisting 30.7 (includes drilling water)           678.0         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8	LOG OF: Boring	g B-02	26-0-08	3	Lo	cation: Sta. 5088+59.96, 128.9' LT., BL RAMP C5			Da	ate	Drill	ed:	8/1/	2008	B to 8	8/6/2	308		
82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       672.0         82.0       667.0         82.0       1.5         Stiff gray CLAY (A-7-6), trace fine to coarse sand, trace gravel; damp.         90.0       667.0         13       7         26       1.5         Claystone, brown, severely weathered, very weak, fractured, RQD 14%, Loss 67%.         @ 90.0'-97.8' lost recovery.	(ft) (ft) (ft)	Recovery	No.	Ha Pene S me	etro- eter	Water seepage at:41.0', 58.0', 77.0'Water level at completion:29.1' (beginning of shift, 8/5/08)SIELD NOTES:30.7' (includes drilling water)Advanced boring using 4.0" diameter flush joint casing.	Graphic Log		nd	pu	pd		3	Natur PL Blows p	al Mo  ber foo	oistur	e Co	ntent, i on-Plas	% - €́ LL
35       7       25       1.75         87.0       667.0       9       13        27       33       18         90.0       90       664.0       13       7       26       1.5       Stiff gray CLAY (A-7-6), trace fine to coarse sand, trace gravel; damp.       6       3        2       30       59         90.0       90       664.0       13       7       26       1.5       Claystone, brown, severely weathered, very weak, fractured, RQD 14%, Loss 67%.       6       3        2       30       59         95       90.0'-97.8' lost recovery.       9       0.0'-97.8' lost recovery.       10       10       10       10       10	- - _ 50/5 80 -					boulders; wet.													 
13       13       19       26       1.5         90.0       90       664.0       33       7         -       -       -       -       -       6       3        2       30       59       1.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.	85	7	25	1.5	75	trace gravel; damp.		9	13		27	33 1	8		•				
95	19	3 7	26	1.	.5	gravel; moist. Claystone, brown, severely weathered, very weak, fractured, RQD 14%, Loss 67%.		6	3		2	30 5	59           						
97.8 656.2 Shale, blue-gray, highly weathered, weak, laminated, friable, fissile, jointed, fractured to moderately fractured, tight,	-																		

Client	: ms	consu	Iltant	s			Project: FRA-70-8.93							Job No. 0221-1004.01
LOG	OF: B	oring	B-0	26-0-	08		<i>_ocation:</i> Sta. 5088+59.96, 128.9' LT., BL RAMP C5			Dat	te D	Drille	d: 8	8/1/2008 to 8/6/2008
Depth (ft)	Elev. (ft) 679.0	∂d smo	Recovery	Sarr No		Hano Penetr meter (tsf)	0- Water level at completion: 29.1' (beginning of shift, 8/5/08)	Graphic Log	gregate		Sand	% F. Sand DIA		STANDARD PENETRATION (N60) Natural Moisture Content, % - $\textcircled{PL}$ Blows per foot - $\bigcirc / Non-Plastic - NP$ 10 20 30 40
82.0	- - - - - - - 672.0	50/5	2	24			Very dense gray GRAVEL (A-1-a); possible cobbles and boulders; wet.							
<u>87.0</u>	667.0	35 50/5	7	25		1.75	Stiff gray SANDY SILT (A-4a), "and" fine to coarse sand, trace gravel; damp. Stiff gray CLAY (A-7-6), trace fine to coarse sand, trace gravel;		9	13		27 3	3 18	в I I I I I I I I I I I I I I I I I I I
90.0	- 664.0	13 19 33	7	26		1.5	moist.		6	3		2 3	0 59	9
9	-	Core 60"		RQD 0%	) R1	-	Claystone, brown, severely weathered, very weak, fractured, RQD 14%, Loss 67%. @ 90.0'-97.8' lost recovery.							
97.8	656.2  654.0	60"	Rec 60"	RQD 80%			Shale, blue-gray, highly weathered, weak, laminated, friable, fissile, jointed, fractured to moderately fractured, tight, slightly rough, RQD 87%, Loss 0%.							

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-0040

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-004	Z Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio	43229 * (614) 888-0040	
--------------------------------------------------------------------------	--------------------------------------------------	------------------------	--

Client.	ms c	onsu	Itants	6			Project: FRA-70-8.93								Job I	<i>lo</i> . 02	21-1	004.0	)1
LOG	DF: Bo	oring	B-02	26-0-0	8	L	ocation: Sta. 5088+59.96, 128.9' LT., BL RAMP C5			Da	ate l	Drill	led	: 8/	1/2008	8 to 8	/6/20	80	
Depth (ft)	Elev. (ft) 654.0	Blows per 6"	Recovery	Sam No		Hand Penetro meter (tsf)	WATER OBSERVATIONS: Water seepage at: 41.0', 58.0', 77.0' Water level at completion: 29.1' (beginning of shift, 8/5/08) 30.7' (includes drilling water) FIELD NOTES: Advanced boring using 4.0" diameter flush joint casing. DESCRIPTION	Graphic Log	% Aggregate	Sand	Σ	F. Sand	Sit	% Clay	Natur Pl	al Mo  per foo	isture	Conte	TION (N6 ent, % - € ⊣ LL Plastic - ℕ 40
- - -	-	Core 60"		RQD 85%			Shale, blue-gray, highly weathered, weak, laminated, friable, fissile, jointed, fractured to moderately fractured, tight, slightly rough, RQD 87%, Loss 0%. Contains dark gray, well cemented shale zones [thin, dark bands]. Dark shale zones are typically 1-2 inches thick, spaced at intervals of 12 to 18 inches.												
1 <u>05</u> - - 108.9		Core 60"	Rec 60"	RQD 90%	R4		@ 100.5' - 101.0', qu = 2391 psi												
1 <u>10</u> - - -	-	Core 60"	Rec 60"	RQD 83%			Loss 0%; Shale, dark gray, moderately weathered, weak, thinly laminated, calcareous, fissile, pyritic, jointed, moderately fractured, tight, slightly rough; Limestone, light gray, slightly weathered, strong, thinly bedded, pyritic. @ 110.2'-110.5', 113.9'-114.2', high angle fractures.												
<u>115.0 115</u> - - 1 <u>20</u> - - - - - - - - - - - - - - - - - - -							Bottom of Boring - 115.0'												

	STRUCTUR		DRILLING FIRM	I / LOGGER:	RII / T.F.	НАММЕ	R:	DBILE B-53 ( AUTOMA		400)	ALIGN	MENT		BL	. I-70 E	EB		EXPLOR	5-1-1:
	77372 BR ID:	N/A			4.25" HSA	CALIBR			4/26/13				l: <u>747</u> .					0.0 ft.	PAG 1 OF
START:	9/19/13 END:	9/19/13	SAMPLING MET		SPT	ENERG			77.7					ATT			.001473		
	AND NOTES			747.0		RQD N	0 (%)	SAMPLE			GRADA		SI CL		PL	PI	wc	ODOT CLASS (GI)	BAC FIL
0.3' - ASPHALT (4				746.7			(/0)		(10.)			-							****
0.7' - AGGREGAT FILL: MEDIUM DE	E BASE (8.0") ENSE TO VERY DENS	SE, GRAY T	o	746.0	_ 1 _ 2 _ 2 _	3 14 2	· 50	SS-1	-	-	-	-		-	-	_	9	A-2-4 (V)	$(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times)$ $(\times,\times$
BROWN <b>GRAVEL</b> DAMP.	. WITH SAND AND SIL	<b>_T</b> , TRACE C	LAY,		_ 2	7													< 1 / 1 / 1 /
					4 4	9 23	50	SS-2	-	17	34	14	26 9	27	22	5	10	A-2-4 (0)	72
					- 5 - - 6 -														7 L 7 Z
					- 7 -														7 × 1 7 × 1 7 × 1
					- 8 - - 9 - ¹	2 7		00.0											< 7 L 7 >
					10	27 70 27	0 61	SS-3	-	-	-	-		-	-	-	8	A-2-4 (V)	<74 77 77
				735.0	11 12														V 7 7 V 7
COARSE TO FINE	AY AND BROWN <b>GR</b> E SAND, TRACE SILT		_AY, ¦°℃	0	12 13														, 1 > 7 L
DAMP.						2 17 4 19	33	SS-4	-	63	16	6	10 5	22	18	4	4	A-1-a (0)	7 V L 7 V L 7 7
	TO DENSE, BROWN E SILT, TRACE CLA			731.5	- 13	1													< 7 L 7 > 4 >
10IST.	L SILT, TRACE CLA	T, DAIVIE TO			- 17 -	14 44 20	50	SS-5	-	-	-	-		-	-	-	6	A-1-b (V)	747
					— 18 — — 19 — ⁹	12 3 [.]	44	SS-6	_	_	_	-		_	_	_	8	A-1-b (V)	- 7 V - 7 V - 7 7
					20	12											-	- (-)	7 4 7 7 7
					21 <del>7</del> 22	9 30 14	56	SS-7	-	31	32	14	19 4	21	18	3	7	A-1-b (0)	×1 1 × 1 ×
					- 23 -														7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
					24 ¹ 25	15 4 ⁻ 17	61	SS-8	-	-	-	-		-	-	-	8	A-1-b (V)	1 V L 7 V L 7 V
					269 27	16 43 17	50	SS-9	-	-	-	-		-	-	-	10	A-1-b (V)	V T 7 V T
/ERY DENSE, BF	ROWN GRAVEL AND	SAND, LITTI		<u>719.0</u>	w28 -														1 > 1 L
SILT, TRACE CLA	AY, DAMP TO MOIST				- 29 - ¹	5 17 54 25	33	SS-10	-	-	-	-		-	-	-	9	A-1-b (V)	- 7 7 7 7 7 1

PID: _77372			PROJECT: FRA-		<u>4A</u>	STATION /				8.08 / 111							_			G 2 OI	-	-
	NI.	ATERIAL DESCI AND NOTE		ELEV. 717.0	DE	PTHS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)		GRAD					ERBE PL	ERG PI	WC	ODOT CLASS (GI)	B/ F
/ERY DENS SILT, TRACE	E, BROW E CLAY, D	N GRAVEL AND				31 32		51	33	SS-11	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	<pre><l< pre=""></l<></pre>
						- 33 - - 34 - - 35 -	30 32 33	84	39	SS-12	-	70	10	0	18	2	20	16	4	6	A-1-b (0)	- 51
						- 36 - - 37 - - 38 - - 39 -	27 29	80	50	SS-13	-	-	_	_	-	-	-	-	-	6	A-1-b (V)	, 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V T 7 V
						- 40 - 41 - 42 - 43 - 43	33															
						- 44 - - 45 - - 46 - - 47 - - 48 -	27 25 32	74	67	SS-14	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
				697.0	FOR	- 49 -	25 26 27	69	72	SS-15	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	V T 7 V T 7
					L-EOB	3 -50-			1		1											7

PROJECT: TYPE:	STRUCTURE	_ DRILLING FIRM / SAMPLING FIRM	/ LOGGER:	RII / S.		HAMMER	:	BILE B-53 ( AUTOMA	TIC		ALIG	NMEN	T:		BL R	+73.78 / AMP C5		B-02	6-2-13
PID: <u>7</u> START:	7372 BR ID: FRA-70-1390 8/8/13 END: 8/14/13	DRILLING METH		4.25" HSA SPT		CALIBRA ENERGY			4/26/13 77.7			ATION				EOI 12248, -		89.5 ft.	PAG 1 OF
	MATERIAL DESCRIPTION AND NOTES		ELEV. 736.8	DEPTHS		PT/ N ₆₀		SAMPLE ID	HP	GR	RAD		N (%)			RBER	G	ODOT	BAC
0.8' - ASPHALT (9 0.5' - AGGREGATE	.0")		736.0 735.5	_	1 -		(70)					10	01						
GRAVEL AND SAN	EDIUM DENSE TO DENSE, BRC D, LITTLE SILT, TRACE CLAY, I ENTS PRESENT IN SS-1			-	2 - ⁵ 3 -	6 18 8	50	SS-1	-	40	28	11	15	6	20	16 4	7	A-1-b (0)	
			731.3	-	1 2	12 34 14	72	SS-2	-	-	-	-	-	-	-		7	A-1-b (V)	
SAND AND SILT, T	O DENSE, BROWN <b>GRAVEL WI</b> RACE CLAY, DAMP. ENT THROUGHOUT	ITH		-	6 - 3 7 -	4 16	67	SS-3	-	40	24	11	18	7	26	17 9	10	A-2-4 (0)	
-COBBLES FRES					8 - 9 - ⁷ 10 -	10 43 23	33	SS-4	-	-	-	-	-	-	-		6	A-2-4 (V)	
	O DENSE, BROWN <b>GRAVEL AN</b> T, TRACE CLAY, DAMP TO MOIS		726.3	-	11 <u>1</u> 4 12 <u>1</u> 4	1 18 32 7	44	SS-5	-	-	-	-	-	-	-		7	A-1-b (V)	V T T V T T T
			721.3		13 — 14 — ⁶ 15 —	5 12 4	50	SS-6	-	-	-	-	-	-	-		9	A-1-b (V)	
	BROWN <b>COARSE AND FINE SAN</b> VEL, TRACE SILT, MOIST.	ND,	718.8	W	16 - 8 17 -	6 13 4	33	SS-7	-	-	-	-	-	-	-		16	A-3a (V)	, , , , , , , , , , , , , , , , , , ,
MEDIUM DENSE, E SILT, TRACE CLA	BROWN <b>GRAVEL AND SAND</b> , TF Y, MOIST.	RACE	110.0	w	18 — 19 — ⁶	8 25	83	SS-8	_	_	_	_	_	_	_		12	A-1-b (V)	7 × L 7 × L 7 × L
-INTRODUCED M	IUD @ 20.0' DENSE, GRAY <b>GRAVEL AND SA</b>		716.3	-	20	11											_		LV LV LV
	CE CLAY, MOIST TO WET.			-	22	50 - 50/5"	82	SS-9	-	51	19	12	14	4	18	16 2	8	A-1-b (0)	
						42 - 50/4"	81	SS-10	-	-	-	-	-	-	-		9	A-1-b (V)	
					26 - 10	) 20 69 33	56	SS-11	-	-	-	-	-	-	-		11	A-1-b (V)	
				-	28 -	13 47 23	56	SS-12	_	_	_	_	_	_	_		10	A-1-b (V)	$-\frac{1}{7}L^{V}$

MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	N		SAMPLE	HP	G	SRAD/	ATIO	<u>N (</u> %	)	ATT	ERBE	RG		ODOT	B
AND NOTES	706.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	F
DENSE TO VERY DENSE, GRAY <b>GRAVEL AND SAND</b> , ITTLE SILT, TRACE CLAY, MOIST TO WET. (same as above)	702.0	- 														0	A 1 b ()()	V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
HARD, GRAY <b>SILT AND CLAY</b> , LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DRY.	702.6 699.8	- 34 - 35 - 36 - 37	20 50/2"	-	79	SS-13	4.50	-	-	-	-	-	-	-	-	8 9	A-1-b (V) A-6a (V)	
/ERY DENSE, GRAY GRAVEL AND SAND, TRACE SILT, //OIST. -ENCOUNTERED LIMESTONE BOULDER @ 40.0'. GWITCHED TO ROCK CORING TECHNIQUES TO CORE		38 39	- 	_ <b>-</b> _^	100/	SS-14	<u>р-</u> л	/									(A-1-b (V))	13
OULDER	695.3	40 41	0		94	RC-1											CORE	V77V77
/ERY DENSE, GRAY <b>FINE SAND</b> , TRACE FINE GRAVEL, RACE SILT, TRACE CLAY, DAMP. -HEAVING SAND ENCOUNTERED @ 41.5'	693.8	42 43	40	114	100	SS-15	-	-	-	-	-	-	-	-	-	10	A-3 (V)	V77V7
IEDIUM DENSE, GRAY <b>COARSE AND FINE SAND</b> , OME FINE GRAVEL, LITTLE SILT, TRACE CLAY, MOIST.	689.8			14	50	SS-16	-	24	24	29	17	6	15	11	4	17	A-3a (0)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ERY DENSE, GRAY <b>COARSE AND FINE SAND</b> , LITTLE SILT, LITTLE FINE GRAVEL, TRACE CLAY, MOIST.		47 48 49	- 	51	33	SS-17	_	_	_	-	_	_	_	_	_	18	A-3a (V)	- 7 V F 7
		50 51 52 53	   															
		- 		65	100	SS-18	-	16	29	33	18	4	15	13	2	11	A-3a (V)	7 4 7 7 7 7 7
		- 57 58	·															V 7 7 V 7 V V
		59 60	20	74	100	SS-19	-	-	-	-	-	-	-	-	-	13		V77V77V77

	MATERIAL DESCI	PROJECT: <u>FRA-70-</u>	ELEV.		-	SPT/		REC	SAMPLE	HP			T: <u>8/8</u> ATION	I (%)	)	ATT	ERB	ERG		ODOT
	AND NOTE		674.7	DEP	IHS	RQD	N ₆₀	(%)	ID	(tsf)	GR			<u>`</u> /	CL	LL	PL	PI	WC	CLASS (GI)
	GRAY SANDY SILT, LIT					_														
FRACE CLAY	, MOIST. (same as above	e)			- 63 -															
					- 64 -	42 42	104	89	SS-20	2.00	-	-	-	-	-	-	-	-	14	A-4a (V)
					65	38	-													
					- 66															
						_														
					- 67 -															
					- 68 -															
					- 69 -	12 18	71	100	SS-21	3.00	13	23	21	33	10	18	14	4	17	A-4a (2)
					- 70 -	37			0021	0.00	10	20								// ////////////////////////////////////
					- 71															
			664.8			-														
	, GRAY <b>COARSE AND F</b>			1	- 72 -															
SILT, TRACE	CLAY, TRACE FINE GR	AVEL, MOIST.			- 73 -															
					- 74 -	15 22	67	83	SS-22	-	-	-	-	-	-	-	-	-	13	A-3a (V)
					- 75 -	30														. ,
					- 76 -	-														
					- 77															
						-														
					- 78 -	45														
					_ 79 -	15 25 50/5"	-	100	SS-23	-	8	28	50	7	7	NP	NP	NP	17	A-3a (0)
					- 80 -	50/5														
					- 81 -															
			654.8	_	- 82 -	_														
	NISH GRAY <b>SILTY CLA</b> RSE TO FINE SAND, TRA				- 83 -															
DAMP.	,	,				18														
					- 84 -	22	80	89	SS-24	4.5+	-	-	-	-	-	-	-	-	17	A-6b (V)
					- 85 -	40								$\neg$						
					- 86 -															
					- 87 -	-														
					- 88 -	]														
			647.4			30 50/5"	-	100	SS-25	4 50	7	5	5	42	41	39	20	19	17	A-6b (12)
			 647.4	EOB	03	50/5"			00 20		Ľ	5	<u> </u>	·	• •					

	DRILLING FIRM / SAMPLING FIRM /				RILL RIG	-	CME-750 (SI CME AUTO		<i>,</i>	1	FION / NMEN		ET: _		1+04.9 RAMP		.5' LT	EXPLOF B-02	RATION I 6-3-13
	ORILLING METHO	DD:	3.25" HSA	CA	ALIBRAT			4/26/13		ELE\	/ATIO	N:	756.9	9 (MSL	_)	EOB:		0.0 ft.	PAGE
START: <u>8/21/13</u> END: <u>8/22/13</u> S	SAMPLING METH	IOD:	SPT	EN	NERGY I	RATIO	(%):	82.6		LAT	LON	G:	3	9.9532	296762	2, -83	.000848	3553	1 OF 3
MATERIAL DESCRIPTION		ELEV.	DEPTHS	SPT/			SAMPLE			GRAD		<u> </u>	,	-	ERBE			ODOT	BACK
AND NOTES		756.9		RQD	)	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.5' - CONCRETE (6.0") 0.5' - AGGREGATE BASE (6.0")	⁄ĮXX	756.4		-															
LOOSE, GRAY <b>GRAVEL</b> , SOME COARSE TO FINE S TRACE SILT, DAMP.	P : \		2	3 2	6	33	SS-1	-	-	-	-	-	-	-	-	-	6	A-1-a (V)	
STIFF, BROWN <b>SILT AND CLAY</b> , SOME COARSE TO FINE SAND, LITTLE FINE GRAVEL, DAMP.		753.9	- 3 - - 4 -	4 9	23	39	SS-2	1.50	-	-	-	-	-	-	-	-	12	A-6a (V)	
-COBBLES PRESENT @ 5.0'		751.4	- 5 -	8	8														
LOOSE, GRAY <b>GRAVEL</b> , SOME COARSE TO FINE S TRACE SILT, MOIST.			- 6 -	5 3	8	33	SS-3	-	-	-	-	-	-	-	-	-	8	A-1-a (V)	
	0 (	748.9	- 8 -		-														
SOFT, BROWN <b>SILTY CLAY</b> , LITTLE COARSE TO FI SAND, TRACE FINE GRAVEL, MOIST.				WOH 7	l 19 7	72	SS-4	0.50	8	7	10	46	29	36	19	17	23	A-6b (11)	
		746.4	— 10 —		-														
MEDIUM DENSE TO VERY DENSE, BROWN <b>GRAVE</b> <b>AND SAND</b> , LITTLE SILT, TRACE CLAY, DAMP TO MOIST.			11 12	5 7	21	67	SS-5	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	
			13 - 14	8 16	43	61	SS-6	_	32	39	11	15	3	19	17	2	7	A-1-b (0)	
			- 15 -	15	5														
			— 16 — — 17 —	8 17 20		61	SS-7	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
			- 18 -																
			- 19 -	18 16 13	40	72	SS-8	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
			- 20 - - - 21 -																
			- 22 -	18 12 14		83	SS-9	-	42	30	10	13	5	NP	NP	NP	8	A-1-b (0)	
			- 23 - - 24 -	6	20	70	66.40												
			25	10 13		72	SS-10	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
			- 26 - - 27 -	5 10 12	2 30	78	SS-11	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
-STONE FRAGMENTS PRESENT THROUGHOUT			28 29	8															
			- 29	11	37 6	67	SS-12	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	

2014 ODOT BORING LOG-RII NE BRIDGE ID - OH DOT.GDT - 3/14/15 17:35 - UNGI8IPROJECTS/2013IW-13-045.GPJ

D: <u>77372</u> BR ID: <u>FRA-70-1390</u> MATERIAL DESCE	PROJECT: FRA-70-12.68	ELEV.		STATION /	SPT/			04.93 / 11 SAMPLE			RAD				_	ERBE		G 2 OI	= 3 В-02 орот
AND NOTES		726.9	DE	PTHS	RQD	N ₆₀	(%)	ID	(tsf)		CS						PI	wc	CLASS (GI)
MEDIUM DENSE TO VERY DENSE, B IND SAND, LITTLE SILT, TRACE CLA MOIST. (same as above) HARD, GRAY SANDY SILT, LITTLE CL GRAVEL, DAMP.	ROWN <b>GRAVEL</b>	720.3 724.9	_	- 31 - - 32 - - 32 -			(10)			-		-							
				- 33 - - 34 - - 35 -	10 22 24	63	83	SS-13	4.5+	15	11	17	38	19	21	14	7	9	A-4a (4)
YERY DENSE, BROWN TO BROWNIS		719.9																	
ND SAND, LITTLE SILT, TRACE CLA	Y, MOIST.			38 39 40	11 26 26	72	83	SS-14	-	-	-	-	-	-	-	-	-	11	A-1-b (V)
				- 41 - 41 - 42 															
				- 43 - - 44 - - 45 -	8 29 50	109	83	SS-15	-	52	14	17	14	3	17	14	3	11	A-1-b (0)
				46 47 48															
				_ 50 _	10 20 28	66	56	SS-16	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
iard, gray <b>Sandy Silt</b> , Little Cl Sravel, Damp.	AY, LITTLE FINE	59 0 704.9	-	51 52 53															
				- 54 55	3 22 28	69	78	SS-17	4.5+	12	11	19	40	18	24	14	10	10	A-4a (5)
				- 58 - - 59 - - 60 -	10 44 50/5"	-	88	SS-18	4.5+	-	-	-	-	-	-	-	-	8	A-4a (V)
		694.9		- 60															

	MATERIAL DESCRI	PTION	ELEV.		THS	SPT/	N		SAMPLE			RAD		<u> </u>	· · · · · · · · · · · · · · · · · · ·	ATT	ERB	ERG		ODOT CLASS (GI)
	AND NOTES		694.8		110	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
ERY DENSE, GI	RAY GRAVEL WITH SA	AND AND SILT,																		Ň
RACE CLAY, WE	ET. (same as above)		8193		- 63 -															
					- 64 -	WOH 45	-	40	SS-19	-	-	-	_	-	-	_	-	-	20	A-2-4 (V)
			M Ad			50/3"			0010											
					65															
			TO F		- 66 -	-														
			689.9		- 67 -															
	RAY TO DARK GRAY				_ 07 _	-														
AND, TRACE SI	LT, TRACE CLAY, MO	IST.	₿ <u>₽</u>		- 68 -															
					- 69 -	8	~~~		00.00										•	
			ه ( ۲۹			22 28	69	44	SS-20	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
			b d		70															
					- 71 -	-														
			o C a		- 72 -															
			000		- 12 -	-														
					- 73 -															
					- 74 -	12 23	70	07	00.04				00	10	4	10	10	•	10	
						23	70	67	SS-21	-	38	28	23	10	1	13	10	3	13	A-1-b (0)
			ه (٢٩		- 75 -															
			00		- 76 -	-														
			م <b>ي</b> آ		- 77 -															
			k Qd			-														
			000		- 78 -															
					- 79 -	37 50/3"	-	33	SS-22	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
			100		80	1														
			0 () °		- 81 -	-														
			00		- 82 -															
						-														
			$\mathcal{O}$		- 83 -															
					- 84 -	10 19	65	50	00.00										0	
			lo ( ka			28	65	56	SS-23	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
			b d		- 85 -						1					l				
					- 86 -	-														
			<u>∘</u> ⊖° 669.9		- 87 -															
ERY DENSE, G	RAY COARSE AND FIN	NE SAND, LITTLE				-														
NE GRAVEL, LI	ITTLE SILT, TRACE CI	LAY, WEI.			- 88 -															
			666.9		- 89 -	12 28 50	107	67	SS-24		11	20	20	10	2		NP		10	A 20 (0)
			666.9	1		²⁰ 50	107	0/	33-24	-	' '	30	39	18	2		INP	INP	10	A-3a (0) 🌾

**APPENDIX IV** 

**HISTORIC BORING LOGS:** 

B-001-C-59, B-002-F-59, B-003-A-59 and B-005-F-59 .

.

,

SHEET 3

#### STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

OCATION	<u>i: T.H1</u>	STA.	<u>_62+75</u> _	BRIDGE NO RETAINING WALL U
ELEV.	DEPTH		SAMPLE	DESCRIPTION
763.0	0			
758.0	4			
	6	3/4	29107	Brown Sandy Gravelly Clay
	8		,	
753.0	0	26732	29108	Brown Silty Sandy Gravel
	2			
748.0	14			Brown Silty Sandy Gravel
743.0	20			Brown Silty Sondy Crowol S
743.0		96/90	29109	BLOWN DITCA Daugh Graver
	24			(igneous
738.0	26	33/47	29110	Gray Gravel p
735.5	28			nd
733.0	30	24/16		Brown Silty Sandy Gravel
	32	37/36	29111	Brown Silty Sandy Gravel
	34			· · · · · · · · · · · · · · · · · · ·
28_0		27/18	29112	Brown Sandy Gravel

B-001-C-59

## LOG OF BORING (CONTINUED)

SHEET 4

BRIDG	E NO	RETAL	<u>NING WA</u>	<u>LL_CT.H1B</u>	
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION	
725.5	38	34/34	29113	Brown Sandy Gravel	
723.0	40	21/22	29114	Gray Silty Sand	
720.5	42	40/76	29115	Gray Silty Sand	-Glacial
718.0	46	28/42	29116	Gray Silty Gravelly Sand	
716.5	48	72/*	29117	Gray Silty Sand	Boulders
713.0	<b>50</b>	59/36	29118	Gray Silty Sandy Gravel	
711.5	<u>52</u> 54	24/39	29119	Gray Sandy Gravel	(igneous
70 <b>8</b> .0	56	27/29	<b>291</b> 20	Gray Sand	and
706.5	58	100*	<b>291</b> 21	Brown Silty Sandy Gravel	limestone
703.0	<u>60</u>	43/53	•••••	Gray Silty Sandy Gravel	tone)
	64				
698.0	66	33/*	29122	Gray Silty Gravelly Sand	
	68				
693.0 692.0	<u>70</u> 72		29123	Grav Sandy Gravelly Silt BOTTOM OF BORING	
	74			*Refusal	
	78				
	<u>80</u>				

Ċ

.

SHEET #

#### STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

# LOG OF BORING

CO., RT. NO	., SEC. <u>F</u>	RA-40-1 EAR AB	12.82 UTMENT	·	SOUTH	BRIDG	E NO. FRA-40 ELT UNDER FR	-1300 ONT STREET
LOCATION:	т.н2	<u>B_</u> STA	<u>49+33</u>	OFF	SET_	<u>46'LT</u>	FED.NO	
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.			DESCI		
754.7	0							
749 <b>.7</b>	2 4 6 8	3/5	198 <u>5</u> 8	Brown	Silty	Sandy	Gravel	
744.7	10 ⁻ 12	15/14	19859	Brown	Silty	Sandy	Gravel	
739.7	14 16 18	19/25	19860	Brown	Silty	Sandy	Gravel	
734.7	20 22	15/26	19861	Brown	Silty	Sandy	Gravel	
732.2	24	100/*	19862	Brown	Sandy	Grave]	-	
727.2	26 28		19863					
724.7	30		19864 19865		_	_		
722,2	32		19866					
719.7		1	19867					· · · · · · · · · · · · · · · · · · ·

*Refusal

B-002-F-59

ţ

LOG	OF	BORING	(CONTINUED)
-----	----	--------	-------------

DRUUS	E NO					T.H. <u>2 B</u>	
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.			DESCRIPTION	
717.2	38		<b>1</b> 986 <b>8</b>	Gray	Sandy	Gravel	
714.7	40	]				Sandy Gravel	
712 <b>.2</b>	42	47 <b>/</b> 70	19870	Gray	Silty	Sandy Gravel	
709 <b>.7</b>	46	45/52	19871	Gray	Silty	Sandy Gravel	
704.7	48 50	75/108	19872	Grav	Sandy	Gravel	
699.7	52 54			0			
	56 58	77/150	*******	Gray	Silty	Sandy Gravel	
694.7	60 62	138/*	19873	Gray	Silty	Sandy Gravel	
689 <b>.7</b>		62/109	19874	Gray	Silty	Gravelly Sand	
684.7	68 70 72	138/*		Gray	Silty	Gravelly Sand	
682.2 681.7		70 <u>/*</u>	19875	Graj	<u>y Silt</u> y	<u>Sandy Gravel</u> BOTTOM OF	BORING
	76 78				*Refus	ما	
	80	]			WUQI US	a+	

SHEET 6

STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

LOG OF BORING

CO., RT. NO., SEC. FRA-40-12.82 RETAINING WALL-A SOUTH-EAST INNERBELT LOCATION: T.H. 3-AR STA. 54+68 OFFSET 60'RT FED. NO.

ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
735.5	0			
	2			
730.5	4			
	6	19/14	19701	Gray Silty Sandy Gravel
728.0		8/9	197 <b>02</b>	Gray Sandy Gravelly Silt
725.5	<u>ю</u>	9/9	19703	Gray Gravelly Sandy Silt
723.0		7/10	19704	Gray Silt and Clay
720.5	16	9/10	19705	Gray Silt
718.0		13/15	19706	Gray Silty Sand
715.5	<u>20</u> 22	16/ <b>2</b> 2	19707	Gray Sandy Silt
713.0		42/36	19708	Gray Silty Sandy Gravel W/Boulders
710.5	26	25/25	19709	Gray Gravel W/Boulders
708.0	28	20/46	19710	Brown Sandy Gravel W/Boulders
705.5	<u> </u>		19711	Brown Sandy Gravel W/Boulders
700.5	34	75/*	19712	Gray Silty Sand W/Boulders

*Refusal

B-003-A-59

.

÷,

LOG	OF BORI	ING (c	ONTINUE	<b>)</b>	SHEET ?
BRIDG	E NO			Т.Н <u>З-А в</u>	
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION	
	38				
695.5	40	]			
	42	38/34	19713	Gray Sandy Silt	
100 -	44				
690.5	46	27/42	19714	Gray Silty Sandy Gravel	
	48				
685.5	50	25/37	19715	Gray Silt W/Boulders	
683.0	52		·		
680.5	54	75/*	<u> </u>	Bouldery Gray Sand	
	56			BOTTOM OF BORING	
	58			*Refusal	
	60				
	<u>62</u> 64				
	66				
	68				
	70				
	72				
	74				
	76				
	78				
	80				
	.82				

.

SHEET 6

### STATE OF OHIO DEPARTMENT OF HIGHWAYS TESTING LABORATORY

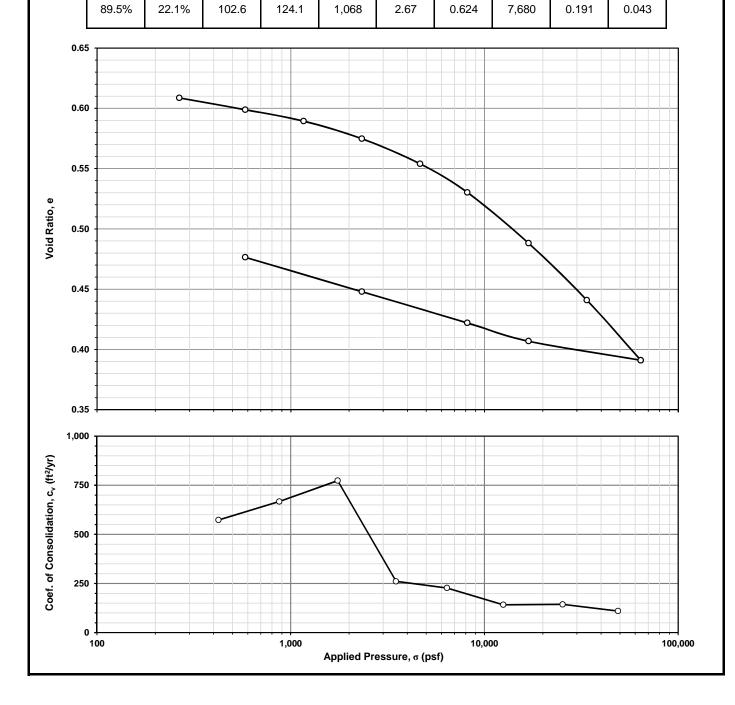
# LOG OF BORING

00., RT. NO	.,SEC. <u>F</u>	RA-40-	12 <u>.82</u> ABUTMEI	NT SOUTH INNERBELT UNDER FRONT STREET
				OFFSET67'RTFED.NO
ELEV.	DEPTH	NO. BLOWS	SAMPLE NO.	DESCRIPTION
758.3	0			
	2			
7717	4			
753•3	6	4/6	20608	Brown Sandy Silt
		4		
748.3	ю	7/10	2060 <b>9</b>	Brown Silty Sandy Gravel
	12			
	14	•		
743•3	16	54/83	20610	Brown Sandy Gravel
	18			
738.3	20			
	22	58/46	20 <b>611</b>	Brown Silty Sandy Gravel
	24			
733.3	26	44/58	20612	Brown and Gray Silty Sandy Gravel
	28	4		
728.3	30	}		
	32	48/40	20613	Gray Gravelly Sandy Silt
725.8	34	21/36	20614	Gray Sandy Silt
723 <b>.3</b>		1		Gray Sandy Silt

#### B-005-F-59



BRIDGE NO. FRA-40-1300 <u>_T.H. ____5 B</u> SAMPLE NÔ. DESCRIPTION ELEV. DEPTH BLOWS NO. 720.8 38 **91/*** 20616 Gray Silty Gravelly Sand 718.3 <u>40</u> 59/94 20617 Gray Sandy Gravel 42 715.8 100/* 20618 Gray Sandy Gravel 44 713.3 Bouldery Gray Sandy Gravel 46 100/* 48 708.3 50 64/142 20619 Brown Silty Sandy Gravel 706.3 52 100/138/20620 Brown Silty Sandy Gravel 54 703.3 56 49/78 20621 Brown Silty Graveliy Sand 58 698.3 60 52/10, 20622 Brownish-Gray Sandy Clay 62 64 693**.3** 692**.3** 66 100/* 20623 Brown Gravelly Sandy Silt - BOTTOM OF BORING 68 70 *Refusal 72 74 76 78 60 82


sheet au

APPENDIX V

LABORATORY TEST RESULTS

	RESOURCE			U	NCONI		<b>COMP</b> 1 D -2166	RESSI	ON
	I'MOILN'			PROJEC JOB No.		FRA-70- W-13-04			
6350	) Presidential G	ateway		BORING			B-023-1-1	3	
	lumbus, Ohio 4				N / OFFSE	Т	5084+74.1		Rt.
-	ohone: (614) 82				No. / DEF		ST-4 / 8.3		
Fax N	lumber: (614) 8	23-4990		DATE O	F TESTIN( ) BY	3	8/14/2013 JJH		
	escription: <u>Brown</u> sification: <u>ODOT</u>		CLAY, so	ome coarse	to fine sar	nd, little fi	ne gravel.		
Physical Ch	aracteristics	L.L.	P.L.	P.I.	Gravel%	C. Sand%		Silt%	Clay%
		29	18	11	16	11	15	34	24
DIAMETER, $D_0$	2.87 in	72.898	mm	STRAIN	RATE		1	00	%/min
AREA, A ₀	$\frac{1000}{6.47}$ in ²	41.7	-	-	NL + PAN	MASS		34.2	g
HEIGHT, L ₀	5.77 in	146.58	-	PAN MA				).2	g
VOLUME, $V_0$	<u>37.33</u> in ³	611.8	cm ³			MASS		97.9	_g
MACH. RATE WATER CONT.	0.577	in/min %		WET DE DRY DE	-			2.04 3.03	Ib/ft ³ Ib/ft ³
WATER CONT.	10.02	70		DITIDE	NOTT			5.05	
UNCONFINED CO	OMPRESSION ST	RESS, q _u		5,	896	psf	2.	95	tsf
A X / I A I A	FAILURE						0	~~	%
AXIAL STRAIN @								66	
AXIAL STRAIN @ HAND PENETRO								66 5+	tsf
HAND PENETRO				Unco	onfined Co	ompressi	4.		
HAND PENETRO	METER	(psf)	7,000 6,000 5,000	Unco	onfined Co	ompressi	4.		
HAND PENETRO	METER	e Stress (psf)	6,000	Unco	onfined Co	ompressi	4.		
HAND PENETRO	METER		6,000 5,000 4,000 3,000	Unco	onfined Co	ompressi	4.		
HAND PENETRO	METER re Sketch	Compressive Stress (psf)	6,000 5,000 4,000 3,000 2,000	Unco	onfined Co	ompressi	4.		
HAND PENETRO	METER re Sketch		6,000 5,000 4,000 3,000 2,000 1,000	Unco	onfined Co	ompressi	4.		
HAND PENETRO	METER		6,000 5,000 4,000 3,000 2,000	Unco	6.0		4. on Test		

#### **One-Dimensional Consolidation Test Report (ASTM D2435)** RESOUR Project Number: W-13-045 Boring Number: B-023-1-13 FRA-70-12.68 Project Name: Station / Offset: 5084+74.16, 15.0' Rt. Project Location: Columbus, Ohio Sample No. / Depth: ST-4 / 8.9 ft GPD GROUP Client: Date of Testing: 08/21/2013 to 09/11/2013 Soil Description: Reddish brown SILT AND CLAY, some coarse to fine sand, little fine gravel. Soil Classification: ODOT A-6a L.L. P.L. P.I. Gravel% C. Sand% F. Sand% Silt% Clay% **Physical Characteristics** 29 18 11 16 15 34 24 11 Natural $\sigma_{vo}'$ $\sigma_p'$ γd $\gamma_{sat}$ $S_G$ $c_c$ $e_o$ $C_r$ (psf) (psf) (pcf) (pcf) $S_o$ $W_o$



### **DRILLED SHAFT CALCULATIONS**

**APPENDIX VI** 

Boring	Boring	Proposed Top of Shaft Elevation (ft msl)	D _w (ft)	Shaft Diameter, D (ft)	Soil Class.	Material Type ¹	Stratum Depth, z (ft)	Stratum Thickness (ft)	Bottom Elevation (ft msl)	γ (pcf)	σ _v ' (Midpoint) (psf)	σ _v (Bottom) (psf)	S _u ² (psf)	N _c ³	α4	N ₆₀ ⁵	(N ₁ ) ₆₀ ⁶	φ' _f ⁷	σ _p ' ⁸ (psf)	β°	Boring	Elevation (ft msl)	Shaft Length (ft)	Nominal Tip Resistance, q _p ^{10,11} (ksf)	Nominal Side Resistance, q _s ^{12,13} (ksf)	$\phi_{qp}$ ¹⁴	$\phi_{qs}$ ¹⁵
					A-7-6	С	4.2	4.2	724.4	120	252	504	2,750	7.0	0.55							728.6-724.4	0.0-4.2	19	1.51	0.40	0.45
					A-6a	С	9.2	5.0	719.4	120	804	1,104	1,875	8.2	0.55							724.4-719.4	4.2-9.2	15	1.03	0.40	0.45
					A-7-6	С	14.2	5.0	714.4	120	1,404	1,704	2,125	9.0	0.55							719.4-714.4	9.2-14.2	19	1.16	0.40	0.45
	B-023-1-13	728.6	14.7	5.0	A-1-b	G	18.2	4.0	710.4	130	1,870	2,224				33	31	41	10,494	0.93	B-023-1-13	714.4-710.4	14.2-18.2	39	1.73	0.50	0.55
					A-1-b	G	33.2	15.0	695.4	135	2,550	4,249				55	48	43	17,490	1.10		710.4-695.4	18.2-33.2	60	2.81	0.50	0.55
					A-6b	С	38.2	5.0	690.4	130	3,264	4,899	5,000	9.0	0.46							695.4-690.4	33.2-38.2	45	2.32	0.40	0.45
					A-1-a	G	44.2	6.0	684.4	135	3,650	5,709				95	72	45	30,210	1.31		690.4-684.4	38.2-44.2	60	4.76	0.50	0.55
					A-4a	С	13.2	13.2	715.4	120	792	1,584	2,375	9.0	0.55							728.6-715.4	0.0-13.2	21	1.30	0.40	0.45
					A-4b	G	17.2	4.0	711.4	130	1,750	2,104				28	23	40	14,327	1.16		715.4-711.4	13.2-17.2	33	2.02	0.50	0.55
					A-1-a	G	22.2	5.0	706.4	130	2,055	2,754				37	29	41	11,766	0.94		711.4-706.4	17.2-22.2	44	1.93	0.50	0.55
	B-024-0-08	728.6	13.7	5.0	A-4a	С	27.2	5.0	701.4	130	2,393	3,404	8,000	9.0	0.45						B-024-0-08	706.4-701.4	22.2-27.2	72	3.60	0.40	0.45
	B-024-0-00	720.0	15.7	5.0	A-3a	G	37.2	10.0	691.4	135	2,925	4,754				65	46	43	12,195	0.79	B-024-0-00	701.4-691.4	27.2-37.2	60	2.29	0.50	0.55
					A-1-b	G	42.2	5.0	686.4	135	3,469	5,429				100	68	44	31,800	1.37		691.4-686.4	37.2-42.2	60	4.76	0.50	0.55
					A-4a	G	47.2	5.0	681.4	135	3,832	6,104				72	47	43	30,500	1.22		686.4-681.4	42.2-47.2	60	4.67	0.50	0.55
Rear					A-1-a	G	77.0	29.8	651.6	135	5,095	10,127				100	59	44	31,800	1.05		681.4-651.6	47.2-77.0	60	5.36	0.50	0.55
Abutment					A-4a	С	7.7	7.7	720.9	130	501	1,001	5,250	7.8	0.45							728.6-720.9	0.0-7.7	41	2.37	0.40	0.45
					A-6a	С	14.2	6.5	714.4	130	1,424	1,846	5,000	9.0	0.46							720.9-714.4	7.7-14.2	45	2.32	0.40	0.45
	B-024-1-13	728.6	16.2	5.0	A-1-a	G	34.2	20.0	694.4	135	2,697	4,546				100	70	44	31,800	1.64	B-024-1-13	714.4-694.4	14.2-34.2	60	4.41	0.50	0.55
	0.024 1 10	120.0	10.2	0.0	A-3a	G	39.2	5.0	689.4	130	3,592	5,196				44	28	41	9,650	0.57	0 024 1 10	694.4-689.4	34.2-39.2	52	2.05	0.50	0.55
					A-4a	С	44.2	5.0	684.4	130	3,930	5,846	8,000	9.0	0.45							689.4-684.4	39.2-44.2	72	3.60	0.40	0.45
					A-1-b	G	46.2	2.0	682.4	135	4,171	6,116				100	61	44	31,800	1.21		684.4-682.4	44.2-46.2	60	5.04	0.50	0.55
					A-4a	С	11.4	11.4	717.2	125	712	1,425	3,375	8.7	0.54							728.6-717.2	0.0-11.4	29	1.82	0.40	0.45
					A-4b	G	17.9	6.5	710.7	120	1,643	2,205				21	17	39	11,382	1.01		717.2-710.7	11.4-17.9	25	1.66	0.50	0.55
	B-024-2-14	728.6	11.9	5.0	A-1-b	G	22.9	5.0	705.7	125	1,987	2,830				17	14	38	5,406	0.56	B-024-2-14	710.7-705.7	17.9-22.9	20	1.10	0.50	0.55
	0024214	120.0	11.0	0.0	A-1-b	G	27.9	5.0	700.7	135	2,325	3,505				51	39	42	16,218	1.09	0 024 2 14	705.7-700.7	22.9-27.9	60	2.54	0.50	0.55
					A-4a	С	32.9	5.0	695.7	130	2,676	4,155	6,500	9.0	0.45							700.7-695.7	27.9-32.9	58	2.92	0.40	0.45
					A-1-b	G	44.9	12.0	683.7	135	3,280	5,775				100	70	44	31,800	1.43		695.7-683.7	32.9-44.9	60	4.68	0.50	0.55
					A-1-b	G	9.6	9.6	719.0	130	624	1,248				39	36	42	12,402	2.20		728.6-719.0	0.0-9.6	46	1.37	0.50	0.55
	B-026-1-13	728.6	10.1	5.0	A-1-b	G	14.6	5.0	714.0	125	1,436	1,873				52	41	42	16,536	1.53	B-026-1-13	719.0-714.0	9.6-14.6	60	2.19	0.50	0.55
					A-1-b	G	31.6	17.0	697.0	135	2,209	4,168				77	56	44	24,486	1.57		714.0-697.0	14.6-31.6	60	3.46	0.50	0.55

1. C = cohesive soil stratum; G = granular soil stratum

2.  $S_u$  = average shear strength over stratum thickness (cohesive soil layers)

3.  $N_C = 6[1+0.2(Z/D)] \le 9$ ; Ref. Section 10.8.3.5.1c, AASHTO LRFD BDS (cohesive soil layers)

4.  $\alpha$  = 0.55 for S_u/P_a ≤ 1.5;  $\alpha$  = 0.55-0.1(S_u/P_a-1.5) for 1.5 ≤ S_u/P_a ≤ 2.5, where P_a = 2.12 ksf = 2,120 psf; Ref. Section 10.8.3.5.1b AASHTO LRFD BDS (cohesive soil layers)

5.  $N_{60}$  = average energy corrected N-values over stratum thickness (granular soil layers)

6. (N₁₎₆₀ = C_nN₆₀, where C_N = [0.77log(40/\sigma_v')] ≤ 2.0 ksf, where  $\sigma_v'$  = vetical effective stress at midpoint of soil layer with respect to the entire soil profile for the respective boring; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS (granular soil layers)

7.  $\phi'_f = 27.5+9.2 \log[(N_1)_{60}]$ ; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

8.  $\sigma_p' = n(N_{e0})^m(P_a)$ , where n = 0.15 and m = 1.0 for A-1-a/1-b and A-2-4/2-6, n = 0.47 and m = 0.6 for A-3/3a, n = 0.47 and m = 0.8 for A-4a/4b soils, and P_a = 2.12 ksf = 2,120 psf; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

9.  $\beta = \tan \varphi'_f (1-\sin \varphi'_f) (\sigma_p / \sigma_v')^{\Lambda} (\sin \varphi'_f)$ , where  $\sigma_v' =$  vetical effective stress at midpoint of soil layer; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

10. q_p = N_CS_u≤ 80.0 ksf; Ref. Section 10.8.3.5.1c, AASHTO LRFD BDS (cohesive soil layers)

11.  $q_p = 1.2N_{60} \le 60$  ksf; Ref. Section 10.8.3.5.2c, AASHTO LRFD BDS (granular soil layers)

12.  $q_s = \alpha S_u$ ; Ref. Section 10.8.3.5.1b, AASHTO LRFD BDS (cohesive soil layers)

 $13. q_s = \beta \sigma_v'$ , where  $\sigma_v'$  = vetical effective stress at midpoint of soil layer; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

14.  $\phi_{qp}$  = 0.50 for granular soils layers and 0.40 for cohesive soil layers; Ref. Table 10.5.5.2.4-1, AASHTO LRFD BDS

15.  $\phi_{qs}$  = 0.55 for granular soils layers and 0.45 for cohesive soil layers; Ref. Table 10.5.5.2.4-1, AASHTO LRFD BDS

Substructure Unit	Boring	Proposed Top of Shaft Elevation (ft msl)	D _w (ft)	Shaft Diameter, D (ft)	Soil Class.	Material Type ¹	Stratum Depth, z (ft)	Stratum Thickness (ft)	Bottom Elevation (ft msl)	γ (pcf)	σ _v ' (Midpoint) (psf)	σ _v (Bottom) (psf)	S _u ² (psf)	N _c ³	α4	N ₆₀ ⁵	(N ₁ ) ₆₀ ⁶	<b>φ'</b> f ⁷	σ _p ' ⁸ (psf)	β ⁹	Boring	Elevation (ft msl)	Shaft Length (ft)	Nominal Tip Resistance, q _p ^{10,11} (ksf)	Nominal Side Resistance, q _s ^{12,13} (ksf)	$\phi_{qp}$ ¹⁴	$\phi_{qs}$ ¹⁵
					A-4a	С	7.6	7.6	720.9	130	494	988	5,250	8.3	0.45							728.5-720.9	0.0-7.6	43	2.37	0.40	0.45
					A-6a	С	14.1	6.5	714.4	130	1,411	1,833	5,000	9.0	0.46							720.9-714.4	7.6-14.1	45	2.32	0.40	0.45
	B-024-1-13	728.5	17.6	4.0	A-1-a	G	34.1	20.0	694.4	135	2,777	4,533				100	70	44	31,800	1.60	B-024-1-13	714.4-694.4	14.1-34.1	60	4.45	0.50	0.55
	D-024-1-13	720.5	17.0	4.0	A-3a	G	39.1	5.0	689.4	130	3,672	5,183				44	28	41	9,650	0.56	D-024-1-13	694.4-689.4	34.1-39.1	52	2.06	0.50	0.55
					A-4a	С	44.1	5.0	684.4	130	4,010	5,833	8,000	9.0	0.45							689.4-684.4	39.1-44.1	72	3.60	0.40	0.45
					A-1-b	G	46.1	2.0	682.4	135	4,252	6,103				100	61	44	31,800	1.19		684.4-682.4	44.1-46.1	60	5.07	0.50	0.55
					A-4a	С	12.3	12.3	717.2	125	769	1,537	3,375	9.0	0.54							729.5-717.2	0.0-12.3	30	1.82	0.40	0.45
					A-4b	G	18.8	6.5	710.7	120	1,781	2,317				21	17	39	11,382	0.96		717.2-710.7	12.3-18.8	25	1.71	0.50	0.55
	B-024-2-14	729.5	13.2	4.0	A-1-b	G	23.8	5.0	705.7	125	2,125	2,942				17	14	38	5,406	0.53	B-024-2-14	710.7-705.7	18.8-23.8	20	1.13	0.50	0.55
	D-024-2-14	120.0	10.2	4.0	A-1-b	G	28.8	5.0	700.7	135	2,463	3,617				51	39	42	16,218	1.05	D-024-2-14	705.7-700.7	23.8-28.8	60	2.58	0.50	0.55
					A-4a	С	33.8	5.0	695.7	130	2,813	4,267	6,500	9.0	0.45							700.7-695.7	28.8-33.8	58	2.92	0.40	0.45
					A-1-b	G	45.8	12.0	683.7	135	3,418	5,887				100	70	44	31,800	1.39		695.7-683.7	33.8-45.8	60	4.74	0.50	0.55
					A-4a	С	13.1	13.1	715.4	120	786	1,572	2,750	9.0	0.55							728.5-715.4	0.0-13.1	24	1.51	0.40	0.45
					A-6b	С	16.6	3.5	711.9	120	1,735	1,992	2,875	9.0	0.55							715.4-711.9	13.1-16.6	25	1.58	0.40	0.45
					A-1-b	G	26.6	10.0	701.9	135	2,199	3,342				83	67	44	26,394	1.66		711.9-701.9	16.6-26.6	60	3.64	0.50	0.55
	B-025-0-08	728.5	14.1	4.0	A-4a	С	31.6	5.0	696.9	130	2,731	3,992	8,000	9.0	0.45						B-025-0-08	701.9-696.9	26.6-31.6	72	3.60	0.40	0.45
					A-1-b	G	38.1	6.5	690.4	135	3,136	4,870				69	50	43	21,942	1.12		696.9-690.4	31.6-38.1	60	3.50	0.50	0.55
					A-6a	С	45.1	7.0	683.4	130	3,609	5,780	7,500	9.0	0.45							690.4-683.4	38.1-45.1	67	3.37	0.40	0.45
Pier					A-3a	G	47.1	2.0	681.4	135	3,918	6,050				100	67	44	15,792	0.78		683.4-681.4	45.1-47.1	60	3.04	0.50	0.55
1 101					A-1-b	G	9.7	9.7	716.3	120	582	1,164				20	20	39	6,360	1.35		726.0-716.3	0.0-9.7	24	0.78	0.50	0.55
					A-1-b	G	30.7	21.0	695.3	135	1,802	3,999				86	73	45	27,348	2.00		716.3-695.3	9.7-30.7	60	3.61	0.50	0.55
					A-3a	G	36.2	5.5	689.8	125	2,736	4,687				14	11	37	4,854	0.42		695.3-689.8	30.7-36.2	16	1.15	0.50	0.55
	B-026-2-13	726.0	7.7	4.0	A-3a	G	41.2	5.0	684.8	135	3,090	5,362				51	37	42	10,543	0.68	B-026-2-13	689.8-684.8	36.2-41.2	60	2.09	0.50	0.55
	D-020-2-13	720.0	1.1	4.0	A-3a	G	51.2	10.0	674.8	135	3,634	6,712				69	48	43	12,640	0.69	D-020-2-13	684.8-674.8	41.2-51.2	60	2.52	0.50	0.55
					A-4a	С	61.2	10.0	664.8	130	4,335	8,012	8,000	9.0	0.45							674.8-664.8	51.2-61.2	72	3.60	0.40	0.45
					A-3a	G	71.2	10.0	654.8	135	5,036	9,362				83	51	43	14,121	0.60		664.8-654.8	61.2-71.2	60	3.01	0.50	0.55
					A-6b	С	78.7	7.5	647.3	130	5,653	10,337	8,000	9.0	0.45							654.8-647.3	71.2-78.7	72	3.60	0.40	0.45
					A-1-b	G	12.4	12.4	712.1	135	825	1,674				88	63	44	27,984	3.41		724.5-712.1	0.0-12.4	60	2.81	0.50	0.55
	B-002-F-59	724.5	6.0	4.0	A-1-a	G	33.4	21.0	691.1	135	2,037	4,509				100	64	44	31,800	1.99	B-002-F-59	712.1-691.1	12.4-33.4	60	4.05	0.50	0.55
					A-3a	G	43.4	10.0	681.1	135	3,162	5,859				100	58	44	15,792	0.90		691.1-681.1	33.4-43.4	60	2.84	0.50	0.55
					A-4a	С	11.6	11.6	717.9	120	696	1,392	2,250	9.0	0.55							729.5-717.9	0.0-11.6	20	1.23	0.40	0.45
					A-4b	G	16.6	5.0	712.9	130	1,368	2,042				33	33	41	16,340	1.52		717.9-712.9	11.6-16.6	39	2.08	0.50	0.55
					A-1-a	G	27.6	11.0	701.9	135	1,936	3,527				65	59	44	20,670	1.53		712.9-701.9	16.6-27.6	60	2.95	0.50	0.55
	B-003-A-59	729.5	8.5	4.0	A-3a	G	32.6	5.0	696.9	135	2,517	4,202				100	84	45	15,792	1.07	B-003-A-59	701.9-696.9	27.6-32.6	60	2.70	0.50	0.55
	5-000-7-09	120.0	0.0	7.0	A-4a	С	37.6	5.0	691.9	130	2,867	4,852	8,000	9.0	0.45						D-000-A-09	696.9-691.9	32.6-37.6	72	3.60	0.40	0.45
					A-2-4	G	42.6	5.0	686.9	135	3,218	5,527				69	54	43	21,942	1.10		691.9-686.9	37.6-42.6	60	3.53	0.50	0.55
					A-4b	С	47.1	4.5	682.4	130	3,551	6,112	7,750	9.0	0.45							686.9-682.4	42.6-47.1	69	3.48	0.40	0.45
					A-3a	G	49.6	2.5	679.9	135	3,794	6,450				100	73	45	15,792	0.80		682.4-679.9	47.1-49.6	60	3.04	0.50	0.55

1. C = cohesive soil stratum; G = granular soil stratum

2.  $S_u$  = average shear strength over stratum thickness (cohesive soil layers)

3.  $N_C = 6[1+0.2(Z/D)] \le 9$ ; Ref. Section 10.8.3.5.1c, AASHTO LRFD BDS (cohesive soil layers)

4.  $\alpha$  = 0.55 for S_u/P_a ≤ 1.5;  $\alpha$  = 0.55-0.1(S_u/P_a-1.5) for 1.5 ≤ S_u/P_a ≤ 2.5, where P_a = 2.12 ksf = 2,120 psf; Ref. Section 10.8.3.5.1b AASHTO LRFD BDS (cohesive soil layers)

5.  $N_{60}$  = average energy corrected N-values over stratum thickness (granular soil layers)

6.  $(N_1)_{60} = C_n N_{60}$ , where  $C_N = [0.77log(40/\sigma_v')] \le 2.0$  ksf, where  $\sigma_v' =$  vetical effective stress at midpoint of soil layer with respect to the entire soil profile for the respective boring; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS (granular soil layers)

7.  $\phi'_f = 27.5+9.2 \log[(N_1)_{60}]$ ; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

8.  $\sigma_p' = n(N_{e0})^m(P_a)$ , where n = 0.15 and m = 1.0 for A-1-a/1-b and A-2-4/2-6, n = 0.47 and m = 0.6 for A-3/3a, n = 0.47 and m = 0.8 for A-4a/4b soils, and  $P_a = 2.12$  ksf = 2,120 psf; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

9. β = tanφ'_t(1-sinφ'_t)(σ_p'/σ_v')^(sinφ'_t), where σ_v' = vetical effective stress at midpoint of soil layer; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

10.  $q_p = N_C S_u \le 80.0 \text{ ksf}$ ; Ref. Section 10.8.3.5.1c, AASHTO LRFD BDS (cohesive soil layers)

11.  $q_p = 1.2N_{60} \le 60$  ksf; Ref. Section 10.8.3.5.2c, AASHTO LRFD BDS (granular soil layers)

12.  $q_s = \alpha S_u$ ; Ref. Section 10.8.3.5.1b, AASHTO LRFD BDS (cohesive soil layers)

13.  $q_s = \beta \sigma_v'$ , where  $\sigma_v' =$  vetical effective stress at midpoint of soil layer; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

14.  $\phi_{qp}$  = 0.50 for granular soils layers and 0.40 for cohesive soil layers; Ref. Table 10.5.5.2.4-1, AASHTO LRFD BDS

15.  $\phi_{qs}$  = 0.55 for granular soils layers and 0.45 for cohesive soil layers; Ref. Table 10.5.5.2.4-1, AASHTO LRFD BDS

Substructure Unit	Boring	Proposed Top of Shaft Elevation (ft msl)	D _w (ft)	Shaft Diameter, D (ft)	Soil Class.	Material Type ¹	Stratum Depth, z (ft)	Stratum Thickness (ft)	Bottom Elevation (ft msl)	γ (pcf)	σ _v ' (Midpoint) (psf)	σ _v (Bottom) (psf)	S _u ² (psf)	N _c ³	α4	N ₆₀ ⁵	(N ₁ ) ₆₀ ⁶	φ' _f ⁷	σ _p ' ⁸ (psf)	β ⁹	Boring	Elevation (ft msl)	Shaft Length (ft)	Nominal Tip Resistance, q _p ^{10,11} (ksf)	Nominal Side Resistance, q _s ^{12,13} (ksf)	$\phi_{qp}$ ¹⁴	$\phi_{qs}$ ¹⁵
					A-4a	С	16.6	16.6	715.4	120	996	1,992	2,750	9.0	0.55							732.0-715.4	0.0-16.6	24	1.51	0.40	0.45
					A-6b	С	20.1	3.5	711.9	120	2,155	2,412	2,875	9.0	0.55							715.4-711.9	16.6-20.1	25	1.58	0.40	0.45
					A-1-b	G	30.1	10.0	701.9	135	2,619	3,762				83	67	44	26,394	1.47		711.9-701.9	20.1-30.1	60	3.84	0.50	0.55
	B-025-0-08	732.0	17.6	5.0	A-4a	С	35.1	5.0	696.9	130	3,151	4,412	8,000	9.0	0.45						B-025-0-08	701.9-696.9	30.1-35.1	72	3.60	0.40	0.45
					A-1-b	G	41.6	6.5	690.4	135	3,556	5,290				69	50	43	21,942	1.03		696.9-690.4	35.1-41.6	60	3.64	0.50	0.55
					A-6a	С	48.6	7.0	683.4	130	4,029	6,200	7,500	9.0	0.45							690.4-683.4	41.6-48.6	67	3.37	0.40	0.45
					A-3a	G	50.6	2.0	681.4	135	4,338	6,470				100	67	44	15,792	0.72		683.4-681.4	48.6-50.6	60	3.13	0.50	0.55
					A-6a	С	9.0	9.0	723.0	120	540	1,080	2,500	8.2	0.55							732.0-723.0	0.0-9.0	20	1.37	0.40	0.45
					A-4a	С	20.0	11.0	712.0	120	1,740	2,400	2,625	9.0	0.55							723.0-712.0	9.0-20.0	23	1.44	0.40	0.45
					A-2-4	G	28.0	8.0	704.0	135	2,628	3,480				69	47	43	21,942	1.26		712.0-704.0	20.0-28.0	60	3.31	0.50	0.55
	B-026-0-08	732.0	19.0	5.0	A-6a	С	35.0	7.0	697.0	130	3,155	4,390	8,000	9.0	0.45						B-026-0-08	704.0-697.0	28.0-35.0	72	3.60	0.40	0.45
	D-020-0-00	102.0	10.0	0.0	A-1-b	G	45.0	10.0	687.0	135	3,755	5,740				89	54	43	28,302	1.18	D-020-0-00	697.0-687.0	35.0-45.0	60	4.41	0.50	0.55
					A-6a	С	53.0	8.0	679.0	130	4,388	6,780	5,625	9.0	0.45							687.0-679.0	45.0-53.0	50	2.53	0.40	0.45
					A-1-a	G	60.0	7.0	672.0	135	4,913	7,725				100	56	44	31,800	1.08		679.0-672.0	53.0-60.0	60	5.30	0.50	0.55
					A-4a	С	68.0	8.0	664.0	130	5,437	8,765	8,000	9.0	0.45							672.0-664.0	60.0-68.0	72	3.60	0.40	0.45
					A-2-4	G	2.1	2.1	726.3	125	131	263				29	36	42	9,222	5.13		728.4-726.3	0.0-2.1	34	0.67	0.50	0.55
					A-1-b	G	12.1	10.0	716.3	120	863	1,463				20	20	39	6,360	1.06		726.3-716.3	2.1-12.1	24	0.91	0.50	0.55
				A-1-b	G	33.1	21.0	695.3	135	2,100	4,298				86	73	45	27,348	1.80		716.3-695.3	12.1-33.1	60	3.77	0.50	0.55	
					A-3a	G	38.6	5.5	689.8	125	3,034	4,985				14	11	37	4,854	0.40		695.3-689.8	33.1-38.6	16	1.20	0.50	0.55
Forward	B-026-2-13	728.4	10.1	3.5	A-3a	G	43.6	5.0	684.8	135	3,388	5,660				51	37	42	10,543	0.64	B-026-2-13	689.8-684.8	38.6-43.6	60	2.15	0.50	0.55
Abutment					A-3a	G	53.6	10.0	674.8	135	3,933	7,010				69	48	43	12,640	0.66		684.8-674.8	43.6-53.6	60	2.58	0.50	0.55
					A-4a	С	63.6	10.0	664.8	130	4,634	8,310	8,000	9.0	0.45							674.8-664.8	53.6-63.6	72	3.60	0.40	0.45
					A-3a	G	73.6	10.0	654.8	135	5,335	9,660				83	51	43	14,121	0.58		664.8-654.8	63.6-73.6	60	3.07	0.50	0.55
					A-6b	С	81.1	7.5	647.3	130	5,951	10,635	8,000	9.0	0.45							654.8-647.3	73.6-81.1	72	3.60	0.40	0.45
					A-1-b	G	5.1	5.1	724.9	130	332	663				34	28	41	10,812	2.94		730.0-724.9	0.0-5.1	40	0.97	0.50	0.55
					A-4a	С	10.1	5.0	719.9	130	988	1,313	7,875	8.4	0.45							724.9-719.9	5.1-10.1	66	3.54	0.40	0.45
					A-1-b	G	25.1	15.0	704.9	135	1,795	3,338				79	54	43	25,122	1.79		719.9-704.9	10.1-25.1	60	3.21	0.50	0.55
	B-026-3-13	730.0	9.1	5.0	A-4a	С	35.1	10.0	694.9	130	2,678	4,638	8,000	9.0	0.45						B-026-3-13	704.9-694.9	25.1-35.1	72	3.60	0.40	0.45
					A-2-4	G	40.1	5.0	689.9	135	3,197	5,313				100	60	44	31,800	1.45		694.9-689.9	35.1-40.1	60	4.64	0.50	0.55
					A-1-b	G	60.1	20.0	669.9	135	4,105	8,013				76	43	43	24,168	0.99		689.9-669.9	40.1-60.1	60	4.07	0.50	0.55
					A-3a	G	63.1	3.0	666.9	135	4,940	8,418				100	52	43	15,792	0.66		669.9-666.9	60.1-63.1	60	3.23	0.50	0.55
					A-2-4	G	6.6	6.6	723.4	135	446	891				57	43	43	18,126	3.71		730.0-723.4	0.0-6.6	60	1.65	0.50	0.55
					A-3a	G	16.6	10.0	713.4	135	1,404	2,241				78	51	43	13,605	1.40		723.4-713.4	6.6-16.6	60	1.95	0.50	0.55
	B-001-C-59	730.0	9.0	5.0	A-1-a	G	24.6	8.0	705.4	135	2,057	3,321				71	44	43	22,578	1.52	B-001-C-59	713.4-705.4	16.6-24.6	60	3.12	0.50	0.55
					A-1-b	G	35.6	11.0	694.4	135	2,747	4,806				100	59	44	31,800	1.62		705.4-694.4	24.6-35.6	60	4.43	0.50	0.55
					A-4a	G	38.6	3.0	691.4	135	3,255	5,211				100	56	44	39,667	1.67		694.4-691.4	35.6-38.6	60	5.45	0.50	0.55
					A-4a	С	9.3	9.3	720.7	135	628	1,255	8,000	8.2	0.45							730.0-720.7	0.0-9.3	65	3.60	0.40	0.45
	B-005-F-59	730.0	11.5	5.0	A-1-a	G	20.3	11.0	709.7	135	1,792	2,740				100	67	44	31,800	2.17	B-005-F-59	720.7-709.7	9.3-20.3	60	3.89	0.50	0.55
	D-000-1-08	730.0	11.5	5.0	A-1-b	G	30.3	10.0	699.7	135	2,554	4,090				100	63	44	31,800	1.70	5-003-1-39	709.7-699.7	20.3-30.3	60	4.34	0.50	0.55
					A-6a	С	38.3	8.0	691.7	130	3,188	5,130	8,000	9.0	0.45							699.7-691.7	30.3-38.3	72	3.60	0.40	0.45

1. C = cohesive soil stratum; G = granular soil stratum

2.  $S_u$  = average shear strength over stratum thickness (cohesive soil layers)

3.  $N_C = 6[1+0.2(Z/D)] \le 9$ ; Ref. Section 10.8.3.5.1c, AASHTO LRFD BDS (cohesive soil layers)

4.  $\alpha$  = 0.55 for S_u/P_a ≤ 1.5;  $\alpha$  = 0.55-0.1(S_u/P_a-1.5) for 1.5 ≤ S_u/P_a ≤ 2.5, where P_a = 2.12 ksf = 2,120 psf; Ref. Section 10.8.3.5.1b AASHTO LRFD BDS (cohesive soil layers)

5.  $N_{60}$  = average energy corrected N-values over stratum thickness (granular soil layers)

6.  $(N_1)_{60} = C_n N_{60}$ , where  $C_N = [0.77\log(40/\sigma_v')] \le 2.0$  ksf, where  $\sigma_v' =$  vetical effective stress at midpoint of soil layer with respect to the entire soil profile for the respective boring; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS (granular soil layers)

7.  $\phi'_f = 27.5+9.2log[(N_1)_{60}]$ ; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

8.  $\sigma_p' = n(N_{e0})^m(P_a)$ , where n = 0.15 and m = 1.0 for A-1-a/1-b and A-2-4/2-6, n = 0.47 and m = 0.6 for A-3/3a, n = 0.47 and m = 0.8 for A-4a/4b soils, and  $P_a = 2.12$  ksf = 2,120 psf; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

9.  $\beta = \tan \varphi'_{f}(1-\sin \varphi'_{f})(\sigma_{p}'/\sigma_{v}')^{A}(\sin \varphi'_{f})$ , where  $\sigma_{v}' = vetical$  effective stress at midpoint of soil layer; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

10. q_p = N_cS_u ≤ 80.0 ksf; Ref. Section 10.8.3.5.1c, AASHTO LRFD BDS (cohesive soil layers)

11.  $q_p = 1.2N_{60} \le 60$  ksf; Ref. Section 10.8.3.5.2c, AASHTO LRFD BDS (granular soil layers)

12.  $q_s = \alpha S_u$ ; Ref. Section 10.8.3.5.1b, AASHTO LRFD BDS (cohesive soil layers)

13.  $q_s = \beta \sigma_v'$ , where  $\sigma_v' =$  vetical effective stress at midpoint of soil layer; Ref. Section 10.8.3.5.2b, AASHTO LRFD BDS (granular soil layers)

14.  $\phi_{qp}$  = 0.50 for granular soils layers and 0.40 for cohesive soil layers; Ref. Table 10.5.5.2.4-1, AASHTO LRFD BDS

15.  $\phi_{qs}$  = 0.55 for granular soils layers and 0.45 for cohesive soil layers; Ref. Table 10.5.5.2.4-1, AASHTO LRFD BDS

**APPENDIX VII** 

LATERAL DESIGN PARAMETERS

Boring No.	Elevation (feet msl)	Soil Class.	Soil Type	Strata	N ₆₀	N1 ₆₀	γ (pcf)	γ' (pcf)	Strength Parameter	k (soil) k _{rm} (rock)	ε ₅₀ (soil) E _r (rock)	RQD (rock
	732.4 to 724.4	A-7-6	С	3	22	22	120 psf	120 psf	Su = 2,750 psf	915 pci	0.0053	-
B-023-1-13	724.4 to 719.4	A-6a	C	3	15	15	120 psf	120 psf	Su = 1,875 psf	625 pci	0.0065	-
	719.4 to 714.4 714.4 to 710.4	A-7-6 A-1-b	C G	3	17 33	17 31	120 psf 130 psf	120 psf 67.6 psf	Su = 2,125 psf φ = 39°	710 pci 140 pci	0.0062	-
	710.4 to 695.4	A-1-b A-1-b	G	4	55	48	135 psf	72.6 psf	$\phi = 39$ $\phi = 41^{\circ}$	175 pci	-	-
	695.4 to 690.4	A-6b	C	2	40	40	130 psf	67.6 psf	Su = 5,000 psf	1,665 pci	0.0043	-
	690.4 to 684.4	A-1-a	G	4	95	72	135 psf	72.6 psf	φ = 43°	215 pci	-	-
	743.4 to 732.9	A-6b	С	3	16	16	120 psf	120 psf	Su = 2,000 psf	665 pci	0.0063	-
B-024-0-08	732.9 to 727.9	A-6b	С	3	37	37	125 psf	125 psf	Su = 4,625 psf	1,540 pci	0.0045	-
	727.9 to 715.4	A-4a	С	3	19	19	120 psf	120 psf	Su = 2,375 psf	790 pci	0.0058	-
	715.4 to 711.4	A-4b	G	4	28	23	130 psf	67.6 psf	φ = 34°	70 pci	-	-
	711.4 to 706.4	A-1-a	G	4	37	29	130 psf	67.6 psf	φ = 40°	155 pci	-	-
	706.4 to 701.4	A-4a	C	2	72	72	130 psf	67.6 psf	Su = 8,000 psf	2,665 pci	0.0033	-
	701.4 to 691.4 691.4 to 686.4	A-3a A-1-b	G G	4	65 100	46 68	135 psf 135 psf	72.6 psf 72.6 psf	$\phi = 39^{\circ}$ $\phi = 42^{\circ}$	140 pci 195 pci	-	-
	686.4 to 681.4	A-1-0 A-4a	G	4	72	47	135 psi 135 psf	72.6 psf 72.6 psf	$\phi = 42$ $\phi = 37^{\circ}$	195 pci 110 pci	-	-
	681.4 to 651.6	A-1-a	G	4	100	59	135 psf	72.6 psf	$\phi = 37$ $\phi = 43^{\circ}$	215 pci		_
	651.6 to 631.9	Shale	R	9	-	-	150 psf	87.6 psf	Qu = 1,650 psi	0.0001	100,000 psi	60
	746.4 to 738.4	A-6a	C	3	18	18	120 psf	120 psf	Su = 2,250 psf	750 pci	0.0060	-
B-024-1-13	738.4 to 720.9	A-4a	C	3	42	42	130 psf	130 psf	Su = 5,250 psf	1,750 pci	0.0043	-
	720.9 to 714.4	A-6a	С	3	40	40	130 psf	130 psf	Su = 5,000 psf	1,665 pci	0.0043	-
	714.4 to 694.4	A-1-a	G	4	100	70	135 psf	72.6 psf	φ = 43°	215 pci	-	-
	694.4 to 689.4	A-3a	G	4	44	28	130 psf	67.6 psf	φ = 37°	110 pci	-	-
	689.4 to 684.4	A-4a	С	2	100	100	130 psf	67.6 psf	Su = 8,000 psf	2,665 pci	0.0033	-
	684.4 to 682.4	A-1-b	G	4	100	61	135 psf	72.6 psf	φ = 42°	195 pci	-	-
B-024-2-14	742.7 to 729.7	A-4a	С	3	17	17	120 psf	120 psf	Su = 2,125 psf	710 pci	0.0062	-
	729.7 to 717.2	A-4a	C	3	27	27	125 psf	125 psf	Su = 3,375 psf	1,125 pci	0.0049	-
	717.2 to 710.7	A-4b	G	4	21	17	120 psf	57.6 psf	$\phi = 33^{\circ}$	60 pci	-	-
	710.7 to 705.7 705.7 to 700.7	A-1-b A-1-b	G G	4	17 51	14 39	125 psf 135 psf	62.6 psf 72.6 psf	$\phi = 36^{\circ}$ $\phi = 40^{\circ}$	95 pci 155 pci	-	-
	705.7 to 700.7 700.7 to 695.7	A-1-0 A-4a	C	4	51	52	135 psi 130 psf	67.6 psf	$\phi = 40$ Su = 6,500 psf	2,165 pci	0.0038	-
	695.7 to 683.7	A-4a A-1-b	G	4	100	70	135 psf	72.6 psf	$\phi = 42^{\circ}$	195 pci	0.0038	-
	740.4 to 715.4	A-1-0 A-4a	C	3	22	22	120 psf	120 psf	$\psi = 42$ Su = 2,750 psf	915 pci	0.0053	-
B-025-0-08	715.4 to 711.9	A-4a A-6b	c	2	22	22	120 psr 120 psr	57.6 psf	Su = 2,750 psf Su = 2,875 psf	960 pci	0.0052	-
	711.9 to 701.9	A-1-b	G	4	83	67	135 psf	72.6 psf	$\phi = 42^{\circ}$	195 pci	-	_
	701.9 to 696.9	A-4a	C	2	100	100	130 psf	67.6 psf	Su = 8,000 psf	2,665 pci	0.0033	_
	696.9 to 690.4	A-1-b	G	4	69	50	135 psf	72.6 psf	$\phi = 42^{\circ}$	195 pci	-	-
	690.4 to 683.4	A-6a	С	2	60	60	130 psf	67.6 psf	Su = 7,500 psf	2,500 pci	0.0035	-
	683.4 to 681.4	A-3a	G	4	100	67	135 psf	72.6 psf	φ = 40°	155 pci	-	-
B-026-0-08	754.0 to 743.5	A-7-6	С	3	16	16	120 psf	120 psf	Su = 2,000 psf	665 pci	0.0063	-
	743.5 to 735.5	A-7-6	С	3	36	36	125 psf	125 psf	Su = 4,500 psf	1,500 pci	0.0045	-
	735.5 to 723.0	A-6a	С	3	20	20	120 psf	120 psf	Su = 2,500 psf	835 pci	0.0057	-
	723.0 to 712.0	A-4a	С	3	21	21	120 psf	120 psf	Su = 2,625 psf	875 pci	0.0055	-
	712.0 to 704.0	A-2-4	G	4	69	47	135 psf	72.6 psf	$\phi = 40^{\circ}$	155 pci	-	-
	704.0 to 697.0	A-6a	C	2	100	100	130 psf	67.6 psf	Su = 8,000 psf	2,665 pci	0.0033	-
	697.0 to 687.0 687.0 to 679.0	A-1-b A-6a	G C	4	89 45	54 45	135 psf 130 psf	72.6 psf 67.6 psf	φ = 42° Su = 5,625 psf	195 pci 1,875 pci	- 0.0041	-
	679.0 to 672.0	A-0a A-1-a	G	4	100	45 56	135 psf	72.6 psf	$\phi = 43^{\circ}$	215 pci	0.0041	-
	672.0 to 664.0	A-1-a A-4a	C C	2	100	100	130 psf	67.6 psf	$\psi = 43$ Su = 8,000 psf	2,665 pci	0.0033	_
	664.0 to 656.2	Claystone	R	9	-	-	150 psf	87.6 psf	Qu = 200 psi	0.0005	20,000 psi	14
	656.2 to 639.0	Shale	R	9	-	-	150 psf	87.6 psf	Qu = 2,391 psi	0.0001	100,000 psi	87
B-026-1-13	747.0 to 740.0	A-2-4	G	4	25	38	125 psf	125 psf	φ = 39°	250 pci	-	-
	740.0 to 735.0	A-2-4	G	4	70	82	135 psf	135 psf	φ = 41°	315 pci	-	-
	735.0 to 719.0	A-1-b	G	4	39	36	130 psf	130 psf	φ = 40°	280 pci	-	-
	719.0 to 714.0	A-1-b	G	4	52	41	125 psf	62.6 psf	φ = 41°	175 pci	-	-
	714.0 to 697.0	A-1-b	G	4	77	56	135 psf	72.6 psf	φ = 42°	195 pci	-	-
B-026-2-13	736.8 to 731.3	A-1-b	G	4	26	41	125 psf	125 psf	φ = 41°	315 pci	-	-
	731.3 to 726.3	A-2-4	G	4	29	36	125 psf	125 psf	φ = 39°	250 pci	-	-
	726.3 to 716.3	A-1-b	G	4	20	20	120 psf	120 psf	$\phi = 37^{\circ}$	190 pci	-	-
	716.3 to 695.3	A-1-b	G	4	86	73	135 psf	72.6 psf	$\varphi = 42^{\circ}$	195 pci	-	-
	695.3 to 689.8 689.8 to 684.8	A-3a A-3a	G G	4	14 51	11 37	125 psf 135 psf	62.6 psf 72.6 psf	$\phi = 33^{\circ}$ $\phi = 38^{\circ}$	60 pci 125 pci	-	-
	689.8 to 684.8	A-3a A-3a	G	4	69		135 psf 135 psf	72.6 psf 72.6 psf	$\phi = 38^{\circ}$ $\phi = 39^{\circ}$	125 pci 140 pci	-	-
	674.8 to 664.8	A-sa A-4a	C	4 2	85	40 85	130 psf	67.6 psf	φ = 39 Su = 8,000 psf	2,665 pci	0.0033	-
	664.8 to 654.8	A-3a	G	4	83	51	135 psf	72.6 psf	$\phi = 40^{\circ}$	155 pci	-	-
	654.8 to 647.3	A-6b	C	2	80	80	130 psf	67.6 psf	Su = 8,000 psf	2,665 pci	0.0033	-
	756.9 to 746.4	A-6a	C	3	14	14	120 psf	120 psf	Su = 1,750 psf	585 pci	0.0067	-
B-026-3-13	746.4 to 736.4	A-1-b	G	4	39	40	130 psf	130 psf	φ = 40°	280 pci	-	-
	736.4 to 724.9	A-1-b	G	4	34	28	130 psf	130 psf	φ = 39°	250 pci	-	-
	724.9 to 719.9	A-4a	С	3	63	63	130 psf	130 psf	Su = 7,875 psf	2,625 pci	0.0034	-
	719.9 to 704.9	A-1-b	G	4	79	54	135 psf	72.6 psf	φ = 42°	195 pci	-	-
	704.9 to 694.9	A-4a	С	2	84	84	130 psf	67.6 psf	Su = 8,000 psf	2,665 pci	0.0033	-
	694.9 to 689.9	A-2-4	G	4	100	60	135 psf	72.6 psf	φ = 41°	175 pci	-	-
	689.9 to 669.9	A-1-b	G	4	76	43	135 psf	72.6 psf	φ = 41°	175 pci	-	-
	669.9 to 666.9	A-3a	G	4	100	52	135 psf	72.6 psf	φ = 40°	155 pci	-	-
B-001-C-59	762.4 to 752.4	A-6a	С	1	7	7	115 psf	115 psf	Su = 875 psf	165 pci	0.0095	-
	752.4 to 749.4	A-1-a	G	4	58	66	135 psf	135 psf	$\phi = 43^{\circ}$	395 pci	-	-
	749.4 to 735.4	A-1-a	G	4	93	86	135 psf	135 psf	$\phi = 43^{\circ}$	395 pci	-	-
	735.4 to 723.4	A-2-4	G	4	57 79	43	135 psf	135 psf	$\varphi = 40^{\circ}$	280 pci	-	-
	723.4 to 713.4	A-3a	G G	4	78 71	51	135 psf	72.6 psf	$\varphi = 40^{\circ}$ $\varphi = 42^{\circ}$	155 pci	-	-
	713.4 to 705.4 705.4 to 694.4	A-1-a A-1-b	G	4	100	44 59	135 psf 135 psf	72.6 psf 72.6 psf	$\phi = 42^{\circ}$ $\phi = 42^{\circ}$	195 pci 195 pci	-	-
	100.410094.4	A-1-0	9	4	100	59	iso hai	1∠.0 µsi	$\phi = 42^{\circ}$ $\phi = 38^{\circ}$	iao hoi	-	