FRA-70-12.68 PROJECT 4R RETAINING WALL 4W13 PID NO. 105523 FRANKLIN COUNTY, OHIO

STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For: GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

> Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

> > Rii Project No. W-13-045

July 2018

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990

July 13, 2018

Mr. Christopher W. Luzier, P.E. Project Manager GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

Re: Structure Foundation Exploration Report FRA-70-12.68 Project 4R Retaining Wall 4W13 PID No. 105523 Rii Project No. W-13-045

Mr. Luzier:

Resource International, Inc. (Rii) is pleased to submit this structure foundation exploration report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of proposed Retaining Wall 4W13 as part of the FRA-70-12.68 Project 4R in Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the structure foundation exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Hanumanth S. Kulkarni, Ph.D. Project Engineer

Jonathan P. Sterenberg, P.E. Director – Geotechnical Services

Enclosure: Structure Foundation Exploration Report

6350 Presidential Gateway Columbus, Ohio 43231 Phone: 614.823.4949 Fax: 614.823.4990 Planning

Engineering

Construction Management

Technology

Section	on	Page
EXEC	UTIVE	SUMMARYI
	Explo Analy	ration and Findingsi ses and Recommendationsii
1.0	INTRO	DDUCTION1
2.0	GEOL	OGY AND OBSERVATIONS OF THE PROJECT1
	2.1 2.2	Site Geology1 Existing Conditions2
3.0	EXPL	ORATION
4.0	FINDI	NGS5
	4.1 4.2 4.3 4.4	Surface Materials
5.0	ANAL	YSES AND RECOMMENDATIONS8
	5.1	Shallow Foundation Recommendations95.1.1 Sliding Resistance105.1.2 Overall (Global) Stability10
	5.2	Lateral Earth Pressure 11 5.2.1 Excavation Considerations
	5.3	Groundwater Considerations
6.0	LIMIT	ATIONS OF STUDY

TABLE OF CONTENTS

APPENDICIES

Appendix I	Vicinity Map and Boring Plan
Appendix II	Description of Soil Terms
Appendix III	Project Boring Logs: B-030-1-15, B-031-0-08, B-032-0-08, B-032-2-15 and B-032-3-15
Appendix IV	Bearing Resistance Charts
Appendix V	Shallow Foundation Calculations
Appendix VI	External Stability Analysis Calculations by GPD GROUP
Appendix VII	Global Stability Analysis Output

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a structure foundation exploration for retaining wall 4W13 as part of the FRA-70-12.68 (Project 4R) project. Retaining wall 4W13 measures approximately 540.72 lineal feet in length, with a proposed stem height above the footing varying from 25.3 to 33.7 feet. The retaining wall is proposed to be constructed as a cast-in-place (CIP) wall, and in the interim condition, the wall will have an extended stem designed to support the future engineered fill and roadway under design project FRA-70-1405.

Exploration and Findings

Between October 6 and December 3, 2015, three (3) structural borings, designated as B-030-1-15, B-032-2-15, and B-032-3-15, were drilled to completion depths ranging from 59.4 to 75.0 feet below the existing ground surface along the proposed alignment of retaining wall 4W13. In addition to the borings performed by Rii as part of the current exploration, two (2) borings, designated as B-031-0-08 and B-032-0-08, from the preliminary engineering exploration were performed by DLZ in the vicinity of the proposed alignment of retaining wall 4W13. Boring B-031-0-08 was advanced to a depth of 60.0 feet and B-032-0-08 was advanced to completion depth of 128.5 feet below the existing ground surface within the existing ramp from I-70 eastbound to City Park Avenue and 3rd Street and Livingston Avenue for evaluation of the proposed retaining walls for the trench widening.

Boring B-030-1-15 was drilled through the I-70 eastbound shoulder pavement, and encountered composite pavement of 6.0 inches of asphalt over 12.0 inches of concrete followed by 6.0 inches of aggregate base at the ground surface. Borings B-032-2-15 and B-032-3-15 were drilled through the graded embankment south of I-70 and encountered 3.0 inches of topsoil. Boring B-031-0-08, drilled along the south of I-70 eastbound and encountered 8.0 inches of topsoil. Boring B-032-0-08 was drilled through the existing pavement of the ramp from I-70 eastbound to Third Street and Livingston Avenue and encountered 5.0 inches of asphalt overlying 3.0 inches of concrete followed by 5.0 inches of aggregate base at the ground surface.

Beneath the surface materials in borings B-030-1-15, B-031-0-08, and B-032-0-08 along the alignment of the proposed retaining wall 4W13, material identified as existing fill or possible fill was encountered extending to depths up to 4.0 feet below the ground surface. The fill material was described as brown sandy silt and silty clay (ODOT A-4a, A-6b) and contained brick fragments throughout. In borings B-032-2-15 and B-032-3-15, natural deposits of cohesive and non-cohesive materials were encountered underneath the surface material. The cohesive material identified as brown to gray sandy silt (ODOT A-4a) and the granular material in B-032-3-15 is identified as medium dense to very dense brown gravel and sand (ODOT A-1-b).

Underlying the surficial materials and existing fill, where encountered, natural soils were encountered consisting of both granular and cohesive material. The granular soils were generally described as, brown and gray gravel, gravel with sand, gravel with sand and silt, coarse and fine sand, sandy silt and silt (ODOT A-1-a, A-1-b, A-2-4, A-3a, A-4a, A-4b). The cohesive soils were generally described as stiff to hard, gray sandy silt, silt and silt and clay (ODOT A-4a, A-4b, A-6a).

Severely weathered shale bedrock was encountered in boring B-032-0-08 at a depth of 120.0 feet below the ground surface (El. 631.4 feet msl). Auger refusal occurred at depth 120.5 feet below ground surface and therefore, rock coring was initiated. It was indicated that a thin layer of lime stone was encountered between depths 125.2 to 125.5 feet below the surface. The cored shale bedrock encountered in this boring was described as dark gray, highly to severely weathered, very weak to weak, laminated, calcareous, pyritic, fissile, friable, jointed, fractured, tight, and slightly rough. The boring was terminated at depth 128.5 feet from the surface due to difficult conditions and it was recorded that the core steel was damaged during performing the core runs.

Analyses and Recommendations

Design details of the proposed retaining walls were provided by GPD GROUP. Retaining wall 4W13 extends between proposed FRA-70-1405C and FRA-33-1747C along the south side of I-70 eastbound. Based on plan information provided by GPD GROUP, the footings for retaining wall 4W13 have been designed to produce a maximum service limit bearing pressure of 4.97 ksf and a maximum factored bearing pressure of 7.14 ksf at the strength limit state. The retaining wall is proposed to be constructed as cast-in-place (CIP) wall type with a proposed stem height above the footing varying from 25.3 to 33.7 feet, and in the interim condition, the wall will have an extended stem designed to support future engineered fill.

The retaining wall is proposed to be constructed as a cast-in-place (CIP) wall, and in the interim condition, the wall will have an extended stem designed to support the future engineered fill and roadway under design project FRA-70-1405.

Based on plan information provided by GPD GROUP, the foundations for the proposed retaining walls will bear at a minimum depth of 6.0 feet below the existing grade of I-70, at elevations ranging from 725.0 to 731.0 feet msl. At these elevations, the bearing soils for wall 4W13 are anticipated to consist of hard sandy silt, silt and clay and silty clay (ODOT A-4a, A-6a, A-6b), and dense and very dense gravel and sand (ODOT A-1-b). Shallow foundations bearing on these competent natural soils may be proportioned for a nominal bearing resistance as presented in Table 6 for the retaining wall 4W13. Based on correspondence with GPD GROUP, it is understood that the external stability calculations for both retaining walls are being performed by the wall designer, GPD GROUP. Therefore, Rii has provided a graphical plot and tabulated the nominal and factored bearing resistance, as well as the anticipated settlement resulting from the

service limit bearing pressure, as a function of the base width for use in final design of the wall systems.

Effective Footing Width	Service Lin	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5-inch	1.0-inch	2.0-inch	Nominal	Factored ²
5	1.87	4.83	7.84	31.68	17.42
7	1.69	4.06	7.01	31.70	17.43
9	1.59	3.62	6.45	31.72	17.45
11	1.52	3.33	6.11	31.74	17.46
13	1.47	3.12	5.89	31.76	17.47
15	1.43	2.97	5.74	31.79	17.48
17	1.41	2.86	5.63	31.81	17.49
19	1.38	2.77	5.54	31.83	17.51
21	1.37	2.69	5.47	31.85	17.52
23	1.35	2.63	5.41	31.88	17.53
25	1.34	2.58	5.36	31.90	17.54

Shallow Foundation Analysis – Retaining Wall 4W13

1. Service limit bearing pressure was calculated at total settlement values of 0.5, 1.0 and 2.0 inches.

2. Resistance factor of $\varphi_b = 0.55$ was utilized in calculating the factored nominal bearing resistance at the strength limit state.

Based on the maximum service limit bearing pressures provided in the design documents and noted above, total settlements ranging from 0.653 to 1.427 inches are anticipated along the alignment of retaining wall 4W13. Additionally, the maximum factored bearing pressure will not exceed the factored bearing resistance at the strength limit for either retaining wall.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70-12.68/13.11/14.05C (Project 4R/4H/4A) projects in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project. The FRA-70-12.68 (Project 4R) phase will consist of all work associated with the construction of Ramp C5, starting at the bridge over Souder Avenue and extending east to Front Street. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and SR-315 southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. This project includes the construction of six (6) new bridge structures for the proposed Ramp C5 alignment and replacement of three (3) bridge structures, two along I-70 and the Front Street Structure over I-70, as well as the construction of fourteen (14) new retaining walls and a culvert structure to accommodate the new configuration.

This report is a presentation of the structure foundation exploration performed for the design and construction of proposed retaining wall 4W13, as shown on the vicinity map and boring plan presented in Appendix I. Based on the proposed plan information provided by GPD GROUP, retaining wall 4W13 begins at Sta. 193+26.21, 50.03 feet right and continues to the east to Sta. 198+64.94, 49.75 feet right where, in the final condition, it will become a median barrier on the south side of eastbound I-70 and will support the higher eastbound exit ramp to Fourth Street and Livingston Avenue between the bridge structures FRA-70-1405C and FRA-33-1747C. Retaining wall 4W13 measures approximately 540.72 lineal feet in length, with a proposed stem height above the footing varying from 25.3 to 33.7 feet. The retaining wall is proposed to be constructed as a cast-in-place (CIP) wall, and in the interim condition, the wall will have an extended stem designed to support the future engineered fill and roadway under design project FRA-70-1405.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the

steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone Formation. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules, Just east of the Scioto River, the underlying bedrock consists of the Upper Devonian Ohio Shale Formation overlying the Middle Devonian-aged Delaware Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. The Delaware Limestone consists of bluish gray, thin to medium bedded dolomitic limestone with nodules and layers of chert. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits. Within the borings performed for this current investigation, shale bedrock was encountered at a depth of 113.5 feet below the ground surface which corresponds to El. 628.8 feet msl.

2.2 Existing Conditions

The proposed retaining wall 4W13 structure will be located on the south side of eastbound I-70 between S. High Street and S. 3rd Street and will support the higher eastbound exit ramp to Fourth Street and Livingston Avenue to the south. The existing I-70/I-71 in the vicinity of the structure is a six-lane, bi-directional, composite asphalt and concrete paved roadway that is generally east-west aligned through downtown Columbus, Ohio. The existing I-70 profile grades down from west to east into the downtown area, and is generally lower in elevation with respect to the surrounding terrain, as the existing corridor was cut approximately 20 to 25 below the existing grade of S. High Street and the surrounding downtown area. Adjacent to the pavements, the right of way has light to medium vegetation growth consisting of grasses and small trees. To the north is the entrance ramp from S. 3rd Street to I-70 westbound and to the north and the south, the embankments slope upwards with vegetation coverage. The traffic volume along the project alignment is very high, and the alignment traverses primarily commercial and government properties. The regional topography generally slopes downward to the west toward the Scioto River.

3.0 EXPLORATION

Between October 6 and December 3, 2015, three (3) structural borings, designated as B-030-1-15, B-032-2-15, and B-032-3-15, were drilled to completion depths ranging from 59.4 to 75.0 feet below the existing ground surface along the proposed alignment of retaining wall 4W13. In addition to the borings performed by Rii as part of the current exploration, two (2) borings, designated as B-031-0-08 and B-032-0-08, from the preliminary engineering exploration were performed by DLZ in the vicinity of the proposed alignment of retaining wall 4W13. Boring B-031-0-08 was advanced to a depth of 60.0 feet and B-032-0-08 was advanced to completion depth of 128.5 feet below the existing ground surface within the existing ramp from I-70 eastbound to City Park Avenue and 3rd Street and Livingston Avenue for evaluation of the proposed retaining walls for the trench widening. The current project boring locations are shown on the boring plan provided in Appendix I of this report and summarized in Table 1 below.

Boring Number	Reference Alignment	Station	Offset	Latitude	Longitude	Ground Elevation (feet msl)	Boring Depth (feet)
B-030-1-15	BL I-70 EB	194+37.05	70.0' Rt.	39.952814	-82.998014	748.9	59.4
B-031-0-08	BL I-70 EB	196+17.42	32.8' Rt.	39.953001	-82.997403	735.6	60.0
B-032-0-08	BL I-70 EB	196+22.20	79.7' Rt.	39.952876	-82.997357	751.4	128.5
B-032-2-15	BL I-70 EB	197+39.71	39.1' Rt.	39.953042	-82.996969	733.1	60.0
B-032-3-15	BL I-70 EB	198+77.78	40.8' Rt.	39.953103	-82.996483	732.8	75.0

Table 1. Test Boring Summary

The locations for the current exploration borings performed by Rii were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by GPD GROUP.

The borings performed by Rii for the current exploration were drilled using a truck or an all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing a 3.25-inch inside diameter, hollow-stem augers to advance the holes. Standard penetration test (SPT) and split spoon sampling were performed in the borings at 2.5-foot increments of depth to 20 feet in boring B-031-1-15 and 25 feet in boring B-032-2-15 and 30 feet in boring B-033-3-15 and at 5.0-foot increments thereafter to the boring termination depth. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blow per 6.0-inch interval of the driving distance.

The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation. Both values are represented on boring logs in Appendix III.

$$N_{60} = N_m^*(ER/60)$$

Where:

 N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

The hammers for the Mobile CME 55 and the CME 750X drill rigs used by Rii were calibrated on October 20th, 2014, and have drill rod energy ratios of 92.0 and 85.7 percent, respectively. The hammer for the CME 750X drill rig used by DLZ for the preliminary exploration borings had a drill rod energy ratio of 63.1 percent.

During drilling for the borings performed by Rii, field logs were prepared by Rii personnel showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	56
Plastic and Liquid Limits	AASHTO T89, T90	26
Gradation – Sieve/Hydrometer	AASHTO T88	26

 Table 2. Laboratory Test Schedule

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented, in part, on the boring logs in Appendix III. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please

note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

Where borings that were performed by DLZ were extended into the underlying bedrock, an NXM or NQ double-tube diamond bit core barrel (utilizing wire line equipment) was used to core the bedrock. Coring produced 1.85 inch diameter cores from which the type of rock and its geological characteristics were determined.

Rock cores were analyzed to identify the type of rock, color, mineral content, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each rock core run was calculated according to the following equation:

$$RQD = \frac{\sum \text{segments equal to or longer than 4.0 inches}}{\text{core run length}} \times 100$$

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings performed as part of the preliminary engineering phase and current exploration and what is represented on the boring logs.

4.1 Surface Materials

Boring B-030-1-15 was drilled through the I-70 eastbound shoulder pavement, and encountered composite pavement of 6.0 inches of asphalt over 12.0 inches of concrete followed by 6.0 inches of aggregate base at the ground surface. Borings B-032-2-15 and B-032-3-15 were drilled through the graded embankment south of I-70 and encountered 3.0 inches of topsoil. Boring B-031-0-08, drilled along the south of I-70 eastbound and encountered 8.0 inches of topsoil. Boring B-032-0-08 was drilled through the existing pavement of the ramp from I-70 eastbound to Third Street and Livingston Avenue and encountered 5.0 inches of asphalt overlying 3.0 inches of concrete followed by 5.0 inches of aggregate base at the ground surface.

4.2 Subsurface Soils

Beneath the surface materials in borings B-030-1-15, B-031-0-08, and B-032-0-08 along the alignment of the proposed retaining wall 4W13, material identified as existing fill or possible fill was encountered extending to depths up to 4.0 feet below the ground surface. The fill material was described as brown sandy silt and silty clay (ODOT A-4a,

A-6b) and contained brick fragments throughout. In borings B-032-2-15 and B-032-3-15, natural deposits of cohesive and non-cohesive materials were encountered underneath the surface material. The cohesive material identified as brown to gray sandy silt (ODOT A-4a) and the granular material in B-032-3-15 is identified as medium dense to very dense brown gravel and sand (ODOT A-1-b).

Underlying the surficial materials and existing fill, where encountered, natural soils were encountered consisting of both granular and cohesive material. The granular soils were generally described as, brown and gray gravel, gravel with sand, gravel with sand and silt, coarse and fine sand, sandy silt and silt (ODOT A-1-a, A-1-b, A-2-4, A-3a, A-4a, A-4b). The cohesive soils were generally described as stiff to hard, gray sandy silt, silt and silt and clay (ODOT A-4a, A-4b, A-6a).

The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soil encountered ranged from medium dense ($11 \le N_{60} \le 30$ blows per foot [bpf]) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 15 bpf to split spoon sampler refusal. The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soil encountered ranged from stiff ($1.0 \le HP \le 2.0$ tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 1.5 tsf to over 4.5 tsf (limit of instrument).

Natural moisture contents of the soil samples tested ranged from 4 to 23 percent. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 6 percent below to 4 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be moderately below to moderately above optimum moisture levels.

4.3 Bedrock

Bedrock was encountered in boring B-032-0-08, as presented in Table 3.

Boring	Ground Surface	Top of (Sample	Bedrock er Refusal)	Top of Bedrock Core (Auger Refusal)				
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)			
B-032-0-08	751.4	120.0	631.4	120.5	630.9			

Table 3. Top of Bedrock Ele	vations
-----------------------------	---------

Severely weathered shale bedrock was encountered in boring B-032-0-08 at a depth of 120.0 feet below the ground surface (EI. 631.4 feet msl). Auger refusal occurred at depth 120.5 feet below ground surface and therefore, rock coring was initiated. It was indicated that a thin layer of lime stone was encountered between depths 125.2 to 125.5 feet below the surface. The cored shale bedrock encountered in this boring was described as dark gray, highly to severely weathered, very weak to weak, laminated, calcareous, pyritic, fissile, friable, jointed, fractured, tight, and slightly rough. The boring was terminated at depth 128.5 feet from the surface due to difficult conditions and it was recorded that the core steel was damaged during performing the core runs.

The percent recovery, RQD values and unconfined compressive strengths of the bedrock core runs are summarized in Table 4.

Boring	Core No.	Elevation (feet msl)	Recovery (%)	RQD (%)	Unconfined Compressive Strength
B 022 0 08	R-1	630.9 to 626.4	36.6	8	N/A
B-032-0-08	R-2	626.4 to 622.9	63.8	0	N/A

Table 4. Rock Core Summary

It should be noted that bedrock naturally experiences mechanical breaks during the drilling and coring processes. The quality of the shale bedrock, according to the RQD values, was very poor (RQD < 25%).

4.4 Groundwater

Groundwater was encountered in the borings as presented in Table 5.

Boring	Ground Surface	Initial Gro	oundwater	Upon Completion					
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)				
B-030-1-15	748.9	28.5	720.4	28.5	720.4				
B-031-0-08	735.6	9.5	726.1	8.3 ¹	727.3				
B-032-0-08	751.4	47.0	704.4	25.7 ¹	725.7				
B-032-2-15	733.1	16.0	717.1	N/A ²	-				
B-032-3-15	732.8	11.5	721.3	11.5	721.3				

Table 5. Groundwater

1. Includes drilling water. Advanced wash boring due to sand heave.

2. The groundwater level at completion could not be obtained due cave-in occurred at 17.0'.

Groundwater was encountered initially during the drilling process in all of the borings at depths ranging from 9.5 to 47.0 feet below existing grade, which corresponds to elevations ranging from 704.4 to 726.1 feet msl, respectively. The groundwater level at the completion of drilling in boring B-032-2-15 was not recorded due the cave-in condition occurred at 17.0 feet below existing grade. Additionally, DLZ noted that they frequently added water to the borehole to clean out the augers after encountering sand heave of varying amounts at various depths.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the various exploration programs have been used to determine the foundation support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the design of foundation systems for the subject structure, as well as the construction specifications related to the placement of foundation systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed retaining walls were provided by GPD GROUP. Retaining wall 4W13 extends between proposed FRA-70-1405C and FRA-33-1747C along the south side of I-70 eastbound. Based on plan information provided by GPD GROUP, the footings for retaining wall 4W13 have been designed to produce a maximum service limit bearing pressure of 4.97 ksf and a maximum factored bearing pressure of 7.14 ksf at the strength limit state. The retaining wall is proposed to be constructed as cast-in-place (CIP) wall type with a proposed stem height above the footing varying from 25.3 to 33.7 feet, and in the interim condition, the wall will have an extended stem designed to support future engineered fill.

The stability analysis on the bearing, wall eccentricity (overturning), sliding and final CIP wall dimensions and design considerations were performed by GPD GROUP and the calculations are presented in Appendix VI.

5.1 Shallow Foundation Recommendations

Based on plan information provided by GPD GROUP, the foundations for the proposed retaining walls will bear at a minimum depth of 6.0 feet below the existing grade of I-70, at elevations ranging from 725.0 to 731.0 feet msl. At these elevations, the bearing soils for wall 4W13 are anticipated to consist of hard sandy silt, silt and clay and silty clay (ODOT A-4a, A-6a, A-6b), and dense and very dense gravel and sand (ODOT A-1-b). Shallow foundations bearing on these competent natural soils may be proportioned for a nominal bearing resistance as presented in Table 6 for the retaining wall 4W13. Based on correspondence with GPD GROUP, it is understood that the external stability calculations for both retaining walls are being performed by the wall designer, GPD GROUP. Therefore, Rii has provided a graphical plot and tabulated the nominal and factored bearing pressure, as a function of the base width for use in final design of the wall systems.

Effective Footing Width	Service Lim	hit Bearing Pres	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5-inch	1.0-inch	2.0-inch	Nominal	Factored ²
5	1.87	4.83	7.84	31.68	17.42
7	1.69	4.06	7.01	31.70	17.43
9	1.59	3.62	6.45	31.72	17.45
11	1.52	3.33	6.11	31.74	17.46
13	1.47	3.12	5.89	31.76	17.47
15	1.43	2.97	5.74	31.79	17.48
17	1.41	2.86	5.63	31.81	17.49
19	1.38	2.77	5.54	31.83	17.51
21	1.37	2.69	5.47	31.85	17.52
23	1.35	2.63	5.41	31.88	17.53
25	1.34	2.58	5.36	31.90	17.54

Table 6. Shallow Foundation Analysis – Retaining Wall 4W13

1. Service limit bearing pressure was calculated at total settlement values of 0.5, 1.0 and 2.0 inches.

2. Resistance factor of $\varphi_b = 0.55$ was utilized in calculating the factored nominal bearing resistance at the strength limit state.

The service limit bearing pressure that results in a maximum total settlement of 0.5, 1.0 and 2.0 inches was calculated and presented in Table 6 for retaining wall 4W13. A geotechnical resistance factor of $\varphi_b = 0.55$ has been considered in calculating the factored bearing resistance at the strength limit state for both retaining walls. Based on the bearing pressures provided in Table 6, and applying the geotechnical resistance factor provided to the nominal bearing resistance at the strength limit state, the service limit state should control the minimum footing dimensions for all effective footing widths analyzed for the total settlement values considered in the analysis of both retaining walls. A graphical representation of the service limit bearing pressures and factored bearing resistance at the strength limit state is presented in Appendix IV for both structures. Calculations for settlement and nominal and factored bearing resistance for the shallow spread foundations for both structures are provided in Appendix V.

Based on the maximum service limit bearing pressures provided in the design documents and noted in Section 5.0, total settlements ranging from 0.653 to 1.427 inches are anticipated along the alignment of retaining wall 4W13. Additionally, the maximum factored bearing pressure will not exceed the factored bearing resistance at the strength limit for either retaining wall.

5.1.1 Sliding Resistance

The resistance of the footings to sliding will be dependent on the friction between the concrete footing and bearing surface. The bearing soils consist of cohesionless soil and transitions to cohesive material along the middle of the wall alignment. Therefore, it is recommended to consider the sliding resisting for both drained and undrained conditions. For drained conditions, we recommend using a friction angle of 41 degrees and a coefficient of sliding friction "f" of 0.87 to calculate the total vertical force on the base. For undrained conditions, it is recommended to use an undrained shear strength of 6,000 psf. A geotechnical resistance factor of $\varphi_{\tau} = 1.0$ should be considered when calculating the factored shear resistance between the soil and foundation for sliding.

5.1.2 Overall (Global) Stability

A slope stability analysis was performed to check the global stability of the walls along the alignments. As per AASHTO LRFD BDS, safety against global stability failure shall be evaluated at the service limit state. Soil parameters utilized in external stability analyses are presented in Table 7. For the global stability condition, it was considered that the failure plane will not cross through any portion of the supported soil mass above the concrete or through the concrete footing itself.

Material Type	Unit Weight, γ (pcf)	Effective Friction Angle, φ' (°)	Effective Cohesion, <i>c'</i> (psf)	Undrained Shear Strength, <i>Su</i> (psf)
Item 203 Embankment Fill	120	30	0	2,000
Stiff to Hard Cohesive Soils	120 to 130	28 to 32	0	2,000 to 4,000
Loose to Very Dense Granular Soils	120 to 135	32 to 42	0	N/A

 Table 7. Shear Strength Parameters Utilized in Stability Analyses

Per Section 11.6.2.3 of the 2012 AASHTO LRFD BDS, overall (global) stability for CIP walls not supporting structural foundations on spread footings is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.75 is greater than 1.0. Therefore, global stability is satisfied when a minimum factor of safety of 1.33 is obtained. For retaining wall 4W13, global stability was evaluated considering the final configuration (post construction for FRA-70-12.68 Phase 4R). Based on the footing dimensions provided in the proposed design documents, the resulting factor of safety under drained conditions (long-term stability) and undrained (short-term stability) along the alignment or retaining wall 4W13 was greater than 1.33. Calculations for overall (global) stability of the CIP Wall 4W13 is provided in Appendix VII.

5.2 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (ϕ '), and lateral earth pressure coefficients for at-rest conditions (k_o), active conditions (k_a), and passive conditions (k_p) have been estimated and are provided in Table 8 and

Soil Type	γ (pcf) ¹	c (psf)	φ	ka	ko	k_p
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	130	0	33°	0.30	0.46	3.39

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Table 9.

Soil Type	γ (pcf) ¹	c (psf)	φ	ka	ko	k_p
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	130	0	33°	0.30	0.46	3.39

Table 8. Estimated Undrained (Short-term) Soil Parameters for Design

2. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Soil Type	γ (pcf) ¹	c (psf)	φ'	ka	ko	k_p
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53
Very Stiff to Hard Cohesive Soil	125	50	28°	0.32	0.53	5.07
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

 Table 9. Estimated Drained (Long-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.2.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Soil	Maximum Back Slope	Notes
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None

 Table 10. Excavation Back Slopes

5.3 Groundwater Considerations

Based on the groundwater observations made during drilling, groundwater may be encountered during excavation of the foundation for retaining wall 4W3. Where/if groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

VICINITY MAP AND BORING PLAN

APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>**Granular Soils**</u> – ODOT A-1, A-2, A-3, A-4 (non-plastic) The relative compactness of granular soils is described as:

Description	Blows per	foot –	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

Cohesive Soils - ODOT A-4, A-5, A-6, A-7, A-8

The relative consistency of cohesive soils is described as:

	Unc	ed			
Description	Compression (tsf)				
Very Soft	Less than	0.25			
Soft	0.25	-	0.5		
Medium Stiff	0.5	-	1.0		
Stiff	1.0	-	2.0		
Very Stiff	2.0	-	4.0		
Hard	Over		4.0		

Gradation - The following size-related denominations are used to describe soils:

Soil Frac	tion	Size
Cobbles		12" to 3"
Gravel	coarse	3" to ¾"
	fine	³ ⁄ ₄ " to 2.0 mm (³ ⁄ ₄ " to #10 Sieve)
Sand	coarse	2.0 mm to 0.42 mm (#10 to #40 Sieve)
	fine	0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt		0.074 mm to 0.005 mm (#200 to 0.005 mm)
Clay		Smaller than 0.005 mm

Modifiers of Components - The following modifiers indicate the range of percentages of the minor soil components:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	<u>Range - ODOT</u>
Dry	Well below Plastic Limit
Damp	Below Plastic Limit
Moist	Above PL to 3% below LL
Wet	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe the relative strength of bedrock:

<u>Description</u>	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	ation OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
	Gravel and/or Stone Fragments	Α-	1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and/or Stone Fragments with Sand	A - 1	1-Ь		50 Max.	25 Max.		6 Max.	0	
F S	Fine Sand	A	- 3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
0.0.0 0.0.0 0.0.0 0.0.0 0.0.0	Gravel and/or Stone Fragments with Sand and Silt	A	2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.	Gravel and/or Stone Fragments with Sand, Silt and Clay	A-:	2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Sil†	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less †han 50% sil† sizes
+ + + + + + + + + + + + + + + + + + +	silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MAT	ERIAL	CLASS	SIFIED B	Y VISUAL	INSPEC	FION			
	Sod and Topsoil $\wedge \rightarrow > V$ Pavement or Base $\sim \wedge \land \land$ $\downarrow \rightarrow \downarrow$ $\downarrow \rightarrow \downarrow$	Uncon Fill (E	trolled escribe)		Bouldery	/ Zone		PPe	o†

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

APPENDIX III

BORING LOGS:

B-030-1-15, B-032-2-15 AND B-032-3-15, B-031-0-08 AND B-032-0-08

BORING LOGS

Definitions of Abbreviations

- AS=Auger sampleGI=Group index as determined from the Ohio Department of Transportation classification systemHP=Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
- LL_o = Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL_o/LL is less than 75 percent, soil is classified as "organic".
- LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
- PID = Photo-ionization detector reading (parts per million)
- QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
- QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
- RC = Rock core sample
- REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
- RQD = Rock quality designation estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

 \sum segments equal to or longer than 4.0 inches x 100

core run length

- S = Sulfate content (parts per million)
- SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m).
- N_{60} = Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
- SS = Split spoon sample
- 2S = For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N₆₀ values.
- 3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.
- TR = Top of rock
- W = Initial water level measured during drilling
- ▼ = Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR	=	% Grave
SA	=	% Sand
SI	=	% Silt
CL	=	% Clay

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
ΡI	=	Plasticity Index

WC = Water content (%)

RESOURCE INTERNATIONAL, INC.

	PROJ	ECT:	FRA-70-	14.05 PR	OJECT 4B		RM/		DR:	II / S.B.	DI		6: 0	CME 55 (SN	N 38634	5)	STAT		OFF:	SET:	19	4+37.	05 / 70)' RT	EXPLOF B-03	ATION ID
\mathbf{K}^{11}	I YPE:	06053	RC	JAUWAY	ΝΑ		IRM T		K: <u>RI</u>	1 / C.D. JSA	-					; 1			NI:	7/0 0) (MASI	I-70 E	EOD:			PAGE
	STAR	90000 T· 12	DK I		12/3/15			טט. אחסי	<u> </u>	<u>13А</u> Г				(%) [.]	92	4			·	740.8	30 05	<u>∟)</u> 52814	-82 Q	98014	9.4 II.	1 OF 2
	01740	·· <u>·</u>											DEC						NI (%)		EPRI		00014		DACK
		1017-	AND	NOTES	FIION			748 9	DEP1	ΉS	RQD	N ₆₀	(%)		(tsf)	GR		FS	SI) CL		PL	PI	wc	CLASS (GI)	FILL
_ 0.5' - ASI	PHALT	(6.0")					\propto	748.4		L	_				()											
1.0' - CO	NCRET	Ē (12.0")				\bigotimes	747.4		- 1 -																
0.5' - AG	GREGA	ATE BAS	E (6.0")					746.9		- 2 -	7															7272
VERY ST	TIFF, BF CLAY, D	rown s Amp.	ANDY S	ILT, SON	/IE FINE GRA	VEL,		745.4		- 3 -	6 1 ⁻	29	100	SS-1	4.00	25	16	12	27	20	24	15	9	12	A-4a (2)	$\begin{pmatrix} 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
DENSE 1 GRAVEL	TO VER	Y DENS SAND A	e, Brov Nd Silt	VN TO B , TRACE	ROWNISH G CLAY, MOIS	RAY T.	Ю	5		_ 4 -	8 12	32	67	SS-2	-	-	-	-	-	-	-	-	-	7	A-2-4 (V)	72772
-COBBL	LES PR	ESENT "	HROUG	HOUT			Ø			- 5 -	-	9														7272
										- 6 -	9 15	48	100	SS-3	-	49	21	9	14	7	24	17	7	8	A-2-4 (0)	7272
							R			- 8 -	- 10	6														7272
							b			- 9 -	19 20	55	100	SS-4	-	-	-	-	-	-	-	-	-	8	A-2-4 (V)	7 4 7 4
							j (j)	738.4		- 10 -	1(1	6														7 2 7 2
SAND, L	ITTLE T	O SOM	E FINE G	BRAVEL,	DAMP.					- 11 -	26 42	121	33	SS-5	4.5+	22	9	12	31	26	26	13	13	9	A-6a (6)	7 L 7 L 7 N 7 N 7 N 7 N
										- 13 -	- 3	7														7 L 7 L 7 X X X
										- 14 -	10 19	66	0	SS-6	-	-	-	-	-	-	-	-	-	-	A-6a (V)	7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
										_ 15 -	45 45	4 -	100	3S-6A	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	<,
										- 16 -	11	10	100	66.7	4.5.									10	A 60 (1)	7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4
										- 17 -	14	7	100	- 55-7	4.5+	-	-	-	-	-	-	-	-	10	A-08 (V)	7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4
										- 18 -	6		100	55-8	4 5+	12	9	13	38	28	25	13	12	10	A-6a (7)	7 L 7 L 7 X X X
		ד עאםר					K	/29.2	-	- 20 -	50/3	5"	100		h - /	-		- /	· - /					5	A-1-b (V)	<171
TRACES	SILT, TF	RACE CL	AY, DAN	/P TO M	OIST.	D,	0			- 20	-															$\frac{1}{7}L^{V}\frac{1}{7}L$
							\mathcal{O}	Ŕ		- 21 -	1															JLV JL
-COBBI	ES PR	ESENT (<u> </u>			C	$\widetilde{\langle}$			- 22 -																1>11
			90				b	k		- 23 -	-															JL JL
										- 24 -	22	106	100	<u> </u>			24	20	_	-				4		JLV JL
								X		- 25 -	32	7	100	55-9	-	23	34	29	9	Э	INP		INP	4	A-1-D (U)	1>1 1> 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
										- 26 -																< L 1 < L
								k		- 27 -	_															7272
							Õ	4		<i>21</i> −	-															JLV JL
							ŚΥ		W	^{28 −}																1>1`1> < v < ;
-WATEI	r adde	ED TO A	JGERS (@ 28.5'						- 29 - -	24 31 29	92	100	SS-10	-	-	-	-	-	-	-	-	-	12	A-1-b (V)	

	PID: <u>9605</u>	3 в	BR ID:	N/	4	PR	OJECT:	FRA-70-1	4.05 PF	ROJECT 4	<u>з</u> S	TATION /	OFFSE	T:	194+3	7.05 / 70	RT		STAR	T: <u>12</u>	2/2/15	EN	D: _1	2/3/1	5 P	G 2 OI	= 2 B-03	80-1-15
			M,	ATERIAL	DESC	CRIPT	ION			ELEV.	DEP	THS	SPT/	Nee	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERBI	ERG		ODOT	BACK
ŀ									БŲ	718.9			RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	TRACE SIL	5E, C T, TF	RACE C	LAY, DA	MP TC		AND SA ST. (same	ND, e as above)				- 31 - - 32 - - 33 -																
												- 34 - - 35 -	5 19 30	75	100	SS-11	-	43	26	17	10	4	NP	NP	NP	10	A-1-b (0)	
	VERY DEN	SE. C	GRAY S	ILT. "AN	D" CO	DARSE	TO FINE	SAND.		711.9		- 36 -																
	TRACE CLA	ΑΥ, Τ	RACE	FINÉ GR	AVEL,	, MOIS	T.	,	+++ +++ +++ +++ +++	+++++++++++++++++++++++++++++++++++++++		- 38 - - 39 -	5 25	89	100	SS-12	-	1	0	38	54	7	NP	NP	NP	17	A-4b (5)	
									+ +	706.0		40 41 	33														<u> </u>	1 LV 1 L 1 > L 1 > 1 LV 1 > 1 > L 1 > 1 > L 1 > 1 > L 1 >
5-126.GPJ	HARD, GRA CLAY, MOIS	AY S A ST.	ANDY S	BILT, LI⊤	ΓLE FI	INE GF	RAVEL, L	ITTLE		+ 100.9		- 42 - - 43 -	36															
S\2015\W-1												- 44 - 45 - 45	48 50/4"	-	100	SS-13	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	
GI8/PROJECT												- 47 - - 47 - - 48 -	04															
18 10:12 - U:\												- 49 -	24 50/5"	-	100	SS-14	4.5+	16	13	23	37	11	18	13	5	10	A-4a (3)	
.GDT - 7/16/	Medium di Sand , Tra		e to ve Silt, tf	ERY DEN RACE CL	ISE, G AY, M	GRAY (GRAVEL TO WET.	AND		696.9	-	- 52 - - 52 - - 53 -																
D - OH DOT	-HEAVING	SAN	NDS EN	COUNTI	ERED	@ 53.	5'					- 54 - 55 -	1 2 8	15	78	SS-15	-	-	-	-	-	-	-	-	-	17	A-1-b (V)	1 > ' 1 > 7 L V 7 L 7 > K 7 2 7 2 V 7 2 7 2 V 7 L
OG-BRIDGE I												- 56 -																1 > L 7 - L
BORING L										689.5	EOB	- 58 - - - 59 -	14 50/5"	-	100	SS-16	-	33	47	12	6	2	NP	NP	NP	11	A-1-b (0)	$\begin{array}{c} 1 > 1 \\ 1 > 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
2015-ODOT E																												
	NOTES: G	ROUI	NDWATI	ER INITIA	LLY EN	NCOUN	NTERED 2	8.5'																				
L	ABANDONM	ENT	METHO	DS, MATE	RIALS	s, quai	NTITIES:	COMPACT	ED WI	TH THE AL	IGER 200	LBS BENT	ONITE (CHIPS /	AND SC		IGS											

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-0040

Client	: ms c	onsu	Itants	S			Project: F	-RA-70-8.93	3									Job	No.	022	1-10	04.0	1	
LOG	DF: Bo	oring	B-03	31-0-0)8	Lo	cation: Sta. 196	3+17.42, 32.	8' RT., BL	_ I-70 EB				Dat	e D	rille	d: 7/	7/200)8 to	7/8	/200	8		
Depth (ft)	Elev. (ft) 735.6	Blows per 6"	Recovery	Sam No	Press / Core	Hand Penetro- meter (tsf)	WATER OBSERVA Wat FIELD NOTES: Ad	ATIONS: Water seeps ter level at comp dvanced boring DES	age at: 9.5 oletion: 8.3 using 3.25" SCRIPTIC	' ' (includes drillin diameter hollov DN	ng water) wstem augers.	Graphic Log	% Aggregate	% C. Sand	% M. Sand PD	% Silt OL	% Clay	STAI Natu Blows	NDAI Iral N ⊃L ⊦ s per f 10	RD F Aoist foot - 20	iure C	TRAT Conte Non-F 30	'ION (nt, % ⊣ Li Plastic 40	(N60) , - ● L :- NP
0.7	734.9						Topsoil - 8"					\sum												
-	-	2 4 5 3 4	18	1		3.75 4.5+	FILL: Very stit fine to coarse and coal frage	ff to hard brov sand, trace t ments; damp.	wn SILT (A to little grav	A-4b), some c vel; contains	lay, little few brick	+ + + + + + + + + + + + + + + + + + + +	12	5	(6 5	2 25				 			
<u>4.0</u>	731.6	5 16 50/5	18 5	3			Dense to very (A-1-b), little s	y dense browi silt; damp.	nish gray G	GRAVEL WIT	H SAND	+ +	50	20	1	3	17				++		 ++	50+
-	-	42 44 31 18 21	1	4			@ 5.0', encou west. @ 5.5'-8.5', rc	untered refusa	al; offset bo s; possible	oring approx. cobble block	three feet	00												 7 0
8.5	727.1	25 9	1				Hard grav SA		-4a), little (oravel: damp			•											⊕ /
9.5 <u>10</u>	726.1	15 17	18	6A 6B		4.5	Medium dens wet.	e to dense gr	ray SILT (A	A-4b), some fi	ine sand;	+ + +	15	12	2	5 3	2 16							
-	722 1	4 12 14	18	7								+ + + + + + + + +												
		18 22 25	12	8		4.5+	Very stiff to ha coarse sand,	ard gray SAN little gravel; d	IDY SILT (<i>i</i> Jamp.	A-4a), some	fine to													
-	-	14 48 49	18	9		3.5																		
<u>18.5</u> - <u>20</u>	717.1	11 13 13	18	10			Medium dens	e gray SILT (A-4b), trac	ce fine sand; I	moist.	+ + + + + + + + + + + + + + + + + + + +	_											 +++++++++++++++++++++
21.0	714.6	7 18 21	18	11			Dense gray C wet.	OARSE AND) FINE SA	ND (A-3a), so	ome silt;	+ +	-)
23.5 - 	712.1	12 18 21	18	12		4.5+	Hard gray SA trace gravel; o	NDY SILT (A damp.	4a), some	e fine to coars	se sand,))

DLZ Ohio, Inc.	* 6121 Huntle	/ Road, Columbus,	Ohio 43229 *	(614) 888-0040
----------------	---------------	-------------------	--------------	----------------

Client	: ms c	consu	Itants	6		1		Project: FRA-70-8.93								Job No.	0221-	1004.01		
LOG	DF: Bo	oring	B-03	31-0-0	8	Lo	cation	: Sta. 196+17.42, 32.8' RT., BL I-70 EB			Da	ate	Drill	led	:7/7	7/2008 to	7/8/2	800		
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam Nc	Press / Core	Hand Penetro- meter (tsf)	WATE FIELD	ER OBSERVATIONS: Water seepage at: 9.5' Water level at completion: 8.3' (includes drilling water) O NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate	GR C. Sand	W. Sand	% F. Sand	% Silt	% Clay	STANDA Natural I PL Blows per 10	RD PE Noistur foot - (<u>20</u>	NETRATI e Conter) / Non-Pl 30	ON (N(nt, % - ⊣ LL astic - 40	50) ●
							Ha	ard gray SANDY SILT (A-4a), some fine to coarse sand,												
	-	20 50/5	10	13		4.5+		ice to intite gravel, damp.												5 0 4
28.0 - <u>30</u>	707.6	50/5	5	14			Ve sa	ery dense gray SANDY SILT (A-4a), some fine to coarse nd, trace to little gravel; wet.												 50 +
-	-						@	28.5'-38.9', possible cobbles.												
- <u>35</u> -	-	24 49 48	18	15																 1((
_	-	50/5	5	16																
<u>40</u>																				50+ (/ /
42.0	693.6						De	ense gray FINE SAND (A-3), trace silt; wet.		*. *.										
<u>45</u>	-	11 13 18	18	17																
47.0	688.6						Ve	ery dense gray COARSE AND FINE SAND (A-3a), little silt, le gravel; wet.	•••	•										\neq $$
-	685 6	16 33 41	18	18			@	48.5', ten feet sand heave; triconed and washed out.												 7 (

DLZ Ohio, Inc.	* 6121 Huntle	y Road, Columbus,	Ohio 43229	* (614) 888-0040
----------------	---------------	-------------------	------------	------------------

Client	: ms c	onsu	Itants	6				Project: FRA-70-8.93								Job No.	0221·	-1004.	01	
LOG	OF: Bo	ring	B-03	31-0-0	8	Lo	cation	<i>:</i> Sta. 196+17.42, 32.8' RT., BL I-70 EB			Da	te l	Dril	llea	1:7/	7/2008 to	7/8/2	800		
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No	Press / Core	Hand Penetro- meter (tsf)	FIELL	ER OBSERVATIONS: Water seepage at: 9.5' Water level at completion: 8.3' (includes drilling water) O NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate	GR C. Sand	% M. Sand D	% F. Sand TA	% Silt 0	% Clay	STANDA Natural I PL Blows per 10	RD PE Moistu foot - (NETRA re Cont	TION (ent, % → LL -Plastic 40	(N60) , - ● L - NP
<u>51</u> 60.0 60 61 71	685.6 675.6 675.6 - - - - - - - - - - - - -	25 33 40 38 42 49	18	20				Bottom of Boring - 60.0'		6	6		6	6	6					

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-0040

Clien	t: ms.c	onsu	Itants	6		1		Project: FRA-70-8.93								Job	No.()22′	1-100)4.01		
LOG	OF: Bo	oring	B-03	82-0-0	8	Loc	cation	<i>b:</i> Sta. 196+22.20, 79.7' RT., BL I-70 EB			Da	ate	Dril	llea	1:7/	8/200)8 to	7/15	5/200)8		
Depth (ft)	Elev. (ft)	lows per 6"	Recovery	Sam No	ress / Core	Hand Penetro- meter (tsf)	FIELD	ER OBSERVATIONS: Water seepage at: 47.0' Water level at completion: 25.7' (includes drilling water) D NOTES: 3.25" diameter hollowstem augers to 120.5'; 4.0" diameter flush joint casing from 120.5' to 128.5'.	sraphic Log	6 Aggregate	¢ C. Sand	é M. Sand	E. Sand	sit OI	6 Clay	STA Nati	NDAF ural M PL ⊢ s per fe	RD Pl loisti	ENET ure C	RATI onten Von-Pl	ON (N 1t, % · ⊣ LL lastic -	V60) -●
	751.4	9	Ľ	Q	۵.		As	sphalt Concrete - 5"		× \	8	%	%	%	%		10	20		30	40	
<u>1.1</u> 2.0	_ 750.3 749.4	5	٩	1		4.5+		ortland Cement Concrete - 3" ggregate Base - 5"		× •												
	-	0	3				FII	LL: Medium dense brown COARSE AND FINE SAND -3a), little silt, little gravel; moist.										γ				
	5	5 7 6	18	2		2.0	FI	LL: Very stiff to hard brown SILTY CLAY (A-6b), little to ome fine to coarse sand, trace gravel; contains few brick		8	7		13	29	43			 -			- 	
6.0	745.4	3 4		3		2.5	Ve	ery stiff brown SILT AND CLAY (A-6a), little fine to coarse														
85	7/2 0	8	3				sa	and, trace gravel; moist.									0					
<u>11</u>	0	4 7 8	3	4			Me sil	edium dense gray COARSE AND FINE SAND (A-3a), little lt, little gravel; damp. (POSSIBLE FOUNDRY SAND)		•												
11.0		5 8 16	18	5		4.5+	Ha sa @	ard gray SILTY CLAY (A-6b), little to some fine to coarse and, trace to little gravel; damp. 2 11.0'-12.5', brown and gray.														
1	5	12 12 14	18	6		4.5+				12	8		15	38	27							
-]	_					@	13.0'-35.0', difficult drilling; possible cobbles and boulders.											N 			
	-	5 16 17	1	7						_												
2	- - 0	50/1	0	8			@ sa) 18.5'-20.0', only gravel recovered in auger cuttings ample.														 50+ 0
	-	50/3	0	9																		50+
23.5	727.9																					
2	5 726.4	34 17 21	18	10		4.5+	Ha sa	ard gray SILT AND CLAY (A-6a), some fine to coarse and, trace gravel; damp.		7	14		20	37	22		● I⊩ I I		 +- 1 			¥11 111 111

Client	: ms d	consu	ultants	3			Project: FRA-70-8.93							Job No. 0221-1004.01
LOG	OF: Bo	oring	B-03	32-0-0)8	Lo	cation: Sta. 196+22.20, 79.7' RT., BL I-70 EB			Da	ate l	Drill	led:7	7/8/2008 to 7/15/2008
Depth (ft)	Elev. (ft) 726.4	Blows per 6"	Recovery	Sam No Prive	Press / Core	Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 47.0' Water level at completion: 25.7' (includes drilling water) FIELD NOTES: 3.25" diameter hollowstem augers to 120.5'; 4.0" diameter flush joint casing from 120.5' to 128.5'. DESCRIPTION	Graphic Log	% Aggregate	GR C. Sand	% M. Sand	% F. Sand TA	% Sitt 0 % Clav	STANDARD PENETRATION (N60) Natural Moisture Content, $\% - \bigoplus$ PL \vdash LL Blows per foot - $\bigcirc /$ Non-Plastic - NP 10 20 30 40
	-	50/1	1	11			Hard gray SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; damp.							
- - <u>30</u>	 	50/4	0	12										
	-	50/1	0	13										
35	5	50/3	1	14										
		10 24 45	18	15		4.5+	Hard gray SANDY SILT (A-4a), some to "and" fine to coarse sand, little gravel; damp.		16	20		23	26 15	5 • • • • + + + + + + + + + + + +
)	11 17 28	18	16		4.5+								
	-	11												
<u>45</u>	5	50/4	10	17		4.5+								
	701.4	32 50/3	9	18		4.5+	@ 48.5'-49.3', contains occasional thin sand seams.							↓ · · · · · · · · · · · · · · · · · · ·

Client	t: ms c	consu	Itants	5				Project: FRA-70-8.93							Job	No. 022	21-100	4.01	
LOG	OF: Bo	oring	B-03	32-0-0	8	Loc	cation.	<i>b:</i> Sta. 196+22.20, 79.7' RT., BL I-70 EB			Date	e D	rille	d: 7	/8/200	8 to 7/	15/200	8	
Depth (ft)	Elev. (ft) 701.4	Blows per 6"	Recovery	Sam No Prive	Press / Core	Hand Penetro- meter (tsf)	WATE FIELD	ER OBSERVATIONS: Water seepage at: 47.0' Water level at completion: 25.7' (includes drilling water) D NOTES: 3.25" diameter hollowstem augers to 120.5'; 4.0" diameter flush joint casing from 120.5' to 128.5'. DESCRIPTION	Graphic Log	% Aggregate	% C. Sand 8	% M. Sand PD	% Silt OIL	% Clay	STAN Natu F Blows	IDARD ral Mois pL ⊢ per foot 0 2	PENET sture Co - \bigcirc / N	RATION ontent, % on-Plastic 0 40	(N60) 6 - ● L C - NP
5	- - 5 -	26 50/3	9	19			Ve sea	ery dense gray FINE SAND (A-3); contains silty clay eams; wet.											
57.0	694.4	18					Ve	ery dense gray GRAVEL WITH SAND (A-1-b), trace silt; ontains silty clay seams; wet.	000										
<u>6</u>	 	50/4	10	20				, , , , , , , , , , , , , , , , , , ,		42	30 -	2	0	8					50 + (
<u>6</u>	5	28 50/3	9	21															 50 + (
70		16 42 50/3	15	22				, , , , , , , , , , , , , , , , , , ,											 50 + (
75	5 676.4	33 50/5	11	23															 50 + (

Client	ms c	onsu	Itants	6			Project: FRA-70-8.93								Job No	. 0221	-1004	.01	
LOG	DF: Bo	ring	B-03	32-0-0	8	Loc	cation: Sta. 196+22.20, 79.7' RT., BL I-70 EB			Dat	te D	Drill	led.	:7/8	8/2008 t	o 7/15	/2008		
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam _i No	Press / Core	Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 47.0' Water level at completion: 25.7' (includes drilling water) FIELD NOTES: 3.25" diameter hollowstem augers to 120.5'; 4.0" diameter flush joint casing from 120.5' to 128.5'. DESCRIPTION	Graphic Log	% Aggregate	% C. Sand	% M. Sand	% F. Sand	% Silt VO	% Clay	STAND Natural PL Blows per 10	ARD PE Moistu foot - (20	NETR/ re Con ○ / Nor 30	ATION Itent, % 	(N60) 5 - ● L 2 - NP
		17 50/4 17 41 49 50/3 20 50/4	10 18 15 8 8	24 25 26 27 28			@ 88.5'-90.0', few limestone fragments.		10	15	((62	13	3 1					50+ 50+ 50+ 50+

DLZ Ohio, Inc.	* 6121 Huntle	y Road, Columbus	Ohio 43229	* (614) 888-0040
----------------	---------------	------------------	------------	------------------

Client:	ms c	onsu	Itants	6				Project: FRA-70-8.93								Jc	b Nc	022	1-10()4.01	
LOGC	DF: Bo	ring	B-03	82-0-0	8	Lo	cation	n: Sta. 196+22.20, 79.7' RT., BL I-70 EB			Da	ate	Dril	llea	1:7/	8/2	008 t	o 7/1	5/200)8	
Depth (ft)	Elev. (ft) 651.4	Blows per 6"	Recovery	Sam No	Press / Core	Hand Penetro- meter (tsf)	FIELD	TER OBSERVATIONS: Water seepage at: 47.0' Water level at completion: 25.7' (includes drilling water) D NOTES: 3.25" diameter hollowstem augers to 120.5'; 4.0" diameter flush joint casing from 120.5' to 128.5'. DESCRIPTION	Graphic Log	% Aggregate	% C. Sand	% M. Sand D	% F. Sand	% Silt 0	% Clay	ST Na Blo	TAND/ atural PL ws pei 10	ARD F Moist ⊢ r foot - 20	PENET	TRATION ontent, Von-Plas: 30	V (N60) % - ● LL tic - NP t0
- - 1 <u>05</u> - - - 1 <u>110</u> - - - - - - - - - - - - - - - - - - -		5 37 50/3 27 50/4	15	29 30			Ve	ery dense gray GRAVEL WITH SAND (A-1-b), trace silt; ret.		38	43		13	6							
- 1 <u>15</u> - 117.0	634.4	50/5	5	31			@	0 113.5'-113.9', possible cobbles.	000000000000000000000000000000000000000												
							Ve	ery dense gray GRAVEL (A-1-a), "and" fine to coarse sand,	0	ç											
-	631 /	22 50/4	10	32				ade ont, wet.	00	55	24		14	7		 N P 					50+
120.0 120	630.9	50/3	3	33			Se	everely weathered gray SHALE.	Æ	\$						ii.	i i l i		iii		
	626.4	Core 60"	Rec 22"	RQD 8%	R1		St we fra Lo	hale, dark gray, highly to severely weathered, very weak to yeak, laminated, calcareous, friable, fissile, pyritic, jointed, actured to highly fractured, tight, slightly rough; RQD 5% oss 53%.													+UC :

DLZ Ohio, Inc.	*	6121 Huntle	Road.	Columbus.	Ohio 43229	*	(614) 888-0040
			,	, oolannoad,			

Client	: ms c	onsu	Itants	6				Project: FRA-70-8.93								Job N	lo. 022′	1-100	4.01	
LOG	OF: Bo	ring	B-03	32-0-0	8	Loo	catior	<i>:</i> Sta. 196+22.20, 79.7' RT., BL I-70 EB			Da	te l	Dril	llea	1:7/	8/2008	to 7/1	5/200	8	
Depth (ft)	Elev. (ft) 626.4	Blows per 6"	Recovery	Sam No Prive	Press / Core	Hand Penetro- meter (tsf)	FIEL	ER OBSERVATIONS: Water seepage at: 47.0' Water level at completion: 25.7' (includes drilling water) D NOTES: 3.25" diameter hollowstem augers to 120.5'; 4.0" diameter flush joint casing from 120.5' to 128.5'. DESCRIPTION	Graphic Log	% Aggregate	GR C. Sand	% M. Sand D	% F. Sand TA	% Silt 0	% Clay	STANI Natura PL Blows p 10	DARD Pl al Moisti er foot - 20	ENETI ure Co	RATION ontent, 9 on-Plasti 0 4	/ (N60) % - ● LL ic - NP 0
128.5 13 13 13 14 14		Core 36"	Rec 23"	RQD 0%	R2			hale, dark gray, highly to severely weathered, very weak to eak, laminated, calcareous, friable, fissile, pyritic, jointed, actured to highly fractured, tight, slightly rough; RQD 5% bas 53%. 2 125.2' - 125.5', encountered thin limestone layer. 2 128.5', boring terminated due to difficult coring conditions ore steel broke off during both core runs). Bottom of Boring - 128.5'												

RESOURCE INTERNATIONAL, INC.

ſ	PROJECT:	FRA-70-14.05 PF	ROJECT 4B		M/OPERAT	DR:	RII / S.B.	[ORILL RIG	6: <u>C</u>	ME 750X (S	N 3102	:18)	STAT	ION /	OFFS	SET:	197	7+39.7 -70 F	71 / 39 B	.1' RT	EXPLOF	RATION ID 2-2-15
	PID: 96	053 BR ID:	NA		THOD:	3.25"	- HSA		ALIBRAT	FION D.	ATE:	10/20/1	4	ELEV		N:	733.1	I (MSI	_)	EOB:	6	- 60.0 ft.	PAGE
	START:	10/6/15 END:	10/6/15	SAMPLING M	ETHOD:	S	PT	E	ENERGY	RATIO	(%):	85.7		coo	RD:			39.95	, 3042,	-82.9	96969		1 OF 2
h		MATERIAL DESCR		_	ELEV.			SP	Γ/	REC	SAMPLE	HP	(GRAD	ATIO	N (%))	ATT	ERB	ERG		ОПОТ	BACK
		AND NOTES	8		733 1	DE	PTHS	RQ	D N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
F	0.3' - TOPSOIL (3.0"))			m 732.8/	-	L	_															JLV JL
	HARD, BROWN TO C LITTLE FINE GRAVE	gray Sandy Silt , L, Damp.	SOME CLAY,	,			- 1 - 2	5 6	24	100	SS-1	4.5+	11	12	20	34	23	25	15	10	10	A-4a (4)	
							- 3	8															
							- 5	14	47 19	100	SS-2	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	
	-SS-3: SULFATE CC	DNTENT = 907 PPM	l				- 6 - 7 - 7	9	49	100	SS-3	4.5+	-	-	-	-	-	-	-	-	8	A-4a (V)	
							- 8 - 9		54	100	SS-4	4.5+	-	-	-	-	-	-	-	-	8	A-4a (V)	- L ¹ - L - L ² - L - L ² - L - L ² - L
26.GPJ							10 11		21														$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
5\W-15-1					720.1		- 12	10	40	100	SS-5	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	1> L 1 7 L 7 7 L 7 L 7 7 L 7 L 7 L 7 L 7 L 7 L 7 L 7 L 7 L 7 L
DIECTS/20	VERY DENSE, GRAY TRACE CLAY, MOIST	GRAVEL AND SAI	ND, LITTLE SI	ILT,			- 13 - 14 - 15	718	71	100	SS-6	-	36	25	17	14	8	17	11	6	6	A-1-b (0)	
J:\GI8\PRC	MEDIUM DENSE TO FINE SAND, LITTLE S	VERY DENSE, GRA	AY COARSE A TRACE FINE	AND	<u> </u>	w		2 3	21	100	SS-7	_	5	10	70	12	3	NP	NP	NP	19	A-3a (0)	
8 10:12 -	CIVILE, MOIOT TO	VVL1.					- 18		12														
1 - 7/16/1					712.6		19 20	22	86	100	SS-8	-	-	-	-	-	-	-	-	-	15	A-3a (V)	
H DU I .GL	HARD, GRAY SAND GRAVEL, DAMP.	SILT , LITTLE CLA	Y, LITTLE FIN	IE			21 22	6 21	80	100	SS-9	-	12	16	24	35	13	18	12	6	10	A-4a (3)	
je ID - C							- 23	` 11															
G-BRIDU							- 24	26	106 18	100	SS-10	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
ORING LC							- 26 - 27																
5-ODOT B							- 28 - 29		_	100	SS-11	4.5+	13	11	22	38	16	20	11	9	8	A-4a (4)	
5							F	50	'3"	<u> </u>			L									. ,	- <, v <,

PID: <u>96053</u> BR ID: <u>NA</u> PROJECT: _	FRA-70-14.05 PRC	OJECT 4B	STATION /	OFFSE	T:	197+39	9.71 / 39.1	RT		STAR	T: <u>10</u>	/6/15	ENI	D: _1	0/6/1	5 P(G 2 OI	= 2 B-03	2-2-15
MATERIAL DESCRIPTION		ELEV.	DEPTHS	SPT/	Naa	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERBE	RG		ODOT	BACK
AND NOTES		703.1		RQD	•60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
HARD, GRAY SANDY SILT , LITTLE CLAY, LITTLE FI GRAVEL, DAMP. (same as above) MEDIUM DENSE TO VERY DENSE, GRAY GRAVEL	AND	701.1	- 31 - - 32 -	-															
SAND, TRACE SILT, TRACE CLAY, MOIST TO WET.			- 33 -	23		100	00.40										10		
			- 35 -	45 50/4"	-	100	55-12	-	-	-	-	-	-	-	-	-	12	A-1-D (V)	1 × L × T
			- 36 - - 37 -																
-HEAVING SANDS ENCOUNTERED @ 38.5'			38 39 -	- 17 41	-	88	SS-13	_	_	_	_	-	-	-	-	-	8	A-1-b (V)	
-WATER ADDED TO AUGERS (@ 30.3			- 40 -	50/5"													-		<
			- 41 - 42 - - 43 -	-															
			- 44 - - 45 -	4 8 13	30	100	SS-14	-	21	55	17	5	2	NP	NP	NP	13	A-1-b (0)	
			46 47	-															
			- 49 -	9 18 33	73	100	SS-15	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	
			_ 51 - _ 51 - _ 52 -	-															
			53 54	11 42 50/4"	-	100	SS-16	-	11	47	30	8	4	NP	NP	NP	13	A-1-b (0)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
			- 56 - - 57 -																V T J V T J V L Z V Z Z V L Z V Z Z V V T J V T J V T J V
		673.1	- 58 - - 59 -	16 44 47	130	67	SS-17	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	1 1 V 1 V 1 1 V 1 1 V 1 1 V 1 1 V
NOTES: GROUNDWATER INITIALLY ENCOUNTERED	@ 16.0'; CAVE-IN DEI	PTH @ 17.0'																	
ABANDONMENT METHODS, MATERIALS, QUANTITIES:	COMPACTED WITH	H THE AUGER	100 LBS BENT	ONITE C	HIPS	AND SC		IGS											

RESOURCE INTERNATIONAL, INC.

Image: Note of the second se	PROJECT: FRA-70-14.05 PROJECT 4B	DRILLING FIRM / OPERATOR:	RII / S.B.	DRILL RIG	: <u> </u>	/IE 750X (SI	N 31021	18)	STAT	TION /	OFFS	SET:	198	8+77.7	/8 / 40	.8' RT		ATION ID
NUM Description D		_SAMPLING FIRM / LOGGER: _	RII / C.D.	HAMMER:			MATIC				IT:	722.0		-70 E				PAGE
MARPUL DESCRIPTION FILE DEFINE SOT NR RCC SAMPLE IP CRADINES ATTRREPORT NR COMON ATTRREPORT NR NR ATTRREPORT NR NR NR ATTRREPO	START: 10/7/15 END: 10/8/15		SPT			(%)·	85.7	•	COO		IN	132.0	39.95	<u>-)</u> 3103	-82 9	96483	5.0 IL.	1 OF 3
AVD NOTES T22.8 DEPTHS ROD Nu (e) ID (e)				PT/	REC	SAMPLE	HP	(GRAD		N (%)		ATT	FRB	FRG	00400		BACK
0.3 - TOPSIOL (3.07) MEDIM DENSE, BROWN GRAVEL AND SAND, LITTLE SULT, TRACE CLAY, MOIST. -ROCK FRAGMENTS PRESENT THROUGHOUT -ROCK FRAGMENTS PRESENT THROUGHOUT -COBBLES PRESENT @ 8.0' DENSE TO VERY DENSE, BROWNISH GRAY TO GRAY GRAVEL, ND COARSE OF INE SAND, TRACE SILT, TRACE CLAY, WEI -MUD ADDED TO AUGERS @ 11.0' TRACE CLAY, WEI -MUD ADDED TO AUGERS @ 11.0' TRACE CLAY, WEI -MUD ADDED TO AUGERS @ 11.0' TRACE CLAY, MOIST. TRACE CL	AND NOTES	732.8	DEPTHS R	QD N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
MEDIUM DENSE TO VERY DENSE, BROWN GRAVEL AND SAND, LITTLE SILT, TRACE CLAY, MOIST. -ROCK FRAGMENTS PRESENT THROUGHOUT -COBBLES PRESENT @ 8.0' -COBBLES PRESENT @ 8.0' 722.3 -COBBLES PRESENT @ 8.0' 772.3 774 775	0.3' - TOPSOIL (3.0")	732.5																JLV JL
AND, DITLE SILT, TRACE CLAT, MOUGHOUT - 7 21 100 SS-1 -	MEDIUM DENSE TO VERY DENSE, BROWN GRAVEL	LAND																< 1 > 1 < 1 > 1 > 1 < 1 > 1 > 1 < 1 > 1 >
-ROCK FRAGMENTS PRESENT THROUGHOUT -COBBLES PRESENT THROUGHOUT -COBBLES PRESENT THROUGHOUT -ROCK FRAGMENTS PRESENT THROUGHOUT -AUD ADDED TO AUGERS @ 11.0' -AUD ADDED TO AUGERS @ 11.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING	SAND, LITTLE SILT, TRACE CLAT, MOIST.		- 2 -	7 21	100	SS-1	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	7272
-ROCK FRAGMENTS PRESENT THROUGHOUT -COBBLES PRESENT @ 8.0' DENSE TO VERY DENSE, BROWNISH GRAY TO GRAY GRAVEL, AND COARSE TO FINE SAND, TRACE SILT, TRACE CLAY, WET. -MUD ADDED TO AUGERS @ 11.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' THACE CLAY, DAMP. -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PR			- 3 -															17 LV 7 L
-ROCK FRAGMENTS PRESENT THROUGHOUT -COBBLES PRESENT #ROWNISH GRAY TO GRAY -COBBLES PRESENT @ 8.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SANDY SILT, LITTLE FINE GRAVEL, LITTLE -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT THROW 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROW 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT THROW 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT FROM 18.5' TO 21.0' -ROCK		0.0																
-ROCK FRAGMENTS PRESENT THROUGHOUT -COBBLES PRESENT @ 8.0' 722.3 DENSE TO VERY DENSE BROWNISH GRAY TO GRAY GRAVEL, AND CORRS @ 11.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SNCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SNCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SNCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SNCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SNCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SNCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS SNCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT THROUGHOUT -HARD. GRAY SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK PRAGMENTS PRESENT THROUGHOUT -HARD. GRAY SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK PRAGMENTS PRESENT THROUGHOUT -HARD. GRAY SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK PRAGMENTS PRESENT FROM 18.5' TO 21.0' -ROCK PRAGMENTS PRESENT FROM 18.5' TO 21.0'				13 37 13	100	SS-2	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	1>11>
COBBLES PRESENT @ 8.0'COBBLES PRESENT @ 8.0'COBBLES PRESENT @ 8.0'COBBLES PRESENT @ 8.0'	-ROCK FRAGMENTS PRESENT THROUGHOUT		- 5 -															17LV 7L
-COBBLES PRESENT @ 8.0' -COBBLES PRESENT @ 8.0' 		۵ Q d	6 11															JLV JL
-COBBLES PRESENT @ 8.0' T22.3 TRACE LAND COARSE TO FINE SAND, TRACE SILT, TRACE LAND, WET, MUD ADDED TO AUGERS @ 11.0' MUD ADDED TO AUGERS @ 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			- 7 -	14 54 24	78	SS-3	-	57	21	6	13	3	NP	NP	NP	7	A-1-b (0)	1>1-1>
-CUBBLES PRESENT IMOUGHOUT -HARD, GRAY SANDY SILT, LITTLE FINE GRAVEL, LITTLE -ROCK FRAGMENTS PRESENT FROM 18.5' TO 21.0' -ROCK F			- 8 -															17'L' 7'L 17 17
722.3 18 47 100 SS-4 - - - - - - 7 A.1b.(V) 427 427 DENSE TO VERY DENSE. BROWNISH GRAY TO GRAY 722.3 18 47 100 SS-4 - - - - - 7 A.1b.(V) 427 427 PRAVEL AND COARSE TO FINE SAND, TRACE SLT, 74 12 12 12 12 83 SS-5 - 99 1 0 0 0 N N N N 10 A.1a.(N) 4.1a.(N) 4.1a.(N) <td< td=""><td>-COBBLES PRESENT @ 8.0'</td><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>JLV JL</td></td<>	-COBBLES PRESENT @ 8.0'		14															JLV JL
DENSE TO VERY DENSE, BROWNISH GRAY TO GRAY GRAVEL, AND COARSE TO FINE SAND, TRACE SILT, TRACE CLAY, WET. 10 <td></td> <td>0</td> <td></td> <td>18 47</td> <td>100</td> <td>SS-4</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>7</td> <td>A-1-b (V)</td> <td>$\langle \rangle \vee \langle \rangle$</td>		0		18 47	100	SS-4	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	$ \langle \rangle \vee \langle \rangle$
Dense: TO VERY DASE, BROWINSH GRAY TO GRAY GRAVEL, AND CARASE TO FINE SAND, TRACE SILT, TRACE CLAY, WET. 11 9 12 12 12 12 12 12 10 0 0 NP		722.3	- 10 -															17 L 7 L 17 L 7 L
TRACE CLAY, WET.	G DENSE TO VERY DENSE, BROWNISH GRAY TO GRA		- 11 - 9															TLV TL
-MUD ADDED TO AUGERS @ 11.0' -MUD ADDED TO AU	TRACE CLAY, WET.	Pool	- 12 -	12 129 78	83	SS-5	-	99	1	0	0	0	NP	NP	NP	10	A-1-a (0)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-MUD ADDED TO AUGERS @ 11.0'		- 13 -	10														4>14
-ROCK FRAGMENTS PRESENT THROUGHOUT				;														-7LV 7L
-ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' HARD, GRAY SANDY SILT, LITTLE FINE GRAVEL, LITTLE CLAY, DAMP. -ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -COBBLES PRESE		00	- 14 -	20 57	89	SS-6	-	-	-	-	-	-	-	-	-	11	A-1-a (V)	JLV JL
-ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -COBBLES PRESENT FROM 18.5' TO		lo Qa	- 15 -															
-ROCK FRAGMENTS PRESENT THROUGHOUT -HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -COBBLES PRESENT FROM 18.5' TO 21.0'			- 16 - 7															12 12
-ROCK FRAGMENTS PRESENT FROM 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -ROCK FRAGMENTS PRESENT FROM 18.5' TO 21.0' -COBBLES PRESENT FROM 18.5'			- 17 -	13 41	100	SS-7	-	61	21	8	7	3	NP	NP	NP	11	A-1-a (0)	JLV JL
-HEAVING SANDS ENCOUNTERED @ 18.5' -COBBLES PRESENT FROM 18.5' TO 21.0' -COBBLES PRESENT FROM 18.5' TO 21.		00	- 18 -	10														$ \langle \rangle \vee \langle \rangle$
-COBBLES PRESENT FROM 18.5' TO 21.0' -COBBLES PRESENT FROM 18.5' -COBBLES PRESENT FROM 18.5'	-HEAVING SANDS ENCOUNTERED @ 18.5'																	7 2 7 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Polo	- 19	11 36	100	SS-8	-	-	-	-	-	-	-	-	-	9	A-1-a (V)	TLV TL
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-COBBLES PRESENT FROM 18.5 TO 21.0	000	20	14														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>छ</u>	6 Cq	- 21 - 9															-1-1-1- -1-1-1-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		00	- 22 -	10 34	100	SS-9	-	55	27	9	7	2	NP	NP	NP	12	A-1-a (0)	7676
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 '	° Qa	- 22	14														
24 11 46 100 $SS-10$ $ -$		60		,														
HARD, GRAY SANDY SILT, LITTLE FINE GRAVEL, LITTLE CLAY, DAMP. $\begin{array}{c c c c c c c c c c c c c c c c c c c $		708.3	24 - ''	11 46	100	SS-10	-	-	-	-	-	-	-	-	-	8	A-1-a (V)	17671
$\begin{bmatrix} 26 & 16 & 23 & 83 & 100 & \text{SS-11} & 4.5+ & 19 & 11 & 18 & 37 & 15 & 21 & 14 & 7 & 10 & \text{A-4a}(3) & \frac{3 > 7 > 3 > 7 > 2}{7 + 2 + 3 + 3 + 3} \\ = 27 & 23 & 35 & 100 & \text{SS-11} & 4.5+ & 19 & 11 & 18 & 37 & 15 & 21 & 14 & 7 & 10 & \text{A-4a}(3) & \frac{3 > 7 > 7 > 2}{7 + 2 + 3 + 3 + 3} \\ = 28 & - & - & - & - & - & - & - & - & - & $	יין אמאט, GRAY SANDY SILT , LITTLE FINE GRAVEL, LI ער מא DAMP		_ 25 _				4.0+	-	-	-	-	-	-	-	-	11	<u>A-4a (V)</u>	JLV JL
$\begin{bmatrix} -27 & -23 & -2$			26 16	;														1 > 1 < 1 > 1 < 1 > 1 < 1 > 1 < 1 > 1 < 1 > 1 < 1 > 1 < 1 > 1 < 1 > 1 < 1 > 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			- 27 -	23 83	100	SS-11	4.5+	19	11	18	37	15	21	14	7	10	A-4a (3)	1272
$\begin{bmatrix} 20 \\ -29 \\ -8 \\ 15 \\ 54 \\ 100 \\ SS-12 \\ 4.5+ \\ -29$				35														7 LV 7 L
			28															14>1`4> 4 4 4 4 4 4 4 4 4 4
			- 29 - 0	15 54	100	SS-12	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	12112

ſ	PID:	96053	BR ID:	FR	4-33-1747	PROJE	СТ:	FRA-70-1	4.05 PR	OJECT 4	<u>∃</u> S ⁻	TATION /	OFFSE	T:	198+7	7.78 / 40.8	B RT	;	STAR	T: <u>10</u>)/7/15	EN	D: _1	0/8/1	5 P	G 2 OI	= 3 B-03	32-3-15
ſ			N	IATEF	RIAL DESC	RIPTION				ELEV.	DEPT	THS	SPT/	N.,	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	ATT	ERB	ERG		ODOT	BACK
					AND NOTE	ES				702.8			RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
-	HARE CLAY VERY), GRAY ', DAMP. / DENSE	(same a	SILT, as abov SILT, S	LITTLE FIN /e) SOME CO/	ARSE TO	EL, LIT	TLE SAND,	++++	700.8		- 31 - - 32 - - 32 -	-															
	IIVAC		, 11402		OIVAVEE, I	MOIOT.			++++ ++++ +++++ +++++			- 33 -	28 48 50/4"	-	100	SS-13	1.50	5	5	22	61	7	NP	NP	NP	17	A-4b (7)	, , , , , , , , , , , , , , , , , , ,
									+++++++++++++++++++++++++++++++++++++++			- 35 - - 36 -																
ŀ	VERY TRAC	' DENSE E SILT,	, DARK (TRACE (GRAY CLAY,	TO GRAY WET.	GRAVEL	AND S	SAND,		695.8	-	- 37 - - 38 -	-															1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
												- 39 - - 40 -	26 26 36	89	100	SS-14	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
GPJ	-COI	BBLES F	PRESENT	T @ 4′	1.0'							- 41 - - 42 -	-															
015\W-15-126.	-HEA	AVING S	ANDS EI	NCOU	NTERED (@ 43.5'						- 43 - - 44 - - 45 -	15 47 50/2"_	-	100	SS-15	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	
318/PROJECTS/2												- 46 - - 47 - - 48 -	-															
0:12 - U:\G	-HEA	AVING S	ANDS EI	NCOU	NTERED (@ 48.5'						- 49 - - 50 -	8 23 38	87	100	SS-16	-	36	28	26	9	1	NP	NP	NP	11	A-1-b (0)	
.GDT - 7/16/18 1	-COI	BBLES F	PRESENT	T @ 50).5'							- 51 - - 52 - - 53 -	- - - -															
D - OH DOT												- - 54 - - 55 -	32 30 47	110	100	SS-17	-	44	27	18	9	2	NP	NP	NP	10	A-1-b (0)	
OG-BRIDGE I												- 56 -	-															1 1 1 1 7 1 1 7 1 1 7 1 7 1 7 1 7 1 7 1
BORING L												- 58 - - 59 -	10 40 46	123	100	SS-18	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	
2015-ODOT										670.8		- 61 -																

PID: 96053	BR ID:	FRA-33-1747	PROJECT:	FRA-70-14.05 PR	OJECT 4F	3	STATION /	OFFSE	:T:	198+7	7.78 / 40.8	RT		STAR	T: <u>1</u> 0)/7/15	EN	D: _1	0/8/1	5 P'	G 3 OI	-3 B-03	32-3-15
	M	IATERIAL DESC	RIPTION		ELEV.			SPT/	N	REC	SAMPLE	HP		GRAD	ATIO	N (%))	ATT	ERBE	ERG		ODOT	BACK
<u> </u>		AND NOTE	Ś		670.7		1110	RQD	1 N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
VERY DENSE TRACE CLAY	፤, GRAY S ′, WET. (ዩ	SILT, SOME COA same as above)	RSE TO FINE	Ξ SAND, ++++ ++++	 		- 63 -	-															7 L ^V 7 L J> ^N J>
				$ \begin{array}{c} + 7 + 7 \\ $	 		- 64 - 65 -	9 20 48	97	100	SS-19	-	0	1	20	74	5	NP	NP	NP	23	A-4b (8)	
-COBBLES F		0 66.0'		++++ ++++ ++++ ++++	665.8		- 66 - - 67 -	-															
SAND, TRACI	E SILT, TI	RACE FINE GRA	VEL, TRACE	CLAY,			68 -	-															
-HEAVING S	;ANDS EN	ICOUNTERED @	⊉ 68.5'				- 69 - - 70 -	6 9 10	27	100	SS-20	-	5	40	42	10	3	NP	NP	NP	14	A-3a (0)	
							- 71 -	-							I								7 LV 7 L 7 X 7 L
							- 72 - - 73 -	-															$ \begin{array}{c} 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
					657.8		- 74 - 3 - <u>75 -</u>	7 11 11	31	100	SS-21	-	-	-	-	-	-	-	-	-	12	A-3a (V)	
1																							l

NOTES: GROUNDWATER INITIALLY ENCOUNTERED 11.5'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 200 LBS BENTONITE CHIPS AND SOIL CUTTINGS

APPENDIX IV

BEARING RESISTANCE CHARTS

Shallow Foundation Analysis FRA-70-12.68 Project 4R - Retaining Wall 4W13 (B-030-1-15)

Shallow Foundation Analysis FRA-70-12.68 Project 4R - Wall 4W13 (B-031-0-08)

Note: Service limit bearing pressure and strength limit bearing resistance are referenced to separate vertical axes, which are also at different scales.

Shallow Foundation Analysis FRA-70-12.68 Project 4R - Wall 4W13 (B-032-2-15)

Note: Service limit bearing pressure and strength limit bearing resistance are referenced to separate vertical axes, which are also at different scales.

Shallow Foundation Analysis FRA-70-12.68 Project 4R - Wall 4W13 (B-032-3-15)

referenced to separate vertical axes, which are also at different scales.

APPENDIX V

SHALLOW FOUNDATION CALCULATIONS

W-13-045 - FRA-70-12.68 Project - Retaining Wall 4W13 Shallow Foundation Analysis - Settlement

Boring B-030-1-15

В= 11.3 ft Effective Footing width D_w= 10.5 ft Depth below bottom of footing 4,260 psf Service limit bearing pressure at bottom of wall q = q_{net} = 2,100 psf

Net bearing pressure at bottom of wall (considers initial overburden stress of 2,160 psf from 18-foot cut to bottom of footing elevation)

Soil Class.	Soil Type	Layer (1	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	l ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
A-6a	С	0.0	1.5	1.5	0.8	130	195	98	98	4,098	27	0.153	0.015	0.483				0.07	0.999	2,098	2,195	0.021	0.251
A-1-b	G	1.5	3.5	2.0	2.5	135	465	330	330	4,330					91	146	300	0.22	0.970	2,038	2,368	0.006	0.068
A-1-b	G	3.5	6.5	3.0	5.0	135	870	668	668	4,668					91	125	300	0.44	0.855	1,795	2,462	0.006	0.068
A-1-b	G	6.5	9.0	2.5	7.8	135	1,208	1,039	1,039	5,039					91	111	300	0.69	0.704	1,479	2,517	0.003	0.038
A-1-b	G	9.0	11.5	2.5	10.3	135	1,545	1,376	1,376	5,376					91	103	300	0.91	0.590	1,239	2,615	0.002	0.028
A-1-b	G	11.5	14.0	2.5	12.8	135	1,883	1,714	1,573	5,573					91	98	300	1.13	0.501	1,053	2,626	0.002	0.022
A-1-b	G	14.0	16.5	2.5	15.3	135	2,220	2,051	1,755	5,755					91	95	300	1.35	0.433	910	2,665	0.002	0.018
A-1-b	G	16.5	19.0	2.5	17.8	135	2,558	2,389	1,936	5,936					91	92	300	1.57	0.380	798	2,735	0.001	0.015
A-4b	G	19.0	21.5	2.5	20.3	135	2,895	2,726	2,118	6,118					89	87	140	1.79	0.338	710	2,828	0.002	0.027
A-4b	G	21.5	24.0	2.5	22.8	135	3,233	3,064	2,299	6,299					89	85	137	2.01	0.304	638	2,938	0.002	0.023
A-4a	С	24.0	26.5	2.5	25.3	130	3,558	3,395	2,475	6,475	18	0.072	0.007	0.413				2.23	0.276	579	3,054	0.001	0.014
A-4a	С	26.5	29.0	2.5	27.8	130	3,883	3,720	2,644	6,644	18	0.072	0.007	0.413				2.46	0.252	530	3,173	0.001	0.012
A-4a	С	29.0	31.5	2.5	30.3	130	4,208	4,045	2,813	6,813	18	0.072	0.007	0.413				2.68	0.232	488	3,301	0.001	0.011
A-4a	С	31.5	34.0	2.5	32.8	130	4,533	4,370	2,982	6,982	18	0.072	0.007	0.413				2.90	0.215	452	3,434	0.001	0.009
A-1-b	G	34.0	36.5	2.5	35.3	130	4,858	4,695	3,151	7,151					33	28	94	3.12	0.201	421	3,572	0.001	0.017
A-1-b	G	36.5	39.0	2.5	37.8	130	5,183	5,020	3,320	7,320					33	27	92	3.34	0.188	394	3,714	0.001	0.016
A-1-b	G	39.0	41.4	2.4	40.2	130	5,495	5,339	3,485	7,485					33	27	91	3.56	0.177	371	3,856	0.001	0.014
1. σ _p ' = σ _{ve}	'+σ _{m;} Estimate	σ_m of 4,000	psf for mode	erately overco	onsolidated s	oil deposit; l	Ref. Table 1'	1.2, Coduto 2	2003											Tota	Settlement:		0.653 in

Calculated By: HSK

Checked By: BRT

Date: 3/19/2018

Date: 6/25/2018

2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

3. $C_r = 0.15(C_c)$ for the existing fill and $0.10(C_c)$ for the natural soil deposits; Ref. Section 5.4.2.5 of FHWA GEC 5

4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index (limited to a value of 300); Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. S_c = [C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v < σ_v' <

10. $S_c = H(1/C')\log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

W-13-045 - FRA-70-12.68 Project - Retaining Wall 4W13	Calculated By:	HSK	Date: 3/19/2018
Shallow Foundation Analysis - Strength Limit State	Checked By:	BRT	Date: 6/25/2018

Boring B-030-1-15

В =	11.3	ft	
L =	541	ft	
c =	0	psf	
γ =	135	pcf	
D _f =	6.0	ft	
φ =	42	deg	
D _w =	10.5	ft	Below ground surface

$$q_n = c N_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{\gamma m} C_{w\gamma}$$
 = 151.70 ksf

$N_{cm} =$	$N_c s_c i_c$ = 95.49		$N_{qm} =$	$N_q s_q d_q i_q$	= 95.35			$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$ =	154.24
N _c =	93.71	s _c =	1+(11.3 ft/541 ft)(85.37/93.71) =	1.019	i _c =	1.000	d _q =	1+2tan(42°)[1-sin(42°)]²tan⁻¹(6 ft/11.3 ft) =	1.096
N _q =	85.37	s _q =	1+(11.3 ft/541 ft)tan(42°) =	1.019	i _q =	1.000	C _{wq} =	10.5 ft > 6.0 ft =	1.000
N _y =	155.54	s _y =	1-0.4(11.3 ft/541 ft) =	0.992	i _y =	1.000	C _{wy} =	10.5 ft < 1.5(11.3 ft) + 6 ft =	0.633

 $q_{\scriptscriptstyle R} = q_{\scriptscriptstyle n} \cdot \phi_{\scriptscriptstyle b}$ = 83.44 ksf

$$\varphi_b = 0.55$$

W-13-045 - FRA-70-12.68 Project 4R - Wall 4W13 Shallow Foundation Analysis - Settlement

Boring B-031-0-08

В= 11.3 ft Effective Footing width D_w= 3.0 Depth below bottom of footing ft 4,260 psf Service limit bearing pressure at bottom of wall q = q_{net} = 2,820 psf

Net bearing pressure at bottom of wall (considers initial overburden stress of 1,440 psf from 12-foot cut to bottom of footing elevation)

Soil Class.	Soil Type	Layer (f	Depth t)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
A-1-b	G	0.0	2.0	2.0	1.0	130	260	130	130	4,130					48	92	409	0.09	0.998	2,814	2,944	0.007	0.080
A-4b	G	2.0	3.0	1.0	2.5	125	385	323	323	4,323					31	50	85	0.22	0.970	2,736	3,059	0.012	0.139
A-4b	G	3.0	7.0	4.0	5.0	125	885	635	510	4,510					31	45	77	0.44	0.855	2,410	2,921	0.039	0.470
A-4a	С	7.0	9.5	2.5	8.3	130	1,210	1,048	720	4,720	20	0.090	0.009	0.428				0.73	0.679	1,915	2,635	0.009	0.107
A-4a	С	9.5	12.0	2.5	10.8	130	1,535	1,373	889	4,889	20	0.090	0.009	0.428				0.95	0.570	1,608	2,497	0.007	0.085
A-4b	G	12.0	14.5	2.5	13.3	125	1,848	1,691	1,052	5,052					27	33	59	1.17	0.486	1,371	2,423	0.015	0.184
A-3a	G	14.5	17.0	2.5	15.8	130	2,173	2,010	1,214	5,214					41	48	134	1.39	0.422	1,189	2,403	0.006	0.067
A-4a	С	17.0	19.5	2.5	18.3	130	2,498	2,335	1,383	5,383	20	0.090	0.009	0.428				1.62	0.371	1,046	2,430	0.004	0.046
A-4a	С	19.5	21.5	2.0	20.5	130	2,758	2,628	1,536	5,536	20	0.090	0.009	0.428				1.81	0.334	943	2,478	0.003	0.031
A-4a	G	21.5	24.0	2.5	22.8	135	3,095	2,926	1,694	5,694					114	121	190	2.01	0.304	857	2,551	0.002	0.028
A-4a	G	24.0	26.5	2.5	25.3	135	3,433	3,264	1,875	5,875					114	117	184	2.23	0.276	778	2,653	0.002	0.025
A-4a	G	26.5	31.5	5.0	29.0	135	4,108	3,770	2,148	6,148					114	111	176	2.57	0.242	682	2,830	0.003	0.041
A-4a	G	31.5	35.5	4.0	33.5	135	4,648	4,378	2,474	6,474					114	106	168	2.96	0.211	594	3,069	0.002	0.027
A-3	G	35.5	40.5	5.0	38.0	135	5,323	4,985	2,801	6,801					33	29	74	3.36	0.187	526	3,327	0.005	0.060
A-3a	G	40.5	43.5	3.0	42.0	135	5,728	5,525	3,091	7,091					84	72	219	3.72	0.169	477	3,569	0.001	0.010
A-3a	G	43.5	48.5	5.0	46.0	130	6,378	6,053	3,369	7,369					84	69	209	4.07	0.155	437	3,806	0.001	0.015
A-3a	G	48.5	53.5	5.0	51.0	135	7,053	6,715	3,720	7,720					84	67	198	4.51	0.140	395	4,114	0.001	0.013
1. $\sigma_{n}' = \sigma_{y}$	-'+σ Estimate	σ _m of 4.000	psf for mode	erately overco	onsolidated s	oil deposit: I	Ref. Table 1	1.2. Coduto 2	2003	-		•	•	•				-	-	Tota	Settlement:		1.427 in

2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

3. C_r = 0.10(C_c) for natural soil deposits; Ref. Section 5.4.2.5 of FHWA GEC 5

4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. S_c = [C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v < σ_v' <

10. $S_c = H(1/C')\log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By: HSK Checked By: BRT

Date: 6/22/2018 Date: 6/26/2018

W-13-045 - FRA-70-12.68 Project 4R - Wall 4W13	Calculated By:	HSK	Date: 6/22/2018
Shallow Foundations - Strength Limit State - Settlement	Checked By:	BRT	Date: 6/26/2018

В =	11.3	ft	
L =	541	ft	
c =	8,000	psf	
γ =	130	pcf	
D _f =	6.0	ft	
φ =	0	deg	
D _w =	9.5	ft	Below ground surface

$$q_n = c N_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{\gamma m} C_{w\gamma} = 42.07 \text{ ksf}$$

$$N_{cm} = N_c s_c i_c = 5.16 \qquad N_{qm} = N_q s_q d_q i_q = 1.00 \qquad N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 0.00$$

$$N_c = 5.14 \qquad s_c = 1 + (11.3 \text{ ft/541 ft})(1/5.14) = 1.004 \qquad i_c = 1.000 \qquad d_q = 1 + 2 \tan(0^\circ) [1 - \sin(0^\circ)]^2 \tan^{-1}(6 \text{ ft/11.3 ft}) = 1.000 \qquad N_q = 1.000 \qquad S_q = 1 + (11.3 \text{ ft/541 ft})(\tan(0^\circ) = 1.000 \qquad i_q = 1.000 \qquad C_{wq} = 9.5 \text{ ft} > 6.0 \text{ ft} = 1.000 \qquad N_{\gamma} = 0.00$$

$$N_{\gamma} = 0.00 \qquad s_{\gamma} = 1 - 0.4(11.3 \text{ ft/541 ft}) = 0.992 \qquad i_{\gamma} = 1.000 \qquad C_{wq} = 9.5 \text{ ft} < 1.5(11.3 \text{ ft}) + 6 \text{ ft} = 0.603$$

$$q_{\scriptscriptstyle R} = q_{\scriptscriptstyle n} \cdot \phi_{\scriptscriptstyle b}$$
 = 23.14 ksf

$$\varphi_{b} = 0.55$$

Soil Class.	Soil Type	Layer (1	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)
A-4a	С	0.0	2.0	2.0	1.0	130	260	130	130	4,130	25	0.135	0.014	0.467				0.09	0.998	3,233	3,363	0.026
A-4a	С	2.0	4.0	2.0	3.0	130	520	390	390	4,390	25	0.135	0.014	0.467				0.27	0.953	3,088	3,478	0.017
A-4a	С	4.0	7.0	3.0	5.5	130	910	715	715	4,715	25	0.135	0.014	0.467				0.49	0.827	2,679	3,394	0.019
A-1-b	G	7.0	9.5	2.5	8.3	135	1,248	1,079	1,079	5,079					71	86	366	0.73	0.679	2,200	3,279	0.003
A-3a	G	9.5	12.0	2.5	10.8	135	1,585	1,416	1,369	5,369					53	60	173	0.95	0.570	1,848	3,217	0.005
A-3a	G	12.0	14.5	2.5	13.3	135	1,923	1,754	1,551	5,551					53	58	165	1.17	0.486	1,576	3,127	0.005
A-4a	С	14.5	17.0	2.5	15.8	130	2,248	2,085	1,726	5,726	19	0.081	0.008	0.420				1.39	0.422	1,366	3,092	0.004
A-4a	С	17.0	19.5	2.5	18.3	130	2,573	2,410	1,895	5,895	19	0.081	0.008	0.420				1.62	0.371	1,202	3,097	0.003
A-4a	С	19.5	22.0	2.5	20.8	130	2,898	2,735	2,064	6,064	19	0.081	0.008	0.420				1.84	0.331	1,071	3,135	0.003
A-4a	С	22.0	24.0	2.0	23.0	130	3,158	3,028	2,216	6,216	19	0.081	0.008	0.420				2.04	0.301	975	3,191	0.002
A-4a	С	24.0	26.0	2.0	25.0	130	3,418	3,288	2,352	6,352	19	0.081	0.008	0.420				2.21	0.278	902	3,253	0.002
A-1-b	G	26.0	31.0	5.0	28.5	135	4,093	3,755	2,601	6,601					120	110	547	2.52	0.246	797	3,398	0.001
A-1-b	G	31.0	36.0	5.0	33.5	135	4,768	4,430	2,964	6,964					120	104	504	2.96	0.211	683	3,646	0.001
A-1-b	G	36.0	41.0	5.0	38.5	130	5,418	5,093	3,314	7,314					30	25	86	3.41	0.184	597	3,911	0.004
A-1-b	G	41.0	45.0	4.0	43.0	135	5,958	5,688	3,628	7,628					104	83	350	3.81	0.165	536	4,164	0.001
A-1-b	G	45.0	49.0	4.0	47.0	135	6,498	6,228	3,919	7,919					104	81	333	4.16	0.152	491	4,410	0.001

104

78

315

4.56

0.139

449

4,694

Total Settlement:

0.001

HSK

BRT

Calculated By:

Checked By:

Date: 3/19/2018

Date: 6/26/2018

S_c

(in)

0.312

0.210

0.224

0.040

0.064

0.055

0.043

0.036

0.031

0.022

0.019

0.013

0.011

0.050

0.008

0.007

0.008

1.155 in

3,240 psf Net bearing pressure at bottom of wall (considers initial overburden stress of 1,020 psf from 8.5-foot cut to bottom of footing elevation)

4,260 Service limit bearing pressure at bottom of wall q = psf

D_w= 10.0 ft Depth below bottom of footing

ft

FRA-70-12.68 Project 4R - Wall 4W13

Boring B-032-2-15 В=

q_{net} =

A-1-b

8. $\Delta \sigma_v = q_e(I)$

Shallow Foundation Analysis - Settlement

11.3

49.0

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

G

7. Influence factor for strip loaded footing

2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5 3. C_r = 0.10(C_c); Ref. Section 5.4.2.5 of FHWA GEC 5 4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

54.0

5.0

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

10. S_c = H(1/C')log(σ_{vf}/σ_{vo}); Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

1. $\sigma_{p}' = \sigma_{vo}' + \sigma_{m}$: Estimate σ_{m} of 4,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

51.5

135

7,173

6,835

4,245

9. S_c = [C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v'; C_c/(1+e_o)](H)log(\sigma_v/'\sigma_v) for σ_v' < σ_v < σ_v' <

8,245

Effective Footing width

FRA-70-12.68 Project 4R - Wall 4W13	Calculated By:	HSK	Date: 3/19/2018
Shallow Foundation Analysis - Strength Limit State	Checked By:	BRT	Date: 6/26/2018

Boring B-032-2-15

В =	11.3	ft	
L =	541	ft	
с =	6,000	psf	
γ =	130	pcf	
D _f =	6.0	ft	
φ =	0	deg	
D _w =	16.0	ft	Below ground surface

$$q_n = c N_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{m} C_{w\gamma} = 31.75$$
 ksf

$N_{cm} = 1$	$N_c s_c i_c$ = 5.16		N_{qm}	$= N_q s_q d_q i_q$	= 1.00			$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$ =	0.00
N _c =	5.14	s _c =	1+(11.3 ft/541 ft)(1/5.14) =	1.004	i _c =	1.000	d _q =	1+2tan(0°)[1-sin(0°)]²tan⁻¹(6 ft/11.3 ft) =	1.000
N _q =	1.00	s _q =	1+(11.3 ft/541 ft)tan(0°) =	1.000	i _q =	1.000	C _{wq} =	16.0 ft > 6.0 ft =	1.000
N _y =	0.00	s _y =	1-0.4(11.3 ft/541 ft) =	0.992	i _y =	1.000	C _{wy} =	16.0 ft < 1.5(11.3 ft) + 6 ft =	0.795

 $q_{\scriptscriptstyle R} = q_{\scriptscriptstyle n} \cdot \phi_{\scriptscriptstyle b}$ = 17.46 ksf

$$\varphi_b = 0.55$$

W-13-045 - FRA-70-12.68 Project 4R - Wall 4W13 Shallow Foundation Analysis - Settlement

Soil

Туре

G

G

G

G

G

G

С

С

С

G

G

G

G

G

G

G

G

7. Influence factor for strip loaded footing

2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

Boring B-032-3-15

Soil

Class

A-1-b

A-1-a

A-1-a

A-1-a

A-1-a

A-1-a

A-4a

A-4a

A-4a

A-4b

A-1-b

A-1-b

A-1-b

A-1-b

A-1-b

A-4b

A-3a

8. $\Delta \sigma_v = q_e(I)$

B = 11.3 Effective Footing width ft D_w= 3.5 ft Depth below bottom of footing 4,260 q = psf 3,240 q_{net} = psf

Layer Depth

(ft)

0.0

2.5

5.0

7.5

10.5

13.5

16.5

19.0

21.5

24.0

29.0

34.0

39.0

44.0

49.0

54.0

59.0

4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

Service limit bearing pressure at bottom of wall

Net bearing pressure at bottom of wall (considers initial overburden stress of 1,020 psf from 8.5-foot cut to bottom of footing elevation)

(pcf)

130

135

135

130

130

130

130

130

130

135

135

135

135

135

135

135

130

 σ_{vo}

Bottom

(psf)

325

663

1.000

1,390

1,780

2,170

2,495

2,820

3,145

3,820

4,495

5,170

5,845

6,520

7,195

7,870

8,910

 σ_{vo}

Midpoint

(psf)

163

494

831

1,195

1,585

1,975

2,333

2,658

2,983

3,483

4,158

4,833

5,508

6,183

6.858

7,533

8,390

σ.,

Midpoint

(psf)

163

478

660

852

1,055

1,257

1,443

1,612

1,781

2,047

2,410

2,773

3,136

3,499

3,862

4,225

4,677

9. S_c = [C_c/(1+e_o)](H)log(\sigma_v/'\sigma_{vo}) for σ_v' ≤ σ_{vo}' < σ_v'; [C_r/(1+e_o)](H)log(σ_v/'\sigma_{vo}) for σ_{vo}' < σ_v' = σ_p'; [C_r/(1+e_o)](H)log(σ_v/'\sigma_{vo}) for σ_{vo}' < σ_p' = σ_v'; [C_r/(1+e_o)](H)log(σ_v/'\sigma_{vo}) for σ_{vo}' < σ_v' = σ_p'; [C_r/(1+e_o)](H)log(σ_v/'\sigma_{vo}) for σ_{vo}' < σ_p' = σ_v' =

 $\sigma_{\rm p}$ ' $^{(1)}$

(psf)

4,163

4,478

4.660

4,852

5,055

5,257

5,443

5,612

5,781

6,047

6,410

6,773

7,136

7,499

7.862

8,225

8,677

C_r⁽³⁾

0.010

0.010

0.010

C_c⁽²⁾

0.099

0.099

0.099

LL

21

21

21

e, ⁽⁴⁾

0 4 3 6

0.436

0.436

 N_{60}

47

88

88

39

39

39

120

104

104

104

104

104

97

29

(N1)₆₀ (5)

87

130

121

50

47

45

119

98

93

89

85

81

73

21

C' ⁽⁶⁾

300

300

300

170

159

150

188

300

300

300

300

300

119

68

 Z_f/B

0.11

0.33

0.55

0.80

1.06

1.33

1.57

1.79

2.01

2.35

2.79

3.23

3.67

4.12

4.56

5.00

5.58

1⁽⁷⁾

0.996

0.920

0.785

0.644

0.525

0.439

0.380

0.338

0.304

0.264

0.224

0.194

0.171

0.153

0.139

0.126

0.114

Depth to

Midpoint

(ft)

1.3

3.8

6.3

9.0

12.0

15.0

17.8

20.3

22.8

26.5

31.5

36.5

41.5

46.5

51.5

56.5

63.0

Calculated By:

Checked By:

 $\Delta \sigma_v^{(8)}$

(psf)

3,226

2,982

2.542

2,085

1,703

1,423

1,232

1,095

985

854

725

629

555

496

449

410

368

HSK

BRT

 $\sigma_{\rm vf}$

Midpoint

(psf)

3,388

3,460

3.202

2,937

2,757

2,681

2,675

2,707

2,766

2,901

3,135

3,402

3,691

3,996

4,311

4,635

5,045

Total Settlement

Sc^(9,10)

(ft)

0.011

0.007

0.006

0.009

0.008

0.007

0.005

0.004

0.003

0.004

0.002

0.001

0.001

0.001

0.001

0.002

0.004

Date: 3/19/2018

Date: 6/26/2018

S_c

(in)

0.132

0.086

0.069

0.114

0.095

0.079

0.055

0.047

0.040

0.048

0.023

0.018

0.014

0.012

0.010

0.020

0.046

0.906 in

Layer

Thickness

н

(ft)

2.5

2.5

2.5

3.0

3.0

3.0

2.5

2.5

2.5

5.0

5.0

5.0

5.0

5.0

5.0

5.0

8.0

5. (N1)₆₀ = C_nN₆₀, where C_N = [0.77log(40/σ_{vo}')] ≤ 2.0 ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS 6. Bearing capacity index (Limited to a value of 300); Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

10. S_c = H(1/C')log(σ_{vf}/σ_{vo}); Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

1. $\sigma_{p}' = \sigma_{vo}' + \sigma_{m}$: Estimate σ_{m} of 4,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

2.5

5.0

7.5

10.5

13.5

16.5

19.0

21.5

24.0

29.0

34.0

39.0

44.0

49.0

54.0

59.0

67.0

3. C_r = 0.10(C_c) for natural soil deposits; Ref. Section 5.4.2.5 of FHWA GEC 5

W-13-045 - FRA-70-12.68 Project - Retaining Wall 4W13	Calculated By:	HSK	Date: 3/19/2018
Shallow Foundation Analysis - Strength Limit State	Checked By:	BRT	Date: 6/26/2018

Boring B-032-3-15

B =	11.3	ft	
L =	541	ft	
с =	0	psf	
γ =	130	pcf	
D _f =	6.0	ft	
φ =	41	deg	
D _w =	11.5	ft	Below ground surface

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{m} C_{w\gamma}$$
 = 127.36 ksf

$N_{cm} = N_c s_c i_c = 85.40$		$N_{qm} =$	$N_{\gamma m} = N_\gamma s_\gamma i_\gamma$ =	129.12					
N _c =	83.86	s _c =	1+(11.3 ft/541 ft)(73.9/83.86) =	1.018	i _c =	1.000	d _q =	1+2tan(41°)[1-sin(41°)]²tan ⁻¹ (6 ft/11.3 ft) =	1.100
N _q =	73.90	s _q =	1+(11.3 ft/541 ft)tan(41°) =	1.018	i _q =	1.000	C _{wq} =	11.5 ft > 6.0 ft =	1.000
N _y =	130.21	s _y =	1-0.4(11.3 ft/541 ft) =	0.992	i _v =	1.000	C _{wy} =	11.5 ft < 1.5(11.3 ft) + 6 ft =	0.662

 $q_{\scriptscriptstyle R} = q_{\scriptscriptstyle n} \cdot \phi_{\scriptscriptstyle b}$ = 70.05 ksf

$$\varphi_b = 0.55$$

EXTERNAL STABILITY ANALYSIS CALCULATIONS BY GPD GROUP

APPENDIX VI

Client:	ODOT - D6	Job No.:		2012048	3
Project:	FRA-70/71-12.68/14.86	Dgn'd By:	RSN	Date:	5/16/2018
Subject:	4W13 - South Cantilever Wall	Chk'd By:	DGN	Date:	6/15/2018
ETAINING DESIGN ON S	PREAD FOOTING LEED				

F PREAD FOOTING LRFD

Based on AASHTO LRFD indic

Area 6 (Horiz. Comp.) = $F_2 x \cos(\beta)$

Area 6 (Vertical Comp.) = $F_2 \times \sin(\beta)$ Arm 6 = Wf

Arm 6 = $(H_1 + H_h)/3$

Area 7 = F_3 Arm 7 = $(H_1 + H_h)/2$

Area 11 = F₄

Arm 11 = $(H_{toe} + H_2)/3$

Area 8 = $0.5 \times \gamma_c \times W_{w1} \times H_1$ Arm 8 = $W_{toe} + W_w + W_{w1}/3$

Area 9 = $0.5 x \gamma_s x W_{w1} x H_1$ Arm 9 = $W_{toe} + W_w + W_{w1} x 2/3$

Area 10 = $0.5 \times \gamma_s \times (S_e \times W_h) \times W_h$ Arm 10 = $W_F - W_h / 3$

Surcharge on Heel = $\gamma_s \times W_s \times H_s$ Arm for Heel Surcharge = $W_F - W_h/2$

13.97 kips x

(22.30 ft. +

13.97 kips x

15.50 ft.

0.00 kips (22.30 ft. +

0.5 x 0.15 kcf x

3.00 ft. +

0.5 x 0.12 kcf x

3.00 ft. +

0.5 x 0.12 kcf x

15.50 ft. -

0.00 kips

(3.75 ft. +

0.12 kcf x

15.50 ft. -

Input values are indicated by the Yellow co	ored cells Us	Using cellular concrete backfill? (Y or N) N					
Input values are indicated by the Yellow color WALL DATA Concrete unit weight, $\gamma_c =$ Toe Height, Hto Heel Height, Hh Wall Height, HT = Hw+Htoe Soil over Heel, H1 = HT-Hh Soil Height over Toe, H2 Future Loss of Soil over Toe Corrected H2 = H2'(1-Future Loss) Wall Width, Ww Toe Width, Wtoe Heel Width, Wh Additional Wall, Ww1 Theta, $\theta =$ Footing Width, Wf Soll DATA Is retained soil sloped? Slope of embankment, Se Beta, $\beta =$	ored cells Us 0.15 kcf 3.75 ft. 3.75 0 ft. 22.05 ft. 22.05 ft. 25.80 ft. 22.30 ft. 3.00 ft. 0% 3.00 ft. 1.00 ft. 0.93 ft. 3.00 ft. 11.00 ft. 0.93 ft. 15.50 ft. 87.61 deg. 15.50 ft. 0.000 deg. 0.00	P3 F3 F3 P3 F3			$-\beta$		
Include Surcharge over Heel? Include Surcharge over Toe? Is traffic less than HrJ; from wall? Surcharge Height, Hs = Surcharge Width, Ws = Wf-(Wtoe+Ww) Active or At Rest Pressure (A or R) Soil Unit Weight, Y _{soil} Footing Resting On? Internal Friction Angle of Soil, δ (deg.) Internal Friction Angle of Soil, δ (deg.) Internal Friction Angle of Fill, ϕ'_{fill} Friction Angle between Fill & Wall, δ Active Lat. Earth Press. Coeff., ka P _{soil} = Y _{soil} * (k ₀ or k ₀) = Bearing on soil or rock?(S or R) = Factor Bearing Resistance (Strength)= Bearing Capacity (Service) = Consider Pasive Force on Toe? Passive Lateral Pressure Coeff., kp P1 = P _{soil} *H1/1000 = P2 = Psoil*(H1+Hh)/1000 = P3 = Hs*Psoil*1000 = P4 = Psoil*(H2+Htoe)/1000 = Soil Silding Forces: F1 = P1+H1*0.5 = F2 = P2*(H1+Hh)*0.5 = F2 = P2*(H1+Hh)*0.5 = F2 = P2*(H1+H)*0.5 = F2	N N N N 2.00 ft. (AAS 11.00 ft. A 0.12 kcf ==>1 G 28.00 (@ b 30.00 deg. 0.03 (AAS 41.96 pcf S (AAS 10.75 ksf 6.30 ksf (To c N 3.00 ksf 1.08 ksf 0.00 ksf 0.00 ksf 10.43 kips kips 13.97 kips kips 0.00 ksf	HTO 3.11.6.4-1) =or lateral + weight on heel == ase of the Footer) HTO 3.11.5.3-1) HTO 10.6.1.4) heck Settlement) an²(45°+¢'/2)	O.12 k Horizontal sliding For cohesionless s For cohesive soils The lesser of: For manual overrid Typical values fo course grained soi soils = ebala =	w_h	ksf ksf		
$\begin{aligned} & F_4 = P4'(H2 + Hloe)^*0.5 = \\ & Additional Dead Load = \\ & Moment Arm for Addit. Dead Load = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	0.00 kips kips 0.00 kips kips 0.00 kips kips 0.00 ft 10 kips 0.00 ft 10 kips 10 kips 1	Point A 1.50 ft. x 25.80 ft 1.50 ft. / 2.00 11.00 ft. x 3.50 ft. 1.50 ft. + 11.00 f 3.00 ft. x 3.75 ft. / 2.00 = (11.00 ft 0.93 ft. 1.50 ft. + 0.93 ft. 3.00 ft. x 3.00 ft. / 2.00 =	x 1.00 ft = x 1.0	0.33 0.7 5.81 kip 3.75 ft 5.78 kip 10.00 ft 1.69 kip 1.69 kip 1.00 ft. = 26.95 kij 0.93 ft.) / 2 = 10.46 ft 1.08 kip 1.08 kip	S S S S S S S		

0.00 deg.) =

/ 3.00 =

0.00 deg.) =

/ 2.00 =

0.93 ft.

22.30 ft. x

22.30 ft. x

11.00 ft.) x

/ 3.00 =

/ 3.00 =

2.00 ft. x

/ 2.00 =

0.93 ft.

1.00 ft. =

/ 3.00 =

1.00 ft. =

x 2.00

11.00 ft. x

1.00 ft. =

/ 3.00 =

1.00 ft. =

cos (

sin (

0.93 ft. x

1.50 ft. +

0.93 ft. x

1.50 ft. +

(0.00 x

11.00 ft. x

11.00 ft.

11.00 ft.

3.50 ft.)

3.50 ft.)

3.00 ft.)

13.97 kips

8.60 ft.

0.00 kips 15.50 ft.

0.00 kips

12.90 ft.

1.55 kips

4.81 ft.

1.24 kips

5.12 ft.

0.00 kips 11.83 ft.

0.00 kips

2.25 ft.

2.64 kips 10.00 ft.

Client:	ODOT - D6			Job No.:	2012048			
Project:	FRA-70/71-12.68/14.86			Dgn'd By:	RSN	Date:	5/16/2018	
Subject:	4W13 - South Cantilever Wall			Chk'd By:	DGN	Date:	6/15/2018	
Surcharge on Toe = $\gamma_s \times W_{toe} \times H_s$	0.12 kcf x	3.00 ft. x	2.00 ft. x	1.00 ft. =		0.72 kips		
Arm for Toe Surcharge = W _{toe} / 2	3.00 ft.	/ 2.00 =				1.50 ft.		

Cli Pre	ient: oiect:	ODOT - D6	1.86		Job No.: Dan'd Bv	RSN	2012048 Date:	5/16/2018	
Su	ibject:	4W13 - South Cant	ilever Wall		Chk'd By:	DGN	Date:	6/15/2018	
	RESSURE			1					
Factored Bearing Res	istance =	10.75 ksf							
Maximum Strength Lo	ad Pressure								
(AASHTO 11.6.3.2) Bearing pressure at Toe =		5.21 ksf	О.К.						
Bearing pressure at Heel =	=	5.21 ksf	О.К .						
CHECK ECCENTRIC	ITY]					
(AASHTO 11.6.3.3) Maximum allowable e, (B/ Controlling Eccentricity =	3) =	5.17 ft. 3.28 ft.	о.к.						
CHECK SLIDING (Pe	er Unit Width)				1				
(AASHTO 11.6.3.6) Resistance factor φτ (Slidi	ing) =	0.80	(AASHTO Table 10.5.)	5.2.2-1)					
Resistance factor dep (Pa	assive pressure) =	0.50	(AASHTO Table 10.5.	5.2.2-1)		AASHTO Table 10.5.	5.2.2-1 (Sliding Resi	istance Factors)	
Additional Resistance (F	ooting Key or She	et Piling) :	0.000	kof		Precast concrete plac	ced on sand	0.90	
Vertical Projection Below P Pressure at Top/Specting	or Key =		0.360 <u>3.00</u> 2.430	ft. ksf		Cast-III-place concret C.I.P. or precast conc soil on soil	crete on clay	0.80	
Pressure at Bot./Sheeting Passive on Footing Toe =	or Key =	I	3.510	ksf		Passive earth pressu	re component	0.50	
	Total p	bassive resistance =	8.91 kips 4 46 kips	rupo					
Controlling Driving force =		20.95 kips							
Resisting force =		23.20 kips	О.К.						
				1					
CHECK SETTLEMEN Service Bearing Capacity = Service Bearing Pressure = Service Bearing Pressure	1T = at Toe = at Heel =	6.30 ksf 3.75 ksf 3.75 ksf	О.К. О К						
SUMMARY OF LOAD	DEFFECTS	0.70 Kar	0.14.	1					
		MAX. BEARING	MIN. BEARING	ECCENTRICITIES	ECCENTRICITIES	SLIDING FORCES	VERTICAL	7	
STR	ENGTH I	PRESSURE 5.21	PRESSURE 5.21	MAXIMUM LF 2.18	MINIMUM LF 3.28	MAXIMUM LF 20.95	FORCES MINIMUM 42.61	1	
SER		3.75	3.75	1.87	NA	13.97	44.09		
LOAD MODIFICATIO	IN FACTORS (S	EE AASHTO 1.3.3, 1	.3.4, 1.3.5 & ODOT BI	DM 1001)					
Ductility η _D = Redundancy ηR = Operational importance ηi	=	1.00 1.00 1.00	(use 1.00 for all limit si (use 1.00 for redundar (use 1.00 for all limit si	ates) It structures and 1.05 tates)	for non-redundant s	tructures)			
STRENGTH I LOAD	COMBINATION ERTURNING MOM	ENTS FROM SOIL							
ΣM about point "A"						Moment (k-ft)			
Area/Force L	Unfactored Load 13.97	Load Factor 1.50	Force (k) 20.95	Moment Arm (ft) 8.60		Max. Load Factor 180.15	N OD		
7 11	0.00 0.00	1.75 0.90	0.00 0.00	12.90 2.25		0.00 0.00	Horic		
RESISTING MOMENTS A		Sliding Forces, F _s =	20.95 kips	Σ Ονε	erturning Moments =	180.15 k*ft.			
1.5*DC+1.35*EV+1.75*LS ΣM about point "A"	v (MAX.) 0.9*D	C+1.0*EV (MIN.)	-	т	his column is for stabil	ity		This column is for stability	
Area/Force	Force (k) Unfactored Load	Max. Load Factor	Force (k) Max. Load Factor	Min. Load Factor	Force (k) Min. Load Factor	Moment Arm (ft)	Moment (k-ft) Max. Load Factor	Moment (k-ft) Min. Load Factor	
1 2	5.81 5.78	1.25 1.25	7.26 7.22	0.90 0.90	5.22 5.20	3.75 10.00	27.21 72.19	19.59 51.98	ead om crete
3 8	1.69 1.55	1.25 1.25	2.11 1.94	0.90	1.52 1.40	1.50 4.81	3.16 9.34	2.28 6.73	Con T C
4 5	26.95 1.08	1.35 1.35	36.38 1.46	1.00	26.95 1.08	10.46 1.50	380.72 2.19	282.02 1.62	il Sil
6 (Vertical comp.) 9	0.00	1.50 1.35	0.00	1.50 1.00	0.00	15.50 5.12	0.00 8.59	0.00 6.36	Forces
Surcharge on Heel	0.00	1.75	0.00	0.00	0.00	10.00	0.00	0.00	ads
DC	0.00	1.25 Σ Vert, Forces =	0.00 0.00 58.05 kips	0.90 Σ Vert. Forces =	0.00 0.00 42.61 kins	0.00 Resisting Moments =	0.00 0.00 503.41 k*ft	0.00 370.57 k*ft	Ext Lo
			00.00 Mp0		12.01 Mpo		666.71 K II.	0.0.07 K IL	

	Client:	ODOT - D6			.loh No :		201204	8	
	Project	ERA-70/71-12 68/	4.86		Dan'd By:	RSN	Date:	5/16/2018	-
	Subject:	4W13 - South Co	tilovor Wall		Chk'd By:	DGN	Date:	6/15/2010	_
	Subject.	44413 - 30util Ca			Cliku By.	DGN	Date.	0/13/2018	_
Max. Load Factor Re	esults			Min. Load Factor					
Overturning Moment =	Σ Overturning Momen	ts =	180.15 k-ft.	Overturning Moment	= Σ Overturning Momen	ts =	180.15 k-ft.		
Resisting Moment = Σ	Max. Resisting Momer	nts =	503.41 k-ft.	Resisting Moment = 2	Σ Min. Resisting Momen	ts =	370.57 k-ft.		
Sliding Force = F _s =			20.95 kips	Sliding Force = F _s =			20.95 kips		
Net Moment = Resisting	ig Moment - Overturnir	ng Moment =	323.26 k-ft.	Net Moment = Resist	ting Moment - Overturnir	g Moment =	190.42 k-ft.		
Total Vertical Force (TV	\overline{VF}) = Σ Vert. Forces =	-	58.05 kips	Total Vertical Force (TVF) = Σ Vert. Forces =	-	42.61 kips		
Dist. from Point A (A) =	Net. Moment / TVF =		5.57 ft.	Dist. from Point A (Ā)	= Net. Moment / TVF =		4.47 ft.		
Eccentricity "e" = (0.5*W	W _f) - Ā =		2.18 ft.	Eccentricity "e" = (0.5	5*W _f) - Ā =		3.28 ft.		
Maximum Bearing Pres	ssure = TVF/(Wf-2*e) =	=	5.21 ksf						
Minimum Bearing Pres	sure = TVF/(Wf-2*e) =		5.21 ksf						
1.0*EH+1.0*LS _H +1.0*E									
ΣM about point "A"									
					1	Noment (k-ft)			
Area/Force	Unfactored Load	Load Factor	Force (k)	Moment Arm (ft)	Ma	x. Load Factor			
6	13.97	1.00	13.97	8.60		120.10			
7	0.00	1.00	0.00	12.90		0.00	Soil Soil		
11	0.00	1.00	0.00	2.25		0.00			
	Σ	Sliding Forces, F _s =	13.97 kips	Σ Over	rturning Moments =	120.10 k*ft.			
RESISTING MOMENT	S AND DEAD LOAD I	ROM SUBSTRUCT	URE						
2 M about point "A"	F (1)								
Aree/Feree	FOICE (K)	Lood Foster	Faraa (k)	Mamont Arm (ft)		formant (le ft)			
Alea/Foice	5.81	1 00	5.81	3 75	<u>-</u>	21.77	0		
2	5.78	1.00	5.78	10.00		57.75	ete		
2	1.69	1.00	1 69	1 50		2.53	Dea Loa		
8	1.55	1.00	1.55	4.81		7.47	u u u o		
4	26.95	1.00	26.95	10.46		282.02	E	-	
5	1.08	1.00	1.08	1.50		1.62	2		
6 (Vertical comp.)	0.00	1.00	0.00	15.50		0.00	Soil		
9	1.24	1.00	1.24	5.12		6.36	orce		
10	0.00	1.00	0.00	11.83		0.00	Fc		
Surcharge on Heel	0.00	1.00	0.00	10.00		0.00	ds fr		
Surcharge on Toe	0.00	1.00	0.00	1.50		0.00	al		
DC	0.00	1.00	0.00	0.00		0.00			
		2 Vert. Forces =	44.09 KIPS	ΣRe	esisting Moments =	379.52 K^TT.			
Overturning Moment =	Σ Overturning Momen	ts =	120.10 k-ft.	Where the wall is st	upported by a rock foundation:	where the	e variables are as	defined in	
Resisting Moment = Σ I	Max. Resisting Momer	nts =	379.52 k-ft.	the vertical stress	shall be calculated assuming	a Figure 11.0	5.3.2-2. If the resultant is	outside the	
Sliding Force = F _s =	-		13.97 kips	linearly distributed	pressure over an effective ba	ie middle one	-unto of the base.		
Net Moment = Resisting	a Moment - Overturnir	na Moment =	259.43 k-ft.	area as shown in F is within the model	igure 11.6.3.2-2. If the resulta one-third of the base:	at	$2\Sigma V$	(11.6.3.2-4)	
Total Vertical Force (TV	VF) = Σ Vert. Forces =	J	44.09 kips		· · · · · · · · · · · · · · · · · · ·	3[(.	B/2) - e)]	(*********)	
Dist. from Point A (A) =	Net. Moment / TVF =		5.88 ft.	$\sigma_{\text{ymp}} = \frac{\sum V}{1} (1)$	$+6\frac{e}{r}$ (11.6.3.2-	2)		(11.6.3.2.5)	
Eccentricity "e" = (0.5*V	W _f) - Ā =		1.87 ft.	B	B)	O tasks = 0		(44.0.3.2-3)	
Maximum Bearing Pres	ssure = TVF/(Wf-2*e) =	=	3.75 ksf	$\Sigma V(.$	()	where the	e variables are as	defined in	
Minimum Bearing Pres	sure = TVF/(Wf-2*e) =		3.75 ksf	$\sigma_{\text{unin}} = \frac{1}{B} (1)$	B) (11.6.3.2-	Figure 11.0	3.3.2-2.		
	. ,			_					

Client:	ODOT - D6	Job No.:		2012048	3
Project:	FRA-70/71-12.68/14.86	Dgn'd By:	RSN	Date:	5/16/2018
Subject:	4W13 - South Cantilever Wall	Chk'd By:	DGN	Date:	6/15/2018

RETAINING DESIGN ON SPREAD FOOTING LRFD

Based on AASHTO LRFD

Input values are indicated by the Yellow colored cells
Using cellular concrete backfill? (Y or N)
N

Calculations:

<u>earealaterier</u>						
Area 1 = γ _c x W _w x H _T	0.15 kcf x	1.50 ft. x	28.10 ft. x	1.00 ft. =		6.32 kips
Arm 1 = $W_{toe} + W_w / 2$	4.00 ft. +	1.50 ft.	/ 2.00 =			4.75 ft.
Area 2 = γ _c x W _h x H _h	0.15 kcf x	10.00 ft. x	3.50 ft. x	1.00 ft. =		5.25 kips
$Arm 2 = W_{toe} + W_w + W_h / 2$	4.00 ft. +	1.50 ft. +	10.00 ft.	/ 2.00 =		10.50 ft.
Area 3 = γ _c x W _{toe} x H _{toe}	0.15 kcf x	4.00 ft. x	3.75 ft. x	1.00 ft. =		2.25 kips
Arm 3 = W _{toe} /2	4.00 ft.	/ 2.00 =				2.00 ft.
Area 4 = $\gamma_s x (W_h - W_{w1}) x H_1$	0.12 kcf x	(10.00 ft	2.03 ft.) x	24.60 ft. x	1.00 ft. =	23.53 kips
Arm 4 = $W_{toe} + W_w + W_{w1} + (W_h - W_{w1})/2$	4.00 ft. +	1.50 ft. +	2.03 ft. +	(10.00 ft	2.03 ft.) / 2 =	11.51 ft.
Area 5 = $\gamma_s \times W_{toe} \times H_2$	0.12 kcf x	4.00 ft. x	3.00 ft. x	1.00 ft. =		1.44 kips
Arm 5 = W _{toe} / 2	4.00 ft.	/ 2.00 =				2.00 ft.
Area 6 (Horiz. Comp.) = $F_2 x \cos(\beta)$	17.35 kips x	cos (0.00 deg.) =			17.35 kips
Arm 6 = $(H_1 + H_h)/3$	(24.60 ft. +	3.50 ft.)	/ 3.00 =			9.37 ft.
Area 6 (Vertical Comp.) = $F_2 x \sin(\beta)$	17.35 kips x	sin (0.00 deg.) =			0.00 kips
Arm 6 = Wf	15.50 ft.					15.50 ft.
Area 7 = F ₃	0.00 kips					0.00 kips
Arm 7 = $(H_1 + H_h)/2$	(24.60 ft. +	3.50 ft.)	/ 2.00 =			14.05 ft.
Area 8 = 0.5 x γ _c x W _{w1} x H ₁	0.5 x 0.15 kcf x	2.03 ft. x	24.60 ft. x	1.00 ft. =		3.74 kips
$Arm 8 = W_{toe} + W_w + W_{w1} / 3$	4.00 ft. +	1.50 ft. +	2.03 ft.	/ 3.00 =		6.18 ft.
Area 9 = 0.5 x γ _s x W _{w1} x H ₁	0.5 x 0.12 kcf x	2.03 ft. x	24.60 ft. x	1.00 ft. =		3.00 kips
Arm 9 = $W_{toe} + W_w + W_{w1} \times 2/3$	4.00 ft. +	1.50 ft. +	2.03 ft.	x 2.00	/ 3.00 =	6.85 ft.
Area 10 = 0.5 x γ _s x (S _e x W _h) x W _h	0.5 x 0.12 kcf x	(0.00 x	10.00 ft.) x	10.00 ft. x	1.00 ft. =	0.00 kips
Arm 10 = $W_F - W_h / 3$	15.50 ft	10.00 ft.	/ 3.00 =			12.17 ft.
Area 11 = F ₄	0.00 kips					0.00 kips
Arm 11 = $(H_{toe} + H_2) / 3$	(3.75 ft. +	3.00 ft.)	/ 3.00 =			2.25 ft.
Surcharge on Heel = $\gamma_s \times W_s \times H_s$	0.12 kcf x	10.00 ft. x	2.00 ft. x	1.00 ft. =		2.40 kips
Arm for Heel Surcharge = $W_F - W_h/2$	15.50 ft	10.00 ft.	/ 2.00 =			10.50 ft.

Client:	ODOT - D6			Job No.:		2012048	
Project:	FRA-70/71-12.68/14.86			Dgn'd By:	RSN	Date:	5/16/2018
Subject:	4W13 - South Cantilever Wall			Chk'd By:	DGN	Date:	6/15/2018
Surcharge on Toe = $\gamma_s \times W_{toe} \times H_s$	0.12 kcf x	4.00 ft. x	2.00 ft. x	1.00 ft. =		0.96 kips	
Arm for Toe Surcharge = W _{toe} / 2	4.00 ft.	/ 2.00 =				2.00 ft.	

Client:	ODOT - D6	1.86		Job No.: Dan'd By:	RSN	2012048	5/16/2018	
Subject:	4W13 - South Cant	tilever Wall		Chk'd By:	DGN	Date:	6/15/2018	
CHECK BEARING PRESSURE	10 75 kef							
Maximum Strength Load Pressure	10.75 Kai							
(AASHTO 11.6.3.2) Bearing pressure at Toe =	6.03 ksf	0.K.						
Bearing pressure at Heel =	6.03 ksf	О.К.						
			1					
(AASHTO 11.6.3.3) Maximum allowable e, (B/3) = Controlling Eccentricity =	5.17 ft. 4.28 ft.	о.к.						
CHECK SLIDING (Per Unit Width)			1	ľ				
(AASHTO 11.6.3.6) Resistance factor φτ (Sliding) =	0.80	(AASHTO Table 10.5	5.2.2-1)					
Resistance factor ϕ ep (Passive pressure) =	0.50	(AASHTO Table 10.5.	5.2.2-1)		AASHTO Table 10.5.	5.2.2-1 (Sliding Resi	stance Factors)	
Additional Resistance (Footing Key or She	eet Piling) :				COND Precast concrete place	ced on sand	FACTOR 0.90	
Pressure for passive resistance = Vertical Projection Below Footing =		0.360 <i>0.00</i>	kcf ft.		Cast-in-place concret C.I.P. or precast conc	te on sand crete on clay	0.80 0.85	
Pressure at Top/Sheeting or Key = Pressure at Bot./Sheeting or Key =		2.430 2.430	ksf ksf		soil on soil Passive earth pressu	re component	0.90	
Passive on Footing Toe =	nassive resistance =	0.000	Kips					
Total	Factored =	0.00 kips						
Controlling Driving force =	26.03 kips							
Resisting force =	30.47 kips	о.к.						
			-					
CHECK SETTLEMENT Service Bearing Capacity =	6.30 ksf							
Service Bearing Pressure at Toe = Service Bearing Pressure at Heel =	4.26 ksf 4.26 ksf	О.К. О.К.						
SUMMARY OF LOAD EFFECTS			-					
	MAX. BEARING	MIN. BEARING	ECCENTRICITIES	ECCENTRICITIES	SLIDING FORCES	VERTICAL	1	
STRENGTH I	6.03	6.03	2.45	4.28	26.03	43.77	1	
SERVICE I	4.26	4.26	2.12	NA	17.35	47.93]	
LOAD MODIFICATION FACTORS (S	SEE AASHTO 1.3.3, 1	.3.4, 1.3.5 & ODOT B	DM 1001)					
Ductility η _D = Redundancy ηR = Operational importance ηi =	1.00 1.00 1.00	(use 1.00 for all limit s (use 1.00 for redundar (use 1.00 for all limit s	tates) ht structures and 1.05 tates)	for non-redundant s	tructures)			
STRENGTH I LOAD COMBINATION								
SLIDING FORCES & OVERTURNING MON 1.5*EH+1.75*LSH+0.9EHP SM about point "A"	IENIS FROM SOIL							
Area/Force Unfactored Load	Load Factor	Force (k)	Moment Arm (ft)		Moment (k-ft) Max, Load Factor			
6 17.35 7 0.00	1.50	26.03	9.37		243.79	riz. ces		
11 0.00	0.90	0.00	2.25	erturning Momente -	0.00	For		
RESISTING MOMENTS AND DEAD LOAD	FROM RETAINING W	26.03 Kips	2 000	situarining woments =	243.79 K^TL			
1.5*DC+1.35*EV+1.75*LS _V (MAX.) 0.9*E ΣM about point "A"	DC+1.0*EV (MIN.)		Ŧ	his column is for stabil	itv		This column is for stability	
Force (k)	Max Load Factor	Force (k) Max Load Factor	Min Load Factor	Force (k) Min Load Factor	Moment Arm (ft)	Moment (k-ft) Max Load Factor	Moment (k-ft)	
1 6.32	1.25	7.90	0.90	5.69	4.75	37.54	27.03	d ete
2 5.25 3 2.25	1.25	0.56 2.81	0.90	4.73	2.00	5.63	49.61 4.05	Dea Loa Fron Concre
8 <u>3.74</u> 4 23.53	1.25	4.68	1.00	23.53	0.18	365.76	20.81	E
5 1.44 6 (Vertical comp.) 0.00	1.35 1.50	1.94 0.00	1.00 1.50	1.44 0.00	2.00 15.50	3.89 0.00	2.88 0.00	es Fn Soil
9 3.00 10 0.00	1.35 1.35	4.04 0.00	1.00 1.00	3.00 0.00	6.85 12.17	27.71 0.00	20.52 0.00	Forc
Surcharge on Heel2.40Surcharge on Toe0.00	1.75 1.75	4.20 0.00	0.00 0.00	0.00 0.00	10.50 2.00	44.10 0.00	0.00 0.00	al ads
DC 0.00	1.25 Σ Vert. Forces =	0.00 63.91 kips	0.90 Σ Vert. Forces =	0.00 43.77 kips	0.00 Resisting Moments =	0.00 582.44 k*ft.	0.00 395.84 k*ft.	Ш
1		r -		P -				

	Olivert	ODOT DA			lab Maria		004004	0	
	Client:	0001-06			JOD NO.:		201204	8	4
	Project:	FRA-70/71-12.68/	14.86		Dgn'd By:	RSN	Date:	5/16/2018	
	Subject:	4W13 - South Ca	ntilever Wall		Chk'd By:	DGN	Date:	6/15/2018	-
Max. Load Factor R	esults			Min. Load Factor					
Overturning Moment =	Σ Overturning Momen	ts =	243.79 k-ft.	Overturning Moment	= Σ Overturning Momen	ts =	243.79 k-ft.		
Resisting Moment = Σ	Max. Resisting Momen	nts =	582.44 k-ft.	Resisting Moment = 2	Σ Min. Resisting Moment	ts =	395.84 k-ft.		
Sliding Force = F _s =			26.03 kips	Sliding Force = F _s =			26.03 kips		
Net Moment = Resistin	na Moment - Overturnir	a Moment =	338.64 k-ft.	Net Moment = Resist	ting Moment - Overturnin	a Moment =	152.05 k-ft.		
Total Vertical Force (T	VF) = Σ Vert. Forces =	5	63.91 kips	Total Vertical Force (TVF) = Σ Vert. Forces =	5	43.77 kips		
Dist. from Point A (A) =	= Net. Moment / TVF =		5.30 ft.	Dist. from Point A (Ā)	= Net. Moment / TVF =		3.47 ft.		
Eccentricity "e" = (0.5*	W _f) - Ā =		2.45 ft.	Eccentricity "e" = (0.5	5*W _f) - Ā =		4.28 ft.		
Maximum Bearing Pre	essure = TVF/(Wf-2*e) =		6.03 ksf						
Minimum Bearing Pres	ssure = TVF/(Wf-2*e) =		6.03 ksf						
SERVICE I LOAD OVERTURNING AND 1.0*EH+1.0*LS _H +1.0*E ΣM about point "A"	COMBINATION SLIDING FORCES FR EHp	ROM SOIL				Acmont (k ft)			
Area/Force	Unfactored Load	Load Factor	Force (k)	Moment Arm (ft)	Ma	v Load Factor			
6	17.35	1 00	17.35	9.37		162 53	. v _		
7	0.00	1.00	0.00	14.05		0.00	oi de ce		
11	0.00	1.00	0.00	2.25		0.00	보 쥰 뇬 ∽		
	Σ	Sliding Forces, F _s =	17.35 kips	Σ Over	turning Moments =	162.53 k*ft.	-		
RESISTING MOMENT 1.0*DC+1.0*EV+1.0*L ΣM about point "A"	FS AND DEAD LOAD F S _V	ROM SUBSTRUC	TURE						
	Force (k)								
Area/Force	Unfactored Load	Load Factor	Force (k)	Moment Arm (ft)	<u>N</u>	Moment (k-ft)			
1	6.32	1.00	6.32	4.75		30.03	the case		
2	5.25	1.00	5.25	10.50		55.13	oac		
3	2.25	1.00	2.25	2.00		4.50	o J E S		
0	3.74	1.00	0.74	0.10		23.12		_	
4	23.55	1.00	23.55	2.00		270.94	Б Б		
6 (Vertical comp.)	0.00	1.00	0.00	15.50		0.00	oi. T		
q	3.00	1.00	3.00	6.85		20.52	ê û		
10	0.00	1.00	0.00	12 17		0.00	Jor		
Surcharge on Heel	2.40	1.00	2.40	10.50		25.20	⊂ ø	-	
Surcharge on Toe	0.00	1.00	0.00	2.00		0.00	al		
DC	0.00	1.00	0.00	0.00		0.00	Ľ ŭ		
		Σ Vert. Forces =	47.93 kips	ΣRe	esisting Moments =	432.32 k*ft.			
Overturning Moment	S Ovorturning Mamon	to -	162 52 4 #	Where the wall is st	apported by a rock foundation:	where the	e variables are as	defined in	
Resisting Moment = 5	Max Resisting Momen	us =	102.00 K-IL	the continuit of	shall be calculated associated	Figure 11.0	5.3.2-2. If the resultant is	s outside the	
Sliding Force = $F =$	max. Iteoloung MUIIIEI	10 -	17.25 king	linearly distributed	pressure over an effective bas	e middle one	-third of the base:		
Not Moment = D^{-1}	a Mamont Quarters	a Momont -	17.30 KIPS	area as shown in F	igure 11.6.3.2-2. If the resultat	at	$2\Sigma V$		
Total Vertical Force (T	VE) = 5 Vert Forces =	iy moment =	203./9 K-IL	as within the middle	one-third of the base:	σ _{1max} = 3[(B/2(-e)]	(11.6.3.2-4)	
Dist from Point A (\bar{A}) =	= Net Moment / $TVF =$		47.90 KIPS	$\Sigma V($	(1.62)				
Eccentricity "e" = $(0.5*)$	W.) - Ā =		0.00 IL	$\sigma_{\text{vmax}} = \frac{B}{B} (1)$	B) (11.0.3.2-	$\sigma_{main} = 0$		(11.6.3.2-5)	
	- T)/E//M/6 Of-)	_	2.12 IL 4.06 kef	S. 12 /		where the	e variables are as	defined in	
Minimum Bearing Pre	$SSULE = IVF/(VVI-2^{\circ}e) =$	-	4.20 KSI 4.26 kef	$\sigma_{\text{unin}} = \frac{2N}{R} \left[1 \right]$	$-6\frac{e}{B}$ (11.6.3.2-3	Figure 11.0	5.3.2-2.		
winimitum bearing Ples	sourc - TVF/(VVI-2 e) =		7.20 131	5	- /				

F

APPENDIX VII

GLOBAL STABILITY ANALYSIS OUTPUT

