FRA-70-12.68 PROJECT 4R RETAINING WALL 4W20 PID NO. 105523 FRANKLIN COUNTY, OHIO

STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For: GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

> Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

> > Rii Project No. W-13-045

July 2018

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990

July 16, 2018

Mr. Christopher W. Luzier, P.E. Project Manager GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

Re: Structure Foundation Exploration Report FRA-70-12.68 Project 4R Retaining Wall 4W20 PID No. 105523 Rii Project No. W-13-045

Mr. Luzier:

Resource International, Inc. (Rii) is pleased to submit this structure foundation exploration report for the above referenced project. This report includes recommendations for the design and construction of the proposed Retaining Wall 4W20 as part of the FRA-70-12.68 Project 4R in Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the structure foundation exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Hanumanth S. Kulkarni, Ph.D. Project Engineer

tt

Jonathan P. Sterenberg, P.E. Director – Geotechnical Services

Enclosure: Structure Foundation Exploration Report

6350 Presidential Gateway Columbus, Ohio 43231 Phone: 614.823.4949 Fax: 614.823.4990 Planning

Engineering

Construction Management

Technology

Palm Beach, Florida

Sectio	on	Pag	ge
EXEC	UTIVE	SUMMARY	I
		ration and Findings ses and Recommendations	
1.0	INTRO	DOUCTION	1
2.0	GEOL	OGY AND OBSERVATIONS OF THE PROJECT	1
	2.1 2.2	Site Geology Existing Conditions	
3.0	EXPL	ORATION	2
4.0	FINDI	NGS	4
5.0	4.1 4.2 4.3 4.4 ANAL 5.1	Surface Materials Subsurface Soils Bedrock Groundwater YSES AND RECOMMENDATIONS MSE Wall Recommendations	5 6 6
	5.2 5.3	 5.1.1 Strength Parameters Utilized in External and Global Stability Analyses	9 10 11 12 12 12 13 14 14 15
6.0	LIMIT	ATIONS OF STUDY	15

TABLE OF CONTENTS

APPENDICIES

- Appendix I Vicinity Map and Boring Plan
- Appendix II Description of Soil Terms
- Appendix III Project Boring Logs: B-016-1-09 and B-016-6-13
- Appendix IV MSE Wall Calculations

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a structure foundation exploration for the Retaining Wall 4W20, located along I-70 eastbound between Scioto River and CSX and Norfolk Southern railroads. Based on information provided by GPD GROUP, it is understood that the proposed Retaining Wall 4W20 will provide the required grade separation to avoid impacts to the adjacent power substation on the south side of I-70. It is also understood that a mechanically stabilized earth (MSE) wall is being considered as the preferred wall type, which will be between Sta. 5063+70.44, 45.12' Rt to Sta. 5066+44.39, 43.09' Rt. (BL Ramp C5). The wall height will range from 9.5 feet at the beginning of the wall alignment to a maximum height of 18.8 feet, and the total wall length is approximately 235 lineal feet.

Exploration and Findings

On July 18, 2013, one (1) structural boring, designated as B-016-6-09 was drilled to a completion depth of 50.0 feet below the existing ground surface along the proposed alignment of MSE retaining wall 4W20. In addition to the boring performed by Rii as part of the current exploration, one (1) boring, designated as B-016-1-09, from the preliminary engineering exploration were performed by DLZ in the vicinity of the proposed alignment of MSE retaining wall 4W20. Boring B-016-1-09 was advanced to a depth of 45.0 feet below the existing ground surface.

Borings B-016-1-09 and B-016-6-13 were performed on the south side of the I-70 eastbound, just north of the existing electrical substation, and encountered 3.0 inches of topsoil and 3.0 feet of fill material consisting of sandy silt with stone fragments, respectively, at the ground surface.

Beneath the surface materials, existing fill was encountered in borings B-016-1-09 and B-016-6-13 extending to a depth of 8.0 and 18.5 feet below the existing ground surface, respectively. The fill material consisted of brown and black gravel, gravel and sand, gravel with sand and silt, coarse and fine sand, sandy silt and silt and clay (ODOT A-1-a, A-1-b, A-2-4, A-3a, A-4a, A-6b) and contained brick fragments and wood pieces up to a depth of 18.5 feet below the existing grade as indicated in boring B-016-1-09.

Underlying the surficial materials and fill material, natural granular soils were predominantly present in the upper 37 feet of the soil profile overlying cohesive soils as indicated in boring B-016-1-09 and cohesive soils were predominant in the entire boring with seam of granular material indicated in boring B-016-6-13. The granular soils were generally described as brown, gravel, gravel and sand, and silt (ODOT A-1-a, A-1-b, A-4b). The cohesive soils were described as reddish brown, brown, and gray silty clay and sandy silt (ODOT A-4a, A-6b).

Analyses and Recommendations

MSE Wall Recommendations

Based on proposed plan and profile information provided by GPD GROUP, the maximum wall height is anticipated to be 18.8 feet, from the top of the leveling pad to the proposed profile grade of the roadway. Since the wall is located within an existing floodplain, the analysis was performed using a design groundwater level at the ground surface.

The anticipated bearing materials along the retaining wall 4W20 consist of existing fill comprised of very loose to medium dense gravel, gravel and sand, coarse and fine sand (ODOT A-1-a, A-1-b, A-3a) with brick fragments, wood pieces and organics. However, as noted in Section 5.1 of the full report, it is understood that ground improvement techniques will be implemented along the alignment of Retaining Wall 4W8, which is in close proximity to this wall and would present the most economical method for stabilizing the soil along this wall. As this is a proprietary design, the analysis for this wall considers the existing fill material will remain in place. MSE wall foundations bearing on existing fill material may be proportioned for a nominal bearing resistance as indicated in Table 5. A geotechnical resistance factor of φ_b =0.65 was considered in calculating the factored nominal bearing resistance at the strength limit state.

Structure Reference	Wall Height Analyzed	Backslope Behind	Minimum Required Reinforcement	Bearing Re Strengt (k	Strength Limit Equivalent Bearing Pressure ³	
	(feet)	Wall	Length ¹ (feet)	Nominal	Factored ²	Pressure * (ksf)
Retaining Wall 4W20 (B-016-1-09 / B-016-6-13) 18.8 Level		Level	13.2 (0.7H)	6.06	3.95	4.59

FRA-70-12.58 MSE Retaining Wall 4W20 Design Parameters

1. The required foundation width is expressed as a percentage of the wall height, H.

2. A geotechnical resistance factor of $\varphi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.

3. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Total settlements of 4.0 to 4.3 inches at the center of the reinforced mass and 3.2 to 3.3 inches at the facing of the wall are anticipated. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately 0 to 7 days.

Based on the results of the external and global stability analysis performed for the MSE wall, bearing stability under drained conditions was not satisfied at a strap length equal to 0.7 times the wall height. Increasing the width of the wall up to 80 percent of wall height may satisfy all of the external and global stability requirements. However, this

would introduce a significant risk due to the potential for excessive settlement with time if the organic matter and wood within the fill material decompose.

As noted in Section 5.1 of the full report, consideration was given to over excavating these soils and replacing it with granular embankment; however, given the depth of undercut and proximity to the I-70 roadway and adjacent electrical substation, this may be a very expensive and uneconomical option. Recommendations have been provided in the structure foundation exploration report for Retaining Wall 4W8 to incorporate the use of ground improvement techniques to stabilize the existing fill and underlying cohesive soils that were encountered along that wall, which is in close proximity to this wall location. The recommendations for this alternative should govern the design of this portion of the wall as well.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70-12.68/13.11/14.05C (Project 4R/4H/4A) projects in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project. The FRA-70-12.68 (Project 4R) phase will consist of all work associated with the construction of Ramp C5, starting at the bridge over Souder Avenue and extending east to Front Street. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and SR-315 southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. This project includes the construction of six (6) new bridge structures for the proposed Ramp C5 alignment and replacement of three (3) bridge structures, two along I-70 and the Front Street Structure over I-70, as well as the construction of fourteen (14) new retaining walls and a culvert structure to accommodate the new configuration.

This report is a presentation of the structure foundation exploration performed for the design and construction of proposed Retaining Wall 4W20, located along I-70 eastbound between Scioto River and CSX and Norfolk Southern railroads, as shown on the vicinity map and boring plan presented in Appendix I. Based on information provided by GPD GROUP, it is understood that the proposed Retaining Wall 4W20 will provide the required grade separation to avoid impacts to the adjacent power substation on the south side of I-70. It is also understood that a mechanically stabilized earth (MSE) wall is being considered as the preferred wall type, which will be between Sta. 5063+70.44, 45.12' Rt to Sta. 5066+44.39, 43.09' Rt. (BL Ramp C5). The wall height will range from 9.5 feet at the beginning of the wall alignment to a maximum height of 18.8 feet, and the total wall length is approximately 235 lineal feet.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often

occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules. Just east of the Scioto River, the underlying bedrock consists of the Upper Devonian Ohio Shale Formation overlying the Middle Devonian-aged Delaware Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. The Delaware Limestone consists of bluish gray, thin to medium bedded dolomitic limestone with nodules and layers of chert. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits. Bedrock was not encountered in borings B-016-1-09 and B-016-6-13 within the termination depths.

2.2 Existing Conditions

The existing site of the proposed MSE retaining wall 4W20 is just north of an existing electrical substation and north of the Scioto Audubon Park. The project is located along the I-70/71 south innerbelt alignment, primarily along I-70 eastbound between Scioto River, and CSX and Norfolk Southern Railroad. The roadway is an eight-lane expressway in the area which continues into downtown Columbus and crosses under Front Street and High Street. The existing I-70 is elevated from the surrounding terrain from east of the Scioto River to just west of Front Street and there are existing overpass bridges where the roadway crosses the existing CSX and Norfolk Southern Railroads and Short Street. The daily traffic volume along the project alignment is very high. The alignment traverses primarily commercial and government properties. The surrounding terrain across the site is relatively flat-lying, with general slope toward the Scioto River.

3.0 EXPLORATION

On July 18, 2013, one (1) structural boring, designated as B-016-6-09 was drilled to a completion depth of 50.0 feet below the existing ground surface along the proposed alignment of MSE retaining wall 4W20. In addition to the boring performed by Rii as part of the current exploration, one (1) boring, designated as B-016-1-09, from the preliminary engineering exploration were performed by DLZ in the vicinity of the proposed alignment of MSE retaining wall 4W20. Boring B-016-1-09 was advanced to a depth of 45.0 feet below the existing ground surface. The project boring locations

including the current boring and the preliminary boring are shown on the boring plan provided in Appendix I of this report and summarized in Table 1 below.

Boring Number	Reference Alignment	Station	Offset	Latitude	Longitude	Ground Elevation (feet msl)	Boring Depth (feet)
B-016-1-09	BL Ramp C5	5064+52.34	9.1' Rt.	39.952340044	-83.010106810	717.2	45.0
B-016-6-13	BL Ramp C5	5066+43.00	2.9' Rt.	39.952535194	-83.009477109	717.0	50.0

 Table 1. Test Boring Summary

The locations for the current exploration borings performed by Rii were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by GPD GROUP.

The boring B-016-6-13 performed by Rii for the current exploration was drilled using an all-terrain vehicle (ATV) mounted rotary drilling machine (CME-750), utilizing a 3.25-inch inside diameter, hollow-stem augers to advance the holes. Standard penetration test (SPT) and split spoon sampling were performed in the borings at 2.5-foot increments of depth to 20 feet and at 5.0-foot increments thereafter to the boring termination depth. The boring B-016-1-09 performed by DLZ for during preliminary exploration was drilled using truck mounted rotary drilling machine (CME-55). Standard penetration test (SPT) and split spoon sampling were performed in the borings at 2.5-foot increments of does drilled using truck mounted rotary drilling machine (CME-55). Standard penetration test (SPT) and split spoon sampling were performed in the borings at 2.5-foot increments of depth to 30 feet and at 5.0-foot increments thereafter to the boring termination depth.

The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blow per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation. Both values are represented on boring logs in Appendix III.

$$N_{60} = N_m^*(ER/60)$$

Where: N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

The hammers for the CME 750X drill rig used by Rii was calibrated on April 26th, 2013, and have drill rod energy ratio of 82.6 percent. The hammer for the CME-55 drill rig used by DLZ for the preliminary exploration borings had a drill rod energy ratio of 62.0 percent.

During drilling, Rii personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	14
Plastic and Liquid Limits	AASHTO T89, T90	5
Gradation – Sieve/Hydrometer	AASHTO T88	5

Table 2. Laboratory Test Schedule

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Materials

Borings B-016-1-09 and B-016-6-13 were performed on the south side of the I-70 eastbound, just north of the existing electrical substation, and encountered 3.0 inches of topsoil and 3.0 feet of fill material consisting of sandy silt with stone fragments, respectively, at the ground surface.

4.2 Subsurface Soils

Beneath the surface materials, existing fill was encountered in borings B-016-1-09 and B-016-6-13 extending to a depth of 8.0 and 18.5 feet below the existing ground surface, respectively. The fill material consisted of brown and black gravel, gravel and sand, gravel with sand and silt, coarse and fine sand, sandy silt and silt and clay (ODOT A-1-a, A-1-b, A-2-4, A-3a, A-4a, A-6b) and contained brick fragments and wood pieces up to a depth of 18.5 feet below the existing grade as indicated in boring B-016-1-09.

Underlying the surficial materials and fill material, natural granular soils were predominantly present in the upper 37 feet of the soil profile overlying cohesive soils as indicated in boring B-016-1-09 and cohesive soils were predominant in the entire boring with seam of granular material indicated in boring B-016-6-13. The granular soils were generally described as brown, gravel, gravel and sand, and silt (ODOT A-1-a, A-1-b, A-4b). The cohesive soils were described as reddish brown, brown, and gray silty clay and sandy silt (ODOT A-4a, A-6b).

The relative density of fill material is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular fill material encountered ranged from very loose (N₆₀ < 5 blows per foot [bpf]) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling varied greatly from 3 bpf to 56 bpf in the upper 18.5 feet of fill material. The natural granular soil encountered ranged from medium dense ($11 \le N_{60} \le 30$ bpf) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 18 bpf to 51 bpf within the natural soils. The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soil encountered ranged from medium stiff ($0.5 < HP \le 1.0$ tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 1.0 to over 4.5 tsf (limit of instrument).

Natural moisture contents of the soil samples tested ranged from 4.0 to 48.0 percent. A moisture content of 52.6 percent was obtained in sample SS-7 from boring B-016-1-09. The high moisture content is likely due to the presence of wood fragments and other organic matter in the sample. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 0 to 44 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be at to significantly above optimum moisture levels.

4.3 Bedrock

Bedrock was not encountered in either of the borings within the termination depts.

4.4 Groundwater

Groundwater was encountered in the borings as presented in Table 3.

Boring	Ground	Initial Gro	oundwater	Upon Completion					
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)				
B-016-1-09	717.2	21.0	696.2	34.8	682.4				
B-016-6-13	717.0	23.5	693.5	24.0	693.0				

Table 3. Groundwater

Groundwater was encountered initially during drilling in both the borings at depths ranging from 21.0 to 23.5 feet below the existing ground surface, which corresponds to elevations ranging from 693.5 to 696.2 feet msl. The groundwater level at the completion of drilling was measured at depths ranging from 34.8 to 24.0 feet below the existing ground surface, corresponding to elevations ranging from 682.4 to 693.0 feet msl. Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the subsurface exploration has been used to determine the foundation support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the design of foundation systems for the subject MSE retaining wall, as well as the construction specifications related to the placement of foundation systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed retaining wall were provided by GPD GROUP. Based on the information provided, it is understood that Retaining Wall 4W20 will be an MSE wall type with a height ranging from 9.5 feet at the beginning of the wall alignment to a maximum height of 18.8 feet, and a total wall length is approximately 235.6 lineal feet.

5.1 MSE Wall Recommendations

MSE walls are constructed on earthen foundations at a minimum depth of 3.0 feet below grade, as defined by the top of the leveling pad to the ground surface located 4.0 feet from the face of the wall. Per Section 204.6.2.1 of the 2007 ODOT BDM, the height of the MSE wall is defined as the elevation difference between the profile grade at the face of the wall and the top of the leveling pad. However, it is noted that the reinforced soil mass only extends from the foundation bearing elevation (top of leveling pad) to the roadway subgrade elevation. The width of the MSE wall foundation (B) is defined by the length of the reinforced soil mass. Per the Section 204.6.2.1 of the 2007 ODOT BDM and Supplemental Specification (SS) 840, the minimum length of the reinforced soil mass is equal to 70 percent of the height of the MSE wall or 8.0 feet whichever is greater. A non-structural bearing leveling pad consisting of a minimum of 6.0-inches of unreinforced concrete should be placed at the base of the wall facing for constructability purposes. Please note that the leveling pad is not a structural foundation.

Based on proposed plan and profile information provided by GPD GROUP, the maximum wall height is anticipated to be 18.8 feet, from the top of the leveling pad to the proposed profile grade of the roadway. Therefore, it is considered that the minimum reinforcement length and the effective foundation width (B) of the MSE wall for external and global stability calculations will be 13.2 feet. For the analysis, the foundation width was set at 70 percent of the wall height, and the foundation width was increased, as necessary, until external and global stability requirements were satisfied.

Per Section 840.06.D of ODOT SS 840, the foundation subgrade should be inspected to verify that the subsurface conditions are the same as those anticipated in this report. Existing fill consisting of very loose to loose gravel overlying coarse and fine sand (ODOT A-1-a, A-3a) was encountered at the proposed bearing elevation, which extends to a depth ranging from 9.5 to 15.3 feet below the proposed bearing elevation, which corresponds to elevation of 698.7 feet msl in boring B-016-1-09. It is important to note that the fill material contained brick fragments, wood pieces, and organic material. These soils are not considered suitable for foundation support for a wall of this size. Consideration was given to over excavating these soils and replacing it with granular embankment; however, given the depth of undercut and proximity to the I-70 roadway and adjacent electrical substation, this may be a very expensive and uneconomical option. Recommendations have been provided in the structure foundation exploration report for Retaining Wall 4W8 to incorporate the use of ground improvement techniques to stabilize the existing fill and underlying soils along that wall, which is just to the east of this wall. The recommendations for this alternative should govern the design of this portion of the wall. For this report, the analysis of Wall 4W20 has been conducted using the soil profile as encountered in the borings.

Per ODOT SS 840, following foundation subgrade inspection and acceptance, a minimum of 12.0 inches of ODOT Item 703.16.C, Granular Material Type C, should be placed and compacted in accordance with ODOT Item 204.07.

Since the walls are located within an existing floodplain, the analyses were performed using a design groundwater level at the ground surface.

5.1.1 Strength Parameters Utilized in External and Global Stability Analyses

The shear strength parameters utilized in the external and global stability analyses for the MSE walls at the abutments are provided in Table 4.

Material Type	γ (pcf)	φ' ⁽¹⁾ (°)	<i>c</i> ' ⁽²⁾ (psf)	<i>S_u</i> ⁽³⁾ (psf)				
MSE Wall Backfill (Select granular fill)	120	34	0	N/A				
Item 203 Granular Embankment (Retained Soil at 4W20)	130	33	0	N/A				
Existing Fill: Stiff Silt and Clay (ODOT A-6a)	115	26 ⁴	0	1,500				
Medium Dense to Very Dense Gravel, Gravel and Sand (ODOT A-1-a, A-1-b)	125 to 135	37 to 42	0	N/A				
Very Loose to Loose Coarse and Fine Sand (ODOT A-3a)	120	26	0	N/A				
Loose Gravel with Sand and Silt (ODOT A-2-4)	125	30	0	N/A				
Hard Silt (ODOT A-4b)	130	32	0	N/A				
Stiff to Very Stiff Sandy Silt (ODOT A-4a)	120	28	0	3,125				
Very Stiff to Hard Silt and Clay (ODOT A-6b)	130	27	50	6,500				

Table 4. Shear Strength Parameters Utilized in MSE Wall Stability Analyses

1. Per Figure 7-45, Section 7.6.9 of FHWA GEC 5 for cohesive soils and Table 10.4.6.2.4-1 of the 2018 AASHTO LRFS BDS for granular soils.

2. Estimated based on overconsolidated nature of soil.

3. $S_u = 125(N_{60})$, Terzaghi and Peck (1967).

4. Friction angle based on the significant presence of debris and deleterious materials present within the existing fill.

Shear strength parameters for the reinforced soil backfill are provided in ODOT SS 840. Per SS 840, the select granular backfill in the reinforced zone must meet the shear strength requirements provided in Table 4. Based on the design plans provided by GPD GROUP, it is understood that Item 203 granular embankment will be utilized where any new embankment will be placed behind the reinforced soil backfill at both MSE walls. Therefore, the shear strength parameters for the retained fill will be modeled using a friction angle of 33 degrees since granular embankment is being specified, instead of using the shear strength parameters provided in ODOT SS 840.

The shear strength parameters for the natural soils were assigned using correlations provided in FHWA Geotechnical Engineering Circular (GEC) No. 5 (FHWA-NHI-16-072) Evaluation of Soil and Rock Properties and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles. However, the friction angle for the existing fill that consisted of medium dense gravel with sand and silt was conservatively assigned since there no records of the material origin or how it was placed.

5.1.2 Bearing Stability

The anticipated bearing materials along the retaining wall 4W20 consist of existing fill comprised of very loose to medium dense gravel, gravel and sand, coarse and fine sand (ODOT A-1-a, A-1-b, A-3a) with brick fragments, wood pieces and organics. However, as noted in Section 5.1, it is understood that ground improvement techniques will be implemented along the alignment of Retaining Wall 4W8, which is in close proximity to this wall and would present the most economical method for stabilizing the soil along this wall. As this is a proprietary design, the analysis for this wall considers the existing fill material will remain in place. MSE wall foundations bearing on existing fill material may be proportioned for a nominal bearing resistance as indicated in Table 5. A geotechnical resistance factor of φ_b =0.65 was considered in calculating the factored nominal bearing resistance at the strength limit state.

Structure Reference	Wall Height Analyzed	Backslope Behind	Behind Reinforcement		Bearing Resistance at Strength Limit (ksf)		
	(feet)	wali	Length ¹ (feet)	Nominal	Factored ²	Pressure ³ (ksf)	
Retaining Wall 4W20 (B-016-1-09 / B-016-6-13)	18.8	Level	13.2 (0.7H)	6.06	3.95	4.59	

 Table 5. FRA-70 MSE Retaining Wall 4W20 Design Parameters

1. The required foundation width is expressed as a percentage of the wall height, H.

2. A geotechnical resistance factor of $\varphi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.

3. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Rii performed a verification of the bearing pressure exerted on the subgrade soils for the maximum specified wall heights indicated in Table 5. Based on the minimum length of reinforced soil mass presented, the factored equivalent bearing pressure exerted below the wall <u>will exceed</u> the factored bearing resistance at the strength limit state for Wall 4W20, considering the wall will bear on the existing fill material.

5.1.3 Settlement Evaluation

The compressibility parameters utilized in the settlement analysis of the proposed MSE walls are provided in Table 6.

Material Type	γ (pcf)	LL (%)	C_c ⁽¹⁾	$C_{r}^{(2)}$	e _o ⁽³⁾	C _v ⁽⁴⁾ (ft²/yr)	N_{60}	C' ⁽⁵⁾	
Item 203 Granular Embankment	130	N/A	N/A	N/A	N/A	N/A	30	161 to 215	
Existing Fill: Stiff Silt and Clay (ODOT A-6a)	115	33	0.207	0.031	0.530	600	N/A	N/A	
Medium Dense to Very Dense Granular Soils (ODOT A-1-a, A-1-b, A-3a)	125 to 135	N/A	N/A	N/A	N/A	N/A	22 to 85	76 to 340	
Stiff to Very Stiff Sandy Silt (ODOT A-4a)	120	24	0.126	0.013	0.460	800	N/A	N/A	
Very Stiff to Hard Silty Clay (ODOT A-6b)	130	35	0.225	0.022	0.569	400	N/A	N/A	

Table 6. Compressibility Parameters Utilized in Settlement Analysis

1. Per Table 6-9, Section 6.14.1 of FHWA GEC 5.

2. Estimated at 10% of C_c for natural soils and 15% C_c for existing fill per Section 8.11 of Holtz and Kovacs (1981).

3. Per Table 8-2 of Holtz and Kovacs (1981).

4. Per Figure 6-37, Section 6.14.2 of FHWA GEC 5.

5. Per Figure 10.6.2.4.2-1 of 2018 AASHTO LRFD BDS.

Results of the settlement analysis are tabulated in Table 7. Total settlements of 4.0 to 4.3 inches at the center of the reinforced mass and 3.2 to 3.3 inches at the facing of the wall are anticipated. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately 0 to 7 days. Please note that the consolidation settlement and time rate of consolidation are based on estimates using correlated compressibility parameters provided in Table 6 for the underlying soils. Actual settlement and time rate of consolidation should be determined by monitoring the settlement of the wall using settlement platforms.

Structure	Wall Height	Backslope Behind	Service Limit Equivalent	Total Settler (inc	Time for 90%	
Reference	Analyzed (feet)	Wall in Analysis	Bearing Pressure ¹ (ksf)	Center of Wall Mass	Facing of Wall	Consolidation (Days)
MSE Retaining Wall 4W20 (B-016-1-09 / B-016-6-13)	18.8	Level	3.19	4.011 to 4.304	3.200 to 3.339	0 to 7

Table 7. FRA-70-1358A MSE Wall Settlement Results

1. The service limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the service limit state.

Per Section 204.6.2.1 of the ODOT BDM, "the maximum allowable differential settlement in the longitudinal direction (regardless of the size of panels) is one (1) percent." Based on the total anticipated settlement at the facing of the wall, the amount of settlement anticipated at the facing along Wall 4W20, as well as the presence of existing fill material that may vary significantly over the footprint of the wall, differential settlement greater than 1/100 may occur if the fill material is not stabilized or over excavated and replaced with embankment fill.

If either the total or differential settlement predicted presents an issue with respect to the deformation tolerances that the walls can withstand, then measures should be taken to minimize the amount of settlement that will occur. This can be achieved by preloading the site and consolidating the underlying soils prior to constructing the wall. If preloading the site is not a desired option, then consideration could be given to ground improvement through the use of stone columns. Settlement calculations are provided in Appendix IV.

5.1.4 Eccentricity (Overturning Stability)

The resistance of the MSE wall to overturning will be dependent on the location of the resultant force at the bottom of the wall due to the overturning and resisting moments acting on the wall. For MSE wall, overturning stability is determined by calculating the eccentricity of the resultant force from the midpoint of the base of the wall and comparing this value to a limiting eccentricity value. Per Section 11.10.5.5 of the 2018 AASHTO LRFD BDS, for foundations bearing on soil, the location of the resultant of the reaction forces shall be within the middle two-thirds ($^{2}/_{3}$) of the base width. Therefore, the limiting eccentricity of the resultant force for the maximum specified wall heights indicated in Table 5. Based on the minimum length of reinforced soil mass presented in Table 5 and utilizing the soil parameters listed in Section 5.1.1 for the retained embankment material, the calculated eccentricity of the resultant force **will not exceed** the limiting eccentricity at the strength limit state.

5.1.5 Sliding Stability

The resistance of the MSE wall to sliding was evaluated per Section 11.10.5.3 of the 2018 AASHTO LRFD BDS. For drained conditions, the sliding resistance is determined by multiplying a coefficient of sliding friction "f" times the total vertical force at the base of the wall. The coefficient of sliding friction is determined based on the limiting friction angle between the foundation soil and the reinforced soil backfill. Based on the soil parameters listed in Section 5.1.1 for the foundation and reinforced soil backfill, a coefficient of sliding friction of 0.49 was utilized for design of the MSE wall. A geotechnical resistance factor of φ_{τ} =1.0 was considered in calculating the factored shear resistance between the reinforced soil mass presented in Table 5 and utilizing the soil parameters listed in Section 5.1.1 for the MSE wall <u>will not exceed</u> the factored shear resistance at the strength limit state under drained conditions for MSE wall.

5.1.6 Overall (Global) Stability

A slope stability analysis was performed to check the global stability of the MSE wall. As per the AASHTO LRFD BDS, safety against soil failure shall be evaluated at the service limit state by assuming the reinforced soil mass to be a rigid body. Soil parameters utilized in the global stability analyses are presented in Section 5.1.1. For the global stability condition, it was considered that the failure plane will not cross through the reinforced soil mass. The computer software program Slide 6.0 manufactured by Rocscience Inc. was utilized to perform the analyses.

Per Section 11.6.2.3 of the 2018 AASHTO LRFD BDS, for MSE walls that are not integrated with or supporting structural foundations or elements, global stability is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.75 is greater than 1.0. Therefore, global stability for the portions of the wall that are adjacent to the abutment substructure is satisfied when a minimum factor of safety of 1.3 is obtained. For an MSE wall designed with the minimum strap lengths listed in Table 5, the resulting factor of safety under drained conditions (long-term stability) using the Spencer's analysis method was greater than 1.3.

5.1.7 Final MSE Wall Considerations

Based on the results of the external and global stability analysis performed for the MSE wall, bearing stability under drained conditions was not satisfied at a strap length equal to 0.7 times the wall height. Increasing the width of the wall up to 80 percent of wall height may satisfy all of the external and global stability requirements. However, this would introduce a significant risk due to the potential for excessive settlement with time if the organic matter and wood within the fill material decompose.

As noted in Section 5.1, consideration was given to over excavating these soils and replacing it with granular embankment; however, given the depth of undercut and proximity to the I-70 roadway and adjacent electrical substation, this may be a very expensive and uneconomical option. Recommendations have been provided in the structure foundation exploration report for Retaining Wall 4W8 to incorporate the use of ground improvement techniques to stabilize the existing fill and underlying cohesive soils that were encountered along that wall, which is in close proximity to this wall location. The recommendations for this alternative should govern the design of this portion of the wall as well.

Calculations for external (bearing and sliding resistance and limiting eccentricity) and overall (global) stability of the MSE wall are provided in Appendix IV.

5.2 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (ϕ '), and lateral earth pressure coefficients for at-rest conditions (k_o), active conditions (k_a), and passive conditions (k_p) have been estimated and are provided in Table 8 and Table 9.

· · · · · · · · · · · · · · · · · · ·		/				
Soil Type	γ (pcf) ¹	c (psf)	φ	<i>k</i> _a	ko	k_p
Existing Fill	115	0	0°	N/A	N/A	N/A
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	130	0	33°	0.30	0.46	3.39

Table 8. Estimated Undrained (Short-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Soil Type	γ (pcf) ¹	c (psf)	φ'	ka	k _o	<i>k</i> _p
Existing Fill	115	0	26°	0.35	0.56	4.53
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53
Very Stiff to Hard Cohesive Soil	125	50	28°	0.32	0.53	5.07
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.3 Construction Considerations

All site work shall conform to local codes and to the latest ODOT Construction and Materials Specifications (CMS), including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.3.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Soil	Maximum Back Slope	Notes
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None

Table 10. Excavation Back Slopes

5.3.2 Groundwater Considerations

Based on the groundwater observations made during drilling, groundwater is not anticipated to be encountered during construction. Where/if groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

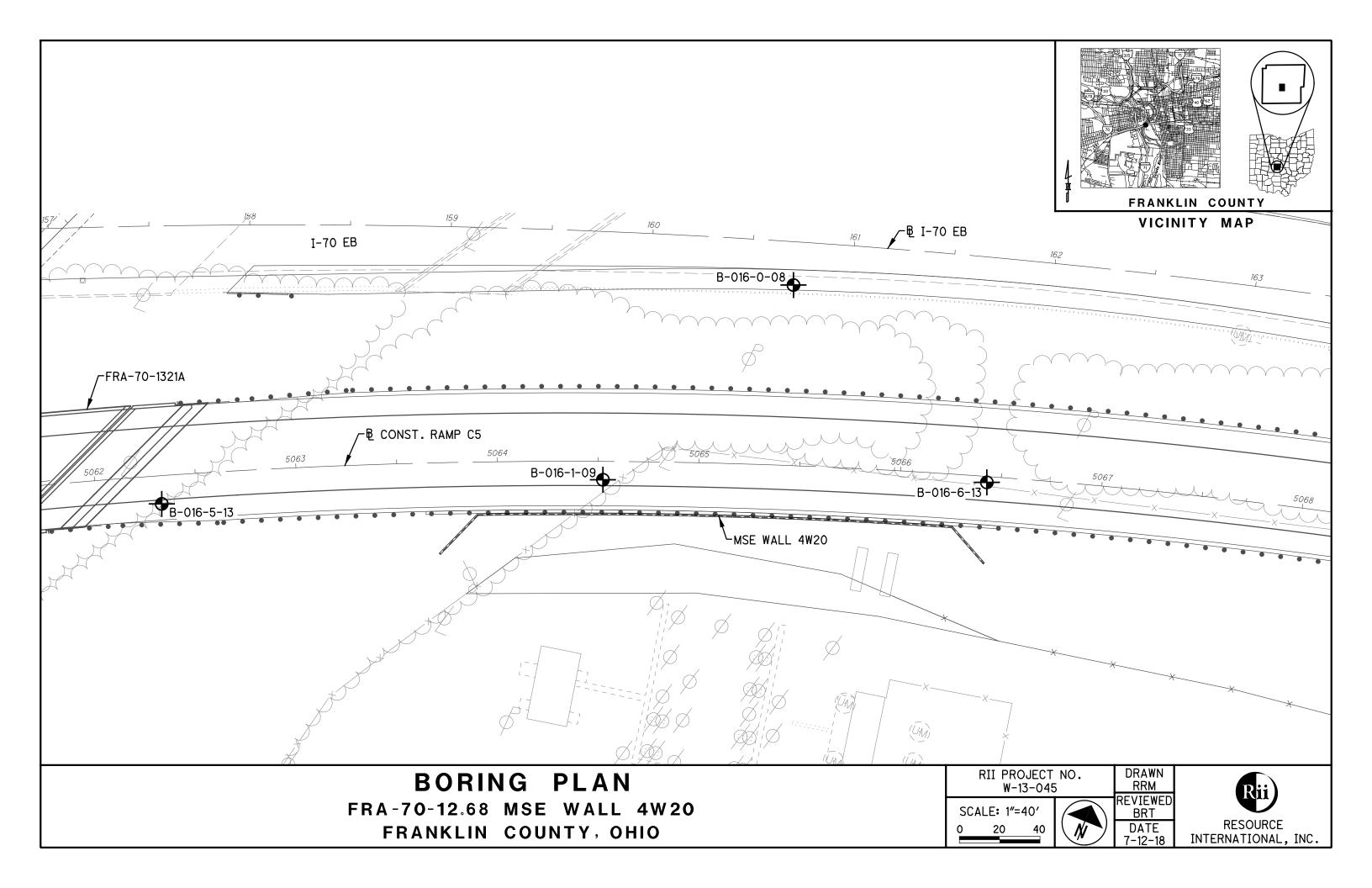
6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the

owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.


The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

VICINITY MAP AND BORING PLAN

APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>**Granular Soils**</u> – ODOT A-1, A-2, A-3, A-4 (non-plastic) The relative compactness of granular soils is described as:

Description	Blows per foot – SPT (N ₆₀)						
Very Loose	Below		5				
Loose	5	-	10				
Medium Dense	11	-	30				
Dense	31	-	50				
Very Dense	Over		50				

Cohesive Soils - ODOT A-4, A-5, A-6, A-7, A-8

The relative consistency of cohesive soils is described as:

Description	Unconfined <u>Compression (tsf)</u>						
Very Soft	Less than		0.25				
Soft	0.25	-	0.5				
Medium Stiff	0.5	-	1.0				
Stiff	1.0	-	2.0				
Very Stiff	2.0	-	4.0				
Hard	Over		4.0				

Gradation - The following size-related denominations are used to describe soils:

<u>Soil Fra</u> Boulders Cobbles		<u>Size</u> Larger than 12" 12" to 3"					
Gravel	coarse fine	3" to ¾" ¾" to 2.0 mm (¾" to #10 Sieve)					
Sand	coarse fine	2.0 mm to 0.42 mm (#10 to #40 Sieve) 0.42 mm to 0.074 mm (#40 to #200 Sieve)					
Silt Clay		0.074 mm to 0.005 mm (#200 to 0.005 mm) Smaller than 0.005 mm					

Modifiers of Components - The following modifiers indicate the range of percentages of the minor soil components:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	<u>Range - ODOT</u>
Dry	Well below Plastic Limit
Damp	Below Plastic Limit
Moist	Above PL to 3% below LL
Wet	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe the relative strength of bedrock:

Description	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	ation OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
	Gravel and/or Stone Fragments		A-1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and∕or Stone Fragments with Sand	A	1-Ь		50 Max.	25 Max.		6 Max.	0	
FS	Fine Sand	A	- 3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
<u>4.0.0.0</u> <u>6.0.0.0</u> <u>6.0.0</u>	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.000 0.000 0.000 0.000 0.000 0.000	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{r} + + + + + + + + + + + + + + + + + + + $	Silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Sil†y Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	A-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	Sod and Topsoil Pavement or Base MA^{-1} $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$	1	CLASS trolled escribe	SIFIED BY	Y VISUAL	INSPEC Bouldery			P Pe	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

APPENDIX III

BORING LOG:

B-016-1-09 and B-016-6-13

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614	o14) 888-0040
---	---------------

Client:	: ms c	onsu	Itants	6			Project: FRA-70-8.93	4) 000-00						Jo	ob No. 0221-'	004.01	
LOG	DF: Bo	ring	B-0 1	6-1-0)9	Lo	cation: Sta. 5064+52.34, 9.1' RT., BL RAMP C5			Da	te l	Dril	led: 9	9/24/	2009		
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 21.0' Water level at completion: 34.8' FIELD NOTES: DESCRIPTION	Graphic Log	gregate		and	% F. Sand TA	% Silt O	ST Na	TANDARD PEN atural Moisture PL ⊢ ws per foot - ⊖ 10 20	Content,	% - • LL
<u>0.3 /</u> - -	716.9/	4 6 11	8	1		2.0	Topsoil - 3" FILL: Stiff brown SILT AND CLAY (A-6a), little to some fine to coarse sand, trace to little fine to coarse gravel; contains few brick fragments; damp.										
<u>3.5</u> - <u>5</u>	713.7	2 8 14	3	2			FILL: Loose to medium dense brown GRAVEL (A-1-a), little to some fine to coarse sand, trace to little silt; damp.	00	64	18		7	11-				
6.0 - 8.5 ⁻	708.7	2 4 3	2	3			FILL: Brick Fragments	× 7 × 7 × 7	4.1.7.1								
- <u>10</u>	-	1 2 1	6	4			FILL: Very loose to loose brown COARSE AND FINE SAND (A-3a), little silt, little gravel; contains brick fragments and wood pieces; damp to moist.		•								
- 13.5	703.7	2 4 4	2	5					•								
		2 2 3	4	6			FILL: Loose brown GRAVEL WITH SAND AND SILT (A-2-4), trace to little clay; contains brick fragments and wood pieces; wet.	00	33	23		17	17 10	0 ¢ ¢	/		
- 18.5 ⁻	698.7	2 2 2	2	7													152.660 1 1 1 1 1 1 1 1 1 1 1
_ <u>20</u> _		8 10 8	4	8			Medium dense to dense brown GRAVEL (A-1-b), some fine to coarse sand, trace to little silt; wet.	0 0 _(0							11 1111 \(1		
-	-	10 10 15 27	5	9				0 _ 0 0 _									
25	692.2	27 25 21	10	10				0.0	ż								

DLZ Ohio, Inc.	* 6121 Huntley Road,	Columbus, Ohio 43229	* (614) 888-0040
----------------	----------------------	----------------------	------------------

Client.	: ms	consu	ltant	s			Project: FRA-70-8.93								Job No. 022	1-1004.01	
LOG	OF: B	oring	B-0	16-1-0	1-09 <i>Location:</i> Sta. 5064+52.34, 9.1' RT., BL RAMP C5 <i>Date Drille</i>						ed:	9/2	9/24/2009				
Depth (ft)	Elev. (ft) 692.2	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 21.0' Water level at completion: 34.8' FIELD NOTES: DESCRIPTION	Graphic Log	% Aggregate	pu	nd	% F. Sand TA			Natural Mois PL ⊢	PENETRATION (Ne ture Content, % - (U LL O / Non-Plastic - t 30 40	
-	-	20 18 13	10	11			Medium dense to very dense brown GRAVEL (A-1-b), some fine to coarse sand, trace to little silt; wet.	0 0 0 0 0									
- <u>30</u> - -	-	32 31 14	12	12					< 38	29		16	17		NPI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
- <u>35</u> - 37.0	680.2	36 25 18	3	13			Hard gray SILT (A-4b), some fine to coarse sand, trace to little clay, trace gravel; damp.	0 0 0 0 0 + + + +									
- <u>40</u> - -	-	8 15 16	8	14		4.5+		+ + + + + + + + + + + + + + + + + +		8		22	53	10			
- <u>45.0 45</u> - - - 50	-	15 23 28	14	15		4.5+	@ 43.5'-45.0', little to some gravel. Bottom of Boring - 45.0'	+++									

RESOURCE INTERNATIONAL, INC.

Rii) т	ROJEC /PE: _	_		RA-70-1 STRI	JCTU	IRE		5	ORILLIN SAMPLII	NG FIRM	// LO		F	RII / S. RII / C.ł		HAN	LL RIG MMER:		CME-750 (S CME AUTC	MATIC	;	ALIG	SNME		-	BL	RAMF				6-6-13
		D: FART:	773	7 <u>2</u> 7/18/13	BR ID:	ND:		70-1321A 7/18/13		orillin Samplii		-		3.25"	HSA PT			LIBRAT ERGY F			4/26/13 82.6	3	-	VATIC / LON			<u> </u>	/	EOB: 94, -83.		50.0 ft.	PAG 1 OF
	0								`				EV.	-	PTHS			N ₆₀		SAMPLE	-		GRAD						ERG	.00347	ODOT	BAC
					AND			00115		_		71	17.0	DEr	-113		RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	
FILL: H Grave			K B	ROW	N SAN	IDY	SILT	SOME	FIN	E						1 -																1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-STO	NE F	RAG	1EN	TS PF	RESEN		N SS-	·1				71	14.0		_	2 -	13 28	56	22	SS-1	-	-	-	-	-	-	-	-	-	7	A-4a (V)	
FILL: M LITTLE -CIND	SIL	T, TR	٩CE	CLA	′, WE		VEL /	AND SAI	ND,				11.5		-	4 - ⁸ 5 -	3 8 4	17	44	SS-2	-	-	-	-	-	-	-	-	-	24	A-1-b (V)	
FILL: S LITTLE				SAN	DY SIL	.T , S	SOME	FINE	GRA	VEL,			11.0		-	6 3	3 5	15	67	SS-3	_	24	18	17	28	13	27	19	8	13	A-4a (1)	1 > r 7 - L 7 - L 7 - N
								IT IN SS			 	70	09.0		-	7 -	6	-														
	SE T	O FIN						TRACE		E	+++++++++++++++++++++++++++++++++++++++	- + - + - + - + - +			- -	9 - ³ 10 -	3 1 1	3	28	SS-4	-	-	-	-	-	-	-	-	-	33	A-4b (V)	
											+++++++++++++++++++++++++++++++++++++++	- + - + - + - + - + - +			E E	11	3 2 3	7	44	SS-5	-	-	-	-	-	-	-	-	-	26	A-4b (V)	
MEDIU CLAY, GRAVE	SON	IE CC	ARS	TIFF, E TO	rede Fine	DISH SAN	BRC	OWN SIL RACE F	LTY FINE		++++	70	04.0		-	13 — 14 — ³	3 4	11	83	SS-6	1.50	1	5	28	43	23	33	17	16	19	A-6b (9)	1 > L
															-	15	4															
												60	99.0		-	17 -	4 5	12	61	SS-7	1.00	-	-	-	-	-	-	-	-	21	A-6b (V)	1 > K 4 - K 7 - Z - K - 7 - K
MEDIU SILT, T						/EL /	AND	Sand, L	LITT	LE	0. 0. 0.		55.0		-	18 — 19 — ¹	10 10	29	56	SS-8	_	_	_	_	_	_	_	_	_	12	A-1-b (V)	
											0 0 0 0				-	20 – 21 –	11															
								EL, SOM RACE C		Y,			95.0		-	22 — 23 —																V 7 7 7 V 7 7 V 7 7
MOIST -HEAV												\d		¥		24 — ¹ 25 —	11 27 23	69	67	SS-9	-	54	22	12	10	2	17	17	NP	9	A-1-a (0)	1 > 1
-COBI	BLE	6 PRE	SEN	IT @	26.0'							0			-	26 — 27 —																
											00000	Sa			-	28 -	14															7 L 7 > L 7 L
												0			-	29 — ¹	11 27 22	67	39	SS-10	4.50	-	-	-	-	-	-	-	-	9	A-1-a (V)	7 L 7 > r 7 > r

D: <u>77372</u> BR ID: <u>FRA-70-1321A</u> PRC MATERIAL DESCRIPTIO	 DN	ELEV.		SPT/ N	REC	SAMPLE) RT HP		ART:		_	ATT	ERBE	RG		ODOT	BA
AND NOTES		687.0	DEPTHS	RQD N ₆₀	(%)	ID	(tsf)		CS FS		· ·	LL			wc	CLASS (GI)	F
ERY DENSE, BROWN TO GRAY GRAVEL OARSE TO FINE SAND, TRACE SILT, TR/ IOIST. <i>(same as above)</i> ARD, GRAY SANDY SILT , LITTLE CLAY, L	ACE CLAY,	<u>}</u> a	31 32														V 7 7 V 7 7 V
RAVEL, DAMP.			- 34 -	19 31 89 34	39	SS-11	4.50	17 ⁻	15 21	28	19	22	13	9	10	A-4a (2)	V77V77
		680.0	- 35 - - 36 - - 37 -														VT 7 VT 7
ARD, GRAY SILTY CLAY , TRACE SAND, 1 RAVEL, DAMP TO MOIST.	IRACE FINE		37 38 39	6													<77 77 7 7
			40 41	9 30 13	39	SS-12	4.50	-		-	-	-	-	-	24	A-6b (V)	7 4 7 7 4
			41 42 43														7 4 7 7
				18 23 28 70	44	SS-13	4.5+	1	1 1	31	66	38	19	19	19	A-6b (12)	V77V77
			46 47 48														V77V77V7
		667.0		20 31 91 35	50	SS-14	4.5+	-		-	-	-	-	-	16	A-6b (V)	7 7 7 7 7
OTES: GROUNDWATER ENCOUNTERED INITIA																	

APPENDIX IV

MSE WALL CALCULATIONS

JOB	FRA-7	0-12.68	NO.	W-13-045
SHEET NO.		1	OF	6
CALCULATED B	Y	HSK	DATE	7/10/2018
CHECKED BY		JPS	DATE	7/13/2018
FRA-70-12.6	8 - MS	E Wall W20		

	К──── В ────>	$\sigma_{LS}^{}=~$ 250 psf		
		Proposed T	op of Wall xxx El. =	700.0
7		XXX ¥ ¥ ¥ ¥ ¥ ¥	EI. =	: 732.3
	MSE Backfill			
н Н	γ_{BF} = 120 pcf φ_{BF} = 34 °	Retained Soil: ODOT Item 203 Granular Embankment		
	Reinforcement	γ_{RS} = 120 pcf		
	∕ Straps	$\varphi_{RS} = 33^{\circ}$ $c_{RS} = 0$ psf $(S_u)_{RS} = 0$ psf		
Proposed Bottom of Wall	,	$(S_u)_{RS} = 0$ point		
xxx xx Bearing Soil: Ex. Fill: Very Loose to Lo	x ose A-1-b, A-3a with Organics	γ_{BS} = 120 pcf φ_{BS} = 26 ° c_{BS} = 0 psf $(S_{\mu\nu})$		- 713.5
SE Wall Dimensions and Retain		Bearing Soil Properties:		
SE Wall Height, (H) =	18.8 ft	Bearing Soil Unit Weight, $(\gamma_{RS}) =$		120 po
SE Wall Width (Reinforcement Lengt		Bearing Soil Friction Angle, (φ_{BS}) =		26 °
SE Wall Length, (L) =	<u>- 10.2</u> it 236 ft	Bearing Soil Drained Cohesion, (c_{BS})		<u>0 p</u>
ve Surcharge Load, $(\sigma_{LS}) =$	250 n 250 psf	Bearing Soil Undrained Shear Strength		0 pt 0 pt
etained Soil Unit Weight, (γ_{RS}) =	120 psr	Embedment Depth, (D_f) =	·· · · · · · · · · · · · · · · · · · ·	<u>3.0</u> ft
etained Soil Friction Angle, (φ_{RS}) =	<u>- 120 pci</u> 33 °	Depth to Grounwater (Below Bot. of W	all), (<i>D</i> _w) =	0.0 ft
etained Soil Drained Cohesion ¹ , (c_{RS})		LRFD Load Factors		
etained Soil Undrained Shear Streng		EV EH LS		
etained Soil Active Earth Pressure Co		Strength la 1.00 1.50 1.75	1	
SE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength Ib 1.35 1.50 1.75	(AASHTO LRFD → 3.4.1-1 and 3.4.	
	ēēēēēē			
SE Backfill Friction Angle, $(\varphi_{BF}) =$ heck Sliding (Loading Case - St		Service I 1.00 1.00 1.00 -	Earth Pres	issure)
	trength Ia) - AASHTO LRFD BD $P_{H} = P_{EH} + P_{LS_{h}}$	0M Section 11.10.5.3		
heck Sliding (Loading Case - St Sliding Force:	trength Ia) - AASHTO LRFD BD $P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} H$	DM Section 11.10.5.3 $K_a \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5)$) = 8.4	kip/ft
heck Sliding (Loading Case - St Sliding Force:	trength Ia) - AASHTO LRFD BD $P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} H$	0M Section 11.10.5.3) = 8.4	
heck Sliding (Loading Case - St Sliding Force:	trength la) - AASHTO LRFD BE $P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} I$ $\frac{LS_{h}}{P_{EH}} = \sigma_{LS} H K_{a}$	DM Section 11.10.5.3 $K_a \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5)$) = 8.4	kip/ft
heck Sliding (Loading Case - St Sliding Force:	trength la) - AASHTO LRFD BE $P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} I$ $\frac{LS_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H K_{a}$ $P_{H} = 8.4 \text{ kip}$	PM Section 11.10.5.3 $K_a \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5)$ $\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)$) = 8.4	kip/ft
heck Sliding (Loading Case - St Sliding Force:	trength la) - AASHTO LRFD BE $P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} I$ $\frac{LS_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H K_{a}$ $P_{H} = 8.4 \text{ kip}$	PM Section 11.10.5.3 $K_a \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5)$ $\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)$) = 8.4	kip/ft
heck Sliding (Loading Case - St Sliding Force: PL heck Sliding Resistance - Drain Nominal Sliding Resistance:	trength la) - AASHTO LRFD BE $P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} H^{2}$ $\frac{LS_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H K_{a}$ $P_{H} = 8.4 \text{ kip}$ $\frac{1}{2} R_{\tau} = P_{EV} \cdot \tan \delta$	PM Section 11.10.5.3 $K_a \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5)$ $\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)$) = 8.4	kip/ft
heck Sliding (Loading Case - St Sliding Force:	trength la) - AASHTO LRFD BE $P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} H^{2}$ $\frac{LS_{h}}{P_{EH}} P_{LS_{h}} = \sigma_{LS} H K_{a}$ $P_{H} = 8.4 \text{ kip}$ $\frac{1}{2} R_{\tau} = P_{EV} \cdot \tan \delta$	$\mathcal{Y}_{a} \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5)$ $\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)$ $\frac{1}{100} \text{ ft} + 2.17 \text{ kip/ft} = 10.57 \text{ kip/ft}$ $3 \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00)$) = 8.4	kip/ft kip/ft
heck Sliding (Loading Case - St Sliding Force: PL heck Sliding Resistance - Drain Nominal Sliding Resistance:	$\frac{\text{trength Ia} - \text{AASHTO LRFD BE}}{P_{H} = P_{EH} + P_{LS_{h}}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} I$ $\frac{LS_{h}}{P_{EH}} = \sigma_{LS} HK_{a}$ $P_{H} = 8.4 \text{ kip}$ $\frac{\text{red Condition}}{R_{\tau}} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H \cdot I$ $\tan \delta = (\tan \varphi_{BS} \leq 1)$	$\mathcal{Y}_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5)}$ $\mathcal{Y}_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)}$ $/\text{ft} + 2.17 \text{ kip/ft} = 10.57 \text{ kip/ft}$ $3 \cdot \mathcal{Y}_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00)$ $\tan \varphi_{BF}$) = 8.4 = 2.17) = 29.78	kip/ft kip/ft kip/ft
heck Sliding (Loading Case - St Sliding Force: PL heck Sliding Resistance - Drain Nominal Sliding Resistance:	$\frac{\text{trength Ia} - \text{AASHTO LRFD BE}}{P_{H} = P_{EH} + P_{LS_{h}}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} I$ $\frac{LS_{h}}{P_{EH}} = \sigma_{LS} HK_{a}$ $P_{H} = 8.4 \text{ kip}$ $\frac{\text{red Condition}}{R_{\tau}} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H \cdot I$ $\tan \delta = (\tan \varphi_{BS} \leq 1)$	$\mathcal{Y}_{a} \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5)$ $\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)$ $\frac{1}{100} \text{ ft} + 2.17 \text{ kip/ft} = 10.57 \text{ kip/ft}$ $3 \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00)$) = 8.4 = 2.17) = 29.78	kip/ft
heck Sliding (Loading Case - St Sliding Force: heck Sliding Resistance - Drain Nominal Sliding Resistance: P_{EV}	$\frac{\text{trength Ia} - \text{AASHTO LRFD BE}}{P_{H} = P_{EH} + P_{LS_{h}}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} I$ $\frac{LS_{h}}{P_{EH}} = \sigma_{LS} HK_{a}$ $P_{H} = 8.4 \text{ kip}$ $\frac{\text{red Condition}}{R_{\tau}} = P_{EV} \cdot \tan \delta$ $P_{EV} = \gamma_{BF} \cdot H \cdot I$ $\tan \delta = (\tan \varphi_{BS} \leq 1)$	$\mathcal{PM} \text{ Section 11.10.5.3}$ $\mathcal{K}_{a} \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5)$ $\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)$ $\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})(0.264)(1.75)$ $\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00)$) = 8.4 = 2.17) = 29.78	kip/ft kip/ft kip/ft
heck Sliding (Loading Case - St Sliding Force: heck Sliding Resistance - Drain Nominal Sliding Resistance: P_{EV}	$P_{H} = P_{EH} + P_{LS_{h}}$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} H$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} H$ $P_{EH} = \sigma_{LS} H K_{a}$ $P_{H} = 8.4 \text{ kip}$ $P_{H} = 8.4 \text{ kip}$ $P_{EV} = \gamma_{BF} \cdot H \cdot H$ $\tan \delta = (\tan \varphi_{BS} \leq \tan \delta = \tan(2 R_{\tau} = (29.78 \text{ kip/ft})(0.4 \text{ kip/ft}))$	$\mathcal{Y}_{a} \gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5)$ $\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75)$ $\frac{1}{11}(1100)($) = 8.4 = 2.17) = 29.78	kip/ft kip/ft kip/ft

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990

JOB	FRA-7	70-12.68	NO.	W-13-045
SHEET NO.		2	OF	6
CALCULATED B	Y	HSK	DATE	7/10/2018
CHECKED BY		JPS	DATE	7/13/2018
FRA-70-12.6	8 - MS	E Wall W20		

MSE Wall Dimensions and Retained Soil Para	ameters	Bearing Soil Pro	perties:	
MSE Wall Height, (<i>H</i>) =	18.8 ft	Bearing Soil Unit W		120 pc
MSE Wall Width (Reinforcement Length), (<i>B</i>) =	13.2 ft	Bearing Soil Frictior		26 °
MSE Wall Length, (<i>L</i>) =	236 ft	ອຸ້ມແບບເຫຼັຍແບບບັນບັນບັນເມື່ອມ ແມ່ນອາດານ ແມ່ນອອກ ແມ່ນອີກ ແມ່ນອີກ ແມ່ນອີກ ແມ່ນອີກ ແມ່ນອີກ ແມ່ນອີກ ແມ່ນອີກ ແ	d Cohesion, $(c_{BS}) =$	0 psf
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	າດກາງການການເຊັ່ງການການການການກົງການການການການການການການການການ	ned Shear Strength,	. Anno 1977 - A
Retained Soil Unit Weight, $(\gamma_{RS}) =$	120 pcf	Embedment Depth,		3.0 ft
Retained Soil Friction Angle, $(\varphi_{RS}) =$			er (Below Bot. of Wal	I), $(D_W) = 0.0$ ft
Retained Soil Drained Cohesion, $(c_{BS}) =$	0 psf	LRFD Load Facto		
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV	EH LS	
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.264	Strength la 1.00	1.50 1.75 T	(AASHTO LRFD BDM Tables
MSE Backfill Unit Weight, $(\gamma_{BF}) =$	120 pcf	Strength lb 1.35	1.50 1.75 -	3.4.1-1 and 3.4.1-2 - Active
MSE Backfill Friction Angle, (φ_{BF}) =	<u>34</u> °	Service I 1.00	1.00 1.00 _	Earth Pressure)
Check Sliding (Loading Case - Strength Ia) - A	AASHTO LRFD BDN	I Section 11.10.5.3 (Con	tinued)	
Check Sliding Resistance - Undrained Condit	ion			
Nominal Sliding Resisting: $R_{ au} =$	$\left(\left(S_{u}\right)_{BS}\leq q_{s}\right)\cdot B$			
	$(S_u)_{BS} = N/A$			
	$q_s = \frac{\sigma_v}{2} = 0$	(2.26 ksf) / 2 = 1.1	3 ksf	
$\begin{array}{c c} R_{\underline{\tau}} \downarrow \\ \hline & & \\ \hline \end{array}$	p /			
$\frac{1}{\left(S_{u}\right)_{BS}} \leq q_{s}$	$\sigma_v = \frac{\sigma_v}{B}$	= (29.78 kip/ft) / (13.	.2 ft) = 2.20	6 ksf
	= (N/A ksf ≤ 1.13	ksf)(13.2 ft) = N/A	A kip/ft	
			A kip/ft	
			A kip/ft N/A	
/erify Sliding Force Less Than Factored Slidi	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
/erify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_ au \cdot \phi_ au \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_ au \cdot \phi_ au \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_ au \cdot \phi_ au \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_ au \cdot \phi_ au \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
/erify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
/erify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
/erify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
/erify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
/erify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow$	ing Resistance - Un N/A	drained Condition		
Verify Sliding Force Less Than Factored Slidi $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow$	ing Resistance - Un N/A	drained Condition		

JOB	FRA-	70-12.68	NO.	W-13-045
SHEET NO.		3	OF	6
CALCULATED E	3Y	HSK	DATE	7/10/2018
CHECKED BY		JPS	DATE	7/13/2018
FRA-70-12.0	68 - M	SE Wall W20		

MSE Wall Width (Reinforcement Length), (B) =13.2 ftBearing Soil Friction Angle, (φ_{BS}) =26 °MSE Wall Length, (L) =236 ftBearing Soil Drained Cohesion, (c_{BS}) =0 ps	WWW.RESOURCEINT	<u>FERATIONAL.COM</u>		
$\begin{split} & MSE Wall Wath (Reinforcement Length), (x) = 132 ft Bearing Sol Fridien Angle, (e_m) = 250 ft Bearing Sol Fridien Angle, (e_m) = 250 ft Bearing Sol Fridien Angle, (e_m) = 250 gt Bearing Sol Undraned Schersten (e_m) = 0 pt Retained Sol Indraned Soler Strength, (e_m) = 120 pt Bearing Sol Undraned Soler Strength, (e_m) = 30 ft Retained Sol Indraned Soler Strength, (e_m) = 120 pt Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol Undraned Soler Strength, (e_m) = 100 ft Bearing Sol (e_m) = 100 ft Bearing $	MSE Wall Dimensions and Retained Soil Para	ameters	Bearing Soil Properties:	
$\begin{split} & \text{MSE Wall Length} (l) = \underbrace{236 \text{ ft}}_{V_{2}} & \text{Bearing Soil Drained Cohesion} (t_{SD}) = \underbrace{0 \text{ ft}}_{0} \\ & \text{Bearing Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{250 \text{ ft}}_{250 \text{ ft}} & \text{Bearing Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0 \text{ ft}}_{0} \\ & \text{Retained Soil friction Angle, (t_{SR})} = \underbrace{0 \text{ ft}}_{250 \text{ ft}} & \text{Bearing Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0 \text{ ft}}_{0} \\ & \text{Retained Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0 \text{ ft}}_{0} \\ & \text{Retained Soil friction Angle, (t_{SR})} = \underbrace{0 \text{ ft}}_{250 \text{ ft}} & \text{EH LS} \\ & \text{Retained Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Angle, (t_{SR})} & \underbrace{0 \text{ ft}}_{244 \text{ ft}} & \underbrace{0.274}_{244 \text{ ft}} & \underbrace{0.278}_{244 f$	MSE Wall Height, (<i>H</i>) =	18.8 ft		120 pcf
$\begin{split} & \text{MSE Wall Length} (l) = \underbrace{236 \text{ ft}}_{V_{2}} & \text{Bearing Soil Drained Cohesion} (t_{SD}) = \underbrace{0 \text{ ft}}_{0} \\ & \text{Bearing Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{250 \text{ ft}}_{250 \text{ ft}} & \text{Bearing Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0 \text{ ft}}_{0} \\ & \text{Retained Soil friction Angle, (t_{SR})} = \underbrace{0 \text{ ft}}_{250 \text{ ft}} & \text{Bearing Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0 \text{ ft}}_{0} \\ & \text{Retained Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0 \text{ ft}}_{0} \\ & \text{Retained Soil friction Angle, (t_{SR})} = \underbrace{0 \text{ ft}}_{250 \text{ ft}} & \text{EH LS} \\ & \text{Retained Soil Undaried Shear Strength}, [(s_{N})_{R}] = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Andrained Chemicon, (t_{SR})} = \underbrace{0.264}_{244 \text{ ft}} & \text{Strength} \text{ Ib} 1.35 1.50 1.75 \\ & \text{Retained Soil Angle, (t_{SR})} & \underbrace{0 \text{ ft}}_{244 \text{ ft}} & \underbrace{0.274}_{244 \text{ ft}} & \underbrace{0.278}_{244 f$	MSE Wall Width (Reinforcement Length), (B) =	13.2 ft	Bearing Soil Friction Angle, $(\varphi_{BS}) =$	26 °
Live Surcharge Load, $(e_{x}) =$ Retained Soil Unit Weight, $(y_{x}) =$ Retained Soil Charland Charland Shead Strength, $(k_{x})_{x}] =$ Retained Soil Charland Charland Shead Strength, $(k_{x})_{x}] =$ Retained Soil Charland Charland Shead Strength, $(b_{x})_{x} =$ Retained Soil Charland		236 ft	************************************	0 psf
Retained Soil Unit Weight, $(y_{ex}) =$ Retained Soil Drained Cohesion, $(e_{xx}) =$ Retained Soil Andrained Sher Strength, $(b_{x}) =$ Retained Soil Andre Earth Pressure Strength ib 1.35 1.50 1.75 Retained Soil Andre Earth Pressure Strength ib 1.35 1.50 1.75 Retained Soil Andre Earth Pressure Retained Soil Andre Earth Press Retained Soil Andre Earth Press	2	250 psf		0 psf
Retained Sol Friction Angle, $(e_{R}) =$ Retained Sol Undrained Chrosino, $(e_{R}) =$ Retained Sol Undrained Shear Strength, $[(S_{+})_{R}] =$ Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.50 1.10 1.00 1.00 1.00 1.00 Check Eccentricity Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM Section 11.10.5.5 Retained Sol Undrained Shear Strength Ia) - ASAHTO LRED BOM				
Related Soil Darined Cohesion, $(x_{st}) = \frac{0}{120} \text{ pof}$ Relatined Soil Darined Cohesion, $(x_{st}) = \frac{0}{120} \text{ pof}$ Relatined Soil Advive Earth Pressure Coeff., $(x_{st}) = \frac{0}{120} \text{ pof}$ Strength 10, 1.00, 1.50, 1.75 Strength 10, 1.00, 1.00, 1.00 Check Eccentricity (Loading Case - Strength la) - AASHTO LRFD BDM Section 11.10.5.5 $e = B/2 - x_{o}$ $x_{st} = \frac{1}{20} p_{EV}$ P_{EV} $P_{EV} = 29.78 \text{ kip/ft}$ P_{EV} $P_{EV} = 29.78 \text{ kip/ft}$ $P_{EV} = 29.78 \text{ kip/ft}$ $P_{EV} = 29.78 \text{ kip/ft}$ $x_1 = B/2$ $P_{EV} = (132 \text{ ft})/2 = 6.60 \text{ ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ P_{EV} $P_{EV} = 29.78 \text{ kip/ft}$ $P_{EV} = 20.78 \text{ kip/ft}$ $P_{EV} = 20$			i	
Retained Soil Undrained Shear Strength, $[(S_{+})_{K_{2}}]_{2} = 0$ paf Retained Soil Active Earth Pressure Coeff., $(K_{+})_{2} = 0.264$ MSE Backfull Weight $(y_{2})_{2} = 0$ MSE Backfull Friction Angle, $(y_{2}y_{-}) = 0$ Check Eccentricity (Loading Case - Strength la) - AASHTO LRFD BDM Section 11.10.5.5 $e = B/2 - x_{0}$ F_{EV} P_{EV}		- <u>-</u>	ģeneraļas reģeneraļas reģeneraļas reģeneraļas reģeneraļas reģeneraļas reģeneraļas reģeneraļas reģeneraļas reģe	<u> </u>
Retained Soil Active Earth Prossure Coeff. $(K_n) = \frac{120}{120} \text{ pcr}$ Strength 10.01 1.50 1.75 MSE Backfill Unit Weight. $(r_{NT}) = \frac{120}{34} \text{ service1} 1.00 1.001 1$		· [······]	i a construction de la construction	
$\begin{split} \text{MSE Backfill Unit Weight } (g_w) &= \underbrace{120 \text{ pcf}}_{34^{\circ}} & \text{Strength ib } 1.35 & 1.50 & 1.75 \\ \hline \text{MSE Backfill Friction Angle, } (g_w) &= \underbrace{120 \text{ pcf}}_{34^{\circ}} & \text{Strength ib } 1.35 & 1.50 & 1.75 \\ \hline \text{MSE Backfill Friction Angle, } (g_w) &= \underbrace{120 \text{ pcf}}_{34^{\circ}} & \text{Strength ib } 1.35 & 1.50 & 1.75 \\ \hline \text{Check Eccentricity (Loading Case - Strength la) - AASHTO LRFD BDM Section 11.10.5.5 \\ e &= B_2' - x_o \\ e &= B_2' - x_o \\ e &= B_2' - x_o \\ \hline M_{EV} &= P_{EV} \\ R_{EV} &= P_{EV} \\ R_{EV} &= P_{EV} \\ R_{EV} &= P_{EV} \\ R_{EV} &= 196.55 \text{ kip-ft/ft} \\ \hline M_{H} &= 7.307 \text{ kip-ft/ft} \\ \hline Resisting Moment, M_{EV} \\ \hline M_{EV} &= P_{EV} \\ R_{EV} &= (132 \text{ ft})/2 = 6.60 \text{ ft} \\ M_{EV} &= (29.78 \text{ kip/ft}) \\ \hline M_{EV} &= (29.78 \text{ kip/ft}) \\ \hline R_{EV} &= (29.78 \text$		ມອື່ມມາມາມອ <u>້າ</u> ອີການການອັກນາມານ		
$\begin{aligned} \text{MSE Backfill Friction Angle, } (\varphi_{W}) &= \underbrace{\frac{34}{34}} & \text{Service 1} 1.00 1.00 1.00 \end{bmatrix} & \text{Levt Pressure} \end{aligned}$ $\begin{aligned} \text{Check Eccentricity (Loading Case - Strength la) - AASHTO LRFD BDM Section 11.10.5.5} \\ e &= B/2 - x_o \\ e &= B/2 - B/2 \\ e &$		- <u>-</u>	(AASHIU LRFL	
Check Eccentricity (Loading Case - Strength Ia) - AASHTO LRFD BDM Section 11.10.5.5 $e = \frac{B}{2} - x_{o}$ $e = \frac{B}{2} - x_{o}$ $e = \frac{B}{2} - x_{o}$ $M_{EV} = 196.55 \text{ kip-ft/ft} - 73.07 \text{ kip-ft/ft}) / (29.78 \text{ kip/ft}) = 4.15 \text{ ft}$ $M_{EV} = 196.55 \text{ kip-ft/ft} - Defined below$ $P_{EV} = 73.07 \text{ kip-ft/ft} - Defined below$ $P_{EV} = 29.78 \text{ kip/ft} - Defined below$ $P_{EV} = 78_{EV} (x_{1})$ $P_{EV} = \gamma_{EV} (x_{1})$ $P_{EV} = \gamma_{EV} + N \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78 \text{ kip/ft}$ $x_{1} = \frac{B}{2} = (13.2 \text{ ft})/2 = 6.60 \text{ ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.20 \text{ ft}) = 2.17 \text{ kip/ft}$ $x_{2} = H_{A} (x_{2}) + P_{LS_{a}} (x_{3})$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a} \gamma_{EH} = \frac{1}{2} (120 \text{ pcf})(18.8 \text{ ft})(0.264)(1.5) = 8.40 \text{ kip/ft}$ $x_{3} = H_{A} (x_{2}) + P_{LS_{a}} (x_{3})$ $P_{EH} = \frac{1}{2} (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_{3} = H_{A} (x_{3}) = \frac{1}{2} (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_{3} = H_{A} (x_{3}) = \frac{1}{2} (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ $Check Eccentricity$ $e < e_{max} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft}$ OK		0.0000000000000000000000000000000000000	Earth Dr.	
$e = \frac{B_{2} - x_{o}}{P_{EV}}$ $e = \frac{B_{2} - x_{o}}{P_{EV}}$ $r_{o} = \frac{M_{EV} - M_{H}}{P_{EV}} = (196.55 \text{ kip-ft/ft} - 73.07 \text{ kip-ft/ft}) / (29.78 \text{ kip/ft}) = 4.15 \text{ ft}$ $M_{EV} = 196.55 \text{ kip-ft/ft} - Defined below$ $P_{EV} = 29.78 \text{ kip/ft}$ $e = (13.2 \text{ ft})/2 - 4.15 \text{ ft} = 2.45 \text{ ft}$ Resisting Moment, M_{EV} : $M_{EV} = P_{EV}(x_{1})$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78 \text{ kip/ft}$ $x_{1} = \frac{B_{2}'}{2} = (13.2 \text{ ft})/2 = 6.60 \text{ ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.20 \text{ ft})(18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(8.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(8.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(8.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$	NOSE DACKIII FICUUT Angle, (ψ_{BF}) –	34		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Check Eccentricity (Loading Case - Strength	la) - AASHTO LRF	D BDM Section 11.10.5.5	
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	e=1	$B_{2} - x_{o}$		
$M_{EV} = 196.55 \text{ kip-ft/ft} \qquad M_{H} = 73.07 \text{ kip-ft/ft} \qquad Defined below P_{EV} = 29.78 \text{ kip/ft} \qquad Defined below P_{EV} = 29.78 \text{ kip/ft} \qquad Defined below P_{EV} = 29.78 \text{ kip/ft} \qquad P_{EV} = (13.2 \text{ ft})/2 - 4.15 \text{ ft} = 2.45 \text{ ft} \qquad P_{EV} = (13.2 \text{ ft})/2 - 4.15 \text{ ft} = 2.45 \text{ ft} \qquad P_{EV} = (13.2 \text{ ft})/2 - 4.15 \text{ ft} = 2.45 \text{ ft} \qquad P_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78 \text{ kip/ft} \qquad N_{EV} = (13.2 \text{ ft})/2 = 6.60 \text{ ft} \qquad M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft} \qquad N_{EV} = \sigma_{LS} H X_a \gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(2.64)(1.5) = 8.40 \text{ kip/ft} \qquad X_2 = H_3 = (18.8 \text{ ft})/3 = 6.27 \text{ ft} \qquad X_3 = H_2 = (18.8 \text{ ft})/3 = 6.27 \text{ ft} \qquad X_3 = H_2 = (18.8 \text{ ft})/2 = 9.40 \text{ ft} \qquad M_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft} \qquad M_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft} \qquad N_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft} \qquad N_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft} \qquad N_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft} \qquad N_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$		′ ∠		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X_{3} P_{EV} P_{LS} Y	$M_{EV} - M_H$	= (106 55 kin #/# 72 07 kin #/#) / (20 79 kin/#) =	A 15 ft
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\leftarrow	$P_{m} =$	= (196.55 kip·ft/ft - 73.07 kip·ft/ft) / (29.78 kip/ft) =	4.15 π
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R	- <i>EV</i>		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1/ 400		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$M_{EV} = 196.8$	⊃5 KIP·Tt/Tt	
$e = (13.2 \text{ ft})/2 - 4.15 \text{ ft} = 2.45 \text{ ft}$ Resisting Moment, M_{EV} : $M_{EV} = P_{EV}(x_1)$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78 \text{ kip/ft}$ $x_1 = B/2 = (13.2 \text{ ft})/2 = 6.60 \text{ ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ Overturning Moment, M_{H} : $M_{H} = P_{EH}(x_2) + P_{LS_k}(x_3)$ $P_{EH} = \frac{1}{2}\gamma_{RS}H^2 K_a\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.5) = 8.40 \text{ kip/ft}$ $x_2 = H_{3}' = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_3 = H_{2}' = (18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$	$x_o \leftarrow + + + + e$	$M_H = 73.0$	/ kip·ft/ft	
$e = (13.2 \text{ ft})/2 - 4.15 \text{ ft} = 2.45 \text{ ft}$ Resisting Moment, M_{EV} : $M_{EV} = P_{EV}(x_1)$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78 \text{ kip/ft}$ $x_1 = B_2' = (13.2 \text{ ft})/2 = 6.60 \text{ ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip ft/ft}$ Overturning Moment, M_{H} : $M_H = P_{EH}(x_2) + P_{LS_k}(x_3)$ $P_{EH} = \gamma_2' \gamma_{RS} H^2 K_a \gamma_{EH} = \gamma_2(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5) = 8.40 \text{ kip/ft}$ $x_2 = H_2' = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_3 = H_2' = (18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$	$\downarrow \subset B/2 \rightarrow \downarrow$	$P_{EV} = 29.7$	8 kip/ft -	
Resisting Moment, M_{EV} : $M_{EV} = P_{EV}(x_1)$ $P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78 \text{ kip/ft}$ $x_1 = B_2' = (13.2 \text{ ft})/2 = 6.60 \text{ ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ Overturning Moment, M_H : $M_H = P_{EH}(x_2) + P_{LS_n}(x_3)$ $P_{EH} = \frac{1}{2}\gamma_{RS}H^2K_a\gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5) = 8.40 \text{ kip/ft}$ $x_2 = H_3' = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_3 = H_2' = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $M_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ Check Eccentricity $e < e_{max} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft}$ OK		• (13.2 ft)/2 _ /	115 ft - 245 ft	
$P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78 \text{ kip/ft}$ $x_1 = \frac{B}{2} = (13.2 \text{ ft})/2 = 6.60 \text{ ft}$ $M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ Overturning Moment, M_{H} : $M_H = P_{EH}(x_2) + P_{LS_h}(x_3)$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2} (120 \text{ pcf})(18.8 \text{ ft})(0.264)(1.5) = 8.40 \text{ kip/ft}$ $x_2 = H_3 = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_3 = H_2 = (18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ Check Eccentricity $e < e_{max} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft} \text{ OK}$		(13.2 10/2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Resisting Moment, M_{EV} : M_{EV}	$=P_{EV}(x_1)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\gamma_{\nu} = \gamma_{\mu\nu} \cdot H \cdot H$	$3 \cdot \gamma_{\text{EV}} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.00) = 29.78$	3 kip/ft
$M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ Overturning Moment, M_{H} : $M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3})$ $P_{EH} = \frac{1}{2} \gamma_{RS} H^{2} K_{a} \gamma_{EH} = \frac{1}{2} (120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5) = 8.40 \text{ kip/ft}$ $P_{LS_{h}} = \sigma_{LS} H K_{a} \gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft}$ $x_{2} = H_{3} = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_{3} = H_{2} = (18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ Check Eccentricity $e < e_{max} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft} OK$	P_{EV}	_ ,		
$M_{EV} = (29.78 \text{ kip/ft})(6.60 \text{ ft}) = 196.55 \text{ kip-ft/ft}$ Overturning Moment, M_H : $M_H = P_{EH}(x_2) + P_{LS_h}(x_3)$ $P_{EH} = \frac{1}{2} \frac{\gamma_{RS}}{H^2} K_a \gamma_{EH} = \frac{1}{2} (120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5) = 8.40 \text{ kip/ft}$ $P_{LS_h} = \sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft}$ $x_2 = \frac{H}{3} = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_3 = \frac{H}{2} = (18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ Check Eccentricity $e < e_{max} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft}$ OK		$= \frac{B}{2} = ($	13.2 ft) / 2 = 6.60 ft	
$\begin{array}{c c} & & & \\ \hline x_{I} \\ \hline \end{array} \\ \hline \\ Overturning Moment, M_{H}: \\ M_{H} = P_{EH}\left(x_{2}\right) + P_{LS_{h}}\left(x_{3}\right) \\ P_{EH} = \frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5) = 8.40 \text{ kip/ft} \\ P_{EH} = \frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{ES} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft} \\ x_{2} = H_{3} = (18.8 \text{ ft})/3 = 6.27 \text{ ft} \\ x_{3} = H_{2}' = (18.8 \text{ ft})/2 = 9.40 \text{ ft} \\ M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft} \\ \hline \\ $		· / Z		
$\begin{array}{c} & \underset{x_{1}}{\overset{x_{1}}{\longrightarrow}} \\ \text{Overturning Moment, } M_{H}: & M_{H} = P_{EH}\left(x_{2}\right) + P_{LS_{k}}\left(x_{3}\right) \\ & P_{EH} = \frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5) = 8.40 \text{ kip/ft} \\ & P_{EH} = \frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft} \\ & x_{2} = H_{3} = (18.8 \text{ ft})/3 = 6.27 \text{ ft} \\ & x_{3} = H_{2} = (18.8 \text{ ft})/2 = 9.40 \text{ ft} \\ & M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip/ft/ft} \\ \end{array}$		$M_{\rm FW} = (29.7)$	78 kip/ft)(6.60 ft) = 196.55 kip·ft/ft	
Overturning Moment, M_{H} : $M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3})$ $P_{EH} = \frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(1.5) = 8.40 \text{ kip/ft}$ $P_{LS_{h}} = \sigma_{LS}HK_{a}\gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft}$ $x_{2} = \frac{H}{3} = (18.8 \text{ ft})/3 = 6.27 \text{ ft}$ $x_{3} = \frac{H}{2} = (18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ Check Eccentricity $e < e_{max} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft}$ OK		<i>EV</i>		
$P_{EH} = \frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2} (120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5) = 8.40 \text{ kip/ft}}{P_{LS_h}} P_{EH}$ $P_{LS_h} = \sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft}}{X_2 = H/3} = (18.8 \text{ ft})/3 = 6.27 \text{ ft}}{X_3 = H/2} = (18.8 \text{ ft})/2 = 9.40 \text{ ft}}{M_H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}}$ $\frac{\text{Check Eccentricity}}{e < e_{max}} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft}} \text{OK}$	x_I			
$P_{EH} = \frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2} (120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5) = 8.40 \text{ kip/ft}}{P_{LS_h}} = \sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft}}{x_2 = H_3} = (18.8 \text{ ft})/3 = 6.27 \text{ ft}}{x_3 = H_2} = (18.8 \text{ ft})/2 = 9.40 \text{ ft}}$ $M_H = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}}$ $\frac{\text{Check Eccentricity}}{e < e_{\text{max}}} \rightarrow 2.45 \text{ ft} < 4.40 \text{ ft}} \text{OK}$	Overturning Moment, M_{μ} : M_{μ} :	$= P_{rm}(x_{r}) + A_{rm}(x_{r})$	$P_{r,s}\left(\frac{x}{x}\right)$	
$ \begin{array}{c} & & & \\ & $		- <i>EH</i> (~2) · -	$LS_h \times 3J$	
$ \begin{array}{c} \stackrel{X_{3}}{\frown} \\ \stackrel{P_{LS_{h}}}{\frown} \\ P_{EH} \end{array} \begin{array}{c} P_{LS_{h}} = \sigma_{LS} HK_{a} \gamma_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17 \text{ kip/ft} \\ x_{2} = H_{3}' = (18.8 \text{ ft})/3 = 6.27 \text{ ft} \\ x_{3} = H_{2}' = (18.8 \text{ ft})/2 = 9.40 \text{ ft} \\ M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft} \\ \end{array} $	P_{r}	$u_{\mu} = \frac{1}{2} \gamma_{\mu c} H^2 I$	$K \gamma_{\text{EV}} = \frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^2(0.264)(1.5) = 8.40$	kip/ft
$P_{EH} = \frac{1}{2} \sum_{k=0}^{n} \frac{1}{2} \sum_{k=0}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bigwedge^{\lambda_3} \qquad \qquad$	$s = \sigma_{IS} H K_a$	$V_{LS} = (250 \text{ psf})(18.8 \text{ ft})(0.264)(1.75) = 2.17$	kip/ft
$x_{3} = \frac{H_{2}}{2} = (18.8 \text{ ft})/2 = 9.40 \text{ ft}$ $M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ Check Eccentricity $e < e_{\text{max}} \longrightarrow 2.45 \text{ ft} < 4.40 \text{ ft} \qquad \text{OK}$		\mathbf{H}^{h}		
$M_{H} = (8.4 \text{ kip/ft})(6.27 \text{ ft}) + (2.17 \text{ kip/ft})(9.40 \text{ ft}) = 73.07 \text{ kip-ft/ft}$ $\underline{Check \ Eccentricity}$ $e < e_{max} \longrightarrow 2.45 \text{ ft} < 4.40 \text{ ft} \qquad OK$		/ 2		
Check Eccentricity $e < e_{max} \rightarrow 2.45 \text{ft} < 4.40 \text{ft}$		$_{3} = \frac{H}{2} = (2)$	18.8 ft) / 2 = 9.40 ft	
$e < e_{\rm max} \rightarrow 2.45 {\rm ft} < 4.40 {\rm ft}$		$M_H = $ (8.	4 kip/ft)(6.27 ft) + (2.17 kip/ft)(9.40 ft) = 73.07	kip∙ft/ft
$e < e_{\rm max} \rightarrow 2.45 {\rm ft} < 4.40 {\rm ft}$	Check Eccentricity			
Limiting Eccentricity: $e_{\text{max}} = \frac{B}{3} \rightarrow e_{\text{max}} = (13.2 \text{ ft})/3 = 4.40 \text{ ft}$	$e < e_{\rm max} \longrightarrow 2.45 {\rm ft} < 4.40 {\rm ft}$	OK		
	Limiting Eccentricity: $\rho = B/_{-}$ –	$\rightarrow e = 0$	13.2 ft / 3 = 4.40 ft	
	$-\frac{1}{3}$	∼max — ∖		

JOB	FRA-	70-12.68	NO.	W-13-045
SHEET NO.		4	OF	6
CALCULATED B	(HSK	DATE	7/10/2018
CHECKED BY	-	JPS	DATE	7/13/2018
FRA-70-12.6	8 - MS	SF Wall W20		

ISE Wall Dimensions and Retained Soil Para	meters	Bearing Soil Proper	<u>ties:</u>		
/ISE Wall Height, (<i>H</i>) =	18.8 ft	Bearing Soil Unit Weig	ht, (γ _{BS}) =		120 pcf
ISE Wall Width (Reinforcement Length), (B) =	13.2 ft	Bearing Soil Friction A	ngle, (φ_{BS}) =		26 °
/ISE Wall Length, (<i>L</i>) =	236 ft	Bearing Soil Drained C	ohesion, $(c_{BS}) =$		0 psf
ive Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil Undrained		$[(s_u)_{BS}] =$	0 psf
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf	Embedment Depth, (D	_f) =		3.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	<u>33</u> °	Depth to Grounwater (Below Bot. of Wal	I), $(D_W) =$	0.0 ft
Retained Soil Drained Cohesion, $(c_{BS}) =$	<u>0</u> psf	LRFD Load Factors			
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =	0 psf		EH LS		
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.264	·····	1.75 1.75	(AASHTO LRFD BD	M Tables
ASE Backfill Unit Weight, (γ_{BF}) =	<u>120</u> pcf		1.50 1.75 -	3.4.1-1 and 3.4.1-2 Earth Pressu	
<i>I</i> SE Backfill Friction Angle, (φ_{BF}) =	<u> </u>	Service I 1.00	1.00 1.00 _		-,
Check Bearing Capacity (Loading Case - Stree	nath lb) - AASHTO	I RFD BDM Section 11.10	5.4		
$P_{LS_{\rm v}}$			<u></u>		
	P /				
$q_{ea} =$	$P_V _{R'}$				
	<i>, </i>				
$x_3 \mid P_{EV} \mid P_{B'}$	= <i>B</i> - 2 <i>e</i> = 13	.2 ft - 2(1.59 ft) = 10.	02 ft		
	σ	.2 π - 2(1.59 π) = 10. = (13.2 ft) / 2 - 5.01 ft =			
$ _{R} \downarrow ^{* EH}$	$e = \frac{D}{2} - x_o$	= (13.2 ft) / 2 - 5.01 ft =	1.59 ft		
	$\tilde{M}_{r} - M_{r}$				
	$x_o = \frac{r}{P}$	= (303.45 kip·ft/ft - 7	′3.06 kip∙ft/ft) / 4	5.98 kip/ft =	5.01
$x_o \leftarrow + e$	<i>1</i> _V				
$+B_2 +$					
$\downarrow \leftarrow \bar{B}' \rightarrow \downarrow$ q_{eq}	h = (45.98 kip/ft)	/ (10.02 ft) = 4.59	ksf		
$M_{V} = P_{EV}(x_{1}) + P_{LS}(x_{1}) = (\gamma_{BF} \cdot I)$		$(- P \cdot V_{r})$			
$M_V = P_{EV}(x_1) + P_{LS_v}(x_1) = (\gamma_{BF} \cdot I)$	$\pi \cdot \mathbf{D} \cdot \gamma_{EV} (x_1)$	+ $(O_{LS} \cdot D \cdot \gamma_{LS})(x_1)$			
$M_V = [(120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.35 $	5)1/6 6 ft) + [/250 pef)(13.2 ft)(1.75)](6.6 ft) =	303.45 kip	·ft/ft	
$V_{V} = (120 \text{ pol})(10.0 \text{ k})(10.2 \text{ k})(10.0 \text{ k})$	/)(0.0 k) · [(200 pol	,(10.2 h)(1.10)](0.0 h)	000.40 Mp		
$M_{H} = P_{EH}(x_{2}) + P_{LS}(x_{3}) = (\frac{1}{2}\gamma_{RS})$	$H^2 K \gamma_{\rm FH} (x_2)$	$+(\sigma_{LG}HK\gamma_{LG})(x_2)$			
$H = EH (0.2) + LS_h (0.3) (2.7 \text{ RS})$	a7 EH ((**2)	$(\circ LS^{2})$			
$M_{H} = [\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(120 \text{ pcf})(18.8 \text{ ft})^{2}(0.264)(120 \text{ pcf})(120 \text{ pcf})(120$.5)](6.27 ft) + [(250	psf)(18.8 ft)(0.264)(1.75)](9.	4 ft) =	73.06 kip∙ft/ft	
$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$	$\gamma_{V} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$	5			
$P_V = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})(1.35)$	+ (250 psf)(13.2 ft)(1	.75) = 45.98 kip/ft			
	-				
Check Bearing Resistance - Drained Condition	<u>D</u>				
Nominal Bearing Resistance: $q_n = c N_{cm}$ -	+ $\gamma D_f N_{qm} C_{wq}$ +	$+\frac{1}{2}\gamma BN_{m}C_{m}$			
	~ ~ ~				
$N_{cm} = N_c s_c i_c = 22.76$	$N_{qm} = N_q s_q d_q$	$i_q = 13.19$ /	$V_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	= 12.33	
	· · · ·	•			
N _c = 22.25	N_q = 11.85		$N_{\gamma} = 12.54$		
$S_c = 1+(10.02 \text{ ft}/235.6 \text{ ft})(11.85/22.25)$	$s_q = 1.021$		$s_{\gamma} = 0.983$		
= 1.023	์นการการการการการการการการการการการการการก	°)[1-sin(26°)]²tan⁻¹(3.0 ft/10.02 ft)	$i_{\gamma} = 1.000$		
$i_c = 1.000$ (Assumed)	1.090		$C_{wy} = 0.0 \text{ft} <$	1.5(10.02 ft) + 3.0 ft	= 0.9
	$i_q = 1.000$ ($i_q = 0.0$ ft)				
	$C_{wq} = 0.0 \text{ ft} > 100 \text{ ft}$	3.0 ft = 0.500			
a = (0 psf)(22 762) + (120 pcf)(3 0 ff)(12 ff	(13 188)(0 500) + 14	(120 pcf)(10 0 ft)(12 327)(0	500) =	6.08 kef	
$q_n = (0 \text{ psf})(22.762) + (120 \text{ pcf})(3.0 \text{ ft})(3.0 \text{ ft}))$	(13.188)(0.500) + ½	(120 pcf)(10.0 ft)(12.327)(0.	500) =	6.08 ksf	
$q_n =$ (0 psf)(22.762) + (120 pcf)(3.0 ft)(/erify Equivalent Pressure Less Than Factore			500) = 0.65 (Per AASHT		6 11 5 7

JOB	FRA-	70-12.68	NO.	W-13-045
SHEET NO.		5	OF	6
CALCULATED B	Y	HSK	DATE	7/10/2018
CHECKED BY		JPS	DATE	7/13/2018
FRA-70-12.6	8 - M	SE Wall W20		

WWW.RESOURCEINT	ERATIONAL.COM				
MSE Wall Dimensions and Retained Soil Para	amatore	Bearing Soil Prop	nartiae:		
	18.8 ft	Bearing Soil Unit We			120 pcf
MSE Wall Height, (H) =	. 5				26 °
MSE Wall Width (Reinforcement Length), (B) =	<u>13.2</u> ft	Bearing Soil Friction			
MSE Wall Length, (<i>L</i>) =	236 ft	Bearing Soil Drained			0 psf
Live Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil Undrair			0 psf
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf	Embedment Depth,	$(D_f) =$		3.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	33 °	Depth to Grounwate	er (Below Bot. of Wa	all), $(D_W) =$	0.0 ft
Retained Soil Drained Cohesion, (c_{BS}) =	0 psf	LRFD Load Facto	ors		
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV	EH LS		
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.264	Strength la 1.00	ר 1.50 1.75		
MSE Backfill Unit Weight, $(\gamma_{RE}) =$	120 pcf	Strength lb 1.35		 (AASHTO LRFD BD 3.4.1-1 and 3.4.1-2 	
с · (<i>м</i> ,	34 °	າມມາຍອີກການການການການການການສູ້ການການການການການການການ	ອັດການການການການອັດການການການການອັດການ	Earth Pressur	
MSE Backfill Friction Angle, (φ_{BF}) =	34	Service I 1.00	1.00 1.00 」		
Check Bearing Capacity (Loading Case - Stre	ength Ib) - AASHTO LR	RFD BDM Section 11.1	10.5.4 (Continued)		
Check Bearing Resistance - Undrained Condi	ition				
Nominal Bearing Resistance: $q_n = cN_{cm}$	$+ \gamma D_f N_{qm} C_{wq} + \frac{1}{2}$	$2 \gamma BN_m C_{w\gamma}$			
$N_{cm} = N_c s_c i_c = 5.190$	$N_{qm} = N_q s_q d_q i_q$	= 1.000	$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{j}$, = 0.000	
N _c = 5.140	N_q = 1.000		$N_{\gamma} = 0.000$		
			Deserve and Deserve and the second process of the second secon		
$S_c = 1+(10.02 \text{ ft/}[(5)(235.6 \text{ ft})]) = 1.009$	$s_q = 1.000$		$s_{\gamma} = 1.000$		
$i_c = 1.000$ (Assumed)	$a_q = 1+2\tan(0^\circ)[1+2\tan(0^\circ)]$	-sin(0°)]²tan ⁻¹ (3.0 ft/10.02 ft)	$i_{\gamma} = 1.000$		
	1.000			4 5 (40 00 4) . 0 0 4	= 0.5
			$C_{wy} = 0.0 \text{ft} <$	$(1.5(10.02 \pi) + 3.0 \pi)$	0.0
$q_n = (0 \text{ psf})(5.190) + (120 \text{ pcf})(3.0 \text{ ft})$	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$	ft = 0.500		N/A ksf	
	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $C_{wq} = 1.000 \text{ (Ass})$ $C_{wq} = 1.000 \text{ (Ass})$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0			
	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $C_{wq} = 1.000 \text{ (}0.500 \text$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>			
Verify Equivalent Pressure Less Than Factore	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factor $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
/erify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factore $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factors $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		
Verify Equivalent Pressure Less Than Factors $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ 4.59 ksf	$i_q = 1.000$ (Ass $C_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 0.0 \text{ ft} > 3.0 \text{ ft}$ $c_{wq} = 1.000$ (0.500) + $\frac{1}{2}(120)$ ed Bearing Resistance $f \le (N/A \text{ ksf})(0.65) = N/A$	ft = 0.500 0 pcf)(10.0 ft)(0.000)(0 <u>₽</u>	0.500) =		

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	6	OF	6
CALCULATED BY	HSK	DATE	7/10/2018
CHECKED BY	JPS	DATE	7/13/2018
FRA-70-12.68	- MSF Wall W20		

MSE Wall Dimensions and Retained S	Soil Parameters	Bearing Soil	l Properties:		
MSE Wall Height, (<i>H</i>) =	18.8 ft	Bearing Soil U	Init Weight, $(\gamma_{BS}) =$		120 pcf
MSE Wall Width (Reinforcement Length), (A	B) = 13.2 ft	Bearing Soil F	riction Angle, $(\varphi_{BS}) =$		26 °
MSE Wall Length, (<i>L</i>) =	236 ft	Bearing Soil D	Trained Cohesion, (c_{BS}) =	0 psf
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Bearing Soil U	Indrained Shear Streng	$[(s_u)_{BS}] =$	0 psf
Retained Soil Unit Weight, $(\gamma_{RS}) =$	120 pcf	Embedment D			3.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	<u> 20</u> poi		inwater (Below Bot. of	Wall) $(D_w) =$	0.0 ft
Retained Soil Drained Cohesion, $(c_{BS}) =$	0 psf	LRFD Load			<u> </u>
Retained Soil Undrained Shear Strength, $[(S_{BS})]$			EV EH LS		
Retained Soil Active Earth Pressure Coeff.,	ແມ່ນນັ້ນກັບກັບການແມ່ຊົມແມ່ນເຊົ <u>່າ ຊີ</u> ້ນັ້ນແມ່ນເຊັ່ນແມ່ນແຜ່ນ	Strength la	1.00 1.50 1.75	~	
MSE Backfill Unit Weight, $(\gamma_{BF}) =$		·····		(AASHTO LRFD - 3.4.1-1 and 3.4.	
	120 pcf	າດການອູ້ການການອູ້ການການການມີການການການອູ້ການກ		Earth Pres	
MSE Backfill Friction Angle, (φ_{BF}) =	<u>34</u> °	Service I	1.00 1.00 1.00		
Settlement Analysis (Loading Case -	Service I) - AASHTO LRFD	BDM Section 11.10	<u>).4.1</u>		
$P_{LS_{y}}$					
	$q_{eq} = \frac{P_V}{B}$				
	$q_{eq} = \gamma_{B'}$				
P_{EV}	B' = B - 2e = 13	3.2 ft - 2(1.41 ft) =	= 10.38 ft		
$\frac{1}{2}$	P				
$P \downarrow$	$e = \frac{D}{2} - x_o$	= (13.2 ft) / 2 - 5.1	19 ft = 1.41	ft	
	$B' = B - 2e = 13$ $e = \frac{B}{2} - x_o$ $M_v - M_v$				
	$x_o = \frac{1}{D}$	- = (218.32 ki	p∙ft/ft - 46.77 kip∙ft/ft,) / 33.08 kip/ft =	5.19
$x_o \leftarrow \leftrightarrow \rightarrow e$	P_V				
$\left \left \left$	$q_{eq} = (33.08 \text{ kip/ft})$	/ (10.38 ft) =	3.19 ksf		
$M_V = [(120 \text{ pcf})(18.8 \text{ ft})(13.8 $				kip∙ft/ft	
$M_{V} = [(120 \text{ pcf})(18.8 \text{ ft})(13.$ $M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) =$ $M_{H} = [\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft}))$ $P_{V} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})$ Settlement, Time Rate of Consolidation	$= (\frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2})$ (0.264)(1.00)](6.27 ft) + [(250) $\cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{L}$ ft)(1.00) + (250 psf)(13.2 ft)(1	$+ (\sigma_{LS}HK_a\gamma_{LS}$ psf)(18.8 ft)(0.264)(s 1.00) = 33.08	$(x_3)(x_3)$	kip·ft/ft 46.77 kip·ft	/ft
$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) =$ $M_{H} = [\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft}))$ $P_{V} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})$ Settlement, Time Rate of Consolidation Total Settler	$= \left(\frac{\gamma_{2} \gamma_{RS} H^{2} K_{a} \gamma_{EH}}{\chi_{2}}\right) (x_{2})$ (0.264)(1.00)](6.27 ft) + [(250) $\cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{L}$ ft)(1.00) + (250 psf)(13.2 ft)(1 on and Differential Settlement at nent at Total Settlement at	$) + (\sigma_{LS}HK_a\gamma_{LS}$ psf)(18.8 ft)(0.264)(<i>S</i> 1.00) = 33.08 <u>ent:</u>	(1.00)](9.4 ft) = kip/ft Distance Between	46.77 kip-ft	
$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) =$ $M_{H} = [\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(13.2 \text{ ft}))$ $P_{V} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})$ Settlement, Time Rate of Consolidation Boring Total Settler Center of Reig	$= \left(\frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH}\right) (x_2)$ (0.264)(1.00)](6.27 ft) + [(250) $\cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_L$ ft)(1.00) + (250 psf)(13.2 ft)(1 on and Differential Settlement nent at inforced ss	$) + (\sigma_{LS}HK_a\gamma_{LS}$ $psf)(18.8 ft)(0.264)($ S $1.00) = 33.08$ $ent:$ $t \qquad Time for 90\%$ $Consolidation$	(1.00)](9.4 ft) = kip/ft	46.77 kip-ft	
$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) =$ $M_{H} = [\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(13.2 \text{ ft}))$ $P_{V} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})$ Settlement, Time Rate of Consolidation $\boxed{Boring} \qquad \boxed{Total \text{ Settler} Center of Reison Reison$	$= \left(\frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH}\right) (x_2)$ (0.264)(1.00)](6.27 ft) + [(250) $\cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_L$ ft)(1.00) + (250 psf)(13.2 ft)(1 on and Differential Settlement inforced ss in 3.339 in	$) + (\sigma_{LS} H K_a \gamma_{LS} psf)(18.8 ft)(0.264)(0.2$	(1.00)](9.4 ft) = kip/ft Distance Between Borings Along Wall Facing	46.77 kip-ft	
$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) =$ $M_{H} = [\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(13.2 \text{ ft}))$ $P_{V} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})$ Settlement, Time Rate of Consolidation Boring Total Settler Center of Reig	$= \left(\frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH}\right) (x_2)$ (0.264)(1.00)](6.27 ft) + [(250) $\cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_L$ ft)(1.00) + (250 psf)(13.2 ft)(1 on and Differential Settlement inforced ss in 3.339 in	$) + (\sigma_{LS}HK_a\gamma_{LS}$ $psf)(18.8 ft)(0.264)($ S $1.00) = 33.08$ $ent:$ $t \qquad Time for 90\%$ $Consolidation$	(1.00)](9.4 ft) = kip/ft Distance Between Borings Along Wall	46.77 kip-ft	
$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) =$ $M_{H} = [\frac{1}{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(120 \text{ pcf})(18.8 \text{ ft})^{2}(13.2 \text{ ft}))$ $P_{V} = (120 \text{ pcf})(18.8 \text{ ft})(13.2 \text{ ft})$ Settlement, Time Rate of Consolidation $\boxed{Boring} \qquad \boxed{Total \text{ Settler} Center of Reison Reison$	$= \left(\frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH}\right) (x_2)$ (0.264)(1.00)](6.27 ft) + [(250) $\cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_L$ ft)(1.00) + (250 psf)(13.2 ft)(1 on and Differential Settlement inforced ss in 3.339 in	$) + (\sigma_{LS} H K_a \gamma_{LS} psf)(18.8 ft)(0.264)(0.2$	(1.00)](9.4 ft) = kip/ft Distance Between Borings Along Wall Facing	46.77 kip-ft	

Boring B-016-1-09

H=	18.8	ft	Total wall height
B'=	10.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	3,190	psf	Equivalent bearing pressure at bottom of wall

																				Total S	Settlement at	t Center of R	einforced So	il Mass		Total Set	tlement at Fa	icing of Wall	
Layer	Soil Class.	Soil Type	Layer (†	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	l ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	l ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	Fill	G	0.0	2.5	2.5	1.3	115	288	144	66	2,066					8	16	34	0.12	0.994	3,172	3,238	0.125	1.501	0.500	1,594	1,660	0.104	1.243
0	A-3a	G	2.5	5.0	2.5	3.8	120	588	438	204	2,204					5	9	50	0.36	0.904	2,885	3,088	0.059	0.704	0.491	1,568	1,771	0.047	0.560
2	A-3a	G	5.0	7.5	2.5	6.3	120	888	738	348	2,348					5	8	49	0.60	0.755	2,408	2,755	0.046	0.548	0.468	1,494	1,841	0.037	0.441
0	A-2-4	G	7.5	10.0	2.5	8.8	120	1,188	1,038	492	2,492					4	6	51	0.84	0.621	1,981	2,472	0.034	0.409	0.434	1,385	1,876	0.028	0.339
3	A-2-4	G	10.0	12.5	2.5	11.3	120	1,488	1,338	636	2,636					4	6	51	1.08	0.518	1,653	2,288	0.027	0.327	0.396	1,264	1,899	0.023	0.279
4	A-1-b	G	12.5	15.0	2.5	13.8	130	1,813	1,650	792	4,792					21	28	92	1.32	0.441	1,406	2,198	0.012	0.144	0.359	1,146	1,938	0.011	0.126
4	A-1-b	G	15.0	17.5	2.5	16.3	130	2,138	1,975	961	4,961					21	26	89	1.56	0.382	1,218	2,179	0.010	0.120	0.326	1,039	2,000	0.009	0.108
F	A-1-b	G	17.5	24.0	6.5	20.8	130	2,983	2,560	1,265	5,265					41	47	158	2.00	0.306	978	2,243	0.010	0.122	0.275	879	2,144	0.009	0.113
5	A-1-b	G	24.0	31.0	7.0	27.5	135	3,928	3,455	1,739	5,739					41	43	141	2.64	0.235	750	2,489	0.008	0.093	0.220	703	2,442	0.007	0.088
6	A-4b	С	31.0	35.0	4.0	33.0	130	4,448	4,188	2,128	6,128	17	0.063	0.006	0.405				3.17	0.197	630	2,758	0.002	0.024	0.188	601	2,729	0.002	0.023
0	A-4b	С	35.0	39.0	4.0	37.0	130	4,968	4,708	2,399	6,399	17	0.063	0.006	0.405				3.56	0.177	563	2,962	0.002	0.020	0.170	543	2,941	0.002	0.019
1. $\sigma_p' = \sigma_v$	_'+σ _{m;} Estima	ate σ_m of 2,0	00 psf in exis	sting fill mate	erial and 4,00	0 psf (moder	ately overco	nsolidated) f	for natural so	il deposits; R	Ref. Table 11.	2, Coduto 2	003								Tota	Settlement:		4.011 in		Total	Settlement:		3.339 in

2. $C_c = 0.009(LL-10)$; Ref. Table 6-9, FHWA GEC 5

3. $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_o/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{vo}')$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'$; $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_p')$ for $\sigma_{vo}' < \sigma_p' < \sigma_{vf}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')\log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	HSK	Date:	7/12/2018
Checked By:	JPS	Date:	7/13/2018

Boring B-016-1-09

H= 18.8 ft Total wall height A-4b	
B'= 10.4 ft Effective footing width due to eccentricity $c_v = 800 \text{ ft}^2/\text{yr}$ Coefficient of	of consolitation
D_w = 0.0 ft Depth below bottom of footing t = 0 days Time following	ing completion of construction
$q_e = 3,190$ psf Equivalent bearing pressure at bottom of wall $H_{dr} = 8$ ft Length of lor	ongest drainage path considered
$T_v = 0.000$ Time factor	
U = 0 % Degree of co	consolidation
$(S_c)_t = 3.297$ in Settlement c	complete at 99% of primary consolidation

																							Total Se	ettlement at F	acing of Wall		mplete at 99% of onsolidation
Layer	Soil Type	Soil Type	Layer (f	Depth t)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c)t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	Fill	G	0.0	2.5	2.5	1.3	115	288	144	66	2,066					8	16	34	0.12	0.500	1,594	1,660	0.104	1.243	1.243	1.243	1.243
2	A-3a	G	2.5	5.0	2.5	3.8	120	588	438	204	2,204					5	9	50	0.36	0.491	1,568	1,771	0.047	0.560	1.001	0.560	1.001
2	A-3a	G	5.0	7.5	2.5	6.3	120	888	738	348	2,348					5	8	49	0.60	0.468	1,494	1,841	0.037	0.441	1.001	0.441	1.001
3	A-2-4	G	7.5	10.0	2.5	8.8	120	1,188	1,038	492	2,492					4	6	51	0.84	0.434	1,385	1,876	0.028	0.339	0.619	0.339	0.619
5	A-2-4	G	10.0	12.5	2.5	11.3	120	1,488	1,338	636	2,636					4	6	51	1.08	0.396	1,264	1,899	0.023	0.279	0.019	0.279	0.019
4	A-1-b	G	12.5	15.0	2.5	13.8	130	1,813	1,650	792	4,792					21	28	92	1.32	0.359	1,146	1,938	0.011	0.126	0.234	0.126	0.234
4	A-1-b	G	15.0	17.5	2.5	16.3	130	2,138	1,975	961	4,961					21	26	89	1.56	0.326	1,039	2,000	0.009	0.108	0.234	0.108	0.234
5	A-1-b	G	17.5	24.0	6.5	20.8	130	2,983	2,560	1,265	5,265					41	47	158	2.00	0.275	879	2,144	0.009	0.113	0.200	0.113	0.200
5	A-1-b	G	24.0	31.0	7.0	27.5	135	3,928	3,455	1,739	5,739					41	43	141	2.64	0.220	703	2,442	0.007	0.088	0.200	0.088	0.200
6	A-4b	С	31.0	35.0	4.0	33.0	130	4,448	4,188	2,128	6,128	17	0.063	0.006	0.405				3.17	0.188	601	2,729	0.002	0.023	0.042	0.000	0.000
0	A-4b	С	35.0	39.0	4.0	37.0	130	4,968	4,708	2,399	6,399	17	0.063	0.006	0.405				3.56	0.170	543	2,941	0.002	0.019	0.042	0.000	0.000

1. σ_p' = σ_{vo}'+σ_m; Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{v'}/\sigma_{vo})'$ for $\sigma_p' \le \sigma_{vo'} < \sigma_{v'}; [C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo'})'$ for $\sigma_{vo'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'}$; $[C_r/(1+e_o)](H)\log(\sigma_{v'}/\sigma_{vo'})'$ for $\sigma_{vo'} < \sigma_{v'} < \sigma_{v'}$

10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By:	HSK	Date:	07/12/2018
Checked By:	JPS	Date:	07/13/2018

Settlement Remaining After Hold Period: 0.042 in

Boring B-016-6-13

H=	18.8	ft	Total wall height
B'=	10.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	3,190	psf	Equivalent bearing pressure at bottom of wall

																				Total S	Settlement at	Center of R	einforced So	il Mass		Total Set	ttlement at Fa	cing of Wall	
Layer	Soil Class.	Soil Type	-	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-1-b	G	0.0	2.0	2.0	1.0	130	260	130	68	2,068					17	34	111	0.10	0.997	3,181	3,248	0.030	0.364	0.500	1,594	1,662	0.025	0.301
2	A-4a	С	2.0	4.5	2.5	3.3	125	573	416	213	2,213	27	0.153	0.015	0.483				0.31	0.931	2,968	3,182	0.067	0.802	0.494	1,577	1,790	0.024	0.286
2	A-4b	G	4.5	7.0	2.5	5.8	120	873	723	364	2,364					5	8	22	0.55	0.785	2,503	2,867	0.103	1.240	0.474	1,512	1,876	0.082	0.986
3	A-4b	G	7.0	9.5	2.5	8.3	120	1,173	1,023	508	2,508					5	7	21	0.79	0.645	2,058	2,566	0.084	1.012	0.442	1,408	1,916	0.069	0.830
4	A-6b	С	9.5	12.0	2.5	10.8	125	1,485	1,329	658	2,658	33	0.207	0.021	0.530				1.03	0.536	1,711	2,369	0.019	0.226	0.404	1,288	1,946	0.016	0.191
4	A-6b	С	12.0	14.5	2.5	13.3	125	1,798	1,641	814	2,814	33	0.207	0.021	0.530				1.27	0.455	1,450	2,265	0.015	0.180	0.366	1,169	1,983	0.013	0.157
5	A-1-b	G	14.5	18.5	4.0	16.5	130	2,318	2,058	1,028	3,028					29	36	115	1.59	0.377	1,202	2,230	0.012	0.140	0.323	1,029	2,057	0.010	0.125
G	A-1-a	G	18.5	23.5	5.0	21.0	135	2,993	2,655	1,345	3,345					68	77	310	2.02	0.303	967	2,311	0.004	0.046	0.273	871	2,215	0.003	0.042
0	A-1-a	G	23.5	28.5	5.0	26.0	135	3,668	3,330	1,708	3,708					68	72	278	2.50	0.248	791	2,499	0.003	0.036	0.231	737	2,444	0.003	0.034
7	A-4a	С	28.5	31.0	2.5	29.8	125	3,980	3,824	1,967	3,967	22	0.108	0.011	0.444				2.86	0.218	696	2,663	0.002	0.030	0.206	658	2,625	0.002	0.028
1	A-4a	С	31.0	33.5	2.5	32.3	125	4,293	4,136	2,124	4,124	22	0.108	0.011	0.444				3.10	0.202	644	2,768	0.002	0.026	0.192	613	2,737	0.002	0.025
	A-6b	С	33.5	36.5	3.0	35.0	125	4,668	4,480	2,296	4,296	38	0.252	0.025	0.569				3.37	0.186	595	2,891	0.005	0.058	0.179	571	2,867	0.005	0.056
8	A-6b	С	36.5	41.5	5.0	39.0	125	5,293	4,980	2,546	4,546	38	0.252	0.025	0.569				3.75	0.168	535	3,082	0.007	0.080	0.162	517	3,064	0.006	0.077
	A-6b	С	41.5	46.5	5.0	44.0	125	5,918	5,605	2,859	4,859	38	0.252	0.025	0.569				4.23	0.149	476	3,335	0.005	0.064	0.145	463	3,322	0.005	0.063
1. $\sigma_p' = \sigma_v$	_o '+σ _{m;} Estima	te σ_m of 3,0	00 psf for mo	oderately ov	verconsolidate	ed soil deposi	t; Ref. Table	e 11.2, Codut	to 2003					•	•	•			•		Tota	Settlement:		4.304 in		Tota	I Settlement:		3.200 in

2. $C_c = 0.009(LL-10)$; Ref. Table 6-9, FHWA GEC 5

3. $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{vo}')$ for $\sigma_p' \leq \sigma_{vo}' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{vf}' \leq \sigma_p'$; $[Cr/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{p'})$ for $\sigma_{vo}' < \sigma_p' < \sigma_{vf}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	HSK	Date: 7/12/2018
Checked By:	JPS	Date: 7/13/2018

Boring B-016-6-13

H=	18.8	ft	Total wall height
B'=	10.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	3,190	psf	Equivalent bearing pressure at bottom of wall

c _v =	A-6b (Upper) 300	A-4a 800	A-6b (Lower) 300	ft²/yr	Coefficient of consolitation
t =	7	7	7	days	Time following completion of construction
H _{dr} =	2.5	5	13	ft	Length of longest drainage path considered
T _v =	0.921	0.614	0.034		Time factor
U =	92	82	21	%	Degree of consolidation

(S_c)_t = 2.891 in Settlement complete at 90% of primary consolidation

																							Total Se	ttlement at I	Facing of Wall		mplete at 90% of onsolidation
Layer	Soil Type	Soil Type	-	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-1-b	G	0.0	2.0	2.0	1.0	130	260	130	68	4,068					17	34	111	0.10	0.500	1,594	1,662	0.025	0.301	0.301	0.301	0.301
2	A-4a	С	2.0	4.5	2.5	3.3	125	573	416	213	4,213	27	0.153	0.015	0.483				0.31	0.494	1,577	1,790	0.024	0.286	0.286	0.286	0.286
0	A-4b	G	4.5	7.0	2.5	5.8	120	873	723	364	4,364					5	8	22	0.55	0.474	1,512	1,876	0.082	0.986	4.045	0.907	1.670
3	A-4b	G	7.0	9.5	2.5	8.3	120	1,173	1,023	508	4,508					5	7	21	0.79	0.442	1,408	1,916	0.069	0.830	1.815	0.763	1.070
4	A-6b	С	9.5	12.0	2.5	10.8	125	1,485	1,329	658	4,658	33	0.207	0.021	0.530				1.03	0.404	1,288	1,946	0.016	0.191	0.249	0.191	0.348
4	A-6b	С	12.0	14.5	2.5	13.3	125	1,798	1,641	814	4,814	33	0.207	0.021	0.530				1.27	0.366	1,169	1,983	0.013	0.157	0.348	0.157	0.340
5	A-1-b	G	14.5	18.5	4.0	16.5	130	2,318	2,058	1,028	5,028					29	36	115	1.59	0.323	1,029	2,057	0.010	0.125	0.125	0.125	0.125
6	A-1-a	G	18.5	23.5	5.0	21.0	135	2,993	2,655	1,345	5,345					68	77	310	2.02	0.273	871	2,215	0.003	0.042	0.076	0.042	0.076
0	A-1-a	G	23.5	28.5	5.0	26.0	135	3,668	3,330	1,708	5,708					68	72	278	2.50	0.231	737	2,444	0.003	0.034	0.076	0.034	0.076
7	A-4a	С	28.5	31.0	2.5	29.8	125	3,980	3,824	1,967	5,967	22	0.108	0.011	0.444				2.86	0.206	658	2,625	0.002	0.028	0.053	0.023	0.043
1	A-4a	С	31.0	33.5	2.5	32.3	125	4,293	4,136	2,124	6,124	22	0.108	0.011	0.444				3.10	0.192	613	2,737	0.002	0.025	0.055	0.020	0.043
	A-6b	С	33.5	36.5	3.0	35.0	125	4,668	4,480	2,296	6,296	38	0.252	0.025	0.569				3.37	0.179	571	2,867	0.005	0.056		0.012	
8	A-6b	С	36.5	41.5	5.0	39.0	125	5,293	4,980	2,546	6,546	38	0.252	0.025	0.569				3.75	0.162	517	3,064	0.006	0.077	0.196	0.016	0.041
	A-6b	С	41.5	46.5	5.0	44.0	125	5,918	5,605	2,859	6,859	38	0.252	0.025	0.569				4.23	0.145	463	3,322	0.005	0.063]	0.013	Τ

1. σ_p ' = σ_{vo} '+ σ_m ; Estimate σ_m of 4,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

2. $C_c = 0.009(LL-10)$; Ref. Table 6-9, FHWA GEC 5

3. $C_r = 0.10(C_c)$; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{vo}')$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'$; $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_p')$ for $\sigma_{vo}' < \sigma_{vf}' < \sigma_{vf}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')\log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By:	HSK	Date:	07/12/2018
Checked By:	JPS	Date:	07/13/2018

Settlement Remaining After Hold Period: 0.310 in

-													
1													
-		Support Name	Color	Туре	Strip Coverage (%)	Tensile Strength (Ibs/ft)]	Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)
-		MSE Reinforcement Straps	Ge	eoTextile	100	7000	-	Select Fill Backfill		120	Mohr-Coulomb	0	34
		Wish Reinforcement straps		eolextile	100	7000		Item 203 Granular Embankment		130	Mohr-Coulomb	0	33
-								Fill - L A-1-b		125	Mohr-Coulomb	0	29
-		250.00 lbs/ft2						Fill - Brick Fragments	\geq	115	Mohr-Coulomb	0	26
-							1.805	Fill - VL A-3a		120	Mohr-Coulomb	0	26
-							1.005	Fill - L A-2-4		125	Mohr-Coulomb	0	30
	о 							MD A-1-b		130	Mohr-Coulomb	0	32
-								H A-4b		130	Mohr-Coulomb	0	32
			\$\$\$\$\$	****					•				
									•				
	, , , , , , , , , , , , , , , , , , ,	Project Analysis Description	· · · ·		60	MSE Wall	-70 12.68 MSE R 4W20 - 18.8 ft Wa	etaining Wall 4W20 II Height - Drained Spen	。 。 20 Cer		140		
	0 20 Sisience	Project		 SK		FRA	-70 12.68 MSE R 4W20 - 18.8 ft Wa	etaining Wall 4W20 Il Height - Drained Spen	cer		140 ational Inc		