FRA-70-12.68 PROJECT 4R RETAINING WALLS 4W8 AND 4W9 PID NO. 105523 FRANKLIN COUNTY, OHIO

STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For: GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

> Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

> > Rii Project No. W-13-045

July 2018

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990

March 2, 2018 (Revised July 15, 2018)

Mr. Christopher W. Luzier, P.E. Project Manager GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

Re: Structure Foundation Exploration Report FRA-70-12.68 Project 4R Retaining Walls 4W8 and 4W9 PID No. 105523 Rii Project No. W-13-045

Mr. Luzier:

Resource International, Inc. (Rii) is pleased to submit this structure foundation exploration report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of proposed Retaining Walls 4W8 and 4W9 as part of the FRA-70-12.68 Project 4R in Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the structure foundation exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

rian Grenner

Brian R. Trenner, P.E. Director – Geotechnical Programming

Jonathan P. Sterenberg, P.E. Director – Geotechnical Planning

Enclosure: Structure Foundation Exploration Report

6350 Presidential Gateway Columbus, Ohio 43231 Phone: 614.823.4949 Fax: 614.823.4990 Planning

Engineering

Construction Management

Technology

Section	on	Pa	ge
EXEC		SUMMARY	I
	Explora Analys	ation and Findings es and Recommendations	i ii
1.0	INTRO	DUCTION	1
2.0	GEOLC	OGY AND OBSERVATIONS OF THE PROJECT	2
	2.1 S 2.2 E	Site Geology Existing Conditions	2 3
3.0	EXPLO	RATION	3
4.0	FINDIN	GS	6
	4.1 S 4.2 S 4.3 H 4.4 O	Surface Materials Subsurface Soils Bedrock Groundwater	6 6 7 8
5.0	ANALY	SES AND RECOMMENDATIONS	9
	5.1 I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MSE Wall Recommendations (Retaining Wall 4W8)5.1.1 Strength Parameters Utilized in External and Global StabilityAnalyses	10 12 13 14 16 16 17 17
	5.2 (5.2 (5.3 (5.4 (5.	CIP Wall Recommendations (Retaining Wall 4W9) 5.2.1 Bearing Stability 5.2.2 Eccentricity (Overturning Stability) 5.2.3 Sliding Stability 5.2.4 Global (Overall) Stability 5.2.5 Final CIP Wall Considerations Lateral Earth Pressure Construction Considerations 5.4.1 Excavation Considerations 5.4.2 Groundwater Considerations	18 19 19 20 20 21 21 22 22 23
6.0	LIMITA	TIONS OF STUDY	23

TABLE OF CONTENTS

APPENDICIES

- Appendix I Vicinity Map and Boring Plan
- Appendix II Description of Soil Terms
- Appendix III Project Boring Logs: B-017-6-13 through B-020-1-13
- Appendix IV Unconfined Compression Test Results
- Appendix V MSE Wall Calculations
- Appendix VI CIP Wall Calculations

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a structure foundation exploration for the design and construction of proposed Retaining Walls 4W8 and 4W9 as part of the FRA-70-12.68 Project 4R. Based on proposed plan information provided by Dynotec and GPD GROUP, it is understood that the wall will wrap around in front of the forward abutment of the proposed FRA-70-1358A and FRA-70-1358R bridge structures at the west end of the wall alignment and to the rear abutment of the FRA-70-1373A and FRA-70-1373R bridge structures at the east end of the wall alignment. The total wall length for Retaining Wall 4W8, including the portions of the wall that cross in front of the abutments of the proposed bridge structures, is approximately 969 lineal feet, and the total length between the abutments of the two crossings, from Sta. 5074+12 to 5080+60 (BL Ramp C5), is approximately 648 feet. It is understood that a mechanically stabilized earth (MSE) wall is being considered as the preferred wall type for Retaining Wall 4W8. **Please note that the design of the MSE wall where it crosses the abutments of the proposed bridge structures will be governed by the recommendations in the respective bridge structure reports, which are presented under separate covers.**

Based on proposed plan information provided by Dynotec and GPD GROUP, Retaining Wall 4W9 will support Ramp C5 along the north side of the ramp and will provide grade separation between the ramp and the proposed I-70 eastbound where the two grades separate. The wall begins at Sta. 5080+41 (BL Ramp C5) where it will be connected to the north side of the rear abutment of the proposed FRA-70-1373A bridge structure, and ends at Sta. 5079+00 (BL Ramp C5). The total length of Wall 4W9 is approximately 143 feet. It is understood that a cast-in-place (CIP) wall is being considered as the preferred wall type for Retaining Wall 4W9.

Exploration and Findings

Between July 3 and August 7, 2013, four (4) structural borings, designated as B-017-6-13, B-017-7-13, B-019-1-13 and B-020-1-13, were drilled to completion depths ranging from 50.0 to 96.7 feet below the existing ground surface along the proposed alignment of retaining wall 4W8. In addition to the borings performed by Rii and Stock as part of the current exploration, one (1) boring, designated as B-019-0-08, was advanced to a completion depth of 75.8 feet below the existing ground surface by DLZ as part of the FRA-70-8.93 preliminary exploration.

Boring B-017-7-13 was drilled through the existing pavement of I-70 eastbound and encountered 11.0 inches of asphalt overly 6.0 inches of aggregate base. Boring B-019-0-08 was drilled through an access drive that extends south off of the asphalt access road between Short Street and the railroad tracks to the west and encountered 12.0 inches of aggregate base at the ground surface. Boring B-019-1-13 was performed in the grass area just south of the asphalt access road and encountered 12.0 inches of the ground surface. Boring B-020-1-13 was performed in a grass yard

between a new building and the asphalt access drive and encountered 6.0 inches of topsoil overlying 4.0 inches of brick pavers.

Beneath the pavement section in boring B-017-7-13, existing embankment fill consisting of brown and brownish gray silt and clay and silty clay (ODOT A-6a, A-6b) with seams of brown and gray gravel (ODOT A-1-a). Beneath the surface materials in the remaining borings, material identified as existing fill was encountered extending to depths ranging from 10.5 feet below the existing ground surface in boring B-017-6-13 to 18.0 feet below the ground surface in borings B-019-0-08, which corresponds to elevations ranging from 695.5 to 704.4 feet msl. The fill material consisted of brown, dark brown, gray and black gravel and sand, gravel with sand and silt, sandy silt, silt and clay and silty clay (ODOT A-1-b, A-2-4, A-4a, A-6a, A-6b). Material identified as organic clay (A-8b) was encountered in boring B-019-0-08 at a depth of 8.0 feet and extended to a depth of 15.5 feet below existing grade. The organic content in this layer ranged from 7 to 9 percent, and large wood fragments were encountered throughout this layer as well.

Underlying the surficial materials and existing fill, natural granular soils were encountered overlying cohesive soils. The granular soils were generally described as brown, gray and dark brown gravel, gravel and sand, gravel with sand and silt, gravel with sand, silt and clay and coarse and fine sand (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-3a). The cohesive soils were described as gray, brown and brownish gray sandy silt, silt and clay, silty clay, elastic clay and clay (ODOT A-4a, A-6a, A-6b, A-7-5, A-7-6).

Shale bedrock was encountered along the proposed wall alignment at a depths ranging from 54.0 to 90.0 feet below the ground surface, which corresponds to elevations ranging from 648.6 feet msl in boring B-020-1-13 to 659.5 feet msl in boring B-019-0-08. Competent limestone bedrock was encountered in borings B-017-6-13 and B-020-1-13 at a depth of 74.5 and 80.5 feet below the ground surface, which corresponds to elevations of 640.4 and 632.3 feet msl, respectively.

Analyses and Recommendations

MSE Wall Recommendations (Retaining Wall 4W8)

Based upon the proposed plan information, the proposed retaining wall will have a maximum height of approximately 42.3 feet, as measured from the top of the leveling pad to the top of the coping.

Material identified as existing fill consisting of loose gravel and sand and sandy silt (ODOT A-1-b, A-4a), soft silt and clay (ODOT A-6a) and stiff organic clay (ODOT A-8a) in boring B-019-0-08, which contained a significant amount of organics and wood fibers throughout, was encountered at the proposed bearing elevation. These unsuitable soils extend to a depths ranging from 6.1 to 13.2 feet below the bottom of wall elevation (El. 694.8 to 701.9 feet). As noted in Section 5.1 of the full report, it is understood that

ground improvement techniques will be implemented along the alignment of Retaining Wall 4W8. As this is a proprietary design, the analysis for this wall considers the existing fill material will remain in place. MSE wall foundations bearing on existing fill material may be proportioned for a factored bearing resistance as indicated in Table 7. A geotechnical resistance factor of $\phi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.

From Station ¹	To Station ¹	Representative Borings	Wall Height Analyzed	Minimum Required Reinforcement	Bearing Re Strengt (ka	esistance at th Limit sf)	Strength Limit Equivalent Bearing	
		U	(feet)	Length ² (feet)	Nominal	Factored ³	Pressure * (ksf)	
5074+12	5080+60	B-019-0-08, B-019-1-13 and B-020-1-13	42.3	29.6 (0.7H)	5.03	3.21	9.54	

Retaining Wall 4W8 MSE Wall Design Parameters

1. Limits of wall determined from plan information provided by Dynotec. Stationing listed is referenced to Ramp C5 and reflects only the portion of the wall between the abutment substructures of the FRA-70-1358A and FRA-70-1373A bridge structures.

2. The minimum reinforcement length is expressed as a percentage of the wall height, H.

3. A geotechnical resistance factor of $\varphi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.

4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Total settlements ranging from 10.98 to 16.95 inches at the center of the reinforced soil mass and 7.45 to 10.29 inches at the facing of the wall are anticipated along the alignment of retaining wall 4W8. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately 20 to 90 days, with the longer durations being anticipated along the western half of the wall alignment in the area of borings B-017-6-13 and B-019-0-08.

Based on the results of the external and global stability analysis performed for the MSE wall, sliding under undrained conditions as well as bearing and global stability under both drained and undrained conditions were not satisfied at a strap length equal to 0.7 times the wall height. Increasing the width of the wall up to 1.0 times the wall height still did not satisfy all of the external and global stability requirements.

Consideration was given to over excavating the existing fill and unsuitable soils and replacing it with granular embankment; however, given the depth and extent of this material the alignment of the wall, this a very expensive and uneconomical option. Therefore, it is recommended that ground improvement techniques be implemented to increase the strength of the soil mass and reduce settlement potential within these layers. Additional considerations for the ground improvement design, including required performance criteria, are provided in Section 5.1.8 of the full report.

CIP Wall Recommendations

Based on the proposed plan and cross section information provided by Dynotec, a maximum wall height of 10.4 feet is anticipated along the alignment. It is understood that up to 35 feet of new embankment fill will be placed to bring the site to proposed grade along Ramp C5. Therefore, the bearing soils below retaining wall 4W9 will consist of new embankment fill. CIP wall foundations bearing on newly placed granular embankment fill may be proportioned for a factored bearing resistance as indicated in the following table. A geotechnical resistance factor of φ_b =0.55 was considered in calculating the factored bearing resistance at the strength limit state. Given that the wall will be bearing on approximately 30 to 35 feet of new embankment fill, little to no settlement is anticipated under the loading from the proposed wall along the alignment.

Retaining Wall 4W9 CIP Wall Design Parameters

From Station ¹	To Station ¹	Representative Borings	Wall Height Analyzed	Minimum Required Foundation	Bearing Re Streng (k	esistance at th Limit sf)	Strength Limit Equivalent Bearing
				(feet)	Nominal	Factored ³	Pressure * (ksf)
5079+00	5080+41	N/A	10.4	7.5 (0.72H)	27.34	15.04	2.39

1. Limits of wall determined from plan information provided by Dynotec Stationing listed is referenced to Ramp C5.

2. The foundation width based on the wall section provided in the design sheets.

3. A geotechnical resistance factor of $\varphi_b=0.55$ was considered in calculating the factored bearing resistance at the strength limit state.

4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Based on the results of the external and global stability analysis performed for Retaining Wall 4W9, the wall section provided in the design sheet for Wall 4W9, which includes a base width of 7.5 feet (0.73 times the height of the CIP wall) meets all of the external and global stability requirements.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70-12.68/13.11/14.05C (Project 4R/4H/4A) projects in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project. The FRA-70-12.68 (Project 4R) phase will consist of all work associated with the construction of Ramp C5, starting at the bridge over Souder Avenue and extending east to Front Street. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and SR-315 southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. This project includes the construction of six (6) new bridge structures for the proposed Ramp C5 alignment and replacement of three (3) bridge structures, two along I-70 and the Front Street Structure over I-70, as well as the construction of fourteen (14) new retaining walls and a culvert structure to accommodate the new configuration.

This report is a presentation of the structure foundation exploration performed for proposed Retaining Walls 4W8 and 4W9 as part of the FRA-70-12.68 Project 4R, as shown on the vicinity map and boring plan presented in Appendix I. Based on proposed plan information provided by Dynotec and GPD GROUP, Retaining Wall 4W8 will support Ramp C5 along the south side of the ramp, and will provide the required grade separation in lieu of graded embankments in this area. Additionally, it is understood that the wall will wrap around in front of the forward abutment of the proposed FRA-70-1358A and FRA-70-1358R bridge structures at the west end of the wall alignment and to the rear abutment of the FRA-70-1373A and FRA-70-1373R bridge structures at the east end of the wall alignment. The total wall length for Retaining Wall 4W8, including the portions of the wall that cross in front of the abutments of the proposed bridge structures, is approximately 969 lineal feet, and the total length between the abutments of the two crossings, from Sta. 5074+12 to 5080+60 (BL Ramp C5), is approximately 648 feet. It is understood that a mechanically stabilized earth (MSE) wall is being considered as the preferred wall type for Retaining Wall 4W8. Please note that the design of the MSE wall where it crosses the abutments of the proposed bridge structures will be governed by the recommendations in the respective bridge structure reports, which are presented under separate covers.

Based on proposed plan information provided by Dynotec and GPD GROUP, Retaining Wall 4W9 will support Ramp C5 along the north side of the ramp and will provide grade separation between the ramp and the proposed I-70 eastbound where the two grades separate. The wall begins at Sta. 5080+41 (BL Ramp C5) where it will be connected to the north side of the rear abutment of the proposed FRA-70-1373A bridge structure, and ends at Sta. 5079+00 (BL Ramp C5). The total length of Wall 4W9 is approximately 143 feet. It is understood that a cast-in-place (CIP) wall is being considered as the preferred wall type for Retaining Wall 4W9.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules. Just east of the Scioto River, the underlying bedrock consists of the Upper Devonian Ohio Shale Formation overlying the Middle Devonian-aged Delaware Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. The Delaware Limestone consists of bluish gray, thin to medium bedded dolomitic limestone with nodules and layers of chert. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits. Within the borings performed for this current project, shale bedrock was encountered at depths ranging from 54.3 to 64.3 feet below the ground surface, which corresponds to elevations ranging from 648.6 feet to 659.5 feet msl.

2.2 Existing Conditions

The proposed Retaining Wall 4W8 and 4W9 structures will be situated along the south side of I-70 eastbound between the existing CSX/Norfolk Southern Railroad tracks and Short Street. The existing I-70 eastbound in the vicinity of the structure is a four-lane, asphalt paved roadway that is aligned east-to-west. The existing I-70 roadway profile grade is elevated approximately 25 feet above the railroad and surrounding terrain on graded embankments. An asphalt/gravel access road is situated at the toe of the existing embankment which provides access to the railroad tracks from Short Street. There is a commercial property situated along the south side of the access road. The terrain along I-70 slopes gently to the west and the surrounding area is relatively flat-lying, and dense vegetation covers the existing I-70 embankment slope.

3.0 EXPLORATION

Between July 3 and August 7, 2013, four (4) structural borings, designated as B-017-6-13, B-017-7-13, B-019-1-13 and B-020-1-13, were drilled to completion depths ranging from 50.0 to 96.7 feet below the existing ground surface along the proposed alignment of retaining wall 4W8. Borings B-017-6-13 and B-017-7-13 were performed by Rii, while B-019-1-13 and B-020-1-13 were performed by Stock Drilling under the direction of Rii. In addition to the borings performed by Rii and Stock as part of the current exploration, one (1) boring, designated as B-019-0-08, was performed by DLZ along the proposed alignment of retaining wall 4W8 as part of the FRA-70-8.93 preliminary exploration and their findings were published in a report dated March 18, 2010. The boring was advanced to a completion depth of 75.8 feet below the existing ground surface. The current project boring locations are shown on the boring plan provided in Appendix I of this report and summarized in Table 1 below.

			<u> </u>			
Boring Number	Station ¹	Offset ¹	Latitude	Longitude	Ground Elevation (feet msl)	Boring Depth (feet)
B-017-6-13	5074+21.50	19.1' Rt.	39.952895767	-83.006754692	714.9	84.5
B-017-7-13	170+79.36	23.3' Rt.	39.953200568	-83.006425064	743.1	96.7
B-019-0-08	5076+04.30	29.0' Rt.	39.952897615	-83.006105991	713.5	75.8
B-019-1-13	5077+15.33	3.2' Rt.	39.952978442	-83.005713188	712.5	50.0
B-020-1-13	5080+09.80	30.9' Rt.	39.952922218	-83.004665587	712.8	86.0

Table 1. Test Boring Summary

1. Station and offset for boring B-017-7-13 is referenced to the proposed baseline of I-70 EB. The remaining borings are referenced to the proposed baseline of Ramp C5.

The locations for the current exploration borings performed by Rii were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by GPD GROUP.

The borings performed by Stock Drilling and Rii for the current exploration were drilled using a truck or an all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing a 3.25 or 4.25-inch inside diameter, hollow-stem auger to advance the holes. Standard penetration test (SPT) and split spoon sampling were performed in the borings at 2.5-foot increments of depth to 20 feet in boring B-019-1-13 and 30 feet in borings B-017-6-13, B-017-7-13 and B-020-1-13 and at 5.0-foot increments thereafter to the boring termination depth. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Stock Drilling and Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blow per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation. Both values are represented on boring logs in Appendix III.

 $N_{60} = N_m^*(ER/60)$

Where:

 N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

The hammer for the Mobile B-53 drill rig used by Rii was calibrated on April 26, 2013, and has a drill rod energy ratio of 77.7, and the CME 750X used by Stock Drilling was calibrated on March 28, 2013 and has a drill rod energy ratio of 86.8 percent.

During drilling for the borings performed by Stock Drilling and Rii, field logs were prepared by Rii personnel showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	82
Plastic and Liquid Limits	AASHTO T89, T90	25
Gradation – Sieve/Hydrometer	AASHTO T88	25
Unconfined Compressive Strength of Intact Rock	ASTM D7012	2

Table 2. Laboratory Test Schedule

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

The depth to bedrock in borings B-017-6-13, B-017-7-13, B-019-0-08 and B-020-1-13 was determined by split spoon sampler refusal. Split spoon sampler refusal is defined as exceeding 50 blows from the hammer with less than 6.0 inches of penetration by the split spoon sampler.

Where borings were extended into the bedrock, an NQ-sized double-tube diamond bit core barrel (utilizing wire line equipment) was used to core the bedrock. Coring produced 1.85 inch diameter cores, from which the type of rock and geological characteristics were determined.

Rock cores were logged in the field and visually classified in the laboratory. They were analyzed to identify the type of rock, color, mineral content, bedding planes and other geological and mechanical features of interest in this project. The Rock Quality Designation (RQD) for each rock core run was calculated according to the following equation:

 $RQD = \frac{\sum segments equal to or longer than 4.0 inches}{core run length} x 100$

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings performed as part of the preliminary engineering phase and current exploration and what is represented on the boring logs.

4.1 Surface Materials

Boring B-017-7-13 was drilled through the existing pavement of I-70 eastbound and encountered 11.0 inches of asphalt overly 6.0 inches of aggregate base. Boring B-019-0-08 was drilled through an access drive that extends south off of the asphalt access road between Short Street and the railroad tracks to the west and encountered 12.0 inches of aggregate base at the ground surface. Boring B-019-1-13 was performed in the grass area just south of the asphalt access road and encountered 12.0 inches of topsoil at the ground surface. Boring B-020-1-13 was performed in a grass yard between a new building and the asphalt access drive and encountered 6.0 inches of topsoil overlying 4.0 inches of brick pavers.

4.2 Subsurface Soils

Beneath the pavement section in boring B-017-7-13, existing embankment fill consisting of brown and brownish gray silt and clay and silty clay (ODOT A-6a, A-6b) with seams of brown and gray gravel (ODOT A-1-a). Beneath the surface materials in the remaining borings, material identified as existing fill was encountered extending to depths ranging from 10.5 feet below the existing ground surface in boring B-017-6-13 to 18.0 feet below the ground surface in borings B-019-0-08, which corresponds to elevations ranging from 695.5 to 704.4 feet msl. The fill material consisted of brown, dark brown, gray and black gravel and sand, gravel with sand and silt, sandy silt, silt and clay and silty clay (ODOT A-1-b, A-2-4, A-4a, A-6a, A-6b). Material identified as organic clay (A-8b) was encountered in boring B-019-0-08 at a depth of 8.0 feet and extended to a depth of 15.5 feet below existing grade. The organic content in this layer ranged from 7 to 9 percent, and large wood fragments were encountered throughout this layer as well.

Underlying the surficial materials and existing fill, natural granular soils were encountered overlying cohesive soils. The granular soils were generally described as brown, gray and dark brown gravel, gravel and sand, gravel with sand and silt, gravel with sand, silt and clay and coarse and fine sand (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-3a). The cohesive soils were described as gray, brown and brownish gray sandy silt, silt and clay, silty clay, elastic clay and clay (ODOT A-4a, A-6a, A-6b, A-7-5, A-7-6).

The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soil encountered ranged from very loose (N₆₀ < 5 blows per foot [bpf]) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 4 bpf to split spoon sampler refusal. The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soil encountered ranged from soft (0.25 ≤ HP ≤ 0.5 tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 0.5 to over 4.5 tsf (limit of instrument).

Natural moisture contents of the soil samples tested ranged from 4 to 29 percent, and the moisture content within the organic clay (ODOT A-8b) layer encountered in boring B-019-0-08 ranged from 35 to 47 percent. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 13 percent below to 4 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be significantly below to moderately above optimum moisture levels.

4.3 Bedrock

Bedrock was encountered in the borings as presented in Table 3.

Boring	Ground Surface	Top of (Sample	Bedrock r Refusal)	Top of Bedrock Core (Auger Refusal)		
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	
B-017-6-13	714.9	64.3	650.6	74.5	640.4	
B-017-7-13	743.1	90.0	653.1	90.0	653.1	
B-019-0-08	713.5	54.0	659.5	55.0	658.5	
B-019-1-13	712.5	N/A	N/A	N/A	N/A	
B-020-1-13	712.8	64.2	648.6	80.5	632.3	

Table 3. Top of Bedrock Elevations

Shale bedrock was encountered along the proposed wall alignment at a depths ranging from 54.0 to 90.0 feet below the ground surface, which corresponds to elevations ranging from 648.6 feet msl in boring B-020-1-13 to 659.5 feet msl in boring B-019-0-08. However, this weathered bedrock material was able to be augered in borings B-017-6-13 and B-020-1-13, while this material required rock coring techniques to advance the borings in B-017-713 and B-019-0-08. Competent limestone bedrock was encountered in borings B-017-6-13 and B-020-1-13 at a depth of 74.5 and 80.5 feet below the ground surface, which corresponds to elevations of 640.4 and 632.3 feet msl, respectively. The cored shale bedrock encountered in borings B-017-7-13 and

B-019-0-08 was described as light gray to blue gray, dark gray, highly to severely weathered, very weak to weak and moderately fractured to highly fractured. The cored limestone bedrock encountered in borings B-017-6-13 and B-020-1-13 was described as light brown, light gray, gray and dark gray, unweathered, strong to very strong and slightly fractured to highly fractured.

The percent recovery, RQD values and unconfined compressive strengths of the bedrock core runs are summarized in Table 4.

Boring	Core No.	Elevation (feet msl)	Recovery (%)	RQD (%)	Unconfined Compressive Strength
D 017 C 10	RC-1	640.4 to 635.4	93	83	q _u @ 75.6' = 12,261 psi
B-017-0-13	RC-2	635.4 to 630.4	100	100	N/A
B-017-7-13	RC-1	653.1 to 652.1	100	79	N/A
	RC-2	652.1 to 651.1	100	66	N/A
	RC-3	651.1 to 646.1	74	15	N/A
	R-2	657.7 to 652.7	47	23	N/A
B 010 0 09	R-3	652.7 to 647.7	38	17	N/A
D-019-0-00	R-4	647.7 to 642.7	100	67	N/A
	R-5	642.7 to 637.7	50	22	N/A
B-020-1-13	RC-2	632.3 to 626.8	99	49	qu @ 80.7' = 9,465 psi

 Table 4. Rock Core Summary

It should be noted that bedrock naturally experiences mechanical breaks during the drilling and coring processes. Rii attempted to account for fresh, manmade breaks during tabulation of the RQD analysis. The zone within borings B-019-0-08 and B-020-1-13 where boulders were encountered that required rock coring techniques to advance through these zones are not included in the RQD tabulation above. The quality of the shale bedrock, according to the RQD values, was very poor (RQD \leq 25%) to fair (50% < RQD \leq 75%) and the quality of the limestone bedrock was poor (25% < RQD \leq 50%) to excellent (90% < RQD \leq 100%).

4.4 Groundwater

Groundwater was encountered in the borings as presented in Table 5.

Boring	Ground	Initial Gro	oundwater	Upon Completion		
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	
B-017-6-13	714.9	28.0	686.9	N/A ¹	N/A	
B-017-7-13	743.1	57.0	686.1	N/A ¹	N/A	
B-019-0-08	713.5	12.5	701.0	12.0	701.5	
B-019-1-13	712.5	23.5	689.0	N/A ¹	N/A	
B-020-1-13	712.8	23.0	689.8	N/A ¹	N/A	

Table 5. Groundwater

1. The groundwater level at completion could not be obtained due to the addition of water as a drilling fluid.

Groundwater was encountered initially during drilling in all five borings at depths ranging from 12.5 to 57.0 feet below the ground surface, which corresponds to elevations ranging from 686.1 to 701.0 feet msl. The groundwater level at the completion of drilling in boring B-019-0-08 was 12.5 feet below existing grade prior to adding water for the rock coring process, which corresponds to an elevation of 701.5 feet msl. The groundwater levels at the completion of drilling in the remaining borings could not be measured due to the addition of water or mud to counteract heaving sands as well as water as a circulating fluid during the rock coring process.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the current and preliminary exploration programs has been used to determine the foundation support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the design of foundation systems for the subject bridge, as well as the construction specifications related to the placement of foundation systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed retaining wall were provided by Dynotec. It is understood that a mechanically stabilized earth (MSE) wall is being considered as the preferred wall type for Retaining Wall 4W8. The wall extends between the FRA-70-1358A and FRA-70-1373A bridge structure, and will wrap around in front of the forward abutment of the proposed FRA-70-1358A and FRA-70-1358R bridge structures at the west end of the wall alignment and to the rear abutment of the FRA-70-1373A and FRA-70-1373R bridge structures at the east end of the wall alignment. The total wall length for Retaining Wall 4W8, including the portions of the wall that cross in front of the abutments of the proposed bridge structures, is approximately 969 lineal feet, and the total length between the abutments of the two crossings, from Sta. 5074+12 to 5080+60 (BL Ramp C5), is approximately 648 feet.

It is understood that a cast-in-place (CIP) wall is being considered as the preferred wall type for Retaining Wall 4W9. The wall begins at Sta. 5080+41 (BL Ramp C5) where it will be connected to the north side of the rear abutment of the proposed FRA-70-1373A bridge structure, and ends at Sta. 5079+00 (BL Ramp C5). The total length of Wall 4W9 is approximately 143 feet.

5.1 MSE Wall Recommendations (Retaining Wall 4W8)

It is understood that a MSE retaining wall is being considered for use in supporting the proposed Ramp C5 alignment. MSE walls are constructed on earthen foundations at a minimum depth of 3.0 feet below grade, as defined by the top of the leveling pad to the ground surface located 4.0 feet from the face of the wall. Per Section 204.6.2.1 of the 2007 ODOT BDM, the height of the MSE wall is defined as the elevation difference between the top of coping and the top of the leveling pad. However, it is noted that the reinforced soil mass only extends from the foundation bearing elevation (top of leveling pad) to the roadway subgrade elevation. The width of the MSE wall foundation (B) is defined by the length of the reinforced soil mass. Per the Section 204.6.2.1 of the 2007 ODOT BDM and Supplemental Specification (SS) 840, the minimum length of the reinforced soil mass is equal to 70 percent of the height of the MSE wall or 8.0 feet whichever is greater. A non-structural bearing leveling pad consisting of a minimum of 6.0-inches of unreinforced concrete should be placed at the base of the wall facing for constructability purposes. Please note that the leveling pad is not a structural foundation.

Based upon the proposed plan information provided by Dynotec, the proposed retaining wall will have a maximum height of approximately 42.3 feet, as measured from the top of the leveling pad to the top of the coping. Therefore, it is considered that the minimum reinforcement length and the effective foundation width (B) for external and global stability calculations will be 29.6 feet.

Per Section 840.06.D of ODOT SS 840, the foundation subgrade should be inspected to verify that the subsurface conditions are the same as those anticipated in this report. Material identified as existing fill or possible fill containing soft soils and organic matter was encountered at the proposed bearing elevation in borings B-017-6-13, B-019-0-08, B-019-1-13, and B-020-1-13. The unsuitable material extends to a depth of 3.6 feet below the proposed bearing elevation in boring B-017-6-13 (El. 704.4 feet), 12.5 feet below the proposed bearing elevation in boring B-019-0-08 (El. 695.5 feet), 8.5 feet below the proposed bearing elevation in boring B-019-1-13 (El. 699.5 feet), and 13.2 feet below the proposed bearing elevation in boring B-020-1-13 (El. 694.8 feet). The fill material consisted of loose gravel and sand and sandy silt (ODOT A-1-b, A-4a), soft silt and clay (ODOT A-6a) and stiff organic clay (ODOT A-8a) in boring B-019-0-08, which contained a significant amount of organics and wood fibers throughout. In addition, stiff silt and clay (ODOT A-6a) was encountered below the existing fill in boring B-017-6-13. which extended to a depth of 6.1 feet below the proposed bearing elevation (El. 701.9 feet). These soils are not considered suitable for foundation support for a wall of this size.

A study was performed by GPD GROUP, dated March 2, 2018, to investigate the use of ground improvement techniques (stone columns/rigid inclusions) as well as the use of lightweight fill consisting of cellular concrete to control settlement within the fill material and meet strength requirements. Analyses for both alternatives were provided in the report, as well as a cost comparison between the two alternatives. Based on the results of the study, it is understood that ground improvement techniques will be a cheaper option for this wall.

The ground improvement techniques, which will consist of stone columns or rigid inclusion, will increase the bearing resistance of the bearing soils and also reduce settlement. Based on the information provided in the study, it is understood that the ground improvement elements will be installed along the entire footprint of Wall 4W8 and extend all of the way up to the existing I-70 embankment. The design of such a system is proprietary and beyond the scope of this investigation. Based on discussions with the ODOT Office of Geotechnical Engineering (OGE), the analysis for the wall was performed assuming that the existing fill and unsuitable soils will remain in place and not be stabilized. Additional considerations for the ground improvement design, including required performance criteria, are provided in Section 5.1.8.

Per ODOT SS 840, following foundation subgrade inspection and acceptance, a minimum of 12.0 inches of ODOT Item 703.16.C, Granular Material Type C, should be placed and compacted in accordance with ODOT Item 204.07.

Since the wall is located within an existing floodplain, the analysis was performed using a design groundwater level at the ground surface.

5.1.1 Strength Parameters Utilized in External and Global Stability Analyses

The shear strength parameters utilized in the external and global stability analyses for the MSE walls at the abutments are provided in Table 6.

Material Type	γ (pcf)	φ' ⁽¹⁾ (°)	<i>c</i> ' ⁽²⁾ (psf)	S _u ⁽³⁾ (psf)
MSE Wall Backfill (Select Granular Fill)	120	34	0	N/A
Item 203 Granular Embankment (Retained Soil)	130	33	0	N/A
Existing I-70 Embankment Stiff to Very Stiff Silt and Clay and Silty Clay (ODOT A-6a, A-6b)	120	28	0	2,500
Existing Fill: Soft to Stiff Silt and Clay (ODOT A-6a)	115	26	0	875 to 1,500
Existing Fill: Soft to Stiff Silty Clay (ODOT A-6b)	115	25	0	1,000 to 1,250
Existing Fill: Stiff Organic Clay (ODOT A-8b)	100	20	0	1,000
Existing Fill: Very Loose to Medium Dense Granular Soils (ODOT A-1-b, A-2-4, A-4a)	120 to 125	30 to 39	0	N/A
Medium Dense to Very Dense Granular Soils (ODOT A-1-b, A-2-4, A-3a)	125 to 135	35 to 43	0	N/A
Stiff to Hard Sandy Silt (ODOT A-4a)	120	28	0	3,125 to 7,000
Hard Silty Clay (ODOT A-6b)	125	27	0	4,375
Very Stiff to Hard Elastic Clay (ODOT A-7-5)	125	24	0 to 50	3,375 to 8,000
Very Stiff to Hard Clay (ODOT A-7-6)	130	26	50	8,000

	-	_				
Table 6. Sł	hear Strength	Parameters	Utilized in	Stability	Analy	/ses

1. Per Figure 7-45, Section 7.6.9 of FHWA GEC 5 for cohesive soils and Table 10.4.6.2.4-1 of the 2018 AASHTO LRFS BDS for granular soils.

2. Estimated based on overconsolidated nature of soil.

3. $S_u = 125(N_{60})$, Terzaghi and Peck (1967).

Shear strength parameters for the reinforced soil backfill are provided in ODOT SS 840. Per SS 840, the select granular backfill in the reinforced zone must meet the shear strength requirements provided in Table 6. Based on the design plans provided by GPD Group and Dynotec, it is understood that Item 203 granular embankment will be utilized

where any new embankment will be placed behind the reinforced soil backfill at both MSE walls. Therefore, the shear strength parameters for the retained fill will be modeled using a friction angle of 33 degrees since granular embankment is being specified, instead of using the shear strength parameters provided in ODOT SS 840.

The shear strength parameters for the natural soils were assigned using correlations provided in FHWA Geotechnical Engineering Circular (GEC) No. 5 (FHWA-NHI-16-072) Evaluation of Soil and Rock Properties and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles. However, the friction angle for the existing fill that consisted of medium dense gravel with sand and silt was conservatively assigned since there no records of the material origin or how it was placed.

5.1.2 Bearing Stability

Material identified as existing fill consisting of loose gravel and sand and sandy silt (ODOT A-1-b, A-4a), soft silt and clay (ODOT A-6a) and stiff organic clay (ODOT A-8a) in boring B-019-0-08, which contained a significant amount of organics and wood fibers throughout, was encountered at the proposed bearing elevation. These unsuitable soils extend to a depths ranging from 6.1 to 13.2 feet below the bottom of wall elevation (EI. 694.8 to 701.9 feet). As noted in Section 5.1, it is understood that ground improvement techniques will be implemented along the alignment of Retaining Wall 4W8. As this is a proprietary design, the analysis for this wall considers the existing fill material will remain in place. MSE wall foundations bearing on existing fill material may be proportioned for a factored bearing resistance as indicated in Table 7. A geotechnical resistance factor of $\varphi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.

From Station ¹	To Station ¹	Representative Borings	Wall Height Analyzed	Minimum Required Reinforcement	himum Bearing Re- quired Strengt procement (ks		Strength Limit Equivalent Bearing
	(fe		(feet)	(feet) (feet)		Factored ³	Pressure * (ksf)
5074+12	5080+60	B-019-0-08, B-019-1-13 and B-020-1-13	42.3	29.6 (0.7H)	5.03	3.21	9.54

 Table 7. Retaining Wall 4W8 MSE Wall Design Parameters

1. Limits of wall determined from plan information provided by Dynotec. Stationing listed is referenced to Ramp C5 and reflects only the portion of the wall between the abutment substructures of the FRA-70-1358A and FRA-70-1373A bridge structures.

2. The minimum reinforcement length is expressed as a percentage of the wall height, H.

- 3. A geotechnical resistance factor of $\varphi_b=0.65$ was considered in calculating the factored bearing resistance at the strength limit state.
- 4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Rii performed a verification of the bearing pressure exerted on the subgrade material for the maximum specified wall height indicated in Table 7. Based on the minimum length of reinforced soil mass presented, the factored equivalent bearing pressure exerted below the wall <u>will exceed</u> the factored bearing resistance at the strength limit state under drained and undrained conditions, considering the wall will bear on the existing fill material and unsuitable soils.

5.1.3 Settlement Evaluation

The compressibility parameters utilized in the settlement analyses of the proposed MSE wall are provided in Table 8.

Material Type	γ (pcf)	LL (%)	$C_{c}^{(1)}$	$C_{r}^{(2)}$	e _o ⁽³⁾	C _v ⁽⁴⁾ (ft²/yr)	N_{60}	<i>C</i> ' ⁽⁵⁾
Existing Fill: Veru Stiff Sandy Silt (ODOT A-4a)	120	24	0.126	0.013	0.460	800	N/A	N/A
Existing Fill: Soft to Stiff Silt and Clay (ODOT A-6a)	115	33 to 35	0.207 to 0.225	0.031 to 0.034	0.530 to 0.546	600	N/A	N/A
Existing Fill: Soft to Stiff Silty Clay (ODOT A-6b)	115	40	0.270	0.041	0.585	300	N/A	N/A
Existing Fill: Stiff Organic Clay (ODOT A-8b)	100	41	0.460	0.069	0.750	50	N/A	N/A
Existing Fill: Very Loose to Medium Dense Granular Soils (ODOT A-1-b, A-2-4, A-4a)	120 to 125	N/A	N/A	N/A	N/A	N/A	4 to 18	34 to 81
Medium Dense to Very Dense Granular Soils (ODOT A-1-b, A-2-4, A-3a)	125 to 135	N/A	N/A	N/A	N/A	N/A	15 to 100	72 to 494
Stiff to Hard Sandy Silt (ODOT A-4a)	120	22	0.108	0.011	0.444	800	N/A	N/A
Hard Silty Clay (ODOT A-6b)	125	33	0.207	0.021	0.530	300	N/A	N/A
Very Stiff to Hard Elastic Clay (ODOT A-7-5)	125	57	0.423	0.042	0.718	100	N/A	N/A
Very Stiff to Hard Clay (ODOT A-7-6)	130	44 to 51	0.306 to 0.369	0.031 to 0.037	0.616 to 0.671	150	N/A	N/A

 Table 8. Compressibility Parameters Utilized in Settlement Analysis

1. Per Table 6-9, Section 6.14.1 of FHWA GEC 5. For the organic soil layer (A-8b) encountered in boring B-019-0-08, C_c = 0.0115w_n per Table 8.2 of Holtz and Kovacs 1981.

2. Estimated at 10% of C_c for natural soils and 15% C_c for existing fill per Section 8.11 of Holtz and Kovacs (1981).

5. Per Figure 10.6.2.4.2-1 of 2018 AASHTO LRFD BDS.

^{3.} Per Table 8-2 of Holtz and Kovacs (1981).

^{4.} Per Figure 6-37, Section 6.14.2 of FHWA GEC 5.

Results of the settlement analysis are tabulated in Table 9. Total settlements ranging from 10.98 to 16.95 inches at the center of the reinforced soil mass and 7.45 to 10.29 inches at the facing of the wall are anticipated along the alignment of retaining wall 4W8. Based on the results of the analysis, 90 percent of the total settlement is anticipated to occur over a period of approximately 20 to 90 days, with the longer durations being anticipated along the western half of the wall alignment in the area of borings B-017-6-13 and B-019-0-08. The presence of a 20-foot thick layer of elastic clay (ODOT A-7-5) in boring B-017-6-13 from El. 657.9 to 677.9 feet, which is not as thick in the remaining borings along the wall alignment, is the likely reason for the large variation in the estimated settlement and time rate of settlement at this location. The thick layer of organic clay, which was not observed in the remaining borings, is the reason for the longer duration at this location. Additionally, given the significant presence of organic matter at this location, it is anticipated that significant consolidation of this layer may take place over the design life of the structure. Please note that the consolidation settlement and time rate of consolidation are based on estimates using correlated compressibility parameters provided in Table 8 for the underlying soils. Actual settlement and time rate of consolidation should be determined by monitoring the settlement of the wall using settlement platforms.

		-				
From	То	Wall Height	Service Limit Equivalent	Total Settler (inc	ment Values hes)	Time for 90%
Station ¹	Station ¹	Analyzed (feet)	Bearing Pressure ¹ (ksf)	Center of Wall Mass	Facing of Wall	(Days)
5074+12	5080+50	42.3	6.90	10.98 to 16.95	7.45 to 10.29	20 to 90

 Table 9. Retaining Wall 4W8 MSE Wall Settlement Results

1. The service limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the service limit state.

Per Section 204.6.2.1 of the ODOT BDM, "the maximum allowable differential settlement in the longitudinal direction (regardless of the size of panels) is one (1) percent." Give the amount of settlement anticipated at the facing along the wall alignment, as well as the presence of existing fill material and organic soils that may vary significantly over the footprint of the wall, differential settlement greater than 1/100 may occur if the fill material is not stabilized or over excavated and replaced with embankment fill. If either the total or differential settlement predicted presents an issue with respect to the deformation tolerances that the walls can withstand, then measures should be taken to minimize the amount of settlement that will occur. This can be achieved by preloading the site and consolidating the underlying soils prior to constructing the wall. If preloading the site is not a desired option, then consideration could be given to ground improvement through the use of stone columns. Settlement calculations are provided in Appendix IV.

5.1.4 Eccentricity (Overturning Stability)

The resistance of the MSE wall to overturning will be dependent on the on the location of the resultant force at the bottom of the wall due to the overturning and resisting moments acting on the wall. For MSE walls, overturning stability is determined by calculating the eccentricity of the resultant force from the midpoint of the base of the wall and comparing this value to a limiting eccentricity value. Per Section 11.10.5.5 of the 2014 AASHTO LRFD BDS, for foundations bearing on soil, the location of the resultant of the reaction forces shall be within the middle two-thirds ($^{2}/_{3}$) of the base width. Therefore, the limiting eccentricity of the resultant force for the specified wall height indicated in Table 7. Based on the minimum length of reinforced soil mass presented in Table 7 and utilizing the soil parameters listed in Section 5.1.1 for the retained embankment material, the calculated eccentricity of the resultant force **will not exceed** the limiting eccentricity at the strength limit state.

5.1.5 Sliding Stability

The resistance of the MSE walls to sliding was evaluated per Section 11.10.5.3 of the 2018 AASHTO LRFD BDS. For drained conditions, the sliding resistance is determined by multiplying a coefficient of sliding friction "f" times the total vertical force at the base of the wall. The coefficient of sliding friction is determined based on the limiting friction angle between the foundation soil and the reinforced soil backfill. Based on the soil parameters listed in Section 5.1.1 for the foundation and reinforced soil backfill, a coefficient of sliding friction of 0.36 was utilized for design based on the consideration that the organic clay layer encountered in boring B-019-0-08 is close enough to the bearing elevation to effect sliding under this condition. The sliding resistance at was also evaluated under undrained conditions as well. For undrained conditions, the sliding resistance is taken as the limiting value between the undrained shear strength of the bearing soil and half of the vertical stress applied by the wall multiplied by the width of the MSE wall. Based on the soil parameters listed in Section 5.1.1, the undrained shear strength of the existing fill material and organic soils encountered at the proposed bearing elevation is estimated to be 1,000 psf. A geotechnical resistance factor of φ_{τ} =1.0 was considered in calculating the factored shear resistance between the reinforced backfill material and foundation for sliding. Based on the minimum length of reinforced soil mass presented in Table 7 and utilizing the soil parameters listed in Section 5.1.1 for the retained embankment material, the resultant horizontal forces on the back of the MSE walls will not exceed the factored shear resistance at the strength limit state under drained conditions. However, the resultant horizontal forces on the back of the MSE wall will exceed the factored shear resistance at the strength limit state under undrained conditions.

5.1.6 Overall (Global) Stability

A slope stability analysis was performed to check the global stability of the wall. As per the AASHTO LRFD BDS, safety against soil failure shall be evaluated at the service limit state by assuming the reinforced soil mass to be a rigid body. Soil parameters utilized in the global stability analyses are presented in Section 5.1.1. For the global stability condition, it was considered that the failure plane will not cross through the reinforced soil mass. The computer software program Slide 7.0 manufactured by Rocscience Inc. was utilized to perform the analyses.

Per Section 11.6.2.3 of the 2014 AASHTO LRFD BDS, for MSE walls that are not integrated with or supporting structural foundations or elements, global stability is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.75 is greater than 1.0. Therefore, global stability for the portions of the wall that are adjacent to the abutment substructure is satisfied when a minimum factor of safety of 1.3 is obtained. For an MSE wall designed with the minimum strap length listed in Table 7, the resulting factor of safety under drained conditions (long-term stability) using the Spencer's analysis method was less than 1.3, and was just over 1.0 for both conditions, with the critical failure plane passing through the organic clay layer.

5.1.7 Final MSE Wall Considerations

Based on the results of the external and global stability analysis performed for the MSE wall, sliding under undrained conditions as well as bearing and global stability under both drained and undrained conditions were not satisfied at a strap length equal to 0.7 times the wall height. Increasing the width of the wall up to 1.0 times the wall height still did not satisfy all of the external and global stability requirements. Calculations for external (bearing and sliding resistance and limiting eccentricity) and overall (global) stability of the MSE wall are provided in Appendix IV.

As noted in Section 5.1, consideration was given to over excavating the existing fill and unsuitable soils and replacing it with granular embankment; however, given the depth and extent of this material the alignment of the wall, this a very expensive and uneconomical option. Therefore, it is recommended that ground improvement techniques be implemented to increase the strength of the soil mass and reduce settlement potential within these layers. Additional considerations for the ground improvement design, including required performance criteria, are provided in Section 5.1.8 below.

5.1.8 Ground Improvement Considerations

The design of the ground improvement should result in the improved soil matrix meeting the design criteria for bearing resistance and compressibility for the MSE wall. The

improved soil matrix will need to provide a factored bearing resistance greater than or equal to the factored bearing pressure at the strength limit state of 9.54 ksf. Additionally, the improved soil matrix will need to limit settlement to the required maximum differential settlement of 1/100 along the wall facing and to tolerable limits for maximum settlement of the wall based on the wall manufacturers specifications or for constructability of the roadway. In the absence of specific settlement from the wall manufacturer, the ground improvement design should limit total settlement of the embankment and back of the reinforced soil mass to 5.0 inches, and total settlement at the facing of the wall to 2.5 inches.

As noted above, total settlements of up to approximately 11 to 17 inches at the center of the reinforced soil mass and 7.5 to 10.25 inches at the facing of the wall are anticipated along the alignment of Retaining Wall 4W8 based on a service limit bearing pressure of 6.75 ksf without stabilization of the existing fill and unsuitable soils. About 90 percent of the estimated settlement is occurring within these upper layers. Therefore, it is recommended that the ground improvement elements be extended through the existing fill layers and any underlying compressive (cohesive) layers. Based on the conditions encountered, the ground improvement elements should be extended to an approximate elevation of 695 feet. Additionally, it is recommended that ground improvement elements be located along the length of the leveling pad if concentrated loads will be imparted along the pad to ensure that differential settlement does not occur.

5.2 CIP Wall Recommendations (Retaining Wall 4W9)

It is understood that a CIP retaining wall is being considered as the preferred wall type for Retaining Wall 4W9. Based on the proposed plan and cross section information provided by Dynotec, a maximum wall height of 10.4 feet is anticipated along the alignment. For CIP walls bearing on earthen foundations, footings should be proportioned such that the factored equivalent bearing pressure exerted at the front of the wall will not exceed the factored bearing resistance at the strength limit state. Further, the footings should also be proportioned such that the entire footing width remains in compression (no tensile stresses form under the footing, pulling the footing up and away from the bearing surface). It is understood that the foundations for CIP walls will bear approximately 4.0 to 5.0 feet below the finished grade. In general, the typical width of a CIP wall foundation (B) is equal to 50 to 70 percent the wall height.

It is understood that up to 35 feet of new embankment fill will be placed to bring the site to proposed grade along Ramp C5. Therefore, the bearing soils below retaining wall 4W9 will consist of new embankment fill. As stated in Section 5.1.1, based on the design plans provided by GPD Group and Dynotec, it is understood that Item 203 granular embankment will be utilized where any new embankment will be placed behind the reinforced soil backfill zone for Retaining Wall 4W8.

The shear strength parameters utilized in the external and global stability analysis of the retaining wall are provided in Table 6 from Section 5.1.1.

5.2.1 Bearing Stability

The bearing materials along the proposed alignment will consist of newly placed granular embankment fill. CIP wall foundations bearing on this material may be proportioned for a factored bearing resistance as indicated in Table 10. A geotechnical resistance factor of φ_b =0.55 was considered in calculating the factored bearing resistance at the strength limit state. The foundation width presented in the following table is based on the wall section provided in the design sheets.

From Station ¹	To Station ¹	Representative Borings	Wall Height Analyzed		Bearing Re Strengt (ka	sistance at th Limit sf)	Strength Limit Equivalent Bearing
(feet		(feet)	(feet)	Nominal	Factored ³	Pressure * (ksf)	
5079+00	5080+41	N/A	10.4	7.5 (0.72H)	27.34	15.04	2.39

Table 10. Retaining Wall 4W9 CIP Wall Design Parameters

1. Limits of wall determined from plan information provided by Dynotec Stationing listed is referenced to Ramp C5.

2. The foundation width based on the wall section provided in the design sheets.

3. A geotechnical resistance factor of $\varphi_b=0.55$ was considered in calculating the factored bearing resistance at the strength limit state.

4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Rii performed a verification of the bearing pressure exerted on the subgrade material for the maximum specified wall height indicated in Table 10. Based on the minimum footing width presented, the factored equivalent bearing pressure exerted below the wall <u>will</u> <u>not exceed</u> the factored bearing resistance at the strength limit state.

Given that the wall will be bearing on approximately 30 to 35 feet of newly placed granular embankment fill, little to no settlement is anticipated under the loading from the proposed wall along the alignment. However, it is recommended that settlement monitoring of the embankment fill placed up to bottom of footing elevation be performed to verify that settlement of the embankment up to that level is complete prior to constructing the wall.

5.2.2 Eccentricity (Overturning Stability)

The resistance of the CIP wall to overturning will be dependent on the on the location of the resultant force at the bottom of the wall due to the overturning and resisting moments acting on the wall. For CIP walls, overturning stability is determined by calculating the eccentricity of the resultant force from the midpoint of the base of the wall and comparing this value to a limiting eccentricity value. Per Section 11.6.3.3 of the 2018 AASHTO LRFD BDS, for foundations bearing on soil, the location of the resultant

of the reaction forces shall be within the middle two-thirds $(^{2}/_{3})$ of the base width. Therefore, the limiting eccentricity is one-third $(^{1}/_{3})$ of the base width of the wall. Based on the required foundation width presented in Table 7 and utilizing the soil parameters listed in Section 5.1.1 for the retained embankment material, the calculated eccentricity of the resultant force <u>will not exceed</u> the limiting eccentricity at the strength limit state.

5.2.3 Sliding Stability

The resistance of the CIP wall to sliding was evaluated per Section 11.6.3.6 of the 2018 AASHTO LRFD BDS. Given that the bearing soils along the wall alignment will consist of newly placed granular embankment fill, the bearing resistance was evaluated under drained conditions only. For drained conditions, the sliding resistance is determined by multiplying a coefficient of sliding friction "f" times the total vertical force at the base of the wall. The coefficient of sliding friction is determined based on the friction angle of the foundation soil. Based on the soil parameters listed in Section 5.1.1 for ODOT Item 203 granular embankment, a coefficient of sliding friction of 0.65 was utilized for design. A geotechnical resistance factor of φ_{τ} =1.0 was considered in calculating the factored shear resistance along the base of the wall. Based on the minimum foundation width presented in Table 7 and utilizing the soil parameters listed in Section 5.1.1 for the cIP wall **will not exceed** the factored shear resistance at the factored shear resistance.

5.2.4 Global (Overall) Stability

A slope stability analysis was performed to check the global stability of the wall along the alignment. As per 2018 AASHTO LRFD BDS, safety against soil failure shall be evaluated at the service limit state by assuming the concrete and soil backfill to be a rigid body. Soil parameters utilized in external stability analyses are presented Section 5.1.1. For the global stability condition, it was considered that the failure plane will not cross through any portion of the supported soil mass above the concrete or through the concrete footing itself. The computer software program Slide 7.0 manufactured by Rocscience Inc. was utilized to perform the analyses.

Per Section 11.6.2.3 of the 2018 AASHTO LRFD BDS, overall (global) stability for CIP walls that are not supporting structural foundations or elements is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.75 is greater than 1.0. Therefore, global stability is satisfied when a minimum factor of safety of 1.3 is obtained. Based on the recommended footing dimensions listed in Table 7, the resulting factor of safety under drained conditions (long-term stability) using the Spencer's analysis method was greater than 1.3.

5.2.5 Final CIP Wall Considerations

Based on the results of the external and global stability analysis performed for Retaining Wall 4W9, the wall section provided in the design sheet for Wall 4W9, which includes a base width of 7.5 feet (0.73 times the height of the CIP wall) meets all of the external and global stability requirements.

Calculations for external (bearing and sliding resistance and limiting eccentricity) and overall (global) stability of the CIP walls are provided in Appendix VI.

5.3 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (ϕ '), and lateral earth pressure coefficients for at-rest conditions (k_o), active conditions (k_a), and passive conditions (k_p) have been estimated and are provided in Table 11 and Table 12.

Soil Type	γ (pcf) ¹	c (psf)	φ	ka	ko	k_p
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

 Table 11. Estimated Undrained (Short-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Soil Type	γ (pcf) ¹	c (psf)	φ'	<i>k</i> _a	k _o	k_p
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53
Very Stiff to Hard Cohesive Soil	125	50	28°	0.32	0.53	5.07
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	130	0	33°	0.26	0.46	7.41

Table 12. Estimated Drained (Long-term) Soil Parameters for Design
--

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.4 Construction Considerations

All site work shall conform to local codes and to the latest ODOT Construction and Materials Specifications (CMS), including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.4.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Soil	Maximum Back Slope	Notes
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None
Rock to 3.0' +/- below Auger Refusal	0.75 : 1.0	Above Ground Water Table and No Seepage
Stable Rock	Vertical	Above Ground Water Table and No Seepage

Table 13. Excavation Back Slopes

5.4.2 Groundwater Considerations

Based on the groundwater observations made during drilling, groundwater may be encountered during overexcavation of the existing fill material. Where groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they

were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

VICINITY MAP AND BORING PLAN

APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>**Granular Soils**</u> – ODOT A-1, A-2, A-3, A-4 (non-plastic) The relative compactness of granular soils is described as:

Description	Blows per	foot –	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

Cohesive Soils - ODOT A-4, A-5, A-6, A-7, A-8

The relative consistency of cohesive soils is described as:

	Unconfined				
Description	Compression (tsf)				
Very Soft	Less than		0.25		
Soft	0.25	-	0.5		
Medium Stiff	0.5	-	1.0		
Stiff	1.0	-	2.0		
Very Stiff	2.0	-	4.0		
Hard	Over		4.0		

Gradation - The following size-related denominations are used to describe soils:

Soil Frac	tion	Size
Cobbles		12" to 3"
Gravel	coarse	3" to ¾"
	fine	³ ⁄ ₄ " to 2.0 mm (³ ⁄ ₄ " to #10 Sieve)
Sand	coarse	2.0 mm to 0.42 mm (#10 to #40 Sieve)
	fine	0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt		0.074 mm to 0.005 mm (#200 to 0.005 mm)
Clay		Smaller than 0.005 mm

Modifiers of Components - The following modifiers indicate the range of percentages of the minor soil components:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	Range - ODOT
Dry	Well below Plastic Limit
Damp	Below Plastic Limit
Moist	Above PL to 3% below LL
Wet	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

<u>Term</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe the relative strength of bedrock:

<u>Description</u>	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	ation OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS		
	Gravel and/or Stone Fragments	Α-	1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes		
	Gravel and/or Stone Fragments with Sand	A - 1	1-Ь		50 Max.	25 Max.		6 Max.	0			
F S	Fine Sand	A	- 3		51 Min.	10 Max.	NON-PI	_ASTIC	0			
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes		
0.0.0 0.0.0 0.0.0 0.0.0 0.0.0	Gravel and/or Stone Fragments with Sand and Silt	A	2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0			
0.0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.	Gravel and/or Stone Fragments with Sand, Silt and Clay	A-:	2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4			
	Sandy Sil†	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less †han 50% sil† sizes		
+ + + + + + + + + + + + + + + + + + +	silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes		
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12			
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10			
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16			
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20			
	Clay	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20			
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b		
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6		
	MATERIAL CLASSIFIED BY VISUAL INSPECTION											
	Sod and Topsoil $\wedge \rightarrow > V$ Pavement or Base $\sim \wedge \land \land$ $\downarrow \rightarrow \downarrow$ $\downarrow \rightarrow \downarrow$	Uncon Fill (E	trolled escribe)		Bouldery	/ Zone		PPe	o†		

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Description	Field Parameter
Unweathered	No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a right appearance with no discoloration. Fractures show little or not staining on surfaces.
Slightly Weathered	Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% of the rock volume presents alteration.
Moderately Weathered	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15% of the rock volume presents alterations.
Highly Weathered En	tire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may be present and some areas of severely weathered materials may be present.
Severely Weathered	Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of more resistant rock may be present but the material can generally be molded and crumbled by hand pressures.

Strength of Bedrock – The following terms are used to describe the relative strength of bedrock:

Description	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Štrong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description	<u>Thickness</u>
Very Thick	Greater than 36 inches
Thick	18 to 36 inches
Medium	10 to 18 inches
Thin	2 to 10 inches
Very Thin	0.4 to 2 inches
Laminated	0.1 to 0.4 inches
Thinly Laminated	Less than 0.1 inches

Fracturing – Describes the degree and condition of fracturing (fault, joint, or shear):

Very Poor Poor Fair Good Very Good

Degree of Fracturing	
Description	Spacing
Unfractured	Greater than 10 feet
Intact	3 to 10 feet
Slightly Fractured	1 to 3 feet
Moderately Fractured	

h	Surface Roughr	iess
<u>Width</u>	Description	Criteria
Greater than 0.2 inches	Very Rough	Near vertical steps and ridges occur on surface
0.05 to 0.2 inches	Slightly Rough	Asperities on the surfaces distinguishable
Less than 0.05 inches	Slickensided	Surface has smooth, glassy finish, evidence of Striations
	h <u>Width</u> Greater than 0.2 inches 0.05 to 0.2 inches Less than 0.05 inches	Width Surface Roughr Width Description Greater than 0.2 inches Very Rough 0.05 to 0.2 inches Slightly Rough Less than 0.05 inches Slickensided

<u>RQD</u> – Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006): <u>RQD %</u> <u>Rock Index Property Classification (based on RQD, not slake durability index)</u>

APPENDIX III

PROJECT BORING LOGS:

B-017-6-13 through B-020-1-13

BORING LOGS

Definitions of Abbreviations

- AS=Auger sampleGI=Group index as determined from the Ohio Department of Transportation classification systemHP=Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
- LL_o = Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL_o/LL is less than 75 percent, soil is classified as "organic".
- LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
- PID = Photo-ionization detector reading (parts per million)
- QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
- QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
- RC = Rock core sample
- REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
- RQD = Rock quality designation estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

 \sum segments equal to or longer than 4.0 inches x 100

core run length

- S = Sulfate content (parts per million)
- SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m).
- N_{60} = Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$
- SS = Split spoon sample
- 2S = For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N₆₀ values.
- 3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.
- TR = Top of rock
- W = Initial water level measured during drilling
- ▼ = Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR	=	% Grave
SA	=	% Sand
SI	=	% Silt
CL	=	% Clay

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
ΡI	=	Plasticity Index

WC = Water content (%)

ſ	PROJECT: FRA-70-12.68 - PHASE 4A							DRILLING FIRM / OPERATOR: RII / J.K.					DRILL RIG: MOBILE B-53 (SN 624400)						OFFS	FFSET: 5074+21.50 / 19.1' RT						RATION ID
	Rii	TYPE:		ST	RUCTU	RE	SAMPLING FI	PLING FIRM / LOGGER: RII / K.S.				MER:		AUTOMA	TIC		ALIG	NMEN	IT:		BL	RAMP	P C5		7-0-13	
		PID: _	77372	BR	ID:F	RA-70-1358A	DRILLING ME	THOD:	3.25" HSA / RC		CALIE	BRATI	ON DA	TE:	1/26/13		ELE\	/ATIO	N:	714.9) (MSL	_)	EOB:	8	4.5 ft.	
Ļ		START	:12/;	31/13	END:	1/7/14	SAMPLING M	ETHOD:	SPT / NQ		ENER	ENERGY R/		%):	77.7		LAT / LONG:			3	9.952	89576	7, -83.	006754	692	1013
			MA	TERIAL	DESC	RIPTION		ELEV	DEPTHS SF		PT/ No.		REC	SAMPLE	HP	Ģ	GRADATION))	ATT	ERBI	ERG		ODOT	HOLE
	FILL . MA					S	k	714.9		R	QD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	L PL		WC	CLASS (GI)	SEALED
	LITTLE SUT TRACE CLAY DAMP TO MOIST							(ta		-																
		0121, 11		L/(1, D		o molor.		0		_5	6	10	44	CC 1										11	A 1 6 ())	
							a.	⊇ I	- 2	2 -	8	10	44	33-1	-	-	-	-	-	-	-	-	-	14	A-1-0 (V)	
								<u> C</u>	— 3																	
	THROU	GHOUT	KS ANL	RUUr	FRAG	WENTS PRES				9																
								(Va			10	27	100	SS-2	-	34	25	20	18	3	NP	NP	NP	19	A-1-b (0)	
							2	20	5																	
							à		- 6		3													~		
ŀ	FILLS			ΙΙ Τ ΔΝ				/08.2	7	· _ ``	8	16	78	SS-3	-	-	-	-	-	-	-	-	-	2	A-1-D (V)	
	TO FINE	E SAND,	LITTLE	FINE	GRAVE	L, DAMP.				- H	4				2.00	13	4	13	42	28	33	18	15	17	A-6a (9)	
	-ORG4		RESEN		NUGHO	TII			8 - 8																	
2	01(0/							705.5	— g) + 22	13	28	89	SS-4	1.75	-	-	-	-	-	-	-	-	15	A-6a (V)	
50	FILL: M		DENSE,	BROW	'N GRA	VEL AND SAN	D, 🤷			o 📕	9				-	52	15	13	15	5	NP	NP	NP	6	A-1-b (0)	
ς-0		SILT, TE				DDESENIT		/04.4																		
	THROU	GHOUT		01107		RESERT		\square		4	4	10	22	00 F	1 50									04	A C= () ()	
0.13/	STIFF, I	REDDIS	H BRO	VN SIL		CLAY, LITTLE	[- 1:	2 -	4 5	12	33	55-5	1.50	-	-	-	-	-	-	-	-	21	A-6a (V)	
N N	COARS	E TO FI	NE SAN	ID, TRA	CE FIN	IE GRAVEL, M	OIST.	701.9	1:	3 —																
U E C			E, BLAC		BROW	N COARSE A			-	5																
Ú Y	GRAVE	L. MOIS	TLE SIL T.	.I, IRA		AT, TRACE FI				4	6	18	100	SS-6	-	4	28	47	16	5	NP	NP	NP	10	A-3a (0)	
1815		_,						699.4	1	5 –	0															
5	VERY S	TIFF, B	ROWN	SANDY	SILT, S	SOME FINE			- 10	6																
- DC:	GRAVE	L, TRAC	E CLA	, DAMI	- .				- 1	- '	9	25	89	SS-7	-	27	15	14	35	9	24	19	5	14	A-4a (2)	
/ L G								696 0		′ 🕂	10														. ,	
./7/+	MEDIUM	M DENS	Ε ΤΟ ΥΙ	ERY DE	NSE, E	BROWN GRAV	EL Å		- 18	8																
	AND SA	ND, TRA	ACE TO	LITTLE	E SILT,	TRACE CLAY,	o S	U9	- 19	9 - 14	10	27	83	SS-8	_	_	_	_	_	_	_	_	_	11	A-1-h (\/)	
<u>פ</u>	DAMP I	O MOIS	51.						- 20		11		00												/()	
3								(ta		. –																
Б							P	0	- 2	1 11		- 1												•		
ׂ							a'	D.C	- 22	2 —	14 25	51	89	SS-9	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
Ц Р С								<u> C</u>	- 2	3 —																
r n										29)															
Ľ							L.	(ta	- 24	4	26	67	78	SS-10	-	57	17	9	12	5	22	17	5	9	A-1-b (0)	
Ϋ́							P	<u> </u>	- 2	5 –	26															
Ž							å		- 20		,															
5 NC								Ц Ц		7	16	41	67	SS-11	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	
ģ										′ 📕	16														、	
ş								\mathbb{C}^{d}	28	8																
5 5							P	0	- 29	9 8	0	25	92	CC 10										15	A 1 6 // A	
							à	$\sum_{i=1}^{n}$		H	J0	20	03	33-12	-	-	-	-	-	-	-	-	-	15	M-1-D (V)	\mathbb{Y}/\mathbb{Z}

	PID: 77372	BR ID:	FRA-70-1358A	FRA-70-12.68 -	PHASE 4	4A S	TATION /	OFFSE	ET: _5	5074+21.50 / 19.1			START: 12/31/13 END: 1/7/14 PG 2 OF 3 B-017-6-13											
		M	ATERIAL DESCI	RIPTION		ELEV.	DEPTHS		SPT/	Neo	REC	SAMPLE	HP	Ģ	RAD	ATIO	N (%)	ATT	ERBI	ERG		ODOT	HOLE
ŀ						684.9			RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
	AND SAND, T DAMP TO MC	RACE TO NIST. (sa	VERY DENSE, B O LITTLE SILT, me as above)	TRACE CLAY				- 31 - - 32 - - 32 - - 33 -																
									2 6 12	23	67	SS-13	-	10	47	33	8	2	NP	NP	NP	19	A-1-b (0)	
								35 - 36																
	VERY STIFF	TO HAR	D, GRAY ELAST	IC CLAY , TR	ACE	677.9		- 37	-															
	SILT, TICKOL	COARO						- 38 -	2 6	23	67	SS-14	3.00	-	-	-	-	-	-	-	-	24	A-7-5 (V)	
								40 	12															
-045.GPJ								- 42	-															
013\W-13								43 44	7 10	30	83	SS-15	3.75	_	_	_	_	-	-	_	_	27	A-7-5 (V)	
JECTS/20								45	13														- ()	
GI8/PRO								40 - 47 -	-															
7:50 - U:\								- 48 - - - 49 -	8 10	28	100	SS-16	3 75	0	1	0	10	80	57	34	23	27	A-7-5 (17)	
4/2/15 1								- 50 -	12	20	100	00-10	5.75	0	•	0	10	03	57	54	25	21	<u> </u>	
DT.GDT -								- 51 -																
)- ОН DO								- 53 - - - 54 -	12	6E	400	00.47	4.50									05	A 7 F 0.0	
RIDGE II								- 55 -	18 32	00	100	55-17	4.50	-	-	-	-	-	-	-	-	25	A-7-5 (V)	
-RII NE B						657.9		- 56 - - 57 -																
NG LOG	LITTLE SILT,	TRACE	CLAY, DAMP.					- 58 -	50/4"		_ 75 _	SS-18	 /									8/	A-1-b (V)	
OT BORI								- 59 -																
2014 OD						652.9		61	-															

ſ	PID: 77372	ID:BR ID:FRA-70-1358A PROJECT:FRA-70-12.68 - PHASE 4A								STATION / OFFSET:			5074+2	21.50 / 19	START: 12/31/13 END: 1/7/14 PG 3 OF 3 B-017-6-13											
ſ	MATERIAL DESCRIPTION							ELEV.	DEE	отне	SPT/	Ν.,	REC	SAMPLE	HP	0	RAD	ATIC)N (%	6)	AT	ERB	ERG		ODOT	HOLE
			AND N	VOTES	;			652.8			RQD	••60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)) SEALED
	HARD, GRAY TRACE COAF	CLAY , " RSE TO I	AND" FINE FINE SAND	E GRAN D, DRY	/EL, LITTLE '. (same as a	SILT, above)				63 -	-															
								650.6	тв_	64 -	32 50/3"	-	22	SS-19	4.5+	56	1	1	15	27	51	23	28	10	A-7-6 (7)	
	SHALE : GRA	Y, HIGH	LY WEATH	IERED	9, VERY WE	AK.		000.0	TR-	64 66 - 66 - 67 - 68 - 68 - 69 - 70 - 71 - 72 -		-	56	SS-20	-	-	-	-	-	-	-	-	-	12	Rock (V)	
οLο										- 73 -		~>	100/	SS-21	 /		- /	/		-	-		L	. 16	Rock (V)	
0-0+0-0		AUG LIGHT E	ER REFUS BROWN AN	AL @	74.5' AY,			640.4		74 - - 75 -											$\overline{ }$					
	UNWEATHER DOLOMITIC, (SLIGHTLY TC ROUGH; RQD -QU @ 75.6'	RED, VEF CALCAR 0 HIGHL 0 92%, R = 12,261	RY STRON EOUS, CH Y FRACTUI EC 97%. I PSI	ig, vei Ierty Red, (RY THICK B , MICACEOU OPEN APER	EDDED, JS, TURES,				- 76 - - 77 - - 78 - - 79 -	83		93	RC-1											CORE	
N.O - 00.11 CI /7/+ - 100.1								630.4	500		100		100	RC-2											CORE	
2014 טעטו פטתוועט בטקיזאו ואר גייגעטר וע - כיי גע									EOB																	
	NOTES: GROL	JNDWATE	R ENCOUNT	TERED	INITIALLY @ 2	28.0'																				
ĺ	ABANDONMENT		DS, MATERIA	ALS, QU	ANTITIES: T	REMIED 2	82 LBS	CEMENT /	50 LBS BE		POWDER	/ 50 G	AL WA	TER												

B-017-6-13 - RC-1 and RC-2 - Depth from 74.5 to 84.5 feet

	PROJECT: FRA-70-12.68 - PHASE 4A	DRILLING FIRM / OPERATO	DR:RII / J.B.	DF	RILL RIG	: <u>MO</u>	BILE B-53 (SN 624	400)	STAT	FION /	OFFSE	:T: _	170	+79.3	6 / 23.	3' RT	EXPLOF	ATION ID
	Rii) TYPE: <u>STRUCTURE</u>	SAMPLING FIRM / LOGGEF	RII / S.B.	HA	MMER:		AUTOMA	TIC		ALIG	NMEN	NT:		BL	<u> </u>	EB			PAGE
	PID: <u>77372</u> BR ID: <u>FRA-70-1358R</u>		4.25" HSA / RC				AIE:4	1/26/13		ELEV		N:	43.1		_) 20056	EOB:	9	6.7 tt.	1 OF 4
┢												G	39	ATT	20050	0, -03.	006420	0004	DAOK
	MATERIAL DESCRIPTION AND NOTES	ELEV.	DEPTHS	ROD	N ₆₀	(%)		(tef)	GR		FS		сі /				wc	ODOT CLASS (GI)	FILL
ŀ	0.9' - ASPHALT (11.0")	743.1				(70)		((0))	ÖN	00	10	0.							
ŀ	0.5' - AGGREGATE BASE (6.0")	×× 742.2 ×× 741.7	- 1																
	FILL: MEDIUM DENSE, GRAY GRAVEL, LITTLE F	INE TO		4	14	67	00.1		60	10	E	10	2				7	A 1 c (0)	
	COARSE SAND, TRACE SILT, TRACE CLAY, MO	IST.			6	07	33-1	-	69	13	5	10	3	NΡ	NP	INP	'	A-1-a (0)	
		0 720 1	- 3 -	0													0	A 1 = () ()	
F	FILL: STIFE TO VERY STIFE BROWNISH GRAY	ТО 739.1	- 4 -	3	10	50	SS-2	-	-	-	-	-	-	-	-	-	12	A-1-a (V)	
	BROWN SILT AND CLAY, LITTLE COARSE TO FI	NE	- 5 -	5	5			3.00	-	-	-	-	-	-	-	-	13	A-0a (V)	
	SAND, TRACE FINE GRAVEL, DAMP.			-															
				6	26	50	SS-3	2 00	-	_	-	_	-	_	_	_	12	A-6a (V)	
		725 1		12	2														
-	FILL VERY DENSE BROWN GRAVEL TRACE S	IT 0 735.1	- 8 -																
Ъ	DAMP.		- 9 -	18	65	44	00 1										5	A 1 a ()/)	
12.G			- 10 -	25	5 05	44	33-4	-	-	-	-	-	-	-	-	-	5	A-1-a (V)	
13-07																			
M\\$	GRAY SILTY CLAY, SOME FINE GRAVEL, LITTLE			3													10		
2013	COARSE TO FINE SAND, DRY TO MOIST.		- 12 -	9	25	50	55-5	2.00	-	-	-	-	-	-	-	-	12	A-6b (V)	
SI S			- 13 -																
DJEC			- 14	1															
PRC			- 14 -	2	9	56	SS-6	1.50	31	11	8	30 2	20	37	18	19	19	A-6b (6)	
:\G 8			15		2														
⊃ -			- 16 -	5															
17:34			- 17 -	15	39	39	SS-7	2.00	-	-	-	-	-	-	-	-	9	A-6b (V)	
. 115				15	2														
3/14				15															
'n			- 19 -	50	101	39	SS-8	2.00	-	-	-	-	-	-	-	-	19	A-6b (V)	
DT.G			- 20 -	28	3													. ,	
ЦЦ																			
ō '				6	27	56	55-9	1 75	-	_	_	_	-	_	_	_	20	A-6h (\/)	
П			- 22 -	6	9													// 00 (1)	
SIDG			- 23 -																
ЕR			- 24 -	21	10	56	SS 10	4 50	24	10	0	22	24	40	20	20	10	A 66 (9)	\mathbb{K}
2			- 25	6	3 10	50	33-10	4.50	24	10	9	33	24	40	20	20	10	A-00 (0)	
90																			\boxtimes
5 D				7		00	00.11	0.50									40		
L R			- 27 -	8) 23	83	55-11	2.50	-	-	-	-	-	-	-	-	16	A-60 (V)	
Ш			- 28 -																
JUD				WOH											-				
2014			- 29	2	16	72	SS-12	2.75	-	-	-	-	-	-	-	-	18	A-6b (V)	

	PID:	- PHASE	4A	STATION	/ OFFSE	ET:	170+7	9.36 / 23.3	B RT	. 5	STAR	T: 8	/4/13	EN	D: _8	3/7/13	3 P(G 2 O	F4 B-01	7-7-13
	MATERIAL DESCRIPTION	ELEV.	Г	DEPTHS	SPT/	Nca	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERB	ERG		ODOT	BACK
		713.1			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	GRAY SILTY CLAY, SOME FINE GRAVEL, LITTLE COARSE TO FINE SAND, DRY TO MOIST. (same as above)	711.1		- 31 - - 32 -	-															
	COARSE TO FINE SAND, SOME FINE GRAVEL, DAMP.			33	-															
				- 34 -	4 4 5	12	50	SS-13	1.75	24	14	12	31	19	33	18	15	20	A-6a (5)	
				36	-															
				- 37 - - - 38 -	-															
	-WOOD FRAGMENTS RECOVERED FROM 38.5' TO 39.0'	704.1			10				-	-	-	-	-	-	-	-	-	110		
ľ	HARD, DARK BROWN SILTY CLAY , SOME FINE TO COARSE SAND, SOME FINE GRAVEL, MOIST.		1	- 39 - - 40 -	8	21	33	SS-14	4.50	-	-	-	-	-	-	-	-	13	A-6b (V)	
.GPJ		701 1		- 41 - - 41 -	-															
-13-045	MEDIUM DENSE TO DENSE, BROWN GRAVEL , SOME			- 42 - - - 43 -	-															
\$\2013\M				44	2 8 11	25	78	SS-15	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
OJECTS				45 46																
\GI8\PR				- 47 -	-															
7:34 - U	2.4.2.5 10.0 2.4.2.5 10.0 2.4.2.5		W	- 48	10	20	01	66.46		50	10	10	10	4	01	10	0	10		
3/14/15 1				50	14 16	39	61	55-16	-	52	18	10	16	4	21	18	3	10	A-1-D (U)	
.GDT - 3				- 51 - - - 52 -	-															
DH DOT				- 53 -	-															
DGE ID -				54 - - 55 -	20 30 45	97	72	SS-17	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
NE BRIC		686 1		56	-															
-06-RII	VERY DENSE, GRAY GRAVEL WITH SAND AND SILT , TRACE SILT, MOIST.		W	- 58 -	-															
ORING				- 59 -	41 21 50/4"	-	100	SS-18	-	-	-	-	-	-	-	-	-	17	A-2-4 (V)	
ODOT B	-COBBLES PRESENT @ 60.0'			- 60 - - 61 -																
2014		a •																		

ſ	PID: 77372	BR ID:	FRA-70-1358R	PROJECT:	FRA-70-12.68	B - PHASE	4A S ⁻	TATION	/ OFFSI	ET:	170+7	9.36 / 23.	3 RT	s	TART	: 8/4	13	EN	D: _8	8/7/13 I	PG 3 0	F 4 B-01	7-7-13
ľ		MA	ATERIAL DESCI	RIPTION		ELEV.	DEPT	ЪΗς	SPT/	N	REC	SAMPLE	HP	G	RADA	TION	(%))	ATT	ERBERC	i	ODOT	BACK
			AND NOTE	S		681.0	DLI I	115	RQD	IN60	(%)	ID	(tsf)	GR	CS	FS :	SI	CL	LL	PL PI	WC	CLASS (GI)	FILL
		E, GRAY	GRAVEL WITH	SAND AND SI	LT,			- 63 -	-														
	TRACE OILT,	WOIDT.	(same as above)		Pa	Б			8														
					ġ.			64 -	20	52	83	SS-19	-	-	-	-	-	-	-		17	A-2-4 (V)	
								- 65 -	20														
					, To) A		- 66 -															
						676.1		- 67 -															
	HARD, GRAY	CLAY, S	SOME SILT, TRA	CE COARSE	то				-														
	FINE SAND, I							- 68 -	0												_		
						—		69 -	9	32	78	SS-20	4.5+	-	-	-	-	-	-		20	A-7-6 (V)	
								- 70 -	16													. ,	
								- 71 -	-														
									-														
								- 12 -															
Ъ								- 73 -	-														
45.G								- 74 -	12	44	89	SS-21	4.5+	-	-	-		-	-		17	A-7-6 (V)	
-13-0								- 75 -	20														
3\W								- 76 -	-														
\$\201									-														
ECTS								_ // _	-														
ROJE								- 78 -															
18/PI								- 79 -	12	93	44	SS-22	4 5+	_	_	_	.	-	_		17	A-7-6 (V)	
U:\G								L 80 L	50														
:34 -								- 81 -	-														
5 17									-														
/14/1								- 82 -	-														
T - 3								- 83 -															
T.GD								- 84 -	40 35	-	81	SS-23	4.5+	0	2	5 3	4	59	54	25 29	15	A-7-6 (18)	
DO					F∓	#		85 -	50/4"							-+	-+					+ ` '	
- Ч								- 86 -	-														
Ш									-														
RIDG								- 87 -	-														
IE BF								- 88 -	_														
RIIN					E E	+		- 89 -	25 50/4"	-	100	SS-24	4.5+	-	-	-	-	-	-		15	A-7-6 (V)	
90 0		AUGE	ER REFUSAL @	90.0'		653.1	TR-	- 90 -															
NGL	WEAK THIN	GRAY, S	SLIGHTLY WEA	THERED, VER	RIF			L 01 _	79		100	RC-1										CORE	\bigotimes
30RI	FISSILE, HIG	HLY FRA	CTURED TO FF	RACTURED, (DPEN	651.1			66		100	RC-2									1	CORE	
OTE	APERTURE,	ROUGH;	RQD 73%, REC	100%.	/		1	- 92 -													1		.
4 OD								93 -													1		
201								94															

MATERIAL DESCRIPTION AND NOTES ELEV. 648.8 DEPTHS SPT/ RQD N60 REC (%) NBD GRADATION (%) ATTERBERG ODOT CLASS (GI) BACK FILL SHALE : GRAY TO BLACK, HIGHLY WEATHERED, VERY WEAK, THINLY LAMINATED TO LAMINATED, FRIABLE, MODERATELY TO HIGHLY FRACTURED, OPEN APERTURE, SLIGHTLY ROUGH TO ROUGH; RQD 15%, REC 74%. (same as above) 95 15 74 RC-3 I
AND NOTES 648.8 DEPTHS RQD N ₆₀ (%) ID (tsf) GR CS FS SI CL LL PL PI WC CLASS (GI) FILL SHALE : GRAY TO BLACK, HIGHLY WEATHERED, VERY WEAK, THINLY LAMINATED TO LAMINATED, FRIABLE, MODERATELY TO HIGHLY FRACTURED, OPEN APERTURE, SLIGHTLY ROUGH TO ROUGH; RQD 15%, REC 74%. (same as above) 646.4 95 15 74 RC-3 I<
SHALE : GRAY TO BLACK, HIGHLY WEATHERED, VERY WEAK, THINLY LAMINATED TO LAMINATED, FRIABLE, MODERATELY TO HIGHLY FRACTURED, OPEN APERTURE, SLIGHTLY ROUGH TO ROUGH; RQD 15%, REC 74%. (same as above)
REC 74%. (same as above)
TRANSPORTATION AND THE PROPERTY OF THE PROPERT

B-017-7-13 - RC-1, RC-2, and RC-3 - Depth from 90.0 to 96.7 feet

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-0040

Client	: ms c	onsu	Itants	S				Project: FRA-70-8.93		_						Job	No. C	221	-100	4.01		
LOG	DF: Bo	oring	B-0'	19-0-0	8	Loc	cation.	n: Sta. 5076+04.30, 29.0' RT., RAMP C5			Da	te l	Drill	led:	: 6/3	30/20	08					
Depth (ft)	Elev. (ft)	ows per 6"	scovery	Sam No	e c d	Hand Penetro- meter (tsf)	WATE FIELD	ER OBSERVATIONS: Water seepage at: 12.5'-50.0' Water level at completion: 12.0' (prior to coring) 11.0' (24 hours after completion) Advanced boring using 3.25" diameter hollowstem augers.	aphic Log	Aggregate	C. Sand	M. Sand D	F. Sand TA	Sit VO	Clay 1	STAN Natu P	IDAR ral M ²L ⊢	D PE oistu		RATI(onten	ON (N 1t, % - + LL	<i>160)</i> . ●
	713.5	В	Re	Ĩ	Pre	(101)		DESCRIPTION	ຮັ	%	%	%	%	%	%	1	0	20		30	40	NP
1.0	712.5	-					Ag	ggregate road base - 12"										i li				
	_	9 28 37	16	1			FIL silt	ILL: Very dense black GRAVEL WITH SAND (A-1-b), little It; contains coal particles and cinders; damp.	000	21	30		35	14	4							 6
4.0	709.5	9		2																		 +
_5	5	3	2				(A-	A-1-b), little silty clay; damp.	0 0													
-	705 5	2 2 2	11	3					000	37	27		26	10)							
<u>8.0</u> - 1 <u>0</u>	-	2 2 4	11	4		1.5	PC (A- @	OSSIBLE FILL: Stiff dark brown to black ORGANIC CLAY A-8b), trace fine sand; moderately organic; damp. 0 8.5', LOI @ 440 deg = 7.2%, LOI @ 750 deg = 9.1 %.		0	4		11	57	28				 +++ 		· · · · · · · · · · · · · · · · · · ·	
-		10 6 5	8	5			@	2 11.0', encountered large, decomposing wood fragment.														
- 15 5	698.0	5 4 4	3	6																		 ● ●
		8 7 4	8	7			PC SA @	OSSIBLE FILL: Medium dense brown GRAVEL WITH AND (A-1-b), trace silty clay; wet. () 16.0', encountered large, decomposing wood fragment.	000							 						
18.0	695.5	10 17 18	12	8			De sa	ense brown and gray GRAVEL (A-1-a), some fine to coarse and, little silty clay; wet.	0 0	64	12		11	13	3	 N P 	↑ 					
23.0	690.5	11 15 20	12	9																	 	
	688.5	21 22 21	7	10			De tra	ense dark brown and gray GRAVEL WITH SAND (A-1-b), ace silty clay; wet.	000	26	39		30	5-		 N P 						

Client	: ms c	onsu	Itants	6				Project: FRA-70-8.93								Jol	b No.	0221	1-100)4.01	
LOG	DF: Bo	ring	B-0 1	9-0-0	8	Loc	cation	n: Sta. 5076+04.30, 29.0' RT., RAMP C5			Dai	te L	Drill	led	: 6/	30/2	800				
Depth (ft)	Elev. (ft)	llows per 6"	lecovery	Sam No	ress / Core	Hand Penetro- meter (tsf)	WATE FIELD	ER OBSERVATIONS: Water seepage at: 12.5'-50.0' Water level at completion: 12.0' (prior to coring) 11.0' (24 hours after completion) Advanced boring using 3.25" diameter hollowstem augers.	iraphic Log	Aggregate	C. Sand	M. Sand	F. Sand	Sit O	S Clay	ST/ Na Blov	ANDAI tural № PL + vs per 1	RD Pl Aoistu Foot -	ENET Jre C	RATIC ontent	DN (N60) ; % - ● LL stic - NP
	688.5	B	Ľ	Q	Ð		Ve	DESCRIPTION erv dense brown and grav GRAVEL WITH SAND (A-1-b)	0 O	%	%	%	%	%	%		10	20	· · · ·	30	40
-	-	14 36 46	12	11			tra @	ace silty clay; wet. 26.0', encountered 1.8 feet sand heave.													
- <u>30</u>	-	25 32 36	10	12					000000000000000000000000000000000000000												
32.0	681.5						Ve	ery dense brownish gray GRAVEL (A-1-a), some fine to	02												
<u>35</u>	-	22 28 32	9	13			© ©	parse sand, trace slity clay; wet. 9 33.5', 38.5', encountered 2 feet sand heave.	0 2 0 0 2 0 0 2 0 0 2	66	22		8	4		 N P 					
- - 4 <u>0</u> -	-	32 30 50/5	15	14					00 00 00 00 00												 50 +
- - 4 <u>5</u>	-	50/3	3	15			@) 43.5', possible cobbles.	0 2 0 0 0 0 0 0 0 0 0 0												 50+
47.0	666.5	8					Ve fin	ery stiff brownish gray CLAY (A-7-6), trace to little silt, trace ne sand; damp to moist.													
50	663.5	12 22	10	16		3.5				0	0		0	9	91						+

DLZ Ohio, Inc.	* 6121 Huntle	Road, Columbus,	Ohio 43229 *	(614) 888-0040
----------------	---------------	-----------------	--------------	----------------

Client	: ms c	onsu	Itants	;				Project: FRA-70-8.93								Jo	ob N	0.02	221-	1004	.01	
LOG	DF: Bo	ring	B-0 1	9-0-0	8	Loo	cation	n: Sta. 5076+04.30, 29.0' RT., RAMP C5			D	ate	Dr	illec	d: 6/	/30/	200	8				
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No	Press / Core	Hand Penetro- meter (tsf)	WATI FIELL	TER OBSERVATIONS: Water seepage at: 12.5'-50.0' Water level at completion: 12.0' (prior to coring) 11.0' (24 hours after completion) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Annrenate	GF Sand	W Sand	% F. Sand	% Silt 01	% Clay	S [.] N Bla	TANE atura PL ows p	DARE al Mo L er foo) PEI istur ot - C	VETRJ re Cor	ATIOI ntent,	V (N60) % - ● LL tic - NP
54.0	659.5	59.5 8 23 17 36 17 Core 17 RQD 4.5+ Shale, blue-gray, severely weathered, weak to very weak. @ 55.0'-55.8', core loss.																				
55.8	657.7	23 36 Core 10"	17 Rec	17 RQD 0%	R1	4.5+	SI @	hale, blue-gray, severely weathered, weak to very weak. () 55.0'-55.8', core loss.		<u>IIX</u>												
- - - - - - - - - - - - - - - - - - -	-	Core 60"	0" Rec 28"	RQD 23%	R2		In Lo Ve Iai Iig sti @	nterbedded Shale (90%) and Limestone (10%) RQD 19% oss 60%. Shale, light gray to blue-gray, highly to severely reathered, very weak to weak, slightly calcareous, uminated, fissile, fractured to highly fractured; Limestone, ght gray, moderately weathered, moderately strong to trong, fractured. 0 55.8'-60.8', core barrel damaged while coring.														
65.8	647.7	Core 60"	Rec 23"	RQD 17%	R3		Q Q sa	 62.3'-62.5', encountered large pyritic inclusion. 62.5'-65.8', core loss. Pyrite lodged in core barrel, eroded ample. 														
	-	Core 60"	Rec 60"	RQD 67%	R4		SI ca m	hale dark gray highly weathered, weak, laminated, slighly alcareous, contains abundant pyritic inclusions, fissile, noderately fractured to fractured, RQD 45%, Loss 25%.														
	638.5	Core 60"	Rec 30"	RQD 22%	R5		71.0'-71.3', encountered large pyritic inclusion.															

DLZ Ohio, Inc.	* 6121 Huntle	y Road, Columbus,	Ohio 43229	* (614) 888-0040
----------------	---------------	-------------------	------------	------------------

Clien	: ms c	onsu	Itants	3				Project: FRA-70-8.93								Job No. 0221-1004.01
LOG	OF: Bo	ring	B-0 1	9-0-0	8	Loc	catior	<i>b:</i> Sta. 5076+04.30, 29.0' RT., RAMP C5			Da	ate	Dri	illeo	d: 6/	/30/2008
Depth (ft)	Elev. (ft) 638.5	Blows per 6"	Recovery	Samı No	Press / Core	Hand Penetro- meter (tsf)	WAT.	ER OBSERVATIONS: Water seepage at: 12.5'-50.0' Water level at completion: 12.0' (prior to coring) 11.0' (24 hours after completion) Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aaareaate	GK C. Sand	% M. Sand	% F. Sand	% Silt 01	% Clay	STANDARD PENETRATION (N60) Natural Moisture Content, % - ● PL → LL Blows per foot - ○ / Non-Plastic - NP 10 20 30 40
75.8	637.7	Core	Rec	RQD												
<u>ہ</u> ع ا		_ 60"	30"	- 22%				Bottom of Boring - 75.8'								

		FRA-70-12.68 - F	PHASE 4A	DRILLING FIRM	/ OPERATO	R: <u>STO</u>	CK / A/J		LL RIG	: <u>CN</u>	/IE-750X (S CME AUTO	N 3751 MATIC	28)	STAT ALIGI	ION /	OFFS	SET: _	507 BL I	7+15.3 RAMP	33 / 3.2 C5	2' RT	EXPLOF B-01	RATION ID 9-1-13
	PID:	72 BR ID:	N/A	DRILLING METH	OD:	4.25" HS	A	CAL	IBRAT	ION DA	TE:	3/28/13		ELEV		N:	712.5	5 (MSL	.) [EOB:	5	0.0 ft.	PAGE
	START:	7/8/13 END:	7/11/13	SAMPLING MET	HOD:	SPT		ENE	RGY F	RATIO (%):	78.6		LAT /	LONG	G:	3	9.9529	978442	2, -83.	005713	188	1 OF 2
	Λ	ATERIAL DESCR AND NOTES	RIPTION S		ELEV. 712.5	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS	ATIO FS	N (% SI	o) CL		ERBE PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
	1.0' - TOPSOIL (12.0	")			711.5																		
	FILL: LOOSE TO ME BLACK AND GRAY G TRACE CLAY, MOIS	DIUM DENSE, DA GRAVEL AND SAN T.	RK BROWN 1 D, LITTLE SIL	TO 0 T, 0 0			_ 2 _	20 13 10	30	94	SS-1	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	
	-BRICK AND ASPH/ THROUGHOUT	ALT FRAGMENTS	S PRESENT		707.0		- 3 - - 4 - - 5 -	3 3 4	9	44	SS-2	-	35	24	17	16	8	21	16	5	10	A-1-b (0)	
	FILL: LOOSE, BROW GRAVEL, TRACE CL -STONE AND CONO SS-3	N SANDY SILT , S AY, WET. CRETE FRAGMEN	OME FINE	r in	704 5		- 6 -	6 4 2	8	83	SS-3	-	-	-	-	-	-	-	-	-	29	A-4a (V)	
.GPJ	POSSIBLE FILL: SOF BROWNISH GRAY S SAND, LITTLE FINE	T TO MEDIUM S ILTY CLAY, "AND GRAVEL, MOIST.	TIFF, DARK " COARSE TC	FINE	704.5		- 8 - - - 9 - - 10	2 3 6	12	94	SS-4	0.75	-	-	-	-	-	-	-	-	26	A-6b (V)	
013\W-13-045							10 11 12	3 4 3	9	83	SS-5	0.50	16	25	20	15	24	40	16	24	19	A-6b (4)	
ROJECTS/2	MEDIUM DENSE, BR SILT, TRACE CLAY,	OWN GRAVEL W MOIST.	ITH SAND AN	D	699.5		13 14	4 5	14	69	SS-6	_	_	_	_	_	_	_	_	_	12	A-2-4 (V)	
- U:\GI8\PF	-STONE FRAGMEN	TS PRESENT IN	SS-6				15 16	6 5															
2/15 09:10							17 18	5 7	16	67	SS-7	-	43	19	11	21	6	NP	NP	NP	13	A-2-4 (0)	
DT.GDT - 4/2							19 20	6 6 6	16	86	SS-8	-	-	-	-	-	-	-	-	-	10	A-2-4 (V)	
RIDGE ID - OH DC	MEDIUM DENSE, BR SILT, TRACE CLAY,	OWN GRAVEL AI MOIST.	ND SAND, LIT		690.5	W	- 21 - - 22 - - 22 - - 23 -																
OG-RII NE BF		I I I I I I I I I I I I I I I I I I I	I				- 24 - - 25 -	7 6 8	18	78	SS-9	-	55	17	7	17	4	NP	NP	NP	16	A-1-b (0)	
DT BORING L							26 27 28																
2014 OD(-HEAVING SANDS	ENCOUNTERED	@ 28.5'				29	5 3 14	22	100	SS-10	-	-	-	-	-	-	-	-	-	17	A-1-b (V)	

PROJECT:FRA-70-12.68 - PHASE 4A	DRILLING FIRM / OPERA	TOR: STOCK / A/M	DR	RILL RIG	: <u> </u>	ME 750X (S	N 37512	28)	STATION	I / OFF	SET:	508	0+09.8	0 / 30	.9' RT	EXPLOF	
(Rii) TYPE: STRUCTURE	SAMPLING FIRM / LOGO	ER:		MMER:						ENT:	710	BL	RAMP				PAGE
START: 7/1/13 END: 7/3/13	SAMPLING METHOD.	4.25 H5A / RC		IERGY F		(%) [.]	78.6		LEVAI	UN	/12.	<u>0 (1015</u> 39 952	L) 1 92221	еов. 8 -83	004665	5587	1 OF 3
	FI F	/	SPT/		REC	SAMPLE	HP	G	RADAT	ON (%)		FRB	=RG	001000		BACK
AND NOTES	712	B DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.5' - TOPSOIL (6.0")	712.	3	-														
(0.3' - BRICK (4.0")	//12.		6	-	55	SS-1	_	_		-	_	-	-	-	11	A-6a (V)	
TO FINE SAND, TRACE FINE GRAVEL, DAMP. - ROOT AND GRASS FIBERS PRESENT IN SS-1	RSE 709.	8 2 4	50/5														
POSSIBLE FILL: MEDIUM DENSE, GRAY GRAVEL W SAND AND SILT, TRACE CLAY, MOIST.		- 4	15 11 5	21	81	SS-2	-	-		-	-	-	-	-	12	A-2-4 (V)	
POSSIBLE FILL: SOFT TO STIFF DARK BROWN SI	LT 4.02 707.	3	-														
AND CLAY, SOME COARSE TO FINE SAND, LITTLE GRAVEL, DAMP TO MOIST.	FINE	- 7 -	2 1 2	4	64	SS-3	0.50	20	13 13	22	32	35	20	15	20	A-6a (6)	
		- 8 -															
-STONE FRAGMENTS PRESENT IN SS-4		- 9 -	2 5	10	33	SS-4	-	-		-	-	-	-	-	12	A-6a (V)	
3-045	702.	3 - 10 -		2													
♥ POSSIBLE FILL: STIFF TO VERY STIFF, DARK ■ BROWNISH GRAY TO BROWN SILTY CLAY, SOME ■ COARSE TO FINE SAND, TRACE FINE GRAVEL, MODE	OIST.	- 11 -	1 2	8	56	SS-5	2.75	-		-	-	-	-	-	23	A-6b (V)	
22		_ 13 _	4														
PROJEC		14	2 3	8	78	SS-6	2.00	6	9 12	2 23	50	40	17	23	19	A-6b (13)	
	697.	3 - 15 -		2													
POSSIBLE FILL: VERY LOOSE, DARK BROWN GRA AND SAND, TRACE SILT, TRACE CLAY, WET.		- 16 -	1	4	67	SS-7	_	-		-	-	-	-	-	21	A-1-b (V)	
15	694	8	2	2												. ,	
MEDIUM DENSE, DARK BROWN GRAVEL WITH SAI			E														
SILT, AND CLAY, MOIST. -STONE FRAGMENTS PRESENT IN SS-8		- 19	9 6	20	39	SS-8	-	-		-	-	-	-	-	15	A-2-6 (V)	
MEDIUM DENSE TO DENSE BROWN GRAVEL AND																	
SAND, LITTLE CLAY, TRACE SILT, MOIST.		- 22 -	10	16	39	SS-9	-	-		-	-	-	-	-	17	A-1-b (V)	
		W23										1					
		24	3 6	18	53	SS-10	_	-		-	-	-	-	-	15	A-1-b (V)	
		25	8	3								\vdash				- (7)	
		- 26 27 -	5 4	16	56	SS-11	-	36	30 12	9	13	NP	NP	NP	15	A-1-b (0)	
	0 D	- 28	°														
14 00 00		29	8 16	42	83	SS-12	-	-		-	-	-	-	-	14	A-1-b (V)	

	PID: 77372	BR ID:	FRA-70-1373A	PROJECT	FRA-70-12.6	8 - PHASE	4 <u>A</u> S ⁻	TATION /	OFFS	ET: _5	6080+0)9.80 / 30	.9 RT		STAR	T: <u>7</u> /	/1/13	EN	D: _7	7/3/13	3 P(G 2 O	F3 B-02	20-1-13
		М	ATERIAL DESC	RIPTION		ELEV.	DEPT	HS	SPT/	Neo	REC	SAMPLE	HP	Ģ	RAD	ATIO	N (%)	ATT	ERB	ERG		ODOT	BACK
ŀ						682.8			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	SAND, LITTLI above)	E CLAY,	TRACE SILT, N	N GRAVEL A 10IST. (same	as	680.8		- 31 -																
	HARD, GRAY GRAVEL, DA	′ sandy Mp.	SILT, SOME C	LAY, LITTLE	FINE			33 -																
	-HEAVING S	SANDS E		0 @ 35.0'				- 34 - - 35 -	15 18 25	56	100	SS-13	4.5+	20	13	17	21	29	22	13	9	10	A-4a (3)	
						675.8		- 36 - - 37 -																
	AND SAND, T	RACE S	ILT, DAMP TO	MOIST.				- 38	7															
	-INTRODUC	ED WAT	'ER @ 40.0'					- 39 - - 40 -	13 34	62	100	SS-14	-	-	-	-	-	-	-	-	-	4	A-1-b (V)	
045.GPJ			_					- 41 - 42																
13\W-13-					a 0			- 43 - 44	20		100	<u>00 15</u>										11	A 1 h () ()	
JECTS/20								- 45 -	43 50/5"	-	100	55-15	-	-	-	-	-	-	-	-	-		A-1-0 (V)	
\GI8\PRO					4. 			46 - 47 																
08:54 - U								- 48 - - 49	17 41	-	100	SS-16	-	-	_	-	-	-	-	-	-	9	A-1-b (V)	
- 3/31/15								- 50 -	<u>50/3"</u>															
DOT.GDT	HARD, GRAY		LITTLE SILT, TH		ЕТО	660.8 660.8		- 52																
HO - UI	-SHALE FR/	AGMENT	S PRESENT IN	I SS-17				- 53 - - 54 -	18 30	72	100	SS-17	-	-	-	-	-	-	-	-	-	14	A-7-6 (V)	
E BRIDGE								55 56	25															
OG-RII NE								- 57																
BORING L								- 59 -	30 26 33	77	78	SS-18	4.5+	6	1	8	18	67	44	21	23	14	A-7-6 (14)	
2014 ODOT								60 61																

PID: _77372 BR ID:FRA-70-1373A PROJECT: _FRA-70-12.	68 - PHASE 4	A S	TATION /	OFFS	ET: _{	5080+0	9.80 / 30.	.9 RT	STA	RT: <u>7/1</u>	/13 EN	ND:	7/3/13	PG	3 OF	3 B-02	20-1-13
MATERIAL DESCRIPTION	ELEV.		тие	SPT/	NI	REC	SAMPLE	HP	GRA	DATION	(%)	AT	ERBE	RG		ODOT	BACK
AND NOTES	650.7	DEP	103	RQD	IN ₆₀	(%)	ID	(tsf)	GR CS	FS	SI CL	LL	PL	PI	wc	CLASS (GI)	FILL
HARD, GRAY CLAY , LITTLE SILT, TRACE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP. <i>(same as above)</i>	648.6	TD	63	24	-	100	SS-19	4.50		-		-	-	-	14	A-7-6 (V)	
SHALE: GRAY, VERY WEAK, HIGHLY WEATHERED.	ŧ.			\ <u>50/2</u> _/												. ,	
-AUGER REFUSAL @ 65.0'. ATTEMPTED 10.0' ROCK CORE RUN. NO RECOVERY FROM CORE RUN. MAY HAVE WASHED OUT HIGHLY WEATHERED SHALE MATERIAL DURING THE CORING OPERATION. CONTINUED SPT SAMPLING @ 75.0'.			65 66 67 68 70 70 71 71 72 73 73 74 74 75 76 76 77 78 79	0	<u> </u>	0	RC-1	-						-	15 .	CORE Rock (V)	
AUGER REFUSAL @ 80.5'	<i>₹</i> <i>1</i> 632.3		- 80 -	` <u>\$0/1"</u> _/	\/		SS-21	k - /	- / -		- / -		<u> </u>	- /	- /		
LIMESTONE : LIGHT AND DARK GRAY, UNWEATHERED, STRONG, VERY THIN TO THIN BEDDED, CRYSTALLINE, DOLOMITIC, MODERATELY FRACTURED TO FRACTURED, OPEN APERTURE, VERY ROUGH; RQD 49%, REC 99%. -QU @ 80.7' = 9,465 PSI -CHERT NODULES PRESENT THROUGHOUT	626.8	FOB	- 81 - - 82 - - 83 - - 84 - - 85 - - 85 -	49		99	RC-2									CORE	
NOTES: GROUNDWATER INITIALLY ENCOUNTERED @ 23.0'						D / 450		-0									

B-020-1-13 - RC-1 - Depth from 65.0 to 75.0 feet

B-020-1-13 - RC-2 - Depth from 81.0 to 86.0 feet

APPENDIX IV

UNCONFINED COMPRESSION TEST RESULTS

Engineering Consultants

Unconfined Compressive Strength of Intact Rock Core Specimens (ASTM D 7012-04)

6350 Presidential Gatew. Columbus, OH 43231 Phone (614) 823-4949 9885 Rockside Road4480 Lake Forest DriveCleveland, OH 44125Cincinnati, Ohio 45242Phone (216) 573-0955Phone (513) 769-6998

Project: <u>FRA-70-12.68</u> Project No.: <u>W-13-045</u>

Date of Testing: 2/13/2014

Test Performed by: J.H./T.K.

Rock Description: LIMESTONE: Light brown, unweathered, very strong.

Boring No.:	B-017-6-13	Average Length:	4.102 in
Station / Offset:	5074+21.50, 19.1' Rt.	Average Diameter:	1.87 in
Sample No. / Depth:	RC-1 / 75.6 ft.	Length to diameter ratio:	2.194
Moisture condition:	As received	Cross Sectional Area:	2.745 in ²
Rate of Loading:	62.1 lbs/sec	Failure Load: _	33,670 lbs
Testing Time:	542 sec	Axial Strain at Failure:	0.0366 in/in
	(Rate 2-15 minutes to fa	ailure) Stress:	12,261 psi
		_	

After Failure

Before Testing

Engineering Consultants

Unconfined Compressive Strength of Intact Rock Core Specimens (ASTM D 7012-04)

6350 Presidential Gatew. Columbus, OH 43231 Phone (614) 823-4949 9885 Rockside Road4480 Lake Forest DriveCleveland, OH 44125Cincinnati, Ohio 45242Phone (216) 573-0955Phone (513) 769-6998

Project: FRA-70-12.68

Project No.: <u>W-13-045</u> Date of Testing: <u>7/26/2013</u>

Test Performed by: KR/TK

Rock Description: LIMESTONE: Light gray, unweathered, strong.

Boring No.:	B-020-1-13
Station / Offset:	5080+09.80, 30.9' Rt.
Sample No. / Depth:	RC-1 / 80.7 ft.
Moisture condition:	As received

Rate of Loading:55.0 lbs/secTesting Time:469 sec

(Rate 2-15 minutes to failure)

Average Length:	3 765 in
, wordge zongan.	0.100 11
Average Diameter:	1.863 in
Length to diameter ratio:	2.021
Cross Sectional Area:	2.725 in ²
Failure Load:	25,800 lbs
Axial Strain at Failure:	0.0417 in/in
Stress:	9,465 psi

Unconfined Compression Test

Before Testing

After Failure

REMARKS:

APPENDIX V

MSE WALL CALCULATIONS

1.		в ————	σ_{LS}	= 250 p	sf					
	$\downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$,	F	Proposed	d Top	of Wall	_ FI =	750 3
\uparrow	•	X	KX					XX	κ = =	100.0
	MSE I	Backfill								
	$v_{} = 120 \text{ pcf}$		Retained S	oil:						
н	$\varphi_{BF} = 34^{\circ}$	→	ODO1 Item	203 Gra	nular En	nbankme	nt			
		Reinforcement		$\gamma_{RS} = 130$) pcf					
	*	/Straps		$\varphi_{RS} = 33$	$C_{RS} =$	0 ps	f			
			($(S_u)_{RS} = C$) psf					
Proposed Bottom of Wall		<u> </u>							— EI. =	708.0
Bearing Soil: Ex. Fill and	Organic Clay (ODOT A-8b)	φ_{BS} = 115 pcf φ_{BS}	= 20°	$c_{BS} = 0$	psf ($(S_u)_{BS}$	= 1000	osf	
SF Wall Dimensions and Retained	l Soil Param	otors	Bearing Sc	il Pron	ortios.					
SE Wall Height, (H) =		42.3 ft	Bearing Soil	Unit We	eight, (γ_{F})	₂₅) =				115 p
SE Wall Width (Reinforcement Length),	(<i>B</i>) =	29.6 ft	Bearing Soil	Friction	Angle, ($(\varphi_{BS}) =$				20 °
SE Wall Length, (<i>L</i>) =		648 ft	Bearing Soil	Drained	Cohesi	on, (<i>c</i> _{BS}) =			<mark>0</mark> p
ve Surcharge Load, (σ_{LS}) =		250 psf	Bearing Soil	Undrain	ed Shea	ar Stren	gth, [$(S_u)_{BS}$] =	-	1000 p
etained Soil Unit Weight, (γ_{RS}) =		130 pcf	Embedment	Depth,	$(D_f) =$					4.0 ft
etained Soil Friction Angle, (φ_{RS}) =		<u>33</u> °	Depth to Gro	ounwate	r (Below	Bot. of	Wall), (D_W) :	=	0.0 ft
etained Soil Drained Cohesion ¹ , $(c_{BS}) =$		0 psf	LRFD Load	d Facto	<u>rs</u>					
etained Soil Undrained Shear Strength,	$\left[\left(S_{u}\right)_{RS}\right] =$	0 psf	C4	EV	EH					
	$I., (K_a) =$	0.204 120 pcf	Strength la	1.00	1.50	1.75		(AASHTO	D LRFD B	BDM Table
SE Backfill Friction Angle (α_{BF}) =		120 pci	Strength to Service I	1.00	1.00	1.75		3.4.1-1 Ea	and 3.4.1 arth Press	-2 - Active sure)
heck Sliding (Loading Case - Strer Sliding Force:	$\frac{\text{ngth Ia}) - AA}{P_H} = P$	SHTO LRFD BDI $P_{EH} + P_{LS}$	<u> A Section 11.10.5</u>	<u>.3</u>						
heck Sliding (Loading Case - Strer Sliding Force:	$P_{H} = P_{H}$ P_{EH}	$P_{EH} + P_{LS_h}$ $= \frac{V_2 \gamma_{RS} H^2 K}{\sigma_{LS} H K}$	A Section 11.10.5 $\int_{a} \gamma_{EH} = \frac{1}{2}(130)$	<u>.3</u> pcf)(42	3 ft)²(0).264)(1 4)(1.75	.5)	= 4	l6.06 4.89	kip/ft
heck Sliding (Loading Case - Strer Sliding Force:	$P_{H} = P$ P_{EH} P_{EH} P_{EH} P_{EH} P_{EH}	$\frac{SHTO LRFD BDI}{P_{EH} + P_{LS_h}}$ $= \frac{1}{2} \gamma_{RS} H^2 K$ $= \sigma_{LS} H K_a \gamma$ $P_H = 46.06 \text{ kip}$	<u>M Section 11.10.5</u> $\Gamma_a \gamma_{EH} = \gamma_2(130)$ $\gamma_{LS} = (250 \text{ ps})$ /ft + 4.89 kip/ft	<u>.3</u> pcf)(42 f)(42.3 t = 5	3 ft)²(0 ft)(0.264 0.95).264)(1 4)(1.75 kip/ft	.5)	= 4	l6.06 4.89	kip/ft
heck Sliding (Loading Case - Strer Sliding Force:	$P_{H} = P$ P_{EH} P_{EH} P_{EH} P P P P P P	$\frac{SHTO LRFD BDI}{P_{EH} + P_{LS_h}}$ $= \frac{1}{2} \gamma_{RS} H^2 K$ $= \sigma_{LS} H K_a \gamma$ $P_H = 46.06 \text{ kip}$	<u>M Section 11.10.5</u> $f_a \gamma_{EH} = \frac{1}{2}(130)$ $\gamma_{LS} = (250 \text{ ps})$ /ft + 4.89 kip/ft	.3 pcf)(42 f)(42.3 t = 5	3 ft)²(0 ft)(0.264 0.95	0.264)(1 4)(1.75 kip/ft	-5)	= 4	l6.06 4.89	kip/ft kip/ft
heck Sliding (Loading Case - Strer Sliding Force: PLSn PLSn heck Sliding Resistance - Drained Nominal Sliding Resistance:	$P_{H} = P$ P_{EH} P_{EH} P_{EH} P_{EH} P P P P P P	SHTO LRFD BDI $P_{EH} + P_{LS_h}$ $= \frac{V_2 \gamma_{RS} H^2 K}{\sigma_{LS} H K_a \gamma}$ $P_H = 46.06 \text{ kip}$ $\sigma_V \cdot \tan \delta$	A Section 11.10.5 $\int_{a} \gamma_{EH} = \frac{1}{2}(130)$ $\gamma_{LS} = (250 \text{ ps})$ /ft + 4.89 kip/ft	<u>.3</u> pcf)(42 f)(42.3 t = 5	3 ft)²(0 ft)(0.264 0.95).264)(1 4)(1.75 kip/ft	 J. J. J	= 4	4.89	kip/ft kip/ft
heck Sliding (Loading Case - Strer Sliding Force: P _{LSk} Peck Sliding Resistance - Drained Nominal Sliding Resistance:	$P_{H} = P$ $P_{EH} = P$ $P_{EH} = P$ $P_{EH} = P$ P P P P P P P P P	$SHTO LRFD BDI P_{EH} + P_{LS_h} = \frac{1}{2} \gamma_{RS} H^2 K = \sigma_{LS} H K_a \gamma P_H = 46.06 \text{ kip} T_V \cdot \tan \delta = \gamma_{BF} \cdot H \cdot B$	$\frac{A \text{ Section } 11.10.5}{a \gamma_{EH}} = \frac{1}{2}(130)$ $\gamma_{LS} = (250 \text{ ps})$ $\frac{1}{1}(110) + \frac{1}{2}(120 \text{ ps})$	<u>.3</u> pcf)(42 f)(42.3 t = 5 ccf)(42.3	3 ft)²(0 ft)(0.264 0.95 3 ft)(29.1	9.264)(1 4)(1.75 kip/ft 6 ft)(1.0		= 4	l6.06 4.89 50.25	kip/ft kip/ft kip/ft
heck Sliding (Loading Case - Strer Sliding Force: P_{LS_n} heck Sliding Resistance - Drained Nominal Sliding Resistance: P_{EV}	$P_{H} = P$ P_{EH} P_{EH} P_{EH} P	SHTO LRFD BDI $P_{EH} + P_{LS_h}$ $= \frac{V_2 \gamma_{RS} H^2 K}{\sigma_{LS} H K_a \gamma}$ $= \sigma_{LS} H K_a \gamma$ $\sigma_{H} = -46.06 \text{ kip}$ $\sigma_{V} \cdot \tan \delta$ $= \gamma_{BF} \cdot H \cdot B$ $\delta = (\tan \varphi_{BS} \le 1)$	$\frac{A \text{ Section } 11.10.5}{a \gamma_{EH}} = \frac{1}{2}(130)$ $\gamma_{LS} = (250 \text{ ps})$ $/\text{ft} + 4.89 \text{ kip/ft}$ $\cdot \gamma_{EV} = (120 \text{ ps})$ $\tan \varphi_{BF})$	<u>.3</u> pcf)(42 f)(42.3 t = 5 ccf)(42.3	3 ft)²(0 ft)(0.264 0.95 3 ft)(29.0	0.264)(1 4)(1.75 kip/ft 6 ft)(1.0		= 4	l6.06 4.89 50.25	kip/ft kip/ft
heck Sliding (Loading Case - Stree Sliding Force: P_{LS_h} heck Sliding Resistance - Drained Nominal Sliding Resistance: P_{EV} R_{τ}	$P_{H} = P$ $P_{EH} = P$ $P_{EH} = P$ $P_{EH} = P$ P P $Condition$ $R_{\tau} = P_{E}$ P $Tan \delta$ t	SHTO LRFD BDI $P_{EH} + P_{LS_h}$ $= \frac{1}{2} \gamma_{RS} H^2 K$ $= \sigma_{LS} H K_a \gamma$ $P_H = 46.06 \text{ kip}$ $\sigma_{V} \cdot \tan \delta$ $= \gamma_{BF} \cdot H \cdot B$ $\delta = (\tan \varphi_{BS} \le 1)$ $\sin \delta = \tan(21)$	$\frac{A \text{ Section } 11.10.5}{a \gamma_{EH}} = \frac{1}{2}(130)$ $\gamma_{LS} = (250 \text{ ps})$ $\frac{1}{2}(120 \text{ ps})$ $\gamma_{EV} = (120 \text{ ps})$ $\frac{1}{2}(120 \text{ ps})$	<u>.3</u> pcf)(42 f)(42.3 t = 5 ccf)(42.3 0.36 ≤	3 ft)²(0 ft)(0.264 0.95 3 ft)(29. \$ 0.67	9.264)(1 4)(1.75 kip/ft 6 ft)(1.0		= 4 $= 1$ $= 1$	l6.06 4.89 50.25 0.3	kip/ft kip/ft kip/ft
heck Sliding (Loading Case - Streen Sliding Force: P _{LS_n} heck Sliding Resistance - Drained Nominal Sliding Resistance: P_{EV} R_r	$P_{H} = P$ $P_{EH} = P$ $P_{EH} = P_{LS_{h}}$ P $Condition$ $R_{\tau} = P_{E}$ P_{EV} $tan \delta$ t	SHTO LRFD BDI $P_{EH} + P_{LS_h}$ $= \frac{1}{2} \gamma_{RS} H^2 K$ $= \sigma_{LS} H K_a \gamma$ $P_H = 46.06 \text{ kip}$ $\sigma_V \cdot \tan \delta$ $= \gamma_{BF} \cdot H \cdot B$ $\delta = (\tan \varphi_{BS} \le 1)$ $\sin \delta = \tan(20)$ 150.25 kip/ft)(0.36)	$\frac{A \text{ Section } 11.10.5}{a \gamma_{EH}} = \frac{1}{2}(130)$ $\gamma_{LS} = (250 \text{ ps})$ $\frac{1}{1}(110) + \frac{1}{1}(120) + \frac{1}(120) + \frac{1}{$	<u>.3</u> pcf)(42 f)(42.3 t = 5 ccf)(42.3 0.36 = kip/ft	3 ft)²(0 ft)(0.264 0.95 3 ft)(29.1	2.264)(1 4)(1.75) kip/ft 6 ft)(1.0)) 00)	= 4 $= 1$ $= 1$	16.06 4.89 50.25 0.3	kip/ft kip/ft kip/ft
heck Sliding (Loading Case - Streen Sliding Force: PLSA PLSA Peck Sliding Resistance - Drained Nominal Sliding Resistance: PEV RT Prify Sliding Force Less Than Fact	$P_{H} = P$ $P_{EH} = P_{EH}$ $P_{EH} = P_{LS_{h}}$ P $Condition$ $R_{\tau} = P_{E}$ P_{EV} $tan \delta$ t $R_{\tau} = ($	SHTO LRFD BDI $P_{EH} + P_{LS_h}$ $= \frac{1}{2} \gamma_{RS} H^2 K$ $= \sigma_{LS} H K_a \gamma$ $P_H = 46.06 \text{ kip}$ $T_V \cdot \tan \delta$ $= \gamma_{BF} \cdot H \cdot B$ $S = (\tan \varphi_{BS} \le 1)$ $\tan \delta = \tan(20)$ $150.25 \text{ kip/ft})(0.36)$ $Resistance - Dr$	A Section 11.10.5 $\int_{a} \gamma_{EH} = \frac{1}{2} (130)$ $\int_{LS} = (250 \text{ ps})$ $\int_{ft} + 4.89 \text{ kip/ft}$ $\frac{1}{2} (250 \text{ ps})$ $\int_{F} + 4.89 \text{ kip/ft}$ $\frac{1}{2} (120 \text{ ps})$ $\frac{1}{2$	<u>.3</u> pcf)(42 f)(42.3 t = 5 ccf)(42.3 0.36 ≤ kip/ft	3 ft)²(0 ft)(0.264 0.95 3 ft)(29. ≨ 0.67	2.264)(1 4)(1.75) kip/ft 6 ft)(1.0) 	= 4 = 1 $1\delta =$	l6.06 4.89 50.25	kip/ft kip/ft kip/ft

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990

JOB	RA-70-12.68	NO.	W-13-045
SHEET NO.	2	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	4W8 - Sta. 5017+	12 to 50	80+60

ISE Wall Dimensions and Retained Soil P	<u>arameters</u>	Bearing Soli Properties:	
/ISE Wall Height, (<i>H</i>) =	42.3 ft	Bearing Soil Unit Weight, $(\gamma_{BS}) =$	115 p
ISE Wall Width (Reinforcement Length), (B) =	<u>29.6</u> ft	Bearing Soil Friction Angle, (φ_{BS}) =	<u>20</u> °
ISE Wall Length, (<i>L</i>) =	<u>648</u> ft	Bearing Soil Drained Cohesion, $(c_{BS}) =$	0 p
ve Surcharge Load, $(\sigma_{LS}) =$	250 psf	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] =$	1000 p
etained Soli Unit Weight, $(\gamma_{RS}) =$		Embedment Depth, $(D_f) =$	<u>4.0</u> π
etained Soil Friction Angle, $(\varphi_{RS}) =$	<u> </u>	Depth to Grounwater (Below Bot. of Wall), $(D_W) =$	0.0 π
etained Soil Undrained Shear Strength $I(S)$ 1	- 0 psi	EV EH IS	
etained Soil Active Earth Pressure Coeff (K) :	= 0 psi	Strength la 1 00 1 50 1 75 7	
SE Backfill Unit Weight $(y_{pr}) =$	120 ncf	Strength lb 1 35 1 50 1 75 - 34.1-1 an	RFD BDM Tables
SE Backfill Friction Angle, (φ_{BF}) =	<u>34</u> °	Service I 1.00 1.00 1.00 <i>Earth</i>	h Pressure)
heck Sliding (Loading Case - Strength la)) - AASHTO LRFD BDM	I Section 11.10.5.3 (Continued)	
neck Sliding Resistance - Undrained Con	<u>Idition</u>		
Nominal Sliding Resisting: R_{τ}	$= \left(\left(S_u \right)_{BS} \leq q_s \right) \cdot B$		
	$(S_u)_{BS} = 1.00$	ksf	
P_{EY}	$q_{r} = \sigma_{v}/2 = 0$	(5.08 ksf) / 2 = 2.54 ksf	
R_{\star} \downarrow	<i>1s</i> / 2		
	P /		
$(S_{\mu})_{RS} \leq q_{s}$	$\sigma = \frac{1}{EV} / r^{2}$	= (150.25 kip/ft) / (29.6 ft) $=$ 5.08 ksf	
erify Sliding Force Less Than Factored S	$R_{\tau} = (1.00 \text{ ksf} \le 2.54$	ksf)(29.6 ft) = 29.60 kip/ft	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft	$R_{\tau} = (1.00 \text{ ksf} \le 2.54$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 25$	k ksf)(29.6 ft) = 29.60 kip/ft <u>drained Condition</u> 9.60 kip/ft \longrightarrow 50.95 kip/ft ≤ 29.60 kip/ft	
Prify Sliding Force Less Than Factored S $P_H \le R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ liding Resistance - Un $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>	k ksf)(29.6 ft) = 29.60 kip/ft <u>drained Condition</u> 9.60 kip/ft \longrightarrow 50.95 kip/ft ≤ 29.60 kip/ft	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 25$ <i>DM Table 11.5.7-1</i>)	k (correction provided and the set of the	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \implies 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 25$ <i>DM Table 11.5.7-1</i>)	k ksf)(29.6 ft) = 29.60 kip/ft <u>drained Condition</u> 9.60 kip/ft \longrightarrow 50.95 kip/ft \leq 29.60 kip/ft	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 25$ <i>iDM Table 11.5.7-1</i>)	(constrained reprint (cons	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 25$ <i>DM Table 11.5.7-1</i>)	$ ksf)(29.6 ft) = 29.60 kip/ft$ $\frac{drained Condition}{9.60 kip/ft} \longrightarrow 50.95 kip/ft \le 29.60 kip/ft$	
Prify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	k (constraints) (constraints	
Prify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	ksf)(29.6 ft) = 29.60 kip/ft <u>drained Condition</u> 9.60 kip/ft \rightarrow 50.95 kip/ft \leq 29.60 kip/ft	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>IDM Table 11.5.7-1</i>)	$ ksf \rangle (29.6 ft) = 29.60 kip/ft$ $\frac{drained Condition}{9.60 kip/ft} \longrightarrow 50.95 kip/ft \le 29.60 kip/ft$	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	ksf)(29.6 ft) = 29.60 kip/ft <u>drained Condition</u> $9.60 kip/ft \longrightarrow 50.95 kip/ft \le 29.60 kip/ft$	
Prify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\phi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>	$ ksf)(29.6 ft) = 29.60 kip/ft$ $\frac{drained Condition}{9.60 kip/ft} \longrightarrow 50.95 kip/ft \le 29.60 kip/ft$	
Prify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>	ksf)(29.6 ft) = 29.60 kip/ft <u>drained Condition</u> 9.60 kip/ft \rightarrow 50.95 kip/ft \leq 29.60 kip/ft	
Prify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	R ₇ = (1.00 ksf ≤ 2.54 <u>liding Resistance - Un</u> ≤ (29.60 kip/ft)(1.0) = 29 DM Table 11.5.7-1)	k k s f)(29.6 ft) = 29.60 k i p/ft drained Condition 9.60 k i p/ft \longrightarrow 50.95 k i p/ft \leq 29.60 k i p/ft	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>iDM Table 11.5.7-1</i>)	ksf)(29.6 ft) = 29.60 kip/ft drained Condition 9.60 kip/ft \rightarrow 50.95 kip/ft \leq 29.60 kip/ft	
Prify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	$ ksf\rangle(29.6 ft) = 29.60 kip/ft$ <u>drained Condition</u> 9.60 kip/ft \rightarrow 50.95 kip/ft \leq 29.60 kip/ft	
Prify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ liding Resistance - Un \$	$\frac{(1+1)(29.6 \text{ ft})}{=} = 29.60 \text{ kip/ft}$ $\frac{\text{drained Condition}}{=} = 29.60 \text{ kip/ft} = 29.60 \text{ kip/ft}$ $9.60 \text{ kip/ft} \longrightarrow 50.95 \text{ kip/ft} \le 29.60 \text{ kip/ft}$	
erify Sliding Force Less Than Factored S $P_H \leq R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ liding Resistance - Un $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	$\frac{(2000-1000)}{(2000-1000)} = 29.60 \text{ kip/ft}$ $\frac{\text{drained Condition}}{9.60 \text{ kip/ft}} \longrightarrow 50.95 \text{ kip/ft} \le 29.60 \text{ kip/ft}$	
erify Sliding Force Less Than Factored S $P_H \le R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ liding Resistance - Un $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	ksf)(29.6 ft) = 29.60 kip/ft <u>drained Condition</u> 9.60 kip/ft \rightarrow 50.95 kip/ft \leq 29.60 kip/ft	
erify Sliding Force Less Than Factored S $P_H \le R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ liding Resistance - Un $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	ksf)(29.6 ft) = 29.60 kip/ft drained Condition 9.60 kip/ft \longrightarrow 50.95 kip/ft \leq 29.60 kip/ft	
erify Sliding Force Less Than Factored S $P_H \le R_\tau \cdot \phi_\tau \longrightarrow 50.95$ kip/ft Use $\varphi_\tau = 1.0$ (Per AASHTO LRFD B	$R_{\tau} = (1.00 \text{ ksf} \le 2.54)$ <u>liding Resistance - Un</u> $\le (29.60 \text{ kip/ft})(1.0) = 29$ <i>DM Table 11.5.7-1</i>)	$ ksf\rangle(29.6 \text{ ft}) = 29.60 \text{ kip/ft}$ <u>drained Condition</u> 9.60 kip/ft \longrightarrow 50.95 kip/ft \leq 29.60 kip/ft	

JOB	-RA-70-12.68	NO.	W-13-045
SHEET NO.	3	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	4W8 - Sta. 5017+1	2 to 50	80+60

MSE Wall Dimensions and Retained Soil Para	ameters	Bearing Soil Properties:	
MSE Wall Height, (H) =	42.3 ft	Bearing Soil Unit Weight, (γ_{BS}) =	115 pcf
MSE Wall Width (Reinforcement Length), (B) =	29.6 ft	Bearing Soil Friction Angle, (φ_{BS}) =	20 °
MSE Wall Length, (L) =	648 ft	Bearing Soil Drained Cohesion, (c_{BS}) =	0 psf
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] =$	1000 psf
Retained Soil Unit Weight, $(\gamma_{RS}) =$	130 pcf	Embedment Depth, (D_f) =	4.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	33 °	Depth to Grounwater (Below Bot. of Wall), (D_W) =	0.0 ft
Retained Soil Drained Cohesion, $(c_{BS}) =$	0 psf	LRFD Load Factors	
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	0 psf	EV EH LS	
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.264	Strength la 1.00 1.50 1.75	FD BDM Tables
MSE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength lb 1.35 1.50 1.75 - 3.4.1-1 and 3	3.4.1-2 - Active
MSE Backfill Friction Angle, (φ_{BF}) =	34 °	Service I 1.00 1.00 1.00	ressure)
Check Eccentricity (Loading Case - Strength	la) - AASHTO LR	FD BDM Section 11.10.5.5	
e = l	$\frac{3}{2}-x_o$		
	3 7 3 7		
$x_2 \uparrow^3$ P_{LS_h} x_o	$=\frac{M_{EV}-M_{H}}{M_{EV}}$	- = (2223.7 kip·ft/ft - 752.87 kip·ft/ft) / (150.25 kip/ft) =	9.79 ft
	P_{EV}		
	$M_{EV} = 2223$	3.70 kip·ft/ft _	
$x_o \leftarrow + e$	$M_H = 752.$.87 kip·ft/ft ├─ Defined below	
$\leftarrow B_{2} \rightarrow$	$P_{EV} = 150.$.25 kip/ft	
	- (<u>20 6 6)</u> /2	0.704 - 5.014	
e e	= (29.6 π)/2 -	$9.79 \Pi = 5.01 \Pi$	
Resisting Moment, M_{EV} : M_{EV}	$=P_{EV}(x_1)$		
	$v_{r} = \gamma_{rr} \cdot H \cdot$	$B \cdot \gamma_{\text{pre}} = (120 \text{ pcf})(42.3 \text{ ft})(29.6 \text{ ft})(1.00) = 150.3$	25 kip/ft
P_{EV}	V 7 BF 11		
	$= \frac{B}{2} = 0$	(29.6 ft) / 2 = 14.80 ft	
	<i>' '</i>		
	$M_{_{EV}} = (150$	2.25 kip/ft(14.80 ft) = 2223.70 kip·ft/ft	
x_{1}			
Overturning Moment. M: M	$= P(\mathbf{x}) +$	P(x)	
	$-1_{EH} (\lambda_2)^{-1}$	$LS_h \begin{pmatrix} a \\ c \end{pmatrix}$	
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ P_{F}	$H_H = \frac{1}{2} \gamma_{RS} H^2$	$K_a \gamma_{EH} = \frac{1}{2}(130 \text{ pcf})(42.3 \text{ ft})^2(0.264)(1.5) = 46.0$)6 kip/ft
$\begin{array}{c c} x_2 \\ \uparrow \\ \uparrow \\ \end{array}$	$S_h = \sigma_{LS} H K_a$	γ_{LS} = (250 psf)(42.3 ft)(0.264)(1.75) = 4.89	kip/ft
	$=H/_{2} = 0$	(42.3 ft) / 3 = 14.10 ft	
	/ 3 7 7 /		
X 3	$=\frac{H}{2} = 0$	(42.3 ft) / 2 = 21.15 ft	
	M — (46	0.6 kin/ft / (14.1.ft) + (4.80 kin/ft) (21.15.ft) = 752.87	kin ft/ft
	$IVI_H - (40)$	(4.09 Kip/II)(14.111) + (4.09 Kip/II)(21.1311) - 752.07	кірлин
Check Eccentricity			
$e < e_{\text{max}} \rightarrow 5.01 \text{m} < 9.87 \text{m}$			
Limiting Eccentricity: $e = B/_{2}$ –	$\rightarrow e_{max} = 0$	(29.6 ft) / 3 = 9.87 ft	
max max max max max	max		

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	4	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	ll 4W8 - Sta. 5017+1	12 to 50	80+60

	<u>RATIONAL.COM</u>				
MSE Wall Dimensions and Retained Soil Para	<u>neters</u>	Bearing Soil Prop	erties:		
vSE Wall Height, (<i>H</i>) =	42.3 ft	Bearing Soil Unit We	ight, $(\gamma_{BS}) =$		115 pcf
vISE Wall Width (Reinforcement Length), (<i>B</i>) =	29.6 ft	Bearing Soil Friction	Angle, (φ_{BS}) =	=	20 °
VISE Wall Length, (L) =	648 ft	Bearing Soil Drained	Cohesion, (c	_{BS}) =	0 psf
ive Surcharge Load, (σ{LS}) =	250 psf	Bearing Soil Undrain	ed Shear Stre	$ength, [(s_u)_{BS}] =$	1000 psf
Retained Soil Unit Weight, (γ_{RS}) =	130 pcf	Embedment Depth, (D_f) =		4.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	33 °	Depth to Grounwater	· (Below Bot. o	of Wall), (D_W) =	= 0.0 ft
Retained Soil Drained Cohesion, (c_{BS}) =	0 psf	LRFD Load Factor	<u>rs</u>		
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =	0 psf	EV	EH LS		
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.264	Strength la 1.00	1.50 1.75		I RED BDM Tables
dSE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength Ib 1.35	1.50 1.75	5 - 3.4.1-1 a	and 3.4.1-2 - Active
MSE Backfill Friction Angle, (φ_{BF}) =	<u>34</u> °	Service I 1.00	1.00 1.00)] ^{Ea}	rth Pressure)
Check Bearing Capacity (Loading Case - Strer	ngth lb) - AASHTO L	RFD BDM Section 11.1	0.5.4		
P_{LS}					
	$P_{\rm v}$ /				
$q_{eq} =$	$\frac{V}{B'}$				
	. —				
x_{3} P_{EV} P $B'=$	= B - 2e = 29.	6 ft - 2(3.49 ft) = 22	2.62 ft		
	B /				
$ R^{\psi} $	$e = \frac{y_2}{2} - x_o =$: (29.6 ft) / 2 - 11.31 ft	= 3.49	ft	
	$\overline{M}_{\nu} - M_{\mu}$				
	$x_o = \frac{r}{P}$	= (3193.65 kip∙ft/ft -	/52.73 kip·fl	t/tt) / 215.79 ki	ıp/ft = 11.31
$x_o \leftarrow \rightarrow \gamma$	1 _V				
$\leftarrow B_2 \rightarrow $					
$\langle \epsilon' \overset{2}{B'} \rangle$	= (215.79 kip/ft)	(22.62 ft) = 9.54	ksf		
	· · · · · · · · · · · · · · · · · · ·	- / · · · · · · · · · · · · · · · · · ·			
$M_{V} = P_{EV}(x_{1}) + P_{LS_{V}}(x_{1}) = (\gamma_{BF} \cdot F)$	$(A \cdot B \cdot \gamma_{EV})(x_1)$	$+ (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_1)$			
$M_V = [(120 \text{ pcf})(42.3 \text{ ft})(29.6 \text{ ft})(1.35)]$	(14.8 ft) + [(250 psf)(29.6 ft)(1.75)](14.8 ft)	= 3193.65	5 kip∙ft/ft	
	ττ2 τ ε Υ				
$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS})$	$H^{-}K_{a}\gamma_{EH}(x_{2})$	+ $(\sigma_{LS}HK_a\gamma_{LS})(x_3)$	1		
$M_{H} = [\frac{1}{2}(130 \text{ pcf})(42.3 \text{ ft})^{2}(0.264)(1.5)$	5)](14.1 ft) + [(250 ps	f)(42.3 ft)(0.264)(1.75)](2	1.15 ft) :	= 752.73	kip∙ft/ft
$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$	$A + \sigma_{LS} \cdot B \cdot \gamma_{LS}$				
$P_V = (120 \text{ pcf})(42.3 \text{ ft})(29.6 \text{ ft})(1.35) +$	(250 psf)(29.6 ft)(1.	75) = 215.79 kip/f	t		
Check Bearing Resistance - Drained Condition	2				
Nominal Bearing Resistance: $q_n = C N_{cm} + $	$+ \gamma D_f N_{qm} C_{wq} +$	$\gamma_2 \gamma B N_{\gamma m} C_{w\gamma}$			
$N \rightarrow N \sigma i - 1505$	N – Nadi	- 6 9 1	M - M	c i - 50	54
$IV_{cm} - IV_{c}S_{c}I_{c} - 15.05$	$IV_{qm} - IV_q S_q u_q l_q$	7 – 0.04	$1_{\gamma m} - 1_{\gamma}$	$S_{\gamma}\iota_{\gamma} = 5.3$)
N = 14.82	N = 640		N -	5 30	
$1V_{c} = 14.03$	$IV_q = 0.40$		$IV_{\gamma} - IV_{\gamma} - I$	0.09 0.086	
$s_c = 1+(22.62 \text{ tV}648 \text{ tt})(6.4/14.83)$	$s_q - 1.013$	11 oin(20°)]2t1/4 0 #/00 00 #*	$s_{\gamma} = 0$ i = 1	U.900	d)
= 1.015	$u_q - 1+2\tan(20^\circ)$	ı[ı-sın(∠u⁻)]⁺tan⁻'(4.0 tt/22.62 tt)	$i_{\gamma} = C$	1.000 (Assume	u)
ι_c – 1.000 (Assumed)	i - 4,000 (1		C _{wy} =	υ.υ π < 1.5(22.62 ft)	$y + 4.0 \pi = 0.50$
	$i_q - 1.000$ (A	ssumea)			
	$C_{wq} = 0.0 \text{ ft} > 4.$	υπ = 0.500			
		14E mof)(00 0 #)(5 045)(0	F00)	_ F ^^	
$q_n = (0 \text{ psf})(15.052) + (115 \text{ pcf})(4.0 \text{ ft})$)(6.840)(0.500) + ½(115 pcf)(22.6 ft)(5.315)(0	.500) :	= 5.03	ksf
$q_n = (0 \text{ psf})(15.052) + (115 \text{ pcf})(4.0 \text{ ft})$)(6.840)(0.500) + ½([.] d Bearing Pesistan	115 pcf)(22.6 ft)(5.315)(0	.500) =	= 5.03	ksf
$q_n=$ (0 psf)(15.052) + (115 pcf)(4.0 ft) Verify Equivalent Pressure Less Than Factore)(6.840)(0.500) + ½(` <mark>d Bearing Resistan</mark>	115 pcf)(22.6 ft)(5.315)(0 <u>ce</u> Use φ_b =	.500) = 0.65 (Per A	= 5.03 ASHTO LRFD B	ksf 8DM Table 11.5.7-1

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	5	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	ll 4W8 - Sta. 5017+1	2 to 50	80+60

SE Wall Dimensions and Retained Soil Pa	arameters	meters Bearing Soil Properties:								
SE Wall Height, (<i>H</i>) =	42.3 ft	Bearing Soil Unit We	115	pc						
SE Wall Width (Reinforcement Length), (<i>B</i>) =	29.6 ft	Bearing Soil Friction	20	o						
SE Wall Length, (L) =	648 ft	Bearing Soil Drained	Cohesion, (c_{BS})) = 0	ps					
ve Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil Undrain	ed Shear Streng	$[(s_u)_{BS}] = 1000$	ps					
etained Soil Unit Weight, (γ_{RS}) =	130 pcf	Embedment Depth,	$(D_{f}) =$	4.0	ft					
etained Soil Friction Angle, (φ_{RS}) =	33 °	Depth to Grounwate	r (Below Bot. of \	Wall), $(D_W) = 0.0$	ft					
etained Soil Drained Cohesion, (c_{BS}) =	0 psf	LRFD Load Facto	<u>rs</u>							
etained Soil Undrained Shear Strength, $[(S_u)_{RS}]$	= 0 psf	EV	EH LS							
etained Soil Active Earth Pressure Coeff., (K_a) =	= 0.264	Strength Ia 1.00	1.50 1.75		bloc					
SE Backfill Unit Weight, $(\gamma_{BF}) =$	120 pcf	Strength lb 1.35	1.50 1.75	- 3.4.1-1 and 3.4.1-2 - Act	ive ive					
SE Backfill Friction Angle, (φ_{BF}) =	<u>34</u> °	Service I 1.00	1.00 1.00	Earth Pressure)						
heck Bearing Capacity (Loading Case - S heck Bearing Resistance - Undrained Col	trength Ib) - AASHTO	LRFD BDM Section 11.1	0.5.4 (Continued	2						
ominal Bearing Resistance: $q_n = cN_c$	$_m + \gamma D_f N_{qm} C_{wq} +$	- ½ γBN _{γm} C _{wγ}								
$N_{cm} = N_c s_c i_c = 5.180$	$N_{qm} = N_q s_q d_q i$	<i>q</i> = 1.000	$N_{\gamma m} = N_{\gamma} s$	$_{\gamma}i_{\gamma} = 0.000$						
N = 5140	N = 1000		N = 0.0	00						
S = 1+(22.62 ff/I(5)(648 ff))) = 1.0($r_q = 1.000$		s = 10	000						
i = 1000 (Assumed)	$d = 1+2\tan(0)$	°)[1-sin(0°)]²tan ⁻¹ (4 0 ft/22 62 ft)	i = 10)00 (Assumed)						
	<i>u q</i> 1.2000		$L_{\gamma} = 1.000$ (Assumed) $C_{\gamma\gamma} = 0.0 \text{ ft} < 1.5(22.62 \text{ ft}) + 4.0 \text{ ft} =$							
	1.000		$C_{W7} = 0.0 \text{ ft} < 1.5(22.62 \text{ ft}) + 4.0 \text{ ft} = 0.0 \text{ ft} < 1.5(22.62 \text{ ft}) + 4.0 \text{ ft} = 0.0 \text{ ft} < 0.0 $							
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$	$l_q = 1.000 \ (H_{wq} = 0.0 \ \text{ft} > 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$	Assumed) 4.0 ft = 0.500 2(115 pcf)(22.6 ft)(0.000)(0.500) =	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54$ k	$l_q = 1.000 \ (H_{wq} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistant (ssf ≤ (5.41 ksf)(0.65) = 3	Assumed) ₄.0 ft = 0.500 ⁄₂(115 pcf)(22.6 ft)(0.000)(<u>1Ce</u> 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf ksf ERROR!!						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ k}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{wq}} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistant csf ≤ (5.41 ksf)(0.65) = 3	Assumed) 4.0 ft = 0.500 ≨(115 pcf)(22.6 ft)(0.000)(<u>1ce</u> 3.52 ksf →	(0.500) = 9.54 ksf ≤ 3.52	5.41 ksf ksf ERROR!!						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54$ H Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$L_q = 1.000 \ (H_{Wq} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistant (ssf ≤ (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 2(115 pcf)(22.6 ft)(0.000)(<u>1Ce</u> 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf ksf ERROR!!						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{Wq}} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + 1/2 ored Bearing Resistant (sf ≤ (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 ⁄₂(115 pcf)(22.6 ft)(0.000)(<u>1Ce</u> 3.52 ksf →	(0.500) = 9.54 ksf ≤ 3.52	5.41 ksf ksf ERROR!!						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54$ H Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{Wq}} = 0.0 \ ft) < 0.0 \ ft > 4$ 4.0 ft)(1.000)(0.500) + 1/2 ored Bearing Resistan (ssf ≤ (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 ½(115 pcf)(22.6 ft)(0.000)(1 <u>ce</u> 3.52 ksf →	'0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ k}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{Wq}} = 0.0 \ ft > 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistar (ssf ≤ (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 ⁄≥(115 pcf)(22.6 ft)(0.000)(<u>nce</u> 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ k}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{wq}} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistar (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 ≨(115 pcf)(22.6 ft)(0.000)(<u>1ce</u> 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{wq}} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistant (ssf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 ≨(115 pcf)(22.6 ft)(0.000)(<u>1Ce</u> 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf ksf ERROR!!						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{wq}} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistant (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 (115 pcf)(22.6 ft)(0.000)(<u>1Ce</u> 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf ksf ERROR!!						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{Q_{wq}} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistan (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 (115 pcf)(22.6 ft)(0.000)(<u>1Ce</u> 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ Prify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + 1/2 ored Bearing Resistant (sf ≤ (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 (115 pcf)(22.6 ft)(0.000)(1CE 3.52 ksf →	(0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ Prify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (\mu C_{wq} = 0.0 \ ft) < 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistar (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 (1115 pcf)(22.6 ft)(0.000)(1CE 3.52 ksf →	'0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ Prify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ k}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (H_{C_{wq}} = 0.0 \ ft > 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistar (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500	'0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ Prify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ k}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 \ (\mu C_{wq} = 0.0 \ ft > 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistar (sf ≤ (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ k}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistar (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + $\frac{1}{2}$ ored Bearing Resistar (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4)$ Prify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + ½ ored Bearing Resistant (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + ½ <u>ored Bearing Resistar</u> (sf ≤ (5.41 ksf)(0.65) = 3 <i>DM Table 11.5.7-1</i>)	Assumed) 4.0 ft = 0.500	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \rightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + ½ ored Bearing Resistant (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 (1115 pcf)(22.6 ft)(0.000)(1CE 3.52 ksf → 3.52 ksf →	0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ <u>erify Equivalent Pressure Less Than Fact</u> $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + ½ ored Bearing Resistar (sf ≤ (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 (1115 pcf)(22.6 ft)(0.000)(1CE 3.52 ksf → 3.52 ksf →	(0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + ½ ored Bearing Resistar (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500 (1115 pcf)(22.6 ft)(0.000)(1CE 3.52 ksf → 3.52 ksf →	(0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ H}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + ½ ored Bearing Resistar (sf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500	'0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						
$q_n = (1000 \text{ psf})(5.180) + (115 \text{ pcf})(4$ erify Equivalent Pressure Less Than Fact $q_{eq} \leq q_n \cdot \phi_b \longrightarrow 9.54 \text{ k}$ Use $\varphi_b = 0.65$ (Per AASHTO LRFD B	$l_q = 1.000 (k$ $C_{wq} = 0.0 \text{ ft} > 4$ 4.0 ft)(1.000)(0.500) + ½ ored Bearing Resistar (ssf \leq (5.41 ksf)(0.65) = 3 DM Table 11.5.7-1)	Assumed) 4.0 ft = 0.500	'0.500) = 9.54 ksf ≤ 3.52	5.41 ksf						

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	6	OF	6
CALCULATED B	r BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wa	all 4W8 - Sta. 5017+1	12 to 50	80+60

	Retained Soli Parar	<u>neters</u>	Bearing Soil	Properties:							
MSE Wall Height, (<i>H</i>) =		42.3 ft	Bearing Soil Ur	115 p							
MSE Wall Width (Reinforcemen	nt Length), (B) =	29.6 ft	Bearing Soil Fr	iction Angle, (φ_{BS}) =	20 °						
MSE Wall Length, (<i>L</i>) =		648 ft	Bearing Soil Dr	ained Cohesion, (c_{BS})) =0 p						
Live Surcharge Load, (σ_{LS}) =		250 psf	Bearing Soil Ur	Jndrained Shear Strength, $[(s_u)_{BS}] =$							
Retained Soil Unit Weight, (γ_{RS})) =	130 pcf	Embedment De	epth, (D_f) =	4.0 ft						
Retained Soil Friction Angle, (φ	_{RS}) =	<u>33</u> °	Depth to Grour	water (Below Bot. of \	Wall), (<i>D</i> _W) = 0.0 ft						
Retained Soil Drained Cohesior	n, (c _{BS}) =	<u> </u>	LRFD Load F	actors							
Retained Soil Undrained Shear	Strength, $[(S_u)_{RS}] =$	0 psf		EV EH LS							
Retained Soil Active Earth Pres	ssure Coeff., $(K_a) =$	0.264	Strength la 1	.00 1.50 1.75	(AASHTO LRFD BDM Table						
MSE Backfill Unit Weight, (γ_{BF})) =	120 pcf	Strength lb 1	.35 1.50 1.75	 3.4.1-1 and 3.4.1-2 - Active Earth Pressure) 						
MSE Backfill Friction Angle, (φ_B	_{BF}) =	<u>34</u> °	Service I 1	.00 1.00 1.00							
Settlement Analysis (Loadi	ing Case - Service I)	- AASHTO LRFD BI	DM Section 11.10.	<u>4.1</u>							
P_{LS_v}											
		P_{ν} /									
	$q_{eq} =$	<i>'/B</i> '									
$\begin{array}{c c} x_3 \\ & &$	$\searrow P_{IS}$ B'=	= B - 2e = 29.6	tt - 2(3.12 ft) =	23.36 ft							
	$-\sum_{k=1}^{LS_h} P_{EH}$	a B / a			•						
$ R^{\vee}$		$e = \frac{y_{2} - x_{o}}{2} =$	(29.6 π) / 2 - 11.6	58 ft = 3.12	π						
		$M_V - M_H$	(0000 04 1);	61/61 AOA OO L: 61/61							
		$x_o =$	= (2333.21 KIP	·π/π - 491.98 κιρ·π/π	() / 157.65 κιρ/π = 11.6						
		- <i>V</i>									
$\leftarrow B_2 \rightarrow$	~										
$\leftarrow B' \rightarrow$	Y eq	= (157.05 kip/it)7	(23.30 II) –	0.75 KSI							
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(4)]$	$(x_1) = (\gamma_{BF} \cdot I)$ (2.3 ft)(29.6 ft)(1.00)]	$H \cdot B \cdot \gamma_{EV} (x_1) + (14.8 \text{ ft}) + [(250 \text{ psf})(2$	$- \left(\sigma_{LS} \cdot B \cdot \gamma_{LS} \right)$ 29.6 ft)(1.00)](14.8	(x_1) ft) = 2333.21	kip·ft/ft						
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(4)$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = P_{V}$ $P_{V} = (120 \text{ pcf})(42)$ Settlement, Time Rate of C	$\sum_{LS_{v}} (x_{1}) = (\gamma_{BF} \cdot H)$ $\sum_{LS_{h}} (x_{3}) = (\frac{1}{2} \gamma_{RS})$ $(42.3 \text{ ft})^{2}(0.264)(1.00)$ $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ $2.3 \text{ ft})(29.6 \text{ ft})(1.00) + \frac{1}{2}$ $\sum_{LS_{h}} (x_{1}) = (1/2) \gamma_{RS}$	$H \cdot B \cdot \gamma_{EV} (x_1) +$ $(14.8 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^2 K_a \gamma_{EH} (x_2) +$ $D)](14.1 \text{ ft}) + [(250 \text{ psf})](2) + \sigma_{LS} \cdot B \cdot \gamma_{LS} + \sigma_{$	$- \left(\sigma_{LS} \cdot B \cdot \gamma_{LS} \right)$ $= \left(\sigma_{LS} H K_a \gamma_{LS} \right)$ $= \left(\sigma_{LS} H K_a \gamma_{LS} \right)$ $= (157.65)$ $= 157.65$	$)(x_1)$ ft) = 2333.21 $)(x_3)$ 00)](21.15 ft) = kip/ft	kip·ft/ft 491.98 kip-ft/ft						
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(4)$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = 2$ $P_{V} = (120 \text{ pcf})(42)$ Settlement, Time Rate of C	$\sum_{LS_{v}} (x_{1}) = (\gamma_{BF} \cdot I)$ $\sum_{LS_{h}} (x_{3}) = (\frac{1}{2} \gamma_{RS})$ $\sum_{LS_{h}} (x_{1}) = (\frac{1}{2} \gamma_{RS})$ \sum_{LS_{h	$H \cdot B \cdot \gamma_{EV} (x_1) + (14.8 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^2 K_a \gamma_{EH} (x_2) + (250 \text{ psf})(2)$ $\gamma + \sigma_{LS} \cdot B \cdot \gamma_{LS}$ $(250 \text{ psf})(29.6 \text{ ft})(1.0)$	$- (\sigma_{LS} \cdot B \cdot \gamma_{LS}$ 29.6 ft)(1.00)](14.8 $+ (\sigma_{LS} H K_a \gamma_{LS}$ F)(42.3 ft)(0.264)(1. 0) = 157.65 $\frac{t}{2}$ Time for 90% Consolidation	$)(x_{1})$ ft) = 2333.21 $)(x_{3})$ $00)](21.15 \text{ ft}) =$ kip/ft bistance Between Borings Along Wall Facing	kip·ft/ft 491.98 kip·ft/ft Differential Settlement Along Wall Facing						
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(4)$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = \frac{1}{2}$ $P_{V} = (120 \text{ pcf})(42)$ Settlement, Time Rate of C	$P_{LS_{v}}(x_{1}) = (\gamma_{BF} \cdot H)$ $P_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS})$ $P_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS$	$H \cdot B \cdot \gamma_{EV} (x_1) +$ $(14.8 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^2 K_a \gamma_{EH} (x_2) +$ $D)](14.1 \text{ ft}) + [(250 \text{ psf})](14.1 \text{ ft}) + [(250 \text{ psf})]($	$- (\sigma_{LS} \cdot B \cdot \gamma_{LS}$ $29.6 \text{ ft})(1.00)](14.8$ $+ (\sigma_{LS}HK_a\gamma_{LS}$ $T)(42.3 \text{ ft})(0.264)(1.6)$ $(0) = 157.65$ $\frac{t}{2}$ $Time \text{ for } 90\%$ $Consolidation$ 80 days	$)(x_1)$ ft) = 2333.21 $)(x_3)$ 00)](21.15 ft) = kip/ft bistance Between Borings Along Wall Facing	kip·ft/ft 491.98 kip·ft/ft Differential Settlement Along Wall Facing						
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(4)$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = P_{V}$ $P_{V} = (120 \text{ pcf})(42)$ Settlement, Time Rate of C Boring C Boring C Boring C Boring C	$\sum_{LS_{v}} (x_{1}) = (\gamma_{BF} \cdot I)$ $\sum_{LS_{v}} (x_{1}) = (\gamma_{BF} \cdot I)$ $\sum_{LS_{h}} (x_{3}) = (\frac{1}{2} \gamma_{RS})$ $(42.3 \text{ ft})^{2} (0.264) (1.00)$ $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ $2.3 \text{ ft}) (29.6 \text{ ft}) (1.00) + \frac{1}{2}$ $\sum_{CONSOLIDATION (1.00)} + \frac{1}{2}$ $\sum_{CONSOLIDAT$	$H \cdot B \cdot \gamma_{EV} (x_1) +$ (14.8 ft) + [(250 psf)(2 $H^2 K_a \gamma_{EH} (x_2) +$ 0)](14.1 ft) + [(250 psf) (250 psf)(29.6 ft)(1.0 ifferential Settlement Total Settlement at Wall Facing 7.561 in 10.294 in	$- (\sigma_{LS} \cdot B \cdot \gamma_{LS}$ $29.6 \text{ ft})(1.00)](14.8$ $+ (\sigma_{LS}HK_a\gamma_{LS})(0.264)(1.6)$ $(1.00) = 157.65$ $\frac{\text{t:}}{100}$ $\frac{100}{100} = 157.65$ $\frac{100}{100} = 157.65$)(x ₁) ft) = 2333.21)(x ₃) 00)](21.15 ft) = kip/ft Distance Between Borings Along Wall Facing 185 ft	kip·ft/ft 491.98 kip·ft/ft Differential Settlement Along Wall Facing						
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(4)$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = P_{V}$ $P_{V} = (120 \text{ pcf})(42)$ Settlement, Time Rate of Comparison of	$\sum_{LS_{v}} (x_{1}) = (\gamma_{BF} \cdot I)$ $\sum_{LS_{v}} (x_{1}) = (\gamma_{BF} \cdot I)$ $\sum_{LS_{h}} (x_{3}) = (\frac{1}{2} \gamma_{RS})$ $(42.3 \text{ ft})^{2} (0.264) (1.00)$ $\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$ $2.3 \text{ ft}) (29.6 \text{ ft}) (1.00) + \frac{1}{2}$ $\sum_{LS_{h}} (29.6 \text{ ft}) (1.00) + \frac{1}{2}$	$H \cdot B \cdot \gamma_{EV} (x_1) + (14.8 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^2 K_a \gamma_{EH} (x_2) + (250 \text{ psf})(2)$ (250 psf)(2).6 ft)(1.0) (250 psf)(2).6 ft)(1.0)	$- (\sigma_{LS} \cdot B \cdot \gamma_{LS}$ 29.6 ft)(1.00)](14.8 $+ (\sigma_{LS} H K_a \gamma_{LS}$)(42.3 ft)(0.264)(1. 0) = 157.65 $\frac{t}{t}$ Time for 90% Consolidation 80 days 90 days 20 days)(x ₁) ft) = 2333.21)(x ₃) 00)](21.15 ft) = kip/ft Distance Between Borings Along Wall Facing 185 ft 105 ft	kip·ft/ft 491.98 kip·ft/ft Differential Settlement Along Wall Facing						
$M_{V} = P_{EV}(x_{1}) + P_{L}$ $M_{V} = [(120 \text{ pcf})(4)$ $M_{H} = P_{EH}(x_{2}) + P_{L}$ $M_{H} = [\frac{1}{2}(130 \text{ pcf})]$ $P_{V} = P_{EV} + P_{LS} = 2$ $P_{V} = (120 \text{ pcf})(42)$ Settlement, Time Rate of C	$p_{LS_{v}}(x_{1}) = (\gamma_{BF} \cdot I)$ $p_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS})$ $p_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS$	$H \cdot B \cdot \gamma_{EV} (x_1) + (14.8 \text{ ft}) + [(250 \text{ psf})(2)]$ $H^2 K_a \gamma_{EH} (x_2) + (250 \text{ psf})(2)$ (250 psf)(2).6 ft)(1.0) (250 psf)(2).6 ft)(1.0) ifferential Settlement at Wall Facing 7.561 in 10.294 in 7.450 in 9.089 in	$- (\sigma_{LS} \cdot B \cdot \gamma_{LS}$ 29.6 ft)(1.00)](14.8 $+ (\sigma_{LS} H K_a \gamma_{LS}$ f)(42.3 ft)(0.264)(1. 0) = 157.65 $t:$ Time for 90% Consolidation 80 days 90 days 20 days 20 days 22 days	$)(x_1)$ ft) = 2333.21 $)(x_3)$ 00)](21.15 ft) = kip/ft Distance Between Borings Along Wall Facing 185 ft 105 ft 295 ft	kip·ft/ft 491.98 kip·ft/ft Differential Settlement Along Wall Facing 1/810 1/440 1/2160						

W-13-045 - FRA-70-12.68 - Retaining Wall 4W8 MSE Wall Settlement - Sta. 5074+12 to 5080+60

Borings B-017-6-13

H=	42.3	ft	Total wall height
B'=	23.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall

																Total S	Settlement at	Center of Re	einforced So	il Mass	Total Settlement at Facing of Wall								
Layer	Soil Class.	Soil Type	Layer (Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	l ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	4.0	4.0	2.0	120	480	240	115	2,115	33	0.207	0.031	0.530				0.09	0.998	6,736	6,851	0.379	4.546	0.500	3,374	3,489	0.220	2.643
2	A-6a	С	4.0	6.5	2.5	5.3	115	768	624	296	2,296	33	0.207	0.031	0.530				0.22	0.969	6,543	6,839	0.205	2.465	0.498	3,360	3,656	0.113	1.361
3	A-3a	G	6.5	9.0	2.5	7.8	125	1,080	924	440	2,440					18	27	81	0.33	0.921	6,214	6,655	0.037	0.439	0.493	3,329	3,769	0.029	0.347
4	A-4a	С	9.0	11.5	2.5	10.3	120	1,380	1,230	590	2,590	24	0.126	0.013	0.460				0.44	0.858	5,788	6,379	0.098	1.180	0.486	3,278	3,868	0.051	0.617
F	A-1-b	G	11.5	16.5	5.0	14.0	130	2,030	1,705	831	4,831					46	60	213	0.60	0.756	5,106	5,937	0.020	0.240	0.469	3,163	3,995	0.016	0.192
Э	A-1-b	G	16.5	21.5	5.0	19.0	130	2,680	2,355	1,169	5,169					46	54	188	0.81	0.636	4,290	5,460	0.018	0.213	0.439	2,961	4,130	0.015	0.175
6	A-1-b	G	21.5	26.0	4.5	23.8	125	3,243	2,961	1,479	5,479					24	26	89	1.01	0.544	3,670	5,150	0.027	0.327	0.407	2,746	4,225	0.023	0.275
0	A-1-b	G	26.0	30.5	4.5	28.3	125	3,805	3,524	1,761	5,761					24	25	86	1.21	0.475	3,206	4,967	0.024	0.283	0.377	2,542	4,303	0.020	0.244
7	A-7-5	С	30.5	40.5	10.0	35.5	125	5,055	4,430	2,215	6,215	57	0.423	0.042	0.718				1.52	0.392	2,646	4,860	0.084	1.009	0.332	2,239	4,454	0.075	0.897
1	A-7-5	С	40.5	50.5	10.0	45.5	125	6,305	5,680	2,841	6,841	57	0.423	0.042	0.718				1.94	0.314	2,118	4,959	0.060	0.715	0.281	1,894	4,735	0.055	0.656
8	A-1-b	G	50.5	54.5	4.0	52.5	135	6,845	6,575	3,299	7,299					100	83	350	2.24	0.275	1,855	5,154	0.002	0.027	0.252	1,700	4,999	0.002	0.025
9	A-7-6	С	54.5	57.5	3.0	56.0	130	7,235	7,040	3,546	7,546	51	0.369	0.037	0.671				2.39	0.259	1,745	5,291	0.012	0.138	0.239	1,615	5,160	0.011	0.130
1. $\sigma_p' = \sigma_v$	$\sigma_{\rm p}' = \sigma_{\rm vo}' + \sigma_{\rm m}$: Estimate $\sigma_{\rm m}$ of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003													Total	Settlement:		11.582 in		Tota	al Settlement:	í	7.561 in							

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. $C_r = 0.15(Cc)$ for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_o/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$ for $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{p}'$; $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$ for $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/15/2018
Checked By:	JPS	Date:	7/15/2018

W-13-045 - FRA-70-12.68 - Retaining Wall 4W8 MSE Wall Settlement - Sta. 5074+12 to 5080+60

Borings B-017-6-13

H=	42.3	ft	Total wall height
B'=	23.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall

	A-6a	A-4a	A-7-5	A-7-6		
c _v =	600	800	100	150	ft²/yr	Coefficient of consolitation
t =	80	80	80	80	days	Time following completion of construction
H _{dr} =	3	1	10	3	ft	Length of longest drainage path considered
T _v =	14.612	175.342	0.219	3.653		Time factor
U =	100	100	53	100	%	Degree of consolidation

 $(S_c)_t = 6.832$ in Settlement complete at 90% of primary consolidation

																	Total Se	ettlement at F	Facing of Wall	Settlement Complete at 90% of Primary Consolidation							
Layer	Soil Type	Soil Type	Layer (Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	l ⁽⁷⁾	∆σ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c)t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-6a	С	0.0	4.0	4.0	2.0	120	480	240	115	2,115	33	0.207	0.031	0.530				0.09	0.500	3,374	3,489	0.220	2.643	2.643	2.643	2.643
2	A-6a	С	4.0	6.5	2.5	5.3	115	768	624	296	2,296	33	0.207	0.031	0.530				0.22	0.498	3,360	3,656	0.113	1.361	1.361	1.361	1.361
3	A-3a	G	6.5	9.0	2.5	7.8	125	1,080	924	440	2,440					18	27	81	0.33	0.493	3,329	3,769	0.029	0.347	0.347	0.347	0.347
4	A-4a	С	9.0	11.5	2.5	10.3	120	1,380	1,230	590	2,590	24	0.126	0.013	0.460				0.44	0.486	3,278	3,868	0.051	0.617	0.617	0.617	0.617
5	A-1-b	G	11.5	16.5	5.0	14.0	130	2,030	1,705	831	4,831					46	60	213	0.60	0.469	3,163	3,995	0.016	0.192	0.267	0.192	0.267
5	A-1-b	G	16.5	21.5	5.0	19.0	130	2,680	2,355	1,169	5,169					46	54	188	0.81	0.439	2,961	4,130	0.015	0.175	0.307	0.175	0.307
6	A-1-b	G	21.5	26.0	4.5	23.8	125	3,243	2,961	1,479	5,479					24	26	89	1.01	0.407	2,746	4,225	0.023	0.275	0.510	0.275	0.510
0	A-1-b	G	26.0	30.5	4.5	28.3	125	3,805	3,524	1,761	5,761					24	25	86	1.21	0.377	2,542	4,303	0.020	0.244	0.519	0.244	0.319
7	A-7-5	С	30.5	40.5	10.0	35.5	125	5,055	4,430	2,215	6,215	57	0.423	0.042	0.718				1.52	0.332	2,239	4,454	0.075	0.897	1 550	0.475	0 833
1	A-7-5	С	40.5	50.5	10.0	45.5	125	6,305	5,680	2,841	6,841	57	0.423	0.042	0.718				1.94	0.281	1,894	4,735	0.055	0.656	1.552	0.348	0.823
8	A-1-b	G	50.5	54.5	4.0	52.5	135	6,845	6,575	3,299	7,299					100	83	350	2.24	0.252	1,700	4,999	0.002	0.025	0.025	0.025	0.025
9	A-7-6	С	54.5	57.5	3.0	56.0	130	7,235	7,040	3,546	7,546	51	0.369	0.037	0.671				2.39	0.239	1,615	5,160	0.011	0.130	0.130	0.130	0.130

1. $\sigma_p' = \sigma_{vo}' + \sigma_{m}$; Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. $C_c = 0.009(LL-10)$; Ref. Table 6-9, FHWA GEC 5

3. C_r = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{vo}')$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_p')]$ for $\sigma_{vo}' < \sigma_p' < \sigma_{vf}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')\log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	07/15/2018
Checked By:	JPS	Date:	07/15/2018

Settlement Remaining After Hold Period: 0.730

in

W-13-045 - FRA-70-12.68 - Retaining Wall 4W8 MSE Wall Settlement - Sta. 5074+12 to 5080+60

Borings B-019-0-08

H=	42.3	ft	Total wall height
B'=	23.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall

									Total S	Settlement a	t Center of Re	einforced So	il Mass	Total Settlement at Facing of Wall															
Layer	Soil Class.	Soil Type	Layer (1	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-1-b	G	0.0	2.5	2.5	1.3	120	300	150	72	2,072					4	8	54	0.05	0.999	6,747	6,819	0.092	1.098	0.500	3,375	3,447	0.078	0.934
	A-8b	С	2.5	5.0	2.5	3.8	100	550	425	191	2,191	41	0.460	0.069	0.750				0.16	0.988	6,666	6,857	0.430	5.161	0.499	3,369	3,560	0.243	2.916
2	A-8b	С	5.0	7.5	2.5	6.3	100	800	675	285	2,285	41	0.460	0.069	0.750				0.27	0.952	6,428	6,713	0.397	4.760	0.496	3,350	3,635	0.222	2.659
	A-8b	С	7.5	10.0	2.5	8.8	100	1,050	925	379	2,379	41	0.460	0.069	0.750				0.37	0.897	6,052	6,431	0.362	4.349	0.491	3,311	3,690	0.204	2.447
3	A-1-b	G	10.0	12.5	2.5	11.3	120	1,350	1,200	498	2,498					11	16	67	0.48	0.831	5,606	6,104	0.041	0.490	0.482	3,251	3,749	0.033	0.395
4	A-1-a	G	12.5	19.5	7.0	16.0	130	2,260	1,805	807	4,807					38	50	168	0.68	0.705	4,761	5,567	0.035	0.420	0.457	3,087	3,894	0.029	0.343
5	A-1-b	G	19.5	23.0	3.5	21.3	135	2,733	2,496	1,170	5,170					76	90	393	0.91	0.589	3,978	5,149	0.006	0.069	0.424	2,860	4,030	0.005	0.057
5	A-1-b	G	23.0	26.5	3.5	24.8	135	3,205	2,969	1,424	5,424					76	85	359	1.06	0.527	3,558	4,982	0.005	0.064	0.400	2,700	4,124	0.005	0.054
c	A-1-a	G	26.5	34.0	7.5	30.3	135	4,218	3,711	1,824	5,824					100	103	494	1.29	0.449	3,032	4,855	0.006	0.077	0.364	2,454	4,278	0.006	0.067
o	A-1-a	G	34.0	41.5	7.5	37.8	135	5,230	4,724	2,368	6,368					100	95	427	1.61	0.371	2,507	4,875	0.006	0.066	0.319	2,154	4,523	0.005	0.059
7	A-7-6	С	41.5	45.0	3.5	43.3	125	5,668	5,449	2,750	6,750	45	0.315	0.032	0.624				1.85	0.329	2,219	4,968	0.017	0.209	0.291	1,965	4,715	0.016	0.191
/	A-7-6	С	45.0	48.5	3.5	46.8	125	6,105	5,886	2,969	6,969	45	0.315	0.032	0.624				2.00	0.306	2,066	5,035	0.016	0.187	0.275	1,857	4,826	0.014	0.172
1. σ _p ' = σ _{vo} '+σ _m ; Estimate σ _m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003									Tota	Settlement:		16.951 in		Tota	al Settlement:		10.294 in												

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5; Cc = 0.0115wn for organic soils (A-8); Ref. Table 8.2, Holtz and Kovacs 1981

3. $C_r = 0.15(Cc)$ for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_o/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$ for $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{p}'$; $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$ for $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/15/2018				
Checked By:	JPS	Date:	7/15/2018				
Borings B-019-0-08

H=	42.3	ft	Total wall height
B'=	23.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall

	A-8b	A-7-6		
c _v =	50	150	ft²/yr	Coefficient of consolitation
t =	90	90	days	Time following completion of construction
H _{dr} =	4	7	ft	Length of longest drainage path considered
T _v =	0.771	0.755		Time factor
U =	88	87	%	Degree of consolidation

(S_c)_t = 9.284 in Settlement complete at 90% of primary consolidation

																							Total Se	ettlement at F	Facing of Wall	Settlement Cor Primary Co	nplete at 90% of onsolidation
Layer	Soil Type	Soil Type	Layer ([†]	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c)t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-1-b	G	0.0	2.5	2.5	1.3	120	300	150	72	2,072					4	8	54	0.05	0.500	3,375	3,447	0.078	0.934	0.934	0.934	0.934
	A-8b	С	2.5	5.0	2.5	3.8	100	550	425	191	2,191	41	0.460	0.069	0.750				0.16	0.499	3,369	3,560	0.243	2.916		2.566	
2	A-8b	С	5.0	7.5	2.5	6.3	100	800	675	285	2,285	41	0.460	0.069	0.750				0.27	0.496	3,350	3,635	0.222	2.659	8.022	2.340	7.059
	A-8b	С	7.5	10.0	2.5	8.8	100	1,050	925	379	2,379	41	0.460	0.069	0.750				0.37	0.491	3,311	3,690	0.204	2.447		2.153]
3	A-1-b	G	10.0	12.5	2.5	11.3	120	1,350	1,200	498	2,498					11	16	67	0.48	0.482	3,251	3,749	0.033	0.395	0.395	0.395	0.395
4	A-1-a	G	12.5	19.5	7.0	16.0	130	2,260	1,805	807	4,807					38	50	168	0.68	0.457	3,087	3,894	0.029	0.343	0.343	0.343	0.343
5	A-1-b	G	19.5	23.0	3.5	21.3	135	2,733	2,496	1,170	5,170					76	90	393	0.91	0.424	2,860	4,030	0.005	0.057	0 111	0.057	0 111
5	A-1-b	G	23.0	26.5	3.5	24.8	135	3,205	2,969	1,424	5,424					76	85	359	1.06	0.400	2,700	4,124	0.005	0.054	0.111	0.054	0.111
6	A-1-a	G	26.5	34.0	7.5	30.3	135	4,218	3,711	1,824	5,824					100	103	494	1.29	0.364	2,454	4,278	0.006	0.067	0 1 2 7	0.067	0 127
0	A-1-a	G	34.0	41.5	7.5	37.8	135	5,230	4,724	2,368	6,368					100	95	427	1.61	0.319	2,154	4,523	0.005	0.059	0.127	0.059	0.127
7	A-7-6	С	41.5	45.0	3.5	43.3	125	5,668	5,449	2,750	6,750	45	0.315	0.032	0.624				1.85	0.291	1,965	4,715	0.016	0.191	0.363	0.166	0.315
1	A-7-6	С	45.0	48.5	3.5	46.8	125	6,105	5,886	2,969	6,969	45	0.315	0.032	0.624				2.00	0.275	1,857	4,826	0.014	0.172	0.303	0.150	0.315

1. $\sigma_p' = \sigma_{vo}' + \sigma_{m}$; Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5; Cc = 0.0115wn for organic soils (A-8); Ref. Table 8.2, Holtz and Kovacs 1981

3. C_r = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{vo}')$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_p')]$ for $\sigma_{vo}' < \sigma_p' < \sigma_{vf}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')\log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	07/15/2018
Checked By:	JPS	Date:	07/15/2018

Settlement Remaining After Hold Period: 1.010

in

Borings B-019-1-13

H=	42.3	ft	Total wall height
B'=	23.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall

																				Total S	Settlement at	Center of Re	einforced So	il Mass		Total Set	tlement at Fa	cing of Wall	
Layer	Soil Class.	Soil Type	Layer (1	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-4a	G	0.0	3.5	3.5	1.8	120	420	210	101	2,101					8	16	34	0.07	0.999	6,741	6,841	0.189	2.274	0.500	3,374	3,475	0.159	1.909
2	A-6b	С	3.5	6.0	2.5	4.8	115	708	564	267	2,267	40	0.270	0.041	0.585				0.20	0.976	6,591	6,858	0.264	3.169	0.498	3,364	3,631	0.146	1.757
2	A-6b	С	6.0	8.5	2.5	7.3	115	995	851	399	2,399	40	0.270	0.041	0.585				0.31	0.932	6,290	6,689	0.239	2.874	0.494	3,337	3,736	0.132	1.581
2	A-2-4	G	8.5	13.0	4.5	10.8	125	1,558	1,276	605	4,605					15	21	76	0.46	0.844	5,698	6,303	0.060	0.719	0.484	3,265	3,870	0.047	0.569
3	A-2-4	G	13.0	17.5	4.5	15.3	125	2,120	1,839	887	4,887					15	19	72	0.65	0.724	4,887	5,775	0.051	0.607	0.462	3,117	4,004	0.041	0.488
4	A-1-b	G	17.5	22.5	5.0	20.0	125	2,745	2,433	1,185	5,185					20	24	82	0.85	0.614	4,147	5,332	0.040	0.477	0.432	2,917	4,101	0.033	0.394
4	A-1-b	G	22.5	27.5	5.0	25.0	125	3,370	3,058	1,498	5,498					20	22	79	1.07	0.523	3,531	5,028	0.033	0.402	0.398	2,688	4,186	0.028	0.341
5	A-1-a	G	27.5	32.5	5.0	30.0	135	4,045	3,708	1,836	5,836					98	101	476	1.28	0.452	3,053	4,888	0.004	0.054	0.365	2,465	4,301	0.004	0.047
5	A-1-a	G	32.5	37.5	5.0	35.0	135	4,720	4,383	2,199	6,199					98	95	431	1.50	0.397	2,678	4,877	0.004	0.048	0.335	2,259	4,457	0.004	0.043
6	A-6b	С	37.5	41.5	4.0	39.5	125	5,220	4,970	2,505	6,505	33	0.207	0.021	0.530				1.69	0.357	2,408	4,913	0.016	0.190	0.310	2,091	4,596	0.014	0.171
0	A-6b	С	41.5	45.5	4.0	43.5	125	5,720	5,470	2,756	6,756	33	0.207	0.021	0.530				1.86	0.327	2,207	4,962	0.014	0.166	0.290	1,957	4,712	0.013	0.151
1. $\sigma_p' = \sigma_v$	$\sigma_p' = \sigma_{vo}' + \sigma_m$, Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003												Tota	Settlement:		10.978 in		Tota	I Settlement:		7.450 in								

2. $C_c = 0.009(LL-10)$; Ref. Table 6-9, FHWA GEC 5

3. $C_r = 0.15(Cc)$ for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_o/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{vt}'$; $[C_{t'}(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{vt}' \le \sigma_{p}'$; $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$ for $\sigma_{vo}' < \sigma_{p}' < \sigma_{vt}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/15/2018
Checked By:	JPS	Date:	7/15/2018

Borings B-019-1-13

H=	42.3	ft	Total wall height
B'=	23.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall

c _v =	A-6b (Upper) 300	A-6b (Lower) 300	ft²/yr	Coefficient of consolitation
t =	20	20	days	Time following completion of construction
H _{dr} =	5	8	ft	Length of longest drainage path considered
T _v =	0.658	0.257		Time factor
U =	84	57	%	Degree of consolidation
(S _c) _t =	6.777	in	Settlement	complete at 91% of primary consolidation

																							Total Se	ttlement at F	acing of Wall	Settlement Cor Primary C	nplete at 91% of onsolidation
Layer	Soil Type	Soil Type	Layer (f	Depth t)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-4a	G	0.0	3.5	3.5	1.8	120	420	210	101	2,101					8	16	34	0.07	0.500	3,374	3,475	0.159	1.909	1.909	1.909	1.909
2	A-6b	С	3.5	6.0	2.5	4.8	115	708	564	267	2,267	40	0.270	0.041	0.585				0.20	0.498	3,364	3,631	0.146	1.757	3 3 3 8	1.476	2 804
2	A-6b	С	6.0	8.5	2.5	7.3	115	995	851	399	2,399	40	0.270	0.041	0.585				0.31	0.494	3,337	3,736	0.132	1.581	5.556	1.328	1.328
3	A-2-4	G	8.5	13.0	4.5	10.8	125	1,558	1,276	605	4,605					15	21	76	0.46	0.484	3,265	3,870	0.047	0.569	1 057	0.569	1 057
3	A-2-4	G	13.0	17.5	4.5	15.3	125	2,120	1,839	887	4,887					15	19	72	0.65	0.462	3,117	4,004	0.041	0.488	1.007	0.488	1.007
1	A-1-b	G	17.5	22.5	5.0	20.0	125	2,745	2,433	1,185	5,185					20	24	82	0.85	0.432	2,917	4,101	0.033	0.394	0 735	0.394	0.735
4	A-1-b	G	22.5	27.5	5.0	25.0	125	3,370	3,058	1,498	5,498					20	22	79	1.07	0.398	2,688	4,186	0.028	0.341	0.755	0.341	0.733
5	A-1-a	G	27.5	32.5	5.0	30.0	135	4,045	3,708	1,836	5,836					98	101	476	1.28	0.365	2,465	4,301	0.004	0.047	0.080	0.047	0.080
5	A-1-a	G	32.5	37.5	5.0	35.0	135	4,720	4,383	2,199	6,199					98	95	431	1.50	0.335	2,259	4,457	0.004	0.043	0.089	0.043	0.009
6	A-6b	С	37.5	41.5	4.0	39.5	125	5,220	4,970	2,505	6,505	33	0.207	0.021	0.530				1.69	0.310	2,091	4,596	0.014	0.171	0 323	0.098	0 184
U	A-6b	С	41.5	45.5	4.0	43.5	125	5,720	5,470	2,756	6,756	33	0.207	0.021	0.530				1.86	0.290	1,957	4,712	0.013	0.151	0.020	0.086	0.104

1. σ_p' = σ_{vo}'+σ_m; Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_o/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{v'}/\sigma_{vo})'$ for $\sigma_p' \le \sigma_{vo'} < \sigma_{v'}; [C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo'})'$ for $\sigma_{vo'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'}$; $[C_r/(1+e_o)](H)\log(\sigma_{v'}/\sigma_{vo'})'$ for $\sigma_{vo'} < \sigma_{v'} < \sigma_{v'}$

10. $S_c = H(1/C')\log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	07/15/2018
Checked By:	JPS	Date:	07/15/2018

Settlement Remaining After Hold Period: 0.673 in

W-13-045 - FRA-70-12.68 - Retaining Wall 4W8

MSE Wall Settlement - Sta. 5074+12 to 5080+60

Borings B-020-1-13

H=	42.3	ft	Total wall height
B'=	23.4	ft	Effective footing width due to eccentricity
D _w =	0.0	ft	Depth below bottom of footing
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall

																				Total S	Settlement a	t Center of Re	einforced So	il Mass		Total Se	ttlement at Fa	cing of Wall	
Layer	Soil Class.	Soil Type	Layer (Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	2.5	2.5	1.3	120	300	150	72	2,072	35	0.225	0.034	0.546				0.05	0.999	6,747	6,819	0.268	3.215	0.500	3,375	3,447	0.160	1.921
1	A-6a	С	2.5	5.5	3.0	4.0	120	660	480	230	2,230	35	0.225	0.034	0.546				0.17	0.985	6,650	6,880	0.278	3.339	0.499	3,368	3,598	0.155	1.864
2	A-6b	С	5.5	8.0	2.5	6.8	120	960	810	389	2,389	40	0.270	0.041	0.585				0.29	0.942	6,361	6,750	0.243	2.910	0.495	3,344	3,733	0.133	1.595
2	A-6b	С	8.0	10.5	2.5	9.3	120	1,260	1,110	533	2,533	40	0.270	0.041	0.585				0.40	0.884	5,966	6,499	0.218	2.611	0.489	3,301	3,834	0.120	1.439
3	A-1-b	G	10.5	13.0	2.5	11.8	120	1,560	1,410	677	2,677					4	5	51	0.50	0.817	5,514	6,191	0.047	0.566	0.480	3,237	3,914	0.037	0.449
4	A-1-b	G	13.0	18.0	5.0	15.5	125	2,185	1,873	905	4,905					17	22	78	0.66	0.718	4,845	5,750	0.052	0.621	0.460	3,107	4,012	0.042	0.500
4	A-1-b	G	18.0	23.0	5.0	20.5	125	2,810	2,498	1,218	5,218					17	20	74	0.88	0.604	4,079	5,297	0.043	0.518	0.429	2,894	4,112	0.036	0.429
5	A-1-b	G	23.0	27.0	4.0	25.0	130	3,330	3,070	1,510	5,510					42	46	153	1.07	0.523	3,531	5,041	0.014	0.164	0.398	2,688	4,198	0.012	0.139
6	A-4a	С	27.0	32.0	5.0	29.5	130	3,980	3,655	1,814	5,814	22	0.108	0.011	0.444				1.26	0.459	3,095	4,909	0.016	0.194	0.368	2,487	4,301	0.014	0.168
7	A-1-b	G	32.0	39.5	7.5	35.8	135	4,993	4,486	2,255	6,255					100	96	439	1.53	0.390	2,629	4,885	0.006	0.069	0.330	2,230	4,485	0.005	0.061
/	A-1-b	G	39.5	47.0	7.5	43.3	135	6,005	5,499	2,800	6,800					100	89	387	1.85	0.329	2,219	5,018	0.005	0.059	0.291	1,965	4,765	0.004	0.054
0	A-7-6	С	47.0	53.0	6.0	50.0	130	6,785	6,395	3,275	7,275	44	0.306	0.031	0.616				2.14	0.288	1,941	5,216	0.023	0.276	0.262	1,765	5,040	0.021	0.255
8	A-7-6	С	53.0	59.0	6.0	56.0	130	7,565	7,175	3,681	7,681	44	0.306	0.031	0.616				2.39	0.259	1,745	5,426	0.019	0.230	0.239	1,615	5,295	0.018	0.215
1. $\sigma_{p}' = \sigma_{y}$	o'+σ _{m:} Estimate	σ _m of 2,000	psf in existi	ng fill materi	al and 4,000	psf (moderat	ely overcons	solidated) for	natural soil	deposits; Re	f. Table 11.2	, Coduto 20	03				•	•	•		Tota	al Settlement:		14.770 in		Tota	al Settlement:		9.089 in

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. C_r = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_o/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_o/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{vo}')$ for $\sigma_p' \leq \sigma_{vo}' < \sigma_{vt}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{p}'$; $[Cr/(1+e_o)](H)\log(\sigma_{vt}'/\sigma_{p}')$ for $\sigma_{vo}' < \sigma_p' < \sigma_{vt}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	BRT	Date:	7/15/2018
Checked By:	JPS	Date:	7/15/2018

Borings B-020-1-13

H=	42.3	ft	Total wall height		A-6a	A-6b	A-4a	A-7-6		
B'=	23.4	ft	Effective footing width due to eccentricity	c _v =	600	300	800	150	ft²/yr	Coefficient of consolitation
D _w =	0.0	ft	Depth below bottom of footing	t =	22	22	22	22	days	Time following completion of construction
q _e =	6,750	psf	Equivalent bearing pressure at bottom of wall	H _{dr} =	5.5	5	2.5	12	ft	Length of longest drainage path considered
				T _v =	1.196	0.723	7.715	0.063		Time factor
				U =	96	86	100	28	%	Degree of consolidation
				(S _c) _t =		8.174	in	Settlement	t complete a	at 90% of primary consolidation

																							Total Se	ttlement at F	acing of Wall	Settlement Con Primary Co	nplete at 90% of onsolidation
Layer	Soil Type	Soil Type	Layei (r Depth (ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-6a	С	0.0	2.5	2.5	1.3	120	300	150	72	2,072	35	0.225	0.034	0.546				0.05	0.500	3,375	3,447	0.160	1.921	3 785	1.844	3 633
	A-6a	С	2.5	5.5	3.0	4.0	120	660	480	230	2,230	35	0.225	0.034	0.546				0.17	0.499	3,368	3,598	0.155	1.864	0.700	1.789	0.000
2	A-6b	С	5.5	8.0	2.5	6.8	120	960	810	389	2,389	40	0.270	0.041	0.585				0.29	0.495	3,344	3,733	0.133	1.595	3 034	1.372	2 609
2	A-6b	С	8.0	10.5	2.5	9.3	120	1,260	1,110	533	2,533	40	0.270	0.041	0.585				0.40	0.489	3,301	3,834	0.120	1.439	0.004	1.238	2.000
3	A-1-b	G	10.5	13.0	2.5	11.8	120	1,560	1,410	677	2,677					4	5	51	0.50	0.480	3,237	3,914	0.037	0.449	0.449	0.449	0.449
1	A-1-b	G	13.0	18.0	5.0	15.5	125	2,185	1,873	905	4,905					17	22	78	0.66	0.460	3,107	4,012	0.042	0.500	0 929	0.500	0.020
-	A-1-b	G	18.0	23.0	5.0	20.5	125	2,810	2,498	1,218	5,218					17	20	74	0.88	0.429	2,894	4,112	0.036	0.429	0.323	0.429	0.323
5	A-1-b	G	23.0	27.0	4.0	25.0	130	3,330	3,070	1,510	5,510					42	46	153	1.07	0.398	2,688	4,198	0.012	0.139	0.139	0.139	0.139
6	A-4a	С	27.0	32.0	5.0	29.5	130	3,980	3,655	1,814	5,814	22	0.108	0.011	0.444				1.26	0.368	2,487	4,301	0.014	0.168	0.168	0.168	0.168
7	A-1-b	G	32.0	39.5	7.5	35.8	135	4,993	4,486	2,255	6,255					100	96	439	1.53	0.330	2,230	4,485	0.005	0.061	0 115	0.061	0.115
'	A-1-b	G	39.5	47.0	7.5	43.3	135	6,005	5,499	2,800	6,800					100	89	387	1.85	0.291	1,965	4,765	0.004	0.054	0.115	0.054	0.115
8	A-7-6	С	47.0	53.0	6.0	50.0	130	6,785	6,395	3,275	7,275	44	0.306	0.031	0.616				2.14	0.262	1,765	5,040	0.021	0.255	0.471	0.071	0.132
0	A-7-6	С	53.0	59.0	6.0	56.0	130	7,565	7,175	3,681	7,681	44	0.306	0.031	0.616				2.39	0.239	1,615	5,295	0.018	0.215	0.471	0.060	0.132

1. σ_p' = σ_{vo}'+σ_m Estimate σ_m of 2,000 psf in existing fill material and 4,000 psf (moderately overconsolidated) for natural soil deposits; Ref. Table 11.2, Coduto 2003

2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

3. Cr = 0.15(Cc) for the existing fill and 0.10(Cc) for the natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for strip loaded footing

8. $\Delta \sigma_v = q_e(I)$

9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_{vo}')$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'; [C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}')$ for $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p'; [Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_{vf}'/\sigma_p')$ for $\sigma_{vo}' < \sigma_{vf}';$ Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers)

10. $S_c = H(1/C')\log(\sigma_{v_f}'/\sigma_{v_o}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By:	BRT	Date:	07/15/2018
Checked By:	JPS	Date:	07/15/2018

Settlement Remaining After Hold Period: 0.915 in

CIP WALL CALCULATIONS

APPENDIX VI

јов Б	RA-70-12.68	NO.	W-13-045
SHEET NO.	1	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wall	4W9 - 10.4 ft Max	imum W	/all Height

		$\sigma_{LS} = 250 \text{ psf}$ Proposed Top of Wall
ć	a = 1.5 ft → ←	Backfill and Retained Soil:
		Item 203 Granular Embankment
	$\varphi_{BF} = 1$ $\varphi_{BF} = 5$	$H = 10.4 \text{ ft} \qquad \qquad$
Dropood Cround Surface	7 51	$(S_u)_{RS} = 0$ psf
XXX A A	5 ft l > > < - 2	0.4
$D_{f} = 4.0 \text{ ft}$ D_{-1} .	c = 3	
" J	$\leftarrow e = 0.0 \text{ ft} \rightarrow \oint f = 0$).0 ft Bearing Soil: Item 203 Granular Embankment
V Drawing Not to Scale	<i>← B</i> = 6.0 ft	$\longrightarrow \qquad \qquad$
P Wall Dimensions and Surg	charge Loading	Bearing and Retained/Backfill Soil Properties:
all Height, (H) =	10.4	t Bearing Soil Unit Weight, $(\gamma_{BS}) = 130$ pcf
oundation Width (Entire Base Wid	Ith), (B) = 6.01	t Bearing Soil Friction Angle, $(\varphi_{BS}) = 33^{\circ}$
e Width (h) =	1.5	t Backfill and Retained Soil Unit Weight $(y_{BS}, y_{BS}) = \frac{130}{130}$ ncf
eel Width, $(c) =$	3.0	ft Retained Soil Friction Angle. $(\varphi_{BF}) = 33^{\circ}$
ooting Thickness. (d) =	1.5	ft Retained Soil Undrained Shear Strength, $[(s_{\mu})_{\mu S}] = 0$ psf
ocation of Shear Key, (e) =	0.0	ft Active Earth Pressure Coefficient, $(K_a) = 0.264$
epth of Shear Key, (f) =	0.0	ft Passive Earth Pressure Coefficient, $(K_p) = 7.410$
nbedment Depth, (D_f) =	4.0	it LRFD Load Factors
all Length, (L) =	143 (it DC EV EH LS EP
ve Surcharge Load, (σ_{LS}) =	250 I	psf Strength la 0.90 1.00 1.50 1.75 0.90
pth to Groundwater, (D_w) =	36.6	it Strength lb 1.25 1.35 1.50 1.75 0.90 - 3.4.1-1 and 3.4.1-2
		Service I 1.00 1.00 1.00 1.00 J
	$\begin{array}{c} P_{LS_h} \\ -P_{EH} \end{array} P_{LS_h} = \sigma_{LS} \end{array}$	$HK_a \gamma_{LS}$ (250 psf)(10.4 ft)(0.264)(1.75) = 1.2 kip/ft
	• <i>P_H</i> =	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft
heck Sliding Resistance	P _H =	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_\tau + R_{ep}$
heck Sliding Resistance	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_\tau + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$
heck Sliding Resistance $DC_2 \bigvee P_{EV} \bigvee$	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_r + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pcf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}(130 \text{ pcf})(0.0 \text{ ft})^2(7.41)(0.90) = 0.00$
heck Sliding Resistance $DC_2 \downarrow P_{EV} \downarrow DC_1 \downarrow DC_1$	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$ Check Drained Conditio	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_r + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pcf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}(130 \text{ pcf})(0.0 \text{ ft})^2(7.41)(0.90) = 0.00$ pn: $R_r = P_V \tan \delta$
heck Sliding Resistance $DC_2 \downarrow P_{EV} \downarrow DC_1 \downarrow R_{ep} R_{ep}$	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$ Check Drained Condition $P_V = DC_1 + -$	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_r + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pcf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}(130 \text{ pcf})(0.0 \text{ ft})^2(7.41)(0.90) = 0.00$ pn: $R_r = P_V \tan \delta$ $DC_2 + P_{EV} = \gamma_c \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot d$
heck Sliding Resistance $DC_2 \downarrow P_{EV} \downarrow DC_1 \downarrow R_{ep} = R_{\tau}$	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$ Check Drained Condition $P_V = DC_1 + P_V = (150)$	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_r + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pocf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}$ (130 pcf)(0.0 ft) ² (7.41)(0.90) = 0.00 pn: $R_r = P_V \tan \delta$ $DC_2 + P_{EV} = \gamma_c \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot dc$ + pcf) [(6.0 ft)(1.5 ft) + (10.4 ft - 1.5 ft)(1.5 ft)] (0.90) + = 6.49 kip (130 pcf)(10.4 ft - 1.5 ft)(3.0 ft)(1.00)
heck Sliding Resistance $DC_2 \qquad \qquad$	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$ Check Drained Condition $P_V = DC_1 + P_V = (150)$ $\tan \delta = \tan \delta$	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_r + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pocf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}$ (130 pcf)(0.0 ft) ² (7.41)(0.90) = 0.00 pn: $R_r = P_V \tan \delta$ $DC_2 + P_{EV} = \gamma_c \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot dc$ P pcf) [(6.0 ft)(1.5 ft) + (10.4 ft - 1.5 ft)(1.5 ft)] (0.90) + = 6.49 kip (130 pcf)(10.4 ft - 1.5 ft)(3.0 ft)(1.00) $\rho_{BS} = \tan(33) = 0.65$
heck Sliding Resistance $DC_2 \downarrow P_{EV} \downarrow DC_1 \downarrow R_{ep} R_{ep}$	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$ Check Drained Condition $P_V = DC_1 + P_V = (150)$ $\tan \delta = \tan \phi$ $R_\tau = -(6)$	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_\tau + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pocf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}$ (130 pcf)(0.0 ft) ² (7.41)(0.90) = 0.00 on: $R_\tau = P_V \tan \delta$ $DC_2 + P_{EV} = \gamma_c \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot c$ P pcf) [(6.0 ft)(1.5 ft) + (10.4 ft - 1.5 ft)(1.5 ft)] (0.90) + = 6.49 kip (130 pcf)(10.4 ft - 1.5 ft)(3.0 ft)(1.00) $\rho_{BS} = \tan(33) = 0.65$.49 kip/ft)(0.65) = 4.22 kip/ft
heck Sliding Resistance $DC_2 \downarrow P_{EV} \downarrow DC_1 \downarrow R_{ep} R_{ep} R_{ep}$	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$ Check Drained Condition $P_V = DC_1 + P_V = (150)$ $\tan \delta = \tan \theta$ $R_\tau = (60)$	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_\tau + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pocf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}$ (130 pcf)(0.0 ft) ² (7.41)(0.90) = 0.00 on: $R_\tau = P_V \tan \delta$ $DC_2 + P_{EV} = \gamma_c \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot dc$ P pcf) [(6.0 ft)(1.5 ft) + (10.4 ft - 1.5 ft)(1.5 ft)] (0.90) + = 6.49 kip (130 pcf)(10.4 ft - 1.5 ft)(3.0 ft)(1.00) $\rho_{BS} = \tan(33) = 0.65$.49 kip/ft)(0.65) = 4.22 kip/ft stance - Drained Condition
heck Sliding Resistance $DC_{2} \qquad P_{EV} \qquad DC_{I} \qquad R_{cp} \qquad R_{r} \qquad R_{r}$ Prify Sliding Force Less Than $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq $	Nominal Sliding Resisti $R_{ep} = \gamma_{BS} D_f f$ $R_{ep} = (130)$ Check Drained Condition $P_V = DC_1 + P_V = (150)$ $\tan \delta = \tan \theta$ $R_\tau = (6)$ n Factored Sliding Resisting	2.78 kip/ft + 1.2 kip/ft = 3.98 kip/ft ng: $R_n = R_\tau + R_{ep}$ $K_p \gamma_{ep} + \frac{1}{2} \gamma_{BS} f^2 K_p \gamma_{ep}$ pocf)(4.0 ft)(0.0 ft)(7.41)(0.90) + $\frac{1}{2}$ (130 pcf)(0.0 ft) ² (7.41)(0.90) = 0.00 on: $R_\tau = P_V \tan \delta$ $DC_2 + P_{EV} = \gamma_c \cdot [B \cdot d + (H - d) \cdot a] \cdot \gamma_{DC} + \gamma_{BF} \cdot (H - d) \cdot c \cdot c \cdot 0$ pcf) [(6.0 ft)(1.5 ft) + (10.4 ft - 1.5 ft)(1.5 ft)] (0.90) + = 6.49 kip (130 pcf)(10.4 ft - 1.5 ft)(3.0 ft)(1.00) $\rho_{BS} = \tan(33) = 0.65$.49 kip/ft)(0.65) = 4.22 kip/ft <u>stance - Drained Condition</u> ≥ 3.98 kip/ft \leq (4.22 kip/ft)(1.00) + (0.00 kip/ft)(0.50) = 4.22 kip/ft

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	2	OF	6
CALCULATED B	Y BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining W	all 4W <mark>9 - 10.4 ft Max</mark>	imum W	all Height

IP Wall Dimensions and Surcharge Loading		Bearing and Retained/Backfill Soil Properties:
/all Height, (<i>H</i>) =	10.4 ft	Bearing Soil Unit Weight, (γ_{BS}) = 130 pcf
oundation Width (Entire Base Width), (<i>B</i>) =	6.0 ft	Bearing Soil Friction Angle, $(\varphi_{BS}) = 33^{\circ}$
tem Width, (a) =	1.5 ft	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] = 0$ psf
oe Width, (<i>b</i>) =	1.5 ft	Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS}) = 130$ pcf
eel Width, (c) =	3.0 ft	Retained Soil Friction Angle, $(\varphi_{RS}) = 33^{\circ}$
ooting Thickness, (<i>d</i>) =	1.5 ft	Retained Soil Undrained Shear Strength, $[(s_u)_{RS}] = 0$ psf
ocation of Shear Key, (e) =	0.0 ft	Active Earth Pressure Coefficient, $(K_a) = 0.264$
epth of Shear Key, (<i>f</i>) =	0.0 ft	Passive Earth Pressure Coefficient, $(K_p) = 7.410$
mbedment Depth, (D_f) =	4.0 ft	LRFD Load Factors
/all Length, (L) =	143 ft	DC EV EH LS EP
ive Surcharge Load, $(\sigma_{LS}) =$	250 psf	Strength la 0.90 1.00 1.50 1.75 0.90]
epth to Groundwater, (D_w) =	36.6 ft	Strength lb 1.25 1.35 1.50 1.75 0.90 - 3.4.1-1 and 3.4.1-2 - Active
		Service I 1.00 1.00 1.00 1.00 1.00
neck Sliding (Loading Case - Strength Ia) - A	ASHTO LRFL	BDM Section 10.6.3.4 (Continued)
Check Undrained Condition: $R_{ au} = ig(S_uig)_B$	$(s \leq q_s) \cdot B$	
P_{EV} $(S_u)_{BS} =$	N/A ksf	
$\mathcal{D} \subset 2$,	
$ \mathbf{v} \Psi q_{max} = \frac{1}{2}$	$\sigma_2 \sigma_{vmax} = (3.1)$.09 ksf) / 2 = 1.55 ksf
$ DC_{I} $	/	
$R_{ep} \longrightarrow R$ $q_{min} = \frac{1}{2}$	$\sigma_2 \sigma_{vmin} = (-0)$.92 ksf) / 2 = -0.46 ksf
* ¹		
0 <i>qmin</i>	P /(P
$\sigma_{\rm vmax}$ =	$= \frac{V}{R} 1 + 6$	$\left \frac{1}{2}\right = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 + 6(1.86 \text{ ft} / 6.0 \text{ ft})] = 3.09 \text{ ksf}$
nax	, n	<i>B)</i>
$(S_u)_{RS} \leq q_s$	א ו מ	
\sim	$=\frac{P_V}{1-6}$	in China ann iam minana
U ₁₁₁₁₁₁ -	/ n + v	p = 1 = (6.49 kip/ft / 6.0 ft)[1 - 6(1.86 ft / 6.0 ft)] = -0.92 ksf
9 min -	B(1)	$P(\overline{B}) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$
	/ <i>B</i> [-~~	$\left(\frac{B}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$
		$\left(\frac{B}{B}\right) = \frac{(6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})]}{1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})} = \frac{-0.92 \text{ ksf}}{1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})}$
$R_{\tau} = N/A$		$\left(\frac{B}{B}\right) = \frac{(6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})]}{=} -0.92 \text{ ksf}$ = N/A kip/
$R_{\tau} = N/A$		$\left(\frac{1}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/
$R_{\tau} = N/A$		$\left(\frac{1}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/
$R_{\tau} = N/A$		$\left(\frac{B}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/
$R_{\tau} = N/A$	/B(1)	$\left(\frac{2}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/
$R_{\tau} = N/A$ $\frac{1}{2} = N/A$ $\frac{1}{2} = N/A$ $\frac{1}{2} = N/A$ $\frac{1}{2} = N/A$	$\frac{B}{B} = \sum N(A + B)$	$\left(\frac{2}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/
$R_{\tau} = N/A$ $\frac{erify Sliding Force Less Than Factored Slidi}{P_{H} \le \phi_{n} \cdot R_{n} \longrightarrow P_{H} \le \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H}$	$\frac{B(1 - c)}{R_{ep}} \xrightarrow{N/A} N/A$	$\left(\frac{1}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/ = V/A kip/
$R_{\tau} = N/A$ $R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot N/A$	$B(r)$ or $R_{ep} \rightarrow N/A$	$\left(\frac{1}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/ - Undrained Condition
$\begin{array}{l} R_{\tau} = \text{N/A} \\ \hline \\ \hline \\ R_{\tau} = \text{N/A} \\ \hline \\ P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot \\ \hline \\ = \text{N/A} \end{array}$	B(r)	$\left(\frac{2}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/ = N/A kip/
$R_{\tau} = N/A$ $R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq N/A$	B(r)	$\left(\frac{2}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ = N/A kip/ - Undrained Condition
$\begin{array}{l} R_{\tau} = N/A \\ \hline \\ \mathbf{erify Sliding Force Less Than Factored Slidi} \\ P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot \\ \hline \\ = N/A \\ \hline \\ \text{Use } \varphi_{\tau} = 1.00 \text{Use } \varphi_{ep} = 0.50 (Per) \end{array}$	B(r - r) $R_{ep} \rightarrow N/A$ $R_{ashto LRFD}$	$\left(\frac{2}{B}\right) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A kip/}$ $= \text{N/A kip/}$ $= - \text{Undrained Condition}$ Solution (1.5.5.2.2-1 and 11.5.7-1)
$\begin{array}{l} R_{\tau} = \text{N/A} \\ \hline \\ \hline \\ erify Sliding Force Less Than Factored Slidi} \\ P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot \\ = & \text{N/A} \\ \hline \\ \\ \text{Use } \varphi_{\tau} = & 1.00 & \text{Use } \varphi_{ep} = & 0.50 \ (Per) \end{array}$	B(r)	$\left[\frac{2}{B}\right] = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A kip/}$ $= \text{N/A kip/}$ $= -0.92 \text{ ksf}$
$\begin{array}{l} R_{\tau} = \text{N/A} \\ \hline R_{\tau} = \text{N/A} \\ \hline \\ P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot \\ \hline \\ = \text{N/A} \\ \hline \\ \text{Use } \varphi_{\tau} = 1.00 \text{Use } \varphi_{ep} = 0.50 (\text{Per}) \end{array}$	B(r - r) $R_{ep} \rightarrow N/A$ $R_{AASHTO LRFD I$	$P(\overline{B}) = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $= \text{V/A} \text{ kip}$ $= -0.92 \text{ ksf}$ $= -0.92 \text{ ksf}$ $= -0.92 \text{ ksf}$
$R_{\tau} = N/A$ erify Sliding Force Less Than Factored Slidi $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot$ $= N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	B(r - r) $R_{ep} \rightarrow N/A$ r AASHTO LRFD I	$\left[\frac{2}{B}\right] = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $= \text{N/A} \text{ kip}$ $= -0.92 \text{ ksf}$ $= -0.92 \text{ ksf}$ $= -0.92 \text{ ksf}$
$R_{\tau} = N/A$ erify Sliding Force Less Than Factored Slidi $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot = N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	$B(r \rightarrow R_{ep} \rightarrow N/A$	$\left[\frac{2}{B}\right] = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $= \text{Undrained Condition}$ Solution A BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ erify Sliding Force Less Than Factored Slidi $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot = N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	$B(r \rightarrow R_{ep} \rightarrow N/A$	$\left[\frac{2}{B}\right] = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $= \text{Undrained Condition}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ $\frac{ erify Sliding Force Less Than Factored Sliding}{P_{H}} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot R_{\tau} + q_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot R_{\tau} + q_{ep} \cdot P_{H} \leq 0.50 \text{ (Per}$	B(r)	$\left[\frac{2}{B}\right] = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A kip/}$ $= \text{Undrained Condition}$ Solution (10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ erify Sliding Force Less Than Factored Slidi $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot$ $= N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	B(r)	$\left[\frac{2}{B}\right] = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $= \text{Undrained Condition}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot e_{p}$ $= N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	B(r - s) $R_{ep} \rightarrow N/P$ AASHTO LRFD I	$\frac{P_B}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= N/A \text{ kip}/B$ $= Undrained Condition$ $BDM Tables 10.5.5.2.2-1 and 11.5.7-1)$
$R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot e_{p}$ $= N/A$ $Use \varphi_{\tau} = 1.00 Use \varphi_{ep} = 0.50 (Per)$	B(1 - c) $\frac{1}{R_{ep}} \rightarrow N/A$ AASHTO LRFD I	$\frac{P_B}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $= \text{Undrained Condition}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ erify Sliding Force Less Than Factored Slidi $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot$ $= N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	B(1 - c) $\frac{1}{R_{ep}} \rightarrow N/P$ AASHTO LRFD I	$\frac{P_B}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $= - \text{Undrained Condition}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ erify Sliding Force Less Than Factored Slidi $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot = N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	B(1)	$\frac{(6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})]}{=} -0.92 \text{ ksf}}$ $= \text{N/A kip}$ $\frac{2 - \text{Undrained Condition}}{=}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ erify Sliding Force Less Than Factored Slidi $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot = N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	B(r)	$\frac{D}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= N/A \text{ kip}$ $\frac{D}{A} - Undrained Condition$ $BDM Tables 10.5.5.2.2-1 \text{ and } 11.5.7-1)$
$\begin{array}{l} \hline & & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline$	B(r)	$\frac{D}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip}$ $\frac{D}{A} - \text{Undrained Condition}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$\begin{array}{l} \hline & & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	$B(\mathbf{r} - \mathbf{r})$ $R_{ep} \rightarrow N/A$ AASHTO LRFD I	$\frac{D}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip/}$ $\frac{D}{A} - \text{Undrained Condition}$ SDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ $R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq 0.50 \text{ (Per}$	$\frac{B(1-1)}{R_{ep}} \rightarrow N/A$	$\frac{D}{B} = -0.92 \text{ ksf}$ $= N/A \text{ kip/}$ $\frac{D}{B} = -0.92 \text{ ksf}$ $= N/A \text{ kip/}$ $\frac{D}{B} = -0.92 \text{ ksf}$
$R_{\tau} = N/A$ $R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq 0.50 \text{ (Per}$	$\frac{B(1 - S)}{R_{ep}} \rightarrow N/A$	$P_{\overline{B}} = -0.92 \text{ ksf}$ $= N/A \text{ kip/}$ $= N/A \text{ kip/}$ $= 0.92 \text{ ksf}$ $= 0.92 \text{ ksf}$ $= 0.92 \text{ ksf}$ $= 0.92 \text{ ksf}$
$\begin{array}{l} \hline & & & \\ R_{\tau} \ = \ \text{N/A} \end{array}$ $\begin{array}{l} \hline & \\ \hline & \\ \hline & \\ P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot \\ = & \\ N/A \end{array}$ $\begin{array}{l} \text{Use } \varphi_{\tau} = & 1.00 \text{Use } \varphi_{ep} = & 0.50 (\text{Per}) \end{array}$	$\frac{B(1 - S)}{R_{ep} \rightarrow N/A}$	$P_{\overline{B}} = -0.92 \text{ ksf}$ $= \text{NA kip/}$ $= \text{NA kip/}$ $= \text{Indrained Condition}$ SDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot P$	B(1)	$P_{\overline{B}} = (6.49 \text{ kip/f} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip/}$ $= \text{V/A} \text{ kip/}$ $= -\text{Undrained Condition}$ Solution (1):5.5.2.2-1 and (1):5.7-1)
$R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{\tau} = N/A$ Use $\varphi_{\tau} = 1.00$ Use $\varphi_{ep} = 0.50$ (Per	B(1)	$P_{\overline{B}} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A} \text{ kip/}$ $= \text{V/A} \text{ kip/}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot e_{p} = N/A$ $Use \ \varphi_{\tau} = 1.00 Use \ \varphi_{ep} = 0.50 (Per)$	$B(\mathbf{r}, \mathbf{r})$ ng Resistance $R_{ep} \rightarrow N/P$ · AASHTO LRFD I	$\frac{1}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= N/A \text{ kip/}$ $\frac{1}{B} - \text{Undrained Condition}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{x} \cdot R_{z} + \phi_{ep} \cdot e_{p} = N/A$ $Use \ \varphi_{\tau} = 1.00 Use \ \varphi_{ep} = 0.50 (Per)$	$B(\mathbf{r}, \mathbf{r})$ ng Resistance $R_{ep} \rightarrow N/P$ · AASHTO LRFD I	$\frac{1}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A kip/}$ $\frac{1}{B} = -0.92 \text{ ksf}$ $= \text{N/A kip/}$ BDM Tables 10.5.5.2.2-1 and 11.5.7-1)
$R_{\tau} = N/A$ $P_{H} \leq \phi_{n} \cdot R_{n} \longrightarrow P_{H} \leq \phi_{\tau} \cdot R_{\tau} + \phi_{ep} \cdot P_{H} \leq \phi_{ep} \cdot P_{$	B(1)	$\frac{1}{B} = (6.49 \text{ kip/ft} / 6.0 \text{ ft})[1 - 6(1.86 \text{ ft} / 6.0 \text{ ft})] = -0.92 \text{ ksf}$ $= \text{N/A kip/}$ $\frac{1}{B} - \text{Undrained Condition}$ $\frac{1}{B} = 0.552.2 \text{ ft} \text{ and } 11.57 \text{ ft} \text{ ft}$

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	3	OF	6
CALCULATED B	Y BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining W	all 4W <mark>9 - 10.4 ft Max</mark>	imum W	all Height

CIP Wall Dimensions and Surcharge Loadin	<u>19</u>	Bearing and Retained/Backfill Soil Properties:
Wall Height, $(H) =$	10.4 π	Bearing Soil Unit Weight, $(\gamma_{BS}) = 130 \text{ pcr}$
Foundation Width (Entire Base Width), (B) =	<u>6.0 π</u>	Bearing Soil Friction Angle, $(\varphi_{BS}) = 33^{\circ}$
Stem Width, $(a) =$	1.5 Π 1 5 θ	Bearing Soil Undrained Snear Strength, $[(s_u)_{BS}] = 0$ psr
loe Width, $(b) =$	л с.Г С.Г	Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS}) = 130$ pci
Heel Width, $(c) =$	3.U Tt	Retained Soil Friction Angle, $(\varphi_{RS}) = 33^{-1}$
Footing Thickness, $(d) =$	Π C.I	Retained Soil Undrained Shear Strength, $[(s_u)_{RS}] = 0.924$
Location of Shear Key, $(e) =$	0.0 ft	Active Earth Pressure Coefficient, $(K_a) = 0.264$
Depth of Shear Key, $(f) =$	0.0 π	Passive Earth Pressure Coefficient, $(K_p) = \frac{1.410}{1.410}$
Embedment Depth, $(D_f) =$	4.0 tt	LRFD Load Factors
Wall Length, (L) =	143 tt	
Live Surcharge Load, (σ_{LS}) =	250 psf	Strength la 0.90 1.00 1.50 1.75 0.90 (AASHTO LRFD BDM Tables
Depth to Groundwater, (D_w) =	<u>36.6</u> ft	Strength lb 1.25 1.35 1.50 1.75 0.90 C 3.4.1-1 and 3.4.1-2 - Active Earth Pressure)
		Service I 1.00 1.00 1.00 1.00 J
Check Eccentricity (Loading Case - Strengt	h la) - AASHT(O L PED RDM Section 11 6 3 3
Clift Locentricity (Loading Gase - Gaonga	D /	
e =	$\frac{B}{2} - x_o$	
DC_{z}	$M_{V} - M_{V}$	$M_{H} = (22.22) \sin \theta/\theta = 15.00 \sin \theta/ft) / (6.40 \sin/ft) = 1.15 ft$
$\begin{array}{c c} P \\ C \\ P \\ L \\ S_{k} \end{array} \qquad \checkmark \qquad$	$z_o =$	= (23.32 ΚΙΡ·Π/Π - 15.89 ΚΙΡ·Π/Π) / (6.49 ΚΙΡ/Π) = 1.15 Π
DC , P_{ru}	τγ 14	
	$M_V =$	23.32 kip ft/ft Defined below
	$M_H =$	15.89 kip-ft/ft
$x_o \leftarrow \ast \rightarrow e$	$P_V = P_{EV}$	$+ DC_1 + DC_2 = 3.47 \text{ kip/ft} + 1.22 \text{ kip/ft} + 1.80 \text{ kip/ft} = 6.49 \text{ kip/ft}$
R		
$\downarrow B/_{2}$? = (6.0 ft /	/ 2) - 1.15 ft = 1.86 ft
Resisting Moment, M_V : $M_V = P_{EV}$	$(x_1) + DC_1$	$(x_2) + DC_2(x_3)$
	/	
$P_{EV} = P_{EV} = P_{EV}$	$\gamma_{BF} \cdot (H - c$	$d \cdot c \cdot \gamma_{EV} = (130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00) = 3.47 \text{ kip/ft}$
$ \Psi = DC_1 =$	$\gamma_c \cdot B \cdot d \cdot \gamma_I$	p_{C} = (150 pcf)(6.0 ft)(1.5 ft)(0.90) = 1.22 kip/ft
$ D_{\Gamma}^{C_{I}} $		
• $UC_2 =$	$\gamma_c \cdot (H-d)$	$a \cdot \gamma_{DC}$ = (150 pcf)(10.4 ft - 1.5 ft)(1.5 ft)(0.90) = 1.80 kip/ft
$\rightarrow x_1$		
$ \longrightarrow x_2 $ $x_1 = a - b$	$+b+c/_{2}$	= 1.5 ft + 1.5 ft + (3.0 ft / 2) = 4.5 ft
$\mapsto x_3$. / 2	
$x_2 = B/$	a = 6.0 ft	/2 = 3.0 ft
	2	
$x_3 = b$ -	$+a/_{2} = 1.5$	5 ft + (1.5 ft / 2) = 2.3 ft
	12	
$M_V = ($	3.47 kip/ft)(4.5	ft) + $(1.22 \text{ kip/ft})(3.0 \text{ ft}) + (1.80 \text{ kip/ft})(2.3 \text{ ft}) = 23.32 \text{ kip-ft/ft}$
Overturning Moment. M_{μ} : M_{μ}	$= P_{rrr}(x_{2})$	$) + P_{-2}(x_{2})$
	' * EH X**2	\mathcal{J}_{n} , $\mathcal{L}_{S_{h}}$, \mathcal{C}_{3} , \mathcal{J}_{n} , and \mathcal{J}_{n} , and \mathcal{J}_{n} , and \mathcal{J}_{n} ,
	$P_{FH} = \frac{1}{2} \gamma_{RS}$	$H^2 K_a \gamma_{FH} = \frac{1}{2}(130 \text{ pcf})(10.4 \text{ ft})^2(0.264)(1.50) = 2.78 \text{ kip/ft}$
x_5 P_{LS_h}		
4 P	$\sigma_{LS_h} = \sigma_{LS} F$	$TK_a \gamma_{LS} = (250 \text{ psf})(10.4 \text{ ft})(0.264)(1.75) = 1.2 \text{ kip/ft}$
	$x_2 = H/2$	= (104 ft)/3 = 347 ft
	-2 /3	
λ	$\kappa_2 \equiv H/2$	= (10.4 ft)/2 = 5.20 ft
	3 / 2	
	$M_{\prime\prime} =$	(2.78 kip/ft)(3.47 ft) + (1.2 kip/ft)(5.20 ft) = 15.89 kip·ft/ft
Limiting Eccentricity:		
B/		
$e_{\text{max}} = \frac{B}{3} \rightarrow e_{\text{max}} = (6.0 \text{ ft})$	/3 = 2.	.00 ft
Check Eccentricity		
$e < e_{\text{max}} \rightarrow 1.86 \text{ tt} < 2.00 \text{ tt}$	OK	

JOB	FRA-70-	-12.68	NO.	W-13-045
SHEET NO.		4	OF	6
CALCULATE) BY	BRT	DATE	7/15/2018
CHECKED BY		JPS	DATE	7/15/2018
Retaining	Wall 4W9 -	10.4 ft Ma	aximum W	all Height

<u>CIP Wall Dimensions and Surcharge Loading</u>	9	Bearing and Retained/Backfill Soil Properties:
Wall Height, (<i>H</i>) =	10.4 ft	Bearing Soil Unit Weight, (γ_{BS}) =130 pcf
Foundation Width (Entire Base Width), (B) =	6.0 ft	Bearing Soil Friction Angle, (φ_{BS}) = 33 °
Stem Width, (a) =	1.5 ft	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] = 0$ psf
Toe Width, (b) =	1.5 ft	Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS}) = 130$ pcf
Heel Width, (c) =	3.0 ft	Retained Soil Friction Angle, $(\varphi_{RS}) = 33^{\circ}$
Footing Thickness, (<i>d</i>) =	1.5 ft	Retained Soil Undrained Shear Strength, $[(s_u)_{RS}] = 0$ psf
Location of Shear Key, (e) =	0.0 ft	Active Earth Pressure Coefficient, $(K_a) = 0.264$
Depth of Shear Key, $(f) =$	0.0 ft	Passive Earth Pressure Coefficient, $(K_p) = 7.410$
Embedment Depth, (D_f) =	4.0 ft	LRFD Load Factors
Wall Length, (L) =	143 ft	DC EV EH LS EP
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Strength la 0.90 1.00 1.50 1.75 0.90 (AASHTO LRFD BDM Tables
Depth to Groundwater, (D_w) =	36.6 ft	Strength Ib 1.25 1.35 1.50 1.75 0.90 - 3.4.1-1 and 3.4.1-2 - Active Earth Pressure)
		Service I 1.00 1.00 1.00 1.00 J
Check Bearing Capacity (Loading Case - Str	ength lb) - AA	SHTO LRFD BDM Section 11.6.3.2
$P_{LS_{v}}$	- 1	
<i>g</i> _{eq} =	$= \frac{P_V}{B'}$	
$DC_2 P_{EV} $	I = R - 2a	$-6.0 \text{ ft}_{-2}(0.50 \text{ ft}) - 4.82 \text{ ft}$
	-D-2e	- 0.0 ii - 2(0.03 ii) - 4.02 ii
	$e = \frac{B}{2} - \frac{B}{2}$	$x_o = (6.0 \text{ ft} / 2) - 2.41 \text{ ft} = 0.59 \text{ ft}$
		- <i>M</i>
$x_o + x_{2} + e$	$x_o = \frac{v}{I}$	$\frac{H}{2}$ = (43.59 kip·ft/ft - 15.89 kip·ft/ft) / (11.50 kip/ft) = 2.41 ft
	1	<i>V</i>
$+\frac{B}{2}$	- (11 50	kin(h)/(4.82 ft) = 2.30 kof
$K = B' \rightarrow H$	_{eq} — (11.50	$(1)^{(1)} (4.02 \text{ ft}) = 2.39 \text{ KSI}$
Resisting Moment, M_V : $M_V = P_{FV}$	$(x_1) + P_{IS}$	$(x_1) + DC_1(x_2) + DC_2(x_2)$
P_{IS}	$C^{-1} I = L \delta_{v}$	X-17
$P_{FV} = \gamma$	$V_{BF} \cdot (H - a)$	$I \rightarrow C \cdot \gamma_{FV} = (130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.35) = 4.69 \text{ kip/ft}$
P_{EV} P_{EV} $P_{LS_v} = 0$	$\sigma_{\scriptscriptstyle LS} \cdot B \cdot \gamma_{\scriptscriptstyle L}$	s = (250 psf)(6.0 ft)(1.75) = 2.625 kip/ft
$DC_1 = C_1$	$\gamma \cdot B \cdot d \cdot \gamma$	_{DC} = (150 pcf)(6.0 ft)(1.5 ft)(1.25) = 1.69 kip/ft
	/ c _ u /	
\bullet V $DC_2 =$	$\gamma_c \cdot (H-d)$	$a \cdot \gamma_{DC}$ = (150 pcf)(10.4 ft - 1.5 ft)(1.5 ft)(1.25) = 2.50 kip/ft
$\begin{array}{c} & & \\$	-h+c/	= 15ft + 15ft + (30ft/2) = 45ft
$\mapsto x_3$	/2	
$x_2 = B_{2}$	= 6.0 ft	/2 = 3.0 ft
4	-	
$x_3 = b + b$	$-\frac{u}{2} = 1.5$	5 ft + (1.5 ft/2) = 2.3 ft
$M = \mu$.69 kip/ft)(4 5 ft)	+ $(2.63 \text{ kip/ft})(4.5 \text{ ft}) + (1.69 \text{ kip/ft})(3.0 \text{ ft}) + (2.50 \text{ kip/ft})(2.3 \text{ ft}) = 43.59 \text{ kip/ft}/ft$
Overturning Moment, M_H : M_H	$=P_{E\!H}\left(x_{4}\right)$	$+P_{IS_{h}}(x_{5})$
) _ 17	$H^2 V_{\rm eff} = 1/(120 \text{ pcb})(10.4 \text{ fb})(0.054)(4.50) = 0.70 \text{ b} \text{ ff}$
	$\epsilon_{H} = \gamma_2 \gamma_{RS}$	$\Pi \Lambda_a \gamma_{EH} = \gamma_2 (130 \text{ pcr})(10.4 \text{ m})^2 (0.264)(1.50) = 2.78 \text{ kip/ft}$
x_5 \land P_{LS_h} P	$P_{-} = \sigma^{-}$	$\mathbf{K}_{1} = (250 \text{ psf})(10.4 \text{ ft})(0.264)(1.75) = 1.2 \text{ kin/ft}$
	$LS_h = O_{LS} I$	$a \perp a \perp S = (200 \text{ poi})(10.7 \text{ i})(0.207)(1.10) = 1.2 \text{ i})/11$
	$t_{A} \equiv H/_{2}$	= (10.4 ft)/3 = 3.47 ft
	4 / 3	
	$t_5 = H/_2$	= (10.4 ft) / 2 = 5.20 ft
	~ / Z	
	$M_{H} =$	(2.78 kip/ft)(3.47 ft) + (1.2 kip/ft)(5.20 ft) = 15.89 kip·ft/ft
venucai Force, P_V : P_{LS_v} $P = P \perp D$	+DC +	$\mathcal{D}\mathcal{C}$
$- I_{EV} + I_{I}$	$LS_v + DC_1 +$	<i>₩</i> ~2
$P_{E\nu}$ $P_{E\nu}$ P_{ν} = 4.69 k	kip/ft + 2.63 kip	/ft + 1.69 kip/ft + 2.50 kip/ft
$DC_2 \downarrow \downarrow \downarrow$		
$ I _{DC_{r}}$ $P_{v} =$	11.50 kip/ft	

JOB F	RA-70-12.68	NO.	W-13-045
SHEET NO.	5	OF	6
CALCULATED BY	BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining Wal	I 4W9 - 10.4 ft Max	imum W	/all Height

CIP Wall Dimensions and Surcharge Loadir	ıg	Bearing an	d Reta	ined/B	ackfill	Soil Pro	perties			
Wall Height, (H) =	10.4 ft	Bearing Soil	Unit We	eight, (γ	₃₅) =			-	130 pcf	ſ
Foundation Width (Entire Base Width), (B) =	6.0 ft	Bearing Soil	Friction	Angle,	$(\varphi_{BS}) =$				33 °	
Stem Width, (a) =	1.5 ft	Bearing Soil	Undrair	ed She	ar Stren	gth, [(s ") _{BS}] =		0 psf	ſ
Toe Width, (<i>b</i>) =	1.5 ft	Backfill and F	Retaine	d Soil Ui	nit Weig	ht, (γ _{BF} ,	$\gamma_{RS}) =$	······	130 pcf	l in the second s
Heel Width, (c) =	3.0 ft	Retained Soi	I Frictio	n Angle	$(\varphi_{RS}) =$				33 °	
Footing Thickness, (<i>d</i>) =	1.5 ft	Retained Soi	l Undra	ined Sh	ear Stre	ngth, [(s	u) _{RS}] =		0 psf	ſ
Location of Shear Key, (e) =	0.0 ft	Active Earth	Pressu	re Coeff	icient, (<i>l</i>	$(X_a) =$			0.264	
Depth of Shear Key, (f) =	0.0 ft	Passive Eart	h Press	ure Coe	efficient,	$(K_p) =$			7.410	
Embedment Depth, (D_f) =	4.0 ft	LRFD Load	Facto	<u>rs</u>						
Wall Length, (L) =	143 ft		DC	EV	EH	LS	EP			
Live Surcharge Load, $(\sigma_{LS}) =$	250 psf	Strength la	0.90	1.00	1.50	1.75	0.90	7	(AASHTO LR	FD BDM Tables
Depth to Groundwater, (D_w) =	36.6 ft	Strength Ib	1.25	1.35	1.50	1.75	0.90	-	3.4.1-1 and 3	3.4.1-2 - Active
		Service I	1.00	1.00	1.00	1.00	1.00	J	Laiuir	ressure)
						_				
Check Bearing Capacity (Loading Case - St	rength Ib) - A	ASHTOLREDI	BDM S	ection	11.6.3.	2 (Contir	<u>ued)</u>			
Check Bearing Resistance - Drained Condit	<u>iion</u>									
Nominal Bearing Resistance: $q_n = cN_{cn}$	$_{n} + \gamma D_{f} N_{qn}$	$C_{wq} + \frac{1}{2} \gamma B$	$"N_{\gamma m}$	$C_{w\gamma}$						
$N - N c_{i} - 30527$	N = N	sdi-	31 65	3	λ)	,	Vci	_	34 721	
$1 \mathbf{v}_{cm} - 1 \mathbf{v}_c \mathbf{S}_c \mathbf{i}_c - 33.32 \mathbf{i}$	$1^{\prime}qm - 1^{\prime}$	q ³ q ^u q ⁱ q -	51.00	J	1 V	γm — 1	ysyly	-	JT. / J I	
N = 38638	N =	26 092				N =	35 188			
$S_{c} = 1+(4.82 \text{ ft}/143 \text{ ft})(26.092/38.638)$	$s_{q} =$	1+(4.82 ft/143 ft)ta	n(33°)	= 1.0)22	$s_{y} =$	1-0.4(4	.82 ft/1	43 ft) =	0.987
= 1.023	$d_{q} =$	1+2tan(33°)[1-sin(3	(00) 3°)]²tan⁻¹(4.0 ft/4.82	2 ft)	i =	1.000	(Assu	med)	0.001
$i_c = 1.000$ (Assumed)	<i>q</i> =	1.187				$C_{ww} =$	36.6 ft >	1.5(4.8	32 ft) + 4.0 ft	= 1.00
	i _ =	1.000 (Assumed	I)					ì	Ú.	
	$C_{wa} =$	36.6 ft > 4.0 ft	= 1.0	00						
$a \leq a \cdot \phi, \rightarrow 2.39$ ksf	$\leq (27.34 \text{ ksf})($	Resistance 0.55) = 15.04 k	sf	->	2.3	9 ksf≤′	l5.04 ks	f	OK	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 ext{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD	5red Bearing 1 5 ≤ (27.34 ksf)(10 Table 11.5.7-1	Resistance 0.55) = 15.04 ks 1)	sf		2.3	9 ksf ≤ ′	15.04 ks	f	OK	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Con	5red Bearing 1 5 ≤ (27.34 ksf)(0M Table 11.5.7-1 dition	<u>Kesistance</u> 0.55) = 15.04 ki	sf	>	2.3	9 ksf ≤ 1	l5.04 ks	f	OK	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Con	$F \leq (27.34 \text{ ksf})(0)$ $DM Table 11.5.7-10$ $dition$ $V = V = V = V$	<u>Kesistance</u> 0.55) = 15.04 k; ()	sf '' A7	-> 	2.3	9 ksf ≤ 1	15.04 ks	f		
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BE Check Bearing Resistance - Undrained Con Nominal Bearing Resistance: $q_n = cN_{cn}$	$f \leq (27.34 \text{ ksf})(0)$ $DM Table 11.5.7-1$ $Idition$ $n + \gamma D_f N_{qn}$	$\frac{\text{Resistance}}{(0.55)} = 15.04 \text{ k};$	sf ''N ₂ m	\rightarrow	2.3	9 ksf ≤ 1	5.04 ks	f		
$q_{eq} \leq q_n \cdot \phi_b \implies 2.39 \text{ ksf}$ $\text{Use } \phi_b = 0.55 (Per \text{ AASHTO LRFD BD}$ $\frac{\text{Check Bearing Resistance - Undrained Con}}{\text{Nominal Bearing Resistance:} q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$	$F \leq (27.34 \text{ ksf})(0)$ $Table 11.5.7-1$ $Interpretation N_{qm} = N$	$\frac{\text{Resistance}}{(1)} = 15.04 \text{ km}$	sf '' N _{ym} 1.000	\rightarrow $C_{w\gamma}$	2.3 	9 ksf ≤ ' 	15.04 ks	f	0.000	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ $\text{Use } \phi_b = 0.55 (Per \text{ AASHTO LRFD BL}$ $\frac{\text{Check Bearing Resistance - Undrained Con}}{\text{Nominal Bearing Resistance:} q_n = cN_{cn}}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$	$\frac{1}{r} \le (27.34 \text{ ksf})(r)$ $\frac{1}{r} \le (27.34 \text{ ksf})(r)$ $\frac{1}{r} = 11.5.7-1$ $\frac{1}{r}$	$\frac{\text{Resistance}}{(1000)} = 15.04 \text{ km}$	sf ''N _{ym} 1.000	 С_wγ_ 0	2.3:	9 ksf ≤ ' ,,, = 1 ,, = 1	15.04 ks V _y S _y i _y 0.000	f	OK	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ $\text{Use } \phi_b = 0.55 (Per \text{ AASHTO LRFD BL})$ $\frac{\text{Check Bearing Resistance - Undrained Con}}{\text{Nominal Bearing Resistance:} q_n = cN_{cn}}$ $N_{cm} = N_c S_c i_c = 5.258$ $N_c = 5.140$ $S_c = 14(4.82 \text{ fm}(5)(143 \text{ fm})) = 1.022$	$F \leq (27.34 \text{ ksf})(0)$ $DM Table 11.5.7-1$ $Idition$ $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_q = 3$	$\frac{(4 + 2)}{(4 + 2)} = 15.04 \text{ km}^{(1)}$ $m_{wq} = \frac{1}{2} $	sf '' <i>N_{ym}</i> 1.000	\rightarrow	2.3 N	$9 \text{ ksf} \le 7$ m = 1 $N_y = s_{yy} = 1$	15.04 ks V _γ s _γ i _γ 0.000 1.000	f	0K	
$q_{eq} \leq q_n \cdot \phi_b \implies 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Com Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ frl(5)(143 \text{ frl)})} = 1.023$ $i_c = 1.000$ (Assumed)	$F \leq (27.34 \text{ ksf})(0)$ $DM Table 11.5.7-1$ $dition$ $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_q = 3$ $S_q = d_q = d_q = 0$	$\frac{(\text{Resistance})}{(1000)} = 15.04 \text{ km}^{-1}$	sf '' <i>N_{ym}</i> 1.000	→ <i>C</i> _{wy} D .0 ft/4.82	2.3 N	$9 \text{ ksf} \le 7$ m = 1 $N_y = s_y $	$\sqrt{\sqrt{s_y i_y}}$ 0.000 1.000	f =	OK 0.000	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Com Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ frl}((5)(143 \text{ fr}))) = 1.023$ $i_c = 1.000$ (Assumed)	$Since Bearing i Since Bearing i DM Table 11.5.7-1 Idition n + \gamma D_f N_{qn} N_{qm} = N N_{qm} = N N_{q} = 3 S_q = d_q $	$\frac{(\text{Resistance})}{(1,0)} = 15.04 \text{ km}^{-1}$ $a_{wq} + \frac{1}{2} \gamma B$ $a_{q} C_{wq} + \frac{1}{2} \gamma B$ $a_{q} C_{q} a_{q} a_{q} = 10.00$ 1.000 $1.21 \text{ an}(0^{\circ}) (1-\text{sin}(0^{\circ}) (1-\text{sin}(0^{\circ})) (1-\text{sin}(0^$	sf '' N _{ym} 1.00(°)] ² tan ⁻¹ (4		2.3 	$9 \text{ ksf} \le 7$ $y_m = 1$ $N_y = s_y = s_$	$\sqrt{s_{y}s_{y}i_{y}}$ 0.000 1.000 36.6 ft>	f = (Assu 1.5/4.8	OK 0.000 med) 12 ft) + 4.0 ft	= 1.00
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Com Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ fr}([5)(143 \text{ ft})]) = 1.023$ $i_c = 1.000$ (Assumed)	$\frac{\text{dition}}{N_{qm}} = N$ $\frac{N_{qm}}{N_{q}} = \frac{N_{qm}}{M_{q}} = \frac{1}{i_{q}} = \frac{1}{i_{q}}$	$\frac{(\text{Resistance})}{(1,0)} = 15.04 \text{ km}^{-1}$ $m_{wq} + \frac{1}{2} \gamma B$ $\frac{1}{q} S_{q} d_{q} \dot{i}_{q} = 1$ 1.000 1.000 $1.2 \text{tan}(0^{\circ})(1-\text{sin}(0^{\circ}))($	sf '' N _{jm} 1.000 ')] ² tan ⁻¹ (4		2.3: N	$9 \text{ ksf} \le 7$ $y_m = 1$ $N_y = s_y = i_y = c_{wy} = c_{wy} = 0$	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 36.6 ft>	f = (Assu 1.5(4.8	OK 0.000 med) 32 ft) + 4.0 ft	= 1.00
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BL Check Bearing Resistance - Undrained Con Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c S_c i_c = 5.258$ $N_c = 5.140$ $S_c = 1+(4.82 \text{ ft}]((5)(143 \text{ ft}))) = 1.023$ $i_c = 1.000$ (Assumed)	$\frac{\text{dition}}{N_{qm}} = N$ $\frac{N_{qm}}{N_{qm}} = N$ $\frac{N_{qm}}{N_{qm}} = N$ $\frac{N_{q}}{N_{qm}} = N$ $\frac{N_{q}}{N_{q}} = \frac{1}{N_{q}} = \frac{1}{N_{q}$	$\frac{\text{Kesistance}}{(0.55)} = 15.04 \text{ ks}$ $\frac{1}{2}$ $nC_{wq} + \frac{1}{2} \gamma B$ $I_q S_q d_q \dot{I}_q = 1$ 1.000 1.000 $1.2 \tan(0^\circ)(1 - \sin(0^\circ))$ 1.000 $36.6 \text{ ft} > 4.0 \text{ ft}$	sf ''N _{ym} 1.000 °)] ² tan ⁻¹ (4		2.3 N	$9 \text{ ksf} \le 7$ $y_{pm} = I$ $N_y = s_y = i_y = C_{wy} = C_{wy}$	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 36.6 ft >	f = ((Assu 1.5(4.8	OK 0.000 med) 32 ft) + 4.0 ft	= 1.00
$q_{eq} \leq q_n \cdot \phi_b \implies 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Com Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c S_c i_c = 5.258$ $N_c = 5.140$ $S_c = 1+(4.82 \text{ ft/((5)(143 \text{ ft)))}) = 1.023$ $i_c = 1.000$ (Assumed)	$Signature{Definition} = (27.34 \text{ ksf})(0)$ $DM Table 11.5.7-1$ $dition$ $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_{qm} = N$ $N_{q} = 3$ $S_q = d_q =$	$\frac{\text{Kesistance}}{(0.55)} = 15.04 \text{ km}^{(0)}$ $a_{wq} + \frac{1}{2} \gamma B$ $f_{q} S_{q} d_{q} i_{q} = 1.000$ 1.000 $1+2\tan(0^{\circ})(1-\sin(0^{\circ}))$	sf '' N _{jm} 1.000 ')] ² tan ⁻¹ (4 1) = 1.0		2.3 N N	$9 \text{ ksf} \le 7$ $m = 1$ $N_y = s_y $	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 36.6 ft >	f (Assu 1.5(4.8	OK 0.000 med) 32 ft) + 4.0 ft	= 1.00
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Con Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ frl}((5)(143 \text{ fr}))) = 1.023$ $i_c = 1.000$ (Assumed) $q_n = (0 \text{ psf})(5.258) + (130 \text{ pcf})(4.02)$	$\frac{\text{dition}}{N_{qm}} = N$ $\frac{N_{qm}}{N_{qm}} = N$ $\frac{N_{qm}}{N_{qm}} = N$ $\frac{N_{q}}{M_{qm}} = N$ $\frac{N_{q}}{M_{q}} = \frac{N_{q}}{M_{q}}$	$\frac{\text{Resistance}}{(0.55)} = 15.04 \text{ ks}$ (1) $a_{wq} + \frac{1}{2} \gamma B$ $a_{q} q_{q} \dot{q}_{q} = 1.000$ 1.000 1.000 1.000 1.000 (Assumed) $36.6 \text{ ft} > 4.0 \text{ ft}$ $(0) + \frac{1}{2}(130 \text{ pc})$	sf '' N _{ym} 1.000 '')] [?] tan ⁻¹ (4 I) = 1.0	→ <i>C_{wy}</i> , D .0 ft/4.82 000 t)(0.0000	2.3 N	$9 \text{ ksf} \le 7$ $pm = 1$ $N_y =$ $s_y =$ $i_z =$ $C_{wy} =$ 0	$\sqrt{s_{\gamma}s_{\gamma}i_{\gamma}}$ 0.000 1.000 36.6 ft >	f = (Assu 1.5(4.8 N/A	OK 0.000 med) 32 ft) + 4.0 ft ksf	
$q_{eq} \leq q_n \cdot \phi_b \implies 2.39 \text{ ksf}$ $\text{Use } \phi_b = 0.55 (Per \text{ AASHTO LRFD BL})$ $\text{Check Bearing Resistance - Undrained Com}$ $\text{Nominal Bearing Resistance:} \qquad q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ fr}((5)(143 \text{ ft}))) = 1.023$ $i_c = 1.000 (\text{Assumed})$ $q_n = (0 \text{ psf})(5.258) + (130 \text{ pcf})(4.00 \text{ sc})$ $\text{Verify Equivalent Pressure Less Than Factor}$	bred Bearing I $f \leq (27.34 \text{ ksf})(r)$ DM Table 11.5.7-1 dition $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_{q} = N$ $S_q = d_q = 1$ $I_q = C_{wq} = 1$ O(f)(1.000)(1.0) bred Bearing I	$\frac{\text{Resistance}}{(0.55)} = 15.04 \text{ ks}$ $\frac{1}{(0.55)} = 15.04 \text$	sf '' <i>N_{ym}</i> 1.000 °)] ² tan ⁻¹ (4 I) = 1.0	\rightarrow $C_{w\gamma}$ 0 0.0 ft/4.82 0.0 ft/4.82 0.0 ft/4.82	2.3 N n)(1.000	$9 \text{ ksf} \le 7$ $2m = 1$ $N_{\gamma} = s_{\gamma} = i_{\gamma} = C_{w\gamma} = C_{w\gamma} = 0$ 0	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 36.6 ft >	f = (Assu 1.5(4.8	OK 0.000 med) 32 ft) + 4.0 ft ksf	
$q_{eq} \leq q_n \cdot \phi_b \implies 2.39 \text{ ksf}$ $\text{Use } \phi_b = 0.55 (Per \text{ AASHTO LRFD BL})$ $\text{Check Bearing Resistance - Undrained Com}$ $\text{Nominal Bearing Resistance:} q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ ft/}(5)(143 \text{ ft}))) = 1.023$ $i_c = 1.000 (\text{Assumed})$ $q_n = (0 \text{ psf})(5.258) + (130 \text{ pcf})(4.00)$ $\text{Verify Equivalent Pressure Less Than Factor}$ $q_{eq} \leq q_n \cdot \phi_b \implies \rightarrow$	bred Bearing I $f \leq (27.34 \text{ ksf})(0)$ DM Table 11.5.7-1 dition $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_{qm} = N$ $N_q = 3$ $s_q = d_q = 1$ $i_q = C_{wq} = 2$ D ft)(1.000)(1.0) bred Bearing I	$\frac{\text{Resistance}}{(0.55)} = 15.04 \text{ km}^{2}$ (1) $m_{wq}^{2} - \frac{1}{2} \frac{\gamma B}{q}$ (1) (1) (2) (2) (2) (2) (3)	sf '' N _{ym} 1.00(°)] ² tan ⁻¹ (4 I) = 1.0	→ <i>C_{wy}</i> D 00 t)(0.000 →	2.3" N	$9 \text{ ksf} \le 7$ $y_m = 1$ $N_y =$ $s_y =$ $i_y =$ $C_{wy} =$ $W_w =$ $W_w =$ $W_w =$	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 1.000 36.6 ft>	f = (Assu 1.5(4.8 N/A	OK 0.000 med) 32 ft) + 4.0 ft ksf	= 1.00
$\begin{array}{l} q_{eq} \leq q_n \cdot \phi_b & \longrightarrow & 2.39 \text{ ksf} \\ \\ \text{Use } \varphi_b = & 0.55 (\textit{Per AASHTO LRFD BL} \\ \end{array}$ $\begin{array}{l} \textbf{Check Bearing Resistance - Undrained Con} \\ \textbf{Nominal Bearing Resistance:} q_n = cN_{cn} \\ N_{cm} = N_c s_c i_c = & 5.258 \\ N_c = & 5.140 \\ s_c = & 1+(4.82 \ \text{frl}(5)(143 \ \text{fr}))) = & 1.023 \\ i_c = & 1.000 (\text{Assumed}) \\ \end{array}$ $\begin{array}{l} q_n = & (0 \ \text{psf})(5.258) + (130 \ \text{pcf})(4.00) \\ \hline \textbf{Verify Equivalent Pressure Less Than Factor} \\ q_{eq} \leq q_n \cdot \phi_b \longrightarrow \\ \\ \hline \textbf{Use } \varphi_b = & 0.55 (\textit{Per AASHTO LRFD BL}) \\ \end{array}$	bred Bearing i $f \leq (27.34 \text{ ksf})(r)$ DM Table 11.5.7-1 dition $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_{qm} = N$ $N_q =$ $3 s_q =$ $d_q =$ $i_q =$ $C_{wq} =$ 0 ft)(1.000)(1.00) Dred Bearing I N/A DM Table 11.5.7-1	$\frac{\text{Resistance}}{(0.55)} = 15.04 \text{ km}^{2}$ $(0.55) = 15.04 \text{ km}^{2}$ $(0.55) = 15.04 \text{ km}^{2}$ $(0.55) = 15.04 \text{ km}^{2}$ $(0.56) = 1$	sf '' <i>N_{ym}</i> 1.000 ")] ² tan ⁻¹ (4 1) = 1.0	\rightarrow C_{wy} 0 0 0 0 0 0 0 0	2.3 N (1.000	$9 \text{ ksf} \le 7$ $y_{pm} = I$ $N_y =$ $s_y =$ $i_y =$ $C_{wy} =$ $N/2$	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 36.6 ft >	f (Assu 1.5(4.8	OK 0.000 12 (f) + 4.0 (f	
$q_{eq} \leq q_n \cdot \phi_b \implies 2.39 \text{ ksf}$ $\text{Use } \varphi_b = 0.55 (Per \text{ AASHTO LRFD BL})$ $\text{Check Bearing Resistance - Undrained Com}$ $\text{Nominal Bearing Resistance:} \qquad q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ ft}((5)(143 \text{ ft}))) = 1.023$ $i_c = 1.000 (\text{Assumed})$ $q_n = (0 \text{ psf})(5.258) + (130 \text{ pcf})(4.00)$ $Q_{eq} \leq q_n \cdot \phi_b \implies 3$ $\text{Use } \varphi_b = 0.55 (Per \text{ AASHTO LRFD BL})$	bred Bearing I $F \leq (27.34 \text{ ksf})(0)$ DM Table 11.5.7-1 dition $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_{qm} = N$ $N_q = 3$ $s_q = d_q = $	$\frac{\text{Resistance}}{(0.55)} = 15.04 \text{ kr}$ () $a_{wq} + \frac{1}{2} \frac{\gamma B}{q}$ $f_{q} S_{q} d_{q} i_{q} = 1.000$ 1.000 $1+2\tan(0^{\circ})(1-\sin(0^{\circ}))(1-\sin(0^{\circ$	sf '' N _{jm} 1.000 °)] ² tan ⁻¹ (4 I) = 1.0	\overrightarrow{C}_{wr}	2.3 N	$9 \text{ ksf} \le 7$ $y_m = 1$ $N_y = s_y = i_y = C_{wy} = C_{wy} = 0$ $N/4$	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 36.6 ft >	f = (Assu 1.5(4.8	0K 0.000 med) 32 ft) + 4.0 ft ksf	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD Check Bearing Resistance - Undrained Com Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ fr}([5)(143 \text{ ft})]) = 1.023$ $i_c = 1.000$ (Assumed) $q_n = (0 \text{ psf})(5.258) + (130 \text{ pcf})(4.023)$ $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BD	bred Bearing I $f \leq (27.34 \text{ ksf})(0)$ DM Table 11.5.7-1 dition $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_{qm} = N$ $N_{q} = 3$ $s_q = d_q = 1$ $i_q = C_{wq} = 2$ D ft)(1.000)(1.0) bred Bearing I N/A DM Table 11.5.7-1	$\frac{\text{Resistance}}{(0.55)} = 15.04 \text{ ks}$ () $a_{wq} + \frac{1}{2} \frac{\gamma B}{q}$ $f_{q} s_{q} d_{q} \dot{i}_{q} = 1.000$ 1.000 $1+2\tan(0^{\circ})(1-\sin(0^{\circ}))(1-\sin(0$	sf " <i>N_{ym}</i> 1.000 ")] ² tan ⁻¹ (4 1) = 1.0	\rightarrow C_{wy} 0 00 00 00 00	2.3: N 1)(1.00C	$9 \text{ ksf} \le 7$ $2m = 1$ $N_y =$ $S_y =$ $i_y =$ $C_{wy} =$ 0	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 1.000 36.6 ft>	f = (Assu 1.5(4.8 N/A	OK 0.000 med) 32 ft) + 4.0 ft ksf	
$q_{eq} \leq q_n \cdot \phi_b \longrightarrow 2.39 \text{ ksf}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BC Check Bearing Resistance - Undrained Com Nominal Bearing Resistance: $q_n = cN_{cn}$ $N_{cm} = N_c s_c i_c = 5.258$ $N_c = 5.140$ $s_c = 1+(4.82 \text{ frl}((5)(143 \text{ fr}))) = 1.023$ $i_c = 1.000$ (Assumed) $q_n = (0 \text{ psf})(5.258) + (130 \text{ pcf})(4.023)$ $Q_{eq} \leq q_n \cdot \phi_b \longrightarrow$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BC	bred Bearing I $F \leq (27.34 \text{ ksf})(0)$ DM Table 11.5.7-1 dition $n + \gamma D_f N_{qn}$ $N_{qm} = N$ $N_{qm} = N$ $N_q = 3$ $s_q = d_q = $	Resistance (1) $a_{wq} + \frac{1}{2} \frac{\gamma B}{q}$ $f_{q} S_{q} d_{q} i_{q} = 1$ 1.000 1.000 1.000 1.000 (Assumed 36.6 ft > 4.0 ft 00) + $\frac{1}{2}(130 \text{ pc})$ Resistance	sf '' <i>N_{ym}</i> 1.000 °)] ² tan ⁻¹ (4 I) = 1.0	$ \\ C_{w\gamma} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	2.3 N N))(1.000	$9 \text{ ksf} \le 7$ $2m = 1$ $N_{\gamma} = s_{\gamma} = i_{\gamma} = C_{w\gamma} = 0$ $N/4$	$V_{\gamma}S_{\gamma}i_{\gamma}$ 0.000 1.000 36.6 ft >	f == (Assu 1.5(4.8	0K 0.000 med) 32 ft) + 4.0 ft ksf	

JOB	FRA-70-12.68	NO.	W-13-045
SHEET NO.	6	OF	6
CALCULATED I	BY BRT	DATE	7/15/2018
CHECKED BY	JPS	DATE	7/15/2018
Retaining W	all 4W9 - 10.4 ft Max	imum W	all Height

/all Height, (<i>H</i>) =	10.4 ft	Bearing Soil Unit Weight, $(\gamma_{BS}) =$ 130 pcf	
oundation Width (Entire Base Width), (B) =	6.0 ft	Bearing Soil Friction Angle, (φ_{BS}) = 33 °	
em Width, (a) =	1.5 ft	Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] = 0$ psf	
pe Width, (b) =	1.5 ft	Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS}) = 130$ pcf	
eel Width, (c) =	3.0 ft	Retained Soil Friction Angle, (φ_{RS}) = 33 °	
ooting Thickness, (<i>d</i>) =	1.5 ft	Retained Soil Undrained Shear Strength, $[(s_u)_{RS}] = 0$ psf	
ocation of Shear Key, (e) =	0.0 ft	Active Earth Pressure Coefficient, $(K_a) = 0.264$	
epth of Shear Key, $(f) =$	0.0 ft	Passive Earth Pressure Coefficient, $(K_n) = 7.410$	
mbedment Depth, (D_f) =	4.0 ft	LRFD Load Factors	
/all Length, (<i>L</i>) =	143 ft	DC EV EH LS EP	
ve Surcharge Load, (σ_{LS}) =	250 psf	Strength la 0.90 1.00 1.50 1.75 0.90	
epth to Groundwater, (D_w) =	36.6 ft	(AASHTO LRFD BL Strength Ib 1.25 1.35 1.50 1.75 0.90 - 3.4.1-1 and 3.4.1-1	лм Та 2 - Ас
		Service I 1.00 1.00 1.00 1.00 1.00	ıre)
heck Bearing Capacity (Loading Case - S $P_{LS_{v}}$	Strength Ib) - A	ASHTO LRFD BDM Section 11.6.3.2	
¶eq	$= \frac{P_V}{B'}$		
$DC_2 P_{EV} $		- 60ft 2(0.48ft) - 504.ft	
$\downarrow \downarrow $	D = B - 2e	- 0.0 II - 2(0.40 II) = 0.04 T	
$ DC_1 \leftarrow P_{EH}$	a - B/	x = (60ft/2) 252ft = 0.49 ft	
	$e = \frac{7}{2}$	$x_0 - (0.0 \text{m/z}) - 2.52 \text{m} = 0.48 \text{m}$	
	$r - M_v$	$-M_{H}$ = (30.03 kin.ft/ft 10.00 kin.ft/ft) / (2.2 kin/ft) = 2	52
$x_o \leftarrow x_{2} + c_{2} $	1 ₀ -	P_V = (30.33 kp 101 - 10.00 kp 1011) / (3.32 kp/ll) - 2	.52
	a = (8.33)	kin/ft) / (5.04.ft) = 1.65 kef	
$\leftarrow B' \rightarrow$	$Y_{eq} = (0.32)$		
$M_{V} = [(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}) = [(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + [(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.0 \text{ ft})(1.5 \text{ ft})(1.0 \text{ ft})]]$	$B \cdot \gamma_{LS}$)] $(a + a)$ (1.00) + (250 ps (1.00) + (250 ps)](6.0 ft / 2) + [a)	$b + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a'_{2})$ f)(6.0 ft)(1.00)](1.5 ft + 1.5 ft + (3.0 ft / 2)) = 30.93 150 pcf)(10.4 ft - 1.5 ft)(1.5 ft)(1.00)](1.5 ft + (1.5 ft / 2))	2) kij
$M_{V} = [(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V} = [(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + [(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 \text{ ft})(1.5 $	$B \cdot \gamma_{LS} \Big] \Big[a + a + a + a + b + c + c + c + c + c + c + c + c + c$	$b + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a')$ f)(6.0 ft)(1.00)](1.5 ft + 1.5 ft + (3.0 ft / 2)) = 30.93 150 pcf)(10.4 ft - 1.5 ft)(1.5 ft)(1.00)](1.5 ft + (1.5 ft / 2)) $\cdot \gamma_{LS} (H'_{2})$ + I(250 pcf)(10.4 ft)(0.264)(1.00)](10.4 ft / 2) = 10 tin ft/ft	(2) kiţ
$M_{V} = [(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}) = [(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + [(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00)]$ $M_{H} = (\gamma_{2} \gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH}) (H_{3}) + M_{H} = [\gamma_{2}(130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00)]$	$B \cdot \gamma_{LS})] (a + t) (1.00) + (250 \text{ ps}) (1.00) + (250 \text{ ps}) (6.0 \text{ ft} / 2) + [t] (0) (6.0 \text{ ft} / 2) + [t] (0) (10.4 \text{ ft} - 10) (10.$	$b + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a'_{2})$ $f)(6.0 \text{ ft})(1.00)](1.5 \text{ ft} + 1.5 \text{ ft} + (3.0 \text{ ft}/2)) = 30.93$ $150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 \text{ ft})(1.00)](1.5 \text{ ft} + (1.5 \text{ ft}/2))$ $\cdot \gamma_{LS} (H'_{2})$ $+ [(250 \text{ psf})(10.4 \text{ ft})(0.264)(1.00)](10.4 \text{ ft}/2) = 10 \text{ kip-ft/ft}$	(2) kip
$M_{V} = [(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}) = [(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + [(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00)]$ $M_{H} = (\gamma_{2} \gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH}) (H/_{3}) + M_{H} = [\gamma_{2}(130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00)]$ $P_{V} = (\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS})$	$B \cdot \gamma_{LS}) \Big] \Big(a + a + a + b + c + c + c + c + c + c + c + c + c$	$b + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a')$ $f)(6.0 \text{ ft})(1.00)](1.5 \text{ ft} + 1.5 \text{ ft} + (3.0 \text{ ft}/2)) = 30.93$ $150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 \text{ ft})(1.00)](1.5 \text{ ft} + (1.5 \text{ ft}/2))$ $\cdot \gamma_{LS}) (H'_{2})$ $+ [(250 \text{ psf})(10.4 \text{ ft})(0.264)(1.00)](10.4 \text{ ft}/2) = 10 \text{ kip-ft/ft}$ $(\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC})$	(2) kil
$M_{V} = [(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}] = [(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + [(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00)]$ $M_{H} = (\frac{1}{2} \gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH}) (\frac{H}{3}) + M_{H} = [\frac{1}{2} (130 \text{ pcf})(10.4 \text{ ft})^{2} (0.264)(1.00)]$ $P_{V} = (\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS})$ $P_{V} = (130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00)$ $+ (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 \text$	$B \cdot \gamma_{IS}) \Big] \Big(a + a + b + c + c + c + c + c + c + c + c + c$	$p + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a')$ f)(6.0 ft)(1.00)](1.5 ft + 1.5 ft + (3.0 ft / 2)) = 30.93 150 pcf)(10.4 ft - 1.5 ft)(1.5 ft)(1.00)](1.5 ft + (1.5 ft / 2)) $\cdot \gamma_{LS} (H'_{2})$ + [(250 psf)(10.4 ft)(0.264)(1.00)](10.4 ft / 2) = 10 kip·ft/ft $(\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC})$.0 ft)(1.00) + (150 pcf)(6.0 ft)(1.5 ft)(1.00) = 8.32 kip/ft	2) ki
$M_{V} = [(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}] = [(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + [(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00)]$ $M_{H} = (\gamma_{2}\gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH})(H/_{3}) + M_{H} = [\gamma_{2}(130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00)]$ $P_{V} = (\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS})$ $P_{V} = (130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00) + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 \text{ ft})(1.5 \text{ ft})(1.5 \text{ ft})$	$B \cdot \gamma_{LS}) \Big] \Big(a + a + b + c + c + c + c + c + c + c + c + c$	$b + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a'_{2})$ $f)(6.0 \text{ ft})(1.00)](1.5 \text{ ft} + 1.5 \text{ ft} + (3.0 \text{ ft} / 2)) = 30.93$ $150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 \text{ ft})(1.00)](1.5 \text{ ft} + (1.5 \text{ ft} / 2))$ $\cdot \gamma_{LS}) (H'_{2})$ $+ [(250 \text{ psf})(10.4 \text{ ft})(0.264)(1.00)](10.4 \text{ ft} / 2) = 10 \text{ kip-ft/ft}$ $(\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC})$ $= 0 \text{ ft})(1.00) + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00) = 8.32 \text{ kip/ft}$	(2) kij
$\begin{split} \mathcal{A}_{V} &= \left[(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}) \right] \\ \mathcal{A}_{V} &= \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) \right] \\ &+ \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.0 \text{ ft}) \right] \\ \mathcal{A}_{H} &= \left(\frac{1}{2} \gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH} \right) \left(\frac{H}{3} \right) + M_{H} \\ M_{H} &= \left[\frac{1}{2} (130 \text{ pcf})(10.4 \text{ ft})^{2} (0.264)(1.6 \text{ ft})^{2} (0.$	$B \cdot \gamma_{IS}) \Big] \Big(a + a + a + b + b + b + b + b + b + b +$	$\begin{aligned} p + \zeta_{2}' + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B_{2}') + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a_{2}') \\ f)(6.0 \text{ ft})(1.00)](1.5 \text{ ft} + 1.5 \text{ ft} + (3.0 \text{ ft}/2)) &= 30.93 \\ 150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 \text{ ft})(1.00)](1.5 \text{ ft} + (1.5 \text{ ft}/2)) \\ \cdot \gamma_{LS}) (H_{2}') \\ + [(250 \text{ psf})(10.4 \text{ ft})(0.264)(1.00)](10.4 \text{ ft}/2) &= 10 \text{ kip-ft/ft} \\ (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) \\ \cdot 0 \text{ ft})(1.00) + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00) &= 8.32 \text{ kip/ft} \end{aligned}$	(2) ki
$\begin{split} M_{V} &= \left[(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}) \right] \\ &= \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) \right] \\ &+ \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 \text{ ft}) \right] \\ M_{H} &= \left[\frac{\gamma_{2}}{\gamma_{RS}} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH} \right] \left(\frac{H}{3} \right) + M_{H} \\ &= \left[\frac{\gamma_{2}}{(130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.6 \text{ ft})^{2}$	$B \cdot \gamma_{IS}) \Big] \Big(a + a + a + b + c + c + c + c + c + c + c + c + c$	$\begin{aligned} p + \zeta'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a') \\ f)(6.0 \text{ ft})(1.00)](1.5 \text{ ft} + 1.5 \text{ ft} + (3.0 \text{ ft}/2)) &= 30.93 \\ 150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 \text{ ft})(1.00)](1.5 \text{ ft} + (1.5 \text{ ft}/2)) \\ &\cdot \gamma_{LS}) (H'_{2}) \\ + [(250 \text{ psf})(10.4 \text{ ft})(0.264)(1.00)](10.4 \text{ ft}/2) &= 10 \text{kip-ft/ft} \\ (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) \\ .0 \text{ ft})(1.00) + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00) &= 8.32 \text{kip/ft} \end{aligned}$	(2) kii
$\begin{split} M_{V} &= \left[(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}) \right] \\ &= \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) \right] \\ &+ \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00) \right] \\ M_{H} &= \left[\frac{\gamma_{2}}{\gamma_{RS}} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH} \right] \left(\frac{H}{3} \right) + M_{H} \\ &= \left[\frac{\gamma_{2}}{(130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00) \right] \\ Q_{V} &= \left(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV} \right) + \left(\sigma_{LS} \right) \\ P_{V} &= \left(130 \text{ pcf} \right)(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00 \text{ ft}) \\ &+ (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.5 \text{ ft}) \\ \end{array}$	$B \cdot \gamma_{IS}) \Big] \Big(a + a + a + b + b + c + c + c + c + c + c + c + c$	$p + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a')$ f)(6.0 ft)(1.00)](1.5 ft + 1.5 ft + (3.0 ft / 2)) = 30.93 150 pcf)(10.4 ft - 1.5 ft)(1.5 ft)(1.00)](1.5 ft + (1.5 ft / 2)) $\cdot \gamma_{LS} (H'_{2})$ + [(250 psf)(10.4 ft)(0.264)(1.00)](10.4 ft / 2) = 10 kip-ft/ft $(\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC})$.0 ft)(1.00) + (150 pcf)(6.0 ft)(1.5 ft)(1.00) = 8.32 kip/ft $(S_{t})_{max} = N/A in$ $(S_{t})_{min} = N/A in$ $\delta_{s} = N/A$	2) kiţ
$\begin{split} M_{V} &= \left[(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V}) \right] \\ &= \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) \right] \\ &+ \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 \text{ ft}) \right] \\ M_{H} &= \left[\frac{1}{2} (\gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH}) \right] \\ M_{H} &= \left[\frac{1}{2} (130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 \text{ ft}) \right] \\ P_{V} &= \left(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV} \right) + \left(\sigma_{LS} \right) \\ P_{V} &= (130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00 \text{ ft}) \right] \\ \\ ettlement (See Attached Spreadsheet Call to the constraint of t$	$B \cdot \gamma_{IS}) \Big] \Big(a + a + a + b + b + c + b + c + c + c + c + c + c$	$p + \zeta_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a_{c}) + (\beta_{c} \cdot f_{c}) + (\beta_{c} \cdot$	(2) ki
$\begin{split} \mathcal{A}_{V} &= \left[\left(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV} \right) + \left(\sigma_{LS} \cdot M_{V} \right) \\ &= \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) \right] \\ &+ \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.0 \text{ ft}) \right] \\ \mathcal{A}_{H} &= \left(\gamma_{2} \gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH} \right) \left(H_{3}^{\prime} \right) \\ \mathcal{M}_{H} &= \left[\gamma_{2} (130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.0 ft$	$B \cdot \gamma_{IS}) \Big] \Big(a + a + a + a + b + b + b + b + b + b +$	$p + \frac{c}{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (\frac{B}{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + \frac{a}{2})$ f)(6.0 ft)(1.00)](1.5 ft + 1.5 ft + (3.0 ft / 2)) = 30.93 150 pcf)(10.4 ft - 1.5 ft)(1.5 ft)(1.00)](1.5 ft + (1.5 ft / 2)) $\cdot \gamma_{LS}) (\frac{H}{2})$ + [(250 psf)(10.4 ft)(0.264)(1.00)](10.4 ft / 2) = 10 kip-ft/ft $(\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC})$.0 ft)(1.00) + (150 pcf)(6.0 ft)(1.5 ft)(1.00) = 8.32 kip/ft $(S_{t})_{max} = N/A in$ $(S_{t})_{min} = N/A in$ $\delta_{s} = N/A$	2) ki
$\begin{split} M_{V} &= \left[(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V} = \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 + M_{H}) + M_{H} = \left[\frac{1}{2}(130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 + (120 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 + (150 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 + (15$	$B \cdot \gamma_{LS}) \Big] \Big(a + a + a + b + b + b + b + b + b + b +$	$p + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a'_{DC}) (b +$	ki
$\begin{split} M_{V} &= \left[(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V} = \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(1.5 + ($	$B \cdot \gamma_{LS}) \Big] \Big(a + a + a + b + b + c + c + c + c + c + c + c + c$	$p + c'_{2} + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B'_{2}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a'_{DC}) (b +$	(2)
$\begin{split} M_{V} &= \left[(\gamma_{BF} \cdot (H-d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot M_{V} = \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) + \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 + (150 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 + (150 \text{ pcf})(1.5 + ($	$B \cdot \gamma_{LS}) \Big] \Big(a + a + a + b + b + c + c + c + c + c + c + c + c$	$p + \zeta_{2}' + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B_{2}') + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a_{c}') ($	2) ki
$\begin{split} \mathcal{A}_{V} &= \left[\left(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV} \right) + \left(\sigma_{LS} \cdot M_{V} \right) \\ &= \left[(130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft}) \right] \\ &+ \left[(150 \text{ pcf})(6.0 \text{ ft})(1.5 \text{ ft})(1.00 \text{ ft}) \right] \\ \mathcal{A}_{H} &= \left(\gamma_{2} \gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH} \right) \left(H_{3} \right) \\ \mathcal{M}_{H} &= \left[\gamma_{2} (130 \text{ pcf})(10.4 \text{ ft})^{2}(0.264)(1.00 \text{ ft})^{2}(0.264)(1.00 \text{ ft})^{2}(0.264)(1.00 \text{ ft})^{2}(0.264)(1.00 \text{ ft})^{2}(0.264)(1.00 \text{ ft}) \\ \mathcal{P}_{V} &= \left(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV} \right) \\ \mathcal{P}_{V} &= (130 \text{ pcf})(10.4 \text{ ft} - 1.5 \text{ ft})(3.0 \text{ ft})(1.00 \text{ ft})(1.00 \text{ ft})(10.4 \text{ ft} - 1.5 \text{ ft})(1.5 $	$B \cdot \gamma_{LS}) \Big] \Big(a + a + a + b + b + b + b + b + b + b +$	$p + \zeta_{2}' + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) (B_{2}') + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC}) (b + a_{c}') ($	2) ki

