FRA-70-12.68 PROJECT 4R PID NO. 105523 FRANKLIN COUNTY, OHIO

ROADWAY EXPLORATION REPORT

Prepared For: GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

> Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, OH 43231

> > Rii Project No. W-13-045

July 2018

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990

RESOURCE INTERNATIONAL, INC. ISO 9001:2008 Certified QMS An ISO 9001:2008 QMS Certified Firm

July 17, 2018

Mr. Christopher W. Luzier, P.E. Project Manager GPD GROUP 1801 Watermark Drive, Suite 210 Columbus, OH 43215

Re: Roadway Exploration Report FRA-70-12.68 Project 4R PID No. 105523 Rii Project No. W-13-045

Mr. Luzier:

Resource International, Inc. (Rii) is pleased to submit this roadway exploration report for the above referenced project. This report includes roadway subgrade recommendations for the design and construction of the proposed FRA-70-12.68 Project 4R in Franklin County, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the roadway exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Peyman P. Majidi, E.I. Staff Engineer

Enclosure: Roadway Exploration Report

Johathan P. Sterenberg P.E. Director – Geotechnical Services

6350 Presidential Gateway Columbus, Ohio 43231 Phone: 614.823.4949 Fax: 614.823.4990 Planning

Engineering

Construction Management

Technology

Palm Beach, Florida

Se	Ction Pa	ge
EX	ECUTIVE SUMMARY	I
	Analyses and Recommendations I-70 EB, I-71 NB, Ramp A5, Ramp C3 Street Alignments	ii
1.	INTRODUCTION	1
2.	GEOLOGY AND OBSERVATIONS OF THE PROJECT	1
	2.1. Site Geology 2.2. Existing Conditions	
3.	EXPLORATION	3
4.	FINDINGS	5
	 4.1. Surface Soils 4.2. Subsurface Soils 4.3. Bedrock 4.4. Groundwater 	6 7
5.	ANALYSES AND RECOMMENDATIONS	9
	 5.1. Embankment Slope Stability and Settlement Evaluation 5.2. Subgrade Recommendations	11 <i>11</i>
	 5.3. Lateral Earth Pressure	13 14 <i>14</i>
6.	LIMITATIONS OF STUDY	15

TABLE OF CONTENTS

APPENDICIES

Appendix I	Vicinity Map and Boring Plan
Appendix II	Description of Soil Terms
Appendix III	Project Boring Logs
Appendix IV	Laboratory Test Results
Appendix V	Embankment Settlement Calculations and Slope Stability Analysis Outputs
Appendix VI	GB1 Subgrade Stabilization Summary

EXECUTIVE SUMMARY

This report is a presentation of the roadway exploration performed for the design and construction of the roadway alignments for FRA-70-12.68 in the City of Columbus in Franklin County, Ohio. The project consists of various roadway improvements along I-70 EB, I-71 NB, Ramp C3, Ramp C5, Ramp A5, Livingston Avenue, Fulton Street, W. Mound Street and South Front Street. Proposed roadway construction along the associated roadways is shown on the vicinity map and boring plan presented in Appendix I. Areas in which the proposed subgrade is within three of the existing grade have been analyzed for subgrade recommendations. In addition, embankment analysis and slope stability has been performed for Ramp A-5.

Between July 8, 2008 and March 22, 2015, nineteen (19) borings were performed along the various alignments within the proposed area of improvement and were advanced to completion depths ranging from 10.0 to 96.7 feet below the existing ground surface.

In general, the borings encountered between 2.0 to 11.0 inches of asphalt overlying between 6.0 to 14.5 inches of concrete and 5.0 to 12.0 inches of aggregate base. Borings B-105-0-9, B-102-1-13 and B-105-1-13 encountered topsoil at the existing ground surface between 3.0 to 7.0 inches. It must be noted that, composite pavement was only encountered in borings B-026-3-13, B-027-0-08, B-027-1-13, B-102-0-09, B-110-1-15, B-278-0-10 and B-279-0-10.

Beneath the surficial materials, existing embankment fill consisting of both granular and cohesive material was encountered in majority of the borings extending to depths ranging from 3.0 to 39.0 feet below the ground surface. It must be noted that only borings B-013-0-09, B-026-3-13, B-027-1-13 and B-278-0-10 did not encounter fill materials in the soils samples. The granular material encountered within the existing fill material was generally described as brown, gray gravel, gravel and sand, gravel with sand and silt, gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-2-4, A-2-6). The cohesive fill materials encountered were generally described as brown, brown to gray sandy silt, silt and clay, silty clay, clay and elastic clay (ODOT A-4a, A-6a, A-6b, A-7-6, A-7-5). It must be noted that the elastic clay (ODOT A-7-5) was encountered in boring B-110-1-15 at the depth of 22.0 feet below existing ground surface, corresponding to elevation 718.3 ft. msl.

Underlying the existing fill in the borings, natural soils were encountered consisting of both granular and cohesive material. The granular soils encountered were generally described as brown gravel, gravel and sand, coarse and fine sand, gravel with sand and silt, fine sand, gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-3, A-3a, A-2-4 and A-2-6). The natural cohesive soils encountered were generally described as brown and dark brown clay, silty clay, silt and clay, silt and sandy silt (ODOT A-7-6, A-6b, A-6a, A-4b, A-4a).

Bedrock was encountered in borings B-015-6-13 and B-017-7-13 at depths of 90.0 feet and 67.5 feet below the existing grade, corresponding to elevations 653.1 and 655.5 feet msl, respectively. The bedrock consisted of limestone in boring B-015-6-13 and shale in boring B-017-7-13.

Analyses and Recommendations

Embankment Slope Stability and Settlement Evaluation

Based on the proposed plans and profiles provided by GPD group, it is understood that the proposed embankment fill along Ramps A5 will be approximately 34 feet with side slopes of 2(H):1(V). Rii has performed settlement and slope stability analyses at the most critical cross sections along the alignments.

Based on design information provided by GPD group, approximately 34 feet of fill will be placed at sta. 5015. Embankment settlement analysis of the soil profile from subsurface information from boring B-108-9-15 indicates approximately 6.2 inches of settlement due to the overburden embankment fill with the groundwater level considered at the 100-year return elevation of 715.1 ft. msl. Slope stability analysis of the embankment, indicated a factor of safety of greater than 1.4.

Subgrade Recommendations

Based on roadway design information provided by GPD GROUP, soil borings with ground surface elevation within three feet of the proposed grade and soil borings located in the areas where cut will be required to reach the proposed grade were used in the GB1 analyses. The subgrade soils along the various alignments of the project consisted of both granular and cohesive soils. The granular soils encountered along the alignments were comprised of loose to very dense grave, gravel with sand, gravel with sand and silt, gravel with sand, and silt and clay (ODOT A-1-a, A-1-b, A-2-4, and A-2-6). The cohesive material encountered in the subgrade soils were comprised of medium stiff to hard clay, silty clay, silt and clay, sandy silt, and silt (ODOT A-7-6, A-6a, A-6b, A-4a, and A-4b).

I-70 EB, I-71 NB, Ramp A5, Ramp C3

Seven (7) borings were utilized in the analysis of the subgrade along I-70 EB, I-71 NB, Ramp A5 and Ramp C3. A complete GB1 analysis of soils encountered at the proposed subgrade level along these alignments is presented in Appendix VI. Based on GB1 analysis of the subgrade soils, California Bearing Ratio (CBR) values (based on correlation charts) for the entire alignment ranged from 6 to 12 with an average of 8. However, based on experience with similar subgrade soils and conditions, **it is recommended that pavement design be based on a CBR value of 6** with a corresponding resilient modulus, M_R , of 7,200 psi. Correlation charts indicate a modulus of subgrade reaction (K) of 150 pci and a soil support value (SSV) of 4.4.

Based on the borings utilized for this alignment, the subgrade soils along this alignment is predominantly granular. Therefore, no chemical stabilization could be recommended. However, per ODOT GB1 requirements, if it is elected to perform global stabilization, the entire subgrade should be stabilized using the average site parameters provided in the table below.

Average	Average			Average	Average	
N _{60L}	Pl			Group Index	CBR	
16	10	13	11	5	8	

Average Site Parameters

Upon completion of the stabilization, the entire subgrade should be proof rolled to verify that stability has been achieved. Please note that the recommended CBR values assume that the materials utilized for the roadway subgrade in fill areas are equivalent to, or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value of 6.

Street Alignments

Based on design information provided by GPD GROUP, a complete GB1 analysis of the proposed subgrade soils encountered along Livingston Avenue and Fulton Street is presented in Appendix VI. California Bearing Ratio (CBR) values for the entire project ranged from 5 to 8 with an average of 8. However, based on experience with similar subgrade soils **it is recommended that pavement design be based on a CBR value of 6** with a corresponding resilient modulus, M_R, of 7,200 psi. Correlation charts indicate a modulus of subgrade reaction (K) of 150 pci and a soil support value (SSV) of 4.4.

Per ODOT GB1, soils with sulfate content in excess of 3,000 ppm cannot be chemically stabilized due to the potential for sulfate heave in the soil. Based on the results of the testing, the sulfate contents of the subgrade soils range from 227 to 587 ppm. Therefore, no sample with sulfate content greater than 3,000 ppm was encountered.

Based on the ODOT GB1 guidelines, when approximately 30 percent or more of the subgrade area requires stabilization, consideration should be given to utilizing a global stabilization option. For this project, approximately 50 percent of the subgrade area is anticipated to require stabilization based on the soil borings performed (2 of 4 borings). Per ODOT GB1, global stabilization recommendations are based upon the overall average site parameters, as noted in the table below.

Average N _{60L}			Average Optimum Moisture	Average Group Index	Average CBR	
6	12	14	12	5	8	

Average Site Parameters

Applying the averages in the table above, ODOT GB1 recommends the following global stabilization options within the project limits:

- Option 1. Chemically stabilize the entire subgrade with 12-inches of cement, as per ODOT Item 206. For estimating purposes, utilize a cement content of 6.0 percent by weight of soil. Actual application rates shall be verified by the contractor under Item 206.06 Mixture Design for Chemically Stabilized Soils.
- Option 2. Stone stabilize the entire subgrade via an 12-inch undercut and replacement with ODOT Item 703.16C granular material, Type B, C or D installed over ODOT Item 712.09 Geotextile Fabric, Type D as detailed in accordance with ODOT Item 204.

Please note that the recommended CBR values assume that the materials utilized for the roadway subgrade in fill areas are equivalent to, or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value of 6.

Pavement design is dependent on the inclusion of adequate surface and subsurface drainage in order to maintain the compacted subgrade near optimum moisture conditions throughout the lifetime of the pavement. If underdrain systems are considered, they should be installed in accordance to the specifications presented in Item 204 of the ODOT Construction and Materials Specifications (CMS).

Please note that this executive summary does not contain all the information presented in the report. The unabridged geotechnical exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1. INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70-12.68/13.11/14.05C (Project 4R/4H/4A) projects in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project. The FRA-70-12.68 (Project 4R) phase will consist of all work associated with the construction of Ramp C5, starting at the bridge over Souder Avenue and extending east to Front Street. The proposed Ramp C5 will be a two-lane to four-lane ramp that will collect and direct traffic from I-71 northbound and SR-315 southbound as well as I-70 eastbound to exit in downtown at the intersection of Front Street and W. Fulton Avenue. This project includes the construction of six (6) new bridge structures for the proposed Ramp C5 alignment and replacement of three (3) bridge structures, two along I-70 and the Front Street Structure over I-70, as well as the construction of fourteen (14) new retaining walls and a culvert structure to accommodate the new configuration.

This report is a presentation of the roadway exploration performed for the design and construction of the roadway alignments for FRA-70-12.68 in the City of Columbus in Franklin County, Ohio. The project consists of various roadway improvements along I-70 EB, I-71 NB, Ramp C3, Ramp C5, Ramp A5, Livingston Avenue, Fulton Street, W. Mound Street and South Front Street. Proposed roadway construction along the associated roadways is shown on the vicinity map and boring plan presented in Appendix I. Areas in which the proposed subgrade is within three of the existing grade have been analyzed for subgrade recommendations. In addition, embankment analysis and slope stability has been performed for Ramp A-5.

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in

composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules. Just east of the Scioto River, the underlying bedrock consists of the Upper Devonian Ohio Shale Formation overlying the Middle Devonian-aged Delaware Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. The Delaware Limestone consists of bluish gray, thin to medium bedded dolomitic limestone with nodules and layers of chert. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits.

2.2. Existing Conditions

The project alignment is along the I-70/71 south innerbelt, primarily along I-70 eastbound between Souder Avenue and High Street. I-71, SR-315 and I-70 interchange is a major interchange with many entrance and exit ramps that connect the various alignments. I-70 crosses over the Scioto River just east of the I-71 and SR-315 interchange, with three existing bridges that cross the river and converge at the eastern bank into an eight-lane roadway. The roadway then reduces to a six-lane expressway which continues into downtown Columbus and crosses under Front Street and High Street. The existing I-70 is elevated from the surrounding terrain from east of the Scioto River to just west of Front Street and there are existing overpass bridges where the roadway crosses the existing CSX and Norfolk Southern Railroads and Short Street. The roadway profile is lowered from the surrounding terrain where the alignment enters into downtown from just west of Front Street to the end of the project alignment. There is also an entrance ramp from Mound Street to I-70 westbound and an exit ramp from I-70 eastbound to Fulton Street and Livingston Avenue, which is where the existing eight-lane alignment transitions to six lanes. The daily traffic volume along the project alignment is very high. The alignment traverses primarily commercial and government properties. The surrounding terrain across the site is relatively flat-lying, with general slope toward the Scioto River.

3. EXPLORATION

Between July 8, 2008 and March 22, 2015, nineteen (19) borings were performed along the various alignments within the proposed area of improvement and were advanced to completion depths ranging from 10.0 to 96.7 feet below the existing ground surface. The boring locations completed to date are shown on the boring plan provided in Appendix I of this report and summarized in Table 1 below.

Boring Number	Station	Offset	Alignment	Latitude	Longitude	Ground ¹ Elevation (feet msl)	Boring Depth (feet)
B-013-0-09	126+20.83	26.2' RT.	BL I-70 EB	39.94993	-83.021526	723.0	10.0
B-013-1-15	127+00.32	45.0' LT.	BL I-70 EB	39.95015815	-83.02128731	725.9	35.0
B-015-6-13	5050+28.85	20.8' LT.	BL Ramp C5	39.95057892	-83.01462608	723.0	77.5
B-017-7-13	170+79.36	23.3' RT.	BL I-70 EB	39.95320057	-83.00642506	743.1	96.7
B-025-0-08	5088+53.62	76.0' LT.	BL RAMP C5	39.95335912	-83.00179637	740.4	59.3
B-026-1-13	184+88.08	111.1' RT.	BL I-70 EB	39.95267329	-83.00147319	747.0	50.0
B-026-2-13	5089+73.78	16.5' RT.	BL Ramp C5	39.95311225	-83.00130835	736.8	89.5
B-026-3-13	5091+4.93	11.5' LT.	BL Ramp C5	39.95329676	-83.00084855	756.9	90.0
B-027-0-08	187+70.21	13.2' RT.	BL I-70 EB	39.95286414	-83.00042843	735.9	14.0
B-027-1-13	189+32.64	78.7' RT.	BL I-70 EB	39.95267152	-82.99984676	755.5	49.3
B-102-0-09	257+19.36	11.3' LT.	BL I-71 NB	39.94694	-83.014331	718.9	12.5
B-102-1-13	5007+7.46	0.5' RT.	BL RAMP A5	39.94795601	-83.01463164	719.8	45.0
B-105-0-09	261+46.54	11.9' LT.	BL I-71 NB	39.948065	-83.014768	715.7	10.0
B-105-1-13	5008+89.52	6.5' LT.	BL RAMP A5	39.94845063	-83.01473056	716.1	49.8
B-109-1-15	3001+00.00	55.0' LT.	BL Ramp C3	39.95009704	-83.01971541	736.2	85.0
B-110-1-15	3005+00.00	20.0' LT.	BL Ramp C3	39.94991309	-83.01827608	740.3	75.0
B-111-0-09	3008+11.91	4.6' RT.	BL Ramp C3	39.949346	-83.017438	734.9	30.0
B-278-0-10	19+58.43	10.3' RT.	Fulton Street	39.95327	-83.000492	757.7	15.1
B-279-0-10	22+94.43	2.4' RT.	Fulton Street	39.953408	-82.999307	769.3	11.5

Table 1. Test Boring Summary

The locations for the current exploration borings performed by Rii were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by GPD GROUP.

The borings performed for this exploration were drilled using CME-55, Mobile B-53, CME-75, truck or CME 750X all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing a 3.25-inch, 4.25-inch inside diameter hollow stem auger or 4.5-inch outside diameter, continuous flight auger to advance the holes. Standard penetration test (SPT) and split spoon sampling were performed variously in each boring. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. DLZ and Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blow per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N₆₀, by the following equation. Both values are represented on boring logs in Appendix III.

$$N_{60} = N_m^*(ER/60)$$

Where:

 N_m = measured N value ER = drill rod energy ratio, expressed as a percent, for the system used

The automatic hammers for the Mobile B-53, CME 55, CME 75 and CME 750X drill rigs have drill rod energy ratios of 77.9, 85.9, 84.0 and 84.2 percent, respectively.

At the completion of drilling, the borings were backfilled with a mixture of bentonite chips and soil cuttings generated during the drilling process, or sealed with a cement-bentonite grout in accordance with ODOT specifications. For borings performed within the existing roadway, the pavement was patched with either an equivalent thickness of quick set concrete or cold asphalt.

During drilling, field logs were prepared by Rii personnel showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	AASHTO T265	262
Plastic and Liquid Limits	AASHTO T89, T90	94
Gradation – Sieve/Hydrometer	AASHTO T88	94
Loss On Ignition	ASTM D2974	1
One-Dimensional Consolidation	ASTM D2435	1
Sulfate Content Testing	ODOT 1122	9

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance in determining foundation and roadway embankment design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III. A description of the soil terms used throughout this report is presented in Appendix II.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

4. FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings and what is represented on the boring logs. A total of nineteen (19) borings were performed along the various alignment of the project by Rii and DLZ.

4.1. Surface Soils

In general, the borings encountered between 2.0 to 11.0 inches of asphalt overlying between 6.0 to 14.5 inches of concrete and 5.0 to 12.0 inches of aggregate base. Borings B-105-0-9, B-102-1-13 and B-105-1-13 encountered topsoil at the existing ground surface between 3.0 to 7.0 inches.

It must be noted that, composite pavement was only encountered in borings B-026-3-13, B-027-0-08, B-027-1-13, B-102-0-09, B-110-1-15, B-278-0-10 and B-279-0-10.

4.2. Subsurface Soils

Beneath the surficial materials, existing embankment fill consisting of both granular and cohesive material was encountered in majority of the borings extending to depths ranging from 3.0 to 39.0 feet below the ground surface. It must be noted that only borings B-013-0-09, B-026-3-13, B-027-1-13 and B-278-0-10 did not encounter fill materials in the soils samples. The granular material encountered within the existing fill material was generally described as brown, gray gravel, gravel and sand, gravel with sand and silt, gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-2-4, A-2-6). The cohesive fill materials encountered were generally described as brown, brown to gray sandy silt, silt and clay, silty clay, clay and elastic clay (ODOT A-4a, A-6a, A-6b, A-7-6, A-7-5). It must be noted that the elastic clay (ODOT A-7-5) was encountered in boring B-110-1-15 at the depth of 22.0 feet below existing ground surface, corresponding to elevation 718.3 ft. msl.

Underlying the existing fill in the borings, natural soils were encountered consisting of both granular and cohesive material. The granular soils encountered were generally described as brown gravel, gravel and sand, coarse and fine sand, gravel with sand and silt, fine sand, gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-3, A-3a, A-2-4 and A-2-6). The natural cohesive soils encountered were generally described as brown and dark brown clay, silty clay, silt and clay, silt and sandy silt (ODOT A-7-6, A-6b, A-6a, A-4b, A-4a).

The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soil encountered ranged from loose ($5 < N_{60} < 10$ blows per foot [bpf]) to very dense (N₆₀ > 50 bpf). Overall blow counts recorded from the SPT sampling ranged from 6 bpf to split spoon sampler refusal. Split spoon sampler refusal is defined as exceeding 50 blows from the hammer with less than 6.0 inches of penetration by the split spoon sampler. The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soil encountered ranged from soft (0.25 < HP \leq 0.5 tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 0.5 to over 4.5 tsf (limit of instrument).

Natural moisture contents of the inorganic soil samples tested ranged from 4 to 31 percent. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 10 percent below to 9 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be significantly below to significantly above optimum moisture levels.

4.3. Bedrock

Bedrock was encountered in borings B-015-6-13 and B-017-7-13 at depths of 90.0 feet and 67.5 feet below the existing grade, corresponding to elevations 653.1 and 655.5 feet msl, respectively. Upon encountering the bedrock surface in these borings, a changeover to rock coring techniques was made. A summary of the top bedrock elevations encountered in each boring is provided in Table 3.

Boring	Ground	Top of E	Bedrock	
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Rock Description
B-015-6-13	723.0	67.5	655.5	Limestone
B-017-7-13	742.2	90.0	653.1	Mudstone & Shale

 Table 3. Top of Bedrock Elevations

The cored bedrock across the subject site consisted of brown, gray to black shale and limestone. In general, percent recoveries of the rock cores ranged from 51% to 100%, while RQD values ranged from 15% to 88%. The percent recovery and RQD values of the bedrock core runs are summarized in Table 4.

It should be noted that bedrock experiences mechanical breaks during the drilling and coring processes. Rii attempted to account for fresh, manmade breaks during tabulation of the RQD analysis. The quality of the cored bedrock, according to the RQD value, ranged from very poor (RQD \leq 25%) to very good (86 \leq RQD \leq 100%).

Boring	Core No.	Depth (feet)	Recovery (%)	RQD (%)
	RC-1 67.5 to 7		51	51
B-015-6-13	RC-2	71.5 to 76.5	98	88
	RC-3	76.5 to 77.5	100	67
	RC-1	90.0 to 91.0	100	79
B-017-7-13	RC-2	91.0 to 92.0	100	66
	RC-3	92.0 to 96.7	74	15

Table 4. Rock Core Summary

4.4. Groundwater

Groundwater was encountered in the borings as presented in Table 5.

Poring	Ground	Initial Gro	oundwater	Upon Co	mpletion ¹			
Boring Number	Surface Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)			
B-015-6-13	723.0	33.5	689.5	-	-			
B-017-7-13	743.1	57.0	686.1	-	-			
B-025-0-08	740.4	26.0	714.4	39.0	701.4			
B-026-1-13	747.0	28.5	718.5	-	-			
B-026-2-13	736.8	18.5	718.3	-	-			
B-026-3-13	756.9	36.0	720.9	-	-			
B-027-0-08	735.9	5.0	730.9	-	-			
B-027-1-13	755.5	37.0	718.5	-	-			
B-102-1-13	719.8	NA	-	NA	-			
B-105-1-13	716.1	28.0	688.1	-	-			
B-109-1-15	736.2	NA	-	NA	-			
B-110-1-15	740.3	53.5	686.8	-	-			

 Table 5. Groundwater Levels

1. Where N/A is listed, the groundwater level at completion could not be obtained due to the addition of water or mud as a drilling fluid.

Groundwater was encountered initially during the drilling process in the borings at depths ranging from 5.0 to 57.0 feet below the existing ground surface, which corresponds to elevations ranging from 686.1 to 730.9 feet msl. At the completion of drilling and prior to removing the augers, groundwater was encountered in the auger stem of boring B-025-0-08 at the depth of 39.0 feet, which corresponds to elevation 701.4 feet msl.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5. ANALYSES AND RECOMMENDATIONS

Data obtained from the drilling and testing program as well as from a review of existing geotechnical information have been used to determine the roadway support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the subject roadways, as well as the construction specifications related to the placement of embankment fills and general earthwork recommendations, which are discussed in the following paragraphs.

5.1. Embankment Slope Stability and Settlement Evaluation

The compressibility and the estimated long-term shear strength parameters utilized in the settlement and slope stability analyses for the proposed embankment slopes are provided in Table 6 and Table 7, respectively.

Material Type	γ (pcf)	LL (%)	$C_{c}^{(1)}$	$C_{r}^{(2)}$	e _o ⁽³⁾	N_{60}	C' ⁽⁴⁾
Dense Gravel (ODOT A-1-a)	130	N/A	N/A	N/A	N/A	40	111
Medium Dense to Dense Gravel with Sand (ODOT A-1-b)	125-130	N/A	N/A	N/A	N/A	19-31	78-98
Medium Dense Gravel with Sand and Silt (ODOT A-2-4)	125	N/A	N/A	N/A	N/A	21	116
Dense Gravel with Sand, Silt and Clay (ODOT A-2-6)	130	N/A	N/A	N/A	N/A	31	83
Medium Dense Coarse and Fine sand (ODOT A-3a)	125	N/A	N/A	N/A	N/A	22	60
Medium Stiff to Very Stiff Silty Clay (ODOT A-6b)	120	37	0.243	0.024	0.561	N/A	N/A
Very Stiff Sandy Silt (ODOT A-4a)	120-135	18-35	0.072 - 0.225	0.007 - 0.023	0.413 - 0.546	N/A	N/A

Table 6. Compressibility Parameters Utilized in Settlement Analysis

1. Per Table 26, Section 5.4.2.5 of FHWA GEC 5.

2. Estimated at 5 to 15% of C_c per Section 5.4.2.5 of FHWA GEC 5.

3. Per Table 8-2 of Holtz and Kovacs (1981).

4. Per Figure 10.6.2.4.2-1 of 2012 AASHTO LRFD BDS.

Material Type	γ (pcf)	φ' ⁽¹⁾ (°)	<i>c'</i> (psf)	$S_u^{(2)}$ (psf)
Item 203 Embankment	125	30	50	N/A
Loose to medium dense Gravel with Sand and Silt (ODOT A-2-4)	125	31	0	N/A
Medium Stiff to Stiff Silty Clay (ODOT A-6b)	125	27	0	N/A

Table 7. Long-Term Soil Parameters Utilized in Slope Stability Analyses

1. Per Figure 74, Section 5.6.2.4 of FHWA GEC 5 for cohesive soils, and per Table 10.4.6.2.4-1 of the 2014 AASHTO LRFD BDS.

2. Per Table 33 of Section 5.6.5 of FHWA GEC 5.

Shear strength parameters for embankment fill were estimated using ODOT Geotechnical Bulletin 6 (GB-6) as a guide. The shear strength parameters for the embankment fill listed in Table 7 above are the limiting values based on the assumption that the embankment fill utilized will likely consist of sandy silt and lean clay (ODOT A-4a and A-6a) or qualified granular soils. The recommended borrow material utilized as engineered fill should be tested using remolded samples prepared to simulate the required compaction and density to verify that it meets the minimum friction angle of 30 degrees prior to construction of the slope remediation.

The shear strength parameters for the natural soils were assigned using correlations provided in FHWA Geotechnical Engineering Circular (GEC) No. 5 (FHWA-IF-02-034) Evaluation of Soil and Rock Properties, the 2014 AASHTO LRFD BDS, and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles.

Based on the proposed plans and profiles provided by GPD group, it is understood that the proposed embankment fill along Ramps A5 will be approximately 34 feet with side slopes of 2(H):1(V). Rii has performed settlement and slope stability analyses at the most critical cross sections along the alignments.

Based on design information provided by GPD group, approximately 34 feet of fill will be placed at sta. 5015. Embankment settlement analysis of the soil profile from subsurface information from boring B-108-9-15 indicates approximately 6.2 inches of settlement due to the overburden embankment fill with the groundwater level considered at the 100-year return elevation of 715.1 ft. msl. Slope stability analysis of the embankment, utilizing the parameters in Table 7, indicated a factor of safety of greater than 1.4.

5.2. Subgrade Recommendations

Based on roadway design information provided by GPD GROUP, soil borings with ground surface elevation within three feet of the proposed grade and soil borings located in the areas where cut will be required to reach the proposed grade were used in the GB1 analyses. The subgrade soils along the various alignments of the project consisted of both granular and cohesive soils. The granular soils encountered along the alignments were comprised of loose to very dense grave, gravel with sand, gravel with sand and silt, gravel with sand, and silt and clay (ODOT A-1-a, A-1-b, A-2-4, and A-2-6). The cohesive material encountered in the subgrade soils were comprised of medium stiff to hard clay, silty clay, silt and clay, sandy silt, and silt (ODOT A-7-6, A-6a, A-6b, A-4a, and A-4b). Based on the results of the GB-1 analyses in Appendix VI, the subgrade soils within some areas of the alignments will require stabilization and/or moisture conditioning.

The moisture content of cohesive soil has a significant effect on the physical properties of the material. It must be noted that the moisture contents illustrated on the boring logs and utilized in this analysis represent the conditions during the drilling phase of the project. The referenced borings for subgrade analysis were drilled in July 2008 and March 2015. These soil conditions, especially in the surficial soils, may not coincide with the soil conditions that will be encountered during construction. Consequently, the extent/need for subgrade improvement is entirely dependent on the subgrade conditions (i.e., moisture contents) encountered at the time of construction.

5.2.1. I-70 EB, I-71 NB, Ramp A5, Ramp C3

Seven (7) borings were utilized in the analysis of the subgrade along I-70 EB, I-71 NB, Ramp A5 and Ramp C3. A complete GB1 analysis of soils encountered at the proposed subgrade level along these alignments is presented in Appendix VI. Based on GB1 analysis of the subgrade soils, California Bearing Ratio (CBR) values (based on correlation charts) for the entire alignment ranged from 6 to 12 with an average of 8. However, based on experience with similar subgrade soils and conditions, **it is recommended that pavement design be based on a CBR value of 6** with a corresponding resilient modulus, M_R , of 7,200 psi. Correlation charts indicate a modulus of subgrade reaction (K) of 150 pci and a soil support value (SSV) of 4.4.

Based on the borings utilized for this alignment, the subgrade soils along this alignment is predominantly granular. Therefore, no chemical stabilization could be recommended. However, per ODOT GB1 requirements, if it is elected to perform global stabilization, the entire subgrade should be stabilized using the average site parameters provided in Table 8.

Average	Average	Average	Average Optimum	Average	Average	
N _{60L}	Pl	Moisture	Moisture	Group Index	CBR	
16	10	13	11	5		

Table 8. Average Site Parameters

Upon completion of the stabilization, the entire subgrade should be proof rolled to verify that stability has been achieved. Please note that the recommended CBR values assume that the materials utilized for the roadway subgrade in fill areas are equivalent to, or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value of 6.

5.2.2. Street Alignments

Based on design information provided by GPD GROUP, a complete GB1 analysis of the proposed subgrade soils encountered along Livingston Avenue and Fulton Street is presented in Appendix VI. California Bearing Ratio (CBR) values for the entire project ranged from 5 to 8 with an average of 8. However, based on experience with similar subgrade soils **it is recommended that pavement design be based on a CBR value of 6** with a corresponding resilient modulus, M_R, of 7,200 psi. Correlation charts indicate a modulus of subgrade reaction (K) of 150 pci and a soil support value (SSV) of 4.4.

Per ODOT GB1, soils with sulfate content in excess of 3,000 ppm cannot be chemically stabilized due to the potential for sulfate heave in the soil. Based on the results of the testing, the sulfate contents of the subgrade soils range from 227 to 587 ppm. Therefore, no sample with sulfate content greater than 3,000 ppm was encountered.

Based on the ODOT GB1 guidelines, when approximately 30 percent or more of the subgrade area requires stabilization, consideration should be given to utilizing a global stabilization option. For this project, approximately 50 percent of the subgrade area is anticipated to require stabilization based on the soil borings performed (2 of 4 borings). Per ODOT GB1, global stabilization recommendations are based upon the overall average site parameters, as noted in Table 9.

Average	Average	5 5 1		Average	Average	
N _{60L}	Pl			Group Index	CBR	
6	12	14	12	5	8	

 Table 9. Average Site Parameters

Applying the averages in Table 9, ODOT GB1 recommends the following global stabilization options within the project limits:

- Option 1. Chemically stabilize the entire subgrade with 12-inches of cement, as per ODOT Item 206. For estimating purposes, utilize a cement content of 6.0 percent by weight of soil. Actual application rates shall be verified by the contractor under Item 206.06 Mixture Design for Chemically Stabilized Soils.
- Option 2. Stone stabilize the entire subgrade via an 12-inch undercut and replacement with ODOT Item 703.16C granular material, Type B, C or D installed over ODOT Item 712.09 Geotextile Fabric, Type D as detailed in accordance with ODOT Item 204.

Please note that the recommended CBR values assume that the materials utilized for the roadway subgrade in fill areas are equivalent to, or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value of 6.

Pavement design is dependent on the inclusion of adequate surface and subsurface drainage in order to maintain the compacted subgrade near optimum moisture conditions throughout the lifetime of the pavement. If underdrain systems are considered, they should be installed in accordance to the specifications presented in Item 204 of the ODOT Construction and Materials Specifications (CMS).

5.3. Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (ϕ '), and lateral earth pressure coefficients for at-rest conditions (k_o), active conditions (k_a), and passive conditions (k_p) have been estimated and are provided in Table 10 and Table 11.

Soil Type	γ (pcf) ¹	c (psf)	φ	<i>k</i> _a	k _o	k_p
Soft to Stiff Cohesive Soil	115	1,000	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense to Dense Granular Soil	130	0	32°	0.27	0.47	6.82
Very Dense Granular Soil	135	0	35°	0.24	0.43	8.56
Compacted Cohesive Engineered Fill	125	1,500	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	135	0	33°	0.26	0.46	7.41

 Table 10. Estimated Undrained (Short-term) Soil Parameters for Design

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Soil Type	γ (pcf) ¹	c (psf)	φ'	k _a	k _o	k _p
Soft to Stiff Cohesive Soil	115	0	24°	0.37	0.59	3.97
Very Stiff to Hard Cohesive Soil	125	0	28°	0.32	0.53	5.07
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense to Dense Granular Soil	130	0	32°	0.27	0.47	6.82
Very Dense Granular Soil	135	0	35°	0.24	0.43	8.56
Compacted Cohesive Engineered Fill	125	0	28°	0.32	0.53	5.07
Compacted Granular Engineered Fill	135	0	33°	0.26	0.46	7.41

Table 11. Estimated Drained (Long-term) Soil Parameters for Design

When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.4. Construction Considerations

All site work shall conform to local codes and to the latest ODOT Construction and Materials Specifications (CMS), including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.4.1. Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Soil	Maximum Back Slope	Notes
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None

Table 12. Excavation Back Slopes

5.4.2. Groundwater Considerations

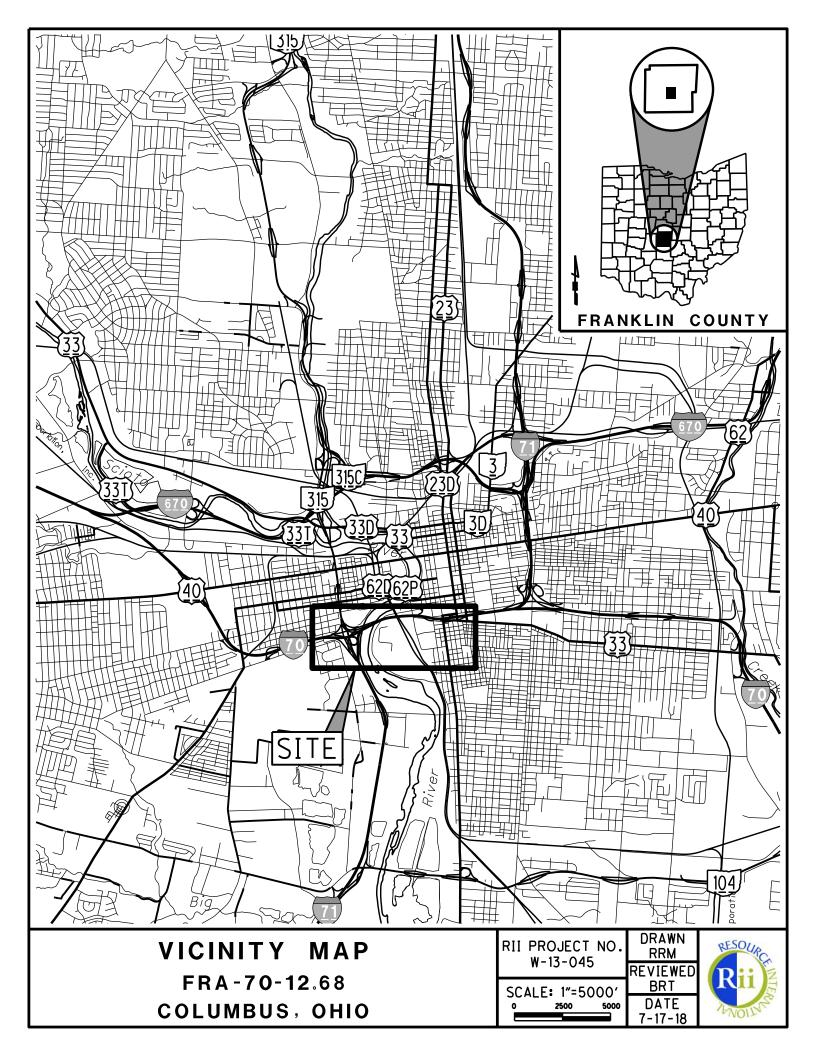
Based on groundwater condition encountered in the borings, groundwater should be anticipated during construction of the roadway. Where encountered during construction, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

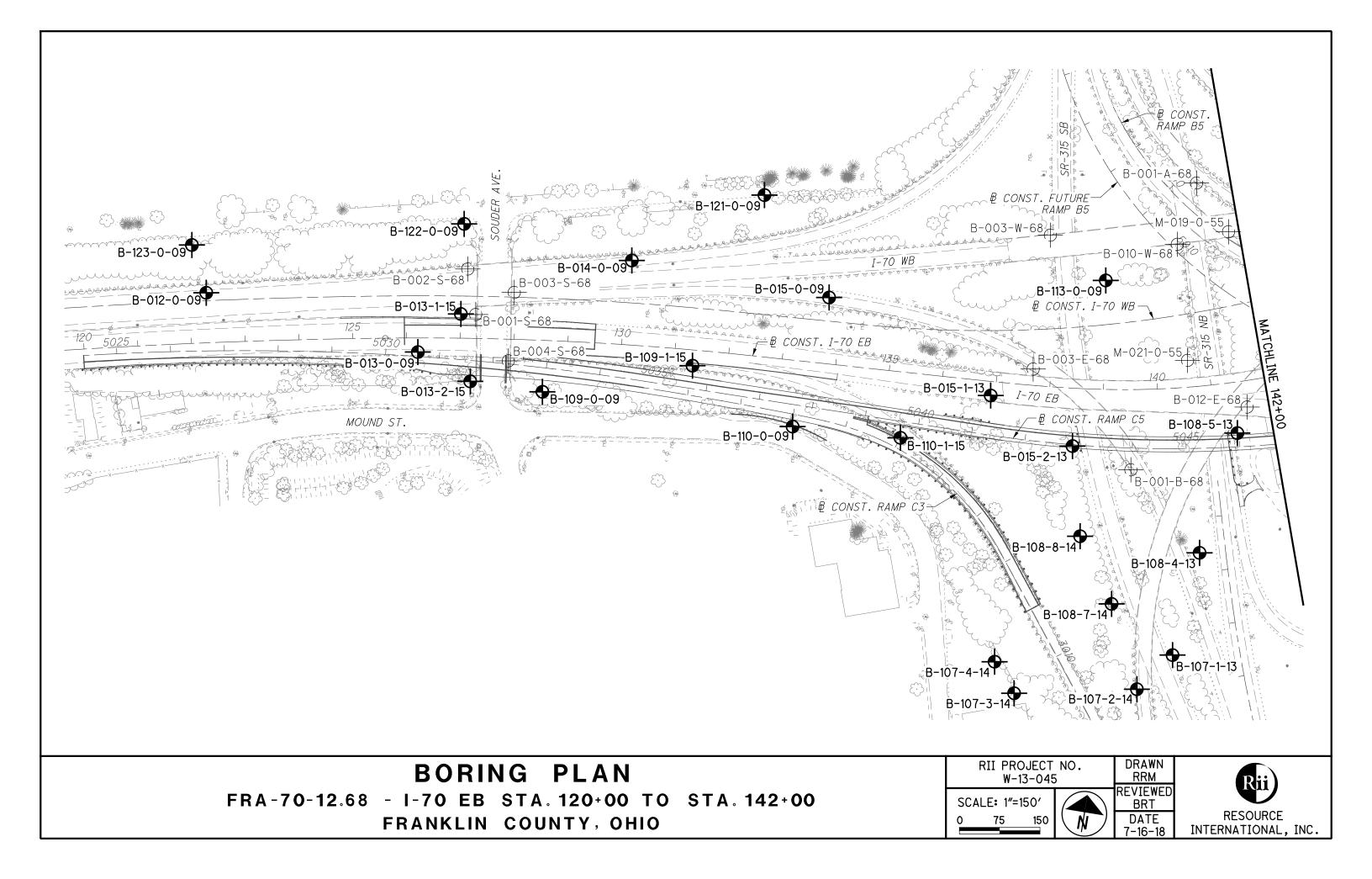
6. LIMITATIONS OF STUDY

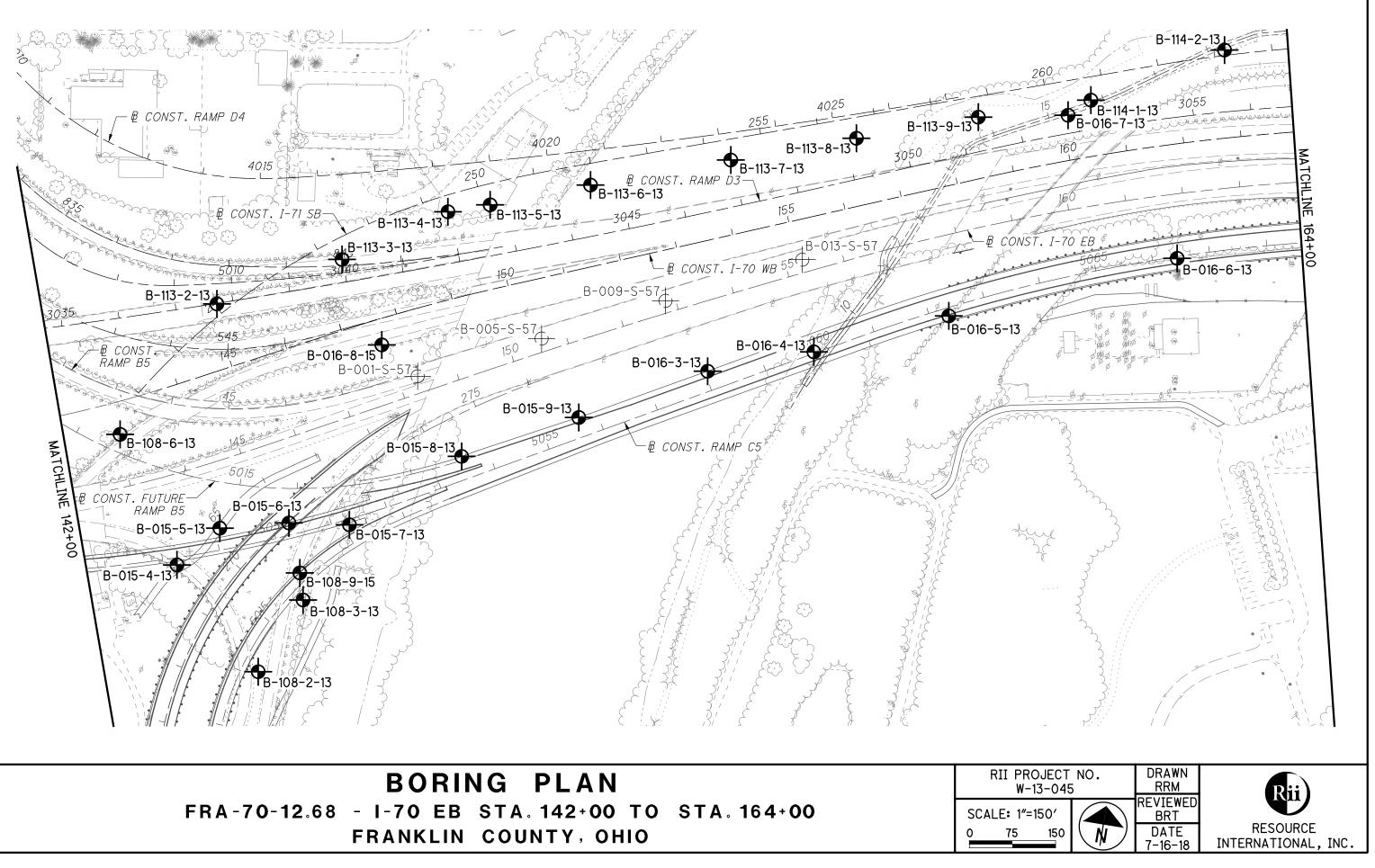
The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

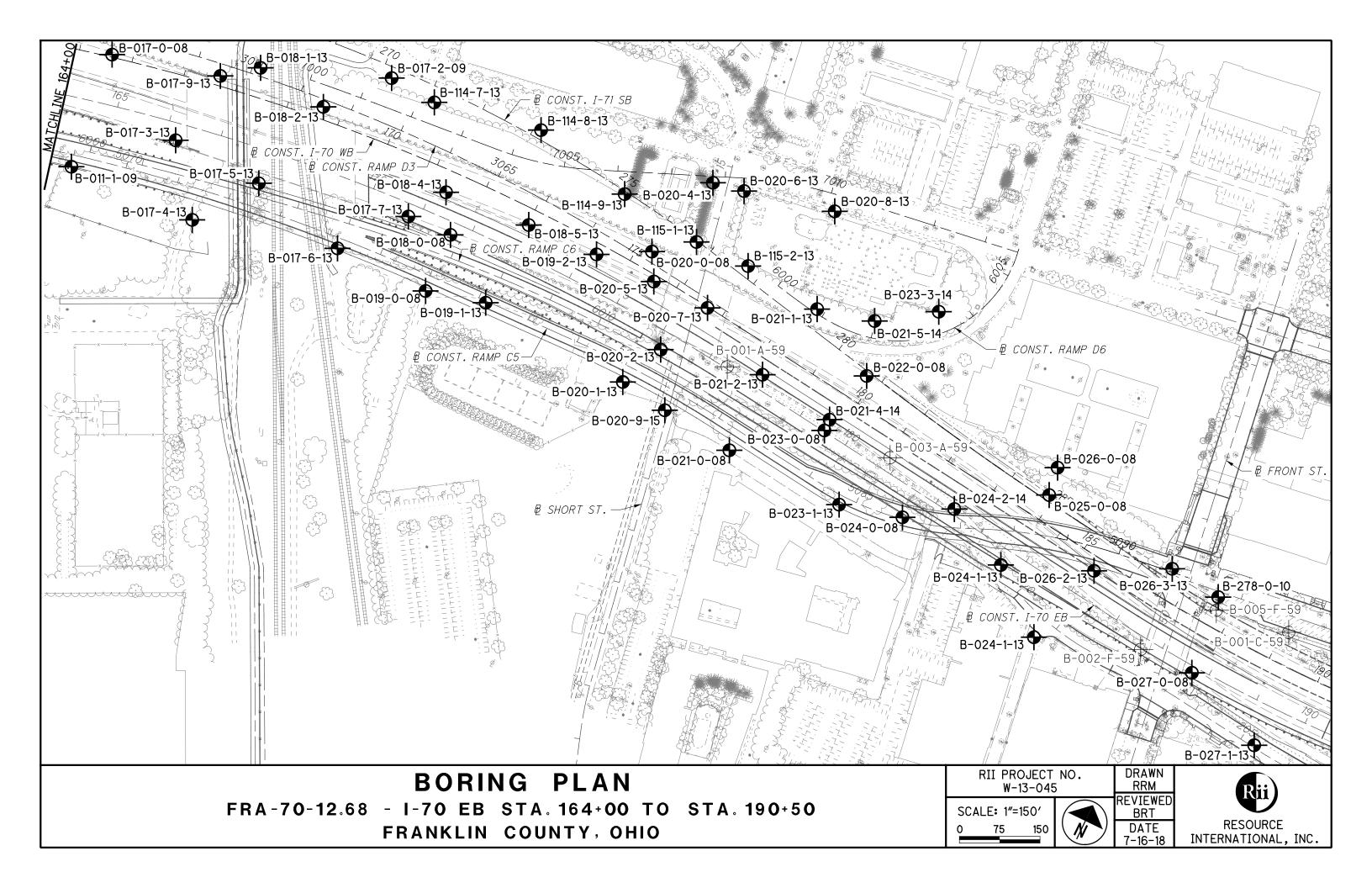
The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

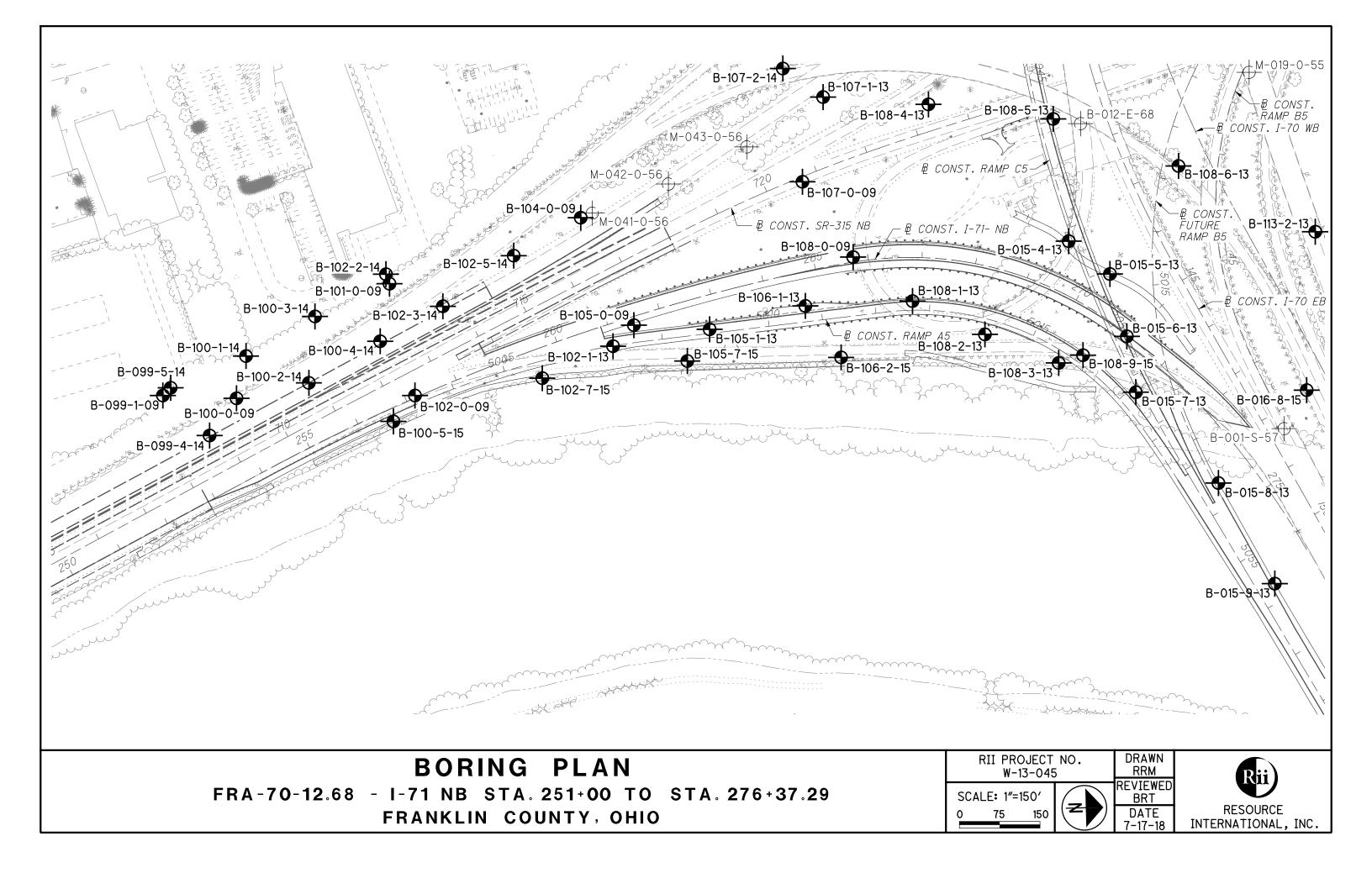
The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

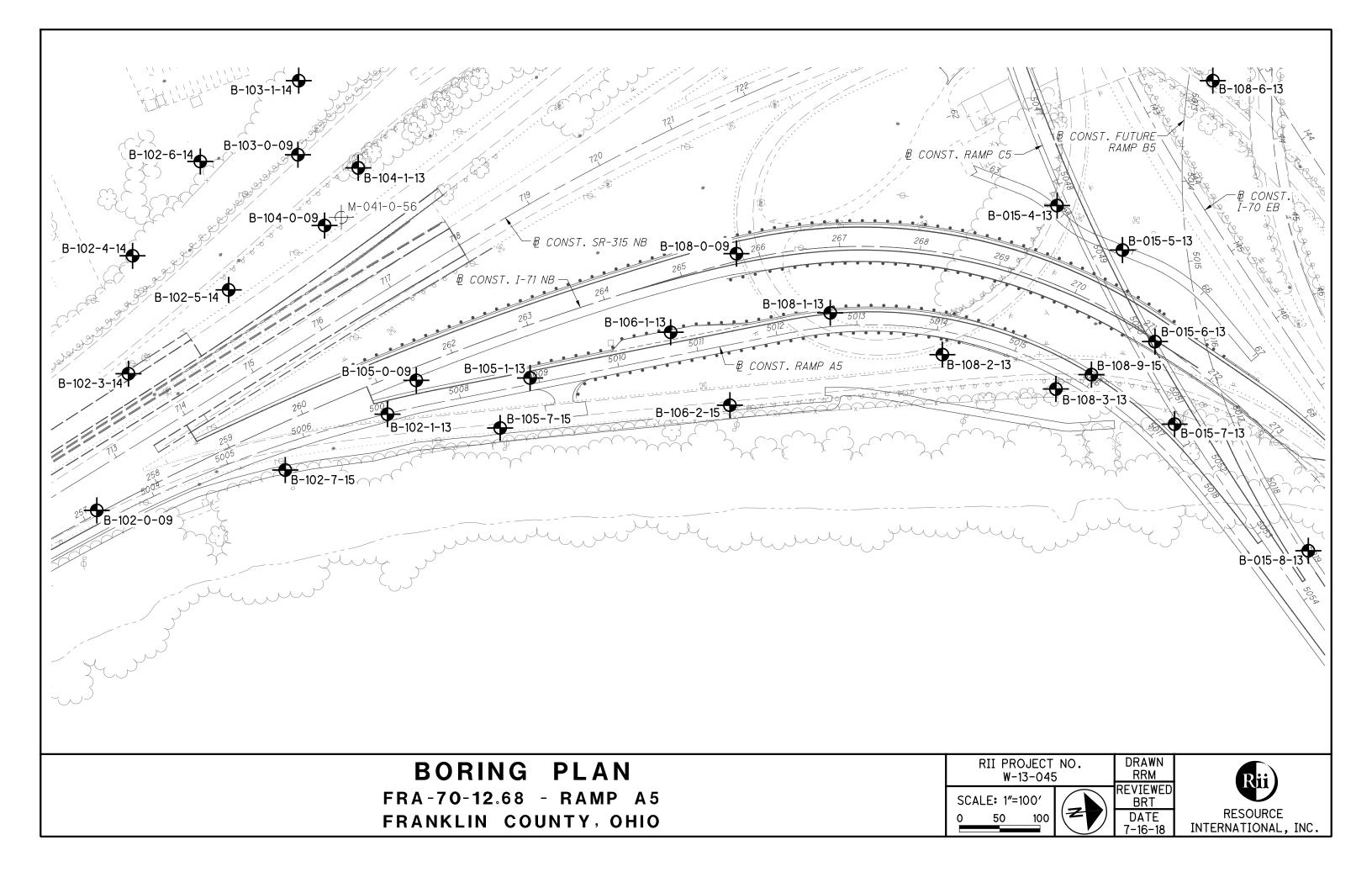

The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

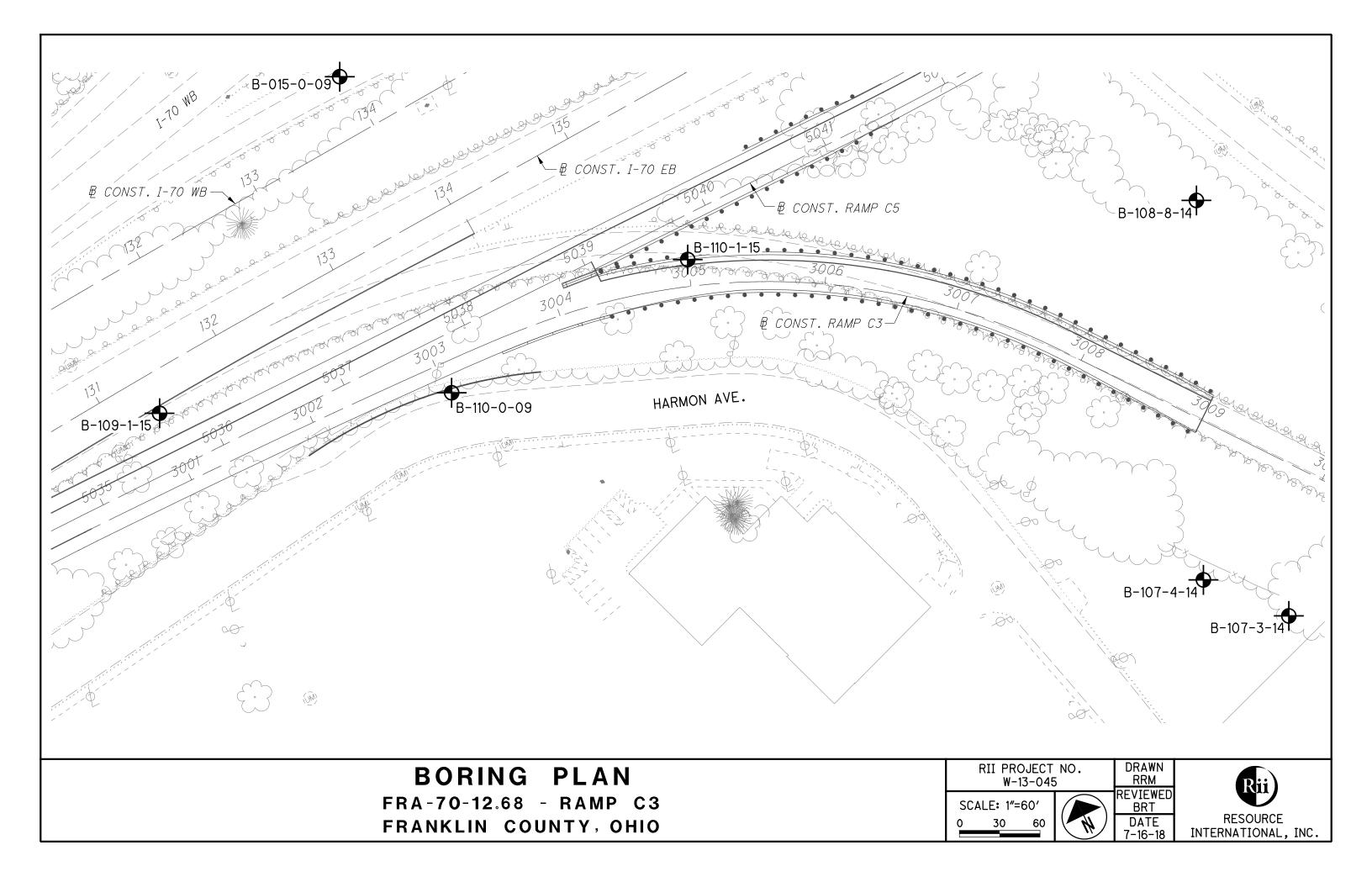

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

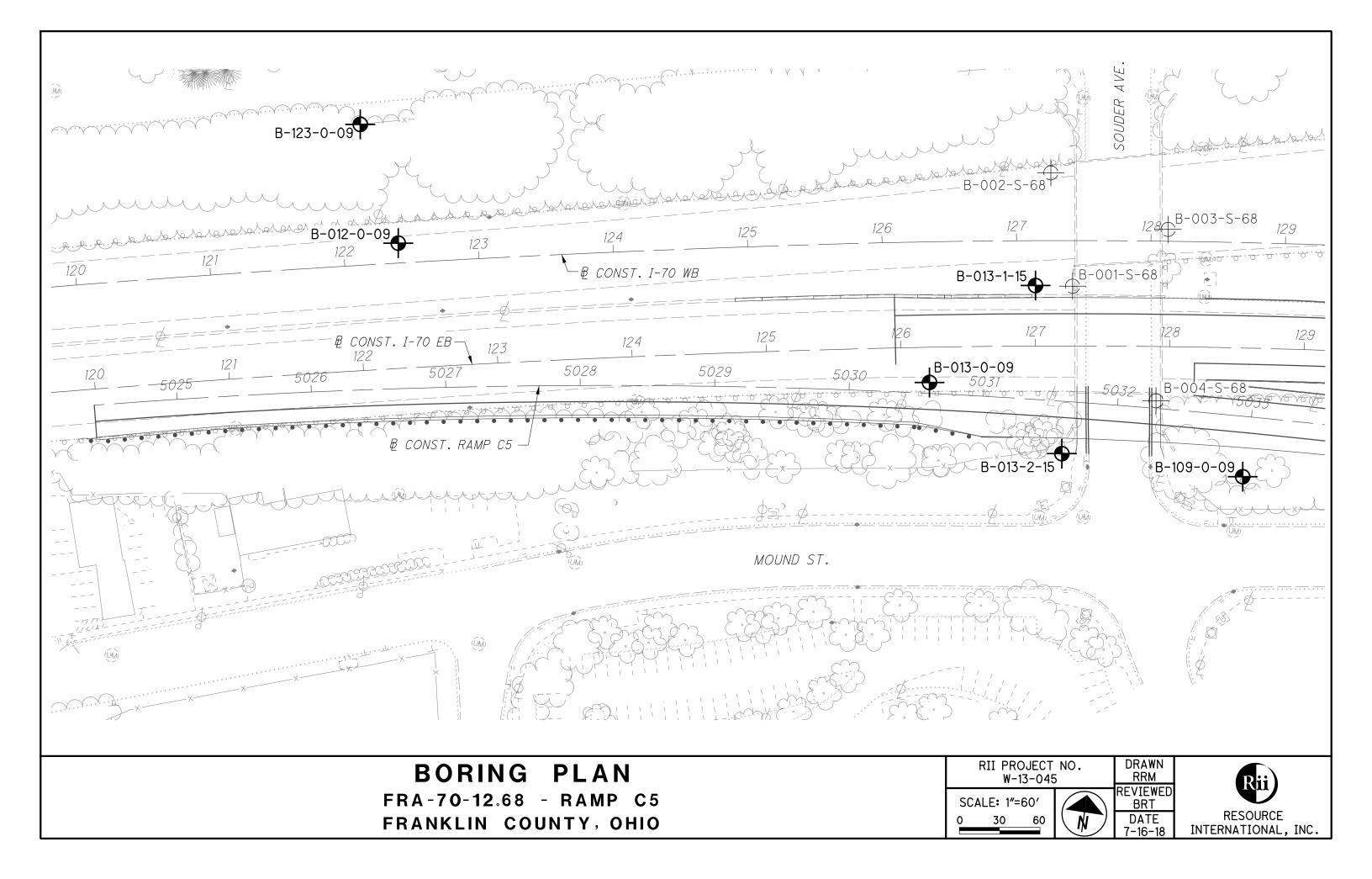


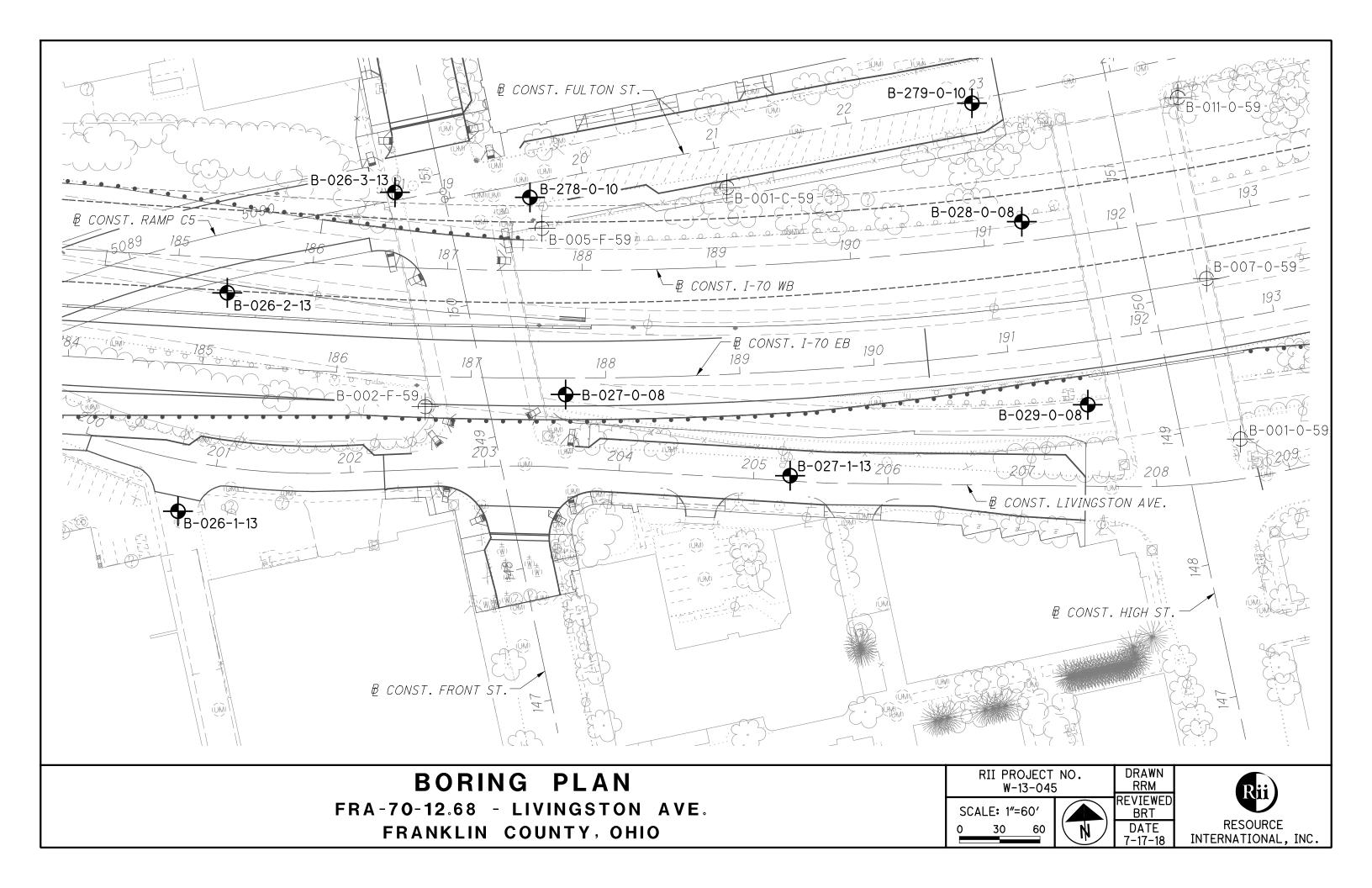

APPENDIX I

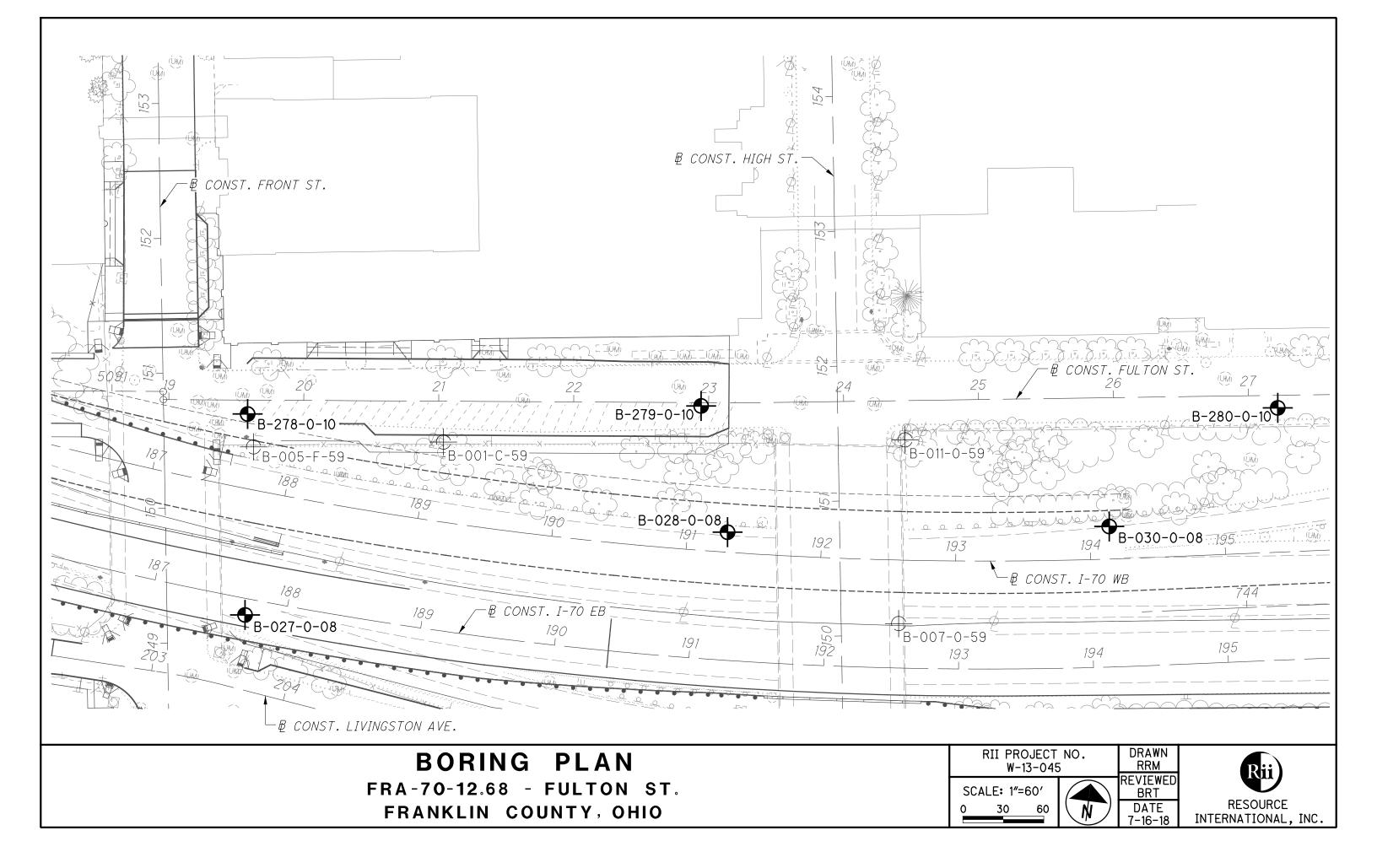

VICINITY MAP AND BORING PLAN

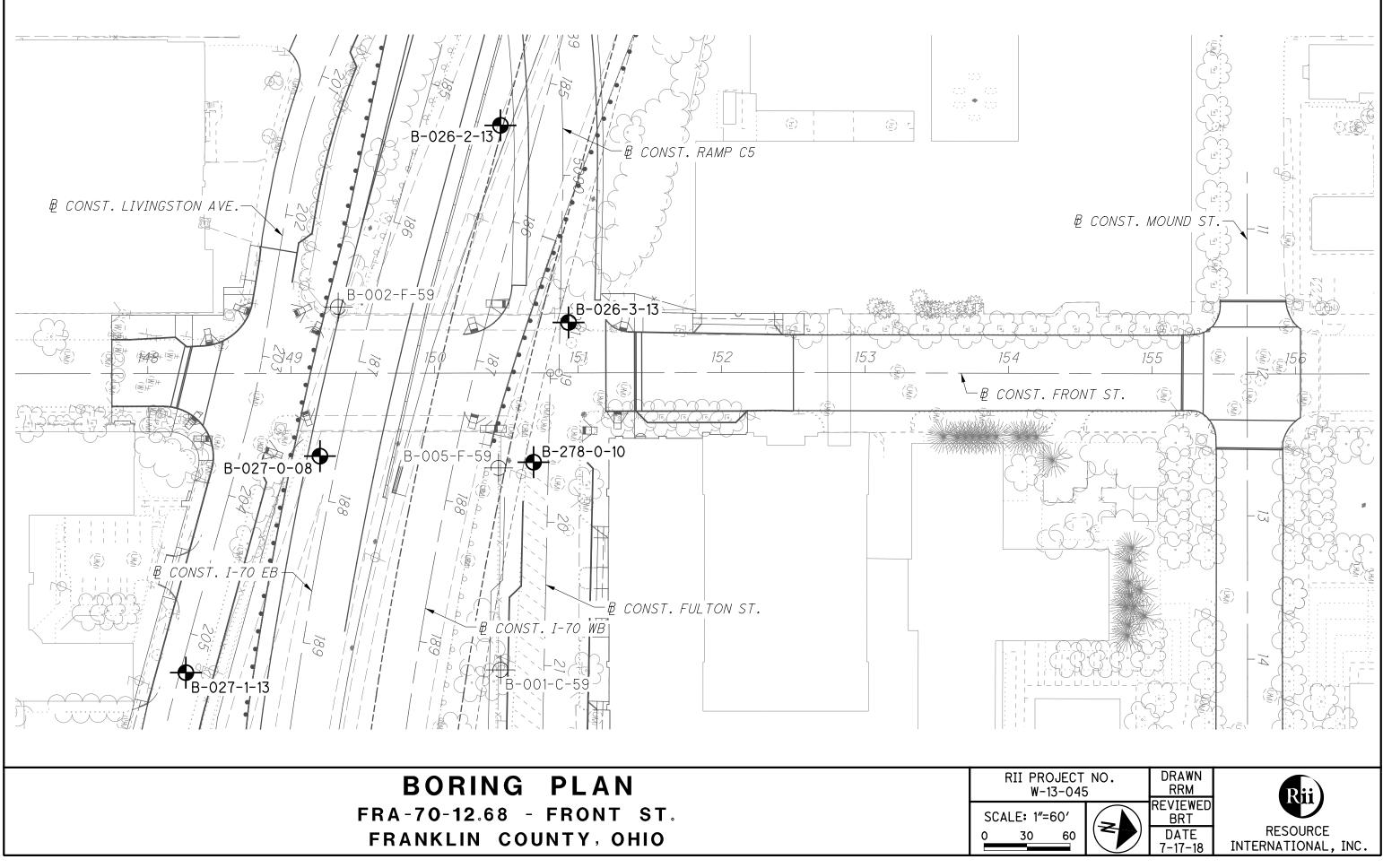


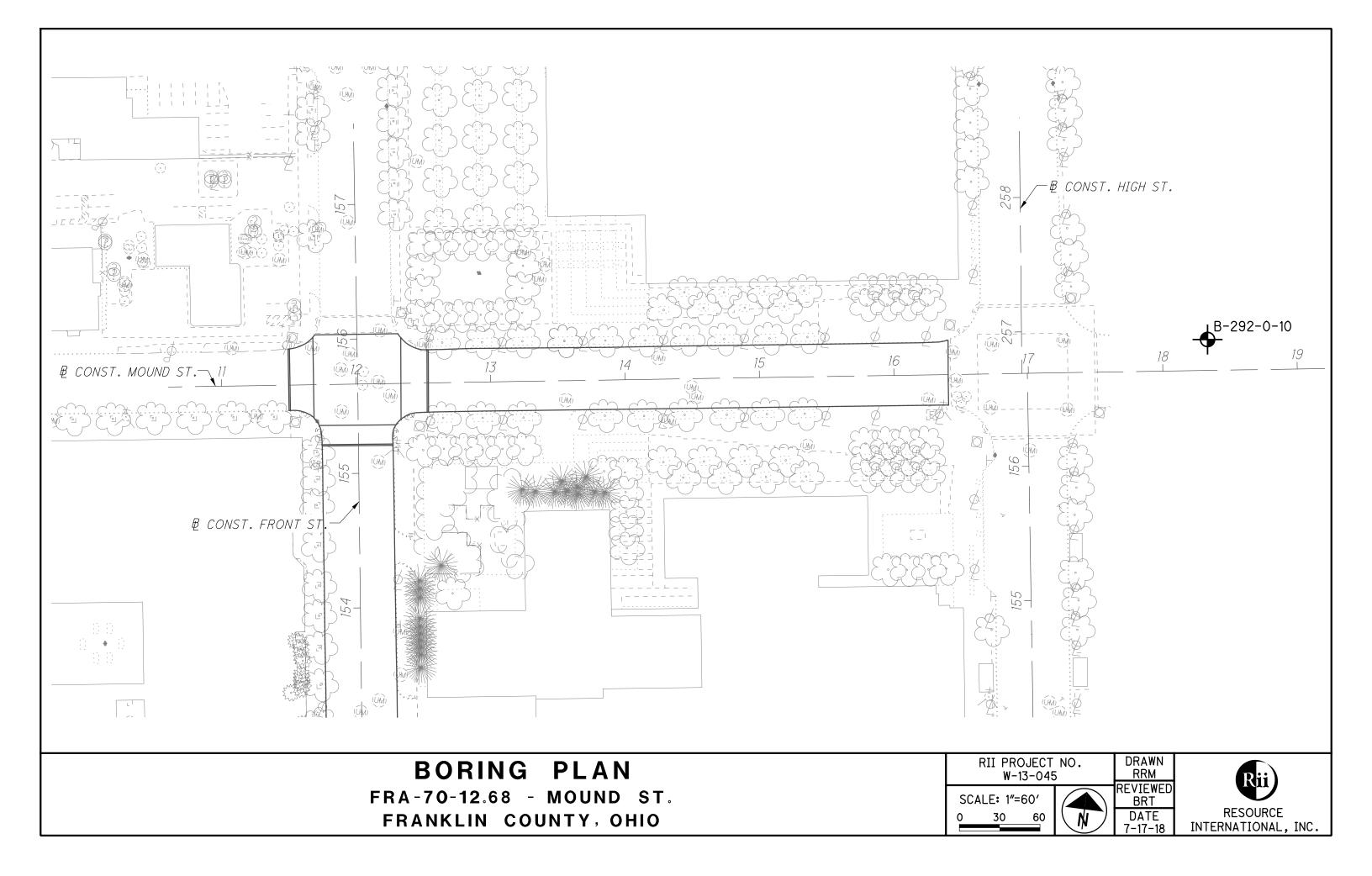












	RII	PI W
SC	ALE:	1'
0	3	0

APPENDIX II

DESCRIPTION OF SOIL TERMS

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	ation OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
	Gravel and/or Stone Fragments	A-			30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
	Gravel and∕or Stone Fragments with Sand	A	1-Ь		50 Max.	25 Max.		6 Max.	0	
FS	Fine Sand	A	- 3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
<u>4.0.0.0</u> <u>6.0.0.0</u> <u>6.0.0</u>	Gravel and/or Stone Fragments with Sand and Silt		2-4 2-5			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.000 0.000 0.000 0.000 0.000 0.000	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
$ \begin{array}{r} + + + + + \\ + + + + + \\ + + + + + \\ + + + + $	Silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Sil†y Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	A-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W∕o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	Sod and Topsoil Pavement or Base MA^{-1} $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$ $A \rightarrow V$	1	CLASS trolled escribe	SIFIED BY	Y VISUAL	INSPEC Bouldery			P Pe	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>Granular Soils</u> - The relative compactness of granular soils is described as: ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

Description	Blows per	foot - 3	<u>SPT (N₆₀)</u>
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as: ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

		confin	
<u>Description</u>	<u>Compr</u>	essio	<u>n (tst)</u>
Very Soft	Less than		0.25
Soft	0.25	-	0.5
Medium Stiff	0.5	-	1.0
Stiff	1.0	-	2.0
Very Stiff	2.0	-	4.0
Hard	Over		4.0

Gradation - The following size-related denominations are used to describe soils:

Soil Fraction	USCS Size	
Boulders	Larger than 12"	
Cobbles	12" to 3"	
Gravel coar	3" to ¾"	
fine	³ ⁄ ₄ " to 4.75 mm (³ ⁄ ₄ " to #4 Sieve)	
Sand coar	4.75 mm to 2.0 mm (#4 to #10 Sieve)	
med	2.0 mm to 0.42 mm (#10 to #40 Sieve)	
fine	0.42 mm to 0.074 mm (#40 to #200 Sie	ve)
Silt	0.074 mm to 0.005 mm (#200 to 0.005 r	nm)
Clay	Smaller than 0.005 mm	

Modifiers of Components - Modifiers of components are as follows:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	Range - USCS	Range - ODOT
Dry	0% to 10%	Well below Plastic Limit
Damp	>2% below Plastic Limit	Below Plastic Limit
Moist	2% below to 2% above Plastic Limit	Above PL to 3% below LL
Very Moist	>2% above Plastic Limit	
Wet	≥ Liquid Limit	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

Term	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

<u>Bedrock</u> – The following terms are used to describe the relative strength of bedrock:

Description	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

ODOT Size Larger than 12" 12" to 3" 3" to 3/4" 3/4" to 2.0 mm (3/4" to #10 Sieve) 2.0 mm to 0.42 mm (#10 to #40 Sieve)

0.42 mm to 0.074 mm (#40 to #200 Sieve) 0.074 mm to 0.005 mm (#200 to 0.005 mm) Smaller than 0.005 mm

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Description	Field Parameter
Unweathered	No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a right appearance with no discoloration. Fractures show little or not staining on surfaces.
Slightly Weathered	Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% of the rock volume presents alteration.
Moderately Weathered	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15% of the rock volume presents alterations.
Highly Weathered En	tire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may be present and some areas of severely weathered materials may be present.
Severely Weathered	Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of more resistant rock may be present but the material can generally be molded and crumbled by hand pressures.

Strength of Bedrock – The following terms are used to describe the relative strength of bedrock:

<u>Description</u> Very Weak	<u>Field Parameter</u> Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description	<u>Thickness</u>
Very Thick	Greater than 36 inches
Thick	18 to 36 inches
Medium	10 to 18 inches
Thin	2 to 10 inches
Very Thin	0.4 to 2 inches
Laminated	0.1 to 0.4 inches
Thinly Laminated	Less than 0.1 inches

Fracturing – Describes the degree and condition of fracturing (fault, joint, or shear):

Very Poor Poor Fair Good Very Good

Degree of Fracturing	
Description	<u>Spacing</u>
Unfractured	Greater than 10 feet
Intact	3 to 10 feet
Slightly Fractured	1 to 3 feet
Moderately Fractured	

Aperture Widt	h	Surface Rough	ness
Description	Width	Description	Criteria
Open	Greater than 0.2 inches	Very Rough	Near vertical steps and ridges occur on surface
Narrow	0.05 to 0.2 inches	Slightly Rough	Asperities on the surfaces distinguishable
Tight	Less than 0.05 inches	Slickensided	Surface has smooth, glassy finish, evidence of Striations

<u>RQD</u> – Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006): <u>RQD %</u> <u>Rock Index Property Classification (based on RQD, not slake durability index)</u>

APPENDIX III

BORING LOGS

BORING LOGS

Definitions of Abbreviations

- AS = Auger sample
- HP = Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)
- LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)
- PID = Photo-ionization detector reading (parts per million)
- QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)
- QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)
- RC = Rock core sample
- REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage
- RQD = Rock quality designation estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

$\frac{\sum \text{ segments equal to or longer than 4.0 inches}}{\text{core run length}} x 100$

- S = Sulfate content (parts per million)
- SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N).
- SS = Split spoon sample
- For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N₆₀ values.
- 3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.
- TR = Top of rock
- W = Initial water level measured during drilling
- ▼ = Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR	=	% Gravel
SA	=	% Sand
SI	=	% Silt
CL	=	% Clav

Atterberg Limits:

LL	=	Liquid limit
PL	=	Plastic limit
PI	=	Plasticity Index
WC	=	Water content (%)

Client	: ms	consu	ltants	3		Project: FRA-70-8.93								Job No. (221-1	004.01	
LOG	OF: B	oring	B-0	13	Loc	cation: Sta. 675+45.91, 81.90 ft Rt. of I-70 CL								31/2009			
Depth (ft)	Elev. (ft) 723.0	Blows per 6"	Recovery	Sam No Puivo	Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: None Water level at completion: None FIELD NOTES: DESCRIPTION	Graphic Log	% Aggregate		Sand	pu	% Silt NO		STANDAF Natural № PL ⊢ Blows per fo 10	loisture	Conten	, % - 🌲
1.5 	- 721.5	19 11 7 5 6 4 5 6 15 13 7 13	13 10 16 15	1 2 3 4 5	-	Asphalt Concrete - 7" Aggregate Base - 10" Loose to medium dense brown GRAVEL WITH SAND (A-1-b), little to some silt; moist. Bottom of Boring - 10.0'		35 39 26	28 29 31		16 21	14 15 12	4 5				
11																	The set of

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-0040

	Drilling Firm / (Sampling Firm /	LOGGER	:: RII / C.D./N.A.	HAMN	1ER:	IOBILE B-53 (AUTOMA	ATIC		1	MENT:		В	7+00.3 L I-70	EB		B-01	RATION II 3-1-15
	DRILLING METHO SAMPLING METH		1.5" CFA / 3.25" HSA SPT		RATION GY RATI		4/26/13 77.7		ELEVA				L) 015814		.02128	35.0 ft.	PAGE 1 OF 2
MATERIAL DESCRIPTION		ELEV.			DE				GRADA				TERB			ODOT	BACK
AND NOTES		725.9		RQD	N ₆₀ (%		(tsf)			FS S		LL	PL	PI	wc	CLASS (GI)	FILL
0.6' - ASPHALT (7.0")		725.3															
√0.4' - AGGREGATE BASE (5.0") FILL: HARD, BROWN SILT AND CLAY, LITTLE COAI TO FINE SAND, TRACE FINE GRAVEL, DAMP.	RSE	~ <u>724.9</u> _		·0 16 13	38 67	SS-1	4.5+	-	-		-	-	-	-	8	A-6a (V)	
FILL: DENSE, BROWN GRAVEL AND SAND, LITTLE	SILT,	722.9	- 3 -														
TRACE CLAY, MOIST.			-4 -1	1 15 4 16	40 10) SS-2	-	34	30	17 1	2 7	NP	NP	NP	7	A-1-b (0)	1 > C 1
			6	4 12 :	34 10) SS-3	_	_	_			-	_	_	7	A-1-b (V)	
			- 7 -	14													
		715.4	91 10	9 17 14	40 10) SS-4	-	-	-		_	-	-	-	8	A-1-b (V)	
FILL: HARD, BROWN TO GRAY SILT AND CLAY, SC COARSE TO FINE SAND, LITTLE FINE GRAVEL, DF		715.4		5 9	26 10) SS-5	4.5+	_	_			_	_	_	9	A-6a (V)	
DAMP.			_ 12 _ _ 13 _	11													
			14 ⁸ 15	8 2 14	28 10	SS-6	4.5+	20	13	11 3	6 20	28	17	11	14	A-6a (5)	
				4 22 21	56 10) SS-7	4.5+	-	_			-	_	_	9	A-6a (V)	
DENSE TO VERY DENSE, GRAY GRAVEL AND SAM		707.9	- 17 - - 18	21													
LITTLE SILT, TRACE CLAY, MOIST.			- 19 - 8	11 3 14	32 10) SS-8	-	52	19	7 1	4 8	NP	NP	NP	12	A-1-b (0)	
			20														
			- 22														1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
			241	7 15 25	52 10) SS-9	-	-	-			-	-	-	9	A-1-b (V)	11-1-1
			_ 25														
DENSE, GRAY GRAVEL , SOME COARSE TO FINE S TRACE SILT, DAMP.	· [0]		- 27 - - 28 -														
-ROCK FRAGMENTS PRESENT IN SS-10			291	2 12 18	39 10	0 SS-10	-	-	-		-	-	-	-	5	A-1-a (V)	1 1 < 1

2014 ODOT BORING LOG-RII NE BRIDGE ID - OH DOT.GDT - 3/14/15 17:33 - U.:GI8IPROJECTS/2013(W-13-045.GPJ

PID: <u>77372</u> BR ID: <u>FRA-70-1282R</u> PROJECT: <u>FRA-70-12.68</u>	- PHASE 4	4A	STATION /	OFFS	ET:	127+0	0.32 / 45.0) LT	S	STAR	T: <u>2/</u>	26/15	END:	2/27/	15 P	G 2 O	F2 B-01	3-1-15
MATERIAL DESCRIPTION	ELEV.		PTHS	SPT/	N	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	A	TERE	BERG		ODOT	BACK
AND NOTES	695.9		P105	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI (L LI	. PL	PI	WC	CLASS (GI)	FILL
DENSE, GRAY GRAVEL , SOME COARSE TO FINE SAND, TRACE SILT, DAMP. (same as above)	693.9		31 32															
SILT, TRACE CLAY, DAMP.			- 33 - - 34 -	9 9	25	100	SS-11	_	61	14	5	13	7 N	> NP	NP	6	A-1-b (0)	
	<u>690.9</u>	EOB	3 <u>-</u> 35	10	_						-							121.12

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER SOIL CUTTINGS

	T:	RA-70-12. STRUC	68 - PHASE 4 TURE	1A	-		OPERATO / LOGGER		rii / J.K. Rii / C.D.	_	ILL RIG MMER:		CME 55 (SN CME AUTO		,		ION / NMEN	OFFS	ET: _		+19.67 . I-70 E		0' RT	EXPLOF B-01	3-2-
	77372	_ BR ID: _	FRA-70-12		_	IG METHO		4.25" HS			LIBRAT			0/20/14	1		ATION				<u>.) </u>			6.5 ft.	P. 1
START:	1/29/		-		SAMPLI	NG METH		SPT	/ HQ		ERGY F			92			LONG						021150	673	
	MAT	RIAL DE AND NC	SCRIPTION	V			ELEV. 705.5	DEF	PTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD	ATIO FS	<u> </u>) CL		ERBE PL	ERG PI	WC	ODOT CLASS (GI)	B
0.5' - TOPSOIL (6	.0")	And he	120				705.0					(70)			OIX	00	10	0.	0L		• •				
FILL: MEDIUM DE SILT, AND CLAY, -CINDERS AND	ENSE, B MOIST								1 2	5 6 9	23	100	SS-1	-	-	-	-	-	-	-	-	-	11	A-2-6 (V)	- 7 < 7 /
POSSIBLE FILL: [GRAVEL AND SA							702.5		- 3 - - 4 -	24	F 4	50											0		747
-ROOT FIBERS	PRESE	NT IN SS	-2						_ 5 _	20 15	54	56	SS-2	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
									- 6 -	10 14 12	40	67	SS-3	-	63	12	8	13	4	NP	NP	NP	6	A-1-b (0)	V 7 7 V
			= BROWN	GRAV	/EL	- FS	697.5		- 8 -																7
ITTLE TO SOME	E TO VERY DENSE, BROWN GRAVEL , ME COARSE TO FINE SAND, TRACE TO RACE CLAY, DAMP TO MOIST.				_ 9 _ _ 10 _	16 18 23	63	100	SS-4	-	-	-	-	-	-	-	-	-	5	A-1-a (V)	1777				
-COBBLES ENC					- 11 - - 11 - - 12 -	14 13 14	41	50	SS-5	-	-	-	-	-	-	-	-	-	4	A-1-a (V)	74771				
									- 13 -	16															7747
									14 15	20 17	57	72	SS-6	-	71	12	5	9	3	NP	NP	NP	5	A-1-a (0)	1441
								w	16 17	7 15 21	55	89	SS-7	-	-	-	-	-	-	-	-	-	9	A-1-a (V)	7777
						00	5	w	- 18 -	13 29															7 4 7
						00			19 20	29 50/2"/	-	93	SS-8	-	-	-	-	-	-	-	-	-	9	A-1-a (V)	V 7 7 7
									21 22	7 8 9	26	94	SS-9	-	-	-	-	-	-	-	-	-	10	A-1-a (V)	-7457
						000			- 23 - - 24 -	6															V 7 7 V
-ROCK FRAGME	ENTS PI	RESENT	IN SS-10			000			25	25 11	55	100	SS-10	-	53	25	7	12	3	NP	NP	NP	12	A-1-a (0)	77
-HEAVING SANI	DS ENC	OUNTER	ED @ 26.0	•					- 26 - - 27 -	5 12 16	43	100	SS-11	-	-	-	-	-	-	-	-	-	12	A-1-a (V)	7 4 4 7 4
-INTRODUCED	MUD @	28.5'							- 28 -																7 4 7
						\sim	a		29	19 16 20	55	100	SS-12	-	61	24	7	7	1	NP	NP	NP	10	A-1-a (0)	7:

PID: <u>77372</u> BR ID: <u>FRA-70-1282R</u> MATERIAL DESCR	PROJECT: FRA-70-12.68	ELEV.	STATION	SDT/	E		.67 / 80.0 SAMPLE					N (%)			RBEF	PG 2 RG	ODOT
AND NOTES		675.5	DEPTHS	RQD		(%)	ID	(tsf)		CS		<u> </u>	, CL			PI WC	
MEDIUM DENSE TO VERY DENSE, BF LITTLE TO SOME COARSE TO FINE S LITTLE SILT, TRACE CLAY, DAMP TO <i>above)</i> HARD, GRAY SANDY SILT , SOME FINI CLAY, DAMP.	AND, TRACE TO MOIST. (same as	79	- 	-													
GLAT, DAIVIF.			- 34 - 35 -	10 28 44	110	100	SS-13	4.5+	-	-	-	-	-	-	-	- 10	A-4a (V)
			36 - 37 - 	-													
			- 38 - - - 39 - - - 40 -	7 27 36	97	72	SS-14	4.5+	24	11	17	34	14	20	14	6 8	A-4a (3)
DENSE, BLACK FINE SAND , TRACE SI		663.5	41 - 41 - 42 -	-													
DEINSE, BLACK FINE SAIND, TRACE SI	LI, WEI.		- 43 - 44 -	14	43	100	SS-15	_		_	_	_	_	_	_	- 19	A-3 (V)
			45 - 46 -	18													
HARD, DARK GRAY SANDY SILT , SOM FINE GRAVEL, DAMP.	IE CLAY, SOME	658.5	47 48 			05	00.40										
			49 50 		-	20	SS-16	~ <u>-</u> `	_				-		-	<u>- 11</u>	A-4a (V)
-BOULDER ENCOUNTERED @ 51.0-5 -ROCK FRAGMENTS PRESENT IN SS			- 51 - - 52 - - 52 -	-													
			- 53 - - - 54 - - - 55 -	<u>50/3"</u>	-	33	SS-17	_ - _/	-					-	-	- 12	A-4a (V)
			_ 55 _ 56 - _ 57 -														
LIMESTONE FRAGMENTS		647.0	58 - 58 - 59 -			100/	SS-18 /	_ - _/	/		/)			2	A Rock (V)
AUGER REFUSAL @ GRANITE BOULDER	59.5'	646.0 645.5	_ 60 - _ 60 - _ 61 -	25		92	RC-1										CORE

PID:	PROJECT: FRA-70-	-12.68 - PHASE 4A	STATION	OFFSET:	127+	19.67 / 80.0	RT	STA	RT: <u>1</u>	/29/15	5 EN	D: 2/	25/15	PG 3 C	DF 3 B-01	3-2-15
MATERIAL DESCR		ELEV.	DEPTHS	SPT/ RQD N ₆		SAMPLE									ODOT CLASS (GI)	BACK
AND NOTES LIMESTONE : GRAY AND WHITE, MOI WEATHERED TO UNWEATHERED, M STRONG TO STRONG, MEDIUM TO T CHERTY, DOLOMITIC, FOSSILIFERO SLIGHTLY TO HIGHLY FRACTURED, SLIGHTLY ROUGH.; RQD 58%, REC 9 -STYLOLITES PRESENT IN RC-2	DERATELY IODERATELY HICK BEDDED, US, PYRITIC, OPEN APERTURES,	643.4	- 63 - - 64 - - 65 - - 66 - EOB		⁰ (%) 100	ID RC-2	(IST)	GR CS	5 FS	SI	CL	LL	PL PI	wc	CORE	FILL
			EOR					·						-		
NOTES: SEEPAGE ENCOUNTERED @ 17.0			<u>ጉ 18 5'</u>													

ſ	PROJECT: FRA-70-12.68 - PHASE 4A TYPE: STRUCTURE PID: 77372 BR ID: FRA-70-1358R	DRILLING FIRM / OPERATO SAMPLING FIRM / LOGGER DRILLING METHOD:		HAMN	1ER:	MOBILE B-53 (AUTOM/ N DATE:	ATIC	,	ALIG	NMEN	OFFSE IT: N: 7		BL	I-70 E	В			ATION ID 7-7-13 PAGE
	START: 8/4/13 END: 8/7/13	SAMPLING METHOD:	4.25 HSA / RC SPT / HQ			п DATE ГЮ (%):	4/26/13 77.7		1	LON						90 006425		1 OF 4
ľ	MATERIAL DESCRIPTION AND NOTES	ELEV. 743.1			R	EC SAMPLE %) ID			GRAD		N (%)	A		ERBE		WC	ODOT CLASS (GI)	BACK FILL
ŀ	0.9' - ASPHALT (11.0")	742.2				,,,,	(101)				-	-						
t	0.5' - AGGREGATE BASE (6.0")	741.7																$\bigotimes \bigotimes$
	FILL: MEDIUM DENSE, GRAY GRAVEL, LITTLE FIN COARSE SAND, TRACE SILT, TRACE CLAY, MOIS	ST. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	- 2 - 4	5 6	14 6	67 SS-1	-	69	13	5	10	3	NP	NP	NP	7	A-1-a (0)	
		° 739.1	- 3 -													_	A 4 = () ()	
-	FILL: STIFF TO VERY STIFF, BROWNISH GRAY T BROWN SILT AND CLAY, LITTLE COARSE TO FIN	0	- 4 - ³	3 5	10 5	50 SS-2	- 3.00	-	-	-	-	-	-	-	-	9 13	<u>A-1-a (V)</u> A-6a (V)	
	SAND, TRACE FINE GRAVEL, DAMP.		- 5 -															
			- 6 - 6	8 ² 12	26 5	50 SS-3	2.00	-	-	-	-	-	-	-	-	12	A-6a (V)	
		735.1	8	12														
GPJ	FILL: VERY DENSE, BROWN GRAVEL , TRACE SIL DAMP.	[• []°			65 4	14 SS-4	-	-	-	-	-	-	-	-	-	5	A-1-a (V)	
-045.GPJ		732.6	- 10	25														
- U:\GI8\PROJECTS\2013\W-13-	FILL: STIFF TO HARD, BROWN TO DARK BROWN GRAY SILTY CLAY, SOME FINE GRAVEL, LITTLE COARSE TO FINE SAND, DRY TO MOIST.				25 5	50 SS-5	2.00	-	-	-	-	-	-	-	-	12	A-6b (V)	
TS\2			- 13 -	10														
NPROJEC			141	2 5	9 5	56 SS-6	1.50	31	11	8	30	20	37	18	19	19	A-6b (6)	
:\GI8																		
			165 17	15	39 3	39 SS-7	2.00	-	-	-	-	-	-	-	-	9	A-6b (V)	
/15 1				15														
DT - 3/14/15 17:34			- 18 - - 19 - ¹	5 50 1	01 3	39 SS-8	2.00	_	_	_	_	-	_	-	_	19	A-6b (V)	
DOT.GI			20	28														
NE BRIDGE ID - OH DOT.GDT			216 22	12 3	27 5	56 SS-9	1.75	-	-	-	-	-	-	-	-	20	A-6b (V)	
DGE			- 23 -															
NE BRI			242	6	18 5	56 SS-10	4.50	24	10	9	33	24	40	20	20	18	A-6b (8)	
G-RI			- 25 -	8														
RING LO			267 27		23 8	33 SS-11	2.50	-	-	-	-	-	-	-	-	16	A-6b (V)	
T BO			- 28	10														
2014 ODOT BORING LOG-RI				/OH 2 10	16 7	72 SS-12	2.75	-	-	-	-	-	-	-	-	18	A-6b (V)	

	PROJECT: FRA-70-12.68			STATION /		=1:		9.36 / 23.3			STAR	_		-	_			G 2 01		
MATERIAL DESCR AND NOTES		ELEV.	DEP	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS CS	FS FS	N (% SI	-		ERBE	ERG PI	wc	ODOT CLASS (GI)	B/
FILL: STIFF TO HARD, BROWN TO DA GRAY SILTY CLAY, SOME FINE GRAN COARSE TO FINE SAND, DRY TO MC FILL: STIFF, DARK BROWN SILT AND COARSE TO FINE SAND, SOME FINE	ARK BROWNISH /EL, LITTLE DIST. (same as above) CLAY, SOME	713.1		- 31 - - 32 -			(70)			GIX	00	13	51	5		ΓL	r1	WO		- -
	GIVIVEL, DAWN .			- 33 - - 34 - - 35 -	4 4 5	12	50	SS-13	1.75	24	14	12	31	19	33	18	15	20	A-6a (5)	
				36																
-WOOD FRAGMENTS RECOVERED	FROM 38.5' TO 39.0'	704.1		- 38 -	10													440		Ø
ARD, DARK BROWN SILTY CLAY, S		704.1		- 39 -	10 8 8	21	33	SS-14	- 4.50	-	-	-	-	-	-	-	-	110 13	A-6b (V)	Ň
OARSE SAND, SOME FINE GRAVEL				- 40 -																\mathbb{K}
EDIUM DENSE TO DENSE, BROWN		701.1		- 41 42																
OARSE TO FINE SAND, TRACE SILT				- 43 -																K
		1		- 44 - - - 45 -	2 8 11	25	78	SS-15	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
				- 46 - - 46 - - 47 -																
			W	48	10															
	0 0 0 0			49 50	14 16	39	61	SS-16	-	52	18	10	16	4	21	18	3	10	A-1-b (0)	
				- 51 - - 52	-															
				- 53	20															
				54 55	30 45	97	72	SS-17	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	-
		686.1	W																	
'ERY DENSE, GRAY GRAVEL WITH S RACE SILT, MOIST.	SAND AND SILT,			- 58																Ď
					41 21 50/4"	-	100	SS-18	-	-	-	-	-	-	-	-	-	17	A-2-4 (V)	Ď
-COBBLES PRESENT @ 60.0'		6		- 60 - - 61 -																Ň

ID: <u>77372</u> BR ID: <u>FRA-70-1358R</u> PROJECT: <u>FRA-70</u> MATERIAL DESCRIPTION	ELEV.		TATION				9.36 / 23. SAMPLE				_	N (%	-	_	ERB		G 3 OI	- 4 В-017- одот
AND NOTES	681.0	DEP	THS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)		CS		SI	CL	LL		PI	WC	CLASS (GI)
/ERY DENSE, GRAY GRAVEL WITH SAND AND SILT,				-														X
RACE SILT, MOIST. (same as above)	8121		- 63 -															
			- 64 -	8 20	52	83	SS-19	_	_	_	-	-	-	_	_	-	17	A-2-4 (V)
	i hid		65	20	52	00	00-10	_	_	_	-	_	_	_		-	17	7-2-4 (V)
	Path I			-														
			- 66 -															
IARD, GRAY CLAY, SOME SILT, TRACE COARSE TO			- 67 -	-														
TINE SAND, DAMP.			- 68 -															K
			- I	8														
			- 69 -	9 16	32	78	SS-20	4.5+	-	-	-	-	-	-	-	-	20	A-7-6 (V) 🎇
			- 70 -	10														
			- 71 -															
			- 72 -	1														
			- 73 -	10														
			- 74 -	12 14	44	89	SS-21	4.5+	-	-	-	-	-	-	-	-	17	A-7-6 (V)
			- 75 -	20														
			- 76 -															
				-														l (
			- 77 -															
			- 78 -	_														
			- 79 -	12	93	44	SS-22	4.5+		-	1	-	-	_	-		17	A-7-6 (V)
			80	22 50	- 55		00-22	4.51	_	_	_	_		_	_	_	17	A-1-0 (V)
				-														K
			- 81 -															
			- 82 -	-														K
			- 83 -															
			- 84 -	40 35		04	00.00	4.5.		•	-			- 4	05		4.5	A 7 0 (40)
				35 50/4"	-	81	SS-23	4.5+	0	2	5	34	59	54	25	29	15	A-7-6 (18)
			- 85 -	1														
			- 86 -	-														
			- 87 -															
			- 88 -	1														
			-	25		100	00.04	4									45	A 7 C 0.0
			- 89 -	50/4"	-	100	SS-24	4.5+	-	-	-	-	-	-	-	-	15	A-7-6 (V)
AUGER REFUSAL @ 90.0' IUDSTONE : GRAY, SLIGHTLY WEATHERED, VERY	653.1	TR	- 90 -	70		100												
VEAK, THINLY LAMINATED TO LAMINATED, FRIABLE,			- 91 -	79		100	RC-1											CORE
ISSILE, HIGHLY FRACTURED TO FRACTURED, OPEN	651.1		- 92 -	66		100	RC-2											CORE
PERTURE, ROUGH; RQD 73%, REC 100%.																		
			- 93 -															
			- 94 -															

	PROJECT: FRA-70		STATION		_		9.36 / 23.3				_		-	_		PG 4		-
MATERIAL DESCR AND NOTES		ELEV.	DEPTHS	SPT/ RQD		REC (%)	SAMPLE ID	HP (tsf)		RAD		N (% SI	∍) CL		ERBEF	RG PI WC	ODOT CLASS (GI)	BA FI
AND NOTES SHALE : GRAY TO BLACK, HIGHLY W VEAK, THINLY LAMINATED TO LAMIN NODERATELY TO HIGHLY FRACTUR VERTURE, SLIGHTLY ROUGH TO R REC 74%. (same as above)	EATHERED, VERY NATED, FRIABLE, ED, OPEN	648.8	– 95 – – 96 – – 96 –	15		<u>(%)</u> 74	RC-3	(151)	GK	63	٢ð	51	UL		FL		CORE	
EC 74%. (same as above)		_	-208															
IOTES: SEEPAGE ENCOUNTERED @ 48.5	; GROUNDWATER ENC	OUNTERED INITIALLY	@ 57.0'															
BANDONMENT METHODS, MATERIALS, QU					DOM													

DLZ Ohio, Inc.	* 6121 Huntley Road,	Columbus, Ohio 43229 *	(614) 888-0040
----------------	----------------------	------------------------	----------------

Client:	ms c	onsu	Itants	5			Project: FRA-70-8.93								Jol	o No	. 022	21-10	004.0)1	
LOG	DF: Bo	oring	B-02	25-0-0	8	Lo	cation: Sta. 5088+53.62, 76.0' LT., BL RAMP C5			Da	ate	Dri	lled	:7/2	24/2	800					
Depth (ft)	Elev. (ft) 740.4	Blows per 6"	Recovery	Sam No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 26.0' Water level at completion: 39.0' FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	Aggregate	nd	M. Sand	F. Sand	% Siit 0		Na	tural PL	Mois	ture	TRA Conte Non- 30	ent, % ⊣⊔L	<i>L</i> c - NP
1.2 -	739.2						Asphalt Concrete - 7" Aggregate Base - 7"														
- 3.5	736.9	14 13 17	15	1		4.5+	FILL: Hard brown SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; contains few brick fragments; damp.														
5	-	11 10 14	14	2		4.5+	Hard gray SANDY SILT (A-4a), some to "and" fine to coarse sand, trace to little gravel; damp.														
-	-	6 8 11	14	3		4.5+															
- <u>10</u>	-	7 10 11	18	4		4.5+			18	12		16	32	22							
11.5 -	728.9	10 11	18	5		4.5+			8	15		20	36	21		i e i					
- 13.5	726.9	14 16 17	4	6		4.5+	Hard gray SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; damp to moist.		12	16		18	34	20			 - -) 		 D 	
- 15	-	5 8 12	18	7		4.5+	Very stiff to hard gray SANDY SILT (A-4a), some to "and" fine to coarse sand, trace to little gravel; damp.														
-	-	5 7 12	18	8		4.5+			15	14		19	31	21				 			
- <u>20</u>	-	4 6 9	18	9		2.75															
-	-	5 9 12	18	10		4.5															
- 25	715.4	5 6 9	18	11		2.5											i i /				

Client:	: ms c	onsu	Itants	5			Project: FRA-70-8.93	000-00							Job	No.()221-	1004	1.01	
LOG	DF: Bo	oring	B-02	25-0-0	8	Lo	cation: Sta. 5088+53.62, 76.0' LT., BL RAMP C5			Da	te	Drill	led.	:7/2	24/20)08				
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam, No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 26.0' Water level at completion: 39.0' FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate	and	and	% F. Sand A		lay	Natu F Blows	ural M PL ⊢	loistur	re Co	ntent, i on-Plasi	LL
							Very stiff gray SILTY CLAY (A-6b), little fine sand; moist.													
- 28.5	711.9	3 6 17	13	12		3.5			-											
- 30	_	17 29 37	10	13			Very dense brown GRAVEL WITH SAND (A-1-b), some fine to coarse sand, little silty clay; wet.	0	- - -											
-	-						@ 30.0'-38.5', encountered cobbles while augering.													
- <u>35</u> -		29 50/5	6	14					50	21		10	14	5	INIP 	I I I I I I I I I I I I I I I I I I I				 50 + (
38.5 -	701.9	23						0	7											
- <u>40</u> - 43.5	696.9	23 50/6	10	15		4.5+	Hard gray SANDY SILT (A-4a), some fine to coarse sand, trace gravel; damp.													 50 + (
<u>43.3</u> - 4 <u>5</u> - -	_	9 30 37	12	16			Very dense gray GRAVEL WITH SAND (A-1-b), "and" fine to coarse sand, little silt; wet.													
- 50	690.4	22 39 30	15	17				1. 4	39	26		22	13		N P ● 					 7 (

DLZ Ohio, Inc.	* 6121 Huntley Road	, Columbus, Ohio 43229 '	(614) 888-0040
----------------	---------------------	--------------------------	----------------

Client:	ms c	onsu	Itants	;			Project: FRA-70-8.93	888-00							Job No. 0221-1004.01
LOG)F: Bo	ring	B-02	25-0-0	8	Loc	eation: Sta. 5088+53.62, 76.0' LT., BL RAMP C5			Da	te l	Drill	ed:	7/2	24/2008
Depth (ft)	Elev. (ft) 690.4	Blows per 6"	Recovery	Sam, No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 26.0' Water level at completion: 39.0' FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	Aggregate	Sand	Sand	pu	% Sit NO		STANDARD PENETRATION (N60) Natural Moisture Content, % - \bigcirc PL \leftarrow LL Blows per foot - $\bigcirc /$ Non-Plastic - NP 10 20 30 40
- - - 55		22 33 26	13	18		2.5	Very stiff gray SILT AND CLAY (A-6a), some fine to coarse sand, trace gravel; moist.								
- 57.0 -	683.4	48					Very dense brown COARSE AND FINE SAND (A-3a), some silt, little gravel; wet.		•						
<u>59.3</u> 60 65 70 	681.1	50/3	9	19			Bottom of Boring - 59.3'	• • •							

	STRUCTUR		DRILLING FIRM	I / LOGGER:	RII / T.F.	НАММЕ	R:	DBILE B-53 (AUTOMA		400)	ALIGN	MENT		BL	. I-70 E	EB	.1' RT	EXPLOR	5-1-1:
	77372 BR ID:	N/A			4.25" HSA	CALIBR			4/26/13				l: <u>747</u> .					0.0 ft.	PAG 1 OF
START:	9/19/13 END:	9/19/13	SAMPLING MET		SPT	ENERG			77.7					39.9526 ATT			.001473		
	AND NOTES			747.0		RQD Ne	0 (%)	SAMPLE			GRADA		SI CL		PL	PI	wc	ODOT CLASS (GI)	BAC FIL
0.3' - ASPHALT (4				746.7			(/0)		(10.)			-							****
0.7' - AGGREGAT FILL: MEDIUM DE	E BASE (8.0") ENSE TO VERY DENS	SE, GRAY T		746.0	_ 1 _ 2 _ 2 _	3 14 27	· 50	SS-1	-	-	-	-		-	-	_	9	A-2-4 (V)	(\times,\times) $(\times,\times$
BROWN GRAVEL DAMP.	. WITH SAND AND SIL	_T , TRACE C	LAY,		_ 2	7													< 1 / 1 / 1 /
					4 4	9 23	50	SS-2	-	17	34	14	26 9	27	22	5	10	A-2-4 (0)	72
					- 5 - - 6 -														7 L 7 Z
				q	- 7 -														7 × 1 7 × 1 7 × 1
					- 8 - - 9 - ¹	2		00.0						$\left \right $					× 7 L 1 >
					10	27 70 27	0 61	SS-3	-	-	-	-		-	-	-	8	A-2-4 (V)	<74 77 77
				735.0	11 12														V 7 7 V 7
COARSE TO FINE	AY AND BROWN GR E SAND, TRACE SILT		.AY, ¦°℃	0	12 13														, 1 > 7 L
DAMP.						2 17 47 19	33	SS-4	-	63	16	6	10 5	22	18	4	4	A-1-a (0)	7 V L 7 V Z 7 7
	TO DENSE, BROWN E SILT, TRACE CLA			731.5	- 13	1													< 7 L 7 >
10IST.	L SILT, TRACE CLA	T, DAIVIE TO			- 17 -	14 44 20	50	SS-5	-	-	-	-		-	-	-	6	A-1-b (V)	7 7 7 7
					— 18 — — 19 — ⁹	12 3 [.]	44	SS-6	-	_	_	-		_	_	_	8	A-1-b (V)	- 7 V - 7 V - 7 7
					20	12								$\left \right $. ,	7 V 7 V 7 V 7 V 7 V
					21 7 22	9 30 14	56	SS-7	-	31	32	14	19 4	21	18	3	7	A-1-b (0)	<74 77 77
			00 00		- 23 -														7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
					24 ¹ 25	15 4 ⁻ 17	61	SS-8	-	-	-	-		-	-	-	8	A-1-b (V)	1 V L 7 V L 7 V
					269 27	16 43 17	50	SS-9	-	-	-	-		-	-	-	10	A-1-b (V)	V T 7 V T
/ERY DENSE, BF	ROWN GRAVEL AND	SAND, LITTI		719.0	w28 -														7 > 7 L
SILT, TRACE CLA	AY, DAMP TO MOIST				- 29 - ¹	5 17 54 25	33	SS-10	-	-	-	-		-	-	-	9	A-1-b (V)	- 7 7 7 7 7 1

PID: _77372	-		PROJECT: FRA			ATION /		=1: _1		8.08 / 111							_			G 2 OI		-
	IVI.	ATERIAL DESCI AND NOTE		.EV. 17.0	DEPT	HS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)		GRAD CS					ERBE PL	ERG PI	WC	ODOT CLASS (GI)	B/
/ERY DENS SILT, TRACE	E, BROW E CLAY, D	N GRAVEL AND	SAND , LITTLE [. (same as above)	17.0		- 31 - - 32 -		51	33	SS-11	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	× L + + > + + > + + > + + > + + >
				- 33 - - 34 - - 35 -	30 32 33	84	39	SS-12	-	70	10	0	18	2	20	16	4	6	A-1-b (0)			
					- 36 - - 37 - - 38 - - 39 -	27 29	80	50	SS-13	-	-	_	_	-	-	-	-	-	6	A-1-b (V)	- 7 V T 7 V	
					- 40 - 41 - 42 - 42 - 43	33																
					44 45 46 47 48	27 25 32	74	67	SS-14	-	-	-	-	-	-	-	-	-	7	A-1-b (V)		
			97.0	-EOR		25 26 27	69	72	SS-15	-	-	-	-	-	-	-	-	-	9	A-1-b (V)		
				-EOB	<u> </u>			1				<u> </u>									7	

PROJECT: TYPE:	STRUCTURE	STRUCTURE SAMPLING FIRM / LC BR ID: FRA-70-1390 DRILLING METHOD:		RII / S		HAMMER	:	BILE B-53 (AUTOMA	TIC		ALIG	NMEN	T:		BL R	+73.78 / AMP C5		B-02	6-2-13
PID: <u>7</u> START:				4.25" HSA SPT		CALIBRA ENERGY			4/26/13 77.7			ATION				EOE 12248, -8		89.5 ft.	PAG 1 OF
	MATERIAL DESCRIPTION AND NOTES		ELEV. 736.8	DEPTHS		PT/ N ₆₀		SAMPLE ID			RAD		N (%)	/		RBER	3	ODOT CLASS (GI)	BAC FILL
0.8' - ASPHALT (9. 0.5' - AGGREGATE	.0")		736.0 735.5	_	1 -		(70)					10	01	UL					
GRAVEL AND SAN	EDIUM DENSE TO DENSE, BRC D, LITTLE SILT, TRACE CLAY, I ENTS PRESENT IN SS-1			-	2 - ⁵ 3 -	6 18 8	50	SS-1	-	40	28	11	15	6	20	16 4	7	A-1-b (0)	1 2 L V 7 L V 7 2 L V
			731.3	-	1 2	12 34 14	72	SS-2	-	-	-	-	-	-	-		7	A-1-b (V)	
SAND AND SILT, T	O DENSE, BROWN GRAVEL WI RACE CLAY, DAMP. ENT THROUGHOUT	ITH		-	6 - 3 7 -	4 16	67	SS-3	-	40	24	11	18	7	26	17 9	10	A-2-4 (0)	
-COBBELS FRES					8 - 9 - ⁷ 10 -	10 43 23	33	SS-4	-	-	-	-	-	-	-		6	A-2-4 (V)	
	O DENSE, BROWN GRAVEL AN F, TRACE CLAY, DAMP TO MOIS		726.3		11 <u>1</u> 4 12 <u>1</u> 4	4 18 32 7	44	SS-5	-	-	-	-	-	-	-		7	A-1-b (V)	
			721.3		13 — 14 — ⁶ 15 —	5 12 4	50	SS-6	-	-	-	-	-	-	-		9	A-1-b (V)	
	BROWN COARSE AND FINE SAN /EL, TRACE SILT, MOIST.	ND,	718.8	W	16 - 8 17 -	6 13 4	33	SS-7	-	-	-	-	-	-	-		16	A-3a (V)	
MEDIUM DENSE, E SILT, TRACE CLAY	BROWN GRAVEL AND SAND , TF /, MOIST.	RACE	110.0	W	18 — 19 — ⁶	8 25	83	SS-8	_	_	_	_	_	_	_		12	A-1-b (V)	7 2 N 7 2 N 7 2 N
-INTRODUCED M	UD @ 20.0' DENSE, GRAY GRAVEL AND SA		716.3	-	20	11													LV LV LV V
	CE CLAY, MOIST TO WET.			-	22	50 - 50/5"	82	SS-9	-	51	19	12	14	4	18	16 2	8	A-1-b (0)	
) 42 - 50/4"	81	SS-10	-	-	-	-	-	-	-		9	A-1-b (V)	
				-	26 - 10) 20 69 33	56	SS-11	_	-	-	-	-	-	-		11	A-1-b (V)	
					28 -	13 47 23	56	SS-12	_	_	_	_	_	-	_		10	A-1-b (V)	-7 LV

MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	N		SAMPLE	HP	G	SRAD/	ATIO	<u>N (%</u>)	ATT	ERBE	ERG		ODOT	B
AND NOTES	706.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	F
DENSE TO VERY DENSE, GRAY GRAVEL AND SAND , ITTLE SILT, TRACE CLAY, MOIST TO WET. (same as above)	702.0	- - 31 - 32 - 33														0		V77V77V77V
HARD, GRAY SILT AND CLAY , LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DRY.	702.6 699.8	- 34 - 35 - 36 - 37	20 50/2"/	-	79	SS-13	4.50	-	-	-	-	-	-	-	-	8 9	A-1-b (V) A-6a (V)	
/ERY DENSE, GRAY GRAVEL AND SAND, TRACE SILT, /OIST. -ENCOUNTERED LIMESTONE BOULDER @ 40.0'. GWITCHED TO ROCK CORING TECHNIQUES TO CORE		38 39	- 	_ - _^	100/	SS-14	<u>р-</u> л	/			<u> </u>		/			_13_	<u>(A-1-b (V)</u>	13
OULDER	695.3	40 41	0		94	RC-1											CORE	V7 7 V7 7
/ERY DENSE, GRAY FINE SAND , TRACE FINE GRAVEL, RACE SILT, TRACE CLAY, DAMP. -HEAVING SAND ENCOUNTERED @ 41.5'	693.8	42 43	40	114	100	SS-15	-	-	-	-	-	-	-	-	-	10	A-3 (V)	V7 7 V7
IEDIUM DENSE, GRAY COARSE AND FINE SAND , OME FINE GRAVEL, LITTLE SILT, TRACE CLAY, MOIST.	689.8			14	50	SS-16	-	24	24	29	17	6	15	11	4	17	A-3a (0)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ERY DENSE, GRAY COARSE AND FINE SAND , LITTLE SILT, LITTLE FINE GRAVEL, TRACE CLAY, MOIST.		47 48 49	-	51	33	SS-17	_	_	_	-	_	_		_	-	18	A-3a (V)	- 7 V F 7
		50 51 52 53																
		- 	38	65	100	SS-18	-	16	29	33	18	4	15	13	2	11	A-3a (V)	7 4 7 7 7 7 7 7
		- 57 58	-															V 7 7 V 7 V V
		59 60	20	74	100	SS-19	-	-	-	-	-	-	-	-	-	13	A-3a (V)	

	MATERIAL DESC	PROJECT: <u>FRA-70</u>	ELEV.		-	SPT/		REC	SAMPLE	HP			T: <u>8/8</u> ATION)	ATT	ERB	ERG		ODOT
	AND NOTE		674.7	DEP	IHS	RQD	N ₆₀	(%)	ID	(tsf)	GR			<u>`</u> /	CL	LL	PL	PI	WC	CLASS (GI)
	GRAY SANDY SILT, LIT					-														
FRACE CLAY	, MOIST. (same as above	e)			- 63 -															
					- 64 -	42 42	104	89	SS-20	2.00	-	-	-	-	-	-	-	-	14	A-4a (V)
					65	38	-													
					- 66															
						-														
					- 67 -															
					- 68 -															
					- 69 -	12 18	71	100	SS-21	3.00	13	23	21	33	10	18	14	4	17	A-4a (2)
					- 70 -	37				0.00	10	20								// ////////////////////////////////////
					- 71															
			664.8			-														
	E, GRAY COARSE AND F				- 72 -															
SILT, TRACE	CLAY, TRACE FINE GR	AVEL, MOIST.			- 73 -															
					- 74 -	15 22	67	83	SS-22	-	-	-	-	-	-	-	-	-	13	A-3a (V)
					- 75 -	30														. ,
					- 76 -															
					- 77															
						-														
					- 78 -	45														
					_ 79 -	15 25 50/5"	-	100	SS-23	-	8	28	50	7	7	NP	NP	NP	17	A-3a (0)
					- 80 -	50/5														
					- 81 -															
			654.8	_	- 82	-														
	VNISH GRAY SILTY CLA RSE TO FINE SAND, TRA				- 83															
DAMP.					-	18														
					- 84 -	22	80	89	SS-24	4.5+	-	-	-	-	-	-	-	-	17	A-6b (V)
					- 85 -	40														
					- 86 -	-														
					- 87 -															
					- 88	1														
			0474			30 50/5"	-	100	SS-25	4 50	7	5	5	12	41	30	20	10	17	A-6b (12)
			 647.4	EOB	09	50/5"		100	00-20	4.00	ŕ	5	<u> </u>	-2	71	00	20	.0	. /	, (05 (12)

	Drilling Firm / Sampling Firm				RILL RIG		CME-750 (SI CME AUTO		,		ION /	OFFS	ET: _		1+04.9 RAMP		.5' LT	EXPLOR B-02	RATION I 6-3-13
	DRILLING METHO	DD:	3.25" HSA	CA	LIBRAT			4/26/13		ELEV	/ATIOI	N:	756.9	9 (MSL	_) [EOB:		90.0 ft.	PAGE
START: <u>8/21/13</u> END: <u>8/22/13</u>	SAMPLING METH	IOD:	SPT	EN	IERGY I	RATIO ((%):	82.6		LAT /	LONG	G:	3	9.9532	296762	2, -83.	000848	3553	1 OF :
MATERIAL DESCRIPTION		ELEV.	DEPTHS	SPT/			SAMPLE			RAD			,	-	ERBE			ODOT	BAC
AND NOTES		756.9		RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
0.5' - CONCRETE (6.0") \0.5' - AGGREGATE BASE (6.0")	/¥X	756.4																	
LOOSE, GRAY GRAVEL , SOME COARSE TO FINE S TRACE SILT, DAMP.	P ; `		1 2	3 2 2	6	33	SS-1	-	-	-	-	-	-	-	-	-	6	A-1-a (V)	
STIFF, BROWN SILT AND CLAY , SOME COARSE TO FINE SAND, LITTLE FINE GRAVEL, DAMP.		753.9	- 3 - - - 4 -	4 9	23	39	SS-2	1.50	_	_	_	_	_	_	_	-	12	A-6a (V)	
-COBBLES PRESENT @ 5.0'		751.4	_ 5 _	<u> </u>			002	1.00									12	// 04 (1)	
LOOSE, GRAY GRAVEL , SOME COARSE TO FINE S TRACE SILT, MOIST.	SAND,		- 6 - - 7 -	5 3	8	33	SS-3	-	-	_	-	_	-	-	_	-	8	A-1-a (V)	
		748.9	_ · •	3	3													. ,	
SOFT, BROWN SILTY CLAY , LITTLE COARSE TO FI SAND, TRACE FINE GRAVEL, MOIST.	INE		- 8 - 9 -	WOH 7	19	72	SS-4	0.50	8	7	10	46	29	36	19	17	23	A-6b (11)	
		746.4	— 10 —	7	7												-	. ,	
MEDIUM DENSE TO VERY DENSE, BROWN GRAVE AND SAND , LITTLE SILT, TRACE CLAY, DAMP TO MOIST.				5	21	67	SS-5	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	
			13	3	3														
			— 14 — - — 15 —	8 16 15	43	61	SS-6	-	32	39	11	15	3	19	17	2	7	A-1-b (0)	
				8 17	51	61	SS-7	_	_	_	_	_	-	_	_	-	6	A-1-b (V)	
			17 18	2(
			- <u>-</u>	18 16	40	72	SS-8	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
			20 21	13	5														
			- 22 -	18 12 14		83	SS-9	-	42	30	10	13	5	NP	NP	NP	8	A-1-b (0)	
			- 23 - - - 24 -	6 10	32	72	SS-10	_	_	_	_	_		_	_		9	A-1-b (V)	
			25	13															
			26 27	5 10 12	30	78	SS-11	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
-STONE FRAGMENTS PRESENT THROUGHOUT			28 29	8															
			- 29	11 16	37	67	SS-12	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	

2014 ODOT BORING LOG-RII NE BRIDGE ID - OH DOT.GDT - 3/14/15 17:35 - UNGI8IPROJECTS/2013/W-13-045.GPJ

D: <u>77372</u> BR ID: <u>FRA-70-1390</u> MATERIAL DESCE	PROJECT: FRA-70-12.68	ELEV.		STATION /	SPT/			04.93 / 11 SAMPLE		-	RAD				_	/22/13 ERBE			3 B-026 ODOT
AND NOTES		726.9	DE	PTHS	RQD	N ₆₀	(%)		(tsf)		CS				LL			wc	CLASS (GI)
MEDIUM DENSE TO VERY DENSE, B IND SAND, LITTLE SILT, TRACE CLA MOIST. (same as above) HARD, GRAY SANDY SILT, LITTLE CL GRAVEL, DAMP.	ROWN GRAVEL	720.3 724.9	_	- 31 - - 32 - - 32 -															
				- 33 - - 34 - - 35 -	10 22 24	63	83	SS-13	4.5+	15	11	17	38	19	21	14	7	9	A-4a (4)
YERY DENSE, BROWN TO BROWNIS		719.9																	
ND SAND, LITTLE SILT, TRACE CLA	Y, MOIST.			38 39 40	11 26 26	72	83	SS-14	-	-	-	-	-	-	-	-	-	11	4-1-b (V)
				- 41 - 41 - 42 															
				- 43 - - 44 - - 45 -	8 29 50	109	83	SS-15	-	52	14	17	14	3	17	14	3	11	A-1-b (0)
				- 46 - - 47 - - 47 -															
				_ 50 _	10 20 28	66	56	SS-16	-	-	-	-	-	-	-	-	-	9 /	A-1-b (V)
iard, gray Sandy Silt , Little Cl Sravel, Damp.	AY, LITTLE FINE	59 0 704.9	-	51 52 53															
					3 22 28	69	78	SS-17	4.5+	12	11	19	40	18	24	14	10	10	A-4a (5)
				- 58 - - 59 - - 60 -	10 44 50/5"	-	88	SS-18	4.5+	-	-	-	-	-	-	-	-	8.	A-4a (V)
		694.9		- 60															

	MATERIAL DESCRI	PTION	ELE		PTHS	SPT/	N		SAMPLE			GRAD		<u>`</u>	· · · · · · · · · · · · · · · · · · ·	ATT	ERB	ERG		ODOT CLASS (GI)
	AND NOTES		694	8	. 1110	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)
ERY DENSE, GI	RAY GRAVEL WITH SA	AND AND SILT,				_														
RACE CLAY, WI	ET. <i>(same as above)</i>		893		63 -															
			. H.H		- 64 -	WOH 45	-	40	SS-19	-	-	-	_	-	-	_	-	-	20	A-2-4 (V)
			17.A			50/3"														
					65 -															
			TO F		- 66 -	_														
			689	9	- 67 -	_														
	RAY TO DARK GRAY				- 07															
AND, TRACE SI	LT, TRACE CLAY, MO	IST.	\mathcal{S}		- 68 -	_														
					- 69 -	8	~~~		00.00										•	
			0 (\ q		-	22 28	69	44	SS-20	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
			b d		70 -															
					- 71 -	_														
			စ္လ		- 72 -															
			00		- 12-															
					- 73 -	_														
					- 74 -	12 23	70	07	00.04			00	00	10	4	10	10	•	10	
					_	23	70	67	SS-21	-	38	28	23	10	1	13	10	3	13	A-1-b (0)
			ه (۲۹		- 75 -															
			lo d		- 76 -	_														
			م ^C د		- 77 -	_														
			009		-	_														
			000		- 78 -	_														
					- 79 -	37 50/3"	-	33	SS-22	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
					-															
			10		- 80 -															
			0 () a		- 81 -	_														
			00		- 82 -	_														
			مې بې د م		-	_														
			k C (- 83 -	_														
					- 84 -	10 19	65	50	00.00										0	
			6 (4 9			28	60	56	SS-23	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
			b d		- 85 - -															
			00		- 86 -	-														
			<u>.</u> •⊖° 669	9	- 87 -	1														
ERY DENSE, GI	RAY COARSE AND FIN	NE SAND, LITTLE			-	-														
INE GRAVEL, LI	ITTLE SILT, TRACE CL	LAT, WEI.			- 88 -															
			666		- 89 -	12 28 50	107	67	SS-24		11	30	39	18	2		NP		10	
			666	9EOE	+	 50	107	0/	33-24	-		30	29	10	2		INP	INP	10	A-3a (0)

Client	: ms c	consu	Itants	6			Project: FRA-70-8.93							J	ob No.	022	1-100	4.01	
LOG	DF: Bo	oring	B-02	27-0-0	8	Lo	cation: Sta. 187+70.27, 12.1' RT., BL I-70 EB			Da	ate	Dril	led:	7/8/2	2008				
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No Drive		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 5.0' Water level at completion: None FIELD NOTES: Advanced boring using 3.25" diameter hollowstem augers. DESCRIPTION	Graphic Log	% Aggregate		% M. Sand	đ		lay > S		Moist	ure Co	RATION ontent, lon-Plas	% - • 11
2.4 3.0 - 5 - - - - - - - - - - - - -	733.5 732.9 732.9 725.9	16 23 17 3 8 12 13 12 9 8 6 16 9 14 28 13 26 29 9 27	18 18 18 18 18 14 15 13 13 12	1 2 3 4 5 6 7			DESCRIPTION Asphalt Concrete Pavement - 7" Portland Cement Concrete - 11" Aggregate Base - 11" FILL: Brick fragments, little fine to coarse sand; damp. Medium dense to dense brown GRAVEL WITH SAND (A-1-b), little to some silt; damp. (A-1-b), little to some silt; damp. @ 7.5'-9.0', contains rust stains. Dense to very dense brown SANDY SILT (A-4a), trace to little gravel; moist. Bottom of Boring - 14.0'		39 28) 34) 32 } 34	% * * * * * * * * * *	25 10 15	17 19 23	5 					to
- - - - - - - - - - - - - - - - - - -	-																		

	DRILLING FIRM / OPER SAMPLING FIRM / LOG		RII / S.M. RII / K.S.		LL RIG: MMER:	-	ME-750 (SN		,		FION / (ET: _		+32.64 I-70 I		7' RT		RATION II 7-1-13
	RILLING METHOD:	OLIN	3.25" HSA	-	BRAT			/26/13					755.5	6 (MSL			4	 19.3 ft.	PAGE
	AMPLING METHOD:		SPT		ERGY F			82.6		LAT	LONG						.99984	6757	1 OF 2
MATERIAL DESCRIPTION	ELE	EV.	DEPTHS	SPT/	N	REC	SAMPLE	HP		RAD	ATIO	N (%))	ATTE	ERBI	ERG		ODOT	BACK
AND NOTES	755	5.5	DEPTHS F	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
_0.2' - ASPHALT (2.0")		5.3/																	
\0.7' - CONCRETE (8.0") VERY DENSE, BROWN SANDY SILT , SOME FINE	754	<u>4.7</u> /		2 36	74	33	SS-1	-	-	-	-	-	-	-	-	-	5	A-4a (V)	
GRAVEL, TRACE CLAY, DAMP. MEDIUM STIFF TO STIFF, BROWN SILT AND CLAY ,	752	2.5	- 3 -	18															
SOME COARSE TO FINE SAND, LITTLE FINE GRAVI DAMP TO MOIST.	EL,		4 4	2 3	7	72	SS-2	1.75	18	19	15	19	29	33	18	15	13	A-6a (4)	7 LV 7 7 N 7
				3															
-COBBLES PRESENT @ 8.0'			_ 7 _	4 6	14	44	SS-3	1.50	-	-	-	-	-	-	-	-	17	A-6a (V)	
MEDIUM DENSE TO VERY DENSE, BROWN GRAVE	747	7.5	- 8 -																1>11
AND SAND, TRACE SILT, TRACE CLAY, DAMP TO MOIST.			- 9	5 11 18	40	44	SS-4	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	1 L 1 7 L 1 7 L 1 7 L 1 7 L
-LIMESTONE FRAGMENTS PRESENT IN SS-4			- 10 - - 11 - 8																
			- 12 -	7 5	17	69	SS-5	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
			— 13 — — — 14 — ⁸																5 LV 5 7 L 7 7 N 1
			_ 15	9 10	26	72	SS-6	-	52	23	9	8	8	21	18	3	7	A-1-b (0)	
			- 16 - 8	32	83	44	SS-7	-	_	_	_	_	_	_	_	_	6	A-1-b (V)	
			17 - 18	28													•		
				4 13	32	72	SS-8	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
			20	10															
			- 22 -																~LV ~ 7 LV 7 1 > C 1
			- 23 -																× L × 7 7 × 7 7 × 7 7 × 7
			- 24 - ³ - 25	5 8	18	67	SS-9	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	$L \neg < L$
			26																
VERY DENSE, GRAY GRAVEL WITH SAND AND SILT LITTLE CLAY, DAMP.	, <u>, , , , , , , , , , , , , , , , , , </u>	5.5	- 27 - - 28 -																1 V V V V V V V V V V V V V V V V V V V
	, <u>, , , , , , , , , , , , , , , , , , </u>			23 32	76	100	SS-10	-	24	25	16	16	19	20	13	7	8	A-2-4 (0)	

MATERIAL DESCRI		ELEV.		PTHS	SPT/	N		SAMPLE			RAD	ATIO	N (%)	ATTI	ERBE	RG		ODOT	В
AND NOTES		725.5		FINS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	-
ERY DENSE, GRAY GRAVEL WITH S/ ITTLE CLAY, DAMP. <i>(same as above)</i> ENSE TO VERY DENSE, GRAY GRAV RACE CLAY, TRACE SILT, MOIST.		723.5	-	31 32 33																V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7 V 7
	2 0 0			- 34 - - 35 -	7 18 15	45	100	SS-11	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	7 4 7 7 7
			_w	- 36 - - 37 - - 38 -																7477477
				- - - - 40 -	7 18 18	50	100	SS-12	-	15	35	37	6	7	NP	NP	NP	16	A-1-b (0)	V77V77
-COBBLES PRESENT @ 41.0'				- 41 - - 42 - - 43 -																V 7 7 V 7 V
				- -	8 49 50/5"	-	88	SS-13	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	V 7 V 7 V 7 V 7
				- 46 - - 47 - - 48 -	47	_	100	SS-14		-	_	-	-	-	_	_		9	A-1-b (V)	- 7 V F 7 V F 7
	<u>ه</u> .	0.1 700.2	EOE	<u> </u>	50/3"		100	00 14	_	_	_	_	_	_	_	_	_	5	A-1-0 (V)	<

(Rii) TYPE		STRUC		DRILLING I SAMPLING	FIRM	/ LOGGER	-		1	ILL RIG MMER:	-	CME-750 (SI CME AUTO		,	ALIG	NMEN	NT:		BL	RAMF	P C5	.8' LT		RATION ID 5-6-13
	<u>77372</u> RT: 6/1	BR ID: 3/13 END	FRA-70-1301A	DRILLING I SAMPLING			3.25" HSA / RC SPT / NQ			librat Ergy f			4/26/13		ELEV		N:					7 014626	7.5 ft.	PAGE 1 OF 3
STAF		TERIAL DES		_SAIVIPLING		ELEV.						SAMPLE	82.6		GRAD		_				o, -03. ERG	014626		1
	MA	AND NO				723.0	DEPTHS		RQD	N ₆₀	(%)	ID	(tsf)				<u> </u>	CL			PI	wc	ODOT CLASS (GI)	BACK FILL
_\0.2' - ASPHAL	T (2.0")			/	<u> </u>	722.8/					(/0)		()											
FILL: MEDIUM LITTLE SILT, ⁻			RAVEL AND SAN	ID,		720.0	- 1 - - 2	2 -	8 6	19	78	SS-1	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	
FILL: MEDIUM GRAVEL WITH			, DARK BROWN LAY , MOIST.					3	5 9	19	39	SS-2	-	57	9	8	7	19	33	17	16	16	A-2-6 (1)	
-PETROLEUI	M ODOR	PRESENT I	IN SS-3				- 6	0	11 13	33	22	SS-3	-	-	-	-	-	-	-	-	-	15	A-2-6 (V)	
	BROWN S D, TRACE	ILT AND CL E FINE GRA	AY, "AND" COAF VEL, MOIST.	RSE		715.0	8 9 - 9	, _2	2 2	6	33	SS-4	1.50	4	17	36	16	27	29	16	13	17	A-6a (2)	
FILL: MEDIUM			RAVEL WITH SA	ND,		712.5	1 1 1 1	1 3	5 5	14	28	SS-5	-	-	-	-	-	-	-	_	-	15	A-2-6 (V)	
FILL: MEDIUM SILT, AND CL/ FILL: MEDIUM GRAVEL, TRA -COBBLES P MEDIUM DEN GRAVEL, TRA	ACE CLAY	Y, WET.	NDY SILT, SOME	FINE		110.0	1 - 1 - 1 - 1 - 1 - 1	-	6 5	15	56	SS-6	-	26	17	18	36	3	NP	NP	NP	26	A-4a (1)	
MEDIUM DEN			SILT, SOME FIN	IE		707.5	1 - 1	6 5	6 12	25	39	SS-7	-	-	-	-	-	-	-	-	-	23	A-4a (V)	
TRACE CLAY		I GRAVEL V	VITH SAND AND	SILT,		705.0	- 1 - 1 - 1 - 2	9 - 13	3 25 22	65	17	SS-8	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	
SILT TRACE			AND SAND, LITTL	E		702.5	2	1 14	4 21 22	59	67	SS-9	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	
	ED WATE	R @ 22.5'					2		18 21	54	72	SS-10	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
2014 0D01 BOKING LOG-KI							2 2 2				78	SS-11	-	51	15	17	15	2	NP	NP	NP	9	A-1-b (0)	
4 0001 B							2 2	8	30 19		67	SS-12	_	_	_	_	_	_	_	_	_	6	A-1-b (V)	

MATERIAL DESCRIPTION	ELEV.		DTUO	SPT/	, R	ECSAN	/IPLE	HP	G	RADA		N (%)	ATT	ERBEF	RG	ODOT
AND NOTES	693.0	DE	PTHS	RQD								SI		LL		PI WC	
ERY DENSE, BROWN GRAVEL AND SAND , LITTLE		W	- 31 - - 32 - - 33 -														
i de la companya de).	W		15 50/5"	- :	73 SS	5-13	-	-	-	-	-	-	-	-	- 6	A-1-b (V)
	C C C C 686.0		35 36	30/3													
ARD, BROWNISH GRAY TO GRAY SILT , SOME	+ + + + + + + + + + + + + + + + + + +		37 38														
IOIST.	+ + + + + + + + + +			21 22 26	66 (67 SS	6-14 4	4.50	-	-	-	-	-	-	-	- 9	A-4b (V)
	· + + · + + · + + · + +		40														
+ + + + + + + + + + + +	· + + · + + · + + · + +		- 42 - 43														
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + +		44	16 29 30	81	72 SS	6-15	4.50	12	9	14	53	12	20	14	6 12	A-4b (6)
	· + + · + +		- 45 - - 46 - - 47 - - 47 -														
+ + + + + + + + + + + + + + + + + + + +	· + + · + + · + + · + + · + + · + +		- 48 - - 49 - - 50 -	16 22 26	66	72 SS	6-16	4.50	-	-	-	-	-	-	-	- 15	A-4b (V)
+ + + + + + + + +	· + + · + + · + + · + +		51														
***	· + + · + + · + + · + +		52 53														
	· + + · + + · + + · + +		- 54 - - 55 -	17 24 28	72	78 SS	6-17	4.50	-	-	-	-	-	-	-	- 16	A-4b (V)
+ + + + + + + +			56														
ERY DENSE, GRAY GRAVEL WITH SAND AND SILT , RACE CLAY, MOIST TO WET.			57 58														
			- 59 - - 60 -	27 35 50	17	33 SS	5-18	-	-	-	-	-	-	-	-	- 18	A-2-4 (V)
			61														

AND NOTES G60.9 DEP1HS RQD N ₆₀ (%) ID (tsf) GR cs rs si cL L PL PI wc cLASS(G) FI RY DENSE, GRAY GRAVEL WITH SAND AND SILT. ACCE CLAY, MOIST TO WET. (same as above) 660.9		ELEV.			SPT/	REC	SAMPLE	HP	G	RADA	ATIOI	N (%)		ATTI	ERBE	RG		ODOT	BA
RY DENSE, GRAY GRAVEL WITH SAND AND SILT, ACE CLAY, MOIST TO WET. (same as above) AUGER REFUSAL @ 67.5' AUGER REFUSAL @ 67.5' AUGER REFUSAL @ 67.5' AUGER REFUSAL @ 67.5' GESTOR: VARIGATED GRAY AND BROWN, GHTLY WEATHERED TO UNWEATHERED, STRONG VERY STRONG, VERY THIN TO THIN BEDDED, ERTY, DUCIDITIC, PHICHLY TO DERATELY FRACTURED, OPEN TO NARROW ERTURE, VERY ROUGH TO SLIGHTLY ROUGH; RQD NU @ 76.9' = 12,661 PSI TR 63 -<	AND NOTES		DEPT	HS	RQD N ₆₀							<u> </u>					WC	CLASS (GI)	
AUGER REFUSAL @ 67.5' 655.5 655.5 67 50/5'' - 10 SS-20 - - - - - 15 A-2-4 (V) IESTONE: VARIGATED GRAY AND BROWN, GHTLY WEATHERED, STRONG VERY STRONG, VERY THIN TO THIN BEDDED, DERATELY FRACTURED, OPEN TO NARROW ERTURE, VERY ROUGH TO SLIGHTLY ROUGH; RQD 6, REC 87%. IU @ 68.3' = 9,274 PSI TR 68 69 51 51 51 51 S1 RC-1 Image: Construction of the second of	ERY DENSE, GRAY GRAVEL WITH SAND AND SIL RACE CLAY, MOIST TO WET. <i>(same as above)</i>			64 -	47 -	100	SS-19	-	33	21	15	23	8	NP	NP	NP	21	A-2-4 (0)	
GHTLY WEATHERED TO UNWEATHERED, STRONG VERY STRONG, VERY THIN TO THIN BEDDED, ERTY, DOLOMITIC, PYRITIC, HIGHLY TO DERATELY FRACTURED, OPEN TO NARROW ERTURE, VERY ROUGH TO SLIGHTLY ROUGH; RQD 6, REC 87%. I'U @ 68.3' = 9,274 PSI 69 51 51 RC-1 CORE 70 71 72 73 73 74 88 98 RC-2 CORE VU @ 76.9' = 12,661 PSI 645.5 77 67 100 RC-3 CORE		655.5	TR		50/5" -	10	SS-20	-	-		-	-	-	-		-		A-2-4 (V)	
AU @ 68.3' = 9,274 PSI - 73 73 73 74 - 88 98 RC-2 - 75 75 75 76	LIGHTLY WEATHERED TO UNWEATHERED, STR O VERY STRONG, VERY THIN TO THIN BEDDED, HERTY, DOLOMITIC, PYRITIC, HIGHLY TO IODERATELY FRACTURED, OPEN TO NARROW PERTURE, VERY ROUGH TO SLIGHTLY ROUGH;			- 	51	51	RC-1											CORE	
PU @ 76.9' = 12,661 PSI	-QU @ 68.3' = 9,274 PSI			- 73 74 	88	98	RC-2											CORE	
EVD	-QU @ 76.9' = 12,661 PSI	645.5	—ЕОВ	- 76 -	67	100	RC-3											CORE	

Client:	ms c	onsultants	5			Project: FRA-70-8.93							Job No.	0221-100	04.01
LOG	OF: Bo	oring B-1	02		Loc	cation: Sta. 124+68.96, 28.50 ft Rt. of Ramp F3 BL			Da	nte L	Drille	ed: 9	/3/2009		
Depth (ft)	Elev. (ft) 718.9	Blows per 6" Recovery	Sam No enjug	Press / Core	Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: None Water level at completion: None FIELD NOTES: DESCRIPTION	Graphic Log	% Aggregate		and	% F. Sand		Natural I PL + Blows per f	Aoisture C	TRATION (N60) content, % - ♥ LL Non-Plastic - NP 30 40
<u>1.3</u> - - - - - - - - - - - - - - - - - 	717.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4		1.75 1.5 1.0 1.0	Asphalt Concrete - 7" Portland Cement Concrete - 8" FILL: Stiff brown SILTY CLAY (A-6b), some to "and" fine to coarse sand, little gravel; contains few brick fragments; damp.		xxxx1 1 15	15		21	26 23			
- <u>10</u> - 12.5	706.4	2 4 7 12 5 10 7 3	5		1.0	FILL: Medium stiff to stiff brown SANDY SILT (A-4a), trace to little gravel; contains few brick fragments; damp to moist. Bottom of Boring - 12.5'		19	15		26	22 18			
- - - - - - - - - - - - - - - - - - -															

DLZ Ohio, Inc. * 6121 Huntley Road, Columbus, Ohio 43229 * (614) 888-0040

Client: ms consultants						Project: FRA-70-8.93								Job No.0221-1004.01						
LOG OF: Boring B-105)5	Lo	Location: Sta. 128+92.42, 78.61 ft Rt. of Ramp F3 BL						led:	: 9/3	/3/2009						
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery	Sam No	Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: None Water level at completion: None FIELD NOTES: DESCRIPTION	Graphic Log	% Aggregate			% F. Sand TA	% Sit NO	Clay	STAN Natur Pl Blows J 1	al Mo. └── per foo	isture	Cont	ent, 9	% - ● ⊥L ¢ - NF	
) <u>.3</u> - - -	715.4/	2 3 5	18	1	1.75	Topsoil - 3" POSSIBLE FILL: Stiff dark brown SILTY CLAY (A-6b), little fine to coarse sand, trace gravel; moist.		9	5		12	38 3		 				 		
- <u>5</u>	709.7	5 2 2 2	10	2	1.5	@ 1.0'-5.0', contains brick fragments. POSSIBLE FILL: Stiff dark brown SILT AND CLAY (A-6a),			00		10	0.5	10							
- - - 0.0 10	705.7	4 9 2 4 6	18	3 4	1.0	some to "and" fine to coarse sand, little to some gravel; damp to moist.		118	20		19	25	18							
0.0 10 - - - - - - - - - - - - - - - - - - -						Bottom of Boring - 10.0'														

	RILLING FIRM / OPERATOR: AMPLING FIRM / LOGGER:	RII / M.M.	H4	RILL RIG AMMER:		CME 55 (SN CME AUTO		· ·	ALIG	NMEN		E	BL RAM	P C3			ATION ID 9-1-15
	RILLING METHOD: AMPLING METHOD:	4.25" HSA SPT	_				0/20/14	1		/atio / lon	N: <u>73</u>					35.0 ft.	PAGE 1 OF 3
START: <u>3/21/15</u> END: <u>3/22/15</u> S/ MATERIAL DESCRIPTION			SPT/	NERGY F		SAMPLE	92 HP				ON (%)		TTER		.019715		
AND NOTES	736.2		RQD		(%)	ID	(tsf)	GR		-	SI C	_	L PL	_	wc	ODOT CLASS (GI)	HOLE SEALED
_0.5' - ASPHALT (6.0")	735.7				()												
1.0' - AGGREGATE BASE (12.0")	734.7	- 1 -															
FILL: DENSE, GRAY GRAVEL WITH SAND AND SILT, TRACE CLAY, DAMP.	733.2	_ 2 _ ¹ _ 3 _	10 10 12	34	89	SS-1	-	18	31	17	24 1	0 N		NP	9	A-2-4 (0)	
FILL: VERY STIFF TO HARD, GRAY SILT AND CLAY, "AND" FINE GRAVEL, LITTLE COARSE TO FINE SAN DAMP TO WET.		46 5	5	18 7	67	SS-2	3.50	-	-	-				-	14	A-6a (V)	
		6 7 8															
		- 9 - 7 - 10 -	7 7 1	28	89	SS-3	4.00	-	-	-				-	26	A-6a (V)	
		11 12															
-ROCK FRAGMENTS PRESENT IN SS-4		- 13 - - 14 - 1 - 15 -	18 20 18	58 8	89	SS-4	4.50	37	10	10	23 2	0 2	9 17	12	16	A-6a (2)	
		- 16 - - 17 - - 18 -															
		- 19 - ⁷ - 20 -	7 9 8	26	89	SS-5	3.50	-	-	-				-	13	A-6a (V)	
		21 22															
		-23 -24 -1 -25 -25 -25	18 13 13		0	SS-6	-	-	-	-				-	-		
		26 27															
-BRICK AND CLAY TILE FRAGMENTS PRESENT IN	SS-7	- 28 - - 29 - 29	21 50/3"		100	SS-7	4.50	-	-	-				-	16	A-6a (V)	

PID	: 77372	BR ID:		N/A	F	PROJEC	T: _F	RA-70-′	12.68 -	PHASE 4	4A	ST	ATION	/ OFFSI	ET: _3	3001+	00.00 / 55	5.0 LT		STAR	T: <u>3</u> /	/21/18	5 EN	ID: _3	3/22/1	15 P	G 2 O	F3 B-1	09-1-15
		1	IATE	RIAL DE	SCRII	PTION				ELEV.		EPTH	10	SPT/	N		SAMPLE	HP	Ċ	RAD	ATIC)N (%	5)	ATT	ERB	ERG		ODOT	HOLE
				AND NO	-					706.2			13	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) SEALE
"AI DA DE	L: VERY ND" FINE MP TO W NSE, GR/ AY, MOIS	GRAVEI ET. <i>(sar</i> AY GRA	L, LITT ne as a	LÉ COA above)	ARSE	TO FINE	E SAN			704.2		-	- 31 - 32 - 33 -																
										700.7		-	34 - - 35 -	37 12 10	34	67	SS-8	-	-	-	-	-	-	-	-	-	7	A-1-b (V	
	RD, BRO TLE CLA		IDY SI	LT, SON	IE FIN	IE GRAV	VEL,			698.2		-	- 36 - 37 - 38 -	7 8 9	26	89	SS-9	4.5+	27	25	12	19	17	36	29	7	15	A-4a (0)	
SIL	RY DENS .T, TRACE	E CLAY,	MOIS	Τ.						695.7		-	- 38 - - 39 - - 40 -	8 10 28	58	89	SS-10	-	-	-	-	-	-	-	-	-	8	A-1-b (V)
VE FIN	RY DENS NE SAND,)				-	41 - - 42 -	33 50 50	153	89	SS-11	-	60	17	9	10	4	NP	NP	NP	5	A-1-a (0)
-F	ROCK FRA	GMEN	S PR	ESENT "	THRC	UGHOU	JT		00(-	- 43 - -	18															
-1	NTORDU			-					0 0 0 0 0	690.7		-	44 - - 45 - 	44 22	101	67	SS-12	-	-	-	-	-	-	-	-	-	4	A-1-a (V	
	RY DENS .T, TRACE				AND S	AND , LI ⁻	TTLE					-	46 - - 47 - 48 -	34 25 25	77	67	SS-13	-	-	-	-	-	-	-	-	-	10	A-1-b (V	
-(COBBLES	PRESE	NT TH	ROUGH	IOUT					685.7		-	48 - 49 - 50 -	18 32 37	106	67	SS-14	-	-	-	-	-	-	-	-	-	8	A-1-b (V)
VE FIN	RY DENS NE GRAVE ROCK FRA	EL, TRA	CE SIL	T, MOIS	ST.		, LITT	LE				-	- 51 - 52 -	36 50/6"	-	25	SS-15	-	-	-	-	-	-	-	-	-	15	A-3a (V	
VE	COBBLES	PRESE E, GRA	nt th Y gra	Rough Vel , Lit	IOUT	COARSI	E TO	INE		683.2		-	- 53 - -	-															
SA	ND, TRAC	E SILT,	TRAC	E CLAY	′, MO	ST.						-	54 - 56 - 57 -	22 23 18	63	89	SS-16	-	70	14	5	7	4	NP	NP	NP	8	A-1-a (0	
-(COBBLES	PRESE	NT TH	ROUGH	IOUT							-	57 - 58 - 59 -	18															
												-	60 - 	18 19 19	58	44	SS-17	-	-	-	-	-	-	-	-	-	7	A-1-a (V	
									<u>.</u>	674.2		-	61 - 	_															

AND NOTES 674.1 DEPINS RQD Neo (%) ID (isf) GR cs rs si ol. LL PL PI Wc CLASS DENSE, GRAY GRAVEL WITH SAND AND SILT, LITTLE Image: Class of the state o	DOT H SS (GI) SE					A T T	1	NI /0/		TAR				00.00 / 5					PROJECT: FRA-70-			
DENSE, GRAY GRAVEL WITH SAND AND SILT , LITTLE CLAY, DAMP. (same as above) HARD. GRAY SILTY CLAY . UITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST. HARD. GRAY SILTY CLAY . LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST. 669.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 664.2 665.2 666.2 667. 668. 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 669.2 667. 668. 669.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67.2 67		ODO CLASS	wc				·									N ₆₀	DEPTHS				MA	
HARD, GRAY SILTY CLAY, LITTLE COARSE TO FINE 669.2 68 67 68 69 68 68 69 14 49 89 SS-19 4.5+ - - - - - 20 A-6b 69 14 49 89 SS-19 4.5+ - - - - - 20 A-6b 70 18 49 89 SS-19 4.5+ - - - - - 20 A-6b 70 18 49 89 SS-19 4.5+ - - - - - 20 A-6b 71 72 72 72 72 72 73 74 72 73 74 72 73 74 17 17 17 19 14 8 9 A-4a 75 76 76 76 76 77 100 SS-20 4.5+ 17 17 14 8 9 A-4a 76 77		A-2-4														46	- 63 - - 64 - - 65 -			EL WITH SAND A	Y GRAVE . (same as	NSE, GRA AY, DAMP
HARD, GRAY SANDY SILT, LITTLE CLAY, LITTLE FINE 664.2 GRAVEL, DAMP. -72 -74 -22 -75 -76 -76 -77 -77 -77 -77 -77 -77 -77 -77 -77	b (V)	A-6b	20		-	-	-	-	-	-	-	5+) 4.	SS-19	89			669.2				
	a (2)	A-4a	9	8	14	22	19	27	15	22	17	5+) 4.	SS-20	100		- 72 - - 73 - - 74 -	664.2	LAY, LITTLE FINE	SILT, LITTLE CL	Í Sandy S Mp.	RD, GRAY AVEL, DAI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a (V)	A-4a	9	-	-	-	-	-	-	-	-	5+	4.	SS-21	100	-	- 77 - - 78 - - 79 - - 80 -					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a (V)	A-4a	9	-	-	-	-	-	-	-	-	5+	2 4.	SS-22) 89		- 82 - - 83 - - 84 -	651.2				
$\begin{bmatrix} -84 \\ -35 \\ 43 \end{bmatrix} \begin{bmatrix} 22 \\ 35 \\ 43 \end{bmatrix} \begin{bmatrix} 120 \\ 89 \end{bmatrix} SS-22 \begin{bmatrix} 4.5+ \\ -84 \end{bmatrix} - \begin{bmatrix} -5 \\ -84 \end{bmatrix} - \begin{bmatrix} -22 \\ -84 \end{bmatrix} = \begin{bmatrix} -22$	a (V)	A-4a	9	-	-	-	-	_	-	-	-	5+	2 4.	SS-22) 89		- 84 - 2	651.2				

Rii	PROJEC	T:)-12.68 - F RUCTURI	PHASE 4A E	DRILLING F SAMPLING			:		1	ILL RIG MMER:		BILE B-53 (AUTOMA		400)	ALIG	INMEN			BL I	RAMP	°С3	.0' LT		RATION ID 0-1-15
	PID:			ID:	N/A				3.25" HSA			LIBRAT			4/26/13				N:						5.0 ft.	PAGE 1 OF 3
	START:	3/21		END:	3/22/15	SAMPLING	METH		SPT			ERGY F			77.7			/ LON						.018276		1
		MAI		DESCR				ELEV. 740.3	DEPTHS		PT/		(%)	SAMPLE ID	HP (tsf)				DN (% si	CL	ATT LL	PL	PI	wc	ODOT CLASS (GI)	HOLE
0.7' - AS	SPHALT (8.0")		- NOTES			\times	739.6	L	_			(70)			OIX	00	10	01	0L						
	ONCRETE	,	')				XX		- 1																	
0.4' AC	GGREGAT			"\			\bigotimes	738.4	- 2	_																
					RAY SILT AN			100.0	- 3	_																
CLAY, S	SOME CO	ARSE	TO FIN		, TRACE FIN					6																
GRAVE	EL, DAMP ⁻	го мо	IST.						- 4		9 9	23	100	SS-1	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	
									_ 5	_	9															
									- 6																	
									- 7	_																
									- 8	_																
,									-	4																
									- 9		9 10	25	50	SS-2	4.5+	8	12	9	36	35	30	17	13	13	A-6a (8)	
									- 10	-	10															
									- 11	_																
									- 12																	
									- 13	_																
									-	2																
									— 14 —		10 17	35	100	SS-3	4.5+	-	-	-	-	-	-	-	-	22	A-6a (V)	
									- 15	-	17_															
									16	_																
									- 17	_																
									- 18	_																
									-	1																
									— 19 —		5 11	21	100	SS-4	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	
									20																	
									- 21																	
								718.3	- 22	_																
					OME COARS		\mathcal{U}		- 23	_																
	,		,		- ,		11			_	1															
							\mathcal{M}					67	0	SS-5	-	-	-	-	-	-	-	-	-	-		
							\mathcal{N}		25	17	18	-	100	2S-5A	4.5+	5	19	10	40	26	41	30	11	31	A-7-5 (7)	
								/	26	_																
			DA\/E1		E COARSE T		W	713.3	- 27	_																
SAND.	TRACE SI	LT, TR	ACE C	LAY, MC	DIST.		0			_																
2	K FRAGME									9																
			0L		- •		$b \cup ($		- 29		40 38	101	100	SS-6	-	-	-	-	-	-	-	-	-	4	A-1-a (V)	

PID:	<u>20-12.68 - PHASE 4A</u> ELEV.	STATION /		_		00.00 / 20. SAMPLE					21/15 N (%	-		3/22/1 ERB		G 2 O	
AND NOTES	710.3	DEPTHS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)		CS			<u> </u>			PI	wc	ODOT H CLASS (GI) SI
MEDIUM DENSE, GRAY GRAVEL AND SAND , LITTLE SILT, TRACE CLAY, MOIST.		- 31 - - 32 -		26	100	SS-7	-	-	-	-	-	-	-	-	-	9	A-1-b (V)
VERY DENSE, GRAY GRAVEL , LITTLE COARSE TO FINE SAND, TRACE SILT, TRACE CLAY, MOIST. -ROCK FRAGMENTS PRESENT IN SS-8		- 33 - - 34 - - 35 -	10 	-	75	SS-8	-	67	14	4	9	6	NP	NP	NP	5	A-1-a (0)
HARD, DARK BROWNISH GRAY TO BROWN SILTY CLAY, SOME COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP TO MOIST.		37	3 6 12	23	100	SS-9	4.00	-	-	-	-	-	-	-	-	27	A-6b (V)
	699.8	- 38 - - 39 - - 40 -	5 9 12	27	100	SS-10	4.25	4	12	18	42	24	39	23	16	18	A-6b (9)
YERY DENSE, BROWN TO GRAY GRAVEL , SOME COARSE TO FINE SAND, TRACE SILT, TRACE CLAY, 10IST.	0000	- 41 - 42 - 43 -	13 19 34	69	100	SS-11	-	-	-	-	-	-	-	-	-	6	A-1-a (V)
		- 44 - - 45 -	23	61	100	SS-12	-	56	22	7	10	5	NP	NP	NP	8	A-1-a (0)
		- 46 - - 47 - - 48 -	9 22 29	66	100	SS-13	-	-	-	-	-	-	-	-	-	8	A-1-a (V)
		- 49 - 50 	17 32 41	95	39	SS-14	-	-	-	-	-	-	-	-	-	5	A-1-a (V)
			15 16 24	52	100	SS-15	-	-	-	-	-	-	-	-	-	9	A-1-a (V)
		- 57 - - 58 -	17														
			17 18 21	51	100	SS-16	-	65	21	6	5	3	NP	NP	NP	5	A-1-a (0)
	678.3	— 61 — -															

NSE TO	ATERIAL DESCR			ELEV.										_					-			
				678.2	DE	EPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		ATIO FS	N (%)					wc	ODOT CLASS (GI)	HOLE
	TRACE FINE GRA	OARSE AND AVEL, TRACI	FINE E			- 63 -	_		(70)		(10.)											
TIOWE	- 1 . (Same as abov	(C)		•		- 64 - 65 -	7 8 13	27	100	SS-17	-	-	-	-	-	-	-	-	-	17	A-3a (V)	
						- 66 -	-															
				•		- 67 - - - 68 -	-															
				•		- 69 -	16 17 19	47	56	SS-18	-	-	-	-	-	-	-	-	-	26	A-3a (V)	
				•																		
				•		- 72 -																
				665.2		- 74 -	13 17	45	100	SS-19	-	8	40	30	16	6 1	NP	NP	NP	15	A-3a (0)	
					INSE TO DENSE, GRAY COARSE AND FINE LE SILT, TRACE FINE GRAVEL, TRACE T TO WET. (same as above) 665.3	665.3	- 73 - - 74 -	72 - 73 - 73 - 74 - 13 - 74 - 17 - 17 - 17 - 17 - 17 - 17 - 17	$\begin{array}{c} 72 \\ -73 \\ -74 \\ -74 \\ 17 \\ 17 \\ 18 \\ 45 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 1$	$\begin{array}{c} 72 \\ -73 \\ -74 \\ -74 \\ 17 \\ 17 \\ 18 \\ 19 \\ 10 \\ 18 \\ 10 \\ 10$	$\begin{array}{c} 72 \\ -73 \\ -74 \\ 17 \\ 17 \\ 18 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 10 \\ 19 \\ 10 \\ 10$	$\begin{array}{c} 72 \\ -73 \\ -74 \\ 17 \\ 17 \\ 18 \end{array}$	$\begin{array}{c} 72 \\ -73 \\ -74 \\ $	$\begin{array}{c} 72 \\ -73 \\ -74 \\ -74 \\ 17 \\ 17 \\ 18 \\ 45 \\ 100 \\ 8 \\ -8 \\ -8 \\ 40 \\ -8 \\ 40 \\ -8 \\ 40 \\ -74 \\ -$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 72 \\ -73 \\ -74 \\ 17 \\ 17 \\ 18 \end{array}$ $\begin{array}{c} 74 \\ -74 \\ 17 \\ 18 \end{array}$ $\begin{array}{c} 74 \\ -74 \\ 17 \\ 18 \end{array}$ $\begin{array}{c} 13 \\ 17 \\ 18 \end{array}$ $\begin{array}{c} 45 \\ 100 \\ SS \\ -19 \end{array}$ $\begin{array}{c} 8 \\ 40 \\ 30 \\ 16 \\ 6 \\ NP \\ NP \\ NP \\ NP \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 18 \\ 18$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 53.5'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 188 LBS CEMENT / 50 LBS BENTONITE CHIPS / 40 GAL WATER

Client:	: ms c	onsu	Itants	6			Project: FRA-70-8.93							J	ob No. 0	221-1	004.01	
LOG	DF: Bo	oring	B-1 1	11-0-0	9	Lo	cation: Sta. 3008+11.91, 4.6' RT., BL RAMP C3			Da	ate	Drill	led:	: 9/1/2	009			
Depth (ft)	Elev. (ft) 734.9	Blows per 6"	Recovery	Sam, No		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: None Water level at completion: None FIELD NOTES: DESCRIPTION	Graphic Log	% Aggregate	C. Sand	M. Sand	L.	Sit	lay ≥ S	TANDARI atural Mo PL ⊢ pws per foo 10	isture	Conter	nt, % - ● ⊣ LL
1.0	733.9	-					Asphalt Concrete - 6" Aggregate Base - 6"		X									
- 3.5 ⁻	731.4	9 11 12	8	1			POSSIBLE FILL: Medium dense brown GRAVEL WITH SAND, SILT, AND CLAY (A-2-6); damp.											
		8 11 11	12	2		4.5+	Very stiff to hard gray SANDY SILT (A-4a), some fine to coarse sand, trace to little gravel; damp.											
-	-	2 7 8	18	3		1.5	@ 6.0'-7.5', stiff.		13	10		17	33 2	27				
 10	-	2 5 5	18	4		3.0) 		
-	-	4 7 8	18	5		4.5+												
- 15	-	4 14 19	18	6			@ 13.5', becomes brown.		11	13		19	40 1	17 	 ♥ ++ ♥ ++ 		 	 N
16.0	718.9	4 37 50/5	9	7			Very dense brown GRAVEL WITH SAND (A-1-b), little silt; damp.	0 0 0									 	 5 0
18.5 - <u>20</u>		12 50/5	5	8			Very dense brown SANDY SILT (A-4a), little to some gravel; damp.		<u></u>									 50
21.0 22.5 [–]	713.9	17 8 30	12	9		3.0	Very stiff brown SILTY AND CLAY (A-6a), some fine to coarse sand, trace gravel; moist.		8	8		26	27 3			 	 	
- 24.0	710.9	48 50/5	10	10			Very dense gray GRAVEL WITH SAND (A-1-b), little silt; damp.	0	50	22		12	16	6 \\\ 				
	709.9	15 9		11		3.75	Stiff to very stiff gray SANDY SILT (A-4a); damp.		26	19		18	20 1					

DLZ Ohio, Inc.	* 6121 Huntley Road	, Columbus, Ohio 43229 [°]	(614) 888-0040
----------------	---------------------	-------------------------------------	----------------

Client	mer	oneu	Itanto	,			<i>Project:</i> FRA-70-8.93) 888-(Job No.	1221 1	004 01	
LOG					a	10	<i>cation:</i> Sta. 3008+11.91, 4.6' RT., BL RAMP C3			ח	ata	Dri	مما	1· Q/·	1/2009	JZZ I-I	004.01	
LUGU		oring	D -11	Sam	ple		WATER OBSERVATIONS:				RAD				1/2009			
Depth (ft)	Elev. (ft)	s per 6"	very	No	Core	Hand Penetro- meter	Water seepage at: None Water level at completion: None FIELD NOTES:	Graphic Log	% Aggregate	Sand	Sand	Sand		Ą	STANDAF Natural N			, % - 🔍
	709.9	Blows	Recovery	Drive	Press / ((tsf)	DESCRIPTION	Grapł	% Aq		~ . % M.	% F.	% Silt	% Clay	PL ⊢ Blows per f 10	oot - () 20	/ Non-Pla 30	<i>LL</i> stic - NP 40
-	-	10 10 11 10	10	12		3.75	Stiff to very stiff gray SANDY SILT (A-4a), some fine to coarse sand, little gravel; damp.		13	3 1:	2		30		· · · · · · · · · · · · · · · · · · ·			
-		11 9 8	3	13		1.5	@ 25.5'-27.0', contains rock fragments.											
- 30.0 30	704.9	ັ5 9	18	14		1.5												
- - 3 <u>5</u> - - 4 <u>0</u> - - 4 <u>5</u> - - - - 50							Bottom of Boring - 30.0'											

ROJECT: I-70/I-71 EAST INTERCHANGE DRILLING FIRM / C YPE: ROADWAY SAMPLING FIRM /			DRILL RIC		CME 75 TH ME AUTOI					/ OFF			ON S	TREE	ET	EXPLOR B-278	8-0-10
ID:77370BR ID:DRILLING METHON TART:7/24/10END:7/24/10SAMPLING METHO		.25" HSA SPT	CALIBRAT			1/7/10 79		ELE\ COO		ON: _					1 187.9	5.0 ft. 30 E	PA(1 O
MATERIAL DESCRIPTION AND NOTES	ELEV. 757.7	DEPTHS	SPT/ RQD N ₆₀	REC (%)	SAMPLE ID	HP (tsf)				DN (% si) CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI)	BA FI
Asphalt - 6" Concrete - 8" Base - 8"	755.9	1															
Stiff brown SILT AND CLAY (A-6a), some fine to coarse sand, race gravel; moist.	754.7	- 2 -	2 5 2	89	SS-1	-	9	11	14	27	39	27	16	11	23	A-6a (7)	4 E 432
Medium stiff to stiff brown SANDY SILT (A-4a), some to "and" ine to coarse sand, little gravel; damp to moist.			⁴ 2 5 2	17	SS-2	-	19	21	14	26	20	22	16	6	15	A-4a (2)	
		- 5 - - - 6 -	4 5 16 7	100	SS-3	1.25	18	15	17	31	19	23	16	7	13	A-4a (3)	
		- 7 -	5 9 18 5	83	SS-4	1.50	13	18	19	31	19	23	16	7	16	A-4a (3)	LAX LA
	748.7	- 9 -	3 3 3	22	SS-5	0.50	-	-	-	-	-	-	-	-	15	A-4a (V)	
Loose brown SANDY SILT (A-4a), some fine to coarse sand, ittle gravel; moist.		10	WOH 1 9 6	39	SS-6	-	-	-	-	-	-	-	-	-	13	A-4a (V)	
Dense brown GRAVEL WITH SAND (A-1-b), "and" fine to coarse sand, trace silt; damp.	746.7	- 11 - - - 12 -	10 12 13	61	SS-7	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	_9442 _73 >
			11 14 40 16	89	SS-8	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	

STANDARD ODOT SOIL BORING LOG (8.5 X 11) -

NOTES: NO SEEPAGE OR FINAL WATER LEVELS DETECTED. ABANDONMENT METHODS, MATERIALS, QUANTITIES: 0.2 BAG ASPHALT PATCH; 0.2 BAGS BENTONITE CHIPS; SOIL CUTTINGS

YPE: ROADWAY	DRILLING FIRM / OPER SAMPLING FIRM / LOG						CME 75 TH			STA ^T ALIG		/ OFI				TDEE	-т	EXPLOR B-27	
ID: 77370 BR ID:	DRILLING METHOD:		3.25" HSA		BRAT			1/7/10				DN:						1.5 ft.	PA
TART: <u>7/24/10</u> END: <u>7/24/10</u>	SAMPLING METHOD:		SPT		RGY F			79		coo		_					520.4		10
MATERIAL DESCRIPT	ION	ELEV.	I DEPTHS I	SPT/	N ₆₀		SAMPLE			-	-)N (%	,	ATT		-		ODOT CLASS (GI)	BA
Asphalt - 4"		769.3		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	F
Granite Pavers - 6" Base - 5"		768.0		-50/3"		<u>_100</u> _	SS-1		41	32	14	- 1	3 -	NP	NP	NP	14	A-1-b (0)	-
POSSIBLE FILL: Medium stiff to stiff brown		-	- 2 -	<u>••••</u>														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XXX 147 149
some fine to coarse sand, trace to little grav	vel; moist.	-		2															-72 -72
		765.3	- 3 -	2 2	7	100	SS-2	1.00	10	10	16	25	39	41	18	23	24	A-7-6 (11) /
POSSIBLE FILL: Medium stiff brown SILT	AND CLAY (A-6a),	705.5	- 4 -	2															
ome fine to coarse sand, trace gravel; moi	st.	763.8	- 5 -	4 6	13	78	SS-3	0.75	9	14	17	33	27	29	16	13	18	A-6a (6)	
Stiff brown SANDY SILT (A-4a), some to "a and, little gravel; damp to moist.	nd" fine to coarse		6 –	2 4	11	100	SS-4	1.50	20	14	17	30	19	25	15	10	13	A-4a (3)	1
			- 7 -	4		100	00 4	1.00	20			00	10	20			10	/(44 (0)	2
			- 8 -	4 5	14	100	SS-5	1.25	-	-	-	-	-	-	-	-	19	A-4a (V)	4a ~~>
				6 4															and the
			- 9 -	5 9	18	89	SS-6	1.25	-	-	-	-	-	-	-	-	12	A-4a (V)	AND
			- 10 -	10															
		757.8	EOB - 11 -	10 8	24	78	SS-7	1.00	-	-	-	-	-	-	-	-	15	A-4a (V)	N 98

PROJEC	T:F	RA-70-12.6 STRUC	08 - PHASE 4A TURE		ING FIRM / OPERATOF LING FIRM / LOGGER:	-		LL RIG MMER:	-	CME-750 (SI CME AUTO		,	STAT		OFFSE	ET: _		7+07.4 RAMP	46 / 0.: A5	5' RT	EXPLOF B-10	
PID:	77372	BR ID:	N/A		ING METHOD:	3.25" HSA		IBRAT			/26/13				N: 7	719.8				4	- 5.0 ft.	P/
START:	6/4/1				LING METHOD:	SPT		ERGY F			82.6		LAT /							014631		1 (
-			SCRIPTION		ELEV.		SPT/			SAMPLE			GRAD/		_		ATTE					BA
		AND NO			719.8		RQD	N ₆₀	(%)	ID	(tsf)	GR		FS	SI			PL		wc	ODOT CLASS (GI)	F
0.3' - TOPSOIL (4	4 0")	/			/19.8				(,0)	10	((0))	0.1			0.	02						\mathbb{X}
FILL: STIFF TO V SOME COARSE DAMP.	ERY ST						¹ 5 6	15	67	SS-1	4.00	-	-	-	-	-	-	-	-	13	A-6a (V)	
-SULFATE CON	CENTRA	TION AT	1.0' = 33 PPN	1		- 3																
						- 4 - 4	35	11	44	SS-2	1.50	8	14	19	40	19	33	21	12	13	A-6a (6)	
						- 6 - 6 - 7 -	9 4 4	11	50	SS-3	-	-	-	-	-	-	-	-	-	15	A-6a (V)	
ILL: LOOSE, BR					711.8	- 8																\mathbb{N}
RACE CLAY, MO -PETROLEUM C	OIST.					- 9 3 - 10	3 4 3	10	44	SS-4	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	
OOSE TO MEDI AND, LITTLE SI				AND		- 11	3 4	11	44	SS-5	_	50	19	9	16	6	NP	NP	NP	11	A-1-b (0)	Ň
						- 12 - - 13 -	4							-		-						
						- 14 ³ 15	3 2 2	6	50	SS-6	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	
						- 16	4	12	33	SS-7	-	-	_	-	_	-	_	_	-	8	A-1-b (V)	
					×⊖	18	5														. ,	
ERY STIFF, DA		Y SILTY (CLAY, SOME (COARSE		19			63	ST-8	2.50	0	1	22	44	33	40	17	23	20	A-6b (13)	
						_ 20 _ _ 21 _										-	-		-	-		
ENSE TO VERY					697.8	22 23																
						24 25	15 16	43	67	SS-9	-	-	-	-	-	-	-	-	-	7	A-2-4 (V)	
-INTRODUCED	WATER	@ 26.0'				26																
						27 - 28																
						29	15 26 29	76	33	SS-10	-	40	18	12	20	10	NP	NP	NP	7	A-2-4 (0)	Ň

AND NOTES	RIPTION	ELEV.	DEPTHS	SP1/	N		SAMPLE				ATION	(%)	ATT	ERB	ERG		ODOT BA
		689.8		SPT/ RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS S	CL	LL	PL	PI	WC	CLASS (GI) F
DENSE TO VERY DENSE, BROWNISH NITH SAND AND SILT , TRACE CLAY, <i>'same as above)</i>	H GRAY GRAVEL MOIST TO WET.			31 — 32 — 33 —													
			- 3	$\begin{array}{c} 33 \\ 34 \\ 35 \\ - \end{array} \begin{array}{c} 35 \\ 35 \\ - \end{array}$	109	72	SS-11	-	-	-		-	-	-	-	8	A-2-4 (V)
-COBBLES PRESENT THROUGHOU	T		- 3	36 — 37 — 38 —													
-ONE ROCK RECOVERED FROM BC SS-12	TTOM OF SHOE IN		-	39 - 9 16 40 - 15	43	6	SS-12 3S-12A	-	-	-			-	-	-	0	A-2-4 (V)
			- - 2	41 — 42 — -	-		35-12A	_	-	-			-	-	-	-	
		0 0 0 674.8	- 	43 — 44 — ⁷ 14 45 — 17	43	61	SS-13	-	-	-		-	-	-	-	10	A-2-4 (V)

ſ	PROJEC		RA-70-12.68 - STRUCTUR			FIRM / OPERATOR	-	/ S.M. ' S.B.	_	_L RIG: 1MER:		CME-750 (SI CME AUTO		,	STAT		OFFSE T:	T:		+89.52 AMP /		5' LT		RATION II 05-1-13
	PID:	77372	BR ID:	N/A	DRILLING		3.25" HS			IBRATI			4/26/13		ELEV			16.0				4	9.8 ft.	PAGE
	START:	6/4/13	3 END:	6/4/13	SAMPLING		SPT		ENE	RGY R			82.6		LAT /		_					014730	556	1 OF 2
		MATE	RIAL DESCR			ELEV.	DEPT		SPT/	N ₆₀		SAMPLE			GRADA		· · · ·			RBE	-		ODOT CLASS (GI)	BACK
-	0.6' - TOPSOIL (7 ()")	AND NOTE:	S		716.0			RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
	FILL: STIFF TO H AND CLAY, SOMI GRAVEL, DRY TO	IARD, BF E COAR	SE TO FINE	ARK BROWN SAND, LITTL	I SILT .e fine	715.4		- 1	86	19	50	SS-1	4.50	-	-	-	-	-	-	-	-	7	A-6a (V)	
	-ASPHALT FRA	GMENTS	PRESENT	IN SS-2				- 3 - - - 4 - ³	³ 2 3	7	56	SS-2	2.75	15	11	16	39	19	36	21	15	18	A-6a (7)	
									3	8	56	SS-3	1.75	-	-	-	-	-	-	-	-	24	A-6a (V)	
GPJ	FILL: LOOSE, BR MOIST.	OWN G	RAVEL AND	SAND, TRAC	E SILT,	708.0		- 8 - - 9 -	3 3 3	7	33	SS-4					_			_		8	A-1-b (V)	
N-13-045.G	STIFF, DARK GR				"AND"	¢.0 ¢.0 705.5		- - 10 - - 11 - 2	2	'	55		-			-	-	-	-	-	-	0	73-1-0 (V)	
ECTS/2013/	SILT, TRACE CO	AROE II		, 10101.				- 12 13	2 2	6	50	SS-5	1.25	-	-	-	-	-	-	-	-	24	A-7-6 (V)	
U:\GI8\PROJE	-ROOT FIBERS	PRESEN	NT IN SS-6					- 14 - 1 - 15	3 4	10	61	SS-6	2.00	-	-	-	-	-	-	-	-	30	A-7-6 (V)	
4/15 17:35 - 1	-CONSOLIDATIO -TRIAXIAL COM	PRESSI	ON TEST PE	RFORMED (-	698.0		- 16 - - 17 - - 18 -			96	ST-7	2.00	0	1	8	46	45	48	22	26	24	A-7-6 (16	
01.GDI - 3/1	STIFF, BROWN S FINE SAND, TRA				ТО			- 19 - ² - 20 -	2 4 4	11	61	SS-8	1.25	-	-	-	-	-	-	-	-	15	A-6a (V)	
ID - OH DOT	-COBBLES PRE		·		SII T	694.0		21 22																
NE BRIDGE	TRACE CLAY, DA				VIL I ,			- 23 - - 23 - - 24 - ⁶) 24	67	78	SS-9	_	34	29	10	19	8	NP	NP I	NP	7	A-2-4 (0)	
BORING LOG-RIL	DENSE TO VERY	DENSE) GRAY GRA	WEL			25 26 27	25															
2014 ODOT B	SOME COARSE CLAY, MOIST. -HEAVING SANI -INTRODUCED	TO FINE	SAND, LITT	LE SILT, TRA			W	- 28 - - 29 -	3 16 14	41	61	SS-10	-	_	-	-	-	-	-	-	-	10	A-1-a (V)	

PID: <u>77372</u> BR ID: <u>N/A</u> PROJE	ECT: FRA-70-12.68 - I	PHASE 4	IA	STATION	/ OFFSI	ET: _	5008+	89.52 / 6.	5 LT	5	STAR	T: <u>6</u> /	/4/13	END	D: _6	6/4/13	P	G 2 OI	E 2 B-10)5-1-13
MATERIAL DESCRIPTION		ELEV.	וח	EPTHS	SPT/	N ₆₀		SAMPLE					N (%)			ERBE			ODOT CLASS (GI)	BACI
AND NOTES		686.0			RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
DENSE TO VERY DENSE, BROWN TO GRAY SOME COARSE TO FINE SAND, LITTLE SILT CLAY, MOIST. <i>(same as above)</i>	, TRACE			- 31 - - 32 - - 33 -																
					22 25 30	76	50	SS-11	-	-	-	-	-	-	-	-	-	12	A-1-a (V)	
				36 36 37 38																
				39 - 40 -	14 12 18	41	50	SS-12	-	51	23	12	11	3	NP	NP	NP	14	A-1-a (0)	
				- 41 - - 42 - - 43 -	-															
				- 44 - - 45 -	15 16 14	41	50	SS-13	-	-	-	-	-	-	-	-	-	14	A-1-a (V)	
HARD, GRAY SILT AND CLAY , LITTLE COARS SAND, TRACE FINE GRAVEL, DAMP.	SE TO FINE	669.0		- 46 - - 47 - - 48 -																
		666.3	—EOI	49 - 	19 47 50/3"	-	80	SS-14	4.50	-	-	-	-	-	-	-	-	10	A-6a (V)	
NOTES: GROUNDWATER INITIALLY ENCOUNTERE																				

APPENDIX IV

LABORATORY TEST RESULTS

RESOURCE INTERNATIONAL, INC. Engineering Consultants

RESOURCE

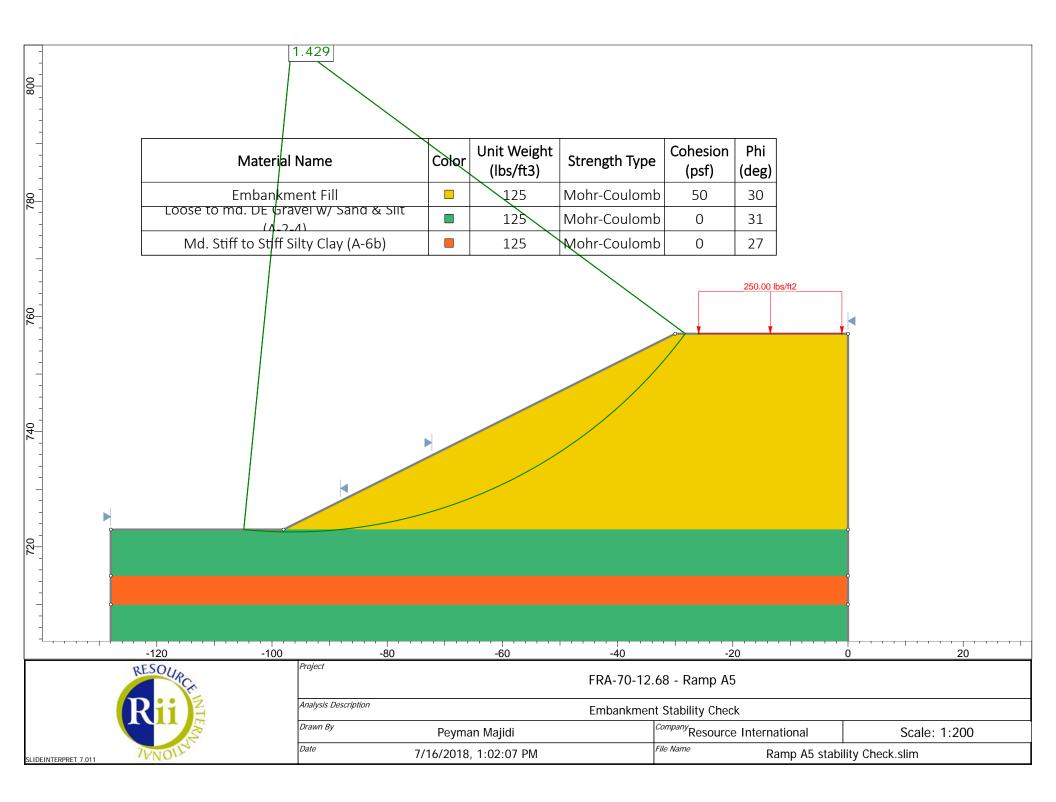
6350 Presidential Gatew. 988 Columbus, OH 43231 Cle

Phone (614) 823-4949

9885 Rockside Road Cleveland, OH 44125 Phone (216) 573-0955 4480 Lake Forest Drive Cincinnati, Ohio 45242 Phone (513) 769-6998

DETERMINING SULFATE CONTENT IN SOILS - COLORIMETRIC METHOD

TxDOT Tex-145-E


Project Name:	FRA-70-12.68	Laboratory Technician:	E.M.
Project No.:	W-13-045	Test Date:	March 10, 2015

Laboratory Data

Coil Comple	Station	Donth	Soaking	Dilution	Replica	ate Sample R	eadings	Average	Sulfate Content
Soil Sample	Station	Depth	Time	Ratio	1	2	3	Reading	(ppm)
B-011-0-09		1	24	20	20	26	21	22.33	447
B-013-0-09		1	24	20	3	4	4	3.67	73
B-024-1-13		1.7	24	20	77	70	70	72.33	1447
B-025-0-08		2	24	20	8	8	11	9.00	180
B-027-0-08		2.0	24	20	11	9	11	10.33	207
B-028-0-08		1.0	24	20	26	23	25	24.67	493
B-029-0-08		2.0	24	20	3	4	5	4.00	80
B-032-2-15		6.0	24	20	47	45	44	45.33	907
B-099-0-09		0.2	24	20	4	2	3	3.00	60
B-102-0-09		0.2	24	20	3	3	1	2.33	47
B-102-1-13		0.2	24	20	3	1	1	1.67	33
B-105-1-13		0.2	24	20	3	4	5	4.00	80
B-111-0-09		1.5	24	40	52	53	50	51.67	2067
B-278-0-10		1.5	24	20	36	37	41	38.00	760
B-279-0-10		1.5	24	20	9	11	14	11.33	227
B-280-0-10		1.6	24	20	27	28	33	29.33	587

APPENDIX V

EMBANKMENT SETTLEMENT CALCULATIONS AND SLOPE STABILITY ANALYSIS OUTPUTS

FRA-70-12.68 Ramp A5 - Station 5015+96.5 (Boring B-108-9-15)

W-13-045 - FRA-70-12.68

Settlement Analysis - Sta. 5015+96.5, Ramp A5 (Boring log B-108-9-15)

Proposed G	Ground S	urface Ele	evation @ 756.14 ft msl	
γ =	125	pcf	(Regular Embankment Fill)	
H =	34.0	ft	Future embankment height equal to average of lower full	width height and profile grade.
B ₁ =	15.0	ft	Width equal to the largest footing width of the existing for	undations
B ₂ =	68.0	ft		
D _w =	7.3	ft	Depth below ground surface in boring B-108-9-15	100-year flood = 715.1
$q_0 = \gamma H =$	4,250	psf		

Layer	Soil Type	Soil Type	Layer (f	•	_	vation msl)	Layer Thickness (ft)	Depth to Midpoint, z (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	α ₁ ⁽⁷⁾	α ₂ ⁽⁸⁾	l ⁽⁹⁾	Δσ _v ⁽¹⁰⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(11,12) (ft)	S _c (in)
1	A-2-4	G	0.0	4.0	722.4	718.4	4.0	2.0	125	500	250	250	3,250					21	36	116	0.108	1.438	1.000	4,250	4,500	0.043	0.520
1	A-2-4	G	4.0	8.0	718.4	714.4	4.0	6.0	125	1,000	750	750	3,750					12	16	66	0.308	1.190	0.997	4,239	4,989	0.050	0.596
2	A-6b	С	8.0	10.5	714.4	711.9	2.5	9.3	120	1,300	1,150	1,028	4,028	37	0.243	0.036	0.561				0.442	1.018	0.991	4,213	5,242	0.079	0.949
2	A-6b	С	10.5	13.0	711.9	709.4	2.5	11.8	120	1,600	1,450	1,172	4,172	37	0.243	0.036	0.561				0.524	0.906	0.984	4,182	5,354	0.074	0.892
3	A-1-b	G	13.0	15.5	709.4	706.9	2.5	14.3	125	1,913	1,756	1,323	4,323					19	22	78	0.590	0.811	0.975	4,142	5,465	0.020	0.237
4	A-4a	С	15.5	18.0	706.9	704.4	2.5	16.8	120	2,213	2,063	1,473	4,473	35	0.225	0.023	0.546				0.641	0.730	0.963	4,094	5,567	0.052	0.626
5	A-6b	С	18.0	20.5	704.4	701.9	2.5	19.3	120	2,513	2,363	1,617	4,617	37	0.243	0.024	0.561				0.681	0.662	0.951	4,040	5,657	0.052	0.625
6	A-1-b	G	20.5	25.5	701.9	696.9	5.0	23.0	130	3,163	2,838	1,858	4,858					28	29	95	0.723	0.578	0.929	3,950	5,808	0.026	0.311
0	A-1-b	G	25.5	32.0	696.9	690.4	6.5	28.8	130	4,008	3,585	2,247	5,247					31	30	98	0.756	0.481	0.894	3,799	6,046	0.028	0.341
7	A-1-a	G	32.0	52.0	690.4	670.4	20.0	42.0	130	6,608	5,308	3,142	6,142					40	34	111	0.759	0.343	0.808	3,436	6,578	0.058	0.695
8	A-2-6	G	52.0	57.0	670.4	665.4	5.0	54.5	130	7,258	6,933	3,987	6,987					31	24	83	0.721	0.269	0.731	3,108	7,096	0.015	0.181
9	A-4a	С	57.0	62.0	665.4	660.4	5.0	59.5	125	7,883	7,570	4,313	7,313	18	0.072	0.007	0.413				0.702	0.247	0.703	2,986	7,299	0.006	0.070
10	A-3a	G	62.0	67.0	660.4	655.4	5.0	64.5	125	8,508	8,195	4,626	7,626					22	16	60	0.682	0.228	0.675	2,869	7,495	0.017	0.209

1. $\sigma_p' = \sigma_{vo}' + \sigma_{m}$; Estimate σ_m of 2,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

2. $C_c = 0.009(LL-10)$; Ref. Table 26, FHWA GEC 5

3. C_r = 0.15(C_c) for medium stiff to stiff natural soil deposits and existing fill material and 0.075(C_c) for very stiff to hard natural soil deposits; Ref. Section 5.4.2.5 of FHWA GEC 5

4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

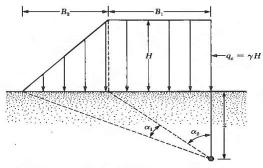
5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77 \log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. $\alpha_1 = \tan^{-1} (B_1 + B_2/z) - \tan^{-1} (B_1/z)$

8. $\alpha_2 = \tan^{-1}(B_1/z)$

9. Influence factor for embankment loading (I) = $[(B_1+B_2/B_2)^*(\alpha_1+\alpha_2)-B_1/B_2^*(\alpha_2)]/\pi$


10. $\Delta \sigma_v = q_0(I)$

11. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{vo})$ for $\sigma_p' \le \sigma_{vo}' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo})$ for $\sigma_{vo}' < \sigma_{vf}' \le \sigma_p$; $[Cr/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}) + [C_c/(1+e_o)](H)\log(\sigma_{vf}/\sigma_{p'})$ for $\sigma_{vo}' < \sigma_{p'} < \sigma_{vf}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)

12. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By:	PPM	Date: 7/16/2018
Checked By:	JPS	Date: 7/16/2018

▼ FIGURE 4.11 Embankment loading

APPENDIX VI

GB1 SUBGRADE STABILIZATION SUMMARY

PID:105523Alignment:I-70 EB; I-71 NB; Ramp A5; Ramp C3County-Route-Section:FRA-70No. of Borings:7No. of Rigs:3

Geotechnical Consultant: Resource International, inc Prepared By: peyman p

Date prepared:

peyman p. majidi 7/16/2018

Rig	А	В	С											
ER	78	83	92											

	Chemical Stabilization Option	ıs
320	Rubblize & Roll	Option
206	Cement Stabilization	Option
	Lime Stabilization	No
206	Depth	NA

Excavate and Replace Stabilization													
Options													
Global Geotextile (N _{60L} , HP)	0", 0"												
Global Geogrid (N _{60L} , HP)	N/A, N/A												

	% Borings														
N _{60L} ≤ 5	0%	HP ≤ 0.5	0%												
N _{60L} < 12	11%	0.5 ≤ HP < 1	0%												
12 ≤ N _{60L} < 15	0%	1 ≤ HP < 2	15%												
N _{60L} ≥ 20	4%	HP ≥ 2	22%												
M+	0%														
Rock	0%														
Unsuitable	0%														

Excavate and Repla at Surface	ice
Average	18"
Maximum	18"
Minimum	18"

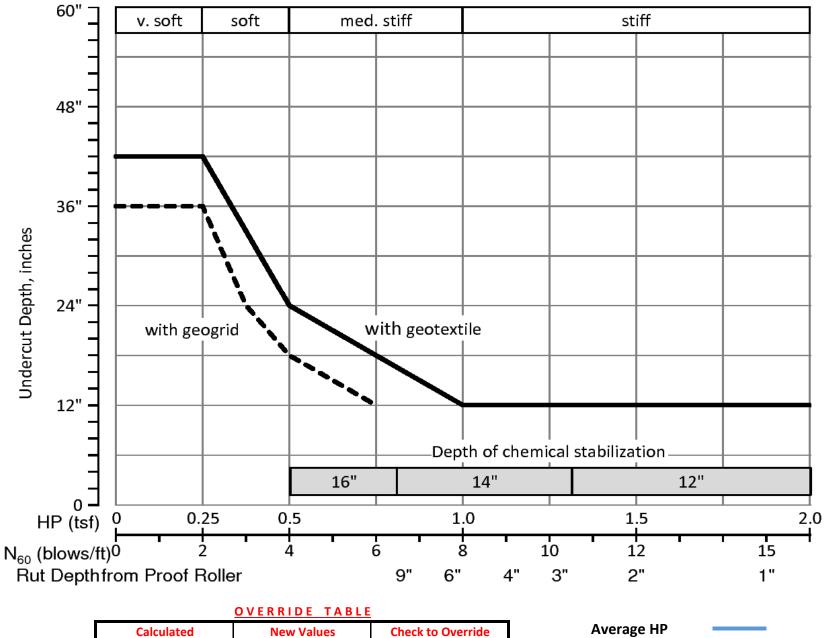
% Surface	
Unstable & Unsuitable	0%
Unstable	14%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	25	16	2.74	27	18	10	29	14	43	13	11	5
Maximum	65	30	4.50	33	21	16	81	27	97	26	16	10
Minimum	6	10	1.20	20	16	3	7	3	13	5	6	0

					Class	ificat	ion C	ount	s by	Sam	ple								
ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-														A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count		2	7	3	0	2	0	0	0	0	2	0	11	0	0	0	0	0	27
Percent		7%	26%	11%	0%	7%	0%	0%	0%	0%	7%	0%	41%	0%	0%	0%	0%	0%	100%
% Rock Cohesive Granular	0%					52%								48	3%				100%
Surface Class Count	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Surface Class Percent																			0%

Ohio Department of **Transportation**

Subgrade Analysis


V. 14.00

7/21/2017

#	Boring ID	Station	Offset	Dir	Boring EL.	Proposed Subgrade EL	Cut Fill	Rig	#	Boring ID	Station	Offset	Dir	Boring EL.	Proposed Subgrade EL	Cut Fill	Rig
1	B-013-1-15	127+00.3	45	Lt.	725.90	725.90	0.00 F	А									
2	B-017-7-13	170+79.4	23.3	Rt.	743.10	744.50	1.40 F	А									
3	B-026-2-13	5089+73.78	16.5	Rt.	736.80	736.80	0.00 F	А									
4	B-015-6-13	5050+28.85	20.8'	Lt.	723.00	724.50	1.50 F	В									
5	B-102-1-13	5007+7.5	0.5'	RT	719.80	717.00	2.80 C	В									
6	B-109-1-15	3001+00	55	Lt.	736.20	734.00	2.20 C	С									
7	B-110-1-15	3005+00	20	Lt.	740.30	742.00	1.70 F	А									

#	Boring	Sample	Sam De	•	Subg De			dard ration	НР		Ph	ysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item		Recommendation
#			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	Recommendation
1	В	1	1.0	2.5	1.0	2.5	38		4.5							8	14	A-6a	10						
	013-1	2	3.5	5.0	3.5	5.0	40			NP	NP	NP	12	7	19	7	6	A-1-b	0						
	15	3	6.0	7.5	6.0	7.5	34									7	6	A-1-b							
		4	8.5	10.0	8.5	10.0	40	30								8	6	A-1-b							
2	В	1	1.4	2.9	2.8	4.3	14			NP	NP	NP	10	3	13	7	6	A-1-a	0						
	017-7	2	3.5	5.0	4.9	6.4	10		3							13	14	A-6a	10						
	13	3	6.0	7.5	7.4	8.9	26		2							12	14	A-6a							
		4	8.5	10.0	9.9	11.4	65	10								5	6	A-1-a							
3	В	1	1.3	2.7	1.3	2.7	18			20	16	4	15	6	21	7	6	A-1-b	0						
	026-2	2	3.5	5.0	3.5	5.0	34									7	6	A-1-b	0						
	13	3	6.0	7.5	6.0	7.5	16			26	17	9	18	7	25	10	10	A-2-4							
		4	8.5	10.0	8.5	10.0	43	16								6	10	A-2-4							
4	В	1	1.0	2.5	2.5	4.0	19									8	6	A-1-b	0						
	015-6	2	3.5	5.0	5.0	6.5	19			33	17	16	7	19	26	16	10	A-2-6	1						
	13	3	6.0	7.5	7.5	9.0	33									15	10	A-2-6							
		4	8.5	10.0	10.0	11.5	6	19	1.5	29	16	13	16	27	43	17	14	A-6a							
5	В	1	1.0	2.5	-1.8	-0.3	15		4							13	14	A-6a	10	33					Geotextile Option:
	102-1	2	3.5	5.0	0.7	2.2	11		1.5	33	21	12	40	19	59	13	16	A-6a	6			HP		18''	18"
	13	3	6.0	7.5	3.2	4.7	11	1								15	14	A-6a	10						
		4	8.5	10.0	5.7	7.2	10	10								7	6	A-1-b							
6	В	1	1.5	3.0	-0.7	0.8	34			NP	NP	NP	24	10	34	9	10	A-2-4	0						
	109-1	2	3.5	5.0	1.3	2.8	18]	3.5							14	14	A-6a	10						
	15	3	8.5	10.0	6.3	7.8	28	1	4							26	14	A-6a							
	-	4	13.5	15.0	11.3	12.8	58	18	4.5	29	17	12	23	20	43	16	14	A-6a							
7	В	1	1.5	3.0	3.2	4.7	16			NP	NP	NP	81	12	93	22	11	A-4b	8						
	110-1	2	3.0	4.5	4.7	6.2	11]		22	19	3	72	25	97	21	14	A-4b	8						
	15	3	4.5	6.0	6.2	7.7	8	1	1.7							22	14	A-6a							
	10	4	6.0	7.5	7.7	9.2	13	11	1.7							20	14	A-6a							

Calculated	New Values	Check to Override
2.74	0.50	НР
16.29	3.00	N60L

 Average HP

 Average N_{60L}

OHIO DEPARTMENT OF TRANSPORTATION

PID:Alignment:Livingston Ave.; Fulton St.County-Route-Section:FRA-70No. of Borings:4No. of Rigs:2

Geotechnical Consultant: Resource International, Inc.

Prepared By: Date prepared: Peyman P. Majidi 7/16/2018

Rig	А	В												
ER	83	79												

Chemical Stabilization Options								
320	Rubblize & Roll	No						
206	Cement Stabilization	Option						
	Lime Stabilization	No						
206	Depth	12"						

Excavate and Replace Stabilization								
Options								
Global Geotextile (N _{60L} , HP)	18", 12"							
Global Geogrid (N _{60L} , HP)	12", N/A							

% Borings							
N _{60L} ≤ 5	6%	HP ≤ 0.5	6%				
N _{60L} < 12	25%	0.5 ≤ HP < 1	13%				
12 ≤ N _{60L} < 15	0%	1 ≤ HP < 2	44%				
N _{60L} ≥ 20	0%	HP ≥ 2	0%				
M+	19%						
Rock	19%						
Unsuitable	19%						

Excavate and Replace at Surface						
Average	23"					
Maximum	30"					
Minimum	15"					

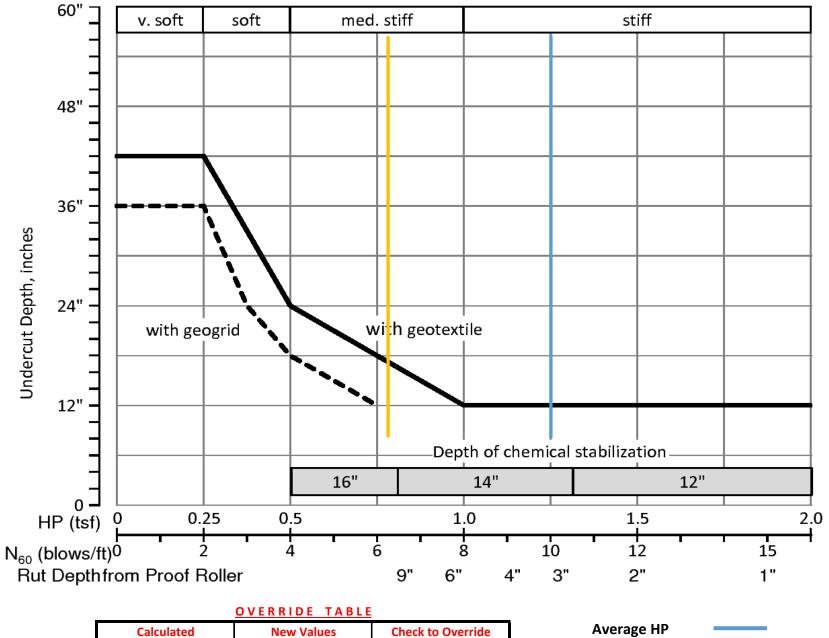
% Surface	
Unstable & Unsuitable	0%
Unstable	75%
Unsuitable	0%

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{opt}	GI
Average	20	6	1.25	29	17	12	28	25	52	14	12	5
Maximum	74	7	1.75	41	19	23	46	39	75	24	18	11
Minimum	5	5	0.50	22	15	6	8	5	13	5	6	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	2	2	0	0	0	0	0	0	4	0	0	6	1	0	1	0	0	16
Percent	0%	13%	13%	0%	0%	0%	0%	0%	0%	25%	0%	0%	38%	6%	0%	6%	0%	0%	100%
% Rock Cohesive Granular	0%					50%								50)%				100%
Surface Class Count	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Surface Class Percent																			0%

Ohio Department of **Transportation**

Subgrade Analysis


V. 14.00

7/21/2017

#	Boring ID	Station	Offset	Dir	Boring EL.	Proposed Subgrade EL	Cut Fill	Rig	#	Boring ID	Station	Offset	Dir	Boring FL.	Proposed Subgrade EL	Cut Fill	Rig
1	B-027-1-13	189+32.6	78.7	RT.	755.50	755.50	0.00 F	А									
2	B-026-3-13	5091+4.93	11.5	LT.	756.90	756.90	0.00 F	А									
3	B-278-0-10	19+56.6	10	RT.	757.70	756.70	1.00 C	В									
4	B-279-0-10	22+98.4	5	RT.	769.30	768.50	0.80 C	В									

#	Boring	Sample	Sam De	-	Subg Dej	rade oth		dard tration	НР		Pł	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an (Item	-	Recommendation
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	ш	PL	PI	% Silt	% Clay	P200	Mc	М _{орт}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	
1	В	1	1.0	2.5	1.0	2.5	74									5	10	A-4a	8						
	027-1	2	3.5	5.0	3.5	5.0	7		1.75	33	18	15	19	29	48	13	14	A-6a	4						
	13	3	6.0	7.5	6.0	7.5	14		1.5							17	14	A-6a							
		4	8.5	10.0	8.5	10.0	40	7								6	6	A-1-b							
2	В	1	1.0	2.5	1.0	2.5	6									6	6	A-1-a	0						
	026-3	2	3.5	5.0	3.5	5.0	23		1.5							12	14	A-6a	10						
	13	3	6.0	7.5	6.0	7.5	8									8	6	A-1-a							
		4	8.5	10.0	8.5	10.0	19	6	0.5	36	19	17	46	29	75	23	16	A-6b							
3	В	1	1.5	3.0	0.5	2.0	5			27	16	11	27	39	66	23	14	A-6a	7	227		N ₆₀ & Mc		18''	Geotextile Option:
	278-0	2	3.0	4.5	2.0	3.5	5			22	16	6	26	20	46	15	11	A-4a	2			N ₆₀ & Mc		12''	30''
	10	3	4.5	6.0	3.5	5.0	16		1.25	23	16	7	31	19	50	13	11	A-4a	3						GEOGRID Option:
		4	6.0	7.5	5.0	6.5	18	5	1.5	23	16	7	31	19	50	16	11	A-4a	3						18"
4	В	1	1.0	1.2	0.2	0.4	50			NP	NP	NP	8	5	13	14	6	A-1-b	0	587					Geotextile Option:
	279-0	2	2.5	4.0	1.7	3.2	7]	1	41	18	23	25	39	64	24	18	A-7-6	11			HP & Mc		16''	15"
	10	3	4.0	5.5	3.2	4.7	13]	0.75	29	16	13	33	27	60	18	14	A-6a	6						
		4	5.5	7.0	4.7	6.2	11	7	1.5	25	15	10	30	19	49	13	14	A-6a	3						

cu	INCON VALUES	check to override
	0.50	HP HP
	3.00	N60L

1.25 6.25 Average HP Average N_{60L}