

FRA-71-14.36 PHASE 6R RETAINING WALL E10 PID NO. 105588 FRANKLIN COUNTY, OHIO

DRAFT STRUCTURE FOUNDATION EXPLORATION REPORT

Prepared For: ms consultants, inc. 2221 Schrock Road Columbus, OH 43229-1547

Prepared By:
Resource International, Inc.
6350 Presidential Gateway
Columbus, Ohio 43231

Rii Project No. W-13-072

April 2020

April 06, 2020

Mr. Walid Antonios, P.E. ms consultants, inc. 2221 Schrock Road Columbus, OH 43229-1547

Re: Draft Structure Foundation Exploration Report

FRA-71-14.36 Phase 6R Retaining Wall E10 PID No. 105588 Rii Project No. W-13-072

Mr. Antonios:

Resource International, Inc. (Rii) is pleased to submit this draft structure foundation exploration report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of proposed Retaining Wall E10 as part of the FRA-71-14.36 Phase 6R project in Columbus, Ohio.

We sincerely appreciate the opportunity to be of service to you on this project. If you have any questions regarding the structure foundation exploration or this report, please contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Hanumanth S. Kulkarni, Ph.D., P.E.

Project Engineer – Geotechnical Services

Brian R. Trenner, P.E.

Director – Geotechnical Programming

Mian Tirenner

Enclosure: Draft Structure Foundation Exploration Report

Planning

Engineering

Construction Management

Technology

TABLE OF CONTENTS

Sect	ion		Page
EXE	CUTIVE	SUMMARY	1
	Explor Analys	ration and Findingsses and Recommendations	i ii
1.0	INTRO	DDUCTION	1
2.0	GEOL	OGY AND OBSERVATIONS OF THE PROJECT	2
	2.1	Site Geology	2
		Existing Conditions	
3.0	EXPLO	ORATION	3
4.0	FINDIN	NGS	5
		Surface Materials	
		Subsurface Soils	
		Bedrock	
	4.4	Groundwater	6
5.0	ANAL	YSES AND RECOMMENDATIONS	7
		MSE Wall Recommendations	
		5.1.1 Strength Parameters Utilized in External and Global Standlyses	
		5.1.2 Bearing Stability	
		5.1.3 Settlement Evaluation	
		5.1.4 Eccentricity (Overturning Stability)	
		5.1.5 Sliding Stability	
		5.1.6 Overall (Global) Stability	
		5.1.7 Final MSE Wall Considerations	
		Cellular Concrete Wall Recommendations	
		Geofoam Wall Recommendations	
		Lateral Earth Pressure	
		Construction Considerations	
		5.5.1 Excavation Considerations	_
		5.5.2 Groundwater Considerations	
6.0	LIMITA	ATIONS OF STUDY	19

APPENDICIES

Appendix I Vicinity Map and Boring Plan

Appendix II Description of Soil Terms

Appendix III Project Boring Logs: B-115-3-19 through B-115-7-9

Appendix IV MSE Wall Calculations

Appendix V Cellular Concrete Wall Calculations

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a structure foundation exploration for the design and construction of the proposed Retaining Wall E10. Based on plan information provided by the Rii design group and ms consultants, retaining Wall E10 will be located along the south side of I-71 southbound, between South Front Street and Short Street, and will provide the required grade separation between the ramp and I-70 westbound where the alignments diverge. The wall begins at Sta. 277+55.02 (BL I-71 SB) and extends west along the south side of I-71 southbound to Sta. 383+35.41 (BL I-71 SB Transition). The total wall length for Retaining Wall E10 is approximately 555 lineal feet. Please note that the design of the MSE wall between Sta. 277+55.02 and 277+97.19 (BL I-71 SB) overlaps with Retaining Wall E7 where is crosses in front of the forward abutment with the FRA-71-1503L bridge structure, and as such will be governed by the recommendations in that bridge structure report, which is presented under separate covers. The wall heights along the portion of the wall alignment that is considered for this exploration report will range from 4.5 feet at Sta. 383+35.41 (BL I-71 SB Transition) to 27.2 feet at Sta. 277+97.19 (BL I-71 SB). The Wall height along the portion of the wall not being considered for this report is 51.5 feet.

Exploration and Findings

Between January 20, and February 18, 2020, five (5) structural borings, designated as B-115-3-19 through B-115-7-19, were drilled at the locations shown on the boring plan provided in Appendix I of the full report. The borings were advanced to completion depths ranging from 20.0 to 45.0 feet below the existing ground surface along the existing mainline driving lanes of I-70 westbound.

Borings B-115-3-19, B-115-6-19 and B-115-7-19 were drilled through the existing mainline pavement along the southbound I-71 and encountered a composite pavement section consisting of 8.0 to 9.0 inches of asphalt overlying 10.0 inches of concrete. Borings B-115-4-19 and B-115-5-19, which were performed in the existing outside shoulder encountered full depth asphalt section with 8.0 to 9.0 inches of asphalt. Aggregate base was encountered in all of the borings with thicknesses varying from 6.0 to 12.0 inches.

Beneath the surface materials in borings B-115-3-19, B-115-4-19 and B-115-5-19, material identified as existing fill or possible fill was encountered extending to a depth of 32.0, 18.0 and 15.5 feet, respectively, below existing grade, which corresponds to an elevation of 701.9, 718.7 and 723.3 feet msl. The existing fill material was generally described as dark brown, brown, black and gray gravel with sand, gravel with sand, silt and clay, sandy silt, silt and clay and silty clay (ODOT A-1-b, A-2-6, A-4a, A-6a, A-6b). The fill contained debris consisting of cinders, red tile/brick fragments, broken rock fragments and possible concrete fragments in boring B-115-3-19 between the depths of 18.0 and 32.0 feet below the existing ground surface. Based on the site topography, the

fill material is likely embankment fill that was placed during the original construction of the roadway.

Underlying the surficial materials and existing fill, natural soils were encountered consisting of both granular and cohesive material. The granular soils were generally described as brown, gray and brownish gray gravel, gravel with sand, gravel with sand and silt and coarse and fine sand (ODOT A-1-a, A-1-b, A-2-4, A-3a). The cohesive soils were generally described as gray and brown sandy silt, silty clay and clay (ODOT A-4a, A-6b, A-7-6).

Analyses and Recommendations

It is understood that a standard MSE wall type is being utilized between Sta. 380+20.00 to 383+35.41 (BL I-71 SB Transition), with a wall height ranging from 4.5 to 18.4 feet. A lightweight cellular concrete modified MSE wall system will be utilized between Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition), where the wall will span over two existing electrical duct banks, with a wall height ranging from 18.4 to 21.7 feet. A modified MSE wall system consisting of geofoam is being utilized between Sta. 277+97.19 (BL I-71 SB) to Sta. 379+50.82 (BL I-71 SB Transition), where the alignment spans over the influence zone of the Franklin Main, with a wall height ranging from 21.7 to 27.2 feet. It is understood that precast facing panels will be utilized, which will be supported on pedestal footings and anchored into the distribution slab at the top of the wall for the geofoam and cellular concrete modified MSE wall segments.

MSE Wall Recommendations

Based on the proposed plan and profile information, the proposed standard MSE wall section will have wall heights ranging from 4.5 to 18.4 feet, as measured from the top of the leveling pad to the top of the coping. The anticipated bearing materials along the proposed alignment of Retaining Wall E10 between Sta. 380+20 to 383+35.41 (BL I-71 SB Transition) consists of existing fill comprised of stiff to very stiff silty clay (ODOT A-6b) and loose to medium dense gravel with sand (ODOT A-1-b) which transitions to natural very stiff sandy silt (ODOT A-4a) along the east end of the wall. MSE wall foundations bearing on these soils may be proportioned for a factored bearing resistance as indicated in the following table. A geotechnical resistance factor of ϕ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state.

Retaining Wall E10 MSE Wall Design Parameters

From Station ¹	To Station ¹	Wall Height Analyzed	Backslope Behind Wall in	Minimum Required Reinforcement	Streng	esistance at th Limit sf)	Strength Limit Equivalent Bearing	
		(feet)	Analysis	Length ² (feet)	Nominal	Factored ³	Pressure ⁴ (ksf)	
380+20.00	382+00.00	18.4	Level	12.9 (0.70H ≥ 8.0)	8.24	5.36	4.70	
382+00.00	383+35.41	9.0	Level	8.0	12.76	8.25	2.35	

- 1. Stationing referenced to the baseline of I-71 SB Transition.
- 2. The required foundation width is expressed as a percentage of the wall height, H.
- 3. A geotechnical resistance factor of φ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state.
- 4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Total settlements of up to 2.057 inches at the center of the reinforced soil mass and 1.550 inches at the facing of the wall are anticipated along the alignment of Retaining Wall E10 between Sta. 380+20.00 through 383+35.41 (BL I-71 SB Transition). Based on the results of the analysis, 90 percent of the total settlement at the facing of the wall is anticipated to occur within 9 to 80 days following the completion of construction of the wall.

Based on the results of the external and global stability analysis performed for the MSE wall, the recommended controlling strap length is 0.70 times the height of the MSE wall (measured from the top of the leveling pad to the proposed profile grade of the roadway) between Sta. 380+20.00 through 383+35.41 (BL I-71 SB Transition). All of the external and global stability calculations indicate that adequate resistance is available for support of the MSE wall.

Cellular Concrete Wall Recommendations

It is understood that a lightweight cellular concrete modified MSE system wall will be utilized between Sta. 702+50 and 703+00 (BL Wall E5), where the wall will span over two existing electrical duct banks, with a wall height ranging from 34.2 to 39.3 feet. Based on information provided by the Rii design team, two types of lightweight cellular concrete will be utilized in lieu of typical embankment fill and select granular fill, which is typically used for MSE wall applications. The wall facing will be connected to geosynthetic straps that are embedded into the cellular concrete and supported on a leveling pad, similar to traditional MSE walls.

Based on the plan information provided, it is understood that the cellular concrete fill will be placed the full height of the embankment and full width of both Ramp D6 and I-71 southbound. Provided that all backslopes cut into the existing I-70 embankment are

graded no steeper than 2H:1V, external and global stability calculations will not be required for this section of Retaining Wall E10. However, if bearing resistance must be checked, then a factored bearing resistance of 4.49 ksf should be utilized for design at the strength limit state.

Total settlements of 0.926 to 1.097 inches at the center of the wall mass and 0.667 to 0.771 at the facing of the wall is anticipated along Retaining Wall E10 between Sta. 379+50.82 through 380+20.00 (BL I-71 SB Transition). Based on the results of the analysis, 90 percent of the total settlement at the facing of the wall is anticipated to occur during or immediately following construction of the wall or within 35 to 37 days following the completion of construction of the wall.

Geofoam Wall Recommendations

A modified MSE wall system consisting of geofoam blocking is being utilized between Sta. 277+97.19 (BL I-71 SB) through Sta. 379+50.82 (BL I-71 SB Transition), where the alignment spans over the influence zone of the Franklin Main, with a wall height ranging from 21.7 to 27.2 feet. Based on the information provided, the typical section for this segment will consist of an approximate 5.0-foot thick pavement section, including asphalt and/or concrete and aggregate base on top of a concrete distribution slab, overlying geofoam blocking (ASTM D6817, Type 19) to the bottom of wall elevation. Where the Franklin Main crosses the wall alignment, at approximately Sta. 378+80 (BL I-71 SB Transition), the wall height is approximately 24.8 feet and the bottom of wall (top of leveling pad) is at El. 730.5 feet msl. Considering a unit weight of 1.5 pcf for the geofoam blocking and 130 pcf for the pavement/aggregate base/distribution slab, the required depth embedment depth of the geofoam blocking below existing grade to provide zero net loading is 5.5 feet based on the maximum wall height of 27.2 feet (23.0 feet above existing grade).

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the design and construction of the FRA-70/71-13.10/14.36 (Projects 6A/6R) project in Columbus, Ohio. The projects represent the central portion of FRA-70-8.93 (PID 77369) I-70/71 south innerbelt improvements project, which includes all improvements along I-70 westbound from the I-71/SR-315 interchange to Front Street and along I-71 southbound from I-70 to Greenlawn Avenue. The FRA-71-14.36 (Project 6R) phase will consist of all work associated with the reconfiguration and construction of I-71 southbound from downtown (Front Street) to Greenlawn Avenue, including Ramps C3, D6 and D7. This project includes the construction of two (2) new bridge structures, one (1) for I-71 southbound over Short Street, NS/CXS Railroad and the Scioto River (FRA-71-1503L) and one (1) for Ramp D7 over Short Street (FRA-70-1373B), as well as the construction of five (5) new retaining walls (Walls E4, E5, E7, W2 and W5) and one (1) temporary retaining wall (Wall E10) to accommodate the new configuration.

This report is a presentation of the structure foundation exploration performed for the design and construction of the proposed Retaining Wall E10 as shown on the vicinity map and boring plan presented in Appendix I. Retaining Wall E10 will be located along the south side of I-71 southbound, between South Front Street and Short Street, and will provide the required grade separation between the ramp and I-70 westbound where the alignments diverge. The wall begins at Sta. 277+55.02 (BL I-71 SB) and extends west along the south side of I-71 southbound to Sta. 383+35.41 (BL I-71 SB Transition). The total wall length for Retaining Wall E10 is approximately 555 lineal feet. Please note that the design of the MSE wall between Sta. 277+55.02 and 277+97.19 (BL I-71 SB) overlaps with Retaining Wall E7 where is crosses in front of the forward abutment with the FRA-71-1503L bridge structure, and as such will be governed by the recommendations in that bridge structure report, which is presented under separate covers. The wall heights along the portion of the wall alignment that is considered for this exploration report will range from 4.5 feet at Sta. 383+35.41 (BL I-71 SB Transition) to 27.2 feet at Sta. 277+97.19 (BL I-71 SB). The Wall height along the portion of the wall not being considered for this report is 51.5 feet.

It is understood that no net loading is permitted to be applied over the Franklin Main, which is a 60-inch brick sewer that crosses under the wall alignment at approximately Sta. 378+81 (BL I-71 SB Transition). It is understood that the sewer has been previously lined and subsequently loaded to the maximum permissible overburden pressure. Therefore, geofoam blocking in conjunction with undercut of the existing soil will be utilized within the zone of influence of the existing sewer pipe. In Addition, lightweight cellular concrete will be utilized to the east and west of the geofoam section of the wall, which will transition to a traditional mechanically stabilized earth (MSE) wall type along the eastern half of the wall alignment. The various sections of the wall will line up with walls of similar composition that will be constructed as part of Retaining Wall E7 on the north side of Ramp D6 and I-71 southbound.

Based on the plan information provided, it is understood that a standard mechanically stabilized earth (MSE) wall type is being utilized between Sta. 380+20.00 and 383+35.41 (BL I-71 SB Transition). The geofoam section of the wall is being utilized within the zone of influence of the Franklin Main, between Sta. 277+97.19 (BL I-70 SB) and Sta. 379+50.82 (BL I-71 SB Transition), in order to eliminate the loading imparted on the sewer line. The lightweight cellular concrete will be utilized along the reminder of the wall alignment to the west of the geofoam section of wall between Sta. 277+55.02 and 277+97.16 (BL I-71 SB) and to the east of the geofoam section of the wall between Sta. 379+50.82 and 380+20.00 (BL I-71 SB Transition).

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections based on geological age, depositional process and geomorphic occurrence (physical features or landforms). The project area lies within the Columbus Lowland District of the Till Plains Section. This area is characterized by flat to gently rolling ground moraine deposits from the Late Wisconsinan age. The site topography exhibits moderate to high relief. The ground moraine deposits are composed primarily of silty loam till (Darby, Bellefontaine, Centerburg, Grand Lake, Arcanum, Knightstown Tills), with smaller alluvium and outwash deposits bordering the Scioto River, its tributaries and floodplain areas. A ground moraine is the sheet of debris left after the steady retreat of glacial ice. The debris left behind ranges in composition from clay size particles to boulders (including silt, sand, and gravel). Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range in composition from silty clay size particles to cobbles, usually deposited in present and former floodplain areas.

According to the bedrock geology and topography maps obtained from the Ohio Department of Natural Resources (ODNR), the underlying bedrock consists predominantly of the Middle to Lower Devonian-aged Columbus Limestone. This formation is further subdivided into two members in the central portion of the state, known as the Delhi and Bellepoint Members. The Delhi Member consists of light gray, finely to coarsely crystalline, irregularly bedded, fossiliferous limestone. The Bellepoint Member consists of variable brown, finely crystalline, massively bedded limy dolomite. Both of these members contain chert nodules. Just east of the Scioto River, the underlying bedrock consists of the Upper Devonian Ohio Shale Formation overlying the Middle Devonian-aged Delaware Limestone Formation. The Ohio Shale formation consists of brownish black to greenish gray, thinly bedded, fissile, carbonaceous shale. The Delaware Limestone consists of bluish gray, thin to medium bedded dolomitic limestone with nodules and layers of chert. Regionally, the bedrock surface forms a broad valley aligned roughly north-to-south beneath the Scioto River. According to bedrock

topography mapping, the elevation of the bedrock surface ranges from approximately 600 feet mean sea level (msl) in the valley to approximately 625 feet msl near the project limits.

2.2 Existing Conditions

The proposed Retaining Wall E10 structure will be situated along the north side of the existing I-70 westbound lanes from approximately 470 feet east of the existing Front Street overpass to just west of the existing Short Street bridge. The existing I-70 westbound in the vicinity of the structure is a three-lane, asphalt paved roadway that is aligned east-to-west. The existing I-70 roadway profile grade is elevated approximately 26 feet above the Short Street profile grade. There is an existing single lane entrance ramp from Mount Street which merges with I-70 westbound just west of the Short Street bridge. There is an existing electrical substation located along the north side of the existing ramp, which is owned and operated by American Electric Power (AEP). The terrain along I-70 slopes down gently to the east and the surrounding area is relatively flat-lying, and the area between I-70 westbound and the Mound Street Entrance Ramp is grass covered and dense vegetation covers the existing embankment slope that supports the entrance ramp.

3.0 EXPLORATION

Between January 20, and February 18, 2020, five (5) structural borings, designated as B-115-3-19 through B-115-7-19, were drilled at the locations shown on the boring plan provided in Appendix I of this report and summarized in Table 1. The borings were advanced to completion depths ranging from 20.0 to 45.0 feet below the existing ground surface along the existing mainline driving lanes of I-70 westbound.

Table 1. Test Boring Summary

Boring Number	Reference Alignment	Station ¹	Offset ¹	Latitude	Longitude	Ground Elevation (feet msl)	Boring Depth (feet)
B-115-3-19	BL I-71 SB	278+33.33	41.1' Rt.	39.953536	-83.004084	733.9	45.0
B-115-4-19	BL I-71 SB	279+95.95	19.2' Rt.	39.953507	-83.003500	736.7	40.0
B-115-5-19	BL I-71 SB	281+08.27	4.6' Rt.	39.953510	-83.003090	738.8	30.0
B-115-6-19	BL I-71 SB	282+49.27	23.3' Rt.	39.953362	-83.002614	740.9	20.0
B-115-7-19	BL I-71 SB	283+89.84	22.1' Rt.	39.953303	-83.002116	741.0	20.5

The boring locations were determined and located in the field by Rii representatives. Rii utilized a handheld GPS unit to obtain northing and easting coordinates of the boring locations. Ground surface elevations at the boring locations were interpolated using topographic mapping information provided by ms consultants.

The borings were drilled using a CME 750X all-terrain vehicle (ATV) mounted rotary drilling machine, utilizing a 3.25-inch inside diameter, hollow-stem auger to advance the holes. Standard penetration test (SPT) and split spoon were performed in the borings at 2.5-foot intervals to a depth of 20.0 feet, and at 5.0-foot intervals thereafter to the boring termination depth. The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Rii utilized a calibrated automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blow per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N) values are corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation. Both values are represented on boring logs in Appendix III.

$$N_{60} = N_m*(ER/60)$$

Where:

N_m = measured N value

ER = drill rod energy ratio, expressed as a percent, for the system used

The hammer for the CME 750X drill rig was calibrated on September 3, 2018, and has a drill rod energy ratio of 79.5 percent.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

At the completion of drilling, the borings were sealed with the cement-bentonite grout and the pavement was patched within an equivalent thickness of cold patch asphalt or quick set concrete.

During drilling, field logs were prepared by Rii personnel showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Table 2. Laboratory Test Schedule

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	54
Plastic and Liquid Limits	AASHTO T89, T90	17
Gradation – Sieve/Hydrometer	AASHTO T88	17

The tests performed are necessary to classify existing soil according to the Ohio Department of Transportation (ODOT) classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented on the boring logs in Appendix III. A description of the soil terms used throughout this report is presented in Appendix II.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the current version of the ODOT Specifications for Geotechnical Explorations (SGE). The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Materials

Borings B-115-3-19, B-115-6-19 and B-115-7-19 were drilled through the existing mainline pavement along the southbound I-71 and encountered a composite pavement section consisting of 8.0 to 9.0 inches of asphalt overlying 10.0 inches of concrete. Borings B-115-4-19 and B-115-5-19, which were performed in the existing outside shoulder encountered full depth asphalt section with 8.0 to 9.0 inches of asphalt. Aggregate base was encountered in all of the borings with thicknesses varying from 6.0 to 12.0 inches.

4.2 Subsurface Soils

Beneath the surface materials in borings B-115-3-19, B-115-4-19 and B-115-5-19, material identified as existing fill or possible fill was encountered extending to a depth of 32.0, 18.0 and 15.5 feet, respectively, below existing grade, which corresponds to an elevation of 701.9, 718.7 and 723.3 feet msl. The existing fill material was generally described as dark brown, brown, black and gray gravel with sand, gravel with sand, silt and clay, sandy silt, silt and clay and silty clay (ODOT A-1-b, A-2-6, A-4a, A-6a, A-6b). The fill contained debris consisting of cinders, red tile/brick fragments, broken rock fragments and possible concrete fragments in boring B-115-3-19 between the depths of

18.0 and 32.0 feet below the existing ground surface. Based on the site topography, the fill material is likely embankment fill that was placed during the original construction of the roadway.

Underlying the surficial materials and existing fill, natural soils were encountered consisting of both granular and cohesive material. The granular soils were generally described as brown, gray and brownish gray gravel, gravel with sand, gravel with sand and silt and coarse and fine sand (ODOT A-1-a, A-1-b, A-2-4, A-3a). The cohesive soils were generally described as gray and brown sandy silt, silty clay and clay (ODOT A-4a, A-6b, A-7-6).

The relative density of granular soils is primarily derived from SPT blow counts (N_{60}). Based on the SPT blow counts obtained, the granular soil encountered ranged from loose ($5 < N_{60} \le 10$ blows per foot [bpf]) to very dense ($N_{60} > 50$ bpf). Overall blow counts recorded from the SPT sampling ranged from 8 bpf to split spoon sampler refusal. The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soil encountered ranged from stiff ($1.0 < HP \le 2.0$ tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 1.5 to over 4.5 tsf (limit of instrument).

Natural moisture contents of the soil samples tested ranged from 5 to 28 percent. The natural moisture content of the cohesive soil samples tested for plasticity index ranged from 5 percent below to 3 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be moderately below to slightly above optimum moisture levels.

4.3 Bedrock

Bedrock was not encountered in any of the borings performed in this exploration.

4.4 Groundwater

Groundwater was encountered in the borings as presented in Table 3.

Table 3. Groundwater Levels in Borings

Boring	Ground	Initial Gro	oundwater	Upon Co	mpletion
Number	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)	Depth (feet)	Elevation (feet msl)
B-115-3-19	733.9	43.5	690.4	40.0	693.9
B-115-4-19	736.7	37.2	699.5	N/A ¹	N/A
B-115-5-19	738.8	24.6	714.2	N/A ¹	N/A
B-115-6-19	740.9	13.5	727.4	16.0	724.9
B-115-7-19	741.0	Dry	-	Dry	-

^{1.} Groundwater at completion not obtained prior to grouting the boreholes.

Groundwater was encountered initially during drilling in all of the borings with the exception of boring B-115-7-19, at depths ranging from 13.5 to 43.5 feet below the ground surface, which corresponds to elevations ranging from 690.4 to 727.4 feet msl. At the completion of drilling in borings B-115-3-19 and B-115-6-19, groundwater was measured at a depth of 40.0 and 16.0 feet below grade, respectively, corresponding to elevations of 693.9 and 724.9 feet msl. The groundwater level at completion in borings B-115-4-19 and B-115-5-19 was not obtained prior to grouting the boreholes. Boring B-115-7-19 was observed to be dry, meaning that no measurable amount of groundwater was observed in the borehole during or at the completion of drilling.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the boring logs in Appendix III.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the subsurface exploration has been used to determine the foundation support capabilities and the settlement potential for the soil encountered at the site. These parameters have been used to provide guidelines for the design of foundation systems for the subject structure, as well as the construction specifications related to the placement of foundation systems and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed retaining wall were provided by the Rii design team and ms consultants. It is understood that a standard MSE wall type is being utilized between Sta. 380+20.00 to 383+35.41 (BL I-71 SB Transition), with a wall height ranging from 4.5 to 18.4 feet. A lightweight cellular concrete modified MSE wall system will be utilized between Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition), where the wall will span over two existing electrical duct banks, with a wall height ranging from 18.4 to 21.7 feet. A modified MSE wall system consisting of geofoam is being utilized between Sta. 277+97.19 (BL I-71 SB) to Sta. 379+50.82 (BL I-71 SB Transition), where the alignment spans over the influence zone of the Franklin Main, with a wall height ranging from 21.7 to 27.2 feet. It is understood that precast facing panels will be utilized, which will be supported on pedestal footings and anchored into the distribution slab at the top of the wall for the geofoam and cellular concrete modified MSE wall segments.

Additionally, it is understood that no net loading is permitted to be applied over the Franklin Main, which has been previously lined and subsequently loaded to the maximum permissible overburden pressure. Therefore, the geofoam modified MSE wall will be utilized to span I-71 southbound over the existing Franklin Main, where additional undercut of the existing soil and replacement with geofoam blocking will be provided to eliminate the net loading on the existing 60-inch brick sanitary sewer.

The design of retaining wall systems that incorporate geofoam and lightweight cellular concrete fill is considered proprietary. Therefore, only calculations for settlement and bearing capacity for these segments of the wall are provided in this report. If additional analyses for internal stability or external sliding, overturning or global stability are required, they should be performed by a specialty contractor that is qualified to design these systems.

5.1 MSE Wall Recommendations

It is understood that a standard MSE wall type is being utilized between Sta. 380+20.00 to 383+35.41 (BL I-71 SB Transition). MSE walls are constructed on earthen foundations at a minimum depth of 3.0 feet below grade, as defined by the top of the leveling pad to the ground surface located 4.0 feet from the face of the wall. Per Section 204.6.2.1 of the 2019 ODOT BDM, the height of the MSE wall is defined as the elevation difference between the top of coping and the top of the leveling pad. However, it is noted that the reinforced soil mass only extends from the foundation bearing elevation (top of leveling pad) to the roadway subgrade elevation where the roadway is supported on the top of the wall, and the reinforced soil mass extends to the top of the coping where the roadway is not supported on top of the wall. The width of the MSE wall foundation (B) is defined by the length of the reinforced soil mass. Per the Section 204.6.2.1 of the 2019 ODOT BDM and Supplemental Specification (SS) 840, the minimum length of the reinforced soil mass is equal to 70 percent of the height of the MSE wall or 8.0 feet, whichever is greater. A non-structural bearing leveling pad consisting of a minimum of 6.0-inches of unreinforced concrete should be placed at the base of the wall facing for constructability purposes. Please note that the leveling pad is not a structural foundation.

Based on the proposed plan and profile information, the proposed standard MSE wall section will have wall heights ranging from 4.5 to 18.4 feet, as measured from the top of the leveling pad to the top of the coping. For the analysis, the foundation width was set at 70 percent of the wall height and the foundation width was increased, if required, until external and global stability requirements were satisfied.

Per Section 840.06.D of ODOT SS 840, the foundation subgrade should be inspected to verify that the subsurface conditions are the same as those anticipated in this report. The anticipated soils at the proposed bearing elevation along the wall alignment between Sta. 380+20.00 to 383+35.41 (BL I-71 SB Transition) consists of existing fill material described as stiff to very stiff silty clay (ODOT A-6b) and loose to medium dense gravel with sand (ODOT A-1-b) which transitions to natural very stiff sandy silt (ODOT A-4a) along the east end of the wall. Based on the condition of the existing embankment fill encountered in borings B-115-4-16 and B-115-5-16, it is anticipated that the embankment fill was placed and compacted in a controlled manner. Therefore, this soil in its current condition is considered adequate for support of the new fill material and the proposed MSE wall.

Per ODOT SS 840, following foundation subgrade inspection and acceptance, a minimum of 12.0 inches of ODOT Item 703.16.C, Granular Material Type C, should be placed and compacted in accordance with ODOT Item 204.07.

5.1.1 Strength Parameters Utilized in External and Global Stability Analyses

The shear strength parameters utilized in the external and global stability analyses for the MSE wall are provided in Table 4.

Table 4. Shear Strength Parameters Utilized in Stability Analyses

Material Type	γ (pcf)	φ' ⁽¹⁾ (°)	<i>c</i> ' ⁽²⁾ (psf)	S _u ⁽³⁾ (psf)					
MSE Wall Backfill (Select granular backfill)	120	34	0	N/A					
ltem 203 Embankment Fill (Retained soil)	120	30	0	2,000					
Medium Dense to Very Dense Granular Soils (ODOT A-1-a, A-1-b, A-2-4, A-3a)	125 to 135	33 to 42	0	N/A					
Very Stiff to Hard Sandy Silt and Silt and Clay (ODOT A-4a, A-6a)	125	28 to 30	0	2,375					
Stiff to Very Stiff Silty Clay and Clay (ODOT A-6b, A-7-6)	120 to 130	25 to 26	0	1,125 to 3,875					

^{1.} Per Figure 7-45, Section 7.6.9 of FHWA GEC 5 for cohesive soils and Table 10.4.6.2.4-1 of the 2018 AASHTO LRFS BDS for granular soils.

^{2.} Estimated based on overconsolidated nature of soil.

^{3.} $S_u = 125(N_{60})$, Terzaghi and Peck (1967).

Shear strength parameters for the reinforced soil backfill and retained embankment are provided in ODOT SS 840. Per SS 840, the select granular backfill in the reinforced zone and the retained embankment must meet the shear strength requirements provided in Table 4. The shear strength parameters for the natural soils and existing fill were assigned using correlations provided in FHWA Geotechnical Engineering Circular (GEC) No. 5 (FHWA-NHI-16-072) Evaluation of Soil and Rock Properties and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles.

5.1.2 Bearing Stability

The anticipated bearing materials along the proposed alignment of Retaining Wall E10 between Sta. 380+20 to 383+35.41 (BL I-71 SB Transition) consists of existing fill comprised of stiff to very stiff silty clay (ODOT A-6b) and loose to medium dense gravel with sand (ODOT A-1-b) which transitions to natural very stiff sandy silt (ODOT A-4a) along the east end of the wall. MSE wall foundations bearing on these soils may be proportioned for a factored bearing resistance as indicated in Table 5. A geotechnical resistance factor of ϕ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state. The reinforcement length presented in the following table represents the minimum foundation width required to satisfy external and global stability requirements, expressed as a percentage of the wall height.

Table 5. Retaining Wall E10 MSE Wall Design Parameters

From Station ¹	To Station ¹	Wall Height Analyzed	Backslope Behind Wall in	Minimum Required Reinforcement Length ²	Bearing Resistance at Strength Limit (ksf)		Strength Limit Equivalent Bearing
		(feet)	Analysis	(feet)	Nominal	Factored ³	Pressure ⁴ (ksf)
380+20.00	382+00.00	18.4	Level	12.9 (0.70H ≥ 8.0)	8.24	5.36	4.70
382+00.00	383+35.41	9.0	Level	8.0	12.76	8.25	2.35

- 1. Stationing referenced to the baseline of I-71 SB Transition.
- 2. The required foundation width is expressed as a percentage of the wall height, H.
- 3. A geotechnical resistance factor of φ_b =0.65 was considered in calculating the factored bearing resistance at the strength limit state.
- 4. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Rii performed a verification of the bearing pressure exerted on the subgrade material for the maximum specified wall height indicated in Table 5. Based on the minimum length of reinforced soil mass presented, the factored equivalent bearing pressure exerted below the wall **will not exceed** the factored bearing resistance at the strength limit state.

5.1.3 Settlement Evaluation

The compressibility parameters utilized in the settlement analyses of the proposed standard MSE wall section are provided in Table 6.

Table 6. Compressibility Parameters Utilized in Settlement Analysis

Material Type	γ (pcf)	<i>LL</i> (%)	C_c (1)	$C_r^{(2)}$	$e_{o}^{(3)}$	C_{v} (4) (ft²/yr)	N ₆₀	C' (5)
Medium Dense to Very Dense Granular Soils (ODOT A-1-a, A-1-b, A-24)	125 to 135	N/A	N/A	N/A	N/A	N/A	8 to 93	59 to 543
Very Stiff Sandy Silt (ODOT A-4a)	125	21 to 24	0.099 to 0.126	0.010 to 0.013	0.436 to 0.460	1,000	N/A	N/A
Very Stiff Silt and Clay (ODOT A-6a)	125	34	0.216	0.022	0.538	600	N/A	N/A
Stiff to Hard Silty Clay (ODOT A-6b)	120	35 to 37	0.225 to 0.243	0.023 to 0.024	0.546 to 0.561	300	N/A	N/A
Very Stiff Clay (ODOT A-7-6)	125	44	0.306	0.031	0.616	150	N/A	N/A

- 1. Per Table 6-9, Section 6.14.1 of FHWA GEC 5.
- 2. Estimated at 10% of C_c per Section 8.11 of Holtz and Kovacs (1981).
- 3. Per Table 8-2 of Holtz and Kovacs (1981).
- 4. Per Figure 6-37, Section 6.14.2 of FHWA GEC 5.
- 5. Per Figure 10.6.2.4.2-1 of 2018 AASHTO LRFD BDS.

Results of the settlement analysis are tabulated in Table 7. Total settlements of up to 2.057 inches at the center of the reinforced soil mass and 1.550 inches at the facing of the wall are anticipated along the alignment of Retaining Wall E10 between Sta. 380+20.00 through 383+35.41 (BL I-71 SB Transition). Based on the results of the analysis, 90 percent of the total settlement at the facing of the wall is anticipated to occur within 9 to 80 days following the completion of construction of the wall. Please note that the consolidation settlement and time rate of consolidation are based on estimates using correlated compressibility parameters provided in Table 6 for the underlying soils. Actual settlement and time rate of consolidation should be determined by monitoring the settlement of the wall using settlement platforms.

Table 7. Retaining Wall E10 MSE Wall Settlement Values

From	То	Service Limit Equivalent		ment Values hes)	Time for 100%
Station ¹	Station ¹	Bearing Pressure ² (ksf)	Center of Wall Mass	Facing of Wall	Consolidation (Days)
380+20.00	382+00.00	2.59 to 3.24	1.481 to 2.057	1.240 to 1.550	35 to 45
382+00.00	383+35.41	0.83 to 1.61	0.344 to 0.669	0.266 to 0.575	9 to 80

- 1. Stationing referenced to the baseline of I-71 SB Transition.
- 2. The service limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the service limit state.

Per Section 204.6.2.1 of the ODOT BDM, "the maximum allowable differential settlement in the longitudinal direction (regardless of the size of panels) is one (1) percent." Based on the total anticipated settlement at the facing of the walls, maximum differential settlements in the longitudinal directions are anticipated to be less than 1/1,000, which is within the tolerable limit of 1/100. If the total or differential settlement values predicted for the proposed walls present an issue with respect to the deformation tolerances that the walls can withstand, then measures should be taken to minimize the amount of settlement that will occur. This can be achieved by preloading the site and consolidating the underlying soils prior to constructing the walls. If preloading the site is not a desired option, then consideration could be given to ground improvement through the use of stone columns. Settlement calculations are provided in Appendix IV.

5.1.4 Eccentricity (Overturning Stability)

The resistance of the MSE wall to overturning will be dependent on the location of the resultant force at the bottom of the wall due to the overturning and resisting moments acting on the wall. For MSE walls, overturning stability is determined by calculating the eccentricity of the resultant force from the midpoint of the base of the wall and comparing this value to a limiting eccentricity value. Per Section 11.10.5.5 of the 2018 AASHTO LRFD BDS, for foundations bearing on soil, the location of the resultant of the reaction forces shall be within the middle two-thirds (2 /3) of the base width. Therefore, the limiting eccentricity is one-third (1 /3) of the base width of the wall. Rii performed a verification of the eccentricity of the resultant force for the specified wall height indicated in Table 5. Based on the minimum length of reinforced soil mass presented in Table 5 and utilizing the soil parameters listed in Section 5.1.1 for the retained embankment material, the calculated eccentricity of the resultant force will not exceed the limiting eccentricity at the strength limit state.

5.1.5 Sliding Stability

The resistance of the MSE wall to sliding was evaluated per Section 11.10.5.3 of the 2018 AASHTO LRFD BDS. For drained conditions, the sliding resistance is determined by multiplying a coefficient of sliding friction "f" times the total vertical force at the base of the wall. The coefficient of sliding friction is determined based on the limiting friction angle between the foundation soil and the reinforced soil backfill. Based on the soil parameters listed in Section 5.1.1 for the foundation and reinforced soil backfill, a coefficient of sliding friction of 0.49 to 0.58 was utilized for design. For undrained conditions, the sliding resistance is taken as the limiting value between the undrained shear strength of the bearing soil and half of the vertical stress applied by the wall multiplied by the width of the MSE wall. Based on the soil parameters listed in Section 5.1.1, the undrained shear strength of the existing fill material is estimated to be 1,500 to 2,375 psf.

A geotechnical resistance factor of ϕ_{τ} =1.0 was considered in calculating the factored shear resistance between the reinforced soil backfill and foundation soil for sliding. Based on the minimum length of reinforced soil mass presented in Table 5 and utilizing the soil parameters listed in Section 5.1.1 for the retained embankment material, the resultant horizontal forces on the back of the MSE wall <u>will not exceed</u> the factored shear resistance at the strength limit state for drained or undrained conditions.

5.1.6 Overall (Global) Stability

A slope stability analysis was performed to check the global stability of the wall. As per the AASHTO LRFD BDS, safety against soil failure shall be evaluated at the service limit state by assuming the reinforced soil mass to be a rigid body. Soil parameters utilized in the global stability analyses are presented in Section 5.1.1. For the global stability condition, it was considered that the failure plane will not cross through the reinforced soil mass. The computer software program Slide 2018 manufactured by Rocscience Inc. was utilized to perform the analyses.

Per Section 11.6.2.3 of the 2018 AASHTO LRFD BDS, overall (global) stability for MSE walls that are not integrated with or supporting structural foundations or elements, global stability is satisfied if the product of the factor of safety from the slope stability output multiplied by the resistance factor φ =0.75 is greater than 1.0. Therefore, global stability is satisfied when a minimum factor of safety of 1.3 is obtained. For an MSE wall designed with the minimum strap length listed in Table 5, the resulting factor of safety under drained conditions (long-term stability) was greater than 1.3. Given the cohesive nature of the subsurface profile, an undrained analysis was also performed to consider short-term condition. The resulting factor of safety under undrained conditions was greater than 1.3.

5.1.7 Final MSE Wall Considerations

Based on the results of the external and global stability analysis performed for the MSE wall, the recommended controlling strap length is 0.70 times the height of the MSE wall (measured from the top of the leveling pad to the proposed profile grade of the roadway) between Sta. 380+20.00 through 383+35.41 (BL I-71 SB Transition). All of the external and global stability calculations indicate that adequate resistance is available for support of the MSE wall.

Calculations for external (bearing and sliding resistance and limiting eccentricity) and overall (global) stability of the MSE wall are provided in Appendix IV.

5.2 Cellular Concrete Wall Recommendations

It is understood that a lightweight cellular concrete modified MSE system wall will be utilized between Sta. 379+50.82 through 380+20.00 (BL I-71 SB Transition), where the wall will span over two existing electrical duct banks, with a wall height ranging from 18.4 to 21.7 feet. Based on information provided by the Rii design team, two types of lightweight cellular concrete will be utilized in lieu of typical embankment fill and select granular fill, which is typically used for MSE wall applications. The wall facing will be connected to geosynthetic straps that are embedded into the cellular concrete and supported on a leveling pad, similar to traditional MSE walls.

A typical section of the proposed cellular concrete wall system was provided by the Rii design team. Based on the information provided, the typical section will consist of an approximate 3.0-foot thick pavement section, including asphalt and/or concrete and aggregate base, overlying 2.0 feet of Class III cellular concrete, followed by Class II cellular concrete to the bottom of wall elevation. A composite unit weight of 130 pcf was considered for the entire pavement section, and the unit weight of the Class III cellular concrete is 36 pcf and the Class II cellular concrete is 30 pcf. The pressure at the bottom of the embankment was calculated as follows:

$$\Delta \sigma = (130 \text{ pcf})(3.0 \text{ ft}) + (36 \text{ pcf})(2.0 \text{ ft}) + (H - 5 \text{ ft})(30 \text{ pcf})$$

Where,

 $\Delta \sigma$ = induced pressure at the bottom of embankment/wall (psf)

H = height of embankment/wall from existing ground surface to profile grade of roadway (ft)

Following placement of the cellular concrete, the material will cure and harden similar to concrete and will become a rigid mass. The concept of active earth pressure within this mass is not valid, as it cannot substantially deform, develop an active wedge, and mobilize active earth pressure. Therefore, the entire cellular concrete mass must be treated as a solid block. The "reinforced zone" is not the same as a traditional MSE wall reinforced

zone, as the reinforcement straps only need to extend back into the cellular mass far enough to fully develop resistance in tension as if it were a reinforcing bar embedded in concrete. However, it is recommended that the reinforcement extend the minimum length of 70 percent of the wall height into the cellular concrete backfill, similar to traditional MSE walls.

Considering the above commentary in regards to the external stability of the cellular concrete backfilled MSE walls, sliding, overturning, bearing and overall (global) stability of the wall must be performed for the entire mass as a single block. Therefore, consideration must be given to the effect of the backfill material behind the cellular concrete if it is only utilized within the reinforced zone of the wall.

The active earth pressure coefficient, and consequently the active pressure on the back of the cellular concrete mass, will greatly reduce as the slope of the backfill soil flattens. Once the slope of the backfill flattens more than the internal friction angle of the backfill soil, the active earth pressure coefficient will go to zero. Therefore, if the backslope of any backfill is reduced to the internal friction angle of the backfill material, analysis of external stability is not required, with the exception of bearing and overall (global) stability. Based on the plan information provided, it is understood that the cellular concrete fill will be placed the full height of the embankment and full width of both Ramp D6 and I-71 southbound. Provided that all backslopes cut into the existing I-70 embankment are graded no steeper than 2H:1V, external and global stability calculations will not be required for this section of Retaining Wall E10. However, if bearing resistance must be checked, then a factored bearing resistance of 4.49 ksf should be utilized for design at the strength limit state.

The compressibility parameters utilized in the settlement analysis of the proposed cellular concrete backfilled areas are provided in Table 6.

Table 8. Compressibility Parameters Utilized in Settlement Analysis

Material Type	γ (pcf)	<i>LL</i> (%)	C_c (1)	$C_r^{(2)}$	<i>e</i> _o ⁽³⁾	C _v ⁽⁴⁾ (ft²/yr)	N ₆₀	C' (5)
Medium Dense to Very Dense Granular Soils (ODOT A-1-a, A-1-b, A-2-4)	120 to 135	N/A	N/A	N/A	N/A	N/A	8 to 120	59 to 942
Stiff to Hard Silt and Clay (ODOT A-6a, A-6b)	120 to 125	34 to 37	0.216 to 0.243	0.022 to 0.024	0.538 to 0.561	300 to 600	N/A	N/A
Hard Clay (ODOT A-7-6)	125	44	0.306	0.031	0.616	150	N/A	N/A

- 1. Per Table 6-9, Section 6.14.1 of FHWA GEC 5.
- 2. Estimated at 10% of C_c per Section 8.11 of Holtz and Kovacs (1981).
- 3. Per Table 8-2 of Holtz and Kovacs (1981).
- 4. Per Figure 6-37, Section 6.14.2 of FHWA GEC 5.
- 5. Per Figure 10.6.2.4.2-1 of 2018 AASHTO LRFD BDS.

Results of the settlement analysis are tabulated in Table 7. Total settlements of 0.926 to 1.097 inches at the center of the wall mass and 0.667 to 0.771 at the facing of the wall is anticipated along Retaining Wall E10 between Sta. 379+50.82 through 380+20.00 (BL I-71 SB Transition). Based on the results of the analysis, 90 percent of the total settlement at the facing of the wall is anticipated to occur during or immediately following construction of the wall or within 35 to 37 days following the completion of construction of the wall. Please note that the consolidation settlement and time rate of consolidation are based on estimates using correlated compressibility parameters provided in Table 6 for the underlying soils. Actual settlement and time rate of consolidation should be determined by monitoring the settlement of the wall using settlement platforms.

Bowing	Wall Height	Pressure at Bottom of Wall ¹	Total Settler		Time for 90%
Boring	(feet)	(ksf)	Center of Wall Mass	Facing of Wall	Consolidation (Days)
B-115-4-19	21.7	0.964	1.097	0.771	35
B-115-5-19	18.4	0.864	0.926	0.667	37

^{1.} $\Delta \sigma = (130 \text{ pcf})(3.0 \text{ ft}) + (36 \text{ pcf})(2.0 \text{ ft}) + (H - 5 \text{ ft})(30 \text{ pcf}).$

Per Section 204.6.2.1 of the ODOT BDM, for traditional MSE walls "the maximum allowable differential settlement in the longitudinal direction (regardless of the size of panels) is one (1) percent." Based on the total anticipated settlement at the facing of the walls, maximum differential settlements in the longitudinal directions are anticipated to be less than 1/1,000, which is within the tolerable limit of 1/100.

Results of the settlement analysis and bearing resistance for the cellular concrete MSE wall are provided in Appendix V.

5.3 Geofoam Wall Recommendations

A modified MSE wall system consisting of geofoam blocking is being utilized between Sta. 277+97.19 (BL I-71 SB) through Sta. 379+50.82 (BL I-71 SB Transition), where the alignment spans over the influence zone of the Franklin Main, with a wall height ranging from 21.7 to 27.2 feet. Based on the information provided, the typical section for this segment will consist of an approximate 5.0-foot thick pavement section, including asphalt and/or concrete and aggregate base on top of a concrete distribution slab, overlying geofoam blocking (ASTM D6817, Type 19) to the bottom of wall elevation. Where the Franklin Main crosses the wall alignment, at approximately Sta. 378+80 (BL I-71 SB Transition), the wall height is approximately 24.8 feet and the bottom of wall (top of leveling pad) is at EI. 730.5 feet msl. Considering a unit weight of 1.5 pcf for the geofoam blocking and 130 pcf for the pavement/aggregate base/distribution slab, the required depth embedment depth of the geofoam blocking below existing grade to provide zero net loading is 5.5 feet based on the maximum wall height of 27.2 feet (23.0 feet above existing grade).

5.4 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ) , cohesion (c), effective angle of friction (ϕ') , and lateral earth pressure coefficients for at-rest conditions (k_o) , active conditions (k_a) , and passive conditions (k_p) have been estimated and are provided in Table 10 and Table 11.

Table 10. Estimated Undrained (Short-term) Soil Parameters for Design

Soil Type	γ (pcf) ¹	c (psf)	φ	k a	k_o	k_p
Soft to Stiff Cohesive Soil	115	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Very Loose to Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	120	0	32°	0.27	0.47	6.82

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

Table 11. Estimated Drained (Long-term) Soil Parameters for Design

Soil Type	γ (pcf) ¹	c (psf)	φ'	k a	k o	k_p
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53
Very Stiff to Hard Cohesive Soil	125	0	28°	0.32	0.53	5.07
Very Loose to Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	120	0	32°	0.27	0.47	6.82

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.

5.5 Construction Considerations

All site work shall conform to local codes and to the latest ODOT Construction and Materials Specifications (CMS), including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.5.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Table 12. Excavation Back Slopes

Soil	Maximum Back Slope	Notes
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None

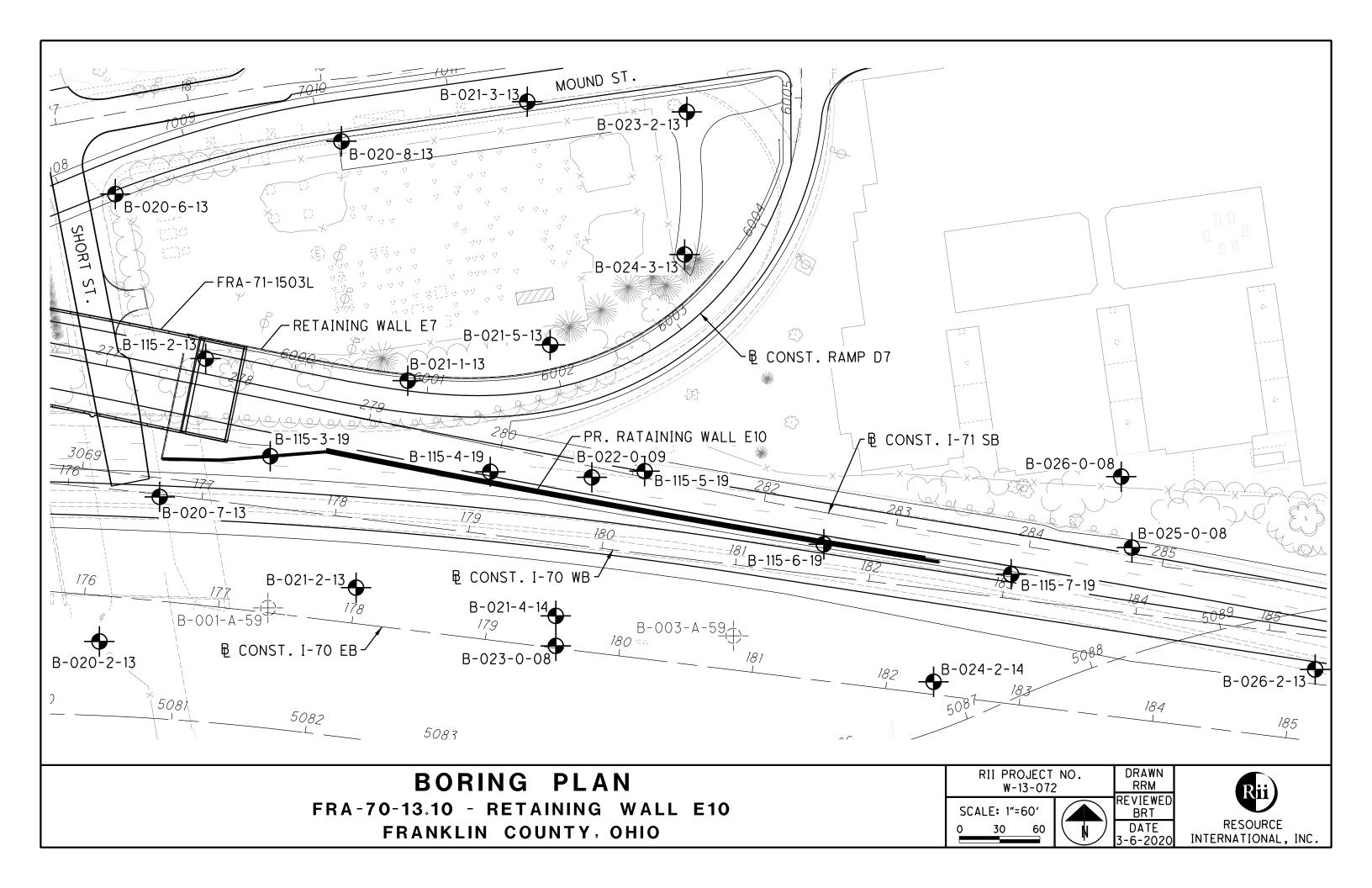
5.5.2 Groundwater Considerations

Based on the groundwater observations made during drilling, groundwater is not anticipated to be encountered during construction of the proposed retaining wall. However, where/if groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site for the current investigation. Resource International is not responsible for the data, conclusions, opinions or recommendations made by others during previous investigations at this site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.


The conclusions and recommendations herein have been based upon the available soil and bedrock information and the design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

VICINITY MAP AND BORING PLAN

APPENDIX II

DESCRIPTION OF SOIL TERMS

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

Granular Soils - The relative compactness of granular soils is described as:

ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

<u>Description</u>	Blows per foot – SPT (N ₆₀)					
Very Loose	Below		5			
Loose	5	-	10			
Medium Dense	11	-	30			
Dense	31	-	50			
Very Dense	Over		50			

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as: ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

	, ,		, ,	Unconfined
<u>Description</u>	Blows per	foot - S	SPT (N ₆₀)	Compression (tsf)
Very Soft	Below		2	UCS ≤ 0.25
Soft	2	-	4	$0.25 < UCS \le 0.5$
Medium Stiff	5	-	8	0.5 < UCS ≤ 1.0
Stiff	9	-	15	1.0 < UCS ≤ 2.0
Very Stiff	16	-	30	$2.0 < UCS \le 4.0$
Hard	Over		30	UCS > 4.0

Gradation - The following size-related denominations are used to describe soils:

Soil Fra	action_	USCS Size	ODOT Size
Boulders	6	Larger than 12"	Larger than 12"
Cobbles		12" to 3"	12" to 3"
Gravel	coarse	3" to ¾"	3" to ¾"
	fine	3/4" to 4.75 mm (3/4" to #4 Sieve)	3/4" to 2.0 mm (3/4" to #10 Sieve)
Sand	coarse	4.75 mm to 2.0 mm (#4 to #10 Sieve)	2.0 mm to 0.42 mm (#10 to #40 Sieve)
	medium	2.0 mm to 0.42 mm (#10 to #40 Sieve)	- · · · · · · · · · · · · · · · · · · ·
	fine	0.42 mm to 0.074 mm (#40 to #200 Sieve)	0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt		0.074 mm to 0.005 mm (#200 to 0.005 mm)	0.074 mm to 0.005 mm (#200 to 0.005 mm)
Clay		Smaller than 0.005 mm	Smaller than 0.005 mm

Modifiers of Components - Modifiers of components are as follows:

<u>Term</u>	Range					
Trace	0%	-	10%			
Little	10%	-	20%			
Some	20%	-	35%			
And	35%	-	50%			

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	Range - USCS	Range - ODOT
Dry	0% to 10%	Well below Plastic Limit
Damp	>2% below Plastic Limit	Below Plastic Limit
Moist	2% below to 2% above Plastic Limit	Above PL to 3% below LL
Very Moist	>2% above Plastic Limit	
Wet	³ Liquid Limit	3% below LL to above LL

Organic Content - The following terms are used to describe organic soils:

Term	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

Bedrock – The following terms are used to describe bedrock hardness:

<u>Term</u>		Blows per fo	ot –	SPT (N)
Very Soft		Below		50
Soft		50/5"	_	50/6"
Medium Hard		50/3"	_	50/4"
Hard		50/1"	_	50/2"
Very Hard	50/0"			

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classif		LLo/LL	Y Pass	2 Poss	Liquid Limit	Plastic Index	Group	REMARKS
31111002	account (10)	AASHTO	OHO	× 100*	*40	#200	(LL)	(P])	Mox.	HEMANNS
0000	Gravel and/or Stone Fragments	Α-	1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined grave cobble and boulder sizes
0.000	Gravel and/or Stone Fragments with Sand	Δ-	1-6		50 Max.	25 Max.		6 Max.	0	
FS	Fine Sand	A	-3	HT.	51 Min.	Nax.	NON-P	LASTIC	0	
	Coarse and Fine Sand	1	A-3a			35 Max.	tal	6 Max.	0	Min. of 50% combined coars and fine sand sizes
0000	Gravel and/or Stone Fragments with Sand and Silt		2-4			35 Max.	40 Max. 41 Min.	10 Max .	0	
0.00	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6 2-7			35 Max.	40 Max. 41 Min.	ti Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Mox.	10 Max.	8	Less than 50% silt sizes
+ + + + + + + + + + + + + + + +	silt	A-4	A-4b	76 Min.		50 Min.	40 Mox.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	A	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min-	16	
翻	Elastic Clay	A-	7-5	76 Min.		36 Min.	41 Min.	≦LE-30	20	
	Clay	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max		36 Min.			1	W/o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.	П	36 Min.				W/o organics would classify a A-5, A-6a, A-6b A-7-5 or A-7-6

Sod and Topsoil Pavement or Base

Uncontrolled Fill (Describe)

Bouldery Zone

Peat, S-Sedimentary W-Woody F-Fibrous L-Loamy & etc

^{*} Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

APPENDIX III

PROJECT BORING LOGS:

B-115-3-19 through B-115-7-9

BORING LOGS

Definitions of Abbreviations

AS =	Auger sample
------	--------------

GI = Group index as determined from the Ohio Department of Transportation classification system

HP = Unconfined compressive strength as determined by a hand penetrometer (tons per square foot)

LL_o = Oven-dried liquid limit as determined by ASTM D4318. Per ASTM D2487, if LL_o/LL is less than 75 percent, soil is classified as "organic".

LOI = Percent organic content (by weight) as determined by ASTM D2974 (loss on ignition test)

PID = Photo-ionization detector reading (parts per million)

QR = Unconfined compressive strength of intact rock core sample as determined by ASTM D2938 (pounds per square inch)

QU = Unconfined compressive strength of soil sample as determined by ASTM D2166 (pounds per square foot)

RC = Rock core sample

REC = Ratio of total length of recovered soil or rock to the total sample length, expressed as a percentage

RQD = Rock quality designation – estimate of the degree of jointing or fracture in a rock mass, expressed as a percentage:

<u>Segments equal to or longer than 4.0 inches</u> x100 core run length

S = Sulfate content (parts per million)

SPT = Standard penetration test blow counts, per ASTM D1586. Driving resistance recorded in terms of blows per 6-inch interval while letting a 140-pound hammer free fall 30 inches to drive a 2-inch outer diameter (O.D.) split spoon sampler a total of 18 inches. The second and third intervals are added to obtain the number of blows per foot (N_m) .

 N_{60} = Measured blow counts corrected to an equivalent (60 percent) energy ratio (ER) by the following equation: $N_{60} = N_m^*(ER/60)$

SS = Split spoon sample

2S = For instances of no recovery from standard SS interval, a 2.5 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 2S sampling are not correlated with N_{60} values.

3S = Same as 2S, but using a 3.0 inch O.D. split spoon sampler.

TR = Top of rock

W = Initial water level measured during drilling

▼ = Water level measured at completion of drilling

Classification Test Data

Gradation (as defined on Description of Soil Terms):

GR = % Gravel SA = % Sand SI = % Silt CL = % Clay

Atterberg Limits:

LL = Liquid limit
PL = Plastic limit
PI = Plasticity Index

WC = Water content (%)

RESOURCE INTERNATIONAL, INC.

	JECT: ::	FRA-70-1	3.10 PI		-		D: 3.25" HSA CALIBRATION DATE: DD: SPT ENERGY RATIO (%):	OME 750X (3)	STATION / OFFSET:2; ALIGNMENT:					+33.33 -71 SE		EXPLO							
		SFN:	CIOIL	- NA	_					_				9/3/18		ELEV							4	_ 5.0 ft.	P
STAR			ND:	1/20/20	SAMPLING					_				79.5		LAT /			100.0				004084		1
01711	MATERIAL DESCRIPTION				ELEV.		0. 1	DEDTUS		1		REC SAMPLE			GRADATION (%					TERBERG		100 100 1		\perp	
AND NOTES					733.9		DEPTH			N ₆₀	(%) ID		(tsf)			FS SI		_	LL	PL		wc	ODOT CLASS (GI)	H(
0.8' - ASPHALT	(0,0")	AND N	OILS				-			RQD		(70)	טו	(131)	OIX	- 00	10		OL				****		- XXX
	` '					KXXI	33.1		_ 1 _																\bowtie
0.8' - CONCRE	• •						32.3 31.8		- ' +																\otimes
0.5' - AGGREG							01.0		_ 2 1	5															
FILL: VERY STIFF, BROWN AND DARK BROWN SANDY SILT, SOME FINE GRAVEL, LITTLE CLAY, DAMP.					— з 🗕	7	17	50	SS-1	3.00	35	18	11	22	14	26	18	8	13	A-4a (0)					
SILT, SOME FI	INE GIVAV	CL, LIIILI	_ CLA	I, DAIVIF.					- ,	3															+
									_ 4 _	7	20	56	SS-2	3.00	-	-	-	-	-	-	-	-	14	A-4a (V)	
						72	28.4		- 5 -	8															-K//
FILL: VERY ST									- 6 -																_>>>
CLAY, SOME COARSE TO FINE SAND, LITTLE FINE						- H'	10	27	56	SS-3	3.00	_	_	_	_	١	_	_	_	19	A-6b (V)	\mathbb{W}			
GRAVEL, MOIS	51.								_ 7 🖠	10		50	00-0	0.00			-			_			19	,op (v)	
									_ 8 _										I						\mathbb{K}
						72	24.9		_ , #	3			SS-4A	3.50	-	-	-	-	-	-	-	-	21	A-6b (V)	_}>>
FILL: MEDIUM						6 V			_ 9 _ (5	16	67	SS-4B	_	_	_	-	-	- 1	-	-	-	9	A-2-6 (V)	\mathbb{K}
GRAVEL WITH	SAND, S	ILT, AND (CLAY,	DAMP TO N	MOIST.				— 10 -	7														- ()	$\rightarrow > >$
-PULVERIZED	DOCK F		re rna	NA 44 O 44 I	E1		20.4		- 11 																_{
-PULVERIZEL FILL: VERY ST						72	22.4		- 1	10 14	29	72	SS-5A	-	-	-	-	-		-		-		A-2-6 (V)	->>
GRAYISH BRO		,							_ 12 _	8	20	12	SS-5B	3.00	-	-	-	-	-	-	-	-	13	A-6b (V)	\mathbb{X}
SAND, LITTLE					=				— 13 —																\gg
									_ 11 _	3															\mathbb{K}
									14 _	7	28	78	SS-6	4.50	15	9	9	32	35	34	18	16	18	A-6b (9)	\gg
									— 15 -	14															\mathbb{X}
									16	,															->//
									– "	10	29	61	SS-7	3.00	_	_	_	_	_	_	_	_	17	A-6b (V)	X
									17	12														(-)	_>//
EII I · \/EDV DE	NSE DVE		NI DI A	CK VND DE	.n	/ ·	15.9		— 18 —																X
FILL: VERY DENSE, DARK BROWN, BLACK AND RED BRAVEL WITH SAND, SILT, AND CLAY, MOIST.			• 6			19	19															\forall			
	, , ,	,	,			20			- 1	19 20	52	67	SS-8	-	-	-	-	-	-	-	-	-	9	A-2-6 (V)	X
-CINDERS. RE	ED TILE/B	RICK FRA	GMEN	ITS. BROKE	N ROCK				_ 20 🖶	20															\forall
FRAGMENTS, I		E CONCRE	ETE FF	RAGMENTS					— 21 —																X
THROUGHOUT	Ī					7	11.9		- 22																$\langle \rangle /$
FILL: STIFF, D																									X
LITTLE COARS	E TO FIN	e sand, t	RACE	FINE GRAV	/EL,				— 23 —																
MOIST.									₂₄	5			00.0												X
									- H	3	8	0	SS-9	-	-	-	-	-	-	-	-	-	-		X/
									25	3	-	100	2S-9A	1.50	-	-	-	-	-	-	-	-	25	A-6b (V)	
									— 26 —																
									- 27																X
-CINDERS, RE	ED TII F/R	RICK FRA	GMFN	ITS. BROKF	N ROCK				28 <u></u>																S
FRAGMENTS,									29	1	10	70	00.40	4.50									20	A OF 0.0	V //
										5	13	78	SS-10	1.50	-	-	-	-	-	-	-	-	22	A-6b (V)	X

RESOURCE INTERNATIONAL, INC.

PROJECT: _ TYPE:	FRA-70-13.10 STRUCTU		-	FIRM / OPERA FIRM / LOGG				RILL RIG AMMER:		CME 750X		3)			OFFSI	_		+95.95 71 SB	19.2' R	EXPLO	
	64 SFN:	NA	-	METHOD:	_	3.25" HSA		ALIBRAT			9/3/18				N: 7				nR·	 40.0 ft.	T
	2/18/20 END:	2/18/20	SAMPLING			SPT		NERGY I			79.5		LAT /			30.7			-83.003		1
			JOANN LING		,	01 1		_		SAMPLE					N (%)	- 1		ERBEF			┿
'	MATERIAL DESC			736.7		DEPTHS	SPT/ RQD		(%)		(tsf)			_		_	LL		_	ODOT CLASS (GI	1)
OL ACDUALT (O.O!!)	AND NOTE	:3			_	I	NQL	'	(%)	ID	(tSI)	GR	CS	FO	OI	CL	LL	PL	PI W	, , , , , , , , , , , , , , , , , , , ,	/ K
0.8' - ASPHALT (9.0")				735.9	9	_ 1 -															
1.0' - AGGREGATE BA	ASE (12.0")			734.9	9	F ' -															X
POSSIBLE FILL: DEN	SE, BROWNISH	GRAY GRAVEI	L WITH			- 2 -	7														\{\ \{\
SAND , LITTLE SILT, T	TRACE CLAY, DAI	MP.				_ 3 _	11 1	29	72	SS-1	-	-	-	-	-	-	-	-	- 6	A-1-b (V)) [
							5	1													⇉
				0 (3		_ 4 _	6	42	39	SS-2	-	-	-	-	-	-	-	-	- 6	A-1-b (V)) 🖔
-COBBLES PRESEN	T @ 4.5'			731.	,	<u></u> 5 ⊥	2	6													{<
POSSIBLE FILL: VER	Y STIFF, DARK G	RAY SILTY CL	_AY,			6 -															
'AND" FINE GRAVEL,							3 6	15	58	SS-3	3.50	17	9	6	21	17	37	17	20 18	3 A-6b (3)	ιĶ
MOIST.						<u> </u>	U	5 13	50	33-3	3.50	4'	ا	U	21	"	31	17 4	.0 10	7 A-00 (3)	_ `
						- 8 -										T					K
						- F	8						\vdash		_	\dashv					\Rightarrow
						9	16	44	50	SS-4	3.50	-	-	-	-	-	-	-	- 13	3 A-6b (V)	, [
						- 10 -	1	/													\rightarrow
						- 11 -															_{
						- H	8 10	33	33	SS-5	2.50	_		_					- 12	2 A-6b (V)	۱ ۵
				=	_	12	_ 10		33	00-0	2.50	_							- 12	. A-00 (V)	
OCCUPI E EU L VED	VOTIEE DADICO	DAY OU T AND	201.47	723.	_	- 13															
POSSIBLE FILL : VER SOME COARSE TO F						14	6 7														_{\}
MOIST.			,			- H	,	17	83	SS-6	3.00	-	-	-	-	-	-	-	- 14	A-6a (V)	1 🕽
						15		9													-[
						— 16 —	_												_		>
							5 8	20	72	SS-7	3.50	18	13	9	35	25	34	21	3 18	3 A-6a (6)	Ţ
				718.	,	17		7												(1)	_₽
DENSE TO VERY DE	NSE BROWNISH	GRAY TO GR	ΔΥ	601		 18															
GRAVEL, SOME COA				[0 Od		19	6			00.0						T			T _	A 4 00	S,
RACE CLAY, MOIST		-	•	Po d		- H	10 1	29	67	SS-8	-	-	-	-	-	-	-	-	- 5	A-1-a (V))
				000		_ 20 _															$\neg \triangleright$
				507		- 21 -															
				107		- - 22 -															\triangleright
				[0 \ \ d																	
				Pood		23															_ >
				6		_ 24 _	8	32	64	CC 0		E^	20	9	$\overline{}$	$\sqrt{1}$	ND	ND .	ın -	A 4 = (0)	, [
				10 Ug			10 1	4 32	61	SS-9	-	59	20	9	9	٥	ארן	NP 1	IP 5	A-1-a (0)	' 🖹
						25	•									\neg					
				600		- 26 -															K
				50		27 -															
				609		-															K
						28															_[]
				000		- 29 -	14 27 3	04	60	CC 40						T			_	A 4 = 0.0	۸ اک
				691		<u></u>	21	81	69	SS-10	-	-	-	-	-	-	-	-	- 5	A-1-a (V)	1 (

PID:	89464	SFN:	NA	PROJECT: _	FRA-70-13.1	0 PHASE	6A_	STATION /	OFFSE	T: _2	7995.9	95, 19' RT.	_ s	TART	: <u>2</u> /	18/20	EN	ND: _	2/18	3/20	_ P(G 2 OF	2 B-1	15-4-19
		MAT	ERIAL DESCRIP	TION		ELEV.	DE	PTHS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAD	ATIO	N (%)	ATT	ERBE	RG		ODOT	HOLE
			AND NOTES			706.7	DE	FINS	RQD	11460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	SEALED
GRA TRA	AVEL, SOM ACE CLAY,	E COARSI MOIST. <i>(co</i> BROWN G	i, BROWNISH GR E TO FINE SAND, ontinued) GRAVEL WITH SA	, TRACE SILT,	000	704.7		- 31 - 32 - 33 - 33 -																
								- 34 - - 35 -	30/3	-	100	SS-11	-	35	30	11	15	9	24	14	10	8	A-2-4 (0)	
							₩ 69	9.5 - 36 37 38 -																
						696.7	EOE	39 -	21 35 35	93	89	SS-12	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	

RESOURCE INTERNATIONAL, INC.

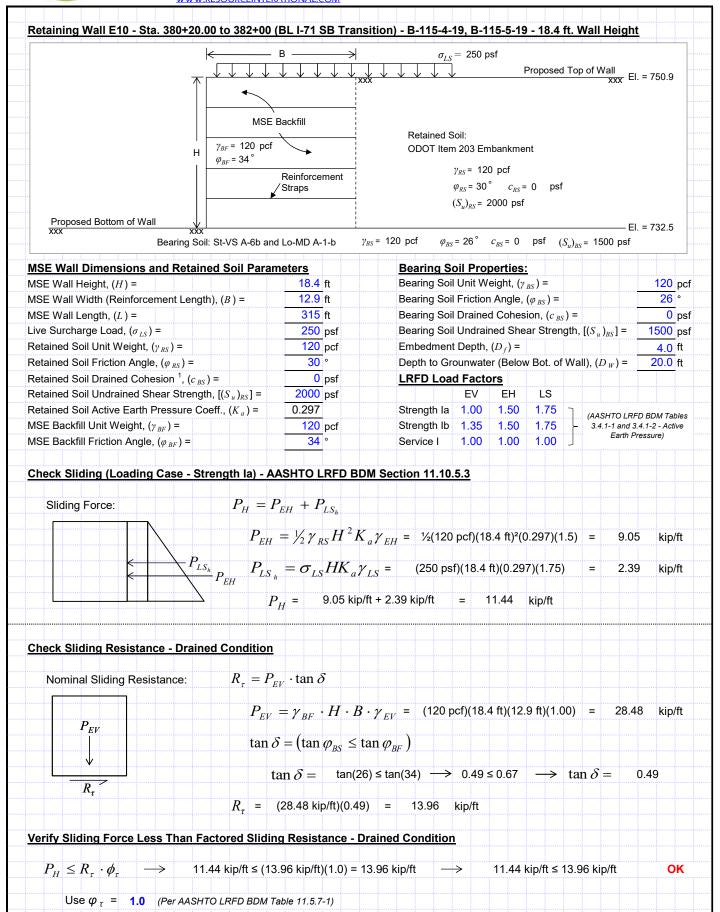
	RILLING FIRM /			_	ILL RIG		CME 750X (3)			OFFS			1+08.2 -71 SE		6' RT	EXPLOR B-11	
N11 /	RILLING METHO		3.25" HSA			TION DA		9/3/18				N:					3	0.0 ft.	PA
	AMPLING METH		SPT			RATIO		79.5		LAT /		_					.003090		10
MATERIAL DESCRIPTION		ELEV.		SPT/		_	SAMPLE			GRAD.			١ ١		ERBE			ODOT	НО
AND NOTES		738.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	-		FS	$\overline{}$	CL	LL	PL	PI	wc	CLASS (GI)	SFA
.7' - ASPHALT (8.0")	XX	738.1				(70)	10	(101)	U.V.			- O.							V/
0' - AGGREGATE BASE (12.0")		737.1	- 1 -																
ILL: VERY STIFF, BROWN AND DARK BROWN SILTY LAY, SOME COARSE TO FINE SAND, TRACE FINE		737.1	2	8 10 8	24	39	SS-1	3.50	-	-	-	-	-	-	-	-	7	A-6b (V)	
RAVEL, DAMP TO MOIST.			- 3 - - 4 -	4 4	11	64	SS-2	2.50	4	11	16	35	34	35	17	18	19	A-6b (10)	
		733.3	5 -	4															\mathbb{W}
OSSIBLE FILL: LOOSE TO MEDIUM DENSE, GRAY RAVEL WITH SAND, LITTLE SILT, TRACE CLAY, MOIS	эт. О О		- 6 - - 7 -	16 9 9	24	44	SS-3	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	
			_ 8 _																
		728.8	- 9 - - 10 -	3 3 3	8	0	SS-4	-	-	-	-	-	-	-	-	-	-		
OSSIBLE FILL: STIFF TO VERY STIFF, DARK BROWN ROWN SILTY CLAY, SOME COARSE TO FINE SAND,	AND		- 1	4	-	67	2S-4A	2.00	-	-	-	-	-	-	-	-	16	A-6b (V)	X
RACE FINE GRAVEL, DAMP TO MOIST.			- 12 -	2 3 3	8	75	SS-5	2.00	8	15	15	33	29	37	17	20	20	A-6b (9)	
			- 13 - - 14 -	3 3	9	83	SS-6	2.50	_	_	_	_	_	_	_	_	28	A-6b (V)	
		723.3	15	4															\mathbb{K}
ERY STIFF, GRAY CLAY , SOME SILT, MOIST.			- 16 - - 17 -	6 8	27	83	SS-7	4.00	0	0	0	35	65	44	22	22	22	A-7-6 (14)	
ERY STIFF, GRAY SILTY CLAY , LITTLE COARSE TO F	INE	720.8	- - 18 -	12															
AND, TRACE FINE GRAVEL, MOIST.	INE		19	3 4 5	12	100	SS-8	2.50	-	-	-	-	-	-	-	-	20	A-6b (V)	
			20 21 22 23																
		714.2	W 714.2 24	3 3 6	12	67		2.50	-	-	-	-	-	-	-	-	22	A-6b (V)	\gg
IEDIUM DENSE, GRAY GRAVEL WITH SAND AND SILT IOIST.	r, 37	711.8	25 - 26 -	0			SS-9B	-		-	-	-	-					A-2-4 (V)	
ERY DENSE, DARK BROWNISH GRAY GRAVEL WITH AND , TRACE SILT, TRACE CLAY, MOIST.	6. C	7 11.0	27 28																
		708.8	- 29 -	11 21 18	52	83	SS-10	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	

PROJECT: TYPE:	FRA-70-13.10 PHASE 6A STRUCTURE			OPERATO		RII / S.B.		RILL RIG		CME 750X (AUTOMA		3)			OFFS			+49.2 -71 SE		3' RT	EXPLOR B-11
PID: 89464	SFN: NA	DRILLING	METH	OD:	3.25	5" HSA	CA	LIBRAT	ION DA	ATE:	9/3/18		ELEV	/ATIO	N:	740.9	(MSL	.) I	EOB:	20	.0 ft.
START:1/23		SAMPLING	3 METH	HOD:		SPT	EN	IERGY I		`	79.5			LON					_	002614	
MAT	ERIAL DESCRIPTION AND NOTES			740.9	DE	EPTHS	SPT/ RQD		REC (%)	SAMPLE ID	HP (tsf)		GRAD cs		$\overline{}$) CL	ATTI		RG PI	wc	ODOT CLASS (GI)
7' - ASPHALT (8.0")	ANDINOTES		XX			L	rigs		(70)	ID	(131)	Oit	00		0.	- OL				****	
8' - CONCRETE (10.0")				739.4		- 1 -															
5' - AGGREGATE BASE	(6.0")		XX	738.9		_ 2 -															
	GRAYISH BROWN SAND ITTLE FINE GRAVEL, DAI					_ 3 -	6 15 11	34	83	SS-1	3.00	26	15	15	22	22	23	16	7	11	A-4a (2)
						- 4 - - 5 -	4 10 9	25	33	SS-2	2.50	-	-	-	-	-	-	-	-	10	A-4a (V)
						- - - 7 -	10 10 10	28	100	SS-3	3.00	15	13	16	32	24	24	15	9	11	A-4a (4)
						- 8 - - 9 -	5 7 10	23	67	SS-4	2.50	-	-	-	-	-	-	-	-	12	A-4a (V)
						10 11 - 12 -	4 11 16	36	33	SS-5	2.50	-	-	-	-	-	-	•	-	14	A-4a (V)
EDILIM DENSE CDAV	OARSE AND FINE SAND) LITTLE		727.9	w 72	_{7.4} - 13 -	-														
NE GRAVEL, LITTLE SII		, LII ILL		725.9	••	<u> </u>	4 6 6	16	56	SS-6	1	-	-	-	-	-	-	-	-	13	A-3a (V)
	RAY SILTY CLAY , TRACE	E COARSE			_	 15	-														
FINE SAND, TRACE F	INE GRAVEL, MOIST.				V	16 - - - 17 -	7 9 8	23	100	SS-7	4.50	2	2	2	34	60	36	18	18	18	A-6b (11)
						18 -															
				720.9	—EOF	19 -	4 6 8	19	89	SS-8	3.00	-	-	-	-	-	-	-	-	21	A-6b (V)

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 13.5' AND AT COMPLETION @ 16.0'

	A DOLLING FIDA	/ ADEDATA	D. DIL/CD	DE			NIE ZEOV /	210210	٥١	CT A	TION.	/ ОГГ	CET.	202	. 00 0	4 / 22	4' DT	EXPLORA
PROJECT: FRA-70-13.10 PHASE 6. TYPE: STRUCTURE	A DRILLING FIRM SAMPLING FIRI				RILL RIG AMMER:		OME 750X (AUTOMA		5)	ALIG			SEI:		+89.8 -71 SI		1' RT	B-115-
PID: 89464 SFN: NA	DRILLING MET				ALIBRAT			9/3/18				NI: — DN:	744.0				20	
			SPT					79.5		LAT			741.0).5 ft.
	.0 SAMPLING ME		371	_	IERGY I		. ,						`				.002116	
MATERIAL DESCRIPTION AND NOTES		ELEV. 741.0	DEPTHS	SPT/ RQD		(%)	SAMPLE ID	HP (tsf)		GRAD cs) CL	LL	ERBE PL	PI	wc	ODOT CLASS (GI)
.7' - ASPHALT (8.0")	\bowtie	740.3	L															8
.8' - CONCRETE (10.0")		739.5	<u></u> 1 -	4														8
.5' - AGGREGATE BASE (6.0")		739.0	- 2 -	1														
ERY STIFF TO HARD, GRAYISH BROWN TO			- 3 -	10 6	17	89	SS-1	3.00	_	-	-	_	-	-	-	-	9	A-4a (V)
ILT, SOME CLAY, LITTLE TO SOME FINE GRA	VEL, DAMP.		- 4 -	3														
			- 5 -	5 5	13	83	SS-2	3.00	17	10	13	32	28	23	14	9	11	A-4a (5)
			- 6 -	-														
			- - 7 -	6 7	20	100	SS-3	3.00	-	-	-	-	-	-	-	-	9	A-4a (V)
			- 8 -	-														
			9 -	6 8	21	100	SS-4	3.50	23	13	14	26	24	21	14	7	9	A-4a (3)
			_ 10 -	3 -	3													
			11 - - 12 -	6 7	21	100	SS-5	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)
			13 -															
			— 14 - -	6 7	20	100	SS-6	3.50	-	-	-	-	-	1	-	-	10	A-4a (V)
			- 15 - -	-														
			- 16 - - 17 -	4 7	19	100	SS-7	3.50	20	14	16	27	23	21	13	8	10	A-4a (3)
			_ 18 -															
			- 19 -	7 8	24	0	SS-8	-	-	-	-	-	-		-	-	-	
		720.5	— 20 -	15	-	100	2S-8A	3.00	-	-	-	-	-	-	-	-	11	A-4a (V)

APPENDIX IV


MSE WALL CALCULATIONS

Boring No.	Elevation (feet msl)	Soil Class.	Soil Type	Strata	N ₆₀	N1 ₆₀	γ (pcf)	γ' (pcf)	Strength Parameter	k (soil) k _{rm} (rock)	ε ₅₀ (soil) Ε _r (rock)	RQD (rock)
	733.9 to 728.4	A-4a	С	3	19	19	130 psf	130 psf	Su = 2,375 psf	790 pci	0.0058	-
	728.4 to 724.9	A-6b	С	3	27	27	125 psf	125 psf	Su = 3,375 psf	1,125 pci	0.0049	-
	724.9 to 722.4	A-2-4	G	4	16	18	130 psf	130 psf	φ = 36°	160 pci	-	-
B-115-3-19	722.4 to 715.9	A-6b	С	3	29	29	135 psf	135 psf	Su = 3,625 psf	1,210 pci	0.0048	-
B-113-3-19	715.9 to 711.9	A-2-6	G	4	52	47	130 psf	130 psf	φ = 40°	280 pci	-	-
	711.9 to 701.9	A-6b	С	3	11	11	130 psf	130 psf	Su = 1,375 psf	435 pci	0.0075	-
	701.9 to 696.9	A-1-b	G	4	23	17	135 psf	135 psf	φ = 37°	190 pci	-	-
	696.9 to 688.9	A-1-a	G	4	54	36	135 psf	72.6 psf	φ = 41°	175 pci	-	-
	736.7 to 731.2	A-1-b	G	4	36	57	130 psf	130 psf	φ = 42°	355 pci	-	-
	731.2 to 723.7	A-6b	С	3	31	31	120 psf	120 psf	Su = 3,875 psf	1,290 pci	0.0047	-
B-115-4-19	723.7 to 718.7	A-6a	С	3	19	19	125 psf	125 psf	Su = 2,375 psf	790 pci	0.0058	-
B-113-4-19	718.7 to 709.7	A-1-a	G	4	31	27	130 psf	130 psf	φ = 40°	280 pci	-	-
	709.7 to 704.7	A-1-a	G	4	81	64	135 psf	135 psf	φ = 43°	395 pci	-	-
	704.7 to 696.7	A-2-4	G	4	107	77	135 psf	135 psf	φ = 41°	315 pci	-	-
	738.8 to 733.3	A-6b	С	3	18	18	120 psf	120 psf	Su = 2,250 psf	750 pci	0.0060	-
	733.3 to 728.8	A-1-b	G	4	16	20	125 psf	125 psf	φ = 37°	190 pci	-	-
	728.8 to 723.3	A-6b	С	3	9	9	120 psf	120 psf	Su = 1,125 psf	300 pci	0.0085	-
B-115-5-19	723.3 to 720.8	A-7-6	С	3	27	27	125 psf	125 psf	Su = 3,375 psf	1,125 pci	0.0049	-
	720.8 to 714.2	A-6b	С	3	12	12	125 psf	125 psf	Su = 1,500 psf	500 pci	0.0070	-
	714.2 to 711.8	A-2-4	G	4	12	10	125 psf	62.6 psf	φ = 33°	60 pci	-	-
	714.2 to 708.8	A-1-b	G	4	52	44	135 psf	72.6 psf	φ = 41°	175 pci	-	-
	740.9 to 727.9	A-4a	С	3	19	19	125 psf	125 psf	Su = 2,375 psf	790 pci	0.0058	-
B-115-6-19	727.9 to 725.9	A-3a	G	4	16	17	130 psf	67.6 psf	φ = 35°	85 pci	-	-
	725.9 to 720.9	A-6b	С	2	21	21	130 psf	67.6 psf	Su = 2,625 psf	875 pci	0.0055	-
B-115-7-19	741.0 to 720.5	A-4a	С	3	19	19	125 psf	125 psf	Su = 2,375 psf	790 pci	0.0058	-

JOB W-13-072 SHEET NO. DATE CALCULATED BY 3/19/2020 CHECKED BY BRT DATE 4/4/2020 Retaining Wall E10 - Sta. 380+20.00 to 382+00

JOB SHEET NO. CALCULATED BY CHECKED BY BRT

Retaining Wall E10 - Sta. 380+20.00 to 382+00

DATE DATE

3/19/2020 4/4/2020

ISE Wall Dimensions and Retained Soil Para	<u>meters</u>	Bearing So	<u>oil Pro</u>	<u>perties:</u>					
ISE Wall Height, (<i>H</i>) =	18.4 ft	Bearing Soil	I Unit W	eight, (γ	_{BS}) =			120	pcf
ISE Wall Width (Reinforcement Length), (<i>B</i>) =	12.9 ft	Bearing Soil	I Friction	ո Angle,	$(\varphi_{BS}) =$			26	٥
ISE Wall Length, (<i>L</i>) =	315 ft	Bearing Soil	I Draine	d Cohes	ion, (c_B	s) =		0	pst
ive Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil	l Undrai	ned She	1500	ps			
letained Soil Unit Weight, (γ_{RS}) =	120 pcf	Embedment	t Depth,	$(D_f) =$				4.0	ft
letained Soil Friction Angle, (φ_{RS}) =	30 °	Depth to Gre	ounwate	20.0	ft				
letained Soil Drained Cohesion, (c_{BS}) =	0 psf	LRFD Loa							
letained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 psf		EV	EH	LS				
letained Soil Active Earth Pressure Coeff., (K_a) =	0.297	Strength la	1.00	1.50	1.75	٦	(AASHTO LRF	D BDM Tal	hles
ISE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength Ib	1.35	1.50	1.75	}	3.4.1-1 and 3.	.4.1-2 - Acti	
ISE Backfill Friction Angle, (φ_{BF}) =	34 °	Service I	1.00	1.00	1.00	J	Earth Pr	essure)	
Check Sliding (Loading Case - Strength Ia) - A	ASHTO LRFD BD	M Section 11.10.	.5.3 (Co	ntinued)					

Nominal Sliding Resisting:

$$R_{\tau} = ((S_u)_{BS} \le q_s) \cdot B$$

$$(S_u)_{BS} = 1.50 \text{ ksf}$$
 $q_s = \frac{\sigma_v}{2} = (2.21 \text{ ksf})/2 = 1.11 \text{ ksf}$

$$\sigma_{_{V}}=P_{_{EV}}/R$$
 = (28.48 kip/ft) / (12.9 ft) = 2.21 ksf

$$R_{\tau} = (1.50 \text{ ksf} \le 1.11 \text{ ksf})(12.9 \text{ ft}) = 14.32 \text{ kip/ft}$$

Verify Sliding Force Less Than Factored Sliding Resistance - Undrained Condition

 $P_{H} \leq R_{_{T}} \cdot \phi_{_{T}} \quad \longrightarrow \quad \quad$ 11.44 kip/ft \leq (14.32 kip/ft)(1.0) = 14.32 kip/ft 11.44 kip/ft ≤ 14.32 kip/ft OK

Use $\varphi_{\tau} = 1.0$ (Per AASHTO LRFD BDM Table 11.5.7-1)

Live Surcharge Load, (σ_{LS}) =

Retained Soil Unit Weight, (γ_{RS}) = Retained Soil Friction Angle, (φ_{RS}) = Retained Soil Drained Cohesion, (c_{BS}) =

MSE Backfill Unit Weight, (γ_{BF}) =

MSE Backfill Friction Angle, (φ_{BF}) =

Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =

Retained Soil Active Earth Pressure Coeff., (K_a) =

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990

WWW.RESOURCEINTERATIONAL.COM

250 psf 120 pcf

0 psf

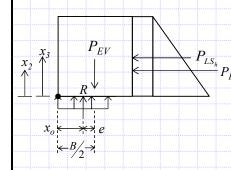
2000 psf 0.297

120 pcf

34 °

JOB	FRA-	70-13.10	NO.	W-13-072
SHEET NO.		3	OF	6
CALCULATE	ED BY	HSK	DATE	3/19/2020
CHECKED E	BY -	BRT	DATE	4/4/2020
Retaining	ı Wall E1) - Sta. 380+2	0.00 to 3	382+00

MSE Wall Dimensions and Retained Soil Para	ameters
MSE Wall Height, (H) =	18.4 ft
MSE Wall Width (Reinforcement Length), (B) =	12.9 ft
MSE Wall Length, (L) =	315 ft

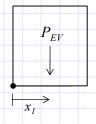

Bearing Soil Properties:		
Bearing Soil Unit Weight, (γ_{BS}) =	120	pcf
Bearing Soil Friction Angle, (φ_{BS}) =	26	0
Bearing Soil Drained Cohesion, (c_{BS}) =	0	psf
Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] =$	1500	psf
Embedment Depth, (D_f) =	4.0	ft
Depth to Grounwater (Below Bot. of Wall), (D_{W}) =	20.0	ft

LRFD Load Factors

	EV	EH	LS		
Strength la	1.00	1.50	1.75	٦	(AASHTO LRFD BDM Tables
Strength lb	1.35	1.50	1.75	}	3.4.1-1 and 3.4.1-2 - Active
Service I	1.00	1.00	1.00	J	Earth Pressure)

Check Eccentricity (Loading Case - Strength la) - AASHTO LRFD BDM Section 11.10.5.5

 $e = B/2 - x_o$


$$P_{LS_h} = \frac{P_{LS_h}}{P_{EH}} = \frac{M_{EV} - M_H}{P_{EV}} = (183.7 \text{ kip-ft/ft} - 77.46 \text{ kip-ft/ft}) / (28.48 \text{ kip/ft}) = 3.73 \text{ ft}$$

 M_{EV} = 183.70 kip·ft/ft M_{H} = 77.46 kip·ft/ft P_{EV} = 28.48 kip/ft Defined below

$$e = (12.9 \text{ ft})/2 - 3.73 \text{ ft} = 2.72 \text{ ft}$$

Resisting Moment, M_{EV} :


$$M_{EV} = P_{EV}(x_1)$$

$$P_{EV} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} = (120 \text{ pcf})(18.4 \text{ ft})(12.9 \text{ ft})(1.00) = 28.48$$
 $x_1 = B/2 = (12.9 \text{ ft})/2 = 6.45 \text{ ft}$
 $M_{EV} = (28.48 \text{ kip/ft})(6.45 \text{ ft}) = 183.70 \text{ kip-ft/ft}$

Overturning Moment, M_H :

$$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3})$$

$P_{EH} = \frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH} =$	½(120 pcf)(18.4 ft)²(0.297)(′	1.5) =	9.0)5 kip/ft
$P_{LSL} = \sigma_{LS} H K_a \gamma_{LS} = 0$	250 psf)(18.4	ft)(0.297)(1.75)	=	2.39	kip/ft
$x_2 = H/_2 = (18.4 \text{ ft})/3$	= 6.13	ft			
r = H/ = (10.4 ft)/2	- 0.20	£4			

$$x_3 = H_2$$
 = (18.4 ft)/2 = 9.20 ft

$$M_{_H} = (9.05 \, {\rm kip/ft}) (6.13 \, {\rm ft}) + (2.39 \, {\rm kip/ft}) (9.20 \, {\rm ft}) = 77.46 \, {\rm kip\cdotft/ft}$$

Check Eccentricity

$$e < e_{
m max} \longrightarrow 2.72 \ {
m ft} < 4.30 \ {
m ft}$$

Limiting Eccentricity:
$$e_{\text{max}} = \frac{B}{3} \rightarrow e_{\text{max}} = (12.9 \text{ ft})/3 = 4.30 \text{ ft}$$

OK

 $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990

 JOB
 FRA-70-13.10
 NO.

 SHEET NO.
 4
 OF

 CALCULATED BY
 HSK
 DATE

 CHECKED BY
 BRT
 DATE

4.70 ksf ≤ 8.75 ksf

OK

W-13-072

6

3/19/2020

4/4/2020

FAX: (614) 823-4990 Retaining Wall E10 - Sta. 380+20.00 to 382+00

<u>WWW.RESOURCEINTERATIONAL.COM</u>

ISE Wall Dimensions and Retained Soil Para			Bearing S	oil Pro	perties	<u>:</u>					
ISE Wall Height, (H) =	18.4 ft		Bearing So	il Unit W	eight, (γ	_{BS}) =				120 p	cf
ISE Wall Width (Reinforcement Length), (B) =	12.9 ft		Bearing So							26 °	
ISE Wall Length, (L) =	315 ft		Bearing So							0 p	
ive Surcharge Load, (σ_{LS}) =	250 ps		Bearing So			ar Stre	ngth,	$[(s_u)_{BS}]$	= 1	500 p	
Retained Soil Unit Weight, (γ_{RS}) =	120 pc	of	Embedmer							4.0 ft	
Retained Soil Friction Angle, (φ_{RS}) =	30 °		Depth to G			w Bot. c	f Wa	ll), (D _W)) =	20.0 ft	
Retained Soil Drained Cohesion, (c _{BS}) =	0 ps		LRFD Loa		, i						
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 ps	sf .		EV	EH	LS					
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297		Strength la		1.50	1.75			O LRFD BL		
ISE Backfill Unit Weight, (γ_{BF}) = ISE Backfill Friction Angle, (φ_{BF}) =	120 pc	T.	Strength Ib Service I	1.00	1.50 1.00	1.75 1.00			and 3.4.1 arth Pressu		•
Check Bearing Capacity (Loading Case - Stre P_{LS_v} $q_{eq} =$		ASHTO LRF	D BDM Se	ction 11	.10.5.4						
	, ,	= 12.9 ft -	2(1 76 ft)	=	9 38	ft					
Λ° Γ Γ											
		$x_o = (1$					ft				
	$r = \frac{M_V}{M_V}$	$\frac{-M_H}{2}$ =	(284 42	kin-ft/ft	- 77 4	7 kin·ft/	'ft) / 4	14 1 kin	/ft =	4.6	7
$x_o \leftarrow \times e$	F) V	(201.12	- KIP TUT		inp in	, ,	ι κιρ	,,,,	7.0	
$\begin{array}{c} \leftarrow B_2 \rightarrow \\ \leftarrow B' \rightarrow \end{array} \qquad \qquad q_{eq}$	= (44.1	kip/ft) / (9.3	8 ft) =	4.70) kst						
$+B' \rightarrow -1$	· · · · · · · · · · · · · · · · · · ·	1 , , , , ,									
$M_V = [(120 \text{ pcf})(18.4 \text{ ft})(12.9 \text{ ft})(1.35)]$ $M_H = P_{EH}(x_2) + P_{LS_L}(x_3) = (\frac{1}{2}\gamma_{RS})$.04.42	кір	туп			
$M_H - I_{EH}(X_2) + I_{LS_h}(X_3) - \sqrt{2} \gamma_{RS} I_{LS_h}$ $M_H = [\frac{1}{2}(120 \text{ pcf})(18.4 \text{ ft})^2(0.297)(1.6 \text{ ft})^2(0.297)(1.6$						=	7	7.47	kip-ft/f	t	
$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV}$	$+\sigma_{\scriptscriptstyle LS}\cdot I$	$3 \cdot \gamma_{LS}$									
$P_V = (120 \text{ pcf})(18.4 \text{ ft})(12.9 \text{ ft})(1.35) +$	(250 psf)(12	2.9 ft)(1.75)	= 44.	1 kip	/ft						
Check Bearing Resistance - Drained Conditio	<u>n</u>										
Iominal Bearing Resistance: $q_{\scriptscriptstyle n} = cN_{\scriptscriptstyle cm}$ +	- Y $D_f N_{qm}$	$C_{wq} + \frac{1}{2}\gamma$	$\partial BN_{\gamma m}C_{w}$	γ							
	A.T	sdi -	13.52		N:	$=N_{\omega}$	$s_{\gamma}i_{\gamma}$	= 12	2.39		
$N_{cm} = N_c s_c i_c = 22.61$	$N_{qm} = N_q$	$S_q \alpha_q \iota_q -$			μn						
$N_{cm} = N_c s_c i_c = 22.61$	$N_{qm} = N_{q}$ $N_{q} = N_{q}$				ĺ	, = 1	2.54				
		11.85			N						
N _c = 22.25	$N_q = c$ $s_q = c$	11.85			N	y = 1 y = 0	.988	(Assum	ed)		
$N_c = 22.25$ $S_c = (9.38 \text{ ft/}315.410000000003 \text{ ft})(11.85/22.)$	$N_q = c$ $s_q = c$ $d_q = c$	11.85 1.015 1+2tan(26°)[1-sin 1.124	.(26°)]²tan⁻¹(4.0		N S	$\frac{1}{y} = 1$ $\frac{1}{y} = 0$ $\frac{1}{y} = 1$.988 .000		ed) t) + 20.0 ft	=	1.0
$N_c = 22.25$ $S_c = (9.38 \text{ ft/}315.41000000003 \text{ ft})(11.85/22}$ = 1.016	$N_q = c$ $s_q = c$ $d_q = c$	11.85 1.015 1+2tan(26°)[1-sin	.(26°)]²tan⁻¹(4.0		N S	$\frac{1}{y} = 1$ $\frac{1}{y} = 0$ $\frac{1}{y} = 1$.988 .000			=	1.0
$N_c = 22.25$ $S_c = (9.38 \text{ ft/}315.41000000003 \text{ ft})(11.85/22}$ = 1.016	$N_q = c$ $S_q = c$ $d_q = c$ $i_q = c$	11.85 1.015 1+2tan(26°)[1-sin 1.124	((26°)]²tan-1(4.0 led)		N S	$\frac{1}{y} = 1$ $\frac{1}{y} = 0$ $\frac{1}{y} = 1$.988 .000			=	1.0
$N_c = 22.25$ $S_c = (9.38 \text{ ft/}315.41000000003 \text{ ft})(11.85/22}$ = 1.016	$N_q = C$ $S_q = C$ $d_q = C$ $i_q = C$	11.85 1.015 1+2tan(26°)[1-sin 1.124 1.000 (Assum 20.0 ft > 4.0 ft	(26°)]²tan⁻¹(4.0 ned) = 1.000	ft/9.38 ft)	N	y = 1 $y = 0$ $y = 1$ $y = 20$.988 .000).0 ft >	1.5(9.38 fi		=	1.(

 $4.70 \text{ ksf} \le (13.46 \text{ ksf})(0.65) = 8.75 \text{ ksf}$

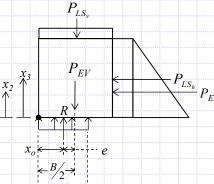
JOB FRA-70-13.10 W-13-072 SHEET NO. OF 6 CALCULATED BY HSK DATE 3/19/2020 CHECKED BY BRT DATE 4/4/2020

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 Retaining Wall E10 - Sta. 380+20.00 to 382+00

ISE Wall Dimensions and Retaine	d Soil Param	eters		<u>Bearing</u>	Soil Pro	perti	es:					
ISE Wall Height, (H) =		18.4	ft	Bearing S				=				120 pcf
ISE Wall Width (Reinforcement Length)), (B) =	12.9	ft	Bearing S								26 °
ISE Wall Length, (L) =	<u> </u>	315	ft	Bearing S					=			0 psf
ive Surcharge Load, (σ_{LS}) =		250	psf	Bearing S						$(s_u)_{BS}$]:	= 1	500 psf
Retained Soil Unit Weight, (γ_{RS}) =		120	pcf	Embedme	ent Deptl	(D_f)	=					4.0 ft
Retained Soil Friction Angle, (φ_{RS}) =		30	0	Depth to	Grounwa	ter (Be	elow B	ot. of V	Vall),	(D_W)	= 2	0.0 ft
Retained Soil Drained Cohesion, (c_{BS}) =		0	psf	LRFD Lo	oad Fac	tors						
tetained Soil Undrained Shear Strength	$, [(S_u)_{RS}] =$	2000	psf		EV	El	1	LS				
Retained Soil Active Earth Pressure Coe	$eff., (K_a) =$	0.297		Strength	la 1.00	1.5	50 1	.75] <i>(</i>	AASHTO	LRFD BD	M Tables
ISE Backfill Unit Weight, (γ_{BF}) =		120		Strength	lb 1.35	1.5	0 1	.75		3.4.1-1 a	nd 3.4.1-2 rth Pressu	- Active
ISE Backfill Friction Angle, (φ_{BF}) =		34	0	Service I	1.00	1.0	0 1	.00	J	Lai	iui Fiessu	(e)
Check Bearing Capacity (Loading (Case - Streng	ıth lb) -	AASHT	O LRFD BDM S	ection 1	1.10.	5.4 (Cd	ontinue	<u>d)</u>			
Check Bearing Resistance - Undra	ined Condition	<u>on</u>										
lominal Bearing Resistance: $q_{\scriptscriptstyle n}$	$=cN_{cm}+\gamma$	$D_f N_q$	$_{m}C_{wq}$	$+\frac{1}{2}\gamma BN_{\gamma m}C$	wγ							
$N_{cm} = N_c s_c i_c = 5.170$	N	$q_m = N$	$V_q s_q d_q$	$qi_q = 1.000$		N_{y}	$_{n}=I$	$V_{\gamma}s_{\gamma}$	i _γ =	= 0	.000	
$N_c = 5.140$		N_q =	1.000				$N_{\gamma} =$	0.00	00			
$S_{c} = 3.38 \text{ ft/}[(5)(315.410000000003)]$	= 1.006	$S_q =$						1.00				
e ka										Assume	۸۱	
$i_c = 1.000$ (Assumed)		$d_q =$	1+2tan	n(0°)[1-sin(0°)]²tan-1(4.0	ft/9.38 ft)		ι_{γ} –	1.00)U (A	155uiiic	iu)	
		$d_q =$	1+2tan 1.000	n(0°)[1-sin(0°)]²tan ⁻¹ (4.0	ft/9.38 ft)							= 1.
	20 pcf)(4.0 ft)	$i_q = C_{wq} =$	1.000 1.000 20.0 ft	(Assumed) > 4.0 ft = 1.000	0		C' _{wy} =			5(9.38 ft)		= 1.
i _c = 1.000 (Assumed)		$i_q = C_{wq} = (1.000)($	1.000 1.000 20.0 ft 1.000) +	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4	0		C' _{wy} =	20.0	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.0
i_c = 1.000 (Assumed) $q_n = (1500 \text{ psf})(5.170) + (100 \text{ psf}$	han Factored	$i_q = C_{wq} = (1.000)($	1.000 1.000 20.0 ft 1.000) +	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 erify Equivalent Pressure Less The $q_{eq} \leq q_n \cdot \phi_b$ $ ightharpoonup$	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 erify Equivalent Pressure Less The $q_{eq} \leq q_n \cdot \phi_b$ \longrightarrow	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 erify Equivalent Pressure Less The $q_{eq} \leq q_n \cdot \phi_b$ \longrightarrow	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 erify Equivalent Pressure Less The $q_{eq} \leq q_n \cdot \phi_b$ $ ightharpoonup$	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 erify Equivalent Pressure Less The $q_{eq} \leq q_n \cdot \phi_b$ $ ightharpoonup$	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 erify Equivalent Pressure Less The $q_{eq} \leq q_n \cdot \phi_b$ \longrightarrow	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 erify Equivalent Pressure Less The $q_{eq} \leq q_n \cdot \phi_b$ $ ightharpoonup$	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.
i_c = 1.000 (Assumed) q_n = (1500 psf)(5.170) + (1 $q_{eq} \leq q_n \cdot \phi_b \longrightarrow$	han Factored 4.70 ksf ≤ (8	$i_q = C_{wq} = (1.000)($ Bearing 3.24 ksf)	1.000 1.000 20.0 ft 1.000) + 1.000) + 1.000) =	(Assumed) > 4.0 ft = 1.000 + ½(120 pcf)(9.4 tance	0 ft)(0.000)(1.00	C' _{wy} =	= 20.01	ft > 1.5	5(9.38 ft)	+ 20.0 ft	= 1.

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 WWW.RESOURCEINTERATIONAL.COM

FRA-70-13.10 W-13-072 SHEET NO. CALCULATED BY 3/19/2020 HSK DATE CHECKED BY BRT DATE 4/4/2020 Retaining Wall E10 - Sta. 380+20.00 to 382+00


MSE Wall Dimensions and Retained Soil Paran	<u>neters</u>	
MSE Wall Height, (H) =	18.4	ft
MSE Wall Width (Reinforcement Length), (B) =	12.9	ft
MSE Wall Length, (<i>L</i>) =	315	ft
Live Surcharge Load, (σ_{LS}) =	250	psf
Retained Soil Unit Weight, (γ_{RS}) =	120	pcf
Retained Soil Friction Angle, (φ_{RS}) =	30	0
Retained Soil Drained Cohesion, (c_{BS}) =	0	psf
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =	2000	psf
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297	
MSE Backfill Unit Weight, (γ_{BF}) =	120	pcf
MSE Backfill Friction Angle, (φ_{BF}) =	34	0

Bearing So	oil Pro	erties:					
Bearing Soil	Unit W	eight, (γ	_{BS}) =			120	pcf
Bearing Soil	Friction	n Angle,	$(\varphi_{BS}) =$			26	0
Bearing Soil	Draine	d Cohes	ion, (c_{BS}	;)=		0	psf
Bearing Soil	Undrai	ned She	ar Stren	gth,	$[(s_u)_{BS}] =$	1500	psf
Embedment	Depth,	$(D_f) =$				4.0	ft
Depth to Gro	ounwate	er (Belov	Bot. of	Wa	II), (D_W) =	20.0	ft
LRFD Load	d Facto	ors .					
	EV	EH	LS				
Strength la	1.00	1.50	1.75	٦	(AASHTO I DE	D PDM To	hloc

1.75

3.4.1-1 and 3.4.1-2 - Active

Settlement Analysis (Loading Case - Service I) - AASHTO LRFD BDM Section 11.10.4.1

$$q_{eq} = \frac{P_V}{B'}$$

$$B' = B - 2e = 12.9 \text{ ft} - 2(1.56 \text{ ft}) = 9.78 \text{ ft}$$

$$P_{LS_h}$$
 P_{EH} P_{EH}

Strength lb 1.35 1.50

$$x_o = \frac{M_V - M_H}{P_V}$$
 = (204.52 kip·ft/ft - 49.55 kip·ft/ft) / 31.71 kip/ft =

$$q_{eq} = (31.71 \, \text{kip/ft}) \, / \, (9.78 \, \text{ft}) = 3.24 \, \text{ks}$$

$$M_{V} = P_{EV}(x_1) + P_{LS_{v}}(x_1) = (\gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV})(x_1) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_1)$$

$$M_V = [(120 \text{ pcf})(18.4 \text{ ft})(12.9 \text{ ft})(1.00)](6.5 \text{ ft}) + [(250 \text{ psf})(12.9 \text{ ft})(1.00)](6.5 \text{ ft}) = 204.52 \text{ kip-ft/ft}$$

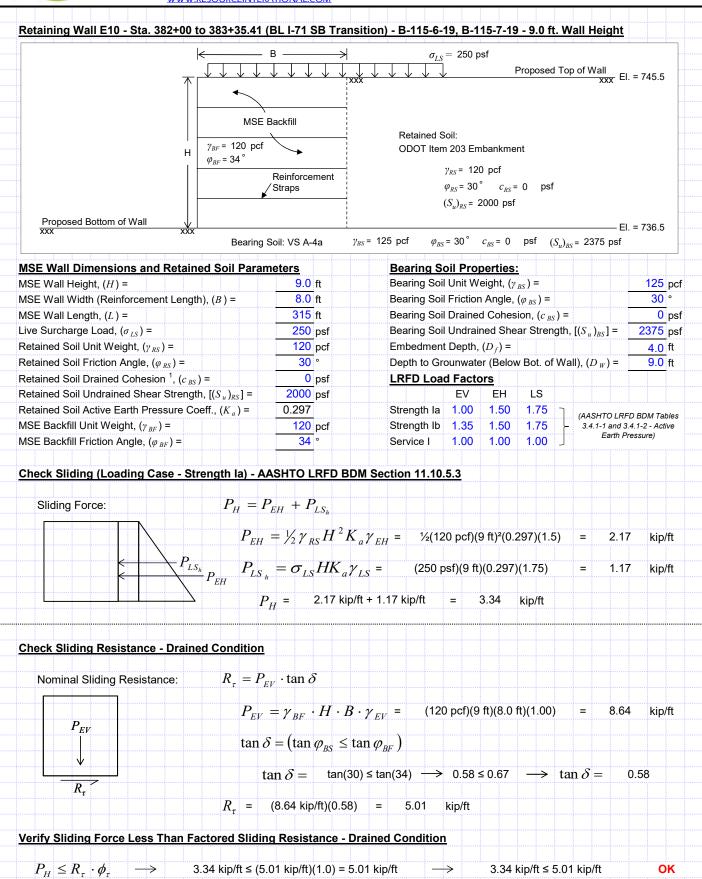
$$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3})$$

$$M_H = \frac{1}{2}(120 \text{ pcf})(18.4 \text{ ft})^2(0.297)(1.00)](6.13 \text{ ft}) + \frac{1}{2}(250 \text{ psf})(18.4 \text{ ft})(0.297)(1.00)](9.2 \text{ ft})$$
 = 49.55 kip-ft/ft

$$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$$

$$P_{_{V}} = (120 \ {\rm pcf})(18.4 \ {\rm ft})(12.9 \ {\rm ft})(1.00) + (250 \ {\rm psf})(12.9 \ {\rm ft})(1.00) = 31.71 \ {\rm kip/ft}$$

Settlement, Time Rate of Consolidation and Differential Settlement:


Boring	Total Settlement at Center of Reinforced Soil Mass	Total Settlement at Wall Facing	Time for 100% Consolidation	Distance Between Borings Along Wall Facing	Differential Settlement Along Wall Facing
B-115-4-19	2.057 in	1.550 in	35 days		
B-115-5-19	1.481 in	1.240 in	45 days	88 ft	1/3410
B-115-6-19	0.669 in	0.575 in	9 days	141 ft	1/2540
B-115-7-19	0.344 in	0.266 in	80 days	141 ft	1/5480

JOB W-13-072 SHEET NO. 6 DATE CALCULATED BY 3/19/2020 CHECKED BY BRT DATE 4/4/2020 Retaining Wall E10 - Sta. 382+00.00 to 383+35.41

Use $\varphi_{\tau} = 1.0$ (Per AASHTO LRFD BDM Table 11.5.7-1)

JOB FRA-70-13.10 NO. SHEET NO. OF CALCULATED BY HSK DATE BRT DATE CHECKED BY

4/4/2020 Retaining Wall E10 - Sta. 382+00.00 to 383+35.41

W-13-072

6

3/19/2020

1704 (01.1/023.1770
WWW.RESOURCEINTERATIONAL.COM

FAX: (614) 823 WWW.RESOURCEINTER	RATIONAL.COM							
ISE Wall Dimensions and Retained Soil Parar	met <u>ers</u>	Bearing So	oil <u>Prop</u> e	er <u>ties:</u>				
1SE Wall Height, (H) =	9.0 ft	Bearing Soil						125 p
ISE Wall Width (Reinforcement Length), (<i>B</i>) =	8.0 ft	Bearing Soil						30 °
ISE Wall Length, (L) =	315 ft	Bearing Soil				_s) =		0 p:
ive Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil				· /	$[(s_u)_{BS}]$:	
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf	Embedment						4.0 ft
Retained Soil Friction Angle, (φ_{RS}) =	30 °	Depth to Gro			/ Bot. of	· Wal	I), (D _W)	
Retained Soil Drained Cohesion, $(c_{BS}) =$	0 psf	LRFD Load					<u></u>	
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 psf		EV	EH	LS			
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297	Strength la		1.50	1.75	٦	'^ ^ CUTO	Tople
ISE Backfill Unit Weight, $(\gamma_{BF}) =$	120 pcf	Strength lb		1.50	1.75	 	3.4.1-1 a) LRFD BDM Table and 3.4.1-2 - Active
ISE Backfill Friction Angle, (φ_{BF}) =	34 °			1.00	1.00	J		rth Pressure)
heck Sliding (Loading Case - Strength la) - A	ASHTO LRFD BDM	1 Section 11.10.	5.3 (Cont	inued)				
heck Sliding Resistance - Undrained Condition								
Nominal Sliding Resisting: $R_{ au} = (($	$(S_u)_{BS} \leq q_s \cdot B$							
	$(S_u)_{BS} = 2.38$	ksf						
P_{EV}	σ /							
	$q_s = \frac{\sigma_v}{2} = (1$	1.08 ksf) / 2 =	0.54	ksf				
R_{τ} \vee	/ <u>-</u>							
	P/							
$(S_u)_{BS} \leq q_s$	1 1777 /	(0.04.1.						
	$\sigma_{_{\mathcal{V}}} = \frac{P_{_{EV}}}{B} =$ $= (2.38 \text{ ksf} \le 0.54)$					1.08	B ksf	
$R_{ au}$	= (2.38 ksf ≤ 0.54	ksf)(8.0 ft) =	4.32			1.08	s kst	
$R_{ au}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni	ksf)(8.0 ft) =	4.32 on	kip/				OK
$R_{ au}$: /erify Sliding Force Less Than Factored Slidir	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
R $_{ au}$: $P_H \leq R_{ au} \cdot \phi_{ au}$ \longrightarrow 3.34 kip/ft \leq (4	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
R $_{ au}$: $P_H \leq R_{ au} \cdot \phi_{ au}$ \longrightarrow 3.34 kip/ft \leq (4	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
R $_{ au}$: $P_H \leq R_{ au} \cdot \phi_{ au}$ \longrightarrow 3.34 kip/ft \leq (4	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
R _{au} : $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq (4$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
R _{au} : $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq (4$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
R _{au} : $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq (4$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
R _{au} : $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq (4$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			ok
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK
/erify Sliding Force Less Than Factored Slidin $P_H \leq R_{ au} \cdot \phi_{ au} \longrightarrow 3.34 \ ext{kip/ft} \leq ext{(4)}$	= (2.38 ksf ≤ 0.54 ng Resistance - Uni .32 kip/ft)(1.0) = 4.3	ksf)(8.0 ft) =	4.32 on	kip/	ft			OK

JOB W-13-072 SHEET NO. 6 DATE _ CALCULATED BY HSK 3/19/2020 CHECKED BY BRT DATE 4/4/2020 Retaining Wall E10 - Sta. 382+00.00 to 383+35.41

		•
WWW.RESOL	JRCEI	NTERATIONAL.COM

MSE Wall Dimensions and Retained	Soil Parar	neters		Bea	aring S	Soil Pro	perties	<u>:</u>			
MSE Wall Height, (H) =		9.0) ft	· · · · · · · · · · · · · · · · · · · 		oil Unit W					125 pc
MSE Wall Width (Reinforcement Length), ((B) =	8.0	ft	Bea	aring Sc	oil Frictio	n Angle,	$(\varphi_{BS}) =$			30 °
MSE Wall Length, (L) =		315	ft	Bea	aring Sc	oil Draine	ed Cohes	sion, (c_{BS}	₅) =		0 ps
Live Surcharge Load, (σ_{LS}) =		250) psf	Bea	ring Sc	oil Undra	ined She	ar Stren	igth, [(s u) _{BS}] =	2375 ps
Retained Soil Unit Weight, (γ_{RS}) =		120	pcf			nt Depth					4.0 ft
Retained Soil Friction Angle, (φ_{RS}) =		30		Dep	oth to G	Grounwat	er (Belov	w Bot. of	Wall), ($D_W) =$	9.0 ft
Retained Soil Drained Cohesion, (c_{BS}) =		0) psf			ad Fact					
Retained Soil Undrained Shear Strength, [2000				EV	EH	LS			
Retained Soil Active Earth Pressure Coeff.	$K_{a}(K_{a}) =$	0.297	-	Stre	ength la	a 1.00	1.50	1.75	7 (AA	SHTO LRF	D BDM Tables
MSE Backfill Unit Weight, (γ_{BF}) =			pcf	Stre	ength Ib	1.35	1.50	1.75	: 1 : '	1.1-1 and 3.	.4.1-2 - Active
MSE Backfill Friction Angle, (φ_{BF}) =		34	0	Ser	vice I	1.00	1.00	1.00	IJ	Earth Pi	essure)
Check Eccentricity (Loading Case - S	Strength la	a) - AASI	HTO LRFC	BDM Se	ection	11.10.5	5.5				
	$e = \frac{B}{2}$	$\frac{1}{2} - x_o$									
P_{EV}		_									
X_3 P_{LS_h}	$x_o = \frac{1}{EH}$	M_{EV}	$-M_H$ =	- (34.5	s kin∙f	f+/f+ - 11	78 kin∙f	+/f+\ / (8	ନ୍ଧ kin/f	+1 =	2.64 ft
-	EH ~o	P_{I}	FV .	. (0	N Kip.	V1ι	./ O Kip .	(/it// (~.	.04 Kip, .	·) -	۷.0۰ ۱۱
R^{Ψ}			29								
TTALT	1	M =	34.56	kip·ft/ft	_						
7 2 30 0		$M_{II} =$	11.78	kip·ft/ft		Define	d below				
$x_o \longleftrightarrow e$ $\leftarrow B/\rightarrow$			8.64	kip/ft		D 01	u bole				
<i>⊱</i> ^B /2 [→]		L EV		Mp//							
	e=	: (81	ft)/2 - 2.64	ft =	1.3	36 ft					
Resisting Moment, M_{EV} :	$M_{EV} =$										
P_{EV}	$P_{\scriptscriptstyle EV}$	$= \gamma_{BF}$	$\cdot H \cdot B \cdot$	$\gamma_{EV} =$	(12	20 pcf)(9	9 ft)(8.0	ft)(1.00) =	8.64	l kip/ft
T EV	· · ·	R/	(0.6	` fi\ / O		1.00					
	x_1 –	= 1/2	= (8.0) ft) / ∠	=	4.00	ft				
	7	1 /	(0.64.1	. 167/4 0	~ G\		24.50	51/61			
•	1	$M_{EV} =$	(8.64 l	kip/π)(4.υ	0π)	=	34.56	kip·ft/ft			
$ x_I $											
Overturning Moment, M_H :	$M_{H} =$	$P_{_{FH}}()$	$(x_2) + P_L$	(x_3)							
				"	1//4	100 aft	(O #)2(O	2071/4/		0.47	1 (6)
			$_{RS}H^2K_a$								
P_{LS_h}	P	- 4	HK_{V}	_	/250 n	cf\/Q ff\/	'n 207\(·	1 75\	-	1 17	lain/ft
	P_{LS}	$_{,}$ – \mathcal{O}_{LS}	in al L	s –	₍ Ζυυ ρ.	אוונס ונון	U.Z31)\	1.70)	-	1.17	Кір/іі
	x ₂ =	$=H/_2$	= (9	ft) / 3	=	3.00	ft				
	<i>x</i> ₃ =	$=\frac{11}{2}$	= (9	ft) / 2	=	4.50	ft				
	Λ	$M_H =$	(2.17	7 kip/ft)(3	ft) + (1.17 kip	/ft)(4.50	ft)	= 1	11.78	kip·ft/ft
Check Eccentricity											
$e < e_{\rm max} \longrightarrow 1.36 \ {\rm ft} < 2.67$	ft	OK									
Limiting Eccentricity: $e_{ m max} =$	R/			` fi\ / O		0.07					
Limiting Eccentricity: $e_{\rm max} =$	$D_{/2} \rightarrow$	$e_{\rm max}$	(8.0)π)/3	=	2.67	tt				

 $q_{eq} \leq q_n \cdot \phi_b$

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: [614] 823-4949 FAX: [614] 823-4990
 JOB
 FRA-70-13.10
 NO.

 SHEET NO.
 4
 OF

 CALCULATED BY
 HSK
 DATE

 CHECKED BY
 BRT
 DATE

2.35 ksf ≤ 12.64 ksf

OK

W-13-072 6 3/19/2020 E 4/4/2020

Retaining Wall E10 - Sta. 382+00.00 to 383+35.41

FAX: (614) 823-4990
WWW.RESOURCEINTERATIONAL.COM

MSE Wall Dimensions and Retained Soil Pa	rameters	Bearing Soil Prop	erties:	
/ISE Wall Height, (H) =	9.0 ft	Bearing Soil Unit We	eight, $(\gamma_{BS}) =$	125 բ
#ISE Wall Width (Reinforcement Length), (B) =	8.0 ft	Bearing Soil Friction	Angle, (φ_{BS}) =	30 °
/ISE Wall Length, (<i>L</i>) =	315 ft	Bearing Soil Drained	Cohesion, $(c_{BS}) =$	0 p
ive Surcharge Load, (σ_{LS}) =	250 psf	Bearing Soil Undrain	ed Shear Strength	$, [(s_u)_{BS}] = 2375 \mathrm{p}$
Retained Soil Unit Weight, (γ_{RS}) =	120 pcf	Embedment Depth,	(D_f) =	4.0 f
Retained Soil Friction Angle, (φ_{RS}) =	30 °	Depth to Grounwate	r (Below Bot. of Wa	all), $(D_W) = 9.0 \text{ f}$
Retained Soil Drained Cohesion, (c_{BS}) =	0 psf	LRFD Load Facto	<u>rs</u>	
Retained Soil Undrained Shear Strength, [$(S_u)_{RS}$] =	2000 psf	EV	EH LS	
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297	Strength la 1.00	1.50 1.75	(AASHTO LRFD BDM Tabl
MSE Backfill Unit Weight, (γ_{BF}) =	120 pcf	Strength lb 1.35	1.50 1.75	3.4.1-1 and 3.4.1-2 - Activ Earth Pressure)
/ISE Backfill Friction Angle, (φ_{BF}) =	34 °	Service I 1.00	1.00 1.00 🗵	Earui Fressure)
Check Bearing Capacity (Loading Case - St	rength lb) - AASHTC	LRFD BDM Section 11.	.10.5.4	
$P_{LS_{\nu}}$	P /			
	$=\frac{P_{V}}{B'}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=B-2e = 8.	0 ft - 2(0.77 ft) = 6 = (8.0 ft) / 2 - 3.23 ft	5.46 ft	
P_{EH}	$e = B/2 - x_o$	= (8.0 ft) / 2 - 3.23 ft	= 0.77 ft	
	$M_{\nu}-M_{\mu}$			
<i>x</i> _o k *>e	$x_o = \frac{r}{P_V}$	= (60.66 kip·ft/ft -	11.76 kip·ft/ft) / 1	5.16 kip/ft = 3.2
$\stackrel{B}{\leftarrow} \stackrel{B}{>} \longrightarrow q_{\alpha}$	= (15 16 kin/ft)	/ (6.46 ft) = 2.35	ksf	
$M_V = P_{EV}(x_1) + P_{LS_v}(x_1) = (\gamma_{BF})$	$H \cdot B \cdot \gamma_{EV} (x_1)$	$+ (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_1)$		
$M_V = [(120 \text{ pcf})(9 \text{ ft})(8.0 \text{ ft})(1.3)]$				o∙ft/ft
$M_H = P_{EH}(x_2) + P_{LS_h}(x_3) = (\frac{1}{2}\gamma_R)$	$_{S}H^{2}K_{a}\gamma_{EH}(x_{2})$	$+(\sigma_{LS}HK_a\gamma_{LS})(x_3)$		
$M_{_H} = [\frac{1}{2}(120 \text{ pcf})(9 \text{ ft})^2(0.297)]$)(1.5)](3 ft) + [(250 ps	sf)(9 ft)(0.297)(1.75)](4.5	ft) =	11.76 kip-ft/ft
$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{B}$	$\sigma_{V} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$,		
$P_{\scriptscriptstyle U} = ext{(120 pcf)(9 ft)(8.0 ft)(1.35)} +$			ft	
Check Bearing Resistance - Drained Condit $q_n = cN_{cm}$ Iominal Bearing Resistance: $q_n = cN_{cm}$	$+ \gamma D_f N_{qm} C_{wq} +$	- 1/ 1/RN C		
	· 1 1	, ,		
$N_{cm} = N_c s_c i_c = 30.53$	$N_{qm} = N_q s_q d_q i$	q = 21.60	$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$, = 22.22
N _c = 30.14	$N_q = 18.40$		N _y = 22.4	
$S_c = (6.46 \text{ ft/3}15.410000000003 \text{ ft})(18.4/30.1)$	$s_q = 1.012$		$s_{\gamma} = 0.992$	
= 1.013		°)[1-sin(30°)]²tan⁻¹(4.0 ft/6.46 ft)	$i_{\gamma} = 1.000$	
i_c = 1.000 (Assumed)	1.160			< 1.5(6.46 ft) + 4.0 ft =
	$i_q = 1.000$ (4)	Assumed)		
	$C_{wq} = 9.0 \text{ft} > 4$	1.0 ft = 1.000		
		//2_		
$q_n = (0 \text{ psf})(30.532) + (125 \text{ pcf})(4.0 \text{ f})$	11/04 0001/4 0001 . 1/	(125 pcf)(6.5 ft)(22.221)(0.964) =	19.45 ksf

 $2.35 \text{ ksf} \le (19.45 \text{ ksf})(0.65) = 12.64 \text{ ksf}$

WWW.RESOURCEINTERATIONAL.COM

JOB FRA-70-13.10 W-13-072 SHEET NO. OF 6 CALCULATED BY HSK DATE 3/19/2020 CHECKED BY BRT DATE 4/4/2020 Retaining Wall E10 - Sta. 382+00.00 to 383+35.41

MSE Wall Height, (H) = MSE Wall Width (Reinforcement Length), (B) = MSE Wall Length, (L) = Live Surcharge Load, (σ_{LS}) = Retained Soil Unit Weight, (γ_{RS}) = Retained Soil Friction Angle, (φ_{RS}) =	9.0 ft		Bearing Soil								
MSE Wall Length, (L) = Live Surcharge Load, (σ_{LS}) = Retained Soil Unit Weight, (γ_{RS}) =			bearing 3011	Unit W	eight, (γ	_{BS}) =				125 բ	ocf
ive Surcharge Load, (σ_{LS}) = Retained Soil Unit Weight, (γ_{RS}) =	8.0 ft		Bearing Soil	Friction	Angle,	$(\varphi_{BS}) =$				30 °	,
Retained Soil Unit Weight, (γ_{RS}) =	315 ft		Bearing Soil							0 p	osf
	250 psf		Bearing Soil	Undrair	ned She	ar Strenç	gth, [($[s_u]_{BS}$] =	= 2	375 p	
Retained Soil Friction Angle (a.s.) =	120 pcf		Embedment							4.0 f	
·····	30 °		Depth to Gro			Bot. of	Wall)	$,(D_W)$ =	=	9.0 f	t
Retained Soil Drained Cohesion, (c _{BS}) =	0 psf		LRFD Load								
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}] =$	2000 psf			EV	EH	LS				<u>i.</u>	
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297		Strength la					AASHTO			
ISE Backfill Unit Weight, $(\gamma_{BF}) =$ ISE Backfill Friction Angle, $(\varphi_{BF}) =$	120 pcf		Strength Ib Service I		1.50	1.75		3.4.1-1 ar Eart	nd 3.4.1 th Pressi		е
theck Bearing Capacity (Loading Case - Strengt)	h lb) - AAS	SHTO LRF	D BDM Sec	tion 11	.10.5.4	(Continue	<u>ed)</u>				
heck Bearing Resistance - Undrained Condition											
ominal Bearing Resistance: $q_n = cN_{cm} + \gamma I$	J 1	1			λ 7	N/ c			000		
		$s_q d_q i_q =$	1.000		1	$=N_{\gamma}s_{\gamma}$	Í	= 0.	000		
	$N_q = 1.0$, = 0.0					
	$S_q = 1.0$		(0°)]²tan⁻¹(4.0 ft/6	16 ft\		= 1.0		A 0011	1/		
i _c = 1.000 (Assumed)		+2tan(0°)[1-sin	(v)j~tan = (4.0 ft/6	0.40 ft)		= 1.0				=	Λ (
		000 (Assum	ed)		C _u	_γ = 9.0	rπ< 1.	- (π ۵4.σ)	∓ 4.∪ π	-	0.8
		0.0 ft > 4.0 ft									
erify Equivalent Pressure Less Than Factored E	Searing Re	esistance									
			ksf —	>	2.35 ks	f ≤ 8.29	ksf		ok		
Verify Equivalent Pressure Less Than Factored E $q_{eq} \leq q_{n} \cdot \phi_{b} \longrightarrow 2.35 ext{ ksf} \leq$ (12)			ksf —	>	2.35 ks	f ≤ 8.29	ksf		OK		
	.76 ksf)(0.6		ksf —	>	2.35 ks	f ≤ 8.29	ksf		OK		
$q_{eq} \leq q_{n} \cdot \phi_{b} \longrightarrow ext{2.35 ksf} \leq ext{(12)}$.76 ksf)(0.6		ksf	>	2.35 ks	f ≤ 8.29	ksf		OK		
$q_{eq} \leq q_{n} \cdot \phi_{b} \longrightarrow ext{2.35 ksf} \leq ext{(12)}$.76 ksf)(0.6		ksf —	>	2.35 ks	f ≤ 8.29	ksf		OK		
$q_{eq} \leq q_{n} \cdot \phi_{b} \longrightarrow ext{2.35 ksf} \leq ext{(12)}$.76 ksf)(0.6		KSF —	>	2.35 ks	f ≤ 8.29	ksf		OK		
$q_{eq} \leq q_{n} \cdot \phi_{b} \longrightarrow 2.35 \text{ksf} \leq$ (12	.76 ksf)(0.6		ksf —	>	2.35 ks	f ≤ 8.29	ksf		OK		
$q_{eq} \leq q_{n} \cdot \phi_{b} \longrightarrow ext{2.35 ksf} \leq ext{(12)}$.76 ksf)(0.6		KSf —	>	2.35 ks	f ≤ 8.29	ksf		OK		
$q_{eq} \leq q_n \cdot \phi_b \Longrightarrow ext{2.35 ksf} \leq ext{(12)}$.76 ksf)(0.6		ksf —		2.35 ks	f ≤ 8.29	ksf		OK		
$q_{eq} \leq q_n \cdot \phi_b \Longrightarrow ext{2.35 ksf} \leq ext{(12)}$.76 ksf)(0.6		ksf —		2.35 ks	f ≤ 8.29	ksf		OK		
	.76 ksf)(0.6		KSF —	>	2.35 ks	f ≤ 8.29	ksf		OK		

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 WWW.RESOURCEINTERATIONAL.COM

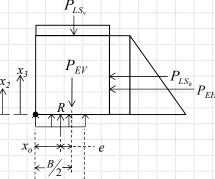
FRA-70-13.10 SHEET NO. CALCULATED BY DATE CHECKED BY BRT DATE

3/19/2020 4/4/2020

W-13-072

Retaining Wall E10 - Sta. 382+00.00 to 383+35.41

MSE Wall Dimensions and Retained Soil Paran	neters	
MSE Wall Height, (H) =	9.0	ft
MSE Wall Width (Reinforcement Length), (B) =	8.0	ft
MSE Wall Length, (L) =	315	ft
Live Surcharge Load, (σ_{LS}) =	250	psf
Retained Soil Unit Weight, (γ_{RS}) =	120	pcf
Retained Soil Friction Angle, (φ_{RS}) =	30	0
Retained Soil Drained Cohesion, (c_{BS}) =	0	psf
Retained Soil Undrained Shear Strength, $[(S_u)_{RS}]$ =	2000	psf
Retained Soil Active Earth Pressure Coeff., (K_a) =	0.297	
MSE Backfill Unit Weight, (γ_{BF}) =	120	pcf
MSE Backfill Friction Angle, (φ_{BF}) =	34	0


Bearing Soil Properties:		
Bearing Soil Unit Weight, (γ_{BS}) =	125	pcf
Bearing Soil Friction Angle, (φ_{BS}) =	30	0
Bearing Soil Drained Cohesion, (c_{BS}) =	0	psf
Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}]$ =	2375	psf
Embedment Depth, (D_f) =	4.0	ft
Depth to Grounwater (Below Bot. of Wall), (D_W) =	9.0	ft
LRFD Load Factors		
FV FU 10		

Strength la 1.00 1.50 1.75 Strength Ib 1.35 1.50 1.75

(AASHTO LRFD BDM Tables 3.4.1-1 and 3.4.1-2 - Active

3.31 ft

Settlement Analysis (Loading Case - Service I) - AASHTO LRFD BDM Section 11.10.4.1

$$q_{eq} = \frac{P_V}{B'}$$

$$B' = B - 2e$$
 = 8.0 ft - 2(0.69 ft) = 6.62 ft

$$P_{LS_h} = B - 2e = 8.0 \text{ ft} - 2(0.69 \text{ ft}) = 6.62 \text{ ft}$$

$$P_{EH} = B/2 - x_o = (8.0 \text{ ft}) / 2 - 3.31 \text{ ft} = 0.69 \text{ ft}$$

$$x_o = \frac{M_V - M_H}{P_V} = (42.56 \text{ kip·ft/ft} - 7.34 \text{ kip·ft/ft}) / 10.64 \text{ kip/ft} = 6.62 \text{ ft}$$

Service I

$$M_{V} = P_{EV}(x_{1}) + P_{LS}(x_{1}) = (\gamma_{BE} \cdot H \cdot B \cdot \gamma_{EV})(x_{1}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS})(x_{1})$$

$$M_V = [(120 \text{ pcf})(9.0 \text{ ft})(8.0 \text{ ft})(1.00)](4.0 \text{ ft}) + [(250 \text{ psf})(8.0 \text{ ft})(1.00)](4.0 \text{ ft}) = 42.56 \text{ kip-ft/ft}$$

 $q_{eq} = (10.64 \text{ kip/ft}) / (6.62 \text{ ft})$

$$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3}) = (\frac{1}{2}\gamma_{RS}H^{2}K_{a}\gamma_{EH})(x_{2}) + (\sigma_{LS}HK_{a}\gamma_{LS})(x_{3})$$

$$M_H = [\frac{1}{2}(120 \text{ pcf})(9 \text{ ft})^2(0.297)(1.00)](3 \text{ ft}) + [(250 \text{ psf})(9 \text{ ft})(0.297)(1.00)](4.5 \text{ ft})$$
 = 7.34 kip-ft/ft

$$P_{V} = P_{EV} + P_{LS} = \gamma_{BF} \cdot H \cdot B \cdot \gamma_{EV} + \sigma_{LS} \cdot B \cdot \gamma_{LS}$$

$$P_{V} = (120 \, {\rm pcf})(9.0 \, {\rm ft})(8.0 \, {\rm ft})(1.00) + (250 \, {\rm psf})(8.0 \, {\rm ft})(1.00) = 10.64 \, {\rm kip/ft}$$

Settlement, Time Rate of Consolidation and Differential Settlement:

Boring	Total Settlement at Center of Reinforced Soil Mass	Total Settlement at Wall Facing	Time for 100% Consolidation	Distance Between Borings Along Wall Facing	Differential Settlement Along Wall Facing
B-115-4-19	2.057 in	1.550 in	35 days		
B-115-5-19	1.481 in	1.240 in	45 days	88 ft	1/3410
B-115-6-19	0.669 in	0.575 in	9 days	141 ft	1/2540
B-115-7-19	0.344 in	0.266 in	80 days	141 ft	1/5480

MSE Wall Settlement - Sta. 380+20.00 to 382+00 (BL I-71 SB Transition)

Boring B-115-4-19

H= 18.4 ft Total wall height

B'= 9.8 ft Effective footing width due to eccentricity

D_w= 20.0 ft Depth below bottom of footing

= 3,240 psf Equivalent bearing pressure at bottom of wall

				1.5 3.5 2.0 2.5 120 420 300 300 3,300 37 0.243 0.024 0.561 1 3.5 5.5 2.0 4.5 120 680 540 540 3,540 37 0.243 0.024 0.561 1 5.5 7.5 2.0 6.5 120 900 780 780 37 0.243 0.024 0.561 1 7.5 10.0 2.5 8.8 125 1.213 1.066 4.056 34 0.216 0.022 0.538 10.0 12.5 2.5 11.3 125 1.525 1.369 1.369 4.369 34 0.216 0.022 0.538 12.5 14.5 2.0 13.5 130 1.785 1.685 1.685 4.685 4 0.022 0.538 14.5 16.5 2.0 13.5 130 1.785 1.685 1.685 4.655 4.655															Total	Settlement at	t Center of Re	einforced Soil	l Mass		Total Set	tlement at Fa	icing of Wall		
Layer	Soil Class.	Soil Type	Layer (i	Depth ft)			γ (pcf)	Bottom	Midpoint	Midpoint		LL	C _c ⁽²⁾	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
	A-6b	С	0.0	1.5	1.5	0.8	120	180	90	90	3,090	37	0.243	0.024	0.561				0.08	0.999	3,235	3,325	0.043	0.519	0.500	1,620	1,710	0.030	0.358
	A-6b	С	1.5	3.5	2.0	2.5	120	420	300	300	3,300	37	0.243	0.024	0.561				0.26	0.957	3,101	3,401	0.036	0.438	0.497	1,609	1,909	0.025	0.300
'	A-6b	С	3.5	5.5	2.0	4.5	120	660	540	540	3,540	37	0.243	0.024	0.561				0.46	0.844	2,733	3,273	0.024	0.292	0.484	1,567	2,107	0.018	0.221
	A-6b	С	5.5	7.5	2.0	6.5	120	900	780	780	3,780	37	0.243	0.024	0.561				0.66	0.716	2,321	3,101	0.019	0.224	0.460	1,490	2,270	0.014	0.173
2	A-6a	С	7.5	10.0	2.5	8.8	125	1,213	1,056	1,056	4,056	34	0.216	0.022	0.538				0.89	0.596	1,930	2,986	0.016	0.190	0.426	1,380	2,436	0.013	0.153
_	A-6a	С	10.0	12.5	2.5	11.3	125	1,525	1,369	1,369	4,369	34	0.216	0.022	0.538				1.15	0.494	1,600	2,969	0.012	0.142	0.385	1,249	2,617	0.010	0.119
	A-1-a	G	12.5	14.5	2.0	13.5	130	1,785	1,655	1,655	4,655					29	31	101	1.38	0.425	1,377	3,032	0.005	0.062	0.351	1,137	2,792	0.004	0.054
3	A-1-a	G	14.5	16.5	2.0	15.5	130	2,045	1,915	1,915	4,915					29	29	97	1.58	0.377	1,222	3,137	0.004	0.053	0.323	1,046	2,961	0.004	0.047
	A-1-a	G	16.5	21.5	5.0	19.0	130	2,695	2,370	2,370	5,370					32	30	100	1.94	0.314	1,017	3,387	0.008	0.093	0.281	910	3,280	0.007	0.085
	A-1-a	G	21.5	26.5	5.0	24.0	135	3,370	3,033	2,783	5,783					81	72	280	2.45	0.253	818	3,601	0.002	0.024	0.234	759	3,542	0.002	0.022
4	A-2-4	G	26.5	31.5	5.0	29.0	135	4,045	3,708	3,146	6,146					120	102	484	2.97	0.211	683	3,829	0.001	0.011	0.200	648	3,794	0.001	0.010
-	A-2-4	G	31.5	34.5	3.0	33.0	135	4,450	4,248	3,436	6,436					93	76	305	3.37	0.186	603	4,039	0.001	0.008	0.178	578	4,014	0.001	0.008
1. σ _n ' = σ,	,'+σ, Estima	te σ _m of 3,00	0 psf (slightly	y to moderate	ely overconso	olidated) for al	I soil deposits	s; Ref. Table	11.2, Coduto	2003	•										Tota	Settlement:		2.057 in		Total	Settlement:		1.550 in

Calculated By: HSK Date: 3/19/2020

Date: 4/4/2020

Checked By: BRT

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

^{3.} C_r = 0.10(Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

^{4.} e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5. (}N1)₆₀ = $C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_c/(1+e_c)](H)\log(\sigma_{\alpha}'/\sigma_{\infty}') \\ \text{for } \ \ \sigma_{c}' < \sigma_{\alpha}' < \sigma_{c}', \ [C_c/(1+e_c)](H)\log(\sigma_{c}'/\sigma_{\infty}') \\ \text{for } \ \sigma_{c}' < \sigma_{c}', \ C_c/(1+e_c)](H)\log(\sigma_{c}'/\sigma_{\infty}') \\ \text{for } \ \sigma_{c}' < \sigma_{c}' < \sigma_{c}', \ C_c/(1+e_c)](H)\log(\sigma_{c}'/\sigma_{c}') \\ \text{for } \ \sigma_{c}' < \sigma_{c}' < \sigma_{c}', \ C_c/(1+e_c)](H)\log(\sigma_{c}'/\sigma_{c}') \\ \text{for } \ \sigma_{c}' < \sigma_{c}' < \sigma_{c}', \ C_c/(1+e_c)](H)\log(\sigma_{c}'/\sigma_{c}') \\ \text{for } \ \sigma_{c}' < \sigma_{c}' < \sigma_{c}', \ C_c/(1+e_c)](H)\log(\sigma_{c}'/\sigma_{c}') \\ \text{for } \ \sigma_{c}' < \sigma_{c}' < \sigma_{c}' < \sigma_{c}', \ C_c/(1+e_c)](H)\log(\sigma_{c}'/\sigma_{c}') \\ \text{for } \ \sigma_{c}' < \sigma_{$

^{10.} S_c = H(1/C')log(σ_{vi} '/ σ_{vo} '); Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

MSE Wall Settlement - Sta. 380+20.00 to 382+00 (BL I-71 SB Transition)

 Calculated By:
 HSK
 Date:
 3/19/2020

 Checked By:
 BRT
 Date:
 4/4/2020

Settlement Remaining After Hold Period: 0.147 in

Boring B-115-4-19

H=	18.4	ft	Total wall height		A-6b	A-6a		
B'=	9.8	ft	Effective footing width due to eccentricity	c _v =	300	600	ft ² /yr	Coefficient of consolitation
D _w =	20.0	ft	Depth below bottom of footing	t =	35	35	days	Time following completion of construction
q _e =	3,240	psf	Equivalent bearing pressure at bottom of wall	H _{dr} =	6.3	5	ft	Length of longest drainage path considered
				$T_v =$	0.725	2.301		Time factor
				U =	86	100	%	Degree of consolidation

 $(S_c)_t$ = 1.403 in Settlement complete at 90% of primary consolidation

																							Total Se	ttlement at F	acing of Wall		nplete at 90% of ensolidation
Layer	Soil Type	Soil Type	Layer (f	Depth it)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _v ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
	A-6b	С	0.0	1.5	1.5	0.8	120	180	90	90	3,090	37	0.243	0.024	0.561				0.08	0.500	1,620	1,710	0.030	0.358		0.308	
1	A-6b	С	1.5	3.5	2.0	2.5	120	420	300	300	3,300	37	0.243	0.024	0.561				0.26	0.497	1,609	1,909	0.025	0.300	1.053	0.258	0.905
	A-6b	С	3.5	5.5	2.0	4.5	120	660	540	540	3,540	37	0.243	0.024	0.561				0.46	0.484	1,567	2,107	0.018	0.221	1.000	0.190	0.505
	A-6b	С	5.5	7.5	2.0	6.5	120	900	780	780	3,780	37	0.243	0.024	0.561				0.66	0.460	1,490	2,270	0.014	0.173		0.149	
2	A-6a	С	7.5	10.0	2.5	8.8	125	1,213	1,056	1,056	4,056	34	0.216	0.022	0.538				0.89	0.426	1,380	2,436	0.013	0.153	0.272	0.153	0.272
	A-6a	С	10.0	12.5	2.5	11.3	125	1,525	1,369	1,369	4,369	34	0.216	0.022	0.538				1.15	0.385	1,249	2,617	0.010	0.119	0.272	0.119	0.272
	A-1-a	G	12.5	14.5	2.0	13.5	130	1,785	1,655	1,655	4,655					29	31	101	1.38	0.351	1,137	2,792	0.004	0.054		0.054	
3	A-1-a	G	14.5	16.5	2.0	15.5	130	2,045	1,915	1,915	4,915					29	29	97	1.58	0.323	1,046	2,961	0.004	0.047	0.208	0.047	0.208
	A-1-a	G	16.5	21.5	5.0	19.0	130	2,695	2,370	2,370	5,370					32	30	100	1.94	0.281	910	3,280	0.007	0.085	0.200	0.085	0.200
	A-1-a	G	21.5	26.5	5.0	24.0	135	3,370	3,033	2,783	5,783					81	72	280	2.45	0.234	759	3,542	0.002	0.022		0.022	
4	A-2-4	G	26.5	31.5	5.0	29.0	135	4,045	3,708	3,146	6,146					120	102	484	2.97	0.200	648	3,794	0.001	0.010	0.018	0.010	0.018
1 7	A-2-4	G	31.5	34.5	3.0	33.0	135	4.450	4.248	3,436	6.436					93	76	305	3.37	0.178	578	4.014	0.001	0.008	0.010	0.008	5.510

A-2-4 G 31.5 34.5 3.0 33.0 135 4,450 4,248 3,43 1. σ_p' = σ_{vo}'+σ_m. Estimate σ_m of 3,000 psf (slightly to moderately overconsolidated) for all soil deposits; Ref. Table 11.2, Coduto 2003

- 2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5
- 3. C_r = 0.10(Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981
- 4. e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{80} = C_n N_{80}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- 10. $S_c = H(1/C')log(\sigma_{vl}/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

MSE Wall Settlement - Sta. 380+20.00 to 382+00.00 (BL I-71 SB Transition)

Boring B-115-5-19

H= 14.0 ft Total wall height

B'= 7.3 ft Effective footing width due to eccentricity

D_w= 20.0 ft Depth below bottom of footing

 q_e = 2,590 psf Equivalent bearing pressure at bottom of wall

									$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											Settlement a	t Center of Re	einforced Soil	Mass		Total Set	tlement at Fa	cing of Wall		
Layer	Soil Class.	Soil Type	Layer (Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	Midpoint	Midpoint		LL	C _c (2)	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	1(7)	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c (9,10) (ft)	S _c (in)
1	A-6b	С	0.0	1.0	1.0	0.5	120	120	60	60	3,060	35	0.225	0.023	0.546				0.07	0.999	2,587	2,647	0.024	0.287	0.500	1,295	1,355	0.020	0.236
2	A-1-b	G	1.0	3.5	2.5	2.3	125	433	276	276	3,276					24	40	130	0.31	0.933	2,416	2,692	0.019	0.228	0.494	1,281	1,557	0.014	0.173
	A-1-b	G	3.5	5.5	2.0	4.5	120	673	553	553	3,553					8	11	59	0.62	0.745	1,930	2,483	0.022	0.266	0.466	1,208	1,760	0.017	0.205
3	A-6b	О	5.5	8.0	2.5	6.8	120	973	823	823	3,823	37	0.243	0.024	0.561				0.92	0.582	1,507	2,330	0.018	0.211	0.421	1,091	1,913	0.014	0.171
	A-6b	С	8.0	11.0	3.0	9.5	120	1,333	1,153	1,153	4,153	37	0.243	0.024	0.561				1.30	0.447	1,157	2,309	0.014	0.169	0.362	938	2,091	0.012	0.145
4	A-7-6	С	11.0	13.5	2.5	12.3	125	1,645	1,489	1,489	4,489	44	0.306	0.031	0.616				1.68	0.359	929	2,417	0.010	0.120	0.311	806	2,294	0.009	0.107
5	A-6b	С	13.5	16.5	3.0	15.0	125	2,020	1,833	1,833	4,833	37	0.243	0.024	0.561				2.05	0.298	772	2,605	0.007	0.086	0.269	698	2,530	0.007	0.079
	A-6b	С	16.5	20.0	3.5	18.3	125	2,458	2,239	2,239	5,239	37	0.243	0.024	0.561				2.50	0.248	643	2,881	0.006	0.072	0.231	598	2,837	0.006	0.067
6	A-2-4	G	20.0	22.4	2.4	21.2	125	2,758	2,608	2,533	5,533					12	11	58	2.90	0.215	557	3,089	0.004	0.043	0.204	527	3,060	0.003	0.041
7	A-1-b	G	22.4	25.4	3.0	23.9	135	3,163	2,960	2,717	5,717					52	47	156	3.27	0.000	0	2,717	0.000	0.000	0.183	475	3,191	0.001	0.016
1. σ _p ' = σ _v	'+σ _{m;} Estima	te σ _m of 3,00	0 psf (slightl	y to moderate	ely overconso	olidated) for a	l soil deposit	ts; Ref. Table	11.2, Coduto	2003											Tota	Settlement:	•	1.481 in		Tota	Settlement:		1.240 in

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

 Calculated By:
 HSK
 Date:
 3/20/2020

 Checked By:
 BRT
 Date:
 4/4/2020

^{3.} C_r = 0.10(Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

^{4.} e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5. (}N1)₆₀ = C_nN_{60} , where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_s/(1+e_b)](H)\log(\sigma_{s}/\sigma_{o_s}) \\ \text{for } \sigma_{o_s} \leq \sigma_{o_s} \leq \sigma_{s}/c, \\ [C_s/(1+e_b)](H))\log(\sigma_{s}/\sigma_{o_s}) \\ \text{for } \sigma_{o_s} \leq \sigma_{s}/c, \\ [C_s/(1+e_b)](H))\log(\sigma_{s}/\sigma_{o_s}) \\ \text{for } \sigma_{o_s} \leq \sigma_{s}/c, \\ [C_s/(1+e_b)](H)\log(\sigma_{s}/\sigma_{o_s}) \\$

^{10.} $S_c = H(1/C')log(\sigma_{v'}/\sigma_{vo'})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

MSE Wall Settlement - Sta. 380+20.00 to 382+00.00 (BL I-71 SB Transition)

Boring B-115-5-19

A-6b A-6b 14.0 ft Total wall height A-7-6 (Lower) 150 ft²/yr B'= 7.3 ft Effective footing width due to eccentricity 300 300 Coefficient of consolitation 45 days $D_w =$ 20.0 ft Depth below bottom of footing t = 45 45 Time following completion of construction 2.590 psf Equivalent bearing pressure at bottom of wall H_{dr} = 0.5 7.3 7.3 ft Length of longest drainage path considered T_v = 147.945 0.694 0.347 U = 100 85 66 Degree of consolidation

 $(S_c)_t$ = 1.135 in Settlement complete at 91% of primary consolidation

																							Total Se	ttlement at F	acing of Wall		nplete at 91% of onsolidation
Layer	Soil Type	Soil Type	Layer (f	Depth t)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _v r' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t (11) (in)	Layer Settlement (in)
1	A-6b	С	0.0	1.0	1.0	0.5	120	120	60	60	3,060	35	0.225	0.023	0.546				0.07	0.500	1,295	1,355	0.020	0.236	0.236	0.236	0.236
2	A-1-b	G	1.0	3.5	2.5	2.3	125	433	276	276	3,276					24	40	130	0.31	0.494	1,281	1,557	0.014	0.173	0.378	0.173	0.378
2	A-1-b	G	3.5	5.5	2.0	4.5	120	673	553	553	3,553					8	11	59	0.62	0.466	1,208	1,760	0.017	0.205	0.376	0.205	0.376
2	A-6b	С	5.5	8.0	2.5	6.8	120	973	823	823	3,823	37	0.243	0.024	0.561				0.92	0.421	1,091	1,913	0.014	0.171	0.316	0.146	0.269
3	A-6b	С	8.0	11.0	3.0	9.5	120	1,333	1,153	1,153	4,153	37	0.243	0.024	0.561				1.30	0.362	938	2,091	0.012	0.145	0.510	0.123	0.203
4	A-7-6	С	11.0	13.5	2.5	12.3	125	1,645	1,489	1,489	4,489	44	0.306	0.031	0.616				1.68	0.311	806	2,294	0.009	0.107	0.107	0.070	0.070
	A-6b	С	13.5	16.5	3.0	15.0	125	2,020	1,833	1,833	4,833	37	0.243	0.024	0.561				2.05	0.269	698	2,530	0.007	0.079	0.146	0.067	0.124
3	A-6b	С	16.5	20.0	3.5	18.3	125	2,458	2,239	2,239	5,239	37	0.243	0.024	0.561				2.50	0.231	598	2,837	0.006	0.067	0.140	0.057	0.124
6	A-2-4	G	20.0	22.4	2.4	21.2	125	2,758	2,608	2,533	5,533					12	11	58	2.90	0.204	527	3,060	0.003	0.041	0.041	0.041	0.041
7	A-1-b	G	22.4	25.4	3.0	23.9	135	3,163	2,960	2,717	5,717					52	47	156	3.27	0.183	475	3,191	0.001	0.016	0.016	0.016	0.016

- 1. $\sigma_p' = \sigma_{vo}' + \sigma_{m}$; Estimate σ_m of 3,000 psf (slightly to moderately overconsolidated) for all soil deposits; Ref. Table 11.2, Coduto 2003
- 2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5
- 3. C_r = 0.10(Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981
- e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981
- $5. \ \ (\text{N1})_{60} = \text{C}_{\text{n}} \text{N}_{60}, \text{ where } \text{C}_{\text{N}} = [0.77 \text{log}(40/\sigma_{\text{vo}})] \leq 2.0 \text{ ksf; Ref. Section } 10.4.6.2.4, \text{ AASHTO LRFD BDS}$
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- $9. \ \ S_c = [C_d/(1+e_a)](H)\log(\sigma_{\alpha}/\sigma_{\infty}) \\ \text{for } \sigma_p^+ \leq \sigma_{\infty}^- < \sigma_{\alpha}^+, [C_d/(1+e_a)](H)\log(\sigma_p/\sigma_{\infty})^+ \\ \text{for } \sigma_{\infty}^+ < \sigma_{\alpha}^+, [C_d/(1+e_a)](H)\log(\sigma_p/\sigma_{\infty})^+ \\ \text{for } \sigma_{\alpha}^+ < \sigma_{\alpha}^+, [C_d/(1+e_a)](H)\log(\sigma_p/\sigma_{\infty})^+ \\ \text{for } \sigma_$
- 10. $S_c = H(1/C')log(\sigma_{vi}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. (S_c)_t = S_c(U/100); U = 100 for all granular soils at time t = 0

 Calculated By:
 HSK
 Date:
 03/20/2020

 Checked By:
 BRT
 Date:
 4/4/2020

Settlement Remaining After Hold Period: 0.106 in

Calculated By: HSK Date: 3/20/2020 MSE Wall Settlement - Sta. 382+00.00 to 383+35.41 (BL I-71 SB Transition) Checked By: BRT Date: 4/4/2020

Boring B-115-6-19

H= 9.0 ft Total wall height

B'= 6.6 ft Effective footing width due to eccentricity

Depth below bottom of footing 9.0 ft

1,610 psf Equivalent bearing pressure at bottom of wall

																				I Otal	Settlement a	Center of Re	emorced So	IWass		Total Set	llierrierit at Fa	cing or vvaii	
Layer	Soil Class.	Soil Type	Layer (f	Depth t)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	I (2)	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _v ' Midpoint (psf)	S _c (9.10) (ft)	S _c (in)
	A-4a	С	0.0	2.5	2.5	1.3	125	313	156	156	3,156	24	0.126	0.013	0.460				0.19	0.981	1,579	1,735	0.023	0.271	0.499	803	959	0.017	0.204
1	A-4a	С	2.5	5.5	3.0	4.0	125	688	500	500	3,500	24	0.126	0.013	0.460				0.60	0.753	1,212	1,712	0.014	0.166	0.468	753	1,253	0.010	0.124
	A-4a	С	5.5	8.5	3.0	7.0	125	1,063	875	875	3,875	24	0.126	0.013	0.460				1.06	0.527	849	1,724	0.008	0.092	0.400	644	1,519	0.006	0.074
2	A-3a	G	8.5	10.5	2.0	9.5	130	1,323	1,193	1,161	4,161					16	19	65	1.44	0.411	662	1,823	0.006	0.072	0.343	552	1,714	0.005	0.062
,	A-6b	С	10.5	13.0	2.5	11.8	130	1,648	1,485	1,313	4,313	36	0.234	0.023	0.553				1.77	0.341	549	1,862	0.006	0.069	0.299	482	1,796	0.005	0.061
"	A-6b	С	13.0	15.5	2.5	14.3	130	1,973	1,810	1,482	4,482	36	0.234	0.023	0.553				2.15	0.000	0	1,482	0.000	0.000	0.260	419	1,901	0.004	0.049
1. σ _p ' = σ _v	,'+σ _m , Estima	te σ _m of 3,00	0 psf (slightly	to moderate	ely overconso	lidated) for a	I soil deposits	s; Ref. Table	11.2, Coduto	2003			•						•		Tota	Settlement:		0.669 in		Tota	Settlement:		0.575 in

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

^{3.} $C_r = 0.10(Cc)$ for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_c/(1+e_o)](H) [\log(\sigma_d/\sigma_w)^*] \\ \text{or} \ \ \sigma_p' \le \sigma_{w'} < \sigma_{w'}! \ C_c/(1+e_o)](H) [\log(\sigma_p'/\sigma_w)^*] \\ \text{for} \ \ \sigma_{w'} < \sigma_{w'} < \sigma_{w'}' < \sigma_{w'}' \\ \text{or} \ \ \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' \\ \text{or} \ \ \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' \\ \text{or} \ \ \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' \\ \text{or} \ \ \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' < \sigma_{w'}' \\ \text{or} \ \ \ \sigma_{w'}' < \sigma_{w'}$

^{10.} $S_c = H(1/C')log(\sigma_{v_i}'/\sigma_{v_o}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

MSE Wall Settlement - Sta. 382+00.00 to 383+35.41 (BL I-71 SB Transition)

Boring B-115-6-19

H=	9.0	ft	Total wall height		A-4a	A-6b		
B'=	6.6	ft	Effective footing width due to eccentricity	c _v =	1,000	300	ft ² /yr	Coefficient of consolitation
$D_w =$	9.0	ft	Depth below bottom of footing	t =	9	9	days	Time following completion of construction
q _e =	1,610	psf	Equivalent bearing pressure at bottom of wall	H _{dr} =	4.25	5	ft	Length of longest drainage path considered
				$T_v =$	1.365	0.296		Time factor
				U =	97	61	%	Degree of consolidation

 $(S_c)_t = 0.520$ in

																							Total Se	ttlement at F	acing of Wall	Settlement Con Primary Co	nplete at 90% of onsolidation
Layer	Soil Type	Soil Type	Layer (f	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	J ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t (11) (in)	Layer Settlement (in)
	A-4a	O	0.0	2.5	2.5	1.3	125	313	156	156	3,156	24	0.126	0.013	0.460				0.19	0.499	803	959	0.017	0.204		0.198	
1	A-4a	С	2.5	5.5	3.0	4.0	125	688	500	500	3,500	24	0.126	0.013	0.460				0.60	0.468	753	1,253	0.010	0.124	0.403	0.120	0.390
	A-4a	О	5.5	8.5	3.0	7.0	125	1,063	875	875	3,875	24	0.126	0.013	0.460				1.06	0.400	644	1,519	0.006	0.074		0.072	1 1
2	A-3a	G	8.5	10.5	2.0	9.5	130	1,323	1,193	1,161	4,161					16	19	65	1.44	0.343	552	1,714	0.005	0.062	0.062	0.062	0.062
2	A-6b	С	10.5	13.0	2.5	11.8	130	1,648	1,485	1,313	4,313	36	0.234	0.023	0.553				1.77	0.299	482	1,796	0.005	0.061	0.110	0.037	0.067
	A-6b	С	13.0	15.5	2.5	14.3	130	1,973	1,810	1,482	4,482	36	0.234	0.023	0.553				2.15	0.260	419	1,901	0.004	0.049	0.110	0.030	0.007

Settlement complete at 90% of primary consolidation

- 1. $\sigma_0' = \sigma_{y0}' + \sigma_{m}$. Estimate σ_m of 3,000 psf (slightly to moderately overconsolidated) for all soil deposits; Ref. Table 11.2, Coduto 2003
- C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5
- 3. C_r = 0.10(Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981
- 4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- $9. \ \ S_c = [C_c/(1+e_o)](H)\log(\sigma_{u'}/\sigma_{u'})'for \ \sigma_{p'} \leq \sigma_{u'} < \sigma_{u'}'; \ C_c/(1+e_o)](H)\log(\sigma_{p'}/\sigma_{u'})'for \ \sigma_{u'} < \sigma_{p'}' \leq \sigma_{u'}'; \ Ref. \ Section \ 10.6.2.4.3, \ AASHTO LRFD \ BDS \ (Cohesive soil layers)$
- 10. $S_c = H(1/C')log(\sigma_{vl}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By: HSK Date: 03/20/2020 Checked By: BRT Date: 04/04/2020

Settlement Remaining After Hold Period: 0.055 in

MSE Wall Settlement - Sta. 382+00.00 to 383+35.41 (BL I-71 SB Transition)

 Calculated By:
 HSK
 Date:
 3/20/2020

 Checked By:
 BRT
 Date:
 4/4/2020

Boring B-115-7-19

H= 4.5 ft Total wall height

B'= 7.6 ft Effective footing width due to eccentricity

D_w= 9.0 ft Depth below bottom of footing

q_e = 830 psf Equivalent bearing pressure at bottom of wall

																				Total	Settlement at	Center of R	einforced Soi	l Mass		Total Set	tlement at Fa	cing of Wall	
Layer	Soil Class.	Soil Type	Layer (1	Depth (t)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r (3)	e, (4)	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	I (2)	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	1(7)	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c (9,10) (ft)	S _c (in)
	A-4a	С	0.0	2.5	2.5	1.3	125	313	156	156	3,156	21	0.099	0.010	0.436				0.16	0.987	819	975	0.014	0.164	0.499	414	570	0.010	0.116
	A-4a	С	2.5	5.0	2.5	3.8	125	625	469	469	3,469	21	0.099	0.010	0.436				0.49	0.822	683	1,151	0.007	0.081	0.480	399	867	0.005	0.055
	A-4a	С	5.0	7.5	2.5	6.3	125	938	781	781	3,781	21	0.099	0.010	0.436				0.82	0.630	523	1,304	0.004	0.046	0.437	363	1,144	0.003	0.034
	A-4a	С	7.5	10.0	2.5	8.8	125	1,250	1,094	1,094	4,094	21	0.099	0.010	0.436	16	19	39	1.15	0.493	410	1,503	0.002	0.029	0.385	320	1,413	0.002	0.023
	A-4a	С	10.0	13.0	3.0	11.5	125	1,625	1,438	1,282	4,282	21	0.099	0.010	0.436				1.51	0.393	326	1,608	0.002	0.024	0.332	276	1,557	0.002	0.021
	A-4a	С	13.0	16.0	3.0	14.5	125	2,000	1,813	1,469	4,469	21	0.099	0.010	0.436				1.91	0.000	0	1,469	0.000	0.000	0.285	236	1,705	0.001	0.016
1. σ _p ' = σ _v	'+σ _{m;} Estimat	te σ _m of 3,00	00 psf (slightly	to moderate	ely overconso	lidated) for al	Il soil deposits	s; Ref. Table	11.2, Coduto	2003											Total	Settlement:		0.344 in		Tota	Settlement:		0.266 in

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

^{3.} C_r = 0.10(Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

^{4.} e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

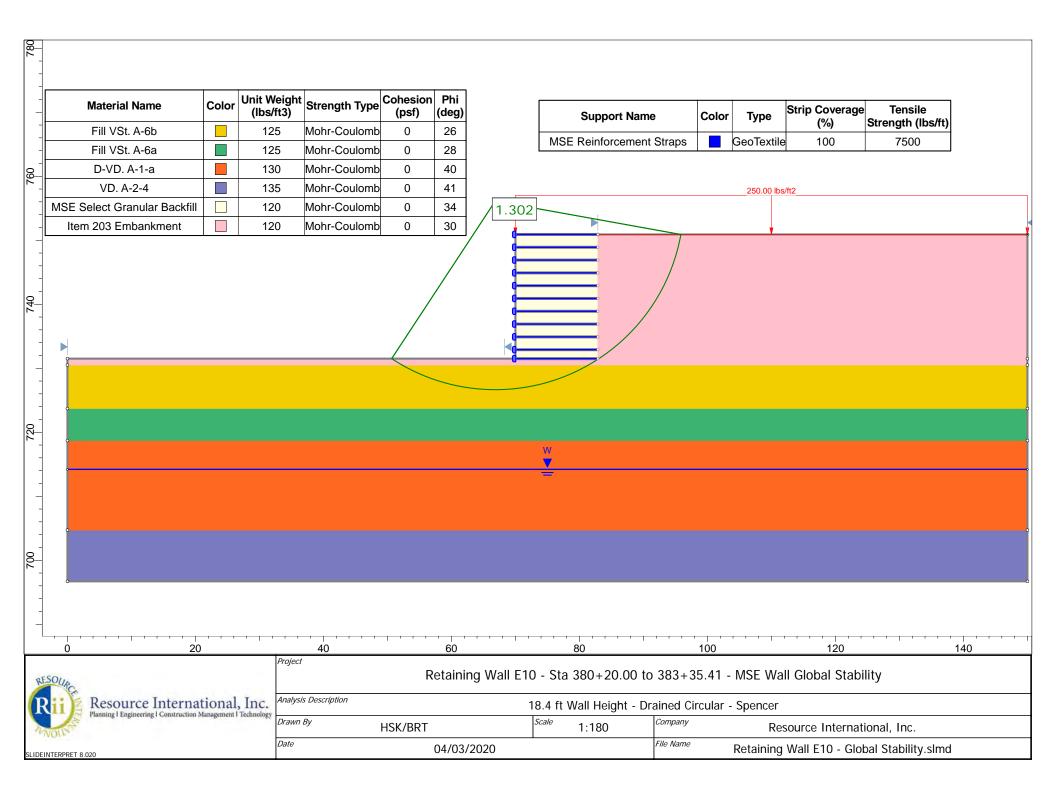
^{10.} $S_c = H(1/C')log(\sigma_{v_i}'/\sigma_{v_o}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

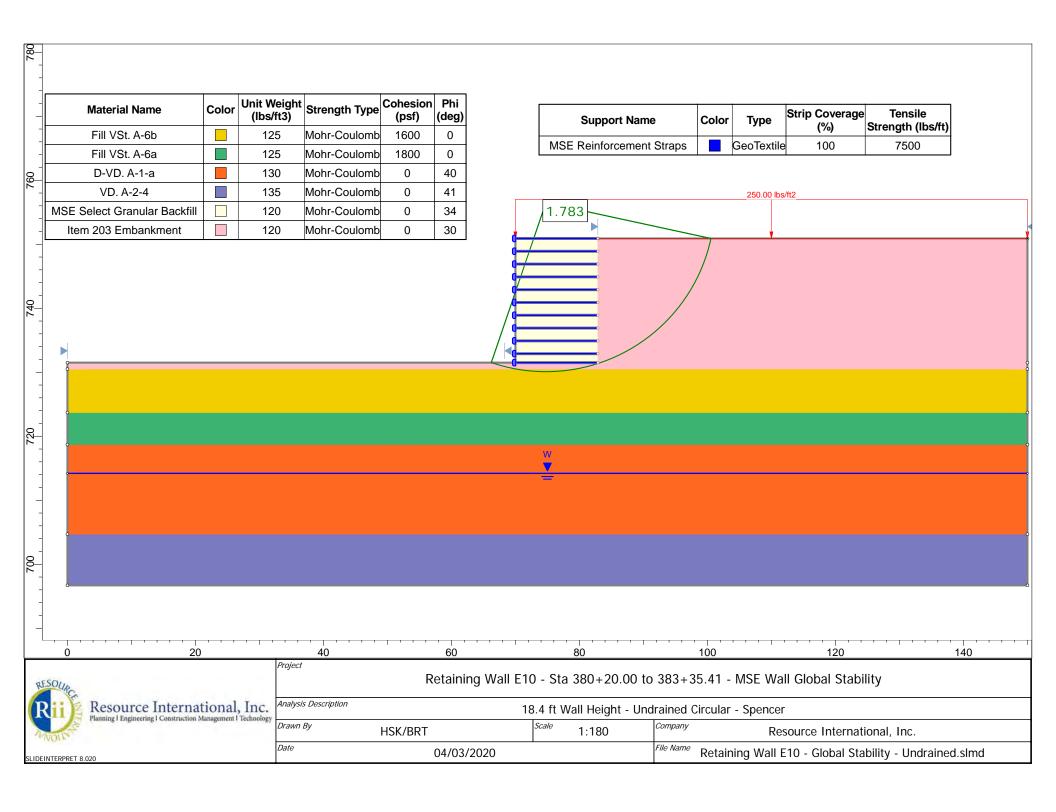
MSE Wall Settlement - Sta. 382+00.00 to 383+35.41 (BL I-71 SB Transition)

Boring B-115-7-19

4.5 ft Total wall height H= A-4a B'= 7.6 ft Effective footing width due to eccentricity 1.000 ft²/yr Coefficient of consolitation D_w = 9.0 Depth below bottom of footing t = 80 Time following completion of construction days 830 Equivalent bearing pressure at bottom of wall H_{dr} = Length of longest drainage path considered $T_v =$ 0.856 Time factor Degree of consolidation U = 90

0.239 in


																							Total Se	ttlement at F	acing of Wall	Settlement Con Primary Co	nplete at 90% of onsolidation
Layer	Soil Type	Soil Type	Layer (1	Depth ft)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	J ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t (11) (in)	Layer Settlement (in)
	A-4a	С	0.0	2.5	2.5	1.3	125	313	156	156	3,156	21	0.099	0.010	0.436				0.16	0.499	414	570	0.010	0.116		0.105	
	A-4a	С	2.5	5.0	2.5	3.8	125	625	469	469	3,469	21	0.099	0.010	0.436				0.49	0.480	399	867	0.005	0.055		0.050	
1	A-4a	С	5.0	7.5	2.5	6.3	125	938	781	781	3,781	21	0.099	0.010	0.436				0.82	0.437	363	1,144	0.003	0.034	0.266	0.031	0.239
'	A-4a	С	7.5	10.0	2.5	8.8	125	1,250	1,094	1,094	4,094	21	0.099	0.010	0.436				1.15	0.385	320	1,413	0.002	0.023	0.200	0.021	0.239
	A-4a	С	10.0	13.0	3.0	11.5	125	1,625	1,438	1,282	4,282	21	0.099	0.010	0.436				1.51	0.332	276	1,557	0.002	0.021]	0.019]
	A-4a	С	13.0	16.0	3.0	14.5	125	2,000	1,813	1,469	4,469	21	0.099	0.010	0.436				1.91	0.285	236	1,705	0.001	0.016		0.014	


Settlement complete at 90% of primary consolidation

- 1. $\sigma_0' = \sigma_{y0}' + \sigma_{m}$. Estimate σ_m of 3,000 psf (slightly to moderately overconsolidated) for all soil deposits; Ref. Table 11.2, Coduto 2003
- 2. C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5
- 3. C_r = 0.10(Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981
- 4. e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- $9. \ \ S_c = [C_o/(1+e_o)](H)\log(\sigma_o'/\sigma_o'') \\ \text{for } \sigma_p' \leq \sigma_o' < \sigma_o', [C_o/(1+e_o)](H)\log(\sigma_p'/\sigma_o'') \\ \text{for } \sigma_o'' \leq \sigma_p' \leq \sigma_o'', \\ \text{Coll}(1+e_o)](H)\log(\sigma_o'/\sigma_o'') \\ \text{for } \sigma_o'' \leq \sigma_o'' \leq \sigma_o'', \\ \text{for } \sigma_o'' \leq \sigma_o' \leq \sigma_o$
- 10. S_c = H(1/C')log(σ_{vi} '/ σ_{vo} '); Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By: HSK Date: 03/20/2020 Checked By: BRT Date: 04/04/2020

Settlement Remaining After Hold Period: 0.027 in

APPENDIX V

CELLULAR CONCRETE WALL CALCULATIONS

W-13-072 - FRA-71-14.36 Phase 6R - Retaining Wall E10

MSE Wall with Cellular Concrete Backfill Settlement - Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition)

Boring	Boring Elevation	Top of Wall Elevation (ft msl)	Bottom of Wall Elevation (ft msl)	Wall Height (ft)	Pressure at Bottom of Wall ¹ (psf)	Total Settlement at Center of Wall (in)	Total Settlement at Wall Facing (in)	Time for 90% Consolidation (Days)
B-115-4-19	736.7	753.2	731.5	21.7	963	1.097	0.771	35
B-115-5-19	738.8	750.9	732.5	18.4	864	0.926	0.667	37

^{1.} $\Delta \sigma = (130 \text{ pcf})(3.0 \text{ ft}) + (36 \text{ pcf})(2.0 \text{ ft}) + (H - 5 \text{ ft})(30 \text{ pcf})$

MSE Wall with Cellular Concrete Backfill Settlement - Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition)

Boring B-115-4-19

H =	21.7	ft	Total wall height from profile grade to top of leveling pad
B =	15.2	ft	Wall width considered in analysis, equal to 70% of the wall height
$D_w =$	30.0	ft	Depth below bottom of wall
q =	963	psf	Bearing pressure at bottom of wall (see summary sheet)

																				Total S	Settlement at	Center of R	einforced So	il Mass		Total Set	tlement at Fa	acing of Wall	
Layer	Soil Class.	Soil Type	1 .	Depth	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	I ⁽⁷⁾	$\Delta\sigma_{\rm v}^{~(8)}$ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
	A-6b	С	0.0	1.5	1.5	0.8	120	180	90	90	3,090	37	0.243	0.024	0.561				0.05	1.000	963	1,053	0.025	0.299	0.500	481	571	0.019	0.225
1	A-6b	С	1.5	3.5	2.0	2.5	120	420	300	300	3,300	37	0.243	0.024	0.561				0.16	0.987	950	1,250	0.019	0.232	0.499	481	781	0.013	0.155
'	A-6b	С	3.5	5.5	2.0	4.5	120	660	540	540	3,540	37	0.243	0.024	0.561				0.30	0.939	904	1,444	0.013	0.160	0.495	477	1,017	0.009	0.103
	A-6b	С	5.5	7.5	2.0	6.5	120	900	780	780	3,780	37	0.243	0.024	0.561				0.43	0.864	832	1,612	0.010	0.118	0.486	468	1,248	0.006	0.076
2	A-6a	С	7.5	10.0	2.5	8.8	125	1,213	1,056	1,056	4,056	34	0.216	0.022	0.538				0.58	0.770	742	1,798	0.008	0.097	0.471	454	1,510	0.005	0.065
2	A-6a	С	10.0	12.5	2.5	11.3	125	1,525	1,369	1,369	4,369	34	0.216	0.022	0.538				0.74	0.674	649	2,017	0.006	0.071	0.449	433	1,802	0.004	0.050
	A-1-a	G	12.5	14.5	2.0	13.5	130	1,785	1,655	1,655	4,655					29	31	101	0.89	0.599	576	2,231	0.003	0.031	0.427	411	2,066	0.002	0.023
2	A-1-a	G	14.5	16.5	2.0	15.5	130	2,045	1,915	1,915	4,915					29	29	97	1.02	0.542	522	2,437	0.002	0.026	0.406	391	2,306	0.002	0.020
3	A-1-a	G	16.5	21.5	5.0	19.0	130	2,695	2,370	2,370	5,370					32	30	100	1.25	0.462	445	2,815	0.004	0.045	0.370	356	2,726	0.003	0.037
	A-1-a	G	21.5	26.5	5.0	24.0	135	3,370	3,033	3,033	6,033					81	70	267	1.58	0.378	364	3,397	0.001	0.011	0.324	312	3,344	0.001	0.010
4	A-2-4	G	26.5	31.5	5.0	29.0	135	4,045	3,708	3,708	6,708					120	95	434	1.91	0.319	307	4,015	0.000	0.005	0.285	274	3,982	0.000	0.004
4	A-2-4	G	31.5	34.5	3.0	33.0	135	4,450	4,248	4,060	7,060					93	71	274	2.17	0.283	273	4,333	0.000	0.004	0.258	249	4,309	0.000	0.003
1. $\sigma_{\rm p}' = \sigma_{\rm v}$	o'+σ _m . Estimate	σ _m of 3,000	psf (slightly	to moderate	ely overconso	lidated) for al	l soil depos	its; Ref. Tabl	e 11.2, Codu	ito 2003			ı			1		ı	1		Total	Settlement:		1.097 in		Tota	Settlement:	·	0.771 in

Calculated By: HSK Date: 3/9/2020 Checked By: BRT Date: 4/2/2020

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

^{3.} $C_r = 0.10$ (Cc) for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

^{4.} $e_o = (C_o/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

^{9.} $S_c = [C_c/(1+e_o)](H)\log(\sigma_v'/\sigma_{vo}')$ for $\sigma_v' \leq \sigma_{vo}' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_v'/\sigma_p')$ for $\sigma_{vo}' < \sigma_{vf}' \leq \sigma_{vo}'' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_v'/\sigma_p')$ for $\sigma_{vo}' < \sigma_{vf}' \leq \sigma_{vo}'' < \sigma_{vf}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)](H)\log(\sigma_p'/\sigma_{vo}') + [C_c/(1+e_o)]$

^{10.} $S_c = H(1/C')log(\sigma_{vi}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

MSE Wall with Cellular Concrete Backfill Settlement - Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition)

Calculated By: 3/9/2020 Date: BRT Date: 4/2/2020 Checked By:

Total Settlement at Facing of Wall

Settlement Remaining After Hold Period:

Settlement Complete at 90% of

0.078 in

Boring B-115-4-19

H =	21.7	ft	Total wall height from profile grade to top of leveling pad		A-6b	A-6a		
B =	15.2	ft	Wall width considered in analysis, equal to 70% of the wall height	c _v =	300	600	ft ² /yr	Coefficient of consolitation
$D_w =$	30.0	ft	Depth below bottom of wall	t =	35	35	days	Time following completion of construction
q =	963	psf	Bearing pressure at bottom of wall (see summary sheet)	H _{dr} =	6.3	5	ft	Length of longest drainage path considered
				$T_v =$	0.725	2.301		Time factor
				U =	86	100	%	Degree of consolidation

 $(S_c)_t =$

0.693 in

																							Total Se	ettlement at l	Facing of Wall		onsolidation
Layer	Soil Type	Soil Type	Layer (f	•	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	$\sigma_p'^{(1)}$ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
	A-6b	С	0.0	1.5	1.5	0.8	120	180	90	90	3,090	37	0.243	0.024	0.561				0.05	0.500	481	571	0.019	0.225		0.193	
1	A-6b	С	1.5	3.5	2.0	2.5	120	420	300	300	3,300	37	0.243	0.024	0.561				0.16	0.499	481	781	0.013	0.155	0.559	0.133	0.481
'	A-6b	С	3.5	5.5	2.0	4.5	120	660	540	540	3,540	37	0.243	0.024	0.561				0.30	0.495	477	1,017	0.009	0.103	0.559	0.088	0.401
	A-6b	С	5.5	7.5	2.0	6.5	120	900	780	780	3,780	37	0.243	0.024	0.561				0.43	0.486	468	1,248	0.006	0.076		0.066	
2	A-6a	С	7.5	10.0	2.5	8.8	125	1,213	1,056	1,056	4,056	34	0.216	0.022	0.538				0.58	0.471	454	1,510	0.005	0.065	0.116	0.065	0.116
	A-6a	С	10.0	12.5	2.5	11.3	125	1,525	1,369	1,369	4,369	34	0.216	0.022	0.538				0.74	0.449	433	1,802	0.004	0.050	0.110	0.050	0.110
	A-1-a	G	12.5	14.5	2.0	13.5	130	1,785	1,655	1,655	4,655					29	31	101	0.89	0.427	411	2,066	0.002	0.023		0.023	
3	A-1-a	G	14.5	16.5	2.0	15.5	130	2,045	1,915	1,915	4,915					29	29	97	1.02	0.406	391	2,306	0.002	0.020	0.089	0.020	0.089
	A-1-a		16.5	21.5	5.0	19.0	130	2,695	2,370	2,370	5,370					32	30	100	1.25	0.370	356	2,726	0.003	0.037	0.009	0.037	0.003
	A-1-a	G	21.5	26.5	5.0	24.0	135	3,370	3,033	3,033	6,033					81	70	267	1.58	0.324	312	3,344	0.001	0.010		0.010	
1	A-2-4	G	26.5	31.5	5.0	29.0	135	4,045	3,708	3,708	6,708					120	95	434	1.91	0.285	274	3,982	0.000	0.004	0.008	0.004	0.008
	A-2-4	G	31.5	34.5	3.0	33.0	135	4,450	4,248	4,060	7,060					93	71	274	2.17	0.258	249	4,309	0.000	0.003	0.008	0.003	0.000

Settlement complete at 90% of primary consolidation

- 1. σ_p ' = σ_{vo} '+ σ_{m} ; Estimate σ_m of 3,000 psf (slightly to moderately overconsolidated) for all soil deposits; Ref. Table 11.2, Coduto 2003
- 2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5
- 3. $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5
- 4. $e_o = (C_c/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- $9. \quad S_c = [C_o/(1+e_o)](H)log(\sigma_{vi}'/\sigma_{vo}') \\ for \quad \sigma_p' \leq \sigma_{vo}' < \sigma_{vi}'; \\ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{vo}') + [C_o/(1+e_o)](H)log(\sigma_p'/\sigma_{vo}') \\ for \quad \sigma_{vo}' < \sigma_p' < \sigma_{vi}'; \\ Ref. \quad Section \quad 10.6.2.4.3, \\ AASHTO \ LRFD \ BDS \ (Cohesive \ soil \ layers) \\ ABSHTO \ LRFD \ (Cohesive \ layers) \\ ABSHTO \ LRFD \ (Cohesive \ layers) \\ ABSHTO \ (Cohesive \ l$
- 10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

MSE Wall with Cellular Concrete Backfill Settlement - Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition)

Boring B-115-5-19

H =	18.4	ft	Total wall height from profile grade to top of leveling pad
B =	12.9	ft	Wall width considered in analysis, equal to 70% of the wall height
$D_w =$	30.0	ft	Depth below bottom of wall
q =	864	psf	Bearing pressure at bottom of wall (see summary sheet)

																				Total S	Settlement at	Center of R	einforced So	il Mass		Total Set	tlement at Fa	cing of Wall	
Layer	Soil Class.	Soil Type	Layer (1	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6b	С	0.0	1.0	1.0	0.5	120	120	60	60	3,060	35	0.225	0.023	0.546				0.04	1.000	864	924	0.017	0.207	0.500	432	492	0.013	0.160
2	A-1-b	G	1.0	3.5	2.5	2.3	125	433	276	276	3,276					24	40	130	0.17	0.984	850	1,127	0.012	0.141	0.499	431	707	0.008	0.094
	A-1-b	G	3.5	5.5	2.0	4.5	120	673	553	553	3,553					8	11	59	0.35	0.911	787	1,340	0.013	0.157	0.492	425	978	0.008	0.101
2	A-6b	С	5.5	8.0	2.5	6.8	120	973	823	823	3,823	37	0.243	0.024	0.561				0.52	0.804	694	1,517	0.010	0.124	0.477	412	1,235	0.007	0.082
	A-6b	С	8.0	11.0	3.0	9.5	120	1,333	1,153	1,153	4,153	37	0.243	0.024	0.561				0.74	0.676	584	1,736	0.008	0.100	0.450	389	1,541	0.006	0.071
4	A-7-6	С	11.0	13.5	2.5	12.3	125	1,645	1,489	1,489	4,489	44	0.306	0.031	0.616				0.95	0.571	493	1,982	0.006	0.071	0.417	360	1,849	0.004	0.053
5	A-6b	С	13.5	16.5	3.0	15.0	125	2,020	1,833	1,833	4,833	37	0.243	0.024	0.561				1.16	0.490	423	2,255	0.004	0.051	0.383	331	2,164	0.003	0.040
	A-6b	С	16.5	20.0	3.5	18.3	125	2,458	2,239	2,239	5,239	37	0.243	0.024	0.561				1.41	0.416	360	2,598	0.004	0.042	0.346	299	2,538	0.003	0.036
6	A-2-4	G	20.0	22.4	2.4	21.2	125	2,758	2,608	2,608	5,608					12	11	58	1.64	0.365	316	2,923	0.002	0.025	0.315	272	2,880	0.002	0.021
7	A-1-b	G	22.4	25.4	3.0	23.9	135	3,163	2,960	2,960	5,960					52	45	150	1.85	0.328	283	3,243	0.001	0.010	0.291	251	3,211	0.001	0.008
1. σ _p ' = σ _ν	o'+σ _{m;} Estimate	σ_m of 3,000	psf (slightly	to moderate	ely overconso	lidated) for al	l soil depos	its; Ref. Tabl	e 11.2, Codu	ito 2003						•	-	-			Total	Settlement:		0.926 in		Total	Settlement:		0.667 in

^{2.} C_c = 0.009(LL-10); Ref. Table 6-9, FHWA GEC 5

 Calculated By:
 HSK
 Date:
 3/9/2020

 Checked By:
 BRT
 Date:
 4/4/2020

^{3.} $C_r = 0.10(Cc)$ for natural soil deposits; Ref. Section 8.11, Holtz and Kovacs 1981

^{4.} e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_{\rm v} = q_{\rm e}$

 $^{9. \ \} S_c = [C_{c}/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}') for \ \sigma_p' \leq \sigma_{v_o}' < \sigma_{v_i}'; \ [C_{r}/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_{c}/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_{c}/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_p') for \ \sigma_{v_o}' < \sigma_{v_i}'; \ Ref. \ Section \ 10.6.2.4.3, \ AASHTO \ LRFD \ BDS \ (Cohesiv soil layers)$

^{10.} $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

MSE Wall with Cellular Concrete Backfill Settlement - Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition)

Boring B-115-5-19

H =	18.4	ft	Total wall height from profile grade to top of leveling pad		A-6b (Upper)	A-6b (Lower)	A-7-6		
B =	12.9	ft	Wall width considered in analysis, equal to 70% of the wall height	c _v =	300	300	150	ft²/yr	Coefficient of consolitation
$D_w =$	30.0	ft	Depth below bottom of wall	t =	37	37	37	days	Time following completion of construction
q =	864	psf	Bearing pressure at bottom of wall (see summary sheet)	H _{dr} =	0.5	7.3	7.3	ft	Length of longest drainage path considered
				$T_v =$	121.644	0.571	0.285		Time factor
				U =	100	80	60	%	Degree of consolidation
				(S _c) _t =	0.600	in	Settlement	complete	at 90% of primary consolidation

																									doing of Wan	Primary Co	onsolidation
Layer	Soil Type	Soil Type	Layer (f	Depth t)	Layer Thickness (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' (6)	Z _f /B	I ⁽⁷⁾	$\Delta\sigma_{\rm v}^{(8)}$ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)	Layer Settlement (in)	(S _c) _t ⁽¹¹⁾ (in)	Layer Settlement (in)
1	A-6b	С	0.0	1.0	1.0	0.5	120	120	60	60	3,060	35	0.225	0.023	0.546				0.04	0.500	432	492	0.013	0.160	0.160	0.160	0.160
2	A-1-b	G	1.0	3.5	2.5	2.3	125	433	276	276	3,276					24	40	130	0.17	0.499	431	707	0.008	0.094	0.195	0.094	0.195
	A-1-b	G	3.5	5.5	2.0	4.5	120	673	553	553	3,553					8	11	59	0.35	0.492	425	978	0.008	0.101	0.195	0.101	0.195
3	A-6b	С	5.5	8.0	2.5	6.8	120	973	823	823	3,823	37	0.243	0.024	0.561				0.52	0.477	412	1,235	0.007	0.082	0.153	0.066	0.123
	A-6b	С	8.0	11.0	3.0	9.5	120	1,333	1,153	1,153	4,153	37	0.243	0.024	0.561				0.74	0.450	389	1,541	0.006	0.071	0.155	0.057	0.123
4	A-7-6	С	11.0	13.5	2.5	12.3	125	1,645	1,489	1,489	4,489	44	0.306	0.031	0.616				0.95	0.417	360	1,849	0.004	0.053	0.053	0.032	0.032
5	A-6b	С	13.5	16.5	3.0	15.0	125	2,020	1,833	1,833	4,833	37	0.243	0.024	0.561				1.16	0.383	331	2,164	0.003	0.040	0.076	0.032	0.061
	A-6b	С	16.5	20.0	3.5	18.3	125	2,458	2,239	2,239	5,239	37	0.243	0.024	0.561				1.41	0.346	299	2,538	0.003	0.036	0.070	0.028	0.001
6	A-2-4		20.0	22.4	2.4	21.2	125	2,758	2,608	2,608	5,608					12	11	58	1.64	0.315	272	2,880	0.002	0.021	0.021	0.021	0.021
7	A-1-b	G	22.4	25.4	3.0	23.9	135	3,163	2,960	2,960	5,960					52	45	150	1.85	0.291	251	3,211	0.001	0.008	0.008	0.008	0.008

- 1. $\sigma_p' = \sigma_{vo}' + \sigma_{m}$; Estimate σ_m of 3,000 psf (slightly to moderately overconsolidated) for all soil deposits; Ref. Table 11.2, Coduto 2003
- 2. C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5
- 3. $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5
- 4. e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for strip loaded footing
- 8. $\Delta \sigma_v = q_e(I)$
- 9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{v_i}'/\sigma_{v_o}')$ for $\sigma_p' \leq \sigma_{v_o}' < \sigma_{v_i}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{v_o}')$ for $\sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_p'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{v_o}') + [C_c/(1+e_o)](H)\log(\sigma_{v_i}'/\sigma_p')$ for $\sigma_{v_o}' < \sigma_{v_i}' < \sigma_{v_i}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)
- 10. $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)
- 11. $(S_c)_t = S_c(U/100)$; U = 100 for all granular soils at time t = 0

Calculated By: HSK Date: 3/9/2020 Checked By: BRT Date: 4/4/2020

Settlement Remaining After Hold Period: 0.067 in

Total Settlement at Facing of Wall

Settlement Complete at 90% of

MSE Wall with Cellular Concrete Backfill Settlement - Sta. 379+50.82 to 380+20.00 (BL I-71 SB Transition)

 Calculated By:
 HSK
 Date:
 3/9/2020

 Checked By:
 BRT
 Date:
 4/2/2020

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{\gamma m} C_{w\gamma} = 8.97$$
 ksf

$$N_{cm} = N_c s_c i_c = 24.82 \qquad N_{qm} = N_q s_q d_q i_q = 14.14 \qquad N_{\gamma m} = N_\gamma s_\gamma i_\gamma = 11.45 \qquad N_\gamma s_\gamma i_\gamma = 11.4$$

$$q_{\scriptscriptstyle R} = q_{\scriptscriptstyle n} \cdot \phi_{\scriptscriptstyle b}$$
 = 4.49 ksf

$$\varphi_b = 0.5$$