STRUCTURE ESTIMATED QUANTITIES

Bridge No. FRA-70-1395C
S. Front Street over I-70/71

FRA-70/71-12.68/14.86
PID No. 105523

Franklin County, Ohio

Prepared For:
The Ohio Department of Transportation District 6

1801 Watermark Drive, Suite 210
Columbus, Ohio 43215
(614) 210-0751 www.gpdgroup.com

January 31, 2019
REVISED May 31, 2019

Project:	Bridge No. FRA-70-1395C	Design:	RFV
Subject:	Estimated Quantities - FINAL	Check:	DJC
Date:	$5 / 28 / 2019$		

ITEM 202 - STRUCTURE REMOVED, OVER 20 FOOT SPAN

```
area = 11616.79 sf
unit cost = $18.00 per sf
```

Lump sum = \$209,102

ITEM 202 - APPROACH SLAB REMOVED

length $=$	25 ft
width $=$	60 ft

Total $=$
(+ Sidwalk Curves) $\quad \underline{\underline{334} \text { sy }}$ sy

ITEM 202 - WEARING COURSE REMOVED

length $=$	190.52 ft
width $=$	60 ft

Total $=\quad \underline{1271} \mathbf{~ s y}$
ITEM 503 - COFFERDAMS AND EXCAVATION BRACING, AS PER PLAN

ITEM 503 - UNCLASSIFIED EXCAVATION

Rear Abutment:		
length $=$	156.94 ft	Note:
width $=$	27 ft	Excavation for abutments will
depth $=$	20.75 ft	be taken up when the exist. abutments are removed

Forward Abutment:

length $=$	151.77 ft
width $=$	22 ft
depth $=$	28.5 ft

Abutment Subtotal $=\quad 6781$ cy

ITEM 509 - EPOXY COATED REINFORCING STEEL

	Slab (parapets) =	17,185 lbs		
	Slab (bridge) =	182,944 lbs		
	Slab (east cap) =	142,393 lbs		
	Sidewalk =	13,199 lbs		
Superstructure subtotal =		355,721 lbs		
	Rear Abutment =	397,665 lbs		
	Frwd. Abutment =	602,274 lbs		
	Abutment subtotal $=$	999,939 lbs		
	Pier \& Footing $=$	104,135 lbs		
	Pier subtotal $=$	104,135 lbs		
Approach slabs = Approach slab subtotal $=$		112,635 lbs		
		112,635 lbs		
		Total $=\mathbf{1 , 5 7 2 , 4 3 0} \mathrm{lbs}$		
ITEM 511 - CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK				
BRIDGE				
Deck:				
	thickness =	9.25 in		
	edge of deck			
	to bridge limits =	1.25 ft		
	total sum of spans =	196.25 ft		
	total length =	198.82		
	O/O of deck width =	103.25 ft		
	Deck Volume =	586 cy		
Haunch:				
	t/flange width $=$	18 in		
	$\mathrm{t} / \mathrm{deck}$ to $\mathrm{t} / \mathrm{web}=$	13 in		
	haunch thick. =	2.5 in		
	t/flange thick. (avg) =	1.25 in		
	total no. of beams =	10		
Haunch Volume (Interior Beams) = 32 cy				
Haunch Volume (Exterior Beams) = 6 cy				
Cantilever:				
cantilever length (right) = 2.88 ft				
cantilever length (left) $=\quad 2.88 \mathrm{ft}$				
Cantilever Volume = 10 cy				
Signal Pole Diaphragms (Bridge):				
	length =	10.83 ft		
	thickness =	3.00 ft		
	height $=$	2.80 ft		
	number =	3.00 each		
	Diaph. Volume =	10 cy		
	BRIDGE TOTAL =	644 cy		
CAP				
Deck:				
	thickness =	8 in		
	edge of deck			
	to bridge limits =	1.25 ft		
	total sum of spans =	196.25 ft		

ITEM 511 - CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET), AS PER PLAN

area (west) =	4.42 sf	
area (east) =	4.42 sf	
length (west) =	132.04 ft	
length (east) $=$	144.89 ft	
pylons =	924.00 cf	
	Total $=$	$\underline{80}$ cy

ITEM 511 - CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS

wall area $=$	3238.52 sf
thickness $=$	3.00 ft

```
\begin{tabular}{lr} 
window area = & 436.90 sf \\
window thickness \(=\) & 2.00 ft \\
pedestals = & 32.32 cf
\end{tabular}
Total \(=\)
```


TEM 511 - CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING, AS PER PLAN

```
Skew angle \(=\quad 12.97\) degrees
Rear Abutment:
Beam Seat
\begin{tabular}{lc} 
beam seat area (above paneling) & \(634.99 \mathrm{sf}(\mathrm{cad})\) \\
beam seat width \(=\) & 6.75 ft \\
lower beam seat area \(=\) & \(156.94 \mathrm{sf}(\mathrm{cad})\) \\
lower beam seat width \(=\) & 5.50 ft \\
Beam Seat Volume & 5149.34 cf
\end{tabular}
\begin{tabular}{lr} 
backwall area \(=\) & \(682.99 \mathrm{sf}(\mathrm{cad})\) \\
backwall thickness \(=\) & 1.75 ft \\
approach slab thickness \(=\) & 1.25 ft \\
abutment length \(=\) & 156.94 ft \\
Back Wall Volume \(=\) & 1097.14 cf \\
Additonal Volume & \\
pedestals = & 16.92 cf \\
end wall volumes = & 191.79 cf \\
Rear Abutment Subtotal & 239 cy
\end{tabular}
```


Forward Abutment:

```
Beam Seat
beam seat area (above paneling) 527.19 sf (cad)
beam seat width = lower beam seat area = lower beam seat width = Beam Seat Volume =6.75 ft
139.76
                            5.50 ft
4327.21 cf
Backwall
backwall area \(=\quad 673.50\) sf (cad)
backwall thickness = 1.75 ft
approach slab thickness = 1.25 ft
abutment length = 151.77 ft
Back Wall Volume = 1083.77 cf
Additonal Volume
pedestals \(=\quad 16.92\) cf
end wall volumes = 105.26 cf
Forward Abutment Subtotal = 205 cy
```


ITEM 511 - CLASS QC1 CONCRETE WITH QC/QA, FOOTING, AS PER PLAN

```
Pier:
\begin{tabular}{lr} 
height \(=\) & 3 ft \\
width \(=\) & 15 ft \\
length & 147.66 ft
\end{tabular}
length \(=\quad 147.66 \mathrm{ft}\)
Total \(=\underline{\mathbf{2 4 7}}\) cy
```


Sidewalk on BRIDGE:

area $=$	6042.46 sf
avg. thickness $=$	8.25 in
Sidewalk Volume $=$	154 cy

Sidewalk on CAP (sidewalk portion over end sections only):

area $=$	1526.61 sf
avg. thickness $=$	8.25 in
Sidewalk Volume $=$	39 cy

Total $=\quad \underline{193}$ cy

ITEM 512 - SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)

Rear Abutment:	Face	2967.00 sf
	Top	863.17 sf
Forward Abutment :	Face	4546.72 sf
Pier :	Top	1012.00 sf
	Face	2649.34 sf
	Total $=$	
	$\mathbf{1 , 3 3 8} \mathrm{sy}$	

ITEM 512-TYPE 2 WATERPROOFING

Rear Abutment $=$	9.68 ft
Forward Abutment $=$	8.47 ft

Total $=\quad \underline{7}$ sy

ITEM 512 - SEALING OF CONCRETE SURFACES (NON-EPOXY)

west parapet $=$	906.90 sf
east parapet $=$	1155.07 sf
pylons $=$	451.87 sf
west sidewalk $=$	2906.80 sf (includes small area of sidewalk on SW abutment)
east sidewalk $=$	2388.40 sf
east cap $=$	$3539.28 \mathrm{sf}=====>$ cap total $=$
	Total $=\quad$ 394 sy
	1261 sy

ITEM 513 - STRUCTURAL STEEL MEMBERS, LEVEL 4

BRIDGE			
Girders:			
Section 1			
length =	65.50 ft		
weight $=$	$225.43 \mathrm{lbs} / \mathrm{ft}$		
Section 2			
volume $=$	43.53 cf		
unit weight steel $=$	21327.4 lbs		
Section 3			
length $=$	67.25 ft		
weight $=$	$225.43 \mathrm{lbs} / \mathrm{ft}$		
Detail factor $=$	1.0		
No. of beams =	10		
Beam Subtotal $=$	512,600 lbs		
Splices:	\# of plates length (in)	width (in)	thick (in)
Top Flange			
outside plates =	137	18	0.625

inside plates =	2	37	8	0.625
Bottom Flange				
outside plates =	1	44	18	0.75
inside plates =	2	44	8	0.75
Web				
plates $=$	2	29	22.5	0.5
Plate weight/splice =	726 lbs			
Splice Bolts	\# of bolts	length (in)	bolt wt.	washer wt.
Top Flange =	40	1.5	148	11.3
Bot. Flange =	48	1.5	148	11.3
Web =	48	1.5	148	11.3
	* from steel * washer w	manual eight is per	$0 \mathrm{ct}$.	

Bolt + Washer weight	
Top Flange $=$	64 lbs
Bot. Flange $=$	76 lbs
Web $=$	76 lbs
Total weight/splice $=$	943 lbs
No. of splices $=$	20

Splice + Bolts Subtotal $=\quad 18,856$ lbs

Intermediate Crossframes:

Length of Diagonals =	10.67 ft (weighted avg.)
No. of Diagonals =	2
Length of Horiz. =	10.62 ft (weighted avg.)
No. of Horiz. =	1
Angle weight $/ \mathrm{ft}$. $=$	$9.80 \mathrm{lbs} / \mathrm{ft}$
Crossframe weight $=$	$313 \mathrm{lbs}==>$ per x -frame assembly
x-frame stiffeners?	y y or n
Length =	34.000 in ==> web depth
Width =	5.000 in
Thickness =	0.375 in
Stiffener weight =	$36 \mathrm{lbs}==>$ per x -frame assembly
Total Intermediate Crossframe	
Assembly Weight =	349 lbs. ==> per x-frame assembly
No. of assemblies =	145

End Crossframes:

Length of Diagonals $=$	10.85 ft (weighted avg.)
No. of Diagonals =	2
Length of Horiz. $=$	10.78 ft (weighted avg.)
No. of Horiz. $=$	1
Angle weight $/ \mathrm{ft}=$	$9.80 \mathrm{lbs} / \mathrm{ft}$
Crossframe weight =	$318 \mathrm{lbs} .==>$ per x-frame assembly
x-frame stiffeners?	y y or n
Length =	$5.000 \mathrm{in}==>$ web depth
Width =	34.000 in
Thickness =	0.375 in
Stiffener weight =	$36 \mathrm{lbs}==>$ per x-frame assembly

Total x-frame End
Assembly Weight $=\quad 354 \mathrm{lbs}==>$ per x -frame assembly
No. of assemblies = 18
Crossframe Subtotal $=\quad 57,038 \mathrm{Ibs}$

Signal Support Diaphragm:

Embedded steel plate (20"x20"x1.75") = 198 lbs
Support angles (L6x4×1/2) - Length =
Support angle weight per $\mathrm{ft}=$ No. of support angles = 10.833 ft $16.2 \mathrm{lb} / \mathrm{ft}$

No. of signal support diaphragms = 3 ea

Signal support subtotal $=$ 1,648 lbs

BRIDGE STRUCTURAL STEEL =
590,142 lbs

CAP

Girders:
Section 1

length =	65.50 ft
weight =	$202.47 \mathrm{lbs} / \mathrm{ft}$
Section 2	
volume $=$	42.49 cf
unit weight steel $=$ Section 3	20820 lbs
length =	
weight =	67.25 ft
Detail factor =	$202.47 \mathrm{lbs} / \mathrm{ft}$
No. of beams =	1.0
	5

Beam subtotal $=$	238,500 lbs			
Splices:	\# of plates	length (in)	width (in)	thick (in)
Top Flange outside plates $=$	1	37	18	0.625
inside plates $=$ Bottom Flange	2	37	8	0.625
outside plates $=$ inside plates $=$	1	44	18	0.75
Web plates $=$	2	44	8	0.75
Plate weight/splice $=$ 2 29 22.5 0.5	726 lbs			

Splices Bolts	\# of bolts	length (in)	bolt wt.	washer wt.	
Top Flange $=$	40	1.5	148	11.3	
Bot. Flange $=$	48	1.5	148	11.3	
Web $=$	48	1.5	148	11.3	
	* from steel manual				
	* washer weight is per 100 ct.				

Bolt + Washer weight	
Top Flange $=$	64 lbs
Bot. Flange $=$	76 lbs
Web $=$	76 lbs
Total weight/splice $=$	943 lbs
No. of splices $=$	10

Splice subtotal $=\quad 9,428 \mathrm{lbs}==>$ plates + bolts

Intermediate Crossframes:

Length of Diagonals =	8.91 ft (weighted avg.)
No. of Diagonals =	2
Length of Horiz. =	8.82 ft (weighted avg.)
No. of Horiz. =	1
Angle weight $/ \mathrm{ft}$. $=$	$9.80 \mathrm{lbs} / \mathrm{ft}$
Crossframe weight $=$	261 lbs ==> per x-frame assembly
x-frame stiffeners?	y y or n
Length =	34.000 in ==> web depth
Width =	5.000 in
Thickness =	0.375 in
Stiffener weight $=$	$36 \mathrm{lbs}==>$ per x -frame assembly
Total x-frame assembly weight = No. of assemblies =	297 lbs ==> per x-frame assembly 65
End Crossframes:	
Length of Diagonals =	9.00 ft (weighted avg.)
No. of Diagonals =	2
Length of Horiz. =	8.90 ft (weighted avg.)
No. of Horiz. =	1
Angle weight / ft. =	$9.80 \mathrm{lbs} / \mathrm{ft}$
Crossframe weight $=$	264 lbs ==> per x-frame assembly
x-frame stiffeners?	y y or n
Length $=$	34.000 in ==> web depth
Width =	5.000 in
Thickness =	0.375 in
Stiffener weight $=$	$36 \mathrm{lbs}==>$ per x -frame assembly
Total x -frame	
assembly weight =	$300 \mathrm{lbs}==>$ per x-frame assembly
No. of assemblies =	8

Crossframe Subtotal $=\quad 21,715 \mathrm{Ibs}$

Signal Support Diaphragm:

Embedded steel plate (20"x20"x1.75") = 198 lbs
Support angles (L6x4×1/2) - Length $=\quad 9.000 \mathrm{ft}$
Support angle weight per $\mathrm{ft}=\quad 16.2 \mathrm{lb} / \mathrm{ft}$
No. of support angles = 2 ea
No. of signal support diaphragms $=\quad 1$ ea
Signal support subtotal $=\quad 490 \mathrm{lbs}$
CAP STRUCTURAL STEEL = 270,133 lbs

Total $=860,275 \mathrm{lbs}$

```
    Bridge No. rows per beam = 259
    No. per row = 3
    No. of beams = 10
    Number per signal support = 50
    Number of signal supports = 3
    Bridge Total = 7920 ea
    Cap No. rows per beam= 277
    No.per row = 3
    No. of beams = 5
    Number per signal support = 50
    Number of signal supports = 1
    Bridge Total = 4205 ea
                            Total = 12,125 ea
ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, INTERMEDIATE COAT
ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, FINISH COAT
```


ITEM 514 - FINAL INSPECTION REPAIR

Length $=$	198.75 ft
No. Girders $=$	15 ea
No. Crossframes $=$	236 ea

Total $=\quad \underline{32}$ ea

ITEM 516 -STRUCTURAL EXPANSION JOINT INCLUDING ELASTOMERIC STRIP SEAL (3")

```
Length = 294.00 ft
    Total = \underline{294 ft}
```

ITEM 516 -STRUCTURAL EXPANSION JOINT INCLUDING ELASTOMERIC STRIP SEAL (5")
Length $=\quad 198.82 \mathrm{ft}$

ITEM 516-1" PREFORMED EXPANSION JOINT FILLER

Rear Abutment:

beam seat height =	5.33 ft
beam seat width =	6.75 ft
beam seat length =	156.94 ft
wall height =	17.65 ft
wall width =	0.83 ft
backwall height =	4.31 ft
backwall width =	1.75 ft

Forward Abutment:

beam seat height =	8.46 ft
beam seat width =	6.75 ft
beam seat length =	151.77 ft
wall height =	20.55 ft
wall width =	0.83 ft
backwall height =	4.44 ft
backwall width =	1.75 ft

Total $=\quad \underline{398} \mathbf{~ s f}$

ITEM 516-2" PREFORMED EXPANSION JOINT FILLER

Pier:
height $=\quad 24.24 \mathrm{ft}$
Total $=\quad \underline{73} \mathbf{~ s f}$
ITEM 516 - ELASTOMERIC BEARING WITH INTERNAL LAMINATES \& LOAD PLATE (NEOPRENE) 10.5" x 1'-4" x 2.45" PAD WITH 11.5" x 1'-10" BEVELED PLATE, AS PER PLAN

Rear Abutment $=$	15 ea
Forward Abutment $=$	15 ea

Total $=\quad \underline{30}$ ea
ITEM 516 - ELASTOMERIC BEARING WITH INTERNAL LAMINATES \& LOAD PLATE (NEOPRENE) 1'-6" x 2'-0" x 3.40" PAD WITH 1'-7" x 2'-9" BEVELED PLATE, AS PER PLAN

Pier $=\quad 15 \mathrm{ea}$
Total $=\quad \underline{15}$ ea

ITEM 518 - POROUS BACKFILL WITH GEOTEXTILE FABRIC

Rear Abutment:

avg. top of backwall $=$	753.73
top of drilled shaft $=$	744.45
height $=$	7.53 ft
length $=$	156.94 ft
thickness $=$	2.00 ft
area (panel footing $)=$	6.58 sf

3,397 cf

Forward Abutment:
avg. top of backwall $=757.48$
top of drilled shaft $=\quad 748.35$
height $=$ 7.38 ft
length $=\quad 151.77 \mathrm{ft}$ thickness $=\quad 2.00 \mathrm{ft}$
area $($ panel footing $)=6.58 \mathrm{sf}$ Forward Abutment Subtotal $=\quad 3,238$ cf

Total $=\quad \underline{246} \mathbf{c y}$

ITEM 518-6" PERFORATED CORRUGATED PLASTIC PIPE

Rear Abutment:

length $=\quad 313.88 \mathrm{ft} \quad$ (inlcudes façade panel pipe)

Forward Abutment:
length $=303.54 \mathrm{ft} \quad$ (inlcudes façade panel pipe)

Total $=\quad \underline{618} \mathrm{ft}$

ITEM 518-6" NON-PERFORATED CORRUGATED PLASTIC PIPE

Rear Abutment:
length =
20 ft
Forward Abutment:
length =
27 ft
Total $=\quad \underline{47} \mathrm{ft}$

ITEM 524 - DRILLED SHAFTS, 60" DIAMETER, ABOVE BEDROCK

Rear Abutment:

length $=$	54.45 ft
no. of columns $=$	31

Forward Abutment:

length $=$	58.35 ft
no. of columns $=$	45

ITEM 526 - REINFORCED CONCRETE APPROACH SLABS WITH QC/QA (T=15"), AS PER PLAN

Rear Approach Slab:
area $=\quad 3957.64 \mathrm{sf}$
Forward Approach Slab:

```
area = 4656.49 sf
```

Total $=\quad \underline{958}$ sy

ITEM SPECIAL - STRUCTURE, MISC.: PERMANENT UTILITY SUPPORTS

Length of Horiz. =	10.78 ft (weighted avg.)
No. of Horiz. =	1
Angle weight $/ \mathrm{ft}$. $=$	$12.80 \mathrm{lbs} / \mathrm{ft}$
utility support weight =	138 lbs ==> per assembly
Stiffeners?	y y or n
Length =	5.000 in ==> web depth
Width =	34.000 in
Thickness =	0.375 in
Stiffener weight $=$	$36 \mathrm{lbs}==>$ per x -frame assembly
Total utility support	
assembly weight =	174 lbs ==> per x-frame assembly
No. of assemblies =	29

।
Total Weight $=\quad 5050 \mathrm{lbs}$
Cost $=\quad \$ 1.50$ per lb
Total $=\$ 7,576.00$

ITEM SPECIAL - STRUCTURE, MISC.: PRECAST FACADE PANELS

Rear Abutment:
area $=\quad 2769.95 \mathrm{sf}$

Forward Abutment:
area $=\quad 3261.59 \mathrm{sf}$
Total $=\quad \underline{6,032} \mathbf{s i}$

ITEM 607 - FENCE, MISC.: WALL MOUNTED TYPE A (W/ VANDAL MESH)
Rear Abutment:
length $=\quad 4.5 \mathrm{ft}==>$ on SW knee wall extension
North end of west parapet:
length =
$15.50 \mathrm{ft}==>$ north of NW end pilaster
Total $=\quad \underline{20} \mathrm{ft}$
ITEM 625 - LIGHT POLE ANCHOR BOLTS, MISC.: COMBINATION SIGNAL POLE AND PEDESTRIAN POLE ANCHOR BOLT ASSEMBLIES EMBEDDED IN CONCRETE BRIDGE DECK
Total $=\quad \underline{8}$ ea

