

Subsurface Investigation - Revised FRA-CR84-1.36 Northeast Gateway Worthington, Ohio S&ME Project No. 1117-16-031A

PREPARED FOR

EMH&T, Inc. 5500 New Albany Road Columbus, Ohio 43054

PREPARED BY

S&ME, Inc. 6190 Enterprise Court Dublin, OH 43016

December 10, 2018

May 15, 2018

EMH&T, Inc. 5500 New Albany Road Columbus, Ohio 43054

Attention: Mr. Michael Brehm, P.E.

Reference: Subsurface Investigation – Revised FRA-CR84-1.36 Northeast Gateway Worthington, Ohio S&ME Project No. 1117-16-031A

Dear Mr. Brehm:

In accordance with our revised proposal dated December 2, 2015, which was authorized on June 17, 2016, with Task Order No. 1 to our Service Agreement with EMH&T dated February 17, 2015, and in accordance with modification of scope and fee request on June 5, 2017, which was authorized with Task Order No. 2 on June 8, 2017, S&ME, Inc. (S&ME) has completed a subsurface investigation for the above referenced project. For this project, 16 borings were performed in the field for roadway improvements at the intersection of Huntley Road, E. Wilson Bridge Road, and Worthington-Galena Road in Worthington, Franklin County, Ohio. This work has not been performed in strict accordance with ODOT <u>Specifications for Geotechnical Exploration (SGE)</u>. The approximate site location is depicted on the Vicinity Map presented as Plate 1 in Appendix A of the report. The results from our field investigation, laboratory testing, and our recommendations associated with this subsurface investigation are herewith submitted. Preliminary culvert and retaining wall recommendations were provided in a letter dated June 19, 2017.

This revised report has been updated based on ODOT review comments on the Stage 2 plans, which were provided to S&ME by your office on September 25, 2017, and discussed between September 2017 and May 2018 with Mr. Tyler Adam, P.E. from your office. The second report revision was made to include an update to the modular block wall calculations. We appreciate having been given the opportunity to be of service on this project. If you require additional assistance or have any questions, please feel free to contact our office.

Sincerely,

S&ME, Inc.

Christopher J. Nye, PE Project Manager

Bethenie I neek

Bethanie L. Meek, PE Senior Engineer/Senior Reviewer

Table of Contents

1.0	Project In	nformation1	L
2.0	Project D	Description1	L
3.0	Regional	Geology2)
4.0	Explorati	ion2	2
4.1		Existing Information	<u>,</u>
4.2		Field Work	<u>)</u>
4.3		Laboratory Testing	3
4.	.3.1	Results of Soil Classification Testing	3
4.	.3.2	Results of Moisture Testing	Ł
5.0	Findings	4	ŀ
5.1		Existing Pavement4	ł
5.2		General Subsurface Stratigraphy	ł
5.	.2.1	Historic Boring Information	5
5.3		Groundwater Observations	5
6.0	Analysis	and Recommendations5	;
6.1		General Discussion	5
6.2		Subgrade Support Parameters	5
6.3		Subgrade Remediation Recommendations	5
6.4		Roadway Embankment Construction	7
6.	.4.1	Embankment Foundation/Subgrade Preparation	7
6.	.4.2	"Fill" Areas	3
6.	.4.3	"At-Grade" and "Cut" Areas	3
6.	.4.4	Borrow Requirements/Compaction Criteria	J
6.	.4.5	Compaction /Moisture Conditioning Concerns)
6.5		Structure Recommendations)
6.	.5.1	Spread Foundation Bearing Resistance)

6.5.2	Eccentricity (Overturning)	11
6.5.3	Sliding Resistance	11
6.5.4	Lateral Earth Pressures	12
6.5.5	Global Stability – Modular Block Wall	
6.6	Retention Basin Recommendations	13
6.7	Groundwater Considerations	15
6.7.1	Groundwater Considerations Roadway Subgrade Preparation	15
6.7.2	Groundwater Considerations for Culvert Construction	15
7.0 Final	Considerations	16

Appendices

Appendix A

Vicinity Map	1
Plan of Borings	2
Explanation of Symbols and Terms Used on Boring Logs for Soil	3
Boring Logs	
Summary of Lab Testing	
Atterberg Limits' Results	
Gradation Curves	
Pavement Core Photographs	

Appendix B

Historic Boring Logs	1-8

Appendix C

Summary	of Subgrade	Remediation	1

Appendix D

LRFD Bearing Resistance Calculation E. Wilson Bridge Rd over Rush Run	1
LRFD Bearing Resistance Calculation Worthington Galena Road (South) over Rush Run	2
LRFD Bearing Resistance Calculation Private Drive over Rush Run	3
LRFD Bearing Resistance Calculation Modular Block Wall 1	4
LRFD Bearing Resistance Calculation Modular Block Wall 2	5
Modular Block Wall Calculations	6-12

<u>Plate No.</u>

1.0 Project Information

S&ME, Inc. (S&ME) has completed the subsurface investigation for the proposed roadway improvements at the intersection of Huntley Road, E. Wilson Bridge Road, and Worthington-Galena Road in Worthington, Franklin County, Ohio. The work was performed in general accordance with our proposal dated December 2, 2015 and our Mod #1 dated June 5, 2017. The purpose of this investigation was to obtain subsurface information to allow us to characterize the subsurface conditions and to evaluate pavement subgrade conditions for pavement design, and for the design of three box culverts and two gravity block retaining walls, to be performed by others. This report describes our understanding of the project, presents the results of the field exploration and laboratory testing, and discusses our conclusions and recommendations.

As requested by EMH&T, this investigation was not performed in strict accordance with ODOT's <u>Specifications for</u> <u>Geotechnical Explorations</u> (SGE). S&ME understands that the project documents will reference ODOT specifications for roadway construction; therefore, we have included reference to ODOT <u>Construction and</u> <u>Materials Specifications</u> (CMS) in our report.

2.0 Project Description

Based on a Stage 1 plans prepared by EMH&T, dated December 19, 2016, and provided to S&ME on May 12, 2017, we understand that the project includes about 6,000 feet of roadway construction and improvements, including the following:

- E. Wilson Bridge Road
 - Pavement widening;
 - Pavement reconstruction;
 - Widening of the 9'x5' box culvert at Rush Run Creek on both ends and adding new wing walls;
 - Adding a signaled intersection at the proposed Worthington-Galena Road (south) new alignment;
 - Realigning and lengthening E. Wilson Bridge Road for a new intersection at Huntley Road and Worthington Galena Rd (north); and,
 - Sidewalks and shared use path.
- Worthington-Galena Road
 - Adding new alignment north and west of the existing Huntley/E. Wilson Bridge/Worthington-Galena intersection;
 - Replacing a 7' x 5' box culvert carrying a private drive over Rush Run; and,
 - Sidewalk and shared use path construction including two (2) precast block gravity retaining walls underneath IR-270.
 - Huntley Road
 - Widening; and,
 - Resurfacing.

Based on the Stage 1 plans prepared by EMH&T and dated December 19, 2016, it is anticipated that proposed roadway cut and fill on this project will not exceed three feet, excluding the construction of two wet retention basins which are approximately 6 and 10 feet deep.

3.0 Regional Geology

Geologic references indicate that this site is located in a portion of Ohio which has been glaciated. The Columbus Lowland area is surrounded in all directions by relative uplands, having a broad regional slope toward the Scioto Valley with many larger streams. The overburden soils consist of predominantly loamy Wisconsinan-age till and extensive outwash in the Scioto Valley over Devonian to Mississippian-age carbonate rocks, shales, and siltstones. Based on geologic mapping, bedrock is present at depths greater than 50 feet below the ground surface at the project area.

A review of the ODNR "Abandoned Underground Mines of Ohio" map reveals that no mapped abandoned underground mines are present in the vicinity of the site. A review of the ODNR "Ohio Karst Areas" map indicates the project site is not located in an area known to contain karst features.

4.0 Exploration

4.1 Existing Information

S&ME accessed the ODOT Office of Geotechnical Engineering's on-line Geotechnical Document Management System (GeoMS) to search for existing historical geotechnical explorations within the limits of this project. Existing boring information was found in the area of the Worthington-Galena Road/IR-270 overpass and was used for design recommendations for the two precast block gravity retaining walls. The existing boring information is included in Appendix B.

Five (5) existing borings obtained from ODOT's GeoMS system are in close proximity (less than 50 feet) to the planned precast block retaining walls beneath IR-270; however, these borings do not satisfy ODOT <u>SGE</u> requirements for structure boring spacing, sampling, or depth. During the proposal stage, the design team decided that existing boring information would be utilized for design of the retaining walls instead of performing new borings because performing additional borings would require substantial costs associated with closing lanes on IR-270. Therefore, no new borings were performed for the precast block retaining walls, and the City of Worthington should be made aware that the existing structure borings do not satisfy ODOT specifications with respect to spacing, sampling, or depth.

4.2 Field Work

Between June 20, 2016 and June 27, 2016 and on June 19, 2017, S&ME was on-site and performed a total of sixteen (16) soil borings (designated as Borings B-1 through B-16) on or adjacent to E. Wilson Bridge Rd, Worthington-Galena Rd, and Huntley Rd. The borings were located as near to the proposed location as existing utilities and other obstructions would allow. The ground surface elevations at the boring locations were provided by EMH&T based on GPS coordinates obtained by S&ME using a sub-meter hand-held GPS unit. The

approximate locations of the borings are shown on the Plan of Borings included as Plate 2 in Appendix A of this report.

The borings were performed using all-terrain vehicle (ATV) mounted drilling rigs. Each of the borings was advanced through the soil overburden and between sampling attempts using either a 4 ½-inch outside diameter (O.D.) continuous-flight auger (CFA) or a 3 ¼-inch inside diameter (I.D.) hollow-stem auger (HSA). At regular intervals, disturbed but representative soil samples were obtained by lowering a 2-inch outside diameter split-barrel sampler to the bottom of the boring and then driving the sampler into the soil with blows from a 140-pound hammer freely falling 30 inches (ASTM D1586 - Standard Penetration Test). Split-barrel samples were examined immediately after recovery and representative portions of each sample were placed in air-tight jars and retained for subsequent laboratory testing. Particular attention was given to the texture, moisture content, and consistency of each sample. Additionally, the borings were checked for the presence of groundwater during sampling and at the completion of the drilling operations. Following the completion of the groundwater level readings, the borings were backfilled with soil cuttings mixed with bentonite chips and the pavement surface was repaired with an equivalent thickness of cold-patch asphalt. The samples collected during the field exploration were returned to the laboratory for visual examination and selected laboratory testing.

4.3 Laboratory Testing

In the laboratory, the samples were visually identified and, on selected representative samples, moisture contents, liquid and plastic limit determinations, and grain size analyses were performed. Results of these tests permit an evaluation of strength and subgrade support characteristics of the soil by comparison with similar soils for which these characteristics have been previously determined.

Based upon the results of the laboratory testing program, soil descriptions contained on the field logs were modified, if necessary, and laboratory-corrected logs are submitted as Plates 4 through 22 of Appendix A. Results of the laboratory tests are shown graphically on the individual boring logs and a summary of test results is presented on Plates 23 and 24 of Appendix A. Results of Atterberg limits and grain size analyses are presented on Plates 25 through 33.

Soils described in this report have been classified generally in accordance with the Unified Soil Classification System. However, the system has been augmented by the use of special adjectives to designate the approximate percentages of minor soil components. An explanation of the symbols and terms used on the boring logs and definitions of the special adjectives used to denote the minor soil components are presented on Plate 3 of Appendix A. In addition, ODOT modified AASHTO soil classifications have been included on the logs for each soil stratum.

4.3.1 Results of Soil Classification Testing

Atterberg limits testing was performed to provide engineering classifications of the on-site soils exhibiting cohesion. A total of thirty two (32) Atterberg limits tests were performed. Liquid limits typically ranged from 21 to 45 percent, with one as high as 52 percent. Plasticity indices ranged from 6 to 31 percent.

4.3.2 Results of Moisture Testing

Natural moisture content testing was performed on a total of thirty two (32) soil samples. The moisture contents of the on-site soils tested ranged from 11 to 25 percent. These values varied from 5 percent below to 7 above their corresponding plastic limit.

5.0 Findings

Please refer to the boring logs submitted in Appendices A and B for information on the subsurface conditions encountered at the boring locations. It should be noted that actual subsurface conditions between and beyond the borings might differ from those encountered at the boring locations. If subsurface conditions encountered during construction vary from those discussed in this report, S&ME should be notified immediately so that we may evaluate the effects, if any, on design and construction.

5.1 Existing Pavement

Table 5-1 provides a summary of the existing pavement and granular base thicknesses recorded at each boring location.

Location	Asphalt Thickness	Granular Base
D (1)	(inches)	fillexiless (filefiles)
B-1(1)	12	6
B-2	12	6
B-3	12	6
B-4	12	6
B-6 ⁽¹⁾	7	4
B-9 ⁽¹⁾	10 ⁽²⁾	8
B-10	12	6
B-11	12	6
B-14	12	6
B-15 ⁽³⁾	3	4

Table 5-1 – Summary of Pavement Thickness

⁽¹⁾ Pavement coring performed

⁽²⁾ Core thickness 5 inches

⁽³⁾ Boring performed in shoulder

5.2 General Subsurface Stratigraphy

Beneath the existing pavement or 4 to 6¹/₂ inches of topsoil/rootmat, Borings B-3, B 15, and B-16 encountered existing fill or possible fill described as stiff to very-stiff silty clay to depths ranging from 2.8 to 5.5 feet. Below the existing fill, the borings typically encountered natural soil consisting of SILT AND CLAY (A-6a), SILTY CLAY (A-6b),

and SANDY SILT (A-4a). The consistency of these materials ranged from medium-stiff to hard, with a seam of soft to medium-stiff silty clay in B-7 from 5.5 to 8.0 feet and a seam of very-soft silty clay in B-16 from 5.5 to 7.0 feet. A few zones of medium-dense to very-dense gravel and sand were encountered in Borings B-3, B-4, B-6, and B-15. Cobbles were also noted in some of the borings.

5.2.1 Historic Boring Information

Historic boring information from past ODOT investigations near the IR-270 overpass over Worthington Galena Rd indicate the presence of stiff to hard SILT AND CLAY (A-6a) below the proposed subgrade of Worthington Galena Rd (North) and the proposed modular block wall leveling pads. Fill material, including concrete, was noted in the historic ODOT Borings B-09-0-05 and B-12-0-05, below the proposed Wall #2 leveling pad elevation.

5.3 Groundwater Observations

During drilling, seepage and/or groundwater was noted in six (6) of the sixteen (16) borings, at depths ranging from 2.5 to 29.8 feet below the ground surface. At the completion of drilling and prior to backfilling of these six (6) borings, groundwater had accumulated in the borings to depths ranging from 2.0 to 29.3 feet below the ground surface. No groundwater was noted during drilling of the remaining borings, and these borings were also noted as being "dry" at the completion of drilling, which is to say, no measurable amount of groundwater had collected in the borehole.

6.0 Analysis and Recommendations

6.1 General Discussion

S&ME understands it is proposed to realign and widen portions of E. Wilson Bridge Rd, Worthington Galena Rd, and Huntley Rd in Worthington, Franklin County, Ohio. The realignment involves the addition of an intersection along E Wilson Bridge Rd and the relocation of the Huntley Rd, E Wilson Bridge Rd, and Worthington Galena Rd. The project also includes the extension of a box culvert carrying Rush Run under E Wilson Bridge Rd, a new box culvert carrying Rush Run under the southern portion of the realigned Worthington Galena Rd, the replacement of a culvert carrying Rush Run under a private drive entrance with a larger box culvert, and two precast block gravity retaining walls under IR-270 along Worthington Galena Rd. Additionally, two wet detention basins will be added. Based on the Stage 1 plans, the proposed realigned profiles will require minor fills, less than 3 feet, and the detention basins will be approximately 6 and 10 feet deep.

6.2 Subgrade Support Parameters

It is anticipated that the subgrade for the pavements will consist of natural stiff to very-stiff SILT AND CLAY (A-6a) and SILTY CLAY (A-6b) deemed suitable for pavement support following favorable proofrolling, newly placed controlled fill, or chemically stabilized soils (see Section 6.3). Given the variable nature of the subgrade soils and based on laboratory tests performed on the near surface soils, along with ODOT Group Index correlations, it is recommended that the following California Baring Ratio (CBR) value be used to design the new pavement sections:

CBR: 5%

Based on this average value, and Section 203.1 of the ODOT <u>Pavement Design Manual</u>, the following value of Resilient Modulus (M_R) may be used during new pavement section design for this project.

M_R: 6,000 psi

These pavement subgrade support values may be used during pavement design on this project provided that the entire proposed pavement subgrade is prepared in accordance with Item 204 of the 2016 ODOT <u>CMS</u>, and that all borrow soil placed within 3 feet of the final subgrade level of a new fill embankment is capable of providing average subgrade support parameters which meet or exceed the above values. This subgrade evaluation also assumes that the subgrade for the new roadways is composed of the materials encountered in the borings. If, at the time of construction, it is determined that the subgrade consists of materials different than those encountered in the borings, the pavement design subgrade criteria should be reviewed and, if necessary, modified.

In addition to proper subgrade preparation, we recommend that the pavement design and construction include surface and subsurface drainage measures. Water which infiltrates the pavement and remains trapped within the pavement components during traffic loading is one of the leading causes of premature pavement failure. Effective design measures include the use of perimeter swales, perimeter edge drains, curbs, or a combination of these features to collect surface water runoff from areas adjacent to the pavement. Cohesive subgrade soils should be crowned or sloped to promote drainage of infiltrating water towards subsurface drainage collection systems. S&ME noted that the Stage 1 plans submitted by EMH&T include underdrains and curb and gutter systems along both sides of the alignments.

6.3 Subgrade Remediation Recommendations

The following recommendations provide a summary of the anticipated subgrade remediation approach for the specified areas of the project. A plan sheet showing the approximate areas and types of subgrade remediation is included in Appendix C.

E. Wilson Bridge Rd

• Sta 349+30 to Sta 359+10:

Remove unsuitable materials (soil/roots/structures/existing pavement), compact top 12 inches of subgrade per Item 204.03, and then proof roll subgrade in widening areas in accordance with Item 204.06. Proof roll areas should extend 18" past the outside edge of curb line. Where unstable/soft soils are noted during proofrolling, undercut/replace per Item 204.04 using Item 204 Granular Material Type B or C. Consider placement of Item 712.09 Type D geotextile at the bottom of the overexcavation. Overexcavations should be drained where possible. Particular attention should be paid to Station 350+00 to 353+25 where a 12-inch undercut may be necessary.

 Sta 359+10 to Sta 364+05 (proposed Huntley Road/Worthington Galena Rd Intersection) Remove all existing pavement/granular base. Once proposed subgrade has been attained, recommend Item 206 Chemical Stabilization, 14" in depth using Cement as the chemical additive. All fill/borrow soil placed within 14 inches of the proposed subgrade in areas of chemical stabilization should have a plastic index (PI) no greater than 20.

Huntly Rd/Worthington Galena Road (North)

• Sta 396+35 to Sta 404+90

Remove unsuitable materials (soil/roots/structures/existing pavement), compact top 12 inches of subgrade per Item 204.03, and then proof roll subgrade in widening areas in accordance with Item 204.06. Proof roll areas should extend 18" past the outside edge of curb line. Where unstable/soft soils are noted during proofrolling, undercut/replace per Item 204.04 using Item 204 Granular Material Type B or C. Consider placement of Item 712.09 Type D geotextile at the bottom of the overexcavation. Overexcavations should be drained where possible.

 Sta 404+90 to Sta 424+05 (Lakeview Plaza Blvd/Sancus Blvd Intersection) Remove all existing pavement/granular base. Once proposed subgrade has been attained, recommend Item 206 Chemical Stabilization, 14" in depth using Cement as the chemical additive. All fill/borrow soil placed within 14 inches of the proposed subgrade in areas of chemical stabilization should have a plastic index (PI) no greater than 20.

Worthington Galena Road (South)/Old Worthington Galena Rd Connector

- Sta 202+82 to Sta 213+10 (Edge of E. Wilson Bridge Rd Intersection) and Connector
 - Once unsuitable surficial materials have been removed (topsoil/roots/structures/existing pavement), scarify and recompact the entire exposed embankment foundation. Perform Item 206.04 Test Rolling on the compacted embankment foundation to identify any weak areas of the embankment foundation. After test rolling, place new embankment fill in accordance with Item 203, or Item 204 when within 12 inches of the proposed subgrade. Do not allow a bridge lift per Item 203.05 due to the thinness of the new fill. Proof roll per Item 204.06 after attaining subgrade.

6.4 Roadway Embankment Construction

Preliminary profile information provided by EMH&T indicates that less than 3 feet of cut and new fill will be necessary to attain the desired profile for the realigned portion of this project. Stability analyses were not performed for the proposed embankments.

6.4.1 Embankment Foundation/Subgrade Preparation

Prior to commencing earthwork operations and excluding pavement salvage areas, it is recommended that all existing pavement, structures, topsoil, existing trees including their entire root mass, vegetation, and other miscellaneous materials be completely removed from the entire footprint of the proposed roadway/embankment. S&ME recommends that the Geotechnical Engineer of Record or his/her designated representative be present at the time of proofrolling, as visual observation of these procedures may result in a partial reduction of undercutting of unsuitable soils.

6.4.2 "Fill" Areas

S&ME recommends that test rolling (ODOT <u>CMS</u> Item 204.06 be performed on the entire exposed embankment foundation prior to commencing fill placement. Test rolling performed in accordance with ODOT <u>CMS</u> Item 204.06 and Item 204 of the ODOT <u>CIMP</u>, would assist in identifying soft, wet or weak zones that may be present in areas where the thickness of new fill embankment is insufficient to "bridge" an underlying weak or wet soil. If any such zones are present, the materials contained in these zones should be either scarified, dried, and thoroughly recompacted in place in accordance with ODOT <u>CMS</u> Item 203.07, or be removed and the overexcavation filled in a controlled manner with compacted, suitable embankment material (Item 203.02) and with the recommendations presented in this report.

Although Item 203.05 permits the use of a "bridge lift" to aid in spanning soft or wet foundation areas, S&ME recommends that this practice not be permitted except where more than 3 feet of new embankment fill placement is required. Soft, weak, or wet soils that are not removed from beneath a thin layer of fill may result in significant difficulties in achieving the compaction percentages required for the new fill (Items 203.07 or 204.03) such that final subgrade acceptance proofrolling may require overexcavation of the new fill where weak soils were "bridged" by a minimal thickness of new fill.

In new embankment areas or embankment widening areas where new fill is to be placed on an existing ground surface with a slope that is between 4(H):1(V) and 8(H):1(V), benching of the existing ground surface should be performed in accordance with Item 203.05 of the ODOT <u>CMS</u>.

6.4.3 "At-Grade" and "Cut" Areas

Once the desired subgrade elevation has been attained in "cut" and "at-grade" areas, and after overexcavation of all existing unsuitable subgrade materials has been completed, the subgrade soil beneath the entire roadway and shoulder pavement area should be scarified and recompacted to a depth of 12 inches below the subgrade level in accordance with ODOT <u>CMS</u> Item 204.03. During recompaction, the moisture content of the subgrade soil should be maintained or adjusted in accordance with ODOT <u>CMS</u> Item 204.03. During recompaction, the moisture content of the subgrade soil should be maintained or adjusted in accordance with ODOT <u>CMS</u> Item 203.07.A.

Following the completion of the scarification and recompaction of the subgrade for cut and at-grade areas, it is recommended that construction traffic be restricted from traveling on the compacted subgrade until final acceptance proofrolling has been performed. Cohesive subgrade soils subjected to repeated moisture fluctuations, which may occur as a result of exposure to rainfall and/or surface water runoff, may exhibit subgrade instability.

Final subgrade proofrolling should be performed in accordance with ODOT <u>CMS</u> Item 204.06, and Section 204 of the ODOT Construction Administration Manual of Procedures. If weak, wet, or soft zones are present, it is recommended that the materials contained in these zones be removed and replaced in accordance with Item 204.04. It is recommended, however, that the maximum depth of any necessary overexcavation be limited to 4 feet, even where the bottom remains unstable. In these cases, it is recommended that a geotextile (ODOT Item 712.09, Type D) be placed at the bottom of the overexcavation and then the undercut area backfilled with compacted granular material (ODOT Item 703.16.C Type C or D Granular Material). To assist the paving process, it may be desirable to top this granular backfill with a few inches of Item 703.16.C.2 (Type B).

6.4.4 Borrow Requirements/Compaction Criteria

New fill should consist of inorganic soil free of all miscellaneous materials, cobbles, and boulders, which is placed in uniform, thin layers and then compacted in accordance with either Item 203 or, when within 12 inches of the proposed subgrade level, Item 204 of the ODOT <u>CMS</u>. Additionally, borrow soil placed as new fill within 3 feet of the final subgrade level of an embankment must be capable of providing an average CBR value of 5% (see Section 6.2 of this document). Fill materials should not be placed in a frozen condition or upon a frozen surface, and any sloping surfaces on which new fill is to be placed should first be benched in accordance with ODOT <u>CMS</u>. Item 203.05 or ODOT Geotechnical Bulletin <u>GB2</u>, depending on the slope of the existing ground surface at each location.

Based on soil types encountered in the borings performed in areas of proposed cut (i.e., detention basins), it is anticipated that these soils will generally be suitable for use as borrow for the fill embankment areas. Moisture conditioning of some of these soils may, however, be required. While no unsuitable soils types were encountered in the cut area borings, it is possible that unsuitable soils may be encountered between the borings. Particular attention should be given to the drainage areas and wooded areas where thicker deposits of organic soil and root matter may be present, and which should not be allowed to be placed in new embankment fill.

6.4.5 Compaction /Moisture Conditioning Concerns

The cohesive soils encountered in the borings, if exposed to inclement weather or rainfall, may rapidly absorb additional moisture and weaken. It is imperative that these soil types not be exposed to rainfall while in a loosened state (such as during disking and drying for moisture conditioning). Should these materials become sufficiently saturated that additional moisture conditioning is impractical, the material should be removed and wasted. Therefore, it is recommended that moisture conditioning only be performed when extended periods of suitable weather are anticipated, and that only the amount of borrow soil be exposed that may be moisture conditioned and properly compacted during suitable weather periods.

6.5 Structure Recommendations

Stage 1 plans provided by EMH&T on May 12, 2017, indicate that the following structures are proposed for this project:

- New 9' x 4' extensions to both ends of an existing box culvert carrying E. Wilson Bridge Road over Rush Run, including the addition of wing walls on both the inlet and outlet extensions;
- A new 7' x 5' box culvert carrying the realigned Worthington Galena Road over Rush Run:
- A replacement 7' x 5' box culvert carrying a private drive at the south end of the project over Rush Run (7029 Huntley Road); and,
- Two modular block walls (Wall #1 and Wall #2) located beneath the IR-270 overpass along Worthington Galena Road. Wall # 1 is on the west side of Worthington Galena Road (max height of 6 feet) and Wall #2 is on the east side (max wall height of 4.5 feet).

6.5.1 Spread Foundation Bearing Resistance

We understand that the design of the planned structures will be performed utilizing Load Factor Resistance Design (LRFD) methods. Table 6-1 on the following page, summarizes the recommended nominal and factored unit bearing resistances (q_n and q_R) at the service and strength limit states for spread foundations.

Structure Location	Bearing Stratum	Limit State Est. Recomment Limit State Elevation Resistance (ft) (ksf)*			Resistance Factor, φ	Recommended Factored Bearing Resistance, qR (ksf)*		
E. Wilson Bridge Rd.	Very-stiff	Service	908	6.0	1.0**	6.0		
over Rush Run	(B-3)	Strength	508	13.3	0.5***	6.7		
S. Worth- Galena Rd.	Medium- stiff to stiff	Service	008	3.0	1.0**	3.0		
over Rush Run	silty clay (B-7)****	Strength	908	5.3	0.5***	2.6		
Private Drive	Stiff to very-stiff	Service		5.0	1.0	5.0		
Run	silty clay (B-15)	Strength	907	8.0	0.5	4.0		
			Modular Bl	ock Walls				
		Service		6.0	1.0**	6.0		
Wall #1	Very-stiff	Strength (Undrained)	926	10.9	0.5***	5.4		
	Sirty Clay	Strength (Drained)		10.4	0.5***	5.2		
		Service		4.0	1.0**	4.0		
Wall #2	Stiff silty	Strength (Undrained)	926	8.2	0.5***	4.1		
	Cidy	Strength (Drained)		8.9	0.5***	4.4		

Table 6-1: Recommended Bearing Capacities

*For vertical loading only. Foundations may need to extend deeper to generate passive pressure to resist lateral loads or to extend below the scour depth.

**Article 10.5.5.1 of the 2014 AASHTO LRFD Bridge Design Specifications.

***Table 10.5.5.2.2-1 of 2014 AASHTO LRFD Bridge Design Specifications.

****Overexcavation below the plan bearing elevation may be required to reach acceptable bearing materials.

If weaker soils or existing uncontrolled fill are present at or just below the proposed culvert or wall foundation elevation, the material should be overexcavated and the foundation lowered to more suitable soils or the overexcavation below plan foundation bearing elevation should be backfilled in accordance with the most current ODOT <u>CMS</u> Item 503. Particular attention should be given to the following locations based on the conditions observed in the available borings:

- Culvert beneath Worthington Galena Road, which may have soft to medium-stiff silty clay present near the proposed bearing elevation; and,
- Wall #2 which may have existing fill overlying buried concrete pavement.

Based on the foundation sizes provided in the Stage 1 plans, settlements are expected to be less than 1-inch for the culverts and retaining walls, provided the footings bear on competent material and the site preparation and foundation construction are performed in accordance with the recommendations provided in this report. S&ME also recommends that spread foundations for the wing-walls for the culverts bear at least 12 inches below any rip rap placed as scour protection, and that sufficient longitudinal reinforcing steel be provided to strengthen continuous footings against any abrupt differential settlements.

The portion of the sidewalls of the foundation excavations should be either sloped back or braced in accordance with the most recent OSHA excavation guidelines. Any surface water will need to be diverted away from the foundation excavation area during excavation and construction of the culvert foundations. The foundation bearing surfaces should be kept dry and free from standing water during all construction activities.

6.5.2 *Eccentricity (Overturning)*

Proposed spread foundations for the structures which are subjected to eccentric loadings should be designed to account for such loading. For reference, Articles 10.6.1.3, 10.6.3.3 and 11.6.3 of the latest AASHTO LRFD Bridge Design Specifications (BDS) provide guidance on designing for eccentric loading. Once the footing design has been finalized, it is recommended that the structural designer confirm that the eccentricity of the foundation is less than one-third (1/3) of the appropriate footing dimension (width and/or length) for footings on soils (AASHTO Article 10.6.3.3).

6.5.3 Sliding Resistance

The factored resistance against failure by sliding (R_R) should be determined using Eq. 10.6.3.4-1 of the AASHTO LRFD BDS. The following recommendations are for precast concrete box culverts bearing on natural soils, cast-inplace wingwalls and head walls bearing on natural soils, and precast modular blocks bearing on a granular leveling pad of ODOT <u>CMS</u> Item 304 or equivalent crushed stone. Where proposed foundations bear on natural cohesive soils, S&ME recommends that the nominal sliding resistance ($R\tau$) between the soil and the foundation be taken as the lesser of:

- **1.** Nominal sliding resistance ($R\tau$) calculated using an undrained shear strength (S_u) value as follows:
 - 2,500 psf of the foundation area for the culvert extensions carrying E. Wilson Bridge Road over Rush Run;

- 1,000 psf of the foundation area for the culvert carrying the realigned Worthington Galena Road over Rush Run;
- 1,500 psf of the foundation area for the culvert carrying a private drive over Rush Run;
- 2,000 psf of the foundation area for Wall #1; and,
- 1,500 psf of the foundation area for Wall #2.
- **2.** 50% of the vertical effective stress (ksf) on the bottom of the foundation, as shown in Figure 10.6.3.4-1 of the AASHTO LRFD BDS, if the footing is supported on at least 6 inches of compacted granular material.

As shown in AASHTO Figure 10.6.3.4-1, variations in the distribution of the applied vertical effective stress across the width and/or length of the footing must also be considered, as the method which computes the lesser value of R τ may change based on the distribution of stress to the base of the footing. The factored resistance to sliding may then be computed using a resistance factor for shear resistance between soil and foundation ($\phi\tau$) as specified in Table 10.5.5.2.1-1.

ODOT requested that sliding resistance be evaluated for drained soil conditions. S&ME recommends that for this scenario, the nominal sliding resistance ($R\tau$) between the soil and the foundation should be determined using AASHTO Eq. 10.6.3.4-2 with an internal friction angle (Φ) of 28° for the natural soils and an internal friction angle (Φ) of 34° for granular base below the wall.

Additional resistance to sliding of spread footings could be derived from increasing the width of the footing, adding a shear key, or from passive pressure developed along the inside toe of the footing or a shear key. A nominal passive resistance of 200 psf per foot of effective embedment depth into the natural soils should be used for the footings provided that the footings will bear at or below the anticipated bearing elevation shown in Table 6-1 of this report, and provided the footing concrete is placed flush ("neat") against the face of the excavation. Passive resistance should be neglected above the anticipated depth of scour and/or frost. S&ME recommends a resistance factor for passive resistance (φ ep) of 0.50 be used to compute the factored passive resistance. It is important that all loosened soil be removed from the face of the foundation excavation that will provide the passive resistance.

6.5.4 Lateral Earth Pressures

The proposed modular block walls, box culverts, and wingwalls must be designed to withstand lateral earth pressures, as well as hydrostatic pressures, that may develop behind the structure. The magnitude of the lateral earth pressures varies on the basis of soil type, permissible wall movement, and the configuration of the backfill.

To minimize lateral earth pressures, the zone behind the headwalls and culvert should be backfilled with granular soil, and the backfill should be effectively drained. For effective drainage, a zone of free-draining gravel (ODOT <u>CMS</u> Item 518.03) should be used directly behind the structures for a minimum thickness of 24 inches in accordance with ODOT <u>CMS</u> Item 518.05. This granular zone should drain to either weepholes or a pipe, so that hydrostatic pressures do not develop against the walls.

The type of backfill beyond the free-draining granular zone will govern the magnitude of the pressure to be used for structural design. Pressures of a relatively low magnitude will be developed by the use of granular backfill, whereas a cohesive (clay) backfill will result in the development of much higher pressures.

It is recommended that granular backfill be used behind the modular block walls, box culverts, and wingwalls. The backfill should be placed in a wedge formed by the back of the structure and a line rising from the base of the structure at an angle no greater than 60 degrees from the horizontal. Granular backfill behind the structure should be compacted in accordance with ODOT Item 203 of the most recent <u>CMS</u>. Overcompaction in areas directly behind the walls should be avoided as this might cause damage to the structure.

If proper drainage (ODOT <u>CMS</u> Item 518.05) is used and the granular backfill is placed and compacted in the wedge described previously, an equivalent fluid unit weight of 55 pounds per cubic foot (pcf) (corresponding to Φ = 34°) may be used considering an at-rest earth pressure condition, meaning wall movements less than 0.25 percent of the wall height is permitted. If proper drainage is not provided, an "at rest" equivalent fluid unit weight of 90 pcf (corresponding to Φ = 20°) is recommended for use during design.

If proper drainage is incorporated and granular backfill is provided and compacted as specified, an equivalent fluid unit weight of 35 pcf (corresponding to $\Phi = 34^{\circ}$) may be used if a wall movement equivalent to 0.25 percent the height of the wall (H) is allowed to occur. Such movement is considered sufficient to mobilize an active earth pressure condition. Without proper drainage, but with granular backfill and permissible wall movement, an equivalent fluid unit weight of 80 pcf (corresponding to $\Phi = 34^{\circ}$) should be used.

Compacted cohesive materials tend alternatively to shrink, expand and creep over periods of time and create significant lateral pressures on any adjacent structures. Cohesive materials also require a greater amount of movement to mobilize an active earth pressure condition. Because of the long-term adverse effects, it is recommended that, if proper drainage (ODOT Item 518.03) is provided, an equivalent fluid unit weight of 90 pcf (at-rest) and 65 pcf (active) (corresponding to $\Phi = 20^{\circ}$) be used for design of the structure resisting the lateral loads imparted by drained, cohesive backfill. Without proper drainage, S&ME recommends that the structural design be performed using equivalent fluid unit weights of 110 pcf (at-rest) and 95 pcf (active) (corresponding to $\Phi = 20^{\circ}$).

The structure must also be designed to withstand the vertical load resulting from the weight of any fill and pavement that may be placed over the structure in addition to traffic surcharge loads. Additionally, the recommended lateral earth pressure values above should be increased to account for sloping backfill. To estimate vertical loading, a total unit weight of 130 pcf may be used for soil and granular fill materials.

6.5.5 Global Stability – Modular Block Wall

S&ME performed slope stability analyses of a transverse cross-section of Wall 1 using the 2-D limit equilibrium computer program SLIDE v.7.0 developed by Rocscience, Inc. This cross section is considered to be representative of both Walls 1 and 2. The program computed factors of safety utilizing the Spencer method for circular failure surfaces. Based on the results of the analyses, S&ME anticipates that the minimum Factor of Safety with respect to global stability for Walls 1 and 2 will be no less than 1.5, which is the minimum value required by the ODOT "Geotechnical Engineering Design Checklists".

6.6 Retention Basin Recommendations

According to the Stage 1 plans, two detention basins are planned. The first is located along Worthington-Galena Road (South) near Sta. 206+00, 70' RT and has a proposed depth of 6 feet (bottom elevation of El. 909). Boring B-

7 was located in the vicinity of this basin. The second basin is located near Sta. 363+00, 100' RT along Wilson Bridge Road and has a proposed depth of 10 feet (bottom elevation of El. 908). Boring B-16 was performed within the footprint of this basin. Both basins are planned to have 3H:1V side slope inclinations.

A very-soft to medium-stiff cohesive layer (A-6b and A-7-6) was encountered in Boring B-7 near the bottom of the proposed basin, and in Boring B-17 about 2 feet above the bottom of the basin. Depending on conditions encountered, slopes with similar weak or marginal soils may be susceptible to instability and/or failure. Slope stability was not included in our scope of work for this project; however, based on the height and proposed grade, considering soil conditions encountered in Borings B-7 and B-16, and given the anticipated loading conditions at the top of the slope, a slope of 3H:1V should have an acceptable factor of safety against slope failure. The long term stability of a slope can be affected by water, grade changes, added loads, and loss of vegetation. It is recommended that the slope be vegetated as soon as practicable to guard against soil erosion from surface runoff and that the slope be inspected periodically for signs of any erosion or slope movement.

Where natural cohesive soil having a PI greater than 8 (i.e., silty clay or clayey silt) is exposed in the bottom or sides, it is recommended that a minimum thickness of 12-inches be disced, appropriately moisture adjusted, and recompacted. Any granular zones exposed in the bottom or sides should be removed to a minimum thickness of 2 feet and be replaced with a 2-foot thick soil liner. If maintaining the normal pool level is critical and to greatly reduce the risk of seepage losses, consideration should be given to constructing a minimum 2-foot thick soil liner over the entire basin bottom and along the sides.

All soil that is to be used for the construction of the liner should be free of organic and miscellaneous materials, contain at least 50% fines by weight (% passing the 200 sieve) and have a Plastic Index Value (PI) greater than 12. Fill for the liner should be placed in uniform lifts not exceeding a loose thickness of 8 inches, and be compacted on relatively horizontal surfaces, no steeper than 4 horizontal on 1 vertical. The fill should be compacted to a unit dry weight equal to no less than 95 percent of the maximum unit dry weight as determined in the laboratory by the Standard Proctor Test (ASTM Designation D 698). The moisture content of all new fill used for the liner should be maintained between the optimum moisture content and 4 percentage points above optimum.

Bulk soil samples should be obtained in advance of construction so compaction criteria and a determination of suitability can be established prior to placing any liner material. Based on the soils encountered, the portions of the upper cut material may be reusable as basin liner material.

Based on water levels obtained during and after drilling, the encountered water level is below the proposed basin bottom elevation in this area of the site. However, no long term groundwater levels were taken and borings were backfilled immediately following completion. It is possible that the groundwater table maybe higher, or may fluctuate between seasons, and that the construction of the basin may require pumping from sumps installed outside the limits of the basin excavation. Any sumps excavated during construction should be filled with compacted cohesive soil or grout at the completion of construction.

Of equal importance in minimizing seepage losses from the basin is the proper backfilling of influent and effluent pipes and headwalls adjacent to the basin. If storm sewers or irrigation pipes will be inundated when the basin is at the normal pool elevation, it is important that precautions be taken to prevent water losses/infiltration through

the trench backfill or through joints in the pipes. In these areas, trenches should be backfilled with properly compacted cohesive soil. Water-tight pipe/joints should be used for pipes below the normal pool level.

S&ME recommends that the construction of the basin be observed and any liner material tested by personnel from our office. Ultimately, the critical factor in achieving the desired long-term performance of the basin is proper construction and field control.

6.7 Groundwater Considerations

6.7.1 Groundwater Considerations Roadway Subgrade Preparation

Based on observations made during the field work, it is not anticipated that significant quantities of groundwater will be encountered during construction activities for the roadway realignment and pavement widening. Shallow excavations, such as subgrade overexcavations, extending through only cohesive soil may encounter small amounts of seepage. Deeper excavations, such as excavations for any utilities, extending through granular seams, pockets/lenses, or layers may encounter larger groundwater flows. The quantities of groundwater encountered are anticipated to be controllable by bailing or pumping from temporary sumps. If pumping from sump pits is not effectively keeping the groundwater below excavation levels, then S&ME should be retained to provide additional recommendations.

During construction, surface runoff and precipitation should not be permitted to collect and stand in excavations as the soil will absorb water. Soils softened by standing water or disturbed by construction activities should be removed from excavations before pavement is placed. Additionally, all excavations should be either sloped back or braced in accordance with the most recent OSHA excavation guidelines.

6.7.2 Groundwater Considerations for Culvert Construction

During this investigation, Borings B-3, B-7, and B-15 located near the proposed culverts did not encounter groundwater at a depths above or near the planned foundation elevations. It is anticipated, however, the long term groundwater level in the immediate vicinity of the proposed culverts will be approximately the same as, and vary with, the level of water in Rush Run.

It is recommended that groundwater, surface water runoff, and stream flows be controlled during construction, as soil in excavation walls or at the proposed foundation level may exhibit instability in the presence of water and construction vibrations. S&ME recommends that the sides and bottoms of all excavations be closely monitored by the Geotechnical Engineer of Record or their designated representative during culvert construction. If the soil at the bottom of an excavation becomes disturbed by construction activity or channel flow, it is recommended that the disturbed material be undercut and replaced in accordance with the recommendations provided in this report, or be removed and the footing elevation lowered to more suitable soils.

Localized sheeting and continuous dewatering, in conjunction with stream diversion, may aid in minimizing disturbance of the soil at the foundation bearing elevation, and it is recommended that all excavations for the proposed structure foundations be protected from stream, groundwater, and storm water flow. Even with stream

flow diversion, provisions for continuous pumping from sumps should be made for groundwater flows that may be encountered in excavations extending below the level of water in the stream.

Some water seepage may also emanate from any granular seams or zones that are encountered in excavations performed above the level of water in the stream; however, the quantity of water is anticipated to be limited and may likely be controlled by bailing or with portable pumps. Excavations extending below the stream level will likely encounter larger quantities of groundwater if granular seams or layers are encountered. Additionally, all excavations should be either sloped back or braced in accordance with the most recent OSHA excavation guidelines.

7.0 Final Considerations

The analyses, conclusions and recommendations presented in this report are based on project information provided by EMH&T. S&ME should be retained to review the final design plans and specifications to determine that the intent of our engineering recommendations have been properly incorporated into the design documents. It is also recommended that S&ME be retained to observe the subgrade proofrolling, perform fill/backfill testing, and observe construction to confirm that our recommendations are valid or to modify them accordingly. S&ME cannot assume responsibility or liability for the adequacy of recommendations if we are not retained to observe construction.

The contents of this report are also based on the subsurface conditions as they existed at the time of our field investigation, and further on the assumption that the exploratory borings are representative of actual subsurface conditions throughout the area investigated. It should be noted that actual subsurface conditions between and beyond the borings might differ from those encountered at the boring locations. If subsurface conditions are encountered during construction that vary from those discussed in this report, S&ME should be notified immediately so that we may evaluate the effects, if any, on design and construction.

This report was written for our client, EMH&T, Inc. This report may not be relied upon for use in other projects, additions to the current project, or any other purpose for which the material was not strictly intended by S&ME without S&ME's express written permission.

Important Information About Your Geotechnical Engineering Report

Variations in subsurface conditions can be a principal cause of construction delays, cost overruns and claims. The following information is provided to assist you in understanding and managing the risk of these variations.

Geotechnical Findings Are Professional Opinions

Geotechnical engineers cannot specify material properties as other design engineers do. Geotechnical material properties have a far broader range on a given site than any manufactured construction material, and some geotechnical material properties may change over time because of exposure to air and water, or human activity.

Site exploration identifies subsurface conditions at the time of exploration and only at the points where subsurface tests are performed or samples obtained. Geotechnical engineers review field and laboratory data and then apply their judgment to render professional opinions about site subsurface conditions. Their recommendations rely upon these professional opinions. Variations in the vertical and lateral extent of subsurface materials may be encountered during construction that significantly impact construction schedules, methods and material volumes. While higher levels of subsurface exploration can mitigate the risk of encountering unanticipated subsurface conditions, no level of subsurface exploration can eliminate this risk.

Geotechnical Findings Are Professional Opinions

Professional geotechnical engineering judgment is required to develop a geotechnical exploration scope to obtain information necessary to support design and construction. A number of unique project factors are considered in developing the scope of geotechnical services, such as the exploration objective; the location, type, size and weight of the proposed structure; proposed site grades and improvements; the construction schedule and sequence; and the site geology.

Geotechnical engineers apply their experience with construction methods, subsurface conditions and exploration methods to develop the exploration scope. The scope of each exploration is unique based on available project and site information. Incomplete project information or constraints on the scope of exploration increases the risk of variations in subsurface conditions not being identified and addressed in the geotechnical report.

Services Are Performed for Specific Projects

Because the scope of each geotechnical exploration is unique, each geotechnical report is unique. Subsurface conditions are explored and recommendations are made for a specific project.

Subsurface information and recommendations may not be adequate for other uses. Changes in a proposed structure location, foundation loads, grades, schedule, etc. may require additional geotechnical exploration, analyses, and consultation. The geotechnical engineer should be consulted to determine if additional services are required in response to changes in proposed construction, location, loads, grades, schedule, etc.

Geo-Environmental Issues

The equipment, techniques, and personnel used to perform a geo-environmental study differ significantly from those used for a geotechnical exploration. Indications of environmental contamination may be encountered incidental to performance of a geotechnical exploration but go unrecognized. Determination of the presence, type or extent of environmental contamination is beyond the scope of a geotechnical exploration.

Geotechnical Recommendations Are Not Final

Recommendations are developed based on the geotechnical engineer's understanding of the proposed construction and professional opinion of site subsurface conditions. Observations and tests must be performed during construction to confirm subsurface conditions exposed by construction excavations are consistent with those assumed in development of recommendations. It is advisable to retain the geotechnical engineer that performed the exploration and developed the geotechnical recommendations to conduct tests and observations during construction. This may reduce the risk that variations in subsurface conditions will not be addressed as recommended in the geotechnical report.

Appendices

Appendix A

Document Path: R:\Projects\2016\GEO\1117-16-031\1117-17-031_V-Map.mxd

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

- Blocked-in "SAMPLES" column indicates sample was attempted and recovered within this depth interval.

- Sample was attempted within this interval but not recovered.
- 2/5/9 The number of blows required for each 6-inch increment of penetration of a "Standard" 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer freely falling 30 inches. The raw "blowcount" or "N" is equal to the sum of the second and third 6-inch increments of penetration. Addition of one of the following symbols indicates the use of a split-barrel other than the 2" O.D. sampler:

- 21/2"O.D. split-barrel sampler

- 3" O.D. split-barrel sampler

- N₆₀ Corrected Blowcount = [(S&ME Drill Rod Energy Ratio) / (0.60 Standard)] X N_{raw}
- P Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-2" Number of blows (50) to drive a split-barrel sampler a certain number of inches (2), other than the normal 6-inch increment.
- SD Split-barrel sampler (S) advanced by weight of drill rods (D).
- SH Split-barrel sampler (S) advanced by combined weight of rods and drive Hammer (H).

SOIL DESCRIPTIONS

All soils have been classified basically in accordance with the Unified Soil Classification System, but this system has been augmented by the use of special adjectives to designate the approximate percentages of minor components, as follows:

Adjective	Percent by Weight
trace	1 to 10
little	11 to 20
some	21 to 35
"and"	36 to 50

The following terms are used to describe density and consistency of soils:

<u>Term (Granular Soils)</u>	<u>Blows per foot (N₆₀)</u> .
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	<u>Qu (tsf)</u>
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

	Page	e 1 o	of 1				FRA-	LOG OF BORING NO. B-1 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH							8	ZME
	LOCA	ATIO	N: 4	0.1	109298	3N, 8	3.002	2933W ELEVATION: 92	3.1		DAT	Έ:	•	6/2	27/16	
	DRIL	LING	METI	Ю	D:	4-1/2	2" 0.	D. Continuous-flight Auger		C	OMPI	LETION	N DEP	TH:		7.5'
	SAMI	PLER	(S):		(x) r	2" C).D. S	plit-barrel Sampler		\ \ \ T T T		CONGIG	TENCY	TNP	EV	1
	LEV.	EET	MPLE	MPLF	MPLF	99	MPLI SC-%	DESCRIPTION			ATUR	AL MOI	STURE	CON	TENT	TEST
	E	편 - 0 -	SAI	SAI	SAI	z	SAI RF			LAS	TIC	LIMIT ²	\angle_{LIC}	UID	LIMIT	RESULTS
9	22.1							ASPHALI - 12 INCHES		10			30	- 40		-
9	21.6				2			GRANULAR BASE - 6 INCHES								
ļ	20.3		1		³ / _{3/5}	12	67	SILTY CLAY, little to some fine to coarse sand, trace fine gravel. (A-6b)								H=2.7-4.5
	-		2		⁶ / ₇ .	22	73	Stiff to very-stiff dark-brown and dark-gray						::	<u> </u>	H=1.5-2.2
0					- ' 8	22		contains odor. (A-7-6)								G
N / N	-	- 5 -	3		² / ₃ ,	10	100					: : :			<u> </u>	H=1.2-2.2
	017.1		_		′4	10	100	~								G
ORIN			4		⁴ / ₄ ,	10	67	Stift to very-stift brown mottled with gray SILTY CLAY, little fine to coarse sand. (A-6b)								H=1.5-2.7
	15.6				/ 3											
DEFA	-															-
NEW	-							Encountered coordings at 7.0'						: :		
2010	-	- 10-						- Boring backfilled with soil cuttings and								-
	-	10						- Pavement patched with cold patch asphalt.								-
																-
	-															-
	-															-
	-															-
	-										· · · ·		· · · ·	· · ·	· · · · ·	-
	-	-15-														-
	-															-
	-															-
																1
	F															-
		- 20-														
	}	20														1
																1
																-
																-
																1
,		-25-	VFI ·	Ll V	"D	 x/''		SYMBOLS USED TO INDICATE TEST R	ESULTS	3) Drill Ro	d Ene	rgy F	Ratio :	.891
Ľ	WATE	ER N	OTE: ATE:		At Com 6/27/2	y pletio 2016	n	G - Gradation See H - Penetro Q - Uncon Comp Separate H - Unit Dr T - Triax Comp Curves D - Relativ	meter y Wt (e Dens	(t) (pc) 3 (sf) f) %)	Last C Di	Calibra rill Rig	tion 1 g Nur	Date : nber :	9/21/2015 S&ME

LOCATION: 40.109252N, 83.001746W ELEVATION: 915. DATE COMPLETION DEPTH 7.5 DRIL INCMETION: 2-1/4" (D. Hollow-stem Auger COMPLETION DEPTH 7.5 SAMPLEASS; 2*0.05 Split-barrel Sampler DESCRIPTION 2*0.75 (D. 100 COMPLETION DEPTH 7.5 943.6 1 2*3 (D. 100 COMPLETION DEPTH 0.00 D. 00 (D. 100 COMPLETION DEPTH TEST 943.6 1 2*3 (D. 100 COMPLETION DEPTH 0.00 D. 00 (D. 100 COMPLETION DEPTH TEST 943.6 1 2*0 D. 00 (D. 100 COMPLETION DEPTH TEST 943.6 1 2*0 D. 00 (D. 100 COMPLETION DEPTH TEST 943.6 1 2*0 D. 00 (D. 100 COMPLETION DEPTH TEST 943.7 1 0 67 CLAY, BUIL En COARS SAND, CLAY, SAND CLAY,	Pag	ge 1 c	of 1]	FRA	LOG OF BORING NO. B-2 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH							S 8	2ME
DRILLING METHOD: 2-1/3* LD. Foldow-stem Auger COMPLETION DEPTIE 7.5* SAMPTERS: 2* 2 2 2 2 2 2 2 2 2 2 3 3 5 3 3 5 3 3 5 3 5 3 5	LOC	ATIO	N: <u>4</u>	0.10	9252	N, 8	3.00	746W ELEVATION: 91	5.5		D	ATE	3:		6/24/1	6
Bit	DRI	LLING IPLER	METH	IOD:		3-1/4 2" ()	F" 1.1 D. D. S). Hollow-stem Auger nlit-barrel Sampler		C	COM	IPLI	ETION	DEPT	H:	7.5'
0 Ø = Z <thø =="" th="" z<=""> Ø = Z Ø =</thø>	ELEV.	DEPTH, FEET	AMPLE	AMPLE	FFORT	N ₆₀	AMPLE REC-%	DESCRIPTION			URAI NATU	L CO JRAI	ONSIST L MOIS	TURE	INDEX CONTENT	TEST RESULTS
914.5 Image: Second		+0-	ΝZ	s s	5 Ш		S I	ASPHALT - 12 INCHES		PLA	<u>stic</u>)	с <u>г</u>	<u>IMIT</u> ∠ 0	-LIQU 30	<u>110 LIMI</u> 40	T
Water Level: Z "by" The provide first of the provide of the prov	914.5							GRANULAR BASE - 6 INCHES	· · · · · · · · · · · · · · · · · · ·							
9125 2 3',5',6 10 60 Siff to very-stiff brown mutcled with gray SITLY 0	71110		1	2 /	3	10	67	Very-stiff brown mottled with gray SILTY CLAY, little fine to coarse sand. (A-6b)								H=2.7-3.5
3110 5 3 5' 3 12 53 3 12 53 3 12 53 3 12 53 3 12 53 3 12 53 3 16 <td>912.5</td> <td></td> <td>2</td> <td>3</td> <td>4 / 5 / 6</td> <td>16</td> <td>60</td> <td>Stiff to very-stiff brown mottled with gray SITLY CLAY, some fine to coarse sand, trace fine gravel (A-6b)</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td>ו</td> <td></td> <td>-X</td> <td>H=1.5-3.5</td>	912.5		2	3	4 / 5 / 6	16	60	Stiff to very-stiff brown mottled with gray SITLY CLAY, some fine to coarse sand, trace fine gravel (A-6b)		· · · · · · · · · · · · · · · · · · ·			ו		-X	H=1.5-3.5
300.8 4 3 7 9 24 53 Very-stiff to hard dark-brown SILTY CLAV, some fine to coarse gardel, little fine to coarse gardel, little fine to coarse 10 11	0901/0911.0	- 5 -	3	5	[′] ⁵ _′ ₃	12	53	Medium-stiff to stiff brown SILT AND CLAY, some fine to coarse sand, trace fine gravel. (A-6a)		· · ·	· · ·	ו				H=0.7-2.0
- No scepage encountered. - Boring backfilled with soil cutings and bentonife chips. - Pavement patched with cold patch asphalt.	1 909.5 1 908.0		4	3	′7 _{/9}	24	53	Very-stiff to hard dark-brown SILTY CLAY, some fine to coarse sand, little fine to coarse gravel. (A-6b)								H=-2.2-4.5
WATER LEVEL: * "Dry" * G - Gradation See H - Penetrometer (tsf) Drin Kou Energy Ratio	2010 NEW DEFA	-10-						 No seepage encountered. Boring backfilled with soil cuttings and bentonite chips. Pavement patched with cold patch asphalt. 								
	WAT WA	ER LE FER N D	VEL: OTE: ATE:	<u>⊻</u> 	<u>"Dry</u> Comp 6/24/2	y" oletio 016	<u>n</u>	G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curves D - Relativ	omete ry Wt ve De	r († (po ns	tsf) cf) (%)	Dr I	nii Roc Last Ca Dri	i Ener ilibrat ill Rig	gy Ratio ion Date Number	: <u>.891</u> : <u>9/21/2015</u> : <u>S&ME</u>

Pag	e 1 o	f 2]	FRA-	LOG OF BORING NO. B-3 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH		\$ 58	ME
LOC	ATIO	N: 4	0.1	109229)N, 8	3.00(0631W ELEVATION: 91	6.5 DATE:	6/24/16	
DRIL	LING	MET	НО	D:	3-1/4	4" I.I	D. Hollow-stem Auger	COMPLETIO	N DEPTH: 3	5.0'
SAM	PLER	(S):	_		<u>2" O</u>).D. S	plit-barrel Sampler			
ELEV.	DEPTH, FEET	AMPLE UMBER	AMPLE	AMPLE FFORT	N 60	AMPLE VEC-%	DESCRIPTION	NATURAL CONSI	STENCY INDEX ISTURE CONTENT	TEST RESULTS
	- 0 -	νZ	S	SШ		S. I	ASPHALT - 12 INCHES	PLASTIC LIMIT	ZIQUID LIMIT 30 40	
915.5 915.0							GRANULAR BASE - 6 INCHES			-
913.5		1		³ / ₄ / ₄	12	67	POSSIBLE FILL: Very-stiff greenish brown and dark-gray SILTY CLAY, little to some fine to coarse sand, trace fine to coarse gravel. (A-6b)			H=2.2-2.7
912.0		2		⁵ / _{5/5}	15	60	Stiff greenish-brown and dark-brown SILTY CLAY, some fine to coarse sand, trace fine gravel. (A-6b)			H=1.5
910.7	- 5 -	3		² / _{3/5}	12	60	Stiff to very-stiff brown mottled with gray SILTY CLAY, some fine to coarse sand, trace fine gravel. (A-6b)			H=2.0-2.5
908.7		4		⁵ /4 _{/4}	12	80	Very-stift brown mottled with gray SILTY CLAY, some fine to coarse sand, little fine gravel, contains roots. (A-6b)			H=3.0-3.5
		5		² / ₅ ,	16	100	Very-stiff to hard brown SANDY SILT, some fine to coarse sand, trace fine gravel, contains roots. (A-4a)			H=3.0-3.5
905.5	- 10-			[′] 6						G
				3			Hard brown and gray SILT AND CLAY, some fine to coarse sand, trace fine gravel (A-6a).			-
900.0	- 15-	6		⁶ /8	21	80		• * *		H=4.5+ G
				4			Hard brown and gray SILTY CLAY, some fine to coarse sand, little fine gravel. (A-6b)			
	- 20-	7		' ⁹ / ₁₂	31	100				H=4.5+
892.3	25	8A 8B		7 / _{17/27}	65	100	Very-dense brown GRAVEL WITH SAND, trace			H=4.0-4.5+
WATE	ER LE	VEL:	Ā	29.	3		G - Gradation See H - Penetro	RESULTS Drill R	od Energy Ratio :	.891
	ER N D	OTE: ATE:		<u>At Com</u> 6/24/2	pletion 2016	<u>n </u>	Caved at 25.7 Q = Oncon Comp Separate W - Unit Dr 6/24/2016 T - Triax Comp Curves D - Relativ	re Dens (%)	Calibration Date : Orill Rig Number :	9/21/2015 S&ME CME

	Pag	e 2 o	of 2			-	FRA-	LOG OF BORING NO. B-3 CR 84-1.36 - NORTHEAST GAT WORTHINGTON, OH	TEWAY							58	ME
	LOCA	ATIO	N: 4	0.1	109229	9N, 8	3.000	631W E	LEVATION:	916.5		DA	ΓE:		6	6/24/16	
	DRIL	LING	METI	Ю	D:	3-1/4	4" I.I	. Hollow-stem Auger			С	OMP	LETIO	ON I	DEPTH	3	65.0'
	SAM	PLER	(S):			2" C).D. S	plit-barrel Sampler									
	۲V.	Η̈́Η	PLE BER	PLE	PLE JRT		PLE	DECORDEION			NATU NATU	JRAL IATUR	CONS AL M	ISTE OIST	ENCY IN TURE CO	NDEX NTENT	TEST
	ELI	DEP	SAM	SAM	SAM EFFC	Z ⁶⁰	REC	DESCRIPTION			×>	•			, X		RESULTS
ŀ		-25-			v 1 –		N N	silt. (A-1-b)			10		20	3	0	40	
	889 5													: :			_
ŀ	007.5							Very-dense gray GRAVEL WITH	SAND, trace	e							_
								silt. (A-1-b)	ŕ								_
	887.6		94		50	128	100										_
			∑		49,	120	100	Very-dense brown and gray FINE	AND								_
// N6(- 30-	9B		'37			COARSE SAND, some fine to $\cos \theta$	rse gravel,	::				:::			_
0G-W		50						nuie sin, trace clay. (A-3a)				· · ·					_
С УЗ	885.2											<u> </u>					-
30RI								Hard brown SILTY CLAY, some t	fine to coarse								
ULTI								sand, inthe line gravel. (A-40)									_
EFA																	_
EW D					7,												-
010 N			10		27/27	92	100										H=4.5+
5	881.5	-35-			35							· · ·					_
																	_
										· · ·	· · · ·						
								- No seepage encountered.				<u> </u>					_
								- Encountered water at 29.8.				<u> </u>					_
								- Boring backfilled with soil cuttin	gs and								_
								- Pavement patched with cold patch	h asnhalt								_
								- I avenient patened with cold paten	li aspitati.			· · ·		<u> </u>			_
		-40-															-
																	_
												<u> </u>					_
												· · ·					-
											· · ·	· · ·					
																	_
										· · ·		· · · ·					_
		15															_
		-43-															_
														::			_
																	1
																	_
																	_
		L ₅₀ -		Ļ				SYMBOLS USED TO	INDICATE TE	ST RESIL	TS	:::		::	<u> : : : </u> -	<u> :::</u>	
	WATE	ER LE	VEL:	<u>¥</u>	29. At Com	. <u>3</u> nletio	<u> </u>	G - Gradation Se Q - Uncon Comp	e H - Pene	etromete	r (t	sf)	Drill I Leet	Kod : t Cal	Energy	Ratio : n Date •	<u>.891</u> 9/21/2015
	vv A I	D D	ATE:		6/24/2	2016	<u>u </u>	<u>6/24/2016</u> T - Triax Comp Sepa C - Consol.	rate W-Unit ves D-Rela	t Dry Wt ative De	(pc ns ((%)	Last	Drill	I Rig N	umber :	S&ME
									1								CME

	Pag	e 1 c	of 1]	FRA	LOG OF BORING NO. B-4 -CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH					¥			58	R	ME
	LOC	ATIO	N: <u>4</u> ().109)183	N, 8	2.999	29W ELEVATION: 91	15.0	6	DAT	Е:			6	/24/1	16	
	DRIL	LING	i METH	IOD:		3-1/4	III "I.I). Hollow-stem Auger			COMPI	LETIC)N I	DEP	ΓH:		6	5.0'
	SAM	PLER	.(S):			2" 0).D. S	plit-barrel Sampler										
	ELEV.	DEPTH, FEET	SAMPLE	<u>SAMPLE</u> SAMPLE	EFFORT	N_{60}	SAMPLE REC-%	DESCRIPTION				LIMI	ISTE	URE		DEX NTEN	T	TEST RESULTS
	914.6	- 0 -						ASPHALT - 12 INCHES			10	20	3		4	0		
	914.1							GRANULAR BASE - 6 INCHES										
	912.9			2 / _	4 _{/8}	18	67	Stiff to very-stiff brown mottled gray SILTY CLAY, some fine to coarse sand, trace fine to coarse gravel. (A-6b)										H=1.5-3.0
	911.6		2	9 _/	5	12	33	Medium-dense brown GRAVEL, little fine to coarse sand, trace silt. (A-1-a)										
// N60		- 5 -		4	3			Stiff to very-stiff brown SANDY SILT, trace fine gravel. (A-4a)							· · ·			
J LOG-W	909.6		3	· · ·	⁴ /4	12	87											H=2.0-3.0 G
AULT BORINC	908.1		4	3 /	⁵ / ₈	19	87	Very-stiff to hard brown and gray SANDY SILT, some fine to coarse sand, trace fine to coarse gravel. (A-4a)			•		*					H=3.0-4.5 G
2010 NEW DEF		- 10-	-					 No seepage encountered. Encountered water at 2.5'. Boring backfilled with soil cuttings and 										
			-					bentonite chips. - Pavement patched with cold patch asphalt.					· · · · · · · · · · · · · · · · · · ·					
			-															
		- 15-	-														· · · · · · · · · · · · · · · · · · ·	
			-										· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
			-										· · · · · · · · · · · · · · · · · · ·					
		- 20-	-															
			-															
			-															
	WATE WAT	ER LE ER N ER N	VEL: IOTE: DATE	$\frac{\overline{\nabla}}{\underline{At}}$	2.0 Comp 5/24/2	<u>) pletio</u> 016	<u>¥</u> n	G - Gradation Q - Uncon Comp T - Triax Comp C - Consol C - Consol	RES ome ry I ve 1	ULTS ter Wt (j Dens	(tsf) pcf) (%)	Drill R Last	lod 1 Cal Drill	Ener ibra l Rig	rgy l tion	Ratio Date mber): _ e: _ r:	.891 9/21/2015 S&ME

Pag	ge 1 o	f 1]	FRA-	LOG OF BORING NO. B-5 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH						58	ME
LOC	ATIO	V: 4	0.1	109015	5N, 8	2.998	S509W ELEVATION: 91	8.6		DATI	E:	6	/24/16	
DRII	LING	METI	HO	D:	3-1/4	4" I.I	0. Hollow-stem Auger		CC	OMPL	ETION	DEPTH:	1	0.0'
SAM	IPLER	(S):			2" O).D. S	plit-barrel Sampler							
ELEV.	DEPTH, FEET	AMPLE JMBER	AMPLE	AMPLE FFORT	N 60	AMPLE tEC-%	DESCRIPTION	NP X	ATUH	RAL C	ONSIST L MOIS	ENCY IN TURE CO	IDEX NTENT	TEST RESULTS
918.3	+0-	ΣŊ	Š	S E		$^{S/}_{R}$	TOPSOIL - 4 INCHES	<u>∠ _{PI} :::</u> :	LAS:	<u>гіс і</u> :: 2	$\frac{1}{1}$	-LIQUII	LIMIT	ILBOLID
~10.0							Hard brown mottled with grav SILTY CLAY							
		1	ŕ	⁴ / _{8/6}	21	87	some fine to coarse sand, little fine gravel. (A-6b)							H=4.0-4.5
915.9				0			Very-stiff brown, yellow, and dark-gray CLAY,	-						-
		2		³ / ₅ ,	24	93	some fine to coarse sand, trace fine gravel. (A-7-6)							×H=2 5-3 5
913.1	- 5 -	2		11	24									G
				_			Stiff to very-stiff brown SANDY SILT, some							-
		3		³ / ₄ / ₃	10	100	clay trace fine gravel. (A-4a)			•				H=2.0-3.7
910.6														
				6			Hard brown SILTY CLAY, little fine to coarse gravel. (A-6b)							-
908.6	- 10-	4		⁸ / ₁₁	28	100								H=4.0-4.5
														-
						 No seepage encountered. Boring backfilled with soil cuttings and 							-	
							bentonite chips.							-
										· · · ·				-
														-
	- 15-													-
										· · · ·				-
														-
										· · · ·				_
														-
														-
										· · · ·				-
	-20-									· · · ·				-
														-
1														
														-
														-
														-
														-
	25-													
WAT WA	VATER LEVEL: Image: Symbols used to indicate test results Drill Rod Energy Ratio:													
	U	AIË.	_				C-Consol Curves 5 Kerativ		~ \ \		ווע	n 131g 130		

	Pag	e 1 o	f 1				FRA	LOG OF BORING NO. B-6 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH							58	2ME	
	LOCA	TION	N: <u>4</u>	0.1	06235	5N, 8	3.001	753W ELEVATION: 92	20.6	_ 1	DATI	E: _		(6/26/16	5	
	DRIL	LING	METH	IOI	D:	4-1/2	2" 0.	D. Continuous-flight Auger		CO	MPL	ETIC)N E	DEPTH	:	7.0'	
	SAMI	PLER	(S):			2" C).D. S	plit-barrel Sampler								Т	
	ELEV.	DEPTH, FEET	AMPLE UMBEF	AMPLE	AMPLE FFORT	N 60	AMPLE REC-%	DESCRIPTION	X	NA	AL C TURA	L MO	ISTE IST	URE CO	ONTENT	TEST RESULTS	
	20.0	- 0 -	S Z	S	SШ		S	ASPHALT - 7 INCHES	<u> </u>	LAST	<u>IC L</u>	1MI1 20	3	LIQUI	D LIMI 40	<u> </u>	
	920.0 919.6							GRANULAR BASE - 4 INCHES									
ļ	918.3		1	1	⁴ / _{3/5}	12	60	Medium-dense gray COARSE AND FINE SAND, some fine to coarse gravel, little silt, trace	/ 				· · ·			_	
	-		2	5	⁵ / _{3/3}	9	47	Stiff to very-stiff brown and gray CLAY, "and" silt, little fine to coarse sand. (A-7-6)			×	•	· · ·			H=2.0-3.0	
N60	-		-	2	2 [/] 3,	10	60									G H=2 0-3 0	
0-₩	915.4	- 5 -	5		4	10		Stiff to very-stiff brown mottled with gray SILTV	-				· ·			G	
DRING LO	013.6		4	5	⁵ / _{3/3/3}	9	0	CLAY, little fine to coarse sand, trace fine gravel, contains roots. (A-6b)								_	
FAULT BC	<u>13.0</u>		25	4	⁴ /4/2	10	100									-H=1.5-2.2	
2010 NEW DE					3			 No seepage encountered. Boring backfilled with soil cuttings and bentonite chips 								_	
	-	- 10-						- Pavement patched with cold patch asphalt.			· · · ·		· · ·				
	-												· · · · · · · · · · · · · · · · · · ·			-	
													· · · · · · · · · · · · · · · · · · ·				
													· · · · · · · · · · · · · · · · · · ·			_	
		-15-														_	
											· · · ·					_	
											· · · ·			· · · ·		_	
													· · · · · · · · · · · · · · · · · · ·			_	
											· · · ·					_	
											· · · ·					_	
	-	-20-														_	
											· · · ·		:::			_	
	-															_	
																_	
	-															_	
																_	
										:						_	
V	VATE WAT	- 25- R LE ER N	VEL: OTE:	$\overline{\underline{\nabla}}$	"Dr <u>At Com</u>	y" pletio	<u> </u>	G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Separate W - Unit Dr	RESULTS ometer ry Wt ((ts	<u>f</u>)	rill R Last	Rod 1 Cali	Energy bratio	Ratio : n Date :	.891 9/21/2015	
L		D	ATE:		0/26/2	2010		C - Consol. D - Relativ	ve Dens	i (칭	'	1	Drill	Rig N	umber :	S&ME	

Pag	e 1 o	of 2			FRA	LOG OF BORING NO. B-7 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH		\$ 58	ME					
LOC. DRIL	ATIOI LING	N: <u>4</u> MET	0.10731 2	2N, 8 3-1/4	33.00(4" I.I	0849W ELEVATION: 91 D. Hollow-stem Auger	4.2 DATE: COMPLETIO	6/20/16 IN DEPTH:3	6/20/16 DEPTH: <u>34.9'</u>					
SAM	PLER	(S):		2" C).D. S	plit-barrel Sampler								
ELEV.	DEPTH, FEET	SAMPLE NUMBER	SAMPLE SAMPLE EFFORT	N 60	SAMPLE REC-%	DESCRIPTION	NATURAL CONSI NATURAL MO PLASTIC LIMIT	STENCY INDEX ISTURE CONTENT	TEST RESULTS					
913.7	0					TOPSOIL - 6 INCHES	10 20	30 40						
912.8		1A	¹ / ₂	8	100	Stiff to very-stiff dark-gray SILTY CLAY, little fine to coarse sand, trace fine gravel. (A-6b) Stiff to very-stiff orange-brown mottled with gray			H=1.5-2.7					
		- 1B	$\frac{4}{3}$	11	47	SILTY CLAY, little fine to coarse sand, trace fine gravel. (A-6b)			H=1./-2.2					
		- 2	³ /5		4/				H=1.5-2.5					
908.7	- 5 -	3	² / ₃	7	33	Soft to use diverse stiff because excettle devite server			H=2.0-2.5					
		4	³ / _{3/3}	8	47	Soft to medium-stiff brown mottled with gray SILTY CLAY, some fine to coarse sand, little fine gravel. (A-6b)			H=0.5-1.0					
906.2						Stiff to very-stiff brown SILTY CLAY, some fine								
		5	⁴ / ₅ / ₆	16	80	to coarse sand, little fine gravel. (A-6b)			H=1.7-4.0					
903.7	- 10-	Ā	2			Very-stiff to hard gray SANDY SILT, little clay,								
		6	² /4/7	16	73	trace fine graver. (A-4a)	• * *		H=2.5-4.2 G					
901.2			4			Very-stiff dark-brown SANDY SILT, some clay, trace fine gravel. (A-3a)								
898.7	- 15-	7	7	18	47				H=3.0-4.0 G					
		8	³ / _{4/7}	16	87	Very-stiff to hard gray SILTY CLAY, some fine to coarse sand, some fine gravel. (A-6b)			H=3.7-4.5					
		9	4 / _{5 /}	17	80				H=3.7-4.5					
	- 20-		7											
0.01 -		10	³ / ₆ / ₂₈	48	100				H=2.7-4.5					
891.2	_ 25	11	⁸ / _{12/21}	47	100	Hard brown SILTY CLAY, some fine to coarse sand, some fine gravel. (A-6b)			H=4.5+					
WATE WAT	ER LE ER N ER N	VEL: OTE: ATE:	∑ 10 At Com 6/20/2	.7 pletio 2016	<u></u>	SYMBOLS USED TO INDICATE TEST I G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr 6/20/2016 C - Consol. Curves D - Relative	RESULTS Demeter (tsf) ry Wt (pcf) ve Dens (%)	od Energy Ratio : Calibration Date : Drill Rig Number :	.847 9/21/2015 S&ME					
JOB:	1117-1	16-031				-CONTINUED-			D-50 Track					

F	Page	e 1 o	f 1				FRA-	LOG OF BORING NO. B-8 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH					58	ME
	OCA	TION	J: 4	0.1	108179)N. 8	3.000	693W ELEVATION 91	5.3	DAT	E:	▼ 6/	/20/16	
D	RILL	LING	MET	HO	D:	4-1/2	2" 0.	D. Continuous-flight Auger		COMPL	ETION	DEPTH:	1	0.0'
SA	AMP	LER((S):			2" C).D. S	plit-barrel Sampler						
		ΤΉ	PLE BER	PLE	PLE DRT		PLE -%		NAT	TURAL C NATURA	ONSIST L MOIS	ENCY IN TURE CON	DEX NTENT	TEST
EI E		DEP	IMM IUMI	IMA	IAMI EFFO	N 60	REC	DESCRIPTION	×	RESULTS				
914	4.8	0 -	ωZ		ЛЦ		N.	TOPSOIL - 6 INCHES		0 2	<u>іміт</u> 20	30 4	0	
	_				1			Very-stiff brown mottled with dark-gray SILTY					• • • •	_
	ŀ		1		¹ /2,	8	33	contains few roots. (A-6b)						H=2.0-2.5
					[′] 4									
912	2.3		_					Stiff brown mottled with gray SILTV CLAV						-
	F		<u>¥</u>		2 ,			some fine to coarse sand, trace fine gravel. (A-6b)						_
8			2		[′] 2 _/	8	53				ו•	×		H=1.0-2.0
	╞	- 5 -			4									G
3 90	9.3								· · · · ·					
					1			Medium-stiff to stiff dark-brown and light-brown						
	\vdash		3		⁴ / ₃	10	73	gravel. (A-4a)						H=0.7-1.2 G
90'	7.3							8 ()						
					2			Very-stiff to hard brown SILTY CLAY, some						_
	-		4		² /6,	18	73	The to coarse sand, some the gravel. (A-ob)						H=3.5-4.5
90	5.3	10-	-		7									
	-	10												-
	ŀ													_
								- Encountered seepage at 3.5'.						
	-							- Encountered water at 6.0'. - Boring backfilled with soil cuttings and					· · · · ·	_
	ŀ							bentonite chips.						_
													· · · · ·	-
	-													_
	t	15-												
														_
	-													
	E													
	F													-
	\vdash													-
	Ē													
	+	20-												-
	\mid													
	Ē													
	+													-
	F													
	F													
	\vdash													-
	F	.25												
W	ATEI	R LE	VEL:	Ţ	3.5	5	Ţ	G - Gradation See H - Papetro	MESULTS	(tsf)	rill Rod	Energy	Ratio :	.847
W	/ATE	ER NO DA	OTE: ATE:		At Com 6/20/2	pletio 2016	<u>n </u>	Caved at 8.5 Q - Uncon Comp Separate W - Unit Dr 6/20/2016 T - Triax Comp Curves D - Relativ	ry Wt (p re Dens	(%)	Last Ca Dri	libration Il Rig Nu	Date : mber :	9/21/2015 S&ME D-50 Track
	Pag	e 1 c	of 1]	FRA	LOG OF BORING NO. B-9 •CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH					58	ME
------------------	---------------	---------------------------	----------------	-------	-------------------------------	---------------------	----------------	--	------------------------------	----------------------	----------------	--------------------	------------------	-------------------
	LOC	ΑΤΙΟΙ	N· 4	0.1	05476	N. 8	2.998	3409W ELEVATION 91	8.0	DAT	Έ·	• 6	/27/16	
	DRIL	LING	METH	HOE): 4	4-1/2	2" 0.	D. Continuous-flight Auger	10.0	COMPI	LETION	DEPTH:	,	7.5'
	SAM	PLER	(S):			2" 0).D. S	plit-barrel Sampler						
	ELEV.	DEPTH, FEET	AMPLE UMBER	AMPLE	AMPLE EFFORT	N 60	AMPLE REC-%	DESCRIPTION	NA X	TURAL (CONSIST	ENCY IN TURE CC	IDEX NTENT	TEST RESULTS
		- 0 -	νZ	S i	E S		S_	ASPHALT - 10 INCHES	∠ PL	ASTIC 1 10	20	-LIQUII 30 4	0 LIMIT 10	
	917.2							GRANULAR BASE - 8 INCHES	-					-
	916.5		1	3	¹ 5 ₁ 6	16	53	Very-stiff brown mottled with gray SILTY CLAY, little fine to coarse sand, trace fine gravel.						H=2.5-3.0
	915.0		2	7	7,8	22	60	Very-stiff to hard brown SILT AND CLAY, some fine to coarse sand, little fine gravel. (A-6a)		• ×	×			H=3.0-4.5
0G-W/ N60	913.5	- 5 -	3	3	[/] 4 _{/5}	13	100	Very-stiff to hard brown and gray SANDY SILT, some clay, trace fine gravel. (A-4a)			×			H=3.5-4.5
BORING LO	912.0		4	3	/10/11	31	67	Very-stiff to hard brown SILTY CLAY, some fine to coarse sand, trace fine gravel. (A-6b)						H=3.0-4.5
2010 NEW DEFAULT	9 <u>10.5</u>	- 10- - 10- 15- 	VEL:		"Dr	y"		 No seepage encountered. Boring backfilled with soil cuttings and bentonite chips. Pavement patched with cold patch asphalt. 				Energy	Ratio :	
	WAT	ER N D	OTE: ATE:	A	<u>t Com</u> 6/27/2	, pletion 016	n	Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curves D - Relativ C - Consol. Curves D - Relativ	ometer ry Wt (ve Dens	(tsf) pcf) (%)	Last Ca Dri	libration	Date : mber :	9/21/2015 S&ME

Pag	ge 1 o	f 1				FRA-	LOG OF BORING NO. B-10 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH		\$ 58	ME
LOC	ATIO	N: 4	0.1	106515	5N, 8	2.998	ELEVATION: 9	17.1 DATE:	6/27/16	
DRII	LING	METH	Ю	D:	4-1/2	2" O.	D. Continuous-flight Auger	COMPLETIO	N DEPTH:	7.5'
SAM		(S): □ ≅	ш	ш ц	2" C	D.D. 8	plit-barrel Sampler	NATURAL CONSI	STENCY INDEX	
ILEV.	EPTE	MPL	MPL	FOR	V 60	MPL EC-%	DESCRIPTION	NATURAL MO	ISTURE CONTENT	TEST
	$+ 0^{-1}$	SA NU	SA	SA EF	~	$^{\rm SA}_{ m R}$	ASDHALT 12 INCHES	PLASTIC LIMIT	$\frac{1}{20}$ $\frac{10000}{40}$	RESULTS
916.1							ASI HALI - 12 INCHES			
915.6				11.			GRANULAR BASE - 6 INCHES			-
		1		⁵ /3	12	53	AND CLAY, some fine to coarse sand, trace to little fine gravel. (A-6a)			H=3.5-4.5
912.6		2		⁷ 7 ₈	22	100		• *		H=4.0-4.5 G
50 011 2	- 5 -	3	ľ	4 4 4 5	13	87	Very-stiff brown SANDY SILT, some clay, trace fine gravel. (A-4a)		<pre></pre>	H=2.5-3.5
DVINCE PILL		4		5 _{/6/} _	19	100	Very-stiff to hard brown SILTY CLAY, some fine to coarse sand, little fine gravel. (A-6b)			H=3.5-4.5
909.6				7						
2010 NEW							 No seepage encountered. Boring backfilled with soil cuttings and 			-
	- 10-						bentonite chips.Pavement patched with cold patch asphalt.			•
										-
									I I	
	1.5									
	- 15-									
									· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	-
										-
										-
	- 20-									-
										-
										-
										1
										-
										1
WAT		VEI ·	Ll Z	ייםיי		 	SYMBOLS USED TO INDICATE TEST	RESULTS Drill R	od Energy Ratio :	.891
WAT	FER N D	OTE: ATE:		At Com 6/27/2	y pletio 2016	n	G - Gradation See H - Penetr Q - Uncon Comp Separate W - Unit D T - Triax Comp Curves D - Relati	ometer (tsf) ry Wt (pcf) ve Dens (%)	Calibration Date : Drill Rig Number :	9/21/2015 S&ME

	Pag	e 1 c	of 1]	FRA	LOG OF BORING NO. B-11 CR 84-1.36 - NORTHEAST GATEWAY						58	ME
								WORTHINGTON, OH							
	LOCA	ATIO	N: 4	0.1	07793	N, 8	<u>2.997</u>	ELEVATION: 91	18.2		DAT	`Е:	(5/27/16	1
	DRIL	LING	METE	101):	4-1/2 2" 0	<u>, U.</u>	D. Continuous-ilight Auger		C	OMPI	LETION	DEPTH		1.5
	SAM	PLEK	(S). m 🛩	(T)	(T) ()	2 0	. D. с		1	ΝΑΤΙΙ	RAL (CONSTS	PENCY T	NDEX	
	ELEV.	DEPTH	SAMPLI NUMBEI	SAMPLI	SAMPLI EFFORT	N 60	SAMPL REC-%	DESCRIPTION			ATURA	AL MOI:	STURE CO	DNTENT	TEST RESULTS
		- 0 -						ASPHALT - 12 INCHES		10		20	30	40	
	917.2 916.7							GRANULAR BASE - 6 INCHES							
	915.2		1	1	10/7/5	18	47	Hard brown mottled with gray SILTY CLAY, some fine to coarse sand, some fine gravel (A-6b).							H=4.0-4.5+
	913.7		2	7	7 ⁷ 7 ₇₈	22	80	Hard brown SANDY SILT, some clay, trace fine gravel. (A-4a)			• ×	×			H=4.0-4.5 G
TOG-W/ N60	912.2	- 5 -	3	4	⁴ /4/5	13	87	Very-stiff brown mottled with gray SILT AND CLAY, some fine to coarse sand, trace fine gravel. (A-6a)			•*		<		H=3.0-3.5 G
LT BORING	910.7		4	e	⁶ / ₆ / ₈	21	100	Very-stiff to hard brown SILTY CLAY some fine to coarse sand, some fine gravel. (A-6b)							H=2.5-4.5
2010 NEW DEFAL		- 10-						 No seepage encountered. Boring backfilled with soil cuttings and bentonite chips. Pavement patched with cold patch asphalt. 							
	WATE WAT	ER LE ER N D	VEL: OTE: ATE:		<u>"Dr</u> <u>At Comp</u> 6/27/2	y" pletion 016	<u>1</u>	G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit D T - Triax Comp Curves D - Relation D - Relation	ometer ry Wt ve Der	r (t (pc ns (sf) f) %)	Drill Ro Last C Dr	d Energy alibratio ill Rig N	Ratio : n Date : umber :	.891 9/21/2015 S&ME
1															CME

	Pag	ge 1 o	f 1				FRA-	LOG OF BORING NO. B-12 CR 84-1.36 - NORTHEAST GA WORTHINGTON, OH	ГEWAY						S 8	ME
	LOCA	ATION	1: 4	0.1	109007	7N, 8	2.997	/41W E	LEVATION:	919.0		DAT	E:		6/20/16	
	DRIL	LING	METH	Ю	D:	4-1/2	2" 0.	D. Continuous-flight Auger			C	COMPL	ETION	DEPT	H:1	10.0'
	SAM	PLER(S):			2" C).D. S	plit-barrel Sampler								
	ELEV.	EPTH, FEET	MPLE	MPLE	MPLE	N 60	MPLE EC-%	DESCRIPTION				JRAL (NATURA	CONSIS	TENCY STURE (INDEX CONTENT	TEST RESULTS
	018 7	$+0^{-}$	'SIZ	S/	S/ EI	, ·	$^{SA}_{R}$	TOPSOIL 4 1/2 INC	LIEC		PLA	STIC I	LIMIT∠		ID LIMIT	RESOLID
	<u>918.7</u> -		1		¹ / _{2/4}	8	33	Stiff to very-stiff orange-brown an SILTY CLAY, little fine to coarse fine gravel. (A-6b)	d dark-gray sand, trace					30		H=2.0-2.5
160	916.0		2		² / _{3/5}	11	80	Very-stiff brown mottled with gravel (A-6b)	y SILTY trace fine				• *		-X	H=3.0-3.5
-W/ N	913.5	- 5 -			5											9
ULT BORING LOC	011.0		3		² / _{3/5}	11	87	Very-stiff to hard brown SILTY S. clay, trace fine gravel. (A-4a)	AND, some			• ×	×.			H=2.5-4.5 G
2010 NEW DEFA	911.0 909.0	- 10-	4		⁴ / _{8/12}	28	100	Hard brown SILTY CLAY, some sand, some fine gravel. (A-6b)	fine to coarse	e						H=4.5+
	909.0	- 10-			12			- No seepage encountered. - Encountered cobbles at 7.5'. - Boring backfilled with soil cuttin bentonite chips.	gs and							
	WATE WAT	ER LE' TER NO DA	VEL: DTE: ATE:	<u>¥</u>	"Dr <u>At Com</u> 6/20/2	y" pletio 2016	<u>n</u>	G - Gradation Sr Caved at 7.7 Q - Uncon Comp 6/20/2016 T - Triax Comp	rate H - Pen ves D - Rel	etromete t Dry Wt ative De	er († 5 (po ens	D (%)	orill Roo Last C Dr	d Energ alibrati ill Rig I	gy Ratio : on Date : Number :	<u>.847</u> <u>9/21/2015</u> <u>S&ME</u>

	Pag	ge 1 o	of 1				FRA	LOG OF BORING NO. B-13 CR 84-1.36 - NORTHEAST GATEWAY								58	ME
	1.00		. T. A	0 1	0000		2 004	WORTHINGTON, OH				T		the second secon	6	20/16	
		A HOI I ING	N: <u>4</u> METI	U.I HOT	09984)·	HN, ð 4_1/	52.990 2" 0	D/84WELEVATION: <u>920</u> D Continuous-flight Auger).8	(ATE PTE		J DF	0/ ртн•	20/10	0.0'
	SAM	PLER	(S).	IOL	·	2" (D.D. S	nlit-barrel Sampler					21101	V DE			
			(в). ш ж	ш	шц		Щ.,		1	NAT	URAL	СС	ONSIS	TENC	Y IN	DEX	
	ELEV	DEPTH	SAMPL	SAMPL	SAMPL EFFOR	N 60	SAMPL REC-%	DESCRIPTION	\geq		NATU	RAI	L MOI	STUR	E CO	NTENT	TEST RESULTS
	920.3	- 0 -	• 2					TOPSOIL - 6-1/2 INCHES	1	1	0	2	0	30		0	
	017 9		1	2	³ / ₄	10	47	Stiff to very-stiff brown and dark-gray SILTY CLAY, little fine to coarse sand, trace fine gravel. (A-6b)									H=1.7-2.7
OG-W/ N60	917.0	- 5 -	2	2	³ / ₄	10	73	Stiff to very-stiff brown mottled with gray SILTY CLAY, some fine to coarse sand, trace fine gravel, contains few roots. (A-6b)				×	•		×.		H=2.0-2.7 G
NGL			34	S	ЯĻ	10	100	-					<u> </u>				H=1 0-2 0
ULT BORI	914.1		3B		² / ₅	10	100	Very-stiff to hard brown SILTY CLAY, some fine to coarse sand, some fine gravel. (A-6b)				-> 	< • • • • • • • • • • • • • • • • • • •		×		G H=3.0-3.5
2010 NEW DEFA	<u>910.8</u>	- 10-	4	5	/10/10	28	87	- No seepage encountered									H=3.0-4.5
		- 15-						 Encountered cobbles at 7.5'. Boring backfilled with soil cuttings and bentonite chips. 									- - - - - - - - - - - - - - - - - - -
		- 20-						-									-
																	-
	W/A TT	L25-		\square				SYMBOLS USED TO INDICATE TEST RE	ESULT	TS) Dr	ill Ro	: : d Fr	erov	Ratio •	.847
	WAT	EK LE ER N D	VEL: OTE: ATE:	Ā	"Dr <u>t Com</u> 6/20/2	y'' pletio 2016	n	Caved at 8.1G - GradationSeeH - PenetromQ - Uncon CompSeparateW - Unit Dry6/20/2016C - Consol.CurvesD - Relative	netei 7 Wt 9 Der	r ((p ns	tsf) cf) (%)	I	Last C	alibr rill R	ation ig Nu	Date : mber :	<u>9/21/2015</u> <u>8&ME</u>

Paş	ge 1 o	of 1				FRA-	LOG OF BORING NO. B-14 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH					58	ME
LOC	ATIO	N: 4	0.1	12136	5N, 8	2.995	5918W ELEVATION: 92	27.6	DATI	E:	6	/27/16	
DRI	LLING	METH	IOI	D: _4	4-1/2	2" 0.	D. Continuous-flight Auger		COMPL	ETION I	DEPTH:		7.5'
SAM	1PLER	(S):		2	2" C).D. S	plit-barrel Sampler		munat o	0.110 T 0.001	NOV IN	DEV	1
LEV.	EET.	APLE MBEF	MPLE	APLE	90	MPLF C-%	DESCRIPTION	NA	NATURAL C	L MOIST	URE CO	NTENT	TEST
E	$+ \frac{1}{10}$	SAI	SAI	SAI	Z	SAI RF			ASTIC L		-LIQUID	LIMIT	RESULTS
926.6							ASPHALT - 12 INCHES		10 :: 2	0 : 3	50 : 4		_
926.1							GRANULAR BASE - 6 INCHES						-
924.8		1	5	⁷ / _{7/₁₀}	24	47	Hard brown mottled with gray SILTY CLAY, some fine to coarse sand, some fine gravel. (A-6b)	-					H=4.0-4.5
		2	1	10/10/8	25	67	Very-stiff to hard brown SANDY SILT, some clay, trace fine gravel. (A-4a)		• ×	×			H=2.0-4.2
DONI /M-DC	- 5 -	3	4	⁴ / ₆ / ₆	17	47			•	× :			H=2.7-4.5
921.6		4	9	⁰ / _{12/12}	35	73	Hard brown SILTY CLAY, some fine to coarse sand, some fine gravel. (A-6b)						H=4.5+
920.1				13									
Z010 INEW							 No seepage encountered. Boring backfilled with soil cuttings and 						-
	- 10-						bentonite chips.Pavement patched with cold patch asphalt.						-
													-
													-
	- 15-												-
													-
													-
													-
	- 20-												-
													-
													-
WAT WA	∟ ₂₅ ER LE TER N D	VEL: OTE: ATE:		"Dry <u>At Com</u> r 6/27/2	y" pletio 016	<u> </u>	G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr T - Triax Comp Curves D - Relativ	RESULTS ometer ry Wt (ve Dens	(tsf) pcf) (%)	rill Rod Last Cal Dril	Energy libration l Rig Nu	Ratio : Date : mber :	0.847 9/21/2015 S&ME

	Pag	e 1 o	f 2				FRA-	LOG OF BORING NO. B-15 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH					V		S 8	ME
	LOCA	ATIO	N: 4	0.1	108765	5N, 8	2.998	8004W ELEVATION: 91	8.9		DAT	E:			6/19/1	7
	DRIL	LING	METI	HO	D:	3-1/4	4" I.I	0. Hollow-stem Auger		С	OMPL	ETIO	N D	EPTH	ł:	35.0'
	SAM	PLER	(S):			2" C).D. S	plit-barrel Sampler								
	۶V.	TH, 3T	PLE BER	PLE	PLE		PLE -%		NZ	ATU	RAL C ATURA	CONSIS	STE	NCY I JRE C	INDEX CONTENT	TEST
	ELE	DEP	IMM	IMA	AMI BFFO	N 60	AMI	DESCRIPTION	×		•		/	×		RESULTS
Ş	18.6_	- 0 -	νZ	S	SH		S_	ASPHALT - 3 INCHES	- : : : :	LAS 10	TIC I	20	30	LIQU:)	10 LIMI 40	<u>T</u>
4	18.3							GRANULAR BASE - 4 INCHES	-							
			1		3/3.	9	80	FILL: Very-stiff dark-brown mottled with gray		:						H=2 0-2 7
					3			fine gravel. (A-7-6)			×	•			×	G 2.0 2.7
F	16.1		2A _		3/2	8	100	Medium-stiff to stiff brown mottled with grav	-	:						H=1.5
			2B		² /3			CLAY, "and" silt, little to some fine to coarse								H=1.5-1.7
2			-		3			sand. (A-/-6)								· · · · · · · · · · · · · · · · · · ·
		- 5 -	3		^{'3} / ₅	12	60			:	· · · · ·		:			H=1.0-2.0
	10.5		4A		2	8	100									H=0 5-0 7
	12.7		/P		- [′] 2 _{′ 2}		100	Medium-dense COARSE AND FINE SAND.	-							
	11 4		4D		3			"and" silty clay, little fine gravel. (A-3a)								
	11.4							Stiff to very-stiff brown SANDY SILT, some					-			· · · · · · · · · · · · · · · · · · ·
N DE					4			clay, trace fine gravel. (A-4a)								· • •
IND.			5		⁴ /4,	15	100				•×		: K			H=1.5-2.5
102		- 10-			[′] 6											G
9	08.4	10						Stiff to very stiff gray SANDY SILT, some clay								· · · · · · · · · · · · · · · · · · ·
					3			trace fine gravel. (A-4a)								• • •
			6		^{'5} / ₇	18	100									H=1.5-2.5
					,					:						• • •
															· · · · · ·	
9	04.9		7		4/6	24		Vor stiff to hard grow CIL TV CLAV little fine			· · · · ·			· · · ·		· · · · · · · · · · · · · · · · · · ·
		1.5	/		10	24		to coarse sand, some fine to coarse gravel. (A-6b)		:						· · · · · · · · · · · · · · · · · · ·
		- 15-									· · · · ·				· · · · ·	1 1 1 1 1 1
					4					:			:			
			8		· / 6 / _	21	87									H=3.0-3.5
					· 8											
													:		· · · · ·	<u>: </u>
					5						· · · · ·			· · · ·		· · · · · · · · · · · · · · · · · · ·
			9		· / 9	24	87				· · · · ·					H=4.0-4.5
8	98.4	-20-			-											<u>. </u>
					C			Hard brown SILTY CLAY, some fine to coarse								
			10		°/9,	30	100	sand, little line to coarse gravel. (A-6b)								H=4.5+
			- 0		11											
					5,											<u>·</u>
			11		['] 9 _{/14}	35	100									H=4.5+
		25-		∇				SYMBOLS USED TO INDICATE TEST F	RESULTS	S	n	rill D	: • bo	Inorg	v Ratio	: • 91
ľ	vate Wat	ER LE ER N	VEL: OTE:	<u> </u>	<u>"Dr</u> At Com	'y'' pletio	<u>n</u> _	Caved at 31.4 G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr	ometer Sy Wt	(t (pc	sf)	Last (Cali	bratio	on Date	3/25/2016
L		D	ATE:		6/19/2	2017		6/19/2017 C - Consol. Curves D - Relativ	ve Dens	s (%)	D	rill	Rig N	lumber	Env Mobile

	Pag	e 2 o	f 2				FRA-	LOG OF BORING NO. B-15 CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH							S 8	ME
	LOC	ATION	: 4	0.1	08765	5N. 8	2.998	2004W ELEVATION: 91	18.9		D	ATF	l	•	6/19/17	,
	DRIL	LING	METH	IOI	D: (3-1/4	4" I.I	O. Hollow-stem Auger	10.7		CON	/PLI	ETION	DEPT	H:	35.0'
	SAM	PLER(S):		,	2" C).D. S	plit-barrel Sampler								
	LEV.	IPTH, BET	MPLE MBER	APLE	MPLE FORT	60	APLE C-%	DESCRIPTION		NAT	TURA NAT	L CO URAI	DNSIS MOIS	TENCY STURE	INDEX CONTENT	TEST
	Ш	-25-	SAI NUN	SAI	SAJ EFI	Z	SAJ RF		\leq	PLA	ASTI	C L	IMIT 2		JID LIMIT	RESULTS
	889.9		12A		5,	42	100	Hard brown SILTY CLAY, some fine to coarse sand, little fine to coarse gravel. (A-6b) (Continued)						30	40	-
BORING LOG-W/ N60	007.7	- 30-	12R_ 12B		¹³ /13/15	72		Hard gray mottled with brown SANDY SILT, some clay, little fine gravel. (A-4a)								-H=4.0
2010 NEW DEFAULT	883.9	- 35-	13		22/29	77	100									H=4.5+
		-40-						 No seepage or groundwater encountered during drilling. Boring backfilled with soil cuttings and bentonite chips. Pavement patched with cold patch asphalt. 								
	WATE WAT	ER LE ER NO ER NO	VEL: DTE: ATE:	¥ 	"Dr <u>;</u> At Comj 6/19/2	y'' pletio 2017	 n	Caved at 31.4 SYMBOLS USED TO INDICATE TEST G - Gradation See H - Penetre Q - Uncon Comp Separate W - Unit D 6/19/2017 C - Consol. Curves D - Relation	RESUI comete Dry Wt .ve De	er er (p ens	(tsf pcf) (%))) I	ill Ro Last C Dr	d Ener alibrat ill Rig	gy Ratio : ion Date : Number :	.91 3/25/2016 Env Mobile

	Pag	e 1 o	of 1				FRA-	LOG OF BORING NO. B-16 •CR 84-1.36 - NORTHEAST GATEWAY WORTHINGTON, OH				¥		58	ME
ſ	LOCA	ATIO	N: 4	0.1	106609	N, 8	3.001	210W ELEVATION: 91	6.8	DA	ATE:		6	/19/17	
	DRIL	LING	METI	Ю	D:	3-1/4	4" I.I	D. Hollow-stem Auger		COM	PLET	FION I	DEPTH:	1	5.0'
	SAM	PLER	(S):			2" C).D. S	plit-barrel Sampler							
	EV.	PTH	PLE BER	PLE	PLE DRT		PLE ?-%	DECOUDTION	NA	TURAI NATU	L CON JRAL	NSISTE MOIST	URE CC	IDEX NTENT	TEST
	EL	DEI	SAM NUM	SAM	SAM EFF(ž	SAM	DESCRIPTION	$ \angle_{PL}^{\times}$	ASTIC	C LIM	 /TT	, × - 1.10011) I.TMTT	RESULTS
	916.3	- 0 -						TOPSOIL - 6 INCHES		10	20	3	0 4	40	
					4.			POSSIBLE FILL: Very-stiff dark-gray and brown SILTY CLAY some fine to coarse sand (A-6b)							
	914.8		1		4	14	20	SILT I CLAT, some line to course said. (A-ob)							H=4.0
					5			POSSIBLE FILL: Stiff brown mottled with gray							_
								few roots. (A-6b)							_
					2										-
NON			2		2/2	6	67								H=1.0
	911.3	- 5 -													-
								Very-soft brown CLAY, some silt, some fine to							_
NIN	909 8		3A		SH		100	coarse sand, trace fine gravel. (A-/-6)							H=0.0
ñ L	202.0		3B		5			Very-stiff to hard brown SANDY SILT, some			•				H=3.0
SFAU								clay, little fine gravel. (A-4a)							G
SW DE					4										_
TO NE			4		·′9,	29	100								H=4.5+
70		- 10-			10										-
╞	906.3							Very-stiff dark-gray SANDY SILT "and" clay							
					6			trace fine to coarse gravel, slightly organic.							
			5		^{'9} / 9	27	67	(A-4a)							H=4.0
					,										G
			Ā												
			6		⁵ / ₁₀	22	100								11-4.0
	901.8		0		10/12	33	100								п—4.0
		-15-													-
															_
								- Encountered seepage at 6.0' during drilling.							-
								- No groundwater encountered during drilling.							-
								bentonite chips.							-
								•							
		-20-													-
															-
															-
															-
															1
		-25-						כעאברוק ער היא	ESITTO						
	WATE WAT	R LE ER N D	VEL: OTE: ATE	<u> </u>	13. Inside 6/19/	<u>5</u> HSA 207		G - Gradation See H - Penetro Q - Uncon Comp Separate W - Unit Dr 6/19/2017 C - Consol Curves D - Relativ	meter y Wt (j e Dens	(tsf) pcf) (%)	Dril La	l Rod 1st Cal Dril	Energy ibratior l Rig Nı	Ratio : 1 Date : 1 mber :	<u>.91</u> <u>3/25/2016</u> Env Mobile
L		D	111L).		U, 171.					/	1				R-57

\int							SUN	IMAR	Y OF	LA	BOF	RAT	OR	ΥΤ	EST	RE	SL	JLT	S										
						GR	ADATION	COMPA	CTION	1	FRIAXI	AL	DIRE	ECT S	HEAR	U C	C	S G P R	U W N F	R	PE	RM	EABI	LITY	R D F F	L	R	S H	р Н
BORING	G'int Id.	MC	LL	PL	PI	ş 1 e V e	Hydrometer s l h o o n r g t	s t n d a r d	m od 1 f 1 e d	u u n n c d o r n a s 1 . n	$\begin{array}{c} c & u \\ o & n \\ n \\ d \\ s \\ r \\ o \\ a \\ p \\ l \\ i \\ r \\ i \\ n \\ e \\ d \\ s \end{array}$	d r a i n e d	d r a 1 n e d	u n d r a 1 n	r e s i d u a l	COP ORESS N S	N SOL D	È Â C V I I F T I Ŷ C	T G H D T R Y	M O L D E D E D	c o h e s i V e	n o n / c o h e s	rw ia gl i l d	$ \begin{array}{c} f & W \\ l & a \\ e & l \\ x & l \\ i \\ b \\ l \\ e \end{array} $	L N A T I V E	O I	С К С О R E	Ë B Y T U B E	11
		%	%	%	%		* SE	E INDI	VIDUA	L TE	ST CU	JRVE	ES						PCF			5			%	%			
B-1	3.75	25	41	19	22	*	*																						
B-1	5.25	25	44	19	25	*	*																						
B-2	3.75	23	39	21	18	*	*																						
B-2	5.25	18	27	16	11	*	*																						
B-3	9.25	13	25	15	10	*	*																						
B-3	14.25	11	25	14	11	*	*																						
B-4	5.25	16	25	17	8	*	*																						
B-4	6.75	15	26	16	10	*	*																						
B-5	4.25	23	52	21	31	*	*																						
B-5	6.75	16	25	16	9	*	*																						
B-6	3.25	23	45	19	26	*	*																						
B-6	4.75	23	43	18	25	*	*																						
B-7	11.75	12	22	16	6	*	*																						
B-7	14.25	11	21	15	6	*	*																						
B-8	4.25	25	38	22	16	*	*																						
B-8	6.75	14	24	16	8	*	*																						
B-9	3.75	13	28	17	11	*	*																						
B-9	5.25	16	28	18	10	*	*																						
B-10	3.75	15	32	18	14	*	*																						
B-10	5.25	15	26	16	10	*	*																						
	S &I	ME			TEST	ING S	UMMARY -	STANI	DARD		PR LC JO	OJE CAT	CT _ ION _ D		1117	FRA- -16-03	CR 31	84-' V	1.36 /OR1	- NC [Hin [DRT IGT DAT	HE ON E	AST I, OH	GAT 7/1	EWAY 3/17	•			_

ſ							,	SUN	IMAR	Y OF	- LA	BO	RAT	'OR'	ΥT	EST	RE	SL	JLT	S										_
						GR	GRADATIONCOMPACTIONTRIAXIALDIRECT SHEARUHydrometer s m u u c u d u r N N v n													U W N E	R E	PEF	RME	ABII	JTY	R D E E	L	R	S H	р Н
BORING	G'int Id.	MC	LL	PL	PI	s 1 e V e	Hydro s h o r t	l o n g	s t a n d a r d	m o d f i e d	u u n n c d o r n a s i . n	c u w o n / n d p s r o o a p l i r i n e d s	d r a i n e d	d r a i n e d	u n d r a 1 n	r e s l d u a l	COPRESS NFINS	Ň SOL D	È Â C V I I F T C	T G H D T R Y	M O L D E D E D	c o h e s i v e	n o n c o h e s	rw agl gl d	$ \begin{array}{c} f \\ u \\ e \\ v \\ i \\ b \\ l \\ e \end{array} $	L Ñ A S T I V Y E	O I	C C C C C C R E	Ë B Y T U B E	
		%	%	%	%			* SE	ee indi	VIDUA	AL TE	ST CU	JRVE	ES						PCF			5			%	%			
B-11	3.75	13	26	18	8	*	*																							
B-11	5.25	16	28	17	11	*	*																							
B-12	4.25	19	39	22	17	*	*																							
B-12	6.75	14	25	17	8	*	*																							
B-13	4.25	21	35	19	16	*	*																							
B-13	6.50	23	36	20	16	*	*																							
B-14	3.75	14	26	17	9	*	*																							
B-14	5.25	14	25	18	7	*	*																							
B-15	2.10	24	44	17	27	*	*																							
B-15	9.25	15	27	17	10	*	*																							
B-16	7.25	17	28	18	10	*																								
B-16	11.50	14	26	17	9	*																								
2																														
2																														
	5&1	ME			TEST	ING S	UMM	ARY -	STANI	DARD		PF LC JC	ROJE DCAT DB NO	CT _ ION_)		1117	FRA- -16-0	-CR 31	<u>84-'</u> W	1.36 /ORT	<u>NC</u> HIN	ORTI IGTO ATE	HEA ON, E	OH	GATI 7/1	EWAY 3/17	•			

ALPI-REG 111716031.GPJ BBCM.GDT 7/13/17

PLATE 25

ALPI-REG 111716031.GPJ BBCM.GDT 7/13/17

PLATE 26

PLATE^{D27-NND}

PLATE^{D28-NND}

PLATE²²Y-N^{2D}

PLATE⁵³8-NND

PLATE^{D3Y-NND}

PLATE^{D32-NND}

PLATE^{533-NND}

Appendix B

		I			1	Y		BORINGS B-20 ANI	D WG-3
940			B-6 82.61						
920	5/6/9	90,7'LT 3/5/6 7/7/10 4/8/9	5/4/19 5/6/11 5/6/10 9/6/5 47 3/5/9 5/6/8 3/5/9 7/10/10 2/2/2 7/10/10	A. S.	89 10/10/09 37476/2011 3/476/2011 3/6/6	8-8 7'LT 01L-5" 50(\$7==77)1/2 10/6/5	8=9=1 8 ' L T		
900	5/5/10 5/8/8 8/5/17	4/7/12 13/15/17 17/21/48 23/50(4)	5/7/8 5/6/9		8/10/13 8/8/8 8/10/13 8/8/8 4/7/9 5/8/8 8/12/15 8/17/23 13/17/20	<i>8/11/11</i> 5/5/9 <i>4/8/10</i> 4/7/9 <i>10/17/246/11/23</i> <i>10/17/209/18/20</i>			
880					45/50(5) 50(5)	-TR 49/50(3)	TR		
860									
840									
	963+	00	964+	00	965	+00	966	└ +00	<u> </u>

R/14/2005 12:44:20 PN m+10:FD

 \cap

 \cap

 \cap

 \cap

BRIDGE FRA-270-2486 R ONLY SHOWN FOR CLARITY

[1		1	BUF	TNGS 8-5, WG-T, AN	10 WG-2 NC
940			1254-202-024/2242/2020-000000	\neg	200.0100 (Val. 1000 1000 1000 1000 1000 1000 1000 10			
<u>920</u>	B-1 95.7' 10PS0 3/4/7 2/2/2	TI RT 1L-7 " AGGR 2/2/2 18	19/5 W	88 50(3)-10-2/2/	B-12 4'RT 3 4	=====		 We had be be do not do an at the second secon
900	3/6/10 5/6// 7/7/7 5/5/6 3/1/8 3/6/9 19/22 33 8/10/15	7/8/9 4/1 4/10/14 4/1 11/19/24 16/2 28/49/50(5) 10/2	2/13 0/23 5/23	7/10/11/2020 1/ 1/ 3/6/10 3/5/ 6/9/12 6/13/1 1/5/6 21/39/4	77 22521 6			
880	10/23/24 10/50157 10/29/33 50(5) 40/50(5)	W 24/44/50(5) 18/2 18/2 19/3 W 5	5/25	8/25/28 8/25/2 33/50(4 16/19/2	5 17 12 17 17 17 17 17 17 17 17 17 17 17 17 17			
860	30/36/48 12/26/27 20/43/26	5 — TR 24/4 24/5	D(4) 0/34 D(5)	571072 1672773 1872973	0 3 1 1			
840								
	963+00	964	++00	965	5+00		+00	

8/14/2005 12:44:28 PM m\brd |\042

 \frown

 \cap

 \cap

Client Lockwood, Lanler, Mathias and Noland	Inc. Project FRA-270-24.47, I-270/I-71 Interchange	DL2 OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	
LOG OF: Boring B-6 Location: /	As per plan Data Drilled: 6-2-2004	LOG OF: Boring B-7 Location: As per plan.	Job No. 0421-3004-00
io E 2 meter	WATER OBSERVATIONS: Water scepage at: None observed. Water level at completion: 9.0" (measured inside the suger).	Sample No. Hand Penetro- Water level at completion: 15.2' (measured inside the super).	
Depth Elav. ia	DESCRIPTION	Levy ad ad meter ad protect (fi) (fi) (fi) (fii) (fiii) (fiii) (fiiii) (fiiii) (fiiiii) (fiiiiiiii) (fiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	latural Molsture Content % - ● PL → LL Blows per foot - ○
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fill: Hard brown SILT AND CLAY (A-6a). little to some fine to coarse sand, trace gravel; damp. 10 20 30 FILL: Stiff brown SILT AND CLAY (A-6a). trace fine sand; 10 10 10	0 <u>931.7 m u u b u</u> FILL: COBBLES	
$\begin{bmatrix} \\ \\ 5 \end{bmatrix} = \begin{bmatrix} 8 & 6 \\ -8 & 12 \\ 5 \end{bmatrix} = \begin{bmatrix} 8 - 2 \\ \\ 5 \end{bmatrix} = \begin{bmatrix} 175 \\ \\ 5 \end{bmatrix}$	damp. 37 25 - 16 8 14	FILL: Stiff to very stiff mottled brown and dark gray SILT AND CLAY (A-6a). trace to little fine to coarse sand. trace arayet: damp	
-75 -9363 -5 -75 -9363 -5 -75 -9363 -5 -75 -75 -75 -9363 -75	@ 5.0'-6.5'; gray	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10 - 9	Very stiff brown SILT AND CLAY (A-6a). trace to little fine to coarse sand; damp.	7 7 7 10 16 S-3 2.75	
- 5 18 S-5 3.5	@ 10.0'-11 5'; dark gray	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
- <u>6</u> 3.5		Very stiff dark gray SILT AND CLAY (A-6a). trace to little 4 8 9 18 S-5 3.6 S-5 3.6	
- <u>6</u> <u>8</u> <u>18</u> <u>8</u> -7 3.25	@ 15 0'-16.5; moist.	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	
20 - 7		4 5 Hard brown SILT AND CLAY (A-6a); damp-moist 10 18 - 19 29 24	
-215 - 022.3 - 010 - 18 - 035 - 022.3 - 010 - 18 - 035 - 022.3 - 022	Very stiff to hard dark gray SILT AND CLAY (A-6a). trace fine sand; moist.		
	a 250-265 damp	24.0 - 907 7 - 13 - 24.5 907 7 - 13 - 25 907 2 - 17 18 5-9 2 25 Dense gray COARSE AND FINE SAND (A-3a). little to some	
26.5	Hard to very stiff brown SILT AND CLAY (A-6a), trace fine sand; damp.	Hard SILT AND CLAY (A-6a). little to some fine to coarse sand, trace gravel; damp.	
390913.8 - 5 - 6 - 18 - 5 - 13 - 40	Very stiff to hard dark gray SILT AND CLAY (A-6a). trace	17 17 16 5-11 4 5+ Moist-wet. 30 45+ Hard gray SILT AND CLAY (A-6a) . little fine to coarse sand. 5 19 - 58 11	
-34 0			
35 - B 17 	Dense brown fine to coarse GRAVEL WITH SAND. SILT & CLAY (A-2-6); damp	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Bottom of Boring - 36 5*		
40		40 120" Rec ROD 120" 114" 41 6%	
45 <u>-</u>		44.5 Bottom of Boring - 44 5' 45	
55			
			PLATE 3

 \frown

 \frown

 $\overline{}$

 \cap

000	E . D .	ine	aller, N	ama	ano	Noiand, I	nc. Project: FRA-270-24.47, 1-270/1-71 Interchange				Job No. 04	21-3004-00		Client:	Lockwoo	od, Lani	er, Mat	hlas ar	d Neland,	Inc. Project FRA-270-24.47, 1-270/
_UG ()	F: 80	ing	B-8	L Cam		ocation: As	per plan. Date Drilled:	5-14-2004		······				LOG O	F: Borir	ıg B	-9		Location: A	As per plan.
Depth	Elev	per 6"	ery (In)	No	/ Cora	Hand Penetro- meter	WATER OBSERVATIONS: Water scopage at: None observed. Water level at completion: 7.5' (measured inside the auger).	GR/ GR/ grup			STANDARD PENI Natural Moisture Co	ETRATION (N) Intent % - Ø		Depth	Elev	er G	(u) (u)	Sample Na.	Hand Penetro- meter	WATER OBSERVATIONS: Water seepage at: None observ Water level at completion: 7 4' (measur
. 0	925.2	Blows	Reco	Div	Press	(151)	DESCRIPTION	% Agg % C. S	% M.S % F.S	% Silt % Clay	Blows per foo			(ft)	(ft) 926.7	Blows F	Recove	Drive Press /	(tsf)	DESCRIPTION
4	-924.8	1 2	18	S-1		2.75	Topsoil-5". FILL: Very stiff to hard brown SILT AND CLAY (A-6a). trace fine to coarse sand. trace gravel; moist.							0		1 1 2	14	5-1	1.25	FILL: Stiff mottled brown and gray SILT AND trace fine to coarse sand. trace gravel; moist
- 5 —		3 4	18	S-2		45	@ 3.5'-5.0'; trace to little fine to coarse sand; damp-moist.	4 11	- 18	38 29				3.0	-923.7-	50/3*	3	5-2		Concrete.
/ 5	-917 7 -	3 6	18	5-3		3.25	Hard dark gray SILT AND CLAY (A-6a). little fine to coarse								-919.2-	10 6 5	2	S-3		Fill: Medium dense brown GRAVEL AND ST FRAGMENTS (A-1-a). trace fine to coarse se damp.
 ,,		7 10	18	S-4		4 5+	sand, trace gravel; damp.							10 — 10.5 —	-916 2	11 11 10	2	s-4		FILL: Medium dense brown COARSE AND F 3a). little silt. trace gravel; damp.
-		8	18	S-5		4 5+								-		5 5 9	18	S-5	4.5	Hard dark gray SILT AND CLAY (A-6a). trace coarse sand. trace gravel; damp-moist.
5 		10 13 5	18	S-6		4 5+	@ 13.5'-15 0'; brown									³ 11 11	16	S-8	4 5+	@ 13.5'-15.0'; brown
-		8 4 7	18	S-7		4 5+								1		¹ 79	18	S-7	4 5+	@ 16.0'-17.5'; dark gray
20		6 17	18	5-0 5-9		4.0+		7 11 -	- 22	40 19		Ź		20	-	8 10	18	S-8	4 5+	@ 18 5'-20 0'; brown
-		23 8 12	18	S-10		4.5+			- 19	33 18			INDIGE 20	-	-	11 23 10	18	5-9	4 5+	@ 21.0'-22 5'; dark gray
		15 15 20	18	S-11		4.5+							300 FOR	25	ĩ	24	<u>18</u>		4 5+	
		13 17 20	18	S-12		4 5+		7 6 .	15	39 33			1200 - 121	-	-	20 0 14	<u>18</u>	-12	4.5+	
														30	T	20	16			
ייינ - ; ;	-892.2 -	45 50/5"	11	S-13			Hard dark gray highly weathered CLAY-SHALE					50+K		35		19 50/3"	18 S	-13		There dark gray moderately weathered CLAT-
		50/5*	5	5-14								60+ (1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1			C AN ADDRESS AND ADDRESS			
-		1					@ 39 0'-49 0'; moderately weathered							40		Core R 120* 1	lec R 14" 7	QD 0%		
s 		Core 120*	Rec 120*	ROD 25 8%										45	-880 7					
 1.0	·876.2 -													-						Bottom of Boring - 46 0'
50							Bottom of Boring - 49 0'							50						
55													(הנוקד מכבוח	55 —						
+++++++++++++++++++++++++++++++++++++++													1009003-1200							
-													au .	-						

i/14/2005 12:44:29 Р.И #:\pro!\042\\3004,00\pro!ec†_cians\270_2486iq00

 \cap

 \cap

1

Client Lockwood, Lanler, Mathias an	d Noland,	Inc. Project: FRA-270-24.47, I-270/I-71 Interchance	Job No. 0421-3004-00	DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)868-0040
LOG OF: Boring B-10 1	Location: S	ta. 964+13.46, 87.69 ft Rt. Date Drilled	± 5-18-2004	LOG OF: Boring B-11 Location: Sta. 984+57.74 Data Drilled: 5-13-2004
Depth Elav.	Hand Penetro- meter (151)	WATER OBSERVATIONS: Water seepage at: 1.0' Water level at completion: 33.2' (measured inside augers) DESCRIPTION	GRADATION GRADATION STANDARD PENETRATION (N) Natural Moisture Content. % - ● BB G G G G H B D G G H B D G G H C D	Depth Elev Sample WATER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.75	Aggregate Base- 4" FILL: Medium dense gray COARSE AND FINE SAND (A- 3a), trace to little gravel, trace slit, trace clay; wet. FILL: Medium stiff brown SILT AND CLAY (A-6a). trace to little fine to coarse sand. trace gravel; moist.		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	4.5+ 4 5+	Stiff brown SILT AND CLAY (A 6a), trace fine to medium		$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $
$\begin{array}{c} & 12 \\ 13 \\ 3 \\ - 150 \\ - 150 \\ - 160 \\ - 20 \\ 20 \\ - 16 \\ - 20 \\ - 16 \\ - 20 \\ - 16 \\ - 20 \\ - 16 \\ - 20 \\ - 16 \\ - 20 \\ - 16 \\$	125 10 4.5+	Hard brown SILT AND CLAY (A-6a). trace to little fine to coarse sand; damp-moist.		$ \begin{array}{c} 5 \\ 6 \\ $
$\begin{array}{c} - & 11 \\ 20 - & -24 \\ - & -24$	4 5+ 4. 5+	Very dense gray and brown COARSE AND FINE SAND (A-		$= \frac{9}{3} + \frac{16}{3} + \frac{16}{3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3a), trace sllî. trace clay; moist. @ 26.0'-27 5'; little clay. moist-wet.	38 21 - 17 25 6	$\begin{array}{c} 10 \\ 25 \\ - \\ - \\ 50/5^{*} \\ 11 \\ 10 \\ \end{array} \begin{array}{c} 10 \\ 50/5^{*} \\ 11 \\ 10 \\ \end{array} \begin{array}{c} 10 \\ 50/5^{*} \\ 11 \\ 10 \\ \end{array} \begin{array}{c} 10 \\ 0 \\ 26 \\ 0'-27 \\ 5; wet \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
$\begin{array}{c} 30 \\ 30 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	4 5 1	Hard dark gray SILT AND CLAY (A-6a). trace to little fine to coarse sand. trace gravel; damp		$\frac{38}{24} = \frac{23}{24} = \frac{18}{24} = \frac{5 \cdot 12}{10}$
		Medium hard moderately weathered to highly weathered brown and gray fine to coarse grained SANDSTONE		$ \begin{array}{c} $
				-4650 - 880 0
50				$\overline{g} = 53.0 - 672.0 - 12$ Very stiff to stiff motiled brown and grav decomposed CLAY-
55		@ 53 5'-55.0'; moist. Bottom of Boring - 60.0'		$55 - \frac{26}{27} + \frac{27}{18} + \frac{18}{5} + \frac{125}{18} + \frac{125}{125} + 1$
				PLATE 5

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Client Lo LOG OF	ockwo : Bor	ood, La ing	nler, N B-12	ielhie:	s end	d Noland, li ocation: Sti	Discrete Project FRA-270-24.47, 1-270/I-71 Interchange a. 965+06.32, 88.41 ft RL Date Delited	5.17	707	4		10		= 10	20	Job	No.	04	421	-30(04-(00
		1		Sam	pie		WATER Date Date Date	<u></u>	- <u>200</u> 6	RAD	ATTC	IO N		J-78	-20	.04			~~~ <u>~</u>			
				No	1.	Hand	OBSERVATIONS: Water seepage at: 23.5', 33.5'	-	Τ-	T		Ť]										
			ŝ			Penetro-	Water level at completion: 54 8' (measured inside augers)		1						TAT		abr	PEN	ETD		1N /	80
Depth	Elav	er 6	~		1	meter		t e	1 _					М.	e s rist nte re-	- UM 194	ا تيك ا متعقد	une C	121354 (mm4-	711C	лч (8 z	e4)
(8)	(ft)	d s	Ne.		12	(ខេត្តិ		Ë		Ĭ	물			141	01116	n wo	ງາຣາບ	ne Çi	ontei	hi. %	6 * * *1	
	077 4	1 M	5	1 A	i Sez	v = <i>v</i>	DESCRIPTION	And	ື່ວ	N.	20	븘	G			,- Blow	/s br	er for	st -	('n	L
0	927.1			<u> </u>	-			*	8	8	*	32	R		_1	<u>)</u>	2	D	3(0	4i	0
							FILL: Soft to medium stiff brown SILT AND CLAY (A-6a).					1		T.		Т	Π	IΠ	Ш	ITT	Π	Π
		2	,	S-1		0.5	inte to some fine to coarse sand, trace gravel; moist.					1										
		3												H		ļļ						
-3.0	·uz4 i-	60/25					Concrete	-			Í			11-		╢	Ш					
-		30/3	_	5-2					1									1	Hł	Ш		
5	-014 E -	J		~								1									ΓH	4
	0210	3					FILL: Hard brown SILT AND CLAY (A.Sa) little to some fine	-													Ш	-17
-		5	18	5-3		4.25	to coarse sand, trace gravel; moist	7	49		20	26 Í	72						Hł	11		
		f						1	1.00		~°	~°	~		Н	H	T	Π				
		7													H	١I.						
1		10	18	S-4							Ì					ľŀ						
	917 1-	11					Uppel dade group CILT AND OF AND OF AND A SUCCESS				1	Í					N	411				
~		3					Hard dark gray SILT AND CLAY (A-6a). little to some fine to		ľ			1					И	1				
-		Γ6 ₋₇	18	S-5		4 5+	cualse sanu, uace gravel; moist.					1				$\left \right $	11				11	
_		<u> </u>		1				1				1	ļ		1	М	111				111	
		3						1	1	ļ	- 1		I		Ιľ	NI	111					
		6,	18	S-8		4.5+		I	1		- 1		ļ			11/	11					
15		- 19		1					1							N	Ы	111	111			
-		6						1								11	ñN,	JH				
-		13	18	5-7		4 5+	A 10 11 17 19 19 19 19		I					Ħ			Πſ	М	111			$\ $
_		10					@ 10.0~17 5", Drówn; damp.	1	1							111			NH.			
		8							ļ									$\left \right \right $	Л			
		9 12	18	S-8		4 5+	@ 18 5'-20 0'; dark gray; damp.											IN				
20			P	1								1		111			ιŀł	ΧI				
-1		6																				
		9 12	18	5-9		4.5	@ 21 0'-22 5'; moist						1									
-22.5	004.6-		p]	1	ľ	Medium dense to very dense area and brave that a same]₿	<u>}</u> [[
_		1_+				Í	(A-3), little to some clay, little silt trace actual unit			1	ĺ			111			Ж	111				
25		5	18	S-10			, ,									M						11
	ĺ		T												1¢	FH4	4	Ш	1			
1		21												111				ITT	1	$^{++}$	++	₽.
	Lagg	- 48 - 48	16	3-11	ļ												11]]]		Π
	100.0					ſ	Hard brown SILT AND CLAY (A-6a), little to some fine to	-													1C	칻
_	ſ	11	1	0.42			coarse sand, trace gravel; damp			Ì						111						
30		28	18	2-12		4.9+		5	9	- :	20 4	5 2	20			+	╫	HI				
	197 1-					ſ	Very dense gray COARSE AND FINE SAND (A-3a) trace	-1													1C	51
	1	ļ					clay. trace silt. trace gravel; wet.															
7																						
	ŀ	8 25	52.3	C.13		1							1									
35	-	25	7	u																		
		1				1				Í												H
				1																		
٦								11														
1	Ļ	<u></u>	U		1							1										
-	[;]	50/4	. 1	S-14					- 1			1							111		11	
40	-		30			l			1		1											
-		1		Į	l						ĺ]			190
-42.0	85.1-	1		1		L			1	ĺ	ļ	1					111		111	11	[]]	
							Very stiff to hard brown decomposed CLAYSHALE, trace	11			1											
	ŀ	ie					fine to medium sand, trace gravel; moist			ļ												Ŵ
^ *		19	18	S-15		3.75											111					Л
45 —	ŀ		<u>~</u> "	-												11			111		IН	
		1		1								1				11			1		ΙH	
	1	1							1												/ 	
_	1																			JX'		
_	E	, .																		χĽ		
	L	10	18	5-18		45													ΠX			Ţ
50 —			- 11																刚			Ţ
-1	l				1															W		
-											1										ĺΝ	
_						1														11		N
1	ī	8							1			ĺ				11						
		27 33	18	5-17		4.5+				1												
	F		Ĩ									1									H	ᆔ
55				ļ						ļ	1	1									Гſ	TI
 55				1	1			1	1		1	1	11	111	11	117	111	111	(I I -	117	11	11
				1		1			- 1				11	11		11	111	11				11
	-	8																				

	BORING L STATION SURFACE	og: And offset: Elevation:	WG	1 780.2, 51 414	N RL DATE STARTED: 12/1/95 DATE FINISHED: 12/1/95									
	WATER EI	(COUNTERED:	N/A	•	SAMPLER TYPE: HSA/WD									
ELEV	SAMPLE	BLOWS PER 15 cm	REC (X)	DEPTH	SOIL DESCRIPTION	wc	Ţ,	11	 7,	Р. М. 7.			12	ODOT
286.6	SS-1	5/10/12	89	-	DARK BROWN SELTY CLAY, SOME SAND AND GRAVEL SOME ORGANICS (TOPSOL)		- <u>u</u>	м	101	8	rs	9	a.	1001181
200 0		4.4 MW (-		1 -	SOME CLAY, UTTLE SET. (EMBANKMENT FILL)									THOUGH
205.9	55-2	11/7/8	56	2		14	30	117	40	20	7	11	22	A2-6
285,1	SS~3	4/4/9	94	-		19								VISUAL
284.3	5S4	6/8/7	94	3 -		15			ŀ					VISUAL
283,5	SS-5	5/8/13	67	4	-	18								VISUAL.
282.8	SS-8	4/7/8	78	-		27								VISUAL
282.1	\$S7	4/7/12	94	5	BROWN TO DARK BROWN CLAY AND GRAVEL UTTLE SAND. (ENBANKMENT FILL)	22	43	25	38	10	8		 4	A76
281.3	5S~8	4/5/8	89	6 —	6.44	21								VISUAL
280.5	SS-9	5/7/18	78	7 -	BLACK ORGANIC SILTY CLAY 6.94 BROWN SILT AND CLAY, SOME SAND, LITTLE GRAVEL	26								VISUAL
279.8	5S-10	3/6/7	94			21								VISUAL
				8										
270 7	66-14	10.00												
270.5	33-11	*/0/15	100	- T	-	13	27	11	16	12	17	25	30	A-60
				10										
27 6 .B	SS12	6/8/15	100			12								VISUAL
				11										
275.2	55-13	a/18/16		12									ĺ	
1.1.5.4	30-10	8718710	97			15								VISUAL
				13				Î						
273.7	SS-14	19/19/24	89			9								MSUAL
				14										
272.2	55-15	47/50w10cm	-	15										
		12,00 10011	~			14								VISUAL.
				16										
270.7	SS-16	16/15/27	100	17	BROWN TO GRAY SILTY CLAY, SOME SAND, TRACE GRAVEL	17							- ·	VISUAL
														- 1
				18 —										
269.1	\$5-17	13/16/31	B3			18	33	16	"	18	*	-61 	i- 1	4-6b
				19										
2576	SS~18	28/15/21	89	~~~		20							١	VISUAL
				20										
256.1	SS-19	14/22/34	100	21 —		20							١	ASUAL
					BOTTOM OF BORING - 21 3M									

Õ

 \frown

 \bigcirc

 \bigcirc

9 3/4/05 714/05 AEA OFARN RJH Rëvisëd RJH RJH DAA STRUCTURE FOUNDATION INVESTIGATION BRIDGE NO. FRA-270-2486 L/R IR-270 OVER WORTHINGTON-GALENA ROAD FRA-270-24.47 7 / 9

BORING WG-I DRILLED BY RESOURCE INTERNATIONAL, INC. PLATE 6

BORING LOG: WG-2

STATION AND OFFSET: 33+042.2, 5M Rt SURFACE ELEVATION: 287.0M WATER ENCOUNTERED: N/A +

DATE STARTED: 12/11/95 DATE FINISHED: 12/11/95 SAMPLER TYPE: HSA/RC

	SAMPLE	BLOWS	RE	с					T _A	ТΤ	6	PH łaR/	YSIC CTE	AL RISTI	-
ELEV	NUMBER	PER 15 cm	(%)) DE	PTH	SOIL DESCRIPTION		₩C	Lім	iTS	72	%	%	%	
				+		DARK BROWN SILTY CLAY, SOME ORGANICS			Щ	19	AGO	cs	FS	51	я.
286.2	SS-1	9/12/11	78		—	BROWN STATE CAN SOME CAND AND COLUCT									
				1		(EMBANKMENT FILL)		16							VISUA
285.5	SS-2	9/8/14	78												VISUA
0047	T. 22	7 40 45		2		-									
204.7	55~5	//12/15	94			BROWN CLAY, LITTLE GRAVEL TRACE SILT. TRACE SAND.	2.4M	16							VISUA
283.9	SS-4	7/9/12	100	3		(EMBANKMEN) FILL)		22	54	30	.,			_	
283.2	SS-5	12/18/11	AC			BROWN TO GRAY CLAY, SOME SILT, LITTLE SAND,	<u>5,4M</u>	_			• •				· · · · ·
		127.0711	05	4		DITLE GRAVEL (EMBANKMENT FILL)		20							VISUA
282 4	SS-6	7/12/50~15cm	94		·			15	46	25	15	5		26	6 4-7-
781 7	55-7	17/10/11		5		DARK GRAY CLAYEY SILT, LITTLE SAND AND GRAVEL,	<u>.9M</u>		· [~			Ĭ	20	•
201.7			69			BROWN TO GRAY SILTY CLAY, SOME SAND AND GRAVE	<u>5.5M</u>	11							VISUAI
280.9	AS-8	9/15/21	0	6				20							VISUA
0704															
280.1	SS-9	15/20/27	89	7				13							VISUAL
279.4	SS10	7/15/21	89					13							VISUA
ļ				8											
277.9	SS-11	5/11/12	100	9				13							VISUA
					_										
				10											
276 3	SS~12	14/11/12	89		-			13							MOUNT
				11											VISUAL
					-										
274.8	SS13	20/35/34	100	12											MOLIAL
					-										WSUAL
				13											
273.3	SS-14	18/16/38	100												
l				14 -			'	2							VISUAL
					-										
271.8	SS-15	23/24/50~8cm	83	15 -			,	,							MELLAL
					-		1	-							VISUAL
				16 -		DARK CRAY INDURATED CLAY (112 CHUR THE STORE	IM								
70.2	SS-16	50~10cm	22		-	16 F	а м 4			1	ĺ				MELLAR
	RC-1		70	17 -		SHALE: BLACK. FIRM, FISSILE, FRACTURED.		<u>- i.</u>		-	ł.,				I VISUAL
						- CORE LOSS - 0.38 M - ROD = 0 π									
68.8				18 -											J

STA SUR WAT ELEV. SA NU	ATTON AI REACE E TER ENC	ND OFFSET: LEVATION: COUNTERED:	33+(281.9 SEFP													
ELEV. SA	AMPLE			D26.2. DM PAGE	. 4.(07	M Lt DATE STARTED: 12/18/95 DATE FINISHED: 12/18/95 2M * SAMPLER TYPE: HSA/RC										
	IMBER	BLOWS PER 15 cm	REC (%)	DEF	тн	SOIL DESCRIPTION	w	c	AT IMI	T TS PI	8	PH HAR	YSI CT	RIS RIS	TC %	ODOT CLASS
281.1 S	SS-1	4/7/8	89	1		DARK BROWN SILTY CLAY, SOME ORGANICS, TRACE SAND AND GRAVEL (TOPSOIL) 0.3M BROWN TO GRAY SILT AND CLAY, SOME SAND, LITTLE TO TRACE GRAVEL	2	3	-					3		VISUAL
280.4 S	5S2	2/3/5	22				16	;								VISUAL
2796 S	SS-3	5/7/†1	100	2			1:	5 2	9	12	11	11	16	6	 2-	A6a
278.8 S	SS-4	6/10/16	94	3			1:	5								VISUAL
78.1 S	S-5	4/7/10	100	4			12	2								VISUAL
773 S	S-6	6/6/9	89				13									VISUAL
76.6 S	iS7	5/10/14	100	5			13	2	8 1	13	8	8	14	29	41	A~6a
75.8 59	S-8	5/8/11	100	6			13									VISUAL
75.1 SS	S-9	5/11/14	94	7 ·		72	M 12									VISUAL
74.3 SS	S-10	11/15/20	94	8 -		GRAY SAND. SOME CLAYEY SILT.	17				0	1	65	18	16	VISUAL
72.8 55	511	8/32/50~13cm	56	9 -		GRAY SILTY CLAY. SOME SAND AND GRAVEL	14									VISUAL
716 SS-	6-12	50~10cm	22	10 -		DARK GRAY WEATHERED SHALE FRAGMENTS.										VISUAL
70.2 55-	-13	50~500		11 -												
RC	C-1	<u></u>	81	12 -		11.71 SHALE: BLACK, FIRM, BROKEN, JOINTED, GRITTY TEXTURE, CA SPARSELY FOSSILIFFROMS	RBON	IACE	501	JS,						VISUAL
8.6				13 -		- CORE LOSS = 0.28 M - RQD = 0%										
	<u>k</u>		i			BOTTOM OF BORING = 13.3M]

. THE GROUNDWATER LEVEL UPON COMPLETION OF THE DRILLING PROCESS COULD NOT BE DETERMINED DUE TO THE USE OF WASH WATER DURING THE DRILLING PROCESS.

 \bigcirc

 \bigcirc

 \bigcirc

BORING LOG:

PLATE 7 BORINGS WG-2 AND WG-3 DRILLED BY RESOURCE INTERNATIONAL, INC.

Elov.	Depth 510.Pe	n. Rec. Loss Description	Somple Physical Characteristics SHTL	Flay, Bonth Std. Pon. Rec. Losa	
			No. AQO C.S. F.S. SIIT Clay L.L. P.L W.C. Class	928.4 O	No. Agg C.S. F.S. Silt Clay L.L.
518.7	4 6 6/13	Brown and Gray Gravely Sitt		923.4 4/6 Brown Sandy	Clay I 9 3 11 29 48 43
916 2	8		, 3, 5, 10, 25, 29, 23, 1, 32	6 5/9 Brown Sandy	SII+ Z II B I5 32 34 25
913.7	10 10 10	Brownish-Gray Sandy Gravelly Clay	2 27 10 14 23 26 30 12 16	8 7/14 Brown Silty G	ravel 3 54 8 7 15 16 PL 1
98.2	12. 10715	Gravely Slit	3 33 11 12 24 20 23 7 14	IZ II/16 No Sample Rec	covered - Boulder V I S U A L
908 7	14 6714	Gray Sandy Gravelly Slit	4 29 H 12 26 20 22 6 12	915.9 14 23/60 Gray Silty Sar	ndy Gravel 4 45 1B 12 11 14 20
906-2	16 7/14	Gray Slity Sandy Gravel	5 52 17 8 13 10 PL-15 H	913 4 16 16/12 Brown Graveli	y Sandy Slift 5 V I S U AL 24
903.1	20 32/58	Gray Gravelly Sandy Slit	6 20 8 12 31 29 23 7 12	910 9 <u>18</u> 7/15 Gray Gravelly	Sondy Silt 6 V I S U AL 21
0017	29/50	Gray Sandy Gravelly Silt	7 22 13 18 29 18 21 4 12	908.4 <u>20</u> 16/55 Gray Slity Sar	ndy Grovel 7 47 8 13 15 17 20
896 7	24 25/50	Brown Silty Sondy Grave)	8 48 9 11 18 14 27 9 13	24	
	26 15/38	Brownish-Gray Silty Sandy Gravel	9 45 8 10 22 14 26 8 16	898.7 <u>25</u> 17/50 Gray Silty Sar 25 (0.1)	1dy Gravel B 52 14 24 -1 0- NP
893.7	30			28	
	32 16/32	Gray Sondy Graveliy Silt	10 41 5 12 24 18 24 10 11	898.4 30 23/46 Gray Slity Sar	1dy Gravel 9 45 21 18 6 10 NP
668.7	34			$\left \frac{32}{34} \right $	
	36 65/•	Brown Silty Sandy Gravel	II 50 6 10 22 12 NP NP 4	893 4 36 60/- Gray Silty San	ndy Gravel ID 61 16 10 -1 3- NP
883.7	38			38	
883.2		Reddish-Brown and Gray Slity Gravel	12 62 2 4 21 11 NP NP 17	888 4 40	

 \bigcirc

 \bigcirc

 \cap

 \cap

11/14/2005 12:44:35 PM 10:10:10:42113 •REFUSAL

BORING LOGS FOR BORINGS B-5 AND B-20 WERE FAITHFU PREPARED BY THE OHIO STATE HIGHWAY TESTING LABORY

L BOTTOM OF BORING

TULLY RATORY	REPRODUCED	FROM	ORIGINAL	COPIES
			PLATE	8

			200 ACCUTLICA ELLO - EM & SUPERICA AVE - CLATILUO, ON 4415
REVIEWED BATE AFN 3.14.105		22/1/23 (7)	(N) 56111CZ
BRARK R.I.H	Courtes 1		
BESICKED R.I.H	CLECKER	DAA	
STRUCTURE FOUNDATION INVESTIGATION	BRIDGE NO. FRA-270-2486 L/R	IR-270 OVER WORTHINGTON-GALENA ROAD	
	FKA-210-24.47		
9	7	9 \	

Appendix C

Appendix D

Project No	1117-16-031		Sheet	1	of 1	
Client	EMH&T	Calc. By	CRW	Date	6/14/17	
Project	FRA-CR84-1.36 NE Gateway	Check By	CJN	Date	6/14/17	
Desc.	E. Willson Bridge Road					
-	Over Rush Run	_				

Version 2.0 (7/7/15)

LRFD BEARING RESISTANCE CALCULATION

SOIL PARAMETERS

Structure	Boring	Soil Laver	Depth (ft)	Description	SPT N (lb/ft)	D _w (ft)	γ _m (pcf)	w _n (%)	Φ (deg.)	C (psf)
Inlet	B-3	4	6	Very stiff brown Silty Clay	8	2	120	n/a	0	2500
Outlet	B-3	4	6	V-stiff brown Silty Clay	8	2	120	n/a	0	2500

FOOTING

BEARING RESISTANCE COEFFICIENTS

Structure	D _f (ft)	B (ft)	L (ft)	Nc (1)	Nq (1)	Ν γ (1)	Sc (2)	Sq (2)	S γ (2)	Dq (3)	Cwq (4)	Cwγ (4)
Inlet	4	1.5	8	5.14	1.00	0.00	1.036	1.000	1.000		0.5	0.5
Outlet	4	1.5	8	5.14	1.00	0.00	1.036	1.000	1.000		0.5	0.5

NOMINAL BEARING RESISTANCE

Structure	q ℕ (ksf)
Inlet	13.3
Outlet	13.3

$$q_N = cN_c s_c i_c + \gamma D_f N_q s_q d_q i_q C_{wq} + \frac{1}{2} \gamma B N_\gamma s_\gamma i_\gamma C_{w\gamma}$$

BEARING RESISTANCE FACTORS

Limit	Resistance
State	Factor
Service	1.0
Strength	0.5
Strength	0.45

Article 10.5.5.1 Table 10.5.5.2.2-1 (cohesive) Table 10.5.5.2.2-1 (non-cohesive)

FACTORED BEARING RESISTANCE

Limit	q _R (ks		
State	Inlet Headwall	Outlet Headwall	
Service	6.0	6.0	Table C10.6.2.6.1-1
Strength	6.7	6.7	

REFERENCES

AASHTO LRFD Bridge Design Specifications, 6th Edition, Section 10: Foundations.

- 1. Bearing Capacity Factors Nc, Nq, and N γ obtained from Table 10.6.3.1.2a-1.
- 2. Shape Correction Factors Sc, Sq, and S γ obtained from Table 10.6.3.1.2a-3.
- 3. Depth Correction Factor Dq obtained from Table 10.6.3.1.2a-4.
- 4. Groundwater Correction Coefficients Cwq and Cwγ obtained from Table 10.6.3.1.2a-2.

Version 2.0 (7/7/15)

Project No	1117-16-031		Sheet	1	of 1	
Client	EMH&T	Calc. By	CRW	Date	6/14/17	
Project	Project FRA-CR84-1.36 NE Gateway		CJN	Date	6/14/17	
Desc.	S Worthington Galena Rd			_		
-	Over Rush Run					

LRFD BEARING RESISTANCE CALCULATION

SOIL PARAMETERS

Structure	Boring ID	Soil Layer	Depth (ft)	Description	SPT N (lb/ft)	D _w (ft)	γ _m (pcf)	w _n (%)	Ф (deg.)	C (psf)
Inlet	B-7	3	5.5	Mst-Stiff brown Silty Clay	6	0	120		0	1000
Outlet	B-7	3	6	Mst-Stiff brown Silty Clay	6	0	120		0	1000

FOOTING

BEARING RESISTANCE COEFFICIENTS

Structure	D _f (ft)	B (ft)	L (ft)	Nc (1)	Nq (1)	Ν γ (1)	Sc (2)	Sq (2)	Sγ (2)	Dq (3)	Cwq (4)	Cwγ (4)
Inlet	4	1.5	10	5.14	1.00	0.00	1.029	1.000	1.000		0.5	0.5
Outlet	4	1.5	10	5.14	1.00	0.00	1.029	1.000	1.000		0.5	0.5

NOMINAL BEARING RESISTANCE

Structure	q ℕ (ksf)
Inlet	5.3
Outlet	5.3

$$q_N = cN_c s_c i_c + \gamma D_f N_q s_q d_q i_q C_{wq} + \frac{1}{2} \gamma B N_\gamma s_\gamma i_\gamma C_{w\gamma}$$

BEARING RESISTANCE FACTORS

Limit	Resistance	
State	Factor	
Service	1.0	
Strength	0.5	
Strength	0.45	

Article 10.5.5.1 Table 10.5.5.2.2-1 (cohesive) Table 10.5.5.2.2-1 (non-cohesive)

FACTORED BEARING RESISTANCE

Limit	q _R (ks		
State	Inlet Headwall	Outlet Headwall	
Service	4.0	4.0	Table C10.6.2.6.1-1
Strength 2.6		2.6	

REFERENCES

AASHTO LRFD Bridge Design Specifications, 6th Edition, Section 10: Foundations.

- 1. Bearing Capacity Factors Nc, Nq, and N γ obtained from Table 10.6.3.1.2a-1.
- 2. Shape Correction Factors Sc, Sq, and S γ obtained from Table 10.6.3.1.2a-3.
- 3. Depth Correction Factor Dq obtained from Table 10.6.3.1.2a-4.
- 4. Groundwater Correction Coefficients Cwq and Cwγ obtained from Table 10.6.3.1.2a-2.

Project No	1117-16-031		Sheet	1	of
Client	EMH&T	Calc. By	CRW	Date	7/1
Project	FRA-CR84-1.36 NE Gateway	Check By	CJN	Date	7/1
Desc.	Private Drive	—			
-	Over Rush Run	—			

Version 2.0 (7/7/15)

LRFD BEARING RESISTANCE CALCULATION

SOIL PARAMETERS

Structure	Boring	Soil	Depth	Description	SPT N	D _w	γ _m	W _n (%)	Φ (dog.)	C (nsf)
	טו	Layer	(11)		(10/11)	(11)	(pci)	(/0)	(ueg.)	(hai)
Inlet	B-15	4-5	5.5	Stiff to V-stiff silty clay	10	0	120		0	1500
Outlet	B-15	4-5	6	Stiff to V-stiff silty clay	10	0	120		0	1500

FOOTING

BEARING RESISTANCE COEFFICIENTS

Structure	D _f (ft)	B (ft)	L (ft)	Nc (1)	Nq (1)	Ν γ (1)	Sc (2)	Sq (2)	S γ (2)	Dq (3)	Cwq (4)	Cwγ (4)
Inlet	4	1.5	8	5.14	1.00	0.00	1.036	1.000	1.000		0.5	0.5
Outlet	4	1.5	8	5.14	1.00	0.00	1.036	1.000	1.000		0.5	0.5

NOMINAL BEARING RESISTANCE

Structure	q ℕ (ksf)
Inlet	8.0
Outlet	8.0

$$q_{N} = cN_{c}s_{c}i_{c} + \gamma D_{f}N_{q}s_{q}d_{q}i_{q}C_{wq} + \frac{1}{2}\gamma BN_{\gamma}s_{\gamma}i_{\gamma}C_{w\gamma}$$

BEARING RESISTANCE FACTORS

Limit	Resistance	
State	Factor	
Service	1.0	
Strength	0.5	
Strength	0.45	

Article 10.5.5.1 Table 10.5.5.2.2-1 (cohesive) Table 10.5.5.2.2-1 (non-cohesive)

FACTORED BEARING RESISTANCE

Limit	q _R (ks		
State	Inlet Headwall	t Headwall Outlet Headwall	
Service	5.0	5.0	Table C10.6.2.6.1-1
Strength	4.0	4.0	

REFERENCES

AASHTO LRFD Bridge Design Specifications, 6th Edition, Section 10: Foundations.

- 1. Bearing Capacity Factors Nc, Nq, and N γ obtained from Table 10.6.3.1.2a-1.
- 2. Shape Correction Factors Sc, Sq, and S γ obtained from Table 10.6.3.1.2a-3.
- 3. Depth Correction Factor Dq obtained from Table 10.6.3.1.2a-4.
- 4. Groundwater Correction Coefficients Cwq and Cwγ obtained from Table 10.6.3.1.2a-2.

Project No	1117-16-031		Sheet	1	of	1
Client	EMH&T	Calc. By	CRW	Date	6/14/1	7
Project	FRA-CR84-1.36 NE Gateway	Check By	CJN	Date	6/15/1	7
Desc.	Modular Block Wall #1	_				

Version 2.0 (7/7/15)

LRFD BEARING RESISTANCE CALCULATION

SOIL PARAMETERS

Structure	Boring	Soil	Depth	Description	SPT N	D _w	Υm	w _n	Φ	С
Structure	ID	Layer	(ft)	Description	(lb/ft)	(ft)	(pcf)	(%)	(deg.)	(psf)
Inlet	B-6-0-04*	3	18.5	V-Stiff brown Silty Clay	14	2	120	n/a	0	2000
Outlet	B-6-0-04*	3	18.5	V-Stiff brown Silty Clay	8	2	120	n/a	0	2000

*Historic B-6 boring from FRA-270-24.47 Investigation

FOOTING BEARING RESISTANCE COEFFICIENTS

Wall Sta	D _f (ft)	B (ft)	L (ft)	Nc (1)	Nq (1)	Ν γ (1)	Sc (2)	Sq (2)	S γ (2)	Dq (3)	Cwq (4)	Cwγ (4)
Sta 0+00	0	3	10	5.14	1.00	0.00	1.058	1.000	1.000		0.5	0.5
Sta 2+70	0	3	10	5.14	1.00	0.00	1.058	1.000	1.000		0.5	0.5

NOMINAL BEARING RESISTANCE

Structure	q ℕ (ksf)
Inlet	10.9
Outlet	10.9

$$q_N = cN_c s_c i_c + \gamma D_f N_q s_q d_q i_q C_{wq} + \frac{1}{2} \gamma B N_\gamma s_\gamma i_\gamma C_{w\gamma}$$

BEARING RESISTANCE FACTORS

Limit	Resistance
State	Factor
Service	1.0
Strength	0.5
Strength	0.45

Article 10.5.5.1 Table 10.5.5.2.2-1 (cohesive) Table 10.5.5.2.2-1 (non-cohesive)

FACTORED BEARING RESISTANCE

Limit	q _R (ks		
State	Inlet Headwall	Outlet Headwall	
Service	6.0	6.0	Table C10.6.2.6.1-1
Strength	5.4	5.4	

REFERENCES

AASHTO LRFD Bridge Design Specifications, 6th Edition, Section 10: Foundations.

- 1. Bearing Capacity Factors Nc, Nq, and N γ obtained from Table 10.6.3.1.2a-1.
- 2. Shape Correction Factors Sc, Sq, and S γ obtained from Table 10.6.3.1.2a-3.
- 3. Depth Correction Factor Dq obtained from Table 10.6.3.1.2a-4.
- 4. Groundwater Correction Coefficients Cwq and Cwγ obtained from Table 10.6.3.1.2a-2.

Project No	1117-16-031		Sheet	1	of 1	
Client	EMH&T	Calc. By	CRW	Date	6/14/17	
Project	FRA-CR84-1.36	Check By	CJN	Date	6/15/17	
Desc.	Modular Block Wall #2					

Version 2.0 (7/7/15)

LRFD BEARING RESISTANCE CALCULATION

SOIL PARAMETERS

Structure	Boring ID	Soil Layer	Depth (ft)	Description	SPT N (lb/ft)	D _w (ft)	γ _m (pcf)	w _n (%)	Ф (deg.)	C (psf)
Inlet	B-20,WG-2*			Stiff brown Silty Clay	14	2	120	n/a	0	1500
Outlet	B-20,WG-2*			Stiff brown Silty Clay	8	2	120	n/a	0	1500

*Historic borings

FOOTING BEARING RESISTANCE COEFFICIENTS

Wall Sta	D _f (ft)	B (ft)	L (ft)	Nc (1)	Nq (1)	Ν γ (1)	Sc (2)	Sq (2)	S γ (2)	Dq (3)	Cwq (4)	Cwγ (4)
Sta 0+00	0	3	10	5.14	1.00	0.00	1.058	1.000	1.000		0.5	0.5
Sta 2+70	0	3	10	5.14	1.00	0.00	1.058	1.000	1.000		0.5	0.5

NOMINAL BEARING RESISTANCE

Structure	q ℕ (ksf)
Inlet	8.2
Outlet	8.2

$$q_N = cN_c s_c i_c + \gamma D_f N_q s_q d_q i_q C_{wq} + \frac{1}{2} \gamma B N_\gamma s_\gamma i_\gamma C_{w\gamma}$$

BEARING RESISTANCE FACTORS

Limit	Resistance	
State	Factor	
Service	1.0	
Strength	0.5	
Strength	0.45	

Article 10.5.5.1 Table 10.5.5.2.2-1 (cohesive) Table 10.5.5.2.2-1 (non-cohesive)

FACTORED BEARING RESISTANCE

Limit	q _R (ks	q _R (ksf)		
State	Inlet Headwall	Outlet Headwall		
Service	4.0	4.0	Table C10.6.2.6.1-1	
Strength	4.1	4.1		

REFERENCES

AASHTO LRFD Bridge Design Specifications, 6th Edition, Section 10: Foundations.

- 1. Bearing Capacity Factors Nc, Nq, and N γ obtained from Table 10.6.3.1.2a-1.
- 2. Shape Correction Factors Sc, Sq, and S γ obtained from Table 10.6.3.1.2a-3.
- 3. Depth Correction Factor Dq obtained from Table 10.6.3.1.2a-4.
- 4. Groundwater Correction Coefficients Cwq and Cwγ obtained from Table 10.6.3.1.2a-2.

Sum of the UNFACTORED moment, Counter Clockwise is positive		About "A"			About "P	7				
			Unit		A000			About B	1	4
Vertical Loads	Height (ft)	Width (ft)	Weight (kip/ft ³)	P _v (kips)	Moment Arm (ft.)	Moment (kip-ft)	P _v (kips)	Moment Arm (ft.)	Moment (kip-ft)	
Concrete (DC)										
Block 1 + Cap	2.00	1.02	0.440							1
Block 2	2.00	1.93	0.142	0.55	2.14	1.17	0.55	1.64	0.90	4
Footing	0.00	3.00	0.142	2.56	2.27	5.80	2.56	1.77	4.53	-
looing	0.50	4.00	0.130	0.26	2.00	0.52	· ·	-	-	-
Earth Load (EV)										-
Soil Above Toe	0.50	0.50	0.130	0.03	0.25	0.04	l			-
Soil Above Water Table (AWT)	2.50	0.23	0.130	0.03	2.72	0.01		-	-	-
Soil Below Water Table (BWT)	2.50	0.50	0.083	0.07	2.75	0.20			-	-
Soil Over Wall (Average) (SOW	1.00	1.07	0.000	0.10	3.15	0.39	-	-	-	-
	1.00	1.07	0.100	0.14	3.04	0.51	0.14	3.14	0.44	-
Water Load (WA v)										4
Water Table	2.50	0.50	0.062	0.08	3 75	0.20				4
		0.00	0.002	0.00	5.75	0.25			-	4
Vertical Component of Horizo	ntal Earth Pre	ssure from S	oil Friction ((EH v)						-
Acting on Wall EH _v	7.00	-	0.130	0.40			0.40	2.00	1 20	4
Acting on Footing EH _v	7.50	-	0.130	0.46	3.77	1.73	0.40	3.00	1.20	-
										1
Live Load (LSv)										1
Live Load Surcharge	0.00	0.50	0.130	0.00	3.75	0.00			-	1
										1
										1
Horizontal Loads	Height (ft)	Width (ft)	Unit Weight (kip/ft ³)	P _H (kips)	Moment Arm (ft.)	Moment (kip-ft)	P _H (kips)	Moment Arm (ft.)	Moment (kip-ft)]
Farth Load (FH)]
Active Earth Pressure Above										1
Water Table (AW/T)	4.50		0.130	-0.40	4.50	-1.78	-0.40	4.00	-1.58	
Active Farth Pressure Below										1
Nater Table 1 (BWT1)	3.00	-	-	-0.53	1.50	-0.79	-0.44	1.25	-0.55	
Active Earth Pressure Below										
Mater Table 2 (PM/T2)	3.00	-	0.083	-0.11	1.00	-0.11	-0.08	0.83	-0.06	
								0.00		
Water Load (WA H)										
Water Pressure	3.00		0.062	0.20	4.00	0.00	0.00			4
	5.00	-	0.062	-0.28	1.00	-0.28	-0.20	0.83	-0.16	
Live Load (LSh)					łł					1
ive Load Surcharge	7.50	0.00	0.130	0.00	2.75	0.00	0.00	4.00	0.00	
e e e e e e e e e e e e e e e e e e e	1.00	0.00	0.130	0.00	3.15	0.00	0.00	1.00	0.00	
Passive Pressure										
Passive Earth Press.	0.00	1.00	0.130	0.00	0.00	0.00				Ignored for modules Harley
					0.00	0.00	-		-	Ignored for modular DIOCK W

C5N 5/8/18

PLATE 8

AASHTO LRFD Load Factors

Reference Tbl. 3.4.1-1 & 3.4.1-2

		Vertical Loads						Horizontal Loads		
Limit State	DC	EV	EHv	WAv	LSv	EH	WAH	LSH		
Service I	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Strength I.a-Sliding & Eccent.	0.90	1.00	1.50	1.00	0.00	1.50	1.00	1 75		
Strength I.b-Bearing	1.25	1.35	1.50	1.00	1.75	1.50	1.00	1.75		
Strength IV.a-Sliding & Eccent.	0.90	1.00	1.50	1.00	0.00	1.50	1.00	1.75		
Strength IV.b Bearing	1.50	1.35	1.50	1.00	0.00	1.50	1.00	0.00		

Eccentricity Check (About "A")

Reference Sections 10.6.4.2 and 11.6.3.3				0.33 B	1.32	ft
		Per Foot				
Limit State	$\sum P_V$ (kips)	∑M _A (ft-k)	∑P _H (kips)	e	Is e OK?	σ _{vmax} (ksf)
Service I	4.25	7.74	-1.31	0.18	ОК	1 17
Strength I.a-Sliding & Eccent.	4.11	6.50	-1.83	0.42	OK	1.30
Strength I.b-Bearing	5.44	9.55	-1.83	0.25	OK	1.55
Strength IV.a-Sliding & Eccent.	4.11	6.50	-1.83	0.42	OK	1.30
Strength IV.b Bearing	6.28	11.43	-1.83	0.18	OK	1.73

Eccentricity Check (About "B")

Reference Sections 10.6.4.2 and 11.6.3.3				0.33 B	0.99	ft
		Per Foot	of Wall			
Limit State	∑P _V (kips)	$\sum M_A$ (ft-k)	∑P _H (kips)	е	Is e OK?	σ _{vmax} (ksf)
Service I	3.64	4.71	-1.11	0.21	OK	1.41
Strength I.a-Sliding & Eccent.	3.53	3.66	-1.56	0.46	OK	1.70
Strength I.b-Bearing	4.67	5.72	-1.56	0.27	OK	1.90
Strength IV.a-Sliding & Eccent.	3.53	3.66	-1.56	0.46	OK	1.30
Strength IV.b Bearing	5.44	7.07	-1.56	0.20	OK	2.09

Bearing Capacity Check (About "A"): Bearing Stress = ΣV/(B-2e)

Reference Sections 10.5.5.2.2 and 11.6.3.2

Limit State	Φ _Β	$\Phi_{B} * q_{n}$	≥ Bearing Stress?	Bearing Stress (ksf)
Service I	1.00	6.00	ОК	1.17
Strength I.b-Bearing	0.50	5.20	ОК	1.55
Strength IV.b Bearing	0.50	5.20	OK	1.73

Bearing Capacity Check (About "B"): Bearing Stress = ΣV/(B-2e)

Reference Sections 10.5.5.2.2 and 11.6.3.2

Limit State	Φ _Β	$\Phi_B * q_n$	≥ Bearing Stress?	Bearing Stress (ksf)
Service I	1.00	6.00	OK	1.41
Strength I.b-Bearing	0.50	5.20	ОК	1.90
Strength IV.b Bearing	0.50	5.20	OK	2.09

Sliding Check (About "A"):	R _{R Granular} = V*tanΦf

$R_{R Cohesive} = Min(S_u, .5^* \sigma_{v max})$

Reference Sections 10.5.5.2.2 and 10.6.3.4			Sliding Res	sistance				
Limit State	Φ,	Φ _{ep}	R _{R Granular}	R _{R Cohesive}	R _R	≥ ∑Pµ	ΣP _μ (kips)	ΣP _v (kins)
Strength I.a-Sliding & Eccent.	0.90	0.50	1.97	2.34	1.97	OK	-1.83	A 11
Strength IV.a-Sliding & Eccent.	0.90	0.50	1.97	2.34	1.97	ОК	-1.83	4.11

Sliding Check (About "B"):	R _{R Granular} = 0.8V*tanΦf	R _{R Cobesive} = Min(Su.,5*o _{v max})
D. (The encourse in the encourse i

Reference Sections 10.5.5.2.2 and 10.6.3.4			Sliding Res					
Limit State	Φ,	Φ _{ep}	R _{R Granular}	R _{R Cohesive}	R _R	≥ ∑P _H	ΣP _H (kips)	ΣP _v (kins)
Strength I.a-Sliding & Eccent.	0.90	0.50	1.72	-	1.72	ОК	-1.56	3.53
Strength IV.a-Sliding & Eccent.	0.90	0.50	1.72	-	1.72	ОК	-1.56	3.53

Sheet No: 2

CJN 5/8/18

Sum of the UNFACTORED mo	ment, Counter (Clockwise is p	ositive		About	"A"	1	About "B		1
Vertical Loads	Height (ft)	Width (ft)	Unit Weight (kip/ft ³)	P _V (kips)	Moment Arm (ft.)	Moment (kip-ft)	P _V (kips)	Moment Arm (ft.)	Moment (kip-ft)	
Concrete (DC)										-
Block 1 + Cap	2.00	1.93	0 142	0.55	2.01	1 10	0.55	1.51	0.92	4
Block 2	4 50	3.00	0.142	1.02	2.01	4.22	1.02	1.01	0.03	4
Footing	0.50	4.00	0.130	0.26	2.00	0.52	-	-	3.21	1
Farth Load /FIA					_					1
Soil About Tes	0.50	0.50	0.400					-		4
Soli Above Toe	0.50	0.50	0.130	0.03	0.25	0.01	-		×	1
Soil Above Water Table (AWT)	1.00	0.23	0.130	0.03	3.73	0.11	•			1
Soll Below Water Table (BWT)	2.50	0.50	0.083	0.10	3.75	0.39	•		-	1
Soll Over Wall (Average) (SOW	1.00	1.07	0.130	0.14	3.51	0.49	0.14	3.01	0.42	4
Water Load (WA v)					-					4
Water Table	2.50	0.50	0.062	0.08	3.75	0.29	-		-	1
Vertical Component of Horizo	ntal Earth Pre	ssure from S	oil Friction (F	H)						4
Acting on Wall EH.	5 50		0 130	0.25	-		0.05	2.00	0.74	4
Acting on Footing EH _v	6.00		0.130	0.29	3.77	1.11	0.25	3.00	0.74	-
Live Lood // Cu)										1
Live Load (LSV)	0.00	0.50	0.400							1 .
Live Load Surcharge	0.00	0.50	0.130	0.00	3.75	0.00		•	•	
Horizontal Loads	Height (ft)	Width (ft)	Unit Weight (kip/ft ³)	P _H (kips)	Moment Arm (ft.)	Moment (kip-ft)	P _H (kips)	Moment Arm (ft.)	Moment (kip-ft)	
Earth Load (EH)										
Active Earth Pressure Above	10000		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	5122	-					4
Water Table (AWT)	3.00		0.130	-0.18	4.00	-0.70	-0.18	3.50	-0.61	
Active Earth Pressure Below									-	1
Water Table 1 (BWT1)	3.00	<u> </u>	2	-0.35	1.50	-0.53	-0.29	1.25	-0.37	
Active Earth Pressure Below				10/10/0		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Constant of			-
Water Table 2 (BWT2)	3.00		0.083	-0.11	1.00	-0.11	-0.08	0.83	-0.06	
										1
Water Load (WA H)		-	0.062	0.29	1.00	0.00	0.00	0.00	0.10	4
Water Load (WA H)	3.00			-11 //	1.00	-0.28	-0.20	0.83	-0.16	F
Water Load (WA H) Water Pressure	3.00	-	0.002	0.20		1				1
Water Load (WA H) Water Pressure Live Load (LSh)	3.00		0.002	-0.20						
Water Load (WA H) Water Pressure Live Load (LSh) Live Load Surcharge	3.00 6.00	0.00	0.130	0.00	3.00	0.00	0.00	1.00	0.00	
Water Load (WA H) Water Pressure Live Load (LSh) Live Load Surcharge Passive Pressure	3.00 6.00	0.00	0.130	0.00	3.00	0.00	0.00	1.00	0.00	

CJN 12/10/18

AASHTO LRFD Load Factors

Reference Tbl. 3.4.1-1 & 3.4.1-2

Limit State			Vertical Loads			Ho	Horizontal Loads			
	DC	EV	EHv	WAv	LSv	EHH	WAH	LSH		
Service I	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Strength I.a-Sliding & Eccent.	0.90	1.00	1.50	1.00	0.00	1.50	1.00	1.75		
Strength I.b-Bearing	1.25	1.35	1.50	1.00	1.75	1.50	1.00	1.75		
Strength IV.a-Sliding & Eccent.	0.90	1.00	1.50	1.00	0.00	1.50	1.00	1.75		
Strength IV.b Bearing	1.50	1.35	1.50	1.00	0.00	1.50	1.00	0.00		

Eccentricity Check (About "A")

Reference Sections 10.6.4.2 and 11.6.3.3				0.33 B	1.32	ft	
	-	Per Foot of	f Wall	1			
Limit State	ΣP _v (kips)	∑M _A (ft-k)	∑P _H (kips)	e	Is e OK?	σ _{v max} (ksf)	
Service I	3.40	6.61	-0.92	0.06	OK	0.87	
Strength I.a-Sliding & Eccent.	3.24	5.90	-1.24	0.18	OK	0.89	
Strength I.b-Bearing	4.34	8.31	-1.24	0.08	OK	1.13	
Strength IV.a-Sliding & Eccent.	3.24	5.90	-1.24	0.18	OK	0.89	
Strength IV.b Bearing	5.02	9.77	-1.24	0.05	OK	1 29	

Eccentricity Check (About "B")

Reference Sections 10.6.4.2 and 11.6.3.3				0.33 B	0.99	ft	
		Per Foot of	Wall				
Limit State	∑P _V (kips)	∑M _A (ft-k)	∑P _H (kips)	e	Is e OK?	σ _{v max} (ksf)	
Service I	2.85	4.04	-0.74	0.08	OK	1.01	
Strength I.a-Sliding & Eccent.	2.73	3.48	-1.01	0.22	OK	1.07	
Strength I.b-Bearing	3.64	5.06	-1.01	0.11	ОК	1.31	
Strength IV.a-Sliding & Eccent.	2.23	3.48	-1.01	-0.06	ОК	0.77	
Strength IV.b Bearing	4.26	6.08	-1.01	0.07	OK	1.49	

Bearing Capacity Check (About "A"): Bearing Stress = \$V/(B-2e)

Reference Sections 10.5.5.2.2 and 11.6.3.2

Limit State	Φ _B	$\Phi_B * q_n$	≥ Bearing Stress?	Bearing Stress (ksf)
Service I	1.00	4.00	OK	0.87
Strength I.b-Bearing	0.50	4.10	OK	1.13
Strength IV.b Bearing	0.50	4.10	ОК	1.29

Bearing Capacity Check (About "B"): Bearing Stress = $\Sigma V/(B-2e)$

Reference Sections 10.5.5.2.2 and 11.6.3.2

Limit State	Φ _B	Φ _B * q _n	≥ Bearing Stress?	Bearing Stress (ksf) 1.01	
Service I	1.00	4.00	OK		
Strength I.b-Bearing	0.50	4.10	OK	1.31	
Strength IV.b Bearing	0.50	4.10	OK	1.49	

Sliding Check (About "A"): R _{R Granular}	= V*tanΦf	R _{R Cohesive} = M	lin(Su.5*ov max)					
Reference Sections 10.5.5.2.2 and 10.6.3		Sliding Re	sistance					
Limit State	Φ,	Φ _{ep}	R _{R Granular}	R _{R Cohesive}	R _R	≥ ∑P _H	SPH (kips)	ΣP _v (kips)
Strength I.a-Sliding & Eccent.	0.90	0.50	1.55	1.60	1.55	ОК	-1.24	3.24
Strength IV.a-Sliding & Eccent.	0.90	0.50	1.55	1.60	1.55	ОК	-1.24	3.24

Sliding Check (About "B"): R_{R Granular}= 0.8*V*tanΦf R_{R Cohestive}= Min(S_u..5*σ_{v max})

Reference Sections 10.5.5.2.2 and 10.6.3.4			Sliding Re					
Limit State	Φ,	Φ _{ep}	R _{R Granular}	R _{R Cohesive}	R _R	≥ ∑P _H	ΣP _H (kips)	ΣP _v (kips)
Strength I.a-Sliding & Eccent.	0.90	0.50	1.32	-	1.32	OK	-1.01	2.73
Strength IV.a-Sliding & Eccent.	0.90	0.50	1.08	*	1.08	ОК	-1.01	2.23

Sheet No: 2

CJN 12/10/18