FRA-70-22.85 FAR EAST FREEWAY ROADWAY IMPROVEMENTS PID NO. 98232 FRANKLIN COUNTY, OHIO

DRAFT ROADWAY EXPLORATION REPORT

Prepared For: EMH&T 5500 New Albany Road Columbus, OH 43054

Prepared By:
Resource International, Inc.
6350 Presidential Gateway
Columbus, OH 43231

Rii Project No. W-17-140

February 2023

RESOURCE INTERNATIONAL, INC.

6350 Presidential Gateway Columbus, Ohio 43231 Ph: 614.823.4949

April 8, 2022 (Revised February 7, 2023)

Mr. Steve Beal, P.E. Senior Transportation Engineer EMH&T 5500 New Albany Road Columbus, Ohio 43054

Re: **Draft Roadway Exploration Report** FRA-70-22.85 Far East Freeway **Roadway Improvements** PID 98232 Franklin County, Ohio Rii Project No. W-17-140 (Rev. 3)

Mr. Beal:

Resource International, Inc. (Rii) is pleased to submit this revised Draft Roadway Exploration Report for the above referenced project. Engineering logs have been prepared and are attached to this report along with the results of laboratory testing. This report includes recommendations for the design and construction of the proposed subgrade improvements along Brice Road, Interstate Route 70 (I-70) westbound, and construction of a new collector distributor road to carry traffic from I-70 to Interstate Route 270 (I-270), as part of the FRA-70-22.85 project within the City of Columbus, in Franklin County, Ohio. In addition to the proposed subgrade exploration, this report covers the structure foundation exploration for five (5) proposed culverts along with the noise walls as part of the overall FRA-70-22.85. This revised report supersedes all previous submittals.

We sincerely appreciate the opportunity to be of continued service to you on this project. If you have any questions regarding the structure foundation exploration, or this report, please do not hesitate to contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

Daniel E. Karch, P.E.

Project Manager

Jonathan P. Sterenberg, P.E. Vice President – Geotechnical Services

Enclosure: DRAFT Roadway Exploration Report

Keul

ISO 9001: 2015 QMS Committed to providing a high quality. accurate service in a timely manner

Planning

Engineering

Construction

Management

Technology

TABLE OF CONTENTS

Sec	tion		Page
EXE	CUTIVE	E SUMMARY	I
	Expl	oration and Findings	i
	Anal	yses and Recommendations	ii
1.0	INTRO	DDUCTION	1
2.0	RECO	NNAISSANCE AND PLANNING	1
	2.1 2.2	Site GeologyObservations of the Project	
3.0	EXPL	ORATION	3
4.0	FINDII	NGS	5
	4.1 4.2 4.3 4.4	Surface Materials Subsurface Soils Bedrock Groundwater	6 7
5.0	ANAL	YSES AND RECOMMENDATIONS	8
	5.1 5.2	General Embankment and Subgrade Preparation Pavement Subgrade Recommendations 5.2.1 Subgrade Stabilization 5.2.2 Subgrade Design Considerations	8 8 9 10
	5.3 5.4	Embankment Recommendations	
	5.5	CIP Culvert Headwall – Tussing Road Station 12+27.18	17 17 18 19 20 20
	5.6	Drilled Shaft Foundations (Noise Barriers 1, 2 and 4)	24
	5.7 5.8	Lateral Earth Pressure Parameters Construction Considerations	
		5.8.1 Excavation Considerations 5.8.2 Groundwater Considerations	28 28
6.0	LIMIT	ATIONS OF STUDY	29

APPENDICES

Appendix I Vicinity Map and Boring Plan

Appendix II Schedule of Borings

Appendix III Description of Soil and Rock Terms

Appendix IV Project Boring Logs

Appendix V Pavement Core Data Sheets

Appendix VI Calculations – GB-1

Appendix VII Calculations – Shallow Foundations – Culverts

Appendix VIII Calculations – CIP Wall

Appendix IX Calculations – Noise Barrier Foundation Depths

Appendix X Calculations – Embankment Settlement

Appendix XI Calculations – Slope Stability Analyses

EXECUTIVE SUMMARY

This report is a presentation of the subgrade exploration performed for the proposed improvements to Brice Road, along the westbound lanes of I-70, and construction of the proposed west bound collector distributor (WB-CD) road for I-70 westbound to I-270. It is understood that the proposed subgrade improvements along Brice Road consist of overlay from approximately Station 1+80 to Station 42+90, and that the construction of the proposed I-70 WB-CD road extends from approximately station 1540+00 to 1618+00. As part of the improvements along Brice Road, it is understood that widening is proposed for the majority of the alignment, and, therefore, sidehill embankment fill will be replaced that will require special benching.

In addition to the proposed subgrade exploration, this report covers the structure foundation exploration for five (5) proposed culverts, including a box culvert extension along I-70, culvert extension on the east and west side of Brice Road, north of I-70, a culvert realignment at the intersection of Brice Road and Tussing Road, south of I-70, a twin box culvert extension underneath I-70 and a box culvert underneath Chatford Drive. This report also includes drilled shaft foundation recommendations for the noise walls.

Exploration and Findings

Between July 10 and October 30, 2020, a total of 75 borings were performed for the proposed roadway improvements, culvert structures and noise barriers. Additionally, a total of nine (9) pavement cores were performed for the project along I-70 westbound. An additional investigation was performed between November 18 and 31, 2021 consisting of five (5) soil borings, along with two (2) Wildcat dynamic cone penetrometer (DCP) tests along the midslope of the east embankment of Brice Road, south of I-70.

All borings except B-039-0-19, B-049-0-19, B-053-0-19, B-055-0-19, B-059-0-19 and B-060-0-19, encountered topsoil thicknesses between 2 inches and 10 inches. The remaining borings, noted above, encountered asphalt over aggregate base or concrete. Borings performed within the existing pavement encountered between 6 and 12 inches of asphalt overlying 4 inches to 10 inches of aggregate base, with the exception of boring B-055-0-19, which encountered 12 inches of concrete beneath the asphalt.

Below surface material, materials identified as existing fill was encountered in 19 of the borings at depths ranging from 1.5 feet to 15.5 feet below existing grade. In general, the fill was described as clay, silty clay, silt and clay, sandy silt, gravel with sand and silt and gravel with sand, silt and clay, and gravel with sand (ODOT A-7-6, A-6b, A-6a, A-4a, A-2-4, A-2-6, and A-1-b), and contained construction debris consisting of asphalt, concrete, rock fragments and other debris consisting of wood fibers and other organic material.

Underlying the surficial and existing fill materials, the natural soils were encountered, consisting of both cohesive and granular deposits. The natural cohesive soils were described as clay, silty clay, silt and clay, sandy silt and silt (ODOT A-7-6, A-6-b, A-6a, A-4a, and A-4b). The granular soils were described as sand and gravel, gravel with sand and silt, gravel with sand and clay (ODOT A-1-a, A-1-b, A-2-4, and A-2-6).

Bedrock was encountered in borings B-009-0-19 and B-010-0-19 at a depth of 21.0 feet beneath the existing ground surface, or approximately elevation 758.8 and 757.8 feet msl, respectively. The bedrock was described as slightly to highly weathered black shale. Bedrock was not encountered in any of the remaining borings included with this roadway exploration report.

Groundwater seepage was encountered in 20 of the borings at depths ranging from 4.0 to 19.7 feet below the ground surface. More significant groundwater flow was encountered during drilling (initial water level) in 34 of the borings at depths ranging from 5.6 to 24.5 feet below the existing ground surface. Measurable groundwater was observed at the completion of drilling in 24 of the borings at depths ranging from 3.5 to 20.0 feet below existing grade.

Analyses and Recommendations

Based on the results of the GB-1 analysis, the following subgrade stabilization and corresponding project limits presented in the following table are recommended.

Spot Stabilization Recommendations

Alignment	Alignment Start		Recommended Subgrade Stabilization
IR-70 WB- Sta. Sta. CD Rd. 1572+50 1576+00			12" Item 204 Excavate and Replace
Brice Rd.	Sta. 1+80	Sta. 3+50	12" Item 204 Excavate and Replace
blice Ru.	Sta. 5+00	Sta. 7+00	18" Item 204 Excavate and Replace
Chatford Dr.	Sta 62+97.32	Sta. 65+00	14" Item 204 Excavate and Replace

Based on the conditions encountered across the subject site, it is recommended that pavement design be based on a design CBR value of 6 for IR-70 WB-CD, a design CBR value of 7 for Brice Road, and a design CBR value of 6 for Chatford Drive.

Recommendations are provided herein for general embankment and subgrade preparation, including recommendations for special benching for the proposed roadway widening along Brice Road.

Shallow foundation recommendations are provided for the proposed culvert foundations based on the conditions encountered in the borings performed for each culvert extension. The following tables present a summary of the bearing resistance values provided.

Culvert Headwall - IR-70 - Station 606+42.82

Effective Footing Width	Service Lir	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
6	1.3	4.3	6.0	11.9	6.5

Culvert Headwall - Brice Road - Station 38+50.29

Effective Footing Width	Service Lir	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
6	1.0	4.0	5.5	11.8	6.5

Culvert Headwall – Tussing Road

	Jairo	it i i caawaii	raceing it		
Effective Footing Width	Service Lin	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
8	0.4	1.3	2.7	11.7	6.4

Culvert Wingwall - Chatford Drive - Station 64+75

Effective Footing Width	Service Lin	Service Limit Bearing Pressure (ksf)			sistance at th Limit sf)
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
6	0.1	3.5	5.1	16.3	8.9

Culvert Headwall/Wingwall - I-70 - Station 578+55.47

Effective Footing Width	Service Lir	Service Limit Bearing Pressure (ksf)		Strengt	sistance at th Limit sf)
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
6	0.7	1.7	3.7	16.1	8.8

The required shaft embedment for the proposed Noise Barriers 1, 2 ad 4 was determined in accordance with Section 802.1.2 of the ODOT Bridge Design Manual (BDM). In general, the analysis indicates that 2.5-foot diameter drilled shafts excavated to depths ranging from 7.5 to 15 feet for Noise Barrier 1, from 9.0 to 15.0 for Noise Barrier 2, and from 10.5 to 22 feet for Noise Barrier 4 will be required for the support of the noise wall. The following tables detail the required minimum drilled shaft depth for each panel along each of the proposed noise barrier wall alignment.

Noise Barrier 1 Foundation Depth Requirements

From Panel	To Panel	Length (feet)	Representative Boring	Post Spacing (feet)	Barrier Height (feet)	Transverse Ground Slope	Proposed Shaft Depth (feet)
1	3	24	B-004-0-19	8	13-14	Level	7.5
4	8	120	B-004-0-19	24	15-16	Level	9.0
9	17	216	B-003-0-19	24	16	Level	9.0
18	25	192	B-002-0-19	24	16	Level	9.0
26	33	192	B-001-7-19	24	16	Level	9.0
34	42	216	B-001-6-19	24	16	Level	9.0
43	50	192	B-001-5-19	24	16	Level	9.0
51	58	192	B-001-4-19	24	16	Level	9.0
59	67	216	B-001-3-19	24	16	Level	9.0
68	75	192	B-001-2-19	24	16-17	Level	13.0
76	78	72	B-001-1-19	24	16-17	3:1	15.0
79	87	128	B-001-1-19	16	16-20	3:1	15.0
88	91	24	B-001-1-19	8	19-20	2:1	10.0

Noise Barrier 2 Foundation Depth Requirements

ir-	Noise Barrier 2 Foundation Depth Requirements									
From Panel	To Panel	Length (feet)	Representative Boring	Post Spacing (feet)	Barrier Height (feet)	Transverse Ground Slope	Proposed Shaft Depth (feet)			
1	8	192	B-010-0-19	24	15-16	5:1	11.0			
9	9	12	B-010-0-19	12	15	5:1	11.0			
10	10	24	B-010-0-19	24	15	5:1	11.0			
11	13	72	B-011-0-19	24	15-16	5:1	9.0			
14	15	28	B-011-0-19	14	15	5:1	9.0			
16	18	72	B-011-0-19	24	16	5:1	9.0			
18	20	72	B-011-0-19	24	15	5:1	9.0			
21	28	312	B-013-0-19	24	15-17	3:1	12.5			
29	29	12	B-013-0-19	12	15	3:1	12.5			
30	30	24	B-014-0-19	24	17	2:1	10.0			
31	31	12	B-014-0-19	12	15	2:1	10.0			
32	33	24	B-014-0-19	24	15	2:1	10.0			
34	34	12	B-014-0-19	12	15	2:1	10.0			
35	35	24	B-014-0-19	24	15	2:1	10.0			
36	36	12	B-014-0-19	12	15	2:1	10.0			
37	38	48	B-014-0-19	24	15	2:1	10.0			
39	46	192	B-016-0-19	24	15	3:1	9.5			
47	54	192	B-018-0-19	24	15	3:1	9.5			
55	62	192	B-020-0-19	24	15	2:1	16.0			
63	71	216	B-021-0-19	24	15	2:1	10.0			
72	79	192	B-022-0-19	24	15	2:1	14.0			
80	86	168	B-024-0-19	24	15	2:1	14.0			
87	87	16	B-025-0-19	24	15	2:1	14.0			
88	96	192	B-025-0-19	24	15	2:1	14.0			

Noise Barrier 4 Foundation Depth Requirements

From Panel	To Panel	Length (feet)	Representative Boring	Post Spacing (feet)	Barrier Height (feet)	Transverse Ground Slope	Proposed Shaft Depth (feet)
1	5	120	B-095-0-19	24	15	3:1	15.0
6	13	192	B-096-0-19	24	15	3:1	22.0
14	21	192	B-098-0-19	24	15-16	3:1	15.0
22	28	144	B-099-0-19	24	15-16	3:1	15.0
29	29	12	B-099-0-19	12	15	3:1	10.5
30	32	24	B-099-0-19	8	17-18	3:1	10.5
33	33	12	B-099-0-19	12	19	3:1	10.5

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

The overall purpose of this project is to provide detailed subsurface information and recommendations for the Phase 2 and 3 of the FRA-70-022.85 project. The project's proposed improvements include the reconfiguration of the north half of the Brice Road interchange and westbound ramps to the Interstate 270 (I-270) interchange, replacement of the Brice Road Bridge over Interstate 70 (I-70), a proposed bridge over a new collector-distributer road (IR-70 CD-WB), three (3) noise barriers, twelve (12) retaining walls, and five (5) culvert extensions.

This report is a presentation of the subgrade exploration performed for the proposed improvements to Brice Road, along the westbound lanes of I-70, and construction of the proposed west bound collector distributor (WB-CD) road for I-70 westbound to I-270. It is understood that the proposed subgrade improvements along Brice Road consist of overlay from approximately Station 1+80 to Station 42+90, and that the construction of the proposed I-70 WB-CD road extends from approximately station 1540+00 to 1618+00. As part of the improvements along Brice Road, it is understood that widening is proposed for the majority of the alignment, and, therefore, sidehill embankment fill will be replaced that will require special benching.

This report also contains preliminary recommendations for the proposed realignment and improvements along Chatford Drive. It is understood that the profile of Chatford Drive will be raised by approximately 3 feet at Station 64+75 to accommodate a proposed box culvert.

In addition to the proposed subgrade exploration, this report covers the structure foundation exploration for five (5) proposed culverts, including a box culvert extension along I-70, culvert extension on the east and west side of Brice Road, north of I-70, a culvert realignment at the intersection of Brice Road and Tussing Road, south of I-70, a twin box culvert extension underneath I-70 and a box culvert underneath Chatford Drive. This report also includes drilled shaft foundation recommendations for the noise walls.

The exploration was performed within general accordance of the Ohio Department of Transportation's (ODOT) Specifications for Geotechnical Explorations (SGE), dated July 2020. The project site and general location of the proposed retaining walls are as shown on the vicinity map and boring plan presented in Appendix I.

2.0 RECONNAISSANCE AND PLANNING

2.1 Site Geology

Physiographically, the site lies within the Columbus Lowland District of the Southern Ohio Loamy Till Plain Region. This region is characterized by relatively flat-lying silty loam till ground moraine, interspersed with end and recessional moraines, outwash and alluvial deposits. Ground moraines are deposited during the retreat of a glacier, resulting in an

undifferentiated mixture of clay, silt, sand and gravel. End moraines are normally associated with ice melting that is neither advancing nor retreating for a period of time. Recessional moraines are deposited when the ice sheet is retreating. Both end and recessional moraines are commonly associated with boulder belts. Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice, and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range from silty clay to cobble sized deposits, usually deposited in present and former floodplain areas, such as the Big Walnut Creek and its tributaries.

Based on the Bedrock Geology and Bedrock Topography maps of the Columbus area, obtained from Ohio Department of Natural Resources (ODNR), the bedrock at the proposed project site consists of the Upper Devonian-aged Ohio Shale Formation. The Ohio Shale Formation is further subdivided into three primary members, in descending order: the Cleveland, Chagrin, and Huron Members. The Cleveland Member consists of black shale and is thickest in the north-central portion of the state but thins out to the south and east. The Huron Member consists of gray to greenish gray interbedded shale, siltstone, and very fine-grained sandstone, and is thickest in the northeastern portion of the state, thinning out to the southwest. The Chagrin Member grades into the overlying and underlying members and consists of black, carbonaceous shale. The entire Ohio Shale formation ranges from 250 to over 500 feet thick, with generally laminated to thin bedding and fissile partings, and is characterized by such features as having a petroliferous odor and carbonate/siderite concretions.

According to bedrock topography mapping from ODNR, the top of bedrock forms a ridge to the north of the site, generally lying just outside of the I-270 loop, and roughly underlying the cities of Gahanna and Reynoldsburg. The bedrock surface forms a narrow plateau that extends southwest from the south end of this ridge, which projects beneath the I-270 and I-70 interchange. The bedrock surface slopes down to the northwest and to the southeast from this plateau near the interchange, then generally slopes downward to the south and southeast. The bedrock near the interchange and northward along I-270 and eastward along I-70, lies at an approximate elevation of 750 feet mean sea level (msl), or approximately 27 to 33 feet below the ground surface. The bedrock surface gets only slightly deeper moving northward and approximately 50 feet deeper eastward from the interchange near the Brice Road overpass over I-70. The bedrock surface slopes upward moving northward along Brice Road from the Brice Road overpass over I-70.

2.2 Observations of the Project

The site of the proposed FRA-70-22.85 project is located along the east side of Columbus, in Franklin County, Ohio, with the project limits stretching from the east side approximately 1,400 feet east of the existing I-70 exit ramp to Brice Road, westward along I-70 to the I-270 northbound ramp. On the north side, the project extends along Brice Road to the first intersection north of the bridge, and on the south side, the project extends along Brice Road to the intersection of Chantry Drive and Brice Road. Land use surrounding the majority of the project vicinity is predominantly commercial and residential units.

3.0 EXPLORATION

A total of 75 borings were performed for the proposed roadway improvements, culvert structures and noise barriers as part of the overall FRA-70-22.85 project. The borings were performed between the dates of July and October 30, 2020. An additional investigation was performed between November 18 and 31, 2021, consisting of five (5) soil borings, along with two (2) Wildcat dynamic cone penetrometer (DCP) tests along the midslope of the east embankment of Brice Road, south of I-70. A schedule of the borings performed is provided in Appendix II. The roadway borings were advanced to depths ranging between 6 and 10 below the existing ground surface. The remaining borings performed for the roadway embankment, culverts and noise barriers were advanced to depths ranging from 25 to 40 feet. It should be noted that borings B-005-0-19 through B-008-0-19 were eliminated due to the removal of the portion of Noise Wall 2 in the area of these borings.

Boring locations were determined and field located by Rii personnel prior to drilling operations. Coordinates and ground surface elevations of the as drilled boring locations were provided by the EMH&T survey team. Isolated borings were not able to be surveyed due to the period between final survey and completion of drilling; therefore, approximate information from the handheld GPS locations are provided on the individual boring logs.

In addition to the borings performed, a total of nine (9) pavement cores were performed along I-70 and Brice Road. A summary of the locations of the pavement cores is presented in Table 1 below.

Table 1. Summary of FRA-70-22.85 Pavement Cores

Table it duffinally of FRA 10 22100 Favoritoric dolog								
Pavement Core	Alignment	Station	Off	set	Latitude ¹	Longitude ¹	Ground Elevation (feet) ¹	
X-017-0-19	I-70	548+64	30.3	LT	39.9336471	-82.8444080	784.8	
X-027-0-19	I-70	562+00	17.4	LT	39.9333469	-82.8396627	793.2	
X-035-0-19	I-70	573+02	35.1	LT	39.9331766	-82.8357381	794.1	
X-052-0-19	Brice Road	8+08	35.2	LT	39.9265351	-82.8314636	785.9	
X-056-0-19	Brice Road	14+27	14.0	RT	39.9282213	-82.8311316	786.0	
X-058-0-19	Brice Road	19+50	48.6	LT	39.9296647	-82.8312206	797.8	
X-064-0-19	Brice Road	27+67	16.7	LT	39.9318958	-82.8308982	819.2	
X-082-0-19	Brice Road	37+29	30.5	LT	39.9345323	-82.8307015	813.6	
X-093-0-19 ²	I-70	597+31	41.6	LT	39.9329097	-82.8264189	806.0	

^{1.} Ground surface elevations and coordinates were provided by EMH&T survey.

^{2.} Pavement core location was not able to be surveyed. Coordinates and elevation are approximate based on handheld GPS.

The borings performed were drilled with either an all-terrain vehicle (ATV) or truck-mounted rotary drilling machine, utilizing 3.25-inch inside diameter hollow-stem augers to advance the holes between sampling attempts. Standard penetration testing (SPT) and split spoon sampling were performed continuously and 2.5-foot intervals to a depth of 25 feet below the existing ground surface and at 5.0-foot intervals thereafter to the boring completion depths.

The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Driving resistance is recorded on the boring logs in terms of blows per 6-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in foundation system design. Measured blow count (N_m) values are corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation. Both values are represented on boring logs presented in Appendix IV.

$$N_{60} = N_m^*(ER/60)$$

Where:

N_m = measured N value

ER = drill rod energy ratio, expressed as a percent, for the system used

The hammers for the CME-55, Mobile B53 and CME-750X drill rigs operated by Rii on this project were calibrated on September 4, 2018 and have drill rod energy ratios of 91.2, 80.7, and 79.5 percent, respectively. Borings performed on or after August 31,2020 were performed based on rig calibrations performed on August 31, 2020, and have drill rod energy ratios of 84.2, 83.6 and 86.2 percent for the CME-55, Mobile B53, and the CME-750X, respectively.

Hand penetrometer readings, which provide a rough estimate of the unconfined compression strength (UCS) of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

The Wildcat DCP test is a lift and drop that allows for the calibration of blow counts to that of equivalent SPT N_{60} values. The Wildcat uses a 35-pound hammer raised to a height of 15 inches to drive a 2.75-centimeter diameter rod and 3.59-centimeter diameter point into the ground. Blow counts are logged every 10 centimeters and correlations are made to equivalent N_{60} values. The tip resistance and equivalent N_{60} values are used to infer the consistency of cohesive and granular soils within the strata.

Upon completion of field work, the borings were backfilled with bentonite chips and soil cuttings. Where borings penetrated the existing pavement, an equivalent thickness of cold patch asphalt was used to repair the pavement surface.

During drilling, field personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the recovered soil and rock samples were visually classified, and select samples from the borings performed for the subject structures were tested, as noted in Table 2.

Table 2. Laboratory Test Schedule

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D 2216	617
Plastic and Liquid Limits	AASHTO T89, T90	150
Gradation – Sieve/Hydrometer	AASHTO T88	154
Sulfate Content	ODOT Supplement 1122	27

The tests performed are necessary to classify existing soil according to the ODOT classification system and to estimate engineering properties of importance in determining foundation design and construction recommendations. Results of the laboratory testing are presented on the individual boring logs in Appendix IV. A description of the soil and rock terms used throughout this report is presented in Appendix III.

4.0 FINDINGS

Interpreted engineering logs have been prepared based on the field logs, visual examination of samples and laboratory test results. Classification follows the respective version of the ODOT Specifications for Geotechnical Explorations (SGE) at the time the exploration borings were performed. The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Materials

The borings were generally performed in the vicinity of the proposed roadway alignment. All borings except B-039-0-19, B-049-0-19, B-053-0-19, B-055-0-19, B-059-0-19 and B-060-0-19, encountered topsoil thicknesses between 2 inches and 10 inches. The remaining borings, noted above, encountered asphalt over aggregate base or concrete. Borings performed within the existing pavement encountered between 6 and 12 inches of asphalt overlying 4 inches to 10 inches of aggregate base, with the exception of boring B-055-0-19, which encountered 12 inches of concrete beneath the asphalt.

Findings of the pavement cores performed are summarized in Table 3 below. Details of the surface findings are provided on the individual boring logs in Appendix III and pavement core data sheets in Appendix V.

Table 3. Pavement Core Data

	Asphalt T	hickness by Co	mposition	Total	Concrete	Aggregate
Core ID	Surface (in)	Intermediate (in)	Base (in)	Asphalt Thickness (in)	Thickness (in)	Base Thickness (in)
X-017-0-19	5.00	13.00		18.00		6.50
X-027-0-19	2.50	16.75	-	19.25	1	7.00
X-035-0-19	3.50	8.00	6.00	17.50		7.00
X-052-0-19	7.75	3.00		10.75		
X-056-0-19	3.00	9.75		12.75		
X-058-0-19	1.00	8.50	1	9.50	1	4.00
X-064-0-19	4.00	2.50	5.25	11.75		5.00
X-082-0-19	5.50		3.50	9.00	3.00	5.00
X-093-0-19	4.25	13.75		18.00		6.00

4.2 Subsurface Soils

Below surface material, materials identified as existing fill was encountered in 19 of the borings at depths ranging from 1.5 feet to 15.5 feet below existing grade. In general, the fill was described as clay, silty clay, silt and clay, sandy silt, gravel with sand and silt and gravel with sand, silt and clay, and gravel with sand (ODOT A-7-6, A-6b, A-6a, A-4a, A-2-4, A-2-6, and A-1-b), and contained construction debris consisting of asphalt, concrete, rock fragments and other debris consisting of wood fibers and other organic material.

Underlying the surficial and existing fill materials, the natural soils were encountered, consisting of both cohesive and granular deposits. The natural cohesive soils were described as clay, silty clay, silt and clay, sandy silt and silt (ODOT A-7-6, A-6-b, A-6a, A-4a, and A-4b). The granular soils were described as sand and gravel, gravel with sand and silt, gravel with sand and silt and clay (ODOT A-1-a, A-1-b, A-2-4, and A-2-6).

The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soils encountered ranged from medium stiff $(0.5 < \text{HP} \le 1.0 \text{ tsf})$ to hard (HP > 4.0 tsf). The unconfined compressive strength of the cohesive soil samples tested, obtained from the hand penetrometer, ranged from 0.5 to over 4.5 tsf (limit of instrument). The relative density of granular soils is primarily derived from SPT blow counts (N₆₀). Based on the SPT blow counts obtained, the granular soils

encountered ranged from loose (5 < $N_{60} \le 10$ blows per foot [bpf]) to very dense ($N_{60} > 50$ bpf). Blow counts recorded from the SPT sampling within the granular soil deposits ranged from 7 to 66 bpf.

Natural moisture contents of the soil samples tested ranged from 3 to 32 percent. The natural moisture contents of the cohesive soil samples tested for plasticity ranged from 14 percent below to 11 percent above their corresponding plastic limits. In general, the soil exhibited natural moisture contents considered to be significantly below to moderately above optimum moisture levels.

4.3 Bedrock

Bedrock was encountered in borings B-009-0-19 and B-010-0-19 at a depth of 21.0 feet beneath the existing ground surface, or approximately elevation 758.8 and 757.8 feet msl, respectively. The bedrock was described as slightly to highly weathered black shale.

Bedrock was not encountered in any of the remaining borings included with this roadway exploration report. However, shale fragments were encountered in various borings across the overall project site.

4.4 Groundwater

Groundwater seepage was encountered in 20 of the borings at depths ranging from 4.0 to 19.7 feet below the ground surface. More significant groundwater flow was encountered during drilling (initial water level) in 34 of the borings at depths ranging from 5.6 to 24.5 feet below the existing ground surface. Measurable groundwater was observed at the completion of drilling in 24 of the borings at depths ranging from 3.5 to 20.0 feet below existing grade.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater level. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of what was encountered during the drilling process may be found on the individual boring logs in Appendix IV.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the drilling and testing program have been used to determine the shear strength parameters for the soil encountered at the site. These parameters have been used to provide recommendations for the design of the proposed roadway improvements and culvert structures and general earthwork recommendations, which are discussed in the following paragraphs.

Design details of the proposed roadway improvements were provided by EMH&T. It is understood that the proposed roadway improvements include Brice Road overlay from approximately Station 1+80 to Station 42+90 and construction of the proposed I-70 WB-CD road extends from approximately station 1540+00 to 1618+00. Additionally, it is understood that the proposed improvements will include widening of Brice Road for construction of a shared use path and to accommodate the proposed bridge structure widening and interchange reconstruction.

Based on information provided by the Rii design team, it is understood that five (5) culvert improvements are proposed as part of this project, including a box culvert extension along I-70, culvert extension on the east and west side of Brice Road, north of I-70, and a culvert realignment at the intersection of Brice Road and Tussing Road, south of I-70, a twin box culvert extension underneath I-70 and a box culvert underneath Chatford Drive. This report also includes drilled shaft foundation recommendations for the noise walls.

5.1 General Embankment and Subgrade Preparation

Embankment construction and subgrade preparation should be performed in accordance with the ODOT CMS Items 203 and 204. Prior to embankment construction or subgrade preparation, perform clearing and grubbing, in accordance with Item 201 and remove existing pavement and base materials, as well as other structures or obstructions, as necessary, in accordance with Item 202. The site should be stripped of any topsoil, organics, or other deleterious, or unsuitable materials within the footprint of the proposed embankment and subgrade. It is anticipated that areas within the ditch lines of I-70 and Brice Road, as well as near the toe of the existing embankments will have greater topsoil thicknesses than encountered in the borings.

Material to be utilized as borrow should be restricted to conform to Item 203 for embankment and Item 204 for subgrade. All embankment material should be spread and compacted in accordance with Item 204. Frozen material should not be incorporated into any new fill or built upon with new fill or pavement materials.

5.2 Pavement Subgrade Recommendations

The subgrade soils along the alignment, within the project corridor, are anticipated to consist of predominantly cohesive materials comprised of medium stiff to hard clay, silty

clay, silt and clay, and sandy silt (ODOT A-7-6, A-6b, A-6a, A-4a). Based on the soil conditions encountered during the drilling phase, it is estimated that the subgrade soils within the upper portions of the proposed subgrade will require some level of stabilization under ODOT GB1.

Based on information provided by EMH&T, it is understood that the proposed cut and fill along the alignment of Brice Road varies between approximately 2 feet of cut to approximately 6 feet of fill, with the exception of the vicinity of the proposed CD road culvert under Brice Road and in the vicinity of Ramps M and N of the overall project, where significantly more cut is anticipated. It is also understood that the proposed cut and fill along the alignment of Brice Road varies between approximately 2.5 feet of cut to approximately 4 feet of fill. Furthermore, it is understood that the proposed improvements within the existing pavement limits of I-70 consist of a pavement overlay with negligible cut or fill.

Finally, it is understood that approximately 3 feet of fill is planned along Chatford Drive to accommodate the proposed box culvert. The subgrade recommendations for Chatford Drive should be considered **preliminary** pending the results of any necessary additional borings, as the borings in this area were intended to evaluate the subsurface conditions of the proposed box culvert and CIP Walls 2A and 2B. Also, no borings were performed along the northern end of the proposed improvements to Chatford Drive, which is approximately a length of 230 feet.

5.2.1 Subgrade Stabilization

Based on the ODOT GB1 guidelines, when approximately 30 percent or more of the subgrade area requires stabilization, consideration should be given to utilizing a global stabilization option. For this project, approximately 20 percent of the subgrade area is anticipated to require stabilization based on the soil borings performed for the Brice Road alignment and proposed I-70 WB-CD road alignment. Therefore, global stabilization is not considered to be warranted for either the proposed Brice Road or the I-70 WB-CD alignments. However, approximately 33 percent of the subgrade area in the area of Chatford Drive is anticipated to require stabilization. Therefore, global stabilization should be considered for the proposed alignment of Chatford Drive. The overall average site parameters are presented in Table 4 below.

Table 4. Average Site Parameters

Alignment	Average N _{60L}	Average PI	Average Moisture	Average Optimum Moisture	Average Group Index	Average CBR
I-70 WB-CD Rd.	12	16	16	14	9	6
Brice Rd.	14	14	15	14	8	7
Chatford Dr.	7	15	19	13	11	6

Based on the results of the GB-1 analysis, the following subgrade stabilization and corresponding project limits presented in Table 5 below are recommended.

Table 5. Spot Stabilization Recommendations

Alignment	Start	End	Recommended Subgrade Stabilization
I-70 WB-CD Rd.	Sta. 1572+50	Sta. 1576+00	12" Item 204 Excavate and Replace
Price Pd	Sta. 1+80	Sta. 3+50	12" Item 204 Excavate and Replace
Brice Rd.	Sta. 5+00	Sta. 7+00	18" Item 204 Excavate and Replace
Chatford Dr.	Sta 62+97.32	Sta. 65+00	14" Item 204 Excavate and Replace

In accordance with ODOT GB-1, plan note G121 should be included in the project plan set. The actual depths and limits of Item 204 should be determined by the Project Engineer in the field based on the results of proof rolling and subgrade observations in accordance with ODOT CMS Item 204 and guidance provided under the ODOT Construction Administration Manual of Procedures (MOP) for Item 204. Where the Item 204 Excavate and Replace depth due to unstable subgrade is greater than 18 inches, based on the results of proof rolling, replacement using geogrid is recommended, where feasible. Undercuts should extend 18 inches beyond the edge of the surface of the pavement, paved shoulder, or paved medians. Upon completion of the stabilization, the entire subgrade should be proof rolled in accordance with Item 204 to verify that stability has been achieved.

5.2.2 Subgrade Design Considerations

California Bearing Ratio (CBR) values for the entire project ranged from 3 to 12 for the I-70 WB-CD alignment and from 4 to 12 for the Brice Road alignment, with an average of 6 for I-70 WB-CD, an average of 7 for Brice Road, and an average of 6 for Chatford Drive. Based on the conditions encountered across the subject site, it is recommended that pavement design be based on a design CBR value of 6 for I-70 WB-CD, a design CBR value of 7 for Brice Road, and a design CBR of 6 for Chatford Drive with a corresponding resilient modulus, M_R, of 7,200, 8,400, and 7,200 psi, respectively. Correlation charts indicate a modulus of subgrade reaction (K) of 150 pounds per cubic inch (pci), 165 pci, and 150 pci and a soil support value (SSV) of 4.4, 4.9, and 4.4 for the I-70 WB-CD alignment, the Brice Road alignment, and the Chatford Road alignment, respectively.

It should be noted, per ODOT GB1, soils with sulfate content in excess of 5,000 parts per million (ppm) cannot be chemically stabilized due to the potential for sulfate heave in the soil. Based on the results of the testing, the sulfate contents of the subgrade soils range from less than 100 ppm to 1,800 ppm, with the exception of samples tested in boring

B-094-0-19, which indicated a concentration of 9,760 ppm. Therefore, in accordance with GB1, if chemical stabilization is considered as an alternative, the District Geotechnical Engineer should be informed prior to performing work. It should be noted that sulfate testing was not performed on the samples recovered in the borings along Chatford Drive.

Please note that the recommended CBR values assume that the materials utilized for the subgrade in fill areas are equivalent to, or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value as provided above.

Pavement design is dependent on the inclusion of adequate surface and subsurface drainage in order to maintain the compacted subgrade near optimum moisture conditions throughout the lifetime of the pavement. If underdrain systems are considered, they should be installed in accordance to the specifications presented in Item 204 of the ODOT CMS.

5.3 Embankment Recommendations

Based on the plans provided by EMH&T, it is understood that the Brice Road improvements include widening for construction of a shared use path along the east side of Brice Road, as well as widening along the west side to accommodate the proposed interchange improvements and bridge construction. It is understood that fill heights between 3 feet (as well as sidehill sliver fills) and up to approximately 15 feet of new fill is proposed within the proposed limits of widening. North of I-70, boring B-081-0-19 was performed for the proposed widening. Additionally, borings B-084-0-19 and B-085-0-19 were performed for proposed Retaining Wall No. 8, which was eliminated during the design process. South of I-70, borings B-058-1-21, B-058-2-21, B-059-1-21, and B-059-2-21 were performed for the proposed widening. Based on the proposed fill configuration and the subsurface soils, it is estimated that any settlement will range from less than 1 inch, to a total of 1.6 inches on the south side, east of Brice Road, due the existing pressures from the existing embankment, and will occur primarily during construction due to the granular nature of the foundation soils.

Considering the proposed widening will include new fill on the existing slopes, which are generally on the order of 3H:1V to 2H:1V, special benching will be required in accordance with ODOT GB-2 Special Benching. Proposed fill on existing slopes steeper than 8H:1V shall be benched into the existing slope and constructed in accordance with ODOT Items 201 and 203. Special benching is required for proposed fill on existing slopes steeper than 4H:1V to ensure the embankment is "knitted" together. Based on the plans available, it is anticipated that special benching will be required along Brice Road at the limits summarized in Table 6 below.

Table 6. Special Benching Recommendations

	Limits of	Stabilization	0" 15: 1:
Location	Start	End	Offset Direction
Brice Road – South of	Sta. 18+50 Sta. 29+00	Sta. 23+50 Sta.29+14.19	East Side (Right)
– South of I-70	Sta. 18+00	Sta. 29+14.19	West Side (Left)
Brice Road	Sta. 36+00	Sta. 40+50	East Side (Right)
– North of I-70	Sta. 37+00	Sta. 39+50	West Side (Left)

Slope stability analysis were performed to check the stability of the proposed embankment widening on the south side of I-70. The computer software program Slide manufactured by Rocscience, Inc. was utilized to perform the analysis. Results of the analysis indicated a factor of safety greater than 1.5 for drained condition (long-term stability). The sections analyzed was selected at Brice Road in the vicinity of explorations D-058-1-21 and B-058-2-21 (Stations 19+50 to 20+50) along with B-059-1-21, D-059-2-21 and B-060-0-21 (Stations 22+50 to 24+00).

5.4 Culvert Foundation Recommendations

Based on plan information provided by the Rii design team, it is understood that five (5) culverts, as discussed in Section 5.0, are proposed for the project. It is understood that the proposed culverts include box culvert extensions and realignment of an existing culvert. The following subsections include recommendations for the nominal and factored bearing resistance, as well as the anticipated settlement resulting from the service limit bearing pressure based on the base width provided in the plan information provided.

5.4.1 Box Culvert at I-70 – Station 606+42.82

Based on information provided, it is understood that the proposed culvert extension at Station 606+42.82 along I-70 is to accommodate construction of the proposed I-70 WB-CD road construction. The proposed culvert extension includes a 9-foot by 5-foot box culvert extension of approximately 38 feet in length, with a cast-in-place concrete full height head wall of approximately 9 feet. The proposed bearing elevation of the box culvert and head wall is reportedly at approximate elevation 799.0. Boring B-100-1-19 was performed for the proposed culvert, and extended to a depth of 40 feet. Based on the findings of the borings, the foundation soils consist of stiff to hard sandy silt (ODOT A-4a). Bearing capacity and settlement analyses were performed to determine the service limit bearing pressures based on total settlements of 0.5 inch, 1.0 inch, and 1.5 inches, as well as the strength limit bearing capacity. Results of the analysis are presented in the table below.

Table 7. Culvert Headwall – I-70 – Station 606+42.82

Effective Footing Width	Service Lir	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
6	1.3	4.3	6.0	11.9	6.5

The service limit bearing pressure that results in a maximum total settlement of 0.5, 1.0 and 1.5 inches was calculated and presented in Table 7. A geotechnical resistance factor of $\varphi_b = 0.55$ has been considered in calculating the factored bearing resistance at the strength limit state for the proposed foundation. Based on the bearing pressures calculated, and applying the geotechnical resistance factor to the nominal bearing resistance at the strength limit state, the service limit state should control the minimum footing dimensions.

5.4.2 Box Culvert at Brice Road – Station 38+50.29

Based on information provided, it is understood that the proposed culvert extension at Station 38+50.29 along Brice Road is to accommodate construction of the proposed Brice Road widening. The proposed culvert extension includes a 7-foot box culvert extension of approximately 18 feet in length on the west side and 24 feet in length on the east side, with a cast-in-place concrete full height head wall of approximately 11 feet. The proposed bearing elevation of the box culvert and head wall is reportedly at approximate elevation 788.39 and 789.73 on the west and east side, respectively. Borings B-083-1-19 and B-083-2-19 were performed for the proposed culvert extensions, and extended to a depth of 40 feet each. Based on the findings of the borings, the foundation soils consist of medium stiff to very stiff sandy silt (ODOT A-4a) on the west side and medium dense to dense gravel with sand (ODOT A-1-b). Bearing capacity and settlement analyses were performed to determine the service limit bearing pressures based on total settlements of 0.5, 1.0 and 1.5 inches, as well as the strength limit bearing capacity. Results of the analysis are presented in the table below.

Table 8. Culvert Headwall – Brice Road – Station 38+50.29

Effective Footing Width	Service Lir	nit Bearing Pre	essure (ksf)	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored	
6	1.0	4.0	5.5	11.8	6.5	

The service limit bearing pressure that results in a maximum total settlement of 0.5, 1.0 and 1.5 inches was calculated and presented in Table 8. A geotechnical resistance factor of $\varphi_b = 0.55$ has been considered in calculating the factored bearing resistance at the strength limit state for the proposed foundation. Based on the bearing pressures calculated, and applying the geotechnical resistance factor to the nominal bearing resistance at the strength limit state, the service limit state should control the minimum footing dimensions.

5.4.3 Box Culvert at Tussing Road – Station 10+64.16

Based on information provided, it is understood that the proposed culvert at the intersection of Tussing Road and Brice Road consist of realignment the existing tributary to accommodate proposed widening along Tussing Road. Reportedly, the proposed work consists of removing the existing 18-foot by 7-foot box culvert and corrugated metal arch culvert system and replacing it with an 18-foot by 7-foot precast reinforced concrete box culvert with cast-in-place concrete full height headwalls. The proposed bearing elevation of the box culvert and head wall is reportedly at elevation 774.0. Boring B-054-0-19 was performed for the proposed culvert realignment, and extended to a depth of 40 feet. Based on the findings of the boring, the foundation soils consist of very stiff to hard silt and clay (ODOT A-6a). Bearing capacity and settlement analyses were performed to determine the service limit bearing pressures based on total settlements of 0.5, 1.0 and 1.5 inches, as well as the strength limit bearing capacity. Results of the analysis are presented in the table below.

Table 9. Culvert Headwall – Tussing Road Station 10+64.16

Effective Footing Width	Service Lir	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
(feet)	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
8	0.4	1.3	2.7	11.7	6.4

The service limit bearing pressure that results in a maximum total settlement of 0.5, 1.0 and 1.5 inches was calculated and presented in Table 9. A geotechnical resistance factor of $\varphi_b = 0.55$ has been considered in calculating the factored bearing resistance at the strength limit state for the proposed foundation. Based on the bearing pressures calculated, and applying the geotechnical resistance factor to the nominal bearing resistance at the strength limit state, the service limit state should control the minimum footing dimensions. Additional capacity may be achieved by performing an undercut beneath the bearing elevation and replacing the material with compacted granular fill. Analysis was performed for a 3-foot undercut beneath the proposed bearing elevation, which provided a service limit bearing pressure of 2.6 kips per square foot (ksf) for 1.0 inch of settlement.

5.4.4 Box Culvert at Tussing Road (FRA-BPDRW-41.060) – Station 12+27.18

Based on information provided, it is understood that the proposed culvert extension at Station 12+27.18 along Tussing Road is to accommodate the addition of a turn lane from Tussing Toad to northbound Brice Road.

Reportedly, the proposed work consists of removing the existing 20-foot by 7-foot corrugated metal arch culvert and replacing it with an 18-foot by 7-foot precast reinforced concrete 4-sided box culvert with cast-in-place reinforced concrete full height headwalls and wingwalls. The proposed bearing elevation of the box culvert and head wall is reportedly at elevation 774.0. Boring B-055-0-19 was performed for the proposed culvert, and extended to a depth of 40 feet. Based on the findings of the boring, the foundation soils consist of hard silt and clay and silty clay (ODOT A-6a and A-6b). Bearing capacity and settlement analyses were performed to determine the service limit bearing pressures based on total settlements of 0.5, 1.0 and 1.25 inches, as well as the strength limit bearing capacity. Results of the analysis are presented in the table below.

Table 10. Culvert Headwall – Tussing Road Station 12+27.18

Effective Footing Width (feet)	Service Lir	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
	0.5 inch	1.0 inch	1.25 inch	Nominal	Factored
8	0.7	2.8	3.8	6.9	3.8

The service limit bearing pressure that results in a maximum total settlement of 0.5, 1.0 and 1.25 inches was calculated and presented in Table 10. A geotechnical resistance factor of $\varphi_b = 0.55$ has been considered in calculating the factored bearing resistance at the strength limit state for the proposed foundation. Based on the bearing pressures calculated, and applying the geotechnical resistance factor to the nominal bearing resistance at the strength limit state, the service limit state should control the minimum footing dimensions. Additional capacity may be achieved by performing an undercut beneath the bearing elevation and replacing the material with compacted granular fill. Analysis was performed for a 0.5-foot undercut beneath the proposed bearing elevation, which provided a service limit bearing pressure of 3.3 kips per square foot (ksf) for 1.0 inch of settlement.

5.4.5 Box Culvert at Chatford Drive – Station 64+75

Based on information provided, it is understood that the proposed single box culvert at approximately Station 64+75 along Chatford Drive is to accommodate construction of the Chatford Drive. The proposed culvert extension includes a 14-foot by 6-foot box culvert of approximately 75 feet in length with wingwall. The elevation of bottom of foundation is planned to be 778.52 feet. Boring B-040-1-21 was performed for the proposed culvert, and extended to a depth of about 20 feet. Based on the findings of the boring, the foundation

soils are expected to consist of very stiff to hard sandy silt (ODOT A-4a). Bearing capacity and settlement analyses were performed to determine the service limit bearing pressures based on total settlements of 0.5 inches, 1.0 inch, and 1.5 inches, as well as the strength limit bearing capacity. Results of the analysis are presented in the table below.

Table 11. Culvert Wingwall – Chatford Drive – Station 64+75

Effective Footing Width (feet)	Service Lir	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
6	0.1	3.5	5.1	16.3	8.9

The service limit bearing pressure that results in a maximum total settlement of 0.5, 1.0 and 1.5 inches was calculated and presented in Table 11. A geotechnical resistance factor of $\varphi_b = 0.55$ has been considered in calculating the factored bearing resistance at the strength limit state for the proposed foundation. Based on the bearing pressures calculated, and applying the geotechnical resistance factor to the nominal bearing resistance at the strength limit state, the service limit state should control the minimum footing dimensions.

5.4.6 Box Culvert at I-70 – Station 578+55.47

Based on information provided, it is understood that the proposed culvert extension at Station 578+55.47 along I-70 is to accommodate construction of the proposed I-70 WB-CD road over a drainage ditch. The proposed culvert extension includes a twin 22-foot by 8-foot precast reinforced concrete 4-sided box culvert extension of approximately 60 feet in length, with cast-in-place reinforced concrete headwalls and wingwalls. The bottom of foundation elevation is planned to be 778.52 feet. Boring B-040-0-19 was performed in proximity of the proposed culvert extension, and extended to a depth of about 25 feet. Based on the findings of the borings, the foundation soils are anticipated to consist of hard silt and clay (ODOT A-6a). Bearing capacity and settlement analyses were performed to determine the service limit bearing pressures based on total settlements of 0.5, 1.0 and 1.5 inches, as well as the strength limit bearing capacity. Results of the analysis are presented in the table below.

Table 12. Culvert Headwall/Wingwall – I-70 – Station 578+55.47

Effective Footing Width (feet)	Service Lir	nit Bearing Pre	Bearing Resistance at Strength Limit (ksf)		
	0.5 inch	1.0 inch	1.5 inch	Nominal	Factored
6	0.7	1.7	3.7	16.1	8.8

The service limit bearing pressure that results in a maximum total settlement of 0.5, 1.0 and 1.5 inches was calculated and presented in Table 12. A geotechnical resistance factor of $\varphi_b = 0.55$ has been considered in calculating the factored bearing resistance at the strength limit state for the proposed foundation. Based on the bearing pressures calculated, and applying the geotechnical resistance factor to the nominal bearing resistance at the strength limit state, the service limit state should control the minimum footing dimensions.

5.5 CIP Culvert Headwall – Tussing Road Station 12+27.18

It is proposed to construct CIP wingwalls along the stream located north of Tussing Road beginning at approximately station 12+27.00.

For CIP walls bearing on earthen foundations, footings should be proportioned such that the factored equivalent bearing pressure exerted at the front of the wall will not exceed the factored bearing resistance at the strength limit state. Further, the footings should also be proportioned such that the entire footing width remains in compression (no tensile stresses form under the footing, pulling the footing up and away from the bearing surface) under service conditions. In general, the typical width of a CIP wall foundation (B) is equal to 50 to 70 percent the wall height.

Typical sections for the proposed CIP retaining walls were included in the design plans provided, which were used in the analysis of the proposed walls. Where analyses indicates that the base width needs modified to meet the external and global stability requirements, then the base width (toe and/or heel width) was increased or decreased to satisfy the stability requirements.

Boring B-055-0-19 was performed along or within the vicinity of the alignment the proposed wingwalls. In general, the subsurface profile along the wall alignments consists of stiff to very stiff sandy silt, silt and clay and silty clay (ODOT A-6a, A-6b) extending to the boring termination depth. These soils are suitable for support of the proposed CIP walls in their current condition.

5.5.1 Strength Parameters Utilized in External Stability Analyses

The shear strength parameters utilized in the external stability analyses for the CIP walls are provided in Table 15.

Table 13. Shear Strength Parameters Utilized in CIP Wall Stability Analyses

Material Type	γ (pcf)	φ' (1) (°)	c' (2) (psf)	$S_u^{(3)}$ (psf)
Item 203 Granular Embankment (Over excavation backfill)	120	32	0	N/A
Very Stiff Silty Clay (ODOT A-6b)	120 to 125	26 to 27	0 to 50	1,625 to 4,250
Very Stiff Silt and Clay (ODOT A-6a)	120 to 130	27 to 28	0 to 100	1,750 to 5,000

^{1.} Per Figure 7-45, Section 7.6.9 of FHWA GEC 5 for cohesive soils and Table 10.4.6.2.4-1 of the 2020 AASHTO LRFS BDS for granular soils.

The shear strength parameters for the natural soils were assigned using correlations provided in FHWA Geotechnical Engineering Circular (GEC) No. 5 (FHWA-NHI-16-072) Evaluation of Soil and Rock Properties, the 2020 AASHTO LRFD BDS and based on past experience in the vicinity of the site with projects performed in similar subsurface profiles. A tabulation of the correlated shear strength parameters for each boring is provided in Appendix .

The typical section for the CIP retaining wall indicated that the backfill to be utilized above the heel of the wall will consist of standard embankment. A relatively thin section of drainage material is planned immediately behind the wall. The CIP wall has been calculated using the properties for both standard embankment and the in-situ soils. It should be noted that all stability calculations have been performed considering that the standard embankment will be placed as shown on the typical sections, and that the standard embankment will exhibit a minimum friction angle of 30 degrees when placed and compacted in accordance with ODOT Item 203.

5.5.1 Bearing Stability

The bearing materials along the retaining wall alignment is anticipated to consist of stiff to very stiff silt and clay and silty clay (ODOT A-6a, A-6b). CIP wall foundations bearing on these natural soils or newly placed embankment fill may be proportioned for a factored bearing resistance as indicated in Table 14. A geotechnical resistance factor of φ_b =0.55 was considered in calculating the factored bearing resistance at the strength limit state. The foundation widths presented in the following table are based on the dimensions provided in the typical sections for the respective retaining wall, or the minimum width required to satisfy external and global stability requirements.

^{2.} Estimated based on overconsolidated nature of soil.

^{3.} $S_u = 125(N_{60})$, Terzaghi and Peck (1967).

Table 14. CIP Wall Design Parameters

Wall No.	Station Along Wall	Reference Boring	Wall Height Analyzed	Foundation Width Analyzed	Backslope Behind	Bearing Resistance at Strength Limit (ksf)		Strength Limit Equivalent Bearing
	Alignment	(feet)	_	(feet)	Wall	Nominal	Factored ²	Pressure ³ (ksf)
FRA- BPDRW- 41.060	12+27.18	B-055-0-19	12.5	8.0	Level	6.94	3.82	2.44

- 1. Station limits are referenced to the proposed baseline of the respective wall alignment.
- 2. A geotechnical resistance factor of φ_b =0.55 was considered in calculating the factored bearing resistance at the strength limit state.
- 3. The strength limit equivalent bearing pressure is the uniformly distributed pressure asserted by the wall over an effective base width based on the eccentricity of the wall system at the strength limit state.

Rii performed a verification of the bearing pressure exerted on the subgrade material for the maximum specified wall height indicated in Table 14. Based on the minimum footing width presented, the factored equivalent bearing pressure exerted below the wall <u>will not exceed</u> the factored bearing resistance at the strength limit state.

5.5.2 Settlement Evaluation

The proposed CIP walls will be supporting the proposed embankment for the widening of Tussing Road and the entrance drive over the stream, and the top of the proposed walls will be above existing grade which will result in an increased net load on the bearing soils. Therefore, settlement analysis was performed for these retaining walls. The compressibility parameters utilized in the settlement analyses for the CIP walls are provided in Table 15.

Table 15. Compressibility Parameters Utilized in Settlement Analysis for CIP Walls

	<u> </u>						
	Material Type	γ (pcf)	<i>LL</i> (%)	C_c (1)	$C_r^{(2)}$	$e_o^{(3)}$	
Ito	em 203 Embankment	120	30	0.180	0.009	0.507	
Stiff to	o Very Stiff Silty and Clay (ODOT A-6a)	120 to 125	33 to 34	0.065 to 0.078	0.010 to 0.078	0.407 to 0.418	
Very S	Stiff to Very Stiff Silty Clay (ODOT A-6b)	115	35	0.060 to 0.069	0.006 to 0.007	0.402 to 0.410	

- 1. Per Table 6-9, Section 6.14.1 of FHWA GEC 5.
- 2. Estimated at 10% of C_c per Section 8.11 of Holtz and Kovacs (1981).
- 3. Per Table 8-2 of Holtz and Kovacs (1981).

The settlement analysis was performed considering that the bearing pressure is a uniformly distributed pressure asserted by the wall over an effective base width based on

the eccentricity of the wall system at the service limit state. Total settlements of up to 1.0 inch are anticipated along the alignments of the CIP walls.

Per Section 307.1.6 of the 2020 ODOT BDM, the maximum allowable differential settlement in the longitudinal direction is 1 in. / 500 ft. Based on the total anticipated settlement along the wall alignments, the maximum differential settlement in the longitudinal direction is anticipated to be less than 1 in. / 579 ft., which is within the tolerable limit of 1 in. / 500 ft. If the total or differential settlement values predicted for the proposed wall presents an issue with respect to the deformation tolerances that the wall can withstand, then measures should be taken to minimize the amount of settlement that will occur. This can be achieved by preloading the site using a surcharge and consolidating the underlying soils prior to constructing the walls. If preloading the site is not a desired option, then consideration could be given to ground improvement through the use of stone columns.

5.5.3 Eccentricity (Overturning Stability)

The resistance of the CIP walls to overturning will be dependent on the on the location of the resultant force at the bottom of the wall due to the overturning and resisting moments acting on the wall. For CIP walls, overturning stability is determined by calculating the eccentricity of the resultant force from the midpoint of the base of the wall and comparing this value to a limiting eccentricity value. Per Section 11.6.3.3 of the 2020 AASHTO LRFD BDS, for foundations bearing on soil, the location of the resultant of the reaction forces shall be within the middle two-thirds (2/3) of the base width. Therefore, the limiting eccentricity is one-third (1/3) of the base width of the wall. Based on the required foundation width presented in Table 14 and utilizing the soil parameters listed in Section 5.5.1 for the retained embankment material, the calculated eccentricity of the resultant force will not exceed the limiting eccentricity at the strength limit state.

5.5.4 Sliding Stability

The resistance of the CIP walls to sliding was evaluated per Section 11.6.3.6 of the 2020 AASHTO LRFD BDS. Given that the bearing soils along majority of the wall alignments consist of cohesive material, the sliding resistance was evaluated under both drained and undrained conditions. For drained conditions, the sliding resistance is determined by multiplying a coefficient of sliding friction "f" times the total vertical force at the base of the wall. The coefficient of sliding friction is determined based on the friction angle of the foundation soil. Based on the soil parameters listed in Section 5.5.1, a coefficient of sliding friction ranging from 0.53 was utilized for design. For undrained conditions, the sliding resistance is taken as the limiting value between the undrained shear strength of the bearing soil and half of the vertical stress applied by the wall multiplied by the width of the wall. Based on the soil parameters listed in Section 5.5.1, the undrained shear strength of the bearing material is estimated to range from 1.75 ksf.

A geotechnical resistance factor of ϕ_{τ} =1.0 was considered in calculating the factored shear resistance along the base of the wall. Based on the foundation width presented in Table 14 and utilizing the soil parameters listed in Section 5.5.1 for the retained embankment material, the resultant horizontal forces on the back of the CIP wall <u>will not exceed</u> the factored shear resistance at the strength limit state under drained or undrained conditions.

5.5.5 Final CIP Wall Considerations

Based on the results of the external analysis performed, all of the CIP wall sections analyzed meet all of the external and global stability requirements.

Calculations for external (bearing and sliding resistance and limiting eccentricity) and settlement of the CIP wall are provided in Appendix .

5.6 Drilled Shaft Foundations (Noise Barriers 1, 2 and 4)

The required shaft embedment for the proposed Noise Barriers 1, 2 ad 4 was determined in accordance with Section 802.1.2 of the ODOT Bridge Design Manual (BDM). Per ODOT BDM Section 802.1.2, the required embedment depth for the supporting drilled shafts is determined using energy and depth corrected SPT values and selecting the required embedment depth based on either the average or critical corrected SPT value from Table 802.1.2-1 for granular soils or 802.1.2-2 for cohesive soils. Based on the plans and profile information provided, the anticipated panel heights and spacing for each noise barrier are as follows:

Table 16. Noise Walls 1, 2 and 4 – Panel Heights and Spacing Information

Noise Barrier	Noise Barrier 1	Noise Barrier 2	Noise Barrier 4	
Panel Heights (feet)	13 to 20	15 to 20	15 to 19	
Maximum Panel Spacing Center-to-Center of the Drilled Shaft (feet)	24	24	24	

Based on cross section information provided, the transverse cross-slopes along the alignment of Noise Barrier 1 are generally level and transitions to 3:1 to 2:1 at about Sta. 29+44. Due to the shift in alignment of Noise Barrier 2, the transverse cross-slopes along this alignment between were not available at the time of this report. For the purposes of the analysis, the cross-slopes were estimated to be generally level to as steep as 2:1. The transverse cross-slopes along the alignment of Noise Barrier 4 are considered to be generally 3:1. In general, the analysis indicates that 2.5-foot diameter drilled shafts excavated to depths ranging from 7.5 to 15 feet for Noise Barrier 1, from 9.0 to 30.0 feet for Noise Barrier 2, and from 10.5 to 22 feet for Noise Barrier 4 will be required for the support of the noise wall. The following tables detail the required minimum drilled shaft

depth for each panel along each of the proposed noise barrier wall alignment. Calculations for the noise barrier foundation depths are provided in Appendix IX.

Table 17. Noise Barrier 1 Foundation Depth Requirements

From Panel	To Panel	Length (feet)	Representative Boring	Post Spacing (feet)	Barrier Height (feet)	Transverse Ground Slope	Proposed Shaft Depth (feet)
1	3	24	B-004-0-19	8	13-14	Level	7.5
4	8	120	B-004-0-19	24	15-16	Level	9.0
9	17	216	B-003-0-19	24	16	Level	9.0
18	25	192	B-002-0-19	24	16	Level	9.0
26	33	192	B-001-7-19	24	16	Level	9.0
34	42	216	B-001-6-19	24	16	Level	9.0
43	50	192	B-001-5-19	24	16	Level	9.0
51	58	192	B-001-4-19	24	16	Level	9.0
59	67	216	B-001-3-19	24	16	Level	9.0
68	75	192	B-001-2-19	24	16-17	Level	13.0
76	78	72	B-001-1-19	24	16-17	3:1	15.0
79	87	128	B-001-1-19	16	16-20	3:1	15.0
88	91	24	B-001-1-19	8	19-20	2:1	10.0

Table 18. Noise Barrier 2 Foundation Depth Requirements

Table 18. Noise Barrier 2 Foundation Depth Requirements									
From Panel	To Panel	Length (feet)	Representative Boring	Post Spacing (feet)	Barrier Height (feet)	Transverse Ground Slope	Proposed Shaft Depth (feet)		
1	8	192	B-010-0-19	24	15-16	5:1	11.0		
9	9	12	B-010-0-19	12	15	5:1	11.0		
10	10	24	B-010-0-19	24	15	5:1	11.0		
11	13	72	B-011-0-19	24	15-16	5:1	9.0		
14	15	28	B-011-0-19	14	15	5:1	9.0		
16	18	72	B-011-0-19	24	16	5:1	9.0		
18	20	72	B-011-0-19	24	15	5:1	9.0		
21	28	312	B-013-0-19	24	15-17	3:1	12.5		
29	29	12	B-013-0-19	12	15	3:1	12.5		
30	30	24	B-014-0-19	24	17	2:1	10.0		
31	31	12	B-014-0-19	12	15	2:1	10.0		
32	33	24	B-014-0-19	24	15	2:1	10.0		
34	34	12	B-014-0-19	12	15	2:1	10.0		
35	35	24	B-014-0-19	24	15	2:1	10.0		
36	36	12	B-014-0-19	12	15	2:1	10.0		
37	38	48	B-014-0-19	24	15	2:1	10.0		
80	86	168	B-024-0-19	24	15	2:1	14.0		
87	87	16	B-025-0-19	24	15	2:1	14.0		
88	96	192	B-025-0-19	24	15	2:1	14.0		
1	8	192	B-010-0-19	24	15-16	5:1	11.0		
9	9	12	B-010-0-19	12	15	5:1	11.0		
10	10	24	B-010-0-19	24	15	5:1	11.0		
11	13	72	B-011-0-19	24	15-16	5:1	9.0		
14	15	28	B-011-0-19	14	15	5:1	9.0		

Table 19. Noise Barrier 4 Foundation Depth Requirements

From Panel	To Panel	Length (feet)	Representative Boring	Post Spacing (feet)	Barrier Height (feet)	Transverse Ground Slope	Proposed Shaft Depth (feet)
1	5	120	B-095-0-19	24	15	3:1	15.0
6	13	192	B-096-0-19	24	15	3:1	22.0
14	21	192	B-098-0-19	24	15-16	3:1	15.0
22	28	144	B-099-0-19	24	15-16	3:1	15.0
29	29	12	B-099-0-19	12	15	3:1	10.5
30	32	24	B-099-0-19	8	17-18	3:1	10.5
33	33	12	B-099-0-19	12	19	3:1	10.5

The drilled shaft excavations should be carefully observed by a geotechnical engineering representative as soon as possible following excavation to assure adequacy. If inadequate bearing soil is encountered, the shaft excavations should be continued into more suitable end bearing soils or to bedrock. Since water has an adverse effect on cohesive soil, drilled shaft concrete should be placed as soon as possible following excavation, preferably the same day to reduce the potential for water related damage. Drilled shaft excavations should be kept dry and clean until concrete is placed to reduce damage to the bearing surfaces. For details about groundwater observations, refer to Section 4.4.

5.6.1 Drilled Shaft Considerations

The minimum requirements for proper inspection of drilled shaft construction are as follows:

- A qualified inspector should record the material types being removed from the hole as excavation proceeds.
- The use of casing for drilled shafts is recommended if caving material and/or groundwater is encountered at any time during the drilling of the shaft, or if groundwater seepage occurs in the drilled shaft.
- The placement of all concrete for the drilled shafts shall follow the American Concrete Institute's Design and Construction of Drilled Piers (ACI 336.3R-93).
- Concrete placed freefall should not be allowed to hit the sidewalls of the excavation and should not pass through any water. Therefore, concrete should be placed by tremie method if groundwater is encountered during construction of the drilled shafts.

- If concrete is placed by tremie method, it must be done so with an adequate head to displace water or slurry if groundwater has entered the drilled shaft (all tremie procedures shall follow applicable ACI specifications).
- The volume of concrete should be checked to ensure voids did not result during extraction of the casing.
- Pulling casing with insufficient concrete inside should be restricted.
- The bottom of drilled shaft excavation should be clean and free of loose material.
 Any loose material observed should be removed using a clean-out bucket (muck bucket).

In addition, it is recommended that, if casing is used, it be pulled after the concrete is poured, allowing for reuse of the casing, and eliminating reduction of side resistance (between soil and concrete).

5.7 Lateral Earth Pressure Parameters

For the soil types encountered in the borings, the "in-situ" unit weight (γ) , cohesion (c), effective angle of friction (φ') , and lateral earth pressure coefficients for at-rest conditions (k_o) , active conditions (k_a) , and passive conditions (k_p) have been estimated and are provided in Table 20 and Table 21.

Table 20. Estimated Undrained Soil Parameters for Design

Soil Type	γ (pcf) ¹	c (psf)	φ	k_a	k_o	k_p
Soft to Medium Stiff Cohesive Soil	115	750	0°	N/A	N/A	N/A
Stiff Cohesive Soil	120	1,500	0°	N/A	N/A	N/A
Very Stiff to Hard Cohesive Soil	125	3,000	0°	N/A	N/A	N/A
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	2,000	0°	N/A	N/A	N/A
Compacted Granular Engineered Fill	120	0	32°	0.27	0.47	6.82

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

Table 21. Estimated Drained Soil Parameters for Design

Soil Type	γ (pcf) ¹	c (psf)	φ	k_a	k_o	k_p
Soft to Stiff Cohesive Soil	115	0	26°	0.35	0.56	4.53
Very Stiff to Hard Cohesive Soil	125	50	28°	0.32	0.53	5.07
Loose Granular Soil	120	0	28°	0.32	0.53	5.07
Medium Dense Granular Soil	125	0	32°	0.27	0.47	6.82
Dense to Very Dense Granular Soil	130	0	36°	0.23	0.41	9.09
Compacted Cohesive Engineered Fill	120	0	30°	0.30	0.50	5.58
Compacted Granular Engineered Fill	120	0	32°	0.27	0.47	6.82

^{1.} When below groundwater table, use effective unit weight, $\gamma' = \gamma$ - 62.4 pcf and add hydrostatic water pressure.

These parameters are considered appropriate for the design of all subsurface structures and any excavation support systems. Subsurface structures (where the top of the structure is restrained from movement) should be designed based on at-rest conditions (k_o) . For proposed temporary retaining structures (where the top of the structure is allowed to move), earth pressure distributions should be based on active (k_a) and passive (k_p) conditions. Active earth pressure is developed as the structure moves away from the backfill or retained soil, while passive pressure is developed as the structure moves towards the backfill. A relatively small amount of lateral movement is needed to reach the active condition (≥ 0.1 percent of the height), whereas the movements required to engage the passive condition are approximately ten times greater than those required to develop active earth pressure. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials.

These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is assumed). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage. Surcharge loads, such as that imposed by traffic loading, will create additional lateral loading on the subsurface structures and excavation support systems. The resulting lateral earth pressure should be evaluated based on active (k_a) and at-rest (k_o) conditions and the anticipated magnitude of the loading.

Temporary retaining structures should be designed using the undrained soil parameters provided in Table 20, and the design should follow all applicable guidelines for the type of retaining structure utilized. Permanent retaining structures should be design using the drained soil parameters provided in Table 21. Regardless of whether the retaining structure is temporary or permanent, the effective unit weight ($\gamma' = \gamma - 62.4$ pcf) plus the hydrostatic water pressure ($\gamma_w * h_w$, where h_w is the height of water behind the wall above the base of the wall) should be utilized below the design groundwater level. The lateral

earth pressure coefficients should only be applied to the horizontal pressure resulting from the effective overburden pressure, and should not be applied to the hydrostatic water pressure.

In order to alleviate the build-up of hydrostatic pressure behind the walls, a minimum of 2.0 feet of clean free-draining granular fill (i.e., No. 57 gravel) should be placed full depth behind the walls. If granular fill other than No. 57 gravel is used, it should not have more than 8 percent (by weight) passing the No. 200 screen, and should be compacted to 95 percent of the maximum dry density as determined by the Standard Proctor Test (ASTM D698). A perforated, corrugated drain tile, wrapped with filter fabric, should be placed along the perimeter at the base of the wall for drainage purposes. A clay cap (minimum 1.0-foot thick) should be placed overtop the granular backfill to deter inflow of the surface water. The drainage system should properly outlet to a sewer or to a properly sized sump pump system.

The 2.0 feet of free draining material placed behind the wall prevents the formation of hydrostatic pressures as noted above. However, unless the free draining granular backfill is placed beyond the slip plane (see Figure 1), it has no influence on the equivalent fluid weight of the soil. If free-draining granular fill (meeting the requirements listed above) is to be placed beyond the slip plane (ρ =45° for at-rest conditions; ρ =45°+ ϕ /2 for active conditions), the values presented for the compacted granular engineered fill can be employed, consequently lowering the pressures on the wall.

Granular Baokilli
Slip, Plane

Drain Tile

Figure 1. Slip Plane

Backfill Rankine Zone with Select Backfill

5.8 Construction Considerations

All site work shall conform to local codes, and to the latest ODOT CMS, including that all excavation and embankment preparation and construction should follow ODOT Item 200 (Earthwork).

5.8.1 Excavation Considerations

All excavations should be shored / braced or laid back at a safe angle in accordance to Occupational Safety and Health Administration (OSHA) guidelines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, temporary shoring may be required. The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Table 22. Excavation Back Slopes

Soil	Maximum Back Slope	Notes					
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage					
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage					
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage					
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None					
Rock to 3.0' +/- below Auger Refusal	0.75 : 1.0	Above Ground Water Table and No Seepage					
Stable Rock	Vertical	Above Ground Water Table and No Seepage					

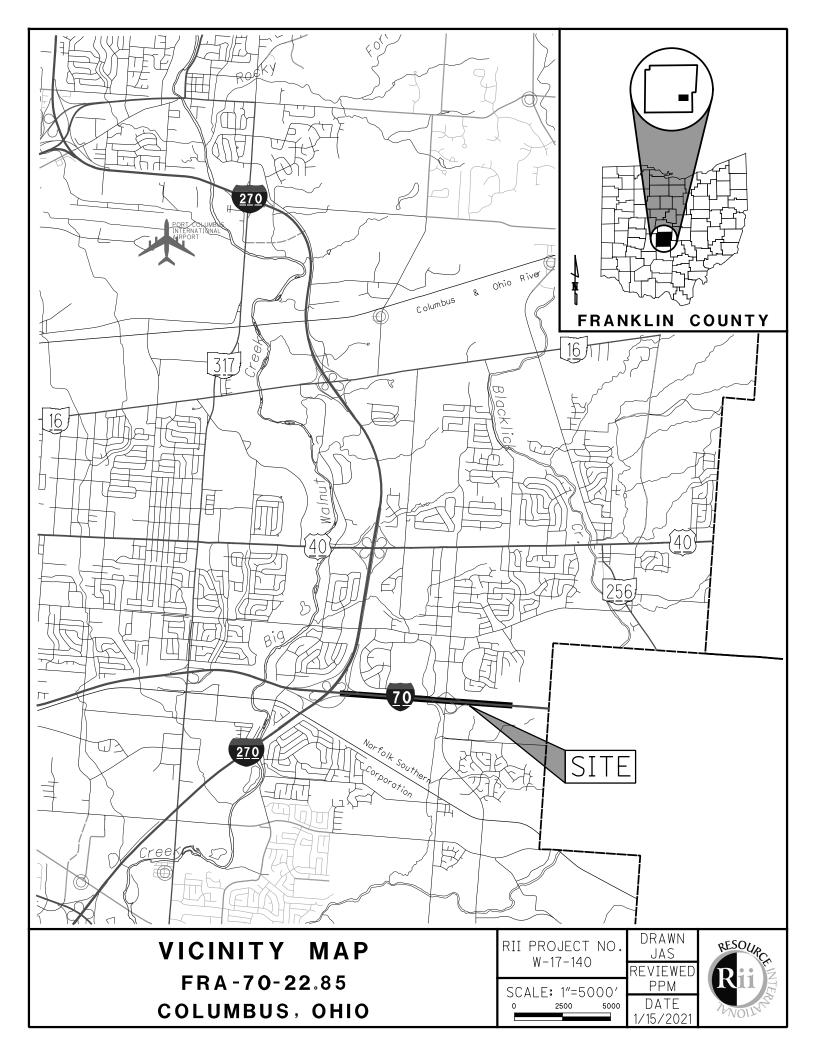
5.8.2 Groundwater Considerations

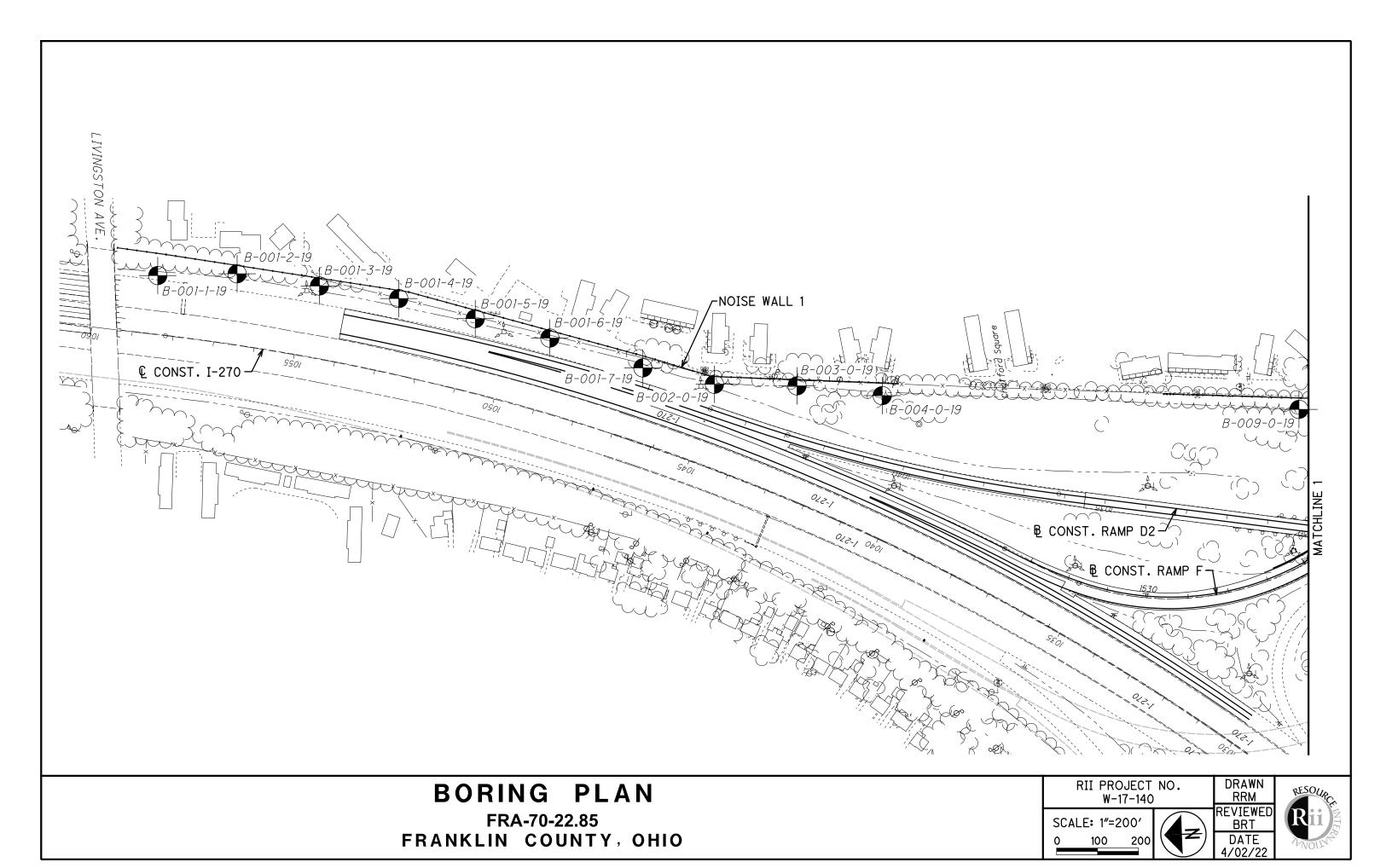
Based on the groundwater observations made during drilling, groundwater seepage may be encountered during construction. Where groundwater is encountered, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition where soft silts and/or fine sands are encountered. It is preferable that the groundwater level, if encountered, be maintained at least 36 inches below the deepest excavation. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level. Note that determining and maintaining actual groundwater levels during construction is the responsibility of the contractor.

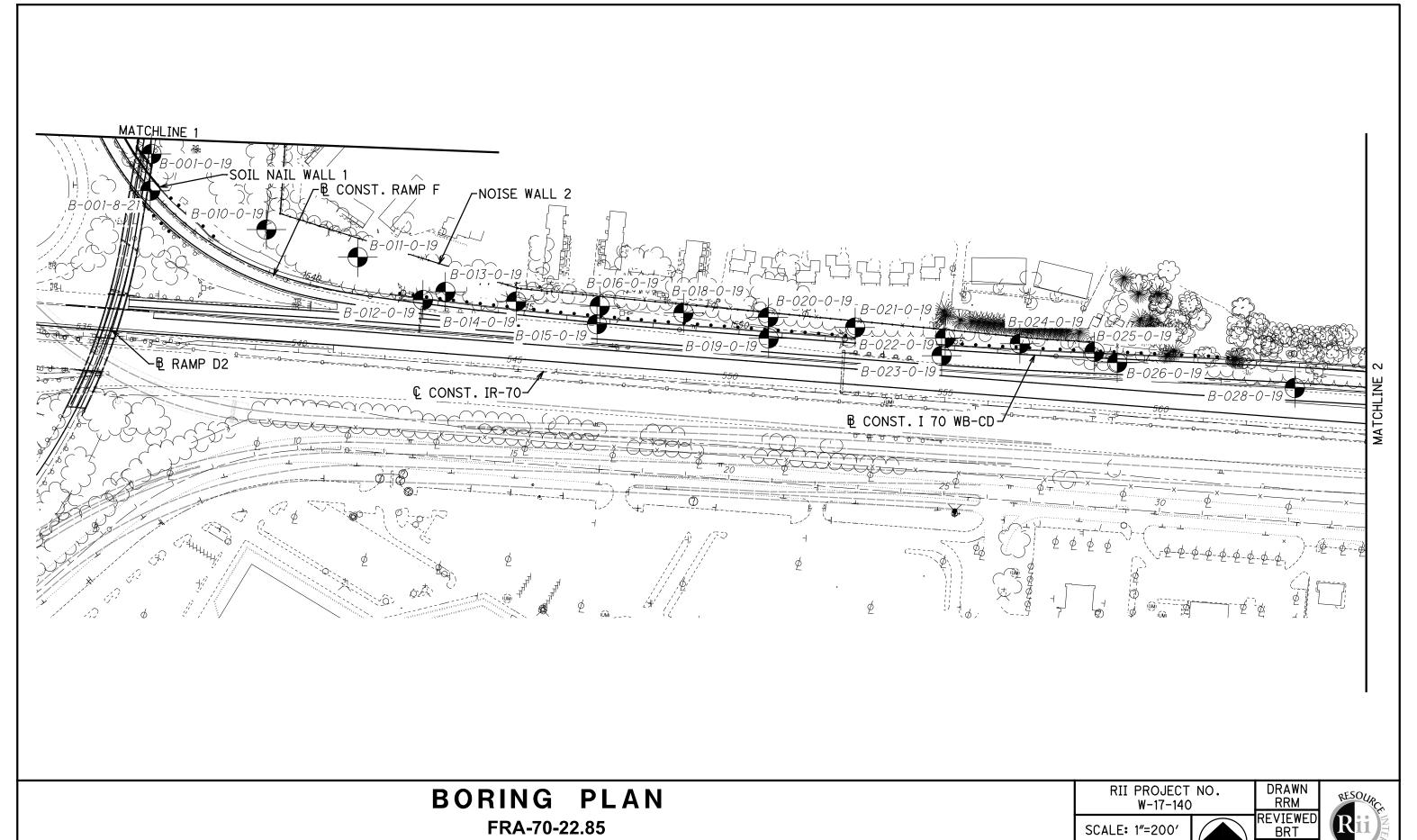
6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of our recommendations.

The recommendations for this project were developed utilizing soil and bedrock information obtained from the test borings that were made at the proposed site. At this time we would like to point out that soil borings only depict the soil and bedrock conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

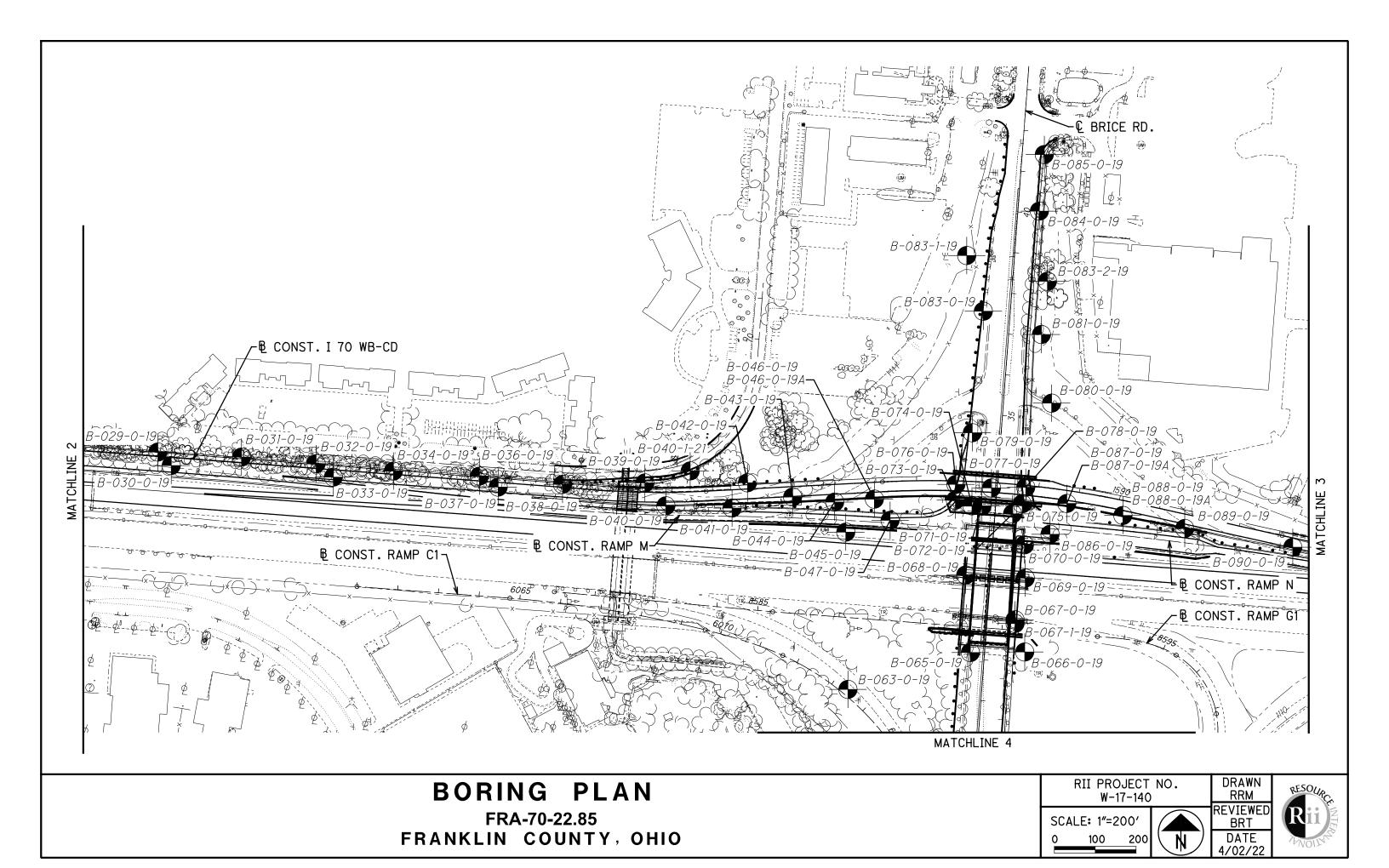

The conclusions and recommendations herein have been based upon the available soil information and the preliminary design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in the foundation or earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

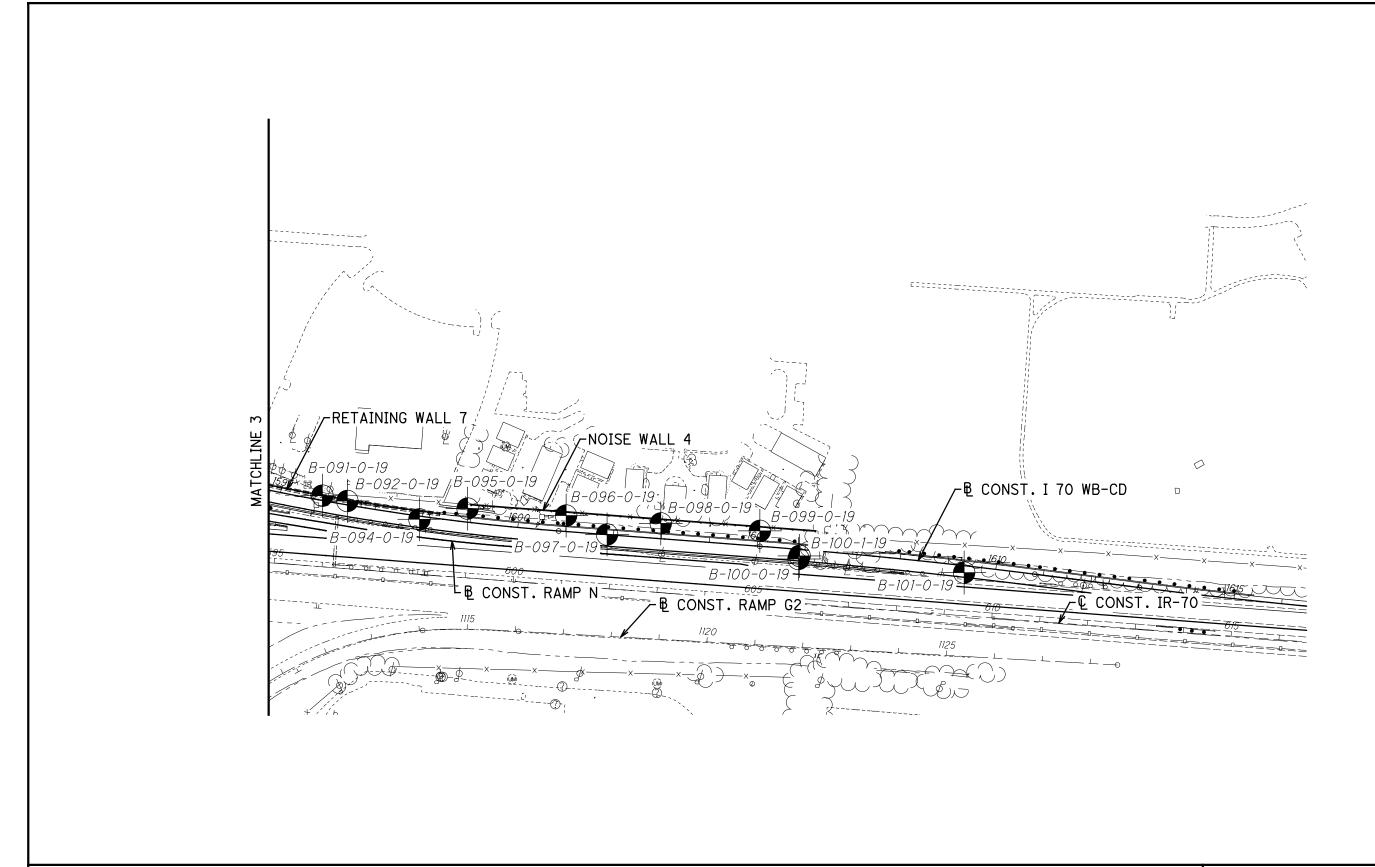

The scope of our services does not include any environmental assessment or investigation for the presence or absence or hazardous or toxic materials in the soil, groundwater or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils or other unusual conditions observed are strictly for the information of our client.


Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions or recommendations made by others based upon the data included.

APPENDIX I

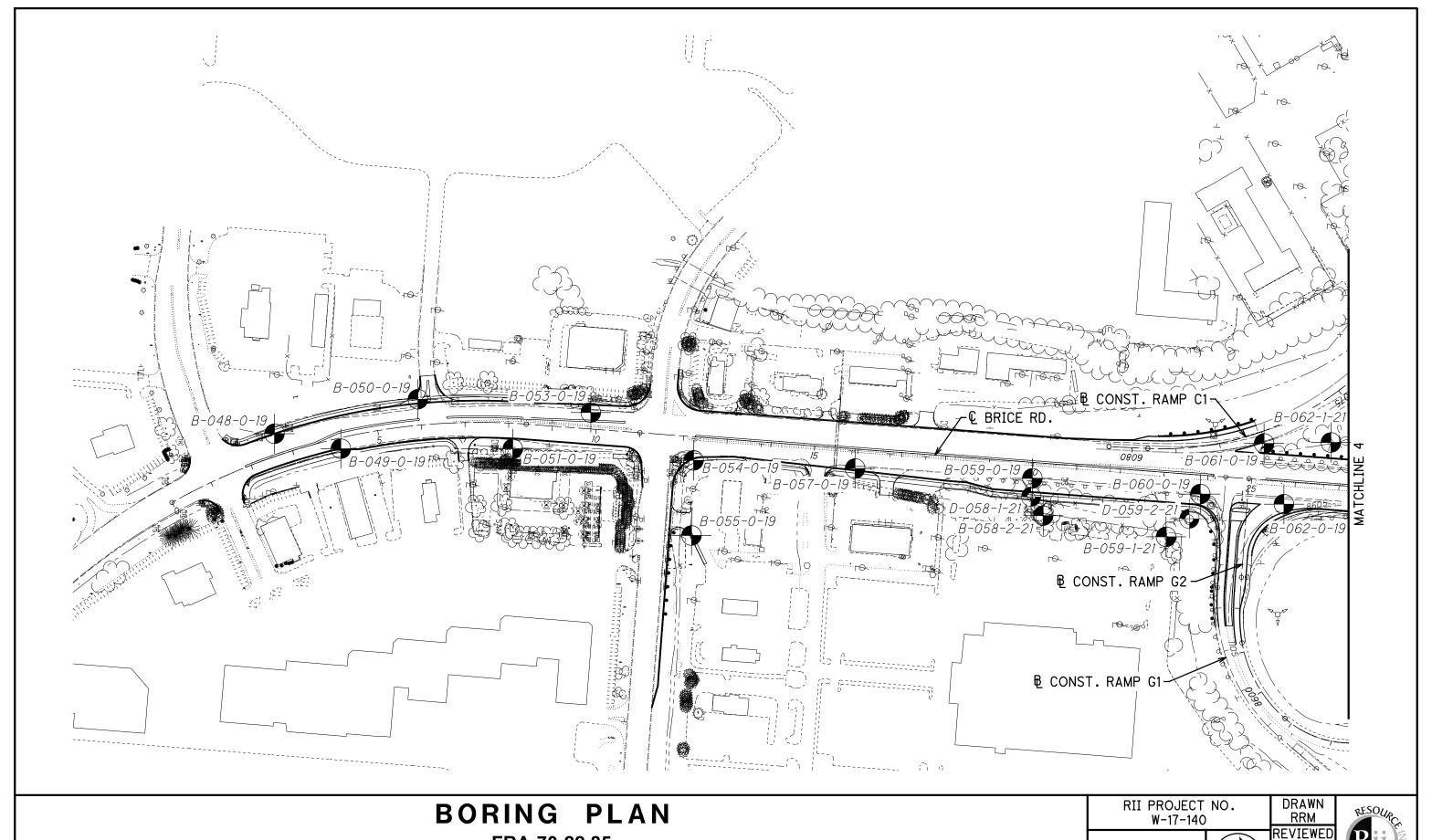
VICINITY MAP AND BORING PLAN




FRANKLIN COUNTY, OHIO

REVIEWEI BRT

BORING PLAN
FRA-70-22.85
FRANKLIN COUNTY, OHIO


RII PROJECT NO. W-17-140

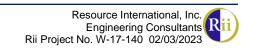
SCALE: 1"=200' 0 100 200

DRAWN RRM REVIEWED BRT DATE 4/02/22

FRA-70-22.85 FRANKLIN COUNTY, OHIO

SCALE: 1"=200'

REVIEWEI BRT DATE 4/02/22



APPENDIX II

SCHEDULE OF BORINGS

Schedule of Borings FRA-70-22.85 Far East Freeway Roadway, Culverts and Noise Barriers

Tr-		Roadwa	y, Cuiverts a	nd Noise Barrie	ers		
Boring Number	Alignment	Station	Offset	Latitude ¹	Longitude ¹	Ground Elevation ¹ (feet)	Boring Depth (feet)
B-001-1-19	CL Const. IR-270	1058+55	143.9' Rt.	39.942745	-82.846180	783.7	25.0
B-001-2-19	CL Const. IR-270	1056+67	173.2' Rt.	39.942213	-82.846189	784.1	25.0
B-001-3-19	CL Const. IR-270	1054+70	176.3' Rt.	39.941664	-82.846321	785.6	25.0
B-001-4-19	CL Const. IR-270	1052+80	183.9' Rt.	39.941136	-82.846455	786.6	25.0
B-001-5-19	CL Const. IR-270	1050+92	178.8' Rt.	39.940627	-82.846653	785.6	25.0
B-001-6-19	CL Const. IR-270	1049+10	179.8' Rt.	39.940133	-82.846846	785.2	25.0
B-001-7-19	CL Const. IR-270	1046+78	176.9' Rt.	39.939516	-82.847134	784.8	25.0
B-002-0-19	CL Const. IR-270	1045+06	196.2' Rt.	39.939040	-82.847300	783.6	25.0
B-003-0-19	BL Ramp D2	1043+08	121.0' Rt.	39.938487	-82.847339	783.5	25.0
B-004-0-19	BL Ramp D2	1040+94	155.2' Rt.	39.937918	-82.847451	784.1	25.0
B-009-0-19	BL Ramp D2	1030+59	278.0' Rt.	39.935128	-82.847700	779.8	23.9
B-010-0-19	BL Ramp F	1538+53	93.1' Lt.	39.934517	-82.847759	778.8	24.3
B-011-0-19	BL IR 70 WB-CD	1541+00	85.7' Lt.	39.934344	-82.847004	782.7	23.7
B-012-0-19	BL IR 70 WB-CD	1542+64	8.1' Lt.	39.934074	-82.846464	784.8	10.0
B-013-0-19	BL IR 70 WB-CD	1543+13	33.0' Lt.	39.934125	-82.846279	781.9	25.0
B-014-0-19	BL IR 70 WB-CD	1544+79	30.1' Lt.	39.934066	-82.845694	781.4	25.0
B-015-0-19	BL IR 70 WB-CD	1546+71	3.4' Rt.	39.933924	-82.845027	788.3	10.0
B-016-0-19	BL IR 70 WB-CD	1546+73	38.9' Lt.	39.934038	-82.845005	782.1	25.0
B-018-0-19	BL IR 70 WB-CD	1548+68	39.5' Lt.	39.933997	-82.844313	784.6	25.0
B-019-0-19 ²	BL IR 70 WB-CD	1550+69	4.3' Rt.	39.933838	-82.843610	788.9	10.0
B-020-0-19	BL IR 70 WB-CD	1550+65	44.3' Lt.	39.933972	-82.843613	786.1	25.0
B-021-0-19	BL IR 70 WB-CD	1552+67	36.1' Lt.	39.933909	-82.842896	786.4	25.0
B-022-0-19	BL IR 70 WB-CD	1554+77	27.1' Lt.	39.933844	-82.842152	785.6	25.0
B-023-0-19	BL IR 70 WB-CD	1554+72	14.4' Rt.	39.933731	-82.842182	789.5	10.0
B-024-0-09	BL IR 70 WB-CD	1556+51	24.6' Lt.	39.933810	-82.841536	787.6	25.0
B-025-0-19	BL IR 70 WB-CD	1558+24	13.7' Lt.	39.933760	-82.840921	789.1	25.0
B-026-0-19	BL IR 70 WB-CD	1558+78	9.0' Rt.	39.933691	-82.840732	786.6	10.0
B-028-0-19 ²	BL IR 70 WB-CD	1562+92	47.9' Rt.	39.933535	-82.839265	792.3	10.0
B-029-0-19	BL IR 70 WB-CD	1566+37	10.7' Lt.	39.933633	-82.838025	790.6	25.0
B-030-0-19 ²	BL IR 70 WB-CD	1566+73	19.5' Rt.	39.933544	-82.837907	790.3	10.0
B-031-0-19	BL IR 70 WB-CD	1568+43	14.0' Lt.	39.933602	-82.837294	793.9	25.0
B-031-0-19	BL IR 70 WB-CD	1570+26	14.0 Lt. 11.8' Lt.	39.933559	-82.836642	795.9	25.0
B-033-0-19 ²	BL IR 70 WB-CD	1570+20	17.7' Rt.	39.933470	-82.836491	793.1	10.0
B-033-0-19	BL IR 70 WB-CD	1572+16	8.0' Lt.	39.933511	-82.835968	793.0	25.0
B-036-0-19	BL IR 70 WB-CD	1574+27	11.7' Lt.	39.933480	-82.835216	793.0	25.0
B-036-0-19	BL IR 70 WB-CD	1574+27	11.7 Lt. 11.4' Rt.	39.933480	-82.835216	791.6	10.0
							25.0
B-038-0-19	BL IR 70 WB-CD	1576+31	7.1' Lt.	39.933426	-82.834491	788.1	
B-039-0-19	BL IR 70 WB-CD	1578+33	22.6' Lt.	39.933438	-82.833771	788.6	25.0
B-040-0-19	BL IR 70 WB-CD	1578+85	32.8' Rt.	39.933285	-82.833587	788.6	25.0
B-040-1-21 ²	BL IR 70 WB-CD	1579+47	51.3' Lt.	39.933520	-82.833376	788.7	20.0
B-042-0-19	BL IR 70 WB-CD	1580+86	15.2' Lt.	39.933442	-82.832876	790.0	25.0
B-048-0-19	CL Const. Brice Rd	2+73	49.4' Lt.	39.925040	-82.831246	787.0	6.0
B-049-0-19	CL Const. Brice Rd	4+09	24.5' Rt.	39.925456	-82.831126	784.6	7.5
B-050-0-19	CL Const. Brice Rd	5+98	59.4' Lt.	39.925938	-82.831531	785.0	6.0
B-051-0-19	CL Const. Brice Rd	8+12	58.3' Rt.	39.926532	-82.831130	783.5	6.0
B-053-0-19	CL Const. Brice Rd	9+85	37.5' Lt.	39.927020	-82.831428	786.4	7.5

Schedule of Borings FRA-70-22.85 Far East Freeway Roadway, Culverts and Noise Barriers

Boring Number	Alignment	Station	Offset	Latitude ¹	Longitude ¹	Ground Elevation ¹ (feet)	Boring Depth (feet)
B-054-0-19	CL Const. Brice Rd	12+27	53.7' Rt.	39.927665	-82.831041	784.9	40.0
B-055-0-19	CL Const. Brice Rd	12+35	225.0' Rt.	39.927654	-82.830430	788.9	40.0
B-057-0-19	CL Const. Brice Rd	15+96	44.6' Rt.	39.928677	-82.830980	788.1	6.0
D-058-1-21 ²	CL Const. Brice Rd	20+01	78.3' Rt.	39.929781	-82.830756	788.8	10.0
B-058-2-21 ²	CL Const. Brice Rd	20+32	119.3' Rt.	39.929857	-82.830603	792.3	10.0
B-059-0-19	CL Const. Brice Rd	20+01	36.3' Rt.	39.929788	-82.830906	799.5	7.5
B-059-1-21 ²	CL Const. Brice Rd	23+15	146.3' Rt.	39.930627	-82.830434	790.9	15.0
D-059-2-21 ²	CL Const. Brice Rd	23+65	101.1' Rt.	39.930772	-82.830582	802.5	13.0
B-060-0-19	CL Const. Brice Rd	23+86	43.2' Rt.	39.930840	-82.830783	810.8	7.5
B-061-0-19	BL Ramp C1	6077+04	27.1' Lt.	39.931239	-82.831196	809.4	6.5
B-062-0-19	CL Const. Brice Rd	25+78	51.9' Rt.	39.931364	-82.830703	814.5	6.0
B-062-1-21	CL Const. Brice Rd	26+74	96.5' Lt.	39.931657	-82.831206	795.0	15.0
B-063-0-19 ²	BL Ramp C1	6073+39	14.7' Lt.	39.932055	-82.831992	798.3	6.0
B-079-0-19	CL Const. Brice Rd	34+53	70.4' Lt.	39.933784	-82.830914	818.6	10.0
B-080-0-19 ²	CL Const. Brice Rd	35+39	117.7' Rt.	39.933984	-82.830223	816.0	25.0
B-081-0-19 ²	CL Const. Brice Rd	37+05	80.1' Rt.	39.934446	-82.830314	798.9	25.0
B-083-0-19 ²	CL Const. Brice Rd	37+51	65.9' Lt.	39.934600	-82.830822	811.7	6.0
B-083-1-19 ²	CL Const. Brice Rd	38+84	116.9' Lt.	39.934975	-82.830969	797.5	40.0
B-083-2-19 ²	CL Const. Brice Rd	38+36	85.1' Rt.	39.934804	-82.830263	793.9	40.0
B-084-0-19	CL Const. Brice Rd	40+06	52.4' Rt.	39.935275	-82.830336	805.3	25.0
B-085-0-19	CL Const. Brice Rd	41+45	54.1' Rt.	39.935656	-82.830294	802.4	25.0
B-090-0-19 ²	BL IR 70 WB-CD	1594+39	22.4' Rt.	39.933022	-82.828113	800.5	10.0
B-094-0-19	BL IR 70 WB-CD	1597+94	6.8' Rt.	39.932898	-82.826851	803.3	10.0
B-095-0-19	BL IR 70 WB-CD	1598+91	28.2' Lt.	39.932960	-82.826493	799.6	25.0
B-096-0-19	BL IR 70 WB-CD	1600+98	33.1' Lt.	39.932922	-82.825762	800.9	25.0
B-097-0-19	BL IR 70 WB-CD	1601+87	0.3' Lt.	39.932815	-82.825457	806.1	10.0
B-098-0-19	BL IR 70 WB-CD	1602+96	31.8' Lt.	39.932879	-82.825058	802.6	25.0
B-099-0-19	BL IR 70 WB-CD	1605+03	32.0' Lt.	39.932839	-82.824321	805.4	25.0
B-100-0-19	BL IR 70 WB-CD	1605+88	19.8' Rt.	39.932679	-82.824034	809.1	10.0
B-100-1-19 ²	BL IR 70 WB-CD	1605+90	13.3' Rt.	39.932697	-82.824026	808.5	40.0
B-101-0-19	BL IR 70 WB-CD	1609+35	14.2' Rt.	39.932604	-82.822802	811.2	10.0

Ground surface elevations and coordinates were provided by EMH&T survey.
 Borings were not able to be surveyed. Coordinates based on handheld GPS. Elevations and stationing based on basemapping information provided by EMH&T.

APPENDIX III

DESCRIPTION OF SOIL

CLASSIFICATION OF SOILS Ohio Department of Transportation

(The classification of a soil is found by proceeding from top to bottom of the chart. The first classification that the test data fits is the correct classification.)

SYMBOL	DESCRIPTION	Classifo AASHTO	OHIO	LL _O /LL × 100*	% Pass #40	% Pass #200	Liquid Limit (LL)	Plastic Index (PI)	Group Index Max.	REMARKS
0000	Gravel and/or Stone Fragments	Д-	1-a		30 Max.	15 Max.		6 Max.	0	Min. of 50% combined gravel, cobble and boulder sizes
0.0.0	Gravel and/or Stone Fragments with Sand	Α-	1-b		50 Max.	25 Max.		6 Max.	0	
F.S.	Fine Sand	А	-3		51 Min.	10 Max.	NON-PI	_ASTIC	0	
• • • •	Coarse and Fine Sand		A-3a			35 Max.		6 Max.	0	Min. of 50% combined coarse and fine sand sizes
6.0.0.0 6.0.0.0	Gravel and/or Stone Fragments with Sand and Silt		2-4			35 Max.	40 Max. 41 Min.	10 Max.	0	
0.0.0	Gravel and/or Stone Fragments with Sand, Silt and Clay		2-6			35 Max.	40 Max. 41 Min.	11 Min.	4	
	Sandy Silt	A-4	A-4a	76 Min.		36 Min.	40 Max.	10 Max.	8	Less than 50% silt sizes
+ + + + + + + + + + + + + + + + + + + +	Silt	A-4	A-4b	76 Min.		50 Min.	40 Max.	10 Max.	8	50% or more silt sizes
	Elastic Silt and Clay	А	-5	76 Min.		36 Min.	41 Min.	10 Max.	12	
	Silt and Clay	A-6	A-6a	76 Min.		36 Min.	40 Max.	11 - 15	10	
	Silty Clay	A-6	A-6b	76 Min.		36 Min.	40 Max.	16 Min.	16	
	Elastic Clay	Α-	7-5	76 Min.		36 Min.	41 Min.	≦LL-30	20	
	Clay	Α-	7-6	76 Min.		36 Min.	41 Min.	>LL-30	20	
+ + + + + + + +	Organic Silt	A-8	A-8a	75 Max.		36 Min.				W/o organics would classify as A-4a or A-4b
	Organic Clay	A-8	A-8b	75 Max.		36 Min.				W/o organics would classify as A-5, A-6a, A-6b, A-7-5 or A-7-6
	MA ⁻	TERIAL	CLASS	SIFIED B	/ VISUAL	INSPEC ⁻	TION			
	Sod and Topsoil	Uncon Fill ([trolled escribe)		Bouldery	/ Zone		P	at

* Only perform the oven-dried liquid limit test and this calculation if organic material is present in the sample.

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>Granular Soils</u> - The relative compactness of granular soils is described as: ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

<u>Description</u>	Blows per	foot - 3	SPT (N ₆₀)
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as:

ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

	Und	contin	ed
<u>Description</u>	Compr	essio	n (tsf)
Very Soft	Less than		0.25
Soft	0.25	-	0.5
Medium Stiff	0.5	-	1.0
Stiff	1.0	-	2.0
Very Stiff	2.0	-	4.0
Hard	Over		4.0

Gradation - The following size-related denominations are used to describe soils:

Soil Fra	action	USCS Size	ODOT Size
Boulders	S	Larger than 12"	Larger than 12"
Cobbles	;	12" to 3"	12" to 3"
Gravel	coarse	3" to ¾"	3" to ¾"
	fine	3/4" to 4.75 mm (3/4" to #4 Sieve)	3/4" to 2.0 mm (3/4" to #10 Sieve)
Sand	coarse	4.75 mm to 2.0 mm (#4 to #10 Sieve)	2.0 mm to 0.42 mm (#10 to #40 Sieve)
	medium	2.0 mm to 0.42 mm (#10 to #40 Sieve)	<u>-</u>
	fine	0.42 mm to 0.074 mm (#40 to #200 Sieve)	0.42 mm to 0.074 mm (#40 to #200 Sieve)
Silt		0.074 mm to 0.005 mm (#200 to 0.005 mm)	0.074 mm to 0.005 mm (#200 to 0.005 mm)
Clay		Smaller than 0.005 mm	Smaller than 0.005 mm

Modifiers of Components - Modifiers of components are as follows:

<u>Term</u>		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	_	50%

<u>Moisture Table</u> - The following moisture-related denominations are used to describe cohesive soils:

<u>l erm</u>	Range - USCS	Range - ODOT
Dry	0% to 10%	Well below Plastic Limit
Damp	>2% below Plastic Limit	Below Plastic Limit
Moist	2% below to 2% above Plastic Limit	Above PL to 3% below LL
Very Moist	>2% above Plastic Limit	
Wet	> Liquid Limit	3% helow LL to above LL

<u>Organic Content</u> – The following terms are used to describe organic soils:

<u>l erm</u>	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

<u>Bedrock</u> – The following terms are used to describe the relative strength of bedrock:

<u>Description</u>	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

DESCRIPTION OF ROCK TERMS

The following terminology was used to describe the rock throughout this report and is generally adapted from ASTM D5878 and the ODOT Specifications for Geotechnical Explorations.

Weathering – Describes the degree of weathering of the rock mass:

Field Parameter Description

No evidence of any chemical or mechanical alteration of the rock mass. Mineral crystals have a Unweathered

right appearance with no discoloration. Fractures show little or not staining on surfaces.

Slight discoloration of the rock surface with minor alterations along discontinuities. Less than 10% Slightly Weathered

of the rock volume presents alteration.

Moderately Weathered Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a

pitted appearance with weathering "halos" evident. Isolated zones of varying rock strengths due to

alteration may be present. 10 to 15% of the rock volume presents alterations.

Highly Weathered Entire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock

may be present and some areas of severely weathered materials may be present.

Severely Weathered Majority of the rock mass reduced to a soil-like state with relic rock structure discernable. Zones of

more resistant rock may be present but the material can generally be molded and crumbled by

hand pressures.

Strength of Bedrock - The following terms are used to describe the relative strength of bedrock:

Description Field Parameter

Very Weak Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger

pressure.

Weak Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure. Slightly Strong

Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist

hammer.

Moderately Strong Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist

Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen. Strona Very Strong

Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand

Extremely Strong Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand

specimen.

Bedding Thickness – Description of bedding thickness as the average perpendicular distances between bedding surfaces:

Description Thickness

Greater than 36 inches Very Thick Thick 18 to 36 inches Medium 10 to 18 inches Thin 2 to 10 inches Very Thin 0.4 to 2 inches Laminated 0.1 to 0.4 inches Thinly Laminated Less than 0.1 inches

<u>Fracturing</u> – Describes the degree and condition of fracturing (fault, joint, or shear):

Degree of Fracturing

Description Spacing

Unfractured Greater than 10 feet

3 to 10 feet Intact Slightly Fractured 1 to 3 feet

Moderately Fractured

Aperture Width Surface Roughness

Description Width Description Criteria

Greater than 0.2 inches Open Very Rough Near vertical steps and ridges occur on surface Narrow 0.05 to 0.2 inches Slightly Rough Asperities on the surfaces distinguishable

Tight Less than 0.05 inches Slickensided Surface has smooth, glassy finish, evidence of Striations

RQD - Rock Quality Designation (calculation shown in report) and Rock Quality (ODOT, GB 3, January 13, 2006):

RQD % Rock Index Property Classification (based on RQD, not slake durability index)

0 - 25%Very Poor 26 - 50%Poor 51 - 70% Fair 71 – 85% Good 86 - 100%Very Good

APPENDIX IV

PROJECT BORING LOGS

6	PROJECT: FRA-070-22.85 DRILLING FIRM / OPERATOR:		_	RII /		-1	ILL RIG MMER:		E 55 (3) UTOMA)	-	TION SNME		SET:		29+65 . RAM	5.04 / 6. P D2	.1' RT	EXPLORA B-001					
L	PID:		SFN:	N/A	DRILLING			3.25" HSA		_		ION DATE:		9/4/18	3	-		_	803			EOB:	3 8.7 t	ft.	PAG
	START:	8/4/20	END:	8/4/20	SAMPLING	METHOD:		SPT		ENI	ERGY F	RATIO (%):		90		_	/ LON	_					.848710		1 0
	i		L DESCRIF D NOTES	PTION	•	ELEV. 803.4	DEPT	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS CS	ATIO		CL	ATT LL	ERBI	ERG PI	wc	ODOT CLASS (GI	SO4	BA FI
1.	.0' - ASPHALT (1		DNOTES		XX			L .	TOOL		(70)	ID	(131)	GK	Co	гэ	31	CL	LL	FL	гі	VVC	(**	1	***
	3' - AGGREGAT					802.4		ГІ	5 7	18	50	SS-1	4.00	_	_	_	_		_		_	18	A-6b (V)	+_	
D	ILL: STIFF TO V ARK BROWN S	ILTY CLA	Y , SOME C	COARSE TO				- 2 - 3 -	5				1.00										7 (05 (1)	+	- AN
F	INE SAND, TRA	CE FINE (JKAVEL, I	JAMP TO MC)IS1.			- 4 -	7 3	11	44	SS-2	2.00	_	_	_	_	_	_	_	_	24	A-6b (V)	_	7
									4	• • •		00-2	2.00		_	_	-	_	_		_	24	A-00 (V)	 	4
								6 7	6 4	14	58	SS-3	2.75	_	_	_	_	_	_	_	_	20	A-6b (V)	<u> </u>	- 14 Y
								F 7 1	5				2.70										7 (05 (1)		- B
								9 -	4 4	15	69	SS-4	3.00	7	16	14	30	33	37	19	18	18	A-6b (9)	-	7 88 V A
								[- 10]	6														()		1
								- 11 - - 12 -	5 6	20	92	SS-5	3.50	-	-	-	-	-	-	-	-	15	A-6b (V)	-	- ST
								- 13 -	7																- 7 2 2
								14	4 8	27	33	SS-6	3.50	-	-	-	-	-	-	-	-	13	A-6b (V)	-	7007
								15	10																- *
								- 16 - - 17 -	10	29	67	SS-7	3.00	-	-	-	-	-	-	-	-	20	A-6b (V)	-	O.
								18 -	10																- X
								19	12 15 14	44	61	SS-8	3.00	1	6	14	38	41	38	19	19	17	A-6b (12) -	A 49
	TD 4 OF 1 11 15 OT		0.45.450					- 20 - - 21 -	9																7
•	-TRACE LIMEST	ONE FRA	GMENIS	IN SS-9				_ 22 -	1 15	59	33	SS-9	3.25	-	-	-	-	-	-	-	-	14	A-6b (V)	-	X 47 X
	ERY STIFF TO I				RK	780.4		23 -	10																1 88 V A
2	ROWN TO BLAC COARSE TO FINI DAMP TO MOIST	E SAND, ⁻	TRACE FIN	NE GRAVEL,				24 25	11 13	36	44	SS-10	3.00	2	11	16	37	34	29	16	13	7	A-6a (8)	-	3
	-LIMESTONE FF	RAGMENT	S IN SS-1	0				26 -																	7
								27 -																	A AND
	01141 5 55 4 6 1	IENITO III	00.44					- 28 - - 29 -	8	25	44	CC 44										10	A 6- 00		784
•	-SHALE FRAGM	IENTS IN	SS-11		<i>\///</i>	1			13 10	35	44	SS-11	-	-	-	-	-	-	-	-	-	10	A-6a (V)	-	Z.

PID: <u>98232</u>	SFN:	PROJECT:	FRA-070-	22.85	STAT	ION / (OFFS	ET: _1	02965.04,	6' R1	Γ. S	STAR	T: <u>8</u>	/4/20	<u> </u>	ND:	8/4	4/20	_ P	G 2 OF 2	B-001	-0-19
	MATERIAL DESCRIPTION	ON	ELEV.	DEPTH		SPT/	N ₆₀	REC	SAMPLE	HP	Ċ	RAD	ATIO	N (%	o)	ATT	ERBE	ERG		ODOT	SO4	BACK
	AND NOTES		773.4	DEFIN	3	RQD	11160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
BROWN TO B COARSE TO F DAMP TO MO	TO HARD, BROWN, GRAY LACK SILT AND CLAY , SO FINE SAND, TRACE FINE (IST. <i>(continued)</i> CK, HIGHLY WEATHERED.	ME GRAVEL,	769.9	TR——	- 31 — - 32 — - 33 — - 34 — - 35	10 17 23	60	69	SS-12	-	-	-	-	-	-	-	-	-	8	Rock (V)		
			764.6	l –	- 36 — - 37 — - 38 —	50/3" -	·/	\100 /	SS-13	٠.								ات	13	Rock (V)		

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 36.0' AND AT COMPLETION @ 31.6'; CAVE-IN DEPTH @ 34.8'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BACKFILLED WITH 50 LBS. BENTONITE CHIPS AND SOIL CUTTINGS. .

Dii	\	ROJECT: _ /PE:		FRA-07 ROADW		5	_			OPERAT LOGGE	_	RII /		_	ILL RIG MMER:	: <u>CME 7</u> A	50X (SI JTOMA		218)	1	TION SNME					55 / 143 . IR-27	0.5 1(1	B-00	1-1-19
IVII		D: 9823	32	SFN:			_		METHO			25" HSA		-		ION DATE:	9	9/14/20	0	ELE	VATIO	ON:				EOB:		ft.	PAG
	ST	ΓART: 9	9/24/20	END:		9/24/20	_		3 METH			SPT		EN	ERGY F	RATIO (%):		86.2		LAT	/ LON	NG:		39	9.9427	'45, - 82	.846180		1 OF
		MAT	ERIAL	DESCR	IPTIO	N			ELE'	<i>J</i> .			SPT/		REC	SAMPLE	HP	(RAD	ATIO	N (%	5)	ATT	ERB	ERG		ODOT	SO4	BA
				NOTES					783	.7	DEPTI	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (G		
0.5' - TC	PS	OIL (4.5")					,		783.	2 _		L	3 _			SS-1A			-					-	-	-		=	12 T
		F TO HAR E CLAY, S										- 1 -	5 5	14	81	SS-1B	4.25	-	-	-	-	-	-	-	-	12	A-4a (V) -	
MOIST.		- 02, 0		0		, 2,						- 2 - - 3 -	7 8	22	83	SS-2	4.5+	-	-	-	-	-	-	-	-	13	A-4a (V	, -	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
-COBB	SLE (@ 5.0'							770			- 3 - - 4 - - 5 -	4 5 11	23	75	SS-3	3.50	25	13	13	28	21	23	15	8	11	A-4a (3)	-	2 L
_		ENSE TO		,				0.0	778.	2		- 6 ¬	19															+	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
MOIST.		IIII SAND	,	L OIL1,	IIVAC	C OLAT,			, n			_ 7 -	17 18	50	0	SS-4	-	-	-	-	-	-	•	-	-	-	A 4 b 0/	-	- 40 - 40 - 40
								0/	q			 8	16	-	100	2S-4A	-	-	-	-	-	-	-	-	-	7	A-1-b (V) 	7
									772			- 9 - - 10	9 8 8	23	83	SS-5	-	46	22	8	17	7	NP	NP	NP	12	A-1-b (0) -	
		ENSE, BR		COARSE	AND	FINE			773.			_ 11 ¬	11																
SAND, I	111/7	OL OILT,	VV∟1.						770	7 7	770 7	_ 12 -	7 10	24	78	SS-6	-	-	-	-	-	-	•	-	-	15	A-3a (V	-	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
		ENSE TO						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	770.	/ V	770.7	13 -	18															+	-14 -14 -14 -14 -14 -14 -14 -14 -14 -14
CLAY, V			SANL	', LII I LL	JOILI	, TIVACL			, 1		768.2	14 - - 15 -	15 14	42	92	SS-7	-	-	-	-	-	-	-	-	-	11	A-1-b (V) -	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
										W	100.2	_ 16 _	11															+	- A/
								0 0 0				<u> </u>	11 14	36	50	SS-8	-	-	-	-	-	-	-	-	-	16	A-1-b (V) -	77
-SHAL	E FF	RAGMENT	rs in s	SS-9					k			18 19 -	9															+	
												_ 20 _	10 14	34	89	SS-9	-	46	28	10	11	5	NP	NP	NP	12	A-1-b (0	-	- X
-HEAV	ING	SAND @	21.0'									- 21 - 22 -	6 8	30	81	SS-10	-	-	-	-	-	-	-	_	-	15	A-1-b (V) -	- A
								000				_ 22 23 -	13														· ·	-	
								000	758.	7	-OB	_ 24 - _	11 14 14	40	89	SS-11	-	-	-	-	-	-	-	-	-	12	A-1-b (V) -	

NOTES: SEEPAGE @ 13.1'; GROUNDWATER ENCOUNTERED INITIALLY @ 15.5' AND AT COMPLETION @ 13.0'; CAVE-IN DEPTH @ 15.6'

2 3 4 3 3 3 3 4 6	ENERG N ₆₀ RI (%) 10 6 9 5	58 SS-2	HP	GR -		LAT /	LONG 1 (%)	G: A	TTEF	(MSL) 39.942 RBERC PL PI 	2213, - G I W	0DOT CLASS (GI	SO4 ppm	
RQD 1 3 4 3 3 3 3 4 6 6 3 3 3 3	N ₆₀ Ri (%) 10 6 9 5	EC SAMPLE (%) ID SS-1A SS-1B	HP (tsf) 3.00 2.50	GR GR -	cs 	ATION FS -	SI - -	CL I	TTEF	RBERO	G W	ODOT CLASS (GI) ppm	FILI
2 3 4 3 3 3 4 6	10 6	SS-1A SS-1B SS-2	3.00	-		-	-	-					-	
3 3 3 4 6	9 5	58 SS-2	2.50		-			-	-	- -	18	3 A-4a (V)	-	7 00
3 3 4 6				-	-	-	_		- 1	1				
3 3	14 6	64 SS-3	2.50					-	<u>-</u>		25	6 A-4a (V)	-	1 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
3				12	11	15	36 2	26 2	24 1	17 7	17	A-4a (5)	-	2 L
	13 7	72 SS-4	-	-	-	-	-	-	-	- -	1	A-3a (V)	-	4×
3	_								#	\mp				
4		0 SS-5 00 2S-5A	-	-	-	-	-		- '	- - - -		2 A-3a (V)	-	
11 9 14	33 7	72 SS-6	-	-	-	-	-	-			12	2 A-1-a (V) -	
8 8 11	27 8	33 SS-7	-	-	-	-	-	-	-	- -	1:	3 A-1-a (V) -	-1 L
	33 8	33 SS-8	-	69	15	6	6	4 N	1P N	1P NF	P 1) A-1-a (0) -	7/> ~// ~//
									#	#				100
12 24	52 5	56 SS-9	-	-	-	-	-	-	- -	- -	19	A-1-a (V	-	77
	46 (0 SS-10	-	-	-	-	-	-	-	- -	-	A-1-a (V) -	~ & & & & & & & & & & & & & & & & & & &
	- 10	00 2S-10A	-	-	-	-	-	-	-	===	1	A-1-a (V) -	100
15 13 16	42 7	78 SS-11	-	-	-	-	-	-	-		1	A-1-a (V) -	
	9 14 8 8 11 9 11 12 14 12 24 22 15 17 20	11 9 33 7 8 8 8 27 8 11 33 8 12 14 12 52 5 5 5 17 20 - 1	4 7 - 100 2S-5A 111 9 33 72 SS-6 8 8 27 83 SS-7 9 11 33 83 SS-8 112 52 56 SS-9 22 15 46 0 SS-10 20 - 100 2S-10A	4 7 - 100 2S-5A - 11 9 14 33 72 SS-6 - 8 8 27 83 SS-7 - 9 11 33 83 SS-8 - 14 12 24 52 56 SS-9 - 22 15 46 0 SS-10 - 20 - 100 2S-10A -	4 - 100 2S-5A - - 111 9 14 33 72 SS-6 - - 8 8 27 83 SS-7 - - 9 11 33 83 SS-8 - 69 14 12 52 56 SS-9 - - 22 15 46 0 SS-10 - - 20 - 100 2S-10A - -	4 - 100 2S-5A - - - 111 9 33 72 SS-6 - - - 8 8 27 83 SS-7 - - - 9 11 33 83 SS-8 - 69 15 14 12 24 52 56 SS-9 - - - 22 15 46 0 SS-10 - - - 20 - 100 2S-10A - - -	4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--></td></td></td></td></td></td></td>	4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--></td></td></td></td></td></td>	4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--></td></td></td></td></td>	4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--></td></td></td></td>	4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--></td></td></td>	4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--></td></td>	4 7 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--></td>	4 - 100 2S-5A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td

NOTES: SEEPAGE @ 8.0'; GROUNDWATER ENCOUNTERED INITIALLY @ 16.5' AND AT COMPLETION @ 14.0'; CAVE-IN DEPTH @ 12.4'

Dii	PROJECT:	FRA-070-22.85 ROADWAY	DRILLING SAMPLING			RII / S		-1	ILL RIG MMER:	: CME 7	50X (SI JTOMA		218)		TION SNME					76 / 176 . IR-270	3.0 111	EXPLOR B-001	
IVII	PID: 98232	SFN:	DRILLING			25" HSA		_		ION DATE:		9/14/2	0	-		_				EOB:		ft.	PAGE
	START: 9/24		SAMPLING			SPT		_		RATIO (%):		86.2		1	/ LON	_					.846321		1 OF
		NAL DESCRIPTION	_	ELEV.		[SPT/	-		SAMPLE	HP	(RAD				ATT	ERBI			ODOT	SO4	BAC
		AND NOTES		785.6	DEPTH	HS	RQD	N_{60}	(%)	ID	(tsf)	GR		FS		,	LL	PL	PI	WC	CLASS (G		FILI
0.3' - TOF	PSOIL (3.0")		<u> </u>	785.3			3			SS-1A	\ <u>-</u> \	-	<u> </u>										- KE
FILL: VEF	RY STIFF TO H	ARD, BROWN SANDY SILT NE GRAVEL, DAMP TO	,	(.00.0)		_ 1 _	3 4	10	72	SS-1B	3.75	-	-	-	-	-	-	-	-	16	A-4a (V) -	
MOIST.	,					- 2 - 1 - 3 - 1	⁺ 6	22	67	SS-2	4.5+	-	-	-	-	-	-	-	-	14	A-4a (V) -	<
-COBBI	.E @ 5.5'			700.4		- 4 - 4 - 5	4 7 7	20	94	SS-3	4.00	9	13	16	35	27	24	16	8	15	A-4a (5)) -	2 L
		OWNISH GRAY GRAVEL		780.1	_	- 6 -																	- 5 L
WITH SAI	ND AND SILT, 7	RACE CLAY, MOIST.		777.6		- - 7 -	12 24	52	89	SS-4	-	46	14	11	19	10	24	16	8	8	A-2-4 (0) -	4 > 1
GRAY GF		RY DENSE, BROWN TO AND AND SILT, TRACE		777.0	_	_ , _	20 19 18	53	92	SS-5	-	_	-	-	-	-	-	-	-	6	A-2-4 (V	') -	
					∇ 774.1	- 10 - - 11 - - 12 -	26 21 20	59	53	SS-6	-	-	-	-	-		-	-	,	6	A-2-4 (V	') -	44 44 50
					W 772.6	13 14	8																7 >
						- 15 	11 11	32	50	SS-7	-	-	-	-	-	-	-	-	-	12	A-2-4 (V	-	25°E
				•		— 16 - — 17 —	9 10 11	30	44	SS-8	-	-	-	-	-	-	-	-	-	12	A-2-4 (V	') -	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
MEDIUM	DENSE TO DE	NSE, GRAY GRAVEL WITH		767.6	_	18																	1 1
,	TTLE SILT, TRA	ACE CLAY, MOIST TO WE ⁻ IN SS-9	Г. Р О			19 20	9 12 14	37	89	SS-9	-	53	20	9	11	7	NP	NP	NP	11	A-1-b (0) -	
						- 21 	11 10	27	69	SS-10	_	_	_	_	_			_		13	A-1-b (V	^	- 4 > - 4 >
						22 23	9		บฮ	33-10	-	_	-	-	-	-	_	-	-	13	W-1-n (V	-	2 × ×
				760.6	EOB-	24	8 12 12	34	72	SS-11	-	-	-	-	-	-	-	-	-	13	A-1-b (V	') -	- 30 L

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 13.0' AND AT COMPLETION @ 11.5'; CAVE-IN DEPTH @ 14.5'

TYPE:	T: FRA-070-22.85 ROADWAY	DRILLING	FIRM / OPI	_	RII /	/ TG	_	ILL RIG: MMER:	CME 7	50X (SN JTOMA		218)		TION SNME					79 / 183 . IR-27	0.9 1(1	EXPLOR B-00	
_	98232 SFN:	DRILLING			3.25" HSA		_		ON DATE:		9/14/20		_		_				EOB:		ft.	PA
START:		SAMPLING	METHOD		SPT		_		ATIO (%):		86.2		LAT	/ LON	IG:		39	.9411	36, -82	.846455		1 0
i	MATERIAL DESCRIPTION		ELEV.	DEDI	110	SPT/		REC	SAMPLE	HP	G	RAD	ATIC	N (%)	ATT	ERBI	ERG		ODOT	SO4	В
	AND NOTES		786.6	DEPT	но	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC		ppm	F
0.5' - TOPSOIL (6 HARD, BROWNIS	SH GRAY SILT AND CLAY , SOME		786.1		_ 1 -	1 3 5	11	44	SS-1	4.25	1	,	,	-		-	-	1	18	A-6a (V)	-	A A
COARSE TO FINI DAMP TO MOIST	E SAND, TRACE FINE GRAVEL,				- - - - 3 -	5 9 11	29	67	SS-2	4.50	-	-	-	-	-	-	-	-	15	A-6a (V)	-	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
					- 4 - - 5 -	6 8 9	24	100	SS-3	4.5+	4	13	17	38	28	27	16	11	13	A-6a (7)	-	7 8 A
					- 6 - - 7 -	8 9 12	30	100	SS-4	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V)	_	7 7 7 7
	RAVEL, SOME FINE TO COARSE	(° 0°	778.6		- 8 - - - 9 -	13	40		20.5													7
•	,	0000			10	13 15 22	40	100	SS-5 2S-5A	-				-	-		-	-	6	A-1-a (V) -	
				774.4	- 11 - - - 12 -	12	36	89	SS-6	-	-	-	-	-	-	-	-	-	11	A-1-a (V) -	7
		000		₩ 774.1	13 -	13																
-SHALE FRAGM	IENTS IN SS-7				- 14 - - - 15 -	12 13 15	40	33	SS-7	-	-	-	-	-	-	-	-	-	9	A-1-a (V	-	4
					- - - - 17 -	11	34	33	SS-8	-	59	19	7	10	5	NP	NP	NP	9	A-1-a (0)) -	7878
DENSE TO VERY	/ DENSE, GRAY GRAVEL WITH	00	768.6		18 -																	A.
SAND, LITTLE SII	LT, TRACE CLAY, MOIST.				- 19 - - 20 -	9 12 14	37	44	SS-9	-	-	-	-	-	-	-	-	-	12	A-1-a (V	-	2 × 1 × 1
					21 - 22 -	17 19	55	0	SS-10	-	-	-	-	-	-	-	-	-	-		-	- A
		$\langle \cdot \cap \cdot \rangle$			1	19 18	-	100	2S-10A	-	-	-	-	-	-	-	-	-	13	A-1-b (V) -	7 A 8 A
			761.6		L	46 20 21	59	44	SS-11	-	32	31	14	16	7	22	16	6	13	A-1-b (0)) -	18 A A B

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 12.5'; CAVE-IN DEPTH @ 14.1'

	PROJECT: TYPE:		-070-22.85 DWAY		1	G FIRM / OF NG FIRM / L	_	RII /	TG KS	_	ILL RIG	: CME 7	50X (SI JTOMA		218)		TION SNME		SET:			.36 / 17	8.8' RT 0	EXPLOR B-00	RATIOI 11-5-1
	PID: 98232				1	G METHOD		.25" HSA		-1		ION DATE:		9/14/20)	1	VATIC	_	785			EOB:		ft.	PA
9	START: 9/2	23/20 EN	ID: 9/24	4/20	1	NG METHO		SPT		EN	ERGY F	RATIO (%):		86.2		LAT	/ LON	IG:				-	.846653		10
	MATE	RIAL DESC	CRIPTION			ELEV.			SPT/	_	_	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERB	ERG		ODOT	SO ₄	4 B
		AND NOT	ES			785.6	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (G		
	SOIL (6.0") Y STIFF. MO	TTI ED BR	OWN AND	GRAY		785.1		_ 1 -	2 3	13	78	SS-1	4.00	-	-	-	-	-	-	-	-	25	A-6b (V) -	74°
RACE FIN	AY , LITTLE C NE GRAVEL,	OARSE TO MOIST.	FINE SAN	ND,		784.1	-	_ 2 -	9 11	37	67	SS-2	4.50	7	9	14	33	37	31	18	13	13	A-6a (8) -	
,	ROWN SILT A SAND, TRACI	,						_ 3 -	15																70
						780.1		- 4 - - 5 -	11 12	33	94	SS-3	4.50	-	-	-	-	-	-	-	-	11	A-6a (V) -	LPINE DA
	FF TO HARD SANDY SILT, DAMP							6 -	10	37	100	SS-4	4.50	17	11	16	30	26	24	16	8	12	A-4a (4) -	4
								8 -	14																
								- 9 - - 10 -	10 9 19	40	33	SS-5	4.00	-	-	-	-	-	-	-	-	14	A-4a (V) -	2
OME FIN	DENSE TO V IE TO COAR				ĆE 🌣 (-	11 -	8 11	39	56	SS-6	_	_	_	_	_	_		_	_	11	A-1-a (V	<u>, </u>	- F
AY, WE	:1.				6) (0		- 12 - - 13 -	16		00											''	7. 14(/	
							w 770.6		8 10 34	63	61	SS-7	-	57	23	6	11	3	23	18	5	13	A-1-a (0) -	
					0			16	10	34	72	SS-8	_	_			_	_				10	A 1 a ()	,	
					000	0		- 17 - - - 18 -	11		12		-	-	-	-	-	_	_	-	-	10	A-1-a (V	-	70
					0(79		19 -	15 11 9	29	61	SS-9	-	-	-	-	-	-	-	-	-	10	A-1-a (V	') -	7
					0 (7°		20 -	10																
					0(7		22 -	21 14	50	67	SS-10	-	-	-	-	-	-	-	-	-	13	A-1-a (V	') -	7
SHALE F	FRAGMENTS	S IN SS-11) d		24 -	15 16 16	46	72	SS-11	-	-	-	-	-	-	-	-	-	10	A-1-a (V	') -	

NOTES: SEEPAGE @ 12.0'; GROUNDWATER ENCOUNTERED INITIALLY @ 15.0'; CAVE-IN DEPTH @ 16.0'

TYPE:	T: <u>FRA-070-22.85</u> ROADWAY	_	FIRM / OPE	_	RII /	/ TG KS	_	ILL RIG: MMER:	CME 7	50X (SN JTOMA		218)		TION SNME					90 / 179 . IR-270	<u> </u>	EXPLOF B-00	
_	98232 SFN:	_	METHOD:		3.25" HSA		_		ON DATE:		9/14/20)	-		_				EOB:		ft.	PA
START:	9/23/20 END: 9/23/20	SAMPLING	METHOD:		SPT		EN	ERGY R	ATIO (%):		86.2		LAT	/ LON	اG: _		39	.9401	33, -82	.846846		1 (
	MATERIAL DESCRIPTION AND NOTES		ELEV. 785.2	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS	ATIC FS	_ \	CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI	SO4	
0.4' - TOPSOIL (5	5.0") F, BROWN TO GRAY SILT AND		784.8		- - 1 -	1 3	10	67	SS-1	3.50		-	-	-	-	-	-	-	20	A-6a (V)	-	4 €
CLAY, SOME CO	ARSE TO FINE SAND, TRACE AMP TO MOIST.				- 2 - - 3 -	3 3 5	11	78	SS-2	2.50	-	-	-	-	-	-	-	-	16	A-6a (V)	-	7877
					_ 4 -	3 4 4	11	89	SS-3	2.50	10	12	16	37	25	28	17	11	20	A-6a (6)	-	2 d
					- 6 - - 7 -	7 9 13		0	SS-4	-	-	-	-	-	-	-	-	-	-	A G = () ()	-	
			776.7		_ 8 _	9	-	100	2S-4A	3.50	-	-	-	-	-	•	1	-	14	A-6a (V)	-	-
	RK BROWN TO GRAY SANDY AY, LITTLE FINE GRAVEL, DAMP.				- 9 - - 10 -	4 7 9	23	78	SS-5	3.50	18	14	18	30	20	23	15	8	12	A-4a (3)	-	2
			770.0		- - - - 12 -	5 7 8	22	72	SS-6	4.00	-	-	-	-	-	•	-	-	11	A-4a (V)	-	2
	TO VERY DENSE, GRAY GRAVE LE SILT, TRACE CLAY, WET.	L a	772.2	W 771.2	14	9 9 11	29	61	SS-7	-	-	-	-	-	-	-	-	-	12	A-1-b (V) -	
					- 15 - - 16 -	7	62	44	SS-8	_	53	19	9	14		21	10	5	44	A 4 h (0)		1 A
					- 17 - - - 18 -	18		44	33-0	-	55	19	9	14	5	21	16	3	11	A-1-b (0)	-	7
					- - - - - 20 -	12 32 19	73	56	SS-9	-	-	-	-	-	-	-	-	-	14	A-1-b (V) -	- S
-SHALE FRAGN	MENTS PRESENT THROUGHOUT				- 21	_ ■10																7
					_ 22 -	12	37	67	SS-10	-	-	-	-	-	-	-	-	-	12	A-1-b (V	-	47
			760.2	EOB	- 23 - - 24 - - 25	10 11 11 10	30	61	SS-11	-	-	-	-	-	-	-	-	-	11	A-1-b (V) -	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 14.0'; CAVE-IN DEPTH @ 14.1'

TYPE:	CT: FRA-07	70-22.85 VAY		FIRM / OP		RII /	/ SB T.G.		LL RIG	: CME 7	750X (SI UTOMA		218)	1	ION /					12 / 176 IR-270	0.5 1(1	XPLORA B-001	
_		*/**	_	METHOD:	_	3.25" HSA		_		ION DATE:		9/14/20)	1	ATIO	_		8 (MS		EOB:		.	PA
START:		9/22/20	_	G METHOD):	SPT				RATIO (%):		86.2		1	LONG	_					.847134		10
	MATERIAL DESCR	RIPTION		ELEV.			SPT/		RFC	SAMPLE	HP	G	RAD	OITA	V (%)) [ATTI	ERBE	RG		ODOT	SO4	В
	AND NOTES			784.8	DEF	PTHS	RQD	N ₆₀	(%)	ID	(tsf)		CS			CL	LL	PL	PI	WC	CLASS (GI)	ppm	F
0.5' - TOPSOIL (6	6.0")			784.3		L	1			SS-1A	-	-	-	-	-	-	-	-	-	-		-	Pg S
VERY STIFF, BR	OWN SILTY CLAY,	LITTLE	-	783.3		<u> </u>	2 3	7	83	SS-1B	3.25	-	-	-	-	-	-	-	-	22	A-6b (V)	-	W.
COARSE TO FIN DAMP TO MOIST	IE SAND, TRACE F Γ.	INE GRAVEL,	/	700.0		- 2 -	4 6	20	94	SS-2	4.00	-	_	_	_		_	_	_	15	A-4a (V)	_	
VERY STIFF TO	HARD, BROWN TO					- 3 -	8		54		4.00				\downarrow					10	Λ-4α (V)		7
LITTLE FINE GR	SILT , SOME CLAY, AVEL, DAMP.	, TRACE TO				- 4 -	6	19	78	SS-3	4.25	7	9	16	40	28	28	18	10	14	A-4a (7)	_	A.
						_ 5 -	7						-		+	_							- 4
						_ 6 -	3 _																727
						_ 7 -	5 7	17	100	SS-4	3.75	-	-	-	-	-	-	-	-	14	A-4a (V)	-	<u> </u>
						- 8 -	-																7 PB V
						<u> </u>	7	22	100	SS-5	4.5+	11	12	16	39	22	23	15	8	11	A-4a (5)	-	2
						<u> </u>	8																7
-LIMESTONE FI	RAGMENTS IN SS-	-11				<u> </u>	22	37	83	SS-6	4.5+	_					_			_	A-4a (V)		9
				771.8		<u> </u>	17		03	33-0	4.5+	-	-	-	-	_	-	-	-		A-4a (V)	ļ -	4
	TO DENSE, GRAY		1	771.0	W 771	.3 - 13 -	1																- A
SAND, LITTLE SI	ILT, TRACE CLAY,	WEI.				- 14 -	8 13	30	72	SS-7	-	-	-	-	-	-	-	-	-	12	A-1-b (V)	-	A S
						- 15 -	- 10																Ø.
				3	√ 768	<u>.3 </u>	10	26	58	SS-8		49	27	9	12	3	NP	NP	NP	14	A-1-b (0)		- Q
				d			9		30			40	21	-	12	<u> </u>	INI	IVI	INI	17	A-1-0 (0)	ļ -	7
						- 18 -	13																A
			$\stackrel{\circ}{\sim}$	d		- 19 -	11 8	27	39	SS-9	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-	4
				k		20 -	- 0								\dashv								727
				d		<u> </u>	14	22		CC 40					+						A 1 5 00		- J
(ED) / OT: == -=				762.3		- 22 -	12		0	SS-10	-	-	-	-	-	-	-	-	-	-	A-1-b (V)	_	7
/ERY STIFF, GR .ITTLE FINE GR.	RAY SANDY SILT , L AVEL, DAMP.	II FLE CLAY,				_ 23 -	14	-	100	2S-10A	3.00	16	13	16	31	18	22	15	7	12	A-4a (4)	_	3
				759.8		24 -	5 6 11	24	78	SS-11	2.75	-	-	-	-	-	-	-	-	13	A-4a (V)	-	NA ST

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 13.5' AND AT COMPLETION @ 16.5'; CAVE-IN DEPTH @ 12.8'

D	PRO TYPE	JECT:	FRA-070-22 ROADWAY	2.85	DRILLING SAMPLING			RII /		-	ILL RIG MMER:	: <u>CME 7</u>	50X (SI JTOMA		218)		TION . SNMEI					59 / 196 . IR-27	0.2 111	EXPLOR B-002	ATION II 2 -0-19
I	PID:				DRILLING			25" HSA		=		ION DATE:		9/14/20)			_				EOB:		ft.	PAGE
	STA	-			SAMPLING		-	SPT		_		RATIO (%):		86.2		1	/ LON						.847300		1 OF 1
		MATER	RIAL DESCRIPT	ION		ELEV.	DEDT		SPT/	-	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERBI	ERG		ODOT	SO4	BAC
			AND NOTES			783.6	DEPT	HS	RQD	N_{60}	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G		
0.3'	- TOPSOI	L (4.0")				∖783.3/	-	-	2	6	0.7	SS-1A	<u> </u>	[<u> </u>		-							-	- 25 L
GR/	AY CLAY,	SOME SIL	, MOTTLED BRO T, LITTLE COA					- 1 - - 2 -	2 2 3		97	SS-1B	2.00	-	-	-	-	-	-	-	-	25	A-7-6 (V	1	7 > 1 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
SAN	ND, TRACI	E FINE GF	RAVEL, MOIST.					_ 3 _	5 7	17	81	SS-2	2.50	-	-	-	-	-	-	-	-	21	A-7-6 (V	') -	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
						778.1		- 4 - 5	0 1 3	6	61	SS-3	1.75	1	-	-	-	-	-	1	-	22	A-7-6 (V	') -	L
		- ,	, BROWNISH GI TLE FINE GRAV	_				6 7 7	5 4 7	16	94	SS-4	3.25	19	11	15	31	24	24	16	8	13	A-4a (4) -	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						770.4		- 8 - - 9 - - 10 -	8 9 13	32	78	SS-5	4.5+	1	-	-	-	-	-	1	-	11	A-4a (V) -	
COA	FF, GRAY ARSE TO I	ISH BROV FINE SAN	VN SILT AND CI ID, LITTLE FINE	LAY, SOME GRAVEL,		773.1		- 11 - - 12 -	9 9 13	32	53	SS-6	1.50	11	13	15	30	31	29	16	13	14	A-6a (6) -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
SON			ENSE, GRAY GF SE SAND, LITTL		CE SO		√ 769.6 w 768.1	13 - 14 - 15 -	2 6 9	22	58	SS-7	-	-	-	-	-	-	-	-	-	15	A-1-a (V	') -	1 L
								16 - - 17 -	10 9 7	23	67	SS-8	-	55	23	9	11	2	NP	NP	NP	12	A-1-a (0) -	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
						763.1		- 18 - - 19 - - 20	8 11 12	33	67	SS-9	-	-	-	-	-	-	-	-	-	12	A-1-a (V	') -	1 L
			E AND FINE SAN SILT, TRACE C		000000000000000000000000000000000000000	700.1	-	22	8 11 13	34	47	SS-10	-	-	-	-	-	-	-	-	-	12	A-3a (V) -	2/2 / 2/2 /
						758.6	EOB	- 23 - - 24 -	9 12 14	37	78	SS-11	-	-	-	-	-	-	-		-	11	A-3a (V) -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NOTES: SEEPAGE @ 14.5'; GROUNDWATER ENCOUNTERED INITIALLY @ 15.5' AND AT COMPLETION @ 14.0'; CAVE-IN DEPTH @ 10.7'

Dii	PROJ TYPE	JECT:	FRA-070		DRILLING SAMPLING		_	RII /		-1	ILL RIG MMER:	: CME 7	50X (SI JTOMA		218)	1	TION SNME		SET:		13+08 RAM	.19 / 12 P D2	21' RT	EXPLOR B-00	ATION 3-0-19
	PID:				DRILLING		_	3.25" HSA		_		ION DATE:		9/14/20	0			_	783.			EOB:	25.0	ft.	PAGI
	STAR		_	9/22/20	SAMPLING			SPT		-1		RATIO (%):		86.2		1	/ LON	_					.847339		1 OF
		MATER	AL DESCRI	PTION	-1	ELEV.	T		SPT/	₹	RFC	SAMPLE	HP	(RAD	ATIO	N (%) _	ATT	ERBE	FRG		ODOT	SO4	BAC
			ND NOTES			783.5	DEPT	HS	RQD	N_{60}	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI		
).7' - TC	PSOIL	_ (8.0")				782.8		<u> </u>	2	_	100	SS-1A	-	-	-	-	-	-	-	-	-	-		-	Py L
				D GRAY CLAY NE SAND, MOI		782.0		1 1	2 2	6	100	SS-1B	2.50	-	-	-	-	-	-	-	-	21	A-7-6 (V	-	
/ERY S	TIFF T	O HARD,		GRAY SANDY	/			- 2 - - 3	3 5 7	17	78	SS-2	3.75	-	-	-	-	-	-	-	-	15	A-4a (V)	-	
SRAVE	L, DAN	1P TÓ MOI	ST.					- 4 - 5	2 2 4	9	86	SS-3	2.25	8	14	16	38	24	25	15	10	15	A-4a (5)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
								- 6 - 7	4 7 12	27	100	SS-4	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	-	4/2
						773.0		- 8 - - 9 - - 10	5 7 7	20	97	SS-5	4.25	13	13	16	38	20	22	15	7	11	A-4a (5)	-	
			AND FINE S	AND, LITTLE			₩ 772.0	11 -	13 13 16	42	0	SS-6	-	-	-	-	-	-	-	-	-	-	A-3a (V)	-	79
					8.000	770.5		L ₁₃ L	15	-	100	2S-6A	-	-	-	-	-	-	-	-	-	10	A-3a (V)	-	- ×
				GRAY GRAVEI ∟AY, MOIST TO				- 14 - 15	7 7 11	26	69	SS-7	-	-	-	-	-	-	-	-	-	11	A-1-b (V) -	-1 L
								- - 16 - - 17 -	20 33 28	88	64	SS-8	-	-	-	-	-	-	-	-	-	9	A-1-b (V) -	- A
							√ 765.5	F '° -	10																21 L
								19 - 20	15 17	46	56	SS-9	-	56	19	9	11	5	NP	NP	NP	12	A-1-b (0)	-	- X X X X X X X X X X X X X X X X X X X
						760.5		22	12 13 11	34	56	SS-10	-	-	-	-	-	-	-	-	-	11	A-1-b (V) -	
			COARSE AN RACE SILT,	ND FINE SAND, WET.		758.5	EOB-	- 23 - - 24 -	6 7 11	26	53	SS-11	-	-	-	-	-	-	-	-	-	13	A-3a (V)	-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 11.5' AND AT COMPLETION @ 10.8'; CAVE-IN DEPTH @ 147'

Di	\	ROJECT: /PE:	FRA-07 ROADV	70-22.85 VAY	1	FIRM / OF	_	RII / 1		_	ILL RIG	: <u>CME 7</u>	750X (SI UTOMA		218)	1	TION SNME		SET:		0+93. - RAM		5.2' RT_		RATION I 4-0-19
IVII		D: 9823			-	METHOD		3.25" HSA		_		ION DATE:		9/14/2)	-	VATIO	_	784			EOB:	 25.0	ft.	PAGE
	ST			9/22/20		IG METHOI		SPT		_		RATIO (%):		86.2		-	/ LON	_					.847451		1 OF
		MATE	RIAL DESCR	RIPTION	-1	ELEV.			SPT/			SAMPLE	HP	(RAD	ATIO	N (%	2)	ATT	ERB			ODOT	SO4	BAC
			AND NOTES			784.1	I DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR		FS	SI	CL	LL	PL	PI	wc	CLASS (GI		
0.4' - TC	PS	OIL (5.0")	-			783.7	_	L	2		<u> </u>	SS-1A	-	-					-	-	-	-		_	PA L
VERY S	TIF	F. MOTTLE	D BROWN A	ND GRAY CLAY	<u>.</u>	H		<u></u> 1 −	4 5	13	75	SS-1B	3.75	-	-	-	-	-	-	-	-	22	A-7-6 (V) -	W3500
"AND" S	SILT, RAV	, LITTLE C	OARSE TO F TO MOIST.	INE SAND, TRA				_ 2 -	3 5 7	17	86	SS-2	3.75	1	5	10	41	43	49	19	30	20	A-7-6 (18	3) -	7 > 1
-IKACE	OR	IGAINICS II	N 33-1D					 3																	17
						778.6		_ 4 _ _ 5 _	4 5 5	14	94	SS-3	3.75	-	-	-	-	-	-	-	-	17	A-7-6 (V) -	2 L
VERV S	TIFI	E TO HARI	D BROWN TO	O GRAY SANDY		176.0			-																- 5 L
	TTL	E COARSE	, -	ND, LITTLE FIN	11111			- 6 - 7	7 9 13	32	100	SS-4	4.25	18	12	16	34	20	22	16	6	12	A-4a (4)	-	4×1
								- 8 -	-																₹>
								"	6 7 9	23	94	SS-5	4.00	-	-	-	-	-	-	-	-	11	A-4a (V)) -	- Z
						773.6		<u> </u> 10 -																	4
		RAY GRAVI AY, MOIST.	EL WITH SAN	D AND SILT,				- 11 - - - 12 -	6 11 12	33	69	SS-6	-	-	-	-	-	-	-	-	-	10	A-2-4 (V) -	
					49	771.1	771.1	ا _{ده} ا	12																- F
LITTLE	FIN		, TRACE SILT	AND FINE SAND, T, WET.			₩ 770.4	13 -	5 7 10	24	67	SS-7	-	-	-	-	-	-	-	-	-	13	A-3a (V)) -	
						768.6		 15	10																Ø330
		ENSE, GRA E CLAY, W		VITH SAND AND		d		16	6 8	24	75	SS-8	_	56	25	6	7	6	20	18	2	11	A-2-4 (V) -	7/>
								- 17 - - 18 -	9												_		7.2.(<u> </u>	77
						5		19	9 9 6	22	58	SS-9	-	-	-	-	-	-	-	-	-	13	A-2-4 (V) -	
						3 3		20 -																	7 60 3 1/2
								- 21 - - 22 -	4 7 10	24	53	SS-10		_	1	-	-	-	-	-	-	11	A-2-4 (V) -	
				AND FINE SAND,		761.1	-	23 -	7																100
LITTLE	FINI	E GRAVEL	, TRACE SILT	Г, WET.		759.1	FOB-	24 -	, 7 9	23	50	SS-11	-	-	-	-	-	-	-	-	-	18	A-3a (V)	-	S L

NOTES: SEEPAGE @ 10.5'; GROUNDWATER ENCOUNTERED INITIALLY @ 13.7' AND AT COMPLETION @ 13.0'; CAVE-IN DEPTH @ 12.4'

1 /		PROJEC	ATIONAL, IN	FRA-070-2	2.85	DRILLIN	G FIRM /	OPERATOR: _	RII /	'SB	DR	ILL RIG	: _ CME 7			218)	-				10:	30+58	.50 / 27	78' RT	EXPLORA B-009	
	Riii	TYPE: _		ROADWAY	,	SAMPLII	NG FIRM	LOGGER:			_	MMER:		UTOMA	ATIC			GNME				. RAM		ا	D-008	
V		PID:	98232	SFN:		DRILLIN	G METHO	D:3	.25" HSA	١	CAI	LIBRAT	ION DATE:		9/14/2	0	ELE	VATIO	ON: _	779.	.8 (MS	SL)	EOB:	23.9	ft.	PAGE
		START:	9/21/20	END:	9/21/20	SAMPLII	NG METH	OD:	SPT		ENI	ERGY F	RATIO (%):		86.2		LAT	/ LON	NG: _		39	.9351	28, -82	.847700		1 OF 1
		ı		. DESCRIPT	ΓΙΟΝ		ELE,	1 11-01	HS	SPT/	N ₆₀		SAMPLE			SRAD		_ `	_	ATT				ODOT	SO4	BACI
_		20011 /0		NOTES			779	8		RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) ppm	FILL
Ĭ		IFF TO	HARD, BR		RAY SANDY	$ \parallel$	779.	3	_ 1 -	3 3	9	67	SS-1	3.50	-	-	•	-	-	-	-	-	18	A-4a (V)	-	
			AKSE TO F AVEL, DAM		LITTLE TO				- 2 - - 3 -	4 5 7	17	94	SS-2	4.50	11	14	17	36	22	25	17	8	14	A-4a (5)	-	1
									_ 4 -	3 6 11	24	89	SS-3	4.00	-	-	-	-	-	-	-	-	11	A-4a (V)) -	
									- 5 - - 6 -	10																1 × × × × × × × × × × × × × × × × × × ×
_	DENIOE T	FO) (FD)	/ DENOE /	ODAY ODA	\ 		771.	8 w 771.8	- 7 - - 8 -	13 17	43	100	SS-4	4.50	21	11	15	35	18	22	15	7	9	A-4a (4)	-	- <i>Gad</i> b
(COARSE -COBBL	TO FIN	E SAND, L	ITTLE SILT	VEL , LITTLE , WET.		79	▽ 770.3	9 -	20 16 15	45	78	SS-5	-	-	-	-	-	-	-	-	-	9	A-1-a (V) -	
							79		_ 11 _	11 12	39	44	SS-6	-	_	_	-	-	-	-	_	-	9	A-1-a (V) -	79
							79		13	15														,	,	
						0(79		- 14 - - - 15 -	9 12 13	36	56	SS-7	-	64	19	6	7	4	NP	NP	NP	11	A-1-a (0) -	
						000	79		- 16 - - - 17 -	11 17 35	75	89	SS-8	-	-	-	-	-	-	-	-	-	11	A-1-a (V) -	1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /
						000	79		- 18 - - 19 -	50	-	67	SS-9										_ 7	A-1-a (V) -	2 L
						0(750	8	20																	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	SHALE : I WEAK.	BLACK,	HIGHLY W	/EATHERE	D, VERY		<u> </u>	TR	21 7	50	-	67	SS-10	-	-	-							_ 7	Rock (V	_	X X X X X X X X X X X X X X X X X X X
							755.	9 EOB	— 23 – –	- -50 -		83 -	SS-11		_	_		_	_				7	Rock (V) -	

PROJECT: TYPE:	FRA-070-22.85 ROADWAY	-	FIRM / OPE	_	RII / K		1	LL RIG: MMER:		E 55 (3 JTOMA)	1	TION .		SET:		38+53 L RAM	.29 / 93 1P F	3.1' LT	XPLOR/ B-010	
	3232 SFN:	-	METHOD:		3.25" HSA		1	CALIBRATION DATE:							_	778.			EOB:	 24.3 f	t.	PAC
	7/17/20 END: 7/17/20		METHOD:		SPT		1	ENERGY RATIO (%):		90				/ LON						.847759		10
M	ATERIAL DESCRIPTION	-1	ELEV.		DEPTHS SPT/ No		1	REC SAMPLE		HP GRAD						ATT	ERBE	ERG		ODOT	SO4	B
	AND NOTES		778.8	DEP	HS	RQD	N ₆₀	(%)	ID	(tsf)				SI		LL	PL	PI	wc	CLASS (GI)	ppm	F
.5' - TOPSOIL (6.0	")		778.3		-																	P4 00
	WN AND GRAY TO GRAY SANI TRACE FINE GRAVEL, DAMP.)Y			- 1 - - 2 -	7 9 11	30	94	SS-1	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	-	7. 20. 20.
					3 -	9 9	33	78	SS-2	4.5+	3	13	17	39	28	25	15	10	12	A 40 (6)		100
					5 - 6 -	13	აა	78	55-2	4.5+	3	13	17	39	28	25	15	10	12	A-4a (6)	-	- V
			770.8		7	5 7 12	29	89	SS-3	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	-	- A
EDIUM DENSE, (LT , MOIST TO W COBBLES @ 9.0					9	4 9 13	33	67	SS-4	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	-	W/W W/W
TIFF, GRAY SAN I NE GRAVEL, MC	DY SILT, LITTLE CLAY, TRACE IST.		768.3	W 767.8	<u></u> ''	5 14	48	61	SS-5	1.50	-	_	_	_	_	_	_	-	14	A-4a (V)	_	7
ENSE TO VERY I	DENSE, GRAY GRAVEL WITH		765.8		12 - 13 -	18														,		- A - A - A - A - A - A - A - A - A - A
AND , TRACE SIL ⁻	, MOIST TO WET.				- 14 - - 15	14 21 20	62	89	SS-6	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	-	4
					16 -	14	44	94	SS-7	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	-	NO TO TO
IMESTONE AND) SHALE FRAGMENTS PRESEN				18 —	33																4
SS-8	OUNCE I MODILINIO FILLELI		757.0		19 - 20 -	37 22	89	56	SS-8	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-	7
IALE : BLACK, H	GHLY WEATHERED.	ă	757.8	TR	21 - 22 -	11 50/5"	-	100	SS-9	-	-	-	-	-	-	-	-	-	10	Rock (V)	-	X 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
			754.5	—_FOB—	- 23 - - 24 -	21 50/4"	-	100	SS-10	_	-	-	_	-	-	-	_	-	12	Rock (V)	-	V 10 10 10 10 10 10 10 10 10 10 10 10 10

NOTES: SEEPAGE @ 9.0'; GROUNDWATER INTIALLY ENCOUNTERED @ 11.0'

Pipe 98232 SFN	PROJECT: TYPE:	FRA-070-22.85 ROADWAY	DRILLING SAMPLING		_	RII / L		_	ILL RIG: MMER:		E 55 (38 UTOMA)	-	TION		SET:			.02 / 85 VB-CD	,.,	EXPLOR B-01	
## ADMONTES CLEV. DEPTHS SPT/ Rob No. REC SAMPLE HP GRADATION (%) ATTERBERG CAND NOTES ST No. CASS (F) PRINT No. No. PRINT No.	PID: 9823		DRILLING	METHOD:				CAL	LIBRATI	ON DATE:			3	ELE	VATIO	ON: _	782.	.7 (MS	SL)			ft.	PA(1 O
0.7. TOPSOIL (8.0°) HEAVING SAND @ 18.0° 782.0 78		ERIAL DESCRIPTION	O' WII LIIVO	ELEV.			SPT/ RQD	_	REC	SAMPLE		G		ATIO	N (%) <u> </u>		ERBI	ERG		ODOT	SO4	
COARSE TO FINE SAND, TRACE FINE GRAVEL. DAMP TO MOIST. - 2						- , -			(70)		(101)	O. t	00		0.	02							7 T
VERY DENSE, BROWN AND GRAY GRAVEL WITH SAND, TRACE SILT, DAMP. 769.7 LHEAVING SANDS @ 18.0' 759.0 759	COARSE TO FINE SA					_ 2 -		11	94	SS-1	4.5+	-	-	-	-	-	-	-	-	21	A-6b (V)	-	4/
773.2 VERY DENSE, BROWN AND GRAY GRAVEL WITH SAND , TRACE SILT, DAMP. 776.7 78 9 4 83 SS-3 4.5+ 5 7 13 35 40 36 18 18 13 A-6b (11) - 12 18 18 13 A-6b (11) - 12 18 18 18 A-6b (11) - 12 18 18 18 A-6b (11) - 12 18 18 18 A-6b (11) - 12 1						4	5 7 8	23	56	SS-2	4.5+	-	-	-	-	-	-	-	-	17	A-6b (V)	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
773.2 VERY DENSE, BROWN AND GRAY GRAVEL WITH SAND , TRACE SILT, DAMP. 769.7 DENSE TO VERY DENSE, GRAY GRAVEL WITH SAND SILT, MOIST TO WET.					∇ 775.7	6 7	7	24	83	SS-3	4.5+	5	7	13	35	40	36	18	18	13	A-6b (11) -	1/2 / J
VERY DENSE, BROWN AND GRAY GRAVEL WITH SAND, TRACE SILT, DAMP. 773.2 789.7						- 8 -	9																-41 -42
769.7 DENSE TO VERY DENSE, GRAY GRAVEL WITH SAND AND SILT, MOIST TO WET. -COBBLES @ 13.0' -HEAVING SANDS @ 18.0' -COBBLES @ 18.0' -T59.7 VERY DENSE, GRAY AND BROWN COARSE AND -T69.7				773.2		- · ·	9		83			-	-		-		-	-		-	. ,		- N
DENSE TO VERY DENSE, GRAY GRAVEL WITH SAND SILT, MOIST TO WET. -COBBLES @ 13.0' -HEAVING SANDS @ 18.0' -COBBLES @ 18.0' -T59.7 VERY DENSE, GRAY AND BROWN COARSE AND -T59.7				769.7		12	17		67	SS-5	-	-	-	-	-	-	-	-	-	8	A-1-b (V) -	
-HEAVING SANDS @ 18.0' -16	SAND AND SILT, MOI			709.7	767 <i>(</i>	14	14	39	89	SS-6	-	-	-	-	-	-	-	-	-	9	A-2-4 (V) -	
-COBBLES @ 18.0'	-HEAVING SANDS @	<u> </u>			W 101.2	16 7		29	78	SS-7	-	-	-	-	-	-	-	-	-	14	A-2-4 (V) -	- SA
VERY DENSE, GRAY AND BROWN COARSE AND 21 18 29 101 56 SS-9 13 A-2-4 (V) - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-COBBLES @ 18.0'					- I	10	50	89	SS-8	_		_	_	_	_	_		_	14	A-2-4 (V	\ _	- A
VERY DENSE, GRAY AND BROWN COARSE AND 22 - 29 101 56 SS-9 - - - - - - - - -							20		00												7,2 4 (/	Z X Z Z
VERY DENSE, GRAY AND BROWN COARSE AND				759.7		22	29		56	SS-9	-	-	-	-	-	-	-	-	-	13	A-2-4 (V	-	47
	VERY DENSE, GRAY FINE SAND, TRACE S	AND BROWN COARSE AND ILT, WET.		759.0	—EOB—		50/2"	\	<u> 100</u> /	SS-10						اا				15	A A-3a (V)		

NOTES: SEEPAGE @ 12.5'; GROUNDWATER ENCOUNTERED INITIALLY @ 15.5' AND AT COMPLETION @ 7.0'

p	PROJECT: FRA-070-22.85 TYPE: ROADWAY	DRILLING FIRM / OPI		I / LH/KC	DRILL R		IE 55 (3 UTOMA)	STAT		/ OFF NT:	SET:			1.08 / 8 VB-CD	. 1 1	_	ATION ID 2-0-19
	PID: 98232 SFN:	DRILLING METHOD: SAMPLING METHOD	4.5" C	FA	1	TION DATE:				ELEVATION: LAT / LONG:			784	.8 (MS		EOB:	10.0	ft.	PAGE 1 OF 1
	MATERIAL DESCRIPTION AND NOTES	ELEV. 784.8	DEPTHS	SPT/ RQD	N ₆₀ RE	SAMPLE ID	HP (tsf)	G GR		ATIOI FS	N (% sı	CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (G	SO4 ppm	BACK FILL
HAF	- TOPSOIL (6.0") RD, BROWN SANDY SILT , LITTLE CLAY, TRAC E GRAVEL. DAMP.		_ 1	3 9 3	18 67	SS-1	4.50	-	-	-	-	-	-	-	-	12	A-4a (V) -	
VER	E GRAVEL, DAMP. RY STIFF, BROWN, GRAY, AND ORANGE SILT I Y , SOME COARSE TO FINE SAND, TRACE E GRAVEL, DAMP TO MOIST.	Y 782.8	- 2 - 3																4 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
	E GIVIVEE, BAWN TO MOIOT.		- 4 - 5	4 4 5	14 83	SS-2	3.25	1	9	12	39	39	39	18	21	18	A-6b (12	2) 280	1 / V
		770.0	- 6 - 7	1 3 5	12 78	SS-3	3.00	-	-	-	-	-	-	-	-	25	A-6b (V) -	
	DIUM DENSE, BROWN, ORANGE AND GRAY I Y SAND , LITTLE CLAY, TRACE FINE GRAVEL IST.	, 776.8	- 8 - 9 - EOB10	5 8 12	30 100	SS-4	-	-	-	-	-	-	-	-	-	11	A-4a (V) -	

00-2021 RII STAND ODOT

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

Dii		PROJECT: FRA-070-22.85 TYPE: ROADWAY											-1	DRILL RIG: CME 750X (SN 310218) HAMMER: AUTOMATIC					1	ATION GNME		SET:			3.33 / 3 VB-CD		EXPLOR B-013	ation 3 -0-19		
MII		_	98232		N:	,		_		METHOD	_	3.25	" HSA		-1	CALIBRATION DATE:						VATIO	_	781			EOB:		ft.	PAG
		TART:	9/24/	_	END:		9/24/20			3 METHO			SPT		-1		RATIO (%):		86.2		1	/ LON	_					.846279		1 OF
			IATERI		-	PTIO	N	_		ELEV.	1			SPT/			SAMPLE	HP	(SRAD				ATT			T	ODOT	SO4	DAG
		,,			IOTES					781.9	1 1)	PTHS	S	RQD	N_{60}	(%)	ID	(tsf)	GR	cs	FS	SI	,	LL	PL	PI	wc	CLASS (G		
0.5' - TO	PS	OII (4			0.20					781.5	_			4		(70)	SS-1A	\	- ,	- /)	- /	- /	- /	- /	- /	-			- 12 E
HARD, B FINE SA	BRC	OWN S	ILTY C)		780.4	·	E	- 1 -	5 5	14	97	SS-1B	4.5+	-	-	-	-	-	-	-	-	15	A-6b (V	-	
-TRACE VERY S	ΕO	ŔĠAŊ	ICS IN	SS-1	B ´				/ 			-	- 2 -	5 7 8	22	56	SS-2	4.00	-	-	-	-	-	-	-	-	23	A-7-6 (V) -	- 1 L
GRAY C I SAND, M -ROOT	LA` //OI	Y , "AN ST.	D" SIĹT	, TRA								-	- 3 - 4 - 5	5 5 7	17	69	SS-3	4.5+	0	2	4	44	50	52	20	32	20	A-7-6 (18	3) -	_
MEDIUM BROWN SILT, TR	IISH	H GRA	Y GRAV	/EL V	VITH Ś	AND,				776.4			6	10 12	39	89	SS-4	-	54	12	12	16	6	24	18	6	6	A-1-b (0) -	17 17 17
-GRAN			•				ITS IN S	SS-5				-	- 8 - - 9 -	15 11 16 15	45	78	SS-5	-	-	-	-	-		-	-	-	8	A-1-b (V) -	
										<u> </u>	.9	- 10 <u>-</u> - 11 T - 12 -	32 24 21	65	67	SS-6	-	-	-	-			-	-		11	A-1-b (V) -		
-COBBL	LES	S @ 13	13.0'								W 767	.9 -	- 13 - - 14 - - ₁₅ -	33 32 17	70	56	SS-7	-	-	-	-	-	-	-	-	-	18	A-1-b (V) -	7 > 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2
-ROCK	FR	RAGME	NTS IN	I SS-	8				000 000 000			-	- 16 - - 17 -	13 14 20	49	56	SS-8	-	-	-	-	-	-	-	-	-	8	A-1-b (V) -	-
												-	- 18 - - 19 -	27	86	0	SS-9	-	41	36	7	11	5	NP	NP	NP	-	A-1-b (0) -	- 2 L
										į d		-	-	26 24	-	83	2S-9A	-	-	-	-	-	-	-	-	-	14	A-1-b (V) -	- 12 - 27 - 27
-HEAVIN	ING	SAND	OS @ 2	1.0')'						-	- 21 T	12 12 9	30	67	SS-10	-	-	-	-		-	-	-	-	9	A-1-b (V) -	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
										756.9	FOB-	-	- 23 – - 24 –	17 23 35	83	61	SS-11	-	-	-	-	-	-	-	-	-	10	A-1-b (V) -	- 4 L

NOTES: SEEPAGE @ 11.0'; GROUNDWATER ENCOUNTERED INITIALLY @ 14.0' AND AT COMPLETION @ 12.0'; CAVE-IN DEPTH @ 16.4'

Dii	PROJEC TYPE:	T:	FRA-070 ROADW		DRILLING I		_				DRILL RIG: CME 7			N 3102 TIC	218)	1	TION SNME		SET:			.26 / 30 VB-CD	<u>'. </u>		ATION II I-0-19
KII	-	98232			DRILLING			.25" HSA	<u>. </u>	-		ON DATE:		9/14/20)		/ATIC	_	781.			EOB:		t.	PAGE
	START:	9/21/2	0 END:	9/21/20	SAMPLING			SPT		ENE	ERGY F	RATIO (%):		86.2		LAT	/ LON	IG: _		39	9.9340	66, -82	.845694		1 OF 1
		MATERIA	AL DESCRI	IPTION		ELEV.	DEDT	110	SPT/	NI.	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATTI	ERBE	ERG		ODOT	SO4	BAC
		A	ND NOTES			781.4	DEPT	PTHS R		N_{60}	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI	ppm	FILL
	PSOIL (7		ROWN AN	D GRAY CLAY ,	05	780.8 780.2		_ 1 _	1 2	7	78	SS-1	2.00	-	-	-	-	-	-	-	-	23	A-7-6 (V	-	
"AND" S FINE GF	ILT, LITT RAVEL, N	LE COAI IOIST.	RSE TO FII	NE SAND, TRA	CE			_ 2 _	4 5 6	16	72	SS-2	3.00	1	3	8	43	45	47	18	29	20	A-7-6 (17) -	4 > L
GRAY C	LAY, "AN	ND" SIĹT,		BROWN AND DARSE TO FIN ST.	E			- 3 - - 4 - - 5 -	2 2 3	7	72	SS-3	1.50	-	-	-	-	-	-	-	-	29	A-7-6 (V	-	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			BROWNIS Y, LITTLE	SH GRAY FINE GRAVEL,		775.9	_	- 5 - - 6 - - 7 -	4 6 0	22	89	SS-4	3.50	15	15	18	34	18	22	16	6	13	A-4a (3)	-	4 > 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
-ROCK	FRAGM	ENTS IN	SS-4					8 -	7	24	72	SS-5	4.00	-	_	-	_	_	_	-	_	-	A-4a (V)	_	
GRAY G	RAVEL,	SOME FI		AY TO BROWNIS COARSE SAND,	$\langle \circ \cap \rangle$	770.9	∇ 769.4	10 11 12	9 16	47	100	SS-6	_	-	_	_	_	_	-	_	_	6	A-1-a (V	_	79
TTO COL	OILT, TT	, (OL OL)	.,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				w 768.4	13	9 10	32	89	SS-7	-	-	-	-	-	_	-	-	_	10	A-1-a (V	_	
								- 15 - - 16 - - 17 -	13 12 12 13	36	72	SS-8		64	18	6	8	4	NP	NP	NP	11	A-1-a (0)	-	1 / K
								- - 18 - - - 19 -	23	43	39	SS-9			_			_		_		13	A-1-a (V		
				COARSE AND	000	760.9	-	- - - - 21 -	12		33		_		_	-	_	_	_	-	_	10	7 - 1 - a (V		
VET.	IND, 301V	IL FINE	JNAVEL, L	ITTLE SILT,				22 -	9 11	29	89	SS-10	-	-	-	-	-	-	-	-	-	16	A-3a (V)	-	40 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×
					• • • • • •	756.4	EOB-	- 24 - - 25	7 14 14	40	100	SS-11	-	-	-	-	-	-	-	-	-	11	A-3a (V)	-	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 13.0' AND AT COMPLETION @ 12.0'.

Pi	PROJECT:	FRA-070-22.85 ROADWAY	DRILLING I		_	RII / L		-	ILL RIG		E 55 (3 JTOM <i>P</i>)	-	TION		SET:	_).77 / 3. NB-CD		EXPLORA B-015	ATION ID 5-0-19
	PID: 98232 START: 7/17/20	SFN:	DRILLING I	METHOD:	4	.5" CFA		-1		ION DATE:		9/4/18	3		VATION / LON	_	788	.3 (MS		EOB:	10.0	ft.	PAGE 1 OF 1
	MATERIAL	DESCRIPTION D NOTES	O7 UVII	ELEV. 788.3	DEPT		SPT/ RQD	N ₆₀		SAMPLE ID		(GRAD cs	_			ATT LL	ERBI			ODOT CLASS (GI	SO4 ppm	BACK FILL
MEDI		ROWN AND DARK GRAY		\ <u>788.0</u> /		- - 1 -	2 5 6	17	67	SS-1	-	-	-	-	-	-	-	-	-	7	A-2-4 (V) -	49201 49201
GRAV	EL WITH SAND AND S	SILT, DAMP TO MOIST.			∇ 784.8	_ 2 _ _ 3 _																	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				782.8	•	- 4 - 5	3 5 6	17	61	SS-2	-	-	-	-	-	-	-	-		10	A-2-4 (V	190	4 L 1
GRAY	UM STIFF TO HARD, ' SILTY CLAY , LITTLE , TRACE FINE GRAVI				₩ 781.8	- 6 - 7	1 2 2	6	56	SS-3	0.75	2	4	10	44	40	35	18	17	24	A-6b (11) -	
				778.3	<u>—</u> ЕОВ—	- 8 - - 9 - - 10	6 8 13	32	67	SS-4	4.5+	-	-	-	-	-	-	-	-	22	A-6b (V)) -	

PROJECT TYPE:		DRILLING	FIRM / OPI	_	RII /		_	LL RIG		750X (8)	1	TION .		SET:			.20 / 38 VB-CD	J.J L1	EXPLOF B-01	
PID: 9		DRILLING			3.25" HSA		_		ON DATE:		9/4/18				_	782			EOB:		t.	PA
START: _	9/11/20 END: 9/11/20	SAMPLING	METHOD	:	SPT			ERGY F	RATIO (%):		79.5			/ LON						.845005		1 (
M	IATERIAL DESCRIPTION AND NOTES		ELEV. 782.1	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIO FS	N (% sı) CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI)	SO4	
0.5' - TOPSOIL (6.0	0")		781.6		L I	1	^	`	SS-1A	-	-	-	-	-	-	-	-	-	-		-	Pg S
	ARD, BROWNISH GRAY TO I, SOME FINE GRAVEL, LITTLE IOIST				- 1 - - 2 -	2 12 13	30	89 78	SS-1B SS-2	3.50 4.5+		- 16	- 13	36	- 26	- 26	- 17	9	25 14	A-4a (V)		K 100 K
J_ 1., J,					3	3		70	00-2	4.01	-	10	13	30	20	20	17	9	14	A-4a (3)		
					- 4] - 5	5 6	15	83	SS-3	4.5+	-	-	-	-	-	-	-	-	14	A-4a (V)	-	- A
			774.1		- 6 - 7	4 5 5	13	67	SS-4	4.5+	27	21	10	30	12	23	16	7	12	A-4a (1)	-	724
MEDIUM DENSE T SAND , TRACE SIL	O DENSE, GRAY GRAVEL WITH T, MOIST.	0.0			- 8 - - 9 -	8 12 16	37	72	SS-5	-	-	-	-	-	-	-	-	-	7	A-1-b (V)) -	N. W. W. W.
				W 771.1		6																9
			769.1	769.1	12 -	8 10	24	61	SS-6	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	-	74
MEDIUM DENSE, (WET.	GRAY COARSE AND FINE SAND	7	700.0		- 14 - - 15	13 16 4	27	67	SS-7	-	-	-	-	-	-	-	-	-	14	A-3 (V)	-	
MEDIUM DENSE T SAND, TRACE SIL	O DENSE, GRAY GRAVEL WITH T, WET.		766.6		- 16 - - 17 -	3 20	37	78	SS-8	_	-	-	_	_	_	_	_	_	11	A-1-b (V) -	- A
					18 -	8																70 84
					- 19 - 20	10 10 20	40	56	SS-9	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-	777
					- 21 - 22	4 8 10	24	72	SS-10	-	1	-	-	-	-	-	-	-	13	A-1-b (V)	-	- 7 - 7 - 7
MEDIUM DENSE.	GRAY COARSE AND FINE SAND	,	759.1 757.1		- 23 - - 24 -	6 10 12	29	72	SS-11	_	_	_	_	_	_	_	_	_	14	A-3 (V)	_	10 mm

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 11.0' AND AT COMPLETION @ 13.0'

PROJECT:	FRA-070-22.85 ROADWAY	DRILLING SAMPLING		_	RII /	/ TG	_	ILL RIG: MMER:		750X (8)	_	TION		SET:			.43 / 39 VB-CD	7.0 LT	EXPLOR B-01	
PID: 98232	SFN:	DRILLING	METHOD:		3.25" HSA		CAI	LIBRAT	ION DATE:		9/4/18	,	ELE	VATIO	ON: _	784	6 (MS	SL)	EOB:	25.0 f	t.	PA
	1/20 END: 9/1/20	SAMPLING		:	SPT	_	ENI		RATIO (%):		79.5			/ LON					97, -82	.844313		1 C
	RIAL DESCRIPTION AND NOTES		784.6	DEP ⁻	THS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)		cs	ATIO FS	N (%	CL	ATT LL	PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	
0.5' - TOPSOIL (6.0")	ANDINOTES		784.1		L	3			SS-1A	-	-	-	-	-	-	-	-	-	-	` '	<u> </u>	250
HARD, BROWNISH GR	AY SILT AND CLAY , LITTLE	<i>\///</i>			<u> </u>	7 4	15	50	SS-1B	4.50	-	-	-	-	-	-	-	-	22	A-6a (V)	-	Ø3
DAMP.	ID, TRACE FINE GRAVEL,		781.6		_ 2 -	5 6 10	21	78	SS-2	4.00	-	1	-	-	-	1	-	-	24	A-6a (V)	-	1
	AY TO DARK BROWNISH ME FINE GRAVEL, LITTLE				- 4 - - 5 -	14 13 13	34	67	SS-3	4.50	26	15	11	33	15	25	20	5	12	A-4a (3)	-	
					- - 6 - - 7 -	4 6	19	83	SS-4	4.50	-	-	-	-	-	-	-	-	14	A-4a (V)	-	LAX TAX
					- 8 -	8															1	
			775.6		-	7			SS-5A	4 50	-	-	_	_	_	-	_	-	10	A-4a (V)	+ -	— Z
	ERY DENSE, DARK BROWN				- 9 -	21	49	78	SS-5B	-	-	-	-	-	-	-	-	-	8	A-1-b (V)		K
AND ORANGISH BROV FRACE SILT, VERY MC	VN GRAVEL WITH SAND , DIST TO WET.				- 10 - - - 11 -	16														,		77
				∇ 772.6		■ 2A	54	78	SS-6	-	-	-	-	-	-	-	-	-	5	A-1-b (V)	-	
				W 771.1	13 - - 14 -	8 12	29	33	SS-7	_	_		_	_	_			_	9	A-1-b (V)		7
					15 -	10														7 2 (1)		7
					- 16 - - 17 -	5 7 10	23	61	SS-8	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-	787
MEDILIM DENSE GRA	Y COARSE AND FINE SAND,		766.6		- 18 -	+																A.
WET.	TOOLIGE AND TIME OLIND,				19 -	7 11 11	29	50	SS-9	-	-	-	-	-	-	-	-	-	14	A-3 (V)	-	7
JENSE CDAV AND DA	ARK GRAY GRAVEL WITH	h.	764.1		20 -	-																₩ ₩
SAND, TRACE SILT, WI					21 - 22 -	6 13 12	33	61	SS-10	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-	
					23 -	11																7 2
			759.6	FOR	24 -	14 13 12	33	67	SS-11	-	-	-	-	-	-	-	-	-	12	A-1-b (V)	-	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 13.5' AND AT COMPLETION @ 12.0'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 50 LBS BENTONITE CHIPS AND SOIL CUTTINGS

PROJECT: FRA-070-22.85 TYPE: ROADWAY	-	FIRM / OPER	_	RII / L		-1	LL RIG MMER:		E 55 (3 JTOMA)	-	TION SNME	/ OFF NT:	SET:			0.31 / 4. VB-CD	.5 1(1	EXPLOR B-019	ATION ID 9-0-19
PID: 98232 SFN: START: 7/17/20 END: 7/17/20	DRILLING M SAMPLING	METHOD:		.5" CFA SPT		CAL	IBRAT	ION DATE: RATIO (%):		9/4/18 90		ELE	VATION	ON: _	788	.9 (MS	SL)	EOB:		ft.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV. 788.9	DEPTI	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		ATIO FS	N (% sı	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (G	SO4 ppm	
\(\)0.2' - TOPSOIL (2.0") VERY STIFF TO HARD, BROWN, DARK BROWN		∖788.7∫		_ - 1 -	2 4 4	12	61	SS-1	4.00	-	-	-	-	-	-	-	-	11	A-6a (V) -	
AND ORANGE SILT AND CLAY , LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, DAMP TO MOIST.				_ 2 _ _ 3 _																	
				- 4 - - 5	4 5 4	14	89	SS-2	3.25	1	3	9	51	36	33	19	14	21	A-6a (10)) 220	CONTRACT OF THE PARTY OF THE PA
				6 7	4 6 6	18	83	SS-3	3.50	-	-	-	-	-	-	-	-	21	A-6a (V) -	
		778.9		- 8 - - 9 -	7 8 10	27	111	SS-4	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V) -	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 12.5 LB. BENTONITE CHIPS AND SOIL CUTTINGS

	FIRM / OPE FIRM / LO		RII / SB RII / T.G.		ILL RIG MMER:	: CME 7	50X (SI JTOMA		218)	1	ATION GNME		SET:			.97 / 44 VB-CD	[B-020	0-0-19
PID: 98232 SFN: DRILLING	METHOD:	3.2	5" HSA	CA	LIBRAT	ION DATE:	Ę	9/14/2	0	ELE	VATIO	ON: _	786	.1 (MS	SL)	EOB:	25.0	ft.	PAGE
START: <u>9/21/20</u> END: <u>9/21/20</u> SAMPLING	METHOD:		SPT	EN	ERGY F	RATIO (%):		86.2		LAT	/ LON	1G: _		39	.93397	72, -82	.843613		1 OF
MATERIAL DESCRIPTION	ELEV.	DEPTH	S SPT			SAMPLE		(RAD		_ `	,	ATT				ODOT	SO4	BAC
AND NOTES	786.1	<u> </u>	RQE	1,460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) ppm	FIL
1.7' - TOPSOIL (8.0") HARD, BROWN SANDY SILT , LITTLE CLAY, TRACE	785.4 784.6		- 1 - 3 7	19	67	SS-1	4.50	-	-	-	-	-	-	-	-	15	A-4a (V)	-	AS E
FINE GRAVEL, MOIST. VERY STIFF TO HARD, MOTTLED BROWN AND SRAY TO BROWN SILT AND CLAY, SOME		_	$\begin{bmatrix} 2 & 7 & 6 \\ -3 & 1 \end{bmatrix}$	23	78	SS-2	4.50	-	-	-	-	-	-	-	-	17	A-6a (V)	-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST.			- 4 - ⁵ 7	20	72	SS-3	4.00	4	15	17	38	26	27	16	11	22	A-6a (6)	-	
			_	16	100	SS-4	4.00	-	-	-	-	-	-	-	-	13	A-6a (V)	-	3/2
	775.6		- 8 - - 9 - 7 - 10 - 1	27	94	SS-5	3.50	-	-	-	-	-	-	-	-	13	A-6a (V)	-	
ERY STIFF, DARK GRAY SANDY SILT , SOME CLAY, LITTLE FINE GRAVEL, DAMP.			- 11 - 5 7	23	0	SS-6	-	-	-	-	-	-	-	-	-	-		-	
	772.9	-	- 13 - 15/5"	+-	120	2S-SS-6A	3.00	11	13	16	35	25	23	15	8	11	A-4a (5)	-	24 >
MEDIUM DENSE TO DENSE, GRAY GRAVEL , SOME FINE TO COARSE SAND, LITTLE SILT, TRACE CLAY, MOIST TO WET.			- 14 - 4 - 15 - 13	36	72	SS-7	-	-	-	-	-	-	-	-	-	8	A-1-a (V) -	1 L
-COBBLES @ 15.5'	<u></u>	₩ 770 1 769.8	- 16 - 12 - 17 - 7	22	44	SS-8	-	_	-	-	-	-	-	-	-	11	A-1-a (V) -	7/>
			- 18 -	8															107
			- 19 - 12	29	67	SS-9	-	61	17	7	11	4	NP	NP	NP	14	A-1-a (0)) -	7
			- 21 10	39	72	SS-10	-	_	_	_	_		_	_		11	A-1-a (V		2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
			- 23 —		12	00-10			-		•					- 11	7-1-a (V	·	2 × ×
	761.1	FOB	- 24 - 12 ₉	27	72	SS-11	-	-	-	-	-	-	-	-	-	11	A-1-a (V	-	2 L

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 16.0' AND AT COMPLETION @ 16.3'.

MATERIAL DESCRIPTION AND NOTES SELEV. 786.4 DEPTHS SPT/ RQD N ₅₀ REC SAMPLE HP GRADATION (%) ATTERBERG (%) ID (tsf) GR CS FS SI CL LL PL PI (tsf) CS CS SI SI CS CS SI SI		SO4 ppm V) -
MATERIAL DESCRIPTION AND NOTES SHOW No SPT SPT No SPT	17 A-6b (\\ 17 A-6b (\\	V) V) -
0.1' - TOPSOIL (1.0") (0.7' - GRAVEL FILL (8.0") VERY STIFF, BROWN TO GRAY SILTY CLAY, COME COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST. VERY STIFF, GRAY SANDY SILT, SOME CLAY, LITTLE FINE GRAVEL, MOIST. 778.4 VERY STIFF, GRAY SANDY SILT, SOME CLAY, LITTLE FINE GRAVEL, MOIST.	17 A-6b (\)	V) - V) -
VERY STIFF, BROWN TO GRAY SILTY CLAY , COME COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST. - 2	17 A-6b (\	V) -
VERY STIFF, GRAY SANDY SILT , SOME CLAY, LITTLE FINE GRAVEL, MOIST. 778.4 778.4 778.4 778.4 778.4 778.4 778.4 778.4 778.4		,
778.4 7 8 24 92 SS-3 4.00 1 8 18 35 38 35 16 19 VERY STIFF, GRAY SANDY SILT , SOME CLAY, ITTLE FINE GRAVEL, MOIST.	16 A-6b (1	11) -
778.4 778.4 778.4 778.4 778.4 778.4 778.4 778.4 778.4 778.4 775.4	10 A-0D (1	-
ITTLE FINE GRAVEL, MOIST. - 9 6 17 100 SS-4 3.25		
	11 A-4a (\	V) -
- 12 4 5 12 89 SS-5 2.75	13 A-4a (\	V) -
- 13	12 A-4a (\	V) -
16 - 16 - 3 3 5 11 75 SS-7 2.50	16 A-4a (\	V) -
/ERY SOFT TO SOFT, GRAY SANDY SILT , SOME CLAY, LITTLE FINE GRAVEL, MOIST.	14 A-4a (4	4) -
	11 71 12 (4) -
21 0 0 1 58 SS-9 0.25	15 A-4a (\	V) -
763.3 W 763.4 23 0 ST-10	-	-
NET.	10 A-1-b (

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 23.0' AND AT COMPLETION @ 11.0'; CAVE-IN DEPTH @ 20.7'

PROJEC'	-	DRILLING		_		/ BH	_	ILL RIG		ILE B53		40)				SET:				··	XPLOR B-022	
Rii) TYPE: _	ROADWAY 98232 SFN:	_SAMPLING DRILLING			RII / 3.25" HS/			MMER:	ON DATE:	UTOMA	9/4/18	2	-	SNME	_	795			VB-CD EOB:			P/
START:		SAMPLING			SPT	1	_		RATIO (%):		80.7	,	_	/ LON	_	700				.842152		1 (
	MATERIAL DESCRIPTION		ELEV.			CDT/	 - ''		SAMPLE	_			ATIO			ΛТТ		ERG	_	T	 _	Т.
,	AND NOTES		785.6	DEPT	HS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)			FS	SI	CL	LL	PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	
0.5' - TOPSOIL (6			785.1			11		(70)	SS-1A	(131)	-	-	-	-	-	-	-	-	-	, ,	-	25
	HARD, MOTTLED BROWN AND	— \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	765.1		<u> </u>	3	11	100	SS-1B	4.00		_	_	_	_	_	_	_	19	A-6a (V)	_	9
	CLAY, LITTLE COARSE TO FINE	<i>\//.</i>			- '	5			33-10	4.00	_	ļ <u>-</u>		-			-		19	A-0a (V)	<u> </u>	220
	NE GRAVEL, MOIST.		1		<u></u>	12	32	97	SS-2	4.5+	_	_	_	_	_	_	_	_	21	A-6a (V)	l _	<i>₽</i>
	•		1		<u> </u>	12														7.04(1)		9
			1		-	1																
					_ 4 -	6	17	89	SS-3	3.75	10	6	8	32	44	26	20	6	19	A-6a (V)	_	Ø.
					F 5 -	7														, ,		Ø5
			1		-	-																4
			1		<u></u> 6 −	3																6
			1		├ 7 -	3 6	12	72	SS-4	3.75	-	-	-	-	-	-	-	-	20	A-6a (V)	-	2
			777.6		١,	-																
	TO DENSE, BROWN, GRAY AND		1		8 -																	- F
	WITH SAND AND SILT , MOIST TO	RH.	}		- 9 -	8	28	67	SS-5	_	_	_	_	_	_	_	_	_	10	A-2-4 (V)	_	2
/ET.					L 10 -	13														, , _ , (, ,		29
					-	-																eZ.
		111	•		11 -	11																- 22
		JO 1	}		- 12 -	14	32	75	SS-6	-	-	-	-	-	-	-	-	-	7	A-2-4 (V)	-	0
			1		-	10																- 2
			3		_ 13 -																	ez,
			}		- 14 -	8 8	26	75	SS-7		_	_	_	_	_	_	_	_	12	A-2-4 (V)	l _	4
		1111	1		- - 15 -	11		13	00-1					_	_				12	/\-Z- - + (V)		Á
					-	4																Ø
					<u> </u>	7																
		#	1		F 17 -	12	31	72	SS-8	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)	-	1
			3	_	-																	<u> </u>
			3	767.3	┖																	e e
					- 19 -	8 12	35	64	SS-9										10	A 2 4 (V)		Ø
			1		-	12 14	33	04	33-9	-	-	-	-	-	-	-	-	_	12	A-2-4 (V)	-	7
			1	W 765.1	20 -																	
					_ 21 -	a																2
					_ 22 -	12	38	78	SS-10	-	-	-	-	-	-	-	-	-	11	A-2-4 (V)	-	4
			762.6		-	16															1	- 2
ENSE. GRAY AI	ND DARK GRAY COARSE AND		702.0		_ 23 -	᠋																
INE SAND, WET		• • • • • •			_ 24 -	14	12	EG	CC 11										11	A 20 (\)		- Q
			760.6	EOB-	<u>- م</u>	14 16 16	43	56	SS-11	-	-	-	-	-	-	-	-	_	14	A-3a (V)	-	Ť

NOTES: SEEPAGE @ 16.0'; GROUNDWATER ENCOUNTERED INITIALLY @ 20.5' AND AT COMPLETION @ 18.3'; CAVE-IN DEPTH @ 14.2'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 50 LBS BENTONITE CHIPS AND SOIL CUTTINGS

Di	PROJECT: FRA-070-22.85 TYPE: ROADWAY	DRILLING FIF			RII / LH RII / K		-1	LL RIG		E 55 (38 JTOMA)		TION SNME		SET:			.58 / 14 VB-CD		EXPLORA B-023	ATION ID 3-0-19
	PID: 98232 SFN: START: 7/17/20 END: 7/17/20	DRILLING ME SAMPLING M		4.5	SPT		-1		ION DATE: RATIO (%):		9/4/18 90	1		VATION / LON	_	789.	.5 (MS		EOB: 31, -82	10.0 .842182	ft.	PAGE 1 OF 1
	MATERIAL DESCRIPTION AND NOTES		ELEV. 789.5	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIC FS	N (% sı	CL		ERBI PL		WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
VERY	TOPSOIL (6.0") STIFF, DARK BROWN SILT AND CLAY ,		789.0		- 1 -	2 4 4	12	50	SS-1	4.00	-	-	-	-	-	-	-	-	12	A-6a (V)) -	
GRAV	E COARSE TO FINE SAND, TRACE FINE EL, DAMP.		786.5		2 -																	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TO BR	STIFF TO HARD, DARK BROWN AND GRAY ROWN AND ORANGE CLAY , "AND" SILT, E COARSE TO FINE SAND, TRACE FINE EL, MOIST.				- 4 -	7 6 8	21	83	SS-2	3.00	7	2	9	41	41	41	18	23	21	A-7-6 (13	3) 540	
			704.5		6 7	5 7 11	27	100	SS-3	4.25	3	3	8	36	50	50	22	28	22	A-7-6 (17	/) -	2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
CLAY,	STIFF, BROWN AND ORANGE SILT AND LITTLE COARSE TO FINE SAND, TRACE GRAVEL, DAMP.		781.5 779.5	-EOB	- 8 - - 9 -	7 7 7	21	100	SS-4	4.00	-	-	-	-	-	-	-	-	13	A-6a (V)) -	

00-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:31 - U:\G\8

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 12.5 LBS BENTONITE CHIPS AND SOIL CUTTINGS

	ING FIRM / OPE	_	RII / BH RII / TG		ILL RIG	MOBILE	B53 (S JTOMA		345)	1	TION SNME		SET:			.80 / 24 NB-CD	F.O LT	EXPLOR B-024	ATION II 1-0-19
	ING METHOD:		25" HSA	_		ON DATE:		9/14/20	0	-	/ATIC	_	787			EOB:		ft.	PAGE
	LING METHOD:		SPT	_		RATIO (%):		83.6		-	/ LON	_					.841536		1 OF 1
MATERIAL DESCRIPTION	ELEV.		IS SPT/	7		SAMPLE	HP	C	RAD	ATIO	N (%	.)	ATT	ERBI	ERG		ODOT	SO4	BACK
AND NOTES	787.6	DEPTI	HS RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	wc	CLASS (GI		FILL
.4' - TOPSOIL (5.0")	787.2		_ 2 _	44	00	SS-1A		-	-	-	-		-	-		-		-	19 L W
ERY STIFF TO HARD, BROWN SILT AND CLAY , OME COARSE TO FINE SAND, TRACE FINE			- 1 - 5 ₅	14	89	SS-1B	4.5+	-	-	-	-	-	-	-	-	17	A-6a (V)	-	
RAVEL, MOIST.			$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$	11	81	SS-2	4.25	-	-	-	-	-	-	-	-	19	A-6a (V)	-	1
	782.1		- 4 - 3 - 5 - 6	14	75	SS-3	3.75	2	11	11	34	42	32	20	12	28	A-6a (9)	-	2 L
ERY LOOSE TO LOOSE, BROWN AND DARK ROWN GRAVEL WITH SAND, SILT, AND CLAY , IOIST.			6 1 3	10	44	SS-4	-	-	-	-	-	-	-	-	-	12	A-2-6 (V) -	7 X X X X X X X X X X X X X X X X X X X
			- 8 - - 9 - ²																- KAY
IEDIUM DENSE TO DENSE, BROWN, DARK	777.1		10 2	6	67	SS-5	-	55	20	4	15	6	32	19	13	13	A-2-6 (0) -	
ROWN, AND BLACK GRAVEL WITH SAND AND ILT, TRACE CLAY, MOIST TO WET.			- 11 12 - 12 16 - 15	43	78	SS-6	-	-	-	-	-	-	-	-	-	7	A-2-4 (V) -	
			- 13 - - 14 - 14 14	33	78	SS-7	-	-	-	-	-	-	-	_	-	8	A-2-4 (V) -	
			- 15 - 10 16 - 19																4
			- 17 - 14 12	36	56	SS-8	-	•	-	-	-	-	-	-	-	9	A-2-4 (V) -	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			19 7	42	86	SS-9	-	-	-	-	-	-	-	-	-	13	A-2-4 (V) -	
			21 9	32	47	SS-10		-			_			_		15	A-2-4 (V	\	
IEDIUM DENSE, GRAY COARSE AND FINE SAND ,	764.6		- 22 - 10 - 23 -		7/	00-10	_			-	-					10	Λ-2-4 (V	-	- K
RACE SILT, WET.	762.6	—FOB	24 7 9	29	83	SS-11	-	-	-	-	-	-	-	-	-	11	A-3a (V)	-	

Di		OJECT: PE:		FRA-070- ROADWA		DRILLING I		-	RII /		-1	ILL RIG MMER:	: MOBILE	B53 (S JTOMA		6345)	1	TION SNME		SET:			.12 / 13 VB-CD	,,, <u>L</u>	EXPLORA B-025	
MII		98232	S	FN:		DRILLING			3.25" HSA		_		ION DATE:		9/14/2	0	1	VATIC	_	789			EOB:		t.	PAGE
	STA	ART: 9/1	/20	END:	9/1/20	SAMPLING			SPT] ENI	ERGY F	RATIO (%):		83.6		LAT	/ LON	IG: _		39	.9337	60, -82	.840921		1 OF 1
		MATER	RIAL	DESCRIF	PTION		ELEV.	חבח	TUC	SPT/	NI.	REC	SAMPLE	HP	(RAD	ATIO	N (%)	ATT	ERBI	ERG		ODOT	SO4	BAC
			AND	NOTES			789.1	DEP	1112	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI		FILL
0.6' - TO	PSO	OIL (7.0")					788.5		_	2	10	04	SS-1A	-	-	-	-	-		-	-	-	-		-	- 4 P
GRAY S	ILT A	AND CLAY,	LITT	LE TO SO	ROWN AND OME COARSE				1 +	3 4 5	10	94	SS-1B	3.00	-	-	-	-	-	-	-	-	19	A-6a (V)	-	- 435 - 4 - 4
TO FINE DAMP T			ТО	LITTLE F	INE GRAVEL,				_ 2 _	6 10	22	89	SS-2	4.5+	1	5	7	52	35	32	20	12	18	A-6a (9)	-	
									4 - 5	6 9 10	26	72	SS-3	4.5+	-	-	-	-	-	-	-	-	23	A-6a (V)	-	
									- 6 - 7	8 9 10	26	100	SS-4	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	-	
							778.6		- 8 - - 9 - - 10	5 6 6	17	92	SS-5	3.50	18	19	12	32	19	29	17	12	14	A-6a (4)	-	- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
RAY G	RAV	NSE TO DE 'EL WITH S T TO WET.	AND		N, BLACK, AN T , TRACE	D	770.0		11 - 12 -	5 6 10	22	69	SS-6	-	-	-	-	-	-	-	-	-	11	A-2-4 (V) -	39 40
									- 13 - - 14 - - 15	5 9 10	26	78	SS-7	-	-	-	-	-	-	-	-	-	10	A-2-4 (V) -	7 × × × × × × × × × × × × × × × × × × ×
								₽ 774.	- 16 - - 17 -	18 16 19	49	78	SS-8	-	-	-	-	-	-	-	-	-	10	A-2-4 (V) -	
								771.	19	7 8 6	20	72	SS-9	-	-	-	-	-	-	-	-	-	13	A-2-4 (V) -	1 / L
MEDIUM FRACE		, -	CO.	ARSE AN	D FINE SAND	,	768.6		22	6 9 11	28	64	SS-10	-	-	-	-	-	-	-	-	-	19	A-3a (V)	-	- X X X X X X X X X X X X X X X X X X X
							764.1	EOB-	- 23 - - 24 -	9 11 10	29	69	SS-11	-	-	-	-	-	-	-	1	-	11	A-3a (V)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NOTES: SEEPAGE @ 17.1'; GROUNDWATER ENCOUNTERED INITIALLY @ 18.0' AND AT COMPLETION @ 18.0'; CAVE-IN DEPTH @ 17.0'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 50 LBS BENTONITE CHIPS AND SOIL CUTTINGS

Dii	PROJECT:		FRA-070- ROADWA		DRILLING SAMPLING	FIRM / OPE	_	RII /		-1	LL RIG		B53 (S		6345)	-	TION	/ OFF	SET:			'8.12 / 9 NB-CD	- 	B-026	ATION ID 5-0-19
	PID: 9	8232 9/1/20	SFN:	9/1/20	DRILLING SAMPLING			.25" HSA SPT		┥		TION DATE:		9/14/2 83.6			VATION / LON	_	786.			EOB:	10.0 to	ft.	PAGE 1 OF 1
	M		DESCRIP NOTES	TION	=1	ELEV. 786.6	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS	ATIO FS	N (%	CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
	PSOIL (8.0		GRAY TO	BROWN SIL 1	т	785.9		L 1 -	3	10	100	SS-1A SS-1B	- 3.25	-	-	-	-	-	-	-	-	- 17	A-6a (V)	- <100	
AND CL		FINE GR	AVEL, LIT	TLE COARSE				- ' - 2 -	3 4 5	13	56	SS-1B	3.50	21	10	10	29	30	30	17	13	18	A-6a (6)		7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 >
								- 4 - 4 - 5	5 7 9	22	94	SS-3	3.75	-	-	-	-	-	-	-	-	13	A-6a (V)	-	
10005	DDOWN (DAVEL 1	AUTIL OAN	ID OILT AND		779.7		- 6 - - 7 -	3 3	8	78	SS-4A	2.50	- 41	-	-	-	-	-	-	- 12	17	A-6a (V)		7 / / / / / / / / / / / / / / / / / / /
	BROWN (MOIST TO \		VIIH SAN	ID, SILT, AND				8 -	3			SS-4B	-	41	28	6	19	6	30	18	12	13	A-2-6 (0)	-	- 24 X
						776.6	—_FOB-	9 +	1 2 3	7	42	SS-5	-	-	-	-	-	-	-	-	-	23	A-2-6 (V)	-	

00-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2/27/2*2 10:31 - U:\GI8\PRC

Di	PROJEC'	T:	FRA-070-22 ROADWAY	.85	1	G FIRM / OPER	_	RII / L		-	LL RIG		55 (SN JTOMA		45)	STA			SET:			13 / 47 VB-CD	.5 1(1	EXPLORA B-028	ATION ID 3-0-19
	_	98232 7/17/20	SFN:	7/17/20	DRILLING	G METHOD: _		.5" CFA		CAL	IBRAT	ION DATE: RATIO (%):		9/14/2		ELE	/ATIC	ON: _	792	.3 (MS	SL)	EOB:		ft.	PAGE 1 OF 1
	i		DESCRIPTION NOTES	ION	-1	ELEV. 792.3	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIO FS	N (% sı	CL	ATT LL	ERBI	ERG PI	WC	ODOT CLASS (G	SO4 ppm	BACK FILL
VERY S		RK BROW	N AND BRO		-	791.8		_ _ 1 -	5 5 6	15	61	SS-1	4.00	-	-	-	-	-	-	-	-	18	A-6a (V	') -	
	AY, LII IL FINE GRA		E TO FINE S IST.	SAND,		789.3		_ 2 -																	1 L 1
SANDY		ME CĹAY,	AY, AND OR LITTLE FINI			786.8		- 4 - 4 - 5	6 7 11	25	111	SS-2	4.00	12	14	20	31	23	24	15	9	10	A-4a (4	1000	
AND CL		E COARS	OWN AND O E TO FINE S IST.			700.0		- 6 - 7	5 8 7	21	89	SS-3	3.25	-	-	-	-	-	-	-	-	19	A-6a (V	') -	2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
5 5 5 7 7						782.3	— EOB —	- 8 - - 9 - - 10	4 8 9	24	94	SS-4	4.5+	-	-	-	-	-	-	-	-	19	A-6a (V	') -	

-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2*/27/22 10:31 - U:\GI8\PROJECTS\2C

Rii TYPE:	T:	FRA-070-22		-		IRM / OPI FIRM / LO	ERATOR:	RII /	TG KS	-1	LL RIG: /IMER:	CME 7	50X (SI JTOMA		218)	-	ΓΙΟΝ NME		SET:			.27 / 10 VB-CD	,,, <u>- </u>	XPLOR/ B-029	
		SFN:	7/20/20	DRILLI	NG N	METHOD:		3.25" HSA SPT		CAL	.IBRATI	ON DATE:		9/14/20 86.2)	ELE	/ATIC	ON: _	790.	6 (MS	L)	EOB:			PA 1 C
	MATERIAL				-1140	ELEV. 790.6		THS	SPT/ RQD			SAMPLE ID		G	RAD cs	ATIOI FS			ATT LL	ERBI		WC	ODOT CLASS (GI)	SO4 ppm	B
0.5' - TOPSOIL (6 VERY STIFF TO I	.0")		DY SILT			790.1	-	<u> </u>	4 4	11	56	SS-1A	3.00	-	-	-	-	-	-	-	-	- 15	A-4a (V) A-4a (V)	-	- 25°
LITTLE CLAY, TR MOIST.								- 2 - - 2 - - 3 -	4 4 6 6	17	72	SS-2	3.00		-	-	-	-	-	-	-	14	A-4a (V)	-	
-TRACE ROOT I	FIBERS PR	ESENT TH	-IROUGHOU	г		785.1		- 4 - - 5 -	6 7 9	23	28	SS-3	4.5+	-	-	-	-	-	-	-	-	17	A-4a (V)	-	
ERY STIFF, BRO CLAY, LITTLE CO INE GRAVEL, M -TRACE ROOT F	OARSE TO I	FINE SANI				782.6		- 6 - - 7 -	2 2 5	10	56	SS-4	4.00	-	-	-	-	-	-	-	-	15	A-6a (V)	-	2 A A A
TIFF TO HARD, DARK GRAY SAN INE GRAVEL, D. -COBBLES PRE	IDY SILT , S AMP TO M	OME CLA'						- 8 - - 9 - - 10 -	3 5 5	14	83	SS-5	1.50	-	-	-	-	-	-	-	-	17	A-4a (V)	-	
								- 11 - - 12 -	3 5 9	20	39	SS-6	4.25	-	-	-	-	-	-	-	-	14	A-4a (V)	-	7
						775.1	₩ 775.	13 14 6 15	4 5 6	16	56	SS-7	3.00	16	10	16	32	26	24	14	10	11	A-4a (5)	-	
ERY STIFF, GR. COARSE TO FINI DAMP.								- - - - - 17 -	3 4 5	13	61	SS-8	3.00	-	-	-	-	-	-	-	-	12	A-6a (V)	-	7878
						770.1		- 18 - - 19 - - 20 -	3 3 4	10	100	SS-9	4.00	-	-	-	-	-	-	-	-	11	A-6a (V)	-	
ERY STIFF TO I						770.1		- 21 - - 22 -	3 5 5	14	94	SS-10	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	-	
						765.6	FOR-	23 24 25		17	39	SS-11	3.00	-	-	-	-	-	-	-	-	12	A-4a (V)	-	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 15.0'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 50 LBS BENTONITE CHIPS AND SOIL CUTTINGS

6	PROJECT:	: FRA-0	70-22.85 WAY	-	FIRM / OPER	_	RII / L		-	LL RIG		55 (SN JTOMA		l5)	-1	TION /	OFFSE	_		2.54 / 19 WB-CD	9.5 1(1	EXPLORA B-030	ATION ID -0-19
1		08232 SFN:		DRILLING			1.5" CFA SPT		CAL	IBRAT	ION DATE:		9/14/20 84.2)	ELE\	/ATIO / LON	N:7	90.3 (1	MSL)	_ EOB:		ft.	PAGE 1 OF 1
	M	ATERIAL DESCI	RIPTION		ELEV. 790.3	DEPT	HS	SPT/ RQD	≠		SAMPLE ID			CS CS	ATIOI	N (%)	A		BERG		ODOT CLASS (GI	SO4 ppm	BACK FILL
VI	5'- TOPSOIL (6.0' ERY STIFF TO HA	ÁRD, DARK BRO			789.8		- - 1 -	1 3 3	8	50	SS-1	3.00	-	-	-	-	-	- -	-	14	A-6a (V)	-	
	LT AND CLAY , SO RACE FINE GRAN						_ 2 _ _ 3 _																1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					784.8		- 4 - 1 - 5 - 1	8 9 13	31	100	SS-2	4.25	4	10	15	35	36 3	3 18	3 15	14	A-6a (9)	330	
CI	TIFF, BROWN AN LAY, SOME FINE RAVEL, MOIST.			E			- 6 - 7	3 4 4	11	72	SS-3	1.25	18	20	11	26	25 3	9 18	3 21	19	A-6b (7)	-	X X X X X X X X X X X X X X X X X X X
ਤੇ ਂ S ⁄	EDIUM STIFF, BF ANDY SILT, SOMI RACE FINE GRAV	E COARSE TO F			782.3	—FOR—	- 8 - - 9 -	4 6 7	18	83	SS-4	0.75	-	-	-	-	-		-	15	A-4a (V)	-	

. 10-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2\27*22 10:31 - U:\G\8\PROJECT\$

NOTES: SEEPAGE @ 9.0'

START:	MATERIAL DESCRIPTION AND NOTES F TO HARD, BROWN AND DARK SILT, LITTLE CLAY, TRACE FINE	DRILLING SAMPLIN	IG FIRM / LOG METHOD: IG METHOD ELEV. 793.9):	RII / F 3.25" HSA SPT THS	ent/	CAL ENE	RGY F	ON DATE: ATIO (%): SAMPLE ID	HP	9/14/20 86.2	RAD	ELE'	NME VATIO LON N (%	DN: _ NG: _		9 (MS	L) .93360	VB-CD EOB: 02, -82.			PAGE 1 OF 1 BACK
FILL: VERY STIF BROWN SANDY	MATERIAL DESCRIPTION AND NOTES F TO HARD, BROWN AND DARK SILT, LITTLE CLAY, TRACE FINE	SAMPLIN	ELEV.):	THS	SPT/ RQD	•	REC	SAMPLE	HP	G		1			ATTI			02, -82.		504	_
FILL: VERY STIF BROWN SANDY	AND NOTES F TO HARD, BROWN AND DARK SILT, LITTLE CLAY, TRACE FINE		I	DEP		SPT/ RQD	N ₆₀						ATIO	N (%)	ATTI	ERBE	RG		ODOT	504	BACK
BROWN SANDY	F TO HARD, BROWN AND DARK SILT , LITTLE CLAY, TRACE FINE		793.9	DEP		RQD	N ₆₀					$\overline{}$								())()		DALK
BROWN SANDY	SILT, LITTLE CLAY, TRACE FINE				- 1 -					(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
					<u> </u>																	Cy Las
					_ 2 _	3 6 8	20	78	SS-1	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	-	
		11111			3 -	8																120
					- 4 - 5	10 12	32	83	SS-2	4.5+	-	-		-	-	-	-	-	15	A-4a (V)	-	
-COBBLES PRE	ESENT @ 6.0'				6 7	7 9	20	67	SS-3	2.50	-	-	-	-	_	-	_	-	18	A-4a (V)	-	4/ VII
			785.4		8 -	5														. ,		
STIFF, BROWN : FINE GRAVEL, N	SANDY SILT , LITTLE CLAY, TRAC MOIST.	E	783.4		- 9 - - 10	3 4 4	11	94	SS-4	1.50	-	-	-	-	-	-	-	-	19	A-4a (V)	-	
MEDIUM DENSE SILT, TRACE CL	E, GRAY GRAVEL WITH SAND AND AY, WET.		703.4		11	2 6	14	50	SS-5		_			_		_	_		24	A-2-4 (V)		
					- 12 - - 13 -	4	14	30		-	-	-	-	-	_	-	-	_		A-2-4 (V)	<u> </u>	\$10 m
			778.9		14	3 4 5	13	0	SS-6	-	-	-	-	-	-	-	-	-	-		-	1 L
VERY STIFF TO	HARD, GRAY SANDY SILT, SOME			Ī	15	7	-	100	2S-6A	4.5+	8	12	16	35	29	25	15	10	13	A-4a (6)	-	W35000
CLAY, TRACE FI	INE GRAVEL, DAMP TO MOIST.				- 16 - - 17 -	3 4	13	0	SS-7	_	-	-	-	-	_	-	_	-	-		_	4 × ×
					- H	5	_	100	2S-7A	4.5+	-	-	_	-	_	_	-	_	14	A-4a (V)	_	1 LN 1 LN 1 > K
					- 18 - - - 19 -	2 3	11	83	SS-8	3.50		-		_		_	_	_	12	A-4a (V)		
				w 772.9	20	5	.,			0.00										(v)		1 / / / / / / / / / / / / / / / / / / /
						5 7 8	22	67	SS-9	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	1 × × × × × × × × × × × × × × × × × × ×
			768.9		- 23 - - 24 -	4 4	17	72	SS-10	4.25	_	_	_	_	_	_	_	_	11	A-4a (V)	_	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 21.0'

	PROJE		FRA-070		-	G FIRM / OP		RII /	/ TG	-1	ILL RIG MMER:	CME 7	50X (SI UTOMA		218)	1	TION .		SET:			.94 / 11 VB-CD	.0	EXPLORA B-032	ATION I 2 -0-19
	PID: _	98232	SFN:		DRILLIN	G METHOD:	:	3.25" HSA		CAL	LIBRAT	ON DATE:		9/14/2	0	ELE,	/ATIC	N: _	795.	1 (MS	L)	EOB:	25.0	it.	PAGE
	START	MATERIA	L DESCRI	7/20/20 PTION	SAMPLIN	ELEV.	1	SPT THS	SPT/ RQD	N ₆₀	REC	SAMPLE	l .		RAD	ATIO)		ERBE	RG		.836642 ODOT CLASS (GI	SO4 ppm	BACI
BROWN S	SANDY	FF TO HAR	LE CLAY,	N AND DARK TRACE FINE		795.1		- - - - 2 - - - 3 -	4 5 6	16	61	SS-1	4.5+	-	-	FS -	-	-	-	PL -	PI -	12	A-4a (V)	-	1
								- 5 - - 6 - - 7 - - 8 -	5 5 8 7	20	44	SS-2 SS-3	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)		10 1 X X X X X X X X X X X X X X X X X X
	GRAY (GRAVEL W	ITH SAND	AND SILT,	3.0	784.6		- - - - - - - - 11 -	8 8 7	22	67	SS-4	2.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	
VET. IARD, GF			SOME CL	_AY, LITTLE		782.1	W 781.		10 14 5	34	67	SS-5	-	-	-	-	-	-	-	-	-	12	A-2-4 (V	-	10 X X X X X X X X X X X X X X X X X X X
	NSE, (GRAY GRA	VEL WITH	SAND, SILT,	0	779.6		14 15 16	9 15 -	34	72	SS-6	4.5+	13	16	16	31	24	24	15	9	12	A-4a (4)	-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
TIFF TO	HARE			, SOME CLAY	-	777.1		- 17 - - 18 -	29 30 16	85	78	SS-7	-	-	-	-	-	-	-	-	-	12	A-2-6 (V	-	7 7 7
IVAOL FI	INE G	WAYEE, IVIC	101.					19 20 21 -	17 24 -	59	83	SS-8	4.5+	-	-	-	-	-	-	-	-	13	A-4a (V)	-	-1>
								- 22 - - 23 -	20 28 -	69	94	SS-9	1.75	-	-	-	-	-	-	-	-	7	A-4a (V)	-	***
						770.1	EOB-	- 24 - - 25	28 18	66	100	SS-10	2.00	-	-	-	-	-	-	-	-	8	A-4a (V)	-	A L

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 13.5'

Pii	PROJECT:		FRA-070-2		-	FIRM / OPE		RII / LF		-	ILL RIG MMER:		55 (SN JTOMA		15)	-	TION	/ OFF NT:	SET:			.55 / 17 VB-CD	./ 131	EXPLORA B-033	ATION ID -0-19
	PID: 9	8232 S	SFN:	7/16/20	DRILLING	METHOD:	4.	5" CFA SPT		- 1 -		ION DATE:		9/14/2 84.2		-	VATION / LON	_	794	.9 (MS	SL)	EOB:		ft.	PAGE 1 OF 1
		ATERIAL			_ 07 4411 21140	ELEV. 794.9	DEPTH		SPT/ RQD	N ₆₀		SAMPLE ID	_	_		ATIO			ATT LL	ERBI		WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
FILL: VE		BROWN		CLAY, LITTL	.E	794.2	-	- - 1 -	1 2 5	10	67	SS-1	3.50	2	4	9	52	33	35	22	13	16	A-6a (9)	140	
DAMP.	: IO FINE	SAND, II	RACE FIN	IE GRAVEL,				- 2 - - 3 -																	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						789.4		- - 4 - 5	10 7 8	21	89	SS-2	3.50	-	-	-	-	-	-	-	-	16	A-6a (V)	-	
				GRAY SAND Y AVEL, DAMP.		709.4		- 6 - 6 - 7	13 10	27	100	SS-3	-	-	-	-	-	-	-	-	-	10	A-4a (V)) -	7 / All
			GRAY SA GRAVEL,	ANDY SILT,		786.9		- - 8 -	7	21		SS-4	2.50	15		22	39	15	20			17			- KAN-1

0-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2*/27/22 10:31 - U:\GI8\PRO.

NOTES: SEEPAGE @ 9.0'

PROJE TYPE:	CT: FRA-070-22.85	_	FIRM / OPE	_	RII /		_	LL RIG:	CME 7	'50X (SI UTOMA		218)		TION		SET:			5.89 / 8 VB-CD		EXPLOR B-034	ATION 4-0-19
PID: _	98232 SFN: : 7/21/20 END: 7/21/20	DRILLING	METHOD:	;	3.25" HSA SPT		CAL	IBRATI	ON DATE:		9/14/20 86.2		ELE		ON: _	793	.0 (MS	SL)	EOB:		ft.	PAG 1 OF
0174(1	MATERIAL DESCRIPTION AND NOTES	O/ uvii Eii vo	ELEV. 793.0	DEP		SPT/ RQD	N ₆₀		SAMPLE ID	HP (tsf)	G		ATIO			ATT LL	ERBI		WC	ODOT CLASS (GI)	SO4 ppm	
1.0" - TOPSOIL			792.0		- ,	2 4	11	61	SS-1A	-	-	-	-	-	-	-	-	-	-		-	25 T
	FF, BROWN SANDY SILT , LITTLE TINE GRAVEL, MOIST.		700.5		- 2 - - 3 -	5 8 9	24	83	SS-1B SS-2	3.50 4.00		-	-	-	-		-	-	11 14	A-4a (V) A-4a (V)		
DENSE, BROWI SILT, AND CLAY	N AND TAN GRAVEL WITH SAND, ', MOIST.		789.5 787.5		- - 4 - - 5 -	12 14 12	37	83	SS-3	-	-	-	-	-	-	-	-	-	9	A-2-6 (V)) -	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DENSE, BROWI TRACE SILT, M	N AND GRAY GRAVEL WITH SAND DIST.				- - - - - 7 -	11 11 12	33	100	SS-4	-	-	-	-	-	-	•	-	-	7	A-1-b (V)) -	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	E, DARK BROWN GRAVEL WITH , TRACE CLAY, WET.		785.0 782.5		- 8 - - 9 - - 10 -	9 12 9	30	83	SS-5	-	-	-	-	-	-	•	-	-	10	A-2-4 (V)) -	- V
VERY STIFF TO CLAY, LITTLE F	HARD, GRAY SANDY SILT , SOME INE GRAVEL, MOIST.		702.3	₩ 782.0	12 -	23 11 15	37	67	SS-6	3.00	-	-	-	-	-	-	-	-	15	A-4a (V)	-	
					13 14 15	3 4	10	72	SS-7	4.25	17	13	15	33	22	22	13	9	12	A-4a (4)	-	-1-
					- 16 - - 17 -	5 5 12	24	50	SS-8	3.50	-	-	-	-	-	1	-	-	13	A-4a (V)	_	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
-COBBLES @	18.0'				- 18 - - 19 - - 20 -	10 6 6	17	56	SS-9	3.75	-	-	-	-	-	-	-	-	13	A-4a (V)	-	1 2 V V V V V V V V V V V V V V V V V V
					- 21 - 22 -	10	26	78	SS-10	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	_	A 24
			768.0	EOB	23 24 25		32	106	SS-11	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 11.0'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 50 LBS BENTONITE CHIPS AND SOIL CUTTINGS

Dii	PROJ TYPE	JECT:			070-22 DWAY	2.85	_		FIRM / OPI G FIRM / LO		RII /		-1	ILL RIG: MMER:	CME 7	50X (SI UTOMA		218)		ATION GNME		SET:			.89 / 11 NB-CD	.7' LT	EXPLORA B-036	
MII		 9823	2				_		METHOD:	_	3.25" HSA		_		ON DATE:		9/14/20)		VATIO	_	791			EOB:	 25.0 f	t.	PAG
	STAR		/21/20		ID:	7/21/20			G METHOD		SPT		_		ATIO (%):		86.2			/ LON	_					835216		1 OF
		MAT	ERIAL	DESC	CRIPT	ION	_		ELEV.			SPT/		_	SAMPLE	HP	G	RAD	ATIO	N (%	5)	ATT	ERB	ERG		ODOT	SO4	BAG
				NOT					791.6	DEF	PTHS	RQD	N_{60}	(%)	ID	(tsf)	GR	CS		SI	CL	LL	PL	PI	wc	CLASS (GI)	ppm	FIL
FILL: VE	RY S1	TIFF TO	HAR	D, BRO	OWN,	ORANGE,					L.																	Q L
					', LITT	LE FINE					<u></u>	4																- 48g
GRAVEL	., DAN	1P TO M	10IST	•							_ 2 -	5	17	61	SS-1	4.5+	-	-	-	-	-	-	_	_	11	A-4a (V)	_	7/>
0004											F ² 7	7														, ,		4
-ORGA	NICS	10 5.0									- 3 -	1																1 0
											L 4 1	5													4.0			2
												6 12	26	83	SS-2	3.50	-	-	-	-	-	-	-	-	16	A-4a (V)	-	000
											_ 5 <u>_</u>																	7 2
											⊢ 6 ¬	4																VA
-SHALE	FRA	GMENT	SIN	SS-3							L 7	6	23	100	SS-3	3.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	4
											F ' 1	10														, ,		- 4
											- 8 -	1																7
											[g]	18_		400				4.0										_ <
											- · ·	7 8	22	100	SS-4	2.50	15	12	20	33	20	23	15	8	12	A-4a (4)	-	- A
											<u></u> 10 [⊥]																	7
==>/.0=				D14 05		0.0041/		Ш	780.6		- 11 -	30																
						O GRAY IE GRAVEL					- I	9	24	67	SS-5	4.00	_	_	_	_	_	_	_	_	11	A-4a (V)	_	ه ادر
AMP.	JIL 1 , L	-11 1 L L \	OLAI		-L I IIV	IL OINAVLI	-,				_ 12 -	8														()		<i>\$</i>
											- 13 -	1																7
											L 14 -	5																2
											'	6 5	16	67	SS-6	4.00	-	-	-	-	-	-	-	-	11	A-4a (V)	-	Zq.
											 15 [⊥]	3																43
											- 16 -	47																-00 -00
											- H	17 18	33	50	SS-7	_	_	_	_	_	_	_	_	_	9	A-4a (V)	_	A .
											17 -	5														7(1)		7
											- 18 -	-																A.
											19	2																and i
												4 5	13	89	SS-8	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	-	7
											- 20 ⁻	5																7
											- 21 -	1																7 1 1 2 2
											- H	5 8	29	100	SS-9	3.00	_	_	_	_	_	_	_	_	10	A-4a (V)		- F
											_ 22 -	12		100		3.00	_					_	_	_	10	Λ-+a (V)		₹:
											_ 23 -	1			<u></u>											<u></u>		- ×
											- F	8																
									760.0		_ 24 -	10	29	100	SS-10	2.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	E L
								ШШ	766.6	L—EOB-	25	10				\Box												77

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

D)	PROJEC	CT:		RA-070-		_		FIRM / OPE	_	RII / L		-	LL RIG		55 (SN JTOMA		15)	STAT			SET:			.71 / 11 NB-CD	1.4 1(1		ATION ID 7-0-19
T.		PID:	98232	SFI		7/16/20	DRIL	LING I	METHOD: _		.25" HSA SPT		CAL	IBRAT	ION DATE:	(9/14/2 84.2	0	ELE\	/ATIC	ON: _	790.	.7 (MS	SL)	EOB:		t.	PAGE 1 OF 1
			MATER	IAL D	ESCRIF		SAIVII	PLING	ELEV.	DEPT		SPT/ RQD		REC	SAMPLE	HP	(ATIOI	N (%)		ERBE	ERG		ODOT CLASS (GI)	SO4 ppm	BACK
		PSOIL (8.0")		OTES BROWI	N, DARK			790.7 790.0		- - 1 -	2 2	8	50	SS-1	(tsf) 4.25	GR -	cs -	FS -	SI -	CL -	- -	PL -	PI -	wc 19	A-6a (V)	1	
BRC SOM	OWN ME C	, TAN AI	ND DAF TO FIN	K GŔ. E SAN	AY SIL	Γ΄AND CLAY , ΓLE FINE					- 2 - - 3 -	4																1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
									785.2		_ 4 - _ 5 _	9 5 4	13	50	SS-2	-	19	12	15	29	25	28	16	12	13	A-6a (5)	300	
	ARSE					SOME IE GRAVEL,			700 7		- 6 - - 7 -	5 5 6	15	94	SS-3	4.25	-	-	-	-	-	-	-	-	15	A-6a (V)	-	4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×
		ΓIFF, GF FINE GR				ME CLAY,			782.7	—FOR—	- 8 - - 9 -	4 4 8	17	100	SS-4	4.00	17	9	16	36	22	22	14	8	11	A-4a (5)	-	

30-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2*/27/22 10:31 - U:\GI8\PROJE

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

PROJECT TYPE:	:	FRA-070-2 ROADWAY		_	G FIRM / OPE	_	RII /			ILL RIG MMER:	: <u>CME 7</u>	750X (SI UTOMA		218)		TION SNME		SET:			VB-CD		XPLOR B-038	
PID:	98232	SFN:		_	METHOD:		3.25" HSA		_		ION DATE:		9/14/2)	-		DN: _	788	.1 (MS	SL)	EOB:	25.0 ft	i	P
START: _	7/21/20	END:	7/21/20	SAMPLIN	G METHOD:		SPT		EN		RATIO (%):		86.2			/ LON					26, -82	.834491		1
M		DESCRIP	TION		ELEV.	DEPT	ΓHS	SPT/	N ₆₀		SAMPLE				ATIO				ERBI			ODOT CLASS (GI)	SO4	
ILL: STIFF TO HA		NOTES	CDAY SAND	<u> </u>	788.1			RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	
SILT, LITTLE CLAY							L 1 -																	(A)
•	•		•				-	6 5	11	72	SS-1	4.5+	_	_	_	_	_	_	_	_	18	A-4a (V)	_	
							_ 2 -	3																-
							_ 3 -																	2
							- 4 -	4 2	4	78	SS-2	2.00	_	_	_	_	_	_	_	_	22	A-4a (V)	_	Ø.
							_ 5 _	1																02
							6																	
								4 2	9	89	SS-3	1.75	_	_	_	_	_	_	_	_	15	A-4a (V)	_	8
							_ / ¬	4														71 14 (1)		
					779.6		_ 8 -																	=
IARD, GRAY SILT INE SAND, SOME) ///			- 9 -	9 7	22	56	SS-4	4.5+	24	11	14	31	20	25	14	11	9	A-6a (4)	_	
INE SAND, SOME	E FINE GI	XAVEL, DA	WIF.				_ 10 _	. 8				•				<u> </u>						71.04 (1)		25
							_ 11 _																	Ø
							Г	6 8	23	0	SS-5	l _	_	_	_	_	_	_	_	_	_		_	2
							<u> </u>	8				4.5.									44	A C= () ()		9
							_ 13 _	9	-	100	2S-5A	4.5+	-	-	-	-	-	-	-	-	11	A-6a (V)	-	
							 14 -	6	20	0	SS-6	l _	_	_	_	_	_	_	_	_	_		l _	4
							<u> </u>	8				4.5.										A 0 00		(2) (2)
								9	-	100	2S-6A	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	-	-
							<u> </u>	5 6	22	78	SS-7	4.5+	_	_	_	_	_	_	_	_	10	A-6a (V)	_	
							17 -	9		,,,		1.0									-10	71 04 (1)		
							18 -																	Ø
							- 19 -	5 7	24	100	SS-8	4.5+	_		-	_		_	_		10	A-6a (V)		02
							_ 20 _	10		100		1.0										71 04 (1)		
							21 -																	6
					a 1		-	5 9	29	94	SS-9	4.5+	_		_	_		_	_	-	10	A-6a (V)		
							_ 22 -	⁷ 11														/ (54 (7)		- Z
							_ 23 -																	
							_ 24 -	8	37	100	SS-10	4.5+	_					_	_		10	A-6a (V)		20
					763.1	—_F∩B—	<u> </u>	8 12 14		100	55-10	7.0				·		·				/ (Ga (V)		ď

Dii	PROJECTYPE:	CT:	FRA-070- ROADWA		•	FIRM / OPER	_	RII /			ILL RIG: MMER:		55 (SN UTOMA		45)	1	TION SNME		SET:			.48 / 22 VB-CD		EXPLOR B-039	
TALL	PID:	98232	SFN:		DRILLING I	METHOD:	;	3.25" HSA		CAL	IBRATI	ON DATE:		9/14/20	0	ELE	VATIO	ON: _	788	.6 (MS	SL)	EOB:	25.0 1	t.	PAG
	START:	8/31	/20 END:	8/31/20	SAMPLING	METHOD:		SPT		EN	ERGY R	ATIO (%):		84.2		LAT	/ LON	IG: _		39	.9334	38, -82	.833771		1 OF
		MATER	IAL DESCRIP	TION		ELEV.	DEP.	THE	SPT/	NI		SAMPLE	HP	Ċ	RAD	ATIO	N (%)	ATT	ERBI	ERG		ODOT	SO4	
			AND NOTES			788.6	DLI	1110	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FII
	PHALT	· ,				787.9		-	.																
			E (10.0")			787.1		<u> </u>																	24 7
DARK G	RAY CL	.AY , "AN	D" SILT, LITT	BROWN AND LE FINE SAND, MOIS				- 2 - - 3	3 5 5	14	89	SS-1	3.00	-	-	-	-	-	-	-	-	20	A-7-6 (V)	-	7/> @/ ~
J. 0. 17 E.	_,	2 007 11 0		- 67 u 15, moio				4 -	3 3 4	10	50	SS-2	3.50	19	3	3	36	39	51	29	22	32	A-7-6 (15) -	7 7 7
								6 1	3 4	10	53	SS-3	2.00	_	_	_	_	_	_	_	_	28	A-7-6 (V		- 7 X
HARD (GRAY S A	ANDY SI	LT, SOME FIN	NF GRAVEI		780.6		- 7 - 8 -	3																- K
ITTLE (CLAY, D	AMP TO	MOIST.	0,				9 1	3 8 9	24	61	SS-4	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	-	7. A.
								11 -	2																\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
								12 1	6 8	20	72	SS-5	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	-	7
								14 —	6 8	25	42	SS-6	4.5+	25	15	11	31	18	23	15	8	10	A-4a (3)	_	1
								16	10																- P7 - P2 - P2 - P2 - P2
								- 17 - - 18	6 9 10	27	89	SS-7	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	-	Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
									5 8	25	72	SS-8	4.5+	-	_	_	-	_	_	-	_	10	A-4a (V)	_	- A
								20 -	10			-											(1)		- X X X X X X X X X X X X X X X X X X X
								- 22 - 23	4 8 10	25	89	SS-9	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	-	-1 -1
						763.6		24	15 19 15	48	83	SS-10	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	_	7 4 7 7

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 22.4'

PRO TYF	OJECT: PE:	FRA-07		-	G FIRM / OI NG FIRM / L		RII /		_	ILL RIG	: CME 7	50X (SI) UTOMA		218)		TION SNME		SET:			.24 / 32 VB-CD		EXPLOF B-04	0-0-1
PID		SFN:		_	G METHOD		25" HSA		T ca	LIBRAT	ION DATE:	ç	9/14/20)	1	VATIO	_	788	.6 (MS	SL)	EOB:	25.0	ft.	PAG
	ART: 9/10/2		9/10/20	_	NG METHO		SPT		_		RATIO (%):		86.2			/ LON	_					.833587		1 0
		AL DESCR			ELEV.			SPT/	_		SAMPLE	НР		RAD	1			ΔΤΤ	ERBI			ODOT	SO4	ВА
		ND NOTES			788.6	I DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	wc	CLASS (G		
).3' - TOPSC				4	788.3			1		(70)	SS-1A	\ - /	- /	\ - A	/	- /	- /	-	- /	- /	- ,			1250
		ARK BRO	WNISH GRAY	—⁄ ⊨	1,00.0		[₁]	2	9	67	SS-1B	2.00	18	16	10	35	21	40	21	19	16	A-6b (8)) -	W3
SILTY CLAY,	, SOME COA LITTLE FINE	RSE TO FI	NE SAND,				- · - 2 -	4 5	16	89	SS-2	3.75	8	11	10	45	26	38	20	18	19	A-6b (10		- Z
		•			785.4		L ₃ ⅃	6				0.70										7, 05 (10	′	10
SILT , SOME CLAY, TRAC	COARSE TO E FINE GRA	FINE SAN		+ + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++		- 4 - 4 - 5	3 4 4	11	94	SS-3	3.25	-	-	-	-	-	-	-	-	21	A-4b (V) -	
-COBBLES	@ 5.0			+ +	+ + + + + +		6 7	1																77
				+ + + + + +	780.6		F 7 +	2 2	6	44	SS-4	1.50	6	8	14	53	19	27	18	9	21	A-4b (7)	-	
ENSE BRO	OWN GRAVE	I WITH SA	ND TRACE	å*.	++ 100.0		- 8 -	1																7
LT, WET.		LWIIIIOA	ND, INACL	0 (79	₩ 779.6	- 9	4 9	33	53	SS-5	-	-	-	-	-	-	-	-	-	15	A-1-b (V) -	- J
COBBLES	@ 9.5'			o C	778.1		├─ 10 [_]	14																- T
ARD, GRA	Y SILT AND	CLAY, SOM	E COARSE TO				11 -																	7
INE SAND,	TRACE FINE	GRAVEL,	DAMP TO MO	IST.			- - 12 -	9 10 12	32	89	SS-6	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V	-	7 7 7
						775.6	- 13 -	4																27
							14	8 9 11	29	94	SS-7	4.5+	-	-	-	-	-	-	-	-	11	A-6a (V) -	
							<u></u> 15 [⊥]	- ' '																4
							16 7	15	4.0															7
							17	16 18	49	67	SS-8 2S-8A	- 4.5+	7	- 12	- 16	- 25	-	-	- 14	-	- 17	A-6a (6	-	77
							 18 [⊥]	19		07	23-0A	4.5	-	12	10	33	30	23	14	- 1 1	17	A-0a (0	' -	
							19	8 12 13	36	92	SS-9	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V) -	7 4 7 7
							20 -																	7
							- 21 - - 22 -	11 16	52	81	SS-10	4.5+	-	-	-	-	-	-	-	-	9	A-6a (V) -	7 4 7 7
							1 _ 23 -	20																77
					762.6		_ 24 -	9 12	39	89	SS-11	4.25	-	-	-	-	-	-	-	-	13	A-6a (V) -	- ' < 7 7
					<u>// 763.6</u>	L_FOB_		15				0									. •	7.00.(1	<u>′ </u>	7

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 9.0' AND AT COMPLETION @ 13.0'; CAVE-IN DEPTH @ 16.4'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 50 LBS BENTONITE CHIPS AND SOIL CUTTINGS

PROJECT: FRA-070-22.85 TYPE: ROADWAY PID: 98232	DRILLING F SAMPLING DRILLING F	FIRM / LO	OGGER:	RII / 3 RII / J 3.25" HSA	JK	HAN	MMER:	: MOBILE AL ION DATE:	JTOMA			ALIC	TION SNME VATIO	NT: _		BL IR	R 70 V	.71 / 51 WB-CD EOB:		B-040	0-1-21 PAGI
START: 11/22/21 END: 11/12/21 MATERIAL DESCRIPTION	SAMPLING	METHOD:	:	SPT	ODT/			SAMPLE		83.6	RAD		/ LON			39. ERBE			.833376	\perp	1 OF
AND NOTES		788.7	DEP1	ΓHS	SPT/ RQD	N ₆₀	(%)	ID	(tsf)		CS	FS	SI	CL	LL	PL	PI	wc	ODOT CLASS (GI)	SO4 ppm	FILI
0.5' - ASPHALT (6.0") VERY STIFF, DARK BROWN SILT AND CLAY , LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST.	— 	788.2 785.7		- 1 - - 2 -	1 2 4	8	42	SS-1	2.50	-	-	-		•	-	-	-	21	A-6a (V)	-	
STIFF, MOTTLED BROWN AND GRAY SILTY CLAY LITTLE COARSE TO FINE SAND, LITTLE FINE GRAVEL, MOIST.	,	783.2		- 3 - - 4 - - 5	6 3 3	8	39	SS-2	1.75	16	4	9	44	27	37	18	19	25	A-6b (11)) -	17 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1
MEDIUM DENSE, GRAY GRAVEL WITH SAND , LITTLE SILT, TRACE FINE GRAVEL, MOIST.			∇ 782.1	- 7 	5 5 7	17	50	SS-3	-	-	-	-	-	•	-	-	-	11	A-1-b (V)	-	77
		778.2	₩ 780.0	9 - 10 -	5 5 7	17	39	SS-4	-	45	24	11	14	6	22	16	6	11	A-1-b (0)	-	-155 -155 -155
VERY STIFF TO HARD, GRAY SANDY SILT , SOME FINE GRAVEL, LITTLE CLAY, DAMP TO MOIST.				12	6 8 9	24	0	SS-5	-	-	-	-	-	-	-	-	-	-		-	
				- 13 - - 14 - - 15 -	11 14 18	45	92	2S-5A SS-6	4.00		18	15	29	17	22	13	9	8	A-4a (V) A-4a (2)		
				16	11 13 13	36	100	SS-7	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	-	
		768.7	F0F	- 18 - - 19 -	9 10 14	33	86	SS-8	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	-	

PROJECT: FRA-070-22.85 TYPE: RETAINING WALL	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		DRILL RI	G: <u>CME 7</u>	'50X (SI UTOMA		218)	_	TION SNME		SET:		80+72 L RAN	2.37 / 19 MP M	9.9' LT	EXPLOR B-04	ATION 1-0-19
PID: 98232 SFN:	DRILLING METHOD:		1	TION DATE:		9/14/20	0	-		_	789			EOB:	30.0	ft.	PAG
START: 9/10/20 END: 9/10/20	SAMPLING METHOD:	SPT	1	RATIO (%):		86.2			/ LON	_				-	2.833009		1 OF
MATERIAL DESCRIPTION	ELEV.	DEPTHS SPT/	N RE	SAMPLE	HP	G	RAD	ATIO	N (%) -	ATT	ERB	ERG		ODOT	SO4	BAC
AND NOTES	789.5	RQD	N ₆₀ (%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) ppm	
0.3' - TOPSOIL (3.0")	789.2	- 1 2 3	10 56	SS-1	2.50	_	_		_	_	_	_	_	19	A-6a (V		42
VERY STIFF, BROWNISH GRAY SILT AND CLAY,		- 1 - 3 4	10 30	00-1	2.50		_			_		_		13	A-0a (V	<u> </u>	
SOME COARSE TO FINE SAND, TRACE FINE GRAVEL, MOIST.			17 58	SS-2	2.25		_					_		25	A-6a (V		*/>
5. 5 tv = 2, 5. 5 tv		3 6	17 30	00-2	2.23		_			_				23	A-0a (V	<u> </u>	17
				SS-3A	2.50	-	-	_	_	_	_	-	-	27	A-6a (V	. _	- R >
			13 33	SS-3B	2.25		_		_					26	A-6a (V		4
	784.0	5 5		00-00	2.23	_	_		-			ļ <u>-</u>	ļ <u>-</u>	20	A-0a (V	<u> </u>	- \$ L
MEDIUM DENSE, BROWN TO DARK GRAY		6															15
GRAVEL WITH SAND AND SILT, LITTLE CLAY,		- 4	20 58	SS-4			_					_		17	A-2-4 (V		7/
MOIST.		7 	20 30	33-4	-	_	-	-	-	-	_	_	_	17	A-2-4 (V	′ -	- 4 - 4 - 4 - 4
		- 8 -															4>
		9 4		+													- <
		L	14 47	SS-5	-	36	14	19	12	19	19	17	2	15	A-2-4 (0) -	200
	779.0	10 6															- F
HARD, GRAY SILT AND CLAY , SOME COARSE TO		11 1															220
FINE SAND, LITTLE FINE GRAVEL, MOIST.		⊢ ∥ ⁴ 5	20 67	SS-6	4.5+	_	_	_	_	_	_	_	_	11	A-6a (V	, _	Ne
	770.5	12 1 9	20 0.		1.0										7, 04 (1)	<u> </u>	
VERY STIFF TO HARD. GRAY SANDY SILT . LITTL	776.5	13 —															7
CLAY, TRACE FINE GRAVEL, MOIST.	E	44 3															7
		7745 17 4 4	11 67	SS-7	3.75	-	-	-	-	-	-	-	-	13	A-4a (V) -	29
	774.0	15 4															93
HARD, GRAY SILT AND CLAY , SOME COARSE TO		16 4															-8
FINE SAND, TRACE FINE GRAVEL, MOIST.			19 81	SS-8	4.25	12	14	19	22	33	28	16	12	15	A-6a (5)	, -	**
	771.5	17 8													` '		_k?
HARD, GRAY SANDY SILT , LITTLE CLAY, TRACE	171.5	- 18 -															
FINE GRAVEL, MOIST.		19 5	27 83	00.0	45.									40	A 4 - 0.0		
		⊢ H ⁹ 10	27 83	SS-9	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)) -	
	769.0	20 - 10															72
DENSE, GRAY GRAVEL WITH SAND AND SILT ,		21 - 9															-500
TRACE CLAY, VERY MOIST.		12	46 61	SS-10	2.75	-	-	-	-	-	-	-	-	11	A-2-4 (V) -	
	766.5																-60
HARD, GRAY SANDY SILT , LITTLE CLAY, TRACE	1111111	_ 23															_#
FINE GRAVEL, MOIST.		-24 - 10	33 89	SS-11	15+									10	A 40 ()/		
		├ ''₁2	33 69	33-11	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	' -	
		25 - 12															
		26 —															
		27															
		F - 1															
		- 28 -															_6
		- 29 - 7 ₁₁	36 42	SS-12	4.5+		_				_	_	_	12	A-4a (V		
	759.5	EOB 114	42	00-12	7.51	سَـــــــــــــــــــــــــــــــــــــ								12	. -1 α (V	<u>' </u>	_\ <u>\</u>
NOTES: SEEPAGE @ 7.5'; GROUNDWATER ENCOUNTE	DED INITIALLY @ 15 O' ANI	DAT COMPLETION @ 12 71	CAVE IN F	EDTH @ 16	n'												

Di	PROJEC TYPE:	T:	FRA-070-		-	FIRM / OF G FIRM / L		RII /		_	ILL RIG MMER:	: MOBILE	E B53 (S UTOMA		345)		TION .		SET:			.04 / 15 VB-CD		EXPLOF B-04	2-0-1
TATI	PID:	98232	SFN:	<u> </u>	-	METHOD:		25" HSA		_		ION DATE:		9/14/20)		VATIC	_	790			EOB:		ft.	PAG
	START:			8/31/20	-	G METHO		SPT	•			RATIO (%):		83.6		1	/ LON	_					.832876		1 0
			L DESCRIP			ELEV.			SPT/	Γ'	_	SAMPLE	HP	_	RAD				ATT						
			ID NOTES	11014		790.0	DEPTI	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	wc	ODOT CLASS (G	SO4	
0.5' - To	OPSOIL (6					789.5			2		(70)	-15	(101)	0.1			-	02							A 1
			D BROWN	SANDY SILT.	—/ IIIII II	100.0	1	[₁	5 _	14	78	SS-1	4.5+	-	-	-	-	-	-	-	-	-	A-4a (V) -	43
			E GRAVEL.					⊦ ' ∤	7 5																
	,		,					├ 2 ┤	['] 8	25	72	SS-2	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V) -	7
						786.7		L₃ J	10														,		17
OOSE	TO MED	IUM DEN	SE, BROWN	N, TAN, AND	a.V.	.7		⊢ `. ı	7																
GRAY (GRAVEL V	WITH SAN	D AND SILT	ī, TRACE	0			<u> </u>	6	18	78	SS-3	-	-	-	-	-	-	-	-	-	8	A-1-b (V) -	al odg
CLAY, '	WET.				0	O or	704.4	L 5 J	7														•		
					$\stackrel{\circ}{\sim}$	d	W 784.4	٠ ا	1																7
)	<u>}</u>		├ 6 7	4	40		20.4		40	4.0									,	K BY
						·d		 7	3 4	10	61	SS-4	-	43	46	4	6	1	NP	NP	NP	17	A-1-b (0) -	
					0.0	782.0		- 8 -																	<u> </u>
				TLE COARSE	+++	+		_ ° -	1																- N
			NE GRAVE		 	780.8		 9	4 5	14	75	SS-5A	-	-	-	-	-	-	-	-	-	25	A-4b (V		- A
				GRAVEL WITH		a d		L ₁₀ J	5		,,,	SS-5B	-	-	-	-	-	-	-	-	-	10	A-1-b (V) -	
	TRACE S			1 0 40 01		,		L 10 .	4																Ť
-COBI	BLE2 ENC	JOUNTER	RED @ 10.0	& 12.U		•d		├- 11 ┬	6																7
					0.0	. a		12	12	40	72	SS-6	-	-	-	-	-	-	-	-	-	7	A-1-b (V) -	M
						6		Ļ '⁴ I	17														•		
					\circ			 13	1																7
					٥٠	d		14	23																7
					6	b		├ ' ⁻	6 6	17	36	SS-7	-	-	-	-	-	-	-	-	-	13	A-1-b (V) -	Z.
					άQ	774.5		├─ 15 [_]	- 0																40
VERY S	STIFF, GR	AY SAND	Y SILT, SO	ME FINE	ĬIIIĬ			- 16	1																叉
GRAVE	EL, LIŤTLE	CLAY, N	IOIST.					- 1	2 2	7	36	SS-8	3.00	22	20	11	30	17	23	15	8	13	A-4a (2	, [Q
								17 -	1 2 3		30	33-0	3.00	22	20	_''	30	17	23	10	G	10	71-4a (2	<u>' </u>	
								_ 18 _																	Ŕ
-WAT	ER ADDE	D TO BOF	REHOLE @	18.0'				- ·	5																— ¦\$
								<u> </u>	5	15	19	SS-9	2.50	-	-	-	-	-	-	-	-	13	A-4a (V) -	
								_ 20 -	5			00.04											,		<u></u> !!?
								۱ ا	5	-	0	2S-9A	-	-	-	-	-		-	-	-	-		-	— ☆
								<u>├</u> 21 ७	3															1	
								L 22 -	5 7	17	72	SS-10	3.00	-	-	-	-	-	-	-	-	13	A-4a (V) -	
								- I	'															+	— } \$
								_ 23 -	1																
								_ 24 -	3 _	21	E0.	CC 44	2 00			T	T					10	A 4- 07	. _	Ä
						765.0	FOB-	├ <u>.</u>	6 9	21	58	SS-11	3.00	-	-	-	-	-	-	-	-	13	A-4a (V	' -	E C

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 5.6' AND NOT DETERMINED AT COMPLETION DUE TO THE USE OF WASH WATER; CAVE-IN DEPTH @ 15.5'

ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER 50 LBS BENTONITE CHIPS AND SOIL CUTTINGS

PROJECT: FRA-070-22.85	DRILLING FIRM / OPERA		DRILL RIG		55 TRUCK	STATION / OF		1 / 49.4' LT	EXPLORATION ID B-048-0-19
TYPE: ROADWAY PID:98232	SAMPLING FIRM / LOGG DRILLING METHOD:	4.25" HSA	1	ION DATE:	5/7/13	ALIGNMENT: ELEVATION:	787.0 (MSL)	EOB: 6.0	ft. PAGE
START: 9/16/20 END: 9/16/20 MATERIAL DESCRIPTION AND NOTES	SAMPLING METHOD: _ ELEV. 787.0	DEPTHS SPT/RQD	N ₆₀ REC	SAMPLE H	89 HP GRAD (sf) GR CS	ATION (%) FS SI CL	ATTERBERG	40, -82.831246 ODOT CLASS (G	SO4 BACK
TOPSOIL (4") FILL: MEDIUM DENSE, BROWN AND GRAY,	786.7 ₁ 785.5	- 1 - ³ 5 ₄	13 44	SS-1				7 A-2-4 (\	V) - 3301
GRAVEL AND/OR STONE FRAGMENTS WITH SAND AND SILT, DAMP VERY STIFF. DARK BROWN, SILT AND CLAY.		-2 - 3	13 56	SS-2 2.	.50 2 3	9 50 36	37 24 13	22 A-6a (9	
LITTLE SAND, TRACE GRAVEL, DAMP	782.5	- 4 - 4 2 ₄	9 58	SS-3 1.	.50			26 A-6a (V	/) -
STIFF, BROWN, SILTY CLAY , TRACE TO LITTLE SAND, MOIST	781.0	5 5 3 6	13 75	SS-4 1.	.50			23 A-6b (V	/) - \(\frac{1}{2} \cdot \fra
\TRACE SHALE FRAGMENTS		LOD					· ·		

121 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:32 - U:\GI8\PROJECTS\2017\W-17-14

Dii	PROJECT:	FRA-070-22.85 ROADWAY	-	FIRM / OPE		RII / LARRY C / GANESH	_	ILL RIG MMER:		IE 55 T			-	TION		SET:			7 / 24.5 BRICE I	101	EXPLORA B-049	ATION ID 9-0-19
	PID: 98232 START: 9/10/	SFN:	DRILLING I	METHOD: _	4.25" SI	HSA	CA	LIBRAT	ION DATE: RATIO (%):		5/7/13 89		ELE	VATION	ON: _		.6 (MS	SL)	EOB:		t.	PAGE 1 OF 1
		AL DESCRIPTION ND NOTES		ELEV. 784.6	DEPTHS	SPT/ RQD		REC (%)	SAMPLE ID			CS CS	ATIO FS	N (%	CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI	SO4 ppm	BACK FILL
FILL: VE	D CLAY, SOME S	TLED BROWN AND GRAY. SAND, TRACE TO LITTLE		783.1	- - - - - -	1 - 5 2 - 5 8 3 - 8	28	89	SS-1 SS-2	4.00		13	17	32	30	33	19	14	11	A-6a (7)		
	AINS ROCK FRA			777.1	- - - - - -	4 - 3 ₁₀ 5 - 8 ₆ 6 - 8 ₇		89	SS-3 SS-4	4.00	-	-	-	-	-	-	-	-	12 29	A-6a (V)	-	

021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:32 - U:\GI8\PROJECTS\2017\W-17-14

---LIGHT ORGANIC ODOR---

	DRILLING FI SAMPLING F		_	RII / LA		-1	LL RIG		E 55 T			1	TION /		_			/ 59.4' RICE F	<u></u>	XPLORA B-050	-
	DRILLING M SAMPLING N	_	4	.25" HSA SPT		-1		ION DATE: RATIO (%):		5/7/13 89		1	/ATION	_	785.0	(MSL) 39.9		EOB: .	6.0 ft 831531		PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV. 785.0	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)			ATIOI FS	N (%)			RBEF	RG PI	WC	ODOT CLASS (GI)	SO4 ppm	BACK FILL
TOPSOIL (4") FILL: STIFF, DARK BROWN AND BROWN, SILTY CLAY, SOME SAND, TRACE GRAVEL, DAMP	-/	784.7 ₁ 783.5		- - 1 -	2 3 5	12	39	SS-1	3.50	10	17	12	35	26	38	18	20	17	A-6b (9)	-	
				- 2 - - 3 -	3 2 2	6	61	SS-2	1.00	18	36	9	16	21	36	22	14	17	A-6a (1)	<100	THE T
ROCK FRAGMENTS IN SAMPLE FILL: MEDIUM STIFF TO STIFF, DARK BROWN ANI BROWN, SILT AND CLAY , AND SAND, LITTLE	-	780.5		4	3 3	9	64	SS-3	4.00	-	-	-	-	-	-	-	-	17	A-6a (V)	-	
GRAVEL, DAMP		779.0	-EOB-	5 - 6	6 9	22	81	SS-4	3.00	-	-	-	-	-	-	-	-	29	A-6b (V)	-	121 1
VERY STIFF, BLACK, SILTY CLAY , TRACE SAND, MOIST																					

021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2/27/*22 10:32 - U:\GI8\PROJECTS\201

Di	PROJECT:	FRA-070-22 ROADWAY		-	FIRM / OPE	_	RII /		-	ILL RIG		55 (SN JTOMA		15)	-	TION SNME	/ OFF		_		6 / 58.3 BRICE	, 131		ATION ID I-0-19
WII)	PID: 98232	SFN:	9/9/20	DRILLING	METHOD: _ METHOD:	_	4.5" CFA SPT		CA	LIBRAT	TION DATE:	(9/14/20 84.2)	ELE	VATION LON	ON: _		.5 (MS	SL)	EOB:		i.	PAGE 1 OF 1
		RIAL DESCRIPT AND NOTES	TION		ELEV. 783.5	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS	ATIO FS	N (%	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
VERY S		BROWN SILTY	,		√783.2/		- - 1 -	2 3 4	10	92	SS-1A SS-1B	 4.25	1	5	11	<u>-</u> 40	43	38	 19	 19	 19	A-6b (12) 240	
	, DAMP TO MC	NE SAND, TRA DIST.	CE FINE				2 -	3 2 3	7	67	SS-2	4.25	1	4	11	44	40	39	18	21	18	A-6b (12) -	1 / K
							_ 4 _	3 3 4	10	94	SS-3	4.00	ı	1	-	1	1	-	-	-	16	A-6b (V)	_	
					777.5	— ЕОВ —	<u> </u>	4 5 5	14	100	SS-4	3.50	-	-	-	-	-	-	-	-	14	A-6b (V)	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

:021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2/27/22* 10:32 - U:\GI8\PROJECTS\2017\W

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	DRILLING FIRM / OPERATO SAMPLING FIRM / LOGGER		DRILL RIG: _ HAMMER:	CME 55 TRUCK CME AUTOMATIC	STATION / OF ALIGNMENT:		7 37.3 LT	EXPLORATION ID B-053-0-19
PID: 98232 SFN:	DRILLING METHOD: SAMPLING METHOD:	4.25" HSA SPT	CALIBRATION ENERGY RAT	N DATE:5/7/13	ELEVATION: LAT / LONG:	786.4 (MSL)	EOB: 7.5 ft.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 786.4	DEPTHS SPT/RQD	N ₆₀ REC SA	AMPLE HP GRAI	DATION (%)	ATTERBERG	WC ODOT CLASS (GI)	SO4 BACK FILL
ASPHALT (8") & GRANULAR BASE (4") FILL: VERY STIFF, DARK BROWN, SILTY CLAY, SOME SAND, LITTLE GRAVEL, DAMP ORGANIC STAINING IN SAMPLE	785.4 783.4	- 1 - - 2 - 9 5 - 3 - 6	16 78 5	SS-1 4.00 13 12	13 28 34	34 18 16	13 A-6b (8)	イントゴ
FILL: STIFF, BROWN AND GRAY, CLAY, SOME SAND, SOME SILT, LITTLE GRAVEL, DAMP	780.4	- 4 - 2 3 - 5 - 3 3 - 6 - 5		SS-2 1.50 11 10 SS-3 1.50	12 29 38	42 24 18	22 A-7-6 (10) 22 A-7-6 (V)	
FILL: STIFF, BROWN TO DARK BROWN, SILT AND CLAY , LITTLE SAND, LITTLE GRAVEL, MOIST ROCK FRAGMENTS IN SAMPLE	778.9	OB 5 5	15 33 5	SS-4 1.50			23 A-6a (V)	- 7 J

RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2*/27/22 10:32 - U:\GI8\PROJECTS\2017\W-17-

PROJECT: _			FIRM / OPE	_	RII /		_		CME	•		-5)							00 / 53.	7 131	EXPLOR/ B-054	
Rii) TYPE: PID: 982	CULVERT 32 SFN:		FIRM / LOC METHOD:		RII / .		_	MMER:	ON DATE:	UTOMA	VIIC 9/14/20	`			NT: _				BRICE I			PAC
	9/8/20 END: 9/8/20		METHOD: _		SPT		_		ATIO (%):		84.2	,	1	/ LON	_	704.				.831041	11.	1 OF
	TERIAL DESCRIPTION	O/ WIII EII VO	ELEV.			SPT/	_		SAMPLE			RAD	1			ATTE			00, -02	1	T	Τ
IVIA I	AND NOTES		784.9	DEPT	HS	RQD	N_{60}	(%)	ID	(tsf)			FS		CL	LL	PL	PI	wc	ODOT CLASS (G	SO4 ppm	BA FI
0.4' - TOPSOIL (5.0")			784.5		F .	3 4	13	39	SS-1	2.00	-	_			_		_	_	12	A-6a (V	 	24 E
	FF, GRAY SILT AND CLAY , FINE SAND, TRACE FINE MOIST.				_ 1 2 -	5 5 7	20	33	SS-2	2.50	-	-	-	-	-	-	-	-	18	A-6a (V		¥> ● ■ ●
					- 3 - L - 4 - L	10	18	36	SS-3	2.75	_	_			_		_		18	A-6a (V	\	-16 -27
					5	6	10	30	33-3	2.75	-	-	-	-	_	-	_		10	A-0a (V	-	- 12 V
			776.9		7	4 3 3	8	44	SS-4	2.00	-	-	-	-	-	-	-	-	22	A-6a (V) -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	RD, GRAY SILT AND CLAY , FINE SAND, TRACE TO LITT P TO MOIST.	TLE			- 8 - - 9 	3 6	20	53	SS-5	2.00	-	-	-	-	-	-	-	-	11	A-6a (V) -	
,					10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -	10																7
					12 -	l a l	29	56	SS-6	4.00	13	7	12	35	33	26	14	12	11	A-6a (7)	-	7
					- 14 - 15	6 6 10	22	75	SS-7	4.25	-	-	-	-	-	-	-	-	12	A-6a (V) -	
					- 16 - - 17 -	5 7 11	25	69	SS-8	4.25	4	7	17	41	31	25	14	11	12	A-6a (8)) -	7878
			766.4		18	- ''																- R & A
HARD, GRAY SAND) FINE GRAVEL, DAM	/ SILT , LITTLE CLAY, LITTLE P.				- 19 - 20	5 8 10	25	83	SS-9	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V	-	7
					- 21 - 22		27	89	SS-10	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V) -	- W W W
					23 -		39	100	SS-11	4.5+									8	A-4a (V	\	
					25	15		100		4.5	-	-	-	-	-	-				7-4a (V		9
					- 26 - - 27 - 																	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					- 28 - - 29 -	9	39	89	SS-12	4.5+	_	_	_	_	_	_	-	_	9	A-4a (V) -	4 V9 W

PID: <u>98232</u>	SFN:	2.85	STATI	ION / O	FFSE	T: _	1226.9, 5	4' RT.	_ 5	STAR	T: _9	9/8/20	_ E	ND:	9/8	8/20	_ P	3 2 OF 2	B-054	-0-19		
	MATERIAL DESCRIPTION AND NOTES	DN .	ELEV.	DEPTHS		SPT/ RQD	N I		SAMPLE	l .		RAD			_	ATT	ERBE	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
	SANDY SILT, LITTLE CLAY , DAMP. (continued)	/, LITTLE	754.9	- - - -	- 31 — - 32 — - 33 —	NGD		(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC			
				-	- 34 - 1 - 35 - 36 - 37	12 18 18	51	36	SS-13	4.25	-	-	-	-	-	1	-	-	11	A-4a (V)	-	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			744.9	- EOB	- 38 — - 39 — 1	13 14 23	52	100	SS-14	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	-	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 28.6'

PRO	### FRA-070-22.85 E: CULVERT	_	FIRM / OPE	-	RII / LA		_	LL RIG		ME 55 TI			-	TION					00 / 225 BRICE	<u> </u>		ATION II
	E: <u>CULVERT</u> 98232 SFN:	_	METHOD:	_	4.25" HSA	AINEON	_	MMER: IBRAT	ON DATE:	AUTO	5/7/13		-		_				EOB:		ft	PAGE
STAI		_	METHOD:		SPT				RATIO (%):		89		-	/ LON	_					.830430		1 OF 2
	MATERIAL DESCRIPTION	_	ELEV.		=	SPT/	Ī	REC	SAMPLE	HP	G	RAD	ATIO	N (%	<u> </u>	ATT	ERBI	ERG	l i	ODOT	S04	BACK
	AND NOTES		788.9	DEP.	IHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI		
ASPHALT (6")			788.4		-																	
CONCRETE (1	12")		787.4		_ 1 -																	
	TIFF, MOTTLED BROWN AND GRAY TRACE TO LITTLE SAND, TRACE	′ ,	785.9		_ 2 _ _ 3 _	2 3 6	13	50	SS-1	3.00	-	-	-	-	-	-	1	-	19	A-6b (V)) -	
1\	ALE FRAGMENTS				- 4	5 3	12	42	SS-2	2.50	_	_	_	_	-	_	_	_	20	A-6a (V) -	7/2/
AND GRAY W	O VERY STIFF, MOTTLED BROWN ITH OCCASIONAL BLUISH GRAY,				5 1	5															<u>'</u>	
DAMP TO MC	AY, SOME SAND, TRACE GRAVEL, DIST				- 6 - 7	3 5 7	18	36	SS-3	1.50	-	-	-	-	-	-	-	-	18	A-6a (V)) -	
	CK FRAGMENTS IN SAMPLE				8 -	7																
5 FILL VEDV 6	TIFF, BROWN WITH TRACE GRAY,		778.9		9 10	'3 5	12	78	SS-4	1.50	10	10	15	32	33	33	18	15	24	A-6a (8)	-	
	AY, SOME SAND, TRACE GRAVEL,				11 7	5 7	24	100	SS-5	4.00	8	11	14	34	33	34	19	15	13	A-6a (8)	\	
ĭ	GMENTS IN SAMPLE LL: VERY STIFF. BROWN WITH		775.9		- 12 - 13 -	. 9		100		1.00						0.			10	71 04 (0)	/	
LITTLE GRAY	LE: VERY STIFF, BROWN WITH TO LIGHT GRAY, SILT AND CLAY , LITTLE GRAVEL, DAMP				14	6 7 9	24	78	SS-6	4.00	14	12	16	28	30	34	19	15	11	A-6a (7)) -	
ROCK FRA	GMENTS IN SAMPLE	///	773.4		- · -																	
V	GRAY, SILTY CLAY , SOME SAND,				- 16 - - 17 -	4 5 8	19	83	SS-7	4.00	15	11	15	29	30	35	18	17	11	A-6b (8)) -	
OCCASION COBBLE	AL COARSE GRAVEL AND/OR				- 18 - - 19 -																	
					20	7 13	30	47	SS-8	4.00	-	-	-	-	-	-	-	-	11	A-6b (V)	-	
					21 7		36	89	SS-9	4.00	_	_	_	_	-	_	_	_	10	A-6b (V) -	
- X (8:5)					22 -	14															<u>'</u>	
0.6.50					24	11 12 15	40	89	SS-10	4.00	-	-	-	-	-	-	-	-	10	A-6b (V)) -	
					- 25 - - 26 -	.3																
O PAND					27 -																	
00-2021 KII STAND ODOT LO					28 -	11 11 11 16	40	78	SS-11	4.00	-	_	_	_	-	_	_	_	10	A-6b (V)) -	

PID:	98232	SFN:	PROJECT: _	FRA-07	0-22.85	STATI	ON / OF	FSET:	1235,	225'	RT.	_ s	STAR	T: <u>9</u> /	22/2	0 E	ND:	9/2	2/20	_ P	G 2 OF 2	B-055	-0-19
		MATERIAL DESCRIPTION AND NOTES	ON	ELE\ 758.9	I DEPTH		SPT/ RQD N	RE	C SAMI		HP (tsf)	GR	CS CS	ATIO FS	N (%	CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
LITT	LE GRAVE	AL COARSE GRAVEL ANI	,			- 31 - - 32 - - 33 -																	
						- 34 - ⁷ - 35 -	10 4 18	2 89	SS-	12 4	1.00	-	-	-	-	-	1	ı	-	11	A-6b (V)	-	
		GRAY, SILT AND CLAY , L GRAVEL, MOIST	TTLE	751.9		- 36 - - 37 - - 38 -																	
PRE		F THE SAMPLE IS WET, F SATURATED SAND/GR		748.9	EOB	- 39 - 8 -40	13 4 18	6 10	0 SS-	13 4	1.00	-	-	-	-	-	-	-	-	12	A-6a (V)	-	

NOTES: NONE

D:	1	PROJEC	T:	FRA-07	70-22.85 VAY	_	G FIRM / OPE	_	RII /		-1	RILL RIG		55 (SN UTOMA		15)	_	TION SNME	/ OFF NT:				2 / 44.6 BRICE I	 	EXPLORA B-057	ATION ID '-0-19
	J	PID:	98232	SFN:	: 9/9/20	_	METHOD: _ G METHOD:	4	.5" CFA		⊣ ՝		TION DATE:		9/14/2 84.2	0	-	VATION / LON	_	788.	1 (MS		EOB:	6.0 f	t.	PAGE 1 OF 1
				AL DESCR		_	ELEV. 788.1	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS	ATIC FS	N (%	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
HARI	D, BI		SILT AND		OME FINE TO		787.8		- - 1 -	2 3 9	17	72	SS-1	4.25	19	13	11	33	24	31	17	14	16	A-6a (6)	l l	12 L 12 C
		SAND, MOIS		TO LITTLE	FINE GRAVE	-,			2 -	9 6 4	14	33	SS-2	4.5+	10	14	13	36	27	31	17	14	16	A-6a (7)		4>17
									_ 4 _	4 5 9	20	78	SS-3	4.25	-	-	-	-	-	-	-	-	23	A-6a (V)) -	
							782.1	— ЕОВ —	- 5 - 6	10 7 13	28	75	SS-4	4.25	-	-	-	-	-	-	-	-	14	A-6a (V)	, -	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /

)21 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2*/27/22 10:32 - U:\GI8\PROJECTS\2017\W-17-

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

PROJECT NUMBER: W-17-140
DATE STARTED: 11-18-2021
DATE COMPLETED: 11-18-2021

HOLE #: <u>D-058-1-21</u>

CREW: J.K., M.J.
PROJECT: FRA-70-24.26 Far East Freeway

SURFACE ELEVATION: 789
WATER ON COMPLETION: 0

ADDRESS: Brice Rd & I-70

HAMMER WEIGHT: 35 lbs.

LOCATION: Columbus, Ohio

CONE AREA: 10 sq. cm

		BLOWS	RESISTANCE	GRAPH	OF CO	NE RESIST	ANCE		TESTED CO	NSISTENCY
DEF	PTH	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
_		2	8.9	••				2	VERY LOOSE	SOFT
_		2	8.9	••				2	VERY LOOSE	SOFT
_	1 ft	5	22.2	•••••				6	LOOSE	MEDIUM STIFF
_		4	17.8	••••				5	LOOSE	MEDIUM STIFF
_		7	31.1	•••••				8	LOOSE	MEDIUM STIFF
-	2 ft	7	31.1	•••••				8	LOOSE	MEDIUM STIFF
-		7	31.1	•••••				8	LOOSE	MEDIUM STIFF
-		5	22.2	•••••				6	LOOSE	MEDIUM STIFF
-	3 ft	5	22.2	•••••				6	LOOSE	MEDIUM STIFF
- 1 m		5	22.2	•••••				6	LOOSE	MEDIUM STIFF
-		4	15.4	••••				4	VERY LOOSE	SOFT
-	4 ft	3	11.6	•••				3	VERY LOOSE	SOFT
-		11	42.5	••••••	••			12	MEDIUM DENSE	STIFF
-		14	54.0	••••••	••••			15	MEDIUM DENSE	STIFF
-	5 ft	34	131.2	••••••	•••••	••••••	••••	25+	DENSE	HARD
-		24	92.6	••••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-		22	84.9	••••••	•••••	••••		24	MEDIUM DENSE	VERY STIFF
-	6 ft	18	69.5	•••••	•••••			19	MEDIUM DENSE	VERY STIFF
-		17	65.6	•••••	•••••			18	MEDIUM DENSE	VERY STIFF
- 2 m		30	115.8	••••••	••••••	•••••		25+	DENSE	HARD
-	7 ft	41	140.2	•••••	•••••	•••••	•••••	25+	DENSE	HARD
-		46	157.3	••••••	•••••	••••••	•••••	25+	DENSE	HARD
-		49	167.6	••••••	•••••	••••••	•••••	25+	DENSE	HARD
-	8 ft	40	136.8	••••••	••••••	••••••	••••	25+	DENSE	HARD
-		45	153.9	•••••	•••••	•••••	•••••	25+	DENSE	HARD
-		47	160.7	••••••	••••••	••••••	•••••	25+	DENSE	HARD
-	9 ft	46	157.3	•••••	•••••	•••••	•••••	25+	DENSE	HARD
-		42	143.6	•••••	•••••	•••••	•••••	25+	DENSE	HARD
-		45	153.9	••••••	•••••	••••••	•••••	25+	DENSE	HARD
- 3 m	10 ft	50	171.0	••••••	•••••	••••••	•••••	25+	DENSE	HARD
-										
-										
-										
-	11 ft									
-										
-										
-	12 ft									
-										
-										
- 4 m	13 ft									

	PROJECT: FRA-070-22.85 TYPE: ROADWAY	DRILLING FIRM / OF	-	RII / TO		DRILL I	RIG: MOBIL	E B53 (345)	-1	TION /	OFFS IT:	_			3 / 119. BRICE I	.5 1(1	EXPLOR/ B-058	ATION ID 3-2-21
	PID: 98232 SFN: START: 11/22/21 END: 11/22/21	DRILLING METHOD SAMPLING METHO		4.5" CFA SPT		1	ATION DATE: Y RATIO (%):		9/14/20	0	ELE/	/ATIOI	N:	792.3	(MSL		EOB:	10.0	ft.	PAGE 1 OF 1
	MATERIAL DESCRIPTION AND NOTES	ELEV. 792.3	DEP		SPT/ RQD	N ₆₀ RE	C SAMPLE	HP (tsf)	GR	cs	ATIOI FS				RBE		wc	ODOT CLASS (GI	SO4 ppm	BACK FILL
MOTTLED SOME TO	SOIL (7.0") FF TO HARD, DARK BROWN TO BROWN AND GRAY SILT AND CLAY "AND" COARSE TO FINE SAND, TRA VEL, DAMP TO MOIST.			- 1 - 2 - 2 - 3 4 - 1	2 5	10 5		4.00	5	12						13	16	A-6a (7)		
	DENSE, BROWNISH GRAY COARSE A D, LITTLE FINE GRAVEL, LITTLE SILT LAY, WET.		- ∀ 783. €	5 - 7 - 7 - 3 - 8 - 9 - 3	5	13 8		4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)		

START: _		FRA-070-2		DRILLING I		-	RII /		_	ILL RIG MMER:	: MOBILE	E B53 (S UTOMA		345)		TION SNME					2 / 146. BRICE I		XPLORA B-059	
START: _	98232 S	FN:		DRILLING		_	4.5" CFA		_		ION DATE:		9/14/20)	1	VATIO	_				EOB:			P
			11/22/21	SAMPLING			SPT		_		RATIO (%):		83.6		1	/ LON	_					.830434		1
М	IATERIAL				ELEV.			SPT/	Γ'		SAMPLE			RAD				ATTI				ODOT	SO4	
		NOTES			790.9	DEP.	THS	RQD	N ₆₀	(%)	ID	(tsf)			FS	_	CL	LL	PL	PI	wc	CLASS (GI)		
).5' - TOPSOIL (6.	.0")				790.4		_																	Á
/ERY STIFF, BRO							<u></u> 1 ¬	3																9
COARSE TO FINE	SAND, LI	TTLE FINE	∃ GRAVEL,				_ 2 -	3	10	50	SS-1	3.00	20	6	8	42	24	34	22	12	21	A-6a (7)	-	Ø.
DAMP.					787.9		- '	4																- 2
/ERY STIFF, MOT							3 -																	7
OME SILT, LITTL		E TO FINE	∃ SAND, LIT	TLE			- 4 -	3 4	11	83	SS-2	2.25	12	3	15	35	35	44	15	29	26	A-7-6 (15		8
INE GRAVEL, MC)151.				785.4		_ 5 _	4									-						1	Ø
MEDIUM DENSE, I	BROWNIS	H GRAY 1	TO GRAY		700.4		-	-																14/
RAVEL WITH SAI						784.1	1 - 6 -	6	20		00.0										44	A O 4 O O		0
OIST TO WET.							<u></u>	12 9	29	53	SS-3	-	-	-	-	-	-	-	-	-	11	A-2-4 (V)	-	₩ ₩
-COBBLES @ 7.0).					₩ 782.9	8 -																	
							- I	6																-6
							<u> </u>	7	24	56	SS-4	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)	-	
							- 10 -	10																-P)
							_ 11 -																	- 75 - 75
									25	44	SS-5	_	-	-	-	_	_	_	_	-	11	A-2-4 (V)	_	2
							<u> </u>	10														, ,		
							 13	-																<u> </u>
							 14 -	9 8	24	69	SS-6	_	-	-	_		_	-	_	_	10	A-2-4 (V)		T/S
					775.9			9		09	33-0	-	_	-	-	-	-	-	_	-	10	A-2-4 (V)	_	
					775.9	EOB-	15-																	

803

Resource International, Inc. 6350 Presidential Gateway Columbus, Ohio 43231

W-17-140 PROJECT NUMBER: 11-18-2021 DATE STARTED: DATE COMPLETED: 11-18-2021

HOLE #: D-059-2-21

CREW: J.K., M.J. PROJECT: FRA-70-24.26 Far East Freeway

1.4 WATER ON COMPLETION: _ HAMMER WEIGHT: 35 lbs.

SURFACE ELEVATION:

ADDRESS: Brice Rd & I-70

LOCATION: Columbus, Ohio

CONE AREA: 10 sq. cm

		BLOWS	RESISTANCE	GRAPH OF CO	ONE RESISTANO	CE	TESTED CO	NSISTENCY
DEP	TH	PER 10 cm	Kg/cm ²	0 50	100 15	50 N'	NON-COHESIVE	COHESIVE
-		2	8.9	••		2	VERY LOOSE	SOFT
_		3	13.3	•••		3	VERY LOOSE	SOFT
-	1 ft	4	17.8	••••		5	LOOSE	MEDIUM STIFF
-		4	17.8	••••		5	LOOSE	MEDIUM STIFF
_		4	17.8	••••		5	LOOSE	MEDIUM STIFF
_	2 ft	4	17.8	••••		5	LOOSE	MEDIUM STIFF
_		4	17.8	••••		5	LOOSE	MEDIUM STIFF
_		7	31.1	•••••		8	LOOSE	MEDIUM STIFF
_	3 ft	5	22.2	•••••		6	LOOSE	MEDIUM STIFF
- 1 m		5	22.2	•••••		6	LOOSE	MEDIUM STIFF
_		3	11.6	•••		3	VERY LOOSE	SOFT
_	4 ft	5	19.3	••••		5	LOOSE	MEDIUM STIFF
_		9	34.7	•••••		9	LOOSE	STIFF
_		14	54.0	•••••		15	MEDIUM DENSE	STIFF
_	5 ft	41	158.3	•••••	•••••	25+	DENSE	HARD
_		20	77.2	•••••	••••	22	MEDIUM DENSE	VERY STIFF
_		26	100.4	•••••	•••••	25+	MEDIUM DENSE	VERY STIFF
_	6 ft	37	142.8	•••••	•••••	• 25+	DENSE	HARD
-		42	162.1	•••••	•••••	25+	DENSE	HARD
- 2 m		12	46.3	•••••		13	MEDIUM DENSE	STIFF
-	7 ft	8	27.4	•••••		7	LOOSE	MEDIUM STIFF
-		11	37.6	•••••		10	LOOSE	STIFF
-		20	68.4	•••••	•	19	MEDIUM DENSE	VERY STIFF
-	8 ft	19	65.0	•••••		18	MEDIUM DENSE	VERY STIFF
-		29	99.2	•••••	•••••	25+	MEDIUM DENSE	VERY STIFF
-		28	95.8	•••••	•••••	25+	MEDIUM DENSE	VERY STIFF
-	9 ft	33	112.9	•••••	•••••	25+	DENSE	HARD
-		29	99.2	•••••	•••••	25+	MEDIUM DENSE	VERY STIFF
-		25	85.5	•••••	•••••	24	MEDIUM DENSE	VERY STIFF
- 3 m	10 ft	34	116.3	•••••	•••••	25+	DENSE	HARD
-		27	82.6	•••••	••••	23	MEDIUM DENSE	VERY STIFF
-		29	88.7	•••••	•••••	25	MEDIUM DENSE	VERY STIFF
-		37	113.2	•••••	•••••	25+	DENSE	HARD
-	11 ft	31	94.9	•••••	•••••	25+	MEDIUM DENSE	VERY STIFF
-		30	91.8	•••••	•••••	25+	MEDIUM DENSE	VERY STIFF
-		38	116.3	•••••	•••••	25+	DENSE	HARD
-	12 ft	37	113.2	•••••	•••••	25+	DENSE	HARD
-		40	122.4	•••••	•••••	25+	DENSE	HARD
-		48	146.9	•••••	•••••	25+	DENSE	HARD
- 4 m	13 ft	42	128.5	•••••	•••••	25+	DENSE	HARD

Dii	PROJECT:	FRA-070-22.85 ROADWAY	DRILLING SAMPLING		_	RII /		-	ILL RIG		55 (SN UTOMA		45)	1	TION		SET:			70 / 43.2 BRICE I		EXPLORA B-060	ATION ID 0-0-19
	PID: 98232 START: 9/9/20	SFN: 0 END:9/9/20	DRILLING SAMPLING			4.5" CFA SPT		- 1		ION DATE:		9/14/20 84.2	0	1	VATION	_	810	.8 (MS		EOB:	7.5 f	t.	PAGE 1 OF 1
		AL DESCRIPTION ND NOTES		ELEV. 810.8	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	cs	ATIO FS	N (%	CL	ATT LL		ERG PI	wc	ODOT CLASS (GI	SO4 ppm	BACK FILL
	PHALT (11.0") GREGATE BASE	(25.25")	X	809.9		- 1 -	15																7 2
				807.8		2 -	15 7 7	20	53	SS-1	-	-	-	-	-	-	-	-	-	5	A-1-b (V	840	4400 1 24 410 24 10 1
WITH SA	EDIUM DENSE, G AND , TRACE SILT (FRAGMENTS PF			806.3	W	_ 4 -	5 7 4	15	44	SS-2	-	-	-	-	-	-	-	-	-	6	A-1-b (V) -	1 2 7
HARD, E	BROWNISH GRAY	TO BROWN SANDY SIL IE GRAVEL, DAMP.	T,			- 5 - - 6 -	3 8 9	24	50	SS-3	4.25	16	17	17	33	17	25	15	10	10	A-4a (3)	-	
				803.3	——EOR	- 6 - - 7 -	7 12 14	36	100	SS-4	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)) -	7777

1 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:32 - U:\GI8\PROJECTS\2017\W-17-

D	PROJE	CT:		RA-070-22 DADWAY		DRILLING SAMPLING	FIRM / OPE		RII / L		-	ILL RIG		IE 55 T			1	TION .	/ OFF	SET:		7+03. RAMI	.62 / 27 P C1	.1' LT		ATION ID 1-0-19
KII	PID: START:	98232	SFN:		9/14/20	-	METHOD:		4.25" HSA		CAL	LIBRAT	TION DATE:		5/7/13 89		ELE	/ATIC	N: _	809.	4 (MSI	L)	EOB:	6.5 f .831196	t.	PAGE 1 OF 1
		MATERIA A	AL DE		TON	•	ELEV. 809.4	DE	PTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	cs	ATIO FS	N (% sı) CL	ATT	ERBE PL	RG PI	wc	ODOT CLASS (GI	SO4 ppm	
GRAVE	L AND/O	DENSE, B IR STONE D CLAY, M	FRAG						- 1 -	2 11 7	27	33	SS-1	-	-	-	-	-	-	-	-	-	7	A-2-6 (V	′) <100	
SAND, S	DILI ANL	CLAT, IV	10131			0.0			_ 2 - _ 3 -	11 8 10	27	0	SS-2A	-	-	-	-	-	-	-	-	-	-	A-2-6 (V	′	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
LIGHT (DRANGI	SH BROV	VN, SIL	LTY CLA	ND GRAY TO AY, SOME		805.9		- 4 -	16 8 7 7	21	78	SS-2B SS-3	4.00	10	10	12	30	38	39	23	16	16 14	A-2-6 (V A-6b (9)	1	
'	Γ ORGAI	GRAVEL, NIC ODOI			E ORGANICS		802.9	EOB-	- 5 - - 6 -	8 6 8	21	39	SS-4	4.00	-	-	-	-	-	-	-	-	13	A-6b (V)	, -	7 7 7

:021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2/27/*22 10:32 - U:\GI8\PROJECTS\2017\W-17-1

NOTES: NONE

Pii	PROJEC TYPE:	T:	FRA-070-2 ROADWAY		DRILLING I		-	RII /		-	ILL RIG MMER:		55 (SN JTOMA		15)	-	TION	/ OFF NT:		_		88 / 51. BRICE	3 1(1	EXPLOR/ B-062	ATION ID 2-0-19
	PID: START:	98232	SFN:	9/9/20	DRILLING I			4.5" CFA SPT		⊣ `		ION DATE: RATIO (%):		9/14/20 84.2)	-	VATION / LON	_	814	.5 (MS		EOB:	6.0 ft		PAGE 1 OF 1
	ı		L DESCRIPTION	TION		ELEV. 814.5	DEP.	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_	CS	ATIC FS	N (%	CL	ATT	ERB PL	ERG PI	wc	ODOT CLASS (GI)	SO4 ppm	BACK FILL
	TIFF, BR	OWN SIL		, SOME FINE	— <i> ///</i>	∖814.2/		- - 1 -	5 4 4	11	72	SS-1	4.00	6	15	14	37	28	31	16	15	16	A-6a (8)	990	
GRAVEL	., MOIST	•	E TO LITTL			811.5		_ 2 _	9 5 6	15	39	SS-2	3.50	14	15	14	32	25	31	16	15	16	A-6a (6)	-	1 × × × × × × × × × × × × × × × × × × ×
				OWN SANDY AVEL, DAMP.				- 4	9 9	25	100	SS-3	4.00	-	-	-	-	-	•	-	-	9	A-4a (V)	-	
						808.5	FOB	5	14 17 16	46	36	SS-4	4.25	-	-	-	-	-	-	-	-	9	A-4a (V)	-	1 × × × × × × × × × × × × × × × × × × ×

)21 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:32 - U:\GI8\PROJECTS\2017\W-17-14

	RILLING FIRM / OP AMPLING FIRM / LO	_	RII / LH/K		RILL RIG AMMER:	: <u>CME 7</u>	50X (SN JTOMA		18)	1	ION / C	OFFSET ·.			91 / 96. BRICE	<u> </u>	EXPLORA B-062	
	RILLING METHOD:		.5" CFA			ION DATE:		/14/20)		ATION				EOB:		ft.	PAGE
	AMPLING METHOD	-	SPT			RATIO (%):		86.2			LONG					.831206		1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 795.0	DEPT		PT/	REC (%)	SAMPLE ID			RADA cs	ATION	l (%)	_	TERB PL	ERG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
0.6' - TOPSOIL (7.0")	794.4				(10)		(10.)										_	Py Last
VERY STIFF, DARK BROWN TO DARK GRAY SILTY CLAY , SOME COARSE TO FINE SAND, SOME FINE GRAVEL, MOIST.			1 3 - 2 - 3	3 10	47	SS-1	2.50	24	10	12	29 2	5 33	17	16	17	A-6b (6)	-	
			3 -															1 2 2 2
-TRACE ORGANICS IN SS-1 AND SS-2	789.5		- 4 - 4 - 5 - 4	3 11	61	SS-2	2.25	-	-	-	-	- -	-	-	21	A-6b (V)	-	
STIFF TO VERY STIFF, BROWNISH GRAY SANDY SILT , LITTLE CLAY, LITTLE FINE GRAVEL, MOIST.	769.5	-	6 13															17/1
-TRACE ORGANICS IN SS-3		₩ 787.5		4 14	89	SS-3	1.50	17	10	13	40 2	0 26	17	9	18	A-4a (5)	-	
			8 -															- X-X-
				5 19 8	100	SS-4	3.00	-	-	-	- .	- -	-	-	20	A-4a (V)	-	- 1 Jan
VERY STIFF, BROWNISH GRAY TO MOTTLED	784.5	_	11 16										_					
BROWN AND GRAY SILT AND CLAY				5 17 7	81	SS-5	2.50	22	13	15	29 2	1 27	15	12	15	A-6a (4)	-	4 AM
			- 13 - - ₁₄ - 6										_					
	780.0		- 14 - 0 - 15	7 24 10	100	SS-6	3.50	-	-	-	-			-	22	A-6a (V)	-	A Las

NOTES: SEEPAGE @ 7.5'

	DRILLING FIRM / OF SAMPLING FIRM / LO	_	RII / LA		-	LL RIG		E 55 T			-	TION /		SET:		3+38. RAMF	78 / 14	.7' LT	EXPLORA B-063	ATION ID -0-19
PID: 98232 SFN:	DRILLING METHOD: SAMPLING METHOD		4.25" HSA SPT	ANLOH	CAL	JBRAT	TION DATE:		5/7/13 89		ELE	VATIO	N: _	798.	3 (MSL	_)	EOB:	6.0 f 831992	t.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 798.3	DEPT	гнѕ	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS CS	ATIC FS	N (%)	CL	ATTE	PL	RG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
FILL: VERY STIFF, DARK BROWN TO BROWN WITH SPOTTY BLACK, SANDY SILT , LITTLE CLAY, SOME GRAVEL. DAMP	796.8		- 1 -	2 8 12	30	61	SS-1	3.00	21	19	17	- 43	3 -	28	18	10	15	A-4a (2)	280	
TRACE ORGANICS IN SAMPLE	795.3		_ 2 _	9 11 18	43	44	SS-2	-	39	22	13	- 26	i -	NP	NP	NP	8	A-2-4 (0)	-	4 > 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1
FILL: DENSE, GRAVEL AND/OR STONE FRAGMENTS WITH SAND AND SILT, MOIST			4	4 5 8	19	89	SS-3	3.00	-	-	-	-	-	-	-	-	16	A-6b (V)	-	
FILL: VERY STIFF, DARK BROWN TO MOTTLED BROWN AND GRAY, SILTY CLAY , LITTLE SAND, LITTLE GRAVEL, MOIST	792.3	EOB-	- 5 -	10 12 12	36	100	SS-4	4.00	ı	-	1	-	-	-	-	-	20	A-6b (V)	-	1 N N N N N N N N N N N N N N N N N N N
ROCK FRAGMENTS IN SAMPLE LIGHT ORGANIC ODOR		LOB	0																	

5TAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1/2/27/22 10:32 - U:\GI8\PROJECTS\2017\W-17-14

Di	PROJECT:	FRA-070-22.85 ROADWAY	-	FIRM / OPER	_	RII / C		-1	ILL RIG		55 (SN JTOMA		15)	-	TION		SET:	_		69 / 70.4 BRICE I		EXPLORA B-079	ATION ID 9-0-19
	PID: 98232 START: 7/7/	SFN:	DRILLING			4.5" CFA SPT		-1		ION DATE:	(9/14/2		1	VATION	_		.6 (MS	SL)	EOB:		ft.	PAGE 1 OF 1
		IAL DESCRIPTION AND NOTES	-1	ELEV. 818.6	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	cs	ATIO FS	N (% sı	CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI	SO4 ppm	BACK FILL
HARD, I		SILT, SOME CLAY, SOME	- /	\ <u>818.3</u> / 817.1		- - 1 -	3 6 8	20	86	SS-1A SS-1B	- 4.5+	- 25	13	- 13	23	- 26	- 25	- 18	7	7 6	A-4a (3)	-	
VERY S		BROWN TO GRAY SILT TO COARSE SAND, SOME				_ 2 _ 3	13 15 12	38	75	SS-2	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	-	1
FINE GI	RAVEL, DAMP TO	O MOIST.				- 4 - 5	8 10 12	31	100	SS-3	4.5+	30	20	7	25	18	31	18	13	13	A-6a (2)	270	4 L 1
						- 6 - 7	1 1 2	4	44	SS-4	2.50	-	-	-	-	-	-	-	-	25	A-6a (V)) -	2 K K K K K K K K K K K K K K K K K K K
				808.6	N	9 10	4 3 3	8	78	SS-5	2.00	-	-	-	-	-	-	-	-	13	A-6a (V)	, -	

00-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2/27/*22 10:34 - U:\GI8\PRC

PROJECT: TYPE:	FRA-070-22 ROADWAY	<u>85</u>		FIRM / OPERA G FIRM / LOGG	_	RII / T		-1	ILL RIG MMER:	: MOBILE	B53 (S UTOMA		6345)	1	TION . SNMEI					2 / 117. BRICE I	1 1 1 1	EXPLOR B-080	
PID: 9823			_	METHOD:		.25" HSA		-1		ION DATE:		9/14/20	0	1	/ATIC	_				EOB:		t.	PA
START: 7/	10/20 END:	7/10/20	SAMPLING	METHOD:		SPT		EN	ERGY F	RATIO (%):		83.6		LAT	/ LON	IG:		39	.9339	84, -82	.830223		10
MATE	RIAL DESCRIPTI	ION		ELEV.	DEPT	нς	SPT/	N ₆₀		SAMPLE			RAD		N (%)	ATT	ERBE	ERG		ODOT	SO4	
	AND NOTES			816.0	DLII	110	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	
8' - TOPSOIL (9.0")				815.2		<u> </u>																	4
LL: DENSE TO VER		GRAVEL				1 -	0.5																
I TH SAND , TRACE S	ILI, DAIVIP.					<u></u>	25 27	75	67	SS-1	_	_	_	_	_	_	_	_	_	3	A-1-b (V		AL.
			0 C	[[₃	27		ļ .														
			$^{\circ}$ \bigcirc				12									1						+	- Q
						4 +	11	18	33	SS-2	-	-	-	-	-	-	-	-	-	6	A-1-b (V)	-	or the
			0.00	810.5		_ 5 _																	77
L: VERY STIFF TO						6 -	4																7
OWN SILT AND CL ND, LITTLE FINE G			= \///				5	18	75	SS-3	3.00	15	17	19	23	26	28	16	12	12	A-6a (3)	-	4
IND, EITTEET INC	TO TO LET, DI TIVILI TO	o moior.]		<u> </u>	8																
						8 -																	No.
				1		⊢ 9 +	8	18	83	SS-4	4.25	_	_	_	_	_	_	_	_	13	A-6a (V)	_	2
]		L 10 L	7				0										71 04 (1)		9
						F																	e d
						- 11 	9	40	00	00.5	4.50									_	A 0 - 0 0		9
						12	14 15	40	92	SS-5	4.50	-	-	-	-	-	-	-	-	9	A-6a (V)	-	2
]		- 13 -																	~
						14	9							+		1							7
]		F 14 T	8 8	22	100	SS-6	4.50	17	14	16	28	25	25	14	11	10	A-6a (4)	-	2
						_ 15 _	0									1							- Q
						<u></u> 16 →	10																24 4
]		17	14	45	100	SS-7	4.50	-	-	-	-	-	-	-	-	10	A-6a (V)	-	· ·
						-	18																7
]		<u> </u>																	A
						<u> </u>	9 9	28	86	SS-8	4.50	_	_	_	_	_	_	_	_	10	A-6a (V)	_	Ø3
				1		L 20 ⊥	11				1.00										7.00(1)		7
						⊢ -																	2
				1		21 7	9	15	100	00.0	4 50									10	A 60 (\)		- A
						_ 22 _	11 21	45	100	SS-9	4.50	-	-	-	-	-	-	-	-	12	A-6a (V)	-	7
						_ 23 _																	_
						_ 24 -	9															+	- 2
			V///	791.0		24	9	26	86	SS-10	4.50	-	-	-	-	-	-	-	-	11	A-6a (V)	1 -	7

	RILLING FIRM / OPERA AMPLING FIRM / LOGG		RII / SB RII / T.G.	7	LL RIG: MMER:	CME 7	50X (SN JTOMA		218)	1	TION /	OFFS				0 / 80. BRICE	1 131	EXPLOR B-08	
PID: 98232 SFN: DF	RILLING METHOD:	3.25'	" HSA	CAL	IBRATI	ON DATE:	ç	9/14/20)	ELE	/ATIO	N:	798.	9 (MS	SL)	EOB:	25.01	t.	PAC
	AMPLING METHOD:		SPT	1		ATIO (%):		86.2		1	/ LON	_					.830314		1 OF
MATERIAL DESCRIPTION	ELEV.	D = D = 1.10	SPT/	<u>. </u>	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERBE	ERG		ODOT	SO4	ВА
AND NOTES	798.9	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	
.8'-TOPSOIL (10.0")	798.1	_	_									Î							299
ERY STIFF, BROWNISH GRAY SILT AND CLAY , ITTLE TO SOME COARSE TO FINE SAND, TRACE INE GRAVEL, DAMP TO MOIST.		-	1 5 10 12	32	56	SS-1	3.00	-	-	-	-	-	-	-	-	22	A-6a (V)	-	** ** ** **
	702.4	-	3 - 7 4 - 7 11 18	42	61	SS-2	3.75	-	-	-	-	-	-	-	-	15	A-6a (V)	-	7 6
IEDIUM DENSE, GRAY GRAVEL WITH SAND AND ILT, SOME CLAY, DAMP.	793.4	-	6 4 6 11	24	69	SS-3	-	33	23	9	13	22	28	18	10	11	A-2-4 (0)	-	KRYCPA
		-	8 - 9																- 47 - 47 - 7
EDIUM DENSE TO DENSE, GRAY GRAVEL WITH	788.4	787.9	10 9	24	78	SS-4	-	-	-	-	-	-	-	-	-	10	A-2-4 (V)	-	- A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A
AND, TRACE SILT, TRACE CLAY, WET.		F	11 12 12 11 12 12	33	89	SS-5	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-	7
SHALE FRAGMENTS IN SS-5		-	13 — 6 8 13	30	78	SS-6	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	-	70074
		-	16 14	4-															7 W X W
		-	17 — 15 16	45	56	SS-7	-	-	-	-	-	-	-	-	_	15	A-1-b (V)	-	- N N N
		_ - -	19 9 13 20 10	33	83	SS-8	-	35	42	10	- 13	3 -	NP	NP	NP	12	A-1-b (0)	-	7
		-	21 12 22 13 13	37	78	SS-9	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-	X 4 7 K B X
	773.9	<u>-</u>	23 — 11 24 — 15 25 — 17	46	92	SS-10	-	-	-	-	-	-	-	-	-	11	A-1-b (V)	-	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @ 11.0' AND AT COMPLETION @ 9.8'; CAVE-IN DEPTH @ 14.3'.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: NOT RECORDED

Dii	PROJEC	л:	FRA-070- ROADWA		-	FIRM / OPER	_	RII /		-	RILL RIG		55 (SN JTOMA		15)		TION	/ OFFS				7 / 65.9 BRICE F	9 [1	EXPLORA B-083	ATION ID 3-0-19
	PID: START:	98232 9/9/20	SFN:	9/9/20	DRILLING SAMPLING	METHOD: _		.5" CFA SPT		− ՝		TION DATE:		9/14/20 84.2	0	1	VATIC	_	811.7			EOB:	6.0 f	t.	PAGE 1 OF 1
			AL DESCRIP ND NOTES	PTION		ELEV. 811.7	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	cs	ATIC FS	N (%) CL	ATTE	RBE PL	RG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
,	DARK BR	ROWNISH	GRAY TO		- /	\ <u>811.4</u> / 810.2		- - 1 -	4 5 3	11	64	SS-1	4.25	35	17	12	22	14	25	15	10	9	A-4a (0)) 180	17 C 184 18 SAN 1
DAMP.				TO BROWN				2 -	3 3 5	11	72	SS-2	4.25	6	13	15	39	27	27	16	11	15	A-6a (7)	-	4 > L
SILT AN	D CLAY,		OARSE TO	FINE SAND,				- 4 -	2 4 5	13	50	SS-3	1.75	1	1	1	-	-	-	-	-	21	A-6a (V)	-	
						805.7	— EOB —	<u> </u>	3 7	14	47	SS-4	4.25	-	-	-	-	-	-	-	-	17	A-6a (V)	, -	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /

2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2*/27/22 10:34 - U:\GI8\PROJECTS\2017\W-17-14

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

PROJECT: TYPE:	FRA-070-22.85 CULVERT	-	FIRM / OPE	_	RII / RII / J		_	LL RIG: MMER:	CME 7	50X (SN JTOMA		218)	1	TION .					4 / 116 BRICE I	. 3 L1	EXPLOR B-083	
PID: 98		_	METHOD:		3.25" HSA		_		ON DATE:		9/14/20)	-		_				EOB:		t.	PAC
START:	10/30/20 END: 10/30/20	SAMPLING	G METHOD		SPT		ENE	ERGY F	ATIO (%):		86.2			/ LON						.830969		1 OF
MA	ATERIAL DESCRIPTION AND NOTES	•	ELEV. 797.5	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_	CS CS	ATIO FS) CL	ATT LL	ERBI PL		wc	ODOT CLASS (GI)	SO4 ppm	BA FI
0.5'- TOPSOIL (6.0"			797.0			NQD		(70)	טו	(ເວເ)	GK	CS	го	SI	CL	LL	FL	FI	WC	- (-,	+ ''	OF E
'	NN SANDY SILT , LITTLE CLAY,		707.0			3 4	11	61	SS-1	3.50	-	_	_	_	_	_	_	_	15	A-4a (V)	_	
-LIMESTONE AND	SHALE FRAGMENTS IN SS-1		794.5		2 1	4														, ,		- 1/2
	WN TO BROWNISH GRAY SILT COARSE TO FINE SAND, LITTL IST.				- 3 - - 4 	2 4	14	69	SS-2	3.50	•	-	-	-	-	-	-	-	23	A-6a (V)	-	
,					- 5 	6																- 5
-WOOD FIBERS II	N SS-3A		790.5		-6	3 4	10	58	SS-3A	2.50	18	12	13	32	25	-	-	-	14	A-6a (V)	-	- 0×
	VERY STIFF, GRAY SANDY				F / T	3			SS-3B	1.00	-	-	-	-	-	-	-	-	18	A-4a (V)	-	- F
FINE GRAVEL, DAN	OME CLAY, LITTLE TO SOME MP.			w 788.1	- 8 + - 9 -			83	ST-4	3.50	-	-	-	-	-	-	-	-	-	A-4a (V)	-	A ARA
					10	3 3 7	14	58	SS-5	3.00	15	11	14	36	24	•	-	-	13	A-4a (V)	-	
					11 -	7 8 10	26	67	SS-6	3.50	21	14	14	31	20	24	14	10	11	A-4a (3)	-	N S
					- 13 - - 14 -	7 6 8	20	61	SS-7	3.50	24	13	14	29	20	-	-	-	11	A-4a (V)	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					15	8 9 13	32	75	SS-8	2.50	33	12	12	30	13	-	-	-	11	A-4a (V)	-	7
				780.7	16 T	30 5 13	26	44	SS-9	2.50	1	-	-	-	-	-	-	-	13	A-4a (V)	-	- A A T A
DENSE GRAY GRA	AVEL WITH SAND AND SILT.		779.5		18 -	1																W.
TRACE CLAY, MOI: -SHALE FRAGMEI	ST.				19	13 15 14	42	78	SS-10	-	-	-	-	-	-	-	-	-	9	A-2-4 (V)	-	- A
	AVEL WITH SAND, TRACE SILT,		777.0		20 -																	The state of the s
TRACE CLAY, WET					21 7	10 13 14	39	75	SS-11	-	•	-	-	-	-	•	-	-	11	A-1-b (V)	-	4 4 3
LIMEOTONE 55 *	OMENTO IN CO. 40	\circ			23 -	7																- A
-LIMESTONE FRA	GMENTS IN SS-12				- 24 - 25	17 18	50	81	SS-12	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	-	
		60.0 60.0	770.5		26	-																**************************************
	Y SANDY SILT , LITTLE COARSE LACE FINE GRAVEL, MOIST.				- 27 - - 28 -																	4 1 4 4
					29	6 9	26	83	SS-13	3.50	-	-	-	-	-	-	-	-	13	A-4a (V)	-	- V

PID:	98232	SFN:	PROJECT:	FRA-070-	22.85	STATI	ON / O	FFSE	ET: <u>3</u>	884.34, 1	17' LT	8	STAR	T: <u>10</u>	/30/2	0 E	ND:	10/	30/20	_ P(G 2 OF 2	B-083	-1-19
		MATERIAL DESCRIPTION	ON	ELEV.	DEPTHS		SPT/	N ₆₀		SAMPLE		Ġ	RAD	ATIO	N (%))	ATT	ERBE			ODOT	SO4	BACK
		AND NOTES		767.5	DEI III	1	RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
TO F		GRAY SANDY SILT , LITTLI D, TRACE FINE GRAVEL, I	E COARSE MOIST.		- - - -	- 31 - - 32 -																	
						- 33 —																	7 7
-WC	OOD FRA	GMENTS IN SS-14			_	- 34 - 6 - 35 - 	6 10	23	92	SS-14	3.00	-	-	-	-	-	-	-	-	16	A-4a (V)	-	
					<u> </u>	- 36 —																	A X X X X X X X X X X X X X X X X X X X
						- 37 —																	
				757.5	EOB-	39 1	0 8 8	23	83	SS-15	2.50	-	-	-	-	-	-	-	-	17	A-4a (V)	-	

PROJECT:	FRA-070-22.85 CULVERT	DRILLING SAMPLING			RII /		_	ILL RIG MMER:	: <u>CME 7</u>	750X (SI		218)	-	TION					10 / 85. BRICE	1 101	EXPLOR	ATION II 3-2-19
PID: 98232	SFN:	DRILLING		_	3.25" HSA		_		ION DATE:		9/14/20	0	-		_				EOB:		ft.	PAGE
START: 10/28/	/20 END: 10/28/20	SAMPLING	METHOD	:	SPT		ENI	ERGY F	RATIO (%):		86.2		LAT	/ LOI	۱G: _		39	9.9348	04, -82	.830263		1 OF 2
	AL DESCRIPTION ND NOTES		ELEV. 793.9	DEF	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS CS	ATIC FS	N (% sı		ATT LL	ERB PL	ERG PI	wc	ODOT CLASS (G	SO4 ppm	BACI FILL
√0.3'-TOPSOIL (3.0")			793.6		L			(11)		()												CA L
HARD, BROWN SANDY S FINE GRAVEL, DAMP.	SILT , LITTLE CLAY, TRAC	E			- 1 - - - 2 -	5 11	34	81	SS-1	4.5+	-	-	-	-	-	-	-	_	7	A-4a (V) -	
			789.9		_ 3 -	13 11 21 23	63	83	SS-2	4.5+	-	-	-	-	-	-	-	-	7	A-4a (V) -	1 2 2
HARD, DARK BROWN SI FINE GRAVEL, LITTLE C DAMP.			788.4		- 4 - - - 5 -	22 18 23	59	78	SS-3	4.5+	17	9	7	21	46	34	19	15	13	A-6a (8)	-	- 1 L
HARD, BROWNISH GRAY GRAVEL, SOME CLAY, D	DAMP.		786.9		- 6 - - 7 -	8 9 11	29	81	SS-4	4.5+	42	6	6	26	20	-	1	-	11	A-4a (V	-	21/2/2 2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2
DENSE, BROWN GRAVE CLAY, MOIST.			785.4	_	8 -	8 9 15	34	61	SS-5	-	53	10	5	19	13	31	19	12	10	A-2-6 (0) -	- KAY
MEDIUM DENSE TO VEF WITH SAND, TRACE SILT WET.				w 784.	4 - 9 - 9 - 10 -	9 11	29	75	SS-6	-	67	11	6	11	5	NP	NP	NP	11	A-1-b (0) -	
					- 11 - - 12 -	12	36	0	SS-7	_	-	-	-	_	_	-	-	_	-	A-1-b (V) -	750
					- 13 -	13	-	100	2S-SS-7A	-	-	-	-	-	-	-	-	-	12	A-1-b (V) -	
					- 13 - - 14 -	8 9	29	83	SS-8	_	-	-	-	_	-	-	-	_	11	A-1-b (V) -	4 L
					- 15 - - 16 -	11																
					17 -	8 12 14	37	50	SS-9	-	-	-	-	-	-	-	-	-	11	A-1-b (V) -	- 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
					- 18 - - - 19 -	8 11	33	81	SS-10	_	_	_	_	_	_	_		_	10	A-1-b (V) -	
					20	12		0.												7. 15 (1	,	2/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2
					- 21 - - - 22 -	7 12 17	42	69	SS-11	-	-	-	-	-	-	-	-	-	9	A-1-b (V) -	
					- 23 - - - 24 -	8	60	00	00.40										11	A 4 5 0		1 × ×
					25	15 31	66	92	SS-12	-	-	-	-	-	-	-	-	-	11	A-1-b (V	, -	74
DENICE COAY COAYES	MANTLI CAND AND CILT		766.9	-	26 27	-																\$1000 1000 > 1000
DENSE, GRAY GRAVEL TRACE CLAY, WET.	WITH SAND AND SILI,				- 28 -	5																1 L
					— 29 – -	10 14	34	53	SS-13	-	-	-	-	-	-	-	-	-	15	A-2-4 (V) -	ASSA

PID: <u>98232</u>	SFN:	PROJECT:	FRA-070-2	2.85	STATI	ION / O	FFSE	ET: _	3836.4, 8	5' RT.	_ 5	STAR	T: <u>10</u>	/28/2	0 E	ND:	10/2	28/20	_ P(3 2 OF 2	B-083	-2-19
	MATERIAL DESCRIPTION)N	ELEV.	DEPTHS		SPT/	N ₆₀	REC	SAMPLE		Ġ	RAD	ATIO	N (%)	ATT	ERBE			ODOT	SO4	BACK
	AND NOTES		763.9	DEI III		RQD	1 460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
TRACE CLAY, HARD, GRAY FINE GRAVEL	GRAVEL WITH SAND AND WET. (continued) SANDY SILT, LITTLE CLAY, MOIST. FRAGMENTS IN SS-14		V C	- - - - -	- 31 — - 32 — - 33 — - 34 — - 35 — - 36 — - 37 —	3 17 21	55	56	SS-14	4.25		-	-	-	-	-	-	-	18	A-4a (V)	-	
			753.9	- - - EOB	- 38 — - 39 —	9 41	72	81	SS-15	4.5+	-	-	-	-	-	-	-	-	15	A-4a (V)	-	

Di	1	PROJECT: _	RE	FRA-070-22.85 ETAINING WALL	DRILLING SAMPLING		_	RII /	/ LH JK	-1	ILL RIG		55 (SN UTOMA		15)	1	TION SNME					15 / 52.4 BRICE	T 1(1	EXPLOR B-08	RATION 4-0-19
IVII		PID: 982		SFN:	DRILLING			.25" HSA		_		ION DATE:		9/14/2	0		VATIC	_				EOB:		ft.	PAG
	s	START: 8	3/31/20	END: 8/31/20	SAMPLING	METHOD):	SPT		EN	ERGY F	RATIO (%):		84.2		LAT	/ LON	IG: _		39	9.9352	75, -82	.830336		1 OF
		MAT		DESCRIPTION		ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE			RAD			,		ERBI			ODOT	SO4	
4.01. 4.	0.01	IAI T (40.0)		NOTES	NV.	805.3		1	RQD	. •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI) ppm	ı FIL
		HALT (12.0	,		$\longrightarrow \bigotimes$	804.3		- - 1 -																	
$\overline{}$		REGATE B				803.8	-	F '	20															-	
		IUM DENS D . TRACE		DENSE, GRAY GRAVE I				_ 2 -	16	39	83	SS-1	-	-	-	-	-	-	-	-	-	4	A-1-b (V) -	224
*********	<i>-</i>	b, ITVAOL	OIL I, L	ZAWII .	o t			_ 3 -	12																- 4 > 1
						800.8		<u> </u>	3 4	14	0	SS-2	_	_	_	_	_	_		_	_	_			1 2
				N TO MODDLED				_ 5 -	6		75												A 7 C () (- 1 L
				AY CLAY , SOME SILT SAND, TRACE FINE	,			- 6 -	1	-	/5	2S-2A	3.50	-	-	-	-	-	•	-	-	18	A-7-6 (V	-	AM.
		DAMP TO I						-	6 8	22	0	SS-3	_		_	_	_	_		_	_	_			12 2 L
								<u></u> 7 −	8				4.00									40	A 7 0 () (7
								<u> </u>	10	•	250	2S-3A	4.00	-	-	-	-	-	•	-	-	13	A-7-6 (V	-	
								<u> </u>	4 5	18	67	SS-4	4.00	4	6	13	28	49	42	21	21	21	A-7-6 (13	.	7
						794.8		<u> </u>	8		01		4.00		Ů	10	20	75	72	-	21		74-7-0 (10	'/	- Set
VFRY S	STIF	F TO HAR	D BRO	OWN SILT AND CLAY,	- 1777	794.8	1	F																	- H
LITTLE	CO	ARSE TO	FINE S	SAND, TRACE FINE				<u> </u>	5 8	25	67	SS-5	4.00		_	_	_				_	17	A-6a (V		and the second
GRAVE	EL, C	DAMP TO I	MOIST.			1		12 -	10	25	07		4.00		_					_		17	A-0a (V		70
						1		- 13 -	-																STA
						1		_ 14 -	6 8	25	11	SS-6	4.25		_	_					_	_	A-6a (V		—
						1		- - 15 -	10					_			-	-	•	-	_		` '		1 L
						789.3		F '	10	-	67	2S-6A	3.00	-	-	-	-	-	-	-	-	15	A-6a (V	-	4
				DARK BROWN ,			▽ 788.8	16 -	12	49	56	SS-7	_			_						7	A 2 4 (V	\	Ø8.
				VN GRAVEL WITH SAN AMP TO MOIST.	ID H	3		17 -	16 19	49	36	33-1	-	-	-	-	-	-	•	-	-	′	A-2-4 (V		4.>
		S @ 17.0'	.A1, D/	AWI TO WOIOT.	10	1		- 18 -	-																107
						•		- - 19 -	14	42	C4	00.0											A 2 4 04		CZ (2)
								_ 20 -	15 15		64	SS-8	-	-	-	-	-	-	•	-	-	9	A-2-4 (V) -	A)
					M			-																	7
								_ 21 -	16		70	00.0										40	1 0 1 0	T	77
								_ 22 -	18 19	52	72	SS-9	-	-	-	-	-	-	-	-	-	12	A-2-4 (V) -	3/>
						4		_ 23 -	-																
							w 780.8	- - 24 -	9	36	100	SS-10			_			_			_	9	A 2 4 A		- Z
					<u> </u>	780.3	FOB	<u> </u>	12		100	33-10	_	_	_	-	-	-	-	_	_	9	A-2-4 (V	<u>' </u>	4

NOTES: SEEPAGE @ 19.7'; GROUNDWATER ENCOUNTERED INITIALLY @ 24.5' AND AT COMPLETION @ 16.5'; CAVE-IN DEPTH @ 18.9'.

Dii	PRO TYPE	JECT: E:	FRA-070-22.85 RETAINING WALL	-	G FIRM / OPE	_	RII /	BH TG	-1	ILL RIG: MMER:	MOBILE A	E B53 (S UTOMA		345)		TION SNME					27 / 54. ² BRICE I	1 131	B-085	
IVII			SFN:	-	METHOD:		.25" HSA		-1		ON DATE:		9/14/20)	1		 DN:				EOB:		ft.	PAG
			31/20 END: 8/31/20	1	G METHOD:		SPT		-1		ATIO (%):		83.6	-	1	/ LON	_					.830294		1 OF
			ERIAL DESCRIPTION	-	ELEV.			SPT/	-	DEC	SAMPLE	HP	(-	RAD	ATIO	N (%)	ATT	ERBI			ODOT	SO4	BAG
		,,,,,,,,	AND NOTES		802.4	DEPT	HS	RQD	N_{60}	(%)	ID	(tsf)			FS	_ `	CL	LL	PL	PI	wc	CLASS (GI	ppm	FIL
0.7' - AS	PHAL	T (8.0")		XX	801.7					(11)		(/												
			ASE (4.0")		801.4		F 1 -	18																- XXXX
	BRO		VEL WITH SAND, TRACE				_ 2 -	18 14 12	36	58	SS-1	-	-	-	-	-	-	-	-	-	6	A-1-b (V	-	W.
		DV STIFE	F, BROWN SILT AND CLAY ,	- 9	799.4		— 3 –																	7>
	INE T	O COAR	SE SAND, SOME FINE				- - 4 - - 5 -	2 3 5	11	89	SS-2	2.00	-	-	-	-	-	-	-	-	18	A-6a (V)	_	-1 L
							6 -	4																- Z
							7 -	3 5	11	0	SS-3	-	-	-	-	-	-	-	-	-	-	A C (1)	-	- 1/2 - 1/2 - 1/2 - 1/2 - 1/2
							− 8 −	6	-	100	2S-3A	3.00	-	-	-	-	-	-	-	-	19	A-6a (V)	-	
							9 -	1 2 3	7	67	SS-4	1.75	31	15	9	20	25	33	20	13	18	A-6a (3)	-	A V
			ENSE, GRAY GRAVEL WITH	91	791.9		- 10 - - - 11 -	2																- 32 - 34 - 34 - 34 - 34 - 34 - 34 - 34 - 34
SAND A	ND SII	LT, LITTI	LE CLAY, MOIST.				12 -	10 7	24	44	SS-5	-	-	-	-	-	-	-	-	-	13	A-2-4 (V	-	70
					à c		13 -	4																\$4 - 1
				\$			- 14 - - - 15 -	6 13	26	94	SS-6	-	45	18	8	15	14	26	18	8	12	A-2-4 (0)	-	1 47
							- - 16 -	9																74 L
							17 -	7 8	21	56	SS-7	-	-	-	-	-	-	-	-	-	11	A-2-4 (V	-	- 44 - 47 - 47 - 47
						w 783.4	- 18 - 10 -	10																110
						782.4	19 -	12 13 6	35	100	SS-8 2S-8A	-	-	-	-	-	-	-	-	-	- 12	A-2-4 (V	-	7
					9 781.4		- - 21 -			100	20-0A			_	-	_	_	_	_		14	7-2-4 (V	_	77
VERY D FINE SA			GRAVEL , TRACE COARSE T		,a		_ 22 -	13 17 25	59	83	SS-9	-	-	-	-	-	-	-	-	-	13	A-1-a (V) -	
MEDIUM	1 DEN	ISE, GRA	AY GRAVEL WITH SAND AND	97	779.4		23 -																	
SILT, TR	RACE	CLÁY, M	OIST.		777.4	—EОВ—	_ 24 -	9 12 12	33	81	SS-10	-	-	-	-	-	-	-	-	-	13	A-2-4 (V	-	2 L

	DRILLING FIRM / OF SAMPLING FIRM / L		RII / T		-	LL RIG MMER:		55 (SN JTOMA		15)	1	TION		SET:			.02 / 22 VB-CD	+ 111	EXPLOR/ B-090	
	DRILLING METHOD: SAMPLING METHOI		5" CFA SPT		-1		ION DATE: RATIO (%):		9/14/2 84.2			VATION /	_	800	.5 (MS 39		EOB:	10.0 .828113	ft.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 800.5	DEPTH	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		cs		N (% sı	CL	ATT LL	ERBI PL	ERG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
0.3' - TOPSOIL (3.0") FILL: DENSE, BLACK ASPHALT FRAGMENTS,	800.2 799.0		- - 1 -	9 22 10	45	78	SS-1	-	-	1	-	-	1	-	1	1	-		-	
DAMP. VERY STIFF TO HARD, BROWN AND GRAY SILT AND CLAY, LITTLE COARSE TO FINE SAND,			- 2 - 3	5 6 9	21	81	SS-2	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)) -	1
TRACE FINE GRAVEL, DAMP TO MOIST.			- - 4 - - 5	2 3 6	13	78	SS-3	3.00	2	3	9	40	46	31	20	11	19	A-6a (8)) <100	COUNTY .
		W	- 6 - - 6 - - 7 -	1 6 8	20	83	SS-4	3.50	-	-	-	-	-	-	-	-	17	A-6a (V)) -	7
			- 8 - - 8 -	6																
	790.5	EOB-	_ _{_10}	6 7	18	94	SS-5	2.75	-	-	-	-	-	-	-	-	14	A-6a (V)	<u> </u>	1 1 July

00-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2\27*22 10:

Rii	PROJECT:		FRA-070-2 ROADWAY		-	FIRM / OP		RII / 1 RII /	G/KC LH	-	ILL RIG MMER:		B53 (S		6345)	1	TION	/ OFF :NT:	SET:			.42 / 6. VB-CD	0 1(1	EXPLORA B-094	-
	PID: 9823 START: 7	32 SF 7/7/20	FN: END:	7/7/20	1	METHOD: G METHOD		4.5" CFA SPT		-1		ION DATE:		9/14/2 83.6		1	VATION	_	803	.3 (MS		EOB:	10.0 .826851	ft.	PAGE 1 OF 1
	MAT		DESCRIPT NOTES	TION	•	ELEV. 803.3	DEP	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR		ATIO FS	N (%	CL	ATT LL	ERBI PL	RG PI	wc	ODOT CLASS (GI	SO4 ppm	BACK FILL
VERY S	PSOIL (3.0") TIFF TO HAR					803.0		- 1 -	9 17 18	49	81	SS-1	4.5+	-	-	-		-	-	-	-	5	A-4a (V)	-	
MOIST.	ND" FINE GRA	AVEL, L	IIILE CL	LAY, DRY TO				_ 2 - - - 3 -	9 10	26	44	SS-2	4.5+	36	15	10	26	13	26	18	8	7	A-4a (1)	>8000	/ / / / / / / / / / / / / / / / / / /
						797.8	W	- 4 - - 5 -	2 3 2	7	72	SS-3	2.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	TIFF, GRAYIS AND" SILT, TF MOIST.						-	- - 6 - - 7 -	4 4 4	11	100	SS-4	3.00	0	2	5	41	52	61	20	41	24	A-7-6 (20	-	A VIVE
						793.3	EOB-	- 8 - - 9 - - 10-	6 6 7	18	100	SS-5	2.50	-	-	-	-	-	_	-	-	22	A-7-6 (V) -	

00-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:35 - U:\GI

Rii) TYPE: _		FRA-070-22 ROADWAY		SAMPLIN	G FIRM / OPE	GGER:	RII / T	LH	HAM	LL RIG: MMER:	Al	55 (SN JTOMA	TIC	,	ALIG	NMEN	NT: _		BL IF	R 70 W	VB-CD		EXPLOR B-09	
PID:		SFN:	7/7/00	_	METHOD:		3.25" HSA		_		ON DATE:		9/14/20)	1			799.			EOB:		t.	10
START: _		END: . DESCRIPT D NOTES	7/7/20 TION	SAMPLIN	G METHOD: ELEV. 799.6	DEPT	SPT	SPT/ RQD	_		SAMPLE ID	_		RAD cs	ATIOI)	ATTI	ERBE		WC	.826493 ODOT CLASS (GI)	SO4 ppm	В
0.3' - TOPSOIL (3. HARD, BROWN S I	0")		E COADSE		799.3		_ 1 -	3 5	15	56	SS-1A	4.25			- -	- -	- -	-	-	-	14	A-6a (V)	-	-724°
TO FINE SAND, T					796.4		- 2 - - 2 - - 3	6 7 7	20	72	SS-2	4.50		-	-	-	-	-	-	-	17	A-6a (V)	-	18 K B X
STIFF TO VERY S GRAY CLAY , "ANI GAND, TRACE FIN	D" SIĹT, Ĺ	ITTLE COA	RSE TO FIN	E			- 4 - - 5	5 5 6	15	72	SS-3	3.00	1	3	8	39	49	53	19	34	20	A-7-6 (19) -	
							6 7	4 3 5	11	94	SS-4	3.00	-	-	-	-	-	-	-	-	22	A-7-6 (V)	-	7 2 3
					789.1		- 8 - - 9 - - 10	4 5 6	15	94	SS-5	2.00	-	-	-	-	-	-	-	-	21	A-7-6 (V)	-	
ERY STIFF, GRACLAY, LITTLE CO.	AYISH BR ARSE TO	OWN SILT , FINE SANI	LITTLE D, MOIST.	+ + + + + + + + + + + + + + + + + +	· + · · + · · + · · + · · + · · + · · + · · + · · + · · + · · + · · + · · · + · · · + · · · + · · · + · · · · · + ·		11 - 12 -	3 5 4	13	72	SS-6	3.50	-	-	-	-	-	-	-	-	14	A-4b (V)	-	7
'ERY STIFF, GRA BILT, SOME COAF BRAVEL, MOIST.				·	786.6		- 13 - - 14 - - 15	3 4 6	14	44	SS-7	-	-	-	-	-	-	-	-	-	-	A-4a (V)	-	
							- 16 - - 17 -	3 4 5	13	100	SS-8	3.75	13	10	13	38	26	24	14	10	12	A-4a (6)	-	78
							- 18 - - 19 -	5 8	18	94	SS-9	3.25	-	-	-	-	-	-	-	-	12	A-4a (V)	-	7 8 8 8 7 T
							- 20 - - 21 - - 22 -	5 6 7	18	61	SS-10	2.75	-	-	-	-	-	-	-	-	-	A-4a (V)	-	2 de 1
					774.6	—EОВ—	23 -	5 7	20	83	SS-11	2.75	-	-	-	-	-	-	-	-	13	A-4a (V)	-	- NAVA 2

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT: YPE:	FRA-070-22.85 ROADWAY	-	FIRM / OPERA	_	RII / T		-	ILL RIG: MMER:		55 (SN UTOMA		15)		TION		SET:			.34 / 33 VB-CD). I L I	EXPLOR B-09	RATION 6-0-1
	PID: 98232	SFN:	1	METHOD:		.25" HSA		-		ON DATE:		9/14/20)	-	VATIO	_	800.			EOB:		ft.	PAG
s	START: 7/7/		-	METHOD:		SPT		-1		RATIO (%):		84.2	-	1	/ LON	_					.825762		1 0
	MATER	IAL DESCRIPTION	-1	ELEV.			SPT/	₹	RFC	SAMPLE	HP	G	RAD	ATIO	N (%) _	ATT	ERBI	ERG		ODOT	S04	В
		AND NOTES		800.9	DEPT	HS	RQD	N_{60}	(%)	ID	(tsf)	GR		FS	SI	CL	LL	PL	PI	wc	CLASS (G		
3' - TOPS	SOIL (3.0")			800.6		L	4		<u> </u>	SS-1A	\ - \	<u> </u>	-							-			- 12g < 0
ERY STIF	F TO HARD,	BROWN SILT AND CLAY , IE SAND, TRACE FINE				1 -	4 5	13	22	SS-1B	-	-	-	-	-	-	-	-	-	13	A-6a (V	-	
RAVEL, [DAMP TO MO	IST.		797.7		2 1	4 5	13	72	SS-2	4.00	-	-	-	-	-	-	-	-	18	A-6a (V	-	
ND GRAY		DARK BROWN, BROWN, " SILT, TRACE COARSE TO				- 4 - 5	3 3 3	8	56	SS-3	2.75	0	3	9	43	45	48	18	30	23	A-7-6 (18	3) -	O N O NOW
						6 7	3 3	8	72	SS-4	2.25	-	-	-	-	-	-	-	-	23	A-7-6 (V) -	7
						8 -	3																7
				790.4		10	4 3	10	100	SS-5	1.50	-	-	-	-	-	-	-	-	22	A-7-6 (V) -	, S. W.
	E CLAY, LITT	BROWN TO GRAY SANDY LE FINE GRAVEL, DAMP				12	3 3 4	10	44	SS-6	1.50	13	12	14	39	22	22	15	7	13	A-4a (5	-	2
						- 13 - - 14 - - 15	3 4 6	14	78	SS-7	4.00	-	-	-	-	-	-	-	-	10	A-4a (V) -	
						- 16 - - 17 -	5 5 5	14	72	SS-8	3.00	-	-	-	-	-	-	-	-	12	A-4a (V) -	7878
						- 18 - - 19 -	3 4	13	100	SS-9	3.00		_		_	_	_	_	_	12	A-4a (V	\ -	- A
						20 - 21 -	3		. 30														77727
						- - 22 - 23 -	6 6	17	100	SS-10	4.00	-	-	-	-	-	-	-	-	12	A-4a (V	-	
				775.9	- EOB	24	4 6 7	18	100	SS-11	3.75	-	-	-	-	-	-	-	-	12	A-4a (V) -	- N

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 2.0'

D	PRO TYPE	JECT:		FRA-070-2 ROADWAY		-	G FIRM / O	PERATOR: _OGGER:	RII / C		-	LL RIG		55 (SN UTOMA		45)	STAT		/ OFF NT:	SET:			6.50 / 0. NB-CD		EXPLORA B-097	
	PID: STAI	9823		FN:	7/7/20	DRILLIN	G METHO):	3.25" HSA		CAL	IBRAT	ION DATE:		9/14/2		ELE\	/ATIC	ON: _	806.	1 (MS	SL)	EOB:		t.	PAGE 1 OF 1
	0174		ERIAL	DESCRIPT		O7 11V11 E.	ELEV 806.	DEF	THS	SPT/ RQD	N ₆₀		SAMPLE ID	HP (tsf)			ATION FS			ATT				ODOT CLASS (GI)	SO4 ppm	BACK FILL
√0.3' - T					E EINIE TO	_//	805.8	/	- ,	6 7	17	89	SS-1A	-	-	-	-	-	-	-	-	-	-	A 0 - 00	-	
		_		E GRAVEL	E FINE TO , DAMP.		802.8		- 1 - - 2 - - 3 -	5 5 6 7	18	72	SS-1B SS-2	4.5+	31	13	8	29	19	31	18	13	11	A-6a (V) A-6a (4)		
				OWN SANI GRAVEL, I			800.6		- - 4 - - 5 -	6 4 7	15	78	SS-3	3.50	20	13	14	34	19	27	18	9	14	A-4a (4)	-	
CLAY,	LITTLÉ		SE TO F		GRAY SILT D, TRACE	Y			- - - - - 7 -	11 5 5	14	75	SS-4	3.50	-	-	-	-	-	-	-	-	21	A-6b (V)	-	
200							796.1	EOB-	- 8 - - 9 - - 10-	3 3 6	13	83	SS-5	3.00	-	-	-	-	-	-	-	-	23	A-6b (V)	-	

00-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:35 - U:\G\8

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

PROJECT TYPE:		_	FIRM / OPE	_	RII /	ΓG/KC LH	_	ILL RIG: MMER:	CME	55 (SN UTOMA		15)		TION SNME		SET:			.41 / 31 VB-CD	1.0 L1	B-09	
PID:	98232 SFN:		METHOD:		3.25" HSA	4	_		ON DATE:		9/14/20	0	-		_	802			EOB:	-	t.	P/
START: _	7/7/20 END: 7/7/20	SAMPLIN	G METHOD:	:	SPT		EN		ATIO (%):	_	84.2		_	/ LON					79, -82	.825058		1 (
Λ	NATERIAL DESCRIPTION AND NOTES		ELEV. 802.6	DEP1	ГНЅ	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		cs	ATIC FS	N (% sı	CL	ATT LL	ERB PL	ERG PI	WC	ODOT CLASS (GI)	SO4 ppm	
).3' - TOPSOIL (3.			802.37		L	2			SS-1A	(131)			-			-	-		-			- PS
ERY STIFF TO H	IARD, BROWN AND GRAY CLA Y				<u> </u>	4 6	14	61	SS-1B	4.00	-	-	-	-	-	-	-	-	10	A-7-6 (V)	-	Ø.
SOME SILT, SOM INE GRAVEL, DA	E COARSE TO FINE SAND, TRA AMP TO MOIST.	CE			_ 2 - _ 3 -	8 6 7	18	72	SS-2	4.50	2	8	15	30	45	50	20	30	17	A-7-6 (18) -	18 1
					4 -	7 3 5	11	0	SS-3	-	-	-	-	_	_	-	-	-	-		-	
					_ 5 -	6	-	50	2S-3A	3.75	-	-	-	-	-	-	-	-	19	A-7-6 (V)	-	-
ERY STIFF TO H	HARD, MOTTLED BROWN AND		796.6		6 -	3																7
RAY TO GRAY ITTLE FINE GRA	SANDY SILT, LITTLE CLAY, VEL, DAMP.				- 7 - - 8 -	3	10	100	SS-4	3.00	16	23	20	25	16	22	16	6	13	A-4a (1)	-	
					9 -	7 8	32	94	SS-5	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	
					- 10 - - - 11 -	15																22
					12 -	4 6 7	18	100	SS-6	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	2
					- 13 - - - 14 -	3 4	14	67	SS-7	3.00	_		_					_	12	A-4a (V)		Ø
					15 -	6		07	33-7	3.00	-	_	-	-	-	-	-	-	12	A-4a (V)	<u> </u>	4
					- 16 - - - 17 -	7 7 10	24	83	SS-8	3.75	-	-	-	-	-	-	-	-	12	A-4a (V)	-	
					18 -	7																— R
					- - - - 20 -	4 5 7	17	100	SS-9	3.00	-	-	-	-	-	-	-	-	12	A-4a (V)	-	20
					_ 21 _	<u> </u>																2
					_ 22 -	4 5	13	72	SS-10	3.00	-	-	-	-	-	-	-	-	13	A-4a (V)	-	ST SO
			777.6		- 23 - - - 24 -		17	100	SS-11	3.00	-	-	-	_	_	-	-	-	_	A-4a (V)	-	

PROJECT: TYPE:	FRA-070-22.85 ROADWAY	SAMPLING	FIRM / OPE	GGER:	RII / T	LH	HAN	LL RIG:	Al	55 (SN UTOMA	TIC		ALIG	SNME	NT: _		BL II	R 70 V	3.48 / 3 VB-CD		XPLOR B-099	
PID: <u>98232</u> START: 7/7	SFN:	_	METHOD: _ G METHOD:		5.25" HSA SPT		7		ON DATE: ATIO (%):		9/14/20 84.2)	1	/ LON	IG· DN: _	805.			EOB:	25.0 f .824321	ι.	1 OF
MATE	RIAL DESCRIPTION AND NOTES	_	ELEV. 805.4	DEPT		SPT/ RQD			SAMPLE ID		G	RAD cs	ATIO FS	N (%		ATT LL	ERBI		WC	ODOT CLASS (GI)	SO4 ppm	
	TO MOTTLED BROWN AND T, LITTLE COARSE TO FIN T.		\805.1		- - 1 - - 2 -	3 4 6 7	14 17	50 61	1A SS-2	3.50			- 11	- - 38	 - 47	- - 45	- 20	- - 25		A-7-6 (V)		
			799.9		- 3 - - 4 - - 5	4 4 4	11	83	SS-3	2.75	-	-	-	-	-	-	-	-	21	A-7-6 (V)	-	17
VERY STIFF, BROWN : COARSE TO FINE SAN DAMP.	SILT AND CLAY , SOME ID, LITTLE FINE GRAVEL,				- 6 - - 7 - - 8 -	7 11	25	72	SS-4	3.75	11	11	15	35	28	27	16	11	13	A-6a (6)	-	17 X X X X X X X X X X X X X X X X X X X
VEDV CTIEF TO HADD	CDAY CANDY CILT. COM		794.9		9 1	5 7 13	28	83	SS-5	3.75	-	-	-	-	-	1	-	-	11	A-6a (V)	-	- Z
CLAY, LITTLE FINE GR	, GRAY SANDY SILT , SOME RAVEL, MOIST.				- 11 - - 12 - - 13	5 8 11	27	100	SS-6	4.50	-	-	-	-	-	-	-	-	10	A-4a (V)	-	
					- 14 - - 15 -	8 11 18	41	94	SS-7	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	
					- 16 - - 17 - - 18 -	5 7 11	25	100	SS-8	4.50	14	9	13	37	27	24	14	10	11	A-4a (6)	-	7
					L .	6 8 11	27	78	SS-9	3.75	-	-	-	-	-	-	-	-	10	A-4a (V)	-	4. F. A.
					- 21 - - 22 - - 23 -	7 11 14	35	100	SS-10	4.50	-	-	-	-	-	1	-	-	9	A-4a (V)	-	
			780.4	EOR	- 23 - - 24 -	9 10 14	34	100	SS-11	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)	-	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

Dii	PROJECT	T:	FRA-070-2		-	FIRM / OPER	_	RII / T		-	LL RIG MMER:		55 (SN JTOMA		l5)	1	TION		SET:			28 / 19 VB-CD	.0 1(1	EXPLORA B-100	-
	PID: 9	98232 7/7/20	SFN: END:	7/7/20	1	METHOD: G METHOD: _	4	1.5" CFA SPT		_		ION DATE: RATIO (%):		9/14/20 84.2)	1	VATIO	_	809.	.1 (MS 39		EOB: 79, -82.	10.0 .824034	ft.	PAGE 1 OF 1
	M		L DESCRIPT D NOTES	TION		ELEV. 809.1	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		cs		N (% sı	CL	ATT LL	ERBE PL	ERG PI	WC	ODOT CLASS (GI	SO4 ppm	BACK FILL
HARD,		ANDY SII		INE GRAVEL	,	808.8		- - 1 -	8 18 18	51	92	SS-1	4.5+	-	-	-	-	-	-	-	-	7	A-4a (V)	-	
LITTLE	CLAY, DAN	MP TO N	IOIST.			805.8		_ 2 _ _ 3 _	8 6 8	20	97	SS-2	4.00	29	22	9	28	12	26	19	7	19	A-4a (1)	1800	1 / K
SILT, T		ARSE TO	GRAY CLA FINE SAND	AY, "AND"), TRACE FIN	E			- 4 - 5	4 7	15	92	SS-3	3.00	2	3	9	40	46	58	19	39	24	A-7-6 (20)) -	
						004.4		- 6 - 7	2 2 3	7	64	SS-4	3.00	-	-	-	-	-	-	-	-	18	A-7-6 (V	-	**************************************
LITTLE			O GRAY SIL SAND, TRA	T AND CLAY , CE FINE		799.1	— EOB —	- 8 - - 9 - - 10	5 8 11	27	89	SS-5	4.00	-	-	-	-	-	-	-	-	11	A-6a (V)) -	

0-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 1*2/27/2*2 10:35 - U:\GI8\PRO.

4	PROJECT: FRA-070-22.85 TYPE: CULVERT	-	FIRM / OPE	_	RII /		_	ILL RIG MMER:	: CME	55 (SN UTOMA		15)		TION .					.01 / 13 VB-CD	.3' RT_	EXPLORA B-100	
	PID: 98232 SFN:	_	METHOD:		3.25" HSA		_		ION DATE:		9/14/20	າ							EOB:	40.0	ft	PAGE
	START: 10/22/20 END: 10/22/20	_	METHOD:		SPT		_		RATIO (%):		84.2	<u> </u>		/ LON		000.				.824026		1 OF 2
-	MATERIAL DESCRIPTION		ELEV.	-		SPT/	_	DEC	SAMPLE		_	RAD				ATT			1	ODOT	S04	BAC
	AND NOTES		808.5	DEPT	ГНS	RQD	N ₆₀	(%)	ID	(tsf)				_ \	,	LL	PL	PI	wc	CLASS (GI		
	0.5'- TOPSOIL (6.0")		808.0		L -																	A L
	VERY STIFF TO HARD, DARK BROWN SANDY SILT , LITTLE CLAY, TRACE FINE GRAVEL, DAMP					4 5	15	86	SS-1	4.25		_	_	_	_	_	_	_	13	A-4a (V) -	— <i>₹</i>
	TO MOIST.				- 2 -	6																1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
					4	5 4	11	56	SS-2	2.50	-	-	-	-	-	-	-	-	17	A-4a (V)) -	
	VERY STIFF, BROWN TO BROWNISH GRAY CLA Y	<u> </u>	803.0		5 -	4																- 4 LV
	"AND" SILT, TRACE COARSE TO FINE SAND, TRAFINE GRAVEL, MOIST.		-		- 6 - 7	5 4 3	10	64	SS-3	2.75	2	3	9	40	46	48	21	27	23	A-7-6 (16	5) -	- K
	VERY STIFF, BROWN SILT AND CLAY , LITTLE COARSE TO FINE SAND, TRACE FINE GRAVEL,		800.5		8 -	4	44		20.4	2.50												- 24X
	MOIST.		798.0		10	4 6	14	78	SS-4	2.50	-	-	-	-	-	-	-	-	21	A-6a (V)	-	
717	STIFF TO HARD, BROWN TO GRAY SANDY SILT , SOME CLAY, TRACE FINE GRAVEL, DAMP TO MOIST.				- 11 - - 12 -	l a l	22	72	SS-5	4.25	9	11	26	23	31	21	15	6	16	A-4a (4)	, -	V
OJECT					13																	aKiit∆ 52 > p
GI8/PR					- 14 - - - 15 -	12 12 12	34	11	SS-6	-	-	-	-	-	-	-	-	-	-		-	STATE OF THE PERSON OF THE PER
Ü					15	12	-	100	2S-SS-6A	4.25	-	-	-	-	-	-	-	-	11	A-4a (V	-	
22 10:35					- 16 - - 17 -	6 8 8	22	44	SS-7	2.50	-	-	-	-	-	-	-	-	12	A-4a (V)	-	- 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
- 12/27/					18	2																
OT.GDT					- 19 - 20	3 4 7	15	61	SS-8	1.75	-	-	-	-	-	-	-	-	13	A-4a (V)	-	- 12 N
11) - OH [21 - 22 -		28	42	SS-9	1.75	-	-	-	-	-	-	-	-	14	A-4a (V)) -	
L(8.5 X					23																	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TOG SI					- 24 - 25	10 13	32	100	SS-10	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	-	\$ L
D ODOT LO					26	7	46	44	SS-11	4.5+									8	A-4a (V		42
II STAND					- 27 - 28 -	15 18	40	44	33-11	4.0+	-	-	-	-	-	-	-	-	°	A-48 (V	-	12 > 2 > 2
-2021 RII					29	8 17 30	66	78	SS-12	4.5+	-	_	_	_	_	_	_	_	9	A-4a (V) -	

PID: <u>98232</u>	SFN:	PROJECT:	FRA-070-2	22.85	STATI	ION / O	FFSE	ET: <u>16</u>	60590.01,	13' R	<u>T.</u> S	STAR	T: <u>10</u>	/22/2	<u>0</u> E	ND:	_10/	22/20	_ P(3 2 OF 2	B-100	-1-19
	MATERIAL DESCRIPTIO	N	ELEV.	DEPTHS		SPT/	N ₆₀	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERBE	ERG		ODOT	SO4	BACK
	AND NOTES		778.5	DEI III		RQD	1 160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	ppm	FILL
	D, BROWN TO GRAY SAN RACE FINE GRAVEL, DAN <i>ued</i>)		776.5	-	- 31 -																	A CONTRACTOR
DENSE, DARK SILT, WET.	GRAY GRAVEL WITH SAN	ID AND		-	- 33																	7
				-	34 - 34 - 35	12 19	44	50	SS-13	-	-	-	-	-	-	-	-	-	11	A-2-4 (V)	-	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		(a)	771.5	-	- 36 -																	7
SILT, WET.	GRAY GRAVEL WITH SAN			-	37 —																	4 × × × × × × × × × × × × × × × × × × ×
-SHALE FRAG	GMENTS IN SS-14	٠ م رو	768.5	EOB	39 1	10 13 20	46	72	SS-14	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	-	

NOTES: GROUNDWATER ENCOUNTERED INITIALLY @34.5'; CAVE-IN DEPTH @ 28.4'.

PROJECT: FRA-070-22. TYPE: ROADWAY		LING FIRM / OPER PLING FIRM / LOGO	-	/ CC / JK	DRILL			55 (SN JTOMA		l5)	-	TION / (DFFSET			.23 / 14 VB-CD	.2 1(1	XPLORA B-101	TION ID -0-19
PID: 98232 SFN:	DRILL	LING METHOD: PLING METHOD:	4.5" CF/		CALIE	BRATI	ION DATE: RATIO (%):		9/14/20 84.2)	ELE\	ATION	: 81	1.2 (M	SL)	EOB:	10.0 f	t.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV. 811.2	DEPTHS	SPT/ RQD	N _{oo} F		SAMPLE ID			RAD cs	ATIOI	۱ (%)		TERB	ERG		ODOT CLASS (GI)	SO4 ppm	BACK FILL
\(\)0.3' - TOPSOIL (3.0") HARD, BROWN SILT AND CLAY , SOME		810.9/	_ 1	5 9 10		75	SS-1A SS-1B	- 4.5+	-	-	-	-	 	-	-	-	A-6a (V)	-	STATE OF THE STATE
COARSE SAND, LITTLE FINE GRAVEL,	DAMP.	808.0	_ 2 _ 3	3 6 7	18	47	SS-2	4.5+	20	14	9	32 2	25 31	18	13	11	A-6a (6)	<100	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
VERY STIFF, BROWN AND GRAY SILT LITTLE COARSE TO FINE SAND, LITTL GRAVEL, MOIST.		805.7	- - 4 - - 5	7 7 8	21	78	SS-3	4.00		-	-	-	- -	-	-	18	A-6b (V)	-	2
VERY STIFF, BROWN AND GRAY SANI SOME CLAY, TRACE FINE GRAVEL, MO			- 6 - 7	5 5 11	22	72	SS-4	4.00	10	12	19	33 2	26 25	15	10	13	A-4a (5)	-	K K K K K K K K K K K K K K K K K K K
SOFT, BROWNISH GRAY SANDY SILT , CLAY, TRACE FINE GRAVEL, MOIST.	LITTLE	803.2	- 8 - 9 - EOB - 10-	3 4 7	15	44	SS-5	0.50	-	-	-	-		-	-	17	A-4a (V)	-	

00-2021 RII STAND ODOT LOG SUL(8.5 X 11) - OH DOT.GDT - 12/27/22 10:35 - U:\G\B\PF

NOTES: SEEPAGE @ 9.3'

APPENDIX V

PAVEMENT CORE DATASHEETS

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION <u>I-70 Sta. 548+64, 30.3 LT</u>

JOB No. W-17-140

 BORING/CORE No.
 X-017-0-19

 DATE CORE OBTAINED
 9/23/2020

 CORE OBTAINED BY
 SB / TG / JP

Core Composition

Comments/Remarks

		A	sph	alt		e	Otl	ner	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	1.50	✓							
	1.50	✓							
	2.00	✓							
	2.00		✓						
	6.00		✓						
X-017-0-19	5.00		>						
	6.50					✓			

- Core is broken at 3.0", 7.0", and 13.0".
- Rounded aggregate and small voids throughout.

Total Pavement Thickness =

18.00 i

Total Asphalt Thickness =

ait 18.00 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

6.50 in.

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION I-70 Sta. 562+00, 17.4 LT

JOB No. W-17-140

 BORING/CORE No.
 X-027-0-19

 DATE CORE OBTAINED
 9/23/2020

 CORE OBTAINED BY
 SB / TG / JP

Core Composition

Comments/Remarks

		Α	sph	alt		ė	Otl	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	2.50	✓							
	4.00		✓						
	7.00		✓						
	5.75		✓						
	7.00					✓			
X-027-0-19									

- Core is broken at 13.5".
- Rounded aggregate and small voids throughout.

Total Pavement Thickness =

19.25

Total Asphalt Thickness =

19.25 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION <u>I-70 Sta. 573+02, 35.1 LT</u>

JOB No. W-17-140

 BORING/CORE No.
 X-035-0-19

 DATE CORE OBTAINED
 9/23/2020

 CORE OBTAINED BY
 SB / TG / JP

Core Composition

Comments/Remarks

		Α	sph	alt		ë		Otl	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base				
	3.50	✓								
	2.75		✓							
	6.00			✓						
	5.25		✓							
	7.00					✓				
X-035-0-19										
a de la companya de			i				i		i	i

- Core is broken at 3.5", 6.25", and 12.25".
- Rounded aggregate and small voids throughout.

Total Pavement Thickness =

17.50 i

Total Asphalt Thickness =

17.50 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION Brice Road Sta. 8+08, 35.2 LT

JOB No.

BORING/CORE No. X-052-0-19 DATE CORE OBTAINED 9/23/2020 CORE OBTAINED BY SB/TG/JP

Core Composition

Comments/Remarks

		A	sph	alt		9	Otl	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	1.00	✓							
	2.00	✓							
	4.75	✓							
	3.00		\						
X-052-0-19									

- Core is broken at 7.75".
- Rounded aggregate and small voids througout.

Total Pavement Thickness =

10.75

Total Asphalt Thickness =

10.75 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION Brice Road Sta. 14+27, 14.0 RT

JOB No.

BORING/CORE No. X-056-0-19 DATE CORE OBTAINED 10/28/2021 CORE OBTAINED BY SB/TG/JP

Core Composition

Comments/Remarks

	A	sph	alt		Φ		Otl	her	
Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Bas				
1.25	✓								
1.75	\								
9.75		✓							
	Thickness (in.) 1.25 1.75	Lift Thickness (in.) 1.25 1.75	Lift Thickness (in.) 1.25	Thickness (in.) 4 04 07 08 1.25 ✓ 1.75 ✓	Lift Thickness (in.) 4 70 7 8 9 1.25	Lift Thickness (in.) 4 405 Courcete Value 1.25 7 1.75 Value 1.75 V	Lift Thickness (in.) 4 7 407 201 201 201 201 201 201 201 201 201 201	Lift Thickness (in.) 4 4 7 7 8 8 8 30.1	Lift Thickness (in.) 404 707 Concrete Course 405 1.75 V 105 1.75 V

- Core is intact.

- Rounded aggregate and a few small voids throughout.

Total Pavement Thickness =

12.75

Total Asphalt Thickness =

12.75 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION Brice Road Sta. 19+50, 48.6 LT

JOB No.

BORING/CORE No. X-058-0-19 DATE CORE OBTAINED 9/23/2020 CORE OBTAINED BY SB/TG/JP

Core Composition

Comments/Remarks

		Α	sph	alt		4	Otl	her	
		, (Opin	ait		ıse	011		
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	1.00	✓							
	5.00		>						
	3.50		✓						
	4.00					✓			
X-058-0-19									
	1	i							

- Core is intact.
- Rounded aggregate and a few small voids throughout.

Total Pavement Thickness =

9.50

in.

Total Asphalt

Thickness =

9.50 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION Brice Road Sta. 27+67, 16.7 LT

JOB No.

BORING/CORE No. X-064-0-19 DATE CORE OBTAINED 9/23/2020 CORE OBTAINED BY SB/TG/JP

Core Composition

Comments/Remarks

		A:	sph	alt		ě	Otl	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	1.00	✓							
	3.00	✓							
	2.50		✓						
	2.75			✓					
	2.50			✓					
X-064-0-19	5.00					✓			

- Core is broken at 9.25".
- Rounded aggregate and small voids throughout.

Total Pavement Thickness =

11.75

Total Asphalt Thickness =

11.75 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION Brice Road Sta. 37+29, 30.5 LT

JOB No. W-17-140

 BORING/CORE No.
 X-082-0-19

 DATE CORE OBTAINED
 9/23/2020

 CORE OBTAINED BY
 SB / TG / JP

Core Composition

Comments/Remarks

									ı
		A	sph	alt		e	Otl	her	Ī
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	1.00	✓							1
	2.00	✓							l
	2.50	✓							l
	3.50			✓					l
	3.00				>				l
X-082-0-19	5.00					\]
									l
									l
									l
									ļ
		l		l					١

- Core is broken at 9.0".
- Rounded aggregate and small voids throughout.

Total Pavement Thickness =

12.00 ir

Total Asphalt Thickness =

9.00 in.

Total Concrete Thickness =

3.00 in.

Total Base Thickness =

Pavement Core Data Summary

PROJECT FRA-70-22.85

LOCATION <u>I-70 Sta. 597+31, 41.6 LT</u>

JOB No. W-17-140

 BORING/CORE No.
 X-093-0-19

 DATE CORE OBTAINED
 9/23/2020

 CORE OBTAINED BY
 SB / TG / JP

Core Composition

Comments/Remarks

		A	sph	alt		æ	Otl	her	
Core Number	Lift Thickness (in.)	404	402	301	Concrete	Aggregate/Granular Base			
	1.25	✓							
	3.00	✓							
	2.75		✓						
	6.00		✓						
	5.00		✓						
X-093-0-19	6.00					✓			

- Core is broken at 1.25", 7.0", and 13.0".
- Rounded aggregate and numerous small voids throughout.

Total Pavement
Thickness =

18.00 in

Total Asphalt Thickness =

18.00 in.

Total Concrete Thickness =

0.00 in.

Total Base Thickness =

APPENDIX VI

CALCULATIONS - GB-1

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

FRA-70-22.85 98232

Brice Road widening and pavement overlay, approximatel 4,110 linear feet. Includes one bridge structure and one CD road culvert structure.

Resource International, Inc.

Prepared By: Michael D. Kennedy, P.E.

Date prepared: Monday, February 1, 2021

Resource International, Inc. Michael D. Kennedy, P.E. 6350 Presidential Gateway Columbus, Ohio 43231

614-823-4949

michaelk@resourceinternational.com

NO. OF BORINGS: 12

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-048-0-19	Brice Road	2+73	49	Lt	CME-55	84	787.0	784.6	2.4 C
2	B-049-0-19	Brice Road	4+08	25	Rt	CME-55	84	784.6	784.2	0.4 C
3	B-050-0-19	Brice Road	5+98	59	Lt	CME-55	84	785.0	783.7	1.3 C
4	B-051-0-19	Brice Road	8+12	58	Rt	CME-55	84	783.5	784.6	1.1 F
5	B-053-0-19	Brice Road	9+84	38	Lt	CME-55	84	786.4	785.8	0.6 C
6	B-057-0-19	Brice Road	15+96	45	Rt	CME-55	84	788.1	787.2	0.9 C
7	B-059-0-19	Brice Road	20+01	36	Rt	CME-55	84	799.5	799.0	0.5 C
8	B-060-0-19	Brice Road	23+86	43	Rt	CME-55	84	810.8	810.7	0.1 C
9	B-061-0-19	Brice Road	25+22	83	LT	CME-55	89	809.4	813.3	3.9 F
10	B-062-0-19	Brice Road	25+78	52	Rt	CME-55	84	814.5	815.5	1.0 F
11	B-079-0-19	Brice Road	34+53	70	Lt	CME-55	90	818.6	817.9	0.7 C
12	B-083-0-19	Brice Road	37+62	69	Lt	CME-55	84	811.2	812.1	0.9 F

#	Boring	Sample	Sam De _l	•	Subg De		Stan Penet	dard ration	НР		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar	-	Recommendation (Enter depth in
**			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	0.0	1.5	-2.4	-0.9	13									7	10	A-2-4	0						12"
	048-0	SS-2	1.5	3.0	-0.9	0.6	13		2.5	37	24	13	50	36	86	22	19	A-6a	9			N ₆₀ & Mc		12''	204 Geotextile
	19	SS-3	3.0	4.5	0.6	2.1	9		1.5							26	14	A-6a	10			HP & Mc		12"	
		SS-4	4.5	6.0	2.1	3.6	13	9	1.5							23	14	A-6a	10						
2	В	SS-1	1.5	3.0	1.1	2.6	28		4	33	19	14	32	30	62	11	14	A-6a	7						
	049-0	SS-2	3.0	4.5	2.6	4.1	28		3	32	18	14	30	30	60	13	14	A-6a	7						
	19	SS-3	4.5	6.0	4.1	5.6	19		4							12	14	A-6a	10						
		SS-4	6.0	7.5	5.6	7.1	18	18	2							29	14	A-6a							
3	В	SS-1	0.0	1.5	-1.3	0.2	12		3.5	38	18	20	35	26	61	17	16	A-6b	9						18"
	050-0	SS-2	1.5	3.0	0.2	1.7	6		1	36	22	14	16	21	37	17	17	A-6a	1			HP		18''	204 Geotextile
	19	SS-3	3.0	4.5	1.7	3.2	9		4							17	14	A-6a	10			N ₆₀ & Mc			
		SS-4	4.5	6.0	3.2	4.7	22	6	3							29	16	A-6b	16						
4	В	SS-1B	0.3	1.5	1.4	2.6	11		4.25	38	19	19	40	43	83	19	16	A-6b	12	80		N ₆₀ & Mc			
	051-0	SS-2	1.5	3.0	2.6	4.1	8		4.25	39	18	21	44	40	84	18	16	A-6b	12						
	19	SS-3	3.0	4.5	4.1	5.6	11		4							16	16	A-6b	16						
		SS-4	4.5	6.0	5.6	7.1	15	8	3.5							14	16	A-6b							
5	В	SS-1	1.5	3.0	0.9	2.5	16		4	34	18	16	28	34	62	13	16	A-6b	8						
	053-0	SS-2	3.0	4.5	2.5	4.0	7		1.5	42	24	18	29	38	67	22	21	A-7-6	10						
	19	SS-3	4.5	6.0	4.0	5.5	12		1.5							22	18	A-7-6	16						
		SS-4	6.0	7.5	5.5	7.0	15	7	1.5							23	14	A-6a							
6	В	SS-1	0.0	1.5	-0.9	0.6	18		4.25	31	17	14	33	24	57	16	14	A-6a	6	60					
	057-0	SS-2	1.5	3.0	0.6	2.1	15		4.5	31	17	14	36	27	63	16	14	A-6a	7						
	19	SS-3	3.0	4.5	2.1	3.6	21		4.25							23	14	A-6a	10						
		SS-4	4.5	6.0	3.6	5.1	30	15	4.25							14	14	A-6a	10						
7	В	SS-1	1.5	3.0	1.0	2.5	15		4	33	19	14	22	29	51	11	14	A-6a	5						
	059-0	SS-2	3.0	4.5	2.5	4.0	24		4	29	18	11	24	25	49	15	14	A-6a	3						
	19	SS-3	4.5	6.0	4.0	5.5	49	1	4							10	10	A-4a	8						
		SS-4	6.0	7.5	5.5	7.0	43	15	4							16	10	A-4a							
8	В	SS-1	1.5	3.0	1.4	2.9	21									5	6	A-1-b	0	840					
	060-0	SS-2	3.0	4.5	2.9	4.4	17]								6	6	A-1-b	0						
	19	SS-3	4.5			5.9	26		4.25	25	15	10	33	17	50	10	10	A-4a	3						
		SS-4	6.0		5.9	7.4	39	17	4.5			_				12	10	A-4a							
9	В	SS-1	0.0		3.9	5.4	27									7	10	A-2-6	4	100					
	061-0	SS-2	1.5	3.0	5.4	6.9	27									16	10	A-2-6							
	19	SS-3	3.5	5.0	7.4	8.9	21	1	4	39	23	16	30	38	68	14	18	A-6b							
		SS-4	5.0	6.5	8.9	10.4	21	27	4			_	- 50	30		13	16	A-6b							

#	Boring	Sample	San De	-	1 ~	rade pth	Stan Penet	dard ration	НР		P	hysic	al Chara	cteristics		Mo	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar	•	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	SS-1	0.0	1.5	1.0	2.5	12		4	31	16	15	37	28	65	16	14	A-6a	8	993					
	062-0	SS-2	1.5	3.0	2.5	4.0	17		3.5	31	16	15	32	25	57	16	14	A-6a	6						
	19	SS-3	3.0	4.5	4.0	5.5	27		4							9	10	A-4a	8						
		SS-4	4.5	6.0	5.5	7.0	50	12	4.25							9	10	A-4a							
11	В	SS-1B	0.0	1.5	-0.7	0.8	21		4.5	25	18	7	23	26	49	6	13	A-4a	3						
	079-0	SS-2	1.5	3.0	0.8	2.3	41		4.5							10	14	A-6a	10						
	19	SS-3	3.5	5.0	2.8	4.3	33		4.5	31	18	13	25	18	43	13	14	A-6a	2	267					
								21																	
12	В	SS-1	0.0	1.5	0.9	2.4	12		4.25	25	15	10	22	14	36	9	10	A-4a	0	180					
	083-0	SS-2	1.5	3.0	2.4	3.9	12		4.25	27	16	11	39	27	66	15	14	A-6a	7						
	19	SS-3	3.0	4.5	3.9	5.4	14		1.75							21	14	A-6a	10						
		SS-4	4.5	6.0	5.4	6.9	15	12	4.25							17	14	A-6a							

PID: 98232

County-Route-Section: FRA-70-22.85

No. of Borings: 12

Geotechnical Consultant: Resource International, Inc.

Prepared By: Michael D. Kennedy, P.E.

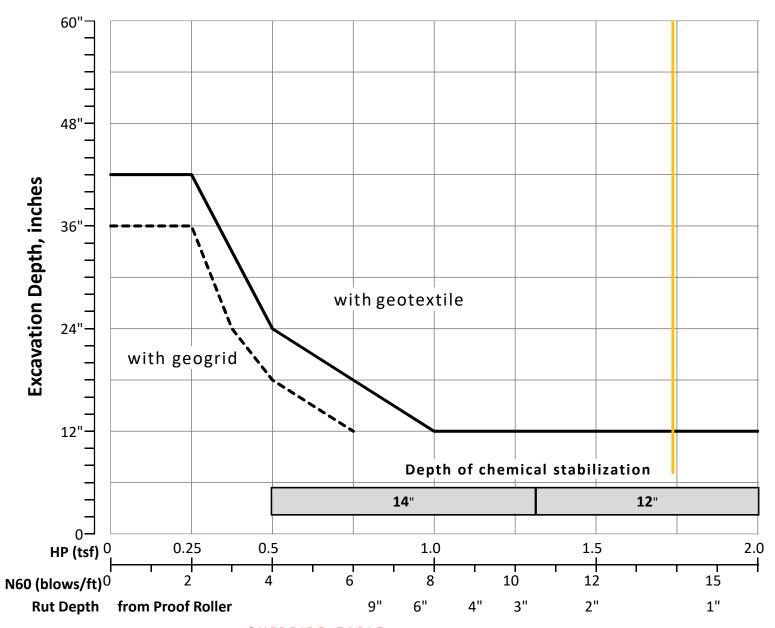
Date prepared: 2/1/2021

C	Chemical Stabilization Options									
320	Rubblize & Roll	Option								
206	Cement Stabilization	Option								
	Lime Stabilization	No								
206	Depth	12"								

Excavate and Replace Stabilization Options							
Global Geotextile Average(N60L): Average(HP):	12" 0"						
Global Geogrid Average(N60L): Average(HP):	0" 0"						

Design CBR	7
---------------	---

% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%						
N ₆₀ < 12	16%	0.5 < HP ≤ 1	2%						
12 ≤ N ₆₀ < 15	18%	1 < HP ≤ 2	16%						
N ₆₀ ≥ 20	41%	HP > 2	73%						
M+	9%								
Rock	0%								
Unsuitable	0%								


Excavate and Replace at Surface									
Average	3"								
Maximum	18"								
Minimum	0"								

% Proposed Subgrade Surface								
Unstable & Unsuitable	19%							
Unstable	19%							
Unsuitable	0%							

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	20	14	3.53	33	18	14	31	28	60	15	14	8
Maximum	50	27	4.50	42	24	21	50	43	86	29	21	16
Minimum	6	6	1.00	25	15	7	16	14	36	5	6	0

	Classification Counts by Sample																		
ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b												Totals							
Count	0	0	2	0	0	2	0	0	0	8	0	0	23	9	0	2	0	0	46
Percent	0%	0%	4%	0%	0%	4%	0%	0%	0%	17%	0%	0%	50%	20%	0%	4%	0%	0%	100%
% Rock Granular Cohesive	0%					26%								74	1%				100%
Surface Class Count	0	0	1	1	0	0	0	0	0	2	0	0	17	4	0	1	0	0	26
Surface Class Percent	0%	0%	4%	4%	0%	0%	0%	0%	0%	8%	0%	0%	65%	15%	0%	4%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.53		HР
13.92		N60L

Average HP
Average N_{60L}

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

FRA-70-22.85 98232

New Roadway construction for westbound collector distributor road (WB-CD) for IR-70, approximately 6,800 linear feet

Resource International, Inc.

Prepared By: Michael D. Kennedy, P.E.

Date prepared: Monday, February 1, 2021

Resource International, Inc. Michael D. Kennedy, P.E. 6350 Presidential Gateway Columbus, Ohio 43231

614-823-4949

michaelk@resourceinternational.com

NO. OF BORINGS: 16

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-012-0-19	IR-70 WB CD	1542+64	8	LT	CME 55	90	784.8	786.2	1.4 F
2	B-015-0-19	IR-70 WB CD	1546+70	3	RT	CME 55	90	788.3	787.9	0.4 C
3	B-019-0-19	IR-70 WB CD	1550+69	4	RT	CME 55	90	787.0	789.1	2.1 F
4	B-023-0-19	IR-70 WB CD	1554+71	14	RT	CME 55	90	789.5	790.0	0.5 F
5	B-026-0-19	IR-70 WB CD	1558+78	9	RT	Mobile B53	81	786.6	791.0	4.4 F
6	B-028-0-19	IR-70 WB CD	1562+72	22	RT	CME 55	90	786.0	791.9	5.9 F
7	B-030-0-19	IR-70 WB CD	1566+72	19	RT	CME 55	90	790.0	792.9	2.9 F
8	B-033-0-19	IR-70 WB CD	1570+70	18	RT	CME 55	90	795.0	793.3	1.7 C
9	B-037-0-19	IR-70 WB CD	1574+74	11	RT	CME 55	90	790.8	791.6	0.8 F
10	B-039-0-19	IR-70 WB CD	1578+33	23	LT	CME 55	90	788.6	789.1	0.5 F
11	B-040-0-19	IR-70 WB CD	1578+85	33	RT	CME 750X	80	788.6	789.0	0.4 F
12	B-090-019	IR-70 WB CD	1594+39	22	RT	CME 55	90	801.0	801.5	0.5 F
13	B-094-0-19	IR-70 WB CD	1597+94	7	RT	Mobile B53	81	803.3	802.8	0.5 C
14	B-097-0-19	IR-70 WB CD	1601+86	0	CL	CME 55	90	806.1	805.0	1.1 C
15	B-100-0-19	IR-70 WB CD	1605+88	20	RT	CME 55	90	809.1	808.8	0.3 C
16	B-101-0-19	IR-70 WB CD	1609+35	14	RT	CME 55	90	811.2	812.3	1.0 F

			San	nple	Subg	rade	Stan	dard								l				Culfata			Excavate ar	nd Replace	Danaman dation
#	Boring	Sample	De	pth	_	pth	Penet	ration	HP		PI	hysica	al Chara	cteristics	•	Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	(Item	204)	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	0.0	1.5	1.4	2.9	18		4.5							12	10	A-4a	8						
	012-0	SS-2	3.5	5.0	4.9	6.4	14		3.25	39	18	21	39	39	78	18	16	A-6b	12	280					
	19	SS-3	6.0	7.5	7.4	8.9	12		3							25	16	A-6b							
		SS-4	8.5	10.0	9.9	11.4	30	14								11	10	A-4a							
2	В	SS-1	0.0	1.5	-0.4	1.1	17									7	10	A-2-4	0						
	015-0	SS-2	3.5	5.0	3.1	4.6	17									10	10	A-2-4	0	190					
	19	SS-3	6.0	7.5	5.6	7.1	6		0.75	35	18	17	44	40	84	24	16	A-6b							
		SS-4	8.5	10.0	8.1	9.6	32	6	4.5							22	16	A-6b							
3	В	SS-1	0.0	1.5	2.1	3.6	12		4							11	14	A-6a	10						
	019-0	SS-2	3.5	5.0	5.6	7.1	14		3.25	33	19	14	51	36	87	21	14	A-6a		220					
	19	SS-3	6.0	7.5	8.1	9.6	18		3.5							21	14	A-6a					·		
		SS-4	8.5	10.0	10.6	12.1	27	12	4.5							14	14	A-6a							
4	В	SS-1	0.0	1.5	0.5	2.0	12		4							12	14	A-6a	10						
	023-0	SS-2	3.5	5.0	4.0	5.5	21		3	41	18	23	41	41	82	21	18	A-7-6	13	540					
	19	SS-3	6.0	7.5	6.5	8.0	27		4.25	50	22	28	36	50	86	22	19	A-7-6							
		SS-4	8.5	10.0	9.0	10.5	21	12	4							13	14	A-6a							
5	В	SS-1B	0.6	1.5	5.0	6.0	9		3.25							17	14	A-6a		100					
	026-0	SS-2	1.5	3.0	6.0	7.5	12		3.5	30	17	13	29	30	59	18	14	A-6a							
	19	SS-3	3.5	5.0	8.0	9.5	22		3.75							13	14	A-6a							
		SS-4B	6.9	7.5	11.4	12.0	8	9	2.5	30	18	12	19	6	25	13	10	A-2-6							
6	В	SS-1	0.0	1.5	5.9	7.4	17		4							18	14	A-6a							
	028-0	SS-2	3.5	5.0	9.4	10.9	27		4	24	15	9	31	23	54	10	10	A-4a		1000					
	19	SS-3	6.0	7.5	11.9	13.4	23		3.25			,				19	14	A-6a							
	19	SS-4	8.5	10.0	14.4	15.4	26	17	4.5							19	14	A-6a							
7	В	SS-1	0.0	1.5	2.9	4.4	9		3							14	14	A-6a	10						
	030-0	SS-2	3.5	5.0	6.4	7.9	33		4.25	33	18	15	35	36	71	14	14	A-6a		330					
				7.5	8.9					39					51			A-6b		330					
	19	SS-3 SS-4	6.0 8.5	10.0	11.4	10.4 12.9	12 20	9	1.25 0.75	39	18	21	26	25	21	19 15	16 10	A-60 A-4a				 			
8	В	SS-1	0.0	1.5	-1.7	-0.2	11	9	3.5	35	22	13	52	33	85	16	17	A-4a A-6a	9	140					
Ü			3.5	5.0	1.8		23	1	3.5	33		13	32	33	0.5	16			10	140					
	033-0	SS-2				3.3			5.5								14	A-6a				-			
	19	SS-3	6.0	7.5	4.3	5.8	29		2.5	20	1.0		20	15	F 4	10	10	A-4a	8						
0	-	SS-4	8.5	10.0		8.3	23	23	2.5	20	16	4	39	15	54	17	11	A-4a	10			N. C.A.C.		12"	12"
9	В	SS-1	0.0			2.3	9		4.25	26	1.0	40		25	-	19	14	A-6a	10	200		N ₆₀ & Mc		12	204 Geotextile
	037-0	SS-2	3.5	5.0	4.3	5.8	14			28	16	12	29	25	54	13	14	A-6a	5	300					204 GCOTCATHE
	19	SS-3	6.0	7.5	6.8	8.3	17		4.25							15	14	A-6a							
		SS-4	8.5	10.0	9.3	10.8	18	9	4	22	14	8	36	22	58	11	10	A-4a							

#	Boring	Sample	Sam De _l	•	Subg De			dard tration	НР		Pl	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M_{c}	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
10	В	SS-1	1.5	3.0	2.0	3.5	15		3							20	16	A-6b	16						
	039-0	SS-2	3.5	5.0	4.0	5.5	11		3.5	51	29	22	36	39	75	32	24	A-6b	15						
	19	SS-3	6.0	7.5	6.5	8.0	11		2							28	16	A-6b							
		SS-4	9.0	10.5	9.5	11.0	26	11	4.5							11	14	A-6a							
11	В	SS-1B	0.2	1.5	0.6	1.9	8		2							16	16	A-6b	16			N ₆₀		12"	12"
	040-0	SS-2	1.5	3.0	1.9	3.4	15		3.75							19	16	A-6b	16			Mc			204 Geotextile
	19	SS-3	3.5	5.0	3.9	5.4	11		3.25							21	10	A-4b	8						
		SS-4	6.0	7.5	6.4	7.9	5	8	1.5	27	18	9	53	19	72	21	13	A-4b							
12	В	SS-1	0.0	1.5	0.5	2.0	48																		
	090-0	SS-2	1.5	3.0	2.0	3.5	23		4.5							10	14	A-6a	10						
	9	SS-3	3.5	5.0	4.0	5.5	14		3	31	20	11	40	46	86	19	15	A-6a	8	100					
		SS-4	6.0	7.5	6.5	8.0	21	14	3.5							17	14	A-6a							
13	В	SS-1	0.0	1.5	-0.5	1.0	47		4.5							5	10	A-4a	8						
	094-0	SS-2	1.5	3.0	1.0	2.5	26		4.5	26	18	8	26	13	39	7	13	A-4a	1	8000					
	19	SS-3	3.5	5.0	3.0	4.5	7		2.5							10	10	A-4a	8						
		SS-4	6.0	7.5	5.5	7.0	11	7	3	61	20	41	41	52	93	24	18	A-7-6							
14	В	SS-1B	0.5	1.5	-0.6	0.4	18		4.5								14	A-6a	10						
	097-0	SS-2	1.5	3.0	0.4	1.9	20		4.5	31	18	13	29	19	48	11	14	A-6a	4	100					
	19	SS-3	3.5	5.0	2.4	3.9	17		3.5	27	18	9	34	19	53	14	13	A-4a	4						
		SS-4	6.0	7.5	4.9	6.4	15	15	3.5							21	16	A-6b	16						
15	В	SS-1	0.0	1.5	-0.3	1.2	54		4.5							7	10	A-4a	8						
	100-0	SS-2	1.5	3.0	1.2	2.7	21		4	26	19	7	28	12	40	19	14	A-4a	1	1800		Мс			
	19	SS-3	3.5	5.0	3.2	4.7	17		3	58	19	39	40	46	86	24	18	A-7-6	20						
		SS-4	6.0	7.5	5.7	7.2	8	8	3							18	18	A-7-6							
16	В	SS-1B	0.5	1.5	1.5	2.6	29		4.5								14	A-6a	10						
	101-0	SS-2	1.5	3.0	2.6	4.1	20		4.5	31	18	13	32	25	57	11	14	A-6a	6	100					
	19	SS-3	3.5	5.0	4.6	6.1	23		4							18	16	A-6b	16						
		SS-4	6.0	7.5	7.1	8.6	24	20	4	25	15	10	33	26	59	13	10	A-4a							

PID: 98232

County-Route-Section: FRA-70-22.85

No. of Borings: 16

Geotechnical Consultant: Resource International, Inc.

Prepared By: Michael D. Kennedy, P.E.

Date prepared: 2/1/2021

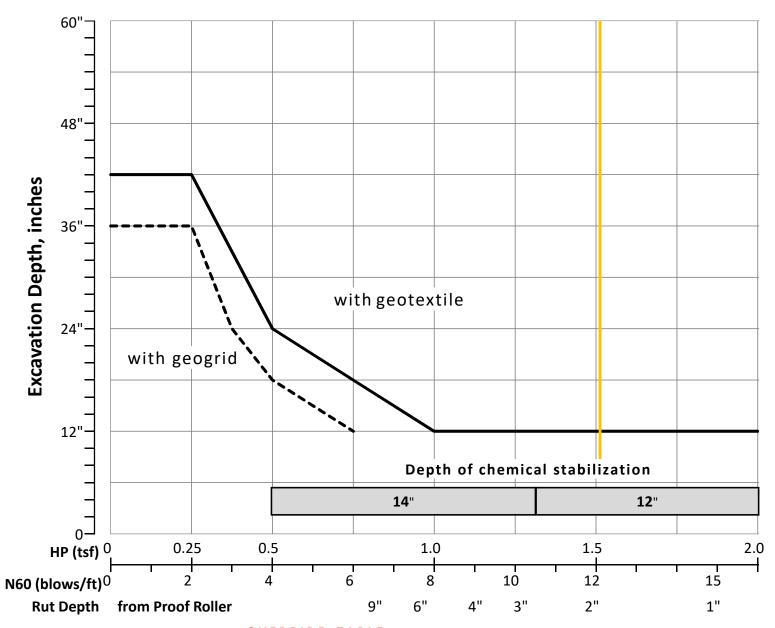
C	Chemical Stabilization Options									
320	Rubblize & Roll	Option								
206	Cement Stabilization	Option								
	Lime Stabilization	No								
206	Depth	12"								

Excavate and Replace Stabilization Options								
Global Geotextile								
Average(N60L):	12"							
Average(HP):	0''							
Global Geogrid								
Average(N60L):	0''							
Average(HP):	0"							

Design CBR	6
---------------	---

% Sampl	% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%							
N ₆₀ < 12	25%	0.5 < HP ≤ 1	3%							
12 ≤ N ₆₀ < 15	18%	1 < HP ≤ 2	3%							
N ₆₀ ≥ 20	33%	HP > 2	83%							
M+	8%									
Rock	0%									
Unsuitable	3%									

Excavate and Replace at Surface								
Average	1"							
Maximum	12"							
Minimum	0"							


% Proposed Subgrade Su	ırface
Unstable & Unsuitable	20%
Unstable	20%
Unsuitable	0%

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	19	12	3.50	34	18	16	35	29	65	16	14	9
Maximum	54	23	4.50	61	29	41	53	52	93	32	24	20
Minimum	5	6	0.75	20	14	4	19	6	25	5	10	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	0	2	0	1	0	0	0	14	2	0	26	12	0	5	0	0	62
Percent	0%	0%	0%	3%	0%	2%	0%	0%	0%	23%	3%	0%	42%	19%	0%	8%	0%	0%	100%
% Rock Granular Cohesive	0%					27%								73	3%				100%
Surface Class Count	0	0	0	1	0	0	0	0	0	6	0	0	10	3	0	0	0	0	20
Surface Class Percent	0%	0%	0%	5%	0%	0%	0%	0%	0%	30%	0%	0%	50%	15%	0%	0%	0%	0%	100%

V. 14.5

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.50		HP
12.13		N60L

Average HP Average N_{60L}

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

FRA-70-22.85 98232

Chatford Drive realignment and profile changes, approximately 500 linear feet.

Includes one box culvert structure.

Resource International, Inc.

Prepared By: Daniel E. Karch, P.E.

Date prepared: Friday, December 23, 2022

Resource International, Inc. Daniel E. Karch, P.E. 6350 Presidential Gateway

Columbus, Ohio 43231

614-823-4949

danielk@resourceinternational.com

NO. OF BORINGS: 3

Subgrade Analysis

V. 14.5

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-038-0-19	BL IR 70 WB-CD	1576+31	7	Lt	CME 750X	86	788.1	788.1	0.0
2	B-039-0-19	BL IR 70 WB-CD	1578+33	23	Lt	CME 55	84	788.6	790.4	1.8 F
3	B-040-1-21	BL IR 70 WB-CD	1579+47	51	Lt	Mobile B53	84	788.7	790.2	1.5 F

Subgrade Analysis

V. 14.5

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill	
---	-----------	-----------	---------	--------	-----	-----------	----	---------------	----------------------------	-------------	--

#	Boring	Sample	Sam De _l	-	Subg De _l	rade pth	Stan Penet		НР		Pl	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	em	Excavate an (Item	•	Recommendation (Enter depth in
-			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	1	1.0	2.5	1.0	2.5	11		4.5							18	10	A-4a	8			N ₆₀ & Mc		12"	14" 206 Cement or
	038-0	2	3.5	5.0	3.5	5.0	4		2							22	10	A-4a	8						204 Geotextile
	19	3	6.0	7.5	6.0	7.5	9		1.75							15	10	A-4a							
		4	8.5	10.0	8.5	10.0	22	4	4.5	25	14	11	31	20	51	9	14	A-6a							
2	В	1	1.0	2.5	2.8	4.3	14		3							20	16	A-6b	16						14" 206 Cement or
	039-0	2	3.5	5.0	5.3	6.8	10		3.5	51	29	22	36	39	75	32	24	A-6b							204 Geotextile
	19	3	6.0	7.5	7.8	9.3	10		2							28	16	A-6b							
		4	8.5	10.0	10.3	11.8	24	10	4.5							11	10	A-4a							
3	В	1	1.0	2.5	2.5	4.0	8		2.5							21	14	A-6a	10						14" 206 Cement or
	040-1	2	3.5	5.0	5.0	6.5	8		1.75	37	18	19	44	27	71	25	16	A-6b	11						204 Geotextile
	21	3	6.0	7.5	7.5	9.0	17									11	6	A-1-b							
		4	8.5	10.0	10.0	11.5	17	8		22	16	6	14	6	20	11	6	A-1-b							

PID: 98232

County-Route-Section: FRA-70-22.85

No. of Borings: 3

Geotechnical Consultant: Resource International, Inc.

Prepared By: Daniel E. Karch, P.E.

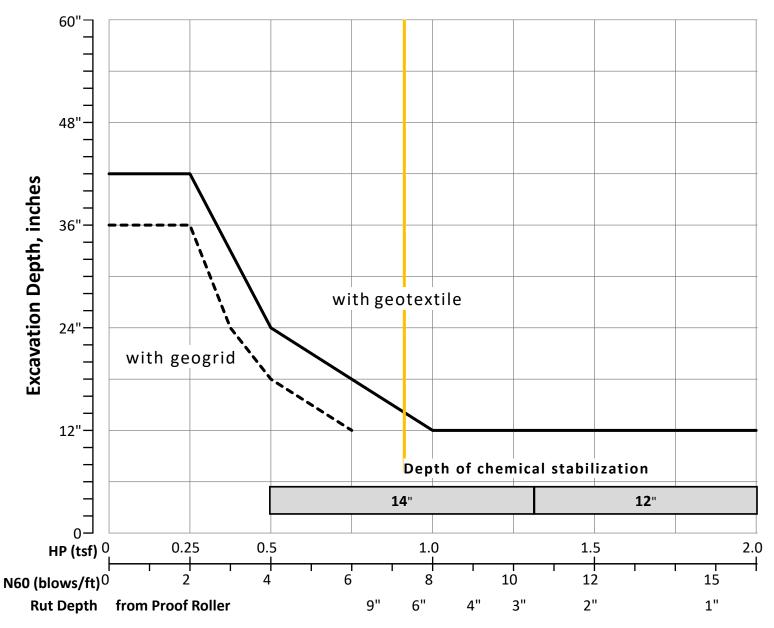
Date prepared: 12/23/2022

C	Chemical Stabilization Option	าร
320	Rubblize & Roll	No
206	Cement Stabilization	Option
	Lime Stabilization	No
206	Depth	14"

Excavate and Repl Stabilization Option	
Global Geotextile Average(N60L): Average(HP):	15" 0"
Global Geogrid Average(N60L): Average(HP):	0" 0"

Design CBR	6
---------------	---

% Sample	es within	6 feet of subgr	ade
N ₆₀ ≤ 5	14%	HP ≤ 0.5	0%
N ₆₀ < 12	86%	0.5 < HP ≤ 1	0%
12 ≤ N ₆₀ < 15	14%	1 < HP ≤ 2	43%
N ₆₀ ≥ 20	0%	HP > 2	57%
M+	14%		
Rock	0%		
Unsuitable	0%		


Excavate and Repl at Surface	ace
Average	
Maximum	0"
Minimum	0"

% Proposed Subgrade Su	ırface
Unstable & Unsuitable	33%
Unstable	33%
Unsuitable	0%

	N ₆₀	N_{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	13	7	3.00	34	19	15	31	23	54	19	13	11
Maximum	24	10	4.50	51	29	22	44	39	75	32	24	16
Minimum	4	4	1.75	22	14	6	14	6	20	9	6	8

					Class	ificati	ion C	ount	s by	Sam	ple								
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	2	0	0	0	0	0	0	4	0	0	2	4	0	0	0	0	12
Percent	0%	0%	17%	0%	0%	0%	0%	0%	0%	33%	0%	0%	17%	33%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					50%								50)%				100%
Surface Class Count	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	3
Surface Class Percent	0%	0%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	33%	33%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.00		□ НР
7.33		☐ N60L

Average HP Average N_{60L}

ΛΓ	סכ	ID	IV	VII
AГ	7	VU	IA	VII

CALCULATIONS - SHALLOW FOUNDATIONS - CULVERTS

FRA-70-22.85 Far East Freeway Culvert - IR-70 Sta. 606+42 Box Culvert Shallow Foundation Analysis - Settlement

Calculated By: PPM Checked By: MKD Date: 4/14/2021 Date: 4/21/2021

Boring B-100-1-19

B= 6.0 ft Footing width

34.0 Depth below bottom of footing $D_w =$ ft

28,780 Vertical load ΔP = plf

4,797 psf Gross bearing pressure at bottom of wall q =

4,557 psf Net bearing pressure at bottom of wall (considers initial overburden stress of 240 psf from 2-foot cut to bottom of footing elevation)

Soil Class.	Soil Type		Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z_f /B	I (7)	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
A-4a	С	0.0	1.5	1.5	0.8	120	180	90	90	4,090	21	0.099	0.010	0.436				0.13	0.994	4,529	4,619	0.023	0.271
A-4a	С	1.5	2.5	1.0	2.0	120	300	240	240	4,240	21	0.099	0.010	0.436				0.33	0.919	4,190	4,430	0.010	0.119
A-4a	С	2.5	4.0	1.5	3.3	120	480	390	390	4,390	21	0.099	0.010	0.436				0.54	0.792	3,608	3,998	0.010	0.125
A-4a	С	4.0	6.5	2.5	5.3	125	793	636	636	4,636	21	0.099	0.010	0.436				0.88	0.605	2,756	3,392	0.013	0.150
A-4a	С	6.5	9.0	2.5	7.8	125	1,105	949	949	4,949	21	0.099	0.010	0.436				1.29	0.449	2,048	2,997	0.009	0.103
A-4a	С	9.0	11.5	2.5	10.3	125	1,418	1,261	1,261	5,261	21	0.099	0.010	0.436				1.71	0.353	1,608	2,869	0.006	0.074
A-4a	С	11.5	14.0	2.5	12.8	125	1,730	1,574	1,574	5,574	21	0.099	0.010	0.436				2.13	0.289	1,317	2,891	0.005	0.055
A-4a	С	14.0	16.5	2.5	15.3	125	2,043	1,886	1,886	5,886	21	0.099	0.010	0.436				2.54	0.244	1,113	2,999	0.003	0.042
A-2-4	G	16.5	19.0	2.5	17.8	120	2,343	2,193	2,193	6,193					44	43	140	2.96	0.211	962	3,155	0.003	0.034
A-1-b	G	19.0	21.5	2.5	20.3	120	2,643	2,493	2,493	6,493					46	43	140	3.38	0.186	847	3,340	0.002	0.027
																							l
																							1
1. σ _p ' = σ _{vo}	'+σ _{m;} Estimate o	σ _m of 4,000 p	sf for mode	rately overcon	solidated soi	I deposit; Re	f. Table 11.2	, Coduto 200	3											Tota	Settlement:		1.000 in

^{1.} $\sigma_p' = \sigma_{vo}' + \sigma_{m;}$ Estimate σ_m of 4,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

1.0 28,780

Increment of B = 1.0

^{2.} C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

^{3.} $C_r = 0.15(C_c)$ for the existing fill and $0.10(C_c)$ for the natural soil deposits; Ref. Section 5.4.2.5 of FHWA GEC 5

^{4.} e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index (limited to a value of 300); Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_c/(1+e_o)](H)|\log(\sigma_u'/\sigma_w) \\ \text{for } \sigma_p' \leq \sigma_w' < \sigma_{u'}! \ C_{v'}(1+e_o)](H)|\log(\sigma_p'/\sigma_w)' \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_p'! \ C_{v'}(1+e_o)](H)|\log(\sigma_v'/\sigma_p') \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_p'! \ Ref. \ Section \ 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers) \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! \ C_{v'}(1+e_o)](H)|\log(\sigma_v'/\sigma_v')! \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! \ Ref. \ Section \ 10.6.2.4.3, AASHTO LRFD BDS (Cohesiv soil layers) \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! < \sigma_{v'}! < \sigma_{v'}! \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! < \sigma_{v'}! < \sigma_{v'}! \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! < \sigma_{v'}! \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! < \sigma_{v'}! \\ \text{for } \sigma_w' < \sigma_{v'}! < \sigma_{v'}! \\ \text{for } \sigma_w' < \sigma_{v'}! \\ \text{for } \sigma_w > \sigma_{v'}! \\ \text$

^{10.} $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

FRA-70-22.85 Far East Freeway Culvert - Brice Road Box Culvert Shallow Foundation Analysis - Settlement

Calculated By: MDK Checked By: JPS Date: 2/9/2021 Date: 2/9/2021

Boring B-083-1-19

B = 6.5 Footing width

 $D_w =$ 34.0 Depth below bottom of footing

ΔP = 27,805 Vertical load

4,278 Gross bearing pressure at bottom of wall psf

Net bearing pressure at bottom of wall (considers initial overburden stress of 240 psf from 2-foot cut to bottom of footing elevation) 4,038

Soil Class.	Soil Type		Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' (6)	Z _f /B	1 ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
A-4a	С	0.0	1.5	1.5	0.8	120	180	90	90	4,090	24	0.126	0.013	0.460				0.12	0.995	4,018	4,108	0.022	0.261
A-4a	С	1.5	3.0	1.5	2.3	120	360	270	270	4,270	24	0.126	0.013	0.460				0.35	0.912	3,684	3,954	0.015	0.181
A-4a	С	3.0	4.5	1.5	3.8	120	540	450	450	4,450	24	0.126	0.013	0.460				0.58	0.770	3,108	3,558	0.012	0.140
A-4a	С	4.5	6.5	2.0	5.5	125	790	665	665	4,665	24	0.126	0.013	0.460				0.85	0.619	2,498	3,163	0.012	0.140
A-2-4	G	6.5	9.0	2.5	7.8	125	1,103	946	946	4,946					42	53	180	1.19	0.480	1,937	2,884	0.007	0.080
A-1-b	G	9.0	11.5	2.5	10.3	125	1,415	1,259	1,259	5,259					39	45	149	1.58	0.379	1,530	2,789	0.006	0.069
A-1-b	G	11.5	15.5	4.0	13.5	125	1,915	1,665	1,665	5,665					50	53	183	2.08	0.295	1,192	2,857	0.005	0.062
A-1-b	G	15.5	18.5	3.0	17.0	125	2,290	2,103	2,103	6,103					26	26	87	2.62	0.238	960	3,062	0.006	0.067
1. σ _p ' = σ _{vo}	_o '+σ _{m;} Estimate	σ_{m} of 4,000	psf for mod	erately overco	onsolidated s	oil deposit; I	Ref. Table 1	1.2, Coduto 2	2003											Total	Settlement:		1.000 in

^{1.} $\sigma_p' = \sigma_{vo}' + \sigma_m$. Estimate σ_m of 4,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

27,805

1.0

Increment of B = 1.0

^{2.} C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

^{3.} $C_r = 0.15(C_c)$ for the existing fill and $0.10(C_c)$ for the natural soil deposits; Ref. Section 5.4.2.5 of FHWA GEC 5

^{4.} e_o = (C_c/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index (limited to a value of 300); Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_c/(1+e_o)](H)\log(\sigma_{v'}/\sigma_{v_o})' \text{for } \sigma_v' \leq \sigma_{v'}' \cdot \sigma_{v'}'; [C_t/(1+e_o)](H)\log(\sigma_v'/\sigma_v)' \text{ for } \sigma_{v'} \leq \sigma_p'; [C_t/(1+e_o)](H)\log(\sigma_v'/\sigma_v)' + [C_c/(1+e_o)](H)\log(\sigma_v'/\sigma_v)' + [C_t/(1+e_o)](H)\log(\sigma_v'/\sigma_v)' + [C_t/(1+e_o)](H)\log($

^{10.} $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

FRA-70-22.85 Culvert - Chatford Drive Box Culvert

Shallow Foundation Analysis - Settlement

Calculated By: LES Date: 3/23/2022 Checked By: JPS Date: 3/30/2022

Boring B-040-1-21

7.0 ft Footing width

Depth below bottom of footing $D_w =$ 0.0

Vertical load ΔP = 25,825 plf

3,689 psf Gross bearing pressure at bottom of wall q =

3,449 psf Net bearing pressure at bottom of wall (considers initial overburden stress of 240 psf from 2-foot cut to bottom of footing elevation) $q_{net} =$

Soil Class.	Soil Type		Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r (3)	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' (6)	Z _f /B	I (7)	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
A-4a	С	0.0	2.0	2.0	1.0	120	240	120	58	3,058	22	0.108	0.011	0.444				0.14	0.991	3,418	3,476	0.034	0.410
A-4a	С	2.0	4.5	2.5	3.3	120	540	390	187	3,187	22	0.108	0.011	0.444				0.46	0.841	2,901	3,088	0.023	0.273
A-4a	С	4.5	7.0	2.5	5.8	120	840	690	331	3,331	22	0.108	0.011	0.444				0.82	0.631	2,176	2,507	0.016	0.197
A-4a	С	7.0	9.0	2.0	8.0	125	1,090	965	466	3,466	22	0.108	0.011	0.444				1.14	0.496	1,712	2,178	0.010	0.120
																							1
1. σ _p ' = σ _{vc}	'+σ _{m;} Estimate o	o _m of 3,000 p	sf for mode	rately overcon	solidated soi	il deposit; Re	ef. Table 11.2	2, Coduto 200)3											Tota	Settlement:		1.000 in

^{1.} $\sigma_p' = \sigma_{vo}' + \sigma_m$; Estimate σ_m of 3,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003

^{2.} C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5

^{3.} $C_r = 0.15(C_c)$ for the existing fill and $0.10(C_c)$ for the natural soil deposits; Ref. Section 5.4.2.5 of FHWA GEC 5

^{4.} e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index (limited to a value of 300); Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for strip loaded footing

^{8.} $\Delta \sigma_v = q_e(I)$

 $^{9. \ \} S_c = [C_c/(1+e_o)](H)\log(\sigma_{v}/\sigma_{v_o}) \\ \text{for } \sigma_v^+ \leq \sigma_{v'} < \sigma_{v'}, \\ \text{[$C_r/(1+e_o)](H)\log(\sigma_v/\sigma_{v'})$} \\ \text{for } \sigma_{v'} \leq \sigma_v^+, \\ \text{[$C_r/(1+e_o)](H)\log(\sigma_v/\sigma_{v'})$} \\ \text{for } \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} \\ \text{for } \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} < \sigma_{v'} \\ \text{for } \sigma_{v'} < \sigma$

^{10.} $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

FRA-BPDRW-41.060

4-sided Culvert Shallow Foundation Bearing Resistance

Borings B-054-0-19 (undrained)

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{\gamma m} C_{w\gamma} = 18.00$$
 ksf

$$N_{cm} = N_c s_c i_c = 5.54$$
 $N_{qm} = N_q s_q d_q i_q = 1.00$ $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 0.00$ $N_{c} = 5.14$ $S_c = 1.078$ $I_c = 1.000$ $I_c = 1.000$

$$q_{\scriptscriptstyle R} = q_{\scriptscriptstyle n} \cdot \phi_{\scriptscriptstyle b}$$
 = 8.10 ks

$$\varphi_b$$
 = 0.45 Ref. Table 10.5.5.2.2-1 AASHTO LRFD BDS

FRA-BPDRW-41.060

4-sided Culvert Shallow Foundation Bearing Resistance

Borings B-054-0-19 (drained)

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{\gamma m} C_{w\gamma} = 19.17$$
 ksf

$$N_{cm} = N_c s_c i_c = 31.69$$
 $N_{qm} = N_q s_q d_q i_q = 23.10$ $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 14.04$ $N_c = 25.80$ $s_c = 1.228$ $i_c = 1.000$ $d_q = 1.294$ $N_q = 14.72$ $s_q = 1.213$ $i_q = 1.000$ $C_{wq} = 0.500$ $N_v = 16.72$ $s_v = 0.840$ $i_v = 1.000$ $C_{wy} = 0.500$

$$q_R = q_n \cdot \phi_b$$
 = 8.63 ksf

 φ_b = 0.45 Ref. Table 10.5.5.2.2-1 AASHTO LRFD BDS

FRA-BPDRW-41.060

4-sided Culvert Shallow Foundation Bearing Resistance

Borings B-055-0-19 (undrained)

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma B N_{\gamma m} C_{w\gamma} = 15.79$$
 ksf

$$N_{cm} = N_c s_c i_c = 5.20$$
 $N_{qm} = N_q s_q d_q i_q = 1.00$ $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 0.00$ $N_{c} = 5.14$ $S_c = 1.012$ $I_c = 1.000$ $I_c = 1.000$

$$q_{\scriptscriptstyle R} = q_{\scriptscriptstyle n} \cdot \phi_{\scriptscriptstyle b}$$
 = 8.69 ksf

$$\varphi_b$$
 = 0.55 Ref. Table 11.5.7-1 AASHTO LRFD BDS

FRA-BPDRW-41.060

4-sided Culvert Shallow Foundation Bearing Resistance

Borings B-055-0-19 (drained)

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + \frac{1}{2} \gamma BN_{\gamma m} C_{w\gamma} = 6.94$$
 ksf

$$N_{cm} = N_c s_c i_c = 26.74$$
 $N_{qm} = N_q s_q d_q i_q = 16.86$ $N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma} = 16.29$ $N_c = 25.80$ $s_c = 1.037$ $i_c = 1.000$ $d_q = 1.107$ $N_q = 14.72$ $s_q = 1.034$ $i_q = 1.000$ $C_{wq} = 0.500$ $N_v = 16.72$ $s_v = 0.974$ $i_v = 1.000$ $C_{wy} = 0.500$

$$q_R = q_n \cdot \phi_b$$
 = 3.82 ks

$$\varphi_b$$
 = 0.55 Ref. Table 11.5.7-1 AASHTO LRFD BDS

FRA-BPDRW-41.060

Settlement - CONTINUOUS SHALLOW FOOTINGS

Boring B-054-0-19

B = 8.0 ft 9.0 ft $q_{gross} = 7,300 \text{ psf}$ 5,920 psf

Layer	Soil Class.	Soil Type	· .	Depth ft)		levation msl)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	МС	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀ (N1) ₆₀ (5	C' ⁽⁶⁾	Z_f /B	I ⁽⁷⁾	Δσ _ν ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
	A-6a	С	0.0	1.5	774.0	772.5	1.5	0.8	120	180	90	90	4,090	11	26	0.051	0.008	0.394			0.09	0.997	5,904	5,994	0.023	0.273
4	A-6a	С	1.5	3.0	772.5	771.0	1.5	2.3	120	360	270	270	4,270	11	26	0.051	0.008	0.394			0.28	0.946	5,599	5,869	0.017	0.209
ı	A-6a	С	3.0	5.0	771.0	769.0	2.0	4.0	120	600	480	480	4,480	12	26	0.060	0.006	0.402			0.50	0.818	4,844	5,324	0.015	0.177
	A-6a	С	5.0	7.0	769.0	767.0	2.0	6.0	120	840	720	720	4,720	12	25	0.058	0.006	0.400			0.75	0.668	3,955	4,675	0.007	0.081
	A-4a	С	7.0	9.0	767.0	765.0	2.0	8.0	125	1,090	965	965	4,965	11	25	0.049	0.005	0.393			1.00	0.550	3,255	4,220	0.005	0.054
	A-4a	С	9.0	11.0	765.0	763.0	2.0	10.0	125	1,340	1,215	1,153	5,153	11	25	0.049	0.005	0.393			1.25	0.462	2,734	3,886	0.004	0.045
	A-4a	С	11.0	13.0	763.0	761.0	2.0	12.0	125	1,590	1,465	1,278	5,278	11	25	0.049	0.005	0.393			1.50	0.396	2,343	3,621	0.003	0.038
2	A-4a	С	13.0	15.0	761.0	759.0	2.0	14.0	125	1,840	1,715	1,403	5,403	8	25	0.022	0.002	0.369			1.75	0.345	2,044	3,447	0.001	0.015
	A-4a	С	15.0	17.0	759.0	757.0	2.0	16.0	125	2,090	1,965	1,528	5,528	8	25	0.022	0.002	0.369			2.00	0.306	1,810	3,338	0.001	0.013
	A-4a	С	17.0	19.0	757.0	755.0	2.0	18.0	125	2,340	2,215	1,653	5,653	8	25	0.022	0.002	0.369			2.25	0.274	1,622	3,276	0.001	0.011
	A-4a	С	19.0	21.0	755.0	753.0	2.0	20.0	125	2,590	2,465	1,779	5,779	9	25	0.031	0.003	0.377			2.50	0.248	1,469	3,247	0.001	0.014
	A-4a	С	21.0	23.0	753.0	751.0	2.0	22.0	130	2,850	2,720	1,909	5,909	9	25	0.031	0.003	0.377			2.75	0.227	1,341	3,250	0.001	0.012
2	A-4a	С	23.0	25.0	751.0	749.0	2.0	24.0	130	3,110	2,980	2,044	6,044	11	25	0.049	0.005	0.393			3.00	0.208	1,234	3,278	0.001	0.017
3	A-4a	С	25.0	27.0	749.0	747.0	2.0	26.0	130	3,370	3,240	2,179	6,179	11	25	0.049	0.005	0.393			3.25	0.193	1,142	3,321	0.001	0.015
	A-4a	С	27.0	29.0	747.0	745.0	2.0	28.0	130	3,630	3,500	2,314	6,314	10	25	0.040	0.004	0.385			3.50	0.179	1,062	3,377	0.001	0.011
1 σ'=σ	'+σ Estima	ate σ of 4.00	00 psf for mo	derately ove	erconsolidate	d soil deposi	it: Ref. Table	11.2, Coduto	2003														Total	Settlement:		0.987 in

2. Cc = 0.009wn+0.002wL-0.10; Ref. Table 4, "Regression Analysis of Soil Compressibility" Azzouz et al., 1976, Soils and Foundations Vol. 16, No. 2s

3. $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5

4. $e_0 = (C_0/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

7. Influence factor for continuous footing

8. $\Delta \sigma_v = q_e(I)$

 $9. \ \ S_c = [C_c/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}') \\ for \ \sigma_p' \leq \sigma_{v_o}' < \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_c/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_i}' < \sigma_{v_i}' \leq \sigma_{v_$

10. $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By: DEK Date: 1/5/2023 Checked By: JPS Date: 1/6/2023

FRA-BPDRW-41.060

Settlement - CONTINUOUS SHALLOW FOOTINGS

Boring B-054-0-19

 $\begin{array}{lll} B = & 8.0 & ft \\ D_w = & 9.0 & ft \\ q_{gross} = & 9,480 & psf \\ q_{net} = & 8,100 & psf \end{array}$

Layer	Soil Class.	Soil Type	Layer (f	Depth t)	Layer E (ft.	levation msl)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	MC	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀ (N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z _f /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _v ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
	A-6a	С	0.0	1.5	774.0	772.5	1.5	0.8	120	180	90	90	4,090	11	26	0.051	0.008	0.394			0.09	0.997	8,078	8,168	0.030	0.361
1	A-6a	С	1.5	3.0	772.5	771.0	1.5	2.3	120	360	270	270	4,270	11	26	0.051	0.008	0.394			0.28	0.946	7,661	7,931	0.025	0.295
'	A-6a	С	3.0	5.0	771.0	769.0	2.0	4.0	120	600	480	480	4,480	12	26	0.060	0.006	0.402			0.50	0.818	6,628	7,108	0.025	0.306
	A-6a	С	5.0	7.0	769.0	767.0	2.0	6.0	120	840	720	720	4,720	12	25	0.058	0.006	0.400			0.75	0.668	5,412	6,132	0.016	0.194
	A-4a	С	7.0	9.0	767.0	765.0	2.0	8.0	125	1,090	965	965	4,965	11	25	0.049	0.005	0.393			1.00	0.550	4,454	5,419	0.008	0.092
	A-4a	С	9.0	11.0	765.0	763.0	2.0	10.0	125	1,340	1,215	1,153	5,153	11	25	0.049	0.005	0.393			1.25	0.462	3,740	4,893	0.004	0.053
	A-4a	С	11.0	13.0	763.0	761.0	2.0	12.0	125	1,590	1,465	1,278	5,278	11	25	0.049	0.005	0.393			1.50	0.396	3,206	4,484	0.004	0.046
2	A-4a	С	13.0	15.0	761.0	759.0	2.0	14.0	125	1,840	1,715	1,403	5,403	8	25	0.022	0.002	0.369			1.75	0.345	2,797	4,200	0.002	0.018
	A-4a	С	15.0	17.0	759.0	757.0	2.0	16.0	125	2,090	1,965	1,528	5,528	8	25	0.022	0.002	0.369			2.00	0.306	2,477	4,005	0.001	0.016
	A-4a	С	17.0	19.0	757.0	755.0	2.0	18.0	125	2,340	2,215	1,653	5,653	8	25	0.022	0.002	0.369			2.25	0.274	2,220	3,873	0.001	0.014
	A-4a	С	19.0	21.0	755.0	753.0	2.0	20.0	125	2,590	2,465	1,779	5,779	9	25	0.031	0.003	0.377			2.50	0.248	2,010	3,788	0.001	0.018
	A-4a	С	21.0	23.0	753.0	751.0	2.0	22.0	130	2,850	2,720	1,909	5,909	9	25	0.031	0.003	0.377			2.75	0.227	1,835	3,744	0.001	0.016
2	A-4a	С	23.0	25.0	751.0	749.0	2.0	24.0	130	3,110	2,980	2,044	6,044	11	25	0.049	0.005	0.393			3.00	0.208	1,688	3,732	0.002	0.022
3	A-4a	С	25.0	27.0	749.0	747.0	2.0	26.0	130	3,370	3,240	2,179	6,179	11	25	0.049	0.005	0.393			3.25	0.193	1,562	3,741	0.002	0.020
	A-4a	-4a C 27.0 29.0 747.0 745.0 2.0 28.0 130 3,630 3,500 2,314 6,314 10 25 0.040 0.004 0.385													3.50	0.179	1,454	3,768	0.001	0.015						
1. σ _p ' = σ _v	'+σ _{m:} Estima	ate $\sigma_{\rm m}$ of 4,00	00 psf for mo	derately ove	rconsolidated	d soil deposi	it; Ref. Table	11.2, Coduto	2003			·		·					·	·			Total	Settlement:		1.487 in

- 2. Cc = 0.009wn+0.002wL-0.10; Ref. Table 4, "Regression Analysis of Soil Compressibility" Azzouz et al., 1976, Soils and Foundations Vol. 16, No. 2s
- 3. $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5
- 4. $e_0 = (C_0/1.15)+0.35$; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo}')] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for continuous footing
- 8. $\Delta \sigma_v = q_e(I)$
- $9. \ \ S_c = [C_c/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}') \\ for \ \sigma_p' \leq \sigma_{v_o}' < \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_c/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}'; \ [C_r/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}') \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_o}' < \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \leq \sigma_{v_i}' \\ for \ \sigma_{v_i}' < \sigma_{v_i}' \leq \sigma_{v_$
- 10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

 Calculated By:
 DEK
 Date:
 1/5/2023

 Checked By:
 JPS
 Date:
 1/6/2023

FRA-BPDRW-41.060

Settlement - CONTINUOUS SHALLOW FOOTINGS

Boring B-055-0-19

B = 8.0 ft $D_w =$ 0.0 ft 730 psf

Layer	Soil Class.	Soil Type	Layer (f		- 7	Elevation msl)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	MC	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z _f /B	J ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	0.5	774.0	773.5	0.5	0.3	120	60	30	14	4,014	11	34	0.067	0.010	0.408				0.03	1.000	730	744	0.006	0.073
	A-6b	С	0.5	2.5	773.5	771.5	2.0	1.5	125	310	185	91	4,091	11	35	0.069	0.010	0.410				0.19	0.981	716	807	0.014	0.167
	A-6b	С	2.5	4.5	771.5	769.5	2.0	3.5	125	560	435	217	4,217	11	35	0.069	0.007	0.410				0.44	0.858	626	843	0.006	0.069
	A-6b	С	4.5	6.5	769.5	767.5	2.0	5.5	125	810	685	342	4,342	11	35	0.069	0.007	0.410				0.69	0.703	513	855	0.004	0.047
	A-6b	С	6.5	8.5	767.5	765.5	2.0	7.5	125	1,060	935	467	4,467	10	35	0.060	0.006	0.402				0.94	0.576	421	888	0.002	0.029
	A-6b	С	8.5	10.5	765.5	763.5	2.0	9.5	125	1,310	1,185	592	4,592	10	35	0.060	0.006	0.402				1.19	0.481	351	944	0.002	0.021
2	A-6b	С	10.5	12.5	763.5	761.5	2.0	11.5	125	1,560	1,435	717	4,717	10	35	0.060	0.009	0.402				1.44	0.411	300	1,017	0.002	0.023
	A-6b	С	12.5	14.5	761.5	759.5	2.0	13.5	125	1,810	1,685	843	4,843	10	35	0.060	0.009	0.402				1.69	0.357	260	1,103	0.002	0.018
	A-6b	С	14.5	16.5	759.5	757.5	2.0	15.5	125	2,060	1,935	968	4,968	10	35	0.060	0.006	0.402				1.94	0.315	230	1,198	0.001	0.010
	A-6b	С	16.5	18.5	757.5	755.5	2.0	17.5	125	2,310	2,185	1,093	5,093	10	35	0.060	0.006	0.402				2.19	0.281	205	1,298	0.001	0.008
	A-6b	С	18.5	20.5	755.5	753.5	2.0	19.5	125	2,560	2,435	1,218	5,218	11	35	0.069	0.007	0.410				2.44	0.254	186	1,404	0.001	0.007
	A-6b	С	20.5													2.69	0.232	169	1,512	0.001	0.006						
	A-6a	С	22.5	24.5	751.5	749.5	2.0	23.5	130	3,070	2,940	1,474	5,474	12	35	0.078	0.008	0.418			_	2.94	0.213	155	1,629	0.000	0.006
3	A-6a	С	24.5	26.5	749.5	747.5	2.0	25.5	130	3,330	3,200	1,609	5,609	12	35	0.078	0.008	0.418				3.19	0.197	143	1,752	0.000	0.005
	A-6a C 24.5 29.5 749.5 744.5 5.0 27.0 130 3,720 3,395 1,710 5,710 12 35 0.078 0.008 0.418 3.38													0.186	136	1,846	0.001	0.011									
1. σ _p ' = σ _v	_{/o} '+σ _{m;} Estima	te $\sigma_{\rm m}$ of 4,0	00 psf for mo	derately ove	rconsolidate	d soil deposi	t; Ref. Table	11.2, Coduto	2003															Total	Settlement:		0.499 in

- 2. Cc = 0.009wn+0.002wL-0.10; Ref. Table 4, "Regression Analysis of Soil Compressibility" Azzouz et al., 1976, Soils and Foundations Vol. 16, No. 2s
- 3. $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5
- 4. $e_0 = (C_c/1.15) + 0.35$; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for continuous footing
- 9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{v_i}'/\sigma_{v_o}')$ for $\sigma_p' \leq \sigma_{v_o'} < \sigma_{v_i}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{v_o'}) + [C_c/(1+e_o)](H)\log(\sigma_p'/\sigma_{v_o'}) + [C_c/(1+e_o)](H)\log(\sigma_v'/\sigma_p')$ for $\sigma_{v_o'} < \sigma_p' < \sigma_{v_o'}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)
- 10. $S_c = H(1/C')log(\sigma_{vf}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

Calculated By: DEK Date: 1/5/2023 Checked By: JPS

Date: 1/6/2023

FRA-BPDRW-41.060

Settlement - CONTINUOUS SHALLOW FOOTINGS

Boring B-055-0-19

B = 8.0 ft $D_w = 0.0 ft$ q = 2,800 psf

Layer	Soil Class.	Soil Type	Layer (f	Depth t)	,	Elevation msl)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p (1) (psf)	МС	LL	C _c ⁽²⁾	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z _f /B	J ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	0.5	774.0	773.5	0.5	0.3	120	60	30	14	4,014	11	34	0.067	0.010	0.408				0.03	1.000	2,800	2,814	0.008	0.098
	A-6b	С	0.5	2.5	773.5	771.5	2.0	1.5	125	310	185	91	4,091	11	35	0.069	0.010	0.410				0.19	0.981	2,747	2,838	0.022	0.263
	A-6b	С	2.5	4.5	771.5	769.5	2.0	3.5	125	560	435	217	4,217	11	35	0.069	0.007	0.410				0.44	0.858	2,402	2,619	0.011	0.127
	A-6b	С	4.5	6.5	769.5	767.5	2.0	5.5	125	810	685	342	4,342	11	35	0.069	0.007	0.410				0.69	0.703	1,969	2,311	0.008	0.097
	A-6b	С	6.5	8.5	767.5	765.5	2.0	7.5	125	1,060	935	467	4,467	10	35	0.060	0.006	0.402				0.94	0.576	1,614	2,081	0.006	0.067
	A-6b	С	8.5	10.5	765.5	763.5	2.0	9.5	125	1,310	1,185	592	4,592	10	35	0.060	0.006	0.402				1.19	0.481	1,348	1,940	0.004	0.053
2	A-6b	С	10.5	12.5	763.5	761.5	2.0	11.5	125	1,560	1,435	717	4,717	10	35	0.060	0.009	0.402				1.44	0.411	1,150	1,867	0.005	0.064
	A-6b	С	12.5	14.5	761.5	759.5	2.0	13.5	125	1,810	1,685	843	4,843	10	35	0.060	0.009	0.402				1.69	0.357	999	1,842	0.004	0.052
	A-6b	С	14.5	16.5	759.5	757.5	2.0	15.5	125	2,060	1,935	968	4,968	10	35	0.060	0.006	0.402				1.94	0.315	881	1,849	0.002	0.029
	A-6b	С	16.5	18.5	757.5	755.5	2.0	17.5	125	2,310	2,185	1,093	5,093	10	35	0.060	0.006	0.402				2.19	0.281	788	1,881	0.002	0.024
	A-6b	С	18.5	20.5	755.5	753.5	2.0	19.5	125	2,560	2,435	1,218	5,218	11	35	0.069	0.007	0.410				2.44	0.254	712	1,930	0.002	0.023
	A-6b	С	20.5	22.5	753.5	751.5	2.0	21.5	125	2,810	2,685	1,343	5,343	11	35	0.069	0.007	0.410				2.69	0.232	648	1,992	0.002	0.020
	A-6a	С	22.5	24.5	751.5	749.5	2.0	23.5	130	3,070	2,940	1,474	5,474	12	35	0.078	0.008	0.418			·	2.94	0.213	595	2,069	0.002	0.019
3	A-6a	С	24.5	26.5	749.5	747.5	2.0	25.5	130	3,330	3,200	1,609	5,609	12	35	0.078	0.008	0.418			·	3.19	0.197	550	2,159	0.001	0.017
	A-6a C 24.5 29.5 749.5 744.5 5.0 27.0 130 3,720 3,395 1,710 5,710 12 35 0.078 0.008 0.418												3.38	0.186	521	2,231	0.003	0.038									
1. σ _p ' = σ _ν	_{/o} '+σ _{m;} Estima	ate $\sigma_{\rm m}$ of 4,00	00 psf for mo	derately ove	rconsolidate	d soil deposi	t; Ref. Table	11.2, Coduto	2003															Total	Settlement:		0.992 in

- 2. Cc = 0.009wn+0.002wL-0.10; Ref. Table 4, "Regression Analysis of Soil Compressibility" Azzouz et al., 1976, Soils and Foundations Vol. 16, No. 2s
- 3. $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5
- 4. $e_0 = (C_c/1.15) + 0.35$; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for continuous footing
- 8. $\Delta \sigma_{\rm v} = q_{\rm e}$
- 9. $S_c = [C_c/(1+e_o)](H)\log(\sigma_{v_i}'/\sigma_{v_o}')$ for $\sigma_p' \leq \sigma_{v_o'} < \sigma_{v_i}'$; $[C_r/(1+e_o)](H)\log(\sigma_p'/\sigma_{v_o'}) + [C_c/(1+e_o)](H)\log(\sigma_p'/\sigma_{v_o'}) + [C_c/(1+e_o)](H)\log(\sigma_v'/\sigma_p')$ for $\sigma_{v_o'} < \sigma_p' < \sigma_{v_o'}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)
- 10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

 Calculated By:
 DEK
 Date:
 1/5/2023

 Checked By:
 JPS
 Date:
 1/6/2023

FRA-BPDRW-41.060

Settlement - CONTINUOUS SHALLOW FOOTINGS

Boring B-055-0-19

B = 8.0 ft

Improved soil

$D_w =$	0.0	ft
q =	3,300	p:

Layer	Soil Class.	Soil Type		Depth ft)	Layer E (ft.	levation msl)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	MC	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	$Z_{\it f}$ /B	I ⁽⁷⁾	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-2-4	G	0.0	0.5	774.0	773.5	0.5	0.3	120	60	30	14	14	11					50	100	469	0.03	1.000	3,300	3,314	0.003	0.030
	A-6b	С	0.5	2.5	773.5	771.5	2.0	1.5	125	310	185	91	4,091	11	35	0.069	0.010	0.410				0.19	0.981	3,237	3,328	0.023	0.275
	A-6b	С	2.5	4.5	771.5	769.5	2.0	3.5	125	560	435	217	4,217	11	35	0.069	0.007	0.410				0.44	0.858	2,831	3,048	0.011	0.135
	A-6b	С	4.5	6.5	769.5	767.5	2.0	5.5	125	810	685	342	4,342	11	35	0.069	0.007	0.410				0.69	0.703	2,320	2,662	0.009	0.105
	A-6b	С	6.5	8.5	767.5	765.5	2.0	7.5	125	1,060	935	467	4,467	10	35	0.060	0.006	0.402				0.94	0.576	1,902	2,369	0.006	0.072
	A-6b	С	8.5	10.5	765.5	763.5	2.0	9.5	125	1,310	1,185	592	4,592	10	35	0.060	0.006	0.402				1.19	0.481	1,589	2,181	0.005	0.058
2	A-6b	С	10.5	12.5	763.5	761.5	2.0	11.5	125	1,560	1,435	717	4,717	10	35	0.060	0.009	0.402				1.44	0.411	1,355	2,072	0.006	0.071
	A-6b	С	12.5	14.5	761.5	759.5	2.0	13.5	125	1,810	1,685	843	4,843	10	35	0.060	0.009	0.402				1.69	0.357	1,177	2,020	0.005	0.058
	A-6b	С	14.5	16.5	759.5	757.5	2.0	15.5	125	2,060	1,935	968	4,968	10	35	0.060	0.006	0.402				1.94	0.315	1,039	2,007	0.003	0.033
	A-6b	С	16.5	18.5	757.5	755.5	2.0	17.5	125	2,310	2,185	1,093	5,093	10	35	0.060	0.006	0.402				2.19	0.281	928	2,021	0.002	0.027
	A-6b	С	18.5	20.5	755.5	753.5	2.0	19.5	125	2,560	2,435	1,218	5,218	11	35	0.069	0.007	0.410				2.44	0.254	839	2,057	0.002	0.027
	A-6b	С	20.5	22.5	753.5	751.5	2.0	21.5	125	2,810	2,685	1,343	5,343	11	35	0.069	0.007	0.410				2.69	0.232	764	2,108	0.002	0.023
	A-6a	С	22.5	24.5	751.5	749.5	2.0	23.5	130	3,070	2,940	1,474	5,474	12	35	0.078	0.008	0.418				2.94	0.213	702	2,175	0.002	0.022
3	A-6a	С	24.5	26.5	749.5	747.5	2.0	25.5	130	3,330	3,200	1,609	5,609	12	35	0.078	0.008	0.418				3.19	0.197	649	2,257	0.002	0.019
	A-6a	С	24.5	29.5	749.5	744.5	5.0	27.0	130	3,720	3,395	1,710	5,710	12	35	0.078	0.008	0.418			_	3.38	0.186	614	2,324	0.004	0.044
1. $\sigma_p' = \sigma_{v_0}$	_o '+σ _{m;} Estima	ate $\sigma_{\rm m}$ of 4,00	00 psf for mo	$_{\rm o}$ = $\sigma_{\rm w}$ '+ $\sigma_{\rm m}$ Estimate $\sigma_{\rm m}$ of 4,000 psf for moderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003														Total Settlement:									

^{2.} Cc = 0.009wn+0.002wL-0.10; Ref. Table 4, "Regression Analysis of Soil Compressibility" Azzouz et al., 1976, Soils and Foundations Vol. 16, No. 2s

Calculated By: DEK Date: 1
Checked By: JPS Date: 1

Date: 1/5/2023 Date: 1/6/2023

^{3.} $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5

^{4.} $e_0 = (C_c/1.15) + 0.35$; Ref. Table 8-2, Holtz and Kovacs 1981

^{5.} $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS

^{6.} Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS

^{7.} Influence factor for continuous footing

^{8.} $\Delta \sigma_v = q_e$

^{9.} $S_c = [C_c/(1+e_o)](H)\log(\sigma_{v_i}'/\sigma_{v_o}')$ for $\sigma_{v_o}' \leq \sigma_{v_o}' < \sigma_{v_i}'$; $[C_r/(1+e_o)](H)\log(\sigma_{p_o}'/\sigma_{v_o}') + [C_c/(1+e_o)](H)\log(\sigma_{p_o}'/\sigma_{v_o}') + [C_c/(1+e_o)](H)\log(\sigma_{v_i}'/\sigma_{v_o}')$ for $\sigma_{v_o}' \leq \sigma_{v_o}' < \sigma_{v_o}' <$

^{10.} $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

W-21-140 - FRA-70-22.85

FRA-BPDRW-41.060

Settlement - CONTINUOUS SHALLOW FOOTINGS

Boring B-055-0-19

B = 8.0 ft $D_w = 0.0 ft$ q = 3,800 psf

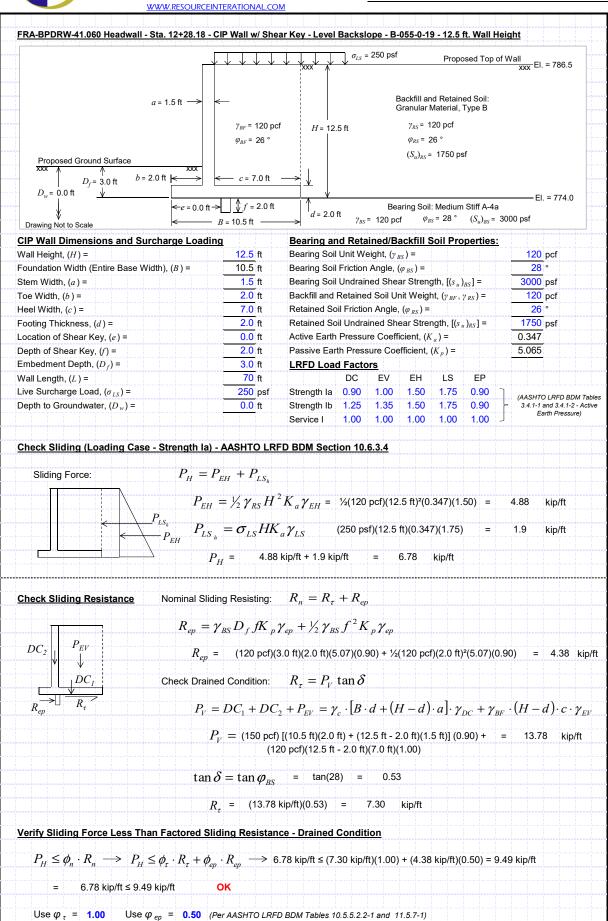
Layer	Soil Class.	Soil Type	Layer (f	-	,	Elevation msl)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	MC	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ ⁽⁵⁾	C' ⁽⁶⁾	Z_f /B	J ⁽⁷⁾	Δσ _ν ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6a	С	0.0	0.5	774.0	773.5	0.5	0.3	120	60	30	14	4,014	11	34	0.067	0.010	0.408				0.03	1.000	3,800	3,814	0.009	0.104
	A-6b	С	0.5	2.5	773.5	771.5	2.0	1.5	125	310	185	91	4,091	11	35	0.069	0.010	0.410				0.19	0.981	3,727	3,819	0.024	0.286
	A-6b	С	2.5	4.5	771.5	769.5	2.0	3.5	125	560	435	217	4,217	11	35	0.069	0.007	0.410				0.44	0.858	3,260	3,477	0.012	0.142
	A-6b	С	4.5	6.5	769.5	767.5	2.0	5.5	125	810	685	342	4,342	11	35	0.069	0.007	0.410				0.69	0.703	2,672	3,014	0.009	0.111
	A-6b	С	6.5	8.5	767.5	765.5	2.0	7.5	125	1,060	935	467	4,467	10	35	0.060	0.006	0.402				0.94	0.576	2,190	2,657	0.006	0.078
	A-6b	С	8.5	10.5	765.5	763.5	2.0	9.5	125	1,310	1,185	592	4,592	10	35	0.060	0.006	0.402				1.19	0.481	1,829	2,421	0.005	0.063
2	A-6b	С	10.5	12.5	763.5	761.5	2.0	11.5	125	1,560	1,435	717	4,717	10	35	0.060	0.009	0.402				1.44	0.411	1,560	2,278	0.006	0.077
	A-6b	С	12.5	14.5	761.5	759.5	2.0	13.5	125	1,810	1,685	843	4,843	10	35	0.060	0.009	0.402				1.69	0.357	1,356	2,198	0.005	0.064
	A-6b	С	14.5	16.5	759.5	757.5	2.0	15.5	125	2,060	1,935	968	4,968	10	35	0.060	0.006	0.402				1.94	0.315	1,196	2,164	0.003	0.036
	A-6b	С	16.5	18.5	757.5	755.5	2.0	17.5	125	2,310	2,185	1,093	5,093	10	35	0.060	0.006	0.402				2.19	0.281	1,069	2,162	0.003	0.030
	A-6b	С	18.5	20.5	755.5	753.5	2.0	19.5	125	2,560	2,435	1,218	5,218	11	35	0.069	0.007	0.410				2.44	0.254	966	2,184	0.002	0.030
	A-6b	С	20.5	22.5	753.5	751.5	2.0	21.5	125	2,810	2,685	1,343	5,343	11	35	0.069	0.007	0.410				2.69	0.232	880	2,223	0.002	0.026
	A-6a	С	22.5	24.5	751.5	749.5	2.0	23.5	130	3,070	2,940	1,474	5,474	12	35	0.078	0.008	0.418				2.94	0.213	808	2,282	0.002	0.025
3	A-6a	С	24.5	26.5	749.5	747.5	2.0	25.5	130	3,330	3,200	1,609	5,609	12	35	0.078	0.008	0.418				3.19	0.197	747	2,356	0.002	0.022
	A-6a	С	24.5	29.5	749.5	744.5	5.0	27.0	130	3,720	3,395	1,710	5,710	12	35	0.078	0.008	0.418	·			3.38	0.186	707	2,417	0.004	0.050
1. σ _p ' = σ _ν	_o '+σ _{m;} Estima	te $\sigma_{\rm m}$ of 4,00	00 psf for mo	derately ove	rconsolidate	d soil deposi	t; Ref. Table	11.2, Coduto	2003													_		Tota	Settlement:	_	1.142 in

- 2. Cc = 0.009wn+0.002wL-0.10; Ref. Table 4, "Regression Analysis of Soil Compressibility" Azzouz et al., 1976, Soils and Foundations Vol. 16, No. 2s
- 3. $C_r = 0.15(C_c)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_c) for very stiff to hard natural soil deposits, and 0.05(C_c) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5
- 4. $e_0 = (C_c/1.15) + 0.35$; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for continuous footing
- 8. $\Delta \sigma_{\rm v} = q_{\rm e}$
- 9. $S_c = [C_c/(1+e_o)](H)log(\sigma_{v_i}'/\sigma_{v_o}')$ for $\sigma_p' \leq \sigma_{v_o}' < \sigma_{v_i}'$; $[C_r/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_c/(1+e_o)](H)log(\sigma_p'/\sigma_{v_o}') + [C_c/(1+e_o)](H)log(\sigma_v'/\sigma_p')$ for $\sigma_{v_o}' < \sigma_p' < \sigma_{v_i}'$; Ref. Section 10.6.2.4.3, AASHTO LRFD BDS (Cohesive soil layers)
- 10. $S_c = H(1/C')log(\sigma_{vf}'/\sigma_{vo}')$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

 Calculated By:
 DEK
 Date:
 1/5/2023

 Checked By:
 JPS
 Date:
 1/6/2023

APPENDIX VIII


CALCULATIONS - CIP WALL

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990

JOB SHEET NO CALCULATED BY DATE

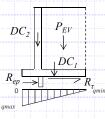
1/6/2023 CHECKED BY BRT 1/6/2023 Culvert FRA-BPDRW-41.060 Headwall Sta. 12+28.18

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990 WWW.RESOURCEINTERATIONAL.COM

JOB CALCULATED BY CHECKED BY

1/6/2023

Culvert FRA-BPDRW-41.060 Headwall Sta. 12+28.18


CIP Wall Dimensions and Surcharge Loadi	<u>ng</u>
Wall Height, (H) =	12.5 ft
Foundation Width (Entire Base Width), (B) =	10.5 ft
Stem Width, (a) =	1.5 ft
Toe Width, (b) =	2.0 ft
Heel Width, (c) =	7.0 ft
Footing Thickness, (d) =	2.0 ft
Location of Shear Key, (e) =	0.0 ft
Depth of Shear Key, (f) =	2.0 ft
Embedment Depth, (D_f) =	3.0 ft
Wall Length, (L) =	70 ft
Live Surcharge Load, (σ_{LS}) =	250 psf
Depth to Groundwater, (D_w) =	0.0 ft

Bearing ar	nd Reta	ined/Ba	ackfill S	Soil Pro	perties:							
Bearing Soil	Unit We	eight, (γ _E	₁₅) =			1:	20 pcf					
Bearing Soil	Friction		28 °									
Bearing Soil	Undrair	30	00 psf									
Backfill and	Retaine	1:	20 pcf									
Retained So	il Frictio		26 °									
Retained So	il Undra	17	50 psf									
Active Earth	Pressu	re Coeffi	cient, (K	(_a) =		0.3	47					
Passive Ear	th Press	ure Coe	fficient,	$(K_p) =$		5.0	65					
LRFD Load	d Facto	<u>rs</u>										
	DC	EV	EH	LS	EP							
Strength la	0.90	1.00	1.50	1.75	0.90	(AAS	(AASHTO LRFD BDM Ta					
Strength Ib	1.25	1.35	1.50	1.75	0.90		1-1 and 3.4.1	-2 - Active				
Service I	1.00	1.00	1.00	1.00	1.00	Earth Pressure)						

Check Sliding (Loading Case - Strength la) - AASHTO LRFD BDM Section 10.6.3.4 (Continued)

Check Undrained Condition:

$$R_{\tau} = \left(\left(S_{u} \right)_{BS} \leq q_{s} \right) \cdot B$$

 $(S_u)_{BS} \leq q_s$

$$\left(S_u\right)_{BS}=3.00$$
 ksf
$$q_{max}=\frac{1}{2}\sigma_{max}=(2.52\,\mathrm{ksf})/2=1.26$$
 ksf

$$q_{min} = \frac{1}{2}\sigma_{min} = (0.11 \text{ ksf})/2 = 0.06 \text{ ksf}$$

$$\sigma_{\text{\tiny WMXN}} = \frac{P_V}{B} \left(1 + 6 \frac{e}{B} \right) = (13.78 \text{ kip/ft / } 10.5 \text{ ft}) [1 + 6(1.60 \text{ ft / } 10.5 \text{ ft})] = 2.52 \text{ ksf}$$

$$\sigma_{\text{\tiny WMIN}} = \frac{P_V}{B} \left(1 - 6 \frac{e}{B} \right) = (13.78 \text{ kip/ft / } 10.5 \text{ ft}) [1 - 6(1.60 \text{ ft / } 10.5 \text{ ft})] = 0.11 \text{ ksf}$$

 $R_{\tau} = 0.5(1.26 \text{ ksf} - 0.06 \text{ ksf})(10.5 \text{ ft}) + (0.06 \text{ ksf})(10.5 \text{ ft})$

6.93 kip/ft

Verify Sliding Force Less Than Factored Sliding Resistance - Undrained Condition

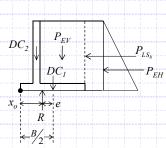
$$P_H \leq \phi_n \cdot R_n \longrightarrow P_H \leq \phi_\tau \cdot R_\tau + \phi_{ep} \cdot R_{ep} \longrightarrow \text{6.78 kip/ft} \leq (6.93 \text{ kip/ft})(1.00) + (4.38 \text{ kip/ft})(0.50) = 9.12 + (4.38 \text{ kip/ft})(1.00) = 9.12 +$$

6.78 kip/ft ≤ 9.12 kip/ft

Use φ_{τ} = 1.00 Use φ_{ep} = 0.50 (Per AASHTO LRFD BDM Tables 10.5.5.2.2-1 and 11.5.7-1)

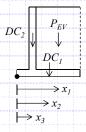
RESOURCE INTERNATIONAL, INC.

CALCULATED BY CHECKED BY


	WWW.RESOURCEINTERATIONAL.CO
	FAX: (614) 823-4990
KII	PHONE: (614) 823-4949
	COLUMBUS, OHIO 43231
	6350 PRESIDENTIAL GATEWAY

CIP Wall Dimensions and Surcharge Load	<u>ing</u>
Wall Height, (H) =	12.5 ft
Foundation Width (Entire Base Width), (B) =	10.5 ft
Stem Width, (a) =	1.5 ft
Toe Width, (b) =	2.0 ft
Heel Width, (c) =	7.0 ft
Footing Thickness, (d) =	2.0 ft
Location of Shear Key, (e) =	0.0 ft
Depth of Shear Key, (f) =	2.0 ft
Embedment Depth, (D_f) =	3.0 ft
Wall Length, (<i>L</i>) =	70 ft
Live Surcharge Load, (σ_{LS}) =	250 psf
Depth to Groundwater, (D_w) =	0.0 ft

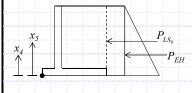
Bearing and Retained/Backfill Soil Properties:			
Bearing Soil Unit Weight, (γ_{BS}) =	120	pcf	
Bearing Soil Friction Angle, (φ_{BS}) =	28	0	
Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}]$ =	3000	psf	
Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS})$ =	120	pcf	
Retained Soil Friction Angle, (φ_{RS}) =	26	0	
Retained Soil Undrained Shear Strength, $[(s_u)_{RS}]$ =	1750	psf	
Active Earth Pressure Coefficient, (K_a) =	0.347		
Passive Earth Pressure Coefficient, (K_p) =	5.065		
LRFD Load Factors			
DC EV EH IS EP			


Strength la	0.90	1.00	1.50	1.75	0.90	٦	(AASHTO LRFD BDM Table
Strength lb	1.25	1.35	1.50	1.75	0.90	F	3.4.1-1 and 3.4.1-2 - Active
Service I	1.00	1.00	1.00	1.00	1.00	J	Earth Pressure)

Check Eccentricity (Loading Case - Strength Ia) - AASHTO LRFD BDM Section 11.6.3.3

 $e = \frac{B}{2} - x_{o}$ $P_{LS_{h}} \qquad x_{o} = \frac{M_{V} - M_{H}}{P_{V}} = (82.47 \text{ kip-ft/ft} - 32.22 \text{ kip-ft/ft}) / (13.78 \text{ kip/ft}) = 3.65 \text{ ft}$ $M_{V} = 82.47 \text{ kip-ft/ft}$ Defined below $M_{H} = 32.22 \text{ kip-ft/ft}$ Defined below $P_{V} = P_{EV} + DC_{1} + DC_{2} = 8.82 \text{ kip/ft} + 2.84 \text{ kip/ft} + 2.13 \text{ kip/ft} = 13.78 \text{ kip/ft}$ e = (10.5 ft / 2) - 3.65 ft = 1.60 ft

 $M_V = P_{EV}(x_1) + DC_1(x_2) + DC_2(x_3)$ Resisting Moment, M_V :



 $P_{EV} = \gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV} = (120 \text{ pcf})(12.5 \text{ ft} - 2.0 \text{ ft})(7.0 \text{ ft})(1.00) = 8.82 \text{ kip/ft}$ $DC_1 = \gamma_c \cdot B \cdot d \cdot \gamma_{DC} = (150 \text{ pcf})(10.5 \text{ ft})(2.0 \text{ ft})(0.90) = 2.84 \text{ kip/ft}$ $DC_2 = \gamma_c \cdot \big(H - d\big) \cdot a \cdot \gamma_{DC} \quad = \quad \text{(150 pcf)(12.5 ft - 2.0 ft)(1.5 ft)(0.90)} \quad = \quad \text{2.13 kip/ft}$ $x_1 = a + b + \frac{c}{2}$ = 1.5 ft + 2.0 ft + (7.0 ft/2) = 7.0 ft $x_2 = B/2 = 10.5 \,\text{ft/2} = 5.3 \,\text{ft}$ $x_3 = b + \frac{a}{2} = 2.0 \text{ ft} + (1.5 \text{ ft}/2) = 2.8 \text{ ft}$

 $M_V = (8.82 \text{ kip/ft})(7.0 \text{ ft}) + (2.84 \text{ kip/ft})(5.3 \text{ ft}) + (2.13 \text{ kip/ft})(2.8 \text{ ft}) = 82.47 \text{ kip-ft/ft}$

Overturning Moment, M_H :

$$M_{H} = P_{EH}(x_{2}) + P_{LS_{h}}(x_{3})$$

 $P_{EH} = \frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2} (120 \text{ pcf}) (12.5 \text{ ft})^2 (0.347) (1.50) = 4.88 \text{ kip/ft}$ $P_{LS_h} = \sigma_{LS} H K_a \gamma_{LS} = (250 \text{ psf})(12.5 \text{ ft})(0.347)(1.75) = 1.9 \text{ kip/ft}$ $x_2 = H/3 = (12.5 \text{ ft})/3 = 4.17 \text{ ft}$ $x_3 = \frac{H}{2} = \frac{(12.5 \text{ ft})}{2} = 6.25 \text{ ft}$ (4.88 kip/ft)(4.17 ft) + (1.9 kip/ft)(6.25 ft) = 32.22 kip-ft/ft

Limiting Eccentricity:

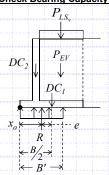
$$e_{\text{max}} = B/3 \longrightarrow e_{\text{max}} = (10.5 \text{ ft})/3 = 3.50 \text{ ft}$$

Check Eccentricity

 $e < e_{\text{max}} \longrightarrow 1.60 \text{ ft} < 3.50 \text{ ft}$ ΟK

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949

FRA-70-22.85 FEF JOB SHEET NO CALCULATED BY CHECKED BY

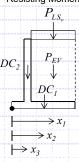

Culvert FRA-BPDRW-41.060 Headwall Sta. 12+28.18

R	i	i	

CIP Wall Dimensions and Surcharge Load	<u>ling</u>
Wall Height, (H) =	12.5 ft
Foundation Width (Entire Base Width), (B) =	10.5 ft
Stem Width, (a) =	1.5 ft
Toe Width, (b) =	2.0 ft
Heel Width, (c) =	7.0 ft
Footing Thickness, (d) =	2.0 ft
Location of Shear Key, (e) =	0.0 ft
Depth of Shear Key, (f) =	2.0 ft
Embedment Depth, (D_f) =	3.0 ft
Wall Length, (L) =	70 ft
Live Surcharge Load, (σ_{LS}) =	250 psf
Depth to Groundwater, (D,,,) =	0.0 ft

Bearing and Retained/Backfill Soil Properties:		
Bearing Soil Unit Weight, (γ_{BS}) =	120 pcf	
Bearing Soil Friction Angle, (φ_{BS}) =	28 °	
Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}]$ =	3000 psf	
Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS})$ =	120 pcf	
Retained Soil Friction Angle, (φ_{RS}) =	26 °	
Retained Soil Undrained Shear Strength, $[(s_u)_{RS}]$ =	1750 psf	
Active Earth Pressure Coefficient, (K_a) =	0.347	
Passive Earth Pressure Coefficient, (K_p) =	5.065	
LRFD Load Factors		
DC EV EH LS EP		
Strength la 0.90 1.00 1.50 1.75 0.90	/*************************************	

Check Bearing Capacity (Loading Case - Strength lb) - AASHTO LRFD BDM Section 11.6.3.2



$$\begin{aligned} q_{eq} &= \frac{P_V}{B'}, \\ B' &= B - 2e = 10.5 \text{ ft} - 2(0.46 \text{ ft}) = 9.58 \text{ ft} & (\text{For } e < 0, \text{Use } B) \\ e &= \frac{B}{2} - x_o = (10.5 \text{ ft} / 2) - 4.79 \text{ ft} = 0.46 \text{ ft} \\ x_o &= \frac{M_V - M_H}{P_V} = (144.30 \text{ kip·ft/ft} - 32.22 \text{ kip·ft/ft}) / (23.39 \text{ kip/ft}) = 4.79 \text{ ft} \end{aligned}$$

Strength lb 1.25 1.35 1.50 1.75 0.90

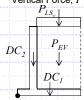
$$q_{eq} = (23.39 \, ext{kip/ft}) \, / \, (9.58 \, ext{ft}) = 2.44 \, ext{ksf}$$

Resisting Moment, M_V :

$$M_V = P_{EV}(x_1) + P_{LS_v}(x_1) + DC_1(x_2) + DC_2(x_3)$$

$$\begin{split} P_{EV} &= \gamma_{BF} \cdot \left(H-d\right) \cdot c \cdot \gamma_{EV} &= (120 \text{ pcf})(12.5 \text{ ft} - 2.0 \text{ ft})(7.0 \text{ ft})(1.35) &= 11.91 \text{ kip/ft} \\ P_{LS_v} &= \sigma_{LS} \cdot B \cdot \gamma_{LS} &= (250 \text{ psf})(10.5 \text{ ft})(1.75) &= 4.594 \text{ kip/ft} \\ DC_1 &= \gamma_c \cdot B \cdot d \cdot \gamma_{DC} &= (150 \text{ pcf})(10.5 \text{ ft})(2.0 \text{ ft})(1.25) &= 3.94 \text{ kip/ft} \\ DC_2 &= \gamma_c \cdot \left(H-d\right) \cdot a \cdot \gamma_{DC} &= (150 \text{ pcf})(12.5 \text{ ft} - 2.0 \text{ ft})(1.5 \text{ ft})(1.25) &= 2.95 \text{ kip/ft} \\ x_1 &= a+b+\frac{c}{2} &= 1.5 \text{ ft} + 2.0 \text{ ft} + (7.0 \text{ ft}/2) &= 7.0 \text{ ft} \\ x_2 &= B/2 &= 10.5 \text{ ft}/2 &= 5.3 \text{ ft} \\ x_3 &= b+\frac{a}{2} &= 2.0 \text{ ft} + (1.5 \text{ ft}/2) &= 2.8 \text{ ft} \end{split}$$

$$M_V = (11.91 \text{ kip/ft})(7.0 \text{ ft}) + (4.59 \text{ kip/ft})(7.0 \text{ ft}) + (3.94 \text{ kip/ft})(5.3 \text{ ft}) + (2.95 \text{ kip/ft})(2.8 \text{ ft}) = 144.30 \text{ kip-ft/ft}$$


Overturning Moment, M_H :

$$X_{1}$$
 X_{2}
 Y_{2}
 Y_{2}
 Y_{3}
 Y_{4}
 Y_{5}
 Y_{2}
 Y_{2}
 Y_{4}
 Y_{5}
 Y_{2}
 Y_{5}
 Y_{2}
 Y_{5}
 Y_{2}
 Y_{5}
 Y_{5

$$M_H = P_{EH}(x_4) + P_{LS_h}(x_5)$$

$$\begin{split} P_{EH} &= \frac{1}{2} \gamma_{RS} H^2 K_a \gamma_{EH} = \frac{1}{2} (120 \text{ pcf}) (12.5 \text{ ft})^2 (0.347) (1.50) = 4.88 \text{ kip/ft} \\ P_{IS}_h &= \sigma_{IS} H K_a \gamma_{IS} = (250 \text{ psf}) (12.5 \text{ ft}) (0.347) (1.75) = 1.9 \text{ kip/ft} \\ x_4 &= \frac{H}{3} = (12.5 \text{ ft}) / 3 = 4.17 \text{ ft} \\ x_5 &= \frac{H}{2} = (12.5 \text{ ft}) / 2 = 6.25 \text{ ft} \\ M_H &= (4.88 \text{ kip/ft}) (4.17 \text{ ft}) + (1.9 \text{ kip/ft}) (6.25 \text{ ft}) = 32.22 \text{ kip-ft/ft} \end{split}$$

Vertical Force, P_V :

$$P_{V} = P_{EV} + P_{LS_{v}} + DC_{1} + DC_{2}$$

 $P_{_{V}}=\,$ 11.91 kip/ft + 4.59 kip/ft + 3.94 kip/ft + 2.95 kip/ft

$$P_{\scriptscriptstyle V}=$$
 23.39 kip/ft

RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231 PHONE: (614) 823-4949 FAX: (614) 823-4990
 JOB
 FRA-70-22.85 FEF
 NO.
 W-17-140

 SHEET NO.
 5
 OF
 6

 CALCULATED BY
 DEK
 DATE
 1/6/2023

 CHECKED BY
 BRT
 DATE
 1/6/2023

 Culvert FRA-BPDRW-41.060 Headwall Sta. 12+28.18

WWW.RESOURCEINTERATIONAL.COM

CIP Wall Dimensions and Surcharge Loadin Wall Height, (H) = Foundation Width (Entire Base Width), (B) = Stem Width, (a) = Toe Width, (b) = Heel Width, (c) =	g 12.5 ft 10.5 ft	Bearing and Retained/Backf Bearing Soil Unit Weight, (γ_{BS}) =		
Wall Height, (H) = Foundation Width (Entire Base Width), (B) = Stem Width, (a) = Toe Width, (b) =	12.5 ft			
Foundation Width (Entire Base Width), (B) = Stem Width, (a) = Toe Width, (b) =	m i			120 pcf
Stem Width, (a) = Toe Width, (b) =		Bearing Soil Friction Angle, (φ_{BS})		28 °
Toe Width, (b) =	1.5 ft	Bearing Soil Undrained Shear St		3000 psf
<u> </u>	2.0 ft	Backfill and Retained Soil Unit W		120 pcf
	7.0 ft	Retained Soil Friction Angle, (φ_{RS}		26 °
Footing Thickness, (<i>d</i>) =	2.0 ft	Retained Soil Undrained Shear S		1750 psf
Location of Shear Key, (e) =	0.0 ft	Active Earth Pressure Coefficien	t, (K _a) =	0.347
Depth of Shear Key, (f) =	2.0 ft	Passive Earth Pressure Coefficie	ent, (K _p) =	5.065
Embedment Depth, (D_f) =	3.0 ft	LRFD Load Factors		
Wall Length, (L) =	70 ft	DC EV E	H LS EP	
Live Surcharge Load, (σ_{LS}) =	250 psf	Strength la 0.90 1.00 1.5	50 1.75 0.90	(AASHTO LRFD BDM Tables
Depth to Groundwater, (D_w) =	0.0 ft	Strength lb 1.25 1.35 1.5 Service I 1.00 1.00 1.0		3.4.1-1 and 3.4.1-2 - Active Earth Pressure)
Check Bearing Capacity (Loading Case - Str	enath lh) - A	ASHTO L RED RDM Section 11 6	3.2 (Continued)	
		AOTHO ERI D DDW Gection 11.	5.0.2 (Conumueu)	
Check Bearing Resistance - Drained Conditi	<u>on</u>			
Nominal Bearing Resistance: $q_n = cN_{cm}$	$+ \gamma D_f N_{qn}$	$_{n}C_{wq} + \frac{1}{2} \gamma B' N_{\gamma m} C_{w\gamma}$		
$N_{cm} = N_c s_c i_c = 27.816$	$N_{qm} = N$	$_{q}S_{q}d_{q}i_{q}$ = 17.232	$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	= 15.798
N _c = 25.803	$N_q =$	14.72	$N_{\gamma} = 16.717$	
$S_{c} = 1+(9.58 \text{ ft/70 ft})(14.72/25.803)$		1+(9.58 ft/70 ft)tan(28°) = 1.073	$s_{\gamma} = 1-0.4$	
= 1.078	$d_q =$	1+2tan(28°)[1-sin(28°)]²tan-1(3.0 ft/9.58 ft)	$i_{\gamma} = 1.000$	(Assumed)
i_c = 1.000 (Assumed)	=	1.091	$C_{wy} = 0.0 \text{ft} <$	1.5(9.58 ft) + 3.0 ft = 0.500
		1.000 (Assumed) 0.0 ft < 3.0 ft = 0.500		
Verify Equivalent Pressure Less Than Facto $q_{eq} \leq q_n \cdot \phi_b \implies 2.44 ext{ ks}$ Use $\varphi_b = 0.55$ (Per AASHTO LRFD BDI	f ≤ (7.64 ksf)((0.55) = 4.20 ksf>	2.44 ksf ≤ 4.20 kst	f OK
Check Bearing Resistance - Undrained Cond	dition			
Nominal Bearing Resistance: $q_{\scriptscriptstyle n} = cN_{\scriptscriptstyle cm}$	$+ \gamma D_f N_{qn}$	$C_{wq} + \frac{1}{2} \mathcal{P}B'N_{ym}C_{wy}$		
$N_{cm} = N_c S_c i_c = 5.541$	$N_{qm} = N$	$_q S_q d_q i_q = 1.000$	$N_{\gamma m} = N_{\gamma} s_{\gamma} i_{\gamma}$	= 0.000
N _c = 5.140	$N_q =$		$N_{\gamma} = 0.000$	
$S_c = 1+(9.58 \text{ ft/[(5)(70 ft)]}) = 1.078$			$s_{\gamma} = 1.000$	
i_{c} = 1.000 (Assumed)		1+2tan(0°)[1-sin(0°)]2tan-1(3.0 ft/9.58 ft)	$i_{\gamma} = 1.000$	
		1.000	$C_{wy} = 0.0 \text{ft} <$	1.5(9.58 ft) + 3.0 ft = 0.500
		1.000 (Assumed)		
	C _{wq} =	0.0 ft < 3.0 ft = 0.500		
$q_n = (3000 \text{ psf})(5.541) + (120 \text{ pcf})(3)$.0 ft)(1.000)(0	500) + ½(120 pcf)(9.6 ft)(0.000)(0.500) = 1	16.80 ksf
	red Bearing F	<u>Resistance</u>		
Verify Equivalent Pressure Less Than Facto				
Verify Equivalent Pressure Less Than Facto $q_{eq} \leq q_{_{B}} \cdot \phi_{_{b}} \longrightarrow 2.44 ext{ ksf}$	≤ (16.80 ksf)(0.55) = 9.24 ksf>	2.44 ksf ≤ 9.24 ksf	OK
			2.44 ksf ≤ 9.24 ksf	r ok
$q_{\it eq} \leq q_{\it n} \cdot \phi_{\it b} ightarrow $			2.44 ksf ≤ 9.24 ksf	OK

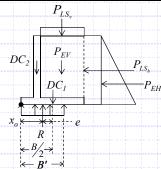
RESOURCE INTERNATIONAL, INC. 6350 PRESIDENTIAL GATEWAY COLUMBUS, OHIO 43231

FRA-70-22.85 FEF JOB SHEET NO CALCULATED BY CHECKED BY BRT DATE

1/6/2023 1/6/2023

Culvert FRA-BPDRW-41.060 Headwall Sta. 12+28.18

4			<u>W/W</u>	FAX ESOL	(614	1) 82	3-4	990	CON	


CIP Wall Dimensions and Surcharge Loadi	<u>ng</u>
Wall Height, (H) =	12.5 ft
Foundation Width (Entire Base Width), (B) =	10.5 ft
Stem Width, (a) =	1.5 ft
Toe Width, (b) =	2.0 ft
Heel Width, (c) =	7.0 ft
Footing Thickness, (d) =	2.0 ft
Location of Shear Key, (e) =	0.0 ft
Depth of Shear Key, (f) =	2.0 ft
Embedment Depth, (D_f) =	3.0 ft
Wall Length, (L) =	70 ft
Live Surcharge Load, (σ_{LS}) =	250 psf
Depth to Groundwater, (D_w) =	0.0 ft

Pagring and Patainad/Paglefill Cail Drangetica.			
Bearing and Retained/Backfill Soil Properties:			
Bearing Soil Unit Weight, (γ_{BS}) =	120	pcf	
Bearing Soil Friction Angle, (φ_{BS}) =	28	0	
Bearing Soil Undrained Shear Strength, $[(s_u)_{BS}] =$	3000	psf	
Backfill and Retained Soil Unit Weight, $(\gamma_{BF}, \gamma_{RS})$ =	120	pcf	
Retained Soil Friction Angle, (φ_{RS}) =	26	0	
Retained Soil Undrained Shear Strength, $[(s_u)_{RS}]$ =	1750	psf	
Active Earth Pressure Coefficient, (K_a) =	0.347		
Passive Earth Pressure Coefficient, (K_p) =	5.065		
LRFD Load Factors			
DC EV EH LS EP			

Strength la 0.90 1.00 1.50 1.75 0.90 Strength Ib 1.25 1.35 1.50 1.75 0.90

(AASHTO LRFD BDM Table: Earth Pressure)

Check Bearing Capacity (Loading Case - Strength lb) - AASHTO LRFD BDM Section 11.6.3.2

$$q_{eq} = \frac{P_V}{R'}$$

$$B' = B - 2e = 10.5 \text{ ft} - 2(0.37 \text{ ft}) = 9.76 \text{ ft}$$
 (For $e < 0$, Use B)

$$e = B/2 - x_o$$
 = (10.5 ft / 2) - 4.88 ft = 0.37 ft

$$x_o = \frac{M_V - M_H}{P_V}$$
 = (103.15 kip-ft/ft - 20.33 kip-ft/ft) / (16.96 kip/ft) = 4.88

$$q_{eq} = (16.96 \, \text{kip/ft}) \, / \, (9.76 \, \text{ft}) = 1.74 \, \text{ks}$$

$$M_{V} = \left[\left(\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV} \right) + \left(\sigma_{LS} \cdot B \cdot \gamma_{LS} \right) \right] \left(a + b + \frac{c}{2} \right) + \left(\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC} \right) \left(\frac{B}{2} \right) + \left(\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC} \right) \left(b + \frac{a}{2} \right)$$

 $M_V = (120 \text{ pcf})(12.5 \text{ ft} - 2.0 \text{ ft})(7.0 \text{ ft})(1.00) + (250 \text{ psf})(10.5 \text{ ft})(1.00)](1.5 \text{ ft} + 2.0 \text{ ft} + (7.0 \text{ ft} / 2))$ 103.15 kip⋅ft/ft + [(150 pcf)(10.5 ft)(2.0 ft)(1.00)](10.5 ft / 2) + [(150 pcf)(12.5 ft - 2.0 ft)(1.5 ft)(1.00)](2.0 ft + (1.5 ft / 2))

$$M_{H} = \left(Y_{2} \gamma_{RS} \cdot H^{2} \cdot K_{a} \cdot \gamma_{EH} \right) \left(H_{3} \right) + \left(\sigma_{LS} \cdot H \cdot K_{a} \cdot \gamma_{LS} \right) \left(H_{2} \right)$$

 $M_H = [\frac{1}{2}(120 \text{ pcf})(12.5 \text{ ft})^2(0.347)(1.00)](12.5 \text{ ft}/3) + [(250 \text{ psf})(12.5 \text{ ft})(0.347)(1.00)](12.5 \text{ ft}/2) = (1.5 \text{ ft})(1.00) + (1.5 \text{ ft})(1.00) +$

$$P_{V} = (\gamma_{BF} \cdot (H - d) \cdot c \cdot \gamma_{EV}) + (\sigma_{LS} \cdot B \cdot \gamma_{LS}) + (\gamma_{c} \cdot B \cdot d \cdot \gamma_{DC}) + (\gamma_{c} \cdot (H - d) \cdot a \cdot \gamma_{DC})$$

 $P_V = (120 \text{ pcf})(12.5 \text{ ft} - 2.0 \text{ ft})(7.0 \text{ ft})(1.00) + (250 \text{ psf})(10.5 \text{ ft})(1.00) + (150 \text{ pcf})(10.5 \text{ ft})(2.0 \text{ ft})(1.00)$ 16.96 kip/ft + (150 pcf)(12.5 ft - 2.0 ft)(1.5 ft)(1.00)

 $(S_t)_{min} =$

0.645

Settlement (See Attached Spreadsheet Calculations)

Minimum Settlement Along Wall Alignment:

Maximum Settlement Along Wall Alignment: $(S_t)_{max} =$ 0.766

Differential Settlement Along Wall Alignment: 0.121 in / 70 ft 1 in / 579 ft

 $\delta_{\rm s} < 1/500 \longrightarrow 1$ in / 579 ft < 1/500 OK

APP	FN	DIX	IX
APP		DIV	IV

CALCULATIONS – NOISE BARRIER FOUNDATION DEPTHS

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

Noise Wall Design

FRA-70-22.85 96232

Noise Wall Along IR 270 Sta. 1040+66 to 1059+60

Noise Wall 1

Rii

Prepared By:

Peyman P. Majidi, PE

Date prepared: Thursday, February 3, 2022

Checked By:

Jonathan P. Sterenberg

Date Checked:

Wednesday, March 23, 2022

No. of Borings:

10

Boring Information and Design Recommendation

FRA-70-22.85 PID: 96232 Foundation Design

						Nois	se W	all ID:	Noise	W	all 1						
Boring ID	Boring STA. (ft)	Mid-Boring STA. (ft)	Boring Elev. (ft)	Shaft Elev. (ft)	Ex. Ground Elev. (ft)	Rock Elev. (ft)	Rock UCS (psi)	Post Spacing (ft)	Barrier Height (ft)		oss ope	From DS STA.	To DS STA.	From Post No.	To Post No.	DS Length (ft)	Bottom of DS Elev. (ft)
B-004-0-19	10+38.80	11+42.80	785.00	784.00	785.00			24	16.00	0.0	Level	10+00.00	11+20.00	1	8	9.00	775.00
B-003-0-19	12+46.80	13+48.40	785.00	784.00	785.00			24	16.00	0.0	Level	11+44.00	13+36.00	9	17	9.00	775.00
B-002-0-19	14+50.00	15+36.80	785.00	784.00	785.00			24	16.00	0.0	Level	13+60.00	15+28.00	18	25	9.00	775.00
B-001-7-19	16+23.60	17+42.15	785.00	784.00	785.00			24	16.00	0.0	Level	15+52.00	17+20.00	26	33	9.00	775.00
B-001-6-19	18+60.70	19+55.33	786.00	786.00	786.00			24	16.00	0.0	Level	17+44.00	19+36.00	34	42	9.00	777.00
B-001-5-19	20+49.96	21+47.39	788.00	787.00	788.00			24	16.00	0.0	Level	19+60.00	21+28.00	43	50	9.00	778.00
B-001-4-19	22+44.82	23+43.55	788.00	788.00	788.00			24	16.00	0.0	Level	21+52.00	23+20.00	51	58	9.00	779.00
B-001-3-19	24+42.28	25+45.10	787.00	788.00	787.00			24	16.00	0.0	Level	23+44.00	25+36.00	59	67	9.00	779.00
B-001-2-19	26+47.91	27+42.24	784.00	787.00	784.00			24	17.00	0.0	Level	25+60.00	27+28.00	68	75	13.00	774.00
B-001-1-19	28+36.56	28+36.56	786.00	789.00	786.00			24	17.00	2.0	2:1	27+52.00	29+44.00	76	90	15.00	774.00

Date prepared: 2/3/2022

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

Noise Wall Design

FRA-70-22.85 96232

Noise Wall Along IR 270 Sta. 1529+94 to 1558+58

Noise Wall 2

Rii

Prepared By: Daniel E. Karch, P.E.

Date prepared: Thursday, December 22, 2022

Checked By: Brian R. Trenner, P.E. Date Checked: Friday, January 6, 2023

No. of Borings: 11

Boring Information and Design Recommendation

FRA-70-22.85 PID: 96232 Foundation Design

						Nois	se W	all ID:	Noise	e W	all 2	2							
Boring ID	Boring STA. (ft)	Mid-Boring STA. (ft)	Boring Elev. (ft)	Shaft Elev. (ft)	Ex. Ground Elev. (ft)	Rock Elev. (ft)	Rock UCS (psi)	Post Spacing (ft)	Barrier Height (ft)	Cross Slope		ght Cross		From DS STA.	To DS STA.	From Post No.	To Post No.	DS Length (ft)	Bottom of DS Elev. (ft)
B-010-0-19	11+19.00	12+38.00	778.80	776.94	778.23	21.00		24	16.00	6.0	5:1	10+00.00	12+28.00	1	11	11.00	765.94		
B-011-0-19	13+57.00	14+64.00	782.70	780.94	783.21			24	16.00	5.0	5:1	12+52.00	14+48.00	12	21	9.00	771.94		
B-013-0-19	15+71.00	16+56.00	781.80	780.94	782.46			24	17.00	3.0	3:1	14+72.00	16+52.00	22	30	12.50	768.44		
B-014-0-19	17+41.00	18+37.50	781.40	784.94	783.48			24	15.00	2.0	2:1	16+76.00	18+32.00	31	39	10.00	774.94		
B-016-0-19	19+34.00	20+31.50	782.10	786.94	784.50			24	15.00	3.0	3:1	18+56.00	20+24.00	40	47	9.50	777.44		
B-018-0-19	21+29.00	22+27.50	784.60	786.94	785.23			24	15.00	3.0	3:1	20+48.00	22+16.00	48	55	9.50	777.44		
B-020-0-19	23+26.00	24+27.00	786.10	797.84	784.69			24	15.00	2.0	2:1	22+40.00	24+08.00	56	63	16.00	781.84		
B-021-0-19	25+28.00	26+33.00	786.40	783.00	785.10			24	15.00	2.0	2:1	24+32.00	26+24.00	64	72	10.00	773.00		
B-022-0-19	27+38.00	28+24.50	785.60	783.00	785.54			24	15.00	2.0	2:1	26+48.00	28+16.00	73	80	14.00	769.00		
B-024-0-19	29+11.00	29+97.50	787.60	783.00	787.88			24	15.00	2.0	2:1	28+40.00	29+84.00	81	87	14.00	769.00		
B-025-0-19	30+84.00	30+84.00	789.10	783.00	788.94			24	15.00	2.0	2:1	30+00.00	31+92.00	88	96	14.00	769.00		

Date prepared: 12/22/2022 Page 5 of 16

OHIO DEPARTMENT OF TRANSPORTATION

OFFICE OF GEOTECHNICAL ENGINEERING

Noise Wall Design

FRA-70-22.85 96232

Noise Wall Along IR 70 WB-CD Sta. 1598+97+94 to 1606+18

Noise Wall 4

Rii

Prepared By: Date prepared:

Peyman P. Majidi, PE

Thursday, February 3, 2022

Checked By:

Jonathan P. Sterenberg

Date Checked: Thursday, February 3, 2022

No. of Borings:

4

Boring Information and Design Recommendation

FRA-70-22.85 PID: 96232 Foundation Design

	Noise Wall ID: Noise Wall 4																
Boring ID	Boring STA. (ft)	Mid-Boring STA. (ft)	Boring Elev. (ft)	Shaft Elev. (ft)	Ex. Ground Elev. (ft)	Rock Elev. (ft)	Rock UCS (psi)	Post Spacing (ft)	Barrier Height (ft)	Cross Slope		From DS STA.	To DS STA.	From Post No.	To Post No.	DS Length (ft)	Bottom of DS Elev. (ft)
B-095-0-19	10+00.00	11+00.40	801.00	800.00	801.00			24	15.00	3.0	3:1	10+00.00	10+96.00	1	5	15.00	785.00
B-096-0-19	12+00.80	12+99.90	802.00	801.00	802.00			24	15.00	3.0	3:1	11+20.00	12+88.00	6	13	22.00	779.00
B-098-0-19	13+99.00	15+02.00	804.00	803.00	804.00			24	16.00	3.0	3:1	13+12.00	14+80.00	14	21	15.00	788.00
B-099-0-19	16+05.00	16+05.00	806.00	805.00	806.00			24	16.00	3.0	3:1	15+04.00	34+68.20	22	113	15.00	790.00

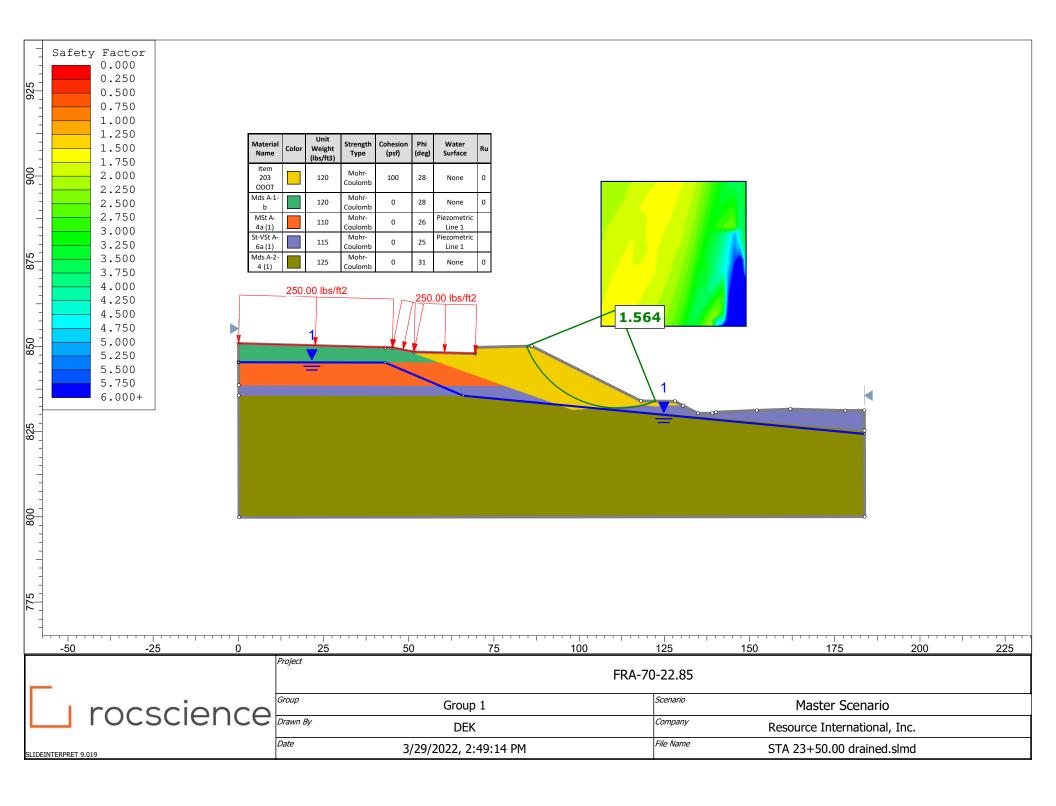
Date prepared: 2/3/2022

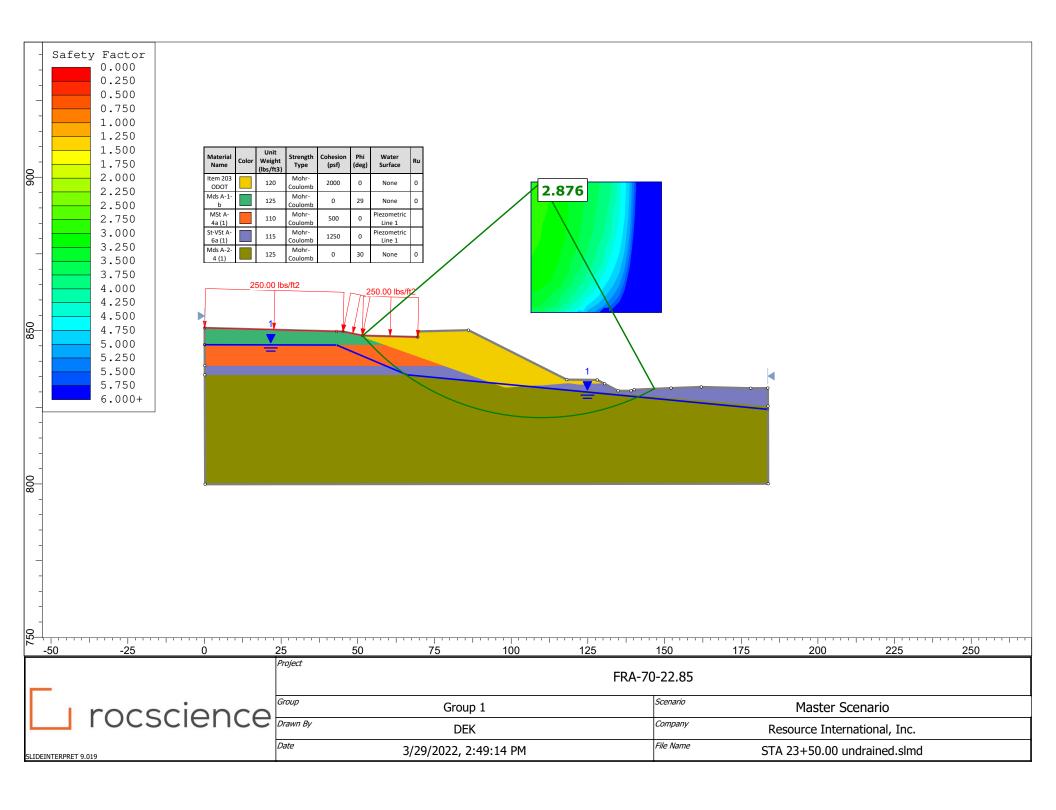
APPENDIX X

CALCULATIONS - EMBANKMENT SETTLEMENT

B-058-1-21 - FRA-70-22.85 Brice Road Embankment Settlement - Station 20+00 Calculated By: DEK Date: 3/30/2022 Checked By: JPS Date: 4/1/2022

Borings B-058-1-21 & B-059-1-21


H = 10.0 ft Embankment Height B = 53.0 ft Embankment Width to Midslope $D_w =$ 0.0 ft Depth Below Bottom of Embankment 125 pcf Unit Weight of Embankment $\gamma =$ 1,250 psf Applied Pressure from Embankment Loading


																	Total Embankment Settlement									
Layer	Soil Class.	Soil Type	Layer (1	Depth ft)	Layer Thickness H (ft)	Depth to Midpoint (ft)	γ (pcf)	σ _{vo} Bottom (psf)	σ _{vo} Midpoint (psf)	σ _{vo} ' Midpoint (psf)	σ _p ' ⁽¹⁾ (psf)	LL	C _c (2)	C _r ⁽³⁾	e _o ⁽⁴⁾	N ₆₀	(N1) ₆₀ (5)	C' ⁽⁶⁾	Z₁/B			1 (7)	Δσ _v ⁽⁸⁾ (psf)	σ _{vf} ' Midpoint (psf)	S _c ^(9,10) (ft)	S _c (in)
1	A-6A	С	0.0	2.0	2.0	1.0	115	230	115	53	3,053	30	0.170	0.017	0.498				0.02	-1.53	3.07	1.000	1,250	1,303	0.032	0.380
	A-6A	С	2.0	4.0	2.0	3.0	115	460	345	158	3,158	30	0.100	0.010	0.437				0.06	-1.46	2.92	0.999	1,249	1,407	0.013	0.159
	A-3a	G	4.0	5.0	1.0	4.5	125	585	523	242	3,242					13	22	71	0.08	-1.40	2.81	0.998	1,247	1,489	0.011	0.133
	A-3a	G	5.0	7.5	2.5	6.3	125	898	741	351	3,351					24	38	106	0.12	-1.34	2.68	0.995	1,243	1,595	0.016	0.186
	A-3a	G	7.5	10.0	2.5	8.8	125	1,210	1,054	508	3,508					24	35	98	0.17	-1.25	2.50	0.987	1,233	1,741	0.014	0.164
	A-2-4	G	10.0	12.5	2.5	11.3	125	1,523	1,366	664	3,664					25	34	112	0.21	-1.17	2.34	0.973	1,217	1,881	0.010	0.122
2	A-2-4	G	12.5	15.0	2.5	13.8	125	1,835	1,679	821	3,821					25	32	106	0.26	-1.09	2.18	0.956	1,194	2,015	0.009	0.110
	A-2-4	G	15.0	17.5	2.5	16.3	125	2,148	1,991	977	3,977					25	31	102	0.31	-1.02	2.04	0.934	1,167	2,144	0.008	0.101
	A-2-4	G	17.5	20.0	2.5	18.8	125	2,460	2,304	1,134	4,134					25	30	98	0.35	-0.96	1.91	0.908	1,135	2,269	0.008	0.092
	A-2-4	G	20.0	22.5	2.5	21.3	125	2,773	2,616	1,290	4,290					25	29	95	0.40	-0.89	1.79	0.880	1,101	2,391	0.007	0.084
	A-2-4	G	22.5	25.0	2.5	23.8	125	3,085	2,929	1,447	4,447					25	28	93	0.45	-0.84	1.68	0.851	1,064	2,511	0.006	0.077
1. σ ₀ ' = σ ₀	,'+σ _m Estima	te σ _m of 3.00	00 psf for mo	derately ove	rconsolidated	soil deposit:	Ref. Table	11.2. Coduto	2003														Total	Settlement:		1.608 in

- oderately overconsolidated soil deposit; Ref. Table 11.2, Coduto 2003
- C_c = 0.009(LL-10); Ref. Table 26, FHWA GEC 5
- 3. $C_r = 0.15(C_o)$ for medium stiff to stiff natural soil deposits and existing fill material, 0.075 to 0.10(C_o) for very stiff to hard natural soil deposits, and 0.05(C_o) for new embankment fill; Ref. Section 5.4.2.5 of FHWA GEC 5
- 4. e_o = (C_o/1.15)+0.35; Ref. Table 8-2, Holtz and Kovacs 1981
- 5. $(N1)_{60} = C_n N_{60}$, where $C_N = [0.77log(40/\sigma_{vo})] \le 2.0$ ksf; Ref. Section 10.4.6.2.4, AASHTO LRFD BDS
- 6. Bearing capacity index; Ref. Figure 10.6.2.4.2-1, AASHTO LRFD BDS
- 7. Influence factor for continuous footing
- 8. $\Delta \sigma_v = q_e(I)$
- $9. \ \ S_c = [C_d/(1+e_a)](h)|og(\sigma_d/\sigma_w)'for \ \sigma_p' \le \sigma_{w'} < \sigma_{w'}] \cdot (C_d/(1+e_a))(h)|og(\sigma_p/\sigma_w)' \circ \sigma_w' \le \sigma_p'; (E/(1+e_a))(h)|og(\sigma_p/\sigma_w)' \circ (1+e_a)(h)|og(\sigma_p/\sigma_w)' \circ (1+e_a)(h)|og(\sigma_d/\sigma_p') \circ (1+e_a)(h)|og(\sigma_d/\sigma_p')$
- 10. $S_c = H(1/C')log(\sigma_{vl}/\sigma_{vo})$; Ref. Section 10.6.2.4.2, AASHTO LRFD BDS (Granular soil layers)

APPENDIX XI

CALCULATIONS - SLOPE STABILITY ANALYSIS

