5-18.92

END PROJECT **LOCATION MAP** LATITUDE: 38°58'11" LONGITUDE: W82° 30'23" PORTION TO BE IMPROVED _____= INTERSTATE HIGHWAY FEDERAL ROUTES ________

COUNTY & TOWNSHIP ROADS _______

OTHER ROADS ______

DESIGN YEAR ADT (2042) 14,000 DESIGN HOURLY VOLUME (2042) ______ 1,400 DIRECTIONAL DISTRIBUTION 56%

NHS PROJECT ______ YES

ENGINEER'S SEAL:

DESIGN SPEED _____ 60 MPH

LEGAL SPEED _____ 60 MPH

BEGIN PROJECT

STATE OF OHIO DEPARTMENT OF TRANSPORTATION

JAC-35-18.92

BLOOMFIELD/MADISON TOWNSHIPS JACKSON COUNTY

INDEX OF SHEETS:

TITLE SHEET TYPICAL SECTIONS GENERAL NOTES MAINTENANCE OF TRAFFIC GENERAL SUMMARY PAVEMENT CALCULATIONS PAVEMENT MARKING SUB-SUMMARY PAVEMENT LINE DIAGRAM PAVEMENT DETAILS STRUCTURE (OVER 20' SPAN)

3-4 5-16 17-18. 18A 19 20 21 22. 22A 23-30, 25A, 26A

FEDERAL PROJECT NUMBER

RAILROAD INVOLVEMENT

NONE

PROJECT DESCRIPTION

THIS PROJECT CONSISTS OF PLANING AND RESURFACING 5.02 MILES OF U.S. ROUTE 35 IN JACKSON COUNTY FROM SLM 18 92 TO SLM 23.94. ALSO INCLUDED IN THIS PROJECT IS BRIDGE REHAB WORK AT THE SLM 18.92 BRIDGE. THIS WORK CONSISTS OF THE HYDRODEMOLITION OF THE DECK AND REPLACING THE OVERLAY AND CAPPING PARAPETS AND INSTALLING VANDAL

EARTH DISTURBED AREAS

PROJECT EARTH DISTURBED AREA: ESTIMATED CONTRACTOR EARTH DISTURBED AREA: 0.0 ACRES NOTICE OF INTENT EARTH DISTURBED AREA: N/A (NOI not required) * Routine Maintenance Project

LIMITED ACCESS

THIS IMPROVEMENT IS ESPECIALLY DESIGNED FOR THROUGH TRAFFIC AND HAS BEEN DECLARED A LIMITED ACCESS HIGHWAY OR FREEWAY BY ACTION OF THE DIRECTOR IN ACCORDANCE WITH THE PROVISIONS OF SECTION 5511.02 OF THE OHIO REVISED CODE.

2019 SPECIFICATIONS

THE STANDARD SPECIFICATIONS OF THE STATE OF OHIO. DEPARTMENT OF TRANSPORTATION, INCLUDING SUPPLEMENTAL SPECIFICATIONS LISTED IN THE PLANS AND CHANGES LISTED IN THE PROPOSAL SHALL GOVERN THIS IMPROVEMENT.

I HEARBY APPROVE THESE PLANS AND DECLARE THAT THE MAKING OF THIS IMPROVMENT WILL NOT REQUIRE THE CLOSING TO TRAFFIC OF THE HIGHWAY AND THAT PROVISIONS FOR THE MAINTENANCE AND SAFETY OF TRAFFIC WILL BE AS SET FORTH ON THE PLANS AND **ESTIMATES**

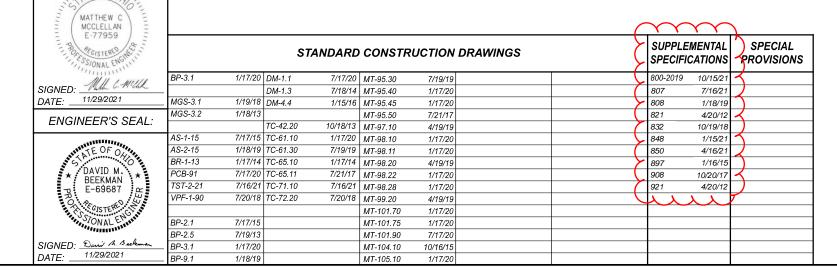
DESIGN EXCEPTIONS

OTHER PRINCIPAL ARTERIAL

DESIGN FUNCTIONAL CLASSIFICATION:

DESIGN DESIGNATION

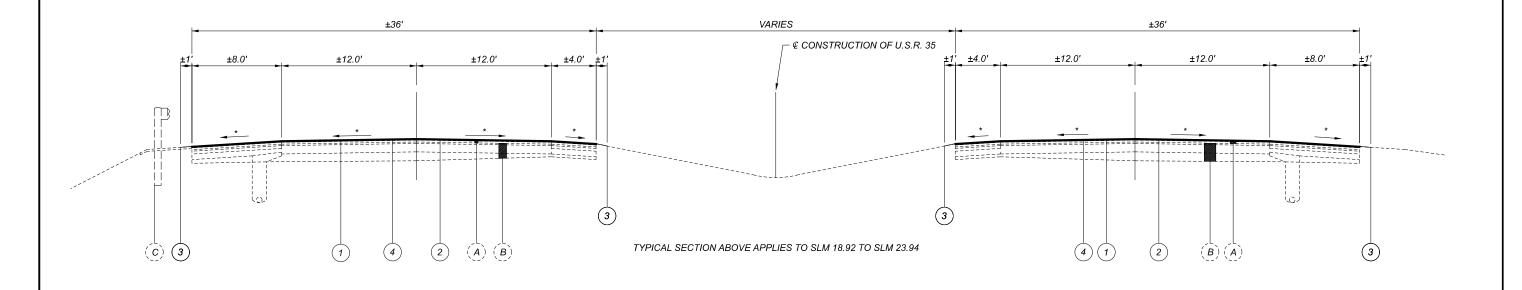
NONE REQUIRED


ADA DESIGN WAIVERS

NONE REQUIRED

PLAN PREPARED BY: OHIO DEPARTMENT OF TRANSPORTATION
DISTRICT 9

(Non members must be called directly)

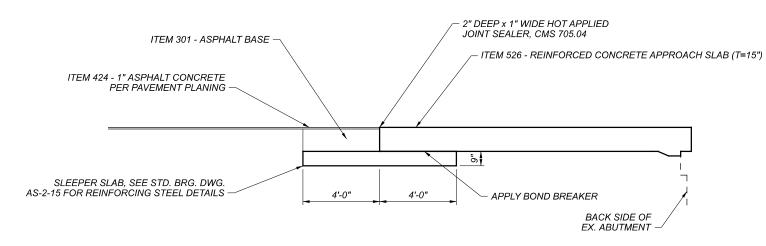

DATE 11-29-2021 DISTRICT DEPUTY DIRECTOR

APPROVED_ DATE DIRECTOR, DEPARTMENT OF TRANSPORTATION

JEM DMB

112993 P.1 30

NOTES:


* MATCH EXISTING PAVEMENT SLOPE

PROPOSED LEGEND:

- (1) ITEM 897 ¾" PAVEMENT PLANING, ASPHALT CONCRETE, CLASS A, AS PER PLAN
- (2) ITEM 424 1" FINE GRADED POLYMER ASPHALT CONCRETE, TYPE B
- (3) ITEM 617 COMPACTED AGGREGATE
- 4 ITEM 407 TACK COAT

EXISTING PAVEMENT LEGEND:

- (A) EXISTING ASPHALT CONCRETE PAVEMENT
- (B) EXISTING BASE
- (C) EXISTING TYPE 5 GUARDRAIL

APPROACH SLAB TYPE A INSTALLATION, AS PER PLAN

DESIGNER

JEM

REVIEWER

DMB

112993
SHEET TOTAL
P.2 30

UTILITIES

THERE ARE NO EXISTING UNDERGROUND UTILITY FACILITIES SHOWN ON THE PLANS, NOR WILL ANY EXISTING UNDERGROUND UTILITY FACILITIES BE RELOCATED FOR THE PROJECT. THE NATURE OF THE WORK REQUIRED BY THIS PROJECT WILL NOT AFFECT ANY UTILITIES THAT MAY EXIST WITHIN THE WORK AREA. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO IDENTIFY POTENTIAL UTILITY CONFLICTS, BY VISUAL INSPECTION AND BY CONTACTING THE OHIO UTILITIES PROTECTION SERVICE (OHIO 811) FOR FIELD MARKINGS OF THE UNDERGROUND UTILITIES. THE CONTRACTOR SHALL CONTACT AND COORDINATE WITH THE OWNERS TO RESOLVE ALL UTILITY CONFLICTS PRIOR TO CONSTRUCTION OR, WITH THE APPROVAL OF THE PROJECT ENGINEER, THE CONTRACTOR SHALL ADJUST THE PROJECT CONSTRUCTION ACCORDINGLY, SO AS TO AVOID DAMAGE TO THE EXISTING UTILITY FACILITIES.

THE UTILITY CONTACT INFORMATION FOR THE PROJECT CAN BE OBTAINED THROUGH THE ODOT DISTRICT 9 UTILITY COORDINATOR AT 740-774-9075

PART-WIDTH CONSTRUCTION

BECAUSE OF THE NECESSITY TO BUILD THIS PROJECT UNDER TRAFFIC AND TO CONSTRUCT THE FULL PAVEMENT WIDTH IN STAGES. EXERCISE CARE TO PREVENT THE CONSTRUCTION OF A BUTT JOINT IN THE BASE COURSES, LAP LONGITUDINAL JOINTS AS SHOWN ON STANDARD CONSTRUCTION DRAWING BP-3.1.

ITEM 254- PATCHING PLANED SURFACE

THIS ITEM SHALL BE IN ACCORDANCE WITH SECTION 254 OF THE CONSTRUCTION AND MATERIALS SPECIFICATIONS AND AS DIRECTED BY THE ENGINEER.

ESTIMATED QUANTITIES HAVE BEEN PROVIDED FOR THE FOLLOWING WORK: ITEM 254 PATCHING PLANED SURFACE 42,720 SQ.YD.

ITEM 606 - IMPACT ATTENUATOR, TYPE 1 (UNIDIRECTIONAL OR BIDIRECTIONAL)

THIS ITEM SHALL CONSIST OF FURNISHING AND INSTALLING ANY ONE OF THE TYPE 1 IMPACT ATTENUATORS AS LISTED ON THE OFFICE OF ROADWAY ENGINEERING'S WEB PAGE. INSTALLATION SHALL BE AT THE LOCATIONS SPECIFIED IN THE PLANS, IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

PAYMENT FOR THE ABOVE WORK SHALL BE MADE AT THE UNIT PRICE BID FOR ITEM 606. IMPACT ATTENUATOR. TYPE 1 (UNIDIRECTIONAL OR BIDIRECTIONAL), EACH, AND SHALL INCLUDE ALL LABOR, TOOLS, EQUIPMENT AND MATERIALS NECESSARY TO CONSTRUCT A COMPLETE AND FUNCTIONAL IMPACT ATTENUATOR SYSTEM, INCLUDING ALL RELATED TRANSITIONS, HARDWARE, REFLECTIVE SHEETING AND GRADING, NOT SEPARATELY SPECIFIED. AS REQUIRED BY THE MANUFACTURER.

ITEM 251 - PARTIAL DEPTH PAVEMENT REPAIR (442), AS PER PLAN

ALL CONSTRUTION REQUIREMENTS OF 2019 CMS ITEM 251 SHALL

THE MINIMUM DIMENSION FOR TRANSVERSE REPAIRS SHALL BE 4', THE MINIMUM FOR LONGITUDINAL REPAIRS SHALL BE 2'. THIS ITEM SHALL COMMENCE PRIOR TO RESURFACING MATERIAL FOR REPAIR AREAS SHALL BE ITEM 442 SURFACE COURSE, 12.5MM, TYPE A (448) IN TWO LIFTS, FOLLOWING THE APPLICATION OF ITEM 407 TACK COAT. REMOVE EXISITING SURFACE TO A UNIFORM DEPTH OF 4.50". TRIM AS NEEDED WHERE ROUNDED TO PROVIDE VERTICAL FACES A LONG THE PERIMETER OF THE REPAIR AREA. THOROUGHLY COMPACT ENTIRE AREA.

THE SMOOTHNESS OF ASPHALT REPAIRS CAN NOT EXCEED 0.25" FROM THE TESTING EDGE OF A TEN FOOT STRAIGHTEDGE. THE CONTRACTOR IS REQUIRED TO PROVIDE STRAIGHTEDGE THAT IS SATISFACTORY TO THE ENGINEER, CORRECT VARIATIONS IN EXCESS OF SURFACE TOLERANCE BY RECONSTRUCTING REPAIRS OR SURFACE GRINDING IN A MANNER SATISFACTORY TO THE ENGINEER AT NO ADDITIONAL COST TO THE STATE.

PAYMENT FOR ALL LABOR, MATERIALS, AND EQUIPMENT REQUIRED TO PERFORM THE WORK OUTLINED ABOVE SHALL BE INCLUDED IN THE SQUARE YARD CONTRACT PRICE FOR ITEM 251 PARTIAL DEPTH PAVEMENT REPAIR (442), AS PER PLAN. THE FOLLOWING ESTIMATED QUANTITY HAS BEEN CARRIED TO THE GENERAL SUMMARY FOR USE AS DESIGNATED BY THE ENGINEER.

ITEM 251, PARTIAL DEPTH REPAIR (442), AS PER PLAN 1500 SQ.YD.

IN ADDITION TO CMS 621.03, RPM'S SHALL NOT BE INSTALLED ON BRIDGES OR APPROACH SLABS THAT HAVE A CONCRETE SURFACE. INSTALL RPM'S IN ASPHALT CONCRETE BEFORE AND AFTER THE SUPERSTRUCTURE. RPM'S LOCATED IN EXISTING CONCRETE BRIDGE DECKS OR APPROACH SLABS SHALL BE LEFT IN PLACE.

CLEARING AND GRUBBING

ALTHOUGH THERE ARE NO TREES OR STUMPS SPECIFICALLY MARKED FOR REMOVAL WITHIN THE LIMITS OF THE PROJECT, A LUMP SUM QUANTITY IS INCLUDED IN THE GENERAL SUMMARY FOR ITEM 201, CLEARING AND GRUBBING. ALL PROVISIONS AS SET FORTH IN THE SPECIFICATIONS UNDER THIS ITEM ARE INCLUDED IN THE LUMP SUM PRICE BID FOR ITEM 201, CLEARING AND GRUBBING.

ITEM 897- PAVEMENT PLANING, ASPHALT CONCRETE, CLASS A, AS PER PLAN

THIS ITEM SHALL BE IN ACCORDANCE WITH SECTION 897 OF THE CONSTRUCTION AND MATERIALS SPECIFICATIONS AND AS DIRECTED BY THE ENGINEER.

ESTIMATED QUANTITIES HAVE BEEN PROVIDED FOR THE FOLLOWING WORK: 1.0" MAX. - PLANING FOR BUTT JOINTS:

PLAN INTENT IS TO PROVIDE A SMOOTH RIDING PAVEMENT TRANSITION FROM THE PROPOSED PAVEMENT TYPICAL SECTION TO MEET THE EXISTING PAVEMENT OR BRIDGE DECK AND APPROXIMATE 0.25" FI EVATION TRANSITION IN THE PAVEMENT PROFILE IN ACCORDANCE WITH STANDARD DRAWING BP-3.1 DETAIL FOR "BUTT JOINT" EXCEPT THAT THE MINIMUM LENGTH OF THE BUTT JOINT SHALL BE 50 FOOT PER INCH OF PROPOSED OVERLAY. DEPTH OF PLANING IS VARIABLE FROM A MINIMUM OF 0.75" TO A MAXIMUM OF 1.0"

 $\sim\sim\sim\sim\sim\sim\sim$

- 1.0" - PLANING AT BRIDGES SFN 4000579, 4000609:

PLAN INTENT IS TO PROVIDE A SMOOTH RIDING PAVEMENT TRANSITION AND TO NOT INCREASE THE DEPTH OF THE WEARING COURSE ON THE BRIDGE AND APPROACH SO THAT THE DEAD LOAD ON THE BRIDGE IS NOT INCREASED. PLANING OF BRIDGE DECKS AND APPROACH SLABS SHALL BE FULL WIDTH OF BRIDGE AND APPROACH SLABS AT THE UNIFORM DEPTH OF 1.0" AND VARIABLE ON APPROACH PAVEMENT FROM A MINIMUM OF 0.75" TO A MAXIMUM OF 1.0" IN ACCORDANCE WITH STANDARD DRAWING BP-3.1 DETAIL FOR "FEATHERING AT STRUCTURE" EXCEPT THAT THE MINIMUM LENGTH OF THE"FEATHER" SHALL BE 50 FOOT PER INCH OF PROPOSED OVERLAY ON THE APPROACH PAVEMENT TO THE BRIDGE.

1.0" MAX- PLANING AT THE VEGA ROAD OVERHEAD BRIDGE (SFN 4000692) EASTBOUND AND WESTBOUND.

PLAN INTENT IS TO MAINTAIN EXISTING VERTICAL CLEARANCES.

PRIOR TO PLANING U.S.R. 35 UNDER THE ABOVE MENTIONED OVERHEAD PASS, THE EXISTING VERTICAL CLEARANCES SHALL BE . CHECKED AND RECORDED AT EACH BEAM ALONG EDGE LINES AND CENTERLINE OF PAVEMENT. MINIMUM DEPTH OF MILLING UNDER BRIDGE AND ON APPROACHES TO BRIDGE SHALL BE ADJUSTED TO ASSURE THAT THE EXISTING VERTICAL CLEARANCE IS MAINTAINED.

AFTER PAVING IS COMPLETED THE VERTICAL CLEARANCES SHALL BE CHECKED AND RECORDED AT EACH BEAM ALONG EDGE LINES AND CENTERLINE OF PAVEMENT. IF THESE VERTICAL CLEARANCES ARE LESS THAN THE EXISTING VERTICAL CLEARANCES RECORDED ABOVE. THE CONTRACTOR SHALL PERFORM ADDITIONAL CORRECTIVE WORK UNTIL MEASUREMENTS ARE EQUAL TO OR GREATER THAN THE EXISTING VERTICAL CLEARANCES.

INTERIM COMPLETION DATES FOR PAVEMENT PLANING

TRAFFIC SHALL NOT BE REQUIRED TO USE ANY PLANED ROADWAY SURFACE FOR MORE THAN TWENTY-ONE (21) CALENDAR DAYS. SHOULD THE CONTRACTOR FAIL TO MEET THIS REQUIREMENT, DISINCENTIVES SHALL BE ASSESSED IN THE AMOUNT OF \$1000 FOR EACH CALENDAR DAY OR PORTION OF THEREOF BEYOND THE 21 CALENDAR DAYS.

ITEM 617 - COMPACTED AGGREGATE

THE FOLLOWING ESTIMATED QUANTITY OF ITEM 617 - COMPACTED AGGREGATE HAS BEEN CARRIED TO THE GENERAL SUMMARY FOR USE TO FILL ANY LOW BERM AREAS AS DIRECTED BY THE ENGINEER.

ITEM 617 - COMPACTED AGGREGATE

350 CY

SEEDING AND MULCHING

THE FOLLOWING QUANTITIES ARE PROVIDED TO PROMOTE GROWTH. CARE OF PERMANENT SEEDED AREAS AT SPRING DRAIN AND SHOULDER REPLACEMENT AREA AT S.L.M. 19.861 AND GROUND AROUND GUARDRAIL REPLACEMENT:

659, SEEDING AND MULCHING 1156 SQ. YD. 175' x 8' +9000= 10 400 SE / 9 SE/SQ = 1156 SY

659, COMMERCIAL FERTILIZER 0.104 TON

10,400 SF * 20 LBS / 1000 SF = 208 LBS / 2000 LBS / TON

659, LIME 0.239 ACRES 10,400 SF / 43,560 SF / ACRE = 0.239 659, WATER 0.840 M. GAL.

> 10,400 SF * 300 GAL / 1000 SF = 3,120 GAL 2ND APPLICATION @ 300 GAL PER 1000 SF = 3,120 GAL TOTAL = 840 GAL / 1000 GAL/M GAL = 6.240 M.GAL.

SEEDING AND MULCHING SHALL BE APPLIED TO ALL AREAS OF EXPOSED SOIL AT SPRING DRAIN AND SHOULDER REPLACEMENT -

PROFILE AND ALIGNMENT

PLACE THE PROPOSED PAVEMENT TO FOLLOW THE ALIGNMENT AND PROFILE OF THE EXISTING PAVEMENT. PLACE THE PROPOSED ASPHALT CONCRETE OVERLAY AS SHOWN ON THE TYPICAL SECTIONS.

FULL DEPTH PAVEMENT SAWING

AN ESTIMATED QUANTITY FOR FULL DEPTH PAVEMENT SAWING HAS BEEN CALCULATED AND CARRIED TO THE GENERAL SUMMARY. THIS QUANTITY INCLUDES FULL DEPTH PAVEMENT SAWING FOR THE FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT.

ITEM 255 FULL DEPTH PAVEMENT SAWING: 900 LF CALCULATED BY: PAVEMENT JOINT REPAIR: (6'+24'+6'+24') x 15' = 900'

JFM DMB

P.3 30

112993

5-18.

FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS QC/MS, AS PER PLAN CONT'D

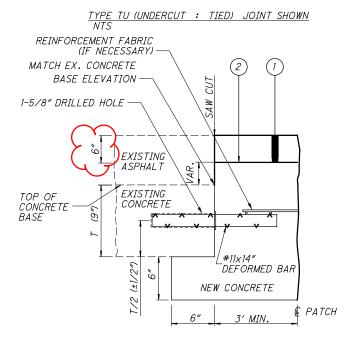
ALL OF THE CONSTRUCTION REQUIREMENTS OF THE CMS FOR ITEM 255 SHALL APPLY.

FULL DEPTH PAVEMENT REPAIRS WILL BE CONSTRUCTED USING THE UNDERCUT DETAILS SHOWN HERE AND ON SCD BP-2.5 AND

ONE TU TYPE JOINT AND ONE YU TYPE JOINT WILL BE REQUIRED AT EACH REPAIR LOCATION.

NECESSARY PAVEMENT REPAIRS THAT ARE DISCOVERED AT MID-SLAB LOCATIONS SHALL BE TREATED WITH A TU TYPE JOINT AT EACH END.

COMPLETED REPAIRS SHALL BE THE FULL LANE WIDTH OF THE EXISTING CONCRETE PAVEMENT WITH REPAIR LENGTH AND LOCATION DETERMINED BY THE ENGINEER.


EACH CONCRETE REPAIR SHALL BE COVERED WITH 6" OF ITEM 301, ASPHALT CONCRETE BASE, PG64-22.

THE SMOOTHNESS OF ASPHALT REPAIRS CANNOT EXCEED 1/4" FROM THE TESTING EDGE OF A 10 FOOT STRAIGHT EDGE THAT IS SATISFACTORY TO THE ENGINEER. CORRECT VARIATIONS IN EXCESS OF SURFACE TOLERANCES BY SURFACE GRINDING IN A MANNER SATISFACTORY TO THE ENGINEER AT NO ADDITIONAL COST TO THE STATE.

IN ADDITION TO THE QUANTITIES IN 255.10, THE ESTIMATED QUANTITY LISTED BELOW HAVE BEEN INCLUDED AND CARRIED TO THE GENERAL SUMMARY FOR USE AS DIRECTED BY THE ENGINEER.

ITEM 255: FULL DEPTH PAVEMENT REMOVAL AND RIGID REPLACEMENT, CLASS QC/MS, AS PER PLAN

FULL DEPTH REPAIR DETAILS (PRIOR TO MILL & FILL)

TYPE YU (UNDERCUT : CONTRACTION) JOINT SHOWN

LEGEND

- 301 6" ASPHALT CONCRETE BASE, PG64-22
- 407 NON-TRACKING TACK COAT (0.085 GAL/SY)

PAVING UNDER GUARDRAIL

THIS OPERATION SHALL INCLUDE PREPARATION OF THE GRADED SHOULDER USING ITEM 209, LINEAR GRADING, AS PER PLAN AND PAVING UNDER THE GUARDRAIL USING 441 ASPHALT CONCRETE INTERMEDIATE COURSE, TYPE 1, (448), UNDER GUARDRAIL, AS PER PLAN.

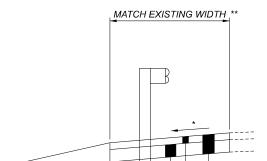
ITEM 209, LINEAR GRADING, AS PER PLAN SHALL CONSIST OF EXCAVATING TOPSOIL, AND PLACING GRANULAR MATERIAL.

ALL COLLECTED DEBRIS AND TOPSOIL, INCLUDING RHIZOMES, ROOTS AND OTHER VEGETATIVE PLANT MATERIAL SHALL BE REMOVED AND DISPOSED OF AS SPECIFIED IN 105.17.

THE REMOVED MATERIAL SHALL BE REPLACED WITH COMPACTABLE GRANULAR MATERIAL CONFORMING TO 703.16 PLACED TO GRADE AS DETAILED ON THE TYPICAL SECTION OR AS APPROVED BY THE ENGINEER.

ALL EQUIPMENT, MATERIALS AND LABOR REQUIRED TO PERFORM THE WORK OUTLINED ABOVE SHALL BE INCLUDED FOR PAYMENT UNDER ITEM 209, LINEAR GRADING, AS PER PLAN.

PAVING UNDER GUARDRAIL SHALL CONSIST OF PLACING ITEM 441 TO THE DEPTH SPECIFIED USING ONE OF THE FOLLOWING METHODS:


METHOD A:

- 1. SET GUARDRAIL POSTS
- 2. PLACE ITEM 441

METHOD B:

- 1. PLACE ITEM 441
- 2. BORE ASPHALT AT POST LOCATIONS (MAY BE OMITTED IF STEEL POSTS ARE USED)
- 3. SET GUARDRAIL POSTS
- 4. PATCH AROUND POSTS. THE MATERIALS USED FOR PATCHING SHALL BE AN ASPHALT CONCRETE APPROVED BY THE ENGINEER. PATCHED AREAS SHALL BE COMPACTED USING EITHER HAND OR MECHANICAL METHODS. FINISHED SURFACES SHALL BE SMOOTH AND SLOPED TO DRAIN AWAY FROM THE POSTS.

ALL EQUIPMENT, MATERIALS AND LABOR REQUIRED TO PERFORM THE WORK OUTLINED ABOVE. WITH THE EXCEPTION OF SETTING GUARDRAIL POSTS, SHALL BE INCLUDED FOR PAYMENT UNDER ITEM 441, ASPHALT CONCRETE, INTERMEDIATE COURSE, TYPE 1 (448), UNDER GUARDRAIL, AS PER PLAN.

- MATCH THE EXISTING CROSS SLOPES
- 5'-0" WAS USED FOR CALCULATION PURPOSES

(4)

ITEM 606 - GUARDRAIL, TYPE MGS

 $2 \times (450'+62.5'+50'+12.5'+62.5'+25'+32.5') = 1390'$

ITEM 209 - LINEAR GRADING, AS PER PLAN

1390' / 5280' / MILE = 0.27 MILE

ITEM 209 - 4" BORROW

PAVING UNDER GUARDRAIL

 $2 \times 695' \times 5' \times (4''/12') = 85.8 \text{ CY}$

ITEM 441 - 2" ASPHALT CONCRETE, INTERMEDIATE COURSE, TYPE 1 (448), UNDER GUARDRAIL, AS PER PLAN

2 x 695' x 5' x (2"/12') = 1158.4 CY

ITEM 202 - PAVEMENT REMOVED

 $2 \times 695' \times 5' / 9 = 774 \text{ SY}$

JEM DMB

112993 P.4 30

35-18.92

5-18.

ITEM 614, MAINTAINING TRAFFIC

A MINIMUM OF ONE LANE OF TRAFFIC IN EACH DIRECTION SHALL BE MAINTAINED AT ALL TIMES BY USE OF THE EXISTING PAVEMENT AND THE COMPLETED PAVEMENT.

BEFORE THE WORK BEGINS, THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER THE NAME(S) AND TELEPHONE NUMBER(S) OF A PERSON OR PERSONS WHO CAN BE CONTACTED TWENTY-FOUR (24) HOURS PER DAY BY THE OHIO DEPARTMENT OF TRANSPORTATION AND ALL INTERESTED POLICE AGENCIES. THIS PERSON OR PERSONS SHALL BE RESPONSIBLE FOR PLACING OR REPLACING NECESSARY TRAFFIC CONTROL DEVICES IN ACCORDANCE WITH THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES.

THROUGHOUT THE DURATION OF THE PROJECT, THE CONTRACTOR SHALL NOTIFY THE PROJECT ENGINEER IN WRITING OF ALL TRAFFIC RESTRICTIONS AND UPCOMING MAITENANCE OF TRAFFIC CHANGES. THE CONTRACTOR SHALL ENSURE THE WRITTEN NOTIFICATION IS SUBMITTED IN A TIMELY MANNER TO ALLOW THE PROJECT ENGINEER TO MEET THE REQUIRED TIME FRAMES SET FORTH IN THE TABLE BELOW TO INFORM SPECIAL HAULING PERMITS SECTION (HAULING. PERMITS@DOT.OHIO.GOV) AND THE DISTRICT PUBLIC INFORMATION OFFICE. THIS NOTIFICATION SHALL BE RECIEVED BY THE PROJECT ENGINEER PRIOR TO THE PHYSICAL SETUP OF ANY APPLICABLE SIGNS OR MESSAGE BOARDS

INFORMATION SHOULD INCLUDE, BUT IS NOT LIMITED TO, ALL AND SHALL LIST THE SPECIFIC LOCATION, TYPE OF WORK, ROAD STATUS, DATE AND TIME OF INSPECTION, DURATION OF RESTRICTION. NUMBER OF LANES MAINTAINED, NUMBER OF LANES CLOSED, MINIMUM VERTICAL CLEARANCE, MINIMUM WIDTH OF DRIVEABLE PAVEMENT DETOUR ROUTES, IF APPLICABLE, AND ANY OTHER INFORMATION REQUESTED BY THE PROJECT ENGINEER.

NOTIFICATION TIME TABLE

DURATION OF CLOSURE	NOTICE DUE TO PERMITS & PIO
>= 2 WEEKS	21 CALENDAR DAYS PRIOR TO CLOSURE
> 12 HOURS & <2 WEEKS	14 CALENDAR DAYS PRIOR TO CLOSURE
<= 2 WEEKS	4 DAYS PRIOR TO CLOSURE
>= 2 WEEKS	14 CALENDAR DAYS PRIOR TO CLOSURE
< 2 WEEKS	5 CALENDAR DAYS PRIOR TO CLOSURE
N/A	14 CALENDAR DAYS PRIOR TO CLOSURE
	CLOSURE >= 2 WEEKS > 12 HOURS & <2 WEEKS <= 2 WEEKS >= 2 WEEKS < 2 WEEKS

ANY UNFORSEEN CONDITIONS NOT SPECIFIED IN THE PLANS REQUIRING TRAFFIC RESTRICTIONS SHALL ALSO BE REPORTED TO THE PROJECT ENGINEER USING THE NOTIFICATION TIME TABLE.

THE CONTRACTOR SHALL ARRANGE FOR ALL MAITENANCE OF TRAFFICOPERATIONS SUCH THAT THERE WILL BE NO OBSTRUCTIONS TO THE CONTINUOUS FLOW OF TRAFFIC. ALL INTERSECTIONS AND DRIVEWAYS SHALL BE OPEN TO TRAFFIC AT ALL TIMES UNLESS OTHERWISE SHOWN IN THE PLAN

ITEM 614. MAINTAINING TRAFFIC CONT'D

NO WORK SHALL BE PERFORMED AND ALL EXISTING LANES SHALL BE OPEN TO TRAFFIC EXCEPT LANE CLOSURES WITH PORTABLE BARRIER DURING THE FOLLOWING DESIGNATED HOLIDAYS OR EVENTS:

CHRISTMAS FOURTH OF JULY NEW YEAR'S LABOR DAY MEMORIAL DAY THANKSGIVING (OTHER HOLIDAY OR EVENT)

THE PERIOD OF TIME THAT THE LANES ARE TO BE OPEN DEPENDS ON THE DAY OF THE WEEK ON WHICH THE HOLIDAY OR EVENT FALLS. THE FOLLOWING SCHEDULE SHALL BE USED TO DETERMINE THIS PERIOD:

DAY OF HOLIDAY TIME ALL LANES OR EVENT MUST BE OPEN TO TRAFFIC

SUNDAY 12:00N FRIDAY THROUGH 6:00AM MONDAY MONDAY 12:00N FRIDAY THROUGH 6:00AM TUESDAY TUESDAY 12:00N MONDAY THROUGH 6:00AM WEDNESDAY WEDNESDAY 12:00N TUESDAY THROUGH 6:00AM THURSDAY THURSDAY 12:00N WEDNESDAY THROUGH 6:00AM FRIDAY THURSDAY (THANKSGIVING ONLY)

6:00AM WEDNESDAY THROUGH 6:00AM MONDAY FRIDAY 12:00N THURSDAY THROUGH 6:00AM MONDAY SATURDAY 12:00N FRIDAY THROUGH 6:00AM MONDAY

SHOULD THE CONTRACTOR FAIL TO MEET ANY OF THESE REQUIREMENTS, THE CONTRACTOR SHALL BE ASSESSED A DISINCENTIVE PER THE LANE VALUE CONTRACT (PN 127).

 \sim

LANE VALUE CONTRACT TABLE

-	DESCRIPTION OF CRITICAL LANE	TIME UNIT	DISINCENTIVE \$ PER TIME UNIT
•	1 LANE EB & WB OF JAC US-35 FROM SLM 18.92 TO SLM 23.94	EACH MINUTE	\$75.00

LENGTH AND DURATION OF LANE CLOSURES AND RESTRICTIONS SHALL BE AT THE APPROVAL OF THE ENGINEER. IT IS THE INTENT TO MINIMIZE THE IMPACT TO THE TRAVELING PUBLIC, LANE CLOSURES OR RESTRICTIONS OVER SEGMENTS OF THE PROJECT IN WHICH NO WORK IS ANTICIPATED WITHIN A REASONABLE TIME FRAME, AS DETERMINED BY THE ENGINEER, SHALL NOT BE PERMITTED. THE LEVEL OF UTILIZATION OF MAITENANCE OF TRAFFIC DEVICES SHALL BE COMMENSURATE WITH THE WORK IN PROGRESS.

ALL WORK AND TRAFFIC CONTROL DEVICES SHALL BE IN ACCORDANCE WITH C&MS 614 AND OTHER APPLICABLE PORTIONS OF THE SPECIFICATIONS, AS WELL AS THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES. PAYMENT FOR ALL LABOR, EQUIPMENT AND MATERIALS SHALL BE INCLUDED IN THE LUMP SUM CONTRACT PRICE FOR ITEM 614. MAINTAINING TRAFFIC. UNLESS SEPARATELY ITEMIZED IN THE

SUGGESTED CONSTRUCTION SEQUENCE

THE FOLLOWING IS A SUGGESTED SEQUENCE FOR MAINTENANCE OF TRAFFIC AND CONSTRUCTION FOR THE STRUCTURE JAC-35-1892 L&R ON THIS PROJECT. SEE SHEET 16 FOR ADDITIONAL DETAILS AND QUANTITIES ASSOCIATED WITH THE FOLLOWING PHASES. FOR DETAILS NOT SHOWN ON THESE PLANS, CONSULT THE APPROPRIATE STANDARD CONSTRUCTION DRAWINGS.

PHASE 1: SET UP TRAFFIC CONTROL IN ACCORDANCE WITH SCD MT-95.30 AND PERFORM PAVEMENT PLANING AND RESURFACING ON THE EXISTING SHOULDERS AS DISCUSSED ON THIS SHEET.

PHASE 2: SET UP TRAFFIC CONTROL IN ACCORDANCE WITH SCD MT-95.40 AND AS SHOWN ON SHEETS 8-11 TO CLOSE THE DRIVING LANES OF BOTH EASTBOUND AND WESTBOUND TRAFFIC ON U.S.R. 35. CONSTRUCT PHASE 1 PORTION OF THE STRUCTURE JAC-35-1892 WITH THE EXCEPTION OF THE ASPHALT CONCRETE SURFACE COURSE

PHASE 3: SET UP TRAFFIC CONTROL IN ACCORDANCE WITH SCD MT-95.40 AND AS SHOWN ON SHEETS 12-15 TO CLOSE THE PASSING LANES OF BOTH EASTBOUND AND WESTBOUND TRAFFIC ON U.S.R. 35. CONSTRUCT PHASE 2 PORTION OF THE STRUCTURE JAC-35-1892 WITH THE EXCEPTION OF THE ASPHALT CONCRETE SURFACE

PHASE 4: SET UP TRAFFIC CONTROL IN ACCORDANCE WITH SCD MT-95.30 AND PERFORM PAVEMENT PLANING. PLACE REMAINING ASPHALT CONCRETE COURSES, AND PLACE THE PERMANENT PAVEMENT MARKINGS.

WORK ZONE SPEED ZONES (WZSZS)

THE FOLLOWING WORK ZONE SPEED ZONE (WZSZ) SPEED LIMIT REVISION(S) HAVE BEEN APPROVED FOR USE ON THIS PROJECT WHEN WORK ZONE CONDITIONS AND FACTORS ARE MET AS DESCRIBED BELOW.

WZSZ REVISION NUMBER(S) COUNTY-ROUTE-SECTION(S) DIRECTION(S)

POTENTIAL WZSZ LOCATIONS SHALL HAVE AN ORIGINAL (PRE-CONSTRUCTION) POSTED SPEED LIMIT OF 55 MPH OR GREATER. A QUALIFYING WORK ZONE CONDITION OF AT LEAST 0.5 MILE IN LENGTH, AN EXPECTED WORK DURATION OF AT LEAST THREE HOURS, AND A WORK ZONE CONDITION IN PLACE THAT REDUCES THE EXISTING FUNCTIONALITY OF THE TRAVEL LANES OR SHOULDERS (I.E., LANE CLOSURE, LANE SHIFT, CROSSOVER, CONTRAFLOW AND/OR SHOULDER CLOSURE). THE LENGTH OF THE WORK ZONE CONDITION IS MEASURED FROM THE BEGINNING OF THE TAPER FOR THE SUBJECT WORK ZONE CONDITION IMPACTING THE TRAVEL LANES AND/OR SHOULDER TO THE END OF THE DOWNSTREAM TAPER, WHERE DRIVERS ARE RETURNED TO TYPICAL ALIGNMENT, AN EXPECTED WORK DURATION OF AT LEAST THREE HOURS IS REQUIRED TO BALANCE THE ADDITIONAL EXPOSURE CREATED BY INSTALLING AND REMOVING WZSZ SIGNING WITH THE TIME NEEDED TO COMPLETE THE WORK.

IF THE WORK ZONE MEETS THESE MINIMUM CRITERIA, IT SHALL BE ANALYZED FURTHER USING TABLE 1 BELOW TO DETERMINE IF AND WHEN IT QUALIFIES FOR A SPEED LIMIT REDUCTION. DEPENDING ON THE ORIGINAL POSTED SPEED LIMIT, THE TYPE OF TEMPORARY TRAFFIC CONTROL USED, AND WHETHER OR NOT WORKERS ARE PRESENT, A WARRANTED WZSZ WILL VARY IN THE APPROVED SPEED LIMIT TO BE POSTED OVER TIME.

WORK ZONE SPEED ZONES (WZSZS) CONT'D

C&MS ITEM 614. PARAGRAPH 614.02(B), INDICATES THAT TWO DIRECTIONS OF A DIVIDED HIGHWAY ARE CONSIDERED SEPARATE HIGHWAY SECTIONS. THEREFORE. IF THE WORK ON A MULTI-LANE DIVIDED HIGHWAY IS LIMITED TO ONLY ONE DIRECTION, A SPEED LIMIT REDUCTION IN THE DIRECTION OF THE WORK DOES NOT AUTOMATICALLY CONSTITUTE A SPEED LIMIT REDUCTION IN THE OPPOSITE DIRECTION. EACH DIRECTION SHALL BE ANALYZED INDEPENDENTLY FROM EACH OTHER.

ALL WZSZS FLUCTUATE BETWEEN TWO APPROVED REDUCED SPEED LIMITS OR BETWEEN AN APPROVED REDUCED SPEED LIMIT AND THE ORIGINAL POSTED SPEED LIMIT. ONLY ONE OF TWO SIGNING STRATEGIES SHALL BE USED TO IMPLEMENT A

[WZSZS USING DSL SIGN ASSEMBLIES SHALL BE IN ACCORDANCE WITH THIS NOTE, APPROVED LIST, SUPPLEMENTAL SPECIFICATIONS • (SS) 808 AND 908, AND TRAFFIC SCD MT-104.10.]

ONLY ONE WARRANTED SPEED LIMIT APPLIES AT ANY ONE TIME; SPEED LIMIT REDUCTIONS ARE NOT CUMULATIVE. WZSZS SHALL NOT BE USED FOR MOVING/MOBILE ACTIVITIES, AS DEFINED IN OMUTCD PART 6.

WHEN LOOKING UP THE WARRANTED WORK ZONE SPEED LIMITS. ALWAYS USE THE ORIGINAL PRECONSTRUCTION POSTED SPEED LIMIT. DO NOT USE A PRIOR OR CURRENT WORK ZONE SPEED LIMIT AS A LOOK UP VALUE IN THE TABLE. POSITIVE PROTECTION IS GENERALLY REGARDED AS PORTABLE BARRIER OR OTHER RIGID BARRIER IN USE ALONG THE WORK AREA WITHIN THE SUBJECT WARRANTED WORK ZONE CONDITION. WITHOUT POSITIVE PROTECTION IS GENERALLY REGARDED AS USING DRUMS, CONES, SHADOW VEHICLE, ETC., ALONG THE WORK AREA WITHIN THE SUBJECT WARRANTED WORK ZONE CONDITION. WORKERS ARE CONSIDERED AS BEING PRESENT WHEN ON-SITE, WORKING WITHIN THE SUBJECT WARRANTED WORK ZONE CONDITION. WHEN THE WORK ZONE CONDITION REDUCING THE EXISTING FUNCTIONALITY OF THE TRAVEL LANES OR SHOULDERS IS REMOVED. THE SPEED LIMIT DISPLAYED SHALL RETURN TO THE ORIGINAL POSTED SPEED LIMIT.

TABLE 1: WARRANTED WORK ZONE SPEED LIMITS (MPH) FOR WORK ZONES ON HIGH-SPEED (55 MPH OR GREATER) MULTI-LANE HIGHWAYS

ORIGINAL	WIT⊦	I POS	ITIVE	WITHC	OUT PO	OSITIVE
POSTED	PROTEC1	TON I	<i>NORKERS</i>	PROTEC	TION I	NORKERS
SPEED	PRESEN	IT / W	ORKERS	PRESENT	/ WOF	RKERS NOT
LIMIT	NOT	PRES	SENT	P	RESE	NT
60	55	/	60	50	/	60
	SPEED LIMIT	POSTED PROTECT SPEED PRESEN LIMIT NOT	POSTED PROTECTION V SPEED PRESENT / W LIMIT NOT PRES	POSTED PROTECTION WORKERS SPEED PRESENT / WORKERS LIMIT NOT PRESENT	POSTED PROTECTION WORKERS PROTEC SPEED PRESENT / WORKERS PRESENT LIMIT NOT PRESENT P	POSTED PROTECTION WORKERS PROTECTION IN SPEED PRESENT / WORKERS PROTECTION IN SPECIAL PROTECTION IN

JFM DMB 112993

P.5 30

WORK ZONE SPEED ZONES (WZSZS) CONT'D

THE FOLLOWING ESTIMATED QUANTITY HAS BEEN CARRIED TO THE GENERAL SUMMARY.

ITEM 808, DIGITAL SPEED LIMIT (DSL) SIGN ASSEMBLY
42 SIGN MONTH
ASSUMING 14 DSL SIGN ASSEMBLIES FOR
3 MONTH(S)

CALCULATED BY:

SPACING = 1.0 MILES FOR SPEED ZONE AREA = 5.02/1.0 MILES = 5.02 SIGNS OR 6.0 SIGNS + 1 (FIRST SIGN) = 7 SIGNS

BOTH EB & WB = 7*2 = 14 SIGNS

WORK ZONE INCREASED PENALTIES SIGN (R11-H5A)

R11-H5A-48 SIGNS SHALL BE FURNISHED, ERECTED, AND MAINTAINED IN GOOD CONDITION AND/OR REPLACED AS NECESSARY AND SUBSEQUENTLY REMOVED BY THE CONTRACTOR. SIGNS SHALL BE MOUNTED AT THE APPROPRIATE OFFSETS AND ELEVATIONS AS PRESCRIBED BY THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES. THEY SHALL BE MAINTAINED ON SUPPORTS MEETING CURRENT SAFETY CRITERIA

THE SIGNS MAY BE ERECTED OR UNCOVERED NO MORE THAN FOUR HOURS BEFORE THE ACTUAL START OF WORK. THE SIGNS SHALL BE REMOVED OR COVERED NO LATER THAN FOUR HOURS FOLLOWING RESTORATION OF ALL LANES TO TRAFFIC WITH NO RESTRICTIONS, OR SOONER AS DIRECTED BY THE ENGINEER. TEMPORARY SIGN COVERING AND UNCOVERING DUE TO TEMPORARY LANE RESTORATIONS SHALL BE GUIDED BY THE FOUR-HOUR LIMITATIONS STATED ABOVE. SUCH LANE RESTORATIONS SHOULD BE EXPECTED TO REMAIN IN EFFECT FOR 30 OR MORE CONSECUTIVE CALENDAR DAYS, SUCH AS DURING WINTER SHUT-DOWNS.

THE SIGNS ON THE MAINLINE SHALL BE DUAL MOUNTED UNLESS NOT PHYSICALLY POSSIBLE. THE FIRST SIGN SHALL BE PLACED BETWEEN THE ROAD WORK AHEAD (W20-1) SIGN AND THE NEXT SIGN IN THE SEQUENCE. SIGNS SHALL BE ERECTED ON EACH ENTRANCE RAMP AND EVERY 2 MILES THROUGH THE CONSTRUCTION WORK LIMITS. SIGNS ON THE MAINLINE SHALL BE R11-H5A-48. SIGNS USED ON THE RAMPS SHALL BE R11-H5A-24. R11-H5A-24 SIGNS MAY BE USED IN THE MEDIAN IN LIEU OF R11-H5A-48 SIGNS IF IT IS NOT PHYSICALLY POSSIBLE TO PROVIDE R11-H5A-48 SIGNS IN THE MEDIAN.

THE R11-H5A-48 SIGNS SHALL BE MOUNTED ON 2 NO. 3 POSTS WHEN LOCATED WITHIN CLEAR ZONES.

THE CONTRACTOR MAY USE SIGNS AND SUPPORTS IN USED, BUT GOOD, CONDITION PROVIDED THE SIGNS MEET CURRENT ODOT SPECIFICATIONS. SIGN FACES SHALL BE RETROREFLECTORIZED WITH TYPE G SHEETING COMPLYING WITH THE REQUIREMENTS OF C&MS 730.19.

WORK ZONE INCREASED PENALTIES SIGNS AND SUPPORTS WILL BE MEASURED AS THE NUMBER OF SIGN INSTALLATIONS, INCLUDING THE SIGN AND NECESSARY SUPPORTS. IF A SIGN AND SUPPORT COMBINATION IS REMOVED AND REERECTED AT ANOTHER LOCATION AS DIRECTED BY THE ENGINEER, IT SHALL BE CONSIDERED ANOTHER UNIT.

WORK ZONE INCREASED PENALTIES SIGN (R11-H5A) CONT'D

PAYMENT FOR ACCEPTED QUANTITIES, COMPLETE, IN PLACE WILL BE MADE AT THE CONTRACT UNIT PRICE. PAYMENT SHALL BE FULL COMPENSATION FOR ALL MATERIALS, LABOR, INCIDENTALS AND EQUIPMENT FOR FURNISHING, ERECTING, MAINTAINING, COVERING DURING SUSPENSION OF WORK, AND REMOVAL OF THE SIGN AND SUPPORT.

ITEM 614, WORK ZONE INCREASED PENALTIES SIGN 10 EACH

ITEM 614, WORK ZONE IMPACT ATTENUATOR FOR 24" WIDE HAZARDS (UNIDIRECTIONAL)

THIS ITEM SHALL CONSIST OF FURNISHING AND INSTALLING
A NON-GATING IMPACT ATTENUATOR. FURNISH AN IMPACT
ATTENUATOR FROM THE OFFICE OF ROADWAY ENGINEERING'S
APPROVED LIST FOR WORK ZONE IMPACT ATTENUATORS, FROM
THE ROADWAY STANDARDS APPROVED PRODUCTS WEB PAGE.

INSTALLATION SHALL BE AT THE LOCATIONS SPECIFIED IN THE PLANS IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS

THE CONTRACTOR SHALL REPAIR OR REPLACE A DAMAGED UNIT WITHIN 24 HOURS OF A DAMAGING IMPACT.

WHEN BIDIRECTIONAL DESIGNS ARE SPECIFIED, THE CONTRACTOR SHALL SUPPLY APPROPRIATE TRANSITIONS.

WHEN GATING IMPACT ATTENUATORS ARE DESIRED, THE CONTRACTOR SHALL SUBMIT DOCUMENTATION TO THE ENGINEER FOR ACCEPTANCE.

THE COST FOR THE ADDITIONAL BARRIER REQUIRED FOR A GATING IMPACT ATTENUATOR SHALL BE INCLUDED IN THE COST OF THE GATING IMPACT ATTENUATOR.

PAYMENT FOR THE ABOVE WORK SHALL BE MADE AT THE UNIT PRICE BID AND SHALL INCLUDE ALL LABOR, TOOLS, EQUIPMENT AND MATERIALS NECESSARY TO CONSTRUCT AND MAINTAIN A COMPLETE AND FUNCTIONAL IMPACT ATTENUATOR SYSTEM, INCLUDING ALL RELATED BACKUPS, TRANSITIONS, LEVELING PADS, HARDWARE AND GRADING, NOT SEPARATELY SPECIFIED, AS REQUIRED BY THE MANUFACTURER.

ITEM 614, PORTABLE CHANGEABLE MESSAGE SIGNS, AS PER PLAN

THE CONTRACTOR SHALL FURNISH, INSTALL, MAINTAIN AND REMOVE, WHEN NO LONGER NEEDED, A CHANGEABLE MESSAGE SIGN. THE SIGN SHALL BE OF A TYPE SHOWN ON A LIST OF APPROVED PCMS UNITS AVAILABLE ON THE OFFICE OF MATERIALS MANAGEMENT WEB PAGE. THE LIST CONTAINS CLASS A AND B UNITS WITH MINIMUM LEGIBILITY DISTANCES OF 800 FEET AND 650 FEET. RESPECTIVELY.

EACH SIGN SHALL BE TRAILER-MOUNTED AND EQUIPPED WITH A FUNCTIONAL DIMMING MECHANISM, TO DIM THE SIGN DURING DARKNESS, AND A TAMPER AND VANDAL PROOF ENCLOSURE. EACH SIGN SHALL BE PROVIDED WITH APPROPRIATE TRAINING AND OPERATION INSTRUCTIONS TO ENABLE ON-SITE PERSONNEL TO OPERATE AND TROUBLESHOOT THE UNIT. THE SIGN SHALL ALSO BE CAPABLE OF BEING POWERED BY AN ELECTRICAL SERVICE DROP FROM A LOCAL UTILITY COMPANY. THE PCMS SHALL BE DELINEATED IN ACCORDANCE WITH C&MS 614.03.

ITEM 614, PORTABLE CHANGEABLE MESSAGE SIGNS, AS PER PLAN

THE PROBABLE PCMS LOCATIONS AND WORK LIMITS FOR THOSE LOCATIONS WILL BE AT THE BEGIN AND END OF PROJECT LIMITS. PLACEMENT, OPERATION, MAINTENANCE AND ALL ACTIVATION OF THE SIGNS BY THE CONTRACTOR SHALL BE AS DIRECTED BY THE ENGINEER. THE PCMS SHALL BE LOCATED IN A HIGHLY VISIBLE POSITION YET PROTECTED FROM TRAFFIC. THE CONTRACTOR SHALL, AT THE DIRECTION OF THE ENGINEER, RELOCATE THE PCMS TO IMPROVE VISIBILITY OR ACCOMMODATE CHANGED CONDITIONS. WHEN NOT IN USE, THE PCMS SHALL BE TURNED OFF. ADDITIONALLY, WHEN NOT IN USE FOR EXTENDED PERIODS OF TIME, THE PCMS SHALL BE TURNED AWAY FROM ALL TRAFFIC.

THE ENGINEER SHALL BE PROVIDED ACCESS TO EACH SIGN UNIT AND SHALL BE PROVIDED WITH APPROPRIATE TRAINING AND OPERATION INSTRUCTIONS TO ENABLE ODOT PERSONNEL TO OPERATE AND TROUBLESHOOT THE UNIT, AND TO REVISE SIGN MESSAGES IF NECESSARY

THE CONTRACTOR SHALL IMPLEMENT A SYSTEM WHEREBY CHANGEABLE MESSAGES WILL BE IMPLEMENTED WITHIN 4 HOURS FOLLOWING TELEPHONE NOTIFICATION FROM THE PROJECT ENGINEER TO A DESIGNATED PHONE.

ALL MESSAGES TO BE DISPLAYED ON THE SIGN WILL BE PROVIDED BY THE ENGINEER. A LIST OF ALL REQUIRED PRE-PROGRAMMED MESSAGES WILL BE GIVEN TO THE CONTRACTOR AT THE PROJECT PRECONSTRUCTION CONFERENCE. THE SIGN SHALL HAVE THE CAPABILITY TO STORE UP TO 99 MESSAGES. MESSAGE MEMORY OR PRE-PROGRAMMED DISPLAYS SHALL NOT BE LOST AS A RESULT OF POWER FAILURES TO THE ON-BOARD COMPUTER. THE SIGN LEGEND SHALL BE CAPABLE OF BEING CHANGED IN THE FIELD. THREE-LINE PRESENTATION FORMATS WITH UP TO SIX MESSAGE PHASES SHALL BE SUPPORTED. PCMS FORMAT SHALL PERMIT THE COMPLETE MESSAGE FOR EACH PHASE TO BE READ AT LEAST TWICE.

THE PCMS SHALL CONTAIN AN ACCURATE CLOCK AND PROGRAMMING LOGIC WHICH WILL ALLOW THE SIGN TO BE ACTIVATED, DEACTIVATED OR MESSAGES CHANGED AUTOMATICALLY AT DIFFERENT TIMES OF THE DAY FOR DIFFERENT DAYS OF THE WEEK.

THE PCMS SHALL CONTAIN A CELLULAR TELEPHONE DATA LINK WHICH WILL (IN ACTIVE CELLULAR PHONE AREAS) ALLOW REMOTE SIGN ACTIVATION, MESSAGE CHANGES, MESSAGE ADDITIONS AND REVISIONS TO TIME OF DAY PROGRAMS. THE SYSTEM SHALL ALSO PERMIT VERIFICATION OF CURRENT AND PROGRAMMED MESSAGES. ONE REMOTE DATA INPUT DEVICE (LAPTOP COMPUTER PLUS MODEM OR EQUIVALENT) SHALL BE FURNISHED FOR USE BY THE DISTRICT TRAFFIC ENGINEER. OR EQUIVALENT, AND SHALL BE INSURED AGAINST THEFT. THE PCMS UNIT SHALL BE MAINTAINED IN GOOD WORKING ORDER BY THE CONTRACTOR IN ACCORDANCE WITH THE PROVISIONS OF C&MS 614.07. THE CONTRACTOR SHALL, PRIOR TO ACTIVATING THE UNIT, MAKE ARRANGEMENTS, WITH AN AUTHORIZED SERVICE AGENT FOR THE PCMS. TO ASSURE PROMPT SERVICE IN THE EVENT OF FAILURE. ANY FAILURE SHALL NOT RESULT IN THE SIGN BEING OUT OF SERVICE FOR MORE THAN 12 HOURS, INCLUDING WEEKENDS. FAILURE TO COMPLY MAY RESULT IN AN ORDER TO STOP WORK AND OPEN ALL TRAFFIC LANES AND/OR IN THE DEPARTMENT TAKING APPROPRIATE ACTION TO SAFELY CONTROL TRAFFIC. THE ENTIRE COST TO CONTROL TRAFFIC, ACCRUED BY THE DEPARTMENT DUE TO THE CONTRACTOR'S NONCOMPLIANCE, WILL BE DEDUCTED FROM MONEYS DUE, OR TO BECOME DUE THE CONTRACTOR ON HIS CONTRACT.

ITEM 614, PORTABLE CHANGEABLE MESSAGE SIGNS, AS PER PLAN

THE CONTRACTOR SHALL BE RESPONSIBLE FOR 24-HOUR-PER-DAY OPERATION AND MAINTENANCE OF THESE SIGNS ON THE PROJECT FOR THE DURATION OF THE PHASES WHEN THE PLAN REQUIRES THEIR USE.

PAYMENT FOR THE ABOVE DESCRIBED ITEM SHALL BE AT THE CONTRACT UNIT PRICE. PAYMENT SHALL INCLUDE ALL LABOR, MATERIALS, EQUIPMENT, FUELS, LUBRICATING OILS, SOFTWARE, HARDWARE AND INCIDENTALS TO PERFORM THE ABOVE DESCRIBED WORK.

ITEM 614, PORTABLE CHANGEABLE MESSAGE SIGN, AS PER PLAN 12 SIGN MONTH ASSUMING 2 PCMS SIGN(S) FOR 6 MONTH(S)

DELINEATION OF PORTABLE AND PERMANENT BARRIER

BARRIER REFLECTORS AND OBJECT MARKERS SHALL BE INSTALLED ON ALL PORTABLE BARRIER (PB) USED FOR TRAFFIC CONTROL; AND, ON PERMANENT CONCRETE BARRIER (INCLUDING BRIDGE PARAPETS) LOCATED WITHIN 5 FEET OF THE EDGE OF THE ADJACENT TRAVEL LANE.

BARRIER REFLECTORS SHALL CONFORM TO C&MS 626, EXCEPT THAT THE SPACING SHALL BE AS PER TRAFFIC SCD MT-101.70. OBJECT MARKERS AND THEIR INSTALLATION SHALL CONFORM TO C&MS 614.03 AND SCD MT-101.70. WHEN THE PB CONTAINS GLARE SCREEN, ONE SET OF THREE VERTICAL STRIPES OF SHEETING SHALL BE CONSIDERED EQUIVALENT TO AN OBJECT MARKER, ONE-WAY.

INCREASED BARRIER DELINEATION, AS SPECIFIED HEREIN, SHALL BE INSTALLED ON ALL PB AND PERMANENT CONCRETE BARRIER LOCATED WITHIN 5 FEET OF THE EDGE OF THE TRAVELED LANE UNDER EITHER OF THE FOLLOWING CONDITIONS: ALONG TAPERS AND TRANSITION AREAS; OR ALONG CURVES (OUTSIDE ONLY) WITH DEGREE OF CURVATURE GREATER THAN OR EQUAL TO 3 DEGREES.

THE INCREASED BARRIER DELINEATION SHALL CONSIST OF EITHER DELINEATION PANELS OR THE TRIPLE STACKING OF WORK ZONE BARRIER REFLECTORS.

DELINEATION PANELS SHALL CONSIST OF PANELS OF DELINEATION, APPROXIMATELY 34 INCHES LONG AND 6 INCHES WIDE AND SHALL BE "CRIMPED." PANELS SHALL BE INSTALLED AND SPACED PER TRAFFIC SCD MT-101.70.

TRIPLE-STACKED BARRIER REFLECTORS SHALL CONSIST OF ALIGNING THREE BARRIER REFLECTORS VERTICALLY, AT LOCATIONS WHERE A SINGLE BARRIER REFLECTOR WOULD BE OTHERWISE ATTACHED. THERE SHALL BE NO OPEN SPACE BETWEEN THE ADJACENT BARRIER REFLECTORS. THE TRIPLE-STACKED BARRIER REFLECTORS SHALL CONFORM TO C&MS 626, EXCEPT THAT THEY SHALL BE SPACED AND ALIGNED PER TRAFFIC SCD MT-101.70.

DESIGN AGEN

JEM REVIEWER DMB

112993

P.6 30

5-18.

DUST CONTROL

THE CONTRACTOR SHALL FURNISH AND APPLY WATER FOR DUST CONTROL AS DIRECTED BY THE ENGINEER. THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN INCLUDED FOR DUST CONTROL PURPOSES:

ITEM 616, WATER 1 M. GAL.

WORK ZONE MARKINGS AND SIGNS

THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN CARRIED TO THE GENERAL SUMMARY FOR USE AT LOCATIONS IDENTIFIED BY THE ENGINEER FOR WORK ZONE PAVEMENT MARKINGS AND SIGNS PER THE REQUIREMENTS OF C&MS 614.04 AND 614.11.

ITEM 614, WORK ZONE, MARKING SIGN 11 FACH ITEM 614, WORK ZONE. EDGE LINE, CLASS I, 6" 740.06, TYPE 1 0.55 MILE ITEM 614, WORK ZONE, 2880 FT DOTTED LINE, CLASS I, 6" 740.06, TYPE 1 ITEM 614. WORK ZONE. 10.04 MILE LANE LINE, CLASS III, 6" 642 PAINT

ITEM 614, LAW ENFORCEMENT OFFICER (WITH PATROL CAR) FOR ASSISTANCE DURING CONSTRUCTION OPERATIONS

USE OF LAW ENFORCEMENT OFFICERS (LEOS) BY CONTRACTORS OTHER THAN THE USES SPECIFIED BELOW WILL NOT BE PERMITTED AT PROJECT COST. LEOS SHOULD NOT BE USED WHERE THE OMUTCD INTENDS THAT FLAGGERS BE USED.

IN ADDITION TO THE REQUIREMENTS OF C&MS 614 AND THE OMUTCD, A UNIFORMED LEO WITH AN OFFICIAL PATROL CAR (CAR WITH TOP-MOUNTED EMERGENCY FLASHING LIGHTS AND COMPLETE MARKINGS OF THE APPROPRIATE LAW ENFORCEMENT AGENCY) SHALL BE PROVIDED FOR THE FOLLOWING TRAFFIC CONTROL TASKS:

DURING THE ENTIRE ADVANCE PREPARATION AND CLOSURE SEQUENCE WHERE COMPLETE BLOCKAGE OF TRAFFIC IS REQUIRED.

DURING A TRAFFIC SIGNAL INSTALLATION WHEN IMPACTING THE NORMAL FUNCTION OF THE SIGNAL OR THE FLOW OF TRAFFIC, OR WHEN TRAFFIC NEEDS TO BE DIRECTED THROUGH AN ENERGIZED TRAFFIC SIGNAL CONTRARY TO THE SIGNAL DISPLAY (E.G., DIRECTING MOTORISTS THROUGH A RED LIGHT).

IN ADDITION TO THE REQUIREMENT OF C&MS 614 AND THE OMUTCD, A UNIFORMED LEO WITH AN OFFICIAL PATROL CAR (CAR WITH TOP-MOUNTED EMERGENCY FLASHING LIGHTS AND COMPLETE MARKINGS OF THE APPROPRIATE LAW ENFORCEMENT AGENCY) SHOULD BE PROVIDED FOR THE FOLLOWING TRAFFIC CONTROL TASKS AS APPROVED BY THE ENGINEER:

FOR LANE CLOSURES: DURING INITIAL SET-UP PERIODS, TEAR DOWN PERIODS, SUBSTANTIAL SHIFTS OF A CLOSURE POINT OR WHEN NEW LANE CLOSURE ARRANGEMENTS ARE INITIATED FOR LONG-TERM LANE CLOSURES/SHIFTS (FOR THE FIRST AND LAST DAY OF MAJOR CHANGES IN TRAFFIC CONTROL SETUP).

ITEM 614, LAW ENFORCEMENT OFFICER (WITH PATROL CAR) FOR ASSISTANCE DURING CONSTRUCTION OPERATIONS

IN GENERAL, LEOS SHOULD BE POSITIONED IN ADVANCE OF AND ON THE SAME SIDE AS THE LANE RESTRICTION (OR AT THE POINT OF ROAD CLOSURE), AND TO MANUALLY CONTROL TRAFFIC MOVEMENTS THROUGH SIGNALIZED INTERSECTIONS IN WORK

LEOS SHOULD NOT FORGO THEIR TRAFFIC CONTROL RESPONSIBILITIES TO APPREHEND MOTORISTS FOR ROUTINE TRAFFIC VIOLATIONS. HOWEVER, IF A MOTORIST'S ACTIONS ARE CONSIDERED TO BE RECKLESS, THEN PURSUIT OF THE MOTORIST IS APPROPRIATE.

THE LEOS WORK AT THE DIRECTION OF THE CONTRACTOR. THE CONTRACTOR IS RESPONSIBLE FOR SECURING THE SERVICES OF THE LEOS WITH THE APPROPRIATE AGENCIES AND COMMUNICATING THE INTENTIONS OF THE PLANS WITH RESPECT TO DUTIES OF THE LEOS. THE ENGINEER SHALL HAVE FINAL CONTROL OVER THE LEOS' DUTIES AND PLACEMENT, AND WILL RESOLVE ANY ISSUES THAT MAY ARISE BETWEEN THE TWO PARTIES.

ENSURE PROVIDED LEOS HAVE BEEN TRAINED APPROPRIATE TO THE JOB DECISIONS THEY ARE REQUIRED TO MAKE WHILE ON THE PROJECT, IN ACCORDANCE WITH C&MS 614.03.

THE LEO SHALL REPORT IN TO THE CONTRACTOR PRIOR TO THE START OF THE SHIFT, IN ORDER TO RECEIVE INSTRUCTIONS REGARDING SPECIFIC WORK ASSIGNMENTS DURING HIS/HER SHIFT. THE LEO IS EXPECTED TO STAY AT THE PROJECT SITE FOR THE ENTIRE DURATION OF HIS/HER SHIFT. THE LEO SHALL REPORT TO THE CONTRACTOR AT THE END OF HIS/HER SHIFT. SHOULD IT BE NECESSARY TO LEAVE THE PROJECT SITE. THE LEO SHALL NOTIFY THE ENGINEER. THE CONTRACTOR SHALL PROVIDE THE LEO WITH A TWO-WAY COMMUNICATION DEVICE THAT SHALL BE RETURNED TO THE CONTRACTOR AT THE END OF HIS/HER SHIFT.

LEOS (WITH PATROL CAR) REQUIRED BY THE TRAFFIC MAINTENANCE TASKS ABOVE SHALL BE PAID FOR ON A UNIT PRICE (HOURLY) BASIS UNDER ITEM 614, LAW ENFORCEMENT OFFICER (WITH PATROL CAR) FOR ASSISTANCE. THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN CARRIED TO THE GENERAL SUMMARY.

ITEM 614, LAW ENFORCEMENT OFFICER WITH PATROL CAR FOR ASSISTANCE 40 HOURS

THE HOURS PAID SHALL INCLUDE ANY MINIMUM SHOW-UP TIME REQUIRED BY THE LAW ENFORCEMENT AGENCY INVOLVED.

ANY ADDITIONAL COSTS (ADMINISTRATIVE OR OTHERWISE) INCURRED BY THE CONTRACTOR TO OBTAIN THE SERVICES OF A LEO ARE INCLUDED WITH THE BID UNIT PRICE FOR ITEM 614, LAW ENFORCEMENT OFFICER WITH PATROL CAR FOR ASSISTANCE.

DELINEATION OF TEMPORARY AND PERMANENT GUARDRAIL

BARRIER REFLECTORS SHALL BE INSTALLED ON ALL TEMPORARY GUARDRAIL USED FOR TRAFFIC CONTROL; AND, ON ALL PERMANENT GUARDRAIL LOCATED WITHIN 5 FEET OF THE EDGE OF THE ADJACENT TRAVEL LANE. BARRIER REFLECTORS SHALL CONFORM TO C&MS 626 AND THE SPACING SHALL BE APPROXIMATELY 50 FEET.

OBJECT MARKERS SHALL BE INSTALLED ON ALL TEMPORARY AND PERMANENT GUARDRAIL LOCATED WITHIN 5 FEET OF THE EDGE OF THE ADJACENT TRAVEL LANE. GUARDRAIL-MOUNTING OF OBJECT MARKERS SHALL BE MADE BY INSTALLING THE OBJECT MARKERS ON THE EXTENSION BLOCKS RATHER THAN DIRECTLY ONTO THE GUARDRAIL ITSELF. OBJECT MARKERS SHALL CONFORM TO C&MS 614.03 AND THE SPACING SHALL BE APPROXIMATELY 50 FEET WITH A 25 FOOT OFFSET FROM THE BARRIER REFLECTORS.

, INCLUDED IN THE PLANS AND CARRIED TO THE GENERAL

▶ ITEM 614, BARRIER REFLECTOR, TYPE 3 ONE-WAY 4 EACH

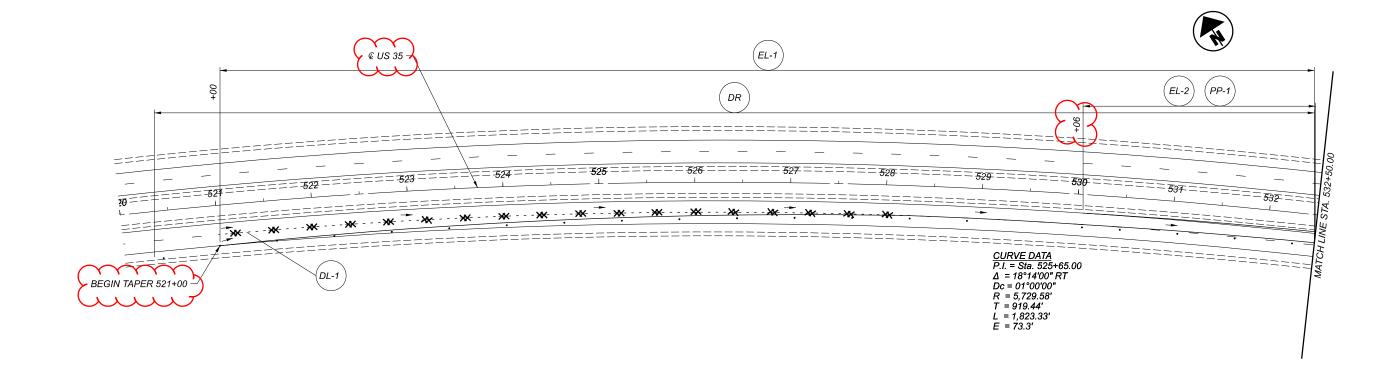
PAYMENT SHALL BE FULL COMPENSATION FOR ALL MATERIAL. LABOR. INCIDENTALS AND EQUIPMENT NECESSARY FOR FURNISHING, INSTALLING, MAINTAINING AND REMOVING THE ABOVE ITEM(S).

EXISTING SHOULDERS

QUANTITIES HAVE BEEN CALCULATED IN THE PAVEMENT CALCULATIONS SUB-SUMMARY AND CARRIED TO THE GENERAL SUMMARY FOR MILLING 0.75" AND RESURFACING 1" OF THE EXISTING SHOULDERS.

JFM DMB

112993 P.7 30


THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN SUMMARY:

ITEM 614, OBJECT MARKER, ONE-WAY 4 EACH

JEM

DMB

112993 SHEET TOTAL P.8 30

DATE: 2/25/2022 TIME: 8:20:29 AM USER: jmclaug2 ments\0!Active Projects\District 09\Jackson\||2

JAC-35-18.92

<u>LEGEND</u>

(EL-#

(PP-#)

WORK ZONE DOTTED LINE

WORK ZONE EDGE LINE

EXISTING EDGE LINE REMOVED

PAVEMENT PLANING (EXISTING RUMBLE STRIPS REMOVED)

DRUMS

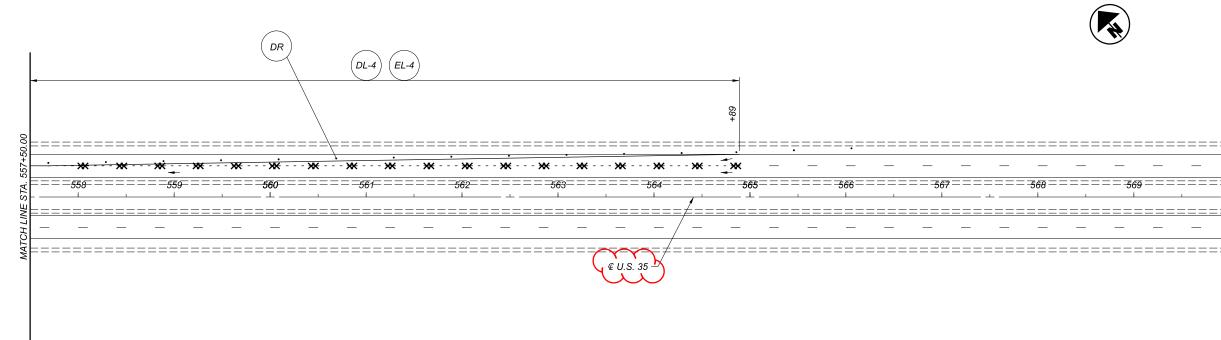
DIRECTION OF TRAVEL

REMOVE EXISTING MARKINGS

MAINTENANCE OF TRAFFIC - PHASE STA. 532+50 TO STA. 545+00

JEM

112993


SHEET TOTAL P.9 30

112993

JEM

112993 SHEET TOTAL P.11 30

<u>LEGEND</u> WORK ZONE DOTTED LINE DRUMS WORK ZONE EDGE LINE DIRECTION OF TRAVEL REMOVE EXISTING MARKINGS PAVEMENT PLANING (EXISTING RUMBLE STRIPS REMOVED) EXISTING EDGE LINE REMOVED

JAC-35-18.92

USER: jmclaug2:+ 09\Jackson\II2

DATE: 2/25/2022 TIME: 8:21:02 AM ments/01Active Projects/Distric-

JAC-35-18.92

DL-# WORK ZONE DOTTED LINE

DR DRUMS

(EL-#) WORK ZONE EDGE LINE

DIRECTION OF TRAVEL

PP-# PAVEMENT PLANING
(EXISTING RUMBLE STRIPS REMOVED)

REMOVE EXISTING MARKINGS

ELR EXISTING EDGE LINE REMOVED

MAINTENANCE OF TRAFFIC - PHASE STA. 521+00 TO STA. 533+50

DESIGNER

JEM

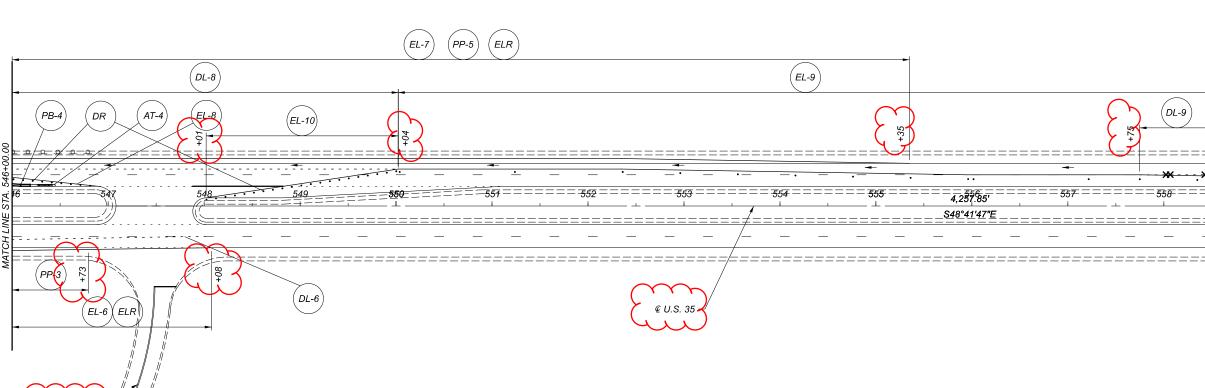
REVIEWER

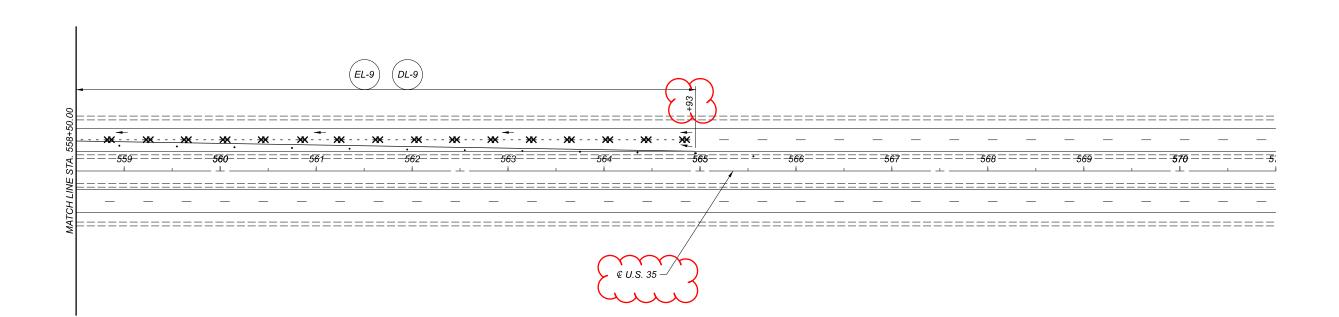
DMB

PROJECT ID

112993
SHEET TOTAL

P.12 TOTAL 30


JEM


112993 SHEET TOTAL P.14 30

€ S.R. 327 -<u>LEGEND</u> WORK ZONE DOTTED LINE DRUMS WORK ZONE EDGE LINE WORK ZONE ATTENUATOR PAVEMENT PLANING (EXISTING RUMBLE STRIPS REMOVED) DIRECTION OF TRAVEL REMOVE EXISTING MARKINGS EXISTING EDGE LINE REMOVED PORTABLE BARRIER, 32"

PAPERSIZE: 117x11 (in.) DATE: 2/25/2022 TIME: 8:2:18 AM USER: jmclaug2 obiodot-pw-02/Documents/01.4ctive Projects/01/strict 09/Jackson/

JAC-35-18.92

<u>LEGEND</u>

(DL-#) WORK ZONE DOTTED LINE

(EL-#) WORK ZONE EDGE LINE

(DR) DRUMS

DIRECTION OF TRAVEL

REMOVE EXISTING MARKINGS

MAINTENANCE OF TRAFFIC - PHASE 2 STA. 558+50 TO STA. 571+00

HORIZONTAL SCALE IN FEET

DESIGN AGENC

DESIGNER
JEM
REVIEWER
DMB
PROJECT ID

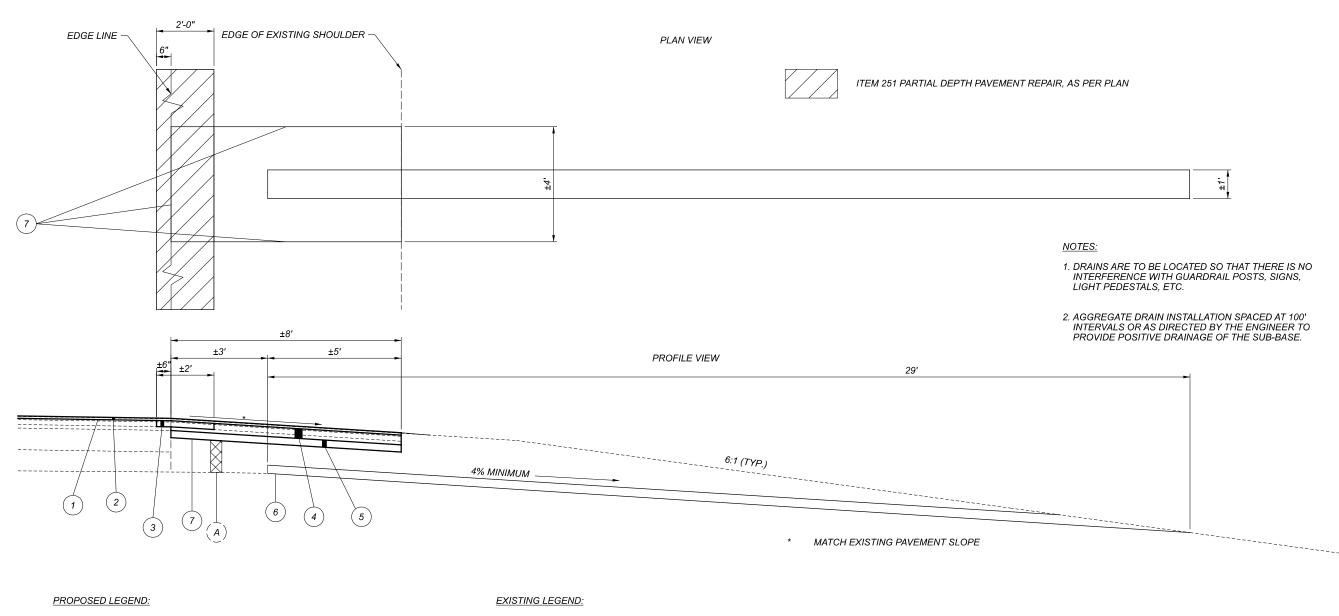
112993
SHEET TOTAL
P.15 30

I							054	407	111	611	614	614	611	_						622)		_
							254	407	441	614	614	614	614	614	614	614	614	614	622	622	\		-
							Ę.			INCREASED BARRIER DELINEATION			Ò			SS	., 6"	.9 '/ 9.			く		
							(ED		~	IEAī	OR OR	l or	7	Æ,	Ä,	CLA	CLASS I, C	CLASS			≺		
<u>بر</u> ا		NC					IING 'FTE' 'MO\	(0,	SE,	W]=	UA)	107	ξ,)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	17F	VĒ, ≅ /	CF	CF	 SIEK	 C	ノ		
SHEET NUMBER	111	PHASE/LOCATION	ICE				PAVEMENT PLANING ASPHALT CONCRETE, AS PER PLAN, 1.25" (RUMBLE STRIPS REMOVED)	TACK COAT (0.085 GAL/SQ YD)	ASPHALT CONCRETE SURFACE COURSE, TYPE 1 (448), PG64-22	3 DE	WORK ZONE ATTENUATOR (UNIDIRECTIONAL)	BARRIER REFLECTOR, TYPE 1 ONE-WAY	OBJECT MARKER, ONE WAY	WORK ZONE EDGE LINE, CLASS I, 6", 740.06, TYPE 1 (YELLOW)	WORK ZONE EDGE LINE, CLASS I, 6", 740.06, TYPE 1 (WHITE)	WORK ZONE DOTTED LINE, CLASS 6", 740.06, TYPE I	WORK ZONE EDGE LINE, (YELLOW)	WORK ZONE EDGE LINE, (WHITE)	PORTABLE BARRIER ANCHORED	PORTABLE BARRIER UNANCHORED)		
2	ROUTE	00.	REFERENCE	STA	TION		77 PI CON R PI 25" IPS	CO 4L/S	COA :: CC :(8), t	ИĒ	ATI	REFI PE	MA (740.1	E EL 740.1	TEL 16, T	E LI	E LI	E B,	E B)		
ET.	RO] SE/L	1945				den LT (PEI) 1.:	100	1.17 (44 (44 (44 (44 (44 (44 (44 (44 (44 (4	ARF	NE SINE	I R F	C: (ONE 6", 7 YEL	6", 7	70.0 40.0	YEL	DG: (WF	NC _F	ABLI	1		
3.1		HAS	R				VEN PHA AS	7,7080.0	184 185 194	.D B	(ZC	RRIE	BJE	S 7, S	S I,	VE C	Ä (IE E	RT7	L TA	≺ ∣		
,		<u> </u>					PA ASF IMB	9	ASI SL TYF	4SE	J. J	BAF	0	VOR AS;	VOR AS	70Z	VOZ	ZOV	P 9	PO	√		
							(RL			RE	Š			Z 2	2 2	¥.	¥.	RX.)		
										N			(8	W W	WO)		
				FROM	ТО		SY	GALLON	CY	FT	EACH	EACH	EACH	FT	FT	FT	FT	FT	FT	FT)		_
	U.S. 35	PHASE I											()		_
7,8		EASTBOUND	EL-1	521+00	544+43									-				2343			\rightarrow		_
7,8,9		EASTBOUND	EL-2	528+21	547+50								<u> </u>	1351			393	2040)		-
7,8		EASTBOUND	PP-1	530+06	546+89		173	15	6				(1001			000)		_
7		EASTBOUND	DL-1	521+00	528+21		1/3	10					(721)		_
8,9		EASTBOUND	DL-2	544+52	547+52								(•		300					1		_
8		EASTBOUND	AT-1	540+00							1		7								\langle		_
8		EASTBOUND	PB-1	540+02	544+52					450		11	11						300	150	₹		_
																					\		
8		WESTBOUND	EL-3	539+45	555+89									300			1344						_
8,9,10		WESTBOUND	EL-4	542+45	564+89								\longrightarrow					2244					_
8,9		WESTBOUND	PB-2	542+45	546+95					450									300	150)		_
8		WESTBOUND	DL-3	539+45	542+45								(300)		_
10		WESTBOUND	DL-4	557+69	564+89		120	44	-				(_		720)		_
9		WESTBOUND WESTBOUND	PP-2 AT-2	539+45 547+00	555+89		130	11	5		1		(_
9		VVESTBOUND	AI-Z	347+00							1		~~~								\leftarrow		_
		PHASE II											($\langle \cdot \cdot \cdot \rangle$		
11.10		FACTROUND		522.02	544.40								(\langle		_
11,12		EASTBOUND EASTBOUND	EL-5 EL-6	522+02 531+03	544+48 548+08								(2246	4054			454			\		_
1,12,13 1,12,13		EASTBOUND	PP-3	531+03	546+73		171	15	6				(1251			454			\		_
12		EASTBOUND	PB-3	540+78	544+48		1/1	13	0	370		10	10							370	\leftarrow		_
11		EASTBOUND	DL-5	521+99	529+19					370		10	10			720				370	₹		_
12,13		EASTBOUND	DL-6	548+08	544+48								\longrightarrow			360) 		_
12		EASTBOUND	AT-3	540+78	3777.10						1					300)		_
			7 5	0,0,70							,		()		_
12,13		WESTBOUND	EL-7	539+49	555+35								(302			1284)		
12,13		WESTBOUND	EL-8	542+49	546+89								(441)		
13,14		WESTBOUND	EL-9	550+04	564+98								(1494)		_
13		WESTBOUND	EL-10	548+01	550+04								(203				΄		
12		WESTBOUND	DL-7	538+90	542+50								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			360							_
12,13		WESTBOUND	DL-8	545+18	550+04			-				-	\longrightarrow			486							_
13,14		WESTBOUND WESTBOUND	DL-9	557+75	564+93					270		40	40			718				070	Д—		_
12,13		WESTBOUND	PB-4 PP-4	542+45 539+50	546+15 542+52		21		1	370		10	10	-						370) —		_
12 12,13		WESTBOUND	PP-4 PP-5	539+50 544+21	542+52 555+35		34	3	3				()		
12,13		WESTBOUND	PP-5 AT-4	544+21	J00+35		91	8	5		1	+	()		_
10		VVLSTBOOND	A1-4	040130							1		(\leftarrow		_
													($\overline{}$		_
													(\langle		
																					√		
													>								√		_
																							_
)		
						SUB TOTALS	599	51	21	1640	4	31	31	3897.00	1553.00	4685	3875	6325	600	1040)		_
	1	I .	1		CON	VERT TO MILE							(0.74	0.29		0.73	1.20)		
			TOT ::	C C455:==					-			-	(\		_
			IUIAL	S CARRIED	TO GENERAL	_ SUMMARY	599	51	21	1640	4	31	31	r 1.	03	4685	1 1.	.93	600	1040	く	1	

					S	SHEET NU							PART.		ITEM	ITEM	GRAND	UNIT	DESCRIPTION	SEE SHEET	
	3	4	6	7	16	19	20	22	25	25A		01/NHS/PV	02/SAF/OT	03/NHS/BR	TICM	EXT	TOTAL	OINII	DESCRIPTION	NO.	
									239					239	526	25000	239	SY	REINFORCED CONCRETE APPROACH SLABS (T=15")		
									78					78	526	90011	78		TYPE A INSTALLATION, AS PER PLAN	24	
									450					450	606	15050	450		GUARDRAIL, TYPE MGS		_
									62.5					62.5	606	15550	62.5	FT	GUARDRAIL, BARRIER DESIGN, TYPE MGS		_
																					_
									1					1	606	26150	1		ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)		4
									1					1	606	26550	1		ANCHOR ASSEMBLY, MGS TYPE T		_
									2					2	606	35002	2		MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1		_
									1					1	606	35102	1		MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2		_
									1					1	606	60012	1	EACH	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)		_
\perp									160					160	607	39900	160	FT	VANDAL PROTECTION FENCE, 6' STRAIGHT, COATED FABRIC		_
\perp									6					6	626	00102	6		BARRIER REFLECTOR, TYPE 1 (1-WAY)		4
\perp									5					5	626	00112	5	EACH	BARRIER REFLECTOR, TYPE 3 (1-WAY)		4
\perp																					4
╙									501					501	848	10000	501		MICRO SILICA MODIFIED CONCRETE OVERLAY USING HYDRODEMOLITION (2.75" THICK)		4
									501					501	848	20000	501		SURFACE PREPARATION USING HYDRODEMOLITION		
\perp									10					10	848	30000	10		MICRO SILICA MODIFIED CONCRETE OVERLAY (VARIABLE THICKNESS), MATERIAL ONLY		
									50					50	848	50000	50	SY	HAND CHIPPING		
L									LS					LS	848	50100	LS		TEST SLAB		4
┕																					4
┕									10					10	848	50200	10		FULL-DEPTH REPAIR		4
┡									501					501	848	50320	501		EXISTING CONCRETE OVERLAY REMOVED (1.75" THICK)		4
									50			<u> </u>		50	848	50340	50	SY	REMOVAL OF DEBONDED OR DETERIORATED EXISTING VARIABLE THICKNESS CONCRETE OVERLAY		-
L												<u> </u>									-
\vdash										—		<u> </u>				44000	l		STRUCTURE OVER 20 FOOT SPAN (JAC-35-18.92 R)		4
\vdash										LS				LS	202	11203	LS	0)/	PORTIONS OF STRUCTURE REMOVED, OVER 20 FOOT SPAN, AS PER PLAN	24	4
L										134		<u> </u>		134	202	22900	134		APPROACH SLAB REMOVED		4
⊢										132				132	202	23000	132		PAVEMENT REMOVED		4
⊢										134				134	202	23500	134		WEARING COURSE REMOVED		4
⊢										475				475	202	38000	475	FT	GUARDRAIL REMOVED		4
⊢										00.5		<u> </u>		00.5	200	00000	20.5		OLARDON PENOLED PARKET PENOLE		-
\vdash										62.5		<u> </u>		62.5	202	38300	62.5	FT	GUARDRAIL REMOVED, BARRIER DESIGN		-
\vdash										3		<u> </u>		3	202	42206	3		ANCHOR ASSEMBLY REMOVED		-
\vdash										3				3	202	47000	3		BRIDGE TERMINAL ASSEMBLY REMOVED		
<u>,</u>										4,526				4,526	509	10000	4,526		EPOXY COATED REINFORCING STEEL		
H										160				160	510	10000	160	EACH	DOWEL HOLES WITH NONSHRINK, NONMETALLIC GROUT		-
\vdash										24		<u> </u>		24	E11	34448	24	CV	CLASS QC2 CONCRETE, BRIDGE DECK (PARAPET)		1
<u> </u>					-					24		<u> </u>		.	511	10100	24 373	CY SY	SEALING OF CONCRETE SURFACES (EPOXY-URETHANE)		-
-										373 206		<u> </u>		373 206	512 512	74000	206		REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES		-
\vdash										18		 		18	512	13600	18	SF	1" PREFORMED EXPANSION JOINT FILLER		┨
╌										206				206	517	75401	206		RAILING (UPGRADING EXISTING), AS PER PLAN	24	┨
\vdash										200				200	317	7 340 1	200	11	TAILING (OF GRADING LAIGTING), AG FLICF LAIG	24	+
										450				450	519	11100	450	SF	PATCHING CONCRETE STRUCTURE		1
\vdash										239				239	526	25000	239	SY	REINFORCED CONCRETE APPROACH SLABS (T=15")		1
\vdash						1	1			78		1		78	526	90011	78		TYPE A INSTALLATION, AS PER PLAN	24	1
\vdash						1	1	1	1	450		1		450	606	15050	450		GUARDRAIL, TYPE MGS		1
H					1	1	1	1		62.5		1	1	62.5	606	15550	62.5	FT	GUARDRAIL, BARRIER DESIGN, TYPE MGS		1
H						1				1		1			· · · ·						1
Г										1				1	606	26150	1 1	EACH	ANCHOR ASSEMBLY, MGS TYPE E (MASH 2016)		1
Г						1	1			2		1		2	606	35002	2	EACH	MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1		1
Г					1	1	1			1		1		1	606	60012	1	EACH	IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL)		1
Г						1															1
Г						1				160				160	607	39900	160	FT	VANDAL PROTECTION FENCE, 6' STRAIGHT, COATED FABRIC		1
Г										6				6	626	00102	6	EACH	BARRIER REFLECTOR, TYPE 1 (1-WAY)		1
										5				5	626	00112	5		BARRIER REFLECTOR, TYPE 3 (1-WAY)		<u> </u>
							L														DESI
										501				501	848	10000	501	SY	MICRO SILICA MODIFIED CONCRETE OVERLAY USING HYDRODEMOLITION (2.75" THICK)]
Г										501				501	848	20000	501	SY	SURFACE PREPARATION USING HYDRODEMOLITION] /
Г										10				10	848	30000	10	CY	MICRO SILICA MODIFIED CONCRETE OVERLAY (VARIABLE THICKNESS), MATERIAL ONLY] (
Г										50				50	848	50000	50	SY	HAND CHIPPING] \
E										LS				LS	848	50100	LS		TEST SLAB		
L																					_
										10				10	848	50200	10	CY	FULL-DEPTH REPAIR		DESIG
Ĺ						1				501				501	848	50320	501		EXISTING CONCRETE OVERLAY REMOVED (1.75" THICK)		\vdash
L						1				50				50	848	50340	50	SY	REMOVAL OF DEBONDED OR DETERIORATED EXISTING VARIABLE THICKNESS CONCRETE OVERLAY		4
L						1						ļ									PROJ
						1		1				ļ									
\vdash					1	1	1	1	1	1		ļ									SHEE P.
<u>-</u>		l	1	l	Ι.,	l	1	k	1	l	Ι	ι	I	I	l	I	1		k		1. ^{P.}

 $\overline{}$

	-			S	SHEET NU	JΜ. 1						PART.		ITEM	ITEM	GRAND	UNIT	DESCRIPTION	SEE SHEET
3	4	6	7	16	19	20	22	25	25A		01/NHS/PV	02/SAF/OT	03/NHS/BR		EXT	TOTAL			NO.
				500									500	054	04000	500	0)/	MAINTENANCE OF TRAFFIC	
				599									599	254 441	01000 50000	599	SY	PAVEMENT PLANING, ASPHALT CONCRETE (1.25")	
			40	21									21 40	614	11110	21 40	CY HOUR	ASPHALT CONCRETE SURFACE COURSE, TYPE 1, (448), PG64-22 LAW ENFORCEMENT OFFICER WITH PATROL CAR FOR ASSISTANCE	
			70										10	017	11110	1 10	HOOK	LAW ENI ORGENIENT OF TOLIK WITH ATROL GART GRAGGISTANGE	
				1,640									1,640	614	11630	1,640	FT	INCREASED BARRIER DELINEATION	
				4									4	614	12380	4	EACH	WORK ZONE IMPACT ATTENUATOR, 24" WIDE HAZARDS, (UNIDIRECTIONAL)	
			11								11			614	12460	11	EACH	WORK ZONE MARKING SIGN	
		10									10			614	12484	10	EACH	WORK ZONE INCREASED PENALTIES SIGN	
				31									31	614	13310	31	EACH	BARRIER REFLECTOR, TYPE 1, ONE WAY	
			4								1			614	10011	1	FACIL	DARRIED DESI ECTOR TVDE 2 ONE WAY	
			4	31		-					4 4		31	614 614	13314 13350	4 35		BARRIER REFLECTOR, TYPE 3, ONE WAY OBJECT MARKER, ONE WAY	
		12		- "									12	614	18600	12		PORTABLE CHANGEABLE MESSAGE SIGN	
													'-	011	10000		Ortion	TOTAL STATES AND SEE MESSAGE SIST	
			10.04								10.04			614	20560	10.04	MILE	WORK ZONE LANE LINE, CLASS III, 6", 642 PAINT	
				1.93									1.93	614	22010	1.93	MILE	WORK ZONE EDGE LINE, CLASS I, 6"	
			0.55	1.03							0.55		1.03	614	22210	1.58	MILE	WORK ZONE EDGE LINE, CLASS I, 6", 740.06, TYPE I	
			2,880	4,685							2,880		4,685	614	24402	7,565	FT	WORK ZONE DOTTED LINE, CLASS I, 6", 740.06, TYPE I	
				600									600	622	41110	600	FT	PORTABLE BARRIER, ANCHORED	
				1,040									1,040	622	41110	1,040	FT	PORTABLE BARRIER, UNANCHORED	
				1,010									1,010	022	11100	1,010		TOTO DEL BANKER, ON MOTORES	
		42											42	808	18700	42	SNMT	DIGITAL SPEED LIMIT (DSL) SIGN ASSEMBLY	
																		NOIDENTALO.	
											0.8	0.08	0.12	614	11000	LS		INCIDENTALS MAINTAINING TRAFFIC	
											3	0.00	0.12	619	16000	3	MNTH	FIELD OFFICE, TYPE A	
											0.8	0.08	0.12	623	10000	LS	IVIIIIII	CONSTRUCTION LAYOUT STAKES AND SURVEYING	
											0.8	0.08	0.12	624	10000	LS		MOBILIZATION	
						-													
						1					-	 			-				
					1			-											
						-													
					+	1					 								
					L	L													
						1		-			-	-							
					1	1					-	 			-				
+					1	1						 							
						<u>L</u>							<u></u>						
					1	-													
					1														
ı									i	ı	i	i	i	ı	I			1	


	LOCATION					Г	PA	AVEMENT DATA	1		407	424	897	897	618	
COUNTY-ROUTE DIRECTION	LOG	POINT	LE	ENGTH	PAVEMENT WIDTH	PAVEMENT AREA	SHOULDER WIDTH	SHOULDER AREA	(PAVEMENT AREA WEAS WARIES) VARIES	TOTAL PAVEMENT AREA	TACK COAT (0.085 GAL/SY)	FINE GRADED POLYMER ASPHALT CONCRETE, TYPE B	PAVEMENT PLANING ASPHALT CONCRETE, CLASS A, AS PER PLAN	PAVEMENT PLANING ASPHALT CONCRETE, CLASS A, AS PER PLAN	RUMBLE STRIPS, SHOULDER (ASPHALT CONCRETE)	COMMENTS
	SLM	TO SLM	MILES	FT	FT	SY	FT F1	T SY	SY	SY	GALLON	1" CY	0.75" SY	1" SY	MILE	
JAC-35 EB & WB	18.9200			118.80		RUCTURE SHE					CALLEGIV		0,	ÿ,) """	START PAVEMENT WORK AT EAST END OF BRIDGE
	40.0405	40.0400	0.0675	356.40	24	950.40	4 8	475.20		2,851.20	242.35	79.20	2,851.20	}	0.28	
	18.9425	19.0100	0.0073	330.40	24	930.40	4 0	475.20		2,001.20	242.33	79.20	2,001.20	 	0.20	
	19.0100	19.0413	0.0313	165.26	24	440.70	4 8	220.35		1,322.11	112.38	36.73	1,322.11		0.16	S.R. 327 INTERSECTION
	10.0413	20.5500	1.5087	7,965.94	24	21,242.50	4 8	10,621.25		63,727.49	5,416.84	1,770.21	63,727.49	\P	6.04	
	19.0410	20.0000	1.0007	7,000.07		21,212.00	, ,	70,027.20		00,727.70	0,770.07	7,770.27	30,727.10),	
	20.5500	20.6362	0.0862	455.14	24	1,213.70	4 8	606.85		3,641.09	309.49	101.14	3,641.09	}	0.36	DIXON RUN INTERSECTION
	20.6362	22.0100	1.3738	7,253.66	24	19,343.10	4 8	9,671.55		58,029.31	4,932.49	1,611.93	58,029.31	}	5.52	
										,		,	,	-		
	22.0100	22.0195	0.0095	50.16	24	133.76	4 8	66.88		401.28	34.11	11.15		401.28	0.04	OVERHEAD BRIDGE, MILL 1"
	22.0195	23.1200	1.1005	5,810.64	24	15,495.04	4 8	7,747.52		46,485.12	3,951.24	1,291.25	46,485.12	The same of the sa	4.44	
	23.1200	23.1465	0.0265	139.92	24	373.12	4 8	186.56		1,119.36	95.15	31.09	1,119.36		0.12	ORPHEUS & EBB TOMBLIN ROADS INTERSECTION
	23.1465	23.9400	0.7935	4,189.68	24	11,172.48	4 8	5,586.24		33,517.44	2,848.98	931.04	33,517.44		3.20	
EXTRA AREAS																mmmm,
MEDIAN CROSSOVER	19.01								518.05		44.03	14.39	518.05		>	TURN LANE - S.R. 327 INTERSECTION
MEDIAN CROSSOVER	20.55								995.09		84.58	27.64	995.09			2 TURN LANE - DIXON RUN INTERSECTION
	20.00										000		000.00			1
MEDIAN CROSSOVER	23.12								994.67		84.55	27.63	994.67		(2 TURN LANE - ORPHEUS & EBB TOMBLIN INTERSECTION
													~~	~~~		
										SUB-TOTALS		5,933.39	213,200.93	401.28	20.16	<u></u>
								TOTALS CARRI	ED TO GENER	AL SUMMARY	18,157	5,934	, 213,201	402	20.16	l)

									8	07					85	50	6	521		
						И		CTIVE THE EMENT MAR	RMOPLAST RKING	TIC		REFLEC EPOXY MENT MAI			GROC	OVING		/ED		
LOCATION	DIRECTION	FROM	POINT	LENGTH	EDGE LINE, 6" (YELLOW)	EDGE LINE, 6" (WHITE)	LANE LINE, 6"	CHANNELIZING LINE, 12"	DOTTED LINE, 6" (WHITE)	DOTTED LINE, 6" (YELLOW)	EDGE LINE, 6" (YELLOW)	EDGE LINE, 6" (WHITE)	LANE LINE, 6"	FOR 6" RECESSED MARKING, (ASPHALT)	FOR 6" RECESSED MARKING, (CONCRETE)		RPM	RAISED PAVEMENT MARKER REMOVED	COMMENTS	\ <u>\</u>
JAC-35	EB,WB	SLM 18.9200	SLM 18.9425	MILE 0.0225	MILE	MILE	MILE	FT	FT	FT	0.05	0.05	0.05	MILE	MILE 0.15	} 	EACH 4		STRUCTURE JAC-35-1892 L&R	│
<i>0</i> 70 00	23,773	70.9200	10.9425	0.0220							0.00	0.00	0.00	(ٽٽ)	7	7	OTTOO TOTAL UNO SO TOTAL ENT	
JAC-35	EB,WB	18.9425	19.0100	0.0675	0.07	0.14	0.14					-		0.35			8	8		SUB-SUMMARY
JAC-35	WB	19.0100	19.0413	0.0313	0.03	0.00	0.04	111.97	228.13	116.06				0.07			2	2		%
] NS
JAC-35	EB	19.0100	19.0413	0.0313	0.03	0.04	0.04		162.00	180.62				0.11			2	2		•
JAC-35	EB,WB	19.0413	20.5500	1.5087	3.02	3.02	3.02							9.06			200	200		₹
140.05	IA/D	00.5500	22.222	0.0000	0.00	0.46	0.00	40.50	226.02	450.40				0.24						AR
JAC-35	WB	20.5500	20.6362	0.0862	0.09	0.16	0.09	43.59	336.82	159.42				0.34			6	6		∤ Š
JAC-35	EB	20.5500	20.6362	0.0862	0.06	0.15	0.09	38.91	305.65	166.64				0.31			6	6		PAVEMENT MARKING
JAC-35	EB,WB	20.6362	22.0100	1.3738	2.75	2.75	2.75							8.25			182	182		₩
JAC-35	WB	22.0100	22.0290	0.0190	0.02	0.04	0.02							0.08			1	1	STRUCTURE OVERHEAD	-
JAC-35	EB	22.0100	22.0290	0.0190	0.02	0.04	0.02							0.08			1	1	STRUCTURE OVERHEAD	1
JAC-35	EB,WB	22.0405	22.4200	1.1005	2.21	2.21	2.21							6.63			146	146		-
JAC-33	LB,VVB	22.0195	23.1200	1.1003	2.21	2.21	2.21							0.03			140	140		1
JAC-35	WB	23.1200	23.1730	0.0530	0.06	0.04	0.06	0.00	100.78	447.53				0.16			2	2		1
JAC-35	EB	23.1200	23.1730	0.0530	0.05	0.05	0.06	0.00	71.76	403.60				0.16			2	2		1
440.05	ED IA/D	00.4405		0.7005	4.50	4.50	4.50							4.77			404	404		
JAC-35	EB,WB	23.1465	23.9400	0.7935	1.59	1.59	1.59							4.77			104	104		-
																				1
																				1
																				1
																				DESIGN AGENCY
		TUI	IS SHEET SU	IR-TOTAL S	10.00	10.23					0.05	0.05					666	666		DESIGNER JEM
		ITI	THIS SHEE			10.23 0.23	10.13	194.47	1205.14	4151.50	0.05		0.05	30.36	0.15		666	666		REVIEWE DMB
			CONVER	T TO MILE					~					(- (PROJECT ID
	TOTALS	CARRIED TO	GENERAL S	SUMMARY	20	0.23	10.13	195.00	5,3	357	0.1	0	0.05	30.36	0.15	<u>)</u> ,	666	666		SHEET TOTA

PAVEMENT LINE DIAGRAM S.L.M 18.92-23.94

JEM

REVIEWER
DMB
PROJECT ID
112993 SHEET TOTAL P.21 30

1 ITEM 424 1" FINE GRADED POLYMER ASPHALT CONCRETE, TYPE B, SURFACE COURSE

 (\widehat{A}) EX. LIMESTONE VEIN

SHOULDER REPAIR SUB-SUMMARY

3	ITEM 251 PARTIAL DEPTH PAVEMENT REPAIR (441)
(4)	ITEM 301 10" ASPHALT CONCRETE BASE, PG64-22

5 ITEM 304 6" AGGREGATE BAS	0 <i>E</i>

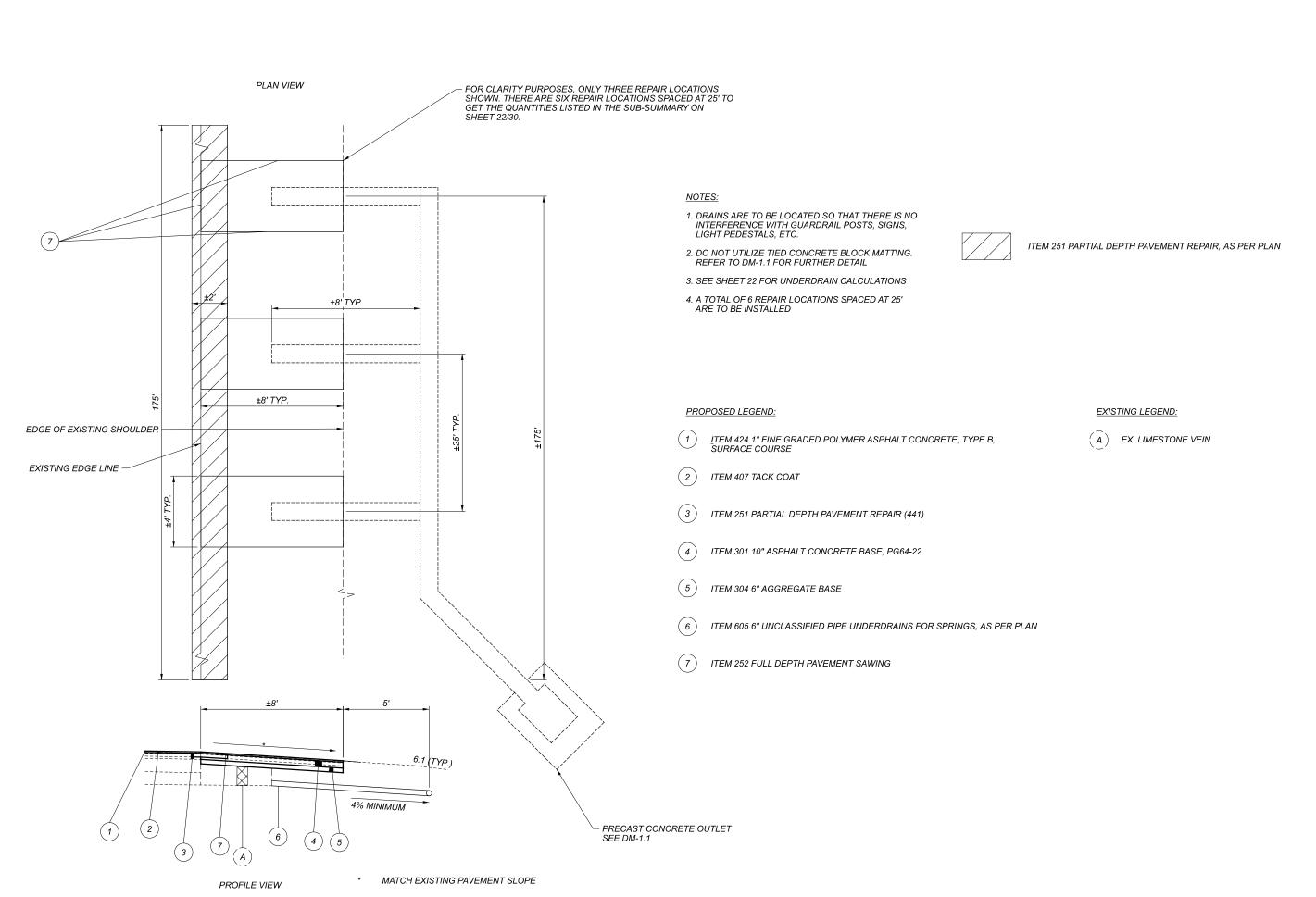
(2) ITEM 407 TACK COAT

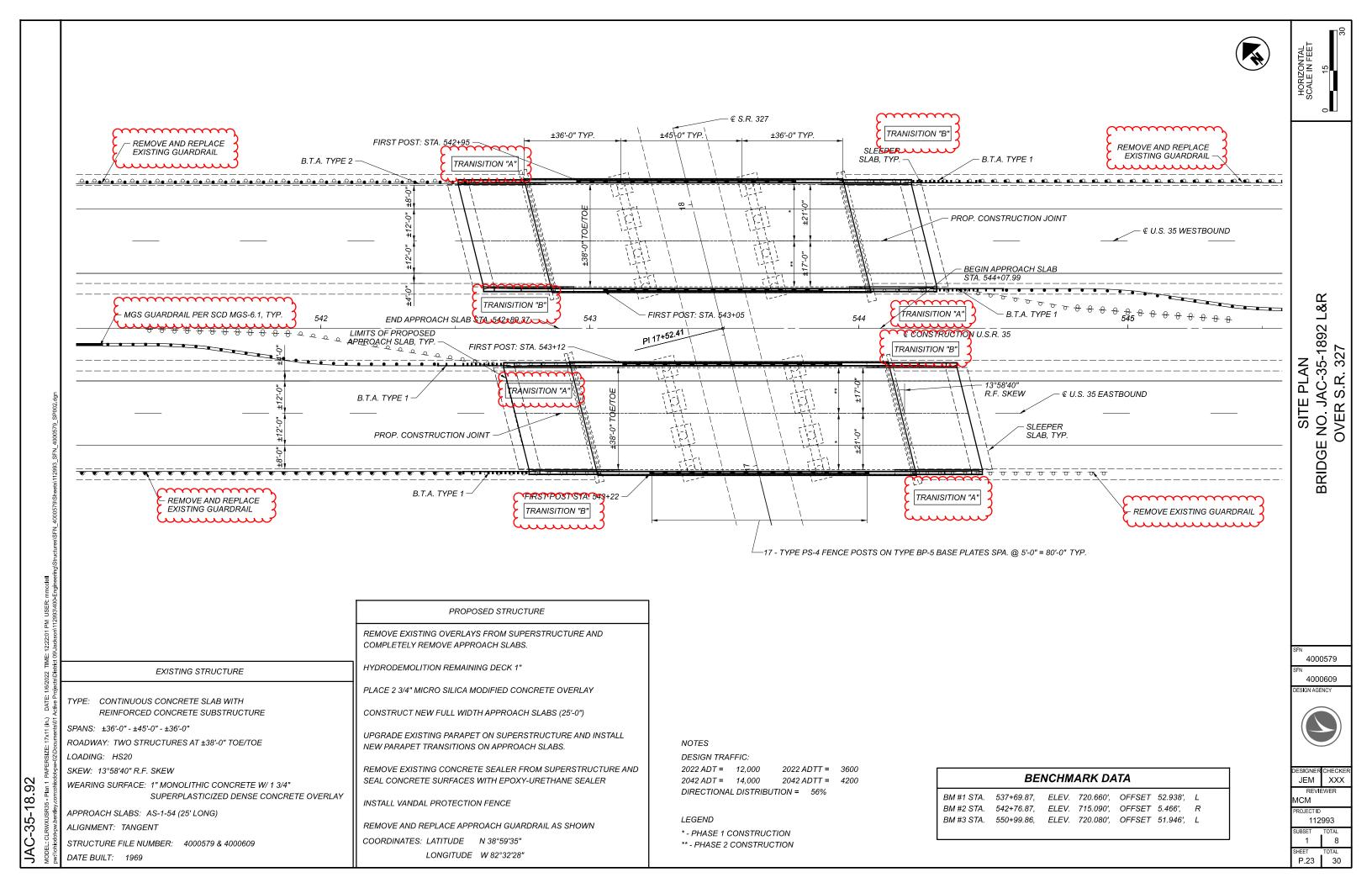
6	ITEM 605 AGGREGATE DRAINS, AS PER PLAN (8")
	THE WOOD TO CONTECT THE BIT WINTER, THE TENTY (C)

(7) ITEM 252 FULL DEPTH PAVEMENT SAWI

LOCATION							P	AVEME	NT DATA		251	252	301	304	407	424	605	605	
COUNTY	ROUTE	SIDE		LO	G POINT		LENGTH	WIDTH	TOTAL SURFACE AREA	NUMBER OF REPAIRS @ 100' INTERVALS	PARTIAL DEPTH PAVEMENT PERPAIR (441)	FULL DEPTH PAVEMENT SAWING	ASPHALT CONCRETE BASE, PG64-22	AGGREGATE BASE			AGGREGATE DRAINS	6" UNCLASSIFIED PIPE UNDERDRAINS FOR SPRINGS	COMMENTS
			SLM	то	SLM	MILES	FT	FT	SY	EACH	SY	FT	10" CY	6" CY			FT	FT	
JAC	US-35 EB	RT	AS DIRECTED BY ENGINEER		SINIEED	4.00	8	3.56	21		420	20.74	12.44			609			
	US-35 EB	RT	ASD	IKECII	ED BY ENG	INEEK	2000.00	2	444.44		444.44								
																			CALCULATIONS USED ARE AS FOLLOWS:
JAC	US-35 EB	RT	19.861				4.00	8	3.56	6		120	5.93	3.56				223.00	
							175.00	2	38.89		38.89								PARTIAL DEPTH PAVEMENT REPAIR
																			EQUALS SURFACE AREA SY
																			[(LENGTH x 2)+W](# REPAIRS) = FT
																			ASPHALT CONCRETE BASE, PG64-22
																			AGGREGATE BASE
																			(SURFACE AREA x DEPTH/36)(# REPAIRS) = CY
																			AGGREGATE DRAINS
																			# REPAIRS x 25' L = FT
						1													
									SUB	3-TOTALS		540.00	26.67	16.00			609.00	223.00	UNDERDRAINS: 175'+(8'x6 REPAIRS)
										TOTALS	483.33	540.00	26.67	16.00			609.00	223.00	•

DES**I**GN AGENCY




JEM REVIEWER DMB

112993 SHEET TOTAL

SHEET TOTAL P.22 30

P.22A 30

5-18.

STANDARD DRAWINGS AND SUPPLEMENTAL SPECIFICATIONS

REFER TO THE FOLLOWING STANDARD BRIDGE DRAWING(S):

VPF-1-90 DATED REVISED 7/20/2018 AS-1-15 DATED REVISED 7/17/2015 PCB-91 DATED REVISED 7/17/2020

AND TO THE FOLLOWING SUPPLEMENTAL SPECIFICATION(S):

800 DATED 10/15/2021 832 DATED 10/19/2018 848 DATED 1/15/2021

DESIGN SPECIFICATIONS

THIS STRUCTURE CONFORMS TO "STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES" ADOPTED BY THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS, 2002 AND THE ODOT BRIDGE DESIGN MANUAL, 2020, EXCEPT AS NOTED ELSEWHERE IN THE PLANS.

DESIGN LOADING

DESIGN LOADING INCLUDES: HS20 AND ALTERNATE MILITARY LOADING

DESIGN DATA

CONCRETE QC2

COMPRESSIVE STRENGTH 4.5 KSI (SUPERSTRUCTURE)

REINFORCING STEEL MINIMUM YIELD STRENGTH 60 KSI

DECK PROTECTION METHOD

3" MICRO SILICA MODIFIED CONCRETE OVERLAY

ITEM 526 - TYPE A INSTALLATION, AS PER PLAN

THIS ITEM CONSISTS OF PROVIDING THE TYPE A INSTALLATION AS SHOWN IN SCD AS-2-15 EXCEPT IT WILL BE MODIFIED AS SHOWN ON SHEET 2 OF THE PLANS. INSTALLTION OF THE DRAINAGE ITEMS, GRANULAR MATERIAL, AND POLYMER MODIFIED EXPANSION JOINT AS SHOWN ON SCD AS-2-15 WILL NOT BE REQUIRED. SEE BASIS OF PAYMENT NOTE ON SHEET 14 OF SCD AS-2-15 AND INCLUDE PAYMENT FOR THE ASPHALT BASE COURSE SHOWN ON SHEET 2 IN THIS ITEM OF WORK.

____BRIPGE_CONSTRUCTION-SEQUENCE______

- 1. SETUP PHASE 1 TRAFFIC CONTROL TO CLOSE THE RIGHT (DRIVING) LANES IN ACCORDANCE WITH S.C.D. MT-95.40.
- 2. COMPLETE PHASE ONE CONSTRUCTION OF BOTH BRIDGE NO. JAC-35-1892 L&R AS DETAILED ON SHEET 4/8 WITH THE EXCEPTION OF ITEM 512, SEALING OF CONCRETE SURFACES (EPOXY-URETHANE).
- 3. AT THE COMPLETION OF PHASE ONE CONSTRUCTION, REVISE MAINTENANCE OF TRAFFIC DEVICES TO OPEN THE RIGHT (DRIVING) LANES AND SET UP PHASE 2 TRAFFIC CONTROL TO CLOSE THE LEFT PASSING) LANES IN ACCORDANCE WITH S.C.D. MT-95.40.
- 4. COMPLETE PHASE TWO CONSTRUCTION OF BOTH BRIDGE NO. JAC-35-1892 L&R AS DETAILED ON SHEET 4/8, WITH THE EXCEPTION OF ITEM 512, SEALING OF CONCRETE SURFACES (EPOXY-URETHANE).
- 5 AT THE COMPLETION OF PAHSE TWO CONSTRUCTION REMOVE MAINTENANCE OF TRAFFIC DEVICES AND OPEN ALL TRAFFIC LANES.
- 6. SET UP TRAFFIC CONTROL DEVICES IN ACCORDANCE WITH S.C.D. MT-95.30 TO PERFORM ITEM 512, SEALING OF CONCRETE SURFACES (EPOXY-URETHANE).

EXISTING STRUCTURE VERIFICATION

DETAILS AND DIMENSIONS SHOWN ON THESE PLANS PERTAINING TO THE EXISTING STRUCTURE HAVE BEEN OBTAINED FROM PLANS OF THE EXISTING STRUCTURE AND FROM FIELD OBSERVATIONS AND MEASUREMENTS. CONSEQUENTLY, THEY ARE INDICATIVE OF THE EXIST-ING STRUCTURE AND THE PROPOSED WORK BUT THEY SHALL BE CONSIDERED TENTATIVE AND APPROXIMATE. THE CONTRACTOR IS REFERRED TO C&MS. SECTIONS 102.05, 105.02, AND 513.04*. BASE CONTRACT BID PRICES UPON A RECOGNITION OF THE UNCERTAIN-TIES DESCRIBED ABOVE AND UPON A PREBID EXAMI-NATION OF THE EXISTING STRUCTURE. HOWEVER. THE DEPARTMENT WILL PAY FOR ALL PROJECT WORK BASED UPON ACTUAL DETAILS AND DIMENSIONS THAT HAVE BEEN VERIFIED IN THE FIELD.

ITEM 517 - RAILING (UPGRADING EXISTING), AS PER PLAN

DESCRIPTION:

THIS WORK CONSISTS OF ADDING AN 11½" HEIGHT EXTENSION ONTO THE EXISTING PARAPET AND PARAPET TRANSITION, USING CAST IN PLACE CONCRETE. TO OBTAIN THE DEFLECTOR SHAPE AS SHOWN INTHE PLANS.

SURFACE PREPERATIONS:

THOROUGHLY CLEAN THE EXISTING PARAPET AND EXISTING PARAPET TRANSITION SURFACE IN CONTACT WITH THE PROPOSED CAP IN ACCORDANCE WITH ITEM 512, REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES.

DOWEL HOLES AND REINFORCING:

DRILL DOWEL HOLES WHERE SHOWN IN THE PLANS INSTALL REINFORCING STEEL ACCORDING TO ITEM 510 USING GROUT IN ACCORDANCE WITH CMS SPECIFICATION 705.20. PRIOR TO DRILLING DOWEL HOLES, LOCATE ALL EXISTING REINFORCING STEEL BARS IN THE AREA OF THE HOLE WITH THE AID OF A REINFORCING STEEL BAR LOCATOR (PACHOMETER). IF AN EXISTING BAR IS ENCOUNTERED AT THE SAME LOCATION AS A PROPOSED DOWEL HOLE, MOVE THE DOWEL HOLE TO EITHER SIDE OF THE EXISTING BAR. THE DEPARTMENT WILL PAY FOR ALL REINFORCING STEEL, DOWEL HOLES AND GROUTING WITH ITEM 517, RAILING (UPGRADING EXISTING), AS PER PLAN.

CONCRETE:

CONCRETE SHALL BE IN ACCORDANCE WITH CMS 511 AND SHALL BE CLASS HP. THE DEPARTMENT WILL PAY FOR ALL CONCRETE, CLASS HP WITH ITEM 517, RAILING (UPGRADING EXISTING), AS PFR PI AN

REINFORCING STEEL:

FURNISH REINFORCING STEEL ACCORDING TO 709.00, GRADE 60, WITH A MINIMUM YIELD STRENGTH OF 60,000 PSI. THE DEPARTMENT WILL PAY FOR ALL REINFORCING STEEL WITH ITEM 517, RAILING (UPGRADING EXISTING), AS PER PLAN.

CONTROL JOINTS:

SAWCUT 11/4" DEEP CONTROL JOINTS ALONG THE PERIMETER OF THE PARAPET AS SOON AS THE SAW CAN BE OPERATED WITHOUT DAMAGING THE CONCRETE. PLACE THE JOINTS AT THE SAME LOCATION AS THE EXISTING DEFLECTION JOINTS. USE AN EDGE GUIDE, FENCE, OR JIG TO ENSURE THAT THE SAWCUT IS STRAIGHT, TRUE AND ALIGNED ON ALL FACES OF THE PARAPET. THE JOINT WIDTH OF $\frac{1}{4}$ ". SEAL THE PERIMETER OF THE CONTROL JOINT TO A MINIMUM DEPTH OF ONE INCH WITH A POLYURETHANE OF POLYMERIC MATERIAL CONFORMING TO ASTM, C920, TYPE S.

METHOD OF MEASUREMENT:

THE DEPARTMENT WILL MEASURE THIS IN FOOT BY THE ACTUAL LENGTH OF RAILING UPGRADED BETWEEN THE ENDS OF THE EXISTING CONCRETE PARAPET.

BASIS OF PAYMENT:

PAYMENT FOR THIS ITEM INCLUDES ALL COSTS FOR DOWEL HOLES REINFORCING STEEL CONCRETE AND SHRINKAGE CONTROL JOINTS. THE DEPARTMENT WILL PAY FOR ACCEPTED QUANTITIES AT THE FOOT CONTRACT PRICE FOR ITEM 517, RAILING (UPGRADING EXISTING), AS PER PLAN.

ITEM 202, PORTIONS OF STRUCTURE REMOVED, OVER 20 FOOT SPAN. AS PER PLAN

THIS ITEM SHALL INCLUDE THE ELEMENTS INDICATED IN THE PLANS AND GENERAL NOTES AND THAT ARE NOT SEPARATELY LISTED FOR PAYMENT, EXCEPT FOR WEARING COURSE REMOVAL. ITEMS TO BE REMOVED INCLUDE ALL EXISTING MATERIALS BEING REPLACED BY NEW CONSTRUCTION AND MISCELLANEOUS ITEMS THAT ARE NOT SHOWN TO BE INCORPORATED INTO THE FINAL CONSTRUCTION AND ARE DIRECTED TO BE REMOVED BY THE ENGINEER. THE USE OF EXPLOSIVES, HEADACHE BALLS AND/OR HOE-RAMS WILL NOT BE PERMITTED. REMOVE CONCRETE BY MEANS OF APPROVED PNEUMATIC HAMMERS EMPLOYING POINTED AND BLUNT CHISEL TOOLS. HYDRAULIC HOE-RAM TYPE HAMMERS WILL NOT BE PERMITTED. THE WEIGHT OF THE HAMMER SHALL NOT BE MORE THAN 35 POUNDS FOR REMOVAL WITHIN 18 INCHES OF PORTIONS TO BE PRESERVED. OUTSIDE THE 18 INCH LIMIT, THE CONTRACTOR MAY USE HAMMERS NOT EXCEEDING 90 POUNDS UPON THE APPROVAL OF THE ENGINEER. DO NOT PLACE PNEUMATIC HAMMERS IN DIRECT CONTACT WITH REINFORCING STEEL THAT IS TO BE RETAINED IN THE REBUILT STRUCTURE. SUBMIT CONSTRUCTION PLANS ACCORDING TO C&MS 501.05.

CUT LINE CONSTRUCTION JOINT PREPARATION

SAW CUT BOUNDARIES OF PROPOSED CONCRETE REMOVALS 1 INCH DEEP. REMOVE CONCRETE TO A ROUGH SURFACE. LEAVE THE EXISTING REINFORCING STEEL, IF REQUIRED IN THE PLANS, IN PLACE, INSTALL DOWEL BARS IF SPECIFIED. PRIOR TO CONCRETE PLACEMENT ABRASIVELY CLEAN JOINT SURFACES AND EXISTING EXPOSED REINFORCEMENT TO REMOVE LOOSE AND DISINTEGRATED CONCRETE AND LOOSE RUST. THOROUGHLY CLEAN THE JOINT SURFACE AND EXPOSED REINFORCEMENT OF ALL DIRT. DUST. RUST OR OTHER FOREIGN MATERIAL BY THE USE OF WATER, AIR UNDER PRESSURE, OR OTHER METHODS THAT PRODUCE SATISFACTORY RESULTS. EXISTING REINFORCING STEEL DOES NOT HAVE TO HAVE A BRIGHT STEEL FINISH BUT REMOVE ALL PACK AND LOOSE RUST. THOROUGHLY DRENCH EXISTING CONCRETE SURFACES WITH CLEAN WATER AND ALLOW TO DRY TO A DAMP CONDITION BEFORE PLACING CONCRETE.

MEASUREMENT & PAYMENT: THE DEPARTMENT WILL MEASURE THE QUANTITY OF REMOVALS ON A LUMP SUM BASIS. THE DEPARTMENT WILL PAY FOR THE ACCEPTED QUANTITIES OF REMOVALS AT THE CONTRACT PRICE FOR ITEM 202 -PORTIONS OF STRUCTURE REMOVED, OVER 20 FOOT SPAN, AS PER PLAN.

4000609

 \propto

AC-35-1892 I S.R. 327

JAC S.S.

NO.

BRIDGE

NOTE

GENERAL

4000579

JEM | XXX ICM 112993 P.24

DESIGNER	CHECKER
JEM	XXX
REVIE	WER
МСМ	
PROJECT ID	
112	993
SUBSET	TOTAL
3	8
SHEET	TOTAL
D 25	20

CHECKED: DATE ESTIMATED QUANTITIES (JAC-35-1892 L) SEE ITEM **EXTENSION** TOTAL UNIT DESCRIPTION ABUT. **PIERS** SUPER. GEN. SHEET 202 11203 LS PORTIONS OF STRUCTURE REMOVED, OVER 20 FOOT SPAN, AS PER PLAN 202 22900 134 SY APPROACH SLAB REMOVED 134 202 23000 132 SY PAVEMENT REMOVED 132 202 23500 134 SY WEARING COURSE REMOVED 134 202 38000 512.5 FT GUARDRAIL REMOVED 512.5 GUARDRAIL REMOVED, BARRIER DESIGN 202 38300 62.5 FT 62.5 202 ANCHOR ASSEMBLY REMOVED 42206 EACH 202 47000 EACH BRIDGE TERMINAL ASSEMBLY REMOVED 509 10000 4526 EPOXY COATED REINFORCING STEEL 1292 702 2532 LB 510 10000 160 EACH DOWEL HOLES WITH NONSHRINK, NONMETALLIC GROUT 88 72 511 34448 24 CY CLASS QC2 CONCRETE, BRIDGE DECK (PARAPET) 512 10100 373 SY SEALING OF CONCRETE SURFACES (EPOXY-URETHANE) 284 89 REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES 512 74000 206 SY 206 516 13600 18 SF 1" PREFORMED EXPANSION JOINT FILLER 18 FT 517 75401 206 RAILING (UPGRADING EXISTING), AS PER PLAN 206 519 11100 450 SF PATCHING CONCRETE STRUCTURE 450 526 25000 239 SY REINFORCED CONCRETE APPROACH SLABS (T=15") 239 526 90011 78 FT TYPE A INSTALLATION, AS PER PLAN 78 FT GUARDRAIL, TYPE MGS 606 15050 450 450 606 15550 62.5 FT GUARDRAIL, BARRIER DESIGN, TYPE MGS 62.5 606 26150 EACH ANCHOR ASSEMBLY, MGS TYPE E 606 26550 EACH ANCHOR ASSEMBLY, MGS TYPE T 606 35002 MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1 606 35102 FACH MGS BRIDGE TERMINAL ASSEMBLY, TYPE 2 1 606 IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL) 60012 607 39900 160 VANDAL PROTECTION FENCE, 6' STRAIGHT, COATED FABRIC 160 BARRIER REFLECTOR, TYPE 1 626 00102 EACH BARRIER REFLECTOR, TYPE 3 626 00112 EACH 848 10000 501 MICRO SILICA MODIFIED CONCRETE OVERLAY USING HYDRODEMOLITION (2.75" THICK) 501 848 20000 501 SY SURFACE PREPARATION USING HYDRODEMOLITION 501 MICRO SILICA MODIFIED CONCRETE OVERLAY (VARIABLE THICKNESS), MATERIAL ONLY 848 30000 10 CY 10 848 50000 50 SY HAND CHIPPING 50 LS TEST SLAB LS 848 50100 FULL-DEPTH REPAIR 848 CY 10 50200 10 848 50320 501 SY EXISTING CONCRETE OVERLAY REMOVED (1.75") 501 REMOVAL OF DEBONDED OR DETERIORATED EXISTING VARIABLE THICKNESS CONCRETE OVERLAY 50 50 848 50340 SY

CALC:

MCM

DATE

JAC-35-18.92

DESIGNER	CHECKER									
JEM	XXX									
REVIE	WER									
MCM										
PROJECT ID										
112	993									
SUBSET	TOTAL									
3A	8									
SHEET	TOTAL									
D 25A	20									

CHECKED: DATE: ESTIMATED QUANTITIES (JAC-35-1892 R) EXTENSION TOTAL UNIT DESCRIPTION ABUT. **PIERS** SUPER. GEN. ITEM SHEET PORTIONS OF STRUCTURE REMOVED, OVER 20 FOOT SPAN, AS PER PLAN APPROACH SLAB REMOVED SY PAVEMENT REMOVED SY WEARING COURSE REMOVED GUARDRAIL REMOVED GUARDRAIL REMOVED, BARRIER DESIGN 62.5 62.5 EACH ANCHOR ASSEMBLY REMOVED EACH BRIDGE TERMINAL ASSEMBLY REMOVED LB EPOXY COATED REINFORCING STEEL EACH DOWEL HOLES WITH NONSHRINK, NONMETALLIC GROUT CLASS QC2 CONCRETE, BRIDGE DECK (PARAPET) SY SEALING OF CONCRETE SURFACES (EPOXY-URETHANE) SY REMOVAL OF EXISTING COATINGS FROM CONCRETE SURFACES SF 1" PREFORMED EXPANSION JOINT FILLER RAILING (UPGRADING EXISTING), AS PER PLAN FT PATCHING CONCRETE STRUCTURE SY REINFORCED CONCRETE APPROACH SLABS (T=15") FT TYPE A INSTALLATION, AS PER PLAN GUARDRAIL, TYPE MGS FT 62.5 GUARDRAIL, BARRIER DESIGN, TYPE MGS 62.5 ANCHOR ASSEMBLY, MGS TYPE E EACH EACH MGS BRIDGE TERMINAL ASSEMBLY, TYPE 1 IMPACT ATTENUATOR, TYPE 1 (BIDIRECTIONAL) EACH VANDAL PROTECTION FENCE, 6' STRAIGHT, COATED FABRIC EACH BARRIER REFLECTOR, TYPE 1 EACH BARRIER REFLECTOR, TYPE 3 MICRO SILICA MODIFIED CONCRETE OVERLAY USING HYDRODEMOLITION (2.75" THICK) SY SURFACE PREPARATION USING HYDRODEMOLITION MICRO SILICA MODIFIED CONCRETE OVERLAY (VARIABLE THICKNESS), MATERIAL ONLY SY HAND CHIPPING LS TEST SLAB LS FULL-DEPTH REPAIR EXISTING CONCRETE OVERLAY REMOVED (1.75") SY REMOVAL OF DEBONDED OR DETERIORATED EXISTING VARIABLE THICKNESS CONCRETE OVERLAY SY

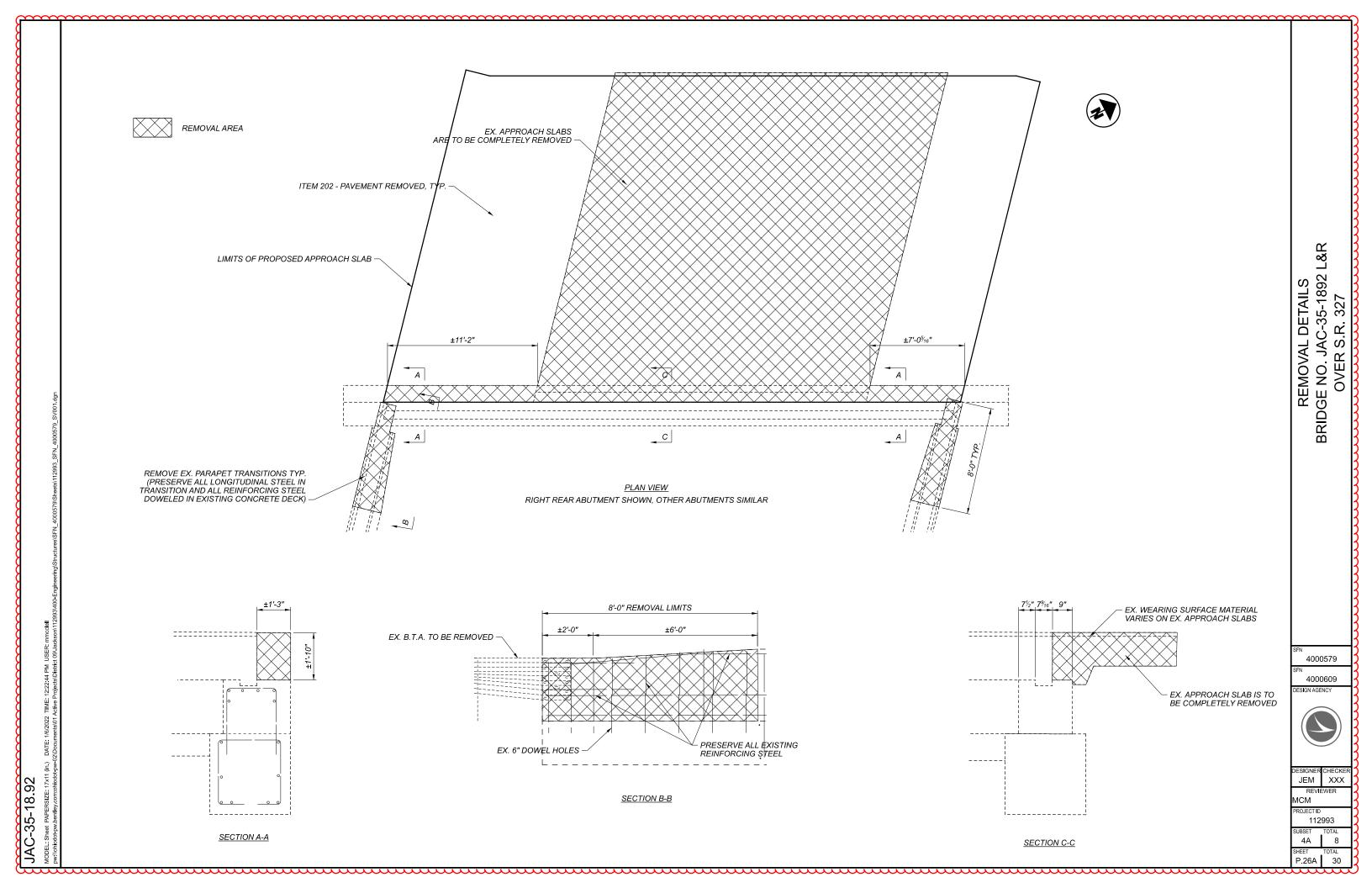
MCM

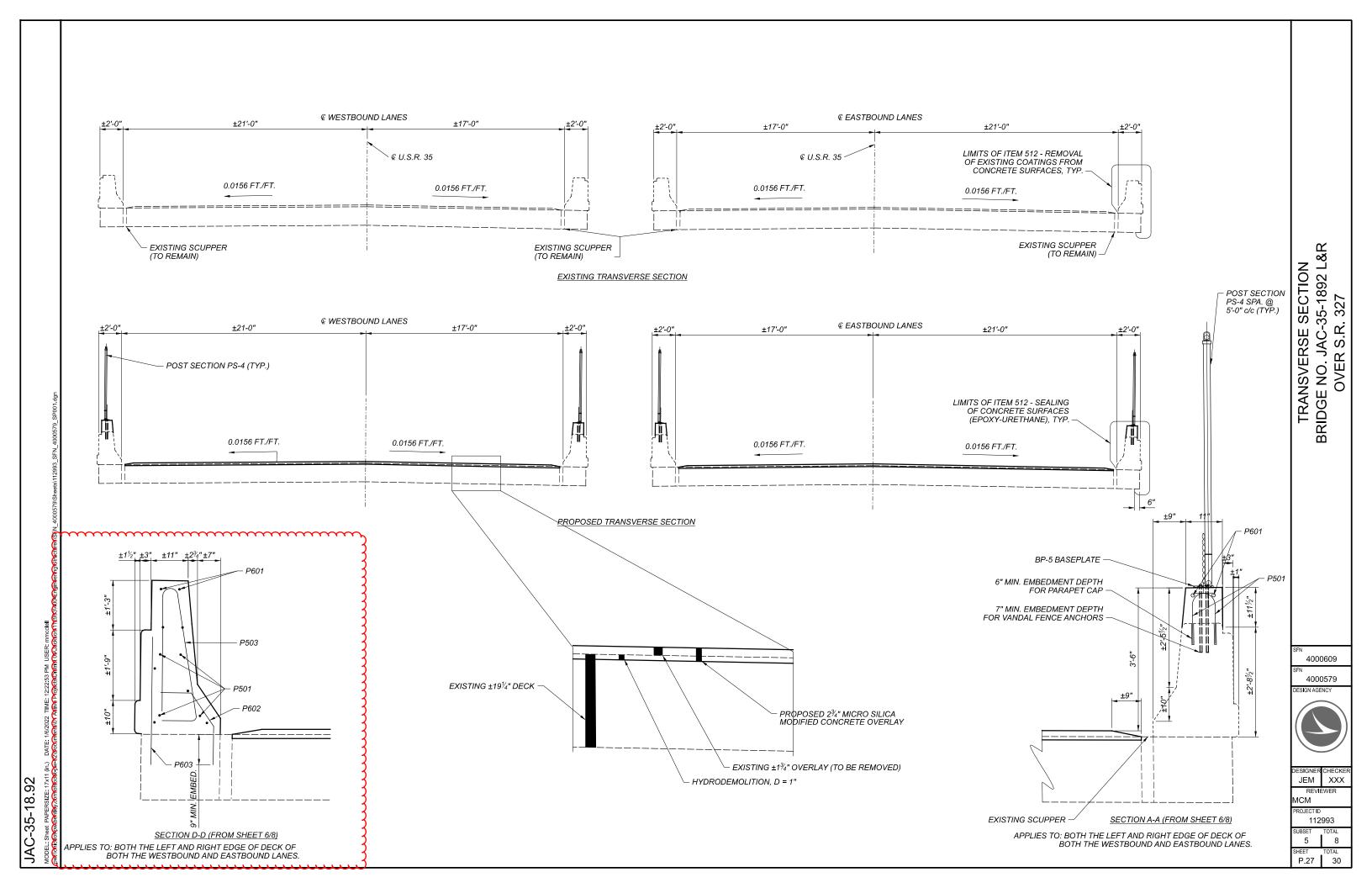
DATE:

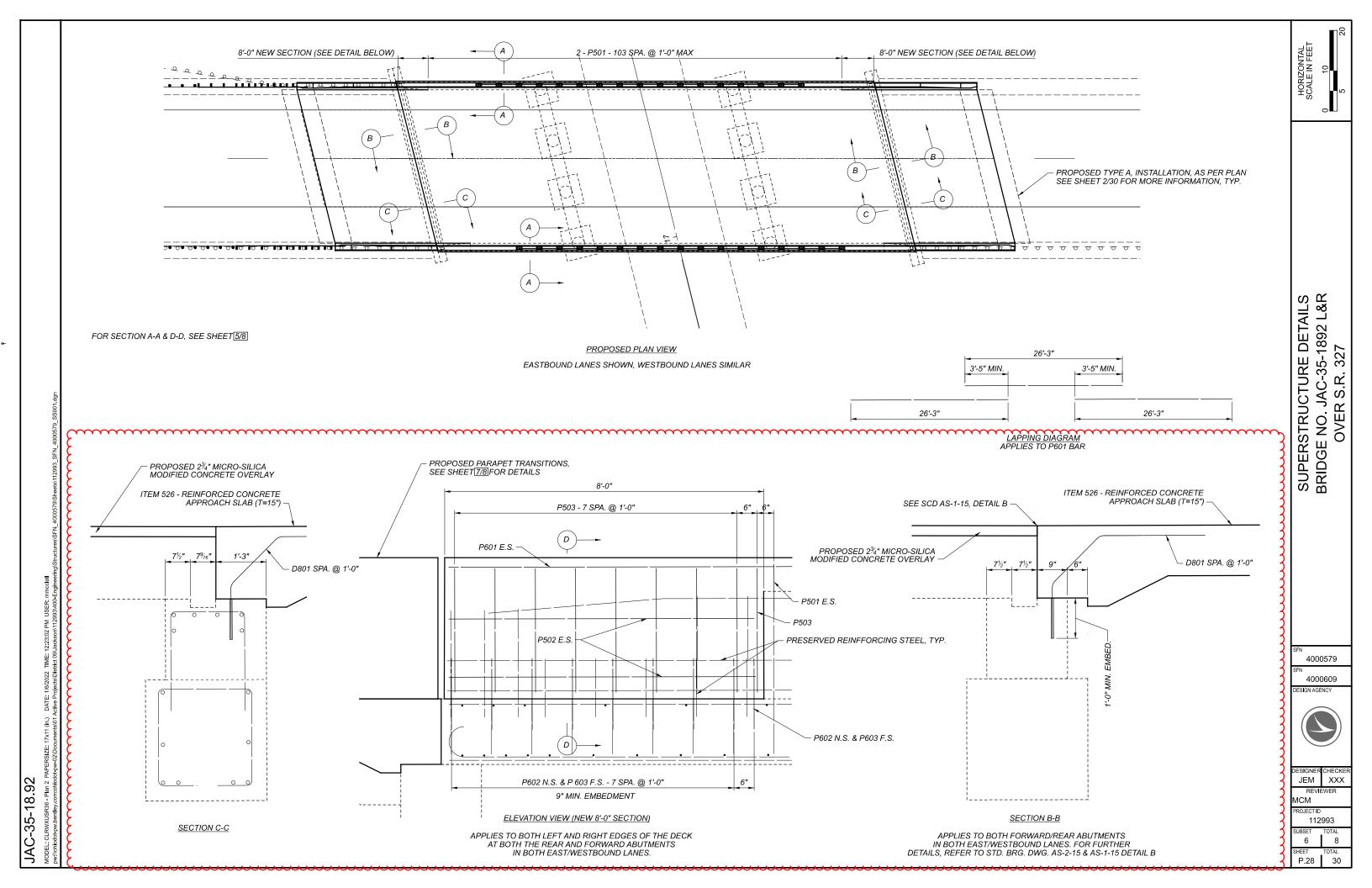
CALC:

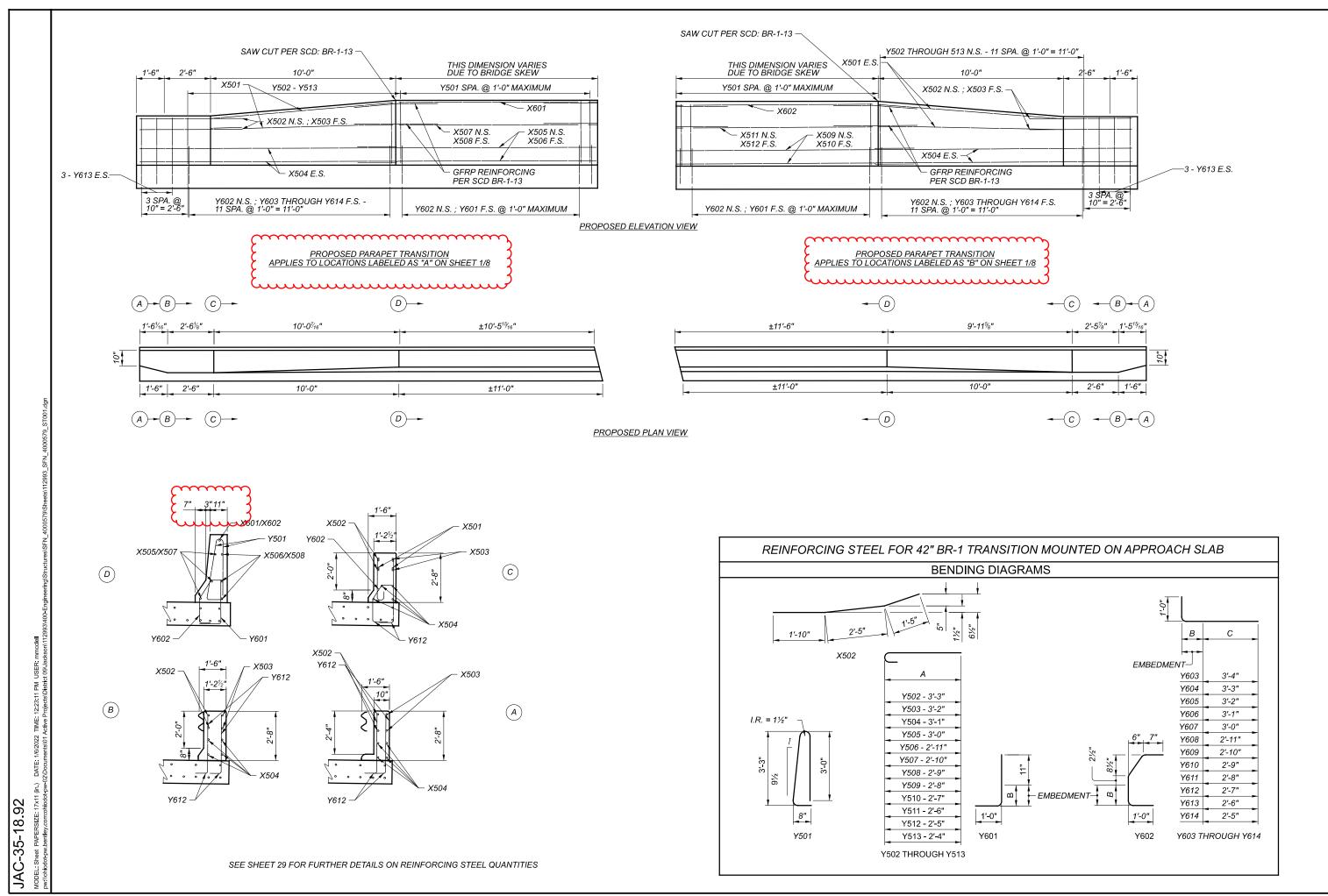
JAC-35-18.92

STAGED CONSTRUCTION DETAILS BRIDGE NO. JAC-35-18.92 L&R OVER S.R. 327


SFN 4000579
SFN 4000609




DESIGNER CHECKE
JEM XXX


REVIEWER
MCM
PROJECT ID
112993
SUBSET TOTAL

SHEET TOTAL P.26 30

PROPOSED PARAPET TRANSITIONS APPROACH SLAB BRIDGE NO. JAC-35-1892 L&R

SFN 4000579
SFN 4000609
DESIGN AGENCY

DESIGNER CHECKER
JEM XXX

REVIEWER
MCM
PROJECT ID
112993
SUBSET TOTAL
7 8
SHEET TOTAL
P.29 30

*****		11111	1111			****	****		*****	****	****	· · · · · · · · · · · · · · · · · · ·	m	1	***		****		1	• • • • • •				· · ·		****	• • • • •	
MARK	NO.	LENGTH	WEIGHT	TYPE		В	С	D	R/INCR.	MARK	NO.	LENGTH	WEIGHT	TYPE		В	С	D	R/INCR.	MARK	NO.	LENGTH	WEIGHT	TYPE		В	С	D
		PAI	RAPET TRA	_									APET TRAN								PAR	APET CAP A	ND RE-CON	STRU	,		GE)	
Y501	11	6'-11"	79	22	0'-8"	3'-0"	3'-3"		0'-2"	Y501	12	6'-11"	87	22	0'-8"	3'-0"	3'-3"		0'-2"	P501 *	416	1'-9"	759	1	0'-6"	1'-5"		
Y502	1	3'-10"	4	16	3'-3"					Y502	1	3'-10"	4	16	3'-3"					P502	16	7'-7"	127	STR				
Y503	1	3'-9"	4	16	3'-2"					Y503	1	3'-9"	4	16	3'-2"					P503	36	6'-11"	260	22	0'-8"	3'-0"	3'-3"	0'-2"
Y504	1	3'-8"	4	16	3'-1"					Y504	1	3'-8"	4	16	3'-1"													
Y505	1	3'-7"	4	16	3'-0"					Y505	1	3'-7"	4	16	3'-0"					P601*	20	26'-3"	789	STR				
		21.01		10	<u> </u>					1/200		21.21								P602	36	2'-8"	144	13		0'-10"	0'-7"	0'-9"
Y506	1	3'-6"	4	16	2'-11"					Y506	1	3'-6"	4	16	2'-11"					P603	36	3'-2"	171	STR				
Y507	1	3'-5"	4	16	2'-10"					Y507	1	3'-5"	4	16	2'-10"						TAL FOR LEF		702					
Y508	1	3'-4"	3	16	2'-9"					Y508	1	3'-4"	3	16	2'-9"					101/	AL FOR RIGH	II BRIDGE:	702					
Y509	1	3'-3"	3	16	2'-8"					Y509	1	3'-3"	3	16	2'-8"													
Y510	1	3'-2"	3	16	2'-7"					Y510	1	3'-2"	3	16	2'-7"													
			_		<u> </u>																		BUTMENT (I	_		<u> </u>		
Y511	1	3'-1"	3	16	2'-6"					Y511	1	3'-1"	3	16	2'-6"					D801	88	5'-6"	1292	13	1'-5"	1'-2"	1'-2"	2'-6"
Y512	1	3'-0"	3	16	2'-5"					Y512	1	3'-0"	3	16	2'-5"						TAL FOR LEF		1,292	-				
Y513	1	2'-11"	3	16	2'-4"					Y513	1	2'-11"	3	16	2'-4"					ТОТ	AL FOR RIGH	IT BRIDGE:	1,292					
X501	4	10'-0"	42	STR						X501	4	10'-0"	42	STR														
X502	2	5'-8"	12	25	1'-10"	2'-5"	1'-5"	0'-5"	0'-1 "	X502	2	5'-8"	12	25	1'-10"	2'-5"	1'-5"	0'-5"	0'-1 "									
X503	2	5'-8"	12	STR						X503	2	5'-8"	12	STR														
X504	4	13'-10"	58	STR						X504	4	13'-10"	58	STR														
X505	2	14'-6"	30	STR						X509	2	14'-6"	30	STR							* - PROVIDE	D FOR INFOR	RMATION O	VLY, PA	AYMENT IN	ICLUDED		
X506	2	14'-0"	29	STR						X510	2	15'-0"	31	STR							INTIEM 5	17, RAILING	(UPGRADE	EXIST	ING), AS P	ER PLAN		
X507	1	10'-9"	11	STR						X511	1	10'-9"	11	STR														
X508	1	10'-6"	11	STR	<u> </u>					X512	1	11'-3"	12	STR														
Y601	11	2'-10"	47	1	2'-0"	1'-0"				Y601	12	2'-10"	51	1	2'-0"	1'-0"												
Y602	23	3'-9"	130	14	1'-0"	1'-3"	0'-8 "	0'-6"	0'-10"	Y602	24	3'-9"	132	14	1'-0"	1'-3"	0'-8 "	0'-6"	0'-10"									
Y603	1	5'-2"	8	1	1'-0"	4'-4"				Y603	1	5'-2"	8	1	1'-0"	4'-4"												
Y604	1	5'-1"	8	1	1'-0"	4'-3"				Y604	1	5'-1"	8	1	1'-0"	4'-3"												
Y605	1	5'-0"	8	1	1'-0"	4'-2"				Y605	1	5'-0"	8	1	1'-0"	4'-2"												
					ļ																							
Y606	1	4'-11"	7	1	1'-0"	4'-1"				Y606	1	4'-11"	7	1	1'-0"	4'-1"												
Y607	1	4'-10"	7	1	1'-0"	4'-0"				Y607	1	4'-10"	7	1	1'-0"	4'-0"												
Y608	1	4'-9"	7	1	1'-0"	3'-11"				Y608	1	4'-9"	7	1	1'-0"	3'-11"												
Y609	1	4'-8"	7	1	1'-0"	3'-10"				Y609	1	4'-8"	7	1	1'-0"	3'-10"												
Y610	1	4'-7"	7	1	1'-0"	3'-9"				Y610	1	4'-7"	7	1	1'-0"	3'-9"												
					ļ																							
Y611	1	4'-6"	7	1	1'-0"	3'-8"				Y611	1	4'-6"	7	1	1'-0"	3'-8"												
Y612	1	4'-5"	7	1	1'-0"	3'-7"				Y612	1	4'-5"	7	1	1'-0"	3'-7"												
Y613	4	4'-4"	26	1	1'-0"	3'-6"				Y613	4	4'-4"	26	1	1'-0"	3'-6"												
Y614	1	4'-3"	6	1	1'-0"	3'-5"				Y614	1	4'-3"	6	1	1'-0"	3'-5"												
X601	1	10'-6"	16	STR	ļ'					X602	1	11'-1"	17	STR														
		TRANSITION:	624							TOTAL	FOR ONE T	RANSITION:	642															
		EFT BRIDGE:	1,248		ļ						TAL FOR LEI		1,284															
	AL EOD DIG	GHT BRIDGE:	1,248		ļ'					тот	AL FOR RIGH	HT BRIDGE:	1,284															
	AL FOR KIC				<u></u> '																							
	AL FOR RIC		. E	محدد	سس	سس	دىدىد	سس	و المستالين	« س	D (دىنىن	سس	س	بتنيي	سس	سس	بييين	سس	دىنىن	uuu	سس	سس	ىد	ستن	سس	ست	سس
TOT	Luli	whi	ستتك				1																					
тот	20\1	- Luju	utuu		1																							
TOT.	70\ <u>1</u>	1	u tuu	1	0	-	-		В	<u>'</u>		m					Į.											
тот	70\ <u>1</u>	1	u tu		O		A -		B	_		B				_												
тот	70\ <u>1</u>	1	u tu	1	В		A -			<u>'-</u>		B						<u> </u>										
TOT.	70\ <u>1</u>	1	<u></u>		В	TVI	DF_16	-	A	<u>'-</u>		A		Ñ	c. c.	1'-	5"											
TOT.	70\ <u>1</u>	1	<u> </u>		B		PE-16		A	<u>'</u>		A	1'-1	10"	2'-5"	1'-	5" 5"	6/2"										
TOT.	201	9%	ļ	A PE-14		TYE	PE-16			<u>-</u>	TYPE-1	4	1'-7	10"	2'-5" X502	1'-	5" 5"	11/2"										

OVER S.R. 327

