OHIO DEPARTMENT OF TRANSPORTATION

LAK-090-02.93 SLOPE REPAIR LANDSLIDE EXPLORATION REPORT

OCTOBER 31, 2024

FINAL

۱۱SD

LAK-090-02.93 SLOPE REPAIR

LANDSLIDE EXPLORATION REPORT

OHIO DEPARTMENT OF TRANSPORTATION PID: 112663

FINAL

PROJECT NO.: 30902165 DATE: OCTOBER 2024

WSP USA 1660 WEST SECOND STREET SUITE 820 CLEVELAND, OH 44113

TEL.: +1 216 781-7888 FAX: +1 216 781-7978 WSP.COM

October 31, 2024

FINAL

Kyle J. Dohlen, PE OHIO DEPARTMENT OF TRANSPORTATION District 12 Engineering Office 5500 Transportation Boulevard Garfield Heights, Ohio 44125

Subject: LAK-90-02.39 Landslide Exploration Report Client ref.: PID 112663

Dear Mr. Dohlen,

We are pleased to submit the Landslide Exploration Report for the LAK-90-02.93 project. The attached report is intended to provide subsurface findings and geotechnical recommendations based on the geotechnical data collected for the project.

WSP USA appreciates the opportunity to provide the attached Landslide Exploration report. If you have any questions, feel free to contact us directly via phone or email.

Yours sincerely,

Hanzeh

Hamzeh Saqer, PE Geotechnical Engineer

HS/MMF

WSP ref.: 30902165

Midul M. flugs

Michael M. Flanagan, PE Geotechnical & Tunneling Midwest District Director

1660 WEST SECOND STREET SUITE 820 CLEVELAND, OH 44113

Tel.: +1 216 781-7888 Fax: +1 216 781-7978 wsp.com

wsp

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY	1
1.1	Exploration and Findings	1
1.2	Analysis and Recommendations	2
2		3
2.1	Project Location	3
2.2	Purpose	3
2.3	Historic Records	4
2.4	Existing Conditions	4
3	REGIONAL GEOLOGY	7
3.1	Surficial Soils	7
3.2	Bedrock Geology	8
4	SUBSURFACE EXPLORATION	9
6 1	Soil Boring Program	_
	aan paring Fradiani	9
4.2	Laboratory testing	9 11
4.2 4.3	Laboratory testing	9 11 11
4.2 4.3 5	Laboratory testing Instrumentation SUBSURFACE CONDITIONS	9 11 11 . 12
4.2 4.3 5 5.1	Laboratory testing Instrumentation SUBSURFACE CONDITIONS	9 11 11 . 12 12
4.2 4.3 5 5.1 5.1.1	Laboratory testing Instrumentation SUBSURFACE CONDITIONS Soil Surface Materials	9 11 12 12 12
4.2 4.3 5 5.1 5.1.1 5.1.2	Laboratory testing Instrumentation SUBSURFACE CONDITIONS Soil Surface Materials	9 11 12 12 12 12
4.2 4.3 5 5.1 5.1.1 5.1.2 5.1.3	Laboratory testing. Instrumentation. SUBSURFACE CONDITIONS Soil Surface Materials	9 11 12 12 12 12 12
4.2 4.3 5 5.1 5.1.1 5.1.2 5.1.3 5.2	Laboratory testing Instrumentation SUBSURFACE CONDITIONS Soil Surface Materials Fill Natural Soils Rock	9 11 12 12 12 12 12 13
 4.2 4.3 5 5.1 5.1.2 5.1.3 5.2 5.3 	Laboratory testing Instrumentation	9 11 12 12 12 12 12 12 13 13
4.2 4.3 5 5.1 5.1.1 5.1.2 5.1.3 5.2 5.3 6	Laboratory testing. Instrumentation SUBSURFACE CONDITIONS Soil Surface Materials Fill Natural Soils Rock Groundwater STABILITY ANALYSES	9 11 . 12 12 12 12 13 13 14 . 15
4.2 4.3 5 5.1 5.1.1 5.1.2 5.1.3 5.2 5.3 6 6 6.1	Laboratory testing. Instrumentation SUBSURFACE CONDITIONS Soil Surface Materials Fill Natural Soils Rock Groundwater STABILITY ANALYSES Section-1: Station 102+18.28	9 11 . 12 12 12 12 13 13 14 . 15

7	GEOTECHNICAL DESIGN RECOMMENDA	ATIONS16
7.1	Reinforcement with Soil Nails	16
7.2	Drilled Shaft Retaining Wall	17
BIBLI	OGRAPHY	

TABLES

TABLE 1: SOIL ENGINEERING PROPERTIES FROM NRCS	
SOIL SURVEY	8
TABLE 2: SUMMARY OF BORINGS	10
TABLE 3: SUMMARY OF LABORATORY TESTING	
TABLE 4: PROPERTIES OF THE FILL SOILS FROM CU TESTS	12
TABLE 5: PROPERTIES OF THE NATURAL SOIL FROM CU	
TESTS	13
TABLE 6: SUMMARY OF ROCK TESTING	13
TABLE 7: GROUNDWATER DATA	14
TABLE 8: SUMMARY OF SLOPE STABILITY ANALYSIS FOR	
THE EXISTING CONDITIONS	15

FIGURES

FIGURE 1: SITE LOCATION MAP	
FIGURE 2: GENERAL VIEW OF THE SITE (LOOKING	
NORTHEAST)	5
FIGURE 3: EXISTING CONDITIONS AT THE TOE (LOOKING	
NORTHEAST)	5
FIGURE 4: EXISTING CONDITIONS AT THE TOE (LOOKING	
SOUTHWEST)	6
FIGURE 5: SOIL SURVEY MAP (NRCS)	7
FIGURE 6: BEDROCK GEOLOGY AND TOPOGRAPHY MAP	
(ODNR)	8
FIGURE 7: SITE PHOTOGRAPH TAKEN DURING DRILLING	9
FIGURE 8: TYPICAL CROSS SECTION OF REPAIR USING	
SOIL NAILS	
FIGURE 9: CROSS SECTION OF DRILLED SHAFT WALL	17

APPENDICES

Α	GEOTECHNICAL DATA REPORT

- **B** SLOPE STABILITY CALCULATIONS
- B-1 Slope/W Output Station 102+18.28
- B-2 Slope/W Output Station 112+49.46
- **B-3** Drilled Shaft Wall Calculations
- C HISTORIC RECORDS FROM ODOT TIMS

- C-1 Historic Landslide Records
- C-2 Historic Site Photos from TIMS

1 EXECUTIVE SUMMARY

WSP USA Inc. (WSP) was retained by Ohio Department of Transportation (ODOT) to perform geotechnical engineering and project development services for multiple slope repairs in ODOT District 12. The objective of this report is to present descriptions and interpretation of existing subsurface conditions, evaluate the cause of slope failure, and recommend suitable repair solutions to remediate the failed slopes along the existing roadways. The scope of the project includes three sites, referred to as LAK-90-02.93, LAK-90-12.39, and GEA-322-05.76. This report covers the LAK-90-02.93 site, the remaining sites are submitted under separate covers.

WSP provided the following services:

- Review of existing available subsurface site data, including historical borings and site history, to determine the
 required geotechnical subsurface exploration for repair design and construction considerations.
- Solicitation, management, and coordination with surveying and geotechnical drilling subcontractors for the test borings and geotechnical laboratory testing.
- Review, quality control, and interpretation of the geotechnical data report.
- Development of subsurface profiles based on the geotechnical data report.
- Geotechnical analyses relating to slope stability for existing site conditions.
- Geotechnical input and recommendations for slope repair alternatives.
- Preparation of this geotechnical report and supporting documentation.

The work performed generally conforms to the current versions of the American Association of State Highway and Transportation Officials (AASHTO), ODOT Specifications for Geotechnical Explorations (SGE), and ODOT Geotechnical Design Manual (GDM). This geotechnical report summarizes the conditions encountered during the subsurface exploration program and presents geotechnical evaluations and recommendations for the proposed remediation alternatives. All elevations reported are in reference to feet above Mean Sea Level (MSL).

1.1 EXPLORATION AND FINDINGS

Landslide exploration was performed at the project site between December 1st, 2022, and July 19th, 2023. S&ME Inc. of Ohio was hired as the drilling sub-contractor to perform the exploration and laboratory testing, and NEAS Inc. was sub-contracted to perform the survey of the site. A total of ten (10) landslide borings, five (5) hand-sampled borings, and five (5) Dynamic Cone Penetration (DCP) soundings were drilled at the locations indicated on the boring location plan provided in Appendix A.

Two of the borings were located on the shoulder of existing roadway, Interstate Route 90 (IR-90), identified as B-002-0-22 and B-008-0-22. Asphalt pavement was encountered at the ground surface in these borings, underlain by a layer of granular base with varying thickness. Topsoil was encountered in the other borings performed within the limits of the slope. Underlying the surficial materials, embankment fill was encountered in nine (9) of the borings, consisting mainly of Silt and Clay, and Silty Clay identified as ODOT classes A-6a and A-6b, respectively. A few thin layers of granular fill were also encountered consisting of Gravel with Sand, Silt and Clay (ODOT A-2-6). It is also noted that several recovered fill samples contained traces of wood fibers, coal fragments, and roots.

Underlying the surficial materials and fill, natural soils were encountered, consisting mainly of Clay, Silt and Clay, and Silty Clay (ODOT A-7-6, A-6b, A-6a). In addition, a few thin deposits of granular materials were also observed and classified as Sand, Gravel, Gravel with Sand, and Gravel with Sand and Silt (ODOT A-3a, A-1-a, A-1-b, A-2-4). The natural soils were encountered at the ground surface as observed during hand sampling and as deep as 53 feet at boring B-008-0-22. Bedrock was encountered in all borings, at depths ranging from 2.5 to 77 feet. Bedrock consisted of Shale with varying degrees of weathering and a few zones of Claystone.

A laboratory testing program was conducted to verify the field classification of soil and rock and to estimate the engineering properties for use in the analysis. In addition, field instrumentation was also performed including installing one inclinometer casing at B-001-1-22 and two groundwater observation wells installed at B-001-1-22 and B-005-0-22.

After the landslide borings were completed, additional borings were deemed necessary to aid in the design of drilled shaft retaining wall to stabilize the existing slope. Five (5) additional retaining wall borings (B-005-1-23, B-007-3-23, B-007-4-23, B-008-4-23, and B-009-1-23) were performed by S&ME Inc. of Ohio between May 13th and May 24th, 2024, at mid-slope locations by means of benching with a bulldozer. These borings confirmed the findings of the preliminary investigation and provided more information about bedrock and groundwater conditions. Further testing of soil and rock was conducted to determine the engineering properties for use in the design of the proposed drilled shaft retaining wall. In addition, a groundwater monitoring well was installed at boring B-009-1-23.

1.2 ANALYSIS AND RECOMMENDATIONS

Slope stability analyses were performed for the site based on existing site information using SLOPE/W (GeoStudio 2021.4) software package. Subsurface conditions were developed using the borings and laboratory testing performed as a part of this report and using historical borings. Cross sections of the site were obtained based on survey information performed by NEAS Inc. and used to develop the geometry for the analysis. Short term (undrained) and long term (drained) limit equilibrium analyses were performed using the Morgenstern-Price method. An overall factor of safety against sliding less than 1.3 was deemed unacceptable according to ODOT Geotechnical Design Manual (GDM), dated July 2024.

Multiple alternatives were considered to repair the failed slopes. However, based on the results of the slope stability analysis and the feasibility of each alternative, the following recommendations were developed to repair the current slope failures. Stationing reported herein is referenced from project plans developed by WSP.

- <u>STA 20+10 to 21+30:</u>

The recommended slope repair for this section of the slope is reinforcing the slope using soil nails. This alternative would require excavating the failed soil at a slope of 1H:1V then installing soil nails at 3-foot spacing and an inclination angle of 10 degrees, then installing shotcrete at the face of the excavation. Excavated on-site soil (Type A-6a) can be used to establish a temporary access road as shown on the proposed plans. This approach yielded a factor of safety of about 1.3 as shown in Appendix B.

- <u>STA 29+90 to 31+55:</u>

At this location of the site, drilled shafts with plug piles are recommended as a retaining wall. Our design included 3.5-foot diameter shafts spaced at 5.25 feet to be installed to a depth of 15 feet below top of competent bedrock as shown on the project plans. The drilled shafts should be reinforced using steel rebar cages. Between the drilled shafts, 3.0-foot diameter plug piles are recommended to be installed to top of rock consisting of plain concrete as shown on the project plans. This approach yielded a minimum factor of safety of about 1.6 as shown in Appendix B.

2 INTRODUCTION

2.1 PROJECT LOCATION

LAK-90-02.93 site (the site) is located within the limits of Willoughby Hills city, Lake County, Ohio. The site is adjacent to Interstate Route 90 (IR-90) westbound, just northeast of the interchange with Interstate I-271 and west of State Route 91 (SR-91). The site extends approximately from Station 92+00 to 118+00, extending approximately 2600 feet. Note that our Stage 1 plans show both IR-90 stationing and local project stationing that ranges between stations 10+00 to 36+00. Deer creek is located adjacent to the site and runs parallel to IR-90. Site location map is shown in Figure 1.

Figure 1: Site Location Map

2.2 PURPOSE

The purpose of this report is to identify the source of slope failure and provide slope repair alternatives and design recommendations to control any further damage to the existing roadway. This report investigates the underlying cause of slope failure including landslide and the effects of erosion on the slope stability.

2.3 HISTORIC RECORDS

Historic geotechnical records were reviewed for the existing roadway alignment and were obtained from ODOT's transportation information mapping system (TIMS). Based on plan reviews, a steep shale drainage channel was present on site prior to the construction of interstate route (IR-90). A geotechnical report for Project 721-60 (CUY-1-15.91/LAK-1-0.00) dated November 16, 1961, indicated that a previous slide failure was encountered approximately from station 103+00 to 106+00 during embankment construction. A tension crack was observed parallel to the southbound centerline and associated subsidence appeared at the surface of the embankment. In addition, it was reported that a roll near the toe was formed at the ground surface showing lateral displacement of embankment foundation and heaving at the toe of the embankment approximately from station 102+25 to 107+25.

The subsurface exploration program for the embankment failure consisted of drilling geotechnical test borings located approximately from station 101+50 to 108+00. The findings of the exploration indicated that failure of the embankment was considered a rotational landslide failure and was associated with overstressing of the embankment foundation soils, as reported in the 1961 report. As a result of the exploration, a berm was established at the toe of the embankment extending from station 102+00 to station 109+00, with an estimated height of 20 feet and 40 feet in width with a slope of 2H:1V.

2.4 EXISTING CONDITIONS

This section provides a general description of existing conditions and topography of the site. Elevations are referenced from the survey performed by NEAS Inc. dated January 6, 2023, and existing conditions reported herein are based on site history and observations made during multiple site visits by WSP during the subsurface exploration. Existing site conditions are shown in Figures 2 through 4.

As noted in historic records summary above, a steep shale drainage channel was present on site prior to the construction of Interstate Route 90 (IR-90) at the site. Currently, the northeast portion to the north of the westbound lanes of IR-90 is a steep hummocky embankment. Existing grade elevations at the toe of the slope range from about elevation 686 to about 788 feet. The elevation of existing roadway along the shoulder of IR-90 varies from about 743 feet to about 792 feet. Newly planted trees were observed at the site. No underground utilities were identified in the survey. In terms of existing drainage conditions, the following observations were made:

- Multiple culverts with headwalls out letting to the site from south and the west directions, which then flow into a 120-inch diameter culvert that carries all the water from the site away to the northeast direction.
- Deer Creek stream flows through site parallel with IR-90 and flows downstream into the 120-inch culvert. The stream comes from the northwest direction.
- There is also a concrete gutter from the north that carries water to the site to flow into to the 120-inch culvert.

Surficial to moderate depth slides were observed at two main locations on the site. Several scarps were observed around station 102+00 and significant erosion was observed near the toe creating slope instability. It is our understanding that poor drainage conditions within the embankment and erosion near the toe are the main reasons of the slide. No signs of damage in the roadway were observed at the time of this report.

Figure 2: General View of the Site (Looking Northeast)

Figure 3: Existing Conditions at the Toe (Looking Northeast)

Figure 4: Existing Conditions at the Toe (Looking Southwest)

3 REGIONAL GEOLOGY

This section provides an overview of regional site geology for the site. Information about surficial soils is based on review of the soil survey published by United States Department of Agriculture (USDA), Soil Conservation in 1974. The current version of the soil survey for Lake County is available online (Version 20, dated September 9, 2022) and provides a context for general soil and engineering properties of representative near surface soils. Bedrock information presented herein are referenced from publicly available geological survey obtained from Ohio Department of Natural Resources (ODNR) website.

3.1 SURFICIAL SOILS

A soil resource report was generated for the specific area of interest (AOI) at the project site using USDA Natural Resources Conservation Service (NRCS) as shown in Figure 5. Note that the AOI is referenced for general soil information and is not intended to replace site specific geotechnical information data.

Native surficial soils beneath the site are predominantly lake deposited Pleistocene-age lacustrine Tills. The site's surficial soils generally consist of an unsorted mix of silt, clay, sand, and gravel, with variable carbonate content and are gray to light brown when un-weathered. The mapped soil at the site consists mainly of:

- Udorthents (UdD): Fill, moderately steep with a slope of 12 to 18 percent.
- Gasport Silty Clay Loam (GoF): Hills, generally well drained, with a thickness of 20 to 40 inches to paralytic bedrock, sloping 25 to 70 percent.
- Orrville Silt Loam (Or): Flood plains, somewhat poorly drained, with a thickness of over 80 inches and relatively flat with a slope of 0 to 2 percent.

Figure 5: Soil Survey Map (NRCS)

The engineering properties of surficial soils were also obtained from the 1974 soil survey to estimate the range of typical engineering properties of the soils likely to be encountered at the site. The engineering properties are summarized in Table 1 below. Actual subsurface conditions at the site may vary from these generalized properties.

SOU	DEDTLI (INI.)	SOIL CLASSIFICATION		PERCENTAGE			SOIL PLASTICITY	
SOIL	DEPIH (IN.)	USCS	AASHTO	#10	#40	#200	LL	PI
	0-2	CL	A-6	85-100	80-95	70-90	24-40	6-15
Casport Silty Clay Loam	2-27	CL, CH	A-7	65-95	65-90	60-85	40-60	15-34
Gasport Sitty Clay Loan	27-32	CH, CL	A-7	55-90	55-85	50-80	40-55	18-30
	32-36	Weathered Rock						
	0-7	CL, CL-ML, ML	A-4	95-100	90-100	65-80	22-35	4-10
Orrville Silt Loam	7-28	CL, CL-ML, ML	A-4, A-6	60-100	55-95	50-90	20-40	2-16
	28-62	CL, ML, SC, SM	A-4	60-100	45-85	35-75	15-35	NP-10

Table 1: Soil Engineering Properties from NRCS Soil Survey

3.2 BEDROCK GEOLOGY

Based on Bedrock Geology and Topography maps obtained from Ohio Department of Natural Resources (ODNR), mapped bedrock (Doh) underlying glacial deposits at the site consists of brownish black to greenish gray Devonian-aged Ohio Shale, that has a marine or marginal marine origin. Ohio Shale is a carbonaceous sedimentary rock with carbonate or siderite concretions and layer thickness varying from 250 to 500+ feet. The formation contains laminated to thinly bedded shale. Historic borings indicate that top of rock varies from elevation 695 to 927 within the limits of the site.

Figure 6: Bedrock Geology and Topography Map (ODNR)

4 SUBSURFACE EXPLORATION

A subsurface exploration program was developed in coordination with the drilling subcontractor and ODOT District 12 Engineering Office. The subsurface exploration program consisted of performing geotechnical test borings, Dynamic Cone Penetrometer (DCP) Soundings, and hand-sampled borings as described below.

4.1 SOIL BORING PROGRAM

A total of ten (10) landslide borings, five (5) DCP soundings, and five (5) hand-sampled borings were advanced by the drilling subcontractor, S&ME, Inc. of Ohio (S&ME), between December 1st, 2022, and July 19th, 2023. Field coordination as part-time field oversight of the field exploration was performed by a WSP geotechnical engineer. A geotechnical data report was prepared by S&ME dated June 28, 2024, and is included in Appendix A. The field exploration work was conducted in general accordance with the standards of the American Society for Testing and Materials (ASTM) and ODOT Specifications for Geotechnical Explorations (SGE), dated July 2022. A boring location plan is included in Appendix A.

Soil borings were performed using a track-mounted drill rig. Boreholes were advanced using 3.25-inch inside diameter hollow stem augers. Table 2 presents a summary of boring information, and individual boring logs are included in Appendix A. Soil sampling consisted of Standard Penetration Test (SPT) sampling in accordance with AASHTO T206. SPT sampling was conducted by driving a 2.0-inch outside diameter split spoon sampler 18-inches using an automatic hammer. Sampling was performed continuously until boring termination depth is reached or refusal was encountered. Pocket penetrometer measurements were obtained for all cohesive soil samples and three undisturbed samples (thin-walled Shelby tubes) were collected from soft cohesive materials and were used for testing.

After the landslide test borings were completed, five (5) additional retaining wall borings (B-005-1-23, B-007-3-23, B-007-4-23, B-008-4-23, and B-009-1-23) were performed between May 13th and May 24th, 2024, at mid-slope locations by means of benching with a bulldozer. All the additional borings extended about 20 feet into bedrock. Bedrock coring was performed at borings B-001-0-22, B-001-1-22, B-002-0-22, B-005-1-23, B-007-3-23, B-007-4-23, B-008-4-23, and B-009-1-23 using an NQ2 diamond core bit. An approximately 2-inch in diameter rock cores were obtained. Rock classification and Rock Quality Designation (RQD) values were determined in the field and shown on the boring logs. Rock core samples were documented with photographs that are provided in Appendix A.

Figure 7: Site Photograph Taken During Drilling

BORING ID	BORING TYPE	GROUND ELEVATION (FT)	BORING DEPTH (FT)	STATION	OFFSET	LATITUDE	LONGITUDE
B-001-0-22	C5	763.2	24.2	101+91.26	168.40'LT.	41.5976722	-81.4444256
B-001-1-22	C5	746.8	25.1	102+38.63	190.46' LT.	41.5978175	-81.4444043
B-001-2-22	C5	727.2	28.0	102+63.57	256.28' LT.	41.5979709	-81.4445622
B-002-0-22	C5	770.1	77.0	103+56.65	135.95' LT.	41.5980221	-81.4440048
B-003-0-22	C5	717.3	32.5	104+76.91	279.99' LT.	41.5985198	-81.4442091
B-004-0-22	C5	710.1	36.8	106+75.82	303.11' LT.	41.5990276	-81.4438634
H-004-1-22	C5	687.4	6.0	107+42.17	373.89' LT.	41.5992943	-81.4439336
B-005-0-22	C5	707.8	34.9	108+48.13	273.76' LT.	41.5993843	-81.4434019
B-005-1-23	E3	707.2	64.4	108+15.02	277.46' LT.	41.5993969	-81.4434065
H-006-0-22	C5	686.0	6.0	108+89.16	335.55' LT.	41.5995783	-81.4434945
B-007-0-22	C5	709.2	36.0	110+36.39	253.81' LT.	41.5997833	-81.4429225
D-007-1-22	C5	693.0	7.2	110+15.95	282.06' LT.	41.5997833	-81.4430515
H-007-2-22	C5	685.3	6.0	110+24.06	322.51'LT.	41.5998683	-81.4431515
B-007-3-23	E3	716.4	65.9	110+08.15	234.43' LT.	41.5996874	-81.4429296
B-007-4-23	E3	721.0	69.2	111+20.17	223.23' LT.	41.5999213	-81.4426424
B-008-0-22	C5	753.0	77.4	112+56.66	151.41' LT.	41.6001021	-81.4421206
B-008-1-22	C5	718.3	47.7	112+45.28	230.54' LT.	41.6002123	-81.4423735
D-008-2-22	C5	700.1	15.1	112+20.26	259.64' LT.	41.6002063	-81.4425155
H-008-3-22	C5	683.3	4.5	112+00.89	293.97' LT.	41.6002213	-81.4426595
B-008-4-23	E3	724.4	72.0	112+24.04	215.90' LT.	41.6001403	-81.4423811
D-009-0-22	C5	701.1	12.1	112+66.18	261.37' LT.	41.6003113	-81.4424125
B-009-1-23	E3	728.5	80.0	113+34.80	206.53' LT.	41.6003679	-81.4420941
H-010-0-22	C5	682.6	3.8	113+23.13	303.65' LT.	41.6005103	-81.4423975
D-010-1-22	C5	697.3	15.4	113+19.50	330.87' LT.	41.6005493	-81.4424835
D-011-0-22	C5	695.0		113+30.74	324.53' LT.	41.6005633	-81.4424385
D-011-0-22 (OFFSET)	C5	694.8	14.8	113+32.93	322.87' LT.	41.6005653	-81.4424285

Table 2: Summary of Borings

4.2 LABORATORY TESTING

The laboratory testing program was developed by WSP to verify field classification of soil and rock samples, and to determine the composition and engineering properties for use in geotechnical analyses. Laboratory testing was performed by S&ME. The quantities and types of tests performed on representative samples are summarized in Table 3. Detailed laboratory test results are provided in Appendix A. Laboratory testing was also performed on hand-sampled borings for the determination of critical shear stress and erosion category following the guidelines in ODOT GDM. Sampling was performed using hand sampling techniques to a maximum depth of 6 feet below ground surface. Testing for scour analysis was also performed and included particle size distribution, moisture content, and Atterberg limits.

TEST PERFORMED	NUMBER OF TESTS	STANDARD TEST DESIGNATION	
Sieve Analysis	99	AASHTO T 88	
Hydrometer*	96	AASHTO T 88	
Atterberg Limits	94	AASHTO T89/T90	
Moisture Content	382	AASHTO T 265	
Loss on Ignition (LOI)	7	AASHTO T 267	
Specific Gravity	7	AASHTO T 100	
Consolidated-Undrained Triaxial Compression	3	ASTM D 4767	
Unconfined Compressive Strength of Intact Rock	13	ASTM D 7012, Method C	
Unconfined Compressive Strength of Cohesive Soil	8	ASTM D 2166	
Slake Durability	4	ASTM D 4644	

Table 3: Summary of Laboratory Testing

*Short hydrometer was performed and limited to 2 hours according to ODOT SGE (July 2023)

4.3 INSTRUMENTATION

In addition to laboratory testing, field instrumentation was also performed including one inclinometer casing installed at B-001-1-22, and four (4) groundwater observation wells installed at B-001-1-22 and B-005-0-22, B-008-1-22, and B-009-1-23. Inclinometer and groundwater data were periodically collected and analyzed for a better understanding of field conditions and the causes of slope failure. The inclinometer plots indicate that movement of soil is based at about 10 feet below existing ground surface. Refer to Appendix A for inclinometer movement plots and groundwater data.

5 SUBSURFACE CONDITIONS

The subsurface soils were visually classified during drilling by S&ME personnel based on texture and plasticity. Following the completion of subsurface exploration, representative soil samples were tested in the lab and full classification was determined based ODOT Soil and Rock Classification methods presented in ODOT Specifications for Geotechnical Explorations (SGE), dated July 2022. General stratification and soil layers encountered during the investigation are presented herein. Refer to boring logs in Appendix A for detailed descriptions.

5.1 SOIL

In general, the stratigraphy consisted of surface materials, underlain by embankment fill. Below the fill, native soils were encountered underlain by bedrock. General descriptions of the soils encountered are presented in this section.

5.1.1 SURFACE MATERIALS

Surface materials on the site include asphalt pavement, granular base, and topsoil. Asphalt pavement was encountered at borings performed on existing roadway (IR-90), namely B-002-0-22 and B-008-0-22. Underneath the asphalt pavement, a layer of granular base was encountered with a thickness of 5 to 8 inches. Topsoil was encountered in the borings performed within the limits of the slope and was identified by having significant amounts of vegetation and organic materials, having a thickness of 4 to 12 inches. Natural soils are also present at the ground surface for borings performed by hand sampling techniques at the toe of the slope.

5.1.2 FILL

Underlying the surface materials, embankment fill was encountered in all of the test borings, consisting of cohesive soils including Silt and Clay, and Silty Clay identified as ODOT class A-6a and A-6b, respectively. The stiffness of the fill soils based on pocket penetrometer readings ranges from medium stiff to hard. Thin layers of granular fill were also encountered consisting of Gravel with Sand, Silt and Clay (ODOT A-2-6). It is also noted that several recovered fill samples contained traces of wood fibers, coal fragments, and roots.

Overall, the thickness of the fill layer encountered ranges from about 9.2 to 51.3 feet along the alignment. The retrieved samples from the fill had a moisture content ranging from 2 to 25 percent, with an average of about 15 percent. The SPT N_{60} values for the fill layer range from 1 to 44 blows per foot (bpf), with an average of 16.5 bpf.

Two undisturbed soil samples (Shelby tubes) from this stratum were obtained during the subsurface exploration. The results of consolidated-undrained triaxial testing for these samples indicate that the soil in this stratum has both frictional and cohesive strength properties, represented by the angle of internal friction (ϕ) and cohesion (C) as shown in Table 4 below. Refer to laboratory test results in Appendix A for more details.

				TOTAL	STRESS	EFFECTIVE STRESS		
Boring ID	Sample No.	Depth (ft)	Elevation (ft)	Specific Gravity	Ф	C (psf)	Φ'	C' (psf)
B-001-1-22	ST-5	6.5-8.5	725.8-723.8	2.761	23.9	38	42.7	77
B-001-2-22	ST-20	7.5-9.5	719.7-717.7	2.659	20.5	187	33.6	211

Table 4: Properties of the Fill Soils from CU tests

5.1.3 NATURAL SOILS

Underlying the surficial materials and fill, natural soils were encountered, consisting mainly of Clay, Silt and Clay, and Silty Clay (ODOT A-7-6, A-6a, A-6b). In addition, a few thin deposits of granular materials were also observed and classified as Sand, Gravel, Gravel with Sand, and Gravel with Sand and Silt (ODOT A-3a, A-1-a, A-1-b, A-2-4). A few pockets of Sandy Silt (ODOT A-4a) were also observed in recovered soil samples. Based on pocket penetrometer readings in this stratum, the natural soils have a stiffness ranging from soft to hard.

The natural soils were encountered at the ground surface as observed during hand sampling and as deep as 53 feet at boring B-008-0-22, corresponding to elevations 682.6 to about 699.9 feet, respectively. The collected soil samples from this stratum had a moisture content ranging from 2 to 43 percent, with an average of 16.6 percent. The SPT N_{60} values for this stratum range from 7 to 62 blows per foot (bpf), with an average of about 22 bpf.

One undisturbed soil sample (Shelby tube) from this stratum was obtained during the subsurface exploration. The results of consolidated-undrained triaxial testing for this sample indicate that the soil in this stratum has both frictional and cohesive strength properties, represented by an angle of internal friction (ϕ) and cohesion (C) as shown in table 5 below.

				TOTAL STRESS		EFFECTIVE STRESS		
Boring ID	Sample No.	Depth (ft)	Elevation (ft)	Specific Gravity	Φ	C (psf)	Φ'	C' (psf)
B-004-0-22	ST-15	21.0-23.0	689.4-687.4	2.709	23.6	187	31.4	287

Table 5: Properties of the Natural Soil from CU Tests

5.2 ROCK

Bedrock was encountered in all of test borings, at depths ranging from 2.5 to 77 feet, corresponding to elevations 760.7 to 676 feet. Bedrock consisted of Shale with varying degrees of weathering and a few zones of Claystone. A summary of rock testing results is provided in Table 6 below. Refer to lab testing results in Appendix A for more information.

BORING ID	CORE NO.	DEPTH (FT)	MOISTURE CONTENT %	UNIT WEIGHT (PCF)	UC STRENGTH (PSI)	RQD (%)
B-001-1-22	NQ-11	17.9-18.3	6.9	141.3	116	37
B-001-1-22	NQ-12	23.3-23.7	5.5	147.6	441	45
B-002-0-22	NQ-41	73.6-73.9	3.7	152.6	1547	77
B-005-1-23	NQ-5	46.4-46.8	3.6	154.3	1327	52
B-005-1-23	NQ-8	60.8-61.2	3.4	154.9	1554	75
B-007-3-23	NQ-4	46.9-47.3	6.2	138	167	30
B-007-3-23	NQ-6	59.6-60	6.7	134.6	78	55
B-007-4-23	NQ-22	54.6-56	7.8	135.1	64	62
B-007-4-23	NQ-23	62.4-62.8	3.7	152.3	950	63
B-008-4-23	NQ-3	60.5-60.9	3.0	154.6	1763	13
B-008-4-23	NQ-5	69-69.4	3.6	154.8	1133	63
B-009-1-23	NQ-24	64.3-64.7	3.6	154.2	924	35
B-009-1-23	NQ-25	70.1-70.5	3.0	156.8	1448	56

Table 6: Summary of Rock Testing

5.3 GROUNDWATER

Groundwater observations were made during drilling and are noted on the boring logs. Subsequent groundwater readings were collected from the installed observation wells. Table 7 below shows groundwater data collected to date.

MONITORING WELL	GROUND SURFACE ELEVATION (FT)	GROUNDWATER LEVEL (FT)	GROUNDWATER ELEVATION (FT)	DATE
		8.4	739.2	12/29/2022
		6.2	741.4	2/18/2023
		6.5	741.1	4/6/2023
		5.3	742.3	7/27/2023
B-001-1-22 (OW)	747.6	5.9	741.7	10/19/2023
		4.7	742.9	12/6/2023
		4.1	743.5	2/21/2024
		7.2	740.4	4/17/2024
		6.1	741.5	6/25/2024
		24.4	683.4	12/29/2022
	707.8	22.9	684.9	2/18/2023
		22.9	684.9	4/6/2023
		22.1	685.7	7/27/2023
B-005-0-22 (OW)		22.4	685.4	10/19/2023
		21.6	686.2	12/6/2023
		20.1	687.7	2/21/2024
		22.2	685.6	4/17/2024
		22.5	685.3	6/25/2024
		37	681.3	7/27/2023
		36.3	682	10/19/2023
B-008-1-22 (OW)	718.3	35.9	682.4	12/6/2023
		34.6	683.7	2/21/2024
		37.5	680.8	4/17/2024
B-009-1-23 (OW)	728 5	48	680.5	5/22/2024
В-009-1-23 (OW)	/28.5	47	681.5	6/25/2024

Table 7: Groundwater Data

6 STABILITY ANALYSES

Slope stability analyses were performed for the site based on existing site conditions using SLOPE/W (GeoStudio 2021.4) software package. Both short term (undrained) and long term (drained) limit equilibrium analyses were performed using the Morgenstern-Price method. Subsurface conditions represented by soil profiles were established using the borings performed as a part of this report. Cross sections of the site were obtained based on survey information performed by NEAS Inc. and used to develop the geometry for the analysis. An overall factor of safety for slope stability sliding more than 1.3 was deemed acceptable according to ODOT Geotechnical Design Manual (GDM), dated July 2024. The stations presented in this section are referenced from existing Interstate Route 90 (IR-90) alignment. Table 8 below provides a summary of the slope stability analyses performed for the two sections selected and the corresponding factors of safety.

LOCATION	PROJECT STATION	DRAINED CONDITION	UNDRAINED CONDITION	
Section 1 (I-90 Sta. 102+18.28)	Sta. 20+50.00	1.02	1.02	
Section 2 (I-90 Sta. 112+49.46)	Sta. 31+00.00	0.96	1.03	

Table 8: Summary of Slope Stability Analysis for the Existing Conditions

6.1 SECTION-1: STATION 102+18.28

This section was selected due to observed head scarp observed near the top of the embankment, and apparent scarping at about 90 feet from the edge of roadway. The soil stratigraphy was developed based on boring information from B-001-1-22 and B-001-2-22 and historic borings. The soil properties were initially estimated based on results of laboratory testing, then refined by back-calculation of the active slide recreating failure conditions, as provided in Appendix B.

Bedrock was modeled as an impenetrable material in the analysis. A piezometric groundwater table was incorporated starting at an elevation of 740 feet as observed in groundwater observation wells within the embankment and follows the ground surface along the existing slope indicating poor drainage conditions within the embankment fill. Refer to Appendix B for model geometry and results of the analysis. A temporary access road that will be required during construction was included as a part of the analysis. A surcharge load of 250 psf was also incorporated on top of existing roadway (IR-90) and the temporary access road to represent active traffic loading during construction.

Based on the results of the analysis at this section, all the resulting shear failure surfaces are within the embankment fill. It is our understanding that the poor permeability of the embankment fill is a significant factor contributing to the slide failure at this location. A calculated shear failure surface with a factor of safety of 1.0 that reflects on-site slope instability features and inclinometer data was selected for further analysis using different repair alternatives.

6.2 SECTION-2: STATION 112+49.46

At this section, significant erosion at the toe of the slope has created slope instability. Scarping and sloughing are observed as shown in Figure 3. Scarping at this location was observed at about 73 feet from the edge of roadway. The soil stratigraphy was developed based on boring information from B-001-1-22 and B-001-2-22. A berm consisting of A-6a soil at the toe of the slope was included in the analysis. The soil properties were initially estimated based on SPT sampling and results of laboratory testing, then refined by back-calculation of the active slide recreating failure conditions.

Bedrock was modeled as an impenetrable material in the analysis. A piezometric groundwater table was incorporated starting at an elevation of 740 feet as observed in groundwater observation wells within the embankment and follows the ground surface along the existing slope indicating poor drainage conditions within the embankment fill. Refer to Appendix B for model geometry and results of the analysis., due to the need to relocate the existing creek away from the slope as shown on the project plans. A surcharge load of 250 psf was also incorporated on top of existing roadway (IR-90).

7 GEOTECHNICAL DESIGN RECOMMENDATIONS

This section provides preliminary design information for two repair solutions recommended to improve the stability of the embankment for two main locations along the alignment. The recommended slide correction alternative referenced was selected considering the constructability and feasibility of each alternative. The stations presented herein are referenced from project plans developed by WSP.

7.1 REINFORCEMENT WITH SOIL NAILS

This repair alternative consists of using soil nails installed at an inclination angle of 15 degrees from the horizontal. This approach requires excavating the embankment at a slope of 1H:1V and installing the soil nails following a "top down" construction sequencing, then installing shotcrete at the face of the excavation. Six (6) rows of soil nails spaced at four (4) feet along the ground surface with a total length of 40 feet were considered in our analysis. The analysis yielded a factor of safety of 1.3. Refer to slope stability analysis calculations in Appendix B-1 for more details.

The limits of this repair are anticipated to extend approximately from Station 20+10 to Station 21+30. Furthermore, soil nails are needed during construction to stabilize the temporary access road as shown in Figure 8. In addition, it is anticipated that bedrock may be encountered during the installation of the soil nails and specialty equipment will be required for the installation in bedrock. Figure 8 below shows a typical cross section of the repair using soil nails.

Figure 8: Typical Cross Section of Repair using Soil Nails

7.2 DRILLED SHAFT RETAINING WALL

This slope stabilization solution was selected since the bottom of the slope falls within the existing Gully Brook creek that continues to erode the toe creating slope instability. A drilled shaft wall is recommended to extend from Station 26+94.11 to Station 31+66.52 to improve the stability of the slope and to protect the embankment from failure. Design calculations are included in Appendix B-2.

This solution consists of installing 3.5-foot diameter drilled shafts spaced at 5.25 feet and extended 15 feet into competent bedrock. Plug piles installed to top of rock are also recommended to be installed between the shafts. Slope stability analyses performed using this alternative indicates that using drilled shafts will prohibit the development of weak shear planes and improves the stability of slope along the proposed wall alignment.

Based on discussions with ODOT District 12, the centerline of drilled shaft wall is to be installed at about 110 feet from the edge of roadway as shown on the proposed alignment. However, in order to construct the drilled shafts, a temporary bench must be established to create access for the drill rigs as shown on figure 9. The stability of the embankment was checked incorporating the temporary bench, and the factor of safety was estimated using slope at 1H:1V to be about 1.2. Therefore, excavation bracing was deemed necessary to provide temporary support for the excavated bench.

UA Slope software was used to estimate the forces induced on the drilled shafts by the existing slope failure. Using drilled shafts improved the factor of safety to about 1.4 for the existing slide under long term (drained) conditions. However, an extreme case was created to check the global stability of the embankment following the requirements of ODOT GDM. The maximum unfactored force per shaft was determined using UA Slope to be about 100 kips with a corresponding factor of safety of 2.85. This force was used to design the reinforcement for the drilled shafts. The maximum lateral deflection at the head of the drilled shaft was checked using Lpile software to be less than 1% of pile length above bedrock. See drilled shaft wall calculation package in Appendix B-3 for more information.

Figure 9: Cross Section of Drilled Shaft Wall at Station 31+00

BIBLIOGRAPHY

- Natural Resources Conservation Service (2023). United States Department of Agriculture, Web Soil Survey. *Custom Soil Resource Report for Lake County, Ohio.* Soil Area Data, Version 20, Sep 9, 2022. Aerial images Aug 17, 2020 Sep 22, 2020. Available online at https://websoilsurvey.sc.egov.usda.gov/. Accessed [April 18, 2023].
- Ohio Department of Natural Resources, Division of Geological Survey, Geological Survey Website. Available online at https://gis.ohiodnr.gov/. Accessed [April 19, 2023].
- Ohio Department of Transportation, Transportation Information Mapping System (TIMS), Available online at https://gis.dot.state.oh.us/tims/ Accessed [May 20, 2023].
- Ohio Department of Transportation (2023). Specifications for Geotechnical Explorations. Version Date: July 2022.
- Ohio Department of Transportation (2023). Geotechnical Design Manual. Version Date: July 2024.

A GEOTECHNICAL DATA REPORT

Geotechnical Data Report, Revision #1 LAK-90-2.93 Landslide PID 112663 Willoughby Hills, Lake County, Ohio S&ME Project No. 22170059B

PREPARED FOR

WSP USA 115 W. Washington St., Ste 1270S Indianapolis, IN 46204

PREPARED BY

S&ME, Inc. 6190 Enterprise Court Dublin, OH 43016

June 28, 2024

June 28, 2024

WSP USA 115 W. Washington St., Ste 1270S Indianapolis, IN 46204

 Attention:
 Mr. Michael Flanagan, P.E.

 E:
 michael.flanagan@wsp.com

Reference: Geotechnical Data Report, Revision #1 LAK-90-2.93 Landslide (PID No. 112663) Willoughby Hills, Lake County, Ohio S&ME Project No. 22170059B

Dear Mr. Flanagan:

In accordance with our revised proposal dated September 9, 2022, which was authorized by WSP USA (WSP) on November 14, 2022, S&ME, Inc. (S&ME) has completed a Geotechnical Exploration for the LAK-90-2.93 Landslide project in Willoughby Hills, Ohio. The purpose of the field exploration is for a slope failure along the north shoulder of IR 90. Please see the approximate location in Vicinity Map, Plate 1 of the Appendix. This report has been revised to include the results of the exploration and testing of the two (2) mid-slope borings of the original exploration which were previously postponed due to hazardous ground and slope conditions.

Additionally, S&ME was requested to perform five (5) additional borings for a proposed retaining wall as discussed in our Request for Modification #2 dated December 14, 2023, which was authorized by WSP on April 25, 2024. This report includes the results of the exploration and testing of these additional five (5) retaining wall borings. Finally, this report also addresses comments from ODOT that were provided to S&ME by WSP on May 30, 2024, and supersedes our original data report dated April 24, 2023.

We appreciate being given the opportunity to be of service. Please do not hesitate to contact our office if you have any questions concerning our report.

Sincerely,

S&ME. Inc.

Brian K. Sears, P.E. Senior Engineer | Project Manager

Submitted: Electronic copy via email

Benjamin C. Dusina, P.E. Principal Engineer | Senior Reviewer

Table of Contents

1.0	Introduction	1
2.0	Site Reconnaissance	1
3.0	Exploration	1
3.1	Field Investigation	.1
3.2	Laboratory Testing	.3
4.0	Findings	4
5.0	Critical Shear Stress for Scour Analysis	4
6.0	Final Considerations	5

Appendices

Appendix I – General Information, Logs & Photographs

	<u>1 late</u>
Vicinity Map	1
Plan of Borings	2
Explanation of Symbols and Terms Used on Boring Logs for Soil	3
Explanation of Symbols and Terms Used on Boring Logs for Rock	4
Boring Logs	
Shelby Tube Logs	
DCP Logs	
Bedrock Core Photos	

Appendix II – Laboratory Test Results

	Plate
Index Test Results Summary	1-9
Consolidated Undrained Test Results	
Soil Unconfined Compressive Strength Test Results	
Rock Unconfined Compressive Strength Test Results	
Slake Durability Test Results	

Appendix III – Field Instrument Readings

	-
	Plate
Inclinometer Readings	
Monitoring Well Readings	3-6

Diato

1.0 Introduction

The LAK-90-2.93 Slope Repair project includes three (3) landslides at the following locations, LAK-90-2.93, LAK-90-12.39 and GEA-322-5.76. At the direction of WSP, S&ME has performed a geohazard exploration at the two (2) LAK-90 sites. This report will discuss the exploration for at the LAK-90-2.93 site only. The Geotechnical Data Report for the LAK-90-12.39 site will be submitted under separate cover.

The Geotechnical Exploration at the LAK-90-2.93 site has been performed in general accordance with the January 2024 update of the ODOT *Specifications for Geotechnical Investigations (SGE)*.

2.0 Site Reconnaissance

S&ME visited the site on April 28, May 13 and July 20, 2022, to observe slope conditions and assess site access constraints. The July 20, 2022, visit was performed with representatives from WSP and ODOT D12. This site includes multiple landslide features within the approximately 1,300-foot-long section of fill embankment for IR 90. S&ME observed approximately six (6) locations with significant slope failure, primarily focused along the toe of the slope where a meandering drainage channel has eroded channel banks and created over-steepened slopes. In some locations, slope instability has progressed up the slope as the lower portion of the slope failed. Three (3) culverts with outlets/inlets exist along the toe of the slope. This site includes an existing toe buttress constructed along with the original construction of IR 90 when an embankment failure occurred during construction.

3.0 Exploration

3.1 Field Investigation

S&ME re-visited the site on November 21, 2022, to mark the locations of the proposed boring locations which includes ten (10) soil borings, five (5) Wildcat Dynamic Cone Penetrometer (DCP) soundings and five (5) hand sampled borings. Eight (8) of the soil borings, termed B-001-0-22, B-001-1-22, B-001-2-22, B-002-0-22, B-003-0-22, B-004-0-22, B-005-0-22 and B-008-0-22 were drilled to depths ranging from 24.2 to 77.4 feet. The boring numbers will hereafter be referred to without their year designations (e.g., B-001-0, B-002-0, etc.). The borings were drilled between December 1 and 15, 2022.

Access to Borings B-007-0-22 and B-008-1-22 was proposed to be achieved by means of constructing a bench with a bulldozer. However, during drilling, wet weather and ground conditions caused S&ME to be concerned that creating an approximately 375-foot-long bench could become a potential hazard to the existing fill slope. Due to the potential hazards, S&ME requested that the drilling at Borings B-007-0-22 and B-008-1-22 could be postponed until more favorable (dry) weather and ground conditions exist. The request to postpone drilling at these two locations was approved by WSP and ODOT in an email exchange on December 7, 2022. S&ME remobilized to the site from July 17 to 19, 2023, to complete Borings B-007-0 and B-008-1 when the site and slope conditions were conducive to the safe performance of the borings.

S&ME returned to the site again on April 17, 2024, to mark the locations of the five (5) retaining wall borings. Three (3) of the retaining wall borings (B-005-1-23, B-007-3-23 and B-008-4-23) were immediately adjacent to

previously drilled borings (B-005-0-22, B-007-0-22 and B-008-1-22, respectively) to obtain rock core information. The two (2) remaining retaining wall borings (B-007-4-23 and B-009-1-23) were new boring locations with soil and rock sampling obtained. The borings will hereafter referred be to without their year designations. A dozer and operator arrived at the site on May 13, 2024, to cut a bench in the slope to allow access to the retaining wall borings. While creating access to the slope, the monitoring well previously installed in Boring B-008-1 was abandoned. Drilling for the five (5) retaining wall borings was completed between May 13 and May 24, 2024. The benched slope was repaired May 31, 2024.

The borings were advanced by ATV-mounted drill rigs using a 3¹/₄-inch or 4¹/₄-inch hollow-stem auger. Disturbed, but representative, soil samples were attempted by lowering a 2-inch O.D. split-barrel sampler through the auger stem to the bottom of the boring and then driving the sampler into the soil with blows from a 140-pound hammer freely falling 30 inches (AASHTO T206 – Standard Penetration Test, SPT). The three (3) redrilled borings (B-005-1, B-007-3 and B-008-4) were performed with no SPT sampling until the bottom of the soil profile to confirm that coreable bedrock had been encountered. Shelby tubes were attempted in the original borings and in the retaining wall borings in accordance with criteria provided by WSP.

In accordance with ODOT specifications, the hammer system on the ATV D50 drilling rig was calibrated (ASTM D4633) on December 22, 2022, to determine the drill rod energy ratio (79.1%). We note that this calibration date is slightly after the borings were performed in November/December 2022. The prior calibration date was November 25, 2020, with a drill rod energy ratio of 82.1%. Scheduling delays inhibited the hammer system being recalibrated prior to work being performed at the site and within the 2-year timeframe discussed in the *SGE*. Accordingly, the hammer was calibrated as soon as possible after the 2022 drilling was completed and the new drill rod energy ratio was used in connection with the boring logs submitted for this project. The hammer system on the CME 550X ATV rig that was used to drill three (3) of the retaining wall borings in May 2023 was calibrated on April 28, 2023, and has an energy ratio of 85.0%.

The five (5) Wildcat DCPs, termed D-007-1-22, D-008-2-22, D-009-1-22, D-010-0-22 and D-011-0-22 were performed on February 2, 2023, and extended to depths ranging from 7.4 to 15.3 feet. As with the borings, the DCPs will hereafter be referred to without their year designations (e.g., D-007-1, D-008-2, etc.). The Wildcat DCP includes a 35-pound enclosed hammer freely falling approximately 18 inches down a guide rod striking an anvil. Below the anvil, steel rods marked at tenth meter increments are attached to reach the desired depth with a sacrificial conical point at the base. The number of blows required to drive the rods each tenth meter increment are recorded. The number of blows is entered into a manufacturer provided spreadsheet to estimate relative density/stiffness of the soils encountered.

Finally, the five (5) hand sampled borings, termed H-004-1-22, H-006-0-22, H-007-2-22, H-008-3-22 and H-010-0-22 were performed on February 1, 2023, and extended to depths ranging from 4.5 to 6.0 feet. As with the soil borings, the hand sampled borings will hereafter be referred to without their year designations (e.g., H-004-1, H-006-0, etc.). Hand sampling includes a 35-pound hammer freely falling 18 inches down a guide rod striking an anvil. Below the anvil, steel rods are attached to reach the desired depth with a 2-inch O.D. split-barrel sampler at the base of the assembly.

Inclinometer casing was installed in Boring B-001-1 to a depth of 25 feet after completion of the rock core sampling. Groundwater monitoring wells, using a 10-foot section of slotted PVC pipe surrounded by sand filter material were installed in an offset to Boring B-001-1 and in Borings B-005-0 and B-008-1. As previously noted, the monitoring well installed in Boring B-008-1 was abandoned when a new bench was cut to allow access for the

new retaining wall borings and a new monitoring well was installed in Boring B-009-1. Initial baseline readings at instruments in Borings B-001-1 and B-005-0 were obtained on December 29, 2022, and follow up readings were obtained on February 18, April 6, and July 27, 2023. The July 27, 2023, readings included an initial baseline reading at the monitoring well at B-008-1. Follow up readings requested by WSP were obtained on October 19, 2023, December 6, 2023, February 21, 2024, April 17, 2024, and June 25, 2024. The June 25, 2024, readings included an initial baseline reading at the new monitoring well at B-009-1. Plots of the inclinometer data and summary tables of the water well readings are provided in Appendix III.

The soil samples were examined in the field and representative portions were preserved in airtight glass jars. Rock core samples were stored in compartmented cardboard or wood boxes. Following the completion of drilling, the borings were backfilled with cuttings mixed with bentonite or sealed with a bentonite-cement grout, and a plastic hole plug was placed in the borehole a few feet below the surface. At Borings B-002-0 and B-008-0, the existing IR 90 shoulder pavement was patched with an equivalent thickness of cold patch asphalt.

Soil samples were delivered to S&ME's lab for further examination and testing. Coordinates of boring locations were surveyed by WSP personnel or were obtained by S&ME using a handheld GPS and provided to WSP. The stations, offsets, and ground surface elevations at boring/DCP locations were provided by WSP.

In the field, experienced personnel from S&ME observed the drilling procedures and performed the following specific duties: preserved all recovered samples; prepared a log of each boring; made seepage and groundwater observations in the borings; obtained hand-penetrometer measurements in soil samples exhibiting cohesion; and, provided liaison between the fieldwork and the Project Manager so that the program of exploration could be modified, if necessary, because of unanticipated conditions.

3.2 Laboratory Testing

In the laboratory, the soil samples were visually identified and tested for natural moisture content, liquid/plastic limit determinations and grain-size analyses. Results of the laboratory index tests are recorded numerically on the boring log and a summary of the index test results is also included in Appendix II. Results output of additional strength or durability testing (consolidated undrained triaxial, slake durability and unconfined compressive strength) performed on recovered soil or rock samples are provided in Appendix II.

Based upon the results of the laboratory testing program, the field logs were modified, if necessary, and a copy of the laboratory corrected boring logs are submitted as Plates 5 through 43 of Appendix I. Shown on these logs are: descriptions of the soil stratigraphy encountered; depths from which samples were preserved; sampling efforts (blow-counts) required to obtain the specimens in the borings; calculated N₆₀ values; laboratory testing results; seepage and groundwater observations made at the time of drilling; values of hand-penetrometer measurements made in soil samples exhibiting cohesion; and, RQD (rock quality designation) and recovery percentages of rock core samples. For your reference, hand-penetrometer values are roughly equivalent to the unconfined compressive strength of the cohesive fraction of the soil sample.

Soils have been classified in general accordance with Section 603 of the ODOT *SGE* and described in general in accordance with Section 602. Bedrock has been classified and described in general accordance with Section 605 of the ODOT *SGE*. An explanation of the symbols and terms used on the boring logs, definitions of the special adjectives used to denote the minor soil components, description of rock, and information pertaining to sampling

and identification are presented on Plate 3 and 4 of Appendix I. Group Indices determined from the results of the laboratory testing program are also provided on the boring logs.

4.0 Findings

Please refer to the boring logs (Plates 5 through 43 in Appendix I) for the soil, bedrock, and groundwater/seepage conditions encountered at each boring location. Inferences should not be made to the subsurface conditions in the areas away from the boring without performance of additional borings or other field verification.

5.0 Critical Shear Stress for Scour Analysis

The Critical Shear Stress was estimated using the appropriate equations for cohesive or granular soils as directed in Section 1302 of the ODOT *Geotechnical Design Manual (GDM)*. The equations are a function of the D₅₀ particle size as determined in the laboratory, water content, fraction of fine particles (silt and clay sizes), plasticity index and unconfined compressive strength of the soil.

Table 5-1, on the following page, presents laboratory determined D_{50} particle size, Critical Shear Stress (τ_c), $D_{50,equivalent}$, and Erosion Category (EC) from gradation testing of the soil samples recovered from the continuously sampled zone in the five (5) hand-sampled borings performed at the site. This information may be used by others to perform a scour analysis in accordance with HEC-18. This data was originally provided to WSP in Geotechnical Design Memorandum (GDM #1) dated March 30, 2023.

Boring Number	Sample ID	Sample Elevation	Lab D50 (mm)	Critical Shear Tc (psf)	Erosion Category	D50,equivalent (mm)
H-004-1-22	SS-1	687.4' - 685.9'	0.4463	0.0178	3.07	0.8506
	SS-2	685.9' - 684.4'	0.5134	0.0107	1.85	0.5134
	SS-3	684.4' - 682.9'	0.4168	0.0731	3.41	3.4986
	SS-4	682.9' - 681.4'	1.7609	0.0368	2.49	1.7609
H-006-0-22	SS-1	686' - 684.5'	5.94	0.1241	3.13	5.9400
	SS-2	684.5' - 683'	0.012	0.0373	3.41	1.7848
	SS-3	683' - 681.5'	0.0288	0.0171	3.07	0.8179
	SS-4	681.5' - 680'	0.0606	0.0214	3.07	1.0268
H-007-2-22	SS-1	685.3' - 683.8'	3.9322	0.0821	2.91	3.9322
	SS-2	683.8' - 682.3'	1.7755	0.0371	2.50	1.7755
	SS-3	682.3' - 680.8'	2.5334	0.0529	2.68	2.5334
	SS-4	680.8' - 679.3'	0.2367	0.0049	1.45	0.2367
H-008-3-22	SS-1	683.3' - 681.8'	0.946	0.0198	2.17	0.9460
	SS-2	681.8' - 680.3'	2.0092	0.0420	2.56	2.0092
	SS-3	680.3' - 678.8'	5.2423	0.1095	3.06	5.2423
H-010-0-22	SS-1	682.6' - 681.1'	0.018	0.0911	3.48	4.3622
	SS-2	681.1' - 679.6'	0.028	0.1406	3.41	6.7303
	SS-3A	679.6' - 679.1'	0.2312	0.1157	3.07	5.5379

Table 5-1 Scour Zone Particle Size and Critical Shear Stress

6.0 Final Considerations

This data report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other representation or warranty either express or implied, is made.

We relied on project information given to us to develop our exploration plan. If project information described in this report is not accurate, or if it changes during project development, we should be notified of the changes.

Our data and observations are based on limited data from a field exploration program. Subsurface conditions can vary widely between explored areas. Some variations may not become evident until construction. If conditions are encountered that appear different than those described in our report, we should be notified. This report should not be construed to represent subsurface conditions for the entire site.

Unless specifically noted otherwise, our field exploration program did not include an assessment of regulatory compliance, environmental conditions or pollutants or presence of any biological materials (mold, fungi, bacteria).

Geotechnical Data Report LAK-90-2.93 Landslide Willoughby Hills, Lake County, Ohio S&ME Project No. 22170059B

If there is a concern about these items, other studies should be performed. S&ME can provide a proposal and perform these services if requested.

Geotechnical Data Report LAK-90-2.93 Landslide Willoughby Hills, Lake County, Ohio S&ME Project No. 22170059B

Appendices
Geotechnical Data Report LAK-90-2.93 Landslide Willoughby Hills, Lake County, Ohio S&ME Project No. 22170059B

Appendix I – General Information, Logs & Photographs

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL

SAMPLING DATA

- Indicates sample was attempted within this depth interval.

- The number of blows required for each 6-inch increment of penetration of a "Standard"
 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140-pound hammer
 freely falling 30 inches (SPT). The raw "blowcount" or "N" is equal to the sum of the second and third 6-inch increments of penetration.
- N₆₀ Corrected Blowcount = [(Drill Rod Energy Ratio) / (0.60 Standard)] X N
- SS Split-barrel sampler, any size.
- ST Shelby tube sampler, 3" O.D., hydraulically pushed.
- R Refusal of sampler in very-hard or dense soil, or on a resistant surface.
- 50-4" Number of blows (50) to drive a split-barrel sampler a certain distance (4 inches), other than the normal 6-inch increment.

DEPTH DATA

- W Depth of water or seepage encountered during drilling.
- ∇ Depth to water in boring at the end of drilling (EOD).
- ▼ 5 days Depth to water in monitoring well or piezometer in boring a certain number of days (5) after termination of drilling.
 - TR Depth to top of rock.

SOIL DESCRIPTIONS

Soils have been classified in general accordance with Section 603 of the most recent ODOT SGE, and described in general accordance with Section 602, including the use of special adjectives to designate approximate percentages of minor components as follows:

Percent by Weight
1 to 10
10 to 20
20 to 35
35 to 50

The following terms are used to describe density and consistency of soils:

<u> Term (Granular Soils)</u>	Blows per foot (N ₆₀)
Very-loose	Less than 5
Loose	5 to 10
Medium-dense	11 to 30
Dense	31 to 50
Very-dense	Over 50
Term (Cohesive Soils)	<u>Qu (tsf)</u>
Very-soft	Less than 0.25
Soft	0.25 to 0.5
Medium-stiff	0.5 to 1.0
Stiff	1.0 to 2.0
Very-stiff	2.0 to 4.0
Hard	Over 4.0

EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF ROCK

SAMPLING DATA

 SPT/ ROD
 When bedrock is encountered and rock core samples are attempted, the length of core recovered and lost during the core run is reported in the "REC" column. The type of rock core barrel utilized is recorded under the heading "Sampling Method" at the top of the boring log, and also in the "SAMPLE ID" column. Rock-core barrels can be of either single- or double-tube construction, and a special series of double-tube barrels, designated by the suffix M, may also be used to obtain maximum core recovery in very-soft or fractured rock. Four basic groups of barrels are used most often in subsurface investigations for engineering purposes, and these groups and the diameters of the cores obtained are as follows:

AX, AW, AXM, AWM	-	1-1/8 inches
BX, BW, BXM, BWM	-	1-5/8 inches
NX, NW, NXM, NWM	-	2-1/8 inches
NQ, NQ2	-	1-7/8 inches

Rock Quality Designation (RQD) is expressed as a percentage and is obtained by summing the total length of all core pieces which are at least 4 inches long and then dividing this sum by, either, the total length of core run or the length of the core run in a particular bedrock stratum. The RQD value is reported as a percentage in the "SPT/RQD" column. It has been found that there is a reasonably good relationship between the RQD value and the general quality of rock for engineering purposes. This relationship is shown as follows:

<u>RQD - %</u>	General Quality
0 - 25	Very-poor
25 - 50	Poor
50 - 75	Fair
75 - 90	Good
90 - 100	Excellent

ROCK HARDNESS

Recovered bedrock samples are described in general accordance with Section 605 of the 2007 ODOT SGE and subsequent revisions, where necessary. The following terms are used to describe rock hardness:

Term	Meaning
Very Weak	Rock can be excavated readily with the point of a pick and carved with a knife. Pieces 1 inch or greater in thickness can be broken by finger pressure. Can be scratched with a fingernail.
Weak	Rock can be grooved or gouged readily by a knife or pick, and can be excavated in small fragments with moderate blows from a pick point. Small, thin pieces may be broken with finger pressure.
Slightly Strong	Rock can be grooved or gouged 0.05 inches deep with firm pressure from a knife or pick point, and can be excavated in small chips to pieces of 1 inch maximum size using hard blows from the point of a geologist's pick.
Moderately Strong	Rock can be scratched with a knife or pick. Grooves or gouges to ¹ / ₄ inch deep can be excavated by hard blows of a geologist's pick. Requires moderate hammer blows to detach a hand specimen.
Strong	Rock can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach a hand specimen. Sharp and resistant edges are present on hand specimens.
Very Strong	Rock cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires repeated hard blows of a geologist's hammer.
Extremely Strong	Rock cannot be scratched by a knife or sharp pick. Chipping of hand specimens requires repeated hard blows of a geologist's hammer.

DJECT: LAK-90-2.93 SLIDE DRILLING FIRM / OPERA DE: LANDSLIDE SAMPLING FIRM / LOGO 112663 BR ID: N/A DRILLING METHOD:	ATOR: <u>(</u> SER: <u>\$</u> 3-	OTB / J. MINCHA S&ME / S. SMITH -1/4" HSA	<u>K</u> DRIL HAM	L RIG MER: BRAT	: ION D	OTB ATV //E AUTOM ATE:	D50 MATIC 2/22/2	2	STAT ALIGN ELEV	ION / NMEI ATIC	/ OFF NT: N:	-SET	: <u>1</u>	01+9 IR-90 SL) E	1, 168) EOB:	B' LT	EXPLOR B-00 [°] 4.2 ft.
RT: <u>12/6/22</u> END: <u>12/6/22</u> SAMPLING METHOD:		SPT		RGY I		(%):	79.1				G:	41	1.597 ATT	580 I	N, 81.	44483	36 W
AND NOTES	763.2	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL		PL	PI	WC	ODOT CLASS (GI)
TOPSOIL - 12 INCHES	762.2		_														
own, red and gray SILT AND CLAY, many shale gments.	760.7		_														
ALE, reddish brown, severely weathered, very weak, ny zones of clay, similar to hard silty clay.			4 12 16	37	100	SS-1	-	-	-	-	-	-	-	-	-	12	Rock (V)
		- 5		53	100	SS-2A	-	-	-	-	-	-	-	-	-	10	Rock (V)
5.5' grayish brown		- 6		52	100	SS-2B SS-3A	<u> </u>	•]•]		-	-		-	-	-	5	Rock (V)
	756.2	- 7	21	55	100	SS-3B	-	-	-	-	-	-	-	-	-	7	Rock (V)
ALE, gray, highly to severely weathered, very weak.		8	23 26	65	100	SS-4	-	13	17	17	35	18	36	23	13	7	Rock (V)
		- 9	24 50/5"	-	100	SS-5	-	-	-	-	-	-	-	-	-	5	Rock (V)
			36 50/5"	-	100	SS-6	-	-	-	-	-	-	-	-	-	6	Rock (V)
		- 12	- ³⁴ 50/3" /	-	89	SS-7	-	-	-	-	-	-	-	-	-	5	Rock (V)
	740.0	13	50	-	100	SS-8	-	-	-	-	-	-	-	-	-	4	Rock (V)
ALE, dark gray, moderately to highly weathered, very ak, thinly laminated to laminated, fissile, moderately to hly fractured, narrow to open, slightly rough, few zones of ystone, RQD = 29%, REC = 96%. 14.0' to 18.9' SDI = 71.5%.	749.2	14 15 16 - 17 - 17 - 18 - 18 - 19	27		98	NQ-9											CORE
	739.0	- 20 - 21 - 22 - 23 - 23			94	NQ-10											CORE

PLATE 5

The upper 2.5' of the original ground surface was cut out by the dozer when creating access to the site. Layering in the upper 2.5' is based on observations of the dozer cut.

- No groundwater encountered prior to bedrock coring.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLASTIC HOLE PLUG DEVICE; SOIL CUTTINGS MIXED WITH BENTONITE

	T: LAK-90-2.93 SLIDE LANDSLIDE	DRILLING FIRM / OPE SAMPLING FIRM / LOO	RATOR: _	OTB / J. MI S&ME / S. S	NCHAK SMITH		L RIG MER:			D50 MATIC	;	STAT ALIG	TION NME	/ OFI	FSET	: <u>1</u>	02+3 IR-90	9, 19()	0' LT	EXPLOR B-001	ATION I I-1-22 PAGE
START:	12/7/22 END: 12/7/22	SAMPLING METHOD:	3	SPT / ST		ENE	RGY F	RATIO	(%):	79.1		LAT /	LON	IG:	40.0 4	1.597	818 I	N, 81.	.4444(04 W	1 OF 1
	MATERIAL DESCRIP	TION	ELEV.	DEPT	HS	SPT/	Nco	REC	SAMPLE	HP	Ċ	RAD	ATIC	N (%	5)	ATT	ERBI	ERG		ODOT	INCL
FILL Me	AND NOTES	RQD 1	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)					
little fine	to coarse sand, trace fine gravel,	damp to moist.			- 1 -	1 2	4	78	SS-1	0.75- 1.25	9	9	9	36	37	35	20	15	19	A-6a (10)	
					- 2 - - - 3 -	1 2	4	17	SS-2	1.25	-	-	-	-	-	-	-	-	18	A-6a (V)	
			742.0	₩ 742.6	- 4 -	1 2	4	17	SS-3	0.75- 1.0	-	-	-	-	-	-	-	-	19 16	A-6a (V)	
FILL: Me gravel, lit	dium-stiff to stiff gray SILT AND C tle fine to coarse sand, damp.	LAY, some fine		120		1 0	1	33	SS-4B	-	-	-	-	-	-	-	-	-	17	A-6a (V)	
			738.3	days	- 7 - - 8 -	-		50	ST-5	0.75- 1.25	21	7	6	36	30	34	21	13	17	A-6a (7)	
POSSIBL coarse sa	LE FILL: Very-stiff gray SILTY CL and, trace fine gravel, moist.	AY, little fine to	736.8	days	- 9 -	2 3 4	9	89	SS-6	2.3- 3.0	-	-	-	-	-	-	-	-	19	A-6b (V)	
Hard brov gravel, m	wn SILTY CLAY , little fine to coars nany weathered shale fragments,	se sand, trace fine damp to moist.			- 10 -	3 8 11	25	67	SS-7	4.5+	7	7	7	43	36	37	21	16	14	A-6b (10)	
			733.8	TD	- 12 -	10 21 26	62	100	SS-8	4.5+	-	-	-	-	-	-	-	-	15	A-6b (V)	
SHALE, g similar in	gray, highly to severely weathered structure to hard silty clay.	, very weak,				26 41	-	100	SS-9	-	-	-	-	-	-	-	-	-	9	Rock (V)	
SHALE.	gray, moderately to highly weathe	red. verv weak.	731.8	-	- 15 -	26 ∖50 /	-	83	SS-10	 	-	-	-	-	-	-	-	-	8	Rock (V)	
thinly lam fractured claystone	, narrow to open, slightly rough, fe , RQD = 41%, REC = 97%.	rately to highly w zones of			- 16 - - 17 -	37		96	NQ-11	-										CORE	
@ 17.9' t	to 18.3' $Q_u = 116 \text{ psi}, \ \gamma_{dry} = 141.3$	pcf			18 - 19																
@ 19.5' t	to 25.1' SDI = 62.1%				20 21 22	45		07	NO 12											CORE	
@ 23.3' t	to 23.7' $Q_u = 441 \text{ psi}, \ \gamma_{dry} = 147.6$	pcf	721.7	FOR	23 - 24 - 25 -	40		51	1102-12	-										UURE	

10' southwest of original.

PLATE 6

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BENTONITE AND CEMENT GROUT MIXTURE; INCLINOMETER

S&ME JOB:	22170059B
bound sob.	EE1 /005/ D

S & ME IOD. 22170050D																		Ξ	&
S&ME JOB: 22170039B	1																		Ξ
PROJECT: LAK-90-2.93 SLIDE	DRILLING FIRM / OPER		OTB / J. MINCHAK	DRIL	L RIG	:	OTB ATV	D50		STAT		/ OF	FSET	Г: <u>1</u>	02+6	4, 25	6' LT	EXPLOR	ATION I 1-2-22
PID: 112663 BR ID: N/A	DRILLING METHOD		5&IVIE / 5. 5IVITH		RRAT		<u>ΜΕ Αυτοι</u> ΔΤΕ· 1	2/22/2	2		INIVIE /ATIC	ו או <u>.</u> ארי	727 2		1R-90	U =OB·	2	8 0 ft	PAGE
START: 12/8/22 END: 12/8/22	SAMPLING METHOD:		SPT / ST	ENE	RGY F	RATIO	(%):	79.1		LAT		IG:	4	1.597	971 I	N. 81	.4445	62 W	1 OF 1
MATERIAL DESCRIP	ΓΙΟΝ	ELEV.		SPT/		RFC	SAMPLE	HP		RAD	ATIC	N (%	5)	ATT	ERB	ERG			BACK
AND NOTES		727.2	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
TOPSOIL/ROOTMAT - 4 INC	CHES /	726.9		1	4	100	SS-1A	<u> </u>	-			_ _ _			↓-	↓	-	Visual (V)	1 LV 7
FILL: Medium-stiff to stiff brown SILT AND	.L: Medium-stiff to stiff brown SILT AND CLAY, little fine											-	-	-	-	-	20	A-6a (V)	L 1 < L
to coarse sand, intre line graver, damp to h	ioist.		- 2 -	2 2	8	61	SS-2	1.25-	-	-	-	-	-	-	-	-	16	A-6a (V)	121
Fill I · Vory stiff to bard dark brown to gray		724.2	- 3 -	4				2.5										. ,	1 LV 7
little fine to coarse sand, little fine gravel, d	amp.		- 4 -	6	16	100	SS-3	4.5	14	7	8	35	36	32	18	14	13	A-6a (9)	1 LV 1
				3				25											- 1 < 1 <
				4 5	12	89	SS-4	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	12.1
			- 6 -	3	12	00	66 F	2.0-									12	A 60 (\/)	1747
@ 6.5' wood fragments		719.7	7 _	- 5 - 4	12	09	33-5	3.0	-	-	-	-	-	-	-	-	13	A-0a (V)	1 1 K 1
PROBABLE FILL: Stiff to very-stiff gray SIL	T AND CLAY,		- 8 -	2 4	11	100	SS-6	1.5-	15	9	9	35	32	33	21	12	20	A-6a (7)	1211
slightly organic, damp to moist.	lile lille glavel,	7177	- 9 -	4			ST-20	1.5- 	2	4	5	43	46	39	23	16	25	A-6b (10)	767
γ - Shelby tube (ST-20) obtained in offset hold γ	le from 7.5' to 9.5'.			² 5	15	89	<u>55-7A</u> SS-7B	1.25	-	-	-	-	-	<u> </u>	-	-	10	A-0a(V)	
\mathbb{C}	tle fine to coarse			6			0078	3.0									13	A 1 0 (V)	
gravel, little fine to coarse sand, few shale	fragments, damp.		- 11 -	8 ₁₁	25	100	SS-8	3.5-	15	7	4	31	43	41	20	21	16	A-7-6 (12)	1767
			12	3															- 1 LV 7
			- 13 -	6 10	21	67	SS-9	4.5+	-	-	-	-	-	-	-	-	14	A-7-6 (V)	L 1 < L
			- 14 -	4 7	22	20	SS 10	3.5-									14	A 7 6 () ()	
		-	- 15 -	10	22	39	33-10	4.5	-	-	-	-	-	-	-	-	14	A-7-0 (V)	7 LV 7
			- 10	7 9	26	78	SS-11	3.0-	-	-	-	-	-	-	-	-	16	A-7-6 (V)	
		710.7	- 16 -	11				4.5+											L 1 <l< td=""></l<>
to coarse gravel, little fine to coarse sand,	ew shale	=	- 17 -	10	32	100	SS-12	4.5+	23	7	6	29	35	37	20	17	11	A-6b (9)	767
fragments, damp to moist.			- 18 -	14 6				0.5											- 7 LV 7
		=	- 19 -	8	22	61	SS-13	3.5-	-	-	-	-	-	-	-	-	14	A-6b (V)	L 1 <l< td=""></l<>
		707.1	- 20 -	3			SS-14A	2.5	-	-	-	-	-	-	-	-	21	A-6b (V)	-7 L 7 -7 - 7 - 7 - 7
Very-stiff to hard gray with brown CLAY, "a	nd" silt, trace fine	_	- 20	7	24	67	SS-14B	2.5	-	-	-	-	-	-	-	-	18	A-7-6 (V)	$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
weathered shale, damp.	similar to severely		- 21 -	4 o	25	100	SS 15	3.5-	2	2	5	20	51	12	22	20	15	A 7 6 (12)	
			22	<u> </u>	25	100	33-13	4.5+	3	5	5	50	51	42	22	20	15	A-7-0 (12)	1>11
			- 23 -	7 10	26	67	SS-16	4.5+	-	-	-	-	-	-	- I	-	15	A-7-6 (V)	767
			- 24 -	10	_													- (.)	- 7 LV 7
	FI-		25	8	22	100	SS-17	4.5+	-	-	-	-	-	-	-	-	16	A-7-6 (V)	1>11
SHALE, gray, highly to severely weathered	verv weak, few	<u> </u>		9 48	-	100	SS-18	-	-	-	-	-	-	-	-	-	11	Rock (V)	112 1 121 1
clay infill zones.																			$\left[\begin{array}{c} \hat{1} & L^{V} \\ \hat{1} & L^{V} \end{array} \right]$
		600.2		20	-	100	SS-19	-	-	-	-	-	-	- 1	-	-	-	Rock (V)	- 1 > 1 1 1 - 1 2 1 - 1 1 1 -
NOTEO		50				ļ	L	<u> </u>				<u> </u>	<u> </u>		I		175,7		
NOTES: - Seepage was encountered at 25.5' during	drilling																		
NOTES: SEE ABOVE.		0.1161 F		<u></u>															
ABANDONMENT METHODS, MATERIALS	5, QUANTITIES: PLAST	IC HOLE	PLUG DEVICE; SO	UL CU	ΓΓΊΝΟ	JS MD	XED WITH	H BEN	TON	ΓÉ									

-NEW.GPJ

-NEW.GPJ	S&ME JOB: 22170059B																Ξ	&			
B6500.	PROJECT: LAK-90-2.93 SLIDE DRIL	LLING FIRM / OPER	ATOR: _	DTB / J. MI	ICHAK	DRIL	L RIG	:	OTB ATV	D50		STAT	ION	/ OF	FSET	Г: _1	03+5	7, 13	6' LT	EXPLOR	ATION IE
2217	TYPE: LANDSLIDE SAM	IPLING FIRM / LOG	GER: S	S&ME / S. S	MITH	HAM	MER:	CN		MATIC	;	ALIG	NME	NT:			IR-90)		B-002	2-0-22
CTS	PID: <u>112663</u> BR ID: <u>N/A</u> DRII	LLING METHOD:	3-	1/4" HSA		CALI	BRAT	ION D	ATE: <u>1</u>	2/22/2	2	ELEV	ATIC	DN: _	770.′	1 (MS	<u>SL)</u> E	OB:	7	7.0 ft.	PAGE
SUEC	START: <u>12/15/22</u> END: <u>12/15/22</u> SAM	IPLING METHOD: _		SPT		ENE	RGY F	RATIO	(%):	79.1	<u> </u>	LAT /	LON	IG: _	4	1.598	3022 I	N, 81.	.4440(05 W	T OF 3
\PR(MATERIAL DESCRIPTION		ELEV.	DEPTH	IS	SPT/	N ₆₀	REC	SAMPLE	HP		SRAD	ATIC)N (%	5)	ATT	ERB	ERG		ODOT	HOLE
NH N		XXX	770.1			RQD	00	(%)	ID	(tst)	GR	CS	FS	SI	CL		PL	PI	WC	OEAGO (GI)	SEALEL
١Đ -	ASPHALT - 17 INCHES		768 7		- 1																
Y\02	GRANULAR BASE - 5 INCHES		768.2			3			SS-1A	- <i>-</i>	-	-		- /		-	- /	-	-	Visual (V)	_
l0R,	FILL: Very-stiff to hard brown SILT AND CLAY, lit	ttle fine to			- 2 -	4	12	94	SS-1B	4.0-	-	-	-	-	-	-	-	-	17	A-6a (V)	
DRAT	coarse sand, trace fine gravel, few stiff zones, da	amp.			- 3 -	3				4.75											1
ABC			1		- 4 -	3	9	39	SS-2	3.0	-	-	-	-	-	-	-	-	17	A-6a (V)	
1-1					- 5 -	3				1 5-			-						. –		1
NON NO						3	9	100	SS-3	4.5	6	5	9	39	41	32	19	13	17	A-6a (9)	
ΈLΑ					- 6 -	3	10	100	SS-4A	3.0-	-	-	-	-	-	-	-	-	15	A-6a (V)	
Ē	@ 6.7' to 7.5' medium stiff to stiff		762.6		- 7 -	45	12	100	SS-4B	0.5 - 1.5	-	-	-	-	-	-	-	-	16	A-6a (V)	
57/0	FILL: Medium-dense brown and gray GRAVEL W	/ITH SAND,			- 8 -	5	24	80	SS-5A	<u>μ</u>	-	┟╶╴╽	-	-	-			-	6	<u>A-2-6 (V)</u>	}
S-25	SILI AND CLAY, few very-stiff to hard silty clay z	ones,			- - 9 -	10	27	03	SS-5B	-	-	-	-	-	-	-	-	-	10	A-2-6 (V)	
ES/C	damp.					4	26	100	SS-6	_	l _		_	_	_	l _	_	_	8	A-2-6 (V)	
Ľ			759.6		10 -	10	20	100	000										Ŭ	1120(0)	_
/ICE	FILL: Very-stiff to hard brown and gray SILT AND	CLAY,			- 11 -	4	13	100	SS-7	4.5+	31	14	10	22	23	37	22	15	11	A-6a (4)	
ER	sand, few stiff zones, few shale fragments, damp	nie to coarse		₩ 758.1	- 12 -	5					-					-					4
R:\S		l, rew stiff zones, rew snale fragments, damp.						100	SS-8	-	-	-	-	-	-	-	-	-	12	A-6a (V)	
- 90:																				. ,	-
4 15					- 14 -	4	11	100	SS-9	4.5+	17	6	7	36	34	37	22	15	13	A-6a (9)	
28/2					- 15 -	2															-
- 6/					- 16	23	9	67	SS-10	3.0-	-	-	-	-	-	-	-	-	15	A-6a (V)	
GD				w 753.1		5				1.5-			_								1
DOT			752.5		- 17 -	5	12	100	SS-11A	2.0	35	10	1	28	20	31	19	12	10	A-6a (3)	4
E	FILL: Very-stiff to hard brown and gray SILT AND	O CLAY,			- 18 -	3			22-11B	$\frac{2.5}{4.5}$	-		-	-	-	-		-	12	<u>A-6a (V)</u>	1
19 -	damp.	de stairing,			- 19 -	23	7	67	SS-12	3.0-	-	-	-	-	-	-	-	-	16	A-6a (V)	
11/20			750.1		- 20 -	2	-	07	SS-13A	-	-	-	-	-	-	-	-	-	12	A-6a (V)	1
В	FILL: Stiff to very-stiff dark brown and gray SILTY	CLAY,				2 2	5	67	SS-13B	3.5-	-	-	-	-	-	-	-	-	17	A-6b (V)	
s - (damp.				- 21 -	2	11	22	SS 14	1 25	17	10	0	20	25	26	20	16	17	A 66 (9)	
5X11					- 22 -	3	11	- 33	33-14	1.25	17	10	0	30	- 35	30	20	10	17	A-00 (0)	
9.6					- 23 -	2 5	11	89	SS-15	3.5-	l _		_	_	_	l _	_	_	16	A-6h (\/)	
ğ			745.0		- 24	3		00		4.5									10		-
DOT	FILL: Hard brown and gray SILTY CLAY little fine	e to coarse	745.6			3 5	18	89	<u>SS-16A</u>	1.25	-	-	-	-	-	-	-	-	21	A-6b (V)	-
E OI	sand, trace fine gravel, damp.				- 25 -	9	-		55-16B	4.5+	-	-	-	-	-	-	-	-	16	А-60 (V)	-
S&M					- 26 -	6	20	67	SS-17	4.5+	3	5	8	40	44	33	17	16	14	A-6b (10)	
_					- 27 -	9														· , ,	-
Ľ				- 28 -	7	21	67	SS-18	4.5+	-	-	-	-	-	-	-	-	14	A-6b (V)		
Ĩ					9 4				25		$\left \right $									-	
8			740.4		- 29 -	7	25	100	SS-19A	4.5	-	-	-	-	-	-	-	-	15	A-6b (V)	
) هل له جا	1			I 121				1		1			1		1			1	

ID: 112663 BR ID: N/A F	ROJECT: LAK-9	0-2.93 SL	IDE	STATION	N / OFFSET: _		T: <u>103+57, 136' LT</u>		S	TART	: 12/	15/22	2 El	ND:	12/1	5/22	Ρ	G 2 O	F3 В-0)2-0
MATERIAL DESCRIPTIO	ON	ELEV	/. 1	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE	HP (tsf)	GR	GRAD	ATIC FS	N (% si	5) CL	ATT LL	ERBI	ERG PI	wc	ODOT CLASS (GI)	HC SE/
FILL: Medium-dense dark brown GRAVEL W	ITH SAND,	739.8	3/	- 21 -	7 8	21	100	SS-19B		-		\ <u>-</u>]	-		-		-	15	A-2-6 (V) A-6a (V)	
FILL: Very-stiff to hard brown SILT AND CLA	Y, little fine to			- 32 -	4	10	400	55-20B	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	-
coarse sand, trace fine graver, damp.				- 33 -	6 6	10	100	55-21	4.5+	4	0	11	37	42	32	19	13	14	А-ба (9)	-
				34 -	10	30	100	SS-22	4.5+	-	-	-	-	-	-	-	-	16	A-6a (V)	
		734.	1	- 35 -	6 8 9	22	100	SS-23	3.5- 4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
FILL: Medium-dense gray GRAVEL WITH SA AND CLAY, damp.	ND, SILT,	733.9	€7	- 36 -	56	18	100	<u>SS-24A</u> SS-24B	3.5	- 6	 6	 10	 37	 41	 34	 18	 16	<u>14</u> 15	<u>A-2-6 (V)</u> A-6b (10)	7
FILL: Very-stiff to hard brown SILTY CLAY , li coarse sand, trace fine gravel, damp.	ttle fine to	721	1	- 38 -	7 9	28	100	SS-25A	4.5+	-	-	-	-	-	-	-	-	15	A-6b (V)	1
ILL: Medium-dense brown and gray GRAVE	L WITH SAND,	731.	1	- 39 -	4	05	400	<u>SS-25B</u> SS-26A	1.5	-		-	-	-	-	-	-	<u>13</u> 15	<u>A-2-6 (V)</u> A-6a (V)	
/ery-stiff to hard brown and gray SILT AND (CLAY, trace fine			- 40 -	12 5	25	100	SS-26B	<u>3.0</u> 4.5+	-	-	-	-	-	-	-	-	18	A-6a (V)	_
o coarse sand, trace fine graver, rew shale h	agments, damp.			- 41 -	8 11	25	100	SS-27	4.5+	2	2	7	40	49	35	20	15	18	A-6a (10)	
				- 43 -	5 9 11	26	100	SS-28	2.5- 4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	
/ery-stiff to hard gray SILTY CLAY, little fine	to coarse sand,	726.′	1	44 -	5 10	28	89	SS-29A	3.5- \4.5+/	-	-	-	-	-	-	-	-	19 10	A-6a (V)	-
ittle fine gravel, few shale fragments, iron ox damp.	ide staining,			45 - -	4 7	20	78	SS-30	3. <u>5</u> - 4.5+ 3.0-	2		8	3/	47	10	22	18	17	A-6b (11)	-
Hard grav SILTY CLAY. little fine to coarse s	and. trace to	723.6	3	- 46 -	10 10	20	10	00-00	4.5	2	3	0	54	47	40	~~~	10	17		-
ittle fine gravel, many shale fragments, simil weathered shale, damp.	ar to severely			- 48 -	12	36	72	SS-31	4.5+	-	-	-	-	-	-	-	-	16	A-6b (V)	_
				- 49 -	14 18	42	100	SS-32	4.5+	-	-	-	-	-	-	-	-	16	A-6b (V)	
				50 -	15 26	80	78	SS-33	4.5+	-	-	-	-	-	-	-	-	14	A-6b (V)]
		718.3	3		21 50	-	100	SS-34A	4.5+	-	-	-	-	-	-	-	-	14	A-6b (V)	
SHALE, gray, highly to severely weathered, v	very weak.			- 53 -	-			<u>33-34D</u>	~ <u>-</u> ⁄		<u> </u>				<u> </u>	<u> </u>	<u> </u>			1
				- 54 -	37	80	100	SS-35	_	-	_	_	-	_	_	_	-	11	Rock (V)	1
				- 55 -	27		100													-
				56 - -	18 50/4"	-	80	SS-36	-	-	-	-	-	-	-	-	-	13	Rock (V)	
				- 57 -	-															
				- 59 -	50	-	100	SS-37	-	-	-	-	-	-	-	-	-	11	Rock (V)	-
				- 60 -	-															
				F	1										1			l I		

B-NEW.GPJ	S&ME J	IOB: 221	70059B																						\equiv	&
7005	PID: _	112663	BR ID:	N/A	PROJECT:	LAK-90-2	2.93 SLID	E	STATION	/ OFFS	ET:	103+5	57, 136' LT	Γ	STA	ART:	12/	15/22	EN	D: <u>1</u>	2/15/	22	PG	G 3 OF	з В-ОС)2-0-22
\$\221			MATI	ERIAL DESCRI	PTION		ELEV.	DE	EPTHS	SPT/	N ₆₀	REC	SAMPLE	H	P	GI			(%)	A			۶G		ODOT	HOLE
CLEVELAND\01 - LABORATORY\02 - GINTW/PROJECT;	SHAL (contin SHAL strong highly REC =	E, gray, h nued) E, dark g I, thinly la fractured = 100%.	ighly to se ray, slightly minated to I, narrow to	weathered, we laminated, fiss open, slightly r	ed, very weak. eak to slightly ile, moderately to rough, RQD = 77%		708.0		- 63 - - 64 - - 65 - - 66 - - 67 - - 68 - - 69 - - 70 - - 71 -	50/2" / 77	<u> </u>	100	NQ-40				- ^	-			-			4	CORE	
R:\SERVICE LINES\CS-2557	@ 73.	6' to 73.9	' Q _u = 1,54	7 psi, γ _{dry} = 15	2.6 pcf		693.1	FOF	- 72 - - 73 - - 74 - - 75 - - 76 - - 77	77		100	NQ-41												CORE	

6/28/24 15:06 -

S&ME ODOT LOG (8.5X11) - SGE 01/2019 - OH DOT.GDT

PLATE 10

NOTES: - Seepage encountered at 12.0', 19.5' and 34.5' during drilling. - Drilling was paused at a depth of 46' at the end of the day on 12/15/22. Before resuming drilling on 12/16/22, water was measured at a depth of 17.0'.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: ASPHALT PATCH; BENTONITE AND CEMENT GROUT MIXTURE; PLASTIC HOLE PLUG DEVICE

B-NEW.GPJ	&ME JOB: 22170059B																				Ξ	&
\22170059	PROJECT: LAK-90-2.93 SLIDE TYPE: LANDSLIDE	DRILLING FIRM / O SAMPLING FIRM / L	PERA _OGG	TOR: <u>(</u> ER: <u>S</u>	DTB / J. MII &ME / S. S	NCHAI SMITH		_L RIG IMER:	: CN		D50 MATIC		STAT ALIGI	ION NME	/ OF	FSET	Г: <u>1</u>	04+7 IR-90	7, 28())' LT	EXPLOR B-003	ATION IE 3-0-22
ECTS	PID: <u>112663</u> BR ID: <u>N/A</u> START: 12/9/22 END: 12/9/22	DRILLING METHOD	חי יחי	3-	<u>1/4" HSA</u> SPT			IBRAT	ION D	ATE: <u>1</u> 2 (%):	2/22/2: 79 1	2	ELEV)N: _ IG·	717.3 4	3 (MS 1 598	520 I	OB:	<u> </u>	2.5 ft.	1 OF 2
ROJI	MATERIAL DESCRIPTI	ON	<u> </u>	ELEV.			SPT/		REC	SAMPLE	HP	(RAD	ATIO	N (%	5)	ATT	ERBI	ERG			BACK
ЧМ	AND NOTES	-		717.3	DEPTI	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	ĆL	LL	PL	PI	WC	CLASS (GI)	FILL
LN D	TOPSOIL/ROOTMAT - 6 INC	HES	$\rightarrow \rightarrow$	716.8		_	2	12	100	SS-1A	-	-	-	-	-	-	-	-	-	-	Visual (V)	- 1 LV 1 L
02 -	FILL: Stiff to hard gray and brown SILT AND	CLAY, little fine				- 1	<u> </u>	5 12	100	SS-1B	2.5	-	-	-	-	-	-	-	-	17	A-6a (V)	1>1 1×
ATORY	to coarse sand, trace nine gravel, damp.			714 0		- 2	5 7 8	20	94	SS-2	2.5- 4.5	4	3	8	41	44	31	18	13	13	A-6a (9)	7 L 7 7 1 7 L 7 7 1
BOR	FILL: Very-stiff to hard brown mottled with gr	ray SILT AND		711.0		-	5	18	100	<u>55-3A</u>	<u>2.5</u> 4 5⊥	<u> </u>		-		<u>├</u>	<u> </u>	<u>-</u>		<u>15</u> 15	<u>A-6a (V)</u>	< / / < /
101 - LA	CLAY , little fine to coarse sand, trace fine gr fragments, damp.	avel, few shale				- 5	5 9	21	89	SS-4	4.5+	_	_	_	-	_	_	-	-	12	A-6a (V)	$\neg L \neg L \neg L$
VELAND						6	5 9	25	100	SS-5	4 5+	5	5	٩	42	39	28	15	13	2	A-6a (9)	
557/CLE						- 7 · - 8 ·	6 7	22	89	SS-6	4.5+	-	-	-	-12	-	20	-	-10	13	A-62 (V)	
S\CS-26						- - 9 ·	4 4 7	20	100	99.7	4.51									12		$\begin{bmatrix} 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
CE LINE						- 10 · - - 11 ·	<u> </u>	20	100		3.5-	-	-	-	-	-	_	-	-	13		
:\SERVI	@ 12.0' to 13.5' "and" fine to coarse gravel					- 12 ·	6 6	24	100	55-8	4.5 3.0-	-	-	-	-	-	-	-	-	14	A-6a (V)	
5:06 - R						- 13 ·	9 4	20	100	55-9	4.5	35	9	8	24	24	31	20	11	10	A-6a (3)	$ 1\rangle 1\rangle$ $ 1\rangle 1\rangle$ $ 1\rangle 1\rangle$ $ 1\rangle 1\rangle$ $ 1\rangle 1\rangle$
8/28/24 1						- 15	6 5	18	89	SS-10	4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	7 LV 7 7 LV 7 7 Z
.GDT - 6						- 16	6 4	16	89	SS-11	4.5 4.5	-	- 7	- 12	-	- 38	- 33	- 19	- 14	12	A-6a (V)	$\begin{vmatrix} z \\ z $
DOT			\square	699 3		F 17 '	7	21	89	SS-12R	3.0	-	-	-	-	-	-	-	-	17	A-6a (V)	12 71
19 - OH	Stiff gray SILT AND CLAY , little fine to coars fine gravel, few wood fragments, organic odd	e sand, trace or, possible buried		000.0		18 · 19 ·	3 5	13	100	SS-13	1.25- 1.5	4	5	6	42	43	40	25	15	27	A-6a (10)	$\begin{pmatrix} \zeta \\ \gamma \\$
01/20	topsoil, damp.			606 7		- 20	3	12	100	SS-14A	1.0-	-	_	-	-	-	-	-	-	43	A-6a (V)	1 - T - T - T - T - T - T - T - T - T -
В	Very-stiff to hard gray mottled brown CLAY.	some silt, little		696.7		- 21	7	, 13	100	SS-14B	4.5+	-	-	-		-	-	-	-	20	A-7-6 (V)	767
5X11) - S	fine to coarse sand, little fine gravel, iron oxi	de staining, damp.				- 22	4 6 12	24	94	SS-15	2.5- 3.5	-	-	-	-	-	-	-	-	21	A-7-6 (V)	
-OG (8.£						- 23	5	17	100	SS-16	3.5- 4.5	14	8	11	34	33	45	25	20	20	A-7-6 (11)	$\begin{vmatrix} \zeta L^{\vee} & \zeta \\ 7 & L^{\vee} & 7 \\ 1 & 7 & 1 \\ 2 & 7 & 1 \\ 2 & 7 & 7 \\ 2 & 7 & 7 \\ 1 & 7 & $
ODOT I	@ 24.0' becoming stiff to very-stiff					- 24	3 4 6	13	100	SS-17	1.5- 2.0	-	-	-	-	-	-	-	-	22	A-7-6 (V)	
S&ME				690.3	N 600 4	26	2 3 6	12	61	SS-18	1.5- 2.0	-	-	-	-	-	-	-	-	19	A-7-6 (V)	
2	Very-stiff gray SANDY SILT , some clay, som	ne fine gravel,		689.8	W 090.1	- 27 · - 28 ·	4	15	67	SS-19A SS-19B	2.5	23 -	2	2	38 -	35	26	16 -	10	15 17	A-4a (8) A-6b (\/)	
ATE 11	Very-stiff to hard gray SILTY CLAY , little fine trace to little fine to coarse gravel, many sha damp	e to coarse sand, le fragments,		687.3		29 ·	8 10 15	33	100	SS-20	4.5	-	-	-	-	-	-	-	-	11	A-6b (V)	

/.GPJ		
B-NEM	S&ME JOB:	22170059B

n .																								
SCON /	PID: <u>112663</u>	BR ID:	N/A	PROJECT:	LAK-90-2	.93 SLID	Ε	STATION	/ OFFSI	ET: _	104+7	7, 280' LT	. s	TART	T: <u>12</u>	/9/22	_ EN	ND: _	12/9	9/22	P	G 2 OF	= 2 B-(03-0-22
177		MATE	RIAL DESCRIP	TION		ELEV.		отне	SPT/	N	REC	SAMPLE	HP	0	GRAD	ATIO	N (%)	ATT	ERBE	RG		ODOT	BACK
5			AND NOTES			687.3		FINS	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (G) FILL
PROJEC	SHALE, gray, h	highly to sev	verely weathered	d, very weak.			TR	- 31 -	11 22 46	90	78	SS-21	-	-	-	-	-	-	-	-	-	7	Rock (V	$) \begin{vmatrix} \zeta \\ \gamma \\$
N N						684.8	W 68	5.0 - 32 -	29 50	-	100	SS-22	-	-	-	-	-	-	-	-	-	10	Rock (V) 7272
<u> </u>							LOI																	

€ U

NOTES: - Seepage encountered at 27.2' and 32.3' during drilling.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLASTIC HOLE PLUG DEVICE; SOIL CUTTINGS MIXED WITH BENTONITE

					_														<u> </u>	=
-ROJECT: LAK-90-2.93 SLIDE DRILLING	FIRM / OPEF	RATOR: (OTB / J. MIN	ICHAK	DRIL	L RIG	:	OTB ATV	D50		STAT	ION /	OFF	SET	: _1(06+7	<u>9, 301</u>	<u>1' LT</u>	EXPLOR	ATIO
	G FIRM / LOG	GER: S	<u>S&ME / S. S</u>	MITH		IMER:		ALE AUTO	MATIC			IMEN	IT: _			IR-90)			+-U-2
-112663 BR ID: <u>N/A</u> DRILLING		3-	-1/4" HSA			IBRA I		AIE: <u>1</u>	2/22/22	2			N: _/ ^.	/10.4	1 (MS	<u>5L)</u> E	:OB:	36	<u>6.8 ft.</u>	10
START: <u>12/9/22</u> END: <u>12/13/22</u> SAMPLIN	G METHOD:		<u>SP1/S1</u>			RGYF		(%):	79.1				J:	4	1.599	0331	<u>1, 81.</u>	44385	<u> </u>	
MATERIAL DESCRIPTION		ELEV.	DEPTH	IS	SPT/	N ₆₀	REC	SAMPLE	HP (tof)	G			N (%)				WC	ODOT CLASS (GI)	BA
		710.4		_	1		(%)	SS-1A	(ISI) -	GR -	-	-	-	-	-	PL -		wc	Visual (V)	$\frac{1}{\sqrt{2}}$
FILL: Very-stiff to hard brown and gray SILT AND CL	- V/	109.9		- 1 -	5	11	67	SS-1B	4.5+	-	-	-	-	-	-	-		16	A-6a (V)	172
little fine to coarse sand, trace fine gravel, damp.	·, ///		-		3															- 7 2
					8	22	89	SS-2	4.5+	3	3	8	42	44	31	17	14	13	A-6a (10)	1 2 1
			-	- 3 -	5													┢───┤		
				- 4 -	8	21	72	SS-3	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	1L
			-		5															1<1
				- 5 -	8	20	100	SS-4	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	76
		3		- 6 -	5							-+					┝──┦	┟───┤	<u> </u>	150
				_ 7 _	6	16	100	SS-5	3.5-	4	5	10	40	41	29	16	13	13	A-6a (9)	1>
			-	-	4				0.5									┢───┤		-76
				- • 1	5	16	94	SS-6	2.5-	-	-	-	-	-	-	-	-	14	A-6a (V)	4>
			-	- 9 -	4			00.74	4.5								⊢ –			-72
		700.3		- 10 -	8_	20	100	SS-7A	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V)	<i>L</i>
FILL: Hard brown and dark brown SILT AND CLAY, lit	e fine			-	5			SS-7B	4.5+	-	-+	-+	-	-	-		<u>├ - </u>	14	<u>A-6a (V)</u>	- 4 >
to coarse sand, little fine gravel, damp.		609.4		- 11 -	6	20	100	SS-8	4.5+	16	7	9	35	33	29	17	12	11	A-6a (7)	72
FILL: Medium-dense grav GRAVEL WITH SAND AND	янт й Ч	697.8		- 12 -	9			SS-94	_	-	-	-	-	-	_	-		5	A-2-4 (\/)	- 14 L
little clay, many shale fragments, damp.		001.0		- 13	ř7	20	100	SS-98	4 5+	_	_	-	-	-	_	-		15	A-6a (V)	- ú >
FILL: Hard brown SILT AND CLAY, little fine to coarse	sand,				5			00.05	4.01								\vdash			-74
trace fine to coarse gravel, dry to damp.				- 14 -	ř7_	18	67	SS-10	4.5+	9	7	10	39	35	30	17	13	13	A-6a (9)	<
				- 15 -	5												\vdash	┢───┦		72
				- 16 -	Ğ 6	17	72	SS-11	4.5+	-	-	-	-	-	-	-	-	3	A-6a (V)	1×1
		693.4			5			SS-12A	4.5+	-	-	-	-	-	-	-	┝╶┦	8	A-6a (V)	- 4 >
Stiff to very-stiff dark gray mottled with dark brown SII	г ///		1 1	- 17 -	۲ <u>4</u>	11	89	SS-12B	2.0-	-	-	-	-	-	-	-	_	15	A-6a (V)	776
AND CLAY, little fine to coarse sand, trace fine gravel	few			- 18 -	3			50 120	2.5			-+					┝──┦			- 1/2
hard zones, damp.				- 19 -	ŬЗ	8	67	SS-13	3.0-	-	-	-	-	-	-	-	-	15	A-6a (V)	4>
				-	2												⊢]	┢───┤		-76
				- 20 -	2	7	67	SS-14	1.5-	-	-	-	-	-	-	-	-	2	A-6a (V)	1 L
			-	- 21 -	3												\vdash	┢───┦		- 4 >
				- 22 -			50	ST-15	3.5-	7	7	12	40	34	30	17	13	16	A-6a (9)	74
		687.4			-			0.10	4.0	·	•	·-		07			· •			4 >
Very-stiff gray SANDY SILT, some clay, trace to little f	ne 🖽	686.9	1 1	- 23 -	7.	40	4.6.5	SS-16A	2.5	-	-	-	-	-	-	-	<u> </u>	17	A-4a (V)	
gravel, damp.	/ \///			- 24 -	4 5	12	100	SS-16B	1.75-	-	-	-	-	-	-	-	-	28	A-6a (V)	
Stiff to very-stiff dark gray to black SILT AND CLAY, tr	ice	2		- 25 -	2				1.5-					4.5						- ~
nine to coarse sand, slightly organic, rew wood fragme	ns,				3	9	94	55-17	2.0	0	0	6	52	42	38	23	15	23	A-6a (10)	14
@ 24.5' to 25.9' LOI = 3.2%		2		_ 26 _	2				1.5											131
	V//	2		- 27 -	3	9	100	SS-18	2.0	-	-	-	-	-	-	-	-	23	A-6a (V)	1>
	V//.	/																	1	1 < .
		682.6	₩ 682.6	- 28 -	2			SS-19A	1.5		-	- ↓	-			-		24	A-6a (V)	774
Loose to medium-dense gray GRAVEL WITH SAND A	VD	682.6	₩ 682.6	- 28 -	2 2 	8	72	<u>SS-19A</u> SS-19B	- 1.5	-	-	-	-	-	-	-	-	<u>24</u> 10	<u>A-6a (V)</u> A-2-4 (V)	777

Ξ.																									
SCUU /	PID: _112663	BR ID:	N/A	PROJECT:	LAK-90-2	2.93 SLIDE	<u> </u>	TATION	/ OFFSI	ET: _	106+7	′9, 301' LT	. S.	TART	: 12	/9/22	EN	ND: _	12/1	3/22	_ P(G 2 OF	= 2 B	-004-0-2	22
27		MAT	TERIAL DESCRIP	TION		ELEV.		тис	SPT/	N	REC	SAMPLE	HP	0	GRAD	ATIO	%) ۱)	ATT	ERBE	RG		ODO"	г ВАС	ж
n			AND NOTES			680.4	DEP	113	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS ((GI) FIL	L
Ч С	Loose to mediu	um-dense	gray GRAVEL WI	TH SAND AND				_	5										\square	\square				$-\frac{1}{2}L^{\vee}$.	$\frac{1}{2}L^{\dagger}$
V/FRO	SILT, trace clay	/, damp to) moist. (continued	d)				- 31 -	1 2	8	67	SS-21	-	-	-	-	-	-	-	-	-	14	A-2-4	$(V) \begin{vmatrix} v \\ v \\ z \\ z \\ z \\ v \end{vmatrix}$	17 17 17
- פוא ו ע								32 33	4 4	13	67	SS-22	-	-	-	-	-	-	-	-	-	19	A-2-4	$(V) \begin{array}{ c c } & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	17 17 17
UKY WZ								- 34 -	5	12	61	SS-23	-	-	-	-	-	-	-	-	-	13	A-2-4	$(V) _{1>1}^{1>1}$	777 777
JRAI						674.7	TD	- 35 -	6	46	70	SS-24A	-	-	-	-	-	-	-	-	-	11	A-2-4	$\overline{(V)} \xrightarrow{\gamma} L^V$.	× L
ñ	SHALE, gray, h	highly to se	everely weathered	d, very weak.		070.0		- 36 -	29	40	12	SS-24B	-	-	-	-	-	-	-	-	-	11	Rock ($(V) \leq V$	ΞĹ
-	1					1 0/3.0			E0/4"	-	100	SS-25	-	1 -	-	-	-	-	('				Pock /		1 -

NOTES: - Encountered groundwater at 27.8' during drilling. - Encountered heaving sand at 30.5'. Added water to boring at 32.0' to counter heave.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLASTIC HOLE PLUG DEVICE; SOIL CUTTINGS MIXED WITH BENTONITE

-NEW.GPJ	&ME JOB: 22170059B																			Ξ	&	
2170059B	PROJECT: LAK-90-2.93 SLIDE TYPE: LANDSLIDE	DRILLING FIRM / OPER SAMPLING FIRM / LOGO	ATOR: <u>(</u> GER: S	OTB / J. MII S&ME / S. S	NCHAK SMITH	DRIL	L RIG	: CN	OTB ATV 1E AUTON	D50 MATIC		STAT ALIGI	'ION NME	/ OFI NT:	FSET	Г: <u>1</u>	08+48 IR-90	8, 274)	4' LT	EXPLOR B-005	ATIC)n ID 22
ECTS/2	PID: 112663 BR ID: N/A START: 12/13/22 END: 12/14/22	DRILLING METHOD:	3-	1/4" HSA SPT			BRAT RGY F		ATE: <u>1</u> 2 (%):	2/22/2 79 1	2	ELEV) 2N: _ 1G:	707.8 4	3 (MS	<u>SL)</u> E	EOB: N 81	34	4.9 ft.	РА 1 С	GE)F 2
PROJI	MATERIAL DESCRIPT	TION	ELEV.	DEPT	HS	SPT/	Nac	REC	SAMPLE	HP	6	RAD	ATIO	DN (%	5)	ATT	ERBI	ERG			M	ON.
^⊥N			707.8			RQD	60	(%)	ID SS-1A	(tsf)	GR -	CS -	FS -	SI -	CL	LL -	PL	PI -	WC	Visual (V)		
RY\02 - GII	FILL: Stiff to very-stiff brown and gray SILT fine to coarse sand, little fine gravel, few ha	AND CLAY, little ard zones, few	107.5		- 1 - - 1 - - 2 -	1 2 2	4	78 79	SS-1B	1.0- 2.0 1.0-	-	-	-	-	-	-	-	-	18	A-6a (V)		7777
BORATO	@ SS-3 dry				- 3 -	2 2 3	, 9	70	SS-3	2.5 1.0-	-	-	-	- 50	-	-	-	-	2	A-6a (V)	<pre></pre>	V 7 7 V
D\01 - LA	e 00 0 uy.		704.0		- 4 - - 5 -	2 3	9	78	SS-4	3.5 1.5- 4.5+	-	-	-	-	-	_	-	-	19	A-6a (V)	7774	7747
EVELAN	FILL: Stiff to hard brown SILT AND CLAY , li coarse sand, trace fine gravel, damp.	ittle fine to	701.8		- 6 - - - 7 -	4 4 4	9	100	SS-5	1.5- 2.5	9	5	8	38	40	32	18	14	16	A-6a (10)	7 4 7	7 4 7 7
-2557/CL					- 8 - - 8 -	2 3 3	7	39	SS-6	3.5- 4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	V74 7 V V	V 7 7 V
INES/CS					9 - 10	1 3 4	9	100	SS-7	1.0- 3.5	-	-	-	-	-	-	-	-	18	A-6a (V)	7774	777
RVICE L					- 11 - -	2 4 7	15	67	SS-8	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	V 4 7 X	7 4 7 7
R:\SE	Fill () (on a stiff to hard brown and grow SI		695.3		- 12 -	3 5	16	100	SS-9A	2.5	-	-	-	-	-	-	-	-	14	A-6a (V)		7
t 15:06 - I	some fine to coarse gravel, little fine to coar	rse sand, damp.			13 - - 14 -	3 6	18	72	SS-9B SS-10	4.5 2.5-	- 21	5	8	35	31	31	- 18	- 13	12 15	A-6a (7) A-6a (V)	- 7 7 7	V 7 7 V
- 6/28/2	FILL: Very-stiff to hard brown SILT AND CL coarse sand, trace fine gravel, damp.	AY, little fine to	692.8		15 16	6 6	20	94	SS-11	4.5 3.5- 4.5	10	6	10	38	36	33	19	14	15	A-6a (9)	7474	7777
GDT	@ 16.5' to 17.1 black, few wood fragments.		690.7		- 17	9 3			SS-12A	2.5-	-	-	-	-	-	-	-	-	16	A-6a (V)	< / L	1:
1 DOT	FILL: Medium-stiff to very-stiff brown SILTY	CLAY, little fine			18	35	11	100	SS-12B	3.5 0.5-	2	4	10	36	48	39	21	18	22	A-6b (11)		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ġ.	Ell La Chiff to hand group Cli T AND CLAY Litt		689.1		- 10	2 4	12	72	SS-13A	2.0-	-	-	-	-	-	-	-	-	11	A-6b (V)	74	7 1
E 01/2019	sand, trace fine gravel, iron oxide staining, o	damp.			20 -	5 3 4	13	100	SS-13B SS-14	2.5- 4.5+/ 1.25-	- 10	-7	-7	- 42	- 34	- 35	- 20	- 15	18 17	A-6a (V) A-6a (10)	×74 77 77	× 7 7 ×
11) - SGE	FILL: Stiff to very-stiff brown and gray SILT some fine to coarse sand, trace fine gravel.	AND CLAY, few roots and coal	686.8		- 21 - - - 22 -	3 3 5	17	100	SS-15	4.5 2.5- 4.5	-	-	-	-	-	-	-	-	20	A-6a (V)	77	77
(8.5X	fragments, few hard zones, moist.			▼ 67	- 23 -	3	10	100	SS-16A	2.5	-	-	-	-	-	-	-	-	22	A-6a (V)		
DOL			683.8	W (days)	- 24	4 5	12	100	SS-16B	1.25- 1.75	10	12	15	38	25	33	21	12	21	A-6a (6)		
E ODOT	Medium-stiff brown and gray SANDY SILT , fine to coarse gravel, few shale fragments,	some clay, little moist to wet.	682.3	V 16	_ 25 _ _		15	28	SS-17	0.5- 1.0	-	-	-	-	-	-	-	-	20	A-4a (V)		
S&M	clay, few pockets of silty clay, damp to mois	st.		days	- 26 - - - 27 -		15	67	SS-18	-	35	34	12	13	6	21	18	3	16	A-1-b (0)		
PLAT			•	days	- 28 - -	7 7	18	56	SS-19 SS-20A	-	-	-	-	-	-	-	-	-	10 11	A-1-b (V)		
E 15					29 - -	⁶ 8	18	56	SS-20B	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	1	

ß	PID: <u>112663</u>	BR ID:	N/A	PROJECT:	LAK-90-2	2.93 SLID	<u> </u>	TATION	/ OFFSI	ET: _	108+4	18, 274' LT	S	TART	: <u>12</u> /	13/22	EN	D: <u>1</u>	2/14/	22_ F	'G 2 O	F 2 B-0	05-0-22
3		MATE	ERIAL DESCRIF	PTION		ELEV.		тис	SPT/	N	REC	SAMPLE	HP	6	RAD	ATIO	N (%)	A	TTEF	RBERG	í l	ODOT	MON.
5			AND NOTES			677.8	DEP	113	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL I	L F	PL PI	wc	CLASS (GI)	WELL
	Medium-dense clay, few pocke	e gray GRAV ets of silty c	/EL WITH SAND lay, damp to mo	D , little silt, trace bist. <i>(continued)</i>				- 31 -	4 6 6	16	78	SS-21	-	-	-	-	-	-	-	- -	11	A-1-b (V)	
_						675.9		L 22	15			SS-22A	-	<u> </u>	-	-	-	-		- -	13	A-1-b (V	ロニヨニ
	Very-stiff gray sto coarse sand	SILT AND C I, damp.	LAY, some fine	e gravel, some fine	e	674.8	тр	- 33 -	14 15	38	56	SS-22B	2.5	33	13	13	25	16 3	30 1	9 11	14	A-6a (1)	
	SHALE, gray, h	highly to sev	verely weathere	d, very weak.				- 24	14 50/5"	-	100	SS-23	-	-	-	-	-	-	-	- -	16	Rock (V)	
5						672.9	505	- 34 -	50/5"	-	100	SS-24	-	-	-	-	-	-	_		9	Rock (V	_ ⊟

EOB

NOTES:

- LABORA

Sepage was encountered at 23.8' during drilling.
Groundwater encountered at 24.2' during drilling.
Added water inside augers at 25.5' to facilitate drilling.
Installed groundwater monitoring well to 34.5' with the screened interval from 24.5' to 34.5'.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BENTONITE CHIPS; MONITORING WELL; SAND; SOIL CUTTINGS

B-NEW.GPJ	S&ME JOB: 221	70059B																			Ξ	&
700591	PROJECT:	LAK-90-2.93	SLIDE	DRILLING FIRM / OPE	RATOR:A	DC / A. UNVERZAG	T DRIL	L RIG	: <u>AD</u>	C CME 55	60X A1	ΓV_	STAT	TION	/ OFF	FSET	ſ: <u>1</u>	08+1	5, 27	7' LT	EXPLOR	
S\221	TYPE: PID: 112663	LANDSLIDE BR ID:	E	SAMPLING FIRM / LOO DRILLING METHOD:	GGER:	<u>S&ME / S. SMITH</u> 25" HSA		IMER: IBRAT		ATE: 4	MATIC /28/23	<u>}</u>	ALIG	INME	NT: _	707.2	2 (MS	IR-90) =OB:	6	4.4 ft.	PAGE
JECT	START: 5/13/	24 END:	5/14/24	SAMPLING METHOD:		SPT / ST	ENE	RGY I	RATIO	(%):	85		LAT /	/ LON	IG: _	4	1.599	305 I	N, 81	.4438	17 W	1 OF 3
NPRO		MATERIA	AL DESCRIPT	ION	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP		RAD	ATIC)N (%	5) 7	ATT	ERB	ERG		ODOT	
NTV NTV	Augered to	Al 38.5 feet witho	out split spoon	sampling. See	/07.2		KQD		(%)	שו	(tsr)	GR	CS	FS	SI	CL		PL	PI	wc		SEALED
- LABORATORY/02 - G		B-005-0-22 f	for stratigraph	y.							1.0											
AND\01	@ 4.0 [°] to 6.0 [°] G	_u = 2,079 pst,	γ _{dry} = 111.6 p	CT		- 5 -			58	ST-1	2.0	-	-	-	-	-	-	-	-	19	A-6a (V)	
LI 31474 Same ODOT LOG (8.5X11) - SGE 01/2019 - OH DOT.GDT - 6/28/24 15:06 - R-\SERVICE LINES\CS-2557\CLEVELA						 6 7 8 9 10 11 12 13 14 15 14 15 14 15 14 15 14 15 20 21 20 21 22 23 24 22 23 24 25 27 28 29 29 																

S&N	TE JOB: 22	170059B																_						m	Ξ
PID	: 112663	BR ID:		N/A	_ PROJECT:	LAK-90-2	2.93 SLID	E S [.]	TATION	/ OFFS	ET: _	108+1	15, 277' LT	s	TAR	Г: <u>5/</u>	13/24	E	ND:	5/1	4/24	_ P	G 2 O	F3 B-0	05-1-2
		MA		AL DESCRI	IPTION		ELEV.	DEPT	HS	SPT/	N ₆₀	REC	SAMPLE	HP (tef)		GRAE		N (%	6) Cl		ERB	ERG	WC	ODOT CLASS (GI)	HOLE
	Augered to B-) 38.5 fee)05-0-22	et withc	atigraphy. (oon sampling. See (continued)	e	011.2		- 31 - 32 - - 33 -	-								0.							
							672.2	TR	- 34 - - - 35 -	-															
SH	ALE, gray,	highly to a	severe	ly weather	ed.			IIX	- 30	_															
										_															
									- 37 -	-															
									- 39 -	24 50/3"	-	89	SS-2	-	-	-	-	-	-	-	-	-	-	Rock (V)	-
									40 -																
									- 41 - - 42 -	18 50	130	100	SS-3	2.5- 3.0	-	-	-	-	-	-	-	-	-	Rock (V)	-
									- 43 -	42															-
							663.0			32	-	100	SS-4	-	-	-	-	-	-	-	-	-	-	Rock (V)	-
SH slig mo blo cor @ @	ALE, gray, ghtly strong, derately fra cky/seamy/ ndition, RQI 44.2' to 49.3 46.4' to 46.4	slightly to laminate ctured, na disturbed 0 = 59%, 2' SDI = 7 $3' Q_u = 1,7$	mode d to th arrow, struct REC = 74.8% 327 ps	rately weat inly lamina slightly rou ure, fair to = 91%. i, γ _{dry} = 15	thered, weak to ted, highly to igh, good surface 4.3 pcf				- - - - - - - - - - - - - - - - - - -	52		73	NQ-5											CORE	
@	49.8' to 52.2	2'; severe	ly to h	ighly weath	nered				- 50 -																
									- 51 -															0005	
									- 52 -	75		100	NQ-6											CORE	
									- 54 -																
									- 56 -																
									- 57 -	34		100	NQ-7											CORE	
									- 58 -																
									_ 59 -																
									60 -																
@	60.8' to 61.2	2' Q _u = 1,	554 ps	i, γ _{dry} = 15	4.9 pcf				61 -	75		00												CORE	

다. 9 월 일 8&ME JOB: 22170059B

(GPJ	
≩ y S&ME JOB:	22170059B

EW.GPJ	S&ME IOD: 22170050D																			Ξ	&
IN-B6	S&ME JOB. 22170039B					-														(1)	Ξ
005	PROJECT: LAK-90-2.93 SLIDE DRILLIN	IG FIRM / OPER	ATOR: _	<u> ЭТВ / D. H</u>	EPNER	DRIL	L RIG	:	OTB ATV	D50		STAT	ION /	OFF	SET	: <u>1</u>	10+3	6, 254	4' LT	EXPLOR	ATION ID
2217	TYPE: LANDSLIDE SAMPL	ING FIRM / LOGO	GER: S	S&ME / S. S	SMITH	HAM	MER:	CN	IE AUTO	MATIC	;	ALIG	IME	NT: _			IR-90)		B-007	<u>′-0-22</u>
STS/	PID: <u>112663</u> BR ID: <u>N/A</u> DRILLIN	IG METHOD:	3-	1/4" HSA		CALI	BRAT	ION D	ATE: <u>1</u>	2/22/2	2	ELEV	ATIO	N: _7	709.2	2 (MS	<u>SL)</u> E	OB:	36	5.0 ft.	PAGE
JEC	START:	ING METHOD:		SPT / ST		ENE	RGY F	NTIO	(%):	79.1		LAT /	LON	G: _	4′	1.599	691 I	V, 81.	44333	33 W	1 OF 2
PRC	MATERIAL DESCRIPTION		ELEV.	DEPT	HS	SPT/	Naa	REC	SAMPLE	HP	G	RAD		N (%)	ATT	ERB	ERG		ODOT	BACK
ΜL	AND NOTES		709.2			RQD	. •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
GIN	FILL: Very-stiff to hard brown to gray SILT AND CLA	Y, little			-	2	7	67	SS-1	1.75-	10	6	10	34	40	34	19	15	18	A-6a (10)	TL TL
\02 -	shale fragments, few stiff zones, damp to moist.		1		[]]	3				4.0										,	
JRΥ	-				- 2 -	5	17	61	SS-2	2.7-	-	-	-	-	-	-	-	-	21	A-6a (V)	1>1-1>
RATO					— з –	8			CC 24	3.5									12	A 62 (V)	- 7 LV 7 L
BOF						5	13	89	<u> </u>	¥.5+/	27	12	10	27	-	25	20	15	10	A = 0a(V)	< , v < ,
- LA					- 4 -	5			00-30	3.0- 4.5+/	21	13	10	21	23	55	20	13	10	A-0a (3)	7272
) 01					- 5 -	4	13	61	55-4A	2.5- 3.0/	-	-	-	-	-	-	-	-	20	A-6a (V)	TLV TL
AND					- 6 -	6			55-4B	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	1> 1> 1>
VEL						6	18	89	SS-5	3.0-	3	7	11	41	38	30	17	13	14	A-6a (9)	12 7L
CLE			1		F ' T	8			<u> </u>	4.0+									15		JLV JL
557	@ 8.0' to 9.0' $IOI = 3.1\%$ slightly organic				- 8 -	² 4	9	89	55-6A	$\frac{3.0}{4.5}$	-	-	-	-	-	-	-	-	15	A-6a (V)	4-1-4-
CS-2					- 9 -	3			22-0B	1.0- 	-	-	-	-	-	-	-	-	23	А-6а (V)	7676
ES/(@ 9.0' to 11.0' $\Omega_{\rm c} = 7.956$ psf v _{\rm c} = 119.4 pcf				- 10			70	OT 7	3.8-		_	10	40	44	24	10	15	16	A 60 (10)	
LIN								13	51-7	4.5+	4	э	10	40	41	34	19	15	10	A-6a (10)	1>11>
/ICE					- 11 -	5															7 LV 7 L
ER\					- 12 -	6	20	78	SS-8	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	$ 1\rangle 1\rangle$
R:\S					- 10	2															12.76
- 90					- 13 -	4_	12	56	SS-9	3.0-	-	-	-	-	-	-	-	-	18	A-6a (V)	JLV JL
15:					- 14 -	4															-1-1-1-
8/24					- 15 -	6	18	72	SS-10	4.5+	-	-	-	-	-	-	-	-	17	A-6a (V)	7676
- 6/2					- 40	3															
DT					- 16 -	Š 5 _	13	89	SS-11	2.7-	-	-	-	-	-	-	-	-	16	A-6a (V)	1>11>
DT.G			691.8		- 17 -	5			SS-12A	3.0-	-	-	-	-	-	-	-	-	18	A-6a (V)	7676
H DC	FILL: Stiff to hard brown to dark brown and gray SIL	ΓY			- 18 -	<u> </u>	11	61	SS-12B	$\frac{4.0}{1.0}$	-	-	-	- 1	-	-	-	-	17	A-6b (V)	4> 4> 4> 4> 4> 4> 4> 4> 4> 4> 4> 4> 4>
0-	CLAY, little fine to coarse sand, trace fine gravel, dat	mp to			-	5				<u>1.5</u>											7272
2019	@ 18.5' to 20.5' $Q_{\mu} = 5,268 \text{ psf}, \gamma_{day} = 114.2 \text{ pcf}$				- 19 -			70	ST-13	1.7-	3	4	10	41	42	36	19	17	18	A-6b (11)	TLV TL
01/2	@ 20.5' encountered cobbles				- 20 -				01.10	4.5+	Ŭ	•			.~	00			10		< V <
SGE					- 21 -	5	~			25-											17676
1) - 8						6 10	21	100	SS-14	4.5	-	-	-	-	-	-	-	-	19	A-6b (V)	JLV JL
5X1,			686.7	₩ 686.7	22 -	4	4.0		SS-15A	3.5-	-	-	-	-	-	-	-	-	16	A-6b (V)	4 > 1 4 >
3 (8.	POSSIBLE FILL: Stiff to very-stiff gray SILT AND CL	AY,			- 23 -	6	18	67	SS-15B	1.5	-	-	-	-	-	-	-	-	17	A-6a (V)	7676
LOC	slight organic odor (SS-15B), few hard zones, damp	to moist.			- 24 -	8			SS-16A	<u>† 2.5</u> †1.0-1	<u> </u>	-	-	- 🕇	-)		-			A-6a (V)	
DOT			1			24 9	44	89	SS-16B	$\frac{1.5}{3.5}$	14	5	5	48	28	33	21	12	12	A-6a (9)	12172
EOL			683.8	₩ 683.7	25 -	4	00		SS-17A	4.5	-	-+	-	-	-	-	-	-	13	A-6a (V)	17 LV 7 L
8MF	Medium-dense to dense gray GRAVEL WITH SAND ,	trace			- 26 -	9 18	36	56	SS-17B	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	$ 1\rangle$ $ 1\rangle$
S	wet.		1		27	3															17 L 7 L 17 N J S
Ы	@ 26.0' encountered cobbles	0.0• (1			6	18	100	SS-18	-	34	32	21	9	4	NP	NP	NP	16	A-1-b (0)	JLV JL
Þ					28 -	6															1>11>
Ē		000			- 29 -	7	21	61	SS-19	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	TLY TL
20			679.4		\vdash	9 5			SS-20A	L - ~	L -		-	-	- ,	-	L -	-	12	A-1-b (V)	

βP	ID: <u>112663</u>	BR ID:	N/A	PROJECT:	LAK-90-2	.93 SLID	E!	STATION	/ OFFSI	ET: _	110+3	86, 254' LT	S	TART	: <u>7/</u>	18/23	E	ND:	7/1	9/23	_ P	G 2 OI	= 2 B-	007-0-22
2		MATI	ERIAL DESCRIP	TION		ELEV.		отце	SPT/	N	REC	SAMPLE	HP	0	RAD	OITA	N (%	»)	ATT	ERB	ERG		ODOT	BACK
Ó			AND NOTES			679.2	DLF	-115	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (G	^{I)} FILL
	Loose to mediu	im-dense g	ray COARSE AN	ID FINE SAND,				- 21	25	9	100	SS-20B	-	2	1	68	24	5	NP	NP	NP	26	A-3a (0	$) \stackrel{\checkmark}{\tau} \stackrel{\lor}{\iota} \stackrel{\lor}{\tau} \stackrel{\lor}{\iota}$
		, olay, traoc	o nine gravel, wet	. (oonanaoa)		677.6			3	~		SS-21A	-	-	-	-	-	-	-	-	-	23	A-3a (∖	
	Medium-dense	to dense g	ray GRAVEL WI	TH SAND, trace				- 32 -	9	21	12	SS-21B	-	-	-	-	-	-	-	-	-	14	A-1-b (\	1) 1>1 1>
		e clay, wei	•					- 33 -	6			SS-22A	-	-	-	-	-	-	-	-	-	13	A-1-b (\	1) 7 6 7 6
. 70						675.2	тр	- 24	8	32	61	SS-22B	-	-	-	-	-	-	-	-	-	12	A-1-b (\	$) < \sqrt{2}$
5	SHALE, gray, h	highly to se	verely weathered	d, very weak to					14 50/5"	-	100	SS-23	-	-	-	-	-	-	-	-	-	10	Rock (\	1) 42442
	weak.							_ 35 _																1 L 1 L
						673.2	EOB-		50	-	100	SS-24	-	-	-	-	-	-	-	-	-	10	Rock (\	1>1>1>

57/CLEVELAND/01

NOTES: - Slope benching removed approximately 4' at cut edge. Elevation on log is at original ground surface. - Seepage encountered at 22.5' during drilling. - Groundwater encountered at 25.8' during drilling. - Water measured inside hollow-stem augers at 30' prior to removing augers. - Boring caved at 17.0' and was dry. - Encountered cobbles at 20.5' and 26.0'.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLASTIC HOLE PLUG DEVICE; SOIL CUTTINGS MIXED WITH BENTONITE

3-NEW.GPJ	S&ME JOB: 22170059B																			&
TS\22170059	PROJECT: LAK-90-2.93 SLIDE TYPE: LANDSLIDE PID: 112663 BR ID: N/A	DRILLING FIRM / OPER SAMPLING FIRM / LOG DRILLING METHOD:	ATOR:A <u>D</u> GER: <u> </u>	C / A. UNVERZAG &ME / S. SMITH 25" HSA	T DRIL HAM CALI	L RIG MER: BRAT	: <u>AD</u> CN ION D	C CME 55 1E AUTOI ATE: 4	50X A1 MATIC 1/28/23	<u>rv</u> ; 3	STAT ALIG ELEV	FION / NMEI /ATIC	/ OFFS NT: N: 71	ET:	<u>110</u> IF (MSL	0+08, R-90 .) EO	234' B:	LT65	EXPLORA B-007 .9 ft.	TION ID -3-23 PAGE
CE	START: <u>5/14/24</u> END: <u>5/15/24</u>	SAMPLING METHOD:		SPT / ST	ENE	RGY F	RATIO	(%):	85		LAT /	LON	G:	41.	5995	95 N,	81.4	43340	0 W	1 OF 3
RO	MATERIAL DESCRIPT	TION	ELEV.		SPT/	N	REC	SAMPLE	HP	0	GRAD	ATIO	N (%)	A	\TTE	RBEF	RG		ODOT	HOLE
₹	AND NOTES		716.4	DEI IIIG	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI C	Ľ	LL	PL I	91 Y	WC	CLASS (GI)	SEALED
25 3L474 Same odot Log (8.5X11) - SGE 01/2019 - OH DOT.GDT - 6/28/24 15:06 - R:\SERVICE LINES\CS-2557\CLEVELAND\01 - LABORATORY\02 - GIN	Augered to 41.0 feet without split spoor B-007-0-22 for stratigraph @ 8.0' to 10.0' $Q_u = 6,379 \text{ psf}, \gamma_{dry} = 114.4$	n sampling. See iy. pcf		 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 18 19 20 21 18 19 20 21 22 23 24 25 24 25 24 25 24 25 24 25 26 27 28 29 			88	ST-1	2.5-			-		-	-	-	-	17	A-6a (V)	

B-NEW.G	&ME J	JOB: 22	170059B																								&
70059	PID: _1	112663	BR ID:		N/A	PRO	DJECT:	LAK-90	-2.93 SLI	DE	_ STATIC	N / OFF	SET:	110+0	08, 234' LT	s	TAR	Г: <u>5</u> /	14/24	E	ND:	5/1	5/24	_ P	G 2 O	F3 B-00)7-3-23
5/221			M	ATER	AL DESC	RIPTION			ELEV.		DEPTHS	SPT	/ N ₆₀	REC	SAMPLE	HP		GRAD		N (%	5) 01	ATT	ERB	ERG		ODOT CLASS (GI)	HOLE
EVELAND/01 - LABORATORY/02 - GINTW/PROJECT5 	Αι	ugered to B-	9 41.0 fe 007-0-22	et with ? for st	iout split s ratigraphy.	oon sar . (continu	npling. Se <i>ied)</i>	e	686.4	W	- 31 - 32 - 33 - 34 - 34 - 36 - 36 - 36 - 38 - 38 - 38			(70)			GR		-5	51					WC		SLALL
?:\SERVICE LINES\CS-2557/CI	SHAL weak.	E, gray,	severely	to hig	hly weathe	ered, very	y weak to		675.9		TR	15 50/3" - 12 - 50/2"	-	100	SS-2 SS-3	-	-	-	-	-	-	-	-	-	-	Rock (V) Rock (V)	-
DOT.GDT - 6/28/24 15:06 - R	SHALI lamina narrow lamina 49%, l @ 46.9	E, gray, ated to the v to oper ated/she REC = 9 9' to 47.2	severely hinly lam h, slightly ared stru 7%. 3' Q _u = 1	to hig inated / rougl icture, 67 psi	hly weather, , highly to h, friable, f poor to ve , $\gamma_{dry} = 13$	ered, very moderat issile, fev ery poor s 8.0 pcf	y weak, ely fractur w clay sea surface, R	ed,			- 45 - 46 - 47 - 47 - 48 - 49 - 50	30		88	NQ-4											CORE	
(8.5X11) - SGE UT/ZUTS - OF											_ 51 _ 52 _ 53 _ 54 _ 55	66		100	NQ-5											CORE	
	@ 59.	6' to 60.'	0' Q _u = 7	8 psi,	γ _{dry} = 134	.6 pcf					- 50 - 57 - 57 - 58 - 59 - 60	- 55		100	NQ-6											CORE	
											- 61																

a 9 ₩ S&ME JOB: 22170059B

3-NEW.GPJ	S&ME	E JOB: 2	217005	9B																						&
0059	PID:	112663	BR	ID:	N/A	PROJ	ECT:	LAK-90-	2.93 SLIDE		STATION	/ OFFS	ET:	110+0)8, 234' LT	S	TART	: 5/1	4/24	END	: 5/	5/24	P	G 3 OI	= 3 B-00	7-3-23
CTS\2217				MATER	NAL DESC AND NOTE	RIPTION ES			ELEV. 654.3	DEF	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD/ CS	ATION FS	N (%) SI C	AT L LL	TERB	ERG PI	WC	ODOT CLASS (GI)	HOLE SEALED
02 - GINTWPROJEC	SHA lamii sligh surfa	LE, gray nated to tly rough ice, RQI	, slightl thinly la a, block D = 86%	y weath aminated y/seamy 6, REC =	ered, weak d, moderat //disturbed = 100%.	k to slightly sely fracture structure, f	strong, d, narrow, air to good		654.0	FOB-	- 63 - - 64 - - 65 -	68		100	NQ-7										CORE	
Z 31774 S&ME ODOT LOG (8:5X11) - SGE 0//2019 - OH DOT GDT - 6/28/24 15:06 - R'ISERVICE LINESICS-2557/CLEVELAND/01 - LABORATORY	NOT - Se - Gr stop - Gr conti - Bo remo	ES: epage c oundwar bed on 5 oundwar nuing du ring cav oving au	bserved er not o /14/24. er mea illing, p ed at 3- gers.	d at 14.0 observed sured in rior to ro 4.3' and	o'. d inside au the auger ck coring o water was	igers after d s at 32.0' b on 5/15/24. measured	Irilling efore at 22.0' afte	91																		

HEW.GPJ	&ME JOB: 22170059B																		Ξ	&
\$\22170059B	PROJECT: LAK-90-2.93 SLIDE TYPE: LANDSLIDE DD: 112552 BB ID: N/A	DRILLING FIRM / OPEF SAMPLING FIRM / LOG	RATOR:AD GER: S	C / A. UNVERZAG &ME / S. SMITH	T DRIL HAM	L RIG MER:			50X AT	<u>V</u> ;	STAT ALIG	FION NME	/ OF	FSE1	T: <u>1</u>	11+2 IR-9	0, 22 0	3' LT	EXPLOR B-007	ATION ID '-4-23 PAGE
CT	TU. 112003 BR ID. N/A	SAMPLING METHOD.	4.	<u>20 ПОА</u> 2017/01				AIE4	4/20/23 95	<u> </u>			או <i>ג</i> וכי	121.0		<u>) () () () () () () () () () (</u>	EUD. NI 91	4420	9.2 IL.	1 OF 3
_o	START. <u>3/10/24</u> END. <u>3/10/24</u>	SAMPLING ML THOD.		5F1/31		NOTIF		(/0).	00	<u> </u>			NU (0/	4	1.598	029		.4430	<u> </u>	
ЛРR	MATERIAL DESCRIPT	ION		DEPTHS	SPI/	N ₆₀		SAMPLE	HP (tof)				NN (%					WC	ODOT CLASS (GI)	
Į.	FILL: Verv-stiff to hard brown dark brown a	nd grav SILT	721.0		RQD		(70)	U	(131)	Git	03	13	51			F L	FI	wc	. ,	OLALLE
RY\02 - GI	AND CLAY, little fine to coarse sand, trace stiff zones, occassional iron oxide staining, sandstone fragments, damp to moist.	fine gravel, few few shale and		- 1 - - 2 -	3 4 4	11	78	SS-1	2.2- 3.5	-	-	-	-	-	-	-	-	20	A-6a (V)	-
ABORATO				- 3 -	1	10	00	66.0	1.5-	7	6	0	20	20	22	10	14	17	A 60 (10)	
ND/01 - L				- 5 -	5	10	89	55-2	2.8		6	9	39	39	33	19	14	17	A-6a (10)	-
CEVELA				- 6 - - 7 -	2 3 5	11	94	SS-3A SS-3B	1.5- 2.5 3.5-	-	-	-	-	-	-	-	-	29 13	A-6a (V) A-6a (V)	
57\C				- 8 -					\ <u>4.5</u> /											
ES\CS-25				- 9 -	1 3 5	11	100	SS-4	2.5- 4.5+	-	-	-	-	-	-	-	-	16	A-6a (V)	-
RVICE LIN				- 10			71	ST-5	-	9	6	7	35	43	35	20	15	18	A-6a (10)	
06 - R:\SE				- 12 - - 13 -	_															
28/24 15:				14 - 15	/ 8 8	23	6	SS-6	3.5	-	-	-	-	-	-	-	-	13	A-6a (V)	-
- 6/				- 16 -																
DOT.GDT				- 17 -	6 6 7	18	100	SS-7	2.2- 3.5	-	-	-	-	-	-	-	-	18	A-6a (V)	
19 - OH [18 - 19	3 6	18	100	55-8	3.5-	_	_	_	_	_		_	_	13	A-6a (\/)	-
GE 01/20				- 20 -	7		100		4.0											-
5X11) - S				- 22 -	3 5 10	21	100	SS-9	2.5- 4.5	-	-	-	-	-	-	-	-	16	A-6a (V)	
T LOG (8.				- 23 - - 24 -	3 7	24	100	SS-10	4.5+	6	7	11	30	37	30	17	13	13	A-6a (9)	-
ME ODO				- 25 -	10		100													
d S&	@ 27.2' - 27.3', silty sand seam			20 - 27 -	6 9 13	31	100	SS-11	4.0- 4.5	-	-	-	-	-	-	-	-	16	A-6a (V)	
LATE 2				28 29	3 5	18	100	SS-12	2.5- 4.0	-	-	-	-	-	-	-	-	20	A-6a (V)	

/.GPJ	
≝ S&ME JOB: 22	170059B

059	PID: 112663 BR ID: N/A PROJECT LAK	(-90-2	93 SLID	F	STAT	ΓΙΟΝ	/ OFFS	FT·	111+2	0 223'IT	S	TART	- 5/·	16/24	L FI	ΝD·	5/1	6/24	Р	G 2 O	= 3 B-00	7-4-23
2170			FLEV		01711				REC	SAMPLE	HP)N (%	<u>ເມື.</u>		FRB	ERG			
LS\2:	AND NOTES		691.0	DE	PTHS	6	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL		PL	PI	wc	CLASS (GI)	SEALED
NTWPROJEC ⁻	FILL: Very-stiff to hard brown, dark brown and gray SILT AND CLAY , little fine to coarse sand, trace fine gravel, few stiff zones, occassional iron oxide staining, few shale and sandstone fragments, damp to moist. <i>(continued)</i>		00110		-	31 - 32 -	7 9 13	31	100	SS-13	2.5- 4.5	-	-	-	-	-	-	-	_	15	A-6a (V)	
02 - GI	Vary stiff to bard grow SILT AND CLAY trace fine to sector		687.5	-	-	- 33 - I	5															
DRATORY	very-still to hard gray SILT AND CLAY, trace line to coarse sand, trace fine gravel, few wood fragments, slightly organic, damp. $\sim @$ 33.5' to 35.0' LOI = 3.0%.		685.5	-		34 - 35 -	7 9	23	100	SS-14	2.5- 4.5	1	3	2	57	37	39	24	15	21	A-6a (10)	
D\01 - LAB	Medium-stiff to stiff gray mottled with brown SILT AND CLAY , some fine to coarse sand, trace fine gravel, iron oxide staining, few sand seams, few very-stiff zones, damp to moist.			W 68:	3.6	36 37 -	2 3 5	11	100	SS-15	0.5- 1.5	-	-	-	-	-	-	-	-	26	A-6a (V)	
VELANI	@ 38.0' to 39.0' Q = 2.241 psf. v = 106.9 pcf		682.0	W 682	2.0	38 7			02	ST-16A	1.0- 2.2	5	7	17	43	28	31	19	12	21	A-6a (8)	
57/CLE	Medium-dense gray FINE SAND , trace to little coarse sand, trace silt, trace clay, trace fine gravel, moist.	E.C.				40			92	ST-16B	-	-	-	-	-	-	-	-	-	-	A-3 (V)	
:S-25		Γõ	670 5		F	41 -	2			SS 174										17		-
IES/C	Medium-dense gray GRAVEL WITH SAND, trace silt, trace		079.5	-	Ŀ	42 -	37	23	89	SS-17A	-	-	-	-	-	-	-	-	-	13	A-3 (V)	
ICE LIN	clay, moist to wet.	500		₩ 678	8.0 -	ا - 43 -	9															
- R:\SERVI			675 5			44 -	10 12 17	41	33	SS-18	-	19	49	22	8	2	NP	NP	NP	22	A-1-b (0)	
15:06	SHALE, gray, severely weathered, very weak to weak, many		075.5	TR-	_	46 T	31	-	88	<u>SS-19</u>	_	_	_	_	_	<u> </u>	-	-	-	15	Rock (V)	1
T - 6/28/24						47 - 48 -	<u>, 50/2"</u> ∕			0010												
Г.GD			671.8		F	49 -	24 50/2" /	-	88	SS-20	-	-	-	-	-	-	-	-	-	18	Rock (V)	
19 - OH DOT	SHALE, gray, severely to highly weathered, very weak, laminated to thinly laminated, highly to moderately fractured, narrow to open, slightly rough, friable, fissile, laminated/sheared structure, poor to very poor surface, ROD =				-	50 - 51 -																
SGE 01/20	28%, REC = 93%.				-	52 - 53 -	22		93	NQ-21											CORE	
5X11) -					-	54 -																
.OG (8.	(@ 54.6 to 56.0 $Q_u = 64 \text{ psi}, \gamma_{dry} = 135.1 \text{ pcf}$ SHALE, grav, slightly to moderately weathered, weak to		665.5	-	E	55 -	-															
ODOT L	slightly strong, laminated to thinly laminated, highly to moderately fractured, narrow, slightly rough,				E	· 57 -	62		98	NQ-22											CORE	
S&ME	blocky/seamy/disturbed structure, fair surface, RQD = 51%, REC = 99%.				F	58 -																
PL					+	59 -																
.ATE 26					-	61 -	63		100	NQ-23											CORE	

<u> </u>																								
1 202	PID: <u>112663</u>	BR ID:	N/A	PROJECT:	LAK-90-2	.93 SLIDI	<u> </u>	TATION	OFFSI	ET: _	111+2	20, 223' LT	. S.	TART	: <u>5/</u> 1	6/24	EN	ND:	5/16	6/24	_ P(G 3 OF	з В-00	7-4-23
\2217		MATE	RIAL DESCRIP	PTION		ELEV.	DEP	THS	SPT/	Nee	REC	SAMPLE	HP		RAD		N (%	5)	ATT	ERBE	RG		ODOT	HOLE
TS.			AND NOTES			658.9			RQD	. •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	SEALED
- LABORATORY/02 - GINTW/PROJEC	SHALE, gray, s slightly strong, moderately fra blocky/seamy/ REC = 99%. (<i>i</i> @ 62.4' to 622 @ 65.5', clay s @ 65.6' - 67.3'	slightly to me laminated to ctured, narro disturbed stri continued) .8' Q _u = 950 eam , highly wea	bderately weath o thinly laminate ow, slightly roug oucture, fair surf psi, $\gamma_{dry} = 152$. thered	nered, weak to ed, highly to gh, ace, RQD = 51% 3 pcf		651.8		- 63 - - 64 - - 65 - - 66 - - 67 - - 68 - - 68 -	28		97	NQ-24											CORE	

-EOB-

NOTES:

Seepage observed at 37.4'.
Groundwater encountered during drilling at 39.0'.
Groundwater measured at 43.0' prior to rock coring.
Groundwater measured in the augers at 6.0' after rock

coring.

- Boring caved at 40.0', and water was measured at 6.0' after removing the augers.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BENTONITE AND CEMENT GROUT MIXTURE

S-NEW.GPJ	:ME JOB: 22170059B																			Ξ	&
70059B	ROJECT: LAK-90-2.93 SLIDE	DRILLING FIRM / OPER	ATOR: _	DTB / J. MI	NCHAK	DRIL	L RIG	:	OTB ATV	D50	_	STAT	ION	/ OF	FSET	Г: _1	12+5	7, 15	1' LT	EXPLOR	
1221 L		SAMPLING FIRM / LOGO	$GER: \underline{SER}$	<u>5&ME / S. S</u>	SMITH		MER:			MATIC				NT:	750		IR-90)			PAGE
S C TS	D. <u>112003</u> BR ID. <u>N/A</u> TART: 12/1/22 END: 12/5/22	SAMPLING METHOD.	3-	907					AIE: <u>1</u> 4 (%)·	<u>2/22/2</u> 70 1	<u> </u>			ле. -	753.0 A	1 600	102 I	LOD:	44213	7.4 IL. 21 W/	1 OF 3
S S S			EL EV					REC		<u>ир</u>				NN (%	<u></u>	ΙΔΤΤ	FRB	ERG			
MPF	AND NOTES		753.0	DEPT	HS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL		PL	PI	wc	CLASS (GI)	SEALED
TNI	ASPHALT - 13 INCHES	; 🔀																			
- 0	GRANULAR BASE - 8 INC		751.9		- 1 -																*******
ATORY/	ILL: Very-stiff to hard brown and gray SIL ome fine to coarse sand, trace fine gravel,	AND CLAY, damp.	751.2		- 2 -	4 6 8	18	100	SS-1	3.5- 4.5+	9	10	13	34	34	28	17	11	12	A-6a (7)	
30R/	-				F 3 T	5	32	100	SS-2A	4.25	-	-	-	-	-	-	-	-	17	A-6a (V)	-
. LAE				740.0	- 4 -	9	52	100	SS-2B	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	_
100			747.8	₩ 748.0	- 5 -	5	8	100	SS-3A	-	-	-	-	-	-	-	-	-	6	A-6a (V)	-
ELAND	ND CLAY, little to some fine to coarse sar	n with gray SILT nd, trace to little			6 -	2	40		SS-3B	<u>4.5</u>	-	-	-	-	-	-	-	-	17	A-6a (V)	-
	ne gravei, rew nard zones, rew snale fragn noist.	hents, damp to			- 7 -	45	12	61	SS-4	2.5	-	-	-	-	-	-	-	-	18	A-6a (V)	-
2557					- 8 -	² 3	9	67	55-5A	2.75	-	-	-	-	-	-	-	-	17	A-6a (V)	-
\CS-					- 9 -	3			SS-6A	1.5-	-	-	-	-	-	-	-	-	16	A-6a (V)	-
LINES					_ 10 -	6 6	16	89	SS-6B	\ <u>2.0</u> / 2.5- 4.0	-	-	-	-	-	-	-	-	13	A-6a (V)	
RVICE					- 11 -	4 6 7	17	89	SS-7	2.5	-	-	-	-	-	-	-	-	18	A-6a (V)	
R:\SE					- 12 -	9	Q	70	SS-8A	2.5-3	-	-	-	-	-	-	-	-	10	A-6a (V)	-
96 - F	${f 2}$ 12.8' becoming light brown and gray				- 13 -	42	0	10	SS-8B	2.5	-	-	-	-	-	-	-	-	18	A-6a (V)	
/24 15:0					- 14 -	3 3 3	8	56	SS-9	2.5-3	-	-	-	-	-	-	-	-	11	A-6a (V)	
T - 6/28					15 16	3	12	67	SS-10	2.5- 3.25	-	-	-	-	-	-	-	-	14	A-6a (V)	
B.					- 17 -	3			SS-11A	2.0-	-	-	-	-	-	-	-	-	16	A-6a (V)	-
ГОД						3	9	94	SS-11B	<u>3.0</u> 2.0-	-	-	-	-	-	-	-	-	15	A-6a (V)	-
HO - 61	${\ensuremath{\mathbb Q}}$ 18.0' to 19.5' few red fine sand seams		722.5		- 18 - - 19 -	3 4	13	100	SS-12	3.5 2.0- 3.5	-	-	-	-	-	-	-	-	14	A-6a (V)	
E 01/20	ILL: Very-stiff to hard brown and gray SIL ttle to some fine gravel, little fine to coarse	AND CLAY, sand, few shale	100.0		_ 20 -	4 7	21	100	SS-13	4.0-	27	8	9	27	29	33	19	14	13	A-6a (6)	-
ິ ຮູ້ f	ragments, damp to moist.			W 732.0	- 21 -	4			SS-14A		-	-	-)	-	-	-	-	-	10	A-6a (V)	
X11)	21.0 to 21.3 many shale fragments				- 22 -	4 9	17	78	SS-14B	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	
(8.5					- 23 -	5	26	00	SS-15A	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	
LOG					- 24 -	⁹ 11	20	09	SS-15B	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V)	-
ODOT					- 25 -	3 4 5	12	72	SS-16	3.0	-	-	-	-	-	-	-	-	21	A-6a (V)	
8ME					- 26 -	4 7	22	100	SS-17A	3.0	-	-	-	-	-	-	-	-	17	A-6a (V)	
S					27	10	~~	100	SS-17B	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	
					- 28 -	4 7 7	18	78	SS-18	3.0	-	-	-	-	-	-	-	-	16	A-6a (V)	
TE 28					29 -	4 7	20	100	SS-19	4.5+	18	9	10	33	30	35	21	14	10	A-6a (7)	

PID: 112663 BR ID:	N/A P	ROJECT I	AK-90-2		F	STATION	/ OFES	FT·	112+5	7 151'IT	S	TART	· 12	/1/22	F	ND.	12/4	5/22	P	320	3 B-00	8-0-22
MATERI	AL DESCRIPTION	ON	2/ 11 C OO 2	ELEV.			SPT/	 	REC	SAMPLE	HP	G	RAD	ATIO	N (%)	ATT	ERBE	ERG			HOLE
Α	ND NOTES			723.0	DE	PTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALEI
FILL: Very-stiff to hard brown little to some fine gravel, little fragments damp to moist (co	and gray SILT fine to coarse s	AND CLAY, sand, few shale				31 -	3 6 7	17	94	SS-20	3.0- 4.5+	-	-	-	-	-	-	-	-	19	A-6a (V)	
						- 32 -	6 9 11	26	61	SS-21	4.5+	-	-	-	-	-	-	-	-	16	A-6a (V)	
						34 -	4 8 8	21	78	SS-22	2.5- 4.5	-	-	-	-	-	-	-	-	23	A-6a (V)	
				717.0		- 35 -	3 8 10	24	78	SS-23	2.0- 2.75	-	-	-	-	-	-	-	-	18	A-6a (V)	
FILL: Very-stiff to hard brown trace fine to coarse sand, trace	to dark gray SII ce fine gravel, o	LT AND CLAY, ccasional varved				- 36 - - - 37 -	7 10 14	32	100	SS-24	4.5+	3	2	8	41	46	33	18	15	14	A-6a (10)	
zones, damp.						- 38 -	6 8 11	25	100	SS-25	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	
						- 39 - - - 40 -	7	30	100	SS-26	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	
						- 41 -	4 7	20	100	SS-27	3.5- 4.0	-	-	-	-	-	-	-	-	16	A-6a (V)	
						- 42 - - - 43 -	6 10	30	100	SS-28	4.5	-	-	-	-	-	-	-	-	15	A-6a (V)	
@ 43.5' to 44.1' "and" fine gra @ 44.1' becoming brown and	avel I grav				V		6			SS-29A	3.5-	42	9	8	21	20	33	19	14	12	A-6a (2)	
	giay					- 44 -	10 11	28	100	SS-29B	4.5/ 4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	
						- 45 - - - 46 -	5 8 13	28	100	SS-30	3.0- 4.5	-	-	-	-	-	-	-	-	16	A-6a (V)	
						- 47 -	9 11 14	33	100	SS-31	4.5+	-	-	-	-	-	-	-	-	17	A-6a (V)	
						- 48 - - - 49 -	7 9 11	26	100	SS-32	4.5	2	4	9	41	44	33	18	15	16	A-6a (10)	
						- 50 -	4 _	24	70	SS-33A	3.5	-	-	-	-	-	-	-	-	11	A-6a (V)	
						- 51 -	<u> </u>	24	10	SS-33B	4.5	-	-	-	-	-	-	-	-	10	A-6a (V)	
						- 52 -	/ 10 12	29	100	SS-34	2.5- 4.5	-	-	-	-	-	-	-	-	14	A-6a (V)	
Stiff grow to dork grow SILT A		fine to coarse		699.9		- 53 -	6 10	29	78	SS-35A	3.5- \ <u>4.5</u> /	-	-	-	-	-	-	-	-	12	A-6a (V)	
sand, trace fine gravel, slightl buried topsoil, damp.	y organic, few r	oots, possible		699.0		- 54 -	5 8	30	100	SS-35B	1.5 3.5-	9	5	- 19	-	- 34	- 31	- 18	-	17 16	A-6a (V)	
@ 53.1' to 53.7' LOI = 2.3% Very-stiff to hard brown mottle	ed gray SILT AN	ID CLAY, little				- 55 - - - 56 -	6 10	33	89	SS-37	4.5+	_	_	_	_	_	_	_	_	15	A-6a (V)	
line to coarse sand, trace fine	e gravei, damp.					- 57 -	15			<u><u> </u></u>	1.51									16		
						- 58 -	° 9	28	100	SS-38B	4.5+ 2.75	-	-	-	-	-	-	-	-	17	A-6a (V)	
						- 59 -	12 6 12	36	100	SS-39	3.5-	3	6	11	40	40	33	19	14	16	A-6a (10)	
						- 60 -	7 10	28	80	SS-40	2.0-									16	A 60 (\/)	

0	
[≤] S&ME JOB: 221	70059B

10059	PID: <u>112663</u>	BR ID:	N/A	PROJECT:	LAK-90-2	2.93 SLIDE	<u> </u>	STATION	OFFSI	ET: _	112+5	57, 151' LT	S [.]	TART	: 12	/1/22	_ EN	ND:	12/5	5/22	P	G 3 OI	F 3 B-00	8-0-22
S\221		MATE	RIAL DESCRIP	TION		ELEV.	DE	PTHS	SPT/	N ₆₀	REC	SAMPLE	HP (tef)	GP	RAD		N (%	5) C	ATT		RG	WC	ODOT CLASS (GI)	HOLE
DJECT	Very-stiff to har	d brown mo	ttled gray SILT	AND CLAY, little	e ///	690.8		- 62			(70)		(131)	GR	03	13	51	UL	LL	r L	FI	we		OE/(EED
WPRO	@ 64.2' few wo	od fragment	ne gravei, dam is	ip. (<i>continued)</i>				- 64 -	5	24	70	SS 44	2.0-									10		-
- GINI								65	8 10	24	78	55-41	3.0	-	-	-	-	-	-	-	-	18	А-6а (V)	-
RY\02								66	-															
DRATC	Stiff orange-bro	wn mottled	with gray SILT	AND CLAY, little		686.0		- 67 -	-															
- LABC	fine to coarse s	and, trace fi	ne gravel, mois	st.				- 68 -	4				4 5											-
ND/01								70	4	15	100	SS-42	2.0	2	2	16	45	35	36	21	15	25	A-6a (10)	-
EVELA								- 71 -	-															
557/CL								- 72 -																
S/CS-2	Madium danaa					679.5		- 73 -	8															-
	trace clay, trace	fine gravel	, wet.	SAND , little slit,				- 74 -	8	22	67	SS-43	-	3	21	60	12	4	NP	NP	NP	20	A-3a (0)	
RVICE								- 76 -																
- R:\SE	- SHALE gray h	iahly to seve	erelv weathered	d verv weak		676.0	TR	- 77 -	50/5"	-	100	SS-44		-	-	-	-	-	-	- 1	-	17	Rock (V)	

NOTES:

NOTES: - Seepage encountered at 5.0' during drilling. - Water encountered at 21' during drilling. - Drilling was paused at a depth of 42' at the end of the day on 12/1/22. Before resuming drilling on 12/2/22, water was measured at a depth of 17'. - Drilling was paused at a depth of 61.5' at the end of the day on 12/2/22. Before resuming drilling on 12/5/22, water was measured at a depth of 25'. - Water measured at a depth of 44' prior to removing augers.

NOTES: SEE ABOVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: ASPHALT PATCH; BENTONITE AND CEMENT GROUT MIXTURE; PLASTIC HOLE PLUG DEVICE

B-NEW.GPJ	ME JOB: 22170059B																		Ξ	&	
0029 IP	OJECT:LAK-90-2.93 SLIDE	DRILLING FIRM / OPER	ATOR: _	OTB / D. HEPNER	DRIL	L RIG	:	OTB ATV	D50		STAT	ION /	OFF	SET	EXPLOR	ATIO	N ID				
T 7271	PE: LANDSLIDE	SAMPLING FIRM / LOG	GER: S	&ME / S. SMITH	HAM	MER:	CN	IE AUTO	MATIC	;	ALIG	NME	NT: _			IR-90)		B-008	<u>3-1-2</u>	2
S PI	D: <u>112663</u> BR ID: <u>N/A</u>	DRILLING METHOD:	3-	1/4" HSA		BRAT		ATE: <u>1</u>	2/22/2	2			N: <u>7</u>	718.3	8 (MS	<u>SL)</u> E	EOB:	4	7.7 ft.	1 OF	∍⊑ F2
ELOS SOLE	ART END	SAMPLING METHOD.		581/51		KGIF							G	<u>4</u>	1.600			.44270	<u>54 VV</u>		
MPR	AND NOTES	ION	718.3	DEPTHS	RQD	N ₆₀	KEC (%)	ID	(tsf)	GR	CS	FS	SI) CL			PI	wc	ODOT CLASS (GI)	WE	JN. ELL
E F	ILL: Stiff to very-stifff brown, dark brown a	nd gray SILT	710.5		1	_	(70)		1.7-		-		0.								1
A 10	ND CLAY, little fine to coarse sand, trace	to little fine		- 1 -	23	1	56	SS-1	3.0	13	9	8	32	38	36	21	15	16	A-6a (9)	47	1>
RY/0	amp.			- 2 -	2	7	28	SS-2	1.5-		_	_	_	_	_	_		18	A-62 ()/)	74	74
ATO				- 3 -	23	'	20	00-2	3.0					_				10	A-0a (V)	<i>7</i> 4	71
- BOR	ST-33 from offset boring from 3.0' to 5.0' v	vith 63% recovery.			2	5	22	<u>SS-3</u>	$\frac{1.5}{2.0}$	-	-	-	-	-	-	-	-	15	A-6a (V)	47	12
e ا	$2~3.0'$ to 5.0' Q_u = 2,470 psf, γ_{dry} = 115.7 p	cf		- 4 -	2			51-33	4.2	9	6	9	36	40	33	18	15	17	A-6a (10)	74	74
D/01			740.0	_ 5 -	1	4	39	SS-4	1.5-	-	-	-	-	-	-	-	-	14	A-6a (V)	74	71
	III . Very-stiff to hard brown to grav SII TY	CLAY trace to	/12.3	- 6 -	2				0.0												
i I	tle fine to coarse sand, trace fine gravel, c	lamp.		- 7 -	5	12	67	SS-5	4.5	1	2	6	44	47	35	18	17	17	A-6b (11)	17	77
57/CI				- 8 -	3			00.0	20-									47		74	74
S-25					35	11	39	55-6	4.5+	-	-	-	-	-	-	-	-	17	A-60 (V)	<u>-</u> 74	11
ES/C:				- 9 -	3 5	13	67	SS-7	3.0-	_	_	_	_	_	_	_	_	17	A-6h (\/)	4	1>
LIN			1	- 10 -	<u>5</u>	10	07	007	4.5											74	74
/ICE	2 10.5' to 11.3' many shale fragments			- 11 -	5	15	78	SS-8A	4.5+	-	-	-	-	-	-	-	-	13	A-6b (V)	<u>-</u> 74	74
SER	12.0' four brick frogmonto			- 12 -	6			SS-8B	4.5	-	-	-	-	-	-	-	-	18	A-6b (V)		12
,R.	2 12.0 Tew blick fragments			- 13 -	6	20	61	SS-9	3.0-	2	3	8	44	43	36	18	18	17	A-6b (11)	12	17
5:06			1	- 14 -	3				2.0											74	74
24 1				- 14 -	4	11	72	SS-10	4.0	-	-	-	-	-	-	-	-	19	A-6b (V)	× 4	1
6/28/	2 15.0' stiff	777	702.8	- 15 -	2	0	07	SS-11A	1.5	-	-	-	-	-	-	-	-	18	A-6b (V)	4	,
F	ILL: Very-stiff to hard brown to gray SILT	AND CLAY, little		- 16 -	3	8	67	SS-11B	1.5	-	-	-	-	-	-	-	-	22	A-6a (V)	74	74
1.GI	amp to moist.			- 17 -					20											<i>7</i> 4	71
4 DC				- 18 -			90	ST-12	4.5	10	7	9	37	37	33	19	14	16	A-6a (9)	17	<pre></pre>
ō (2 16.5' to 18.5' Q_u = 3,800 psf, γ_{dry} = 116.2	2 pcf			5					<u> </u>										74	74
2016	2 19.0' few roots			- 19 -	6	20	67	SS-13	3.0-	-	-	-	-	-	-	-	-	16	A-6a (V)	74	74
E 01/				20	9 6				3.0-												7 4 4
- SG				- 21 -	8	18	100	SS-14A	4.5	-	-	-	-	-	-	-	-	14	A-6a (V)	47	77
(11)				- 22 -	4			<u>55-14B</u>	$\frac{3.5}{4.5}$	<u> -</u>	-	-	-	-	-	-	-	15	<u>А-ба (V)</u>	74	74
(8.5)				- 23 -	6 10	21	67	SS-15	3.0-	-	-	-	-	-	-	-	-	16	A-6a (V)	× 4	×1
00				- 20	4	16	00	SS 16	1.7-		4	~	40	42	22	10	15	10	A 60 (10)	4	. 7 >
OTL				- 24 -	5 7	10	69	33-10	2.0	4	4	9	40	43	33	10	15	10	A-6a (10)	74	74
				25	4 7	22	78	SS-17	3.5-	_	_	-	-	-	-	-	_	15	A-6a (V)	<u>-</u> 74	74
S&M			1	- 26 -	10				4.5+										(.)	17 	12
				- 27 -	′ 9	29	78	SS-18	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	74	74
묍			3	- 28 -	13 6															74	74
븹					ř 7	21	67	SS-19	4.5+	-	-	-	-	-	-	-	-	17	A-6a (V)		7 4
ω				- 29 -	5				27											44	77
-			1						L 2.1-	1										1.24	1.27

B-NEW.GPJ	zME JOB: 2	2170059E	3																						&
20050 70050	D: <u>112663</u>	BR ID	: <u>N</u>	/A	PROJECT:	2.93 SLID	E S	TATION	/ OFFSI	ET:	112+4	5, 231' LT	S	TART	: _7/	17/23	E1	ND:	7/18	8/23	P(G 2 OI	F 2 B-00	8-1-22	
\221		M	ATERIAL	DESCRIP	TION		ELEV.	DEP	THS	SPT/	Neo	REC	SAMPLE	HP	G	RAD	ATIO	N (%	5)	ATT	ERBE	ERG		ODOT	MON.
L CTS	AND NOTES									RQD	21	(%)	ID 55-20	(tsf) 4.5+	GR 4	CS	FS	SI 39	CL 43	LL 31	PL 18	PI 13	WC 16	A-6a (9)	WELL
Floared fi	ine to coarse	sand, trans	ace fine to	coarse gr	avel, few stiff zo	nes,			- 31 -	9 49	21	67	SS-21	3.0-		-	-	_		_		-	15	A-6a (V)	
WTW0	unp to more		404,						- 32 -	4 5		70		4.5+					$\left - \right $		$\left - \right $	$\left - \right $			74 74
Y\02 - 0									- 33 - - - 34 -	9 13	29	12	55-22	4.5+	-	-	-	-	-	-		-	17	А-6а (V)	
RATOR							683.1		- 35 -	5 6	20	72	SS-23	4.0- 4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	
LABOF	OSSIBLE F	ILL: Stiff .AY, little	to very-stif fine to coa	if gray mo arse sand,	ttled with brown trace fine grave	I,	681.4		36 -	358	17	100	SS-24	1.7- 3.0	4	5	10	40	41	33	19	14	18	A-6a (10)	
	Stiff gray and	dark gra	y SILT AN	D CLAY , t	race fine to		680.8	W 680.7	7 - 37 -	3	18	78	SS-25A	1.2- 1.8	-	-	-	-	-	-		-	29	A-6a (V)	
VELAN	Vedium-dent	se to den	se brown a	= 3.4%), and gray G	RAVEL WITH			W 000.1	<u>-</u> 38 -	7 8	44	44	SS-26		-	_		_		-			17	A-1-b (V)	
27/CLE	AND, trace s	silt, trace	clay, man	y shale fra	agments, wet.				- 40 -	22									$\left - \right $		$\left - \right $				
CS-25	@ 41 2' becc	mina ara	w to dark o	1121/					- 41 -	14 12-	34	56	SS-27	-	-	-	-	-	-	-	-	-	12	A-1-b (V)	
LINES		nnng g.∞	y to dam g	itay			< n • /		42 -	5 8 7	20	72	SS-28	-	40	32	14	10	4	17	16	1	13	A-1-b (0)	
ERVICE									- 43 - - - 44 -	4 6 8	18	78	SS-29	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
6 - R:\SI									45 -	5 8 1 2	26	100	SS-30	-	-	-	-	-	-	-	-	-	16	A-1-b (V)	
4 15:0							671.7	TR-	46 -	8 12	82	100	SS-31A	-	-	-	-	-	-	-	-	-	16	A-1-b (V)	
3/28/2 • S	HALE, gray. weak.	, highly to	severely v	weathered	I, very weak to		670.6		- 47 -	<u>50</u>		83	SS-31B SS-32	-	-	-	-	-	-	-	-	-	8 11	Rock (V) Rock (V)	
	<u>NOTES:</u> Slope benc'	hing remo	oved appro	oximately (5' at cut edge.			LOD																	

SGE 01/2019

S&ME ODOT LOG (8.5X11)

PLATE 32

Slope benching removed approximately 5' at cut edge.
Elevation on log is at original ground surface.
Seepage was encountered at 37.6' during drilling.
Groundwater encountered at 38.2' during drilling.
Water measured inside hollow-stem augers at 41' prior to removing aurers. removing augers.

- Installed groundwater monitoring well to 46' with the screened interval from 36' to 46'.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: BENTONITE CHIPS; MONITORING WELL; SAND; SOIL CUTTINGS

B-NEW.GPJ	S&ME JOB: 22170059B																	Ξ	&
S\22170059	PROJECT: <u>LAK-90-2.93 SLIDE</u> TYPE: <u>LANDSLIDE</u> PID: 112663 BR ID: N/A	DTB / J. MINCHAK &ME / S. SMITH 1/4" HSA	DRIL HAM CAL	L RIG MER: BRAT	: ION D	OTB ATV IE AUTOI ATE: 1	' D50 MATIC 2/22/2	<u>;</u> 2	STAT ALIG	FION / NMEN /ATIO	OFFS NT: N: 72	ET:	<u>112</u> IF	2+24, 2 2-90 0 FOB	16' LT	EXPLOR/ B-008	ATION ID - 4-23 PAGE		
ECT	START: 5/23/24 END: 5/24/24	SAMPLING METHOD:		SPT / ST	ENE	RGY F	RATIO	(%):		LAT	LON	92 W	1 OF 3						
С С	MATERIAL DESCRIPT		SDT/		REC		HP			ATIO	N (%)			RBFRO	1		HOLE		
MPI	AND NOTES	DEPTHS	RQD	N ₆₀	(%)		(tsf)	GR	cs	FS					wc	CLASS (GI)	SEALED		
E 31474 S&ME ODOT LOG (8.5X11) - SGE 01/2019 - OH DOT.GDT - 6/28/24 15:06 - R.\SERVICE LINES\CS-2557\CLEVELAND\01 - LABORATORY\02 - GINTW	Augered to 49.0' without split spoon samplin for stratigraphy.	ng. See B-008-1-22	724.4	 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 15 16 17 18 19 20 21 18 19 20 21 21 22 23 24 24 25 26 27 28 29 	KQD					GR		FS							SEALED

Solution	&ME JOB: 22	170059B																					Ξ	&
F	ID: 112663	BR ID:	N/A	PROJECT:	LAK-90-	2.93 SLIC	E S	TATION	OFFS	ET:	112+2	4, 216' L1	r s	TAR	Γ: 5/2	23/24	EI	ND:	5/24	4/24	P	G 2 OI	F3 В-00	
	MATERIAL DESCRIPTION				ELEV.	DEP	THS	SPT/	Nee	REC	SAMPLE	HP		GRAD	ATIC)N (%	6)	ATT	ERBE	RG		ODOT	HOLE	
	Augered to 49	.0' without s for strat	split spoon samp igraphy. <i>(continu</i>	oling. See B-008- <i>ied)</i>	1-22	694.4		- 31 -			(78)			GR	0.5	F3	31			FL	FI	wc		
								- 33																
								- 35 - - 36 - - 37 -																
								- 38 -	-															
								- 40 - - 41 - - 42 -																
								- 43 - - 44 - - 45 -																
								- 46 - - 47 -																
	Medium-dense	e gray COA l	RSE AND FINE S	SAND, little fine		675.4 675.1	TR	- 48 - - 49 - - 50 -	9	-	94	SS-1A SS-1B			-	-	_ <u>-</u>	-			-]-	-	A-3a (V) A-2-6 (V)	
	Medium-dense CLAY, moist. SHALE, gray,	e gray GRA	highly weathered	D, SILT AND d, very weak to		672.4		- 51 -	50/4"			55-10	-	-	-	-	-	-			-		ROCK (V)	
	weak. SHALE, gray, slightly strong to fractured, n	highly to mo , laminated arrow to ope	oderately weather to thinly laminate	ered, weak to ed, highly fractur a. disintegrated to	ed			- 53 - 54 -			80												CODE	
	blocky/seamy, 9%, REC = 90 @ 52.0' to 56.	/disturbed s 1%. 3' SDI = 50.	.6%	fair surface, RQ				- 55 -			00	NQ-2											CORE	
								57 58 59	13		97	NO-3											CORF	
	@ 60.5' to 60.	9' Q _u = 1,76	63 psi, γ _{dry} = 154	I.6 pcf				- 60 - - 61 -			57	1102-0											OOKL	

ਸ਼ 9 2 2 2 2 2 2 2 2 2 170059B

PID: <u>112663</u> BR ID: <u>N/A</u> PROJECT: <u>LAK-90</u>							E	STATION	/ OFFSI	ET: _	112+2	24, 216' LT	S	START: <u>5/23/24</u>				ID: _	5/24/24		_ P(G 3 OI	= 3 B-00	08-4-23
2210	MATERIAL DESCRIPTION ELEV AND NOTES 662							PTHS	SPT/ RQD	N ₆₀	REC	SAMPLE	HP (tsf)	GR	RAD cs	ATIO	N (%) si) CL			ERG	wc	ODOT CLASS (GI)	HOLE SEALED
	SHALE, gray, h slightly strong, to fractured, na blocky/seamy/c 9%, REC = 90%	highly to mainated Irrow to op disturbed s %. <i>(continu</i>	oderately weathe to thinly laminate en, slightly rough tructure, poor to red)	ered, weak to ed, highly fractur , disintegrated tu fair surface, RQ	ed D =	657.4		- 63 - - 64 - - 65 - - 66 -	15		95	NQ-4						-					CORE	
	SHALE, gray, s laminated to thi fractured, narro structure, fair to @ 69.0' to 69.4	lightly wea inly lamina bw, slightly o good sur ' Q _u = 1,13	athered, weak to ted, fractured to rough, blocky/se face, RQD = 63% $33 \text{ psi}, \boldsymbol{\gamma}_{dry} = 154$	slightly strong, moderately amy/disturbed 6, REC = 97%. .8 pcf		652.4	FOR	- 67 - - 68 - - 69 - - 70 - - 71 - - 72 -	63		97	NQ-5											CORE	

R:\SERVICE LINES\CS-255

g

NOTES: - Water added inside augers at 49.0' due to heaving sand. - Water observed at ground surface at the end of the day on 5/23/24.

5/23/24.
Water was measured at 22.5' in the augers when drilling resumed, prior to rock coring, on 5/24/24.
Boring caved at 26' and water was measured at 25.0' after removing the augers.
No core recovery from 52.0' to 53.0'.
Driller reported zero water return while coring from 67.0' to 70.0'

70.0'.

NOTES: SEE ABOVE. ABANDONMENT METHODS, MATERIALS, QUANTITIES: BENTONITE AND CEMENT GROUT MIXTURE
G 9. N N N S & ME	E JOB: 22170059B																		Ξ	&
PRO.	JECT: LAK-90-2.93 SLIDE E: LANDSLIDE	DRILLING FIRM / OPER SAMPLING FIRM / LOG	ATOR: <u>(</u> GER: S	OTB / J. MINCHAK &ME / S. SMITH	DRIL	L RIG MER:	: 	OTB ATV //E AUTO	D50 MATIC	;	STAT ALIGI		/ OFF NT:	SET	: _1	13+3 IR-90	5, 20 ⁻)	7' LT	EXPLOR/ B-009	ATION IE -1-23
	112663 BR ID: N/A RT: 5/22/24 END: 5/23/24	DRILLING METHOD:	3-	1/4" HSA SPT / ST	CALI	BRAT RGY F	ION D	ATE: <u>1</u> (%):	2/22/2 79.1	2	ELEV LAT /	ATIC)n: _ IG:	728.5 4′	5 (MS 1.600	SL) E)276 I	OB: N, 81	8 .4425	0.0 ft. 05 W	PAGE 1 OF 3
WPROJ	MATERIAL DESCRIP	ΤΙΟΝ	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE	HP (tef)		RAD)N (%) Cl	ATT	ERB	ERG	WC	ODOT CLASS (GI)	MON.
	.: Very-stiff to hard brown SILT AND CL	AY, little fine	120.5		T QD		(70)			UK.	00	10	01	UL				we		
ORY/02 -		magments, damp.		2	2 3 4	9	56	SS-1	2.0- 3.0	-	-	-	-	-	-	-	-	16	A-6a (V)	
LABORAT				- 3 - - 4	4 5	12	100	SS-2A	- 3.5-	-	-	-	-	-	-	-	-	10	A-6a (V)	
- 10/01 -					4			55-2B	4.5	-	-	-	-	-	-	-	-	18	А-6а (V)	
7/CLEVEL				- 7 -	2 3 2	7	72	SS-3	3.5- 4.5	18	9	8	37	28	30	18	12	14	A-6a (7)	
ES\CS-255				- 0 - - 9 -	4 3 5	11	67	SS-4A SS-4B	<u>4.5+</u> 2.5- 3.5	-	-	-	-	-	-	-	-	<u>18</u> 11	<u>A-6a (V)</u> A-6a (V)	
FILL fine	: Stiff to very-stiff brown SANDY SILT , to coarse gravel, little clay, damp.	some to "and"	718.0	10 - 11 -	2	0	50	00 5	2.0-									45	A 4- 0.0	
6 - R:\SEF				- 12 - - 13 -	33	0	50	55-5	2.5	-	-	-	-	-	-	-	-	15	A-4a (V)	
6/28/24 15:0 @	3.5' to 15.2' $Q_u = 1,662 \text{ psf}, \ \gamma_{dry} = 119.$	3 pcf		- 14 - - 15 -			83	ST-6	-	36	10	9	32	13	24	14	10	11	A-4a (2)	
GDT -			711.8	- 16 -	5 4	16	89	SS-7A	-	-	-	-	-	-	-	-	-	10	A-4a (V)	
HILL Iittle	.: Very-stiff to hard brown and gray SIL fine gravel, little fine to coarse sand, d	amp.	709.7	17 18	. 8			SS-7B	2.5	-	-	-	-	-	-	-	-	13	A-6a (V)	
FILL little	: Loose gray COARSE AND FINE SAN silt, organic staining, slight organic odd 8 8' to 19 7' I OI = 0.6%	D , some clay, or, moist.	708.8	- 19 - - - 20 -	2 3 4	9	78	SS-8A SS-8B	\ <u>4.5</u> /	-	-	-	-	-	-	-	-	_ <u>15</u>	<u>A-6a (V)</u> A-3a (V)	
S FILL	.: Stiff to hard gray SILT AND CLAY, littl el, little fine to coarse sand, iron oxide n to moist	le fine to coarse staining, few roots,		21	3 3 5	11	56	SS-9	1.5- 2.5	-	-	-	-	-	-	-	-	14	A-6a (V)	
3 (8.5)	F			- 23 -																
01 LOGO SOM	: Very-stiff to hard gray and brown SIL e fine gravel, some fine to coarse sand	T AND CLAY, I, few stiff zones,	704.4	24 25	5 7 11	24	72	SS-10A SS-10B	4.5+ 4.5+	-	-	-	-	-	-	-	-	12 10	A-6a (V) A-6a (V)	
few s	shale fragments, damp.			- 26 - - 27 -	4 5	12	89	SS-11	1.8- 2.5	22	14	5	45	14	29	16	13	12	A-6a (6)	
PLA				- 28 -	4				_											
TE 36				- 29 - -	4 7 7	18	94	SS-12	2.5- 4.5	-	-	-	-	-	-	-	-	19	A-6a (V)	

5																											Ξ
P	ID: <u>1</u> ′	12663	BR ID:		N/A	_ PROJEC	CT:	LAK-90-2	.93 SLID	E S1	TATION	OFFSI	ET:	113+3	5, 207' LT	S.	TART	: _5/2	22/24	E	ND:	5/23	3/24	_ P	G 2 OI	F 3 B-00	9-1-23
1221			МА	TERIA	L DESCR	IPTION			ELEV.	DEPT	нs	SPT/	Nco	REC	SAMPLE	HP	G	RAD	ΑΤΙΟ	N (%	6)	ATT	ERB	ERG		ODOT	MON
	-11.1			AN	ID NOTES		A \/	////	698.5		1	RQD	• •60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	WELL
	Some fi ew sha	ery-stin ine grav ale fragi	r to nard (vel, some ments, da	fine to amp. (c	id brown S coarse sa continued)	and, few stiff	_AY , zones,				- 31 - - 32 -	7 11 13	32	78	SS-13	3.0- 4.5	-	-	-	-	-	-	-	-	14	A-6a (V)	
											- 34 - 35	4 6 10	21	72	SS-14	2.5- 4.5	-	-	-	-	-	-	-	-	13	A-6a (V)	
									690.5		- 36 37 -	6 12 16	37	0	SS-15	-	-	-	-	-	-	-	-	-	-		
	Medium CLAY, damp to @ 39.6	n-stiff to little fin o moist ', sand	very-stif e to coars seam	f browr se grav	n mottled v el, little fin	with gray SIL ne to coarse	-TY sand,				- 39 - 39 - 40	2 2 3	7	94	SS-16	0.5- 1.2	-	-	-	-	-	-	-	-	22	A-6b (V)	
	@ 41.0	' to 42.9	9' Q _u = 71	2 psf,	γ _{dry} = 102	2.4 pcf					- 41 - - 42 - - 43 -			96	ST-17	-	20	9	8	37	26	35	19	16	21	A-6b (8)	
	@ 43.6 @ 44.4	' - 43.7' ', sand	, few woo seam	od fragi	ments						- 44 - 45	5 4 4	11	100	SS-18	1.2- 1.5	-	-	-	-	-	-	-	-	27	A-6b (V)	
	Medium	n-dense	e gray GR	AVEL	WITH SAN	ND, SILT AN	D		681.7	-	- 46 - - 47 -	3 5 9	18	100	SS-19A SS-19B	2.0- 2.5 -	-	-	-	-	-		-	-	20 20	A-6b (V) A-2-6 (V)	
יין - סיי - חיי	CLAY, Medium	moist to	o wet. e gray GR	AVEL	WITH SAN	ND, little silt,	wet.		679.8	₩ 680.5	- 48 - - 49 -	6 9	25	67	<u>SS-20A</u> SS-20B	~ <u>-</u> ⁄	-) _	-		-	-	<u> </u>	(<u>A-2-6 (V)</u> A-1-b (V)	
013-016											- 50 - - 51 -	5 5	17	56	SS 21		22	20	16	12	0				15	A 1 b (0)	
									074.4		- 52 - - 53 -	8	17	50	00.004	-	52	39	10	13					10	A-1-0 (0)	
	Medium	n-dense	gray FIN	IE SAN	ID, trace s	ilt, trace clay	y, wet	F.S	673.0		54 55	9 10	25	67	SS-22A SS-22B	-	-	-	-	-	-	-	-	-	27	A-1-b (V) A-3 (V)	
	SHALE Clay sea	, gray, s ams.	severely	weathe	red, very v	weak to wea	ık, few		668 5		56 T 57 - 58 - 58 - 59 -	50	-	100	<u>SS-23A</u> SS-23B	<u>-</u>	-	-	-		-	-]	-	-	<u>13</u>	Rock (V) Rock (V)	
		- SE	E DESC	RIPTIC	ON ON NE	EXT PAGE -			000.0		- 60 - - 61 -																

5 🙎

ਟ 9 ¥ ¥ ¥ S&ME JOB: 22170059B

B-NEW.GPJ	S&ME JOB: 221	70059B																					&
7005	PID: <u>112663</u>	BR ID:	N/A	PROJECT:	LAK-90-2	2.93 SLIDE	<u> </u>	STATION /	OFFS	ET: _	113+3	85, 207' LT	_ s	TART	: 5/22	2/24	END	: _ 5/2	23/24	_ P	G 3 O	F 3 B-0	09-1-23
\221		MAT	ERIAL DESCRIF	PTION		ELEV.	DEP	THS	SPT/	Neo	REC	SAMPLE	HP	G			l (%)	AT	TERB	BERG		ODOT	MON.
VD\01 - LABORATORY\02 - GINTW/PROJECTS	SHALE, gray, s slightly strong, moderately frac blocky/seamy/c 45%, REC = 99 @ 64.3' to 64.7	slightly to m laminated ctured, naru disturbed s 5%. <i>(contin</i> " Q _u = 924	and notices noderately weath to thinly laminative row, slightly roug tructure, fair to g ued) psi, $\gamma_{dry} = 154.2$	ered, weak to ed, highly to _h , ood surface, RQ		666.4		- 63 - - 64 - - 65 - - 66 - - 67 - - 68 - - 68 - - 69 - - 70 -	35		93	NQ-24	<u>(tst)</u>	GR	CS	FS			PL	PI	wc	CORE	WELL
6/28/24 15:06 - R:\SERVICE LINES\CS-2557\CLEVELAN	@ 70.1' to 70.5	5' Q _u = 1,44	8 psi, γ _{dry} = 156	.8 pcf		648.5	FOR	- 70 - 71 - - 72 - - 73 - - 74 - - 75 - - 76 - - 77 - - 78 - - 78 - - 79 -	56		99	NQ-24										CORE	

OH DOT.GDT

S&ME ODOT LOG (8.5X11) - SGE 01/2019

PLATE 38

NOTES: - Seepage observed at 3.6', 4.0', 7.0', 11.6', 18.8', 39.6', and 46.0'.

Groundwater encountered during drilling at 48.0'.
Water added inside augers at 50.0' due to heaving sand.
Boring advanced to 55.0' at end of day 5/21/24.
Water measured at 15.0' in augers before resuming drilling on 5/22/24.

JEW.GPJ

0050

NOTES:

S&ME ODOT LOG (8.5X11) - SGE 01/2019 - OH DOT.GDT - 6/28/24 15:06 - R:\SERVICE LINES\CS-2557\CLEVEI

PLATE

ω e - Boring performed in creek channel with water in the creek

at/near the top of the boring.

B-NEW.GPJ	S&ME JOB: 22170059B																		&
22170059	PROJECT: LAK-90-2.93 SLIDE TYPE: LANDSLIDE	DRILLING FIRM / OPER SAMPLING FIRM / LOG	₹ATOR: <u>§</u> GER:	S&ME / K. HARPER S&ME / M. KHAN	DRIL HAM	L RIG MER:	: HA	HAND AU	ger Pling		STAT ALIGI	ION / (NMEN)FFSE	T: _1	08+89 IR-90	<u>9, 336</u> ว	3' LT	EXPLOR/ H-006	ATION ID 5 -0-22
JECTS	PID: <u>112663</u> BR ID: <u>N/A</u> START: <u>2/1/23</u> END: <u>2/1/23</u>	DRILLING METHOD: SAMPLING METHOD:	<u> </u>	ND AUGER SPT	CALI ENEI	BRAT RGY F	ION D RATIO	OATE: (%):	N/A 0		ELEV LAT /	ATION	: 686	<u>0 (MS</u> 41.599	<u>3L)</u> E 9578 I	:OB: N, 81.	<u>6</u> 44349	0 ft. 5 W	PAGE 1 OF 1
WPRC	MATERIAL DESCRIPT AND NOTES	ION	ELEV. 686.0	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS	ATION FS	(%) 31 CL	ATT	PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
2 - GINT	Very-loose gray GRAVEL , some fine to coa silt, trace clay, moist to wet.	rse sand, trace	684.5	686.0 1 -	10 6 7		22	SS-1	-	65	15	9	- 11 -	-	-	-	13	A-1-a (V)	7 LV 7 L 7 > C 7 >
TORY/0	Soft to medium-stiff gray CLAY , "and" silt, I sand, trace fine gravel, slightly to moderate	ittle fine to coarse	683.0	- 2 -	11 13 14		100	SS-2	0.5	3	4	9 5	0 34	43	28	15	50	A-7-6 (11)	
LABORA	Soft to medium-stiff gray SILT AND CLAY , coarse sand, trace to little fine gravel, slight	some fine to tly to moderately			7 8 9		100	SS-3	0.5	2	11	23 3	9 25	38	27	11	46	A-6a (6)	
ND/01 -	organic, wet.		680.0	- 5 -	15 30 30		100	SS-4	0.5	14	15	18 3	6 17	35	24	11	34	A-6a (4)	$\frac{1}{7} \frac{1}{7} \frac{1}$
S&ME ODOT LOG (8:5X11) - SGE 01/2019 - OH DOT.GDT - 6/28/24 15:06 - R:\SERVICE LINES\CS-2557\CLEV	NOTES: - Boring performed in creek channel with wa at/near the top of the boring.	ater in the creek																	

PLATE 40

B-NEW.GPJ	S&ME JOB: 22170059B																		&
JECTS/22170059	PROJECT: LAK-90-2.93 SLIDE TYPE: LANDSLIDE PID: 112663 BR ID: N/A START: 2/1/23 END: 2/1/23	DRILLING FIRM / OPER SAMPLING FIRM / LOGO DRILLING METHOD: SAMPLING METHOD:	ATOR: <u>s</u> GER: HA	S&ME / K. HARPER S&ME / M. KHAN ND AUGER SPT	DRILL HAMM CALIBI ENERC	RIG: ER: _ RATIO GY R	HAI HAI ON DA ATIO (IAND AU ND SAMF ATE: (%):	GER PLING N/A 0		STATI ALIGN ELEV/ LAT /	ION / (IMEN ⁻ ATION LONG	0FFSE 685	T: _1 .3 (M: 41.59	110+2 IR-9 SL) I 9868	2 <u>4, 32</u> 0 EOB: N, 81	3' LT 6 .4431	EXPLOR H-007 5.0 ft. 52 W	ATION ID 7 -2-22 PAGE 1 OF 1
TWPRO	MATERIAL DESCRIPT AND NOTES	TION	ELEV. 685.3	DEPTHS W	SPT/ RQD	N ₆₀	REC \$ (%)	SAMPLE ID	HP (tsf)	GR	GRADA	ATION FS S	(%) I CL	AT	FERB	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
ATORY/02 - GIN1	Very-loose brown GRAVEL WITH SAND , tra trace clay, wet.	ace to little silt,	682.3	685.3 1	10 14 12 10 13 16		33 11	SS-1 SS-2	-	60 48	16 26	7 1 16	3 4	-	-	-	18 22	A-1-b (V) A-1-b (V)	
LABOR	Loose gray GRAVEL WITH SAND AND SIL moist.	T, trace clay,	680.8	- 4 -	27 30 33		100	SS-3	-	57	22	6 1	1 4	25	18	7	14	A-2-4 (0)	
AND\01 -	Medium-dense gray COARSE AND FINE SA gravel, little silt, trace clay, moist to wet.	AND, some fine	679.3	EOB 6	24 35 39		100	SS-4	-	29	17	36 1	4 4	NP	NP	NP	17	A-3a (0)	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $

<u>NOTES:</u> - Boring performed in creek channel with water in the creek at/near the top of the boring.

S&ME JOB: 22170059B

JEW.GPJ

0050

NOTES:

- Boring performed in creek channel with water in the creek at/near the top of the boring.

- Boring caved below a depth of 3 feet during sampling. Made multiple attempts to clear hole and continue sampling with no success.

																		ALC: NO.
PROJECT: LAK-90-2.93 SLIDE TYPE: LANDSLIDE	DRILLING FIRM / OPER. SAMPLING FIRM / LOG	ATOR: <u>S</u> GER: \$	S&ME / K. HARPER S&ME / M. KHAN	DRILL	RIG: ER:	HA	HAND AU	GER	_	STATI ALIGN	ON / (MEN	OFFSE T:	T: <u>1</u>	13+23 IR-90	<u>3, 304</u>)	<u>4' LT</u>	EXPLOR/ H-01(ATION ID)-0-22
PID: <u>112663</u> BR ID: N/A START: <u>2/1/23</u> END: <u>2/1/23</u>	DRILLING METHOD:		ND AUGER SPT		RATIO	ON DA	ATE: (%):	N/A 0		ELEVA		l: <u>682</u> i:	.6 (MS 41.60(<u>3L)</u> E	OB: N, 81.	3. .44239	.8 ft. 98 W	PAGE 1 OF 1
MATERIAL DESCRIPTI AND NOTES	ION	ELEV. 682.6	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS CS	TION FS	(%) SI CL		PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
Soft to medium-stiff brown mottled with gray little fine to coarse sand, little fine gravel, me	/ SILTY CLAY, oist.	681.1	682.6	3 3 4		33	SS-1	0.5	14	8	10 3	34 34	35	19	16	27	A-6b (9)	× L ^V 7 L 7 × 1 × 1
Medium-stiff brown mottled with gray SILT A some fine to coarse gravel, little to some fine	AND CLAY, te to coarse sand,		- 2 -	9 13 25		61	SS-2	0.5- 1.0	23	8	8 3	31 30	35	20	15	20	A-6a (7)	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
SHALE, gray, severely weathered, very wea	ak.	679.1	EOB	34 70/3"	-	100	SS-3A SS-3B	-	29 -	13	14 2	<u>27 17</u>	28			13	A-6a (2) Rock (V)	4>14>

<u>NOTES:</u> - Boring performed in creek channel with water in the creek at/near the top of the boring.

NOTES:	SEE ABOVE.			
ABANDO	NMENT METHODS,	MATERIALS	QUANTITIES:	NATURAL HOLE COLLAPSE

PROJECT : LAK-90-2.93 SLIDE

PID : 112663

PLATE 44

PROJECT : LAK-90-2.93 SLIDE

PID : 112663

PROJECT : LAK-90-2.93 SLIDE

PID : 112663

PROJECT : LAK-90-2.93 SLIDE

PID : 112663

PLATE 47

WILDCAT DYNAMIC CONE LOG

	PROJECT NUMBER:	22170059B
	DATE STARTED:	02-02-2023
	DATE COMPLETED:	02-02-2023
HOLE #: D-007-1-22	_	
CREW: A. Khan, K. Harper, B. Sears	SURFACE ELEVATION:	693
PROJECT: LAK-90-2.93 Landslide	WATER ON COMPLETION:	Dry
ADDRESS: IR 90 & SR 91 On-ramp	HAMMER WEIGHT:	35 lbs.
LOCATION: Sta. 110+16, 282, 1' Lt.	CONE AREA:	10 sa. cm

		BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CO	NSISTENCY
DEI	PTH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-		20	88.8	•••••	25	MEDIUM DENSE	VERY STIFF
-		20	88.8	•••••	25	MEDIUM DENSE	VERY STIFF
-	1 ft	3	13.3	•••	3	VERY LOOSE	SOFT
-		3	13.3	•••	3	VERY LOOSE	SOFT
-		6	26.6	•••••	7	LOOSE	MEDIUM STIFF
-	2 ft	5	22.2	•••••	6	LOOSE	MEDIUM STIFF
-		10	44.4	•••••	12	MEDIUM DENSE	STIFF
-		4	17.8	••••	5	LOOSE	MEDIUM STIFF
-	3 ft	5	22.2	•••••	6	LOOSE	MEDIUM STIFF
- 1 m		5	22.2	•••••	6	LOOSE	MEDIUM STIFF
-		5	19.3	••••	5	LOOSE	MEDIUM STIFF
-	4 ft	3	11.6	•••	3	VERY LOOSE	SOFT
-		5	19.3	•••••	5	LOOSE	MEDIUM STIFF
-		6	23.2	•••••	6	LOOSE	MEDIUM STIFF
-	5 ft	8	30.9	•••••	8	LOOSE	MEDIUM STIFF
-		6	23.2	•••••	6	LOOSE	MEDIUM STIFF
-		10	38.6	•••••	11	MEDIUM DENSE	STIFF
-	6 ft	9	34.7	•••••	9	LOOSE	STIFF
-		11	42.5	•••••	12	MEDIUM DENSE	STIFF
- 2 m		13	50.2	•••••	14	MEDIUM DENSE	STIFF
-	7 ft	32	109.4	•••••	25+	DENSE	HARD
-		50	171.0	••••••	25+	DENSE	HARD
-							
-	8 ft						
-							
-							
-	9 ft						
-							
-							
- 3 m	10 ft						
-							
-							
-	11.0						
-	11 ft						
-							
-	10.6						
-	12 ft						
-							
-	12.6						
- 4 m	15 H						
1		I					

WILDCAT DYNAMIC CONE LOG

	PROJECT NUMBER:	22170059B
	DATE STARTED:	02-02-2023
	DATE COMPLETED:	02-02-2023
HOLE #: D-008-2-22	_	
CREW: A. Khan, K. Harper, B. Sears	SURFACE ELEVATION:	700
PROJECT: LAK-90-2.93 Landslide	WATER ON COMPLETION:	Dry
ADDRESS: IR 90 & SR 91 On-ramp	HAMMER WEIGHT:	35 lbs.
LOCATION: Sta. 112+20, 259.6' Lt.	CONE AREA:	10 sq. cm

		BLOWS	RESISTANCE	GRA	APH OF CON	NE RESIS	TANCE		TESTED CO	NSISTENCY
DEPT	H	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		2	8.9	••				2	VERY LOOSE	SOFT
-		2	8.9	••				2	VERY LOOSE	SOFT
-	1 ft	2	8.9	••				2	VERY LOOSE	SOFT
-		2	8.9	••				2	VERY LOOSE	SOFT
-		3	13.3	•••				3	VERY LOOSE	SOFT
- 2	2 ft	1	4.4	•				1	VERY LOOSE	VERY SOFT
-		1	4.4	•				1	VERY LOOSE	VERY SOFT
-		3	13.3	•••				3	VERY LOOSE	SOFT
	3 ft	6	26.6	•••••	•			7	LOOSE	MEDIUM STIFF
- 1 m		7	31.1	•••••	•••			8	LOOSE	MEDIUM STIFF
-		8	30.9	•••••	••			8	LOOSE	MEDIUM STIFF
- 4	4 ft	8	30.9	•••••	••			8	LOOSE	MEDIUM STIFF
-		12	46.3	•••••	•••••			13	MEDIUM DENSE	STIFF
-		10	38.6	•••••	••••			11	MEDIUM DENSE	STIFF
- :	5 ft	13	50.2	•••••	•••••			14	MEDIUM DENSE	STIFF
-		18	69.5	•••••	•••••			19	MEDIUM DENSE	VERY STIFF
-		15	57.9	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
- (6 ft	15	57.9	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
-		20	77.2	•••••	•••••	•		22	MEDIUM DENSE	VERY STIFF
- 2 m		21	81.1	•••••	•••••	••		23	MEDIUM DENSE	VERY STIFF
- '	7 ft	20	68.4	•••••	•••••			19	MEDIUM DENSE	VERY STIFF
-		22	75.2	•••••	•••••			21	MEDIUM DENSE	VERY STIFF
-		22	75.2	•••••	•••••			21	MEDIUM DENSE	VERY STIFF
- :	8 ft	28	95.8	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-		35	119.7	•••••	•••••	•••••	••	25+	DENSE	HARD
-		31	106.0	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-	9 ft	33	112.9	•••••	•••••	•••••		25+	DENSE	HARD
-		29	99.2	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-		25	85.5	•••••	•••••	•••		24	MEDIUM DENSE	VERY STIFF
- 3 m 1	0 ft	21	71.8	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
-		23	70.4	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
-		19	58.1	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
-		21	64.3	•••••	•••••			18	MEDIUM DENSE	VERY STIFF
- 1	1 ft	20	61.2	•••••	•••••			17	MEDIUM DENSE	VERY STIFF
-		20	61.2	•••••	•••••			17	MEDIUM DENSE	VERY STIFF
-		23	70.4	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
- 12	2 ft	22	67.3	•••••	•••••			19	MEDIUM DENSE	VERY STIFF
-		23	70.4	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
-		26	79.6	•••••	•••••	••		22	MEDIUM DENSE	VERY STIFF
- 4 m 11	3 ft	34	104.0	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF

HOLE #: D-008-2-22

WILDCAT DYNAMIC CONE LOG

Page 2 of 2

PRC	JJECT:	LAK-90-2.93	3 Landslide					PI	ROJECT NUMBER:	22170059B
		BLOWS	RESISTANCE	GRAPH	H OF CON	JE RESIST	TANCE		TESTED CO	NSISTENCY
DEI	PTH	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		32	88.6	•••••		••••		25	MEDIUM DENSE	VERY STIFF
_		33	91.4	•••••		••••		25+	MEDIUM DENSE	VERY STIFF
	14 ft	33	91.4	•••••		••••		25+	MEDIUM DENSE	VERY STIFF
	1 + 11	33	91.4 88.6					25	MEDIUM DENSE	VERT STILL
-		32	00.0 04.2					25	MEDIUM DENSE	VENI STIFF
-	15.0	34	94.2	•••••		•••••		25+	MEDIUM DENSE	VERY STIFF
-	15 ft	37	102.5	•••••		•••••		25+	MEDIUM DENSE	VERY STIFF
-										
-										
-	16 ft									
- 5 m										
-										
-	17 ft									
-										
-										
_	18 ft									
	10 10									
–										
-	10 ft									
-	19 II									
-										
- 6 m										
-	20 ft									
-										
-										
-	21 ft									
-										
-										
_	22 ft									
_										
- 7 m	23 ft									
- / 111	25 H									
-										
-										
-	24 ft									
-										
-										
-	25 ft									
-										
-										
-	26 ft									
- 8 m										
-										
-	27 ft									
_	_/									
ľ	28 ft									
⁻	20 II									
-										
-	0 .0.0									
-	29 ft									
-										
- 9 m										

WILDCAT DYNAMIC CONE LOG

	PROJECT NUMBER:	22170059B
	DATE STARTED:	02-02-2023
	DATE COMPLETED:	02-02-2023
HOLE #: <u>D-009-0-22</u>	_	
CREW: A. Khan, K. Harper, B. Sears	SURFACE ELEVATION:	701
PROJECT: LAK-90-2.93 Landslide	WATER ON COMPLETION:	Dry
ADDRESS: IR 90 & SR 91 On-ramp	HAMMER WEIGHT:	35 lbs.
LOCATION: Sta. 112+66, 261.4' Lt.	CONE AREA:	10 sq. cm

		BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE			TESTED CO	NSISTENCY		
DE	РТН	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		0	0.0					0	VERY LOOSE	VERY SOFT
-		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-	1 ft	4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-	2 ft	5	22.2	•••••				6	LOOSE	MEDIUM STIFF
-		5	22.2	•••••				6	LOOSE	MEDIUM STIFF
-		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-	3 ft	5	22.2	•••••				6	LOOSE	MEDIUM STIFF
- 1 m		4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-		4	15.4	••••				4	VERY LOOSE	SOFT
-	4 ft	6	23.2	•••••				6	LOOSE	MEDIUM STIFF
-		7	27.0	•••••	•			7	LOOSE	MEDIUM STIFF
-		11	42.5	•••••	•••••			12	MEDIUM DENSE	STIFF
-	5 ft	8	30.9	•••••	••			8	LOOSE	MEDIUM STIFF
-		11	42.5	•••••	•••••			12	MEDIUM DENSE	STIFF
-		8	30.9	•••••	••			8	LOOSE	MEDIUM STIFF
-	6 ft	6	23.2	•••••				6	LOOSE	MEDIUM STIFF
-		7	27.0	•••••	•			7	LOOSE	MEDIUM STIFF
- 2 m		6	23.2	•••••				6	LOOSE	MEDIUM STIFF
-	7 ft	9	30.8	•••••	••			8	LOOSE	MEDIUM STIFF
-		11	37.6	•••••	••••			10	LOOSE	STIFF
-		14	47.9	•••••	•••••			13	MEDIUM DENSE	STIFF
-	8 ft	23	78.7	•••••	•••••	•••		22	MEDIUM DENSE	VERY STIFF
-		23	78.7	•••••	•••••	•••		22	MEDIUM DENSE	VERY STIFF
-	0.6	24	82.1	•••••	•••••	••••		23	MEDIUM DENSE	VERY STIFF
-	9 ft	35	119.7	•••••	•••••		••	25+	DENSE	HARD
-		33	112.9	•••••	•••••			25+	DENSE	HARD
-	10.6	36	123.1	•••••	•••••	••••••	•••	25+	DENSE MEDILIN DENSE	HAKD
- 3 m	10 ft	31	106.0	•••••	••••••	••••••		25+	MEDIUM DENSE	VEKY STIFF
-		31 25	94.9	******				25+	MEDIUM DENSE	VEKY STIFF
-		35	107.1	•••••	••••••	••••••		25+	MEDIUM DENSE	VEKY STIFF
-	11.0	42	128.5	******			••••	25+	DENSE	
-	11 H	45 51	13/./	••••••			•••••	25+ 25+	DENSE	
-		51	130.1					23+ 25 :	DENSE	
-	12.6	59	180.5	•••••	••••••	••••••••••••	•••••	25+	VERT DENSE	
-	12 M	57	1/4.4					23+	DENSE	ΠΑΚΟ
-										
- 4 m	13 ft									
- + 111	15 II									

WILDCAT DYNAMIC CONE LOG Page 1 of 2

	PROJECT NUMBER:	22170059B
	DATE STARTED:	02-02-2023
	DATE COMPLETED:	02-02-2023
HOLE #: <u>D-010-1-22</u>	_	
CREW: A. Khan, K. Harper, B. Sears	SURFACE ELEVATION:	697
PROJECT: LAK-90-2.93 Landslide	WATER ON COMPLETION:	Dry
ADDRESS: IR 90 & SR 91 On-ramp	HAMMER WEIGHT:	35 lbs.
LOCATION: Sta. 113+20, 330.9' Lt.	CONE AREA:	10 sq. cm
LOCATION. 5td. 115+20, 550.7 Lt.	CONLARLA.	10 sq. cm

		BLOWS	RESISTANCE	GRAPH OF CONE RESISTANCE		TESTED CONSISTENCY	
DEP	TH	PER 10 cm	Kg/cm ²	0 50 100 150	N'	NON-COHESIVE	COHESIVE
-		0	0.0		0	VERY LOOSE	VERY SOFT
-		1	4.4	•	1	VERY LOOSE	VERY SOFT
-	1 ft	3	13.3	•••	3	VERY LOOSE	SOFT
-		4	17.8	•••••	5	LOOSE	MEDIUM STIFF
-		4	17.8	•••••	5	LOOSE	MEDIUM STIFF
-	2 ft	4	17.8	•••••	5	LOOSE	MEDIUM STIFF
-		3	13.3	•••	3	VERY LOOSE	SOFT
-		5	22.2	•••••	6	LOOSE	MEDIUM STIFF
-	3 ft	5	22.2	•••••	6	LOOSE	MEDIUM STIFF
- 1 m		7	31.1	•••••	8	LOOSE	MEDIUM STIFF
-		14	54.0	•••••	15	MEDIUM DENSE	STIFF
-	4 ft	15	57.9	••••	16	MEDIUM DENSE	VERY STIFF
-		9	34.7	•••••	9	LOOSE	STIFF
-		10	38.6	•••••	11	MEDIUM DENSE	STIFF
-	5 ft	10	38.6	•••••	11	MEDIUM DENSE	STIFF
-		10	38.6	•••••	11	MEDIUM DENSE	STIFF
-		10	38.6	•••••	11	MEDIUM DENSE	STIFF
-	6 ft	12	46.3	•••••	13	MEDIUM DENSE	STIFF
-		9	34.7	•••••	9	LOOSE	STIFF
- 2 m		10	38.6	•••••	11	MEDIUM DENSE	STIFF
-	7 ft	8	27.4	•••••	7	LOOSE	MEDIUM STIFF
-		11	37.6	•••••	10	LOOSE	STIFF
-		12	41.0	•••••	11	MEDIUM DENSE	STIFF
-	8 ft	15	51.3	•••••	14	MEDIUM DENSE	STIFF
-		10	34.2	•••••	9	LOOSE	STIFF
-		9	30.8	•••••	8	LOOSE	MEDIUM STIFF
-	9 ft	9	30.8	•••••	8	LOOSE	MEDIUM STIFF
-		8	27.4	•••••	7	LOOSE	MEDIUM STIFF
-		8	27.4	•••••	7	LOOSE	MEDIUM STIFF
- 3 m	10 ft	10	34.2	•••••	9	LOOSE	STIFF
-		8	24.5	•••••	6	LOOSE	MEDIUM STIFF
-		7	21.4	•••••	6	LOOSE	MEDIUM STIFF
-		7	21.4	•••••	6	LOOSE	MEDIUM STIFF
-	11 ft	7	21.4	•••••	6	LOOSE	MEDIUM STIFF
-		7	21.4	•••••	6	LOOSE	MEDIUM STIFF
-		10	30.6	•••••	8	LOOSE	MEDIUM STIFF
-	12 ft	11	33.7	•••••	9	LOOSE	STIFF
-		10	30.6	•••••	8	LOOSE	MEDIUM STIFF
- <u>.</u>		15	45.9	•••••	13	MEDIUM DENSE	STIFF
- 4 m	13 ft	16	49.0	•••••	13	MEDIUM DENSE	STIFF

HOLE #: D-010-1-22

WILDCAT DYNAMIC CONE LOG

Page 2 of 2

PRO	OJECT:	LAK-90-2.93	3 Landslide		PROJECT NUMBER: 221700				22170059B	
		BLOWS	RESISTANCE	GRAPH	OF CON	E RESIST	TANCE		TESTED CO	NSISTENCY
DEI	РТН	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-		27	74.8	•••••	•••••			21	MEDIUM DENSE	VERY STIFF
-		20	55.4	•••••	•••••			15	MEDIUM DENSE	STIFF
-	14 ft	20	55.4	•••••	••••			15	MEDIUM DENSE	STIFF
-		15	41.6	•••••	•			11	MEDIUM DENSE	STIFF
_		16	44.3	•••••	•			12	MEDIUM DENSE	STIFF
_	15 ft	12	33.2	•••••				9	LOOSE	STIFF
_	10 10	50	138.5	•••••			•••••	25+	DENSE	HARD
_		50	150.5					231	DENGE	Inne
_	16 ft									
- 5 m	10 10									
- 5 111										
-	17 ft									
-	1711									
-										
-	10 f4									
-	18 It									
-										
-	10.6									
-	19 ft									
-										
- 6 m	•									
-	20 ft									
-										
-										
-	21 ft									
-										
-										
-	22 ft									
-										
-										
- 7 m	23 ft									
-										
-										
-	24 ft									
-										
-										
-	25 ft									
-										
-										
-	26 ft									
- 8 m										
-										
-	27 ft									
-										
-										
-	28 ft									
-	-									
-										
-	29 ft									
_	_/ 10									
- 9 m										
, m										

WILDCAT DYNAMIC CONE LOG

	PROJECT NUMBER:	22170059B
	DATE STARTED:	02-02-2023
	DATE COMPLETED:	02-02-2023
HOLE #: <u>D-011-0-22</u>	_	
CREW: A. Khan, K. Harper, B. Sears	SURFACE ELEVATION:	695
PROJECT: LAK-90-2.93 Landslide	WATER ON COMPLETION:	Dry
ADDRESS: IR 90 & SR 91 On-ramp	HAMMER WEIGHT:	35 lbs.
LOCATION: Sta. 113+33, 322.9' Lt.	CONE AREA:	10 sq. cm

	BLOWS	RESISTANCE	E GRAPH OF CONE RESISTANCE				TESTED CONSISTENCY		
DEPTH	PER 10 cm	Kg/cm ²	0	50	100	150	N'	NON-COHESIVE	COHESIVE
-	2	8.9	••				2	VERY LOOSE	SOFT
-	3	13.3	•••				3	VERY LOOSE	SOFT
- 1 ft	3	13.3	•••				3	VERY LOOSE	SOFT
-	3	13.3	•••				3	VERY LOOSE	SOFT
-	3	13.3	•••				3	VERY LOOSE	SOFT
- 2 ft	3	13.3	•••				3	VERY LOOSE	SOFT
-	4	17.8	•••••				5	LOOSE	MEDIUM STIFF
-	3	13.3	•••				3	VERY LOOSE	SOFT
- 3 ft	4	17.8	•••••				5	LOOSE	MEDIUM STIFF
- 1 m	6	26.6	•••••	•			7	LOOSE	MEDIUM STIFF
-	7	27.0	•••••	•			7	LOOSE	MEDIUM STIFF
- 4 ft	19	73.3	•••••	•••••	•		20	MEDIUM DENSE	VERY STIFF
-	14	54.0	•••••	•••••			15	MEDIUM DENSE	STIFF
-	15	57.9	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
- 5 ft	13	50.2	•••••	•••••			14	MEDIUM DENSE	STIFF
-	13	50.2	•••••	•••••			14	MEDIUM DENSE	STIFF
-	15	57.9	•••••	•••••			16	MEDIUM DENSE	VERY STIFF
- 6 ft	14	54.0	•••••	•••••			15	MEDIUM DENSE	STIFF
-	14	54.0	•••••	•••••			15	MEDIUM DENSE	STIFF
- 2 m	36	139.0	•••••	•••••	•••••	•••••	25 +	DENSE	HARD
- 7 ft	22	75.2	•••••	•••••	•		21	MEDIUM DENSE	VERY STIFF
-	23	78.7	•••••	•••••	••		22	MEDIUM DENSE	VERY STIFF
-	20	68.4	•••••	•••••			19	MEDIUM DENSE	VERY STIFF
- 8 ft	22	75.2	•••••	•••••	•		21	MEDIUM DENSE	VERY STIFF
-	22	75.2	•••••	•••••	•		21	MEDIUM DENSE	VERY STIFF
-	22	75.2	•••••	•••••	•		21	MEDIUM DENSE	VERY STIFF
- 9 ft	19	65.0	•••••	•••••			18	MEDIUM DENSE	VERY STIFF
-	21	71.8	•••••	•••••			20	MEDIUM DENSE	VERY STIFF
-	28	95.8	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
- 3 m 10 ft	23	78.7	•••••	•••••	••		22	MEDIUM DENSE	VERY STIFF
-	26	79.6	•••••	•••••	•••		22	MEDIUM DENSE	VERY STIFF
-	26	79.6	•••••	•••••	•••		22	MEDIUM DENSE	VERY STIFF
-	36	110.2	•••••	•••••	•••••		25+	DENSE	HARD
- 11 ft	33	101.0	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-	34	104.0	•••••	•••••	•••••		25+	MEDIUM DENSE	VERY STIFF
-	36	110.2	•••••	•••••	•••••		25+	DENSE	HARD
- 12 ft	38	116.3	•••••	•••••	•••••	•	25+	DENSE	HARD
-	36	110.2	•••••	•••••	•••••		25+	DENSE	HARD
-	36	110.2	•••••	•••••	•••••		25+	DENSE	HARD
- 4 m 13 ft	37	113.2	•••••	•••••	•••••		25+	DENSE	HARD

HOLE #: D-011-0-22 PROJECT: LAK-90-2.93 Landslide

WILDCAT DYNAMIC CONE LOG

Page 2 of 2 22170059B

PRO	DJECT:	LAK-90-2.93	3 Landslide		PROJECT NUMBER: 22170059B				
		BLOWS	RESISTANCE	GRAPH OF	CONE RESIST	ANCE		TESTED CO	NSISTENCY
DEI	PTH	PER 10 cm	Kg/cm ²	0 50	100	150	N'	NON-COHESIVE	COHESIVE
-		41	113.6	•••••	•••••		25 +	DENSE	HARD
-		41	113.6	•••••	•••••		25 +	DENSE	HARD
-	14 ft	41	113.6	•••••	•••••		25 +	DENSE	HARD
-		42	116.3	•••••	•••••		25 +	DENSE	HARD
-		42	116.3	•••••	•••••		25+	DENSE	HARD
-	15 ft								
-									
-									
-	16 ft								
- 5 m									
-									
-	17 ft								
-									
-									
-	18 ft								
-									
-									
-	19 ft								
-									
- 6 m									
-	20 ft								
-									
-									
-	21 ft								
-									
-									
-	22 ft								
-									
- 7 m	23 ft								
-									
-	24.6								
-	24 ft								
-									
-	ንና ድ								
-	23 ft								
-									
-	26 ft								
- 0 m	20 H								
- 8 111									
l_	27 ft								
-	27 It								
_									
_	28 ft								
_	20 H								
-									
-	29 ft								
-									
- 9 m									

	B-00	1-0-22			
R: NQ-9					
		ER: NQ-9 19.0' BR: NQ-10			
		Not			
					NQ-10
		The second s			ER:
Run #: Dept	th	Recov	very	R	
NQ-9 14.0'	19.0'	59/60	98%	16/60	27%
NQ-10 19.0			94%	19/62	31%

NQ-8

59.4'

64.4'

54/60

LAK-90-2.93 PID 112663

90%

45/60

75%

S&ME, Inc.

			B-00	7-3-23			
BR: NQ-6 55.2'							A A A A A A A A A A A A A A A A A A A
				ER: NQ-6 60.5' BR: NQ-7			
				ER: NQ-8 65.9'			
	Run #:	De	pth	Recov	very	R	ΣD
	NQ-4	45.0'	50.0'	53/60	88%	18/60	30%
	NQ-5	50.0'	55.2'	62/62	100%	41/62	66%
	NQ-6	55.2'	60.5'	63.5/63.5	100%	35/63.5	55%
	NQ-7	60.5	65.9	65/65	100%	44/65	68%
			LAK-90-2.9	93 PID 112663			

	B-007-4-23									
BR: NQ-21 49.2'						RING.				
	ER: NQ-21 E4: 22 BR: NQ-22 BR: NQ-22									
	Lat			SR ST						
	ER: NQ-22									
Carlor W	Run #:	Dei	oth	Reco	verv	RC	2D			
	NQ-21	49.2'	54.2'	56/60	93%	13/60	22%			
	NQ-22	54.2'	59.2'	59/60	98%	37/60	62%			
	NQ-23	59.2'	64.2'	60/60	100%	38/60	63%			
	NQ-24	64.2'	69.2'	58/60	97%	17/60	28%			
			LAK-90	-2.93 PID 112663						

		B-	007-4-23						
BR: NQ-23 59.2'					The				
	inter from opinio								
ER: NQ-23 64.2 BR: NQ-24									
		Fritt 1 Forester a 11-14				H			
ER: NQ-24									
Run #:	De	pth	Reco	verv	RG	D			
NQ-21	49.2'	54.2'	56/60	93%	13/60	22%			
NQ-22	54.2'	59.2'	59/60	98%	37/60	62%			
NQ-23	59.2'	64.2'	60/60	100%	38/60	63%			
NQ-24	64.2'	69.2'	58/60	97%	17/60	28%			
		LAK-90-	-2.93 PID 112663						

B-008-4-23											
BR: NQ-2											
CONSTRACTION DER SEIDER THE											
ER: NQ-2 57.0' BR: NQ-3											
ER: NG-3											
Run #: Depth Recovery RQD											
NQ-2 52.0' 57.0' 48/60 80% 0/60 0%											
NQ-3 57.0' 62.0' 58/60 97% 8/60 13%											
NQ-4 62.0' 67.0' 57/60 95% 9/60 15%											
NQ-5 67.0' 72.0' 58/60 97% 38/60 63%											

Geotechnical Data Report LAK-90-2.93 Landslide Willoughby Hills, Lake County, Ohio S&ME Project No. 22170059B

Appendix II – Laboratory Test Results

S&ME, Inc. 8400 Sweet Valley Drive, Suite 404 Valley View, OH 44125 Telephone: 216-901-1000 Fax: 216-901-9996

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 9

PROJECT _ 22170	059B					PID 11	2663						
	AK-90-2.93	Slide		PROJECT TYPE LANDSLIDE									
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-001-0-22	2.5	12											
B-001-0-22	4.0	10											
B-001-0-22	5.3	5											
B-001-0-22	5.5	10											
B-001-0-22	6.0	7											
B-001-0-22	7.0	7	36	23	13	0	13	17	17	35	18	53	A-6a
B-001-0-22	8.5	5											
B-001-0-22	10.0	6											
B-001-0-22	11.5	5											
B-001-0-22	13.0	4											
B-001-1-22	0.0	19	35	20	15	0	9	9	9	36	37	73	A-6a
B-001-1-22	1.5	18											
B-001-1-22	3.0	19											
B-001-1-22	4.5	16											
B-001-1-22	4.8	17											
B-001-1-22	6.5	17	34	21	13	0	21	7	6	36	30	66	A-6a
B-001-1-22	8.5	19											
B-001-1-22	10.0	14	37	21	16	0	7	7	7	43	36	79	A-6b
B-001-1-22	11.5	15											
B-001-1-22	13.0	9											
B-001-1-22	14.5	8											
B-001-2-22	0.3	20											
B-001-2-22	1.5	16											
B-001-2-22	3.0	13	32	18	14	0	14	7	8	35	36	71	A-6a
B-001-2-22	4.5	15											
B-001-2-22	6.0	13											
B-001-2-22	7.5	20	33	21	12	0	15	9	9	35	32	67	A-6a
B-001-2-22	8.3	25	39	23	16	0	2	4	5	43	46	89	A-6b
B-001-2-22	9.0	21											
B-001-2-22	9.5	19											
B-001-2-22	10.5	16	41	20	21	4	11	7	4	31	43	74	A-7-6
B-001-2-22	12.0	14											
B-001-2-22	13.5	14											
B-001-2-22	15.0	16											
B-001-2-22	16.5	11	37	20	17	9	14	7	6	29	35	64	A-6b
B-001-2-22	18.0	14											
B-001-2-22	19.5	21											
B-001-2-22	20.1	18											
B-001-2-22	21.0	15	42	22	20	0	3	3	5	38	51	89	A-7-6
B-001-2-22	22.5	15											
B-001-2-22	24.0	16											
B-001-2-22	25.5	11											
B-002-0-22	1.8	17											

S&ME, Inc. 8400 Sweet Valley Drive, Suite 404 Valley View, OH 44125 Telephone: 216-901-1000 Fax: 216-901-9996

SUMMARY OF LABORATORY RESULTS

PAGE 2 OF 9

PROJECT _22170	059B					_ PID _11	2663							
	AK-90-2.93	Slide		PROJECT TYPE LANDSLIDE										
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification	
B-002-0-22	3.0	17												
B-002-0-22	4.5	17	32	19	13	0	6	5	9	39	41	80	A-6a	
B-002-0-22	6.0	15												
B-002-0-22	6.7	16												
B-002-0-22	7.5	6												
B-002-0-22	7.8	10												
B-002-0-22	9.0	8												
B-002-0-22	10.5	11	37	22	15	1	30	14	10	22	23	45	A-6a	
B-002-0-22	12.0	12												
B-002-0-22	13.5	13	37	22	15	0	17	6	7	36	34	70	A-6a	
B-002-0-22	15.0	15												
B-002-0-22	16.5	10	31	19	12	0	35	10	7	28	20	48	A-6a	
B-002-0-22	17.6	12												
B-002-0-22	18.0	16												
B-002-0-22	19.5	12												
B-002-0-22	20.0	17												
B-002-0-22	21.0	17	36	20	16	0	17	10	8	30	35	65	A-6b	
B-002-0-22	22.5	16												
B-002-0-22	24.0	21												
B-002-0-22	24.5	16												
B-002-0-22	25.5	14	33	17	16	0	3	5	8	40	44	84	A-6b	
B-002-0-22	27.0	14												
B-002-0-22	28.5	15												
B-002-0-22	29.7	15												
B-002-0-22	30.0	15												
B-002-0-22	30.3	13												
B-002-0-22	31.5	14	32	19	13	0	4	6	11	37	42	79	A-6a	
B-002-0-22	33.0	16												
B-002-0-22	34.5	15												
B-002-0-22	36.0	14												
B-002-0-22	36.2	15	34	18	16	0	6	6	10	37	41	78	A-6b	
B-002-0-22	37.5	15												
B-002-0-22	38.7	13												
B-002-0-22	39.0	15												
B-002-0-22	39.7	18												
B-002-0-22	40.5	18	35	20	15	0	2	2	7	40	49	89	A-6a	
B-002-0-22	42.0	14												
B-002-0-22	43.5	19												
B-002-0-22	44.0	19												
B-002-0-22	45.0	17	40	22	18	0	2	9	8	34	47	81	A-6b	
B-002-0-22	46.5	16												
B-002-0-22	48.0	16												
B-002-0-22	49.5	14												
SUMMARY OF LABORATORY RESULTS

PAGE 3 OF 9

PROJECT _ 22170	059B					PID 11	2663						
	AK-90-2.93	Slide				PROJEC			E				
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-002-0-22	51.0	14											
B-002-0-22	51.8	16											
B-002-0-22	53.5	11											
B-002-0-22	56.0	13											
B-002-0-22	58.5	11											
B-002-0-22	61.0	15											
B-002-0-22	63.5	4											
B-003-0-22	0.5	17											
B-003-0-22	1.5	13	31	18	13	0	4	3	8	41	44	85	A-6a
B-003-0-22	3.0	15											
B-003-0-22	3.3	15											
B-003-0-22	4.5	12											
B-003-0-22	6.0	2	28	15	13	0	5	5	9	42	39	81	A-6a
B-003-0-22	7.5	13											
B-003-0-22	9.0	13											
B-003-0-22	10.5	14											
B-003-0-22	12.0	10	31	20	11	8	27	9	8	24	24	48	A-6a
B-003-0-22	13.5	15											
B-003-0-22	15.0	12											
B-003-0-22	16.5	15	33	19	14	0	6	7	12	37	38	75	A-6a
B-003-0-22	17.2	17											
B-003-0-22	18.0	27	40	25	15	0	4	5	6	42	43	85	A-6a
B-003-0-22	19.5	43											
B-003-0-22	20.6	20											
B-003-0-22	21.0	21											
B-003-0-22	22.5	20	45	25	20	0	14	8	11	34	33	67	A-7-6
B-003-0-22	24.0	22											
B-003-0-22	25.5	19											
B-003-0-22	27.0	15	26	16	10	0	23	2	2	38	35	73	A-4a
B-003-0-22	27.5	17											
B-003-0-22	28.5	11											
B-003-0-22	30.0	7											
B-003-0-22	31.5	10											
B-004-0-22	0.5	16											
B-004-0-22	1.5	13	31	17	14	0	3	3	8	42	44	86	A-6a
B-004-0-22	3.0	13											
B-004-0-22	4.5	13											
B-004-0-22	6.0	13	29	16	13	0	4	5	10	40	41	81	A-6a
B-004-0-22	7.5	14											
B-004-0-22	9.0	12											
B-004-0-22	10.1	14											
B-004-0-22	10.5	11	29	17	12	0	16	7	9	35	33	68	A-6a
B-004-0-22	12.0	5											

SUMMARY OF LABORATORY RESULTS

PAGE 4 OF 9

PROJECT _22170	059B					_ PID _11	2663						
	AK-90-2.93	Slide		1		PROJEC			E				
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-004-0-22	12.6	15											
B-004-0-22	13.5	13	30	17	13	3	6	7	10	39	35	74	A-6a
B-004-0-22	15.0	3											
B-004-0-22	16.5	8											
B-004-0-22	17.0	15											
B-004-0-22	18.0	15											
B-004-0-22	19.5	2											
B-004-0-22	21.0	16	30	17	13	0	7	7	12	40	34	74	A-6a
B-004-0-22	23.0	17											
B-004-0-22	23.5	28											
B-004-0-22	24.5	23	38	23	15	0	0	0	6	52	42	94	A-6a
B-004-0-22	26.0	23											
B-004-0-22	27.5	24											
B-004-0-22	27.8	10											
≧ B-004-0-22	29.0	13				0	38	33	13	11	5	16	
B-004-0-22	30.5	14											
B-004-0-22	32.0	19											
B-004-0-22	33.5	13											
ਨੂੰ B-004-0-22	35.0	11											
B-004-0-22	35.7	11											
B-004-0-22	36.5	9											
B-005-0-22	0.3	18											
B-005-0-22	1.5	17	34	19	15	0	11	5	9	36	39	75	A-6a
B-005-0-22	3.0	2											
B-005-0-22	4.5	19											
B-005-0-22	6.0	16	32	18	14	0	9	5	8	38	40	78	A-6a
B-005-0-22	7.5	15											
B-005-0-22	9.0	18											
B-005-0-22	10.5	14											
B-005-0-22	12.0	14											
B-005-0-22	12.5	12	31	18	13	4	17	5	8	35	31	66	A-6a
^e B-005-0-22	13.5	15											
B-005-0-22	15.0	15	33	19	14	0	10	6	10	38	36	/4	A-6a
B-005-0-22	16.5	16		0.1	40				4.0		40	0.1	
B-005-0-22	17.1	22	39	21	18	0	2	4	10	36	48	84	A-6b
B-005-0-22	18.0	11											
B-005-0-22	18.7	18	05	00	45		40			40	0.4	70	A 0 -
В-005-0-22	19.5	1/	35	20	15	0	10	/	1	42	34	/6	A-6a
В-005-0-22	21.0	20											
B-005-0-22	22.5	22			40		40	40	45		05		A 0 -
B-005-0-22	23.2	21	33	21	12	U	10	12	15	38	25	63	А-ба
В-005-0-22	24.0	20	04	40			07	0.4	40	40		40	
в-005-0-22	25.5	16	21	18	3	8	27	34	12	13	6	19	A-1-b

SUMMARY OF LABORATORY RESULTS

PAGE 5 OF 9

PROJECT _ 22170	059B					_ PID _11	2663						
	AK-90-2.93	Slide				PROJE			E				
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-005-0-22	27.0	10											
B-005-0-22	28.5	11											
B-005-0-22	28.9	13											
B-005-0-22	30.0	11											
B-005-0-22	31.5	13											
B-005-0-22	31.9	14	30	19	11	0	33	13	13	25	16	41	A-6a
B-005-0-22	33.0	16											
B-005-0-22	34.5	9											
B-005-1-23	4.0	19											
B-007-0-22	0.0	18	34	19	15	5	5	6	10	34	40	74	A-6a
B-007-0-22	1.5	21											
B-007-0-22	3.0	13											
B-007-0-22	3.4	10	35	20	15	0	27	13	10	27	23	50	A-6a
B-007-0-22	4.5	20											
B-007-0-22	5.1	14											
B-007-0-22	6.0	14	30	17	13	0	3	7	11	41	38	79	A-6a
B-007-0-22	7.5	15											
B-007-0-22	8.0	23											
B-007-0-22	9.0	16	34	19	15	0	4	5	10	40	41	81	A-6a
B-007-0-22	11.0	14											
B-007-0-22	12.5	18											
B-007-0-22	14.0	17											
B-007-0-22	15.5	16											
B-007-0-22	17.0	18											
B-007-0-22	17.4	17											
B-007-0-22	18.5	18	36	19	17	0	3	4	10	41	42	83	A-6b
B-007-0-22	20.5	19											
B-007-0-22	22.0	16											
B-007-0-22	22.5	17											
B-007-0-22	23.5	19											
B-007-0-22	23.8	12	33	21	12	0	14	5	5	48	28	76	A-6a
B-007-0-22	25.0	13											
B-007-0-22	25.4	10											
B-007-0-22	26.5	16	NP	NP	NP	0	34	32	21	9	4	13	A-1-b
B-007-0-22	28.0	13											
B-007-0-22	29.5	12											
B-007-0-22	29.8	26	NP	NP	NP	0	2	1	68	24	5	29	A-3a
B-007-0-22	31.0	23											
B-007-0-22	31.6	14											
B-007-0-22	32.5	13											
B-007-0-22	33.1	12											
B-007-0-22	34.0	10											
B-007-0-22	35.5	10											

SUMMARY OF LABORATORY RESULTS

PAGE 6 OF 9

PROJECT 22170	059B					PID 11	2663						
	AK-90-2.93	Slide				_ PROJEC			E				
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-007-3-23	8.0	17											
B-007-4-23	1.0	20											
B-007-4-23	3.5	17	33	19	14	0	7	6	9	39	39	78	A-6a
B-007-4-23	6.0	29											
B-007-4-23	7.0	13											
B-007-4-23	8.5	16											
B-007-4-23	10.5	18	35	20	15	0	9	6	7	35	43	78	A-6a
B-007-4-23	13.5	13											
B-007-4-23	16.0	18											
B-007-4-23	18.5	13											
B-007-4-23	21.0	16											
B-007-4-23	23.5	13	30	17	13	0	6	7	11	39	37	76	A-6a
B-007-4-23	26.0	16											
B-007-4-23	28.5	20											
B-007-4-23	31.0	15											
B-007-4-23	33.5	21	39	24	15	0	1	3	2	57	37	94	A-6a
B-007-4-23	36.0	26											
B-007-4-23	38.0	21	31	19	12	0	5	7	17	43	28	71	A-6a
B-007-4-23	41.0	17											
B-007-4-23	41.5	13											
B-007-4-23	43.5	22	NP	NP	NP	0	19	49	22	8	2	10	A-1-b
B-007-4-23	46.0	15											
B-007-4-23	48.5	18											
B-008-0-22	1.5	12	28	17	11	0	9	10	13	34	34	68	A-6a
B-008-0-22	3.0	17											
B-008-0-22	3.6	10											
B-008-0-22	4.5	6											
B-008-0-22	5.2	17											
B-008-0-22	6.0	18											
B-008-0-22	7.5	17											
B-008-0-22	8.2	1/											
B-008-0-22	9.0	16											
B-008-0-22	9.4	13											
B-008-0-22	10.5	18											
B-008-0-22	12.0	10											
B-008-0-22	12.8	18											
	15.5	11											
	10.0	14											
B-008-0-22	17 /	15											
B-008-0-22	18.0	14											
B-008-0-22	19.5	13	33	19	14	0	27	8	9	27	29	56	A-6a
B-008-0-22	21.0	10									20		,, , , 00
		1.0	1	1	1	1		1	1	1		1	

SUMMARY OF LABORATORY RESULTS

PAGE 7 OF 9

PROJECT _22170)059B					PID 11	2663						
	AK-90-2.93	Slide				_ PROJEC		ANDSLID	Ξ				
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-008-0-22	21.3	13											
B-008-0-22	22.5	13											
B-008-0-22	23.2	12											
B-008-0-22	24.0	21											
B-008-0-22	25.5	17											
B-008-0-22	26.2	15											
B-008-0-22	27.0	16											
B-008-0-22	28.5	10	35	21	14	0	18	9	10	33	30	63	A-6a
B-008-0-22	30.0	19											
B-008-0-22	31.5	16											
B-008-0-22	33.0	23											
B-008-0-22	34.5	18											
B-008-0-22	36.0	14	33	18	15	0	3	2	8	41	46	87	A-6a
B-008-0-22	37.5	15											
<u>≜</u> B-008-0-22	39.0	15											
B-008-0-22	40.5	16											
B-008-0-22	42.0	15											
B-008-0-22	43.5	12	33	19	14	0	42	9	8	21	20	41	A-6a
B-008-0-22	44.1	15											
B-008-0-22	45.0	16											
B-008-0-22	46.5	17											
B-008-0-22	48.0	16	33	18	15	0	2	4	9	41	44	85	A-6a
B-008-0-22	49.5	11											
δ B-008-0-22	50.3	10											
B-008-0-22	51.0	14											
B-008-0-22	52.5	12											
B-008-0-22	53.1	17	31	18	13	0	9	5	19	33	34	67	A-6a
B-008-0-22	54.0	16											
B-008-0-22	55.5	15											
B-008-0-22	57.0	16											
B-008-0-22	57.5	17											
P B-008-0-22	58.5	16	33	19	14	0	3	6	11	40	40	80	A-6a
B-008-0-22	60.0	16											
B-008-0-22	63.5	18		0.1	4.5			-	10	45	05		
B-008-0-22	68.5	25	36	21	15	0	2	2	16	45	35	80	A-6a
B-008-0-22	/3.5	20	NP	NP	NP	U	3	21	60	12	4	16	А-За
B-008-0-22	//.0	17	20	04	45		40	0	0	20	20	70	A C-
B 000 4 00	0.0	16	30	21	15	U	13	9	8	32	১৪	70	А-ба
B 000 4 00	1.5	18											
B-008-1-22	3.0	15	20	10	45			6	0	20	40	76	A 65
B 009 1 00	3.5	17	১১	Ið	10	U	9	Ø	9	30	40	01	А-ра
B-000-1-22	4.5	14	25	10	17	0	4	2	e	11	47	01	A ch
D-000-1-22	0.0	17	ാ	Ið	17	0		2	o (44	41	91	A-OD

SUMMARY OF LABORATORY RESULTS

PAGE 8 OF 9

PROJECT _ 22170	059B					PID _11	2663						
	AK-90-2.93	Slide				PROJEC			E				
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-008-1-22	7.5	17											
B-008-1-22	9.0	17											
B-008-1-22	10.5	13											
B-008-1-22	11.3	18											
B-008-1-22	12.0	17	36	18	18	0	2	3	8	44	43	87	A-6b
B-008-1-22	13.5	19											
B-008-1-22	15.0	18											
B-008-1-22	15.5	22											
^b ≥ B-008-1-22	16.5	16	33	19	14	1	9	7	9	37	37	74	A-6a
₩ B-008-1-22	18.7	16											
န္ <mark>မိ B-008-1-22</mark>	20.2	14											
B-008-1-22	21.3	15											
ម្ល <u>ី</u> B-008-1-22	21.7	16											
ੋ B-008-1-22	23.2	18	33	18	15	0	4	4	9	40	43	83	A-6a
Ĕ <u>B-008-1-22</u>	24.7	15											
ត <mark>្</mark> B-008-1-22	26.2	15											
§ B-008-1-22	27.7	17											
B-008-1-22	29.2	16	31	18	13	0	4	5	9	39	43	82	A-6a
ба B-008-1-22	30.7	15											
⊐ B-008-1-22	32.2	17											
B-008-1-22	33.7	15											
B-008-1-22	35.2	18	33	19	14	0	4	5	10	40	41	81	A-6a
B-008-1-22	36.7	29											
B-008-1-22	37.5	12											
B-008-1-22	38.2	17											
B-008-1-22	39.7	12											
B-008-1-22	41.2	13	17	16	1	0	40	32	14	10	4	14	A-1-b
B-008-1-22	42.7	14											
[™] B-008-1-22	44.2	16											
³ B-008-1-22	45.7	16											
B-008-1-22	46.6	8											
B-008-1-22	47.2	10											
	1.0	10											
	3.5	10											
B-009-1-23	4.0 6.0	10	30	18	12	0	18	9	8	37	28	65	A
B_000-1-23	85	18		10	12	0	10	3	0	57	20	00	<u></u> 0a
·····································	89	11											
B-009-1-23	11.0	15											
[%] B-009-1-23	13.5	11	24	14	10	3	33	10	9	32	13	45	A-4a
B-009-1-23	16.0	10		-	-			-	-		-		
B-009-1-23	16.7	13											
B-009-1-23	18.5	15											

SUMMARY OF LABORATORY RESULTS

PAGE 9 OF 9

PROJECT _ 22170	059B					PID 11	2663						
	AK-90-2.93	Slide				PROJEC			Ξ				
Borehole	Top Sample Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	% Coarse Gravel	% Fine Gravel	% Coarse Sand	% Fine Sand	% Silt	% Clay	% Silt/Clay	Class- ification
B-009-1-23	18.8	16											
B-009-1-23	21.0	14											
B-009-1-23	23.5	12											
B-009-1-23	24.1	10											
B-009-1-23	26.0	12	29	16	13	0	22	14	5	45	14	59	A-6a
B-009-1-23	28.5	19											
B-009-1-23	31.0	14											
B-009-1-23	33.5	13											
[₿] B-009-1-23	38.5	22											
ਸ਼ੂ B-009-1-23	41.0	21	35	19	16	3	17	9	8	37	26	63	A-6b
B-009-1-23	43.5	27											
B-009-1-23	46.0	20											
B-009-1-23	46.8	20											
B-009-1-23	48.5	30											
B-009-1-23	48.7	10											
B-009-1-23	51.0	15	NP	NP	NP	0	32	39	16	13	0	13	A-1-b
B-009-1-23	53.5	12											
B-009-1-23	54.1	27											
ਨੂੰ B-009-1-23	56.0	13											
⁴ B-009-1-23	56.3	6											
H-004-1-22	0.0	21	28	17	11	0	30	21	16	19	14	33	A-2-6
H-004-1-22	1.5	23	26	17	9	0	27	26	20	17	10	27	A-2-4
H-004-1-22	3.0	21	35	20	15	4	30	16	7	27	16	43	A-6a
K H-004-1-22	4.5	11	23	17	6	13	35	26	11	10	5	15	A-1-b
철 H-006-0-22	0.0	13				16	49	15	9			11	
≝ H-006-0-22	1.5	50	43	28	15	0	3	4	9	50	34	84	A-7-6
ੁੱ H-006-0-22	3.0	46	38	27	11	0	2	11	23	39	25	64	A-6a
H-006-0-22	4.5	34	35	24	11	0	14	15	18	36	17	53	A-6a
H-007-2-22	0.0	18				16	44	16	7	13	4	17	
E H-007-2-22	1.5	22				0	48	26	16			10	
H-007-2-22	3.0	14	25	18	7	3	54	22	6	11	4	15	A-2-4
H-007-2-22	4.5	17	NP	NP	NP	0	29	17	36	14	4	18	A-3a
H-008-3-22	0.0	20				0	26	44	10			20	
H-008-3-22	1.5	14	22	15	7	0	50	26	11	9	4	13	A-2-4
[†] H-008-3-22	3.0	8	NP	NP	NP	16	50	18	9	5	2	7	A-1-a
¥ H-010-0-22	0.0	27	35	19	16	0	14	8	10	34	34	68	A-6b
H-010-0-22	1.5	20	35	20	15	9	14	8	8	31	30	61	A-6a
ਞ <mark>]</mark> H-010-0-22	3.0	13	28	17	11	0	29	13	14	27	17	44	A-6a
SXME													

Tested By: CJ

phi are not test results but an interpretation of the test results. The designer is responsible for interpreting test data as provided by S&ME and

C

C

UNCONFINED COMPRESSIVE STRENGTH **OF COHESIVE SOILS**

		ASTM D2166		
	S&ME, Inc C	Columbus: 6190 Enterprise Cou	rt, Dublin, Ohio 43016	
Project No.:	22170059B		Report Date:	6/6/2024
Project Name:	LAK-90-2.93 Slope Re	pair	Test Date(s):	5/29/2024
Client Name:	WSP USA Inc.			
Client Address:	2 Miranova Place, Suit	e 450, Columbus, OH 43215		
Boring No.:	B-005-1-23	Sample No. ST-1		
			Depth:	4.0-6.0
Sample Descripti	on: Visual ID: SII	T AND CLAY (A-6a) little fine to	coarse sand trace fine gravel	

isual iD, as no class testing was need	aca. Specifich containea large size graver i	n center.	
<u>Christina Jauregui</u> Technical Responsibility	Christina Gauregen signature	<u>T4</u> Position	<u>6/12/2024</u> _{Date}
This report	chall not be reproduced except in full without th	a written approval of SRIME Inc	

UNCONFINED COMPRESSIVE STRENGTH **OF COHESIVE SOILS**

		ASTM D2166		
	S&ME, Inc (Columbus: 6190 Enterprise Court,	Dublin, Ohio 43016	
Project No.:	22-17-0059B		Report Date:	9/18/2023
Project Name:	LAK-90-2.93		Test Date(s):	8/16/2023
Client Name:	WSP			
Client Address:	2 Miranova Place, Suit	te 450, Columbus OH 43215		
Boring No.:	B-007-0-22	Sample No. S-7 ST II		
			Depth:	9.0'-11.0'
Sample Descripti	on: SILT and CLA	AY (A-6a), little fine to coarse sand,	trace fine gravel.	

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS

		ASTM D2166		
	S&ME, Inc	Columbus: 6190 Enterprise Court	t, Dublin, Ohio 43016	
Project No.:	22-17-0059B		Report Date:	9/18/2023
Project Name:	LAK-90-2.93		Test Date(s):	8/16/2023
Client Name:	WSP			
Client Address:	2 Miranova Place, Su	ite 450, Columbus OH 43215		
Boring No.:	B-007-0-22	Sample No. S-13 ST II		
			Depth:	18.5'-20.5'

Sample Description: SILTY CLAY (A-6b), little fine to coarse sand, trace fine gravel.

Paula Manning
Technical ResponsibilityPaula J Manning
SignatureLab Manager
Position9/18/2023
DateThis report shall not be reproduced, except in full, without the written approval of S&ME, Inc.Date

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS

		ASTM D2166		
	S&ME, Inc Co	olumbus: 6190 Enterprise Court, Du	ublin, Ohio 43016	
Project No.:	22170059B		Report Date:	6/10/2024
Project Name:	LAK-90-2.93 Slope Repa	air	Test Date(s):	5/29/2024
Client Name:	WSP USA Inc.			
Client Address:	2 Miranova Place, Suite	450, Columbus, OH 43215		
Boring No.:	B-007-3-23	Sample No. ST-1		
			Depth (ft):	8.0-10.0
Client Name: Client Address: Boring No.:	WSP USA Inc. 2 Miranova Place, Suite B-007-3-23	450, Columbus, OH 43215 Sample No. ST-1	Depth (ft):	8.0-10.0

Sample Description: Visual ID: SILT AND CLAY (A-6a), little to some fine to coarse sand, trace fine gravel.

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS

		ASTM D2166				
S&ME, Inc Columbus: 6190 Enterprise Court, Dublin, Ohio 43016						
Project No.:	22170059B		Report Date:	6/7/2024		
Project Name:	LAK-90-2.93 Slope	Repair	Test Date(s):	5/29/2024		
Client Name:	WSP USA Inc.					
Client Address:	2 Miranova Place, S	Suite 450, Columbus, OH 43215				
Boring No.:	B-007-4-23	Sample No. ST-16				
			Depth (ft):	38.0-40.0		
Sample Descripti	Sample Description: SILT and CLAY (A-6a), some fine to coarse sand, trace fine gravel.					

<u>Christina Jauregui</u>	Christina Jauregui	<u>T4</u>	<u>6/12/2024</u>
Technical Responsibility	Signature	Position	Date
This report s	shall not be reproduced, except in full, without the	written approval of S&ME, Inc.	

UNCONFINED COMPRESSIVE STRENGTH **OF COHESIVE SOILS**

	S&ME, Inc	Columbus: 6190 Enterprise Court,	Dublin, Ohio 43016	
Project No.:	22-17-0059B		Report Date:	9/18/2023
Project Name:	LAK-90-2.93		Test Date(s):	8/16/2023
Client Name:	WSP			
Client Address:	2 Miranova Place, Su	ite 450, Columbus OH 43215		
Boring No.:	B-008-1-22	Sample No. S-12 ST II		
			Depth:	16.5'-18.7'
Sample Descripti	ion: SILT and CL	AY (A-6a), little fine to coarse sand,	trace fine to coarse gravel.	

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS

		ASTM D2166		
	S&ME, Inc	Columbus: 6190 Enterprise Court,	Dublin, Ohio 43016	
Project No.:	22-17-0059B		Report Date:	9/18/2023
Project Name:	LAK-90-2.93		Test Date(s):	8/16/2023
Client Name:	WSP			
Client Address:	2 Miranova Place, Sui	ite 450, Columbus OH 43215		
Boring No.:	B-008-1-22	Sample No. S-33 ST II		
			Depth:	3.0' to 4.7'
Sample Descript	ion: SILT and CL	AY (A-6a), little fine to coarse sand, t	trace fine gravel.	

Initial Dry Unit Weight: <u>115.7</u> pcf Initial Water Content: <u>17.0%</u> Unconfined Compressive Strength, q_u: **2.470** KSF Undrained Shear Strength, s_u: **1.235** KSF Failed Specimen

 Type of Sample:
 Intact

 Source of Moisture Sample:
 Test Specimen

Liquid Limit:	33
Plasticity Index:	15
Height to Diameter Ratio:	2.1
Rate of Strain (%/min.):	1
Strain at Failure:	12.3

References / Comments / Deviations:			
Specimen required minor patchwork.	Paula & Manning		
Paula Manning		Lab Manager	9/18/2023
Technical Responsibility	Signature	Position	Date
This report sha	all not be reproduced, except in full, with	nout the written approval of S&ME, Inc.	

UNCONFINED COMPRESSIVE STRENGTH **OF COHESIVE SOILS**

ASTM D2166

S&ME, Inc. Cincinnati: 862 East Crescentville Road, West Chester, OH 45246							
Project No.:	22170059B		Report Date:	6/13/2024			
Project Name:	LAK-90-2.93 Slope R	epair	Test Date(s):	5/31/2024			
Client Name:							
Client Address:							
Location:	B-009-1-23	Sample No. S-6	Sample Date:				
			Depth:	13.5-15.2			
Sample Description: SANDY SILT (A-4a), "and" fine to coarse gravel, little clay							

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-D2166-01

Revision Date: 08/16/17

Revision No.: 1

UNCONFINED COMPRESSIVE STRENGTH **OF COHESIVE SOILS**

ASTM D2166

S&ME, Inc. Cincinnati: 862 East Crescentville Road, West Chester, OH 45246						
Project No.:	22170059B		Report Date:	6/13/2024		
Project Name:	LAK-90-2.93 Slope Repair		Test Date(s):	5/31/2024		
Client Name:						
Client Address:						
Location:	B-009-1-23	Sample No. S-17	Sample Date:			
			Depth:	41.0-42.9		

SILTY CLAY (A-6b), little fine to coarse gravel, little fine to coarse sand

Juse Cannad K. Cannady QAS 6/13/2024 Position Technical Responsibility Signature Date This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-D2166-01

Revision Date: 08/16/17

Revision No.: 1

Form No. TR-D701	^{12C-01} UI	NIAXIAL COMPRESS	IVE STRENGTH	8
Revision No. 1		OF ROC	K	(II) =
Revision Date: 07/	14/17	ASTM D 7012 Ma	sthad C	
	S&ME Inc	- Columbus: 6100 Entern	rise Court Dublin Obio	
Project No :	22170059B	- Columbus. 0190 Enterp	Report	Date: 03/20/23
Project Name:	LAK-90-2.93 Slo	one Renair	Test D	ate(s): $03/17/23$
Client Name:	WSP USA Inc.	ope nepuli	1000 20	
Client Address:	2 Miranova Place,	Suite 450, Columbus OH 43215		
Boring ID:	B-001-1-22, NO	-11	Depth/Ele	ev., ft: 17.9' to 18.3'
Sample Descripti	ion: SHALE, gra	ly		
		•		
Angle of load rel	ative to lithology:	Approximately perpendicula	ar to bedding plane	
	~	Test Result	ts	
Mois	ture Content	6.9 %	Dry Unit Weight	141.3 pcf
		Compressive Strength	<i>116</i> psi	
-			Land	
9	Contraction of the second			=4
	The second second			
	and the second			
	1	-m		0
				DEP /
1	1-5 Se		- NE WE	
	and and the		1 Star De	EN
1	19/ 2 3 4 4			
and the second second			1.5 1 man - 1	
the second se			- Share -	
			1 27	
	. Martineza			- TEI
		R's F		
	and the second			
	1 min	and the second sec		the second
16. J				
	Before Tes	t	After	Test
		Strain rate: 0.9 %	⁄o/min.	
Notes / Deviations /	References: Spe	ecimen end preparation not do	ne in accordance with AST	M D4543.
Specimen capped	using high strength	n gypsum in accordance with A	STM C617.	
Test results for sp	pecimens not meetin	g this requirement may differ f	rom test results obtained f	rom specimens
meeting this requi	irement.			
Paula	Manning	Paula & Mannina	Lab Manager	3/20/2023
Technical L	Responsibility	Signature	Position	Date
	This report sh	all not be reproduced except in full with	hout the written approval of S&MF	E. Inc.

Form No. TR-D701	^{2C-01} U	NIAXIAL C	OMPRESSI	/E STRENGTH	E 1
Revision No. 1	14/17		OF ROCK		(1) =
Revision Date. 07/	14/17	A.S	STM D 7012 Metl	nod C	Quality Assurance
	S&ME. Inc.	- Columbus:	6190 Enterpri	se Court. Dublin. Ohio	43016
Project No.:	22170059B		··F	Report]	Date: 03/09/23
Project Name:	LAK-90-2.93 SI	ope Repair		Test Da	te(s): 03/07/23
Client Name:	WSP USA Inc.				
Client Address:	2 Miranova Place,	Suite 450, Colu	mbus OH 43215		
Boring ID:	B-001-1-22, NQ	-12		Depth/Elev	v., ft: 23.3' to 23.7'
Sample Descripti	on: SHALE, gra	ny			
Angle of load rel	ative to lithology:	Approximate	ely perpendicular	to bedding plane	
		5 5 0/	Test Results		147 4
Moisi	ture Content	5.5 %	• 0, 1	Dry Unit Weight	147.6 pcf
		Compress	ive Strength	441 psi	
	alare to a				
Telan		E		· Come	
	N	=4		XA	=4
				. Aprila	
		=0		T	
	the second	F		No lotter	
	No Con				
	1 And and a second	E.		- Are	
				Aller	
		E			
				Zh ke d	
	- Alle		8		The second
				A STATION	ALL AND
				and the second s	" A 24"
	Boforo Too	4		After	Fact
	Delore res	ι		Alter	1 651
		St	train rate 09%	min	
Notes / Deviations / I	References: Sp	ecimen containe	ed horizontal frac	tures. Specimen end prepa	aration not done in
accordance with A	STM D4543. Spec	imen capped us	sing high strength	gypsum in accordance wi	th ASTM C617.
Test results for sp	ecimens not meetir	ng this requirem	ent may differ fr	om test results obtained fr	om specimens
meeting this requi	rement.				
Paula	Manning	Poula 1-	Manuina	Lah Manager	3/9/2023
<u>rechnical</u>	Responsibility	Sion	nature	Position	<u>57972025</u> Date
100	This report of	all not be reproduce	ed except in full witho	ut the written approval of S&MF	Inc
	ins report st		ла, слесрі ін јин, жино	an and written upprovat of SociME,	

Form No. TR-D701	^{2C-01} UI	NIAXIAL CO	MPRESS	VE STRE	NGTH		
Revision No. 1 Revision Date: 07/1	14/17		OF ROCI	K			m =
	,	ASTI	M D 7012 Me	thod C		Qual	lity Assurance
	S&ME, Inc.	- Columbus: 6	5190 Enterpr	rise Court, Du	blin, Ohio 4	3016	
Project No.:	22170059B				Report I	Date:	03/09/23
Project Name:	LAK-90-2.93 Sl	ope Repair			Test Dat	e(s):	03/07/23
Client Name:	WSP USA Inc.						
Client Address:	2 Miranova Place,	Suite 450, Columb	ous OH 43215				
Boring ID:	B-002-0-22, NQ	-41			Depth/Elev	v., ft:	73.6' to 73.9'
Sample Descripti	on: SHALE, gra	ıy					
Angle of load rol	ative to lithele are	Annovimataly	nomondioule	n to hadding n	1000		
Angle of load rela	ative to inthology:	Approximately	Test Result	r to bedding p	lane		
Mois	ture Content	3.7 %	I est Resutt	o Drv Unit V	Veight	152.6	ncf
11015	une comeni	Compressive	e Strenoth	<i>Liy Onu</i> , 1.547 r	nsi	152.0	per
		t			After T	Fest	
		Stra	in rate: 0.9 %	⁄a/min.			
Notes / Deviations / I	References: Spo	ecimen end prepar	ration not dor	e in accordanc	e with ASTM	I D4543.	
Specimen capped	using high strength	n gypsum in accord	dance with AS	STM C617.	1.1.20		
Test results for sp	ecimens not meetin	g this requiremen	t may differ f	rom test results	s obtained fro	om specim	iens
Paula D Technical I	Manning Responsibility	Paula 1 M Signatu	QMMAAAg_	Lat	o Manager Position		<u>3/9/2023</u> Date
	This report sh	all not be reproduced, e	except in full, with	nout the written app	roval of S&ME, I	Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/12/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/07/24 **Client Name:** WSP USA, Inc. 05/17/24 Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** Boring ID: B-005-1-23, NQ-5 Depth/Elev., ft: 46.4 - 46.8 Sample Description: SHALE, gray

Angle of load relative to lithology: Approximately perpendicular to bedding plane				
Test Results				
Moisture Content	3.6 %	Dry Unit Weight	154.3 pcf	
	Compressive Strength	<i>1,327</i> psi		
<image/>	Strain rate: 0.9 %	After to After to	Fest	
Specimen capped using high strength gypsum in accordance with ASTM C617.				
Test results for specimens not meeting this requirement may differ from test results obtained from specimens				
meeting this requirement.				
Paula J. Manning Technical Responsibility	Paula 1 Manning Signature	Lab Manager Position	<u>6/12/2024</u> Date	
This report sha	ll not be reproduced, except in full, with	out the written approval of S&ME,	Inc.	

S&ME, Inc - Corporate

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/13/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/07/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-005-1-23, NQ-8 Depth/Elev., ft: 60.8 - 61.2 Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
	Test Results	5		
Moisture Content	3.4 %	Dry Unit Weight	154.9 pcf	
	Compressive Strength	<i>1,554</i> psi		
<image/> <image/> <image/>	Strain rate: 0.9%	Winin.	The set	
Specimen capped using high strength gypsum in accordance with ASTM C617.				
Test results for specimens not meeting this requirement may differ from test results obtained from specimens				
meeting this requirement. Specimen contains horizontal fractures.				
Paula J. Manning	Paula & Manning	Lab Manager	<u>6/12/2024</u>	
This report she	signature	Position	Date	
This report sho	all not be reproduced, except in full, with	out the written approval of S&ME,	Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/13/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/07/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-007-3-23, NQ-4 Depth/Elev., ft: 46.9 - 47.3 Sample Description: SHALE, gray

Test Results Test Results Moisture Content 6.2 % Dry Unit Weight 138.0 pcf Compressive Strength 167 psi Image: Strength 167 psi				
Moisture Content6.2 % Compressive StrengthDry Unit Weight 167 psi138.0 pcfImage: StrengthImage: StrengthI				
Compressive Strength 167 psi				
Intral and a second sec				
Before Test Events Strain rate: 0.9 %/min.				
Specimen capped using high strength gypsum in accordance with ASTM C617.				
Test results for specimens not meeting this requirement may differ from test results obtained from specimens				
meeting this requirement. Specimen contains horizontal fractures.				
Paula J. Manning Technical Responsibility Signature Lab Manager Signature Position Date				

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/13/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/07/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-007-3-23, NQ-6 Depth/Elev., ft: 59.6 - 60.0 Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
Test Results				
Moisture Content	<i>6</i> .7 %	Dry Unit Weight	<i>134.6</i> pcf	
	Compressive Strength	78 psi		
<image/> <image/>	Strain rate: 0.9 %	Symmetry	Sublementary Sublementary Sublementary Test	
Notes / Deviations / Keferences: Specimen end preparation not done in accordance with ASTM D4543. Specimen conned using high strength gungum in accordance with ASTM C(17)				
Test results for specimens not meeting this requirement may differ from test results obtained from specimens				
meeting this requirement.				
Doulo I. Monning	Paulo 1 Maria	Lab Marazar	6/10/2024	
<u>Paula J. Wanning</u> Technical Responsibility	Signature	Lad Wianager Position	<u>0/12/2024</u> Date	
This report shall	l not be reproduced, except in full, with	out the written approval of S&ME,	Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/14/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/07/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-007-4-23, NQ-22 Depth/Elev., ft: 54.6 - 56.0 Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
	Test Result	5		
Moisture Content	7.8 %	Dry Unit Weight	135.1 pcf	
	Compressive Strength	64 psi		
<image/>	Strain rate: 0.9 %	Just After	<image/>	
Notes / Deviations / Kejerences: Specimen end preparation not done in accordance with ASTM D4545. Specimen end preparation not done in accordance with ASTM D4545.				
Specimen capped using mgn strength gypsum in accordance with AS1M Co17.				
meeting this requirement.				
Paula J. Manning Technical Responsibility	Paula 4 Manning. Signature	Lab Manager Position	<u>6/14/2024</u> Date	
This report sha	ll not be reproduced, except in full, with	out the written approval of S&ME	E, Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/14/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/07/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-007-4-23, NQ-23 Depth/Elev., ft: 62.4 - 62.8 Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
	Test Result	5	1	
Moisture Content	3.7 %	Dry Unit Weight	152.3 pcf	
	Compressive Strength	950 psi	-	
<image/>	t	<image/> <image/>	<image/>	
	Strain rate: 0.9 %	d/min.		
Notes / Deviations / References: Specimen end preparation not done in accordance with ASTM D4543. Sector 1 1 Sector 2 1 Sector 2				
Specifien capped using fight strength gypsum in accordance with ASTM Co17.				
meeting this requirement.	5 cms requirement may unter n	om test results obtained if (shi specificits	
Paula J. Manning Technical Responsibility	Paula 4 Manning Signature	Lab Manager Position	<u>6/14/2024</u> Date	
This report sh	all not be reproduced, except in full, with	out the written approval of S&ME,	Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/12/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/11/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-008-4-23, NQ-3 Depth/Elev., ft: 60.5 - 60.9 Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
Test Results				
Moisture Content	3.0 %	Dry Unit Weight	<i>154.6</i> pcf	
	Compressive Strength	<i>1,763</i> psi		
<image/> <image/> <image/>	Strain rate: 0.9 %	Winin. e in accordance with ASTI	Test	
Specimen capped using high strength gypsum in accordance with ASTM C617.				
Test results for specimens not meeting this requirement may differ from test results obtained from specimens				
meeting this requirement.				
Paula J. Manning Technical Responsibility	Paula 4 Manning Signature	Lab Manager Position	<u>6/12/2024</u> Date	
This report she	all not be reproduced, except in full, with	out the written approval of S&ME,	Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

	S&ME, Inc Columbus: 6190 Enterprise Court,	Dublin, Ohio 43016	
Project No.:	22-17-0059B	Report Date:	06/12/24
Project Name:	LAK-90-2.93 Slope Repair	Test Date(s):	06/11/24
Client Name:	WSP USA, Inc.		
Client Address:	2 Miranova Place, Suite 450, Columbus, Ohio 43215	Received Date:	05/17/24
Boring ID:	B-008-4-23, NQ-5	Depth/Elev., ft:	69.0 - 69.4
Sample Descripti	on: SHALE, gray		

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
Test Results				
Moisture Content	3.6 %	Dry Unit Weight	154.8 pcf	
	Compressive Strength	<i>1,133</i> psi		
<image/> <image/>	ft ft ft ft ft ft ft ft ft ft ft ft ft f	۵/min.	<image/>	
Notes / Deviations / References: Specimen end preparation not done in accordance with ASTM D4543.				
Specimen capped using high strength gypsum in accordance with ASTM C617.				
results for specimens not meeting this requirement may differ from test results obtained from specimens				
needing unit requirement.	$\int_{\Omega} - \frac{1}{2} \frac{1}$			
Paula J. Manning Technical Responsibility	Faula 4. Manning Signature	Lab Manager Position	<u>6/12/2024</u> Date	
This report sl	nall not be reproduced, except in full, with	nout the written approval of S&ME	E, Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/12/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/11/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-009-1-23, NQ-24 Depth/Elev., ft: 64.3 - 64.7 Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
Test Results				
Moisture Content	3.6 %	Dry Unit Weight	154.2 pcf	
	Compressive Strength	<i>924</i> psi		
<image/> <image/>	Strain rate: 0.9 %	Winin.	<image/>	
Notes / Deviations / References: Specimen end preparation not done in accordance with ASTM D4545.				
Test results for specimens not meeting this requirement may differ from test results obtained from specimens				
meeting this requirement.				
Paula J. Manning Technical Responsibility	Paula 4 Manning Signature	Lab Manager Position	<u>6/12/2024</u> Date	
This report shall	l not be reproduced, except in full, with	out the written approval of S&ME,	Inc.	

UNIAXIAL COMPRESSIVE STRENGTH OF ROCK

ASTM D 7012 Method C

Quality Assurance

S&ME, Inc. - Columbus: 6190 Enterprise Court, Dublin, Ohio 43016 22-17-0059B Project No.: **Report Date:** 06/12/24 Project Name: LAK-90-2.93 Slope Repair Test Date(s): 06/11/24 **Client Name:** WSP USA, Inc. Client Address: 2 Miranova Place, Suite 450, Columbus, Ohio 43215 **Received Date:** 05/17/24 Boring ID: B-009-1-23, NQ-25 Depth/Elev., ft: 70.1 - 70.5 Sample Description: SHALE, gray

Angle of load relative to lithology:	Approximately perpendicula	r to bedding plane		
	Test Results	S .		
Moisture Content	3.0 %	Dry Unit Weight	156.8 pcf	
	Compressive Strength	<i>1,448</i> psi		
<image/> <image/> <image/>	Strain rate: 0.9 %	Winin.	Test	
Specimen capped using high strength gypsum in accordance with ASTM C617.				
Test results for specimens not meeting this requirement may differ from test results obtained from specimens				
meeting this requirement.				
Paula J. Manning Technical Responsibility	Paula 4 Manning Signature	Lab Manager Position	<u>6/12/2024</u> Date	
This report sha	all not be reproduced, except in full, with	out the written approval of S&ME,	, Inc.	

Slake Durability Index Test Report

ASTM D 4644

Slake Durability Index Test Report

ASTM D 4644

Project Name: LAK-90

S&ME, Inc. - Columbus 6190 Enterprise Court, Dublin, Ohio 43016 Slake Durability ASTM D4644 3/1/2023 Project Number: 22-17-0059B Date:

Boring Number: B-001-1 Sample Number: S-12

Depth: 19.5' to 25.1'

ու<u>հիսինինի</u>ներերերը 5 հոկություն։ Արևելերերերերին 10 հոկություն։ 10 հոկություն է 10 հոկություն։

Slake Durability ASTM D4644

Date: 3/8/2023

Depth: 19.5' to 25.1'

After

Project Number: 22-17-0059B

LAK-90

Boring Number: B-001-1 Sample Number: S-12

Project Name:

LAK-90-2.93 Slope Repair

Project Name

Project Number

22170059B

Project Information

Specimen Information

Boring ID

B-001-1-22 NQ-12

Sample Depth, feet

19.5' to 25.1'

Sample Description

SHALE

Water Temperature, °C

19.6

Test Results

Natural Water Content, %

3.1

Slake Durability Index, 1st cycle, %

79.4

Slake Durability Index, 2nd cycle, %

62.1

Description of Fragments

Type II

Slake Durability of Shales and Weak Rocks

				ASTM D46	44				
	S8	ME, Inc Col،	umbus:	6190 Enterp	rise Court	, Dublin, (Dhio 43016		
Project Number:	22170059	В					Report Date	e:	6/14/24
Project Name:	LAK-90-2.	93 Slope Repa	nir				Test Date(s)):	6/10-13/2024
Client Name:	WSP								
Client Address:	2 Miranov	a Place, Suite	450, Colur	mbus, OH 43	3215				
Boring: B-0	05-1-23	Sa	ample #:	NQ-	5	Sam	ple Date: 5/1	13/202	24
						۵	Depth (ft):		44.2-49.2
Sample Description	on: S	SHALE, gray							
Equipment Used	:								
Slake Durability Mad	chine:	S&ME ID#:	28074	Drum	(g):	823.59	Calibration I	Date:	5/16/24
Timer:		S&ME ID#:	29622	Readab	ility: 1	second	Calibration I	Date:	1/8/24
Balance (1g):		S&ME ID#:	27984	Readab	ility:	0.01 g	Calibration I	Date:	10/19/23
	Mass of	Individual Roc	k Fragmen	nts Before Te	sting with	out Drum	included (gra	ims)	
Fragment No. 1:	46.97	Fragment N	No. 2:	40.67	Fragment	No. 3:	57.27	_	
Fragment No. 4:	59.45	Fragment N	No. 5:	47.40	Fragment	No. 6:	56.79	_	
Fragment No. 7:	48.50	Fragment N	No. 8:	59.89	Fragment	No. 9:	44.79	_	
Fragment No. 10:	43.10				Total Mas	ses:	504.83	(Tol	erance: 450-550)
		Init	ial Moistu	re Content o	f Rock Fra	gments:			
Tota	I Masses of	Fragments Befo	re Testing a	and Drum (g):	1328.4	12			
Тс	otal Masses o	of Fragments Af	ter Drying a	and Drum (g)	1313.4	2			
		Water Conter	nt of Rock F	ragments (g)	15.00)			
		Moisture Cor	ntent of Roo	ck Fragments	3.0%	•			
			w	ater Temper	atures				
	Water Tei	mperature at th	e beginning	g of the cycle	20.8	°c			
	Wa	ter Temperatur	e at the end	d of the cycle	21.7	°c			
		Aver	age Water	Temperature	21.3	°c			
		Mois	sture Conte	ent of Rock F	ragments	By Cycle	_		
	<u> </u>			Cycle	1	Cycle	2		
lotal Masses	s of Fragmer	its After Drying	and Drum	(g): 1254.	30	1190.0	06		
	Slake Durability Indexes								
	First Cycle Index: 87.9%								
Second Cycle Index: /4.8%									
Record comments, not	es, and deviati	ons from the test	procedure:						

ASTM D4644: Slake Durability of Shales and Other Similar Weak Rocks.								
Tested By: Paula J. Manning Paula J. Manning Date: 6/14/2024								
		Signature						
Reviewed by:	Christina Jauregui	Christina Jauregin	Date:	6/14/2024				
		Signature						

Form No: TR-D4644-2 Revision No. 1 Revision Date: 5/24/2024

Slake Durability of Shales and Weak Rocks

		ASTM D4644		
	S&ME, Inc Colur	nbus: 6190 Enterprise Co	ourt, Dublin, Ohio 43016	
Project Number:	22170059B		Report Date:	6/14/24
Project Name:	LAK-90-2.93 Slope Repair		Test Date(s):	6/10-13/2024
Client Name:	WSP		Received Date:	5/17/2024
Client Address:	2 Miranova Place, Suite 45	0, Columbus, O		
Boring: B-0	05-1-23 Sam	ple #: NQ-5	Sample Date: 5/13/2	2024
			Depth: 44.2'-4	19.2'
Sample Description	on: SHALE, gray			
Spec	imen Pictures Before Test	ing	Specimen Pictures After	Testing
	Before		After	
Fragment Type:	🗌 l (Unchanged)	✓ II (large and s	small) 🗌 🔲 (exclusi	vely small)
Record comments, not	es, and deviations from the test pro	ocedure:		
Tested By:	Paula J. Manning	raula J TV	lanning Date:	6/14/2024
Reviewed by:	Christina Jauregui	Signature Christina G Signature	<u>auh.ga Date:</u>	6/14/2024

Slake Durability of Shales and Weak Rocks

ASTM D4644										
S&ME, Inc Columbus: 6190 Enterprise Court, Dublin, Ohio 43016										
Project Number:	221700598	3						Report Date:		6/14/24
Project Name:	LAK-90-2.9	93 Slope Repai	r					Test Date(s):	(5/10-13/2024
Client Name:	WSP									
Client Address:	2 Miranova	a Place, Suite 4	50, Colur	nbus, OH 43	215					
Boring: B-0	08-4-23	Sar	mple #:	NQ-	2		Sam	ple Date: 5/13	3/2024	4
								Depth: 52.0)'-56.3	1
Sample Description	on: S	HALE, gray								
Equipment Used	:									
Slake Durability Ma	chine:	S&ME ID#:	28074	Drum ((g):	829.	27	Calibration D	ate:	5/16/24
Timer:		S&ME ID#:	29622	Readab	ility:	1 seco	ond	Calibration D	ate:	1/8/24
Balance (1g):		S&ME ID#:	27984	Readab	ility:	0.01	g	Calibration D	ate:	10/19/23
	Mass of	ndividual Rock	Fragmen	ts Before Te	sting v	vithout	Drum i	included (gran	ns)	
Fragment No. 1:	57.15	Fragment N	o. 2:	56.86	Fragn	nent No.	3:	54.89	-	
Fragment No. 4:	55.02	Fragment N	o. 5:	55.79	Fragn	nent No.	6:	51.16	-	
Fragment No. 7:	55.52	Fragment N	o. 8:	58.05	Fragn	nent No.	9:	47.87	-	
Fragment No. 10:	57.35				Total	Masses:		549.66	(Toler	ance: 450-550)
		Initia	al Moistur	re Content of	Rock	Fragme	ents:			
Tota	I Masses of F	ragments Before	e Testing a	and Drum (g):	13	378.93	_			
Тс	otal Masses o	f Fragments Afte	er Drying a	and Drum (g):	13	352.60	-			
		Water Content	of Rock F	ragments (g):	2	26.33				
		Moisture Cont	ent of Roc	ck Fragments:	4	1.8%	_			
				ater Temper	atures		0			
	Water Ier	nperature at the	beginning	g of the cycle:		21.7	_°c			
	Wa	ter Temperature	at the end	t of the cycle:		21.7	-°c			
		Avera	ige Water	Temperature:		21.7	°c			
		IVIOIST	ure Conte		ragme	ents By	Cycle Cycle	•		
Cycle 1 Cycle 2										
	I otal masses of Fragments After Drying and Drum (g): 1187.13 1093.94									
			Fire	t Cycle Indev	A R	8.4%				
Second Cycle Index: 50.6%										
Record comments not	Second Cycle Index. 50.0 %									

ASTM D4644: Slake Durability of Shales and Other Similar Weak Rocks.								
Tested By:	Paula J. Manning	Paula & Manning	Date:	6/14/2024				
		Signature						
Reviewed by:	Christina Jauregui	Christina Jaurean	Date:	6/14/2024				
		Signature						

Form No: TR-D4644-2 Revision No. 1 Revision Date: 5/24/2024

Slake Durability of Shales and Weak Rocks

		ASTM D4644		
	S&ME, Inc Colum	bus: 6190 Enterprise Cou	rt, Dublin, Ohio 43016	
Project Number:	22170059B		Report Date:	6/14/24
Project Name:	LAK-90-2.93 Slope Repair		Test Date(s):	6/10-13/2024
Client Name:	WSP		Received Date:	5/17/2024
Client Address:	2 Miranova Place, Suite 450), Columbus, O		
Boring: B-C	008-4-23 Samp	ole #: NQ-2	Sample Date: 5/13/2	.024
			Depth: 52.0'-5	56.3'
Sample Description	on: SHALE, gray			
Spec	imen Pictures Before Testi	ng	Specimen Pictures After	Testing
	Before		After	
Fragment Type: Record comments, not	I (Unchanged) tes, and deviations from the test proc	II (large and sr	nall) 🔽 III (exclusi	vely small)
Tostad Pur	Daula I Manning	Paulo AM.	Data:	6/11/2021
Reviewed by:	Christina Jauregui	Signature Christina Ga Signature	uligni Date:	6/14/2024

Geotechnical Data Report LAK-90-2.93 Landslide Willoughby Hills, Lake County, Ohio S&ME Project No. 22170059B

Appendix III – Field Instrument Readings

1

0.5

0

PLATE 2

1

0.5

4/6/2023

10/19/2023

6/25/2024

B-001-1-22 (offset)									
Data	Timo	Wate	r Level (ft)	Netec					
Date	Time	From Top of Pipe	From Ground Surface	Notes					
12/7/2022				Seepage noted at depth of 4.2 feet					
12/1/2022				during drilling					
12/29/2022		10.8	8.4	Stick-up Height of Casing = 2.4 feet					
12/29/2022		15.8	13.4	Bailed to this depth					
2/18/2023		8.6	6.2						
4/6/2023	12:00PM	8.9	6.5						
7/27/2023		7.7	5.3						
10/19/2023		8.3	5.9						
12/6/2023		7.1	4.7						
2/21/2024		6.5	4.1						
4/17/2024		9.6	7.2						
6/25/2024		8.5	6.1						

B-005-0-22									
Date	Timo	Water	r Level (ft)	Notos					
Date	Time	From Top of Pipe	From Ground Surface	Notes					
12/13/2022			24.2	Groundwater depth during drilling					
12/29/2022		26.7	24.4	Stick-up Height of Casing = 2.3 feet					
12/29/2022		27.8	25.5	Bailed to this depth					
2/18/2023		25.2	22.9						
4/6/2023	12:00PM	25.2	22.9						
7/27/2023		24.4	22.1						
10/19/2023		24.7	22.4						
12/6/2023		23.9	21.6						
2/21/2024		22.4	20.1						
4/17/2024		24.5	22.2						
6/25/2024		24.8	22.5						

B-008-1-22									
Data	Timo	Water Level (ft)		Notor					
Date	Time	From Top of Pipe	1 Top of Pipe From Ground Surface	Notes					
7/17/2023			38.2	Groundwater depth during drilling					
7/27/2022		40 F	27	Stick-up Height of Casing = 3.5 feet					
1/21/2023		40.5	57	Bailing not needed					
10/19/2023		39.8	36.3						
12/6/2023		39.4	35.9						
2/21/2024		38.1	34.6						
4/17/2024		41	37.5	Well abandoned on 5/13/24.					

	B-009-1-23									
Date	Timo	Wate	r Level (ft)	Notor						
Date	Time	From Top of Pipe	From Ground Surface	Notes						
5/22/2024			48.0	Groundwater depth during drilling						
6/25/2024		50 F	47.0	Stick-up Height of Casing = 3.5 feet						
0/23/2024		50.5	47.0	Bailing not needed						

B SLOPE STABILITY CALCULATIONS

B-1 SLOPE/W OUTPUT - STATION 102+18.28

File Name: LAK-90-2.93 _Section-1_Sta 20+50 - 052523.gsz Name: 0a. Existing Condition - Undrained (2) Created By: El-Quqa, Osama O. Date: 05/25/2023 Analysis Type: Morgenstern-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1c. Fill (Residual Strength)	Mohr-Coulomb	120	0	20
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93_Section-1_Sta.20+50 - 052523.gsz Name: 0a. Existing Condition - Undrained (2) Created By: El-Quqa, Osama O. Date: 05/25/2023 Analysis Type: Morgenstern-Price

File Name: LAK-90-2.93_Section-1_Sta.20+50 - 052523.gsz Name: 0b. Existing Condition - Drained (2) Created By: El-Quqa, Osama O. Date: 05/25/2023 Analysis Type: Morgenstern-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1c. Fill (Residual Strength)	Mohr-Coulomb	120	0	20
	2b. Clay/Silty Clay - Drained	Mohr-Coulomb	125	150	34
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93_Section-1_Sta.20+50 - 052523.gsz Name: 0b. Existing Condition - Drained (2) Created By: El-Quqa, Osama O. Date: 05/25/2023 Analysis Type: Morgenstern-Price

File Name: LAK-90-2.93_Section-1_Sta.102+18.28 - 053023.gsz Name: 3a. Remediation - Soil Nails - Undrained (2) Created By: El-Quqa, Osama O. Last Edited By: Saqer, Hamzeh Date: 08/16/2024 Analysis Type: Morgenstern-Price

File Name: LAK-90-2.93_Section-1_Sta.102+18.28 - 053023.gsz Name: 3a. Remediation - Soil Nails - Undrained (2) Created By: El-Quqa, Osama O. Last Edited By: Saqer, Hamzeh Date: 08/16/2024 Analysis Type: Morgenstern-Price

File Name: LAK-90-2.93_Section-1_Sta.102+18.28 - 053023.gsz Name: 3b. Remediation - Soil Nails - Drained (2) Created By: El-Quqa, Osama O. Last Edited By: Saqer, Hamzeh Date: 08/16/2024 Analysis Type: Morgenstern-Price

File Name: LAK-90-2.93_Section-1_Sta.102+18.28 - 053023.gsz Name: 3b. Remediation - Soil Nails - Drained (2) Created By: El-Quqa, Osama O. Last Edited By: Saqer, Hamzeh Date: 08/16/2024 Analysis Type: Morgenstern-Price

B-2 SLOPE/W OUTPUT - STATION 112+49.46

File Name: LAK-90-2.93 Section-2_Sta.31+00_08-06-24.gsz Name: 0a. Existing Condition - Undrained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstern-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1c. Residual Fill	Mohr-Coulomb	120	0	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93 Section-2_Sta.31+00_08-06-24.gsz Name: 0a. Existing Condition - Undrained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstern-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1c. Residual Fill	Mohr-Coulomb	120	0	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93 Section-2_Sta.31+00_08-06-24.gsz Name: 0b. Existing Condition - Drained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstem-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1c. Residual Fill	Mohr-Coulomb	120	0	23
	2c. Clay/Silty Clay - Residual	Mohr-Coulomb	125	50	32
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93 Section-2_Sta.31+00_08-06-24.gsz Name: 0b. Existing Condition - Drained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstem-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1c. Residual Fill	Mohr-Coulomb	120	0	23
	2c. Clay/Silty Clay - Residual	Mohr-Coulomb	125	100	32
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93 Section-2 Sta.31+00_08-06-24.gsz Name: 1a. Temporary Bench with Slope 1:1 Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstem-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1a. Fill - Undrained	Mohr-Coulomb	120	200	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93_Section-2_Sta.31+00_08-06-24.gsz Name: 1a. Temporary Bench with Slope 1:1 Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstem-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1a. Fill - Undrained	Mohr-Coulomb	120	200	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93 Section-2 Sta.31+00_08-06-24.gsz Name: 1b. Temporary Bench with Sheet Piles Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstem-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1a. Fill - Undrained	Mohr-Coulomb	120	200	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93_Section-2_Sta.31+00_08-06-24.gsz Name: 1b. Temporary Bench with Sheet Piles Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstem-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1a. Fill - Undrained	Mohr-Coulomb	120	200	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93 Section-2 Sta.31+00_08-06-24.gsz Name: 2a. Drilled Shafts - Undrained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstem-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1a. Fill - Undrained	Mohr-Coulomb	120	200	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93_Section-2_Sta.31+00_08-06-24.gsz Name: 2a. Drilled Shafts - Undrained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstern-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1a. Fill - Undrained	Mohr-Coulomb	120	200	23
	2a. Clay/Silty Clay - Undrained	Mohr-Coulomb	125	200	24
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93_Section-2_Sta.31+00_08-06-24.gsz Name: 2b. Drilled Shafts - Drained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstern-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1b. Fill - Drained	Mohr-Coulomb	120	100	33
	2b. Clay/Silty Clay - Drained	Mohr-Coulomb	125	150	34
	3. Bedrock	Bedrock (Impenetrable)			

File Name: LAK-90-2.93_Section-2_Sta.31+00_08-06-24.gsz Name: 2b. Drilled Shafts - Drained Last Edited By: Saqer, Hamzeh Created By: El-Quqa, Osama O. Date: 08/16/2024 Analysis Type: Morgenstern-Price

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1b. Fill - Drained	Mohr-Coulomb	120	100	33
	2b. Clay/Silty Clay - Drained	Mohr-Coulomb	125	150	34
	3. Bedrock	Bedrock (Impenetrable)			

B-3 DRILLED SHAFT WALL CALCULATIONS

Prepared by: HS (10/30/2024)

Drilled Shaft Wall Stability Analysis

1. Back calculation of existing slope failure:

🛃 UA Slope Program Version 2.3 - C:\Users\USHS7	704748\Desktop\LAK-90\UA Slope\Sta	age 3\LAK-90-02.93_3.5ft Shaft_Undrained_Stage 3.ua3*	- 🗗 X
File Run Options Help			
Calculated Results			Chart (Double-Click for More Options)
	Factor of Safety: 1.03		
	Force per Shaft: 0.000	lb	0 50 100 150 X
Acting Point X: 120.000	ft Y: 0.0	00 ft	10
Analysis Unit System			30
English	O Metric		40 50 50 50 50 50 50 50 50 50 50 50 50 50
Number of Vertical Sections and Soil Layers			
Vertical Section Num:	4 Soil Layer	Num: 3	80
Analysis Method			Y
○ Total Stress	Effective S	tress	
Soil Properties			Slope Profile Vertical Sections
Cohesion (psf)	Friction Angle	Total Unit Weight (pcf)	Section 1 Section 2 Section 3 Section 4
Layer1 0.0	20.0	120.0	▶ X(ft) 0.00 14.20 130.00 130.00
Layer2 200.0	24.0	125.0	Y1 (ft) 0.00 0.00 61.00 68.80
Layer3 500.0	27.0	147.0	Y2 (ft) 53.00 53.00 61.00 68.80
			Y3 (ft) 75.00 75.00 80.00 84.20
			Y4 (ft) 92.50 92.50 92.50 92.50
Drilled Shaft Information			Pore Water Pressure
Calculate without Drilled Shaft			Pore Pressure Options: O No Pore Pressure O Constant Ratio Specified phreatic surface
O Automatic Load Transfer Factor		Anchor force: 0.00 lb	Point 1 Point 2 Point 3
O Manually Defined Load Transfer Factor		Anchor angle: 0.00	▶ X (ft) 0.00 71.50 130.00
Anchor (On/Off)		Anchor spacing: 0.00 ft	Y (ft) 21.00 68.60 68.60
		Auto On Off 0.000 (n)	Slip Surface
		Xmin 0.00 Diameter 3.50 ft	Paint 1 Paint 2 Paint 3 Paint 4 Paint 5 Paint 6 Paint 7
Auto Save Data			Y (θ) 73 50 80 40 90 40 100 40 110 50 120 00 130 00
		Amax 0.00 CTC Spacing: 5.25 ft	Y (ft) 31.00 40.80 51.40 58.70 63.90 66.50 68.70
Run		XDelta 0.00 X Coordinate: 120.00 ft	

Figure 1: Back calculation of existing slope failure

WSP Project No. 30902165

Prepared by: HS (10/30/2024)

- 2. Stability analysis of slide using 3.5-ft shafts (Undrained):
 - Factor of Safety = 2.85
 - Force per shaft = 99.4 kips

🛃 UA Slope Program Version 2.3 - C:\Users\USHS	04748\Desktop\LAK-90\UA Slope	Stage 3\LAK-90-02.93_3.5ft Shaft_Undrained_Stage 3.ua3*	- o ×
File Run Options Help			
Calculated Results			Chart (Double-Click for More Options)
	Factor of Safety: 2.85		
	Force per Shaft: 99405.14	4 lb	0 50 100 150 ×
Acting Point X: 120.000	ft Y:	52.947 ft	10
Analysis Unit System			20
English	O Metric		
Number of Vertical Sections and Soil Laure			60
Vertical Section Num:	4 Soill a	ar Num:	
	4 Join Lay	er Num. 3	2 90 -
Analysis Method	0		Y
O Total Stress	Effective	Stress	
Soil Properties			Slope Profile Vertical Sections
Cohesion (psf)	Friction Angle	Total Unit Weight (pcf)	Section 1 Section 2 Section 3 Section 4
Layer1 0.0	20.0	120.0	▶ X(ft) 0.00 14.20 130.00 130.00
Layer2 200.0	24.0	125.0	Y1 (ft) 0.00 0.00 61.00 68.80
Layer3 500.0	27.0	147.0	Y2 (ft) 53.00 53.00 61.00 68.80
			Y3 (ft) 75.00 75.00 80.00 84.20
			Y4 (tt) 92.50 92.50 92.50 92.50
			Coordinates of Creat X 15.00 ft Y 0.00 ft Coordinates of Top X 153.20 ft Y 68.80 ft
Calculate without Drilled Shaft			Pore Water Pressure Pore Pressure Options: O No Pore Pressure O Constant Ratio Specified phreatic surface
Automatic Load Transfer Factor		Anchor force: 0.00 lb	Paint 1 Paint 2 Paint 2
Manually Defined Load Transfer Faster		Anchor angle: 0.00	× (m) 0.00 7150 130.00
Anchor (On/Off)		Anchor spacing: 0.00 ft	Y (t) 21.00 68.60 68.60
		Auto On Off 0.000 (n)	Slip Surface
		Xmin 0.00 Diameter: 3.50 ft	Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7
Auto Save Data		Xmax 0.00 CTC Spacing: 5.25 #	★ X (ft) 73.50 80.40 90.40 100.40 110.50 120.00 130.00
⊳ Run		XDelta 0.00 X Coordinate: 120.00 ft	Y (#) 31.00 40.80 51.40 58.70 63.90 66.50 68.70

Figure 2: Stability analysis of slide using 3.5-ft shafts (Undrained)

WSP Project No. 30902165

Prepared by: HS (10/30/2024)

- 3. Long term global stability analysis (Drained):
 - Factor of Safety = 1.42

File: Table Option File:	🋃 UA Slope Program Version 2.3 - C:\Users\USHS	704748\Desktop\LAK-90\UA Slope\Stage	3\LAK-90-02.93_3.5ft Shaft_Drained_Stage 3.ua3*	- 0 X
Calculate Reads Faces of Materia Social Section 2000 Paces of Materia Paces of M	File Run Options Help			
Pack of Bab Display Aring Point X 10000 Note: Aring Point X 10000 Note: Aring Point X 10000 Note: Note: Image: State of Bab Image: State of Bab Aring Point X 10000 Image: State of Bab Image: State of Bab State State on Bab Image: State of Bab Image: State of Bab Image: State of Bab State State on Bab Image: State of Bab Image: State of Bab Image: State of Bab Image: State of Bab State State on Bab Image: State of Bab	Calculated Results			Chart (Double-Click for More Options)
Foregrentiat Bood		Factor of Safety: 1.42		
Atap Park 2000 * * * 000 * 000 <td< td=""><td></td><td>Force per Shaft: 0.000</td><td>lb</td><td>0 <u>50</u> 100 150 ► X</td></td<>		Force per Shaft: 0.000	lb	0 <u>50</u> 100 150 ► X
Name Name Be Signing Name Noted Vertical Sections and Soi Layers Name Name of Vertical Sections and Soi Layers Name Name of Vertical Sections and Soi Layers Name Name of Vertical Sections and Soi Layers Name Soi Pagesto Soi Cherion fongh Federal Mar Weight (pdf) Layers 1000 220 1200 Layers 1000 1000 1000 Note Andro range 1000 1000 1000 Note Andro range 1000 Name of the of Social	Acting Point X: 120.000	ft Y: 0.000	ft	101
	Analysis Unit System			
Number of Vertical Socions and Soi Layers Soi	English	O Metric		
Virted Backon Nur: I Bol Layer Num: I Analysis Method Image: Section Se	Number of Vertical Sections and Soil Lavers			
Analysis Method Oral Stees © Effective Stees Sope Partial Vertical Sections Sole Protection Sole Partial Vertical Sections Sope Partial Vertical Sections Sope Partial Vertical Sections Layer2 150.0 22.0 120.0 147.0 Socie Control Socie Control <td< td=""><td>Vertical Section Num:</td><td>4 Soil Laver Nu</td><td>m: 3</td><td></td></td<>	Vertical Section Num:	4 Soil Laver Nu	m: 3	
Andread C 1 cal direct				90
O Cablesian O Execute bless Solar Poseties Sloge Podie Ventcal Section 4 Layer2 1500 Layer2	Analysis Method	0		Y
Sal Podie Vertical Section Finder Andrée Table Ville yield (préd) Finder Andrée Table Yield (préd	◯ Total Stress	Effective Stress	35	
Onlowing (m) Friedra Angle Total Unit Weight (pd) 1 Layer1 150.0 2.20 20.0 12.5	Soil Properties			Slope Profile Vertical Sections
Variet 100.0 32.0 130.0 Layer2 150.0 44.0 150.0 Layer3 500.0 27.0 147.0 V2 (f) 500.0 61.00 68.80 V2 (f) 500.0 92.50 92.50 92.50 V2 (f) 500.0 500.0 60.00 42.00 V2 (f) 500.0 500.0 60.00 42.00 V2 (f) 500.0 500.0 60.00 42.00 V2 (f) 52.00 92.50 92.50 92.50 92.50 V2 (f) 500.0 500.0 500.0 60.00 42.00 V2 (f) 500.0 500.0 500.0 60.00 42.00 V2 (f) 500.0 500.0 500.0 60.00 40.00 V2 (f) 500.0 500.0 500.0 60.00 40.00 Olicolios Matio Sopecided phreatic surface <td>Cohesion (psf)</td> <td>Friction Angle</td> <td>Total Unit Weight (pcf)</td> <td>Section 1 Section 2 Section 3 Section 4</td>	Cohesion (psf)	Friction Angle	Total Unit Weight (pcf)	Section 1 Section 2 Section 3 Section 4
Lyper2 150.0 34.0 125.0 Y1 (#) 0.00 0.00 61.00 68.80 Lyper2 500.0 27.0 147.0 90.0 65.00 53.00 53.00 68.80 Y2 (#) 500.0 62.00 55.00 50.00 88.80 Y2 (#) 92.50 92.	▶ Layer1 100.0	32.0	120.0	▶ X(ft) 0.00 14.00 130.00 130.00
Layer3 500.0 27.0 147.0 V2 (ft) 53.00 61.00 68.80 V2 (ft) 53.00 61.00 68.80 V4 (ft) 92.50 92.50 92.50 92.50 V2 (ft) 53.00 ft 0.00 ft 0.00 Coordinates of Crest X 15.00 ft Y. 0.00 ft Coordinates of Crest X 15.00 ft Y. 0.00 ft Coordinates of Crest X 15.00 ft Y. 0.00 ft Coordinates of Crest X 15.00 ft Y. 0.00 ft Coordinates of Crest X 15.00 ft Y. 0.00 ft Coordinates of Crest X 15.00 ft Y. 0.00 ft Coordinates of Crest X 15.00 ft Y. 66.83 ft ft </td <td>Layer2 150.0</td> <td>34.0</td> <td>125.0</td> <td>Y1 (#) 0.00 0.00 61.00 68.80</td>	Layer2 150.0	34.0	125.0	Y1 (#) 0.00 0.00 61.00 68.80
V3 (th) 75 (th) <t< td=""><td>Layer3 500.0</td><td>27.0</td><td>147.0</td><td>Y2 (#) 53.00 53.00 61.00 68.80</td></t<>	Layer3 500.0	27.0	147.0	Y2 (#) 53.00 53.00 61.00 68.80
V4 (tr) 92.50 92.50 92.50 92.50 92.50 V1 (tr) 0.00 1.500 ft Y. 0.000 ft Coordinates of Creat: X 15.00 ft Y. 0.000 ft Coordinates of Creat: X 15.00 ft Y. 0.000 ft 0.00				Y3 (h) 75.00 75.00 80.00 84.20
Image: Coordinates of Crest X: 15.00 ft Y: 0.00 ft Coordinates of Toe X: 153.20 ft Y: 68.80 ft Dilled Shaft Information Image: Calculate without Drilled Shaft Image: Calculate without Driled Shaft Ima				
Drilled Shaft Information Pore Water Pressure O Constant Ratio Image: Specified phreatic surface Image: Automatic Load Transfer Factor Anchor force: 0.00 Image: Specified phreatic surface <				Coordinates of Crest X: 15.00 ft Y: 0.00 ft Coordinates of Toe X: 153.20 ft Y: 68.80 ft
 Calculate without Dnilled Shaft Automatic Load Transfer Factor 	Drilled Shaft Information			Pore Water Pressure
Automatic Load Transfer Factor Anchor force: 0.00 Ib Manually Defined Load Transfer Factor Anchor angle: 0.00 71.50 130.00 Anchor (On'Off) Anchor spacing: 0.00 ft 1000 71.50 130.00 Anchor (No'Off) Anchor spacing: 0.00 ft 1000 ft 1000 Auto Save Data Xmin 0.00 CTC Spacing: 525 ft 14.00 20.00 34.50 53.30 75.00 95.50 120.00 130.00 W(ft) 0.00 X Coordinate: 120.00 ft 14.00 10.00 22.50 36.10 48.50 57.10 64.80 68.00	Calculate without Drilled Shaft			Pore Pressure Options: O No Pore Pressure O Constant Ratio Specified phreatic surface
○ Manually Defined Load Transfer Factor Anchor angle: 0.00 Y	O Automatic Load Transfer Factor		Anchor force: 0.00 lb	Point 1 Point 2 Point 3
Anchor (On/Off) Anchor spacing: 0.00 ft Y(ft) 21.00 68.60 68.60 Auto O n O off 0.000 (n) Slip Surface Slip Surface Auto Save Data Xmax 0.00 CTC Spacing: 52.5 ft Point 1 Point 2 Point 3 Point 4 Point 7 Point 8 Xmax 0.00 XCoordinate: 120.00 ft Y(ft) 0.00 22.50 36.10 48.50 57.10 64.80 68.00	O Manually Defined Load Transfer Factor		Anchor angle: 0.00	x (ft) 0.00 71.50 130.00
Auto O O O O O O Image: Constraint of the constr	Anchor (On/Off)		Anchor spacing: 0.00 ft	Y(ft) 21.00 68.60 68.60
Auto Save Data Xmin 0.00 Diameter: 3.50 ft Xmax 0.00 CTC Spacing: 5.25 ft Run XDelta 0.00 X Coordinate: 120.00 ft		1	Auto O n Off 0.000 (n)	Slip Surface
L Auto Save Data Xmax 0.00 CTC Spacing: 5.25 ft Run XDelta 0.00 X Coordinate: 120.00 ft	C Auto Sava Data	х	Kmin 0.00 Diameter: 3.50 ft	Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8
Number XDelta 0.00 X Coordinate: 120.00 ft Y (ft) 0.00 10.20 22.50 36.10 48.50 57.10 64.80 68.00	Auto Save Data	x	max 0.00 CTC Spacing: 5.25 ft	▶ X (ft) 14.00 20.00 34.50 53.30 75.00 95.50 120.00 130.00
	Run	XI	Delta 0.00 X Coordinate: 120.00 ft	Y (t) 0.00 10.20 22.50 36.10 48.50 57.10 64.80 68.00

Figure 3: Long term global stability check (Drained condition)

C HISTORIC RECORDS FROM ODOT TIMS

C-1 HISTORIC LANDSLIDE RECORDS

CUYAHOGA LAKE 1-1

November 16, 1961

C. H. Shepard N. S. Mason

L. Krauser, Engineer of Construction
 P. Litchisor, Engineer of Tests

Project 721-60, CUY-1-15.61, LAK-1-0.00 Lake County Station 102+00 to Station 109+00 Imbenkment Failure

> Files 13-5-1 Cuyshoga-Lake

Per:

In accordance with your request, an investigation has been conducted in the area of the subject failure. A report of the findings of the investigation and proposed corrective treatment is hereinafter presented.

FIELD OPSERVATIONS

÷., * ,

In the area of the failurs the project elignment traverses and generally parallels valley well of a tributary stream of the Chagrin River. The embankment for the southbound readway in this area rests on the stream valley slope with the toe of the embankment located on and near the edge of the stream floodplain.

With embankment construction nearly completed to plan section, a orack developed approximately perallel to and near the centerline of the southbound lanes extending from approximately station 103+00 to station 106+00. From station 103+00, backstation the creck extended diagonally across the embankment to the shoulder, diagonally down the slope to the toe, and extending out across natural ground to approximately 265 feet left of station 102+00.

Upstation from station 105400, the grack extended disgonally forward to the exbankment shoulder at approximately station 105460. The surface of the embunkment visually displayed subsidence within the limits defined by the crack and shoulder. As time progressed, the opening of the major crack progressively emlarged with movement most pronounced at the southerly end of the failure area. Additional breakage along the embunkment slope was evidenced with elapsed time.

Approximately parallel to the toe of the subenkment, and ranging generally from 15 to 30 feet beyond the toe, a roll formed on the natural ground surface, disclosing lateral displacement and heaving of the embankment foundation beyond the toe. The roll was evidenced from approximately station 102+25 to station 107+25. Although no major movement had occurred, distress in the foundation was evidenced by tension cracks forward to station 108+50±.

15.61

0.00

H. L. Krauser -2-Project 721-60, CU7-1-15.61, LAK-1-0.60 Lake County Station 102+00 to Station 109+00 Embankment Failure

SUBSURFACE INPETIDATION

October 17-18, 1961, additional test borings were drilled within the failure area for developing in detail subsurface conditions associated with the failure. Both drive sample-core borings and bit-con-kelly soll nuger borings were drilled. A limited number of drive sample-rock core borings were drilled into underlying bedrock; these borings were supplemented by a number of soil auger borings, a number of which also penetrated into shale tedrock.

The test borings disclose that natural soil cover over rock in place ranges from approximately five (5) to 15 feet in thickness. Surface of bedrock slopes downward from right to left beneath the embankment. Fill on the valley floor is the order of mins (9) to 15 feet in thickness. Felrock is shale.

For more detailed study of the findings, you are referred to the attached drawings and tribulated data which presents test boring locations, graphical logs of borings with respect to cross sections, and physical characteristics of soil types succuntered.

ANALYSIS OF FINDINGS

Failure of the embenkment is attributed to overstressing of the soils forming the natural cover over a sloping surface of shale bedrock and comprising the embenkment foundation. Failure of the foundation is considered to extend to the bedrock surface. The failure is considered of a rotational nature - subsidence at the roadway level, rotational movement of the embankment and foundation mass, with heaving in the immediate visinity of the toe of the embankment.

PROPOSED TREATVENT

It is considered that most applicable treatment for stabilizing the embankment is the construction of a berm at the toe of the embankment. It is proposed that berm treatment extend from approximately station 102400 to station 109400. The required dimensions of the berm are approximately; 20 feet in height, 40 feet in width from outer shoulder point of berm to plan toe of embankment, and side slope of berm of 2 horizontal run to 1 vertical rise. Details by station of berm features are presented as follows: H. L. Krauser Project 721-60, CUY-1-15.61, LAX-1-0.00 Lake County Station 102+00 to Station 109+00 Embankment Failure

٠.

m - Rea Martine XV)) Den	ENK DIMENSIONS	52674668.7 Physics
DIAI ////	ELEV.	DIST. LEFT C.L.	DIST. LEFT C.L.
102+0 0		No Treatment	
103+00	725.0*	290*	330°
104+00	722.0*)20*	360*
105+00	717.0*	326*	366*
105+00	712.0"	337*	3771
107+00	710.0°	338*	378*
108+00	710.0*	<u>338 °</u>	378*
102+00		No Trestment	

Estween station 102460 and station 103480, hold the shoulder point at elevation 725.0' and the distance from centerline constant at 290 feet, thereby feathering the bert into the natural terrain.

Between station 108+00 and station 109+00, construct a transitional section, uniforsily taparing from a full berm section to no tratement.

Construction of the berm will necessitate relocation of the present stream channel.

Channel relocation and bern construction will entail procurement of additional right-of-way.

At station 105400, movement of the subankment foundation has caused upward deflection of a 27-inch pipe from the outlet end to the bend at the bottom of the embankment. Correction of this comittion and extension of the pipe beneath the berm are required.

> E. E. Litchiser Engineer of Tests

November 16. 1961

Pers

H. E. Meson Assistant Engineer

NEX:pjs Attroh. cc: W. J. Cremean, Attr: H. N. Marshall A. G. Donovan, Attr: H. D. Busciglio N. K. Mason (3) //

		a the state	Bat and damps the second	Art Martin	
				4	
		Φ		\oplus	¢
		\bullet		· \oplus	¢
		<u></u>		<u> </u>	Roll
· · · · · · · · · · · · · · · · · · ·		Ý		Θ	Υ Ψ ·
		\oplus \oplus	Θ		¢
		\oplus	\rightarrow	φ	
· · · · · · · · · · · · · · · · · · ·			$\bigtriangledown \oplus$		
		Ψ	\rightarrow		•
		$\Phi \Phi$	∇	∇	\mathbf{A}
			4 <u>6</u>		125
					Φ
					Φ
					$\phi \phi$
					Boring Plan
					Scale 1 "= 50"
				Seale	. 2"=100
	a an				

í Transista

.

i Xeel

isoria eci

¢.....

*

La Lando a

and the state of the

.

STATION & OFFS	ET [TICH-TO Lt 0.0-3.5	AGG. C.S. F.S. SILT Q.AY L.I. 22 10 11 30 27 37	P.11 # C O.ASS. .7 IT #-1#	STATION & OFFSET 104+00 3001Lt	CEPTH S PRON-TO AGG C. 0.3-4.0 0	S. F.S. SILT (LAY. 3 0 41 50	L.L. P.H. W.C. 33 It 18	SHTL (LASS. A-Ca	STATION & C	CFFSET D ISIRE 0.	109 TH \$	5 F.S. Si 5 5 3	LT QAY L.L.	P.11 4C	GASS.	STATION & CI	FSET LEPTH FROH-TC ISPLE 0.0-5-1	AGG. C.S. Rock Soll	E.S. SILTO		1. IL U.C. Q. 8 VI
101+50 150'	3.5-5.0 5.0-9.0 8.0-12.0 11 0.0-3.8 3.5-9.0	Light Brown Veathered Shale Light Brown Veathered Shale Gray Weathered Shale 15 6 4 14 31 27 38 16 8 13 25 27	10 Visual 7 Visual 14 Visual 11 10 A-Ga 7 9 A-Tia	104+00 295°L+	4,0-11.0 11.0-17.0 17.0-21.0 21.0-23.0 24 0.0-4.0 30	1 39 59 38 21 18 14 5 6 37 28 15 7 24 21	36 12 26 28 14 37 19 3 16 26 11 13 31 14 16	A-6a A-110 A-3a A-6a A-14		4. 9. 12. 20.	.0-9,0 9 .0-12.0 23 .0-10.0 11 .0-20.0 15 .0-25.0 Brown V	5 7 3 5 6 3 7 6 3 9 7 9 7 8	8 14 34 33 33 30 9 37 39 8 34 31		A-Ca A-Ca A-Ca A-Ca Visual		5.0-9. 9.5-11 11.5-16 10.0-21 21.0-28 26.0-30	Hock Soll .5 0 3 .0 2 2 .0 7 3 .0 10 9 .0 6 5	Hixture 7 54 6 12 14 10 6 34 9 14	30 37 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	7 VIs 13 17 A-6 11 16 A-6 11 14 A-6 11 13 A-6 12 17 A-6
101+60 7016	0.0-9.0 9.0-11.0 11.0-13.0 2.0-9.0 2.0-9.0	Gray Weathered Shale Brown Weathered Shale Gray Weathered Shale 23 4 6 10 27 38 Brown Weathered Shale	G Yisual II Yisual 7 Yisual II II A-Ca G Yisual	10;+00 519,11	40000 7 8.0-12.0 4 9.0-5.0 5 5.0-10.0 4 10.0-15.0 5	8 21 11 23 2 2 12 13 6 11 38 19 6 10 38 19 8 9 39	N# N# 20 37 11 18 30 11 14 30 11 13 20 11 13	A-11a A-6a A-6a A-6a A-6a	105+50	50º Rt 0.	.0-2.0 54 .0-7.0 15 .0-10.0 20 .0-13.0 Brown 1	5 6 8 4 3 3 6 3 3 feathered Stale	9 10 31 10 10 10 10 32 34	6 10 17 19 11 13 10	A-2-4 A-7-0 A-6a Visual	108+00	0'Rt 0.0-2. 2.5-0. 8.0-13 13.0-15 15.0-20	I Rock Soll Rock Soll O Rock Soll O Rock Soll O Rock Soll	Hixture Fixture Hixture Hixture 3 50	33 37 6	8 Vis 12 Vis 15 Vis 822 Vis 822 A-4
102+00 14001	0.0-0.5 1.1 0.3-1.0 1.0-0.0 9.0-16.0 16.0-20.0	Gray Weathered Shale 0 3 5 148 144 37 0 3 14 140 53 37 0 1 0 67 32 NP 24 3 1 36 35 33	8 Visual 11 20 A-Ga 12 32 A-Ga NP 32 A-Ub 11 10 A-Ga	104+00 70144	20.0-27.0 27.0-32.0 2.0-0.1 2.0-0.1 2.0-0.1 11 10.0-1.0 11 10.0-1.0 11 10.0-1.0 10.0 10	a 7 39 37 6 5 39 39 bil hixture		A-ca A-ca A-ca Visuai Visuai	105+00	100/R1 0. 300/L1 0.	.0-2.0 27 .0-7.0 Gray We .0-11.0 Gray We .0-8.0 10 .0-8.0 17	3 4 3 pathe ed Shale sathered Shale 28 12 3 15 7 1	11 36 3 9 12 19 33 7 19 28	8 18	A-Ca Visual Visual A-lia A-2-4		20.0-20 23.0-20 20.0-20	O 3 3 5 8 5 O Brown Weat	3 34 3 39 Lerod Shale E SAIPLE SOIL TE	57 37 50 38 EST DATA	2 15 A-6 1 13 A-6 13 Xis
102+00 350'	11 0.34,0 4,0-10,0 10,0-13,0 13,0-15,0	13 8 6 10 31 32 8 4 6 14 38 32 2 3 4 50 41 29 Gray Broken Shale	11 13 A-Ga 12 13 A-Ga 8 20 A-18 8 VIsual		8.5-13.0 Rock St 13.0-17.6 24- 17.6-22.0 15 22.0-27.0 4 27.0-32.0 5	6 7 3 20 4 6 30 10 4 6 10 14 7 10 37 10	33 7 12 10 333 11 15 15	Visual A-Ta A-Ca A-Ca A-Ca A-Ca	K02+00	250"1 1 0. 5. 10.	.0-10.0 31 .0-10.0 7 .0-10.0 7 .0-10.0 8				经	103900	10.0-11 10.0-16 20.0-21 20.0-21 20.0-20 30.0-21	00000 w8665	55 65 39 56 39 7 35	10 30 1 21 31 1 34 31 1 35 30 1 35 30	8 9 A-4 1 11 A-6 11 17 A-6 11 19 A-6 11 15 A-6 11 21 A-6 7 10 A-1
102+00 3001	Lt 0.3-4.0 4.6-7.0 7.6-12.0 12.6-18.0 18.6-20,0	14 8 0 32 10 33 10 14 7 27 12 33 Brown Weathered Shale Gray Weathered Shale Gray Weathered Shale Gray Broken Shale	11 12 A-Ga 13 17 A-Ga 9 VIsuat 7 VIsuat 18 VIsuat 7 VIsuat 7 VIsuat		0.0-5.0 Rock Sc 5.0-7.5 28 7.5-12.0 16 12.0-18.5 32 18.0-17.5 Growt S 17.0-19.5 Gray Bi	bli Mixture B 4 33 32 B 9 10 30 4 3 30 31 Silty Clay & Shale Frag roken Shale	35 * 36 2 21 39 13 gments 8	Visual A-Ga A-Ga Visual Visual	105+00	аў. 39. Ю'ца ў.	.0-32.0 (1 .0-32.0 (7ay 5) .0-32.0 (7ay 5) .0-6 (1) .0-10.0 (1)	IQ 8 3 Ity clay & Sof	39 37 Shale Fragme	11 24 NP 25 nts 10	A-Ga A-UD VIsual A-Ga A-Ga	104+00 1	6/L1 5.0-6 10.0-1) 19.0-16 26.0-21 26.0-21		5 23 5 23 4 37 2 12 6 15	25 35 1 27 28 28 1 27 28 28 29 1 27 28 28 29 1 28 28 28 1 28 1	11 15 A-6 11 18 A-6 11 17 A-6 11 15 A-6 11 18 A-6
105+00 500,	1 0.2-3.0 3.0-10.0 - 10.0-3.0	25 3 2 34 35 35 51 3 2 24 20 33 Gray Broken Shale Brown Sandy Silty Clay & Soft Sha	II IA A-Ga 9 A-Ga 6 YIsual	105+00 300 ⁴ 64	0.0-7.0 10 1 7.0-10.0 0 10.0-13.0 3 13.0-17.0 Gray Br	15 12 31 28 2 9 09 14 20 12 21 12 roken Shale	29 5 13	A-lia A-lia A-3a Yi Sual			4150 600 602 602 602 602 602 602 602 602 60	8807 200 8807 200			168 168 168 168 168		30,0-31 38,0-38 10,0-41 14,0-14 50,0-51		10 30 7 37 4 37 4 37 4	12 12 12 12 12 12 12 12 12 12 12 12 12 1	1 17 A-6 11 18 A-6 13 19 A-6 11 18 A-6 11 28 A-6
105+00 1,120,	5.0-7.0 5.0-7.0 5.0-11.0 11.0-13.5 13.0-13.0	Gray Broken Shale Gray Silty Clay and Shale Fragme 20 3 20 10 34 10 7 30 31 32 Gray Veathered Shale	yrs 8 Yrsuat yrs 8 Yrsuat 11 8 4-6a 11 10 4-6a 11 10 4-6a 11 10 Yrsuat		8.0-10.0. Rock So 10.0-11.5 Rock So 11.5-10.0- 6 10.0-21.0 3 21.0-35.0 11 30.0-35.0 13	511 Hixture 511 Hixture 51 9 39 19 51 9 39 19 6 9 34 1	9 34 13 36 19 39 17 33 16	Visual Visual A-Ga A-Ga A-Ga A-Ga	105+09	57 RI 0.	0 3.0 0 0 10.0 13 0 15.0 0 0 15.0 0 0 17.0 3 0 21.0 30					1 (10)+00 (1)	0.0-01 10.0-11 18.0-16 20.0-21 28.0-28 30.0-31	200000 2000000	5 14 2 25 1 4 12 6 18 8 37 8 39 8 39	8 H H H H H H H H H H H H H H H H H H H	0 15 A-2 1 15 A-6 1 17 A-6 9 12 A-4 1 16 A-6 1 16 A-6 1 16 A-6
102+00 70*1	0.0 %.0 %.0 4.0 9.0 7.0 7.0 11.0	Brown Silty Clay and Shale fragme Brown Silty Clay and Shale fragme Brown Veathered Shale	nts 7 Visual Ints 12 Visual 13 12 Loa 8 Visual	105+10 50164	30.0-32.0 28 0.0-9.5 Rock So 5.5-11.0 10 11.0-10.0 10 10.0-21.0 3	5 8 30 - 29 1 Hixture 4 5 37 Wr 6 9 36 33 5 4 39 42	31 11 12 38 11 12 39 11 13 39 11 13 39 11 13 39 11 13	A-GA Vigual 4-GA 4-GA	5 (00+30)	2) 31. 50'Rt 0.	628.0 9 631.0 21 632.0 33				A-Ca A-Ca A-Ca A-Ca A-Ca		10.0-10 18.0-18 50.0-58 58.0-58 69.0-58 69.0-68	0000700 0000700	8 10 1 8 37 3 50 1 34 1 54 2 14	113 36 i 39 31 i 36 28 11 30 i 14 30 i 14 34 51 14 i	3 17 A-66 1 13 A-66 8 14 A-14 11 15 A-66 8 27 A-14 15 20 A-7
103+00 200	7.0-11.0 11-0-10.0 19.0-19.0 19.0-29.0 29.0-29.0	Hoch Soll Mixture Rock Soll Mixture 140 3 2 20 24 37 4 4 4 42 10 34 14 2 4 10 34 39 Gray Broken Shale	13 11 4-6a 13 16 4-6a 13 16 4-6a 13 16 4-6a 13 16 4-6a 13 16 4-6a	105+10 100/RE 105+50 100/LE	0.0-0.0 Gray Vie 0.0-0.0 Ist 1	5 9 37 12 athered Shafe 3 9 35 29 2 10 10 13	31 4 9 31 9 4	A-CA VI suat A-lia A-CA			47.0 21 47.0 13 47.0 13 47.0 13 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 13 47.0 1	athered Shale	44 33 34 35 44 30 35 30		A-Ca A-Ca A-Ca A-Ca A-Ca VISUAI	107+00 [1	0'Lt 5.0-6.4 10.0-11 15.0-16 20.0-21 25.0-25	11 10 6 0 4 3 0 58 1 0 7 4 0 6 5	4 27 6 12 6 17 7 12 8 40	23 31 1 16 29 1 10 32 1 11 31	I 12 A-6a 2 15 A-6a 10 21 A-2 11 16 A-6a 11 16 A-6a
103+00 2081	1 0.0-5.0 5.0-10.0 10.0-15.0 15.0-19.0 19.0-25.0 25.0-32.0	22, 10, 10, 36, 22, 28 5, 5, 9, 13, 38, 29 9, 8, 7, 36, 38, 31 7, 7, 5, 50, 28, 31 8, 3, 14, 32, 148, 32 Brown Weathered Shale	7 13 A-1ja 11 13 A-6a 11 16 A-6a 9 22 A-1jb 11 16 A-6a 11 16 A-6a 11 16 Yisual	✓ 105+50 350/Lt /o5+50	8.0-15.0 17 15.0-21.0 31 21.0-23.0 30 1 0.3-5.0 0 5.0-10.9 0	3 22 -8- 17 17 -5- 8 6 26 29 3 3 47 41	NP NP 17 NP NP 17 26 2 13 31 11 14 30 0 34	k-1-1 k-1-5 k-1:4 k-6a k-1:18	KO2+609)	416'L1 0. 0. 10. 10. 10. 10. 10. 10.	50,0 IC 010,0 0 040,0 47 0520,0 07	A LECON	28 31 13 33 14 1 19 5 30 27	7 27 5 39 19 10 11 10	A-140 A-140 A-1-10 A-1-10 A-50		36.0-36 10,0-10 15,0-10 50,0-51 56,0-56 60,0-61	12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 24 8 40 7 29 6 14 9 38	SECTION OF CONTROL	8 19 A-14 1 18 A-64 1 19 A-64 1 19 A-64 1 17 A-64 11 16 A-64 11 23 A-64
103+00 177'	1 0.0-6,0 6.0-12.0 12.0-17.0 17.0-21.0 21.0-20.0	22 7 6 10 16 31 16 5 6 33 34 30 16 5 6 33 34 30 16 5 6 33 34 30 17 7 10 11 20 20 14 6 8 16 37 27 7 7 10 11 20 28 14 6 8 16 37 27 7 8 14 13 38 34	8 11 A-11a 13 13 4-6a 13 13 4-6a 14 13 4-6a 14 13 4-6a	#1*00C 00+80H	12.0-19.0 29 19.0-17.0 39 19.0-17.0 39 10.0-10.0 0 10.0-10.0 0			A-1-0 A-40 A-10 A-10 A-50 A-50	107+00	280414 0.5	8-3-8 . 3 6-17.0 . 44 6-17.0 . 10 9-3.0 . Poch so	in g hi ha g in plixture		19 19 17 19 17	A-lia A-lia A-lia A-l-0 A-l-0 VIsual		68.0-68 ,	0 18 8 .	17 39 4	22 23 ,	4. 22 A-4
103+00 70'L	0 0-5.0 5.0-8.0 8.0-12.0 12.0-16.5 16.5-20.0	Rock Soil Mixture Rock Soil Mixture 6 3 7 14 10 30 22 4 2 32 10 37 Gray Broken Shale	8 Yisuat 10 Yisuat 11 13 A-Ca 11 13 A-Ca 11 13 A-Ca 7 Yisuat	KO5+55 250/L1	10.0-17.0 12 0.0-5.0 11 5.0-10.0 11 10.0-15.0 6 19.0-20.0 12	9 11 148 23 5 8 38 140 4 8 34 50 9 11 33 141 7 8 33 34	26 6 72 7 30 11 17 1 31 11 17 1 23 11 12 1 31 11 12 1	1-11a 1-Ca 1-Ca 1-Ca 1-Ca	107+0 <u>0</u> I	10. 13.0 180' Rt 0.0 8.0	6-13-0 	a lo a			A-Ca A-Ca Visual Visual						
10;+00 ,001	t 0.3-4.0 4.0-8.0 8.0-15.0 15.0-20.0 20.0-23.0	30 11 6 21 20 32 0 0 1 1/2 1/7 30 0 0 1 1/2 1/7 30 0 0 0 57 1/3 NP 5 7 3 51 34 26 31 14 14 - 14+ NP		KOS+QO KO'EE	2.0-3.0 13 30.0-32.0 Gray Br	8 1 37 37 8 6 37 36 oken Shale 9 9 38 39	27 7 17 36 14 14 1 91 14 14 1 91 14 14 1	A-Tia A-Cia VI sual A-Cia A-Cia	105+00 3	12.0 300'L1 0,0 300'L1 0,0	0-18.0 fipch Sa 0-18.0 fibch Sa 0-7.0 20 0-7.0 20 0-19.0 50	11 bixture 12 10 32 3 0 13 30 9		N O O	VIsual VIsual A-4a A-2-4 A-1-a						
	23,0-27,0	36 15 5 24 20 23	IO IS A-la			eathered Shale		i de le de			G-16,0 39		r - 51 - 59	9 10							
					-4																
								ور المراجع ا				ſ.					· C				

·· · · · ·

EMB. FAILURE INVESTIGATION CUYAHOGA - LAKE COS. CUY-1-15.91 LAK-1-0.00 OHIO STATE HIGHWAY TESTING - LABORATORY COLUMBUS, OHIO -----

NOTE: NP shows in Liquid Limit and Plasticity Index columns indicates that the material is non-plastic.

5

1

×

المحاجرين

. .

the second

*

-

.

i Xeel

isoria eci

¢.....

*

La Lando a

and the state of the

.

STATION & OFFS	ET [TICH-TO Lt 0.0-3.5	AGG. C.S. F.S. SILT Q.AY L.I. 22 10 11 30 27 37	P.11 # C O.ASS. .7 IT #-1#	STATION & OFFSET 104+00 3001Lt	CEPTH S PRON-TO AGG C. 0.3-4.0 0	S. F.S. SILT (LAY. 3 0 41 50	L.L. P.H. W.C. 33 It 18	SHTL (LASS. A-Ca	STATION & C	CFFSET D ISIRE 0.	109 TH \$	5 F.S. Si 5 5 3	LT QAY L.L.	P.11 4C	GASS.	STATION & CI	FSET LEPTH FROH-TC ISPLE 0.0-5-1	AGG. C.S. Rock Soll	E.S. SILTO		1. IL U.C. Q. 8 VI
101+50 150'	3.5-5.0 5.0-9.0 8.0-12.0 11 0.0-3.8 3.5-9.0	Light Brown Veathered Shale Light Brown Veathered Shale Gray Weathered Shale 15 6 4 14 31 27 38 16 8 13 25 27	10 Visual 7 Visual 14 Visual 11 10 A-Ga 7 9 A-Tia	104+00 295°L+	4,0-11.0 11.0-17.0 17.0-21.0 21.0-23.0 24 0.0-4.0 30	1 39 59 38 21 18 14 5 6 37 28 15 7 24 21	36 12 26 28 14 37 19 3 16 26 11 13 31 14 16	A-6a A-110 A-3a A-6a A-14		4. 9. 12. 20.	.0-9,0 9 .0-12.0 23 .0-10.0 11 .0-20.0 15 .0-25.0 Brown V	5 7 3 5 6 3 7 6 3 9 7 9 7 8	8 14 34 33 33 30 9 37 39 8 34 31		A-Ca A-Ca A-Ca A-Ca Visual		5.0-9. 9.5-11 11.5-16 10.0-21 21.0-28 26.0-30	Hock Soll .5 0 3 .0 2 2 .0 7 3 .0 10 9 .0 6 5	Hixture 7 54 6 12 14 10 6 34 9 14	30 37 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	7 VIs 13 17 A-6 11 16 A-6 11 14 A-6 11 13 A-6 12 17 A-6
101+60 7016	0.0-9.0 9.0-11.0 11.0-13.0 2.0-9.0 2.0-9.0	Gray Weathered Shale Brown Weathered Shale Gray Weathered Shale 23 4 6 10 27 38 Brown Weathered Shale	G Yisual II Yisual 7 Yisual II II A-Ca G Yisual	10;+00 519,11	40000 7 8.0-12.0 4 9.0-5.0 5 5.0-10.0 4 10.0-15.0 5	8 21 11 23 2 2 12 13 6 11 38 19 6 10 38 19 8 9 39	N# N# 20 37 11 18 30 11 14 30 11 13 20 11 13	A-11a A-6a A-6a A-6a A-6a	105+50	50º Rt 0.	.0-2.0 54 .0-7.0 15 .0-10.0 20 .0-13.0 Brown 1	5 6 8 4 3 3 6 3 3 feathered Stale	9 10 31 10 10 10 10 32 34	6 10 17 19 11 13 10	A-2-4 A-7-0 A-6a Visual	108+00	0'Rt 0.0-2. 2.5-0. 8.0-13 13.0-15 15.0-20	I Rock Soll Rock Soll O Rock Soll O Rock Soll O Rock Soll	Hixture Fixture Hixture Hixture 3 50	33 37 6	8 Vis 12 Vis 15 Vis 822 Vis 822 A-4
102+00 14001	0.0-0.5 1.1 0.3-1.0 1.0-0.0 9.0-16.0 16.0-20.0	Gray Weathered Shale 0 3 5 148 144 37 0 3 14 140 53 37 0 1 0 67 32 NP 24 3 1 36 35 33	8 Visual 11 20 A-Ga 12 32 A-Ga NP 32 A-Ub 11 10 A-Ga	104+00 70144	20.0-27.0 27.0-32.0 2.0-0.1 2.0-0.1 2.0-0.1 11 10.0-1.0 11 10.0-1.0 11 10.0-1.0 10.0 10	a 7 39 37 6 5 39 39 bil hixture		A-ca A-ca A-ca Visuai Visuai	105+00	100/R1 0. 300/L1 0.	.0-2.0 27 .0-7.0 Gray We .0-11.0 Gray We .0-8.0 10 .0-8.0 17	3 4 3 pathe ed Shale sathered Shale 28 12 3 15 7 1	11 36 39 12 19 33 7 19 28	8 18	A-Ca Visual Visual A-lia A-2-4		20.0-20 23.0-20 20.0-20	O 3 3 5 8 5 O Brown Weat	3 34 3 39 Lerod Shale E SAIPLE SOIL TE	57 37 50 38 EST DATA	2 15 A-6 1 13 A-6 13 Xis
102+00 350'	11 0.34,0 4,0-10,0 10,0-13,0 13,0-15,0	13 8 6 10 31 32 8 4 6 14 38 32 2 3 4 50 41 29 Gray Broken Shale	11 13 A-Ga 12 13 A-Ga 8 20 A-18 8 VIsual		8.5-13.0 Rock St 13.0-17.6 24- 17.6-22.0 15 22.0-27.0 4 27.0-32.0 5	6 7 3 20 4 6 30 10 4 6 10 14 7 10 37 10	33 7 12 10 333 11 15 15	Visual A-Ta A-Ca A-Ca A-Ca A-Ca	K02+00	250"1 1 0. 5. 10.	.0-10.0 31 .0-10.0 7 .0-10.0 7 .0-10.0 8				经	103900	10.0-11 10.0-16 20.0-21 20.0-21 20.0-20 30.0-21	00000 w8665	55 65 39 56 39 7 35	10 30 1 21 31 1 34 31 1 35 30 1 35 30	8 9 A-4 1 11 A-6 11 17 A-6 11 19 A-6 11 15 A-6 11 21 A-6 7 10 A-1
102+00 3001	Lt 0.3-4.0 4.6-7.0 7.6-12.0 12.6-18.0 18.6-20,0	14 8 0 32 10 33 10 14 7 27 12 33 Brown Weathered Shale Gray Weathered Shale Gray Weathered Shale Gray Broken Shale	11 12 A-Ga 13 17 A-Ga 9 VIsuat 7 VIsuat 18 VIsuat 7 VIsuat 7 VIsuat		0.0-5.0 Rock Sc 5.0-7.5 28 7.5-12.0 16 12.0-18.5 32 18.0-17.5 Growt S 17.0-19.5 Gray Bi	bli Mixture B 4 33 32 B 9 10 30 4 3 30 31 Silty Clay & Shale Frag roken Shale	35 * 36 2 21 39 13 gments 8	Visual A-Ga A-Ga Visual Visual	105+00	аў. 39. Ю'ца ў.	.0-32.0 (1 .0-32.0 (7ay 5) .0-32.0 (7ay 5) .0-6 (1) .0-10.0 (1)	IQ 8 3 Ity clay & Sof	39 37 Shale Fragme	11 24 NP 25 nts 10	A-Ga A-UD VIsual A-Ga A-Ga	104+00 1	6/L1 5.0-6 10.0-1) 19.0-16 26.0-21 26.0-21		5 23 5 23 4 37 2 12 6 15	25 35 1 27 28 28 1 27 28 28 29 1 27 28 28 29 1 28 28 28 1 28 1	11 15 A-6 11 18 A-6 11 17 A-6 11 15 A-6 11 18 A-6
105+00 500,	1 0.2-3.0 3.0-10.0 - 10.0-3.0	25 3 2 34 35 35 51 3 2 24 20 33 Gray Broken Shale Brown Sandy Silty Clay & Soft Sha	II IA A-Ga 9 A-Ga 6 YIsual	105+00 300 ⁴ 64	0.0-7.0 10 1 7.0-10.0 0 10.0-13.0 3 13.0-17.0 Gray Br	15 12 31 28 2 9 09 14 20 12 21 12 roken Shale	29 5 13 NP NP 13 NP NP 13	A-lia A-lia A-3a Yi Sual			4150 600 602 602 602 602 602 602 602 602 60	8807 200 8807 200			168 168 168 168 168		30,0-31 38,0-38 10,0-41 14,0-14 50,0-51		10 30 7 37 4 37 4 37 4	12 12 12 12 12 12 12 12 12 12 12 12 12 1	1 17 A-6 11 18 A-6 13 19 A-6 11 18 A-6 11 28 A-6
105+00 1,120,	5.0-7.0 5.0-7.0 5.0-11.0 11.0-13.5 13.0-13.0	Gray Broken Shale Gray Silty Clay and Shale Fragme 20 3 20 10 34 10 7 30 31 32 Gray Veathered Shale	yrs 8 Yrsuat yrs 8 Yrsuat 11 8 4-6a 11 10 4-6a 11 10 4-6a 11 10 Yrsuat		8.0-10.0. Rock So 10.0-11.5 Rock So 11.5-10.0- 6 10.0-21.0 3 21.0-35.0 11 30.0-35.0 13	511 Hixture 511 Hixture 51 9 39 19 51 9 39 19 6 9 34 1	9 34 13 36 19 39 17 33 16	Visual Visual A-Ga A-Ga A-Ga A-Ga	105+09	57 RI 0.	0 3.0 0 0 10.0 13 0 15.0 0 0 15.0 0 0 17.0 3 0 21.0 30						0.0-01 10.0-11 18.0-16 20.0-21 28.0-28 30.0-31	200000 2000000	5 14 2 25 1 4 12 6 18 8 37 8 39 8 39	8 H H H H H H H H H H H H H H H H H H H	0 15 A-2 1 15 A-6 1 17 A-6 9 12 A-4 1 16 A-6 1 16 A-6 1 16 A-6
102+00 70*1	0.0 %.0 %.0 4.0 9.0 7.0 7.0 11.0	Brown Silty Clay and Shale fragme Brown Silty Clay and Shale fragme Brown Veathered Shale	nts 7 Visual Ints 12 Visual 13 12 Loa 8 Visual	105+10 50164	30.0-32.0 28 0.0-9.5 Rock So 5.5-11.0 10 11.0-10.0 10 10.0-21.0 3	5 8 30 - 29 1 Hixture 4 5 37 Wr 6 9 36 33 5 4 39 42	31 11 12 38 11 12 39 11 13 39 11 13 39 11 13 39 11 13	A-GA Vigual 4-GA 4-GA	5 (00+30)	2) 31. 50'Rt 0.	628.0 9 631.0 21 632.0 33				A-Ca A-Ca A-Ca A-Ca A-Ca		10.0-10 18.0-18 50.0-58 58.0-58 69.0-58 69.0-68	0000700 0000700	8 10 1 8 37 3 50 1 34 1 54 2 14	113 36 i 39 31 i 36 28 11 30 i 14 30 i 14 34 51 14 i	3 17 A-66 1 13 A-66 8 14 A-14 11 15 A-66 8 27 A-14 15 20 A-7
103+00 200	7.0-11.0 11-0-10.0 19.0-19.0 19.0-29.0 29.0-29.0	Hoch Soll Mixture Rock Soll Mixture 140 3 2 20 24 37 4 4 4 42 10 34 14 2 4 10 34 39 Gray Broken Shale	13 11 4-6a 13 16 4-6a 13 16 4-6a 13 16 4-6a 13 16 4-6a 13 16 4-6a	105+10 100/RE 105+50 100/LE	0.0-0.0 Gray Vie 0.0-0.0 Ist 1	5 9 37 12 athered Shafe 3 9 35 29 2 10 10 13	31 4 9 31 9 4	A-CA VI suat A-lia A-CA			47.0 21 47.0 13 47.0 13 47.0 13 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 17 47.0 13 47.0 1	athered Shale	44 33 34 35 44 30 35 30		A-Ca A-Ca A-Ca A-Ca A-Ca VISUAI	107+00 [1	0'Lt 5.0-6.4 10.0-11 15.0-16 20.0-21 25.0-25	11 10 6 0 4 3 0 58 1 0 7 4 0 6 5	4 27 6 12 6 17 7 12 8 40	23 31 1 16 29 1 10 32 1 11 31	I 12 A-6a 2 15 A-6a 10 21 A-2 11 16 A-6a 11 16 A-6a
103+00 2081	1 0.0-5.0 5.0-10.0 10.0-15.0 15.0-19.0 19.0-25.0 25.0-32.0	22, 10, 10, 36, 22, 28 5, 5, 9, 13, 38, 29 9, 8, 7, 36, 38, 31 7, 7, 5, 50, 28, 31 8, 3, 14, 32, 148, 32 Brown Weathered Shale	7 13 A-1ja 11 13 A-6a 11 16 A-6a 9 22 A-1jb 11 16 A-6a 11 16 A-6a 11 16 Yisual	✓ 105+50 350/Lt /o5+50	8.0-15.0 17 15.0-21.0 31 21.0-23.0 30 1 0.3-5.0 0 5.0-10.9 0	3 22 -8- 17 17 -5- 8 6 26 29 3 3 47 41	NP NP 17 NP NP 17 26 2 13 31 11 14 30 0 34	k-1-1 k-1-5 k-1:4 k-6a k-1:18	KO2+609)	416'L1 0. 0. 10. 10. 10. 10. 10. 10.	50,0 IC 010,0 0 040,0 47 052,0 07 053,0 25	A LECON	28 31 13 33 14 1 19 5 30 27	7 27 5 39 19 10 11 10	A-140 A-140 A-1-10 A-1-10 A-50		36.0-36 10,0-10 15,0-10 50,0-51 56,0-56 60,0-61	12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 24 8 40 7 29 6 14 9 38	SECTION OF CONTROL	8 19 A-14 1 18 A-64 1 19 A-64 1 19 A-64 1 17 A-64 11 16 A-64 11 23 A-64
103+00 177'	1 0.0-6,0 6.0-12.0 12.0-17.0 17.0-21.0 21.0-20.0	22 7 6 10 16 31 16 5 6 33 34 30 16 5 6 33 34 30 16 5 6 33 34 30 17 7 10 11 20 20 14 6 8 16 37 27 7 7 10 11 20 28 14 6 8 16 37 27 7 8 14 13 38 34	8 11 A-11a 13 13 4-6a 13 13 4-6a 14 13 4-6a 14 13 4-6a	#1*00C 00+80H	12.0-19.0 29 19.0-17.0 39 19.0-17.0 39 10.0-10.0 0 10.0-10.0 0			A-1-0 A-40 A-40 A-40 A-54 A-54	107+00	280414 0.5	8-3-8 . 3 6-17.0 . 44 6-17.0 . 10 9-3.0 . Poch so	in g hi ha g in plixture		19 19 17 19 17	A-lia A-lia A-lia A-l-0 A-l-0 VIsual		68.0-68 ,	0 18 8 .	17 39 4	22 23 ,	4. 22 A-4
103+00 70'L	0 0-5.0 5.0-8.0 8.0-12.0 12.0-16.5 16.5-20.0	Rock Soil Mixture Rock Soil Mixture 6 3 7 14 10 30 22 4 2 32 10 37 Gray Broken Shale	8 Yisuat 10 Yisuat 11 13 A-Ca 11 13 A-Ca 11 13 A-Ca 7 Yisuat	KO5+55 250/L1	10.0-17.0 12 0.0-5.0 11 5.0-10.0 11 10.0-15.0 6 19.0-20.0 12	9 11 148 23 5 8 38 140 4 8 34 50 9 11 33 141 7 8 33 34	26 6 72 7 30 11 17 1 31 11 17 1 23 11 12 1 31 11 12 1	1-11a 1-Ca 1-Ca 1-Ca 1-Ca	107+0 <u>0</u> I	10. 13.0 180' Rt 0.0 8.0	6-13-0 	a lo a			A-Ca A-Ca Visual Visual						
10;+00 ,001	t 0.3-4.0 4.0-8.0 8.0-15.0 15.0-20.0 20.0-23.0	30 11 6 21 20 32 0 0 1 1/2 1/7 30 0 0 1 1/2 1/7 30 0 0 0 57 1/3 NP 5 7 3 51 34 26 31 14 14 - 14+ NP		KOS+QO KO'EE	2.0-3.0 13 30.0-32.0 Gray Br	8 1 37 37 8 6 37 36 oken Shale 9 9 38 39	27 7 17 36 14 14 1 91 14 14 1 91 14 14 1	A-Tia A-Ca VI sual A-Ca A-Ca	105+00 3	12.0 300'L1 0,0 300'L1 0,0	0-18.0 fipch Sa 0-18.0 fibch Sa 0-7.0 20 0-7.0 20 0-19.0 50	11 bixture 12 10 32 3 0 13 30 9		N O O	VIsual VIsual A-4a A-2-4 A-1-a						
	23,0-27,0	36 15 5 24 20 23	TO IS A-la			eathered Shale		i de le de l			G-16,0 39		r - 51 - 59	9 10							
					-4																
								ور المراجع ا				ſ.					· C				

·· · · · ·

EMB. FAILURE INVESTIGATION CUYAHOGA - LAKE COS. CUY-1-15.91 LAK-1-0.00 OHIO STATE HIGHWAY TESTING - LABORATORY COLUMBUS, OHIO -----

NOTE: NP shows in Liquid Limit and Plasticity Index columns indicates that the material is non-plastic.

5

1

×

المحاجرين

. .

the second

*

-

				EMB. FAILURE INVESTIGATION CUYAHOGA - LAKE COS. CUY - 1 - 15.91 LAK - 1 - 0.00 OHIO STATE HIGHWAY TESTING LABORATORY COLUMBUS, OHIO
780			Cross Section <u>Sta. 102+00</u>	Original ground liné
760	Existing ground line	75-021 Brown Sandysilty Clay and Soft Shole Fragments Refear TA	agments Brown Silty Clay and Shale Fragments Refusal	Plan 'section
720 720 700 32	$ \begin{array}{c} 75 + 0.3' \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $			
680 Refusal				
790 780		(5ta: 101+50) (5ta: 101+50)	Cross Section Sta. 101+40	Original ground line Plan section
760 740 720	Existing ground line	Refusal	Refusal	
700				
	<u>360 340 320 300 280 28</u>	<u>0 240 220 200 180 160 140 120 100</u>	<u>80 60 40 20 4 20 40</u>	<u>60 80 100 120 140 160 180 200 :</u>

.

 \sim

.

•••

· ·

.....

i ı.

				EMB. FAILURE INVESTIGATION CUYAHOGA - LAKE COS. CUY - 1 - 15.91 LAK - 1 - 0.00 OHIO STATE HIGHWAY TESTING LABORATORY COLUMBUS, OHIO
780			Cross Section <u>Sta. 102+00</u>	Original ground liné
760	Existing ground line	75-021 Brown Sandysilty Clay and Soft Shole Fragments Refear TA	agments Brown Silty Clay and Shale Fragments Refusal	Plan 'section
720 720 700 32	$ \begin{array}{c} 75 + 0.3' \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $			
680 Refusal				
790 780		(5ta: 101+50) (5ta: 101+50)	Cross Section Sta. 101+40	Original ground line Plan section
760 740 720	Existing ground line	Refusal	Refusal	
700				
	<u>360 340 320 300 280 28</u>	<u>0 240 220 200 180 160 140 120 100</u>	<u>80 60 40 20 4 20 40</u>	<u>60 80 100 120 140 160 180 200 :</u>

.

 \sim

.

•••

· ·

.....

i ı.

N,

1

••

•

· ·

•-----

e An an cruis an c				,	Marina da serie de la deserie de la deser	a na sa na						• •	· · ·					ын алан алан алан алан алан алан алан ал
	ļ		Ī			1		s.			- -		<u> </u>		EMB. F	AILURE II	VVESTIGA	ATION
	-							. • •	· · · ·			, - A		· · · · · · · · · · · ·	CUYAH	OGA -LA	AKE CO	S.
				•											CUY-1	- 15.91		
		1. A			e			· · · · ·			er 7-					OHIO ST	TE HIGH	WAY
τ.																COLU	MBUS, OHI	0
·;					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						at La stra						
																		в. 177
			- <u> </u>	or <u>a sua a constana a cons</u> ta				· · · · ·									н	
							Cross	Section		-		-						
							579.10	54700						have the second				
			-	· · · · · · · · · · · · · · · · ·				·	e materia		· · · · ·	•	- OF	iginal groui	na line			
		Break																
15			-			>-83	0					• • • • •		<i>-</i> -				
18							7 21				Plan section	ก่						
- 15	i den. T			/6		371	Brown Sil	y Clay and	shale Fragti	nents								
- 17				15	<u> </u>	Refuso	i)										· · · ·	
ei 19							1 a.					•						
1						1 - 1. p		i gana a sua sua su cana ana ana ang						k	,	· · · · ·	· · · · · · · · · · · ·	
- 24										st i		4	· · ·					
Тэ	p of Rock-In-	Place.																
F SH	ale, gray, argi ssile, hard, br	pken, badly	caceous and s broken from	iliceous from i elev. 701.3' to	eleu. 702.3' + 6 700.3' Cor	\$ 701.3; • Joss 1490.				· · · · · · · · · · · · · · · · · · ·								
			-					•			•••					· · · · · · · ·		· · ·
	-											. ·		1. J. K.			2 apr	
					1				- -									8 J 1
						, i									1 1 <u>4</u> 5			5 5 10
		n a stratic de la constant a					···· ··· · · ·			-	- ²			· · · · · · ·			•	
						4								3				
	a manufacture and a state of the state of th						Trace	Section		ana into a mananti mata tananti i								
							Sta. 10	3+00				2			-			
													Orloinat	around lin	á.		•	
· · · · · · · · · ·	Break			• • • • • • • • •	· · · · · · · · · ·		· · · · · · · · · · · ·		- · · · · ·		and the second sec	-	Original					
				-														
	A	:		-								· · · · ·						
	1			13				• * *				÷	- Plar	r section	ł			
				Refusal											· .		5	
		£_,		•				gannen av						han da da 🖓				
	Top	of Rock-In-PL	ace.	hand have the	C	06												
	5.00	ie, groff argu		poird protein	Core loss &			• · · · · ·									· · ·	
				l.									· · .					
	Non i ki yaz ii Zi								•								4	
										1		н. 					ſ	
	· · · · · · · · · · · · · · · · · · ·	<u>.</u>						n 1	· · · · · · ·	· • • • • • • • • • •					· · · · · · ·	· · · · · · ·	** · · · ·	
					×								ы. 					
										•		.						
													-					
·	· · · · · · · · · · · · · · · · · · ·									· · · · ·			·	<u>ب</u> ب محر الامر ا				1
/	40 12	20 /	<u>00 e</u>	6	0 4	10 2	0 9	2	0 4	0 6	0 8	0 10	<u>00 12</u>	20 1.	10 1	50 12	30 20	20
		n an	<u>)</u>	1				<u> </u>	Ì		: : : :	L	fer en la substancementaria an la	annan ann a' stàitean a' stàitean ann an stàitean a' stàitean ann an stàitean ann an stàitean ann an stàitean a	l I mana a constant de ma	1	<u></u>	
		¥			٠													Ň

•

4 -----780 760 740 720 700 680 660 780 × . 760 740 720 700 680 4j d .

• •

i į

\. • **#** >

..

.

.

				· · · · ·	· · · · · · · · · · · ·	•									EMB. F CUYAH CUY-I- LAK-I-	AILURE 1 OGA - L/ +15.91 +0.00 OHIO ST	NVESTIG	ATION 5. HWAY
							Cre	oss Secti	on							TESTIN COI	G LABOR	ATORY HIO
· · · · · · · · · · · · · · · · · · ·	-B	reak		Plan	section		<u>S</u> ł	<u>a 106+0</u>	0									54 14
																· · · · · ·		
					energia de la composición de la composi La composición de la c		15 15 15 15	15 15 14						•				
	· · · · · · · · · · · · · · · · · · ·									Refusal		•				,		
					- Öriginal	ground lir	ne I					· · · ·	46					
• • • • • • • • • • •						•						•					· · · · · · ·	
								#				·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·		
naga anti se mengan aga aga ag		•	· · ·	<u>.</u>	· · · · · · · · · · · · · · · · · · ·										· · · · · · · · · · · · · · · · · · ·		α 	
ů, e 1997–177 – 1997 – 1				<u> </u>				· · · · · · · · · · · · · · · · · · ·					÷.		· · · · · · · · · · · · · · · · · · ·			
- - 						•						· ·	¥ .	est for		•	- 1.55° 5. 	
: 		Break					Stail	<u>05+50</u>		a A A A A A A A A A A A A A A A A A A A					й 5 ₈ .			2
		Pian	section	(Sta. 105)	10) (Sta. 105+1	Ol	· · · · ·							- 				
100 - 100 -	15	· · ·	f.		14				8	19		(Sta. 105) B Refusa	10) 5 4	<u></u>				
	16			11102	- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	10		2 7	SELIO Refusal			Refusal		• • • • • • • • • • • • • • • • • • •			
1	17 3				- Ortginal g	round line												
	27 20 10p of Rock	<-In-Place		• • •					· · · · · · · · · · ·								÷	
	Shale, gra Core loss	y, argillaceò 6%.	15, firm, brok	kn.						•	- 	•						
					/4 4. * *	*	· · · · ·			2								
		н таконология так с друг на средни развини,			· · · · · · · · · · · · · · · · · · ·				- F								••••••••••••••••••••••••••••••••••••••	
				••••••		i i i i i i i i i i i i i i i i i i i		• • • • • • • • • • • • • • • • • • • •							- - -	H on you		
· · · · ·						••)											· · · · · · · · · · · · · · · · · · ·	
• • • • •		·					·		· · · · · · · · · · · · · · · · · · ·									- -
i [4	10 17	0 10	<u>o 80</u>) 6	o 4	0 8	0 3	2	0 4	0 6	21	3010	21_0	0 14	0 16	0 18	<u>10 20</u>	20

i î

• •

.

																					1					EMB. FA CUYAHO	ILURE IN GA - LAK	VESTIGAT E COS.	10N
• •												· · · · · · · · · · · · · · · · · · ·														CUY-1+ LAK-1+	15.91 0.00 OHIO ST/ TESTING COLU	ATE HIGHW LABORATS MBUS, OHIS	AY DRY P
	780														—Pian sect	ion			C.	ross Sect Sta 108+0	ion O	· · · · · · · · · · · ·		n a a a					•
	760						4	Exis	sting ground	line				3 7 17 16 14															
	720			i a 2.	n R Early	4						· · · · · · · · · · · · · · · · · · ·		ir.	-Original	ground line										- W			
	700				Original gre	ound line			2 <u>2 ¹⁹ 2 − 2</u> 														•						
	660						• 		1 1																				
															- ••• - •••				· · · · · · · · ·										
• •															· · · · · · · · ·				.C.	ross Sect Sta 107+C	ion 20	• · · · ·							
	780 ····					•									-Plan-sec	tion												· · · · · · · · · · · · · · · · · · ·	
	760				T A A A A A A A A A A A A A A A A A A A				Existing c	ground line			1 (2 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3														A State of the sta		
	720												19 19 19 19 19 19 19 19 19 19 19 19 19 1		Örigi	nal ground li	ne										Refusal		•
	680	(Sfa Ic6+80 T ⁵⁼ 04' W27 390	Silghtly organ		-Original gr	ound line	S Trake of organic	Rafusa (Boulders)						af Rac-In-Plac le,gray, argil	a laceous, soft t	sfirm, broken. C	ore loss 8 %.												
•	660	Refusal				A Refusal																							
																													. t
•		420	400	380 3	60 340	320 300	085	5 035	240 2	20 20) o 18	0 16	0 140	150	100	80	60 4	5 0	0	20	<u>5 40</u>	60	80	2 10	21 O	014	0 160) [80	2
	·.								đ.																	ļ.			
•• • •	11 - 1 1							a Maria ang sang sa	··																				

•

•

.

•

ı İ

C-2 HISTORIC SITE PHOTOS FROM TIMS

