JOB: LUC-475-0.93 (PID 95875) SHEET NO.
1 of FILE NO. 200-12914-14001
COMP. BY: TSR DATE: $\quad 8 / 30 / 21$ CHK. BY: TLR ${ }^{\text {DATE: } \quad 4 / 8 / 22}$

## 202 E 11203

PORTIONS OF STRUCTURE REMOVED, OVER 20 FOOT SPAN, AS PER PLAN
Lump Sum estimate cost using square footage of the existing deck.

202 E 22900
APPROACH SLAB REMOVED
UNITS $=\mathbf{S Y}$

| Rear Approach Slab |  |
| ---: | :--- |
| Width | $=51.65$ |
| Lt (from existing plans) |  |
| Length | $=25.00$ |
| Area | $=(51.651 \mathrm{ft} \times 25 \mathrm{ft}) / 9=$ |

Forward Approach Slab
$\begin{aligned} & \text { Width }=43.81 \\ & \text { Length }=25.00 \\ & \mathrm{ft} \text { (from existing plans) } \\ & \text { Lexisting plans) }\end{aligned}$
Area $=(43.8125 \mathrm{ft} \times 25 \mathrm{ft}) / 9=$

Total $=143.5 \mathrm{ft}+121.7 \mathrm{ft}=$

202E23500 WEARING COURSE REMOVED
UNITS = $\mathbf{S Y}$

Rear Approach Slab
$\begin{aligned} \text { Width } & =51.65 \mathrm{ft} \text { (from existing plans) } \\ \text { Length } & =25.00 \mathrm{ft} \text { (from existing plans) } \\ \text { Area } & =(51.651 \mathrm{ft} \times 25 \mathrm{ft}) / 9=\end{aligned}$
121.7 syd

Area $=(51.651 \mathrm{ft} \times 25 \mathrm{ft}) / 9=\quad 143.5$ syd
Forward Approach Slab
Width $=43.81 \mathrm{ft}$ (from existing plans)
Length $=25.00 \mathrm{ft}$ (from existing plans)
Area $=(43.8125 \mathrm{ft} \times 25 \mathrm{ft}) / 9=\quad 121.7$ syd

Total $=143.5 \mathrm{ft}+121.7 \mathrm{ft}=\quad 266$ syd

JOB: LUC-475-0.93 (PID 95875) SHEET NO. 2 of


JOB: LUC-475-0.93 (PID 95875 $\qquad$ SHEET NO. 3 of
COMP. BY: TSR DATE: 8/30/21 CHK. BY: TLR $\quad$ DATE: $\quad 4 / 8 / 22$

## 511 E33418

## CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE

## Rear Diaphragm Middle

Area $=715.00 \mathrm{sft}$ (measured in CAD)
Width $=3.67 \mathrm{ft}$ (measured in CAD)
Volume $=(715 \mathrm{sft} \times 3.67 \mathrm{ft}) / 27=$
97.2 cyd

Subtract Approach slab portion
Area $=140.61 \mathrm{sft}$ (measured in CAD)
Width $=0.50 \mathrm{ft}$ (measured in CAD)
Volume $=-(140.61 \mathrm{sft} \times 0.5 \mathrm{ft}) / 27=$
-2.6 cyd

Rear Diaphragm Ends
$\begin{aligned} & \text { Area Left }=19.03 \\ & \text { Aft (measured in CAD) } \\ & \text { Area Right }=18.01 \\ & \text { Widt (measured in CAD) }=3.67 \\ & \mathrm{ft}(\text { measured in CAD) }\end{aligned}$
Volume $=(19.03 \mathrm{sft}+18.01 \mathrm{sft}) \times 3.67 \mathrm{ft}) / 27=$
Beam Penetration Subtraction
Area $=7.43 \mathrm{stt}$ (measured in CAD)
Depth $=2.67 \mathrm{ft}$ (measured in CAD)
No. of Beam $=12.00$
Volume $=-(7.43 \mathrm{sft} \times 2.67 \mathrm{ft}) / 27 \times 12$ beams $=\quad-8.8 \mathrm{cyd}$
Rear Total Volume $=97.2$ cyd $+-2.6 \mathrm{cyd}+5 \mathrm{cyd}+-8.8 \mathrm{cyd}=$
Forward Diaphragm Middle
Area $=719.43 \mathrm{sft}$ (measured in CAD)
Width $=3.67 \mathrm{ft}$ (measured in CAD)
Volume $=(719.43 \mathrm{sft} \times 3.67 \mathrm{ft}) / 27=$
97.8 cyd

Subtract Approach slab portion
Area $=140.62 \mathrm{sft}$ (measured in CAD)
Width $=0.50 \mathrm{ft}$ (measured in CAD)
Volume $=-(140.62 \mathrm{sft} \times 0.5 \mathrm{ft}) / 27=$
-2.6 cyd

Forward Diaphragm Ends
Area Left $=18.13 \mathrm{stt}$ (measured in CAD)
Area Right $=19.15$ sft (measured in CAD)
Width $=3.67 \mathrm{ft}$ (measured in CAD)
Volume $=(18.13 \mathrm{sft}+19.15 \mathrm{stt}) \times 3.67 \mathrm{ft}) / 27=$
5.1 cyd

Beam Penetration Subtraction
Area $=7.43$ sft (measured in CAD)
Depth $=2.67 \mathrm{ft}$ (measured in CAD)
No. of Beam $=12.00$
Volume $=-(7.43 \mathrm{sft} \times 2.67 \mathrm{ft}) / 27 \times 12$ beams $=$
Forward Total Volume $=97.8 \mathrm{cyd}+-2.6 \mathrm{cyd}+5.1 \mathrm{cyd}+-8.8 \mathrm{cyd}=$
-8.8 cyd
92 cyd

## 511 E33418 CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE (CONTINUED) UNITS = CY

Pier Diaphragm Bays
Face Area $=35.9283$ sft (measured in CAD) Face Area Between Beams
Width $=2.0000 \mathrm{ft}$
No. of Bays $=11.0000$
Volume $=(35.9283 \mathrm{sft}+2 \mathrm{ft}) \times 11$ bays $) / 27^{*} 2$ piers $=$
58.6 cyd

Pier Diaphragm B sft (measured in CAD)
Area $=7.43 \mathrm{ft}$ (measured in CAD)
$\begin{aligned} \text { Depth } & =0.50 \\ \text { Beam } & =12.00 \\ & f t(m e a s u r e d ~ i n ~ C A D) ~\end{aligned}$
Volume $=(7.43 \mathrm{sft}+0.5 \mathrm{ft}) \times 12$ beam $) / 27^{*} 2$ piers $=\quad 3.4 \mathrm{cyd}$

Pier Dia. Total Volume $=58.6$ cyd +3.4 cyd $=$
62 cyd

## $511 E 34446$ CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK <br> UNITS $=\mathbf{C Y}$

Deck
Main Deck Sect. $=71.74$ sft (measured in CAD)
Length $=228.33 \mathrm{ft}$ (measured in CAD)
Volume $=(71.74 \mathrm{sft} \times 228.33 \mathrm{ft}) / 27=\quad 606.7$ cyd
Haunches see right 102.56 cyd
Rear Abutment Deck Taper
$\begin{aligned} & \text { Area }=0.98 \\ & \mathrm{sft}(\text { measured in CAD) } \\ & \text { Length }=99.75 \\ & \mathrm{ft}(\text { measured in CAD }) \\ & \text { Volume }=(0.98 \mathrm{stt} \times 99.75 \mathrm{ft}) / 27=\end{aligned}$
Volume $=(0.98 \mathrm{sft} \times 99.75 \mathrm{ft}) / 27=3.6 \mathrm{cyd}$
$\begin{aligned} & \text { Rear Abutment Deck Taper Subtract Beam } \\ & \text { Area }=1.40 \\ & \text { sft (measured in CAD) } \\ & \text { Depth }=1.69 \\ & \mathrm{ft}(\text { measured in CAD }) \\ & \text { No. of Beam }=12.00 \\ & \text { Volume }=-(1.4 \mathrm{sft} \times 0.69 \mathrm{ft}) / 27 \times 12 \text { beams }=\end{aligned}$
Forward Abutment Deck Taper
Area $=0.98 \mathrm{sft}$ (measured in CAD)
Length $=99.75 \mathrm{ft}$ (measured in CAD)
Volume $=(0.98 \mathrm{sft} \times 99.75 \mathrm{ft}) / 27=\quad 3.6 \mathrm{cyd}$
Forward Abutment Deck Taper Subtract Beam
$\begin{aligned} & \text { Area }=1.40 \\ & \text { Depth }=0.69 \\ & \mathrm{ftt}(\text { measured in CAD) } \\ & \text { No. of Beam }=12.00 \\ &\end{aligned}$
Volume $=-(1.4 \mathrm{ft} \times 0.69 \mathrm{ft}) / 27 \times 12$ beams $=\quad-0.4 \mathrm{cyd}$
Deck Volume $=606.7 \mathrm{cyd}+3.6 \mathrm{cyd}+-0.4 \mathrm{cyd}+3.6 \mathrm{cyd}+-0.4 \mathrm{cyd}=716 \mathrm{cyd}$
Total Volume $=91$ cyd +92 cyd +716 cyd $=\quad 899 \mathrm{cyd}$

JOB: LUC-475-0.93 (PID 95875) $\qquad$ SHEET NO. $\qquad$ SUBJECT: LUC-475-0093(L) Estimated Quantities CHK. BY: TLR FILE NO. 200-12914-14001
$\qquad$ DATE: 4/8/22

## 511E34450

CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET)
UNITS = $\mathbf{C Y}$
Rear Railing

| Rear Railing |  |  |
| ---: | :--- | ---: | :--- |
| Area | $=588.00$ | sin (from standard) |
| Total Length | $=209.67$ | ft (measured in CAD) |
| Transition | $=1.82$ | cyd (from standard) |

Volume $=(588 \mathrm{sin} / 144 \mathrm{sin} / \mathrm{sft}) \times 209.67 \mathrm{ft} / 27)+(2 \times 1.82 \mathrm{cyd})=$
35.3 cyd
$\begin{aligned} & \text { Forward Railing } \\ & \text { Area }=588.00 \\ & \sin \text { (from standard) } \\ & \text { Total Length }=209.67 \\ & \text { Transition }=1.82\end{aligned}$ (measured in CAD)
Volume $=(588 \mathrm{sin} / 144 \mathrm{sin} / \mathrm{sft}) \times 209.67 \mathrm{ft} / 27)+(2 \times 1.82 \mathrm{cyd})=35.3 \mathrm{cyd}$

Total Volume $=\mathbf{3 5 . 3} \mathbf{c y d}+35.3 \mathrm{cyd}=$
511 E41012 CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS
UNITS $=\mathbf{C Y}$

Pier 1 Pier Cap
Area $=447.35$ stt (measured in CAD)
Width $=4.00 \mathrm{ft}$ (measured in CAD)
Volume $=(447.3464 \mathrm{sft} \times 4 \mathrm{ft}) / 27=$
66.3 cyd

Pier 2 Pier Cap
Area $=447.30 \mathrm{sft}$ (measured in CAD)
Width $=4.00 \mathrm{ft}$ (measured in CAD)
Volume $=(447.2958 \mathrm{sft} \times 4 \mathrm{ft}) / 27=$
66.3 cyd

Area $=$ $\square$

Volume $=\{[(21.92 \times 6)+(22.33 \times 6)] \times 9.6 \mathrm{sf}\} / 27=$
94.4 cyd

Total Volume $=\mathbf{6 6 . 3} \mathbf{c y d} \boldsymbol{+ 6 6 . 3} \mathbf{c y d}+\mathbf{9 4 . 4} \mathbf{c y d}=$
227 cyd

JOB: LUC-475-0.93 (PID 95875 SHEET NO. 6 of
COMP. BY: TSR DATE: 8/30/21 CHK. BY: TLR DATE: 4/8/22

## 511 C43512 CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT INCLUDING FOOTING UNITS = CY

## Rear Left Wingwall

$$
\begin{aligned}
& \text { Area }=67.38 \\
& \text { Width }=2.50 \\
& \mathrm{ftt}(\text { measured in CAD) }
\end{aligned}
$$

Volume $=(67.3796 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$

Forward Left Wingwall
Area $=67.58$ sft (measured in CAD)
Width $=2.50 \mathrm{ft}$ (measured in CAD)
Volume $=(67.5841 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$
6.3 cyd

Rear Right Wingwall
$\begin{aligned} & \text { Area }=68.70 \\ & \mathrm{sft} \text { (measured in CAD) } \\ & \text { Width }=2.50 \\ & \mathrm{ft}(\text { measured in CAD) }\end{aligned}$
Volume $=(68.6958 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$
6.4 cyd

Forward Right Wingwall
Area $=68.84 \mathrm{sft}$ (measured in CAD)
Width $=2.50 \mathrm{ft}$ (measured in CAD)
Volume $=(68.8395 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$

Total Wingwall Volume $=6.2 \mathrm{cyd}+6.3 \mathrm{cyd}+6.4 \mathrm{cyd}+6.4 \mathrm{cyd}=$
26 cyd
Rear Footing

| Length | $=131.17$ |
| ---: | :--- |
| Width | $=$ft (measured in CAD) <br> W.05 ft <br> (measured in CAD)  |
| Height | $=3.67$ |
| $\mathrm{ft}($ measured in CAD) |  |

Volume $=(131.17 \mathrm{ft} \times 5.05 \mathrm{ft} \times 3.67 \mathrm{ft}) / 27=$
90.0 cyd
$\begin{aligned} & \text { Forward Footing } \\ & \text { Length }=131.17 \\ & \mathrm{ft}(\text { measured in CAD) } \\ & \text { Width }=5.05 \\ & \mathrm{ft} \text { (measured in CAD) } \\ & \text { Height }=3.67 \\ & \mathrm{ft} \text { (measured in CAD) }\end{aligned}$
Volume $=(5.05 \mathrm{sft} \times 3.67 \mathrm{ft}) / 27=\quad 90.0$ cyd

Total Footing Volume $=90$ cyd +90 cyd $=$
180 cyd

Total Footing Volume = $\mathbf{2 6}$ cyd $+\mathbf{1 8 0}$ cyd $=$

JOB: LUC-475-0.93 (PID 95875) SHEET NO. $\qquad$ of 14 SUBJECT: LUC-475-0093(L) Estimated Quantities FILE NO. 200-12914-14001
$\qquad$ DATE: 4/8/22


JOB: LUC-475-0.93 (PID 95875) SHEET NO. 8 of
Span 1 Beams
Length $=60.58 \mathrm{ft}$
Beams $=12.00 \mathrm{ct}$

Span 3 Beams
Length $=60.58 \mathrm{ft}$
Beams $=12.00 \mathrm{ct}$

Total $=12$ beams +12 beams $=$
$515 E 15110$ DRAPED STRAND PRESTRESSED CONCRETE BRIDGE I-BEAM MEMBERS, LEVEL 3, T' UNITS = EACH
\(\begin{aligned} \& Span 2 Beams <br>

\& Length=\)| 113.50 | tt |
| ---: | ---: |
|  Beams  | $=$ |\end{aligned}

Total $=12$ beams $=$



JOB: LUC-475-0.93 (PID 95875) SHEET NO.
10 of

```
516E44201 ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPREN UNITS = EACH
        Span 1 Beams
        Bearings = 12.00 ct
        Span 3 Beams
        Bearings = 12.00 ct
        Total = 12 bearings + 12 bearings =
        24 each
516E44201 ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPREP UNITS = EACH
        Span 2 Beams
    Bearings = 24.00 ct
        Total = 24 bearings * 2 piers =
        48 each
```



JOB: LUC-475-0.93 (PID 95875) SHEET NO. 12 of

```
SUBJECT: LUC-475-0093(L) Estimated Quantities
```

COMP. BY: TSR DATE: 8/30/21 CHK. BY: FILE NO. DATE: $\quad 4 / 8 / 22$


Length $=(69 \times 6)+(69 \times 6)=$
828 ft

524 E94804 DRILLED SHAFTS, 42" DIAMETER, INTO BEDROCK
UNITS $=\mathrm{FT}$
Pier 1 Depth $=1.00 \mathrm{ft}$
Pier 2 Depth $=1.00 \mathrm{ft}$


Length $=(1 \times 6)+(1 \times 6)=$

12 ft

JOB: LUC-475-0.93 (PID 95875)
$\qquad$ SHEETNO. 13
$526 E 25010$
REINFORCED CONCRETE APPROACH SLABS WITH QC/QA (T=15")
UNITS = $\mathbf{S Y}$

Rear Approach Slab
$\begin{aligned} \text { Width } & =97.42 \mathrm{ft} \\ \text { Length } & =25.00 \mathrm{ft}\end{aligned}$
Area $=(97.4167 \mathrm{ft} \times 25 \mathrm{ft}) / 9=\quad 270.6$ syd
Forward Approach Slab
$\begin{aligned} \text { Width } & =97.42 \mathrm{ft} \\ \text { Length } & =25.00 \mathrm{ft}\end{aligned}$
Area $=(97.4167 \mathrm{ft} \times 25 \mathrm{ft}) / 9=$
270.6 syd

Total $=270.6$ syd +270.6 syd $=$
542 syd

526E90010 TYPE A INSTALLATION
UNITS = FT
$\begin{aligned} & \text { Rear Approach Slab } \\ & \text { Width }=97.42 \mathrm{ft} \\ & \text { Total }=97.4167 \mathrm{ft}=\end{aligned}$
97.4 ft

Forward Approach Slab
Width $=97.42 \mathrm{ft}$
Area $=97.4167 \mathrm{ft}=$
97.4 ft

Total $=97.4 \mathrm{ft}+97.4 \mathrm{ft}=$
195 ft

JOB: LUC-475-0.93 (PID 95875) $\qquad$ SHEET NO.
14 of
COMP. BY: TSR DATE: 8/30/21 CHK. BY:


