JOB: LUC-475-0.93 (PID 95875) \qquad SHEET NO.
1 of
COMP. BY: TSR DATE: $\quad 8 / 30 / 21$ CHK. BY: TLR ${ }^{\text {DATE: } \quad 4 / 8 / 22}$

Lump Sum estimate cost using square footage of the existing deck.

Rear Approach Slab	
Width	$=45.58$
ft (from existing plans)	
Length	$=25.00$
ft (from existing plans)	

Area $=(45.5833 \mathrm{ft} \times 25 \mathrm{ft}) / 9=\quad 126.6$ syd

Forward Approach Slab
Width $=41.35 \mathrm{ft}$ (from existing plans)
Length $=25.00 \mathrm{ft}$ (from existing plans)
Area $=(41.349 \mathrm{ft} \times 25 \mathrm{ft}) / 9=$

Total $=126.6 \mathrm{ft}+114.9 \mathrm{ft}=$

202E23500 WEARING COURSE REMOVED
UNITS = $\mathbf{S Y}$

Rear Approach Slab	
Width	$=45.58$
$\mathrm{ft}($ from existing plans $)$	
Length	$=25.00$
ft	(from existing plans)
Area	$=(45.5833 \mathrm{ft} \times 25 \mathrm{ft}) / 9=$

Area $=(45.5833 \mathrm{ft} \times 25 \mathrm{ft}) / 9=\quad 126.6$ syd

Forward Approach Slab
Width $=41.35 \mathrm{ft}$ (from existing plans)
Length $=25.00 \mathrm{ft}$ (from existing plans)
Area $=(41.349 \mathrm{ft} \times 25 \mathrm{ft}) / 9=\quad 114.9$ syd

Total $=126.6 \mathrm{ft}+114.9 \mathrm{ft}=\quad 242$ syd

JOB: LUC-475-0.93 (PID 95875)
\qquad SHEET NO.
3 of
COMP. BY: TSR DATE: 8/30/21 CHK. BY: TLR DATE: 4/8/22

511E33418

Rear Diaphragm Middle
Area $=807.41 \mathrm{sft}$ (measured in CAD)
Width $=3.67 \mathrm{ft}$ (measured in CAD)
Volume $=(807.41 \mathrm{stt} \times 3.67 \mathrm{ft}) / 27=$
109.7 cyd

Subtract Approach slab portion
Area $=141.26 \mathrm{sft}$ (measured in CAD)
Width $=0.50 \mathrm{ft}$ (measured in CAD)
Volume $=-(141.26 \mathrm{sft} \times 0.5 \mathrm{ft}) / 27=\quad-2.6 \mathrm{cyd}$

Rear Diaphragm Ends

Area Left	$=18.07$	sft (measured in CAD)
Area Right	$=19.54$	$\mathrm{stt}($ measured in CAD)
Width	$=3.67$	$\mathrm{ft}($ measured in CAD)

Volume $=(18.07 \mathrm{stt}+19.54 \mathrm{sft}) \times 3.67 \mathrm{ft}) / 27=$
5.1 cyd

Beam Penetration Subtraction
Area $=7.43 \mathrm{stt}$ (measured in CAD)
Depth $=2.67 \mathrm{ft}$ (measured in CAD)
No. of Beam $=13.00$
Volume $=-(7.43 \mathrm{sft} \times 2.67 \mathrm{ft}) / 27 \times 13$ beams $=$

-9.6	cyd
103	cyd

Rear Total Volume $=109.7 \mathrm{cyd}+\mathbf{- 2} .6 \mathrm{cyd}+5.1 \mathrm{cyd}+-9.6 \mathrm{cyd}=$
Forward Diaphragm Middle
Area $=807.72 \mathrm{sft}$ (measured in CAD)
Width $=3.67 \mathrm{ft}$ (measured in CAD)
Volume $=(807.72 \mathrm{sft} \times 3.67 \mathrm{ft}) / 27=\quad 109.8$ cyd
Subtract Approach slab portion
Area $=133.67$ sft (measured in CAD)
Width $=0.50 \mathrm{ft}$ (measured in CAD)
Volume $=-(133.67 \mathrm{sft} \times 0.5 \mathrm{ft}) / 27=\quad-2.5$ cyd
Forward Diaphragm Ends

Area Left	$=19.55$
Area Right	$=18.08$
St $($ measured in CAD $)$	
Width	$=3.67$
(measured in CAD $)$	
Volume	$=(19.55 \mathrm{stt}+18.08 \mathrm{stt}) \times 3.67 \mathrm{ft}) / 27=$

5.1 cyd

Beam Penetration Subtraction
Area = \qquad sft (measured in CAD)
Depth $=2.67 \mathrm{ft}$ (measured in CAD)
No. of Beam $=13.00$
Volume $=-(7.43 \mathrm{sft} \times 2.67 \mathrm{ft}) / 27 \times 13$ beams $=$
Forward Total Volume $=109.8 \mathrm{cyd}+\mathbf{- 2} \mathbf{5} \mathrm{cyd}+5.1 \mathrm{cyd}+-9.6 \mathrm{cyd}=$
-9.6 cyd

511 E33418 CLASS QC2 CONCRETE WITH QC/QA, SUPERSTRUCTURE (CONTINUED) UNITS = CY

Pier Diaphragm Bays
Face Area $=36.7859$ sft (measured in CAD) Face Area Between Beams
Width $=2.0000 \mathrm{ft}$
No. of Bays $=12.0000$
Volume $=(36.7859 \mathrm{sft}+2 \mathrm{ft}) \times 12$ bays $) / 27^{*} 2$ piers $=$
65.4 cyd

Pier Diaphragm B sft (measured in CAD)
Area $=7.43 \mathrm{ft}$ (measured in CAD)
$\begin{aligned} \text { Depth } & =0.50 \\ \text { feam } & =13.00 \\ & \mathrm{ft}(\text { measured in CAD) }\end{aligned}$
Volume $=(7.43 \mathrm{sft}+0.5 \mathrm{ft}) \times 13$ beam $) / 27^{*} 2$ piers $=\quad 3.6 \quad$ cyd

Pier Dia. Total Volume $=65.4$ cyd +3.6 cyd $=$
69 cyd
511 CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK
UNITS = $\mathbf{C Y}$

Deck
Main Deck Sect. $=79.25$ sft (measured in CAD)
Length $=235.33 \mathrm{ft}$ (measured in CAD)
Volume $=(79.25 \mathrm{sft} \times 235.33 \mathrm{ft}) / 27=\quad 690.7$ cyd
Haunches see right 154.0 cyd
Rear Abutment Deck Taper
$\begin{aligned} & \text { Area }=0.98 \\ & \text { sft (measured in CAD) } \\ & \text { Length }=110.33 \mathrm{ft}(\text { measured in CAD }) \\ & \text { Volume }=(0.98 \mathrm{sft} \times 110.33 \mathrm{ft}) / 27=\end{aligned}$
Volume $=(0.98 \mathrm{sft} \times 110.33 \mathrm{ft}) / 27=\quad 4.0 \quad$ cyd

Forward Abutment Deck Taper
Area $=0.98$ fft (measured in CAD)
Length $=110.33 \mathrm{ft}$ (measured in CAD)
Volume $=(0.98 \mathrm{sft} \times 110.33 \mathrm{ft}) / 27=\quad 4.0 \mathrm{cyd}$

Forward Abutment Deck Taper Subtract Beam
$\begin{aligned} & \text { Area }=1.40 \\ & \text { Depth }=0.69 \\ & \mathrm{sft}(\text { measured in CAD) } \\ & \text { No. (measured in CAD) } \\ & \text { Neam }=13.00 \\ &\end{aligned}$
Volume $=-(1.4 \mathrm{sft} \times 0.69 \mathrm{ft}) / 27 \times 13$ beams $=\quad-0.5 \quad$ cyd
$\begin{array}{lll}\text { Deck Volume }=690.7 \text { cyd }+4 \text { cyd }+-0.5 \mathrm{cyd}+4 \mathrm{cyd}+-0.5 \mathrm{cyd}= & 852 & \text { cyd } \\ \text { Total Volume }=103 \mathrm{cyd}+103 \mathrm{cyd}+852 \mathrm{cyd}= & 1058 \quad \text { cyd }\end{array}$

JOB: LUC-475-0.93 (PID 95875)
\qquad SHEET NO. \qquad COMP. BY: TSR DATE: $\quad 8 / 30 / 21$ CHK. BY: TLR $D A T E: \quad 4 / 8 / 22$

511E34450

CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET)
UNITS = $\mathbf{C Y}$

Rear Railing
Area $=588.00$ sin (from standard)
Total Length $=216.67 \mathrm{ft}$ (measured in CAD)
Transition $=1.82$ cyd (from standard)
Volume $=(588 \mathrm{sin} / 144 \mathrm{sin} / \mathrm{sft}) \times 216.67 \mathrm{ft} / 27)+(2 \times 1.82 \mathrm{cyd})=36.4 \mathrm{cyd}$
Forward Railing
Area $=588.00$ sin (from standard)
Total Length $=216.67 \mathrm{ft}$ (measured in CAD)
Transition $=1.82$ cyd (from standard)

Volume $=(588 \sin / 144 \sin / \mathrm{sft}) \times 216.67 \mathrm{ft} / 27)+(2 \times 1.82 \mathrm{cyd})=$	36.4 cyd
Total Volume $=\mathbf{3 6 . 4} \mathbf{~ c y d ~}+36.4 \mathrm{cyd}=$	$\mathbf{7 3} \mathrm{cyd}$

511 E41012 CLASS QC1 CONCRETE WITH QC/QA, PIER ABOVE FOOTINGS
UNITS $=\mathbf{C Y}$

Pier 1 Pier Cap
Area $=504.81$ sft (measured in CAD)
Width $=4.00 \mathrm{ft}$ (measured in CAD)
Volume $=(504.8117 \mathrm{sft} \times 4 \mathrm{ft}) / 27=\quad 74.8$ cyd
Pier 2 Pier Cap
Area $=504.81 \mathrm{sft}$ (measured in CAD)
Width $=4.00 \mathrm{ft}$ (measured in CAD)
Volume $=(504.8117 \mathrm{sft} \times 4 \mathrm{ft}) / 27=$
74.8 cyd

Number $=$7.00 Number$=7.00$

Volume $=\{[(21.84 \times 7)+(21.84 \times 7)] \times 9.6 \mathrm{sf}\} / 27=$
107.7 cyd

Total Volume $=\mathbf{7 4 . 8} \mathrm{cyd}+\mathbf{7 4 . 8} \mathrm{cyd}+107.7 \mathrm{cyd}=$
258 cyd

JOB: LUC-475-0.93 (PID 95875) \qquad SHEET NO. 6
COMP. BY: TSR DATE: $\quad 8 / 30 / 21$ CHK. BY: TLR ${ }^{\text {D }}$ DATE: 4/8/22

$511 E 43512$ CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT INCLUDING FOOTING UNITS = CY

Rear Left Wingwall

$\begin{aligned} & \text { Area }=54.73 \\ & \text { Width }=2.50 \\ & \mathrm{ft}(\text { measured in CAD) } \\ & \text { Weasured in CAD) }\end{aligned}$
Volume $=(54.7333 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$

Forward Left Wingwall
Area $=70.19 \mathrm{sft}$ (measured in CAD)
Width $=2.50 \mathrm{ft}$ (measured in CAD)
Volume $=(70.1885 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$
6.5 cyd

Rear Right Wingwall
Area $=69.95 \mathrm{sft}$ (measured in CAD)
Width $=2.50 \mathrm{ft}$ (measured in CAD)
Volume $=(69.95 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$
6.5 cyd

Forward Right Wingwall
Area $=55.01$ sft (measured in CAD)
Width $=2.50 \mathrm{ft}$ (measured in CAD)
Volume $=(55.0138 \mathrm{sft} \times 2.5 \mathrm{ft}) / 27=$

Total Volume $=5.1 \mathrm{cyd}+6.5 \mathrm{cyd}+6.5 \mathrm{cyd}+5.1 \mathrm{cyd}=$
24 cyd

Rear Footing		ft (measured in CAD)
Length =	138.25	
Width =	4.90	ft (measured in CAD)
Height $=$	3.67	ft (measured in CAD)
Volume =	38.25	$4.9 \mathrm{ft} \times 3.67 \mathrm{ft}) / 27=$

Forward Footing
$\begin{aligned} \text { Length } & =138.25 \\ \text { Width } & =4.90 \\ & \mathrm{ft}(\text { measured in CAD) } \\ \text { Height } & =3.67\end{aligned}$
Volume $=(4.9 \mathrm{sft} \times 3.67 \mathrm{ft}) / 27=$

Total Volume $=92.1$ cyd +92.1 cyd $=$
92.1 cyd

185 cyd

JOB: LUC-475-0.93 (PID 95875) \qquad SHEET NO. \qquad of 14 SUBJECT: LUC-475-0093(R) Estimated Quantities FILE NO. 200-12914-14001
\qquad DATE: 4/8/22

JOB: LUC-475-0.93 (PID 95875) SHEET NO. 8 of

```
            Span 1 Beams
Length = 60.58 ft
Beams = 13.00 ct
```

515 E14110 STRAIGHT STRAND PRESTRESSED CONCRETE BRIDGE I-BEAM MEMBERS, LEVEL 2, UNITS = EACH

Span 3 Beams
Length $=60.58 \mathrm{ft}$
Beams $=13.00 \mathrm{ct}$

$$
\text { Total }=13 \text { beams }+13 \text { beams }=
$$

$515 E 15110$ DRAPED STRAND PRESTRESSED CONCRETE BRIDGE I-BEAM MEMBERS, LEVEL 3, T' UNITS = EACH
\(\begin{aligned} \& Span 2 Beams

\& Length=\)| 120.50 | tt |
| ---: | ---: |
| Beams | $=$ | Ht\end{aligned}

Total $=13$ beams $=$

JOB: LUC-475-0.93 (PID 95875) SHEET NO. 10 of
of SUBJECT: LUC-475-0093(R) Estimated Quantities FILE NO. 200-12914-14001 COMP. BY: TSR DATE: $\quad 8 / 30 / 21$ CHK. BY: TLR D DATE: 4/8/22

```
516E44201 ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPREN UNITS = EACH
        Span 1 Beams
        Bearings = 13.00 ct
        Span 3 Beams
        Bearings=
        13.00 ct
        Total = 13 bearings + 13 bearings =
        26 each
    516E44201 ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPREP UNITS = EACH
        Span 2 Beams
    Bearings = 26.00 ct
        Total = 26 bearings * 2 piers =
        52 each
```


JOB: LUC-475-0.93 (PID 95875) SUBJECT: LUC-475-0093(R) Estimated Quantities COMP. BY: TSR DATE: 8/30/21 CHK. BY: SHEET NO.
12 of of
\qquad CHK. BY: TLR FILE NO. 200-12914-14001 DATE: 4/8/22

Length $=(69 \times 7)+(69 \times 7)=$

524E94804 DRILLED SHAFTS, 42" DIAMETER, INTO BEDROCK

966 ft

UNITS $=\mathrm{FT}$

Number $=\begin{array}{r}7.00 \\ \text { Number }= \\ \hline\end{array} \quad 7.00$

 Length \(=(1 \times 7)+(1 \times 7)=\)
 JOB: LUC-475-0.93 (PID 95875)
\qquad SHEET NO. 13 of
300.0 syd

Forward Approach Slab
$\begin{aligned} \text { Width } & =108.00 \mathrm{ft} \\ \text { Length } & =25.00 \mathrm{ft}\end{aligned}$
Area $=(108 \mathrm{ft} \times 25 \mathrm{ft}) / 9=$

Total $=300$ syd +300 syd $=$
600 syd

526E90010 TYPE A INSTALLATION
UNITS $=\mathrm{FT}$
$\begin{aligned} & \text { Rear Approach Slab } \\ & \text { Width }=108.00 \mathrm{ft} \\ & \text { Total }=108 \mathrm{ft}=\end{aligned}$
108.0 ft

Forward Approach Slab
Width $=108.00 \mathrm{ft}$
Area $=108 \mathrm{ft}=$
108.0 ft

Total $=108 \mathrm{ft}+108 \mathrm{ft}=$
216 ft

JOB: LUC-475-0.93 (PID 95875)
\qquad SHEET NO. \qquad COMP. BY: TSR DATE: 8/30/21 CHK. BY: TLR FILE NO. 200-12914-14001 DATE: 4/8/22

| 601E20000 \quad CRUSHED AGGREGATE SLOPE PROTECTION | UNITS $=\mathbf{S Y}$ | |
| ---: | :--- | ---: | :--- |
| Rear Abutment | | |
| Vert | $=1.00$ | |
| Horiz | $=2.30$ | |
| Hyp | | |
| Ratio | $=2.51 / 2.3=1.09$ | |

RA Area $=6300.50$ sft (measured in CAD)
Adjusted Area $=1.09 \times 6300.5001 \mathrm{sft}=\quad 6867.55 \mathrm{sft}$
Area $=(6867.55 \mathrm{sft}) / 9=$
763.1 syd

Fwd Abutment

Hyp $=3.07$
Ratio $=3.07 / 2.9=1.06$

FA Area $=7762.76 \mathrm{stt}$ (measured in CAD)
Adjusted Area $=1.06 \times 7762.7637 \mathrm{sft}=\quad 8228.53 \mathrm{sft}$ Area $=(8228.53 \mathrm{stt}) / 9=\quad 914.3$ syd

Rear Abutment Shelf Area

RA Area $=1520.75 \mathrm{sft}$ (measured in CAD)
Area $=(1520.7499 \mathrm{sft}) / 9=\quad 169 \mathrm{syd}$

Total Area $=\mathbf{7 6 3 . 1}$ syd $\boldsymbol{+} \mathbf{9 1 4 . 3}$ syd $\boldsymbol{+} \mathbf{1 6 9}$ syd $=$
1847 syd
$601 E 21060$ TIED CONCRETE BLOCK MAT WITH TYPE 2 UNDERLAYMENT
UNITS = $\mathbf{S Y}$

Fwd Abutment

Vert =	1.00
Horiz =	2.00
Hyp =	2.24
Ratio $=2.24 / 2=$	

FA Area $=512.35 \mathrm{sft}$ (measured in CAD)
Adjusted Area $=1.12 \times 512.348 \mathrm{sft}=$
Area $=(573.83 \mathrm{sft}) / 9=$
573.83 sft 63.8 syd

