\& III

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement
(PID 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

PREPARED FOR:
Euthenics, Inc.
8235 Mohawk Dr.
Strongsville, OH 44136

PREPARED BY:
S\&ME, Inc.

March 7, 2018
Euthenics, Inc.
8235 Mohawk Dr.
Strongsville, OH 44136
Attention: Mr. Luke Baker, P.E., S.I.
Reference: Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

Mr. Baker:

In accordance with our revised proposal dated April 25, 2017, which was authorized by Euthenics, Inc., on May 22, 2017, S\&ME has completed a Structure Foundation Exploration for the proposed replacement bridge (No. MAD-62-0279) carrying SR 62 over Deer Creek in Madison County, Ohio. The approximate location of this project is shown on the Vicinity Map submitted as Plate 1 in the Appendix of this report.

In accordance with Section 701 of the current ODOT Specifications for Geotechnical Explorations (SGE), S\&ME is herewith submitting a "final" version of this report, which is also to be provided to the ODOT District Geotechnical Engineer. On January 19, 2018, you indicated that ODOT District 6 had no comments on our "draft" structure foundation exploration report dated September 25, 2017. Structure Foundation Exploration plan sheets for the selected structure alternative have been prepared and are included in Appendix D of this report.

We appreciate this opportunity to be of service. Please do not hesitate to contact our office if you have any questions concerning this report.

Respectfully,

S\&ME, Inc.

Richard S. Weigand, P.E. Senior Engineer

Submitted: Email (labaker@euthenics-inc.com)
ec: A. Piatak, Euthenics, Inc. (arpiatak@euthenics-inc.com)

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

Table of Contents

1.0 Executive Summary 1
2.0 Introduction 2
3.0 Geology and Observations of the Project 2
3.1 Geology and Hydrogeology 2
3.2 Site Reconnaissance 3
3.3 Historic Information 3
4.0 Exploration 3
4.1 Field Investigation 3
4.2 Laboratory Testing 4
5.0 Findings 4
5.1 Existing Pavement Thicknesses and Surficial Materials 4
5.2 General Subsurface Conditions 5
5.3 Groundwater Observations 5
5.4 Scour Zone Grain Size Test Results 6
6.0 Analyses and Recommendations 6
6.1 General Discussion 6
6.2 Pavement Subgrade 6
6.2.1 Subgrade Support Parameters. 6
6.2.2 Subgrade Remediation. 7
6.3 Earthen Approach Embankments 7
6.3.1 Settlement. 7
6.3.2 Embankment Foundation Preparation 7
6.3.3 Embankment Widening. 8
6.3.4 Borrow Requirements and Compaction Criteria 9
6.3.5 Compaction/Moisture Conditioning Concerns 9
6.4 Replacement Bridge Foundations 10
6.4.1 Bridge Type Information 10
6.4.2 Available Geotechnical Exploration 10
6.4.3 Axial Pile Resistance Analyses 10
6.4.4 Estimated Pay and Order Lengths for Driven Piles 11
6.4.5 Group Effects and Lateral Loading 12
6.4.6 Pile Installation and Construction Recommendations. 12
6.4.7 Additional Pile Driving Considerations - Battered Piles at Intermediate Piers 13
6.4.8 Pile Foundation Plan Notes 13
6.4.9 Scour Considerations 13
6.5 Lateral Earth Pressures 14
6.6 Groundwater Considerations 15
7.0 Final Considerations 15

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

Appendix A Plate
Vicinity Map 1
Plan of Borings 2
Explanation of Symbols and Terms Used on Boring Logs 3
Boring Logs 4-12
Shelby Tube Log 13
Unconfined Compression Test Results 14-15
Scour Zone Gradation Results 16
Important Information About Your Geotechnical Engineering Report 17
Appendix B
Pile Calculation Output 1-13
Appendix C
ODOT Geotechnical Checklists 1-19
ODOT Boring Location Database Report 20
Appendix D
Structure Foundation Exploration Report Sheets 1-9

1.0 Executive Summary

S\&ME understands that ODOT District 6 desires to replace the existing 4-span bridge (No. MAD-62-0279) carrying US 62 over Deer Creek in Madison County, Ohio. Based on information from Euthenics, the proposed structure will consist of a 3-span pre-stressed concrete I-beam structure on roughly the same horizontal and vertical alignment as the existing bridge. Some minor widening of the earthen approach embankments is anticipated. Plan and profile information for the proposed bridge indicates that both abutments will be located behind the existing abutments.

It should be noted that the authorized scope of work for this investigation included performing three (3) borings for an anticipated 2 -span replacement bridge. As such, the structure borings were positioned just behind the existing abutments and as near as practical to the existing center bridge pier. No borings were performed near the potential locations of intermediate piers for a 3-span structure.

Beneath 9 to 10 inches of existing asphalt over 14 to 15 inches of granular base, abutment Borings B-001 and B-003 encountered 11 to 15 feet of existing fill and probable fill consisting of predominantly medium-stiff to stiff SILT AND CLAY (A-6a), CLAY (A-7-6), SANDY SILT (A-4a). The lower portions of these fill materials were dark-brown, contained pockets of topsoil and a few very-soft to soft zones, and were described as slightly organic to moderately organic, with Loss-on-Ignition (LOI) test results ranging from 1.5 to 8.3%. Beneath these fill materials, the abutment borings encountered 1.3 to 5 feet of soft to stiff SILTY CLAY (A-6b), ELASTIC CLAY (A-7-5), and CLAY (A-7-6) which was also slightly to moderately organic. Beneath these organic soils, both abutment borings encountered 9 to 9.3 feet of medium-dense to verydense GRAVEL (A-1-a) and GRAVEL WITH SAND (A-1-b) which were underlain by very-stiff to hard gray SILT AND CLAY (A-6a), SILTY CLAY (A-6b) and CLAY (A-7-6) becoming hard gray SANDY SILT (A-4a).

Boring B-002 was performed near the center of the existing creek channel and near the existing center bridge pier. After penetrating through $2 \frac{1}{2}$ inches of asphalt and an $81 / 2$-inch-thick concrete deck, Boring B-002 encountered the stream bed at a depth of 23 feet below the deck. From the stream bed to its termination depth of 80 feet, Boring B-002 encountered 22.5 feet of very-stiff to hard gray SILTY CLAY (A-6b) and CLAY (A-7-6) over 34.5 feet of hard brown becoming gray SANDY SILT (A-4a).

The proposed bridge plan information from Euthenics indicates the new bridge abutment for the selected 3 -span replacement bridge will be positioned behind the existing abutments. As no change in roadway profile is proposed, no significant change in existing overburden pressure is anticipated on the existing approach embankment soils. Therefore, significant settlement is not expected beneath these proposed bridge abutments, and no downdrag forces are anticipated to act on the new abutment piles for these bridge alternates.

Based on information provided by Euthenics, S\&ME considered that 6.2 feet of local scour would occur at the intermediate piers, but that no scour was anticipated at the abutments, as spill-through, rip-rapped abutment slopes would be provided in front of each abutment.

```
Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S&ME Project No. 1179-17-005

S\&ME performed static pile computations for 12 and 16 -inch diameter closed-end, cast-in-place (CIP) pipe piles to estimate the pile tip elevation necessary to develop an Ultimate Bearing Value (UBV) exceeding the maximum factored axial (vertical) pile loads provided by Euthenics for each bridge substructure element (see Section 6.4.3).

Based on soil encountered at the subgrade level in the approach embankments, S\&ME recommends a CBR value of \(6 \%\) be used for design of new pavement at this bridge site. Based on ODOT Geotechnical Bulletin GB1 procedures, subgrade remediation consisting of roughly 12 to 15 inches of "excavate and replace" remediation may be required. Additional discussion regarding pavement subgrade remediation is presented in Section 6.2 of this report.

\subsection*{2.0 Introduction}

S\&ME understands that ODOT District 6 desires to replace the existing bridge (No. MAD-62-0279) which carries US-62 over Deer Creek, just northeast of Mount Sterling, in Madison County, Ohio (see Plate 1 of Appendix A).. Based on information provided on February 12, 2018, by Euthenics, S\&ME understands the proposed replacement structure will be a three-span bridge with pre-stressed concrete I-Beams, integral abutments, constructed along horizontal and vertical alignments which are approximately the same as the existing. The integral abutments will have a single row of vertical piles, and the intermediate piers will be supported on two rows of battered piles.

This Structure Foundation Exploration was performed in general accordance with the ODOT Specifications for Geotechnical Explorations (SGE), including July 2017 updates, for a two-span bridge. Following the completion of the field work, Euthenics indicated that 3-span structures were being considered. S\&ME advised Euthenics that the Structure Foundation Exploration program, as completed, would not meet ODOT SGE requirements for the number of structure borings.

\subsection*{3.0 Geology and Observations of the Project}

\subsection*{3.1 Geology and Hydrogeology}

The project site is located in the Darby Plain physiographic region. The Darby Plain is characterized by broadly hummocky ground with several broad, recessional moraines. The geology can be further described as Wisconsinan-age loam till over Silurian and Devonian-age carbonate bedrock. The Madison County Soil Survey (accessed through the USDA Web Soil Survey website) information indicates that the near surface soils in the project area are currently classified as Ross silt loam. Available ODNR water well logs and bedrock topography mapping indicates that the bedrock surface is near approximately Elevation 750 (MSL) in the area of this site. The existing roadway surface of US 62 bridge is at approximate Elevation 864 (MSL).

A review of the ODNR "Ohio Karst Areas" map reveals that the site lies in an area not known to contain karst features. A review of the ODNR "Landslides in Ohio" map reveals that Madison County lies in an area of low incidence and low susceptibility to landslides. A review of the ODNR "Abandoned
```

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

Underground Mines of Ohio" map reveals that the site lies in an area of non-coal-bearing rock and does not have mapped abandoned mines in the area of the site.

3.2 Site Reconnaissance

A site reconnaissance visit was made by S\&ME personnel on May 26, 2017, to observe the existing bridge and project vicinity and to field mark the borings. Some concrete deterioration was noted on portions of the concrete abutments and center pier.

3.3 Historic Information

Euthenics provided bridge plan sheets dated 1941 indicating that the existing bridge is supported on timber piling. Euthenics also provided the Impact Study and Inspection Finding Report which was submitted to ODOT February of 2017. S\&ME also reviewed additional existing information located during a search of the ODOT website, including a Bridge Inspection Report, a Bridge Inventory Report, and Bridge Inventory Information.

4.0 Exploration

4.1 Field Investigation

During the period of June 5 through June 9, 2017, S\&ME performed a total of three (3) borings, designated B-001-0-17 through B-003-0-17 and hereafter referred to as B-001 through B-003, at this site. The borings were drilled to depths ranging from 75 feet to 80 feet below the existing roadway or bridge deck surface, and were terminated after encountering 30 feet of 30 blow-count soil. The borings were advanced in the westbound lane of US 62, and the approximate locations of the borings are shown on the Plan of Borings included as Plate 2 of Appendix I. Surveyed locations and ground surface elevations of the completed borings were provided to S\&ME by Euthenics.

The borings were performed using a truck-mounted drilling rig using 3¼-inch I.D. hollow-stem augers. Disturbed (but representative) soil samples were obtained by lowering a 2 -inch O.D. split-barrel sampler through the auger stem to the bottom of the boring and then driving the sampler into the soil with blows from a 140-pound hammer freely falling 30 inches (ASTM D1586 - Standard Penetration Test, SPT). In accordance with the current ODOT SGE, the hammer system on the drill rig was calibrated in accordance with ASTM D 4633 to determine the drill rod energy ratio, and this value is provided on the boring logs. Continuous (SPT) sampling was performed in the uppermost 6 feet of soil below the approach pavements, and in the scour zone from the approximate streambed level to 6 feet below the streambed level in all 3 borings. Beneath the continuous sampling, the borings were sampled at $21 / 2$-foot intervals to 20 feet below the foundation level. The remainder of the borings were sampled at 5 -foot intervals. Two (2) undisturbed Shelby tubes samples were attempted by hydraulically pressing a seamless steel (Shelby) tube into the soil; however, one of these Shelby tube attempts encountered refusal in a sand and gravel layer. The recovered Shelby tube samples were sealed in the tubes with wax.

In the field, experienced personnel performed the following duties: 1) examined and preserved all recovered samples; 2) prepared a log of each boring; 3) recorded seepage and groundwater observations

```
Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S&ME Project No. 1179-17-005
and measurements; 4) obtained hand penetrometer measurements in soil samples exhibiting cohesion; and, 5) provided liaison between the field work and the project Engineer so that any modifications to the exploration program could be expeditiously implemented in the event that unusual or unanticipated conditions were encountered. All recovered samples were transported to the soils laboratory of S\&ME for further examination and testing.

\subsection*{4.2 Laboratory Testing}

In the laboratory, all soil samples were visually identified and tested for natural moisture content. Liquid/plastic limit determinations and grain-size analyses were performed on selected representative specimens. Loss-on-Ignition (LOI) tests were performed on four (4) samples to evaluate the organic content of the soils. Unconfined Compression tests (UC) were performed on portions of the recovered Shelby tube samples. The results of the laboratory index tests are recorded numerically on the individual boring logs. Graphical results of the unconfined compression tests are presented on Plates 14 and 15 in Appendix A.

Based upon the results of the laboratory testing program, the field logs were modified, if necessary, and copies of the laboratory corrected boring logs are submitted as Plates 4 through 12 of Appendix A. Shown on these logs are: descriptions of the soil stratigraphy encountered; depths from which samples were preserved; sampling efforts (blow-counts) required to obtain the specimens in the borings; calculated \(\mathrm{N}_{60}\) values; laboratory testing results; seepage and groundwater observations made at the time of drilling; and, values of hand-penetrometer measurements made in soil samples exhibiting cohesion. For your reference, hand-penetrometer values are roughly equivalent to the unconfined compressive strength of the cohesive fraction of the soil sample. Plate 16 of Appendix A includes a summary of the grain-size data obtained from the testing performed on the continuous SPT samples obtained from the scour zone in the borings.

Soils have been classified in general accordance with Section 603 of the ODOT SGE, and described in general accordance with Section 602. An explanation of the symbols and terms used on the boring logs, definitions of the special adjectives used to denote the minor soil components, and information pertaining to sampling and identification are presented on Plate 3 of Appendix A. Group Indices (ODOT Classification) determined from the results of the laboratory testing program are also provided on the boring logs.

\subsection*{5.0 Findings}

\subsection*{5.1 Existing Pavement Thicknesses and Surficial Materials}

Borings \(\mathrm{B}-001\) and \(\mathrm{B}-003\) were performed through the roadway behind the existing bridge abutments, and Boring B-002 was advanced through the existing bridge deck. Table 1 summarizes the thicknesses of existing pavement and bridge deck materials encountered at each boring location.

Table 1: Summary of Pavement Section Materials
\begin{tabular}{|c|c|c|c|}
\hline Location & \begin{tabular}{c} 
Asphalt \\
Thickness
\end{tabular} & Granular Base & \begin{tabular}{c} 
Concrete \\
Bridge Deck \\
Thickness
\end{tabular} \\
\hline B-001 & \(10^{\prime \prime}\) & \(14^{\prime \prime}\) & -- \\
\hline B-002 & \(2 \frac{1}{2 \prime}\) & - & \(8^{\prime \prime} 2^{\prime \prime}\) \\
\hline B-003 & \(9^{\prime \prime}\) & \(15^{\prime \prime}\) & - \\
\hline
\end{tabular}

Beneath the bridge deck, Boring B-002 encountered roughly 18 feet of clear space and 4 feet of water before encountering the creek bed at a depth of 23 feet below the surface of the bridge deck.

\subsection*{5.2 General Subsurface Conditions}

The general subsurface stratigraphy encountered in abutment Borings B-001 and B-003 may be described in descending order as follows:
- 3.0 feet of existing fill consisting of stiff to very-stiff brown SILT AND CLAY (A-6a) and SANDY SILT (A-4a). In Boring B-001, this fill was underlain by an additional 4.3 feet of fill which was described as becoming soft to stiff.
- 7.7 to 8.0 feet of probable fill described as medium-stiff to stiff dark-brown and brown CLAY (A-7-6) and which contained pockets of topsoil, a few very-soft to soft zones, and were described as slightly to moderately organic with Loss-on-Ignition (LOI) test results ranging from 1.5 to \(8.3 \%\).
- 1.3 to 5.0 feet of soft to stiff brown and dark-brown SILTY CLAY (A-6b), ELASTIC CLAY (A-7-5), and CLAY (A-7-6) which was also slightly to moderately organic.
- 9 to 9.3 feet of medium-dense to very-dense GRAVEL (A-1-a) and GRAVEL WITH SAND (A-1-b)
- 47.7 to 52.3 of very-stiff to hard gray SILT AND CLAY (A-6a), SILTY CLAY (A-6b) and CLAY (A-7-6) becoming hard gray SANDY SILT (A-4a).

Boring B-002 was performed near the center of the existing creek channel and near the existing center bridge pier. After encountering the stream bed at a depth of 23 feet below the existing bridge deck, Boring B-002 encountered 22.5 feet of very-stiff to hard gray SILTY CLAY (A-6b) and CLAY (A-7-6) over 34.5 feet of hard brown becoming gray SANDY SILT (A-4a) prior to being terminated at a depth of 80 feet.

\subsection*{5.3 Groundwater Observations}

Groundwater was initially encountered at a depth of 19 feet in Boring B-001, at 23 feet (creek level) in Boring B-002, at a depth of 18.5 feet in Boring B-003. In the abutment borings, water or water mixed with bentonite powder was introduced into the auger stem during drilling to reduce the potential for heaving of soil into the auger stem.

All groundwater levels and seepage measurements should be considered as temporary, short-term observations and should not be assumed to be representative of the long-term static groundwater level.
```

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

```

\subsection*{5.4 Scour Zone Grain Size Test Results}

Plate 16 of Appendix \(A\) summarized the \(D_{50}\) and \(D_{95}\) particle sizes determined from the results of the gradation testing performed on the soil samples recovered from the continuously sampled scour zone in the abutment and intermediate pier borings drilled for the proposed MAD-62-2.79 replacement bridge over Deer Creek. This information was provided to Euthenics on July 24, 2017, for use during scour analyses for the proposed replacement structure.

\subsection*{6.0 Analyses and Recommendations}

\subsection*{6.1 General Discussion}

S\&ME understands that ODOT District 6 desires to replace the existing 4-span bridge (No. MAD-62-0279) carrying US 62 over Deer Creek in Madison County, Ohio. Based on information from Euthenics, the proposed structure will consist of a 3 -span pre-stressed concrete I-beam structure on roughly the same horizontal and vertical alignment as the existing bridge. Some minor widening of the earthen approach embankments is anticipated. Plan and profile information for the proposed bridge indicates that both abutments will be located behind the existing abutments.

The authorized scope of work for this Structure Foundation Exploration included performing only 3 borings for a proposed 2 -span bridge, with one boring positioned near the mid-span of the existing creek channel. As such, no borings were performed at the approximate locations of potential intermediate piers for a 3-span bridge.

\subsection*{6.2 Pavement Subgrade}

\subsection*{6.2.1 Subgrade Support Parameters}

Based on the results of the Atterberg Limits and grain-size analyses performed on samples from the upper portion of the soils encountered in the borings and the corresponding ODOT/HRB classifications of A-4a, A-6a, and A-7-6, the following California Bearing Ratio (CBR) value is recommended for the design of new pavement:

\section*{CBR: 6 \%}

With this value, and using equation 203.1 of Section 203.1 of the July 2016 ODOT Pavement Design Manual, the following Resilient Modulus \(\left(\mathrm{M}_{\mathrm{R}}\right)\) may be used during new pavement section design:
\[
\mathrm{M}_{\mathrm{R}}: 7,200 \mathrm{psi}
\]

This subgrade evaluation also considers that the subgrade for the new roadways is composed of the materials encountered in the borings. If, at the time of construction, it is determined that the subgrade may consist of materials significantly different than those encountered, the pavement design subgrade criteria should be reviewed and, if necessary, modified. The proposed pavement subgrade should be prepared in accordance with Item 204 "Subgrade Compaction and Proofrolling" of the 2016 ODOT CMS.
```

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005
Madison County, Ohio
S\&ME Project No. 1179-17-005

```

\subsection*{6.2.2 Subgrade Remediation}

Based on the laboratory test results, and utilizing the ODOT Geotechnical Bulletin GB1 subgrade analyses spreadsheet (Ver. 13.0), S\&ME estimates that 12 to 15 inches of remediation of unstable subgrade may be required where new pavement is planned on the approach embankments. Because of the minimal amount of approach work anticipated, S\&ME recommends that subgrade remediation consist of excavate and replace. The actual location of subgrade soil requiring excavate and replace remediation should be based on observations made at the time of construction and the results of the final subgrade proofrolling completed in accordance with Item 204.

In accordance with Section F of ODOT GB1, where "excavate and replace" is used for subgrade remediation, Item 712.09 Geotextile Fabric Type \(D\) is to be placed at the bottom of the undercuts, and Item 204 Granular Material is to be used to backfill the overexcavations. S\&ME recommends that Item 204 Granular Material, Type B or C be utilized. It should also be noted, however, that ODOT GB1 specifies that Item 204 Granular Material Type B without a geotextile fabric be utilized to backfill undercuts performed in the vicinity of any underdrains. Additionally, if "excavate and replace" is to be used for remediation, Plan Note G121 from the ODOT L\&D Manual, Vol. 3, should be used in the General Notes.

\subsection*{6.3 Earthen Approach Embankments}

Plan information for the replacement bridge provided on March 5, 2018, shows the proposed bridge abutments being positioned behind (back-station) the existing rear abutment, and behind (up-station) of the existing forward abutment. Additionally, the final vertical profile of US 62 is anticipated to be essentially unchanged.

\subsection*{6.3.1 Settlement}

Since the new abutments are to be located behind (outside) the existing abutments, and as no significant amount of new fill placement is anticipated on the approaches, minimal settlement of the existing approach embankments is anticipated for these bridge alternates. Some long term secondary compression of the existing slightly to moderately organic embankment foundation soils is anticipated to occur over the life of the bridge, but this amount is anticipated to be relatively minor (an inch or less) provided additional fill weight is not added to the embankment.

\subsection*{6.3.2 Embankment Foundation Preparation}

Prior to commencing earthwork operations, it is recommended that all existing pavement, granular base, sod, topsoil, vegetation, and other miscellaneous materials be completely removed from the entire footprint of the entire proposed roadway embankments. Following the removal of these materials, it is recommended that the entire exposed subgrade and embankment foundation surface be examined by the Geotechnical Engineer of Record or their designated representative to identify any weak, wet, organic, or otherwise unsuitable soils that were not encountered during the subsurface investigation. Any such materials identified should be removed and replaced with suitable compacted fill (Item 203, or Item 204 when within 12 inches of the proposed subgrade).

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)

If weak, wet, or soft zones are present, it is recommended that the materials contained in these zones should be either scarified, moisture conditioned, and thoroughly recompacted in place or be removed and the overexcavation filled in a controlled manner with compacted, suitable embankment material prior to attempting to place and compact any new fill.

\subsection*{6.3.3 Embankment Widening}

S\&ME understands that some additional fill may be required on the sides of the existing US 62 approach embankments behind the new abutments to accommodate a slight widening of the embankment. Where new fill is to be placed to widen the earthen approach embankments, S\&ME recommends that all vegetation, topsoil, pavement, and miscellaneous materials be removed from the sides and top of the existing roadway embankment, and also from the footprint of any embankment widening areas. Prior to the placement of any new fill in embankment widening areas, S\&ME recommends that consideration be given to specifying the entire exposed embankment foundation in the widening areas at the base of the embankment be test rolled in accordance with ODOT Construction and Material Specifications (CMS) Item 204.06 to detect any unstable (e.g., soft, wet or weak) zones or unsuitable zones beneath the new fill area.

After all unstable or unsuitable materials have been removed during the site preparation process, and prior to commencing fill placement, it is recommended that horizontal benches be cut into the existing sloping embankment sides to permit placement and compaction of new fill in horizontal lifts. S\&ME anticipates that any potential embankment widening will likely require a small horizontal width of new fill soil to be placed on the sides of the existing roadway embankments. These small amounts of fill material, commonly referred to as "sliver fills", are susceptible to sloughing and instability if the new fill soils are placed and compacted on a sloping existing ground surface without benching.

Because the sides of the existing roadway embankments are generally sloped steeper than \(4(\mathrm{H}): 1(\mathrm{~V})\), S\&ME recommends that Special Benching be performed in accordance with ODOT Geotechnical Bulletin GB2, "Special Benching and Sidehill Embankment Fills" (ODOT GB2) dated April 19, 2017, where sidehill "sliver" fills are required. Sketches illustrating several Special Benching configurations for sidehill "sliver" fills on various slopes are included in Figures 1, 2 and 3 on pages 3 and 6 of the ODOT GB2 document. These configurations require a minimum distance of 8 feet between the crest of the bench back-slopes and the face of the new slope to permit compaction and grading equipment to work on a horizontal surface.

To minimize the amount of the existing roadway embankment fill that must be removed to provide sufficient width (minimum 8 -foot width) for the compaction equipment during Special Benching, S\&ME recommends that consideration be given to utilizing the approach outlined in Figure 1A of the GB2 document to construct an over-steepened slope of temporary fill near the top of the embankment. Once this over-steepened fill has been placed and properly compacted (ODOT CMS Items 203 and 204) to the top of new embankment, the excess portion of the temporary fill may then be "shaved" off to the final designed embankment configuration. The use of smaller (narrower) compaction equipment may be considered to reduce the minimum width ( 8 feet) between the crest of the bench back-slopes and the face of the new slope.

As stated in the ODOT GB2, wherever "Special Benching" is used, Plan Note G109 from the ODOT L\&D Manual, Vol. 3, should be included in the General Notes.

S\&ME recommends that the final, completed side slopes of the widened embankments be constructed no steeper than \(2(\mathrm{H}): 1(\mathrm{~V})\). During "Special Benching" procedures, \(\mathrm{S} \& \mathrm{ME}\) also recommends the following: 1) only one bench be exposed at any given time and that excavation of the next bench not be permitted until embankment fill placement and compaction have been completed to the top of the backslope of the previous bench; and, 2) the length of any given bench that is exposed should not exceed the quantity of embankment fill which may be properly placed and compacted in one day.

Where new fill is to be placed on an existing ground surface with a slope that is between \(4(\mathrm{H}): 1(\mathrm{~V})\) and \(8(\mathrm{H}): 1(\mathrm{~V})\), benching of the existing ground surface should be performed in accordance with Item 203.05 of the ODOT CMS.

\subsection*{6.3.4 Borrow Requirements and Compaction Criteria}

New fill should consist of inorganic soil free of all miscellaneous materials, cobbles, and boulders, which is placed in uniform, thin layers and then compacted in accordance with either Item 203, "Roadway Excavation and Embankment", or when within 12 inches of the proposed subgrade level, Item 204 "Subgrade Compaction and Proofrolling", of the ODOT CMS. Borrow materials should not be placed in a frozen condition or upon a frozen surface, and any sloping surfaces on which new fill is to be placed should first be benched in accordance with either Item 203.05 or ODOT GB2, depending on the slope of the existing ground surface at each location. Also, borrow materials to be used as new fill or backfill within 3 feet of the proposed subgrade level be tested in the laboratory to determine that the borrow materials are capable of exhibiting subgrade support characteristics that are no less than the CBR value used during the pavement design.

Compaction requirements for the construction of earthen embankments are based on ODOT CMS Item 203.07.B (or Item 204.03 when within 12 inches of subgrade level), which specifies a minimum percent compaction based on the dry unit weight of the type of soil fill being placed as borrow. At the time of this submittal, it is unknown if a borrow source will be required for this project. S\&ME recommends that, if a borrow site is required, that sampling and testing of this borrow material be performed prior to construction to verify that the borrow soils are suitable for the planned construction.

\subsection*{6.3.5 Compaction/Moisture Conditioning Concerns}

The cohesive soils encountered at and below the subgrade level in the abutment borings, if exposed to inclement weather or rainfall, may rapidly absorb additional moisture and weaken. It is imperative that these soil types not be exposed to rainfall while in a loosened state (such as during discing and drying for moisture conditioning during fill placement). Should these materials become sufficiently saturated that additional moisture conditioning is impractical, the material should be wasted. Therefore, it is recommended that moisture conditioning only be performed when extended periods of suitable weather are anticipated, and that only the amount of borrow soil be exposed that may be moisture conditioned and properly compacted during suitable weather periods.
```

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

```

\subsection*{6.4 Replacement Bridge Foundations}

\subsection*{6.4.1 Bridge Type Information}

S\&ME understands that proposed replacement structure will be a 3-span bridge with precast, prestressed concrete I-beams, a reinforced concrete deck, and integral abutments which will be located behind the existing bridge abutments. Plan information from Euthenics indicates that the bottom of the abutment pile caps will be at El. 851 and El. 850.3 at the rear and forward abutments, respectively, and the bottom of the intermediate pier footing will be at El. 835.

The integral abutments will be supported using a single row of vertical 12 -inch-diameter, cast-in-place (CIP), reinforced concrete "pipe" piles, whereas the intermediate piers would be supported using two rows of 16 -inch-diameter, cast-in-place (CIP), reinforced concrete "pipe" piles where all the piles would be battered outward at a \(1(\mathrm{H}): 4(\mathrm{~V})\) inclination. Euthenics also advised S\&ME that 6.2 feet of local scour was anticipated at the intermediate piers, but that no scour was anticipated at the abutments, as spill-through, rip-rapped abutment slopes would be provided in front of each abutment.

\subsection*{6.4.2 Available Geotechnical Exploration}

S\&ME was authorized to perform three (3) borings at this bridge replacement site. These borings were located behind the existing abutments and near the existing central intermediate pier, which is also near the center of the existing creek channel. No borings were located in the immediate vicinity of proposed intermediate piers for a three-span bridge. Therefore, S\&ME used the findings from the borings drilled on either side of each intermediate pier to estimate the required pile foundation length at each pier.

\subsection*{6.4.3 Axial Pile Resistance Analyses}

On February 9, 2018, Euthenics provided S\&ME with maximum factored axial (vertical) pile loads of 223.3 kips at the integral bridge abutments and 239.2 kips at both intermediate piers. As discussed in Section 6.4.1 above, the proposed substructure units will be supported on extended foundations consisting of vertical 12 -inch nominal diameter cast-in-place (CIP) pipe piles at the integral abutments and \(1(\mathrm{H}): 4(\mathrm{~V})\) battered 16-inch nominal diameter cast-in-place (CIP) pipe piles at both intermediate piers.

Plan information from Euthenics indicates that the abutments will be positioned at or slightly behind the current abutments. Therefore, as significant embankment widening is not being planned, downdrag loads acting on the piles supporting the new bridge abutment foundations are not anticipated.

With this pile load information and using the FHWA computer program DRIVEN (Ver. 1.2), S\&ME has estimated the pile tip elevations necessary to develop the unfactored axial resistance (Ultimate Bearing Value, or \(R_{n d r}\) ) required to resist the maximum factored axial load per pile anticipated at each substructure unit for the replacement bridge. Table 2 presents a summary of these estimated tip elevations for the piles at each substructure unit and, for the intermediate piers, includes the additional driving resistance necessary to overcome the friction developed by the scour zone soil ( \(\mathrm{R}_{\mathrm{ssc}}\) ) during intermediate pier pile installation.

Table 2: Summary of Static CIP Pipe Pile Capacity Analyses for Axial Loads
\begin{tabular}{|c|c|c|c|c|c|}
\hline Foundation \\
Element & \begin{tabular}{c} 
Proposed \\
CIP Pipe \\
Pile \\
Diam.
\end{tabular} & \begin{tabular}{c} 
Max. \\
Factored \\
Axial Load \\
per pile \\
(kips)
\end{tabular} & \begin{tabular}{c} 
Scour Zone \\
Side Friction \\
(Rss) (kips) \\
during Pile \\
Installation
\end{tabular} & \begin{tabular}{c} 
UBV (Rndr) \\
Required (kips) \\
During \\
Installation*
\end{tabular} & \begin{tabular}{c} 
Est. Pile Tip \\
Elev. (Static \\
Analysis)
\end{tabular} \\
\hline \begin{tabular}{c} 
Rear \\
Abutment
\end{tabular} & \(12^{\prime \prime}\) & 223.3 & -- & 319 & El. 800 \\
\hline \begin{tabular}{c} 
Intermediate \\
Pier \#1
\end{tabular} & \(16^{\prime \prime}\) & 239.2 & 4 & 346 & El. 794-795 \\
\hline \begin{tabular}{c} 
Intermediate \\
Pier \#2
\end{tabular} & \(16^{\prime \prime}\) & 239.2 & 4 & 346 & El. 794-797 \\
\hline \begin{tabular}{c} 
Forward \\
Abutment
\end{tabular} & \(12^{\prime \prime}\) & 223.3 & -- & 319 & El. 798 \\
\hline
\end{tabular}
* UBV \(=\left\{\right.\) Factored Load \(\left./\left(\phi_{\text {DYN }}=0.7\right)\right\}+R_{\text {ssc }}\)

The ODOT Bridge Design Manual specifies that the Ultimate Bearing Value (UBV) for all piles at each substructure unit is to be developed using the highest total factored load anticipated on any pile supporting that substructure unit. Additionally, if the piles are to be subjected to a bending moment, S\&ME recommends that the ultimate structural capacity of the piles be evaluated to determine the reduced maximum axial structural capacity of the pile section. This reduced value should not exceed the maximum UBV value used in design.

S\&ME estimates that settlement of individual piles will be less than one inch provided the piles are designed and installed in accordance with ODOT specifications and the recommendations presented in this report. All piles should be installed at a center-to-center spacing no closer than 2.5 pile diameters in accordance with AASHTO specifications.

\subsection*{6.4.4 Estimated Pay and Order Lengths for Driven Piles}

In accordance with Section 303.4.2.1 of the ODOT Bridge Design Manual, the "Estimated Length" for piling should be estimated by subtracting the estimated pile tip elevation from the estimated pile cut-off elevation (including embedment into the pile cap), and then be rounded up to the nearest 5 -foot increment. Pile "Order Length" is the "Estimated Length" plus 5 feet. S\&ME recommends that the lowest tip elevation provided for each substructure unit in Table 2 be used to compute these lengths.

At the intermediate piers, however, the Pay and Order lengths must also be increased to accommodate the additional length of the pile required because of the planned \(1(\mathrm{H}): 4(\mathrm{~V})\) batter.

\subsection*{6.4.5 Group Effects and Lateral Loading}

All piles should be installed at a center-to-center spacing not be less than 2.5 pile diameters in accordance with AASHTO \(L R F D\) specification 10.7.1.2. The distance from the side of any pile to the nearest edge of the pile cap shall not be less than 9 inches. The tops of piles shall project at least 12 inches into the pile cap after all damaged material has been removed.

In accordance with Article 10.7.3.9 of the AASHTO LRFD manual, if the pile cap is in firm contact with the ground, no reduction in group efficiency is required when piles are installed in cohesive soils with the proper 2.5 diameter center-to-center spacing. In cohesionless soils, no reduction in efficiency factor is anticipated if the piles are spaced no closer than 2.5 diameters apart (center-to-center). It is anticipated that a group efficiency of 1.0 would be applicable if the proper pile spacing is achieved as noted above.

A laterally-loaded (L-Pile) analysis was not part of the authorized scope of work for this exploration. If it is determined that "significant" lateral loading will be applied to the proposed piles, then such analysis should be performed to determine if the piles will be overstressed or if excessive deflections will occur.

\subsection*{6.4.6 Pile Installation and Construction Recommendations}

The estimated pile tip elevations in Table 2 were determined using information obtained from the soil borings in conjunction with static pile analysis methods. The actual depths to which individual piles are driven in the field should be a function of the driving criteria determined in accordance with 2016 ODOT Construction and Material Specifications (CMS) Item 523, "Dynamic Load Test".

The ODOT BDM requires a dynamic load test (Item 523) for each required Ultimate Bearing Value for each pile size or type. Item 523 consists of performing dynamic load tests on at least two piles for each UBV at the beginning of construction, and performing subsequent CAPWAP analyses (wave matching) on the data obtained from at least one of the dynamic tests for each UBV. Establishment of the pile driving criteria (final blow count as modified by specific pile hammer ram stroke, bounce chamber pressure, etc.) used for the production piles should be based on the results of the PDA testing and CAPWAP analyses performed during the test pile phase.

The piles, pile driving equipment, and pile installation procedures should conform to ODOT CMS Item 507. The hammer type should be selected in accordance with ODOT CMS Item 507.04, so as to avoid over-stressing the piles. Prior to the commencement of pile driving, the contractor should be required to submit equipment specifications to the state such that the proposed pile hammer, along with the induced stresses in the pile, can be evaluated by wave equation analysis. If excessive compressive or tensile stresses are predicted (FHWA limits driving stresses to 90 percent of \(\mathrm{F}_{\mathrm{y}}\) ) with this method, steps should be taken prior to pile installation to investigate alternative pile hammers or cushions in order to reduce the possibility of damage to the pile. Pile driving may also result in slight heave of previously driven piles. To avoid detrimental effects, all piles should be re-tapped prior to the completion of pile driving activities.

If the abutment or pier locations or bottom of pile cap elevations change, the proposed bridge structure is reconfigured, or the bearing capacity is attained before penetration of \(80 \%\) of the estimated depth (see
```

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

ODOT CMS Item 507.04), S\&ME should be given the opportunity to review and revise our foundation recommendations, if warranted.

Because of the presence of existing piling supporting the existing bridge, consideration should be given to positioning the new substructure units in locations which reduce the potential for interference with the piling for the new bridge. Consideration may also be given to providing a contingency for installation of additional new piles to replace piles that are deflected "out-of-plumb" on existing piling, or which refuse at shallow depths on possible former substructure units, timber piling, or other underground obstructions.

In areas where existing piles do not conflict with proposed piling, existing piles may be left in place. S\&ME has assumed that no existing piles will be incorporated into or carry load from the new bridge. S\&ME also recommends that existing piles left in place be cut off a minimum of two (2) feet below the bottom of any portions of the new structure.

6.4.7 Additional Pile Driving Considerations - Battered Piles at Intermediate Piers

For the battered piles at the intermediate piers, determination of the minimum blow count for the battered piles shall be performed in accordance with Item 507.05 of the ODOT CMS. This approach is based on a reduction of the blow count determined by Item 523 for a vertical pile at the same location. However, at the time of this report, Euthenics indicated that all of the piles to be installed at the intermediate piers would be battered. As such, either driving an additional pile at each intermediate pier will be required to determine the driving criteria for the battered piles, or Euthenics may consider reevaluating the structural design of the intermediate piers to determine whether at least one pile per pier may be driven vertically.

6.4.8 Pile Foundation Plan Notes

For the piles at the proposed rear and forward abutments, Note 606.2-2 from the ODOT Bridge Design Manual should be included in the project plans.

PILE DESIGN LOADS (ULTIMATE BEARING VALUE): The Ultimate Bearing Value is 319 kips per pile for the vertical rear and forward abutment piles. The Ultimate Bearing Value is 346 kips per pile for the intermediate pier piles, which includes an additional 4 kips per pile of Ultimate Bearing Value due to the possibility of losing 6.2 feet of frictional resistance due to scour.

These Ultimate Bearing Values will need to be reviewed if any of the maximum factored axial loads per pile are revised from those presented in Table 2, or if the anticipated depth of scour changes at any of the substructure elements.

6.4.9 Scour Considerations

Information provided by Euthenics indicates that the proposed abutments will be protected from channel flow such that no abutment scour is anticipated. Rip-rap used for this purpose should be properly sized based on the anticipated channel velocities. However, rip-rap is not a permanent countermeasure
against, nor does it totally eliminate the potential for scour. For this reason, it is strongly recommended that the project plans and specifications also contain provisions for routine maintenance of the rip-rap blanket to ensure that the design blanket thickness is preserved over the design life of the bridge. Additionally, in all cases where rip-rap is used for scour protection, the bridge must be monitored during and inspected after periods of high flow.

6.5 Lateral Earth Pressures

The proposed bridge must be designed to withstand lateral earth pressures, as well as hydrostatic pressures, that may develop behind the abutments. The magnitude of the lateral earth pressures varies on the basis of soil type, permissible wall movement, and the configuration of the backfill.

To minimize lateral earth pressures, the zone behind the abutments should be backfilled with granular soil, and the backfill should be effectively drained. For effective drainage, a zone of free-draining gravel (ODOT CMS Item 518.03) should be used directly behind the structure for a minimum thickness of 2 feet in accordance with ODOT CMS Item 518.05. This granular zone should drain to either weepholes or a pipe, so that hydrostatic pressures do not develop against the walls.

The type of backfill beyond the free-draining granular zone will govern the magnitude of earth pressure to be used for structural design. Lateral pressures of a relatively low magnitude will be developed by the use of granular backfill, whereas a cohesive (clay) backfill will result in the development of much higher pressures.

To minimize lateral pressures, it is recommended that granular backfill be used behind the walls. The backfill should be placed in a wedge formed by the back of the wall and a line rising from the base of the structure at an angle no greater than 60 degrees from the horizontal. Granular backfill behind the structure should be compacted in accordance with ODOT Item 203, "Roadway Excavation and Embankment", of the most recent CMS. Overcompaction in areas directly behind the wall should be avoided as this might cause damage to the structure.

If proper drainage is provided and compacted granular backfill is provided as described above, an equivalent fluid unit weight of $40 \mathrm{lb} / \mathrm{ft}^{3}$ (pcf) may be used for abutment design provided a wall movement equivalent to 0.25 percent of the height of the retaining walls (H) is allowed to occur. Such movement is considered sufficient to mobilize an active earth pressure condition. In this case, the resultant lateral force should be taken as acting at 0.33 H (AASHTO LRFD Article 3.11.5). If this movement is not anticipated or cannot occur, it is recommended that an "at-rest" equivalent fluid unit weight of 50 pcf be used.

Compacted cohesive materials tend alternatively to shrink, expand and creep over periods of time and create significant lateral pressures on any adjacent structure. Cohesive materials also require a greater amount of movement to mobilize an active earth pressure condition. For these reasons, if proper drainage (ODOT Item 518) is provided and a wall movement in excess of 1.0 percent of the height of the retaining wall (H) is allowed to occur, an equivalent fluid unit weight of 65 pcf may be used for design of the retaining wall to resist the lateral loads imparted by drained cohesive backfill. If this amount of movement is not anticipated or cannot occur, it is recommended that an "at-rest" equivalent fluid unit weight of 90 pcf be used.

```
Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005
```

\& III

The abutments must also be designed to withstand the surcharge effect of traffic in addition to the vertical load resulting from the weight of any fill and pavement to be placed over the structures. To estimate vertical loading, total unit weights of 125 pcf and 135 pcf may be used for compacted cohesive and granular soil, respectively.

6.6 Groundwater Considerations

S\&ME believes that the long term groundwater level at this site will be approximately the same as, and vary with, the level of water in Deer Creek. Some water seepage may emanate from granular seams or zones encountered above the level of water in the creek; however, the quantity of water is expected to be limited and may potentially be controlled by bailing or using portable pumps. Provisions for continuous pumping from sumps should be made for the larger groundwater flows that may be encountered in excavations extending below the level of water in the stream.

It is recommended that groundwater and surface water runoff be controlled during construction, as soil in excavation walls or at the proposed foundation level may exhibit instability in the presence of water and construction vibrations. S\&ME recommends that the sides and bottoms of all excavations be closely monitored by the Geotechnical Engineer of Record or their designated representative during construction. If the soils at the bottom of an excavation become disturbed by construction activity or channel flow, it is recommended that the disturbed material be undercut and replaced in accordance with the recommendations provided in this report, or be removed and the footing elevation lowered to more suitable soils.

Localized sheeting and continuous dewatering, in conjunction with stream diversion, may aid in minimizing disturbance of the soil at the foundation bearing elevation, and it is recommended that all excavations for the proposed structure foundations be protected from stream, groundwater, and storm water flow. Even with stream flow diversion, provisions for continuous pumping from sumps should be made for the expected larger groundwater flows that may be encountered in excavations extending below the level of water in the stream and into the underlying granular soil.

Additionally, all excavations should be either sloped back or braced in accordance with the most recent OSHA excavation guidelines.

7.0 Final Considerations

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other representation or warranty either express or implied, is made.

We relied on project information given to us to develop our conclusions and recommendations. If project information described in this report is not accurate, or if it changes during project development, we should be notified of the changes so that we can modify our recommendations based on this additional information, if necessary.

```
Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)

Our conclusions and recommendations are based on limited data from a field exploration program. Subsurface conditions can vary widely between explored areas. Some variations may not become evident until construction. If conditions are encountered which appear different than those described in our report, we should be notified. This report should not be construed to represent subsurface conditions for the entire site.

Unless specifically noted otherwise, our field exploration program did not include an assessment of regulatory compliance, environmental conditions or pollutants or presence of any biological materials (mold, fungi, bacteria). If there is a concern about these items, other studies should be performed. S\&ME can provide a proposal and perform these services if requested.

S\&ME should be retained to review the final plans and specifications to confirm that earthwork, foundation, and other recommendations are properly interpreted and implemented. The recommendations in this report are contingent on S\&ME's review of final plans and specifications followed by our observation and monitoring of earthwork and foundation construction activities.

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

\section*{APPENDIX A}


PLATE 1
boring number AND LOCATION

0
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ PLAN OF BORINGS } \\
\hline \multicolumn{2}{|c|}{ MAD-62-2.79 - BRIDGE REPLACEMENT } \\
MT. STERLING, OHIO \\
\hline \multicolumn{2}{|c|}{} \\
\hline Project: \(1179-17-005\) \\
\hline Drawing Date: \(7-12-2017\) \\
\hline Last Updated: \(7-12-2017\) \\
\hline Drawn By: KJD \\
\hline Approved By: EAA & \multirow{3}{|l|}{} \\
\hline Scale: GRAPHIC & 1:1 \\
\hline
\end{tabular}

\section*{EXPLANATION OF SYMBOLS AND TERMS USED ON BORING LOGS FOR SAMPLING AND DESCRIPTION OF SOIL}

\section*{SAMPLING DATA}
- - Indicates sample was attempted within this depth interval.

2 - The number of blows required for each 6-inch increment of penetration of a "Standard"
3 2-inch O.D. split-barrel sampler, driven a distance of 18 inches by a 140 -pound
5 hammer freely falling 30 inches (SPT). The raw "blowcount" or " N " is equal to the sum of the second and third 6 -inch increments of penetration.
\(\mathrm{N}_{60}\) - Corrected Blowcount \(=[(\) Drill Rod Energy Ratio) / (0.60 Standard \()] \times \mathrm{N}\)
SS - Split-barrel sampler, any size.
ST - Shelby tube sampler, 3" O.D., hydraulically pushed.
R - Refusal of sampler in very-hard or dense soil, or on a resistant surface.
50-0.3' - Number of blows (50) to drive a split-barrel sampler a certain distance ( 0.3 feet), other than the normal 6 -inch increment.

\section*{DEPTH DATA}

W - Depth of water or seepage encountered during drilling.
\(\boldsymbol{\nabla} A D\) - Depth to water in boring after drilling (AD) is terminated.
5 days - Depth to water in monitoring well or piezometer in boring a certain number of days (5) after termination of drilling.
TR - Depth to top of rock.

\section*{SOIL DESCRIPTIONS}

Soils have been classified in general accordance with Section 603 of the most recent ODOT SGE, and described in general accordance with Section 602, including the use of special adjectives to designate approximate percentages of minor components as follows:
\begin{tabular}{cc} 
Adjective & Percent by Weight \\
& 1 to 10 \\
little & 10 to 20 \\
some & 20 to 35 \\
"and" & 35 to 50
\end{tabular}

The following terms are used to describe density and consistency of soils:
\begin{tabular}{ccc} 
Term (Granular Soils) & & Blows per foot \(\left(\mathrm{N}_{60}\right)\) \\
\cline { 1 - 3 } Very-loose & Less than 5 \\
Loose & 5 to 10 \\
Medium-dense & 11 to 30 \\
Dense & 31 to 50 \\
Very-dense & Over 50 \\
Term (Cohesive Soils) & \(\underline{\text { Qu (tsf) }}\) \\
\cline { 1 - 3 } Very-soft & Less than 0.25 \\
Soft & 0.25 to 0.5 \\
Medium-stiff & 0.5 to 1.0 \\
Stiff & 1.0 to 2.0 \\
Very-stiff & 2.0 to 4.0 \\
Hard & Over 4.0
\end{tabular}
S\&ME JOB: 1179-17-005


S\&ME JOB: 1179-17-005

S\&ME JOB: 1179-17-005


S\&ME JOB: 1179-17-005

S\&ME JOB: 1179-17-005


S\&ME JOB: 1179-17-005

JOB NUMBER : 1179-17-005
LABORATORY LOG OF SHELBY TUBES





\title{
Scour Zone Grain-Size Information
}

Abutment and Pier Borings MAD-62-2.79 over Deer Creek Madison County, Ohio
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Boring Number & Location & \multicolumn{3}{|c|}{\begin{tabular}{l}
Sample \\
Depth
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Sample \\
Elevation (MSL)
\end{tabular}} & D50 (mm) & D95 (mm) \\
\hline \multirow[t]{5}{*}{B-001-0-17} & \multirow[t]{5}{*}{\begin{tabular}{l}
Rear \\
Abutment
\end{tabular}} & 21.5 & - & 23.0 & 839.9 & & 841.4 & 1.3922 & 29.9007 \\
\hline & & 23.0 & - & 24.5 & 838.4 & & 839.9 & 3.9326 & 30.5077 \\
\hline & & 24.5 & - & 26.0 & 836.9 & & 838.4 & 5.1922 & 32.2722 \\
\hline & & 26.0 & - & 27.5 & \multicolumn{5}{|c|}{No Recovery} \\
\hline & & 28.5 & - & 30.0 & 832.9 & & 834.4 & 0.0128 & 1.5060 \\
\hline \multirow[t]{4}{*}{B-002-0-17} & \multirow[t]{4}{*}{Center Pier} & 23.0 & - & 24.5 & 838.6 & & 840.1 & 0.0376 & 13.7463 \\
\hline & & 24.5 & - & 26.0 & 837.1 & & 838.6 & 0.0558 & 8.4188 \\
\hline & & 26.0 & - & 27.5 & 835.6 & & 837.1 & 0.0189 & 2.4746 \\
\hline & & 27.5 & - & 29.0 & 834.1 & - & 835.6 & 0.0182 & 1.4140 \\
\hline \multirow[t]{5}{*}{B-003-0-17} & \multirow[t]{5}{*}{Forward Abutment} & 21.0 & - & 22.5 & 839.8 & - & 841.3 & 6.0284 & 28.7310 \\
\hline & & 22.5 & - & 24.0 & 838.3 & - & 839.8 & 4.3005 & 29.5872 \\
\hline & & 24.0 & - & 25.5 & 836.8 & - & 838.3 & 6.3713 & 26.8127 \\
\hline & & 25.5 & - & 26.0 & 835.3 & - & 836.8 & 3.7968 & 26.6974 \\
\hline & & 28.5 & - & 30.0 & 832.3 & - & 833.8 & 0.0618 & 8.1744 \\
\hline
\end{tabular}

\title{
Important Information About Your Geotechnical Engineering Report
}

\section*{Variations in subsurface conditions can be a principal cause of construction delays, cost overruns and claims. The following information is provided to assist you in understanding and managing the risk of these variations.}

\section*{Geotechnical Findings Are Professional Opinions}

Geotechnical engineers cannot specify material properties as other design engineers do. Geotechnical material properties have a far broader range on a given site than any manufactured construction material, and some geotechnical material properties may change over time because of exposure to air and water, or human activity.

Site exploration identifies subsurface conditions at the time of exploration and only at the points where subsurface tests are performed or samples obtained. Geotechnical engineers review field and laboratory data and then apply their judgment to render professional opinions about site subsurface conditions. Their recommendations rely upon these professional opinions. Variations in the vertical and lateral extent of subsurface materials may be encountered during construction that significantly impact construction schedules, methods and material volumes. While higher levels of subsurface exploration can mitigate the risk of encountering unanticipated subsurface conditions, no level of subsurface exploration can eliminate this risk.

\section*{Geotechnical Findings Are Professional Opinions}

Professional geotechnical engineering judgment is required to develop a geotechnical exploration scope to obtain information necessary to support design and construction. A number of unique project factors are considered in developing the scope of geotechnical services, such as the exploration objective; the location, type, size and weight of the proposed structure; proposed site grades and improvements; the construction schedule and sequence; and the site geology.

Geotechnical engineers apply their experience with construction methods, subsurface conditions and exploration methods to develop the exploration scope. The scope of each exploration is unique based on available project and site information. Incomplete project information or constraints on the scope of exploration increases the risk of variations in subsurface conditions not being identified and addressed in the geotechnical report.

\section*{Services Are Performed for Specific Projects}

Because the scope of each geotechnical exploration is unique, each geotechnical report is unique. Subsurface conditions are explored and recommendations are made for a specific project.

Subsurface information and recommendations may not be adequate for other uses. Changes in a proposed structure location, foundation loads, grades, schedule, etc. may require additional geotechnical exploration, analyses, and consultation. The geotechnical engineer should be consulted to determine if additional services are required in response to changes in proposed construction, location, loads, grades, schedule, etc.

\section*{Geo-Environmental Issues}

The equipment, techniques, and personnel used to perform a geo-environmental study differ significantly from those used for a geotechnical exploration. Indications of environmental contamination may be encountered incidental to performance of a geotechnical exploration but go unrecognized. Determination of the presence, type or extent of environmental contamination is beyond the scope of a geotechnical exploration.

\section*{Geotechnical Recommendations Are Not Final}

Recommendations are developed based on the geotechnical engineer's understanding of the proposed construction and professional opinion of site subsurface conditions. Observations and tests must be performed during construction to confirm subsurface conditions exposed by construction excavations are consistent with those assumed in development of recommendations. It is advisable to retain the geotechnical engineer that performed the exploration and developed the geotechnical recommendations to conduct tests and observations during construction. This may reduce the risk that variations in subsurface conditions will not be addressed as recommended in the geotechnical report.

Portion obtained with permission from "Important Information About Your Geotechnical Engineering Report", ASFE, 2004 © S\&ME, Inc. 2010

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

\section*{APPENDIX B}

Filename: P:ITEMPOR~1IDRIVEN~1.2MMAD-62l2RAG12RW.DVN
Project Name: MAD-62-2.79
Project Client: Euthenics
Computed By: RSW
Project Manager: RSW
PILE INFORMATION
Pile Type: Pipe Pile - Closed End
Top of Pile: 0.00 ft (EL. 851 ) (Bottom of Abut. Cap)
Diameter of Pile: 12.00 in
ULTIMATE CONSIDERATIONS
Water Table Depth At Time Of:

Ultimate Considerations:
- Drilling:
- Driving/Restrike
- Ultimate:
- Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE
\begin{tabular}{llclcc} 
Layer & Type & Thickness & Driving Loss & Unit Weight & Strength \\
1 & Cohesive & 5.40 ft & \(0.00 \%\) & 115.00 pcf & 1000.00 psf \\
2 & Cohesionless & 9.00 ft & \(0.00 \%\) & 130.00 pcf & \(36.0 / 36.0\) \\
3 & Cohesive & 14.20 ft & \(0.00 \%\) & 120.00 pcf & 3000.00 psf \\
4 & Cohesive & 5.00 ft & \(0.00 \%\) & 125.00 pcf & 4500.00 psf \\
5 & Cohesionless & 28.50 ft & \(0.00 \%\) & 130.00 pcf & \(35.0 / 35.0\)
\end{tabular}

Rear Abutment
Boring B-001
\(12^{\prime \prime} \phi\) pipe pile

ULTIMATE - SUMMARY OF CAPACITIES
Depth
0.01 ft
5.39 ft
5.41 ft
14.39 ft
14.41 ft
23.41 ft
28.59 ft
28.61 ft
33.59 ft
33.61 ft
42.61 ft
51.61 ft
60.61 ft
62.09 ft

Skin Friction
0.03 Kips
13.55 Kips
13.58 Kips
26.92 Kips
27.03 Kips
111.86 Kips
146.67 Kips
146.75 Kips
164.83 Kips
164.90 Kips
198.37 Kips
239.47 Kips
288.22 Kips
296.96 Kips
\begin{tabular}{ll} 
End Bearing & Total Capacity \\
7.07 Kips & 7.09 Kips \\
7.07 Kips & 20.62 Kips \\
26.27 Kips & 39.85 Kips \\
51.92 Kips & 78.84 Kips \\
21.21 Kips & 48.24 Kips \\
21.21 Kips & 133.06 Kips \\
21.21 Kips & 167.87 Kips \\
31.81 Kips & 178.56 Kips \\
31.81 Kips & 196.64 Kips \\
79.23 Kips & 244.13 Kips \\
84.51 Kips & 282.87 Kips \\
84.51 Kips & 323.98 Kips \\
84.51 Kips & 372.72 Kips \\
84.51 Kips & 381.47 Kips
\end{tabular}

Find \(x\), for Integral Abut rent
\[
\begin{aligned}
& \frac{319-282.87}{323.98-282.87}=\frac{36.13}{41.11}=0.88 \\
& \text { then, } x_{1}=42.41+0.88[51.61-42.61]=42.61+7.92=50.53^{\prime} \text { say } 51 \text { feet }=x_{1}
\end{aligned}
\]

So, Est. Tip Elevation \(=\) Bot. Abut Cap \(-x_{1}\)
\[
\begin{aligned}
& \text { Estop by } 51+2^{\prime} \text { cmbedm }=53 \text { round to } 55^{\prime} \\
& \text { ordubayth }=D_{\text {m }}+5=60^{\prime}
\end{aligned}
\]

Find \(x_{2}\) for Semi-Integral Aloutwent
\[
\begin{aligned}
& x_{2}=27.42^{\prime} \operatorname{say} 28^{\prime}
\end{aligned}
\]

Check Available Info Below Integral Abut Pile Tip
\[
\begin{aligned}
& \text { Bot. of Info }=62.09 \\
& \text { Sit Tip }=\frac{51}{11.09 \text { feet of Boring }} \\
& \text { Info Below Tip }
\end{aligned}
\]

Does this exceed exceed
5D? yes

GENERAL PROJECT INFORMATION
Filename: P:ITEMPOR~1IDRIVEN~1.2IMAD-62IB1P116RW.DVN
Project Name: MAD-62-2.79
Project Date: 03/05/2018
Project Client: Euthenics
Computed By: RSW
Project Manager: RSW
PILE INFORMATION
Pile Type: Pipe Pile - Closed End
Top of Pile: 5.00 ft ( \(\& 4.835\) )
Diameter of Pile: 16.00 in
ULTIMATE CONSIDERATIONS
Water Table Depth At Time Of:

Ultimate Considerations:
- Drilling:
- Driving/Restrike
- Ultimate:
- Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE
\begin{tabular}{llclcc} 
Layer & Type & Thickness & Driving Loss & Unit Weight & Strength \\
1 & Cohesionless & 4.40 ft & \(0.00 \%\) & 130.00 pcf & \(36.0 / 36.0\) \\
2 & Cohesive & 14.20 ft & \(0.00 \%\) & 120.00 pcf & 3000.00 psf \\
3 & Cohesive & 5.00 ft & \(0.00 \%\) & 125.00 pff & 4500.00 psf \\
4 & Cohesionless & 28.50 ft & \(0.00 \%\) & 130.00 pcf & \(35.0 / 35.0\)
\end{tabular}
- From Euthenics ( \(2 / 9 / 18\) ):

Bottom of Pier Fy \(=\) EL. 835
MAx. Fretored Axial(Vertical) Load per pile \(\Rightarrow 239.2\) kips
\[
\operatorname{Rndr}\left(\text { uV ) Reg'd } \Rightarrow 239.2 / 0.7=341.7^{k} \Rightarrow 342 \mathrm{kips}\right.
\]

DRIVING - SUMMARY OF CAPACITIES
\begin{tabular}{llll} 
Depth & Skin Friction & End Bearing & Total Capacity \\
0.01 ft & 0.00 Kips & 0.00 Kips & 0.00 Kips \\
4.39 ft & 0.00 Kips & 0.00 Kips & 0.00 Kips \\
4.41 ft & 0.00 Kips & 0.00 Kips & 0.00 Kips \\
4.99 ft & 0.00 Kips & 0.00 Kips & 0.00 Kips \\
\hline 5.00 ft & 0.00 Kips & 37.70 Kips & 37.70 Kips \\
13.41 ft & 2786 Kips & 37.70 Kips & 65.56 Kips \\
18.59 ft & 48.79 Kips & 37.70 Kips & 86.49 Kips \\
18.61 ft & 48.86 Kips & 56.55 Kips & 105.41 Kips \\
23.59 ft & 67.55 Kips & 56.55 Kips & 124.10 Kips \\
23.61 ft & 67.63 Kips & 86.84 Kips & 154.47 Kips \\
32.61 ft & 112.38 Kips & 122.99 Kips & 235.38 Kips \\
41.61 ft & 172.84 Kips & 150.24 Kips & 323.08 Kips \\
50.61 ft & 249.01 Kips & 150.24 Kips & 399.24 Kips \\
52.09 ft & 263.03 Kips & 150.24 Kips & 413.27 Kips
\end{tabular}

Calculate Stun Friction in Scan Core ( 6.2 feet)
\[
\begin{aligned}
& \frac{6.2-5.0}{13.41-5.0}=\frac{1.2}{8.41}=0.143 \\
& \text { then, } 0+0.143(27.86-0)=0+3.98^{k}=3.98^{k} \Rightarrow\left\{\begin{array}{l}
4 \text { kips sling } \\
\text { friction } \\
\text { during } \\
\text { driving } \\
\text { in some } \\
\text { zone }
\end{array}\right\}
\end{aligned}
\]

ULTIMATE - SUMMARY OF CAPACITIES
Depth
0.01 ft
4.39 ft
4.41 ft
4.99 ft
5.00 ft
6.19 ft
6.20 ft
13.41 ft
18.59 ft
18.61 ft
23.59 ft
23.61 ft
32.61 ft
41.61 ft
50.61 ft
52.09 ft
Skin Friction
0.00 Kips
23.8 Kips
44.48 Kips
44.56 Kips
63.24 Kips
63.32 Kips
108.07 Kips
168.53 Kips
244.70 Kips
258.73 Kips
\begin{tabular}{ll} 
End Bearing & Total Capacity \\
0.00 Kips & 0.00 Kips \\
0.0 Kips & 0.00 Kips \\
37.70 Kips & 37.70 Kips \\
37.70 Kips & 61.59 Kips \\
37.70 Kips & 82.18 Kips \\
56.55 Kips & 101.10 Kips \\
56.55 Kips & 119.79 Kips \\
86.84 Kips & 150.16 Kips \\
123.81 Kips & 231.88 Kips \\
150.24 Kips & 318.77 Kips \\
150.24 Kips & 394.93 Kips \\
150.24 Kips & 408.96 Kips
\end{tabular}

Rndr (UBV) required during installation
\[
\text { Rude + Scour Zone Fruition }=342^{k}+4^{k} \Rightarrow 346^{k}=\text { Rad }
\]

So, \(\frac{346^{2}-318.77}{394.93-318.77}=\frac{27.23}{76.16}=0.358\)
then, \(\begin{aligned} 41.61+0.358[50.61-41.61] & =41.41+3.222 \\ & =44.83^{\prime} \Longrightarrow \operatorname{Sen} 45^{\prime}\end{aligned}\)
\[
\text { Est. } T_{i p} \text { EL } \Rightarrow E 2.840-45^{\prime} \Rightarrow \underbrace{\varepsilon_{C} .795=\text { Est Tip Elevation. }}
\]
(Est. Pic Length \(=855-795=40^{\prime}\)
Check Reantinieg SoilBorrion Info Brow Tip

\[
\begin{aligned}
\text { Max Depth } f \text { Into } & =52.09^{\prime} \\
& \frac{-45}{7.09^{\prime}}
\end{aligned}
\]
\[
\begin{gathered}
\text { Is } 7.09^{\prime}>5 \times 0 ? \\
5 \times 1.33=6.65^{\prime}
\end{gathered}
\]

Now, check Prow I Pick Depth Reid using Boring B-002

GENERAL PROJECT INFORMATION
Filename: P:ITEMPOR~1IDRIVEN~1.2IMAD-62IB2PS16RW.DVN
Project Name: MAD-62-2.79
Project Date: 03/05/2018
Project Client: Euthenics
Computed By: RSW
Project Manager: RSW
PILE INFORMATION
Pile Type: Pipe Pile - Closed End
Top of Pile: 5.00 ft
Diameter of Pile: 16.00 in
ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

Ultimate Considerations:
- Drilling:
- Driving/Restrike
- Ultimate:
- Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE
\begin{tabular}{llcl} 
Layer & Type & Thickness & Driving Loss \\
1 & Cohesive & 3.00 ft & \(0.00 \%\) \\
2 & Cohesive & 4.00 ft & \(0.00 \%\) \\
3 & Cohesive & 8.00 ft & \(0.00 \%\) \\
4 & Cohesive & 7.40 ft & \(0.00 \%\) \\
5 & Cohesionless & 34.50 ft & \(0.00 \%\)
\end{tabular}

Unit Weight 120.00 cf 120.00 pf 125.00 cf 120.00 pf 130.00 cf
- Intermediate Fir
- Boring B-002
\(-16^{\prime \prime} \phi\) pipe pile
- Scour \(=6.2^{\prime}\)
- Ex.ChannalersL.840

DRIVING - SUMMARY OF CAPACITIES


Calculate Som zone Friction during Driving
\[
\begin{aligned}
& \frac{6.2-5.0}{6.99-5.0}=\frac{1.2^{k}}{1.99^{k}}=0.603 \\
& \text { So, } 0+0.603(6.42+0)=3.87^{k} \Rightarrow \operatorname{Sen}\left\{\begin{array}{l}
4 \text { kips friction during } \\
\text { driving in scour } \\
\text { zone }
\end{array}\right.
\end{aligned}
\]

ULTIMATE - SUMMARY OF CAPACITIES
Depth
0.01 ft
2.99 ft
3.01 ft
4.99 ft
5.00 ft
6.19 ft
6.20 ft
6.99 ft
7.01 ft
14.99 ft
15.01 ft
22.39 ft
22.41 ft
31.41 ft
40.41 ft
49.41 ft
56.89 ft

Skin Friction
0.00 Kips
2.55 Kips
2.61 Kips
29.03 Kips
29.10 Kips
56.34 Kips
56.42 Kips
98.63 Kips
156.56 Kips
230.19 Kips
303.34 Kips
\begin{tabular}{ll} 
End Bearing & Total Capacity \\
0.00 Kips & 0.00 Kips \\
50.27 Kips & 50.27 Kips \\
50.27 Kips & 52.81 Kips \\
56.55 Kips & 59.16 Kips \\
56.55 Kips & 85.58 Kips \\
40.84 Kips & 69.94 Kips \\
40.84 Kips & 97.18 Kips \\
80.87 Kips & 137.29 Kips \\
117.84 Kips & 216.48 Kips \\
150.24 Kips & 306.79 Kips \\
150.24 Kips & 380.43 Kips \\
150.24 Kips & 453.58 Kips
\end{tabular}
installation


So, \(\frac{346-306.79}{380.43-306.79}=\frac{40.79^{k}}{73.64^{k}}=0.554\)
Then, \(40.41+0.554[49.41-40.41]=40.41+4.986=45.396^{\prime}\) say 46 feet


Est. Pike Length \(\Rightarrow 2^{\prime}\) cutoff \(+(835-794)=43^{\prime}\) Round to Ext. Pm Lunch \(=45^{\prime}\)
Est. Arden lath \(=50^{\prime}\)

Check Pamaining SilInco
Below Tip for Load Transke
\[
\begin{aligned}
\text { Mas Depth Ir fo } & =57^{\prime} \\
& \frac{-46^{\prime}}{11^{\prime} \text { Remainimis }} ?>50 ? \text { Yes }
\end{aligned}
\]

Est. Tip El. Deeper for Int. Pier \#/ using B-02 than B-ool


EL. 794 ( \(16^{\prime \prime} \phi\) )
\[
\binom{\text { Parl Larch }=45^{\prime}}{\text { Ordn Length }}
\]

GENERAL PROJECT INFORMATION

Filename: P:ITEMPOR~1\DRIVEN~1.2\MAD-62\B3P216RW.DVN
Project Name: MAD-62-2.79
Project Date: 03/05/2018
Project Client: Euthenics
Computed By: RSW
Project Manager: RSW
PILE INFORMATION
Pile Type: Pipe Pile - Closed End
Top of Pile: 7.00 ft ( \(\mathcal{L} .835\) )
Diameter of Pile: 16.00 in
ULTIMATE CONSIDERATIONS
Water Table Depth At Time Of:

Ultimate Considerations:
- Drilling:
- Driving/Restrike
- Ultimate:
- Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE
\begin{tabular}{llclc} 
Layer & Type & Thickness & Driving Loss & Unit Weight \\
1 & Cohesionless & 7.40 ft & \(0.00 \%\) & 130.00 pcf \\
2 & Cohesive & 14.30 ft & \(0.00 \%\) & 120.00 pcf \\
3 & Cohesive & 5.00 ft & \(0.00 \%\) & 125.00 pcf \\
4 & Cohesionless & 33.00 ft & \(0.00 \%\) & 130.00 pcf
\end{tabular}
- Intermediate Per \#2
- boring B-003
\(-16^{*} \phi\) Pipe Pike
- Som \(=6.2^{\prime}\)
\(-E_{x}\) Chanel \(=\sim 842\)
\[
\begin{aligned}
& 0.00 \mathrm{ft} \\
& 0.00 \mathrm{ft} \\
& 0.00 \mathrm{ft} \\
& 6.20 \mathrm{ft} \\
& 0.00 \mathrm{ft} \\
& 0.00 \mathrm{ft}
\end{aligned}
\]

Strength
Ultimate Curve 36.0/36.0

Nordlund 3000.00 psf T-79 Steel 4500.00 psf T-79 Steel 35.0/35.0

From Euthenics ( \(2 / 2 / 18\) ):
Both om + Per fy y \(=0\) a 035
Mas. Sectored Axil (Vat) Ladd/pite \(=239.2\) ups
\[
\text { Rude Rigi } \Rightarrow 342 \mathrm{kips}
\]

DRIVING - SUMMARY OF CAPACITIES
\begin{tabular}{llll} 
Depth & Skin Friction & End Bearing & Total Capacity \\
0.01 ft & 0.00 Kips & 0.00 Kips & 0.00 Kips \\
6.99 ft & 0.00 Kips & 0.00 Kips & 0.00 Kips \\
7.00 ft & 0.00 Kips & 35.55 Kips & 35.55 Kips \\
7.39 ft & 0.64 Kips & 37.53 Kips & 38.16 Kips \\
7.41 ft & 0.69 Kips & 37.70 Kips & 38.38 Kips \\
16.41 ft & 31.95 Kips & 37.70 Kips & 69.65 Kips \\
21.69 ft & 54.32 Kips & 37.70 Kips & 92.02 Kips \\
21.71 ft & 54.40 Kips & 56.55 Kips & 110.95 Kips \\
26.69 ft & 73.88 Kips & 56.55 Kips & 130.43 Kips \\
26.71 ft & 73.97 Kips & 99.50 Kips & 173.47 Kips \\
35.71 ft & 124.10 Kips & 135.12 Kips & 259.22 Kips \\
44.71 ft & 189.94 Kips & 150.24 Kips & 340.18 Kips \\
53.71 ft & 271.49 Kips & 150.24 Kips & 421.73 Kips \\
59.69 ft & 334.37 Kips & 150.24 Kips & 484.60 Kips
\end{tabular}

No Scour Zone Friction since cap at \(7^{\prime}\)


Randi Ref \(d=342^{k}\)

ULTIMATE - SUMMARY OF CAPACITIES

Depth
0.01 ft
6.99 ft
7.00 ft
6.19 ft
6.20 ft
7.39 ft
7.41 ft
16.41 ft
21.69 ft
21.71 ft
26.69 ft
26.71 ft

53.71 ft
59.69 ft

Skin Friction
0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.64 Kips 0.69 Kips 31.95 Kips 54.32 Kips 54.40 Kips 73.88 Kips 73.97 Kips 124.10 Kips 189.94 Kips 271.49 Kips 334.37 Kips

End Bearing
0.00 Kips 0.00 Kips 35.55 Kips 0.00 Kips 0.00 Kips
37.53 Kips 37.53 Kips
37.70 Kips 37.70 Kips 37.70 Kips 56.55 Kips 56.55 Kips 99.51 Kips 136.05 Kips
150.24 Kips 150.24 Kips 150.24 Kips

\[
\begin{gathered}
\text { Pndr }(\text { rigid })=342 \mathrm{k} \\
\frac{342-340.18}{421.73-340.18}=\frac{1.82}{81.55}=0.022
\end{gathered}
\]
\[
\text { then, } x=44.71^{\prime}+0.022(53.71-44.71)=44.71^{\prime}+0.200^{\prime}=44.91^{\prime} \Rightarrow \sin 45^{\prime}
\]


Aumilo Fifo Below tie

\[
\frac{-45}{14.69^{\prime}}>50 \text { ? Yes }
\]

GENERAL PROJECT INFORMATION

Filename: P:ITEMPOR~1IDRIVEN~1.2lMAD-62I3FAG12RW.DVN
Project Name: MAD-62-2.79
Project Client: Euthenics
Computed By: RSW
Project Manager: RSW
- Fwd. Abut
- Boring B-003
- \(12^{\prime \prime} \phi\) pipe pile

PILE INFORMATION
Pile Type: Pipe Pile - Closed End
Top of Pile: \(0.00 \mathrm{ft}(\sim \varepsilon L, 850)\)
Diameter of Pile: 12.00 in
ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:

Ultimate Considerations:
- Drilling:
- Driving/Restrike
- Ultimate:
- Local Scour:
- Long Term Scour:
- Soft Soil:

ULTIMATE PROFILE
\begin{tabular}{llcccc} 
Layer & Type & Thickness & Driving Loss & Unit Weight & Strength \\
1 & Cohesive & 7.50 ft & \(0.00 \%\) & 115.00 pcf & 800.00 psf \\
2 & Cohesionless & 9.70 ft & \(0.00 \%\) & 130.00 pcf & \(36.0 / 36.0\) \\
3 & Cohesive & 14.30 ft & \(0.00 \%\) & 120.00 pcf & 3000.00 psf \\
4 & Cohesive & 5.00 ft & \(0.00 \%\) & 125.00 pcf & 4500.00 psf \\
5 & Cohesionless & 33.00 ft & \(0.00 \%\) & 130.00 pcf & \(35.0 / 35.0\)
\end{tabular}
5.50 ft
5.50 ft
5.50 ft
0.00 ft
0.00 ft
0.00 ft

ULTIMATE - SUMMARY OF CAPACITIES


Depth
0.01 ft
7.49 ft 7.51 ft
16.51 ft
17.19 ft
17.21 ft
26.21 ft
\(31.49 \mathrm{ff}-\mathrm{x}_{2}\)
31.51 ft
36.49 ft
36.51 ft
\(45.51 \mathrm{ft} \longleftarrow x_{1}\)
63.51 ft
69.49 ft

Skin Friction
0.02 Kips
15.65 Kips
15.68 Kips
30.74 Kips
32.24 Kips
32.35 Kips
117.18 Kips
152.50 Kips
152.58 Kips
171.40 Kips
171.48 Kips
207.07 Kips
250.31 Kips
301.19 Kips
339.21 Kips

End Bearing
5.65 Kips
5.65 Kips
31.20 Kips
56.91 Kips
58.85 Kips
21.21 Kips
21.21 Kips
21.21 Kips
31.81 Kips
31.81 Kips
84.51 Kips
84.51 Kips
84.51 Kips
84.51 Kips
84.51 Kips

Total Capacity
5.68 Kips
21.30 Kips
46.88 Kips
87.65 Kips
91.09 Kips
53.56 Kips
138.38 Kips
173.70 Kips - \(/ 60 \mathrm{Kips}\)
184.39 Kips
203.21 Kips
255.98 Kips
291.58 Kips
\(334.82 \mathrm{Kips} \longleftarrow 319 \mathrm{kips}\)
385.69 Kips
423.72 Kips
\[
\frac{319-291.58}{334.82-291.58}=\frac{27.42}{43.24}=0.634
\]
then, \(x_{1}=45.51+0.634(54.51-45.51)=45.51+5.707=51.2^{\prime} \Longrightarrow\) san \(52{ }^{\prime}\)
\[
\begin{aligned}
& \text { Est. Tip Blu. }= \\
& \text { ck Avail Soil Ir fo }
\end{aligned}
\]

Below Tip Elev.
\[
\begin{aligned}
& 69.49^{\prime} \\
& \frac{-52^{\prime}}{15+f t} \text { ok. }
\end{aligned}
\]

Cheek Sami-Integrat Est. Pike Length
\[
\begin{aligned}
& \frac{160-138.38}{173.70-138.38}=\frac{21.62}{35.32}=0.612 \\
& x_{2}=26.21+0.612(31.49-26.21)=24.21+3.23=29.44^{\prime} \rightarrow \sin 30^{\prime} \\
& \text { Est. Tip Elev. }=2850-30=2 \text { Ec.820 }
\end{aligned}
\]

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

\section*{APPENDIX C}
II. Reconnaissance and Planning Checklist
\begin{tabular}{|l|l|l|l|}
\hline C-R-S: MAD-62-02.79 & PID: 102577 & Reviewer: RSW & Date: \(9 / 23 / 17\) \\
\hline
\end{tabular}


\section*{II. Reconnaissance and Planning Checklist}


Notes:
II. Reconnaissance and Planning Checklist


Notes:

\section*{III.B. Embankments Checklist}
\begin{tabular}{|l|l|l|l|}
\hline C-R-S: MAD-62-02.79 & PID: 102577 & Reviewer: RSW & Date: 3/6/18 \\
\hline
\end{tabular}

\section*{Settlement}


\section*{III.B. Embankments Checklist}


Notes:
Stage 1:

\section*{III.B. Embankments Checklist}

\section*{Stability}
\begin{tabular}{|c|c|c|c|c|}
\hline Y & N & & & \begin{tabular}{l}
If soil conditions and project requirements warrant, have stability issues been addressed? \\
If not applicable (X), go to Question 29
\end{tabular} \\
\hline Y & N & X & 15 & Has the total (short term) and effective (long term) shear strength of the foundation soils been determined? \\
\hline & & & & Check method used:
laboratory shear tests
estimation from SPT or field tests \\
\hline Y & N & X & 16 & Have the values of shear strength for proposed embankment fill material, as determined from Geotechnical Bulletin 6 Shear Strength of Proposed Embankments (GB 6), been used in the stability analyses? \\
\hline Y & N & X & 17 & Have calculations been performed to determine the F.S. for stability? \\
\hline & & & & Check method used: \\
\hline & & & & - GSTABL7, or equivalent software \\
\hline & & & & - hand calculations \\
\hline & & & 18 & Have the following F.S. been met or exceeded, as determined by the calculations, for the given stability conditions: \\
\hline Y & N & X & & a 1.30 for short term condition \\
\hline Y & \(N\) & X & & b 1.30 for long term condition \\
\hline Y & \(N\) & X & & c 1.10 for rapid drawdown, flood condition \\
\hline Y & N & X & & d 1.50 for embankment supporting bridge abutments (not on deep foundations) \\
\hline Y & N & X & 19 & When differing soil or loading conditions occur throughout the embankment area, have sufficient analyses been completed to evaluate the stability at locations representative of the most critical conditions? \\
\hline Y & N & & 20 & If the F.S. was not met or exceeded, have the stations and lateral extent of the problem areas been defined? \\
\hline \multirow[t]{4}{*}{Y} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{N X}} & 21 & Has a method been chosen as a solution to the stability issues? \\
\hline & & & & Check the method(s) used: \\
\hline & & & & \(\square\) flattening slopes \\
\hline & & & & - counterberm \\
\hline
\end{tabular}

\section*{III.B. Embankments Checklist}


Notes:
Stage 1:

\section*{III.B. Embankments Checklist}


Notes:
Stage 1:

\section*{III.B. Embankments Checklist}


Notes:
Stage 1:

\section*{III.C. Subgrade Checklist}
\begin{tabular}{|l|l|l|l|}
\hline C-R-S: MAD-62-02.79 & PID: 102577 & Reviewer: RSW & Date: \(9 / 23 / 17\) \\
\hline
\end{tabular}

If you do not have any subgrade work on the project, you do not have to fill out this checklist.


\section*{III.C. Subgrade Checklist}

Notes:
Stage 1:

\section*{VI.B. Structure Foundation Exploration Checklist}
\begin{tabular}{|l|l|l|l|}
\hline C-R-S: MAD-62-2,79 & PID: 102577 & Reviewer: RSW & Date: \(3 / 6 / 18\) \\
\hline
\end{tabular}


\section*{VI.B. Structure Foundation Exploration Checklist}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Cover Sheet} \\
\hline 10 & Has the following general information been provided on the cover sheet \\
\hline \(Y \mathrm{~N} X\) & a. Brief description of the project? \\
\hline \(Y \mathrm{~N} X\) & b. Brief presentation of geological and topographical information? Include comments on structure and pavement conditions. \\
\hline \(Y \mathrm{~N} X\) & c. Brief presentation of boring and sampling methods? Include date of last calibration and drill rod energy ratio as a percent for the hammer systems used. \\
\hline \(Y \mathrm{~N} X\) & d. Summary of general soil, bedrock, and groundwater conditions, including a generalized interpretation of findings? \\
\hline \(Y \mathrm{~N} X\) & e. Statement of where original drawings and data may be inspected? \\
\hline \(Y \mathrm{~N} X\) & f. Statement of where soil or rock samples may be inspected, if applicable? \\
\hline \(Y \mathrm{~N} X\) & g. Initials of personnel and dates they performed field reconnaissance, subsurface exploration and preparation of the soil profile? \\
\hline \(Y \mathrm{~N} \times 11\) & Has a Legend been provided on the cover sheet? \\
\hline 12 & Have the following items been included in the Legend: \\
\hline \(Y \mathrm{~N} X\) & a. Symbols and usual descriptions for only the soil and bedrock types encountered, as per the Soil and Rock Symbology Chart in Appendix D of the SGE? \\
\hline \(Y \mathrm{~N} X\) & b. All miscellaneous symbols and acronyms, used on any of the sheets, defined? \\
\hline \(Y \mathrm{~N} X\) & c. The number of soil samples for each classification that were mechanically classified and visually described? \\
\hline Y N X 13 & Has a Location Map, showing the beginning and end stations for the project, been shown on the cover sheet, sized per the L\&D Manual? \\
\hline \(\begin{array}{llll}Y & N & X & 14\end{array}\) & If sampling and testing for a scour analysis was performed, has this data been shown in tabular form? \\
\hline
\end{tabular}

\section*{VI.B. Structure Foundation Exploration Checklist}


\section*{VI.B. Structure Foundation Exploration Checklist}


\section*{VI.B. Structure Foundation Exploration Checklist}


\section*{VI.B. Structure Foundation Exploration Checklist}
\begin{tabular}{|c|c|}
\hline \(Y \mathrm{~N} X\) & I. Percent recovery for each sample? \\
\hline \(Y \mathrm{~N} X\) & m. Measured blow counts for each 6 inches of drive for split spoon samples? \\
\hline \(Y \mathrm{~N} X\) & n. N60 to the nearest whole number? \\
\hline \(Y \mathrm{~N} X\) & o. Particle-size analysis? \\
\hline \(Y \mathrm{~N} X\) & p. Liquid limit, plastic limit, plasticity index? \\
\hline \(Y \mathrm{~N} X\) & q. Water content? \\
\hline \(Y \mathrm{~N} X\) & r. ODOT soil classifications, with 'Visual' in parentheses for those samples visually classified? \\
\hline \(Y \mathrm{~N} X\) & s. Bedrock descriptions? \\
\hline \(Y \mathrm{~N} X\) & t. Run rock core percent recovery? \\
\hline \(Y \mathrm{NX}\) & u. Run RQD? \\
\hline \(Y N X\) & v. Unit rock core percent recovery? \\
\hline \(Y \mathrm{~N} X\) & w. Unit RQD? \\
\hline \(Y \mathrm{~N} X\) & x. SDI, if applicable? \\
\hline \(Y \mathrm{~N} X\) & y. Rock compressive strength test results, if applicable? \\
\hline \(Y \mathrm{~N} X 30\) & Have all undisturbed test results been displayed in graphical format on the sheet(s) following the boring log sheet(s)? \\
\hline
\end{tabular}

Notes:
Stage 1:

\section*{VI.D. Geotechnical Reports}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{C-R-S: MAD-62-02.79} & PID: 102577 & Reviewe & Date: 3/6/18 \\
\hline \multicolumn{5}{|l|}{General} \\
\hline \(Y \mathrm{~N} \times 1\) & Has report & plete version o itted been labe & technical Draft'? & \\
\hline \[
Y \times X 2
\] & Subs has geote labele & DOT's review version ort being & pproval, revised been & \\
\hline \(Y \mathrm{~N} X 3\) & Have been 705.1 & nical reports ctly as prescr & ubmitted Section & \\
\hline
\end{tabular}

\section*{Report Body}

Y N X 4 Do all geotechnical reports being submitted contain an Executive Summary as described in Section 705.2 of the SGE?

Y N X 5 Do all geotechnical reports being submitted contain an Introduction as described in Section 705.3 of the SGE?

Y N X 6 Do all geotechnical reports being submitted contain a section titled "Geology and Observations of the Project," as described in Section 705.4 of the SGE?

Y N X 7 Do all geotechnical reports being submitted contain a section titled "Exploration," as described in Section 705.5 of the SGE?

Y N X 8 Do all geotechnical reports being submitted contain a section titled "Findings," as described in Section 705.6 of the SGE?

Y N X 9 Do all geotechnical reports being submitted contain a section titled "Analyses and Recommendations," as described in Section 705.7 of the SGE?

\section*{VI.D. Geotechnical Reports}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Appendices} \\
\hline Y \(\mathrm{N} \times 10\) & Do all geotechnical reports being submitted contain all applicable Appendices as described in Section 705.8 of the SGE? \\
\hline Y \(\mathrm{N} \times 11\) & Do the Appendices present a site Boring Plan showing all boring locations as described in Section 705.8.1 of the SGE? \\
\hline Y \(\mathrm{N} \times 12\) & Do the Appendices include boring logs as described in Section 705.8.2 of the SGE? \\
\hline \[
Y \times \times 13
\] & Do the Appendices present reports of undisturbed test data as described in Section 705.8.3 of the SGE? \\
\hline \(\boldsymbol{Y} \mathrm{N} \times 14\) & Do the Appendices present calculations in a logical format to support recommendations as described in Section 705.8.4 of the SGE? \\
\hline
\end{tabular}

Notes:

OHIO DEPARTMENT OF TRANSPORTATION
OFFICE OF GEOTECHNICAL ENGINEERING

MAD-62-2.79
PID 102577
PROJECT DESCRIPTION - Structure Foundation Exploration - Three (3) structure borings, lab testing, and report

S\&ME, Inc.
Prepared By: Kyle J. Dohlen, P.E.

Date prepared:
February 28, 2018

\section*{BORING LOG LOCATION SUMMARY}
\begin{tabular}{|l|r|r|r|r|r|}
\multicolumn{1}{c}{ Boring ID } & \multicolumn{1}{c}{ Latitude } & \multicolumn{1}{c}{ Longitude } & \multicolumn{1}{c}{ Filename Log } & \multicolumn{1}{c}{ Filename Plan } & \multicolumn{1}{l}{ Filename Profile } \\
\hline B-001-0-17 & 39.725119 & -83.250567 & 102577_ZL001 \& 002 & 102577_IP001 & 102577_ZP001 \\
\hline B-002-0-17 & 39.725220 & -83.250109 & \(102577 \_\)ZL002 \& 003 & 102577_IP001 & 102577_ZP001 \\
\hline B-003-0-17 & 39.725336 & -83.249588 & \(102577 \_\)ZL004 \& 005 & 102577_IP001 & 102577_ZP001 \\
\hline & & & & & \\
\hline
\end{tabular}

Structure Foundation Exploration - Final
MAD-62-2.79 Bridge Replacement (PID No. 102577)
Madison County, Ohio
S\&ME Project No. 1179-17-005

\section*{APPENDIX D}

\section*{PROJECT DESCRIPTION}

IT IS PROPOSED TO REPLACE THE EXISTING BRIDGE (NO. MAD-62-O279) WHICH CARRIES
US-62 OVR DEER CREEK, JUST NORTHEAST OF MOUNT STERLING, IN MADISON COUNTY, OHIO. THE PROPOSED REPLACEMENT STRUCTURE WILL BE A THRE-SPAN BRIDGE WITH
PRE-STRESSED CONCRETE L-BEAMS AND INTEGRAL ABUTMENTS AND
 HISTORIC RECORDS
AvAILABLE HISTORII BRIDGE PLAN SHEETS DATED 1941 INDICATE THAT THE EXISTING
BRICE IS SOPPOTED ON TIMER PILING. NO HISTORIC BORING LOGS WERE LOCATED FOR
THE EXISTING BRIDGE. GEOLOGY
THE PROJECT SITE IS LOCATED IN THE DARBY PLAIN PHYSIOGRAPHIC REGION. THE DARBY PLA AN IS CHARACTESIZD BY BROADLY HAMMOCKY GROUND WITH SEVEREL BROAD,
 BEDROCK NEAR THIS

 SUSUR PIER
SUBSURFACE EXPLORATION
DURING THE PERIOD OF JUNE 5 THROUGH JUNE 9 , 2017, S8ME PERF ORMED A TOTAL OF
THREE (3) BORINGS AT THIS SITE. THE BORINGS WERE DRILLED TO DEPTHS RANGING FRO 7 FEET TO 80 FEET BELOW THE EXISTING ROADWAY OR BRIDGE DECK SURFACE, AND WERE

THE BORINGS WERE PERFORMED USING A TRUCK-MOUNTED DRILLING RIG USING 3-1/4-INCH
I.D. HOLLOW-STEM AUGERS. DISTURBED (BUT REPRESENTATIVE) SOI SAND








ABUTMENT BORINGS WERE SEA
 MATEIALS BET WEEN 3.0 AND 11.0 FEET OF FILL AND OR PROBABLE EILL WAS


BORING B-OO2 WAS PERF ORMED NEAR THE CENTER OF THE EXISTING CREEK CHANNE
AND NEAR THE EXISTING CENTER RRIDGE PIER. AFTER ENCOUNTERING THE STREAM

 O BEING TERMINATED AT A DEPTH OF 80 FEET.
WATER WAS ENCOUNTERED IN ALL OF THE BORINGS. THE DEPTHS WHERE THE INITIAL
SEEPAGE WAS NOTED RANGED FROM 18.5 FEET TO 23 FEET BELOW THE APPROXIMATE SEEPAGE WAS NOTED RANGED FROM 18.5 FEET TO 23 FEET BELOW THE APRROXIMATE
EXSTING RODWAY SRFACE. NO LONG
OBTIINED GROUNOWATER MEASUREMENTS WERE

SPECIFICATIONS
THIS GEOTECHNICAL EXPLORATION WAS PERFORMED IN ACCORDANCE WITH THE STATE
OF OHIO, DEPARTMENT OF TRANSPORTATION OFFICE OF GEOTECHICAL ENGINEERING


AVAILABLE INFORMATION
all available soil and beorock information that can be conveniently shown


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{LEGEND} \\
\hline \multicolumn{2}{|r|}{DESCRIPTION} & \[
\begin{aligned}
& \text { ODOT } \\
& \text { CLASS }
\end{aligned}
\] & \multicolumn{2}{|l|}{CLASSIFIED
MECH./VISUAL} \\
\hline \%\%od & gravel & A-I-a & 5 & 1 \\
\hline 84 & gravel with sand & A-l-b & 2 & 1 \\
\hline d & SAndy Silt & A-40 & 12 & " \\
\hline & SILT And clay & A-60 & 6 & 5 \\
\hline & silty clay & A-6b & 5 & 4 \\
\hline 相 & elastic clay & A-7-5 & 1 & - \\
\hline \# & clay & A-7-6 & 9 & 6 \\
\hline & & total & 40 & 28 \\
\hline \({ }^{\text {x }}\) & pavement or bas & visual & & \\
\hline
\end{tabular}
- boring location - plan view.
:- DRIVE SAMPLE AND/or rock core boring plotted to vertical scale only
wc indicates water content in percen
\(N_{60} \quad\) INIICATES STANDARD PENETRATION RESIITANCE
NORMALIZDD TO \(60 \%\) DRILL ROD ENERGY RATIO.
NUMBER OF BLOWS FOR STANDARD PENETRATION TEST (SPT)

w- indicates free water elevation.
sS indicates a split spoon sample.
st indicates a shelby tube sample.
np inoicates a non-plastic sample.
ucs indicates an unconfined compression test (soil)

SCOUR ZONE GRAIN SIZE INFORMATION
\begin{tabular}{|c|c|c|c|c|c|}
\hline boring NUMBER & LOCATION & SAMPLE
DEPTH & SAMPLE ELEVATION (MSL) & \[
\begin{aligned}
& \mathrm{D} 50 \\
& (\mathrm{~mm})
\end{aligned}
\] & \[
\begin{aligned}
& \text { D95 } \\
& (\mathrm{mm})
\end{aligned}
\] \\
\hline \multirow{5}{*}{B-001-0-17} & \multirow{5}{*}{rear abutment} & 21.5-23.0 & 839.9-841.4 & 1.3922 & 29.9007 \\
\hline & & 23.0-24.5 & 838.4-839.9 & 3.9326 & 30.5077 \\
\hline & & 24.5-26.0 & 836.9-838.4 & 5.1922 & 32.2722 \\
\hline & & 26.0-27.5 & \multicolumn{3}{|c|}{NO RECOVERY} \\
\hline & & 28.5-30.0 & 832.9-834.4 & 0.0128 & 1.5060 \\
\hline \multirow{4}{*}{B-002-0-17} & \multirow{4}{*}{\[
\begin{aligned}
& \text { BRIDGE } \\
& \text { MID-SPAN }
\end{aligned}
\]} & 23.0-24.5 & 838.6-840.1 & 0.0376 & 13.7463 \\
\hline & & 24.5-26.0 & 837.1-838.6 & 0.0558 & 8.4188 \\
\hline & & 26.0-27.5 & 835.6-837.1 & 0.0189 & 2.4746 \\
\hline & & 27.5-29.0 & 834.1-835.6 & 0.0182 & 1.4140 \\
\hline \multirow{5}{*}{B-003-0-17} & \multirow{5}{*}{FORWARD ABUTMENT} & 21.0-22.5 & 839.8-841.3 & 6.0284 & 28.7310 \\
\hline & & 22.5-24.0 & 838.3-839.8 & 4.3005 & 29.5872 \\
\hline & & 24.0-25.5 & 836.8-838.3 & 6.3713 & 26.8127 \\
\hline & & 25.5-26.0 & 835.3-836.8 & 3.7968 & 26.6974 \\
\hline & & 28.5-30.0 & 832.3-833.8 & 0.0618 & 8.1744 \\
\hline
\end{tabular}


PARTICLE SIZE DEFINItIONS
\[
\begin{aligned}
& \text { No. } 10 \text { Sieve No. } 40 \text { SIeve No. } 200 \text { Sieve }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{index of Sheets} \\
\hline \begin{tabular}{l}
location \\
FROM STA. TO STA.
\end{tabular} & \(\underset{\text { SLEET }}{\substack{\text { PLAN VIEW }}}\) & PROFILE
SHEET & \begin{tabular}{l}
CROSS \\
SECTION SHEET
\end{tabular} & \begin{tabular}{l}
EMBANKMENT \\
CUT/FILL \\
(MAX)
\end{tabular} \\
\hline \[
12+300^{\text {MAD-62 }} \quad 16+40
\] & 2 & 2 & & 0 FT \\
\hline
\end{tabular}

RECON. - RSW (5-26-2017)
DRILLING - KJD (6-5-2017-6-9-2017)
DRAWN - KJD (2-20-2018-3-7-2018)
REVIEWED - RSW (3-7-2018)










```

