	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	1			
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

Existing Approach slab width (ft); Existing approach slab length (ft); $W_{ex_app} = 20$ $L_{ex_app} = 15$

Total Area of 202 (SY);

 $\textbf{T}_{\textbf{ex_app}} = \textbf{ceiling}(\textbf{2} \times W_{ex_app} \times L_{ex_app} \ / \ 9, \ 1) = \textbf{67.000}$

Toka	Project				Job Ref.		
		MED-252-03.95 PID 88883				J20180414.000	
	Section		Sheet no./rev.				
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	Structure Estimated Quantities – Final Tracings				2	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19	

Item 202 – Wearing Surface Removed

*See calculation for Item 202 – Approach Slab Removed

*Included with Roadway Quantities on General Summary sheet.

Total Area of 202 (SY);

 $T_{ex_ws} = T_{ex_app} = 67.000$

🚝 Tekla	Project				Job Ref.					
Tedds		MED-252-03	.95 PID 88883	3	J20180414.000					
Osborn Engineering	Section				Sheet no./rev.					
1100 Superior Avenue - Suite 300	St	ructure Estimated C	Quantities – Fir	nal Tracings		3				
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date				
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19				
tem 503 – Unclassified Excavatio	n									
*Unclassified excavation includes a	_	d for construction of	new abutmen	ts.						
Offset for new porous backfill (ft);		WPB = 2								
Proposed abutment footing width (f	it);	Wftg = 4.5								
Proposed abutment stem width (ft);	roposed abutment stem width (ft);			w _{stem} = 3						
Excavation limit behind abutment for	ooting (ft);	$e_b = w_{PB} - (w_{ftg})$	- w _{stem}) / 2 = 4	1.250						
Excavation limit in front of proposed	d abutment to	back of existing at	outment (Ft);	e _f = 7.3						
Removal limit of existing RA (ft);		EL _{rem_RA} = 817	.68							
Removal limit of existing FA (ft);		$EL_{rem_FA} = 817$.00							
Proposed B/Ftg RA (ft);		$EL_{ftg_RA} = 818.43$								
Proposed B/Ftg FA (ft);		$EL_{ftg_FA} = 817.8$	30							
Proposed abut height – RA (ft);		h _{avg_RA} = 828.5	7- EL _{ftg_RA} = 1	0.140						
Proposed abut height – FA (ft);		h _{avg_FA} = 827.9	$4 - EL_{ftg_FA} = $	10.140						
Abutment length (ft);		L _{abut} = 39								
		Lww = 12.57								
Wingwall length (ft);										
);	$A_{503}RA = (W_{ftg} + 1)$	+ e_b) × (h_{avg_R}	A) + 0.5 × (e _f − 1)	× abs(ELrem_R/	A — EL _{ftg_RA})				
);	$A_{503_{RA}} = (w_{ftg} + 1)$ $(e_f - 1) \times (828.57)$				A — EL _{ftg_RA})				
Wingwall length (ft); Area of 503 at rear abutment (sq ft) Area of 503 at forward abutment (s			- max(EL _{ftg_R} /	A, EL _{rem_RA})) = 13 4	4.690					

TOTAL VOLUME (CY); T_{503} = ceiling(($A_{503_{RA}} + A_{503_{FA}}$) × (L_{abut} + 2 × L_{WW}) / 27,1) = 641.000

🗲 Tekla	Project				Job Ref.	
		MED-252-03	.95 PID 88883	3	J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Stru	cture Estimated C	uantities – Fir	nal Tracings		4
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19
			•			·
<u>1 509 – Epoxy Coated Reinforcin</u>	g Steel, As Per	Plan				
Abutaanta						
<u>Abutments</u>						
Abutment & wingwall rebar (lb);		T _{509_abut} = 7184				
<u>.</u>						
<u>Piers</u>						
Pier rebar (lb) (lb);		T _{509_pier} = 1195	1			
_						
<u>Superstructure</u>						
Deck & diaphragm (lb);		$T_{509_super} = 626$	34			
<u>Parapet</u>						
Parapet rebar (lb);		T _{509_par} = 11618	3			

	Project				Job Ref.		
	MED-252-03.95 PID 88883				J20180414.000		
	Section		Sheet no./rev.				
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	Structure Estimated Quantities – Final Tracings				5	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19	

ITEM 511 - SEMI-INTEGRAL DIAPHRAGM GUIDE

* 1 per abutment

TOTAL NUMBER OF DIAPHRAGM GUIDES (EACH);

T_{511guide} = 2

📮 Tekla	Project	MED-252-03	Job Ref. J20180414.00					
Tedds	Section				Sheet no./rev.			
Osborn Engineering					Structure Estimated Quantities – Final Tracings			6
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date		
Cieveland, Onio 44114	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/*		
ITEM 511 – CLASS QC2 CONCRET		A. BRIDGE DEC	:K					
*Includes Bridge deck, haunch, addi				aphragm concre	ete.			
Primary Deck			Ū					
Proposed deck width (ft);		Wdeck = 35.330						
Proposed bridge limits (ft);		L _{deck} = 197.210						
Proposed deck thickness (in);		$t_{\text{deck}} = 8.75$						
Volume of primary deck (cu ft);		$V_{\text{deck}} = (w_{\text{deck}} \times$	L _{deck} × t _{deck} / 12) = 5080.417				
<u>Haunches</u>								
Average haunch (all beams) (in);		$h_{avg} = 2.08$						
	EXT		Ç G	INT IRDER				
4	© GIRDER 							
	h			h				
			· / · · · · · ·		t t			
					<u> </u>			
<								
Top flange width W36X210 (ft):		$b_{f} = 12^{-1}$	2/12 = 1 017					
	over length for		2/12 = 1.017	in):				
	over length for	W36x210 & W36	Sx150 beams) (27) – 1 302			
Average flange thickness (weighted	over length for	$t_{\rm f} = ((1.3))^{-1}$	6x150 beams) (36 × 168) + (0.9	in); 4 × 27)) / (168+;	27) = 1.302			
	over length for	$t_{\rm f} = ((1.3))^{-1}$	Sx150 beams) (27) = 1.302			
Top flange width W36X210 (ft); Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each);	over length for	W36x210 & W36 $t_f = ((1.3 L_{fascia} = N_{int} = 2)$	6x150 beams) (36 × 168) + (0.9		27) = 1.302			
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each);	over length for	tr W36x210 & W36 t _f = ((1.3 L _{fascia} =	6x150 beams) (36 × 168) + (0.9		27) = 1.302			
Average flange thickness (weighted Fascia overhang (ft);		W36x210 & W36 $t_f = ((1.3 L_{fascia} = N_{int} = 2)$	6x150 beams) (36 × 168) + (0.9 3.416667	4 × 27)) / (168+;	27) = 1.302			
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each);	ft); V _{haunch}	$f W36x210 & W36$ $t_{f} = ((1.3)$ $L_{fascia} =$ $N_{int} = 2$ $N_{ext} = 2$	6x150 beams) (36 × 168) + (0.9 3.416667 0 × L _{deck} × N _{int} =	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu	ft); V _{haunch}	$t_{f} = ((1.3 + $	6x150 beams) (36 × 168) + (0.9 3.416667 0 × L _{deck} × N _{int} =	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu f	ft); V _{haunch}	$t_{f} = ((1.3 + $	6x150 beams) (36 × 168) + (0.9 3.416667 0 × L _{deck} × N _{int} =	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu f 392.783	ft); V _{haunch}	$t_{f} = ((1.3 + $	6x150 beams) (36 × 168) + (0.9 3.416667 0 × L _{deck} × N _{int} =	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu f 392.783 <u>Abutment Diaphragms</u> Proposed abutment stem width (ft);	ft); V _{haunch}	$f W36x210 \& W36$ $t_{f} = ((1.3)$ $L_{fascia} = 0$ $N_{int} = 2$ $N_{ext} = 2$ $L_{int} = b_{f} \times (h_{avg}/12)$ $L_{ext} = (b_{f} \times (h_{avg}/12))$	6x150 beams) (36 × 168) + (0.9 3.416667 0 × L _{deck} × N _{int} =	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu f 392.783 <u>Abutment Diaphragms</u> Proposed abutment stem width (ft); Abutment length (ft);	ft); V _{haunch}	$W36x210 & W36$ $t_{f} = ((1.3 + 1.5))$ $L_{fascia} = 0$ $N_{int} = 2$ $N_{ext} = 2$ $N_{ext} = 2$ $N_{ext} = b_{f} \times (h_{avg}/12)$ $L_{ext} = (b_{f} \times (h_{avg}/12))$ $W_{stem} = 3.000$	6x150 beams) (36 × 168) + (0.9 3.416667 0 × L _{deck} × N _{int} = 2) + (L _{fascia} - (b _f	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu f 392.783 <u>Abutment Diaphragms</u> Proposed abutment stem width (ft); Abutment length (ft); W36x210 beam CS Area (sq ft / ft);	ft); V _{haunch}	$W36x210 & W36$ $t_{f} = ((1.3) \\ L_{fascia} = 0 \\ N_{int} = 2 \\ N_{ext} = 2 \\ L_{int} = b_{f} \times (h_{avg}/12) \\ L_{ext} = (b_{f} \times (h_{avg}/12) \\ W_{stem} = 3.000 \\ L_{abut} = 39.000 \\ $	6x150 beams) (36 × 168) + (0.9 3.416667 0 × Ldeck × Nint = 2) + (L _{fascia} - (b _f 44 = 0.429	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu f 392.783 <u>Abutment Diaphragms</u> Proposed abutment stem width (ft); Abutment length (ft); W36x210 beam CS Area (sq ft / ft);	ft); V _{haunch}	$W36x210 & W36$ $t_{f} = ((1.3 \\ L_{fascia} = 0 \\ N_{int} = 2 \\ N_{ext} = 2 \\ L_{int} = b_{f} \times (h_{avg}/12) \\ ext = (b_{f} \times (h_{avg}/12) \\ w_{stem} = 3.000 \\ L_{abut} = 39.000 \\ A_{36x210} = 61.8/1 \\ Watter $	6x150 beams) (36 × 168) + (0.9 3.416667 0 × Ldeck × Nint = 2) + (L _{fascia} - (b _f 44 = 0.429	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted of Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu 392.783 Abutment Diaphragms Proposed abutment stem width (ft); Abutment length (ft); W36x210 beam CS Area (sq ft / ft); W36x210 beam height (ft);	ft); V _{haunch} ít); V _{haunch}	$W36x210 & W36$ $t_{f} = ((1.3 + 1.5))$ $L_{fascia} = 0$ $N_{int} = 2$ $N_{ext} = 2$ $N_{ext} = 2$ $M_{ext} = (b_{f} \times (h_{avg}/12))$ $M_{ext} = (b_{f} \times (h_{avg}/12))$ $W_{stem} = 3.000$ $L_{abut} = 39.000$ $A_{36x210} = 61.8/1$ $h_{36x210} = 36.7/1.0$	$5x150 \text{ beams}) (36 \times 150 \text{ beams}) (36 \times 168) + (0.9) ($	4 × 27)) / (168+: 69.506		N _{ext} =		
Average flange thickness (weighted Fascia overhang (ft); Number of interior beams (each); Number of fascia beams (each); Haunch volume – interior beams (cu Haunch volume – fascia beams (cu f 392.783 Abutment Diaphragms Proposed abutment stem width (ft); Abutment length (ft); W36x210 beam CS Area (sq ft / ft); W36x210 beam height (ft); Beam length into diaphragm (ft);	ft); V _{haunch} ít); V _{haunch}	$W36x210 & W36$ $t_{f} = ((1.3 \\ L_{fascia} = 0 \\ N_{int} = 2 \\ N_{ext} = 2 \\ L_{int} = b_{f} \times (h_{avg}/12)$ $L_{ext} = (b_{f} \times (h_{avg}/12) \\ W_{stem} = 3.000 \\ L_{abut} = 39.000 \\ A_{36x210} = 61.8/1 \\ h_{36x210} = 36.7/1 \\ L_{diaph_stl} = 2 \\ t_{app} = 13/12 = 1 \\ \end{bmatrix}$	$5x150 \text{ beams}) (36 \times 168) + (0.9)$ 3.416667 $0 \times L_{deck} \times N_{int} = 2) + (L_{fascia} - (bf)$ $44 = 0.429$ $2 = 3.058$ $.083$	4 × 27)) / (168+: 69.506)/12)) × L _{deck} ×	N _{ext} =		

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180	414.000
Osborn Engineering	Section				Sheet no./rev.	
1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings		7
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

 $\begin{array}{ll} \text{Diaphragm Volume (not including deck concrete) (cu ft);} & V_{\text{diaph}} = 2 \times (w_{\text{stem}} \times (h_{\text{diaph}} - (t_{\text{deck}} + h_{\text{avg}})/12) \times L_{\text{abut}} - 2 \times A_{36x210} \times L_{\text{diaph}_stl} \times (N_{\text{int}} + N_{\text{ext}})) = \textbf{877.417} \end{array}$

TOTAL VOLUME OF CONCRETE (CU YD);

 $T_{511deck} = ceiling((V_{deck} + V_{haunch_int} + V_{haunch_ext} + V_{diaph})/27, 5) = 240.000$

🜌 Tekla	Project		Job Ref.			
	MED-252-03.95 PID 88883				J20180414.000	
	Section			Sheet no./rev.		
Osborn Engineering 1100 Superior Avenue - Suite 300	Struct	Structure Estimated Quantities – Final Tracings				8
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 511 – CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET)

Proposed length (ft);	L _{barrier} = 229.09
Proposed barrier with typical section (ft);	L _{barrier_typ} = L _{barrier} - 2 × 14 = 201.090
Parapet height (ft);	$h_{bar} = 3.5$
Parapet width (ft);	$w_{bar} = 1.5$
Parapet level width (ft); Typical parapet section area (sq ft);	$w_{bar_level} = 10/12 = 0.833$ $A_{par} = (0.5 \times (w_{bar} - w_{bar_level}) + w_{bar_level}) \times h_{bar} = 4.083$
SBR-1-13 transition volume (cu yd); TOTAL VOLUME OF CONCRETE (CU YD); 40	$V_{bar_trans} = 1.82$ $T_{511par} = ceiling((A_{par} \times 2 \times L_{barrier_typ}) / 27 + 4 \times V_{bar_trans}, 5) = 70.000$

	Project				Job Ref.	
		MED-252-03	J20180414.000			
	Section			Sheet no./rev.		
Osborn Engineering 1100 Superior Avenue - Suite 300	Struct	ure Estimated Q	l Tracings		9	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
Osborn Engineering	Section				Sheet no./rev.	
1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				10	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 511 - CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT INCLUDING FOOTING

*Includes footing and stem concrete. Semi-integral diaphragm concrete is included with Bridge Deck Concrete Item.

Abutment length (ft); Proposed abutment footing width (ft); Proposed abutment stem width (ft); Height of footing (ft);

<u>Rear Abutment</u> Abut stem height – RA (ft); Volume RA (cu ft);

Forward Abutment

Abut stem height – FA (ft); Volume FA (cu ft);

Wingwalls

Wingwall stem width (ft); NW & SE wingwall average level length (ft); NE & SW wingwall average level length (ft); NW wingwall average ht (ft); NE wingwall average ht (ft); SE wingwall average ht (ft);

Vol for NW wingwall (cu ft); \times (L_{WW_1avg} + 10)) = **308.544** Vol for NE wingwall (cu ft); (L_{WW_2avg} + 10)) = **323.222** $L_{abut} = 39.000$ $w_{ftg} = 4.500$ $w_{stem} = 3.000$ $h_{ftg} = 3$

$$\begin{split} h_{RA_stem} &= 823.61 - 818.43 - 3 = \textbf{2.180} \\ V_{RA} &= L_{abut} \times (h_{RA_stem} \times w_{stem} + w_{ftg} \times h_{ftg}) = \textbf{781.560} \end{split}$$

h_{FA_stem} = 822.98 - 817.80 - 3 = **2.180** V_{FA} = L_{abut} × (h_{FA_stem} × w_{stem} + w_{ftg} × h_{ftg}) = **781.560**

$$\begin{split} &\mathsf{Www} = 2.5 \\ &\mathsf{L}_{WW_1avg} = 3 \\ &\mathsf{L}_{WW_2avg} = 2.79 \\ &\mathsf{H}_{WW_NW} = (827.67 + 823.55) \, / \, 2 - 820.80 = \textbf{4.810} \\ &\mathsf{H}_{WW_NE} = (827.72 + 824.38) \, / \, 2 - 820.80 = \textbf{5.250} \\ &\mathsf{H}_{WW_SW} = (828.30 + 823.93) \, / \, 2 - 821.43 = \textbf{4.685} \\ &\mathsf{H}_{WW_SE} = (828.35 + 824.22) \, / \, 2 - 821.43 = \textbf{4.855} \end{split}$$

 $V_{NW} = ((w_{WW} \times H_{WW_NW}) \times 9.35 + L_{WW_1avg} \times (827.67 - 820.80) + (w_{ftg} \times h_{ftg})$

 $V_{\text{NE}} = ((w_{\text{WW}} \times H_{\text{WW}_{\text{NE}}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times (827.72 - 820.80) + (w_{\text{ftg}} \times h_{\text{ftg}}) \times 10 + L_{\text{WW}_{2avg}} \times 10 + L_{\text{WW}_{2avg}} \times 10 + L_{\text{WW}_{2avg}} \times 10 + L_{\text{WW}_{2avg}} \times 10 + L_{\text{W}_{2avg}} \times$

Vol for SW wingwall (cu ft); (Lww_2avg + 10)) = 308.957	Section Stru Calc. by EIW	MED-252-03. Incture Estimated Que Date Rev. 10/30/19	uantities – Fin ^{Chk'd by}		J2018 Sheet no./rev.	0414.000	
Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114 Vol for SW wingwall (cu ft); (Lww_2avg + 10)) = 308.957	Stru Calc. by	Date	Chk'd by		Sheet no./rev.		
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114 Vol for SW wingwall (cu ft); (L _{WW_2avg} + 10)) = 308.957	Calc. by	Date	Chk'd by			Sheet no./rev.	
Cleveland, Ohio 44114 Vol for SW wingwall (cu ft); (L _{WW_2avg} + 10)) = 308.957				Date		11	
(Lww_2avg + 10)) = 308.957	EIW	Rev. 10/30/19	D 1147		App'd by	Date	
(Lww_2avg + 10)) = 308.957			PJW	9/16/19	SMK	11/7/1	
(Lww_2avg + 10)) = 308.957) 10	(000)	00 001 10)	(
		$V_{SW} = ((W_{WW} \times F))$	1ww_sw) ×10 +	- Lww_2avg × (828.3	30 – 821.43) +	(Wftg × hftg)	
		., ,, .,				, .	
Vol for SE wingwall (cu ft);		$V_{SE} = ((W_{WW} \times H))$	lww_se) ×9.35	+ Lww_1avg × (828	.35 – 821.43)	+ (Wftg \times hft	
(Lww_1avg + 10)) = 309.746							
Total Vol of concrete for abutn	nents (CY);	T₅ıısub = ceiling	g ((Vra + Vfa +	- Vnw + Vne + Vsv	v + Vse)/ 27, 5)	= 105.00	

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
Osborn Engineering	Section				Sheet no./rev.	
1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				12	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 512 - SEALING CONCRETE SURFACES (EPOXY-URETHANE)

Abutments

ABUTMENT SEALING LIMITS (FOR SEMI-INTEGRAL ABUTMENT STEEL BEAM BRIDGE)

Diaphragm height (ft);

Bearing height (ft);

Proposed approach slab thickness (ft); Beam seat-to-ground clearance (ft); Abutment sealed height (ft);

Abutment length (ft);

Total abutment area (sq ft);

 $\begin{aligned} h_{diaph} &= \textbf{4.711} \\ h_{brg} &= 2.356 \ / \ 12 = \textbf{0.196} \\ t_{app} &= \textbf{1.083} \\ h_{clr} &= \textbf{0.5} \\ H_{512_A} &= h_{diaph} - t_{app} + h_{brg} + h_{clr} = \textbf{4.324} \\ L_{abut} &= \textbf{39.000} \end{aligned}$

 $A_{512_abut} = 2 \times H_{512_A} \times L_{abut} = \textbf{337.259}$

*Wingwall sealing areas measured in CAD. Generally equation is as follows:

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180	414.000
Osborn Engineering	Section				Sheet no./rev.	
1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				13	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

Area = River side face + Embankment side face + Top area + End Area

SW Wingwall elevation area (CAD) (sq ft); $A_{512_SW} =$ SE Wingwall elevation area (CAD) (sq ft); $A_{512_SE} =$ NW Wingwall elevation area (CAD) (sq ft); $A_{512_NW} =$ NE Wingwall elevation area (CAD) (sq ft); $A_{512_NE} =$

$$\begin{split} A_{512_SW} &= 46.2 + 10.29 + (13.76 \times 2.5) + (1.12 \times 2.5) = \textbf{93.690} \\ A_{512_SE} &= 48.3 + 5.25 + (13.23 \times 2.5) + (1.29 \times 2.5) = \textbf{89.850} \\ A_{512_NW} &= 47.58 + 5.80 + (13.23 \times 2.5) + (1.25 \times 2.5) = \textbf{89.580} \\ A_{512_NE} &= 51.9 + 5.7 + (13.4 \times 2.5) + (2.6 \times 2.5) = \textbf{97.600} \end{split}$$

Total wingwall area (sq ft);

A_{512_ww} = A_{512_SW} + A_{512_SE} + A_{512_NW} + A_{512_NE} = **370.720**

Deck and Parapet (on bridge deck)

CONCRETE DECK WITH DEFLECTOR PARAPET

Parapet height (ft);

Parapet width (ft);

Parapet level width (ft);

**** ODOT D3 preference is to seal to the edge of the beam flange *****

h_{bar} = 3.5 W_{bar} = 1.5 W_{bar_level} = 10/12 = **0.833**

Proposed bridge limits (ft);	L _{deck} = 197.210
Parapet perimeter (ft);	$perim_{bar} = h_{bar} + w_{bar_level} + \sqrt{((w_{bar} - w_{bar_level})^2 + h_{bar}^2)} = 7.896$
Average haunch (all beams) (in);	h _{avg} = 2.080
Average flange thickness (weighted over length) (i	n); t _f = 1.302
Width of deck overhang sealed (ft);	$w_{fascia} = (L_{fascia} - b_f / 2) = 2.908$
Sealing perimeter (ft);	$P_{deck} = perim_{bar} + (h_{avg} + t_f + t_{deck}) / 12 + w_{fascia} = 11.816$
Total sealing area on bridge deck (sq ft);	$A_{512_deck} = P_{deck} \times L_{deck} \times 2 = \textbf{4660.301}$
Parapets (on approach slabs)	
*Parapet perimeter only	
Perimeter of parapet (ft);	perim _{bar} = 7.896
Length of parapet on approach slabs (ft);	Lbar_app = 15.9
End area of parapet transition (sq ft);	$A_{par_end} = 2.33 \times 10/12 + 8/12 \times 4/12 = 2.164$
Total sealing area of parapets on approaches (sq	ft); $A_{512}par = 4 \times (A_{par_end} + perim_{bar} \times L_{bar_app}) = 510.858$

TOTAL AREA OF SEALING (SY);

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings		14
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 512 – TYPE B WATERPROOFING

*3' wide at wingwall horizontal construction joint

Width of waterproofing (ft);

Wingwall length (ft);

W_{TypeB} = 3 L_{ww} = **12.570**

Total Area of Type B Waterproofing (SY);

A_{Type2} = ceiling((4× W_{TypeB} × L_{ww}) / 9, 1) = 17.000

📮 Tekla	Project	MED-252-03.95 PID 88883			Job Ref. J20180414.000			
Tedds	Section			-	Sheet no./rev.			
Osborn Engineering 1100 Superior Avenue - Suite 300		ucture Estimated C	15					
	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19		
ITEM 513 – STRUCTURAL STEE								
Main Steel Members								
Length from CL brg to first field sp	lice (ft);	$L_{sp1} = 57 + 16.5$	5 + 0.5 = 74.0	00				
Length from splice to splice (ft);		$L_{sp2} = 81 - 16.5 - 16.5 = 48.000$						
Length from splice to CL brg (ft);		L _{sp3} = 57+ 16.5 +0.5 = 74.000						
Number of interior beams (each);		N _{int} = 2						
Number of fascia beams (each);		N _{ext} = 2						
Total Number of beams (each);		N _{beams} =	$N_{int} + N_{ext} = 4.$.000				
Unit Weight of W36x210 (lb/ft);		W _{36x210} = 210						
Unit Weight of W36x150 (lb/ft);		W _{36x150} = 150						
Unit weight of field splice (lb/splice	e);	W _{splice} = 510						
Unit weight of optional field splice	(lb/splice);	$W_{splice_opt} = 910$)					
	ers (lb);		<i>(</i>		36x210 × (Lsp1 +			

Standard Crossframes

*Per GSD-1-19 Designer Supplement, Estimated quantities are to assume the use of Type A Crossframes *For 3'-5" overhang and 9'-6" beam spacing, angles will be L5x5x1/2 and the alternate connection plates will be used.

Gusset & Connection plate thickness (in); t _{pl} =	= 0.375
Connection plate width (in); wcc	nn = 7.75
Unit weight of L5x5x1/2 angles (lb/ft); W ₅	_{x5} = 16.2
Leg length of angles (in); $I_a =$	5
Typical clear distance (in); clr	= 1
Typical bolt spacing (in); spa	a _b = 3
Bolt horizontal edge distance (in); edg	geh = 1.75
Bolt vertical edge distance (in); edg	gev = 1.5
Unit weight of steel plates (lb/ft ³); Ws	$t_{\rm l} = 490$
Beam spacing (ft); Sbn	n = 9.5

Текіа	Project	MED-252-03	Job Ref. J20180414.000						
Tedds	Section				Sheet no./rev.				
Osborn Engineering 1100 Superior Avenue - Suite 300	Struc	cture Estimated Quantities – Final Tracings				16			
	Calc. by	Date	Chk'd by	Date	App'd by	Date			
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19			
W36x210 beam height (ft);		h _{36x210} = 3.058							
W36X210 flange width (ft);		bf = 1.017							
W36x210 flange thickness (ft);		$t_{f_{36x210}} = 1.26/$	12 = 0.105						
W36x210 web thickness (ft);		t _{w_36x210} = 0.83	/12 = 0.069						
W36x150 beam height (ft);		h _{36x150} = 35.9/1	2 = 2.992						
W36X150 flange width (ft);		bf_36x150 = 12.2	/12 = 1.017						
W36x150 flange thickness (ft);		$t_{f_{36x150}} = 0.79/$	12 = 0.066						
W36x150 web thickness (ft);		$t_{w_{-36x150}} = 0.60$	/12 = 0.050						
Gusset plate area extend horizonta	lly 6" past cor	nnection plate to a	achieve 5" wel	d on bottom horiz	ontal angle				
Bottom gusset plate area (sq ft);		-		spa₀)+edge _v) / 14	-				
Top gusset plate area (sq ft);									
Connection plate area (sq ft);		· · · ·	$\begin{aligned} A_{tg} &= (6 + w_{conn} - clr) \times (3 + (2 \times sp_a) + edge_v) / 144 = 0.930 \\ A_{conn} &= w_{conn} / 12 \times (h_{36x210} - 2 \times t_{f_{-}36x210}) = 1.840 \end{aligned}$						
Horizontal angle length (ft);	$L_{a_h} = S_{bm} - t_{w_36x210}/12 - 2 \times (w_{conn} + clr)/12 = 8.036$								
Diagonal angle vertical dimension (ft)	;	vert _{dia} = h _{36x210}	- 2×tf 36x210 -	(2 + clr + l _a + clr)/	12 – (2 + clr +	l _a)/12 = 1.4			
Diagonal angle length (ft);		La_dia = √(La_h²			,	,			
Weight per standard cross-frame (lb) 12) = 541.862	•	$W_{cf} = 1.05 \times (V_{cf})$	V5x5 × (La_h + 2	$2 \times L_{a_{dia}}$) + 2 × W _{st}	$1 imes t_{ m pl} imes$ (A _{bg} + J	A _{tg} + A _{conn}),			
(*includes 5% for fill plate and bolts*)									
Total number of standard crossframe	s;	$N_{scf} = 38$							
Total standard crossframe weight (lb)	;	$W_{stl_scf} = N_{scf} \times$	W _{cf} = 20590.7	52					
Special Pipe Support Crossframes									
€ BEAM 9'-6" 5'-9" € 12" SAN. SEWER 3	© BEAM	€ BEAN	5'-9* %eV (TYP)	9'-6" € 12" SAN. SEWER	€ BEAM				
LSxSx/g* LSxSx LSxSx/g*	LEFIG IT STADLE VPCL VPCL VPCL VPCL VPCL VPCL VPCL VPCL		% 5 (TTP) % culsset ℓ (TTP) (TTP) % consection (LSxsk)/s' (TTP) % consection ℓ (TTP) % consection ℓ (TTP) % % consection ℓ (TTP) %			TIONS SHOWN GDD-19 FOR GLD-19 FOR GLD-FOR TYPE			
MODIFIED CROSSFRAME SECTION TYPE 1			MODIFIED (CROSSFRAME SECTION TYPE 2	B CONNECTIONS GSD-1-19 (TYP)	, SEE STD. DWG			
Top gusset plate area (sq ft);		$A_{tg} = 0.930$							
Connection plate area (sq ft);		A _{conn} = 1.840							
Horizontal angle length (ft);		La h = 8.036							

두 Tekla	Project	Project MED-252-03.95 PID 88883						
Tedds Osborn Engineering 1100 Superior Avenue - Suite 300		MED-252-03	92 810 88883			0414.000		
	Section				Sheet no./rev.			
	Structure Estimated Quantities – Final Tracings				17			
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/1		
Weight per special crossframe 1 ci	oss-frame (lb):	$W_{cf1} = 1.05 \times 0$	W5x5 × La h + 2	$2 \times W_{stl} \times t_{pl} \times (A_{tg})$	+ Aconn) / 12) :	= 225.739		
(*includes 5% for fill plate and bolts				F. (-3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Diagonal angle vertical dimension	(ft);	vert _{dia12} = h _{36x2}	210 - 2 ×t _{f_36x210} -	- (2 + clr + la)/12	- (2 + clr)/12 =	= 1.932		
Diagonal angle 1 horizontal dimension	sion (ft);	horiz _{dia1} = 5.75 - $t_{w_{-36x210}/2/12}$ - (w_{conn} + clr)/12 - 10/12 = 4.185						
Diagonal angle 2 horizontal dimension	sion (ft);	horiz _{dia2} = $3.75 - t_{w_{-36x210}/2/12} - (w_{conn} + clr)/12 - 7/12 = 2.435$						
Diagonal angle 1 length (ft);		$L_{a_{dia1}} = \sqrt{vert}$	dia12 ² + horiz _{dia1}	²) = 4.609				
Diagonal angle 2 length (ft);		$L_{a_dia2} = \sqrt{(vert_{dia12}^2 + horiz_{dia2}^2)} = 3.108$						
Weight per special crossframe 2 cl	oss-frame (lb);	$W_{cf2} = 1.05 \times 0$	(W _{5x5} × (L _{a_h} +	L _{a_dia1} + L _{a_dia2}) +	$2 imes W_{stl} imes t_{pl} imes$	(A _{tg} + A _{con}		
1.65) / 12) = 410.059								
(*includes 5% for fill plate and bolts	5*)							
Total number of Special Pipe Cros	sframe 1;	N _{pcf1} = 2						
Total number of Special Pipe Crossframe 1; Total number of Special Pipe Crossframe 2;		N _{pcf2} = 18						
Total number of Special Pipe Cros								
Total number of Special Pipe Cros Total special pipe crossframe weig	ht (lb);	$W_{stl_pcf} = N_{pcf1}$	\times W _{cf1} + N _{pcf2} \times	W _{cf2} = 7832.546				

Tokla	Project				Job Ref.	
		MED-252-03	J20180	414.000		
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings		18
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 513 - WELDED SHEAR STUD CONNECTORS

Studs per location;	stud = 3
Studs per beam;	N _{stud} = 68 +49+29+29+50+67= 292.000
Number of interior beams (each);	N _{int} = 2.000
Number of fascia beams (each);	N _{ext} = 2.000

TOTAL NUMBER OF SHEAR STUDS (EA); $T_{stud} = stud \times N_{stud} \times (N_{int} + N_{ext}) = 3504.000$

Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc* Bottom gusset plate area (sq ft); Top gusset plate area (sq ft); Connection plate area (sq ft); Gusset & Connection plate thickness Leg length of angles (in); Horizontal angle length (ft); Diagonal angle length (ft); Crossframes per bay;	A) A (in); t _{pl} اa ل د ل	$a_{bbg} = 1.195$ $a_{tg} = 0.930$ $a_{conn} = 1.840$ = 0.375 = 5.000 $a_{-h} = 8.036$ $a_{-dia} = 8.162$ $a_{-f} = 16.000$		0.210 T T 30.150 A		
Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc* Bottom gusset plate area (sq ft); Top gusset plate area (sq ft); Connection plate area (sq ft); Gusset & Connection plate thickness Leg length of angles (in); Horizontal angle length (ft);	Ai Ai S (in); t _{pl} Ia = La	ttg = 0.930 koonn = 1.840 = 0.375 = 5.000 a_h = 8.036		04210 T T 304100 A		
Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc* Bottom gusset plate area (sq ft); Top gusset plate area (sq ft); Connection plate area (sq ft); Gusset & Connection plate thickness Leg length of angles (in);	Aı Aı s (in); t _{pi} I _a :	atg = 0.930 aconn = 1.840 = 0.375 = 5.000		04210 T T 304100 A		
Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc* Bottom gusset plate area (sq ft); Top gusset plate area (sq ft); Connection plate area (sq ft); Gusset & Connection plate thickness	Ai Ai Ai S (in); t _{pi}	tg = 0.930 tconn = 1.840 = 0.375		04210 T T 304100 A		
Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc* Bottom gusset plate area (sq ft); Top gusset plate area (sq ft); Connection plate area (sq ft);	Aı Aı A	atg = 0.930 aconn = 1.840		04210 T T 304100 A		
Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc* Bottom gusset plate area (sq ft); Top gusset plate area (sq ft);	A	atg = 0.930		0.210 1 1 30.130 A		
Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc* Bottom gusset plate area (sq ft);	A	•		04210 T T 304100 A		
Total Painting – main steel members <u>Crossframes</u> *From Steel weight calc*		_{bq} = 1.195	·	0.210 F F 50.130 ×		
Total Painting – main steel members	(Sq ft); 15			0.210 1 1 30.130 A		
Total Painting – main steel members	(SQ IT); I 5		·	0,210 1 1 30,130 ×		
	(Sq ft); 15			0/210 1 30/130 /		
		i14_main = N bear	ıs × (P36x210 × L3	6v210 + P26v150 X	L _{36x150}) = 6951	.633
W36x150 perimeter (ft);			-	$-t_{w_{36x150}} + 2 \times$		5
Length of W36x150 between abutme	nt diaphragms per	r beam line (fi);	$L_{36x150} = L_{s}$	p2 = 48.000	
W36x150 Beam Section						
W36x210 perimeter (ft);	P ₃	$b_{6x210} = b_f + 2$	< (b _f - t _{w_36x210}) ·	+ 2×h _{36x210} = 9.0	028	
<u>W36x210 Beam Section</u> Length of W36x210 between abutme	ent diaphragms per	r beam line (f);	$L_{36x210} = L_{s}$	_{p1} + L _{sp3} - 2×1.	5 = 145.00
Length from splice to CL brg (ft);	Lsi	_{p3} = 74.000				
Length from splice to splice (ft);		p2 = 48.000				
Length from CL brg to first field splice	e (ft); L _{si}	p1 = 74.000				
W36x150 web thickness (ft);	tw	v_36x150 = 0.050)			
W36x150 flange thickness (ft);		_36x150 = 0.066				
W36X150 flange width (ft);		f_36x150 = 1.01 7				
W36x150 beam height (ft);		6x150 = 2.992				
W36x210 web thickness (ft);	tw	v_36x210 = 0.06 9	•			
W36x210 flange thickness (ft);	t _f _	_36x210 = 0.105				
W36X210 flange width (ft);	bf	f = 1.017				
W36x210 beam height (ft);	h ₃₀	_{6x210} = 3.058				
Number of fascia beams (each);	Ne	xt = 2.000				
Number of interior beams (each);	Nin	nt = 2.000				
ITEM 514 – FIELD PAINTING STRU	CTURAL STEEL,	FINISH COA	<u>.</u>			
ITEM 514 – FIELD PAINTING STRU	CTURAL STEEL,	, INTERMEDI	ATE COAT			
EIW	EIW R	ev. 10/30/19	PJW	9/16/19	SMK	11/7/19
Cleveland, Ohio 44114	Calc. by Da	ate	Chk'd by	Date	App'd by	Date
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure	e Estimated Q	Tracings	19		
Usborn Engineering	Section				Sheet no./rev.	
Tedds		MED-252-03.	95 PID 88883		J2018	0414.000

Painted area of crossframe gusset and connection plates (sq ft)

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings	:	20
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

Assumes ½ of each gusset plate is covered in connection plate painting area overlap, overlap of angle and gusset plate not considered, plate edge thickness not considered; $A_{514_pl} = 2 \times A_{conn} + 0.5 \times 2 \times A_{bg} + 0.5 \times 2 \times A_{tg} = 5.804$ Painted area of crossframe angle members (sq ft); $A_{514_a} = P_{5x5} \times (L_{a_h} + 2 \times L_{a_dia}) - 6 \times I_a \times 5 / 144 = 39.560$ Total Painting – crossframe members (sq ft); $T_{514_cf} = (N_{beams} - 1) \times N_{cf} \times (A_{514_pl} + A_{514_a}) = 2177.459$ TOTAL AREA OF PAINTING (SQ FT); $T_{514} = ceiling(T_{514_main} + T_{514_cf}, 1) = 9130.000$

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings		21
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 514 – FINAL INSPECTION REPAIR

*Per CMS, one location per 150 linear foot of girder

Length of beams (ft);	L _{beam} = 195.000
Number of interior beams (each);	Nint = 2.000
Number of fascia beams (each);	N _{ext} = 2.000

Number of locations per beam line (each); N_{inspec} = ceiling(L_{beam} / 150, 1) = **2.000**

TOTAL NUMBER OF INSPECTION LOCATIONS (EA); $T_{insp} = (N_{int} + N_{ext}) \times N_{inspec} = 8.000$

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
10000	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Struct	ure Estimated Q	uantities – Final	Tracings	:	22
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 514 - FIELD PAINTING MISC.: EXISTING SANITARY PIPE

*Includes surface prep and priming for existing pipe remaining.

Length of existing pipe to remain (ft); OD of pipe (ft);

L_{pipe_ex} = 155 OD_{pipe} = 12.75/12 = **1.063**

Total pipe surface area for surface prep & painting (SQ FT);

 $T_{514_ex pipe} = ceiling(pi() \times OD_{pipe}^2 \times L_{pipe_ex} / 4, 1) = 138.000$

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings	:	23
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 514 - FIELD PAINTING MISC.: NEW SANITARY PIPE

*Includes intermediate and finish coat for segments of new sanitary line.

Total length of pipe to be painted (ft);

Length of existing pipe to remain (ft); OD of pipe (ft); $L_{pipe_tot} = 192$ $L_{pipe_{ex}} = 155.000$ $OD_{pipe} = 1.063$

Total new pipe surface area for intermediate and finish coat (sq ft);

 $T_{514_pipe_new} = ceiling(pi() \times OD_{pipe}^2 \times (L_{pipe_tot} - L_{pipe_ex}) / 4, 1) = 33.000$

두 Текіа	Project	MED-252-03	95 PID 88883		Job Ref. J20180	414.000
Tedds Osborn Engineering 1100 Superior Avenue - Suite 300	Section Structu	ure Estimated Q	uantities – Final	Tracings	Sheet no./rev.	24
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 516 - ARMORLESS PREFORMED JOINT SEAL

*Measured as length of sleeper slab along the bridge skew.

Width of approach slabs at ends (ft);

Bridge skew;

 $W_{app_curb} = 33.000$ $\Theta = 25$ PJS = $W_{app_curb} / \cos(\Theta) = 36.411$

TOTAL SEAL LENGTH (FT);

Seal length along skew (ft);

 $L_{SEAL} = ceiling(2 \times PJS, 1) = 73.000$

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings	:	25
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 516 – 1" PREFORMED EXPANSION JOINT FILLER

*Located between approach and bridge-mounted parapet

Typical parapet section area (sq ft); Bridge skew; Parapet area along skew (ft); $A_{par} = 4.083$ $\Theta = 25.000$ $A_{par_skew} = A_{par} / \cos(\Theta) = 4.505$

TOTAL PEJF AREA (SQ FT);

 $L_{PEJF_1} = ceiling(A_{par_skew} \times 4, 1) = 19.000$

	Project				Job Ref.	
Tedds		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings		26
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 516 - 2" PREFORMED EXPANSION JOINT FILLER

*Located between wingwall and abutment diaphragm

Width of wingwall (ft);	www = 2.500
Bridge skew;	⊙ = 25.000
Wingwall width along skew (ft);	$W_{WW_{skew}} = w_{WW} / \cos(\Theta) = 2.758$
NW WW height at PEJF (Ft);	$h_{pejf_NW} = 827.67 - 822.80 = 4.870$
NE WW height at PEJF (Ft);	h _{pejf_NE} = 827.71 - 822.84 = 4.870
SW WW height at PEJF (Ft);	$h_{pejf_SW} = 828.30 - 823.43 = 4.870$
SE WW height at PEJF (Ft);	$h_{pejf_SE} = 828.35 - 823.47 = 4.880$

TOTAL PEJF AREA (SQ FT); 54.000 LPEJF_2 = Ceiling(Www_skew × (hpejf_NW + hpejf_NE + hpejf_SW + hpejf_SE), 1) =

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings		27
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 516 - SEMI-INTEGRAL EXPANSION JOINT SEAL

Abutment length (ft); Length of seal (ft); Labut = **39.000**

L_{exp_jt_seal} = L_{abut} + 3 =**42.000**

Total Length of Semi-integral expansion joint seal (FT);

 $L_{jt_seal} = ceiling(2 \times L_{exp_jt_seal}, 1) = 84.000$

	Project				Job Ref.	
		MED-252-03	.95 PID 88883		J20180	414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structu	ure Estimated Q	uantities – Final	Tracings		28
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 516 – ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPRENE), AS PER PLAN

Total Number of beams (each);

N_{beams} = **4.000**

TOTAL NUMBER OF ABUTMENT BEARINGS(EA); TOTAL NUMBER OF PIER BEARINGS(EA);
$$\begin{split} T_{BRG_abut} &= N_{beams} \times 2 = 8.000 \\ T_{BRG_pier} &= N_{beams} \times 2 = 8.000 \end{split}$$

🖉 Tekla	Project				Job Ref.	
Tedds		MED-252-03	.95 PID 88883		J2018	30414.000
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Stru	ucture Estimated Q	uantities – Fin	al Tracings		29
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19
	(5)	4 000				
Proposed approach slab thickne	ss (ft);	t _{app} = 1.083				
	ss (ft);	t _{app} = 1.083 h _{diaph} = 4.711				
Diaphragm height (ft);	ss (ft);					
Diaphragm height (ft); Assumed bearing height (ft);	ss (ft);	h _{diaph} = 4.711				
Diaphragm height (ft); Assumed bearing height (ft); Abutment length (ft);	ss (ft);	h _{diaph} = 4.711 h _{brg} = 0.196)			
Diaphragm height (ft); Assumed bearing height (ft); Abutment length (ft); Abut stem height – RA (ft);	ss (ft);	h _{diaph} = 4.711 h _{brg} = 0.196 L _{abut} = 39.000				
Diaphragm height (ft); Assumed bearing height (ft); Abutment length (ft); Abut stem height – RA (ft); Abut stem height – FA (ft);	ss (ft);	h _{diaph} = 4.711 h _{brg} = 0.196 L _{abut} = 39.000 h _{RA_stem} = 2.180				
Proposed approach slab thicknes Diaphragm height (ft); Assumed bearing height (ft); Abutment length (ft); Abut stem height – RA (ft); Abut stem height – FA (ft); Abut stem width (Ft); Footing width (Ft);	ss (ft);	$h_{diaph} = 4.711$ $h_{brg} = 0.196$ $L_{abut} = 39.000$ $h_{RA_stem} = 2.180$ $h_{FA_stem} = 2.180$				
Diaphragm height (ft); Assumed bearing height (ft); Abutment length (ft); Abut stem height – RA (ft); Abut stem height – FA (ft); Abut stem width (Ft);	ss (ft);	$\label{eq:hdiaph} \begin{array}{l} h_{diaph} = 4.711 \\ h_{brg} = 0.196 \\ L_{abut} = 39.000 \\ h_{RA_stem} = 2.180 \\ h_{FA_stem} = 2.180 \\ w_{stem} = 3.000 \end{array}$				

Porous backfill thickness (ft);

Porous backfill area behind RA (sq ft); 15.758 Porous backfill area behind FA (sq ft); 15.758

Average Wingwall length (ft); NW wingwall average ht above footing (ft); NE wingwall average ht above footing (ft); SW wingwall average ht above footing (ft); SE wingwall average ht above footing (ft);

Porous backfill area behind NW wingwall (sq ft); Porous backfill area behind NE wingwall (sq ft); Porous backfill area behind SW wingwall (sq ft); Porous backfill area behind SE wingwall (sq ft);

TOTAL VOL POROUS BACKFILL (CY); A_{518_SW} + A_{518_SE}))/ 27, 1) = 66.000

t₅₁₈ = 2

 $A_{518_RA} = t_{518} \times (h_{RA_stem} + h_{brg} + h_{diaph} - t_{app}) + (t_{518} - (w_{ftg} - w_{stem})/2) \times h_{ftg} =$

 $A_{518_FA} = t_{518} \times (h_{FA_stem} + h_{brg} + h_{diaph} - t_{app}) + (t_{518} - (w_{ftg} - w_{stem})/2) \times h_{ftg} =$

Lww = 12.570
H _{WW_NW} = 4.810
Hww_NE = 5.250
Hww_sw = 4.685
H _{WW_SE} = 4.855

 $\begin{array}{l} A_{518_NW} = (H_{WW_NW} - 1.5) \times t_{518} + (t_{518} - (w_{ftg} - w_{stem})/2) \times h_{ftg} = \textbf{10.370} \\ A_{518_NE} = (H_{WW_NE} - 1.5) \times t_{518} + (t_{518} - (w_{ftg} - w_{stem})/2) \times h_{ftg} = \textbf{11.250} \\ A_{518_SW} = (H_{WW_SW} - 1.5) \times t_{518} + (t_{518} - (w_{ftg} - w_{stem})/2) \times h_{ftg} = \textbf{10.120} \\ A_{518_SE} = (H_{WW_SE} - 1.5) \times t_{518} + (t_{518} - (w_{ftg} - w_{stem})/2) \times h_{ftg} = \textbf{10.460} \\ \end{array}$

 $T_{518} = ceiling((L_{abut} \times (A_{518_RA} + A_{518_FA}) + L_{WW} \times (A_{518_NW} + A_{518_NE} +$

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				30	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 518 – 6" PERFORATED CORRUGATED PLASTIC PIPE

*To run behind abutments and wingwalls

Abutment length (ft);	Labut = 39.000
Wingwall length (ft);	Lww = 12.570

TOTAL LENGTH PCPP (FT);

 $T_{PCPP} = ceiling(2 \times (L_{abut} + 2 \times L_{WW}), 1) = 129.000$

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				31	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 518 - 6" NON-PERFORATED CORRUGATED PLASTIC PIPE, INCLUDING SPECIALS

*From ends of wingwalls to outlet in slope.

NW Wingwall (ft);	NP _{NW} = 12.5
NE Wingwall (ft);	NP _{NE} = 17.5
SW Wingwall (ft);	$NP_{SW} = 11.5$
SE Wingwall (ft);	NPse = 15.5

TOTAL LENGTH NPCPP (FT);TNPCPP = ceiling(NPNW + NPNE + NPSW + NPSE, 5) = 60.000

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				32	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 524 - DRILLED SHAFTS, 36" DIAMETER, INTO BEDROCK

*At abutments into rock

Total number of drilled shafts per abutment;NDS_#Minimum rock socket depth (ft);dsock :

 $N_{DS_abut} = 4$ $d_{sock} = 10$

TOTAL LENGTH OF DS INTO ROCK (ABUT) (FT); $T_{524_rock_abut} = ceiling(2 \times N_{DS_abut} \times d_{sock}, 1) = 80.000$

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				33	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 524 - DRILLED SHAFTS, 42" DIAMETER, ABOVE BEDROCK

*At abutments above rock & at piers above T/rock elevation

Total number of drilled shafts per abutment;	N _{DS_abut} = 4.000
Total number of drilled shafts per pier;	$N_{DS_pier} = 3$
Proposed top of drilled shaft - RA:	ELT DSra = 818.43 + 0.25 = 818.680
Proposed top of drilled shaft – FA;	EL _{T_DSfa} = 817.80 + 0.25 = 818.050
Top of rock elevation – RA;	TR _{RA} = 811.26
Top of rock elevation – FA;	$TR_{FA} = 809.92$
Proposed top of drilled shaft at piers;	$EL_{T_DSp} = 809.11$
Top of rock elevation – P1;	$TR_{P1} = 806.69$
Top of rock elevation – P2;	$TR_{P2} = 806.46$

TOTAL LENGTH OF DS ABOVE ROCK (FT); $T_{524_ABOVE} = ceiling(N_{Ds_abut} \times (EL_{T_DSra} - TR_{RA} + EL_{T_DSfa} - TR_{FA}) + N_{Ds_pier} \times (EL_{T_DSp} - TR_{P1} + EL_{T_DS} - TR_{P2}), 1) = 78.000$

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				34	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 524 - DRILLED SHAFTS, 42" DIAMETER, INTO BEDROCK

* At pier columns

Total number of drilled shafts per pier; Minimum rock socket depth at piers (ft); N_{DS_pier} =**3.000** d_{sock_pier} = 12

TOTAL LENGTH OF DS INTO ROCK (PIER) (FT); $T_{524_rock_pier} = ceiling(2 \times N_{DS_pier} \times d_{sock_pier}, 1) = 72.000$

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
Osborn Engineering	Section		Sheet no./rev.			
1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				35	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 526 - REINFORCED CONCRETE APPROACH SLABS WITH QC/QA (T=13"), AS PER PLAN

Length of approach slabs with barrier (Ft); Width of approach slabs with barrier (ft);

Length of approach slabs with curb (Ft); Width of approach slabs with curb (ft); $L_{app_curb} = 20 - L_{bar_app} = 4.100$ $W_{app_curb} = 33$

TOTAL APPROACH SLAB AREA (SQ YD);

 $A_{app} = ceiling(2 \times (L_{bar_{app}} \times W_{app_{bar}} + L_{app_{curb}} \times W_{app_{curb}}) / 9, 1) = 155.000$

	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
	Section				Sheet no./rev.	
Osborn Engineering 1100 Superior Avenue - Suite 300	Structure Estimated Quantities – Final Tracings				36	
Cleveland, Ohio 44114	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 526 – Type C Installation

*Measured as length of sleeper slab along the bridge skew.

Width of approach slabs at ends (ft); Bridge skew; Sleeper slab length along skew (ft); $W_{app_curb} = 33.000$ $\Theta = 25.000$ $SS = W_{app_curb} / cos(\Theta) = 36.411$

TOTAL INSTALLATION LENGTH (FT);

 $L_{install} = ceiling(2 \times SS, 1) = 73.000$

🐙 Tekla'	Project				Job Ref.		
Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114		MED-252-03	.95 PID 8888	3	J2018	J20180414.000	
	Section	Section					
	Stru	Structure Estimated Quantities – Final Tracings					
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19	
						•	
<u>ITEM 601 – ROCK CHANNEL P</u>	ROTECTION, TY	<u> PE C</u>					
*At forward abutment							
*Included with Roadway Quantitie	es on General Su	Immary					
Average bank slope;		$m_{\text{bank}} = 1/5 = 0$	200				

Plan view length of slope protection (ft);				
Adjusted length of slope protection (ft);				
Width of slope protection (ft);				
Thickness of slope protection (ft);				

 $L_{601_plan} = 35.25$ $L_{601_adj} = \sqrt{(L_{601_plan}^2 + (L_{601_plan} \times m_{bank})^2)} = \textbf{35.948}$ $W_{601} = 60$ t₆₀₁ = 2

TOTAL VOLUME OF SLOPE PROTECTION (CU YD); $T_{SP} = ceiling(L_{601_adj} \times W_{601} \times t_{601} / 27, 1) = 160.000$

Tokla	Project				Job Ref.	
	MED-252-03.95 PID 88883				J20180414.000	
Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Section				Sheet no./rev.	
	Structure Estimated Quantities – Final Tracings				38	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 838 - GABIONS, AS PER PLAN

*Included with Roadway Quantities on General Summary

Plan area of new gabions between proposed and existing rear abutment (sq ft);	A _{gab} = 927
Estimated plan area of replacement gabions at new pier columns (sq ft);	$A_{gab_pier} = 6 \times 6 \times 3 = \textbf{108.000}$
Estimated plan area of infill gabions at existing pier columns removed (sq ft);	$A_{gab_fill} = 6 \times 6 \times 2 = 72.000$

Depth of new gabions (ft);

 $D_{gab} = 3$

TOTAL VOLUME OF GABIONS (CU YD); $T_{GAB} = ceiling((A_{gab} + A_{gab_pier} + A_{gab_fill}) \times D_{gab} / 27, 1) = 123.000$