\qquad	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

Item 202 - Approach Slab Removed

Existing Approach slab width (ft);
Existing approach slab length (ft);

$$
W_{\text {ex_app }}=20
$$

Lex_app $=15$

Total Area of 202 (SY);
Tex_app $=\mathbf{c e i l i n g}(\mathbf{2} \times$ Wex_app \times Lex_app $/ 9,1)=\mathbf{6 7 . 0 0 0}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev	2
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	Date 9/16/19	App'd by SMK	Date 11/7/19

Item 202 - Wearing Surface Removed

*See calculation for Item 202 - Approach Slab Removed
*Included with Roadway Quantities on General Summary sheet.

Total Area of 202 (SY);

$T_{\text {ex_ws }}=\mathrm{T}_{\text {ex_app }}=\mathbf{6 7 . 0 0 0}$

	Project MED-252-03.95 PID 888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

Item 503 - Unclassified Excavation

*Unclassified excavation includes areas required for construction of new abutments.

Offset for new porous backfill (ft);
Proposed abutment footing width (ft);
Proposed abutment stem width (ft);
Excavation limit behind abutment footing (ft); $\quad \mathrm{e}_{\mathrm{b}}=\mathrm{W}_{\mathrm{PB}}-\left(\mathrm{W}_{\text {ttg }}-\mathrm{W}_{\text {stem }}\right) / 2=\mathbf{1 . 2 5 0}$
Excavation limit in front of proposed abutment to back of existing abutment (Ft); $\quad e_{f}=7.3$
Removal limit of existing RA (ft);
Removal limit of existing FA (ft);
Proposed B/Ftg RA (ft);
Proposed B/Ftg FA (ft);
Proposed abut height - RA (ft);
Proposed abut height - FA (ft);
Abutment length (ft);
Wingwall length (ft);

Area of 503 at rear abutment (sq ft);

Area of 503 at forward abutment (sq ft);
$A_{503 _R A}=\left(W_{\text {ttg }}+1+e_{b}\right) \times\left(h_{\text {avg_RA }}\right)+0.5 \times\left(\mathrm{e}_{\mathrm{f}}-1\right) \times \operatorname{abs}\left(E L_{\text {rem_RA }}-E L_{\text {ftg_RA }}\right)+$ $\left(\mathrm{e}_{\mathrm{f}}-1\right) \times\left(828.57-\max \left(E L_{\text {ftg_RA }}, E L_{\text {rem_RA }}\right)\right)=\mathbf{1 3 4 . 6 9 0}$
 $\left(\mathrm{e}_{\mathrm{f}}-1\right) \times(827.94-\max ($ ELftg_FA, ELrem_FA $))=\mathbf{1 3 4 . 8 4 7}$

TOTAL VOLUME (CY); $\quad T_{503}=\operatorname{ceiling((A_{503_ RA}+A_{503FA})\times (L_{\text {abut}}+2\times L_{ww})/27,1)=641.000~}$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

Item 509 - Epoxy Coated Reinforcing Steel, As Per Plan

Abutments

Abutment \& wingwall rebar (lb);
T509_abut $=7184$

Piers
Pier rebar (lb) (lb);
$T_{509 _ \text {pier }}=11951$

Superstructure

Deck \& diaphragm (lb)
$T_{509 _ \text {_super }}=62634$

Parapet
Parapet rebar (lb);
T509_par $=11618$

TOTAL WEIGHT OF REINFORCING STEEL (LB); $\mathrm{T}_{509}=\mathrm{T}_{509 \text { abut }}+\mathrm{T}_{509 _ \text {pier }}+\mathrm{T}_{509 \text { _super }}+\mathrm{T}_{509 _ \text {par }}=93387.000$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	5
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 511 - SEMI-INTEGRAL DIAPHRAGM GUIDE

* 1 per abutment

TOTAL NUMBER OF DIAPHRAGM GUIDES (EACH);
$\mathrm{T}_{511 \text { guide }}=2$

Tekla
 Tedds

Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

ITEM 511 - CLASS QC2 CONCRETE WITH QCIQA, BRIDGE DECK

*Includes Bridge deck, haunch, additional cantilever thickness, and semi-integral diaphragm concrete.
Primary Deck

Proposed deck width (ft);
Proposed bridge limits (ft);
Proposed deck thickness (in);

Volume of primary deck (cu ft);
$W_{\text {deck }}=35.330$
$L_{\text {deck }}=197.210$
$t_{\text {deck }}=8.75$
$V_{\text {deck }}=\left(W_{\text {deck }} \times L_{\text {deck }} \times t_{\text {deck }} / 12\right)=\mathbf{5 0 8 0 . 4 1 7}$

Haunches

Average haunch (all beams) (in); $\quad h_{\text {avg }}=2.08$

Top flange width W36X210 (ft);
$\mathrm{b}_{\mathrm{f}}=12.2 / 12=\mathbf{1 . 0 1 7}$
Average flange thickness (weighted over length for W36x210 \& W36x150 beams) (in);

Fascia overhang (ft);

$$
\mathrm{t}_{\mathrm{f}}=((1.36 \times 168)+(0.94 \times 27)) /(168+27)=\mathbf{1 . 3 0 2}
$$

Lfascia $=3.416667$

Number of interior beams (each);
$N_{\text {int }}=2$
Number of fascia beams (each);
$N_{\text {ext }}=2$
$\begin{array}{ll}\text { Haunch volume }- \text { interior beams }(c u f t) ; & V_{\text {haunch_int }}=b_{f} \times\left(h_{\text {avg }} / 12\right) \times L_{\text {deck }} \times N_{\text {int }}=\mathbf{6 9 . 5 0 6} \\ \text { Haunch volume }- \text { fascia beams }(c u f t) ; & V_{\text {haunch_ext }}=\left(b_{f} \times\left(h_{\text {avg }} / 12\right)+\left(L_{\text {fascia }}-\left(b_{f} / 2\right)\right) \times\left(\left(h_{\text {avg }}+t_{f}\right) / 12\right)\right) \times L_{\text {deck }} \times N_{\text {ext }}= \\ \mathbf{3 9 2 . 7 8 3}\end{array}$

Abutment Diaphragms
Proposed abutment stem width (ft); $\quad \mathrm{W}_{\text {stem }}=3.000$
Abutment length (ft);
W36x210 beam CS Area (sq ft / ft);
$L_{\text {abut }}=39.000$

W36x210 beam height (ft);
$\mathrm{A}_{36 \times 210}=61.8 / 144=\mathbf{0 . 4 2 9}$

Beam length into diaphragm (ft);
$h_{36 \times 210}=36.7 / 12=\mathbf{3 . 0 5 8}$

Proposed approach slab thickness (ft);
Ldiaph_stl $=2$
$t_{\text {app }}=13 / 12=\mathbf{1 . 0 8 3}$

Diaphragm height (ft);
$h_{\text {diaph }}=\left(\right.$ tdeck $\left.+h_{\text {avg }}\right) / 12+h_{36 \times 210}+9 / 12=4.711$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	7
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$$	App'd by SMK	Date 11/7/19

Diaphragm Volume (not including deck concrete) (cu ft); $\quad V_{\text {diaph }}=2 \times\left(W_{\text {stem }} \times\left(h_{\text {diaph }}-\left(\right.\right.\right.$ tdeck $\left.\left.+h_{\text {avg }}\right) / 12\right) \times L_{\text {abut }}-2 \times A_{36 \times 210} \times$ Ldiaph_stl $\times\left(\right.$ Nint $\left.^{+}+\mathrm{Next}^{\text {et }}\right)=\mathbf{8 7 7 . 4 1 7}$

TOTAL VOLUME OF CONCRETE (CU YD); $\quad T_{511 \text { deck }}=$ ceiling $\left(\left(V_{\text {deck }}+V_{\text {haunch_int }}+V_{\text {haunch_ext }}+V_{\text {diaph }}\right) / 27,5\right)=240.000$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev	8
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 511 - CLASS QC2 CONCRETE WITH QCIQA, BRIDGE DECK (PARAPET)

Proposed length (ft);
Proposed barrier with typical section (ft);

Parapet height (ft);
Parapet width (ft);
Parapet level width (ft);

Typical parapet section area (sq ft);
SBR-1-13 transition volume (cu yd);

TOTAL VOLUME OF CONCRETE (CU YD); 40
$L_{\text {barrier }}=229.09$
$L_{\text {barrier_typ }}=$ Lbarrier $-2 \times 14=201.090$
$h_{\text {bar }}=3.5$
$w_{\text {bar }}=1.5$
Wbar_level $=10 / 12=\mathbf{0 . 8 3 3}$
$A_{\text {par }}=\left(0.5 \times\left(\right.\right.$ Wbar $\left.-W_{\text {bar_level }}\right)+$ Wbar_level $) \times$ hbar $=4.083$
$V_{\text {bar_trans }}=1.82$
$\mathrm{T}_{\text {511par }}=\operatorname{ceiling}\left(\left(\mathrm{A}_{\text {par }} \times 2 \times\right.\right.$ Lbarrie__typ $\left.) / 27+4 \times \mathrm{V}_{\text {bar_trans }}, 5\right)=\mathbf{7 0 . 0 0 0}$

	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{aligned} & \text { Date } \\ & 9 / 16 / 19 \end{aligned}$	App'd by SMK	Date 11/7/19

ITEM 511 - CLASS QC1 CONCRETE WITH QCIQA, PIERS ABOVE FOOTING

Piers

Pier cap length (ft);
Pier cap width (ft);
Pier cap average height (ft);

Number of columns per pier;
Pier column diameter (ft);
Pier 1 column height (ft);
Pier 2 column height (ft);

Volume Pier 1 (cu ft);

Volume Pier 2 (cu ft);

Total Vol of concrete for Piers (CY);

$L_{\text {cap }}=35.88$
$W_{\text {cap }}=3$
$h_{\text {cap }}=3.58$
$\mathrm{N}_{\text {col }}=3$
$d_{\text {col }}=3$
$h_{\text {coll }}=11.05$
$h_{\text {col2 }}=10.79$
$\mathrm{V}_{\mathrm{P} 1}=\left(\left(\mathrm{L}_{\text {cap }}-\mathrm{d}_{\text {col }}\right)+\mathrm{pi}() \times \mathrm{d}_{\text {col }}{ }^{2} / 4\right) \times \mathrm{W}_{\text {cap }} \times \mathrm{h}_{\text {cap }}+\mathrm{N}_{\text {col }} \times \mathrm{h}_{\text {col }} \times \mathrm{pi}() \times \mathrm{d}_{\text {col }}{ }^{2} / 4$ $=663.371$
$\mathrm{V}_{\mathrm{P} 2}=\left(\left(\mathrm{L}_{\text {cap }}-\mathrm{d}_{\text {col }}\right)+\mathrm{pi}() \times \mathrm{d}_{\text {col }}{ }^{2} / 4\right) \times \mathrm{w}_{\text {cap }} \times \mathrm{h}_{\text {cap }}+\mathrm{N}_{\text {col }} \times \mathrm{h}_{\text {col2 }} \times \mathrm{pi}() \times \mathrm{d}_{\text {col }}{ }^{2} / 4$ $=657.858$
$\mathrm{T}_{511 \text { pier }}=$ ceiling $\left(\left(\mathrm{V}_{\mathrm{P} 1}+\mathrm{V}_{\mathrm{P} 2}\right) / 27,5\right)=\mathbf{5 0 . 0 0 0}$

Tekla

Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

ITEM 511 - CLASS QC1 CONCRETE WITH QCIQA, ABUTMENT INCLUDING FOOTING

*Includes footing and stem concrete. Semi-integral diaphragm concrete is included with Bridge Deck Concrete Item.

Abutment length (ft);
Proposed abutment footing width (ft);
Proposed abutment stem width (ft);
Height of footing (ft);

Rear Abutment

Abut stem height - RA (ft);
Volume RA (cu ft);

Forward Abutment

Abut stem height - FA (ft);
Volume FA (cu ft);

Wingwalls

Wingwall stem width (ft);
NW \& SE wingwall average level length (ft);
NE \& SW wingwall average level length (ft);
NW wingwall average ht (ft);
NE wingwall average ht (ft);
SW wingwall average ht (ft);
SE wingwall average ht (ft);

Vol for NW wingwall (cu ft);
$\times($ Lww_1avg +10$))=\mathbf{3 0 8 . 5 4 4}$
Vol for NE wingwall (cu ft);
$\left.\left(L w w _2 a v g+10\right)\right)=323.222$
$L_{\text {abut }}=39.000$
$\mathrm{w}_{\mathrm{ttg}}=4.500$
$W_{\text {stem }}=3.000$
$h_{\text {ftg }}=3$
$h_{\text {RA_stem }}=823.61-818.43-3=\mathbf{2 . 1 8 0}$
$V_{\text {RA }}=L_{\text {abut }} \times\left(h_{\text {RA_stem }} \times W_{\text {stem }}+W_{\text {ftg }} \times h_{\text {ftg }}\right)=\mathbf{7 8 1 . 5 6 0}$
$h_{\text {FA_stem }}=822.98-817.80-3=\mathbf{2 . 1 8 0}$
$\mathrm{V}_{\text {FA }}=\mathrm{L}_{\text {abut }} \times\left(\mathrm{h}_{\text {FA_stem }} \times \mathrm{W}_{\text {stem }}+\mathrm{W}_{\text {ftg }} \times \mathrm{h}_{\text {ftg }}\right)=\mathbf{7 8 1 . 5 6 0}$
$W_{w w}=2.5$
Lww_1avg $=3$
Lww_2avg $=2.79$
Hww_nw $=(827.67+823.55) / 2-820.80=4.810$
$H_{W W _N E}=(827.72+824.38) / 2-820.80=5.250$
$H_{w w _s w}=(828.30+823.93) / 2-821.43=4.685$
Hww_SE $=(828.35+824.22) / 2-821.43=4.855$
$V_{N W}=\left(\left(W_{w w} \times H_{w w _N w}\right) \times 9.35+L_{w w _1 a v g} \times(827.67-820.80)+\left(w_{\text {ttg }} \times h_{\text {ttg }}\right)\right.$
$V_{\text {NE }}=\left(\left(W_{w w} \times H_{w w _N E}\right) \times 10+\right.$ Lww_2avg $\times(827.72-820.80)+\left(W_{\text {ttg }} \times h_{\text {ftg }}\right) \times$

	Project MED-252-03.95 PID 888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				11	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

Vol for SW wingwall (cu ft);
Vsw $=\left(\left(\right.\right.$ www $\left.\times H_{w w _s w}\right) \times 10+$ Lww_2avg $\times(828.30-821.43)+\left(w_{t t g} \times h_{\text {ttg }}\right) \times$
$($ Lww_2avg +10$)$) $\mathbf{3 0 8 . 9 5 7}$

Vol for SE wingwall (cu ft);
$($ Lww_1avg +10$))=309.746$

Total Vol of concrete for abutments (CY); $\quad T_{511 s u b}=$ ceiling $\left(\left(V_{R A}+V_{F A}+V_{N W}+V_{N E}+V_{S W}+V_{S E}\right) / 27,5\right)=\mathbf{1 0 5 . 0 0 0}$

| Project | MED-252-03.95 PID 88883 | Job Ref. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Section | J20180414.000 | |

ITEM 512 - SEALING CONCRETE SURFACES (EPOXY-URETHANE)

Abutments

ABUTMENT SEALING LIMITS
(FOR SEMI-INTEGRAL ABUTMENT STEEL BEAM BRIDGE)
Diaphragm height (ft);
Bearing height (ft);
Proposed approach slab thickness (ft);
Beam seat-to-ground clearance (ft);
Abutment sealed height (ft);
Abutment length (ft);

Total abutment area (sq ft);

Wingwalls

*Wingwall sealing areas measured in CAD. Generally equation is as follows:

Tekla

Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

| Project | MED-252-03.95 PID 88883 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| Job Ref. |
| ---: | :--- |
| J20180414.000 |

Area $=$ River side face + Embankment side face + Top area + End Area

SW Wingwall elevation area (CAD) (sq ft);
SE Wingwall elevation area (CAD) (sq ft);
NW Wingwall elevation area (CAD) (sq ft);
NE Wingwall elevation area (CAD) (sq ft);

Total wingwall area (sq ft);

Deck and Parapet (on bridge deck)

CONCRETE DECK WITH
DEFLECTOR PARAPET
**** ODOT D3 preference is to seal to the edge of the beam flange *****

Parapet height (ft);
Parapet width (ft);
Parapet level width (ft);

Proposed bridge limits (ft);
Parapet perimeter (ft);
Average haunch (all beams) (in);
Average flange thickness (weighted over length) (in); $\quad t_{f}=1.302$
Width of deck overhang sealed (ft);

Sealing perimeter (ft);

Total sealing area on bridge deck (sq ft);

Parapets (on approach slabs)

*Parapet perimeter only

Perimeter of parapet (ft);
Length of parapet on approach slabs (ft);
End area of parapet transition (sq ft);

$$
\begin{aligned}
& h_{\text {bar }}=3.5 \\
& W_{\text {bar }}=1.5 \\
& \text { Wbar_level }=10 / 12=\mathbf{0 . 8 3 3}
\end{aligned}
$$

$L_{\text {deck }}=197.210$
havg $=2.080$
perimbar $=h_{\text {bar }}+W_{\text {bar_level }}+\sqrt{ }\left(\left(W_{\text {bar }}-W_{\text {bar_level }}\right)^{2}+h_{\text {bar }}{ }^{2}\right)=7.896$
$\mathrm{w}_{\text {fascia }}=\left(\mathrm{L}_{\text {fascia }}-\mathrm{b}_{\mathrm{f}} / 2\right)=\mathbf{2 . 9 0 8}$
$P_{\text {deck }}=$ perimbar $+\left(\right.$ havg $\left.+\mathrm{t}_{\mathrm{f}}+\mathrm{t}_{\text {deck }}\right) / 12+$ Wfascia $=\mathbf{1 1 . 8 1 6}$

A512_deck $=P_{\text {deck }} \times$ Ldeck $\times 2=4660.301$

Total sealing area of parapets on approaches $(\mathrm{sq} \mathrm{ft}) ; \mathrm{A}_{512 _ \text {par }}=4 \times($ Apar_end + perimbar \times Lbar_app $)=\mathbf{5 1 0 . 8 5 8}$

TOTAL AREA OF SEALING (SY);
$\mathrm{T}_{512}=\operatorname{ceiling}\left(\left(A_{512 _ \text {abut }}+A_{512 _w w}+A_{512 _d e c k}+A_{512 _p a r}\right) / 9,5\right)=\mathbf{6 5 5 . 0 0 0}$

	Project MED-252-03.95 PID 888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				14	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	Date $9 / 16 / 19$	App'd by SMK	Date 11/7/19

ITEM 512 - TYPE B WATERPROOFING

*3' wide at wingwall horizontal construction joint

Width of waterproofing (ft);
Wingwall length (ft);

Total Area of Type B Waterproofing (SY);
$\mathrm{W}_{\text {TypeB }}=3$
$L_{w w}=12.570$
$A_{\text {Type2 }}=$ ceiling $\left(\left(4 \times W_{\text {TypeB }} \times L_{w w}\right) / 9,1\right)=17.000$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				15	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	Date 9/16/19	App'd by SMK	$\begin{array}{\|l\|} \hline \text { Date } \\ 11 / 7 / 19 \end{array}$

ITEM 513 - STRUCTURAL STEEL MEMBERS, LEVEL 3, AS PER PLAN

Main Steel Members

Length from CL brg to first field splice (ft);
Length from splice to splice (ft);
Length from splice to CL brg (ft);

Number of interior beams (each);
Number of fascia beams (each);
Total Number of beams (each);

Unit Weight of W36x210 (lb/ft);
Unit Weight of W36x150 (lb/ft);
Unit weight of field splice (lb/splice);
Unit weight of optional field splice (lb/splice);

Total Weight of Main Steel Members (lb);
$\left.\times \mathrm{L}_{\text {sp2 } 2}\right)=160840.000$
$L_{\text {sp1 }}=57+16.5+0.5=\mathbf{7 4 . 0 0 0}$
$\mathrm{L}_{\text {sp2 }}=81-16.5-16.5=\mathbf{4 8 . 0 0 0}$
$L_{\text {sp3 }}=57+16.5+0.5=\mathbf{7 4 . 0 0 0}$

$$
\begin{aligned}
& N_{\text {int }}=2 \\
& N_{\text {ext }}=2 \\
& N_{\text {beams }}=N_{\text {int }}+N_{\text {ext }}=4.000
\end{aligned}
$$

$W_{36 \times 210}=210$
$W_{36 \times 150}=150$
$\mathrm{W}_{\text {splice }}=510$
$W_{\text {splice_opt }}=910$
$W_{\text {stI_main }}=N_{\text {beams }} \times\left(2 \times W_{\text {splice }}+W_{\text {splice_opt }}+W_{36 \times 210} \times\left(L_{\text {sp1 }}+L_{\text {sp } 3}\right)+W_{36 \times 150}\right.$

Standard Crossframes

*Per GSD-1-19 Designer Supplement, Estimated quantities are to assume the use of Type A Crossframes
*For 3'-5" overhang and 9'-6" beam spacing, angles will be $\angle 5 \times 5 \times 1 / 2$ and the alternate connection plates will be used.

Gusset \& Connection plate thickness (in);
Connection plate width (in);
Unit weight of $\mathrm{L} 5 \times 5 \times 1 / 2$ angles ($\mathrm{lb} / \mathrm{ft}$);
Leg length of angles (in);
Typical clear distance (in);
Typical bolt spacing (in);
Bolt horizontal edge distance (in);
Bolt vertical edge distance (in);
Unit weight of steel plates (lb/ft$)$;
Beam spacing (ft);
$t_{p l}=0.375$
$W_{\text {conn }}=7.75$
$W_{5 \times 5}=16.2$
$l_{a}=5$
clr $=1$
$\mathrm{spa}_{\mathrm{b}}=3$
edge $_{\text {h }}=1.75$
edge $_{v}=1.5$
$W_{\text {stl }}=490$
Sbm $=9.5$

Tekla
 Tedds

Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

W36x210 beam height (ft);
W36X210 flange width (ft);
W36x210 flange thickness (ft);
W36x210 web thickness (ft);

W36x150 beam height (ft);
W36X150 flange width (ft);
W36x150 flange thickness (ft);
W36x150 web thickness (ft);
$h_{36 \times 210}=3.058$
$b_{f}=1.017$
tf_ $36 \times 210=1.26 / 12=\mathbf{0 . 1 0 5}$
$\mathrm{t}_{\mathrm{w}} 36 \times 210=0.83 / 12=\mathbf{0 . 0 6 9}$
$h_{36 \times 150}=35.9 / 12=2.992$
bf_36x150 $=12.2 / 12=\mathbf{1 . 0 1 7}$
$t_{f} 36 \times 150=0.79 / 12=\mathbf{0 . 0 6 6}$
$\mathrm{t}_{\mathrm{w} 36 \times 150}=0.60 / 12=\mathbf{0 . 0 5 0}$
Gusset plate area extend horizontally 6" past connection plate to achieve 5" weld on bottom horizontal angle

Bottom gusset plate area (sq ft);
Top gusset plate area (sq ft);
Connection plate area (sq ft);

Horizontal angle length (ft);

Diagonal angle vertical dimension (ft);
Diagonal angle length (ft);

Weight per standard cross-frame (lb);
12) $=541.862$
(*includes 5\% for fill plate and bolts*)

Total number of standard crossframes;

Total standard crossframe weight (lb);

Special Pipe Support Crossframes

$A_{b g}=\left(6+W_{\text {conn }}-c l r\right) \times\left(3+\left(3 \times\right.\right.$ spab $\left._{b}\right)+$ edge $\left._{\mathrm{v}}\right) / 144=\mathbf{1 . 1 9 5}$
$A_{t g}=\left(6+W_{\text {conn }}-c l r\right) \times\left(3+\left(2 \times\right.\right.$ spab $\left._{\mathrm{b}}\right)+$ edge $\left._{\mathrm{v}}\right) / 144=\mathbf{0 . 9 3 0}$
Aconn $=W_{\text {conn }} / 12 \times\left(h_{36 \times 210}-2 \times t_{\text {t }} 36 \times 210\right)=1.840$
$\mathrm{La}_{\mathrm{_}} \mathrm{~h}=\mathrm{S}_{\mathrm{bm}}-\mathrm{t}_{\mathrm{w} _36 \times 210} / 12-2 \times\left(\mathrm{w}_{\mathrm{conn}}+\mathrm{clr}\right) / 12=8.036$
vert $_{\text {dia }}=h_{36 \times 210-2 \times t_{f} 36 \times 210-\left(2+c l r+l_{a}+c l r\right) / 12-\left(2+c l r+l_{a}\right) / 12=1.432 ~}^{\text {a }}$
$L_{a_{-} d i a}=\sqrt{ }\left(L_{a_{-}} h^{2}+\right.$ vertdia $\left.^{2}\right)=\mathbf{8 . 1 6 2}$
$W_{c f}=1.05 \times\left(W_{5 \times 5} \times\left(L_{a _h}+2 \times L_{\text {a_dia }}\right)+2 \times W_{\text {stl }} \times \mathrm{tpl} \times\left(\mathrm{A}_{\mathrm{bg}}+\mathrm{A}_{\mathrm{tg}}+\mathrm{A}_{\text {conn }}\right) /\right.$
$W_{\text {stl_scf }}=N_{\text {scf }} \times W_{\text {cf }}=\mathbf{2 0 5 9 0 . 7 5 2}$

Top gusset plate area (sq ft);
Connection plate area (sq ft);
Horizontal angle length (ft);
$\mathrm{A}_{\mathrm{tg}}=0.930$
$\mathrm{A}_{\text {conn }}=1.840$
La_h $=8.036$

Tekla

Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

Project				Job Ref.J20180414.000	
MED-252-03.95 PID 88883					
Section				Sheet no./rev.	
Structure Estimated Quantities - Final Tracings				17	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

Weight per special crossframe 1 cross-frame (lb); $\quad W_{\text {cf1 }}=1.05 \times\left(W_{5 \times 5} \times L_{\text {L_h }}+2 \times W_{\text {stl }} \times \mathrm{tpl} \times\left(A_{t g}+A_{\text {conn }}\right) / 12\right)=\mathbf{2 2 5 . 7 3 9}$ (*includes 5\% for fill plate and bolts*)

Diagonal angle vertical dimension (ft);
Diagonal angle 1 horizontal dimension (ft);
Diagonal angle 2 horizontal dimension (ft);

Diagonal angle 1 length (ft);
Diagonal angle 2 length (ft);

Weight per special crossframe 2 cross-frame (lb); 1.65) / 12) $\mathbf{~} \mathbf{4 1 0 . 0 5 9}$
(*includes 5\% for fill plate and bolts*)

Total number of Special Pipe Crossframe 1
Total number of Special Pipe Crossframe 2;

Total special pipe crossframe weight (lb);

TOTAL WEIGHT OF STEEL (LB);
vert $_{\text {dia12 }}=\mathrm{h}_{36 \times 210}-2 \times \mathrm{tf}_{\mathrm{C}} 36 \times 210-\left(2+\mathrm{clr}+\mathrm{l}_{\mathrm{a}}\right) / 12-(2+\mathrm{clr}) / 12=1.932$
horizdia1 $=5.75-\mathrm{t}_{\mathrm{w}}$ _36x210/2/12 $-\left(\mathrm{W}_{\text {conn }}+\mathrm{clr}\right) / 12-10 / 12=4.185$
horiz $_{\text {dia2 }}=3.75-\mathrm{t}_{\mathrm{w} _36 \times 210} / 2 / 12-\left(\mathrm{w}_{\text {conn }}+\mathrm{clr}\right) / 12-7 / 12=2.435$
$L_{\text {a_dia1 }}=\sqrt{ }\left(\right.$ vert $_{\text {dia12 }}{ }^{2}+$ horiz $\left._{\text {dia1 }}{ }^{2}\right)=4.609$
$L_{\text {a_dia2 }}=\sqrt{ }\left(\right.$ vert $_{\text {dia12 }}{ }^{2}+$ horiz $\left._{\text {dia2 }}{ }^{2}\right)=\mathbf{3 . 1 0 8}$
$W_{\text {cf2 }}=1.05 \times\left(W_{5 \times 5} \times\left(L_{\text {a_h }}+L_{\text {a_dia1 }}+\mathrm{La}_{\text {adia2 }}\right)+2 \times \mathrm{W}_{\text {stl }} \times \mathrm{t}_{\mathrm{pl}} \times\left(\mathrm{A}_{\mathrm{tg}}+\mathrm{A}_{\text {conn }}+\right.\right.$
$N_{\text {pcf1 }}=2$
$N_{\text {pct2 }}=18$
$W_{\text {stl_pcf }}=N_{\text {pcf1 }} \times W_{\text {cf1 }}+N_{\text {pcf2 }} \times W_{\text {cf } 2}=\mathbf{7 8 3 2 . 5 4 6}$
$T_{513}=$ ceiling $\left(W_{\text {stl_main }}+W_{\text {stl_scf }}+W_{\text {stl_pcf }}, 1\right)=189264.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Section				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 513 - WELDED SHEAR STUD CONNECTORS

Studs per location;
Studs per beam;

Number of interior beams (each);
Number of fascia beams (each);

TOTAL NUMBER OF SHEAR STUDS (EA);
stud $=3$
$N_{\text {stud }}=68+49+29+29+50+67=\mathbf{2 9 2 . 0 0 0}$
$N_{\text {int }}=2.000$
$N_{\text {ext }}=2.000$
$\mathrm{T}_{\text {stud }}=\operatorname{stud} \times \mathrm{N}_{\text {stud }} \times\left(\mathrm{N}_{\text {int }}+\mathrm{N}_{\text {ext }}\right)=\mathbf{3 5 0 4 . 0 0 0}$

Tekla

Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114

Project	MED-252-03.95 PID 88883			Job Ref.	
				J20180414.000	
Section				Sheet no./rev.	
Structure Estimated Quantities - Final Tracings				19	
Calc. by	Date	Chk'd by	Date	App'd by	Date
EIW	Rev. 10/30/19	PJW	9/16/19	SMK	11/7/19

ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, INTERMEDIATE COAT
 ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, FINISH COAT

Number of interior beams (each);
Number of fascia beams (each);
W36x210 beam height (ft);
W36X210 flange width (ft);
W36x210 flange thickness (ft);
W36x210 web thickness (ft);

W36x150 beam height (ft);
W36X150 flange width (ft);
W36x150 flange thickness (ft);
W36x150 web thickness (ft);

Length from CL brg to first field splice (ft);
Length from splice to splice (ft);
Length from splice to CL brg (ft);
$N_{\text {int }}=2.000$
$N_{\text {ext }}=2.000$
$h_{36 \times 210}=3.058$
$b_{f}=1.017$
$t_{f} 36 \times 210=0.105$
$\mathrm{t}_{\mathrm{w} _36 \times 210}=0.069$
$h_{36 \times 150}=2.992$
$\mathrm{b}_{\mathrm{f}} 36 \times 150=1.017$
$t_{f} 36 \times 150=0.066$
$\mathrm{t}_{\mathrm{w} \text { _ } 36 \times 150}=\mathbf{0 . 0 5 0}$
$L_{\text {sp1 }}=74.000$
$\mathrm{L}_{\text {sp2 }}=48.000$
$L_{\text {sp } 3}=74.000$

W36x210 Beam Section

Length of W36x210 between abutment diaphragms per beam line (ft); $\quad L_{36 \times 210}=L_{\text {sp1 }}+L_{\text {sp3 }}-2 \times 1.5=\mathbf{1 4 5 . 0 0 0}$
W36x210 perimeter (ft);
$P_{36 \times 210}=b_{f}+2 \times\left(b_{f}-t_{w} _36 \times 210\right)+2 \times h_{36 \times 210}=9.028$

W36x150 Beam Section
Length of W36x150 between abutment diaphragms per beam line (ft); $\quad \mathrm{L}_{36 \times 150}=\mathrm{L}_{\text {sp2 }}=48.000$
W36x150 perimeter (ft);
$P_{36 \times 150}=$ bf_ $_{\text {_ }} 6 \times 150+2 \times\left(\right.$ bf_ $\left.36 \times 150-t_{w} _36 \times 150\right)+2 \times h_{36 \times 150}=8.933$

Total Painting - main steel members (sq ft);
$T_{514 _ \text {main }}=N_{\text {beams }} \times\left(P_{36 \times 210} \times L_{36 \times 210}+P_{36 \times 150} \times L_{36 \times 150}\right)=6951.633$

Crossframes

From Steel weight calc
Bottom gusset plate area (sq ft);
$A_{b g}=1.195$
Top gusset plate area (sq ft);
Connection plate area (sq ft);
$A_{t g}=0.930$
$A_{\text {conn }}=1.840$
Gusset \& Connection plate thickness (in);
$\mathrm{t}_{\mathrm{pl}}=0.375$
Leg length of angles (in);
Horizontal angle length (ft);
$l_{a}=5.000$

Diagonal angle length (ft);
$L_{\text {a_h }}=8.036$

Crossframes per bay;
La_dia $=8.162$
$N_{\text {cf }}=16.000$

Perimeter of L5x5x1/2 angles (ft);
$P_{5 \times 5}=(5+5+0.5+4.5+4.5+0.5) / 12=\mathbf{1 . 6 6 7}$

Painted area of crossframe gusset and connection plates (sq ft)

	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				20	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

**Assumes $1 / 2$ of each gusset plate is covered in connection plate painting area overlap, overlap of angle and gusset plate not considered, plate edge thickness not considered ${ }^{* *}$;
$A_{514 _ \text {pl }}=2 \times A_{\text {conn }}+0.5 \times 2 \times A_{b g}+0.5 \times 2 \times A_{t g}=5.804$
Painted area of crossframe angle members (sq ft); $\quad A_{514 _a}=P_{5 \times 5} \times\left(L_{a _h}+2 \times L_{\text {a_dia }}\right)-6 \times l_{a} \times 5 / 144=39.560$

Total Painting - crossframe members $(\mathrm{sq} \mathrm{ft}) ; \quad \mathrm{T}_{514 _ \text {_f }}=\left(\mathrm{N}_{\text {beams }}-1\right) \times \mathrm{N}_{\mathrm{cf}} \times\left(\mathrm{A}_{514 _ \text {_pl }}+\mathrm{A}_{514 _} \mathrm{a}\right)=\mathbf{2 1 7 7 . 4 5 9}$

TOTAL AREA OF PAINTING (SQ FT);
$\mathrm{T}_{514}=\operatorname{ceiling}\left(\mathrm{T}_{514 _ \text {main }}+\mathrm{T}_{514 _ \text {cf, }} \mathbf{1}\right)=9130.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				21	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 514 - FINAL INSPECTION REPAIR

*Per CMS, one location per 150 linear foot of girder

Length of beams (ft);
Number of interior beams (each);
Number of fascia beams (each);

Number of locations per beam line (each);

TOTAL NUMBER OF INSPECTION LOCATIONS (EA);

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$$	App'd by SMK	Date 11/7/19

ITEM 514 - FIELD PAINTING MISC.: EXISTING SANITARY PIPE

*Includes surface prep and priming for existing pipe remaining.

Length of existing pipe to remain (ft);

$$
\text { Lpipe_ex = } 155
$$

OD of pipe (ft);
$O D_{\text {pipe }}=12.75 / 12=1.063$

Total pipe surface area for surface prep \& painting (SQ FT);
$\left.\mathrm{T}_{514 \text { _ex pipe }}=\operatorname{ceiling(pi}() \times O D_{\text {pipe }^{2}} \times L_{\text {pipe_ex }} / 4,1\right)=138.000$

	Project MED-252-03.95 PID 888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 514 - FIELD PAINTING MISC.: NEW SANITARY PIPE

*Includes intermediate and finish coat for segments of new sanitary line.

Total length of pipe to be painted (ft);
Lpipe tot $=192$
Length of existing pipe to remain (ft);
$L_{\text {pipe_ex }}=155.000$
OD of pipe (ft);
$O D_{\text {pipe }}=1.063$

Total new pipe surface area for intermediate and finish coat (sq ft);
$\mathrm{T}_{514 _ \text {pipe_new }}=\operatorname{ceiling}\left(\mathrm{pi}() \times O D_{\text {pipe }}{ }^{2} \times\left(L_{\text {pipe_tot }}-L_{\text {pipe_ex }}\right) / 4,1\right)=33.000$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Section				Sheet no./rev.24	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 516 - ARMORLESS PREFORMED JOINT SEAL

*Measured as length of sleeper slab along the bridge skew.

Width of approach slabs at ends (ft);
Bridge skew;
Seal length along skew (ft);

TOTAL SEAL LENGTH (FT);
$W_{\text {app_curb }}=33.000$
$\Theta=25$
PJS $=W_{\text {app_curb }} / \cos (\Theta)=36.411$

Lseal $=$ ceiling $(2 \times P J S, 1)=73.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev	25
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 516-1" PREFORMED EXPANSION JOINT FILLER

*Located between approach and bridge-mounted parapet

Typical parapet section area (sq ft);
Bridge skew;
Parapet area along skew (ft);

TOTAL PEJF AREA (SQ FT);
$A_{\text {par }}=4.083$
$\Theta=25.000$
$A_{\text {par_skew }}=A_{\text {par }} / \cos (\Theta)=4.505$

LpeJf_1 $=$ ceiling $\left(A_{\text {par_skew }} \times 4,1\right)=19.000$

\qquad	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				26	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 516 - 2" PREFORMED EXPANSION JOINT FILLER

*Located between wingwall and abutment diaphragm

Width of wingwall (ft);
Bridge skew;
Wingwall width along skew (ft);

NW WW height at PEJF (Ft);
NE WW height at PEJF (Ft);
SW WW height at PEJF (Ft);
SE WW height at PEJF (Ft);

TOTAL PEJF AREA (SQ FT);
54.000
$W_{w w}=2.500$
$\Theta=25.000$
$W_{w w _s k e w}=W_{w w} / \cos (\Theta)=2.758$
$h_{\text {pejf_nw }}=827.67-822.80=4.870$
$h_{\text {pejf_ }}$ NE $=827.71-822.84=\mathbf{4 . 8 7 0}$
$h_{\text {pejf_sw }}=828.30-823.43=\mathbf{4 . 8 7 0}$
$h_{\text {peji_SE }}=828.35-823.47=\mathbf{4 . 8 8 0}$

LPEJF_2 $=\mathbf{c e i l i n g}\left(\mathbf{W}_{\mathbf{w w}}\right.$ _skew $\left.\times\left(h_{\text {pejf_NW }}+h_{\text {pejf_NE }}+h_{\text {pejf_Sw }}+h_{\text {pejf_SE }}\right), \mathbf{1}\right)=$

© Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Section				Sheet no./rev.27	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$$	App'd by SMK	Date 11/7/19

ITEM 516 - SEMI-INTEGRAL EXPANSION JOINT SEAL

Abutment length (ft);
$L_{\text {abut }}=\mathbf{3 9 . 0 0 0}$
Length of seal (ft);
Lexp_jt_seal $=$ Labut $+3=\mathbf{4 2 . 0 0 0}$

Total Length of Semi-integral expansion joint seal (FT);
$L_{j t _s e a l}=\operatorname{ceiling}(2 \times$ Lexp_jt_seal, 1$)=84.000$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				28	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 516 - ELASTOMERIC BEARING WITH INTERNAL LAMINATES AND LOAD PLATE (NEOPRENE), AS PER PLAN

Total Number of beams (each);

TOTAL NUMBER OF ABUTMENT BEARINGS(EA); $\quad T_{B R G _a b u t ~}=N_{\text {beams }} \times 2 \mathbf{2} \mathbf{8 . 0 0 0}$
TOTAL NUMBER OF PIER BEARINGS(EA);
$N_{\text {beams }}=4.000$

TBRG_pier $=$ Nbeams $\times 2=8.000$

Tekla

Tedds
Osborn Engineering
1100 Superior Avenue - Suite 300
Cleveland, Ohio 44114

Project				Job Ref.J20180414.000	
MED-252-03.95 PID 88883					
Structure Estimated Quantities - Final Tracings				Sheet no./re	29
Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	Date $9 / 16 / 19$	App'd by SMK	Date 11/7/19

ITEM 518 - POROUS BACKFILL WITH GEOTEXTILE FABRIC

*Item includes 2'-0" thick porous backfill behind abutments and wingwalls.

Proposed approach slab thickness (ft);
Diaphragm height (ft);
Assumed bearing height (ft);
Abutment length (ft);
Abut stem height - RA (ft);
Abut stem height - FA (ft);
Abut stem width (Ft);
Footing width (Ft);
Footing height (Ft);

Porous backfill thickness (ft);
Porous backfill area behind RA (sq ft);
15.758

Porous backfill area behind FA (sq ft);

15.758

Average Wingwall length (ft);
NW wingwall average ht above footing (ft);
NE wingwall average ht above footing (ft);
SW wingwall average ht above footing (ft);
SE wingwall average ht above footing (ft);

Porous backfill area behind NW wingwall (sq ft);
Porous backfill area behind NE wingwall (sq ft);
Porous backfill area behind SW wingwall (sq ft);
Porous backfill area behind SE wingwall ($\mathrm{sq} \mathrm{ft} \mathrm{);}$

TOTAL VOL POROUS BACKFILL (CY);
A518_sw + A518_SE))/ 27, 1) $\mathbf{= 6 6 . 0 0 0}$
$\mathrm{t}_{\text {app }}=1.083$
$h_{\text {diaph }}=4.711$
$h_{b r g}=0.196$
Labut $=39.000$
$\mathrm{h}_{\text {RA_stem }}=2.180$
$\mathrm{h}_{\text {FA_stem }}=\mathbf{2 . 1 8 0}$
$W_{\text {stem }}=3.000$
$\mathrm{W}_{\text {ttg }}=4.500$
$h_{\text {ftg }}=3.000$
$\mathrm{t}_{518}=2$
$A_{518 _R A}=t_{518} \times\left(h_{\text {RA_stem }}+h_{\text {brg }}+h_{\text {diaph }}-t_{\text {app }}\right)+\left(\mathrm{t}_{518}-\left(\mathrm{W}_{\text {ftg }}-W_{\text {stem }}\right) / 2\right) \times h_{\text {ftg }}=$
$A_{518 _F A}=t_{518} \times\left(h_{\text {FA_stem }}+h_{\text {brg }}+h_{\text {diaph }}-t_{\text {app }}\right)+\left(t_{518}-\left(W_{\text {tig }}-W_{\text {stem }}\right) / 2\right) \times h_{\text {ftg }}=$
$L w w=12.570$
$H_{w w-n w}=4.810$
$H_{w w _N E ~}=5.250$
$\mathrm{H}_{w w _ \text {_sw }}=4.685$
$H_{w w _s e}=4.855$
$A_{518 _N W}=\left(H_{w w _N W}-1.5\right) \times \mathrm{t}_{518}+\left(\mathrm{t}_{518}-\left(\mathrm{W}_{\text {ttg }}-\mathrm{W}_{\text {stem }}\right) / 2\right) \times \mathrm{h}_{\text {ftg }}=10.370$
A_{518} _Ne $=\left(H_{w w-N e}-1.5\right) \times \mathrm{t}_{518}+\left(\mathrm{t}_{518}-\left(\mathrm{W}_{\text {tig }}-\mathrm{W}_{\text {stem }}\right) / 2\right) \times \mathrm{h}_{\text {ftg }}=11.250$
A_{518} _sw $=\left(H_{w w _s w ~}-1.5\right) \times \mathrm{t}_{518}+\left(\mathrm{t}_{518}-\left(\mathrm{W}_{\text {ttg }}-W_{\text {stem }}\right) / 2\right) \times \mathrm{h}_{\mathrm{ftg}}=\mathbf{1 0 . 1 2 0}$
A518_SE $=\left(H_{w w _S E}-1.5\right) \times \mathrm{t}_{518}+\left(\mathrm{t}_{518}-\left(\mathrm{Wttg}^{2}-W_{\text {stem }}\right) / 2\right) \times \mathrm{httg}=10.460$
$\mathrm{T}_{518}=\operatorname{ceiling}\left(\left(\mathrm{L}_{\text {abut }} \times\left(\mathrm{A}_{518 _R A}+\mathrm{A}_{518 _\mathrm{FA}}\right)+\mathrm{Lww} \times\left(\mathrm{A}_{518 _\mathrm{NW}}+\mathrm{A}_{518 _\mathrm{NE}}+\right.\right.\right.$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.30	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$$	App'd by SMK	Date 11/7/19

ITEM 518-6" PERFORATED CORRUGATED PLASTIC PIPE

*To run behind abutments and wingwalls

Abutment length (ft);
Wingwall length (ft);

TOTAL LENGTH PCPP (FT);
$L_{\text {abut }}=39.000$
Lww $=12.570$
$\mathrm{T}_{\text {PCPP }}=\operatorname{ceiling}\left(2 \times\left(\mathrm{L}_{\text {abut }}+2 \times \mathrm{Lww}\right), 1\right)=129.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	31
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 518-6" NON-PERFORATED CORRUGATED PLASTIC PIPE, INCLUDING SPECIALS

*From ends of wingwalls to outlet in slope.

NW Wingwall (ft);
NE Wingwall (ft);
SW Wingwall (ft);
SE Wingwall (ft);

TOTAL LENGTH NPCPP (FT);

NPNw $=12.5$
$\mathrm{NP}_{\mathrm{NE}}=17.5$
NPsw $=11.5$
$N P_{\text {SE }}=15.5$
$\mathrm{T}_{\mathrm{NPCPP}}=\mathbf{c e i l i n g}\left(\mathrm{NP}_{\mathrm{NW}}+\mathrm{NP}_{\mathrm{NE}}+\mathrm{NPSw}+\mathrm{NP}_{\mathrm{sE}}, 5\right) \mathbf{5 0 . 0 0 0}$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev	32
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 524 - DRILLED SHAFTS, 36" DIAMETER, INTO BEDROCK
*At abutments into rock

Total number of drilled shafts per abutment;
Minimum rock socket depth (ft);

NDs abut $=4$
$\mathrm{d}_{\text {sock }}=10$

TOTAL LENGTH OF DS INTO ROCK (ABUT) $(F T) ; T_{524 _r o c k _a b u t ~}=$ ceiling $\left(2 \times N_{\text {Ds_abut }} \times d_{\text {sock }}, \mathbf{1}\right)=\mathbf{8 0 . 0 0 0}$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev.	33
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 524 - DRILLED SHAFTS, 42" DIAMETER, ABOVE BEDROCK

*At abutments above rock \& at piers above T/rock elevation

Total number of drilled shafts per abutment; \quad NDS_abut $=\mathbf{4 . 0 0 0}$
Total number of drilled shafts per pier;

Proposed top of drilled shaft - RA;
ELT_DSra $=818.43+0.25=\mathbf{8 1 8 . 6 8 0}$
Proposed top of drilled shaft - FA;
ELT_DSfa $=817.80+0.25=\mathbf{8 1 8 . 0 5 0}$
Top of rock elevation - RA;
$\mathrm{TR}_{\text {RA }}=811.26$
Top of rock elevation - FA;
$\mathrm{TR}_{\mathrm{FA}}=809.92$

Proposed top of drilled shaft at piers;
ELT_Dsp $=809.11$
Top of rock elevation - P1;
$\mathrm{TR}_{\mathrm{P} 1}=806.69$
Top of rock elevation - P2;
$\mathrm{TR}_{\mathrm{P} 2}=806.46$

Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev	34
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 524 - DRILLED SHAFTS, 42" DIAMETER, INTO BEDROCK

* At pier columns

Total number of drilled shafts per pier;	NDs_pier $=\mathbf{3 . 0 0 0}$
Minimum rock socket depth at piers $(\mathrm{ft}) ;$	dsock_pier $=12$

TOTAL LENGTH OF DS INTO ROCK (PIER) (FT); T524_rock_pier $=\mathbf{c e i l i n g}\left(\mathbf{2} \times\right.$ NDS_pier $\left.\times \mathbf{d}_{\text {sock_pier }}, \mathbf{1}\right)=\mathbf{7 2 . 0 0 0}$

T Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project \quad MED-252-03.95 PID 8888				Job Ref.J20180414.000	
	Section				Sheet no./rev.	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 526 - REINFORCED CONCRETE APPROACH SLABS WITH QC/QA (T=13"), AS PER PLAN

Length of approach slabs with barrier (Ft);
Width of approach slabs with barrier (ft);

Length of approach slabs with curb (Ft);
Width of approach slabs with curb (ft);

TOTAL APPROACH SLAB AREA (SQ YD);
$L_{\text {bar_app }}=15.900$
$W_{\text {app_bar }}=32+1.67+1.67=\mathbf{3 5 . 3 4 0}$

Lapp_curb $=20$ - $L_{\text {bar_app }}=\mathbf{4 . 1 0 0}$
$W_{\text {app_curb }}=33$
$A_{\text {app }}=$ ceiling $\left(2 \times\left(L_{\text {bar_app }} \times W_{\text {app_bar }}+L_{\text {app_curb }} \times W_{\text {app_curb }}\right) / 9,1\right)=155.000$

- Tekla Tedds Osborn Engineering 1100 Superior Avenue - Suite 300 Cleveland, Ohio 44114	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				36	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 526 - Type C Installation

*Measured as length of sleeper slab along the bridge skew.

Width of approach slabs at ends (ft);
$W_{\text {app_curb }}=33.000$
Bridge skew;
Sleeper slab length along skew (ft);

TOTAL INSTALLATION LENGTH (FT);
$\Theta=\mathbf{2 5 . 0 0 0}$
SS $=W_{\text {app_curb }} / \cos (\Theta)=36.411$

Linstall $=$ ceiling $(2 \times S S, 1)=73.000$

	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				37	
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 601 - ROCK CHANNEL PROTECTION, TYPE C

*At forward abutment
*Included with Roadway Quantities on General Summary

Average bank slope;
Plan view length of slope protection (ft);
Adjusted length of slope protection (ft);
Width of slope protection (ft);
Thickness of slope protection (ft);
$m_{\text {bank }}=1 / 5=0.200$
L601_plan $=35.25$
$L_{601 _ \text {adj }}=\sqrt{ }\left(L_{601 _p l a n}{ }^{2}+\left(L_{601 _p l a n} \times m_{\text {bank }}\right)^{2}\right)=\mathbf{3 5 . 9 4 8}$
$W_{601}=60$
$\mathrm{t}_{601}=2$

TOTAL VOLUME OF SLOPE PROTECTION (CU YD); $\quad T_{s P}=$ ceiling(L601_adj $\left.\times \mathbf{W}_{601} \times \mathbf{t}_{601} / 27,1\right)=160.000$

	Project MED-252-03.95 PID 88883				Job Ref.J20180414.000	
	Structure Estimated Quantities - Final Tracings				Sheet no./rev	38
	Calc. by EIW	Date Rev. 10/30/19	Chk'd by PJW	$\begin{array}{\|l\|} \hline \text { Date } \\ 9 / 16 / 19 \end{array}$	App'd by SMK	Date 11/7/19

ITEM 838 - GABIONS, AS PER PLAN

*Included with Roadway Quantities on General Summary

Plan area of new gabions between proposed and existing rear abutment (sq ft); Agab $=927$
Estimated plan area of replacement gabions at new pier columns (sq ft); Agab_pier $=6 \times 6 \times 3=108.000$
Estimated plan area of infill gabions at existing pier columns removed (sq ft); \quad Agab_fill $=6 \times 6 \times 2=\mathbf{7 2 . 0 0 0}$

Depth of new gabions (ft);

TOTAL VOLUME OF GABIONS (CU YD);
$T_{G A B}=$ ceiling $\left(\left(A_{g a b}+A_{\text {gab_pier }}+A_{\text {gab_fill }}\right) \times D_{\text {gab }} / 27,1\right)=123.000$

