LANDSLIDE EXPLORATION MED-18-13.54 MEDINA COUNTY, OHIO PID#: 92953

Prepared For:

GPD GROUP, INC.

520 South Main Street, Suite 2531 Akron, Ohio 44311

Prepared by:

NATIONAL ENGINEERING & ARCHITECTURAL SERVICES, INC. 2800 Corporate Exchange Drive, Suite 240 Columbus, Ohio 43231

NEAS PROJECT 15-0091

March 8, 2017

EXECUTIVE SUMMARY

The Ohio Department of Transportation (ODOT) has proposed a project for improvements to State Route 18 (MED-18-13.54, PID 92953) in the City of Medina, Medina County, Ohio. The SR-18 roadway alignment is located in the Killbuck-Glaciated Pittsburgh Plateau physiographic region, which is part of the Glaciated Allegheny Plateaus. This area is characterized by ridges and flat uplands dissected by steep valleys. This topography is reflected in the steep valley of the West Branch Rocky River which crosses MED-18 midway at an elevation of about 910 feet (ft) as compared to the western and eastern ends of the alignment which rise to ~1,000 ft and 1,060, respectively. The alignment is underlain by till from 80 to 320 ft deep.

For Part 2 of MED-18-13.54 project, four main parts of SR-18 need to be improved: 1) Culverts #1, #3 and #6 with full height headwalls; (2) Historical Landslides on SR-18 Station 127+00 (BMP: 13.76) and 166+00 (BMP: 14.5); 3) Retaining Wall #4 (RW4) at Goodwill Building side hill cut section; and 4) Retaining Wall No. 2 (RW2) at SR-18 Station 135+17. National Engineering & Architectural Services, Inc. (NEAS), formerly Barr Engineering, Inc., has been contracted to perform geotechnical engineering services for the project. The purpose of the geotechnical engineering services was to perform geotechnical explorations within the project limits to obtain information concerning the subsurface soil and groundwater conditions relevant to the design and construction of the project. The scope of work performed by NEAS as part of the referenced project included: a review of published geotechnical information; performing 10 total test borings (4 utilized within this report); laboratory testing of soil samples in accordance with the SGE; performing geotechnical engineering analysis to assess the historical landslide sites on SR-18 Station 127+00 and 166+00; and development of this summary report.

NEAS presents this Landslide Exploration Report for the historical landslide sites on SR-18 Station 127+00 (BMP: 13.76) and 166+00 (BMP: 14.5) for the Part 2 MED-18-13.54 Improvements to State Route 18 (SR-18) within the City of Medina, Ohio. This report presents a summary of the encountered superficial and subsurface conditions and our recommendations for the landslide stability in accordance with Load and Resistance Factor Design (LRFD) method as set forth in AASHTO's Publication LRFD Bridge Design Specifications, (AASHTO, 2014) and ODOT's 2016 Specifications for Geotechnical Explorations (SGE) (ODOT, 2016) (ODOT, 2016).

The general subsurface profile is relatively uniform and consistent with the geological model for the project. At the SR-18 Station 127+00 landslide site, the soil profile consists of surficial materials comprised of 10 ft of clay-rich embankment fill overlying a further 10 ft of very compact glacial till that might also be embankment. The underlying soils are natural, fine grained, cohesive glacial till that exhibit relatively strong strength properties. Free groundwater was encountered at an elevation of ~937 ft which is generally consistent with the estimated flow-line elevation of 939 ft. Bedrock was not encountered within depth of the boring performed.

At the Station 127+00 landslide site, the soil profile consists of surficial materials comprised of 7 ft of cohesive embankment fill soil (A-6a) following by natural, fine grained, cohesive glacial till. An intermittent layer of natural, fine to coarse grained, non-cohesive till was encountered at elevations between 936.1 ft and 928.6 ft in B-027-1-16 and at elevations between 921.0 ft and 913.0 ft in B-027-2-16. Free groundwater was encountered at the elevations of ~ 937 ft. Bedrock was not encountered within depth of the boring performed.

Global stability analyses were performed for the landslide sites at existing condition and post construction condition. Based on the results of the analyses, it is our opinion that the subsurface conditions encountered at both locations are generally satisfactory and the sites can be considered to be stable at existing condition and post construction condition.

TABLE OF CONTENTS

1. INTRODUCTION	3
1.1. GENERAL	3
1.2. LANDSLIDE OVERVIEW	3
2. GEOLOGY AND OBSERVATIONS OF THE PROJECT	4
2.1. GEOLOGY AND PHYSIOGRAPHY	4
2.2. HYDROLOGY/HYDROGEOLOGY	
2.3. MINING AND OIL/GAS PRODUCTION	
2.4. HISTORICAL RECORDS AND PREVIOUS PHASES OF PROJECT EXPLORATION	5
2.5. SITE RECONNAISSANCE	
3. GEOTECHNICAL EXPLORATION	
3.1. FIELD EXPLORATION PROGRAM	
3.2. LABORATORY TESTING PROGRAM	
3.2.1. Classification Testing	
3.2.2. Standard Penetration Test Results	
4. GEOTECHNICAL FINDINGS	
4.1. SUBSURFACE CONDITIONS AT STA. 127+00	
4.1.1. Overburden Soil at Sta. 127+00	
4.1.2. Groundwater at Sta. 127+00	
4.2. SUBSURFACE CONDITIONS AT STA. 166+00	
4.2.1. Overburden Soil at Sta. 166+00	
<i>4.2.1. Groundwater at Sta.</i> 166+00	
5. ANALYSIS AND RECOMMENDATIONS	
5.1. LANDSLIDE ASSUMPTIONS	-
5.1.1. Generalized Soil Profile for Analysis	
5.2. GLOBAL STABILITY	
5.2.1. Global Stability Analysis at Sta 127+00	
5.2.1. Global Stability Analysis at Sta 166+00	
5.3. SEISMIC DESIGN PARAMETERS	
5.4. RECOMMENDATIONS	
6. QUALIFICATIONS	.19

LIST OF TABLES

TABLE 1:	GAS WELLS IN PROXIMITY TO THE ALIGNMENT	5
TABLE 2:	PART 1 BORING SUMMARY	
TABLE 3:	PROJECT BORING SUMMARY	10
TABLE 4:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES AT STA 127+00 (B-014-1-16)	13
TABLE 5:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES AT STA 127+00 (B-015-0-14)	14
TABLE 6:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES AT STA 127+00 (B-015-1-16)	14
TABLE 7:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES AT STA 127+00 (B-016-0-14)	15
TABLE 8:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES AT STA 127+00 (B-016-1-16)	15
TABLE 9:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES NEAR STA 166+00 (B-027-1-16)	16
TABLE 10:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES NEAR STA 166+00 (B-027-2-16)	16
TABLE 11:	GLOBAL STABILITY ANALYSIS SUMMARY AT STA 127+00	17
TABLE 12:	GLOBAL STABILITY ANALYSIS SUMMARY AT STA 166+00	18
TABLE 13:	AASHTO SPECTRUM FOR 7% PE IN 75 YEARS	18

LIST OF APPENDICES

APPENDIX A: SOIL BORING LOCATION PLAN APPENDIX B: SOIL BORING LOGS APPENDIX C: GLOBAL STABILITY ANALYSIS APPENDIX D: SEISMIC ANALYSIS

1. INTRODUCTION

1.1. General

NEAS, formerly Barr Engineering, Inc. (BEI), presents our Landslide Exploration Report for the landslides at Station 127+00 [begin mile point (BMP): 13.76] and 166+00 (BMP: 14.5) along State Route 18 (SR-18), as part of the SR-18 widening and improvement project (MED-18-13.54, PID 92953) in the City of Medina, Medina County, Ohio. This report presents a summary of the encountered superficial and subsurface conditions and our recommendations based on landslides analysis in accordance with Load and Resistance Factor Design (LRFD) method as set forth in AASHTO's Publication LRFD Bridge Design Specifications, 7th Edition with 2015 interim revisions (BDS) (AASHTO, 2014) and ODOT's 2016 Specifications for Geotechnical Explorations (SGE) (ODOT, 2016) (ODOT, 2016).

The Part 2 MED-18-13.54 project consists of:

- Culverts #1, #3 and #6 with full height headwalls;
- Historical Landslides on SR-18 Station 127+00 and 166+00;
- Retaining Wall #4 Goodwill Building side hill cut section;
- Retaining Wall #2 at SR-18 Station 135+17.

The exploration was conducted in general accordance with National Engineering & Architectural Services, Inc.'s (NEAS's) proposal to GPD Group (GPD), dated March 25, 2016 and with the provisions of ODOT's *Specifications for Geotechnical Explorations* (SGE) (ODOT, 2016).

The scope of work performed by NEAS as part of the referenced project included: a review of published geotechnical information; performing 10 total test borings (4 utilized within this report); laboratory testing of soil samples in accordance with the SGE; performing geotechnical engineering analysis to assess the stability of slope; and development of this summary report.

1.2. Landslide Overview

Two historical landslides, located on SR-18 Station 127+00 (BMP: 13.76) and Station 166+00 (BMP: 14.5), were identified through ODOT's GEOMS database in 2015 Part 1 exploration MED-18-13.54 project. Both of the locations had a preliminary score of 1 point which was considered to be non-rated. The preliminary score of 1 indicates that the landslide has a low probability of additional movement and a low probability of significant impact to the roadway.

According to district geotechnical engineer, "Both of these locations are rated a "1" because of the shallow surface failure (shoulder) that is present. The depth of the sliding surface is 3 feet at both locations. Longer guardrail posts along with a w-section of guardrail were placed along the bottom of the guardrail in order to help retain the shoulder in these two locations. The slope at the 13.76 location is estimated to be 13 feet high and the length of affected roadway is 230 feet. The slope at the 14.50 location is estimated to be 17 feet high and the length of affected roadway is 265 feet."

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Geology and Physiography

The project site is located in the Killbuck-Glaciated Pittsburgh Plateau physiographic region, which is part of the Glaciated Allegheny Plateaus (Brockman, 1998). This area is characterized by ridges and flat uplands dissected by steep valleys. This topography is reflected in the steep valley of the West Branch Rocky River which crosses MED-18 midway at an elevation of about 910 ft as compared to the western and eastern ends of the alignment which rise to ~1,000 ft and 1,060, respectively.

The landslides site at Station 127+00 and Sta 166+00 is underlain by Wisconsinan-age till (unsorted mix of clay, silt, sand, gravel and boulders) over sandstone and shale deposited in Mississippian-age (ODNR, 2000). Bedrock topography maps indicated depth of bedrock ranging from elevation 650 ft to 1,000 ft, placing it between 50 ft and 260 ft deep (Schumacher, et al, 1996). It is mapped as Mississippian-age Cuyahoga Formation (Slucher, et al, 1996).

2.2. Hydrology/Hydrogeology

SR-18 crosses over West Branch Rocky River at approximately STA 141+00 where the flow line elevation is 910 ft and likely represents the local groundwater table. Broadway Creek, a tributary to West Branch flows under SR-18 at approximately STA 102+50 (U.S. Department of the Interior, 2013) and a tributary to Broadway flows under the alignment at ~STA 111+50.

The West Branch Rocky River and the area immediately adjacent to it are located in a special flood hazard zone subject to inundation by the 1% annual chance flood (US Department of Homeland Security, 2013). The base flood elevation where SR-18 crosses West Branch is 917 ft.

2.3. Mining and Oil/Gas Production

No abandoned mines are noted on ODNR's Abandoned Underground Mine Locator in the vicinity of the landslides site (ODNR [1], 2016).

The following (Table 1) gas wells were noted in the vicinity of the alignment (ODNR, 2015⁽²⁾). All but three are abandoned and/or plugged. The remaining three have not produced gas since 1993.

Well Name	Owner	Well No.	Formation	Status	Direction from Alignment
Medina Community Hospital	Ohio Fuel Gas Co.	Well No. 8	Gas-Clinton Sand	Plugged & Abandoned	~520 ft south
	Hydrocarbo n Resources LTD	MCZ#1		Not Drilled	
	Buckeye Well Surveys	1	Gas-Clinton Sand	Abandoned 1996	
J H Witzel	O.F.S	2	Gas	Plugged & Abandoned	~765 ft south
ES Johnson	Martin H Lax	1	Gas	Abandoned 1991	~380 ft north
-	-	5	Gas	Plugged & Abandoned	~601 ft south
Tru-Fit	Tru-Filt Products Corp	5, 6A	Gas	Installed 1983 -Ohio Shale – Berea Sandstone – no production since 1993	~120 ft south

Table 1: Gas wells in Proximity to the Alignment

2.4. Historical Records and Previous Phases of Project Exploration

The following report/plans were available for review and evaluation for this report (ODOT, 2016):

• Draft subgrade exploration report dated August 19, 2015 for Project MED-18-13.54 Part 1 prepared by Barr Engineering, INC. (BEI, 2015).

Three soil borings (B-015-0-14, B-016-0-14 and B-027-0-14) drilled as Part 1 of the MED-18-13.54 subgrade exploration project were reviewed for this report (Table 2). A summary of the Part I borings information (location, elevation, etc.) is provided in Table 2 below, the location is depicted on the Soil Boring Location Plan provided in Appendix A, and the Part 1 boring log is provided in Appendix B.

Boring Number	Location (Sta/offset)	Latitude	Longitude	Elevation (NAVD 88) (ft)	Depth (ft)	Structure
B-015-0-14	127+12, 23' LT	41.137745	-81.827227	959.6	31.5	Retaining Wall
B-016-0-14	127+42, 19' RT	41.137619	-81.827141	959.9	30.0	Retaining Wall
B-027-0-14	165+02, 38' LT	41.136436	-81.813598	957.6	9.0	Pavement Subgrade

Table 2: Part 1 Boring Summary

2.5. Site Reconnaissance

The site reconnaissance of the roadways was conducted on July 16, 2015 and August 7, 2015. The existing embankment slope at Sta. 127+00 is next to a lake with a steep slope of approximately 1. 5H:1V (Photograph 1). The embankment slope is thickly vegetated with a grassed yard at the foot. A culvert runs from the southernmost point of the lake under SR-18 to connect with a pond on the opposite side of the road. The guardrail at the top of the embankment is vertical, but appears to be relatively new (Photograph 2). Several of the older trees in the area are also slanted downslope slightly, while the newer trees are

slanted slightly more upslope (Photograph 3). Several sources of water flow into and out of this area, including 2 culverts, a lake, the roadway, and potential overflow of the pond, making high water levels during heavy rainfall extremely likely.

Photograph 1: Embankment at historical landslide near Sta 127+00

Photograph 2: Guardrail at historical landslide near Sta 127+00

Photograph 3: Tree alignments at historical landslide near Sta 127+00

This location at Station 166+00 is adjacent to a swamp (Photograph 4) and on a steep, grass and weed covered embankment of greater than1.5:1 slope in several places (Photograph 5). A thick wooded area is located between the bottom of the embankment and the swamp. The guardrail shows no signs of slope movement (it also appears to be relatively new), however a telephone pole is leaning significantly downslope (Photograph 6). Water is conveyed to and from the swamp by 2 culverts, runoff from the roadway, and runoff from a large empty lot to the north. The lot appears to send very large quantities of water into the swamp area, causing a massive eroded channel connecting the two locations (Photograph 7). The swamp appeared to have lower water levels than usual, as a large dry area to the north was covered in deposits from the swamp with very little growth occurring (Photograph 8).

Photograph 4: Swamp at historical landslide near Sta 166+00

Photograph 5: Embankment at historical landslide near Sta 166+00

Photograph 6: Guardrail at historical landslide near Sta 166+00

Photograph 7: Eroded channel at historical landslide near Sta 166+00

Photograph 8: Large dry area at historical landslide near Sta 166+00

3. GEOTECHNICAL EXPLORATION

3.1. Field Exploration Program

The exploration for the landslide sites was conducted by NEAS between September 19, 2016 and September 21, 2016 and included 4 borings drilled to depths of 61.5 ft bgs (B-014-1-16 and B-015-1-16) and 51.5 ft bgs (B-027-1-16 and B-027-2-16). The boring locations were selected by NEAS in general accordance with the guidelines contained in the SGE with the intent to evaluate subsurface soil and groundwater conditions. The borings were typically located along/near the landslide site in locations that were not restricted by maintenance of traffic, underground utilities or dictated by terrain (i.e. steep embankment slopes).

Stationing, offset, elevations and latitude and longitude locations of the boring are provided in Table 3 below.

Boring Number	Location (Sta/Offset) ⁽²⁾	Latitude ⁽¹⁾	Longitude ⁽¹⁾	Elevation (NAVD 88) (ft)	Depth (ft)			
B-014-1-16	126+68, 27' LT	41.137761	-81.827385	959.2	61.5			
B-015-1-16	127+62, 22' LT	41.137721	-81.827046	960.0	61.5			
B-027-1-16	165+87, 32' LT	41.136432	-81.813293	960.6	51.5			
B-027-2-16	166+76, 35' LT	41.136429	-81.812974	963.5	51.5			
Notes: 1. As-drilled boring location and corresponding ground surface elevation were surveyed in the field by GPD Group. 2. Stationing in reference to centerline of Construction SR-18.								

 Table 3: Project Boring Summary

The borings were drilled using a CME 55 truck mounted drilling rig utilizing 3.25-inch diameter hollow stem augers. Soil samples were recovered at intervals of 2.5-ft to end of boring (EOB) in three borings B-014-1-16, B-027-1-16 and B-027-2-16, except in boring B-015-1-16 soil samples were recovered at intervals of 2.5-ft starting from depth of 32.5 ft bgs to EOB (AASHTO T-206 "Standard Method for Penetration Test and Split Barrel Sampling of Soils."). The soil samples obtained from the exploration program were visually observed in the field by the NEAS field representative and preserved for review by a Geologist and possible laboratory testing. Standard penetration tests (SPT) were conducted using a CME auto hammer that has been calibrated to be 81.8% efficient as indicated on the boring logs.

Field boring log was prepared by drilling personnel, and included lithological description, SPT results recorded as blows per 6-inch increment of penetration, and estimated unconfined shear strength values on specimens exhibiting cohesion (using a hand-penetrometer). Groundwater measurements were attempted during the boring drilling procedures and immediately following the completion of the borehole. After completing the boring, the borehole was sealed with auger cuttings, bentonite grout and asphalt patch following SGE section 407.

3.2. Laboratory Testing Program

The laboratory testing program consisted of classification testing and moisture content determinations. Data from the laboratory-testing program were incorporated onto the borings logs (Appendix B). Soil samples are retained at the laboratory for 60 days following report submittal, after which time they will be discarded.

3.2.1. Classification Testing

Representative soil samples were selected for index properties (Atterberg Limits) and gradation testing for classification purposes on approximately 31% of the samples. At the boring location, samples were selected for testing with the intent of identification and classification of all significant soil units. Soils not selected for testing were compared to laboratory tested samples/strata and classified visually. Moisture content testing was conducted on all samples. The laboratory testing was performed in general accordance with applicable AASHTO specifications.

A final classification of the soil strata was made in accordance with AASHTO M-145 "Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes," as modified by ODOT "Classification of Soils" once laboratory test results became available. The results of the soil classification are presented on the boring logs in Appendix B.

3.2.2. Standard Penetration Test Results

Standard Penetration Tests (SPT) and split-barrel (commonly known as split-spoon) sampling of soils were performed at 2.5-ft interval in the project borings performed. To account for the high efficiency (automatic) hammers used during SPT sampling, field SPT N-values were converted based on the calibrated efficiency (energy ratio) of the specific drill rig's hammer. Field N-values were converted to an equivalent rod energy of 60% (N_{60}) for use in analysis or for correlation purposes. The resulting N_{60} values are presented on the boring logs provided in Appendix B.

4. GEOTECHNICAL FINDINGS

The subsurface conditions encountered during NEAS's explorations are described in the following subsections and on the boring log presented in Appendix B. The boring log represents NEAS's interpretation of the subsurface conditions encountered at the boring location based on our site observations, field log, visual review of the soil samples by NEAS's geologist, and laboratory test results. The lines designating the interfaces between various soil strata on the boring log represent the approximate interface location; the actual transition between strata may be gradual and indistinct. The subsurface soil and groundwater characterizations included herein, including summary test data, are based on the subsurface findings from the geotechnical explorations performed by NEAS as part of the referenced project, results of historical explorations, and consideration of the geological history of the site.

4.1. Subsurface Conditions at Sta. 127+00

4.1.1. Overburden Soil at Sta. 127+00

The subsurface profile at the site near Sta. 127+00 is generally consistent with the geological model for the project in regards to the materials encountered. The subsurface profile within the proposed project area consists of surficial materials comprised of either granular base, asphalt pavement or brick section underlain by natural, fine grained, cohesive glacial till primarily comprised of stiff to hard silty clay (A-6b), medium stiff to very stiff silt and clay (A-6a), very stiff clay (A-7-6), very stiff to hard sandy silt (A-4a) and medium stiff to hard silt (A-4b). With respect to the soil strength, the cohesive soils can be described as having a relative consistency ranging from medium stiff to hard correlating to converted SPT-N values (N_{60}) between 8 and 59 blows per foot (bpf). Natural moisture contents of the cohesive soil

ranged from 11% to 33% in moisture. Bedrock was not encountered within depths of the borings performed.

4.1.2. Groundwater at Sta. 127+00

Groundwater measurements were attempted during the boring drilling procedures and immediately following the completion of the borehole. Groundwater was observed during drilling in both borings performed at Sta. 127+00 site. Based on these borings, free groundwater was encountered between depths of 14.0 and 22.0 ft bgs (between elevations 938.0 and 945.2 ft amsl). It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary from those measured at the time of the exploration. Ordinary High Water Mark (OHWM) at the site is at an elevation of 935.3 ft amsl, which should be used in the analysis.

4.2. Subsurface Conditions at Sta. 166+00

4.2.1. Overburden Soil at Sta. 166+00

The subsurface profile at the site near Sta. 166+00 is generally consistent with the geological model for the project in regards to the materials encountered. The subsurface profile within the proposed project area consists of surficial materials comprised of existing pavement underlain by cohesive embankment fill soil (A-6a) over natural, fine grained, cohesive glacial till. The cohesive glacial till primarily consists of very stiff to hard silty clay (A-6b), very stiff to hard clay (A-7-6), and very stiff to hard sandy silt (A-4a), and stiff silt and clay (A-6a). The intermittent layers of granular soils were encountered in both borings, medium dense sandy silt (A-4a) at elevations between 936.1 ft and 928.6 ft in B-027-1-16 and very dense gravel with sand and silt (A-2-4) at elevations between 921.0 ft and 913.0 ft in B-027-2-16. Bedrock was not encountered within depths of the borings performed.

4.2.1. Groundwater at Sta. 166+00

Groundwater was observed during drilling in both borings performed at Sta. 166+00 site. Based on these borings, free groundwater was encountered between depths of 19.0 and 29.0 ft bgs (between elevations 941.6 and 934.5 ft amsl). It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary from those measured at the time of the exploration. The wetland elevation at the swamp near the site has a boundary elevation of 951.0 ft amsl, which should be used in the analysis.

5. ANALYSIS AND RECOMMENDATIONS

ODOT's GeoMS database identified two historical landslides to the north of SR-18 near Station 127+00 (BMP: 13.76) and near Station 166+00 (BMP: 14.5). The slope stability analysis for the historical landslide sites on SR-18 Station 127+00 and 166+00 is as part of the Part 2 MED-18-13.54 widening and improvement project in Medina County, Ohio.

Based on the above information in addition to: 1) the soil characteristics gathered during the subsurface exploration (i.e., SPT results, laboratory test results, etc.); 2) the developed generalized soil profile at the landslide locations and other assumptions presented in subsequent sections of this report; and, 3) the landslide site plans provided by GPD Group, geotechnical analyses consisting of global stability, and seismic analysis were performed for the landslide locations.

The geotechnical engineering analyses were performed in accordance with ODOT's SGE (ODOT, 2016) and AASHTO's LRFD BDS (AASHTO, 2014). Based on the results of the analysis, it is our opinion that the subsurface conditions encountered at both locations are generally satisfactory and the sites can be considered to be stable before and after construction.

5.1. Landslide Assumptions

The geometry of the landslide sites on SR-18 Station 127+00 and 166+00 is assumed to be consistent with that shown in the site plans provided by GPD Group. ODOT's SGE and AASHTO's LRFD BDS dictate analysis parameters to be used in the analysis process. Based on planned roadway grades and alignment, AASHTO's LRFD BDS dictates that the slopes shall be evaluated for a live load surcharge of 250 pound per square foot (psf).

5.1.1. Generalized Soil Profile for Analysis

For analysis purposes, each boring log was reviewed and a generalized material profile was developed for analysis. Utilizing the generalized soil profile, engineering properties for each soil strata was estimated based on their field (i.e., SPT N60 Values, hand penetrometer values, etc.) and laboratory (i.e., Atterberg Limits, grain size, etc.) test results using correlations provided in published engineering manuals, research reports and guidance documents. Engineering soil properties were estimated for each individual classified layer per boring location. Soil layers from both borings with similar behavior (i.e., cohesive or non-cohesive/granular) and characteristics (i.e., relative compactness/consistency, moisture content, etc.) were grouped into generalized soil units (i.e., Soil Types) and weighted average values of the estimated engineering soil properties were assigned to each Soil Type to develop a generalized soil profile for analysis. The summary of the generalized soil profile including designated Soil Types, elevations, average engineering soil properties per boring location are presented in the following Tables 4-10.

Landslide Analysis near Sta 127+00, B-014-1-16								
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)		
Silty Clay Depth (959.2 ft - 947.2 ft)	110	110	120	1550	150	23		
Silt and Clay Depth (947.2 ft - 942.2 ft)	125	115	125	3400	250	27		
Silty Clay Depth (942.2 ft - 937.2 ft)	120	110	120	1600	150	23		
Clay Depth (937.2 ft - 935.2 ft)	120	110	120	1500	150	22		
Silt and Clay Depth (935.2 ft - 929.7 ft)	122	112	122	1900	200	24		
Sandy Silt Depth (929.7 ft - 924.7 ft)	128	118	128	4350	300	30		
Silt and Clay Depth (924.7 ft - 919.7 ft)	135	125	135	5550	400	32		
Sandy Silt Depth (919.7 ft - 912.2 ft)	135	125	135	5500	400	33		
Silt Elevation (912.2 tt - 899.7 tt)	125	115	125	2800	250	27		
Silt and Clay Elevation (899.7 ft - 897.7 ft)	135	125	135	5600	400	32		
Notes: 1. Values interpreted from Geotechnical Bulletin 7 Table 1.								

Table 4: Soil Profile and Estimated Engineering Properties at Sta 127+00 (B-014-1-16)

Values calculated from Terzaghi and Peck (1967) if N1 60<52, else Stroud and Butler (1975) was used.

Landslide Analysis near Sta 127+00: , B-015-0-14								
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)		
Silty Clay Depth (959.6 ft - 950.1 ft)	115	115	125	3150	250	27		
Silty Clay Depth (950.1 ft - 947.6 ft)	118	118	128	3500	300	28		
Silt and Clay Depth (947.6 ft - 940.3 ft)	125	125	135	6150	400	33		
Silty Clay Depth (940.3 ft - 938.6 ft)	110	110	120	1600	150	23		
Sandy Silt Depth (938.6 ft - 928.1 ft)	120	110	120	1550	150	24		
Notes: 1. Values interpreted from Geotechnical Bulletin 7 Table 1.								

Table 5:	Soil Profile and	Estimated Engin	neering Propert	ies at Sta 127+00	(B-015-0-14)

2. Values calculated from Terzaghi and Peck (1967) if N1 60 <52, else Stroud and Butler (1975) was used.

3. Values interpreted from Geotechnical Bulletin 7 Table 2.

Landslide Analysis near Sta 127+00, B-015-1-16								
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)		Effective Friction Angle ⁽³⁾ (degrees)		
No Soil Samples Depth (960 ft - 927.5 ft)	-	-	-	-	-	-		
Sandy Silt Depth (927.5 ft - 915.5 ft)	130	120	130	5250	350	32		
Silt and Clay Depth (915.5 ft - 908 ft)	128	118	128	3850	300	28		
Sandy Silt Depth (908 ft - 898.5 ft)	125	115	125	3450	250	28		
Notes:								

Values interpreted from Geotechnical Bulletin 7 Table 1.
 Values calculated from Terzaghi and Peck (1967) if N1₆₀<52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Landslide Analysis near Sta 127+00: , B-016-0-14								
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)		
Silt and Clay Depth (959.2 ft - 956.9 ft)	108	108	118	1100	100	22		
Clay Depth (956.9 ft - 952.6 ft)	110	110	120	1550	150	22		
Silty Clay Depth (952.6 ft - 948.6 ft)	110	110	120	1500	150	23		
Clay Depth (948.6 ft - 944.6 ft)	110	110	120	1250	150	22		
Gravel with Sand and Silt Depth (944.6 ft - 940.6 ft)	132	122	132	-	-	40		
Silty Clay Depth (940.6 ft - 936.6 ft)	135	125	135	6100	400	33		
Silt and Clay Depth (936.6 ft - 932.6 ft)	118	108	118	1100	100	22		
Sandy Silt Depth (932.6 ft - 929.9 ft)	125	115	125	3100	250	28		
Notes: 1. Values interpreted from Geotechnical Bulletin 7 Table 1.								

Table 7.	Soil Profile and	Estimated F	ngineering	Properties at 9	Sta 127+00	(B-016-0-14)
	Son i tonic and	LSumated E	angineering	1 toperties at i	$51a 127 \pm 00$	(D-010-0-14)

2. Values calculated from Terzaghi and Peck (1967) if N1 60 <52, else Stroud and Butler (1975) was used.

3. Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 8: Soil Profile and Estimated Engineering Properties at Sta 127+00 (B-016-1-16)

	Land	slide Analysis	near Sta 127+0	00: , B-016-1-16		
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)
No Sampling Depth (959.9 ft - 928.4 ft)	-	-	-	-	-	-
Sandy Silt Depth (928.4 ft - 925.5 ft)	125	115	125	2750	250	27
Silt and Clay Depth (925.5 ft - 909.4 ft)	130	120	130	5050	350	31
Notes:						

1. Values interpreted from Geotechnical Bulletin 7 Table 1.

2. Values calculated from Terzaghi and Peck (1967) if N1 60 <52, else Stroud and Butler (1975) was used.

3. Values interpreted from Geotechnical Bulletin 7 Table 2.

	Land	slide Analysis	near Sta. 166+	00, B-027-1-16		
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)
Silt and Clay Depth (960.6 ft - 956.1 ft)	112	112	122	2250	200	25
Silty Clay Depth (956.1 ft - 946.1 ft)	112	112	122	1950	200	24
Clay Depth (946.1 ft - 943.1 ft)	110	110	120	1250	150	22
Sandy Silt Depth (943.1 ft - 936.1 ft)	120	110	120	1650	150	24
Sandy Silt Depth (936.1 ft - 928.6 ft)	125	115	125	-	-	31
Sandy Silt Depth (928.6 ft - 909.1 ft)	135	125	135	6250	400	34
Notes: 1. Values interpreted fro			- Official and Dutling (4	075)		

Table 9:	Soil Profile and	Estimated	Engineering	Properties r	near Sta 1	66+00 (E	3-027-1-16)	

s calculated from Terzaghi and Peck (1967) if N1 $_{
m 60}$ <52, else Stroud and Butler (1975) was used 3. Values interpreted from Geotechnical Bulletin 7 Table 2.

Table 10, Sail Drafile and Estimated Engineering Drangeting and

1	able 10: Soll I	Prome and E	sumated Engli	leering Prope	rues near Sta	100+00 (D -0	27-2-10)

Sta 1(()00 (D 007 0 1()

	Land	slide Analysis	near Sta. 166+	00, B-027-2-16		
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Moist Unit Weight ⁽¹⁾ (pcf)	Saturated Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)
Silt and Clay Depth (963.5 ft - 956.5 ft)	112	112	122	1750	200	24
Silty Clay Depth (956.5 ft - 947 ft)	112	112	122	1800	200	24
Clay Depth (947 ft - 941.5 ft)	110	110	120	1350	150	22
Sandy Silt Depth (941.5 ft - 936.5 ft)	118	118	128	4100	300	30
Sandy Silt Depth (936.5 ft - 928.5 ft)	125	115	125	-	-	32
Silty Clay Depth (928.5 ft - 926.5 ft)	122	112	122	2250	200	25
Sandy Silt Depth (926.5 ft - 921 ft)	135	125	135	6250	400	34
Gravel with Sand and Silt Depth (921 ft - 913 ft)	140	130	140	-	-	41
Silt and Clay Elevation (913 ft - 912 ft)	128	118	128	4250	300	29
Notes: 1. Values interpreted from 2. Values calculated from			e Stroud and Butler (1	975) was used.		

3. Values interpreted from Geotechnical Bulletin 7 Table 2.

5.2. Global Stability

For purposes of evaluating the stability of the landslides site on SR-18 Station 127+00 and 166+00, NEAS reviewed cross-sections within the project limits that were interpreted to represent conditions that posed the greatest potential for slope instability. In general, cross-sections along the SR-18 alignment were reviewed to determine if the section would represent a combination of existing subsurface conditions and planned site grading that would be most critical to slope stability (i.e., maximum embankment height measured from toe of slope to the top, proposed cut into existing embankment slopes, weak or thick soil layer, etc.). Based on our review of the available information at the referenced locations and the associated soil properties, two cross-sections, Station 127+00 and Station 166+00 in reference to SR-18 were estimated to be most "critical" at the corresponding location and were analyzed for global stability.

NEAS developed several representative cross-sectional models to use as the basis for global stability analyses for these historical landslide locations. The models were developed from NEAS's interpretation of the available information which included: 1) The site plans provided by GPD Group; 2) a live load surcharge of 250 psf, accounting for traffic induced loads; and, 3) test borings and laboratory data developed as part of this report. With respect to the soils' engineering properties, the provided Soil Profile and Estimated Engineering Properties presented in Section 5.1.1. of this report were used in our analyses.

The above referenced slope stability models were analyzed for short-term (Total Stress), long-term (Effective Stress) and flood (Effective Stress) slope stability utilizing the software entitled *Slide 7.0* by Rock Science, Inc. The FOS is the ratio of the resisting forces and the driving forces, with the desired safety factor being more than about 1.33 which equates to an AASHTO resistance factor less than 0.75 (per AASHTO's LRFD BDS the specified resistance factors are essentially the inverse of the FOS that should be targeted in slope stability programs). For this analysis, a resistance factor of 0.75 or lower is targeted as the slope does not contain or support a structural element.

5.2.1. Global Stability Analysis at Sta 127+00

Based on our slope stability analysis for the Station 127+00 section, the minimum slope stability safety factor is about 1.33 (0.75 resistance factor), which equals the desired value of 1.33. The results of the analyses are summarized in Table 11. Based on the results of the analyses, it is our opinion that the subsurface conditions encountered at this location are generally satisfactory and the site can be considered to be stable at existing condition and post construction condition. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix C.

	G	Blobal Stability Analsysis at Sta	a 127+00		
Condition	Boring No.	Description	Minimum Factor of Safety	Equivalent Resistance Factor	Status (OK/NG)
Eviating	B-014-1-16	Short Term	3.94	0.25	OK
Existing	D-014-1-10	Long Term	1.33	0.75	OK
Post	B-014-1-16	Short Term	4.03	0.25	OK
Construction	B-014-1-16	Long Term	1.56	0.64	OK
Existing	B-015-0-16 &	Short Term	4.78	0.21	OK
Existing	B-015-1-16	Long Term	1.58	0.63	OK
Post	B-015-0-14 &	Short Term	0.20	OK	
Construction	B-015-1-16	Long Term	0.61	OK	

 Table 11: Global Stability Analysis Summary at Sta 127+00

5.2.1. Global Stability Analysis at Sta 166+00

Based on our slope stability analysis for the Station 166+00 section, the minimum slope stability safety factor is about 1.69 (0.59 resistance factor), which exceeds the desired value of 1.33. Embankment configuration at this location will stay the same after proposed construction. However, traffic will be shifted away from the slope. Therefore, slope stability safety factor of the slope after construction can be expected to be slightly higher than the results of the existing slopes. The results of the analyses are summarized in Table 12. Based on the results of the analyses, it is our opinion that the subsurface conditions encountered at this location are generally satisfactory and the site can be considered to be stable at existing condition and post construction condition. The graphical output of the slope stability

program (cross-sectional model, calculated safety factor, and critical failure plane) is presented in Appendix D.

	G	Blobal Stability Analsysis at Sta	a 166+00		
Condition	Boring No.	Description	Minimum Factor of Safety	Equivalent Resistance Factor	Status (OK/NG)
Existing / Post	B-027-1-16	Short Term	4.83	0.21	ОК
Construction	D-027-1-10	Long Term	1.74	0.58	ОК
Existing /	D 007 0 40	Short Term	5.65	0.18	ОК
Post Construction	B-027-2-16	Long Term	1.71	0.59	ОК

Table 12: Global Stability Analysis Summary at Sta 166+00

5.3. Seismic Design Parameters

ODOT has indicated that the whole state lies within Seismic Zone 1. Based on the results of the subsurface exploration, the laboratory test data, and our review of the AASHTO Site Class Definition from Table 3.10.3.1-1 of the AASHTO LRFD Bridge Design Specifications, NEAS recommends a project site classification of D – stiff soil. Typically, SPT N-values within the upper 90 ft of the profile are between 15 bpf and 60 bpf. Seismic design parameters for the site were developed using USGS Seismic Design Maps per AASHTO Guide Specifications for LRFD Seismic Bridge Design. Seismic design parameters for Station 127+00 and Station 166+00 are the same and are presented in Table 13 below. The detailed reports are presented in Appendix C. These values were interpreted for use in our slope stability analysis where seismic forces are considered.

Variable	Symbol (AASHTO 3.10)	Value
Latitude		41.137912
Longitude		-81.826561
Site Class		D
Peak Ground Acceleration	PGA	0.042g
Short Period Acceleration	Ss	0.090g
Long Period Acceleration	S ₁	0.032g
Site Factor (zero period)	F _{PGA}	1.6
Site Factor (short period)	Fa	1.6
Site Factor (long period)	Fv	2.4
Zero period response seismic coefficient	A _s = F _{PGA} * PGA	0.067g
Short period response seismic coefficient (0.2 seconds)	$S_{DS} = F_a * S_s$	0.144g
Long period response seismic coefficient (1.0 second)	$S_{D1} = F_v * S_1$	0.077g

Table 13: AASHTO Spectrum for 7% PE in 75 Years

5.4. Recommendations

These recommendations are based on a review of existing data, field and laboratory testing results, and engineering analysis and judgment. The landslide plans including its location and geometry were part of a conceptual design for the overall road improvement by GPD Group. If any element of the project evolves

to be significantly different than is described therein, these recommendations should be reviewed by a geotechnical engineer to assess their continuing validity before they are incorporated into the utilization.

Geotechnical elements of the project should be evaluated in general accordance with the provisions of ODOT SGE and, as appropriate, AASHTO Bridge Design Specifications, Seventh Edition with current Interims, (LRFD BDS) using the Load and Resistance Factor (LRFD) method of design. Materials should be as specified in ODOT Construction and Materials Specifications (CMS) - 2016.

- Slope stability should be evaluated using the soil description and properties provided in Tables 4-10.
- The change of groundwater level should be considered which could greatly decrease the stability of the slope.
- Soils in the base of all excavations should be observed for suitability by a geotechnical engineer or soil technician working under the direct supervision of a geotechnical engineer.

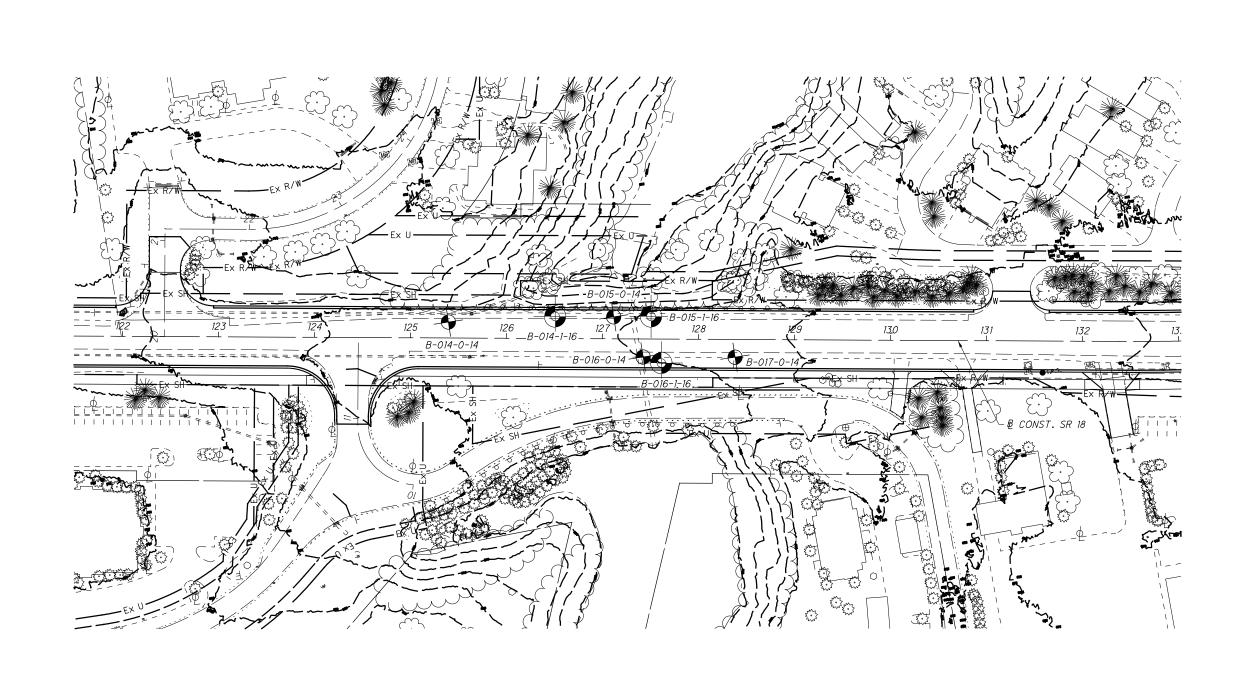
6. QUALIFICATIONS

This investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of characterizing the subsurface conditions at the site of Station 127+00 and Station 166+00 for the MED-18-13.54 project. This report has been prepared for GPD Group, ODOT and their design consultants to be used solely in evaluating the soils underlying the referred site and presenting geotechnical engineering recommendations specific to this project. The assessment of general site environmental conditions or the presence of pollutants in the soil, rock and groundwater of the site was beyond the scope of this geotechnical exploration. Our recommendations are based on the results of our field explorations, laboratory tests results from representative soil samples, and geotechnical engineering analyses. The results of the field explorations and laboratory tests, which form the basis of our recommendations, are presented in the appendices as noted. This report does not reflect any variations that may occur between the borings or elsewhere on the site, or variations whose nature and extent may not become evident until a later stage of construction. In the event that any changes in the nature, geometry of the referred site is made, the conclusions and recommendations contained in this report should not be considered valid until they are reviewed, and have been modified or verified in writing by a geotechnical engineer.

It has been a pleasure to be of service to GPD Group in performing this geotechnical exploration for the MED-18-13.54 project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

Jawdat Siddiqi, P.E. President Chunmei He, Ph.D., P.E. *Geotechnical Engineer*


REFERENCES

- AASHTO. (2014). Standard Specifications for Highway Bridges, 17th Edition. Washington, D.C.: American Association of State Highway and Transportation Officials.
- FEMA. (2016). National Flood Hazard Layer kmz v3.0. Federal Emergency Management Agency.
- ODGS. (1998). Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey. page-size map with text, 2p., scale 1:2,100,00.
- ODGS. (2003). Bedrock-topography data for Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map BG-3, 1 CD-ROM, GIS file formats. Revised January 9, 2004.
- ODNR [1]. (2016). Ohio Abandoned Mine Locator Interactive Map. *Mines of Ohio*. Ohio Department of Natural Resources, Division of Geological Survey & Division of Mineral Resources. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= OhioMines
- ODNR [2]. (2016). Ohio Oil & Gas Locator Interactive Map. *Ohio Oil & Gas Wells*. Ohio Department of Natural Resources, Division of Oil and Gas. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= oilgaswells
- ODOT. (2007). 2007 Bridge Design Manual. Columbus, OH: Ohio Department of Transportation: Office of Structural Engineering. Retrieved from http://www.dot.state.oh.us/Divisions/Engineering/Structures/standard/Bridges/Pages/BDM2004.aspx
- ODOT. (2015). *Specifications for Geotechnical Explorations*. Ohio Department of Transportation: Office of Geotechnical Engineering.
- ODOT. (2016). FALCON Geotechnical Document Management System (GDMS). Ohio Department of Transportation: Office of Geotechnical Engineering. Retrieved from http://falcon.odotgeoms.org/FalconWebV3/default.aspx
- Pavey, R. R., Goldthwait, R. P., Brockman, C. S., Hull, D. N., Swinford, E. M., & Van Horn, R. G. (1999). Quarternary geology of Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map M-2. 1:500,000-scale map and 1:250,000-scale GIS files.
- USDA. (2015, September). Web Soil Survey. Retrieved from http://websoilsurvey.nrcs.usda.gov
- USGS & ODGS. (2005, June). Geologic Units of Ohio. ohgeol.kmz. United States Geologic Survey.

APPENDIX A

SOIL BORING LOCATION PLAN

 \bigcirc


0

191 (MED-18 92953)\92953\geotechnica\\sheets\Landslide & Culvert #3.dgn 3/25/2016 1:56:32 PM atuck

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

JFD-18 92953)\92953\nentechnical\sheets\Landslide & Good Will Stability.dan 3/25/2016 1:58:04 PM

 \bigcirc

 \bigcirc

APPENDIX B

SOIL BORING LOGS

D-18-13.£																					
N F	ROJECT: MED-18-13.54	DRILLING FIRM / O	PERA	TOR:	BEI / ASHBAUGH	DRIL	L RIG		CME 5	55	1	STAT	TION	/ OF	FSET	: 1	26+6	8. 27	'LT.	EXPLOR	ATION ID
	YPE: LANDSLIDE	SAMPLING FIRM / I			BEI / K.BAME				/E AUTO			ALIG					S.R			B-014	-1-16
ニ	ID: 92953 SFN:	DRILLING METHOD	D:	3	.25" HSA	_		-		12/3/15		ELE\	ΑΤΙΟ	ON:	959.2	2 (MS	SL) E	OB:	6	1.5 ft.	PAGE
16 ⊳	TART: 9/20/16 END: 9/21/16	SAMPLING METHO	D:		SPT	_		RATIO		81.8		LAT		_					.8273	85	1 OF 2
3/20	MATERIAL DESCRIPT	ION		ELEV.	DEDTUG	SPT/		REC	SAMPLE	HP		GRAD	ATIC)N (%	5)	ATT	ERB	ERG		ODOT	HOLE
Æ	AND NOTES			959.2	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEALED
	6.0", ASPHALT	_		958.7	_	_															
≝∖	8.0", BRICK		NVV.	958.0	- 1 ·	-															*******
\sim	10.0", GRANULAR BASE		\bowtie	957.2	- 2 -	_															
	VERY STIFF TO HARD, BROWN MOTTLE				-	3				0.5											
	BECOMING GRAYISH BROWN, SILTY CL SAND, TRACE GRAVEL, DAMP TO MOIST				- 3 -	3	10	72	SS-1	2.5 - 3.75	8	9	10	28	45	39	18	21	19	A-6b (12)	
OJE					- 4	4															
Ч					- 5	4															-
SOI					- 6	4	12	50	SS-2	3.0 - 3.5	-	-	-	-	-	-	-	-	19	A-6b (V)	
IVE.					- 0 -	5				5.5										. ,	-
ACT					- 7 -	_															
CTS					- 8 -	4 3	14	83	SS-3	4.5+		_	-	_	-				15	A-6b (V)	
PROJECTS						7	14	05	55-5	4.5+	-	-	-	-	-	-	-	-	15	A-00 (V)	
PRO						-															
IVE	@10.0'; SS-4 CONTAINS FEW ROOTS AN	ID DECAYED			- 10 -	3				10											
	ORGANICS				- 11 -	5	15	61	SS-4	4.0- 4.5+	-	-	-	-	-	-	-	-	17	A-6b (V)	
-AB/				947.2	- 10																
	MEDIUM STIFF TO VERY STIFF, BROWN				- 12 -	_															-
	WITH GRAY, SILT AND CLAY , LITTLE SAN GRAVEL. DAMP TO MOIST	ND, TRACE			— 13 ·	3	15	78	SS-5	3.9 - 4.0	4	6	11	37	42	33	19	14	17	A-6a (10)	
MB	SRAVEE, DAWF TO MOIST				W 14	7				4.0										. ,	
SOLI					-	-															
0	@15.0'; SS-6 BECOMES GRAYISH BROW	'N			— 15 · _	5	40	33	SS-6	0.5 -						_			22	A 60 () ()	
4:57					— 16 ·	20 9	40	33	33-0	0.5 - 2.75	-	-	-	-	-	-	-	-	23	A-6a (V)	
17 1				942.2	- 17 -	_															
	STIFF TO VERY STIFF, GRAYISH BROWI WITH GRAY, SILTY CLAY , LITTLE SAND,				- 10	4				4 5											
	GRAVEL, MOIST	INAOL			- 18 -	4_	15	56	SS-7	1.5 - 2.3	5	7	9	31	48	40	20	20	23	A-6b (12)	
<u>Т</u> .G					— 19 ·	7															
Ö					20 -																-
P					- 21 -		11	17	SS-8	1.50	-	-	-	-	-	-	-	-	28	A-6b (V)	
11)				937.2	-	4															
.5 X	VERY STIFF, GRAYISH BROWN MOTTLE	D WITH	HIT	351.2	- 22 -	1															
0 0	BROWN, CLAY , "AND" SILT, TRACE SANI	D, TRACE			- 23 -	3	10	0.0	<u> </u>	2.05		4	^	40	40	47	07	20	22	A 7 C (40)	
	GRAVEL, CONTAINS FEW ROOT HAIRS	AND HAS SLIGHT		935.2	-	4 5	12	83	SS-9	2.25	1	1	4	48	46	47	27	20	33	A-7-6 (13)	
	ORGANIC ODOR, MOIST				- 24 -	-															
BOR	STIFF TO VERY STIFF, GRAYISH BROWN WITH BROWN AND ORANGISH BROWN.	SILT AND			25 -	3				4 75											
Ы (CLAY, TRACE SAND, TRACE GRAVEL, D				- 26 -	5	16	100	SS-10	1.75 - 2.5	- 1	-	-	-	-	-	-	-	25	A-6a (V)	
S T S	@25.0'; SS-10 CONTAINS IRON STAINS				-	7															
ODC	@27.0'; SS-11 BECOMES BROWN MOTTL	ED WITH GRAY			- 27 -																
RD					28 -	2 4	15	94	SS-11	1.75 - 2.0	3	3	4	43	47	34	21	13	25	A-6a (9)	
STANDARD				929.7	- 29 -	7	-			2.0	Ľ					<u> </u>	ļ				
ĭ I I			K//A-	929.1		-															

ID: 929	53	SFN:	PROJECT:	MED	-18-13.54	STATIO	N / OFFS	ET: _	126+6	8, 27' LT	S ⁻	TART	: 9/2	20/16	EN	ND: _	9/2	1/16	_ P(G 2 O	F 2 B-01
			AL DESCRIPTION ND NOTES		ELEV. 929.2	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	CS	ATIO FS	N (% si	,	ATT	ERBE PL	ERG PI	wc	ODOT CLASS (GI)
		O HARD, BRC	DWNISH GRAY, SANDY SIL EL, DAMP (continued)	T ,	929.2	31	-		92	ST-12	2.5 - 4.5+	11				28	23	15	8	13	A-4a (6)
					924.7	- 32 - 33 - 34	7	35	100	SS-13	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V)
		NISH GRAY, S GRAVEL, DA	SILT AND CLAY , LITTLE MP		924.7	_	7	44	100	SS-14	4.5+	5	7	13	41	34	26	15	11	12	A-6a (8)
						- 37 - 38 - 38	8	45	94	SS-15	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)
		SH BROWN, S EL, DAMP	SANDY SILT, "AND" CLAY,		919.7	— 39 — 40 — 41	10	59	100	SS-16	4.5+	3	5	14	40	38	28	18	10	15	A-4a (8)
						- 42 - 43 - 44	7	45	100	SS-17	4.5+	-	-	-	-	-	-	-	-	16	A-4a (V)
					912.2	45 46	7	29	100	SS-18	4.5+	-	-	-	-	-	-	-	-	16	A-4a (V)
	AN"	D" CLAY, TRA	GRAYISH BROWN, SILT , ICE SAND, TRACE GRAVE	L, ++ ++ ++ ++ ++ ++ ++	+++ +++ +++ +++ +++ +++ +++ +++	- 47 - 48 - 49	4 8 10	25	100	SS-19	3.3 - 4.2	1	1	1	50	47	31	21	10	24	A-4b (8)
				+ + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + +	50 51	- 8 6 8	19	100	SS-20	2.0 - 2.2	-	-	-	-	-	-	-	-	23	A-4b (V)
				+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + +	— 52 	3	8	100	SS-21	1.6 - 2.25	0	1	3	61	35	27	20	7	26	A-4b (8)
@55.0'; S ⁻	T-22	NO RECOVEF	RY	, + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + +	55 56			0	ST-22	-	-	-	-	-	-	-	-	-	-	
				+++++++++++++++++++++++++++++++++++++++	** ** ** ** * * * * * * * * * * * * * *	— 57 — 58 — 59	5	38	100	SS-23	0.5 - 1.5	-	-	-	-	-	-	-	-	27	A-4b (V)
		sh Brown, s El, damp	BILT AND CLAY, SOME SAN	ID,	897.7	- 60 - 61	- 9 14 19	45	100	SS-24	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)

	DRILLING FIRM / OPE						CME 4	-	_	STAT					27+′ SR-1		3 LT	EXPLOR B-015	
YPE: <u>RETAINING WALL</u> ID: 92953 BR ID:	SAMPLING FIRM / LOO DRILLING METHOD:		.25" HSA			-	ATE: 1			ALIGN ELEV	.5 ft.	PA							
TART: 7/8/15 END: 7/8/15	SAMPLING METHOD:	0	SPT			RATIO		77.4	_	COOF		. <u> </u>			_		327227		1 (
MATERIAL DESCRIPT	ION	ELEV.	DEDTUO				SAMPLE	HP						-	- 1				Н
AND NOTES		959.6	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SE
S", ASPHALT		959.1																	
		958.6																	
SOFT TO VERY STIFF, BROWN CHANGIN AND GRAY, SILTY CLAY , LITTLE SAND, T			- 2 -	4 7	21	44	SS-1	1.7 - 2.1	-	-	-	-	-	-	-	-	21	A-6b (V)	
GRAVEL, MOIST		=	- 3 -	9															-
FILL)			- 4 -	4	10	6	SS-2	0.4 - 0.5	-	-	-	-	-	-	-	-	24	A-6b (V)	
		=		4															-
			- 5 -	6	17	39	SS-3	1.2 - 1.5	-	-	-	-	-	-	-	-	24	A-6b (V)	
			6																
			- 7 -																
27.5'; CHANGES TO VERY STIFF TO HA	RD	=	- 8 -	8 16	53	56	SS-4	2.0 - 4.5+	7	8	11	32	42	38	19	19	10	A-6b (11)	
			- 9 -	25	55	50		4.5+	1	0		32	42	30	19	19	10	A-00 (11)	
ERY STIFF TO HARD, BROWN, SILTY C		950.1																	
AND, TRACE GRAVEL, DAMP					28	07	00 F	2.0 -									10		
		=	- 11 -	10 12	20	67	SS-5	2.0 - 4.5+	-	-	-	-	-	-	-	-	18	A-6b (V)	
TIFF TO HARD, SILT AND CLAY, LITTLE		947.6	- 12																
GRAVEL, DAMP	SAND, TRACE		- 13 -	4	40			20-	_								10		
			- 14 -	8 29	48	72	SS-6	2.0 - 4.5+	5	6	12	34	43	33	18	15	18	A-6a (10)	
			- 15 -	5			00 7	17-									40		
			- 16 -	18 50/5"	-	88	SS-7	1.7 - 4.5+	-	-	-	-	-	-	-	-	16	A-6a (V)	
16.4'; ENCOUNTERED COBBLE			- 17																
			- 18 -	36	_	83	SS-8	4.5+	-	-	-	-	-	-	-		17	A-6a (V)	
			- -	50	_	00	00-0	4.51	-	-	-		-	_	-	_	17	A-0a (V)	-
STIFF, BROWN MOTTLED WITH GRAY, S		940.3	19																
SOME SAND, LITTLE GRAVEL, MOIST			- 20 -	3				10			-								
		938.6	- 21 -	5 5	13	100	SS-9	1.2 - 1.6	16	10	12	29	33	36	19	17	20	A-6b (8)	
			- 22 -																
22.5'; SS-10 NO RECOVERY				5							_								
			W23	3	9	0	SS-10	-	-	-	-	-	-	-	-	-	-		
			- 24 -																
ERY SOFT TO MEDIUM STIFF, BROWN	MOTTLED	++	- 25 -	4				0.5		$\left \right $	-								
VITH GRAY, SANDY SILT, SOME CLAY, T			- 26 -	3	8	22	SS-11	0.5 - 0.8	-	-	-	-	-	-	-	-	29	A-4a (V)	
GRAVEL, MOIST			- 27 -																
				WOH							_								-
			- 20 -	3	8	100	SS-12	0.2 - 0.6	6	8	12	46	28	26	16	10	18	A-4a (8)	
			- 29 -	3															

PID: 9	MATERIAL DESCRIPTION		MED-1	8-12.99		STATION	N/OFF	SET:		.51, 23.0		STAR	Г: _7/	/8/15	E	ND:	7/8	8/15	_ P	G 2 O	F2 B-0	15-0-14	
			TION		ELEV.	DEI	PTHS	SP1 RQI	Г/ N ₆₀	REC	SAMPLE	E HP							1			ODOT	HOLE SEALED
@30.0"	· SS-13	AND NOTES			929.6					(70)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI	SEALEL
@30.0	, 33-15	NO RECOVERT			928.1		- 31	́ 9	25 10	0	SS-13	-	-	-	-	-	-	-	-	-	-		7 4
					920.1	EOB																	
NOTES	: GRC	UNDWATER ENCOUNTE	RED AT 23.5' DURIN	G DRII	LLING. C	AVE DI	EPTH 26	.0'.															
ABAND	ONME	NT METHODS, MATERIAL	<u>S, QUANTITIES: PL</u>	ACED	.5 BAG /	ASPHAL	T PATC	H; SOII	L MIXE	D WIT	H BENTO	ONITE	PEL	LETS									

- 18-13 . 5																		
BROJECT:MED-18-13.54	DRILLING FIRM / OPERA	TOR	BEL/ASHBAUGH	DRILL	RIG		CME 5	55	STA	τιον	/ OF	FSFT	г· 1	27+6	2 22'	'IT	EXPLORA	TION ID
<pre>TYPE: LANDSLIDE</pre>	SAMPLING FIRM / LOGG		BEI / K.BAME				IE AUTO		ALIG					S.R.		<u> </u>	B-015	-1-16
TYPE: LANDSLIDE PID: 92953 SFN:	DRILLING METHOD:		.25" HSA				ATE:		ELE\			960.0				6	I.5 ft.	PAGE
₽ START: 9/20/16 END: 9/20/16	SAMPLING METHOD:		SPT	ENER				81.8	LAT							.8270		1 OF 2
MATERIAL DESCRIPT		ELEV.					SAMPLE		GRAD		_		ATT				ODOT	HOLE
AND NOTES		960.0		RQD	N ₆₀	(%)	ID		CS						PI	wc	CLASS (GI)	SEALED
		500.0				(,,,,)		(101)		-	-							
			- 1 -															
			- 2 -															
14 1 2																		
UTS/			- 3 -															
DIEC			- 4 -															
PRO																		
OL OL																		
JE S			- 6 -															
CTIV			- 7 -															
ISA			8															
RO.			- 9 -															
			— 10 —															
É C																		
AB/A																		
BND			- 12															
SLA			— 13 —															
MBU																		
			14															
I CO			- 15															
- 75			- 16															
7 14:																		
(8/11			- 17															
- 1 3			— 18 —															
CD			- 19															
100																		
Н			20															
0 - (1			- 21															
×			W 22															
(8)																		
00			- 23 -															
NG L			— 24 —															
ORI			- 25															
8			26															
IC			— 27 —															
0																		
(NO SAMPLING)																		
ANC			29															
ST																		

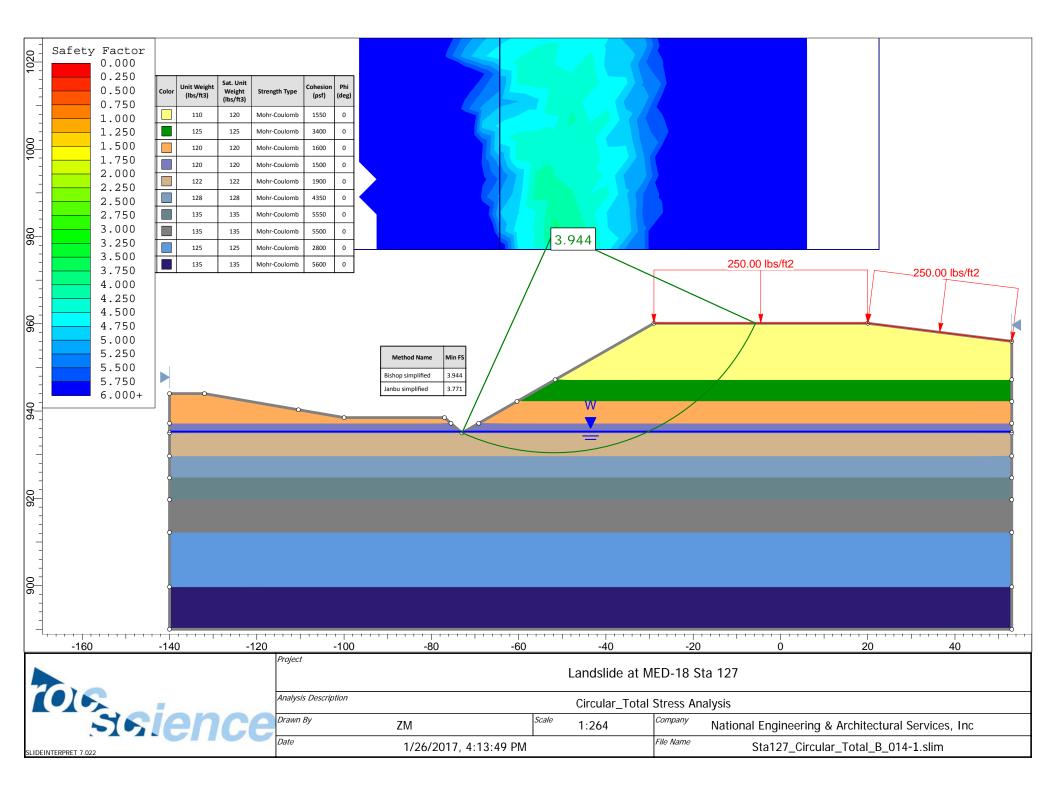
MATERIAL DESCRIPTION AND NOTES ELUV. 3300 DEPTHS PRO No. REC SAMUE IP GRADINIE OUTEREERC MOODE	PID: 92953	SFN:	PROJECT:	MED-1	8-13.54	ST	ATION	OFFS	ET: _	127+6	62, 22' LT	. S [.]	TART	: 9/2	20/16	E E	ND:	9/2	0/16	_ P	G 2 O	F 2 B-01	15-1
UGERED DOWN (continued) 927.5 IERY STIFF TO HARD, GRAVISH BROWN, SANDY SILT, 927.5 IERY STIFF TO HARD, GRAVISH BROWN, SANDY SILT, 927.5 IFTE TO HARD, GRAVISH BROWN, SANDY 915.5 ITTEE SAND, TRACE GRAVEL, DAMP 915.5 IFTER SAND, TRACE GRAVEL, DAMP 906.0 IFTER SA						DEPTH	HS	SPT/	N ₆₀							()	/	-		-	WC	ODOT CLASS (GI)	HC
927.5 927.5 927.5 927.5 927.5 927.5 9 927.5 9 <t< td=""><td>AUGERED D</td><td></td><td>0123</td><td></td><td>930.0</td><td></td><td></td><td>RQD</td><td></td><td>(70)</td><td>U</td><td>(151)</td><td>GR</td><td>03</td><td>FO</td><td>31</td><td>UL</td><td></td><td>FL</td><td>FI</td><td>WC</td><td> (-)</td><td></td></t<>	AUGERED D		0123		930.0			RQD		(70)	U	(151)	GR	03	FO	31	UL		FL	FI	WC	(-)	
BELO BADO GRAVISH BROWN, SANDY SILT. BADO SOME CLAY, TRACE GRAVEL, DAMP SANDY SILT. BADO STIFF TO HARD, GRAVISH BROWN, SILT AND CLAY, Image: Single Clay, Trace Gravel, DAMP Image: Single Clay, Trace Gravel, DAMP STIFF TO HARD, GRAVISH BROWN, SILT AND CLAY, Image: Single Clay, Trace Gravel, DAMP Image: Single Clay, Trace Gravel, DAMP STIFF TO HARD, GRAVISH BROWN, SILT AND CLAY, Image: Single Clay, Trace Gravel, DAMP Image: Single Clay, Trace Gravel, DAMP 915.5 908.0 Image: Single Clay, Trace Gravel, DAMP Image: Single Clay, Trace Gravel, DAMP Image: Single Clay, Trace Gravel, DAMP 915.5 915.5 Image: Single Clay, Trace Gravel, DAMP								-															
915.5 9 9 9 13 44 15 6 9 13 44 16 8 14 A4a(r) 34 6 9 13 44 31 24 16 8 14 A4a(r) 35 6 9 13 44 31 24 16 8 14 A4a(r) 36 12 40 100 SS-2 4.5 - 12 A4a(r) - - - - 12 A4a(r) - - - 12 A4a(r) - - - - 12 A4a(r) - - - - 12 A4a(r)			H BROWN SANDY SILT	- –	927.5			4				0.05											-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									20	89	SS-1	3.25	6	9	13	41	31	24	16	8	14	A-4a (7)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							- 25 -	6															_
$ \begin{array}{c} 37 \\ -38 \\ -39 \\$								12	40	100	SS-2	4.5+	-	-	-	-	-	-	-	-	13	A-4a (V)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							- 37 -																-
$\begin{array}{c} 915.5 \\ 90.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $							- 38 -	13	45	100	SS-3	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							39	20															-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								7 19	56	89	SS-4	4.0 -	-	_	_	_	_	-	-	_	21	A-4a (V)	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							_ L					4.5+									- ·	/ iu (i)	-
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1 & 1 & 2 & 1 & 3 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3$									- 10														-
STIFF TO HARD, GRAYISH BROWN, SILT AND CLAY, ITTLE SAND, TRACE GRAVEL, DAMP 45 8 11 37 100 SS-6 2.52 4 6 12 36 42 27 16 11 15 A-6a (8) 46 11 37 100 SS-6 2.52 4 6 12 36 42 27 16 11 15 A-6a (8) 250.0°; SS-8 BECOMES BROWN, TRACE SAND 908.0 908.0 908.0 908.0 908.0 10 SS-7 2.00 - 11 4-6a (8) - - - - - - - - - - - 12 4-6a (V) 250.0°; SS-8 BECOMES BROWN, TRACE SAND 908.0 - 10 SS-8 12.25 - -					015 5				49	94	55-5	4.5+	-	-	-	-	-	-	-	-	14	A-4a (V)	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					915.5		- 45 -	8															-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ITTLE SAN	D, TRACE GRAVEL,	DAMP				- 46 -	11	37	100	SS-6	2.5 - 4.25	4	6	12	36	42	27	16	11	15	A-6a (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_ 47 _																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							- 48 - -		27	100	SS-7	2.0 - 4.0	-	-	-	-	-	-	-	-	19	A-6a (V)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								12															1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									29	100	SS-8	1.75 -		_	_	_	-	-	-	-	27	A-6a (V)	1
$\frac{53}{54} = \frac{4}{6} = \frac{14}{100} = \frac{53}{52.0} = \frac{4}{100} = \frac{53}{100} = \frac{4}{100} = \frac{1}{100} = \frac{1}{$		DED SIET AND CEAT), MOIST		908.0		_ L		-			2.25											-
$ 255.0^{\circ}; SS-10 \text{ TO } SS-12 \text{ BECOME TRACE GRAVEL, DAMP } \begin{bmatrix} -54 & -46 & 14 & 100 & SS-9 & -1.0 & 0 & 0 & 1 & 44 & 55 & 31 & 21 & 10 & 27 & A-4a (8) \\ -54 & -6 & -6 & -6 & -6 & -6 & -6 & -6 & -$								4		400		0.5 -							0.1	10	07		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									14	100	55-9	1.0	0	0	1	44	55	31	21	10	27	A-4a (8)	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ଲନ୍ଦ						- 55 -	7				4.0-											-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>w</u> 00.0, 00-1							. 9	26	100	SS-10	1.25 - 2.0	-	-	-	-	-	-	-	-	20	A-4a (V)	
							- 57 -																
									14	89	SS-11	4.0 - 4.25	-	-	-	-	-	-	-	-	14	A-4a (V)	
260.0'; SS-12 CONTAINS IRON STAINS 898.5 500 - 13	@60.0'; SS-1	2 CONTAINS IRON S	STAINS					17	57	100	SS-12	4.5+	10	14	18	38	20	20	15	5	11	A-4a (5)	1

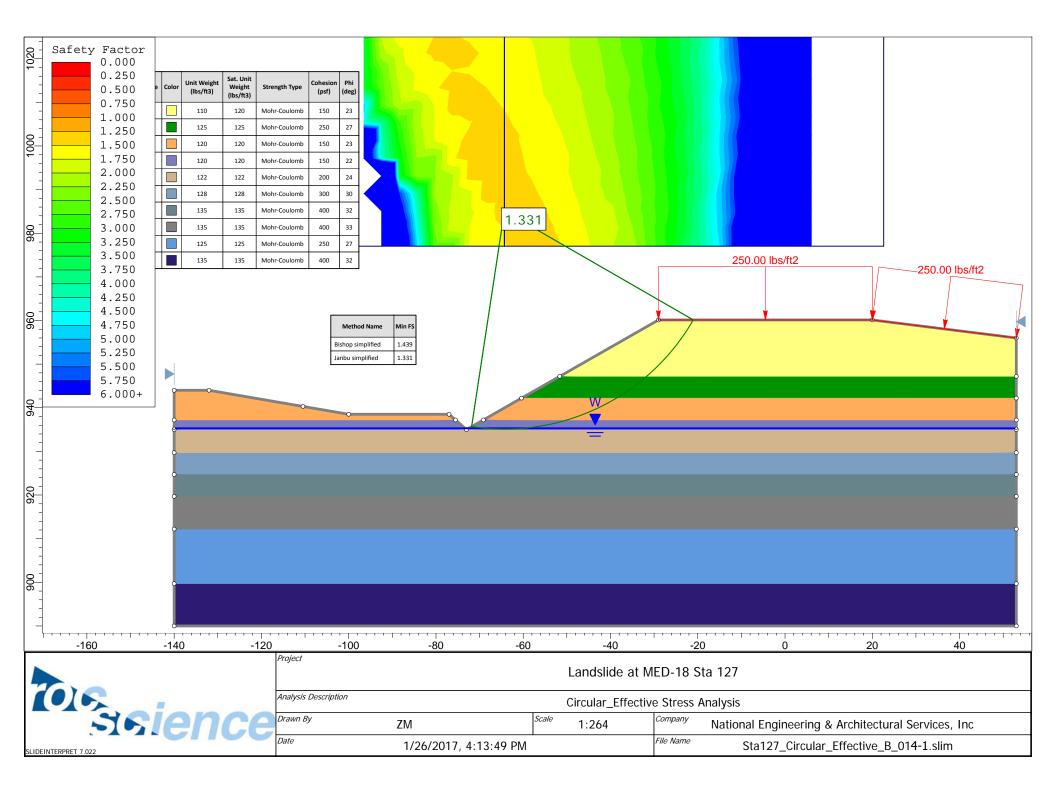
	DRILLING FIRM / OPI			DRIL			CME 4	-		STAT			SET				RT	EXPLOR/ B-016	
	SAMPLING FIRM / LC									ALIG					SR-1				PA
	DRILLING METHOD: SAMPLING METHOD		SPT	-		ION D. RATIO		<u>1/26/14</u> 77.4		ELEV							30 327141	0.0 ft.	10
MATERIAL DESCRIPTIO		ELEV.					SAMPLE			0001	<u>، الله</u>		-	1.107	010,	-01.0		1	B
AND NOTES		959.9	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	ODOT CLASS (GI)	
i", ASPHALT	/ -	959.7				<u> </u>													
", GRANULAR BASE		959.5	- 1 -																
IARD, BROWN WITH GRAY, Silt and Cl Sand, Trace Gravel, Damp Fill)	AY, LITTLE	956.9	- 2 -	3 3 4	9	56	SS-1	4.5+	-	-	-	-	-	-	-	-	18	A-6a (V)	7 4 7 4
ERY STIFF TO HARD, BROWN WITH GR			4	3 4 5	12	100	SS-2	2.75 - 3.0	1	3	9	28	59	47	20	27	21	A-7-6 (16)	
'EW ROOT HAIRS, MOIST F ILL) ፬4.5': SS-3 CONTAINS FIELD TILL FRAGN			- 5 -	3 4 6	13	100	SS-3	2.5 - 4.5+	-	-	-	-	-	-	-	-	21	A-7-6 (V)	<pre></pre>
		952.6	- 7 -																7 7 7 4
ERY STIFF, BROWN WITH GRAY, SILTY AND, TRACE GRAVEL, DAMP POSSIBLE FILL)			- 8 -	4				26											- 7 - 7
			10	4 5	12	100	SS-4	2.6 - 4.0	-	-	-	-	-	-	-	-	17	A-6b (V)	< 7 L 1 >
TIFF TO VERY STIFF, GRAYISH BROWN		948.6	11																< 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
RAY BROWN AND DARK GRAY, CLAY , " ITTLE SAND, CONTAINS FEW FINE ROO	AND" SILT, TS, MOIST		Ⅰ ⊢ ┛	3 3 5	10	100	SS-5	1.4 - 3.2	0	4	9	36	51	49	21	28	24	A-7-6 (17)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
DENSE, GRAYISH BROWN, GRAVEL WITH	I SAND AND	944.6	W 15																1>
I LT , LITTLE CLAY, MOIST			— 16 — — 17 —	7 23	46	78	SS-6	-	-	-	-	-	-	-	-	-	24	A-2-4 (V)	
		940.6	- 18 - - 19 -	13															- 7 L 7 X 7 X
TIFF, BROWN MOTTLED WITH GRAYISH IILTY CLAY, LITTLE SAND, TRACE GRAVE			- 20 -	6															72
			- 21 - - - 22 -	6 11 27	49	78	SS-7	1.4 - 1.7	-	-	-	-	-	-	-	-	23	A-6b (V)	7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
STIFF TO VERY STIFF, OLIVE GRAY MOT GRAY, SILT AND CLAY , LITTLE SAND, TR/		936.6	23																V71 7V7 7
IOIST	TOL GRAVEL,			3 3 4	9	100	SS-8	1.25 - 4.0	-	-	-	-	-	-	-	-	22	A-6a (V)	
		932.6	27																
ERY STIFF, GRAY, SANDY SILT , LITTLE RAVEL, DAMP			- 28 - - 29 -	4 8	25	100	SS-9	2.75 - 3.25	8	15	16	42	19	22	16	6	13	A-4a (5)	7 4 7

PID: 92953	SFN:	PROJECT:	MED-1	8-13.54	STATION	/ OFFS	ET:	127+7	'8, 18' RT	S [.]	TART	: 9/2	22/16	EN	ND: _	9/22	2/16	_ P	G 2 O	F 2 B-01	6-1-1
	MATERIAL DESC			ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE			RAD		<u> </u>				ERG		ODOT CLASS (GI)	HOL
AUGERED D	AND NOTE OOWN (continued)	:5		930.9	L	RQD		(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC		SEAL
	()				- 31 -	-															
				928.4	- 32 -	_															
	, GRAY TO BROWN, SA	NDY SILT, SOME			- 33 -	56	22	83	SS-1	3.75 - 4.0	5	7	12	45	31	26	17	9	15	A-4a (8)	
CLAT, TRAC	CE GRAVEL, DAMP				- 34 -	10				4.0	• 				•••						-
				925.5	- 35 -	5															-
VERY STIFF	TO HARD, GRAY, SILT CE GRAVEL, CONTAINS	AND CLAY, SOME			- 36 -	10 17	37	100	SS-2	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	
SAND, TRA	CE GRAVEL, CONTAINS	SILT LENSES, DAIVIP			- 37 -																
						8 15	53	100	SS-3	4.5+	10	10	11	37	32	26	15	11	11	A-6a (7)	
						24	55	100	33-3	4.5*	10	10		57	52	20	15			A-0a (7)	-
					- 40 -	8															
					- 41 -	13	45	100	SS-4	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V)	
					- 42 -	20															
					- 43 -	7	50	100	00 5	4.5.									40		
					44 -	16 21	50	100	SS-5	4.5+	-	-	-	-	-	-	-	-	13	A-6a (V)	
					_ 45 -	_															
					46 -	7 12	42	100	SS-6	4.5+	-	-	-	-	-	-	-	-	15	A-6a (V)	
					- 47 -	19															-
@47.5': SS-	7 AND SS-8 BECOME LIT	TLE SAND			_ 	6				2.0											-
0 ,					40 49 -	8 12	27	89	SS-7	3.0 - 4.5+	3	4	9	37	47	31	18	13	18	A-6a (9)	
					_	-															
@50.0'; SS-4 AND CLAY),	8 BECOMES BROWN, (IN	ITERBEDDED SILT			- 50 -	6 9	30	100	SS-8	2.75 - 3.75	-	-	-	-	-	-	-	-	25	A-6a (V)	
AND GLAT),				909.4	- 51 -	13				3.75											

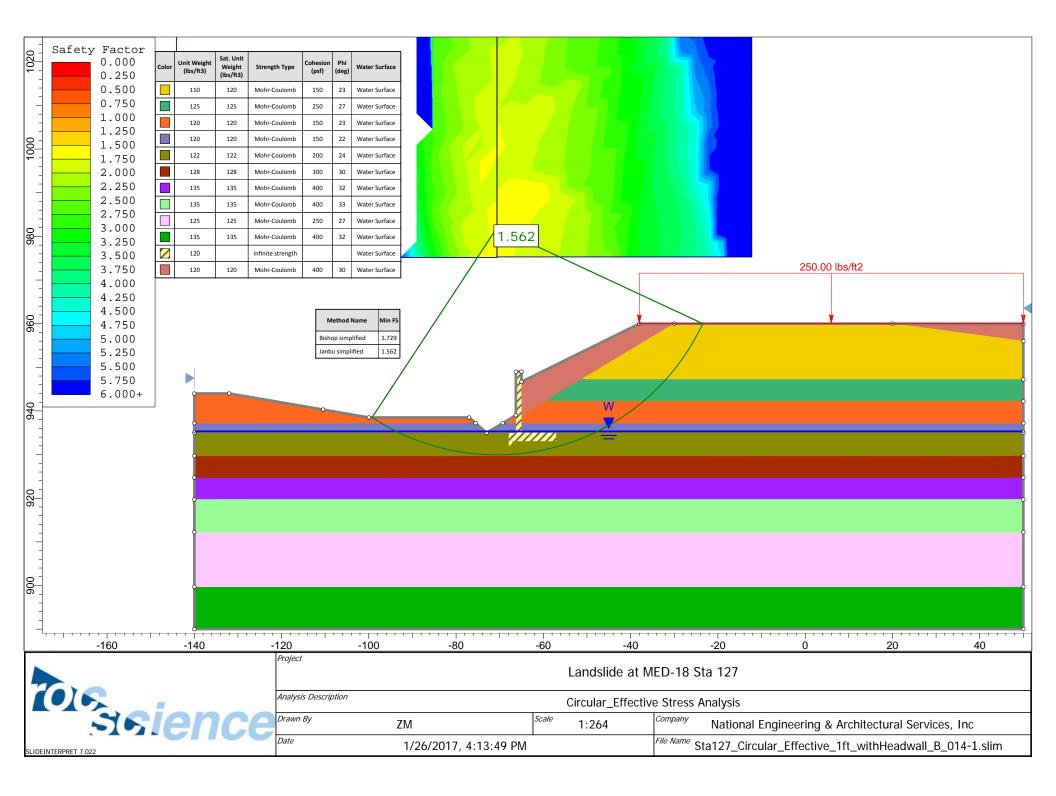
PROJE		MED-18-	12.99 T SUBGRADE	DRILLING FIRM / SAMPLING FIRM						L RIG		CME 45		_	STAT ALIG			SET		65+0 R-18	2, 38 3	LT	EXPLOR B-027	ATION ID 7-0-14
	92953 :7/8/15	BR ID: 5 END:	7/8/15	DRILLING METH		3	.25" HSA SPT		-	BRAT RGY F			/26/14 77.4	_	ELEV COO		N: 9		(MSL 1.1364	<u>, , , , , , , , , , , , , , , , , , , </u>	-	-	.0 ft.	PAGE 1 OF 1
4			AL DESCRIPT	ION	<u> </u>	ELEV. 957.6	DEPT	гнѕ	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	CS	FS	SI	CL	LL	PL	PI	WC	ODOT CLASS (GI)	BACK FILL
∰5", ASI ∰4", BR	ICK					957.2 956.9/ 956.1/		- 1 -																$\frac{1}{2}L^{N}\frac{1}{2}L^{N}$
HARD	, BROWN E GRAVEL	AND GRAY	, SILTY CLAY,	LITTLE SAND,		954.6		- 2 - - 3 -	10 14 <u>22</u> 50/4"	46	67	SS-1 SS-2	4.5+	4	8	11	30	47	34	18	16		A-6b (10)	7676
VERY	DENSE, E		D REDDISH BI	ROWN, GRAVEL		953.6 952.8		- 4 -	11		~ <u></u>			-			-	-		-	-	12	,	7 LV 7 L 7 X 7 X
FRAG	MENTS, D	DSILT, TRAD DRY	CE CLAY, CUI	NTAINS BRICK				- 5 - - 6 -	37 67 50	134	67 100	SS-3 SS-4	4.5+ 4.5+	3	5	9	33	50	36	19	17	17 16	A-6b (11)	76 76
	/N, SILTY AINS BRIC	CLAY , LITT CK FRAGME	le Sand, Son Ents, Damp	ME GRAVEL,				- 7 -	14		100	00 4	4.01									10		
HARD LITTLE BROW	33-4 ANL	MOTTLED RACE GRA SS-5 BEC	LE SAND, SON ENTS, DAMP WITH GRAY, S VEL, DAMP OME GRAY M	SILTY CLAY , OTTLED WITH		948.6	EOB-	- 8 - - - 9	29 50	102	78	SS-5	4.5+	-	-	-	-	-	-	-	-	11	A-6b (V)	

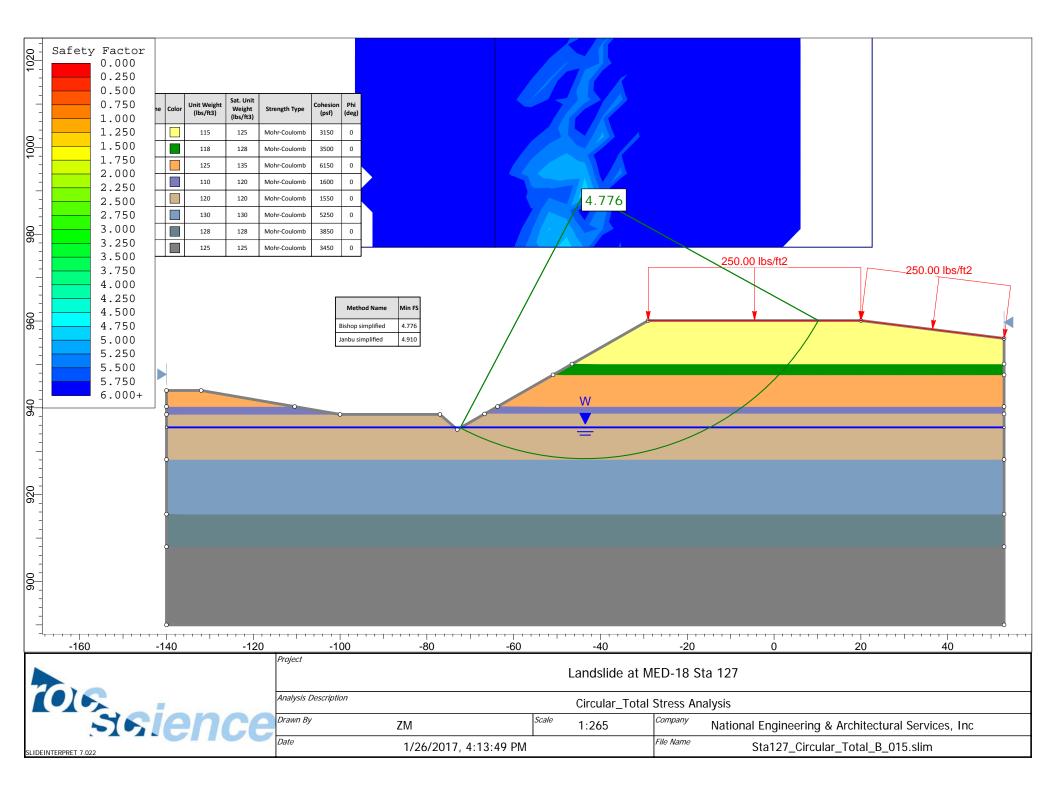
	DRILLING FIRM / OPE	RATOR:	BEI / ASHE	BAUGH			:				STAT	ION	/ OFF	SET	:16	65+8 ⁻	7, 32	LT.	EXPLOR	
	SAMPLING FIRM / LOO		BEI / K.B.	AME				IE AUTO				NME	_			S.R.			B-027	PAGE
	DRILLING METHOD:	3	3.25" HSA						12/3/15						6 (MSL				.5 ft.	1 OF 2
TART: <u>9/19/16</u> END: <u>9/19/16</u> MATERIAL DESCRIPTI	SAMPLING METHOD:	ELEV.	SPT		-			(%): SAMPLE	81.8				<u>G:</u> N (%)		ATTE		· .	.8132		
AND NOTES	UN	960.6	DEPT	HS	SPT/ RQD	N ₆₀	KEC (%)	ID	(tsf)				SI	<u></u>			PI	wc	ODOT CLASS (GI)	HOL SEAL
6.0", ASPHALT	×	960.1		L _			(/0)		((0.))											
18.0", GRANULAR BASE				- 1 -																*****
VERY STIFF TO HARD, BROWN AND GRA SILT AND CLAY , "AND" SAND, LITTLE GR/ CONTAINS SLAG, ROOT HAIRS, AND FEV DAMP	AVEL,	958.6		2 3 4	7 6 7	18	61	SS-1	3.25 - 4.5+	11	16	21	24	28	30	18	12	16	A-6a (4)	-
(FILL) VERY STIFF TO HARD, BROWN AND GRA CLAY , LITTLE SAND, TRACE GRAVEL, DA				6	5 6 10	22	67	SS-2	4.5+	6	5	9	33	47	35	18	17	17	A-6b (11)	-
				- 7 - 8 - 9	4 3 4	10	61	SS-3	3.25 - 3.75	-	-	-	-	-	-	-	-	19	A-6b (V)	
@10.0'; SS-4 TO SS-5 BECOME BROWN N GRAY, SS-4 CONTAINS FEW IRON STAIN				- 10 - - 11 - 12	2 4 7	15	67	SS-4	4.5+	-	-	-	-	-	-	-	-	20	A-6b (V)	-
		946.1		12 13 14	4 5 7	16	72	SS-5	2.4 - 3.1	-	-	-	-	-	-	-	-	20	A-6b (V)	-
VERY STIFF TO HARD, BROWN TO GRAY CLAY , "AND" SILT, LITTLE SAND, MOIST	ISH BROWN,	943.1		15 16 17			100	ST-6	3.25 - 4.5+	0	2	9	47	42	53	29	24	31	A-7-6 (16)	
VERY STIFF TO HARD, GRAY AND BROW SILT , LITTLE GRAVEL, LITTLE CLAY, DAM		943.1		- 18 - 19	4 4 3	10	89	SS-7	2.0 - 4.5+	20	20	19	25	16	28	18	10	17	A-4a (1)	-
@20.0'; SS-8 AND SS-9 BECOME GRAY				20 21	3 4 6	14	100	SS-8	2.75 - 3.25	-	-	-	-	-	-	-	-	14	A-4a (V)	-
		936.1		- 22 - 23 - 24	3 5 7	16	83	SS-9	2.5 - 2.75	-	-	-	-	-	-	-	-	14	A-4a (V)	
MEDIUM DENSE, GRAY, SANDY SILT , TR/ TRACE GRAVEL, WET	ACE CLAY,			26	6 7 7	19	100	SS-10	-	1	0	48	45	6	NP	NP	NP	21	A-4a (3)	-
				- 27 - 28 -	7 8	23	78	SS-11	_	_	_	_	_	_		_	_	23	A-4a (V)	-

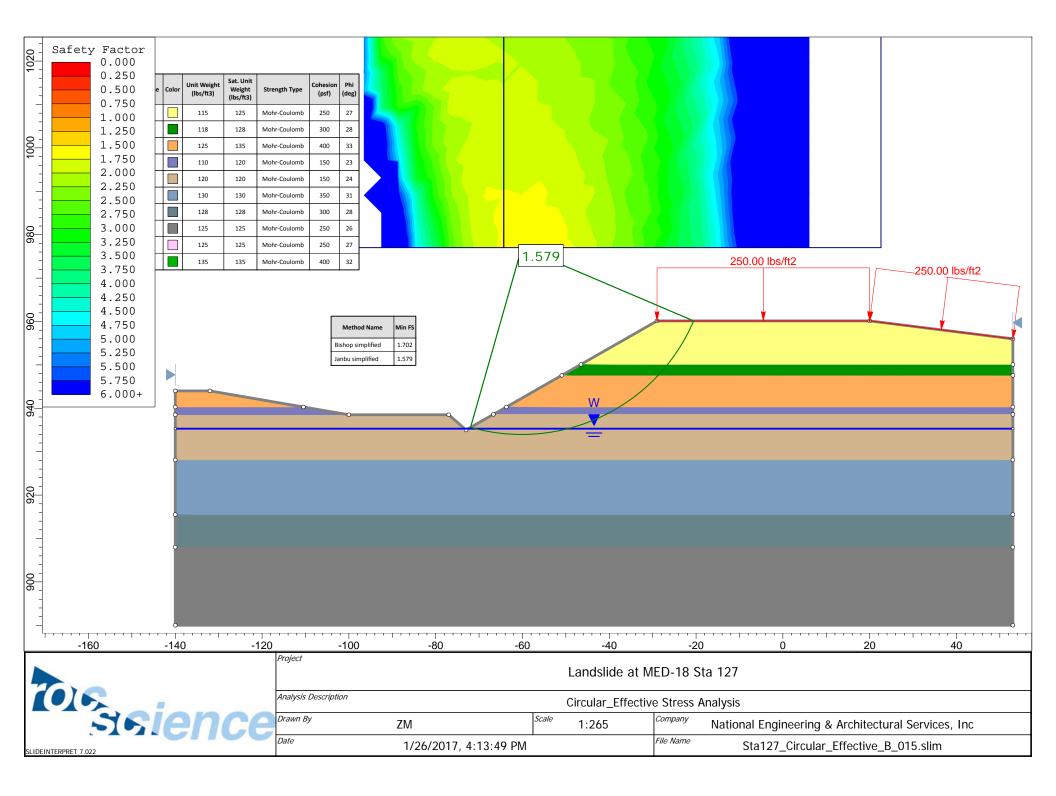

ID: 92953 SFN:	PROJECT:	MED-1	8-13.54	STATIO	N / OFFSET:	165+	87, 32' LT.	S	TART	: 9/19	9/16	END	9/	19/16	Р	G 2 O	F 2 B-02	27-1-
MATERIAL DESCRIP	TION		ELEV.	DEPTHS	SPT/ BOD N ₆₀		SAMPLE			RADA		<u> </u>	_	TERB	-		ODOT	HO
			930.6	DEITIIG	RQD N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI C	. LL	PL	PI	WC	CLASS (GI)	SEA
MEDIUM DENSE, GRAY, SANDY SILT , TI TRACE GRAVEL, WET <i>(continued)</i>	RACE CLAY,			- 31	4 11	83	SS-12	-	-	-	-	- -	-	-	-	26	A-4a (V)	
			928.6	- 32	4													-
VERY STIFF TO HARD, GRAY, SANDY S CLAY, TRACE GRAVEL, DAMP	ILT, SOME			- 33	4			2.75										-
,,,,,				-		89	SS-13	3.5	-	-	-	- -	-	-	-	13	A-4a (V)	
				- 34	-													
				- 35		17	SS-14	_	_	-			1.	-		15	A-4a (V)	
				- 36	10 42 21	17	33-14	-	-	-	_				-	15	A-4a (V)	_
				37	-													
2)37.5'; SS-15 TO SS-19 BECOME GRAY	ISH BROWN			- 38	14 55	100	SS-15	4.5+	5	7	16	40 3	2 26	17	9	13	A-4a (7)	
				— 39	25												,	-
				- 40	11								_	_				
				- 41	15 48	100	SS-16	4.25 - 4.5+	-	-	-	- -	-	-	-	11	A-4a (V)	
				- 42														-
				- 43	19													-
				- 44	34 94 35	100	SS-17	-	-	-	-		-	-	-	18	A-4a (V)	
				-	-													
				- 45	3 20	89	SS-18	4.5+	6	4	14	41 3	5 26	16	10	15	A-4a (8)	
				— 46 _	7				Ŭ	·								-
				47	10								_					-
				- 48	15 50	100	SS-19	2.75 - 4.5+	-	-	-	- -	-	-	-	14	A-4a (V)	
				49	22													-
@50.0'; SS-20 BECOMES GRAY				50														-
			909.1	- 51	26 79 32	72	SS-20	2.00	-	-	-	- -	-	-	-	17	A-4a (V)	
				EOB												•		
NOTES: GROUNDWATER ENCOUNTE																		

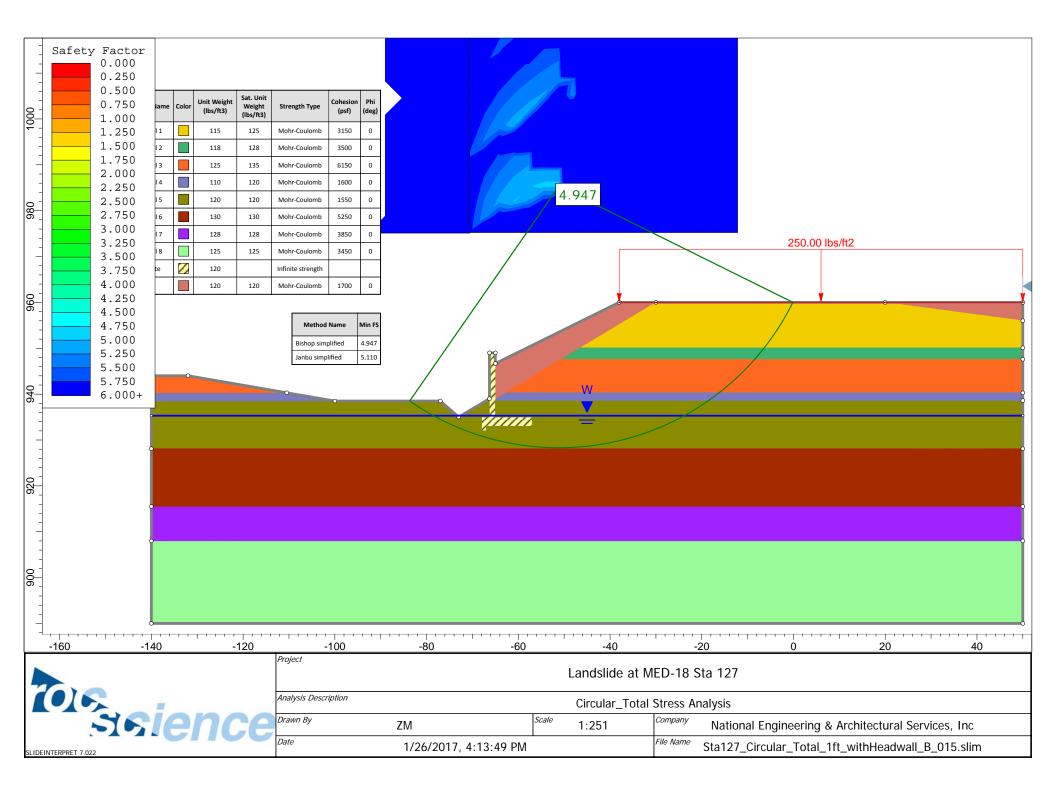

18-18-18-18-18-18-18-18-18-18-18-18-18-1																		-	
	LING FIRM / OPERATOF	R: BEI/A	SHBAUGH	DRIL			CME 5			STA	ΓΙΟΝ	/ OFF	SET	: <u>1</u>	66+7	6, 35	' LT.	EXPLOR	
₹ TYPE: LANDSLIDE SAMI	PLING FIRM / LOGGER:	BEI /	K.BAME				IE AUTO	MATIC		ALIG		-			RS.R			B-02	7-2-16
a	LING METHOD:	3.25" H						2/3/15		ELE\		_						1.5 ft.	PAGE
ର୍ଦ୍ଦ୍ର START: <u>9/19/16</u> END: <u>9/19/16</u> SAMI	PLING METHOD:	SPT	-	ENEF	RGY R	ATIO	(%):	81.8		LAT	/ LON	IG: _		41.1	3642	9, -81	.8129	74	1 OF 2
MATERIAL DESCRIPTION	ELE	V	EPTHS	SPT/	N		SAMPLE	HP	(GRAD	ATIC)N (%)	ATT	ERBI	ERG		ODOT	BACK
AND NOTES	963	.5	EFTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
6.0", ASPHALT	963	.0_																	
월 18.0", GRANULAR BASE			- 1 -																$\frac{1}{7}L^{V}\tilde{7}L^{V}$
	961	.5	- 2 -																1>112
VERY STIFF TO HARD, BROWN AND GRAYISH SILT AND CLAY, LITTLE SAND, TRACE GRAVED CONTAINS ASPHALT AND BLACK WOOD FRAC DAMP TO MOIST (FILL)	L, SS-1		- 3 -	³ 2 5	10	61	SS-1	2.0 - 3.5	-	-	-	-	-	-	-	-	26	A-6a (V)	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
₫ (FILL) = @5.0'; SS-2 CONTAINS ROOTS AND IRON STA	AINING 956	.5	- 5 - - 6 - - 7 -	3 6 7	18	72	SS-2	4.5+	6	8	12	36	38	32	19	13	15	A-6a (9)	$= \begin{array}{c} \stackrel{\sim}{\rightarrow} \stackrel{\vee}{} \stackrel{\vee}{}$
VERY STIFF TO HARD, BROWN AND GRAYISH BECOMING BROWN, SILTY CLAY , LITTLE SAN GRAVEL, DAMP TO MOIST			- 8 -	³ 5_	16	72	SS-3	3.5 - 4.25	-	-	-	-	-	-	-	-	16	A-6b (V)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
VE PROJ			9 10	2															
ABIACTI			11	4 7	15	78	SS-4	4.5+	4	7	10	37	42	35	19	16	17	A-6b (10)	
ICOLUMBUSIABILABIACTIV			- 12 - - 13 - - 14 -	4 5 7	16	67	SS-5	4.0 - 4.5+	-	-	-	-	-	-	-	-	19	A-6b (V)	1>112
S 	947 ACK	.0	15 16 17	2 3 5	11	61	SS-6	3.5 - 4.5+	-	-	-	-	-	-	-	-	20	A-6b (V)	$\begin{array}{c} 1 > 1 \\ 1 > 1 \\ 1 > 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
BECOMING DARK GRAYISH BROWN AND BRO CLAY, "AND" SILT, LITTLE TO SOME SAND, TR SOME GRAVEL, SS-7 CONTAINS A SLIGHT OR ODOR, DAMP TO MOIST	DWN, RACE TO		18 18	2 4 5	12	83	SS-7	1.75 - 2.25	3	4	11	42	40	46	25	21	27	A-7-6 (14)	- / < / <
	941	5	- 20 - - 21 -	4 3 4	10	44	SS-8	1.0 - 1.5	-	-	-	-	-	-	-	-	22	A-7-6 (V)	
VERY STIFF TO HARD, BROWN TO BROWNIS SANDY SILT, SOME CLAY, TRACE GRAVEL, DA MOIST	H GRAY,		- 22 - - 23 - - 24 -			92	ST-9	3.0 - 4.5+	6	8	12	45	29	24	16	8	15	A-4a (8)	
MOIST	936	5	- 25 - 26 -	6 11 13	33	83	SS-10	4.5+	6	9	13	46	26	23	15	8	12	A-4a (7)	
MEDIUM DENSE TO DENSE, GRAYISH BROWN SILT, TRACE CLAY, MOIST TO WET			- 27 - - - 28 -	8 11 14	34	100	SS-11	-	-	-	-	-	-	-	-	-	25	A-4a (V)	
		W	29	14															

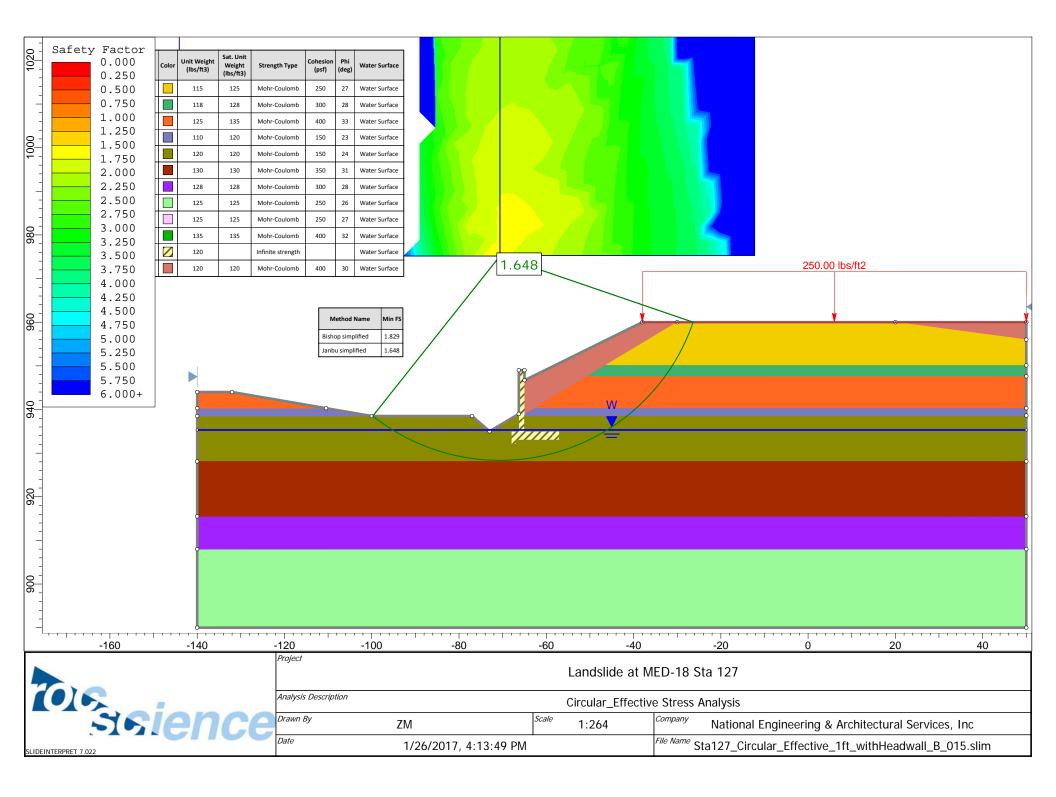
MATERIAL DESCRIPTION AND NOTES ELEV. 933.5 DEPTHS SPT/ RQD No. (%) REC [SAMPLE (b) HP CRADATION (%) ATTERERS OCOT (LASS (G) TEDIUM DENSE TO DENSE, GRAYISH BROWN, SANDY ILIT, TRACE CLAY, MOIST TO WET (continued) Image: Classical state s
IEDIUM DENSE TO DENSE, GRAYISH BROWN, SANDY ILT, TRACE CLAY, MOIST TO WET (continued) 928.5 921.0
$\begin{array}{c} 928.5 \\ 928.5 \\ ARD, GRAYISH BROWN, SANDY SILT, LITTLE TO OME CLAY, TRACE TO LITTLE GRAVEL, DAMP \\ 926.5 \\ 926.$
928.5 928.5 <td< td=""></td<>
AND, LITTLE GRAVEL, DAMP 926.5 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0 921.0
ARD, GRAYISH BROWN, SANDY SILT, LITTLE TO OME CLAY, TRACE TO LITTLE GRAVEL, DAMP 921.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 321.0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
TIFF, BROWN, SILT AND CLAY, LITTLE SAND, TRACE 912.0

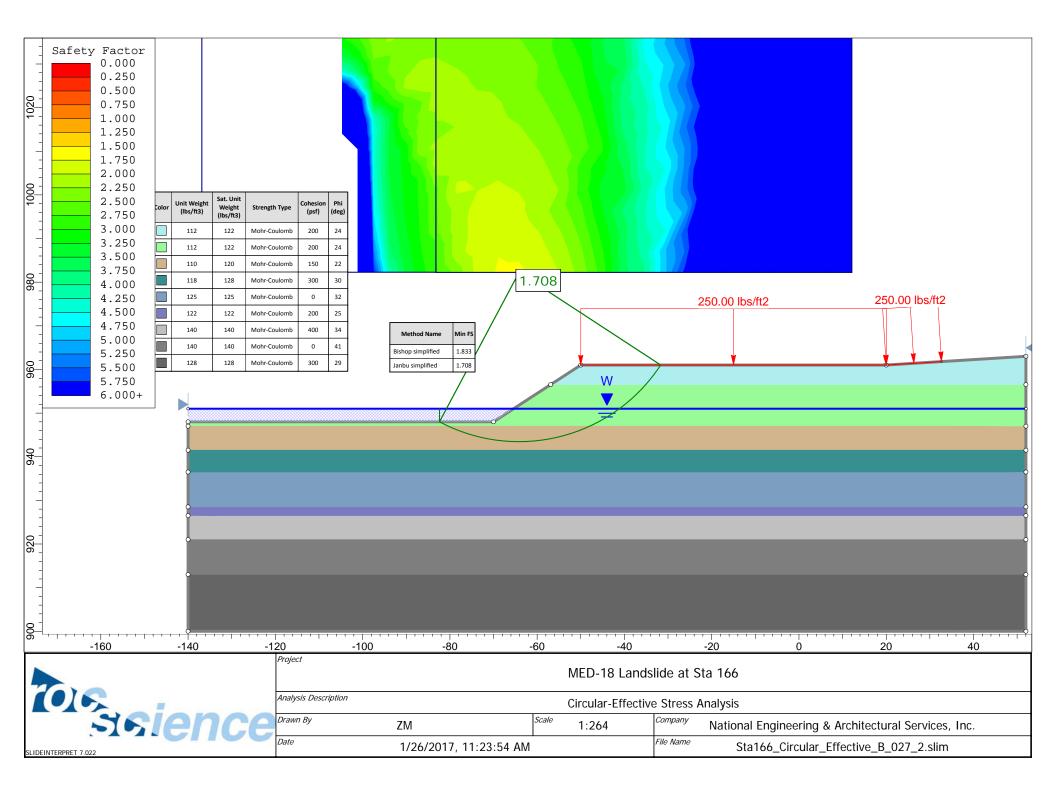

APPENDIX C


GLOBAL STABILITY ANALYSIS






-	Safety	7 Factor 0.000	Color	Unit Weight (lbs/ft3)	Sat. Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)							
		0.250		110	120	Mohr-Coulomb	1550	0			1				
		0.500		125	125	Mohr-Coulomb	3400	0			V				
1000		0.750 1.000		120	120	Mohr-Coulomb	1600	0							
-		1.250		120	120	Mohr-Coulomb	1500	0							
		1.500		122	122	Mohr-Coulomb	1900	0							
		1.750 2.000		128	128	Mohr-Coulomb	4350	0		4.025					
		2.250		135	135	Mohr-Coulomb	5550	0		4.025					
086		2.500		135	135	Mohr-Coulomb	5500	0							
		2.750 3.000		125	125	Mohr-Coulomb	2800	0							
		3.250		135	135	Mohr-Coulomb	5600	0				<u> </u>	250.00 lbs/	′ft2	
		3.500	\sim	120		Infinite strength									
		3.750		120	120	Mohr-Coulomb	1700	0					_		
096		4.000 4.250									×				
6		4.500													
		4.750					Method Na	ame	Min FS						Ĭ
-		5.000 5.250				Big	shop simplif		4.212			/			
		5.500		~			nbu simplifi		4.025						C
0		5.750									W				•
940		6.000+					0								
		0									=				
		Ĭ													
920		0													
		0													
006		•													
-															
									· · · · · · · · · · · · · · · · · · ·						
-16	50	-140			-120	Project	-100		-80 -60		-40	-20	0	20	40
						-					Landslide at MI	ED-18 Sta 12	7		
	016					Analysis D	Description	7			Circular_Total S	Stress Analysis			
		30	Ĩ	an	0	Drawn By			ZM	Scale		-	onal Engineering & A	rchitectural Service	es Inc
						Date			1/26/2017, 4:13:49 PM	_ 			7_Circular_Total_1ft_		
SLIDEI	NTERPRET 7.02	2								•		0.012			



1000	Safety Factor 0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000				4.832					
	3.500 3.750 4.000 4.250	ame cols unit Weight (lbs/ft3) Sat. Unit Weight (lbs/ft3) 1 i 112 122 2 i 112 122 3 i 1112 122 4 i 1118 128 5 i 121 125 6 i 125 125	Strength TypeCohesion (sr)Phi (sr)Mohr-Coulomb22500Mohr-Coulomb19500Mohr-Coulomb12500Mohr-Coulomb165031Mohr-Coulomb62500	Bishop simplified	Min FS 4.892 4.832	W 	250.00 lbs/ft2		250.00 lbs/ft	2
920 940										°
006						-40			20	
			Project				slide at Sta 166			
		ience	Analysis Description				Stress Analysis			
		ience	Drawn By	ZM	Sca	^{le} 1:246		I Engineering &	Architectural Serv	ices, Inc.
SLIDEIN	TERPRET 7.022		Date	1/26/2017, 11:2	23:54 AM		File Name	Sta166_Circular	_Total_B_027_1.sl	im

1000 1020	Safety	<pre>y Factor 0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000</pre>																
980		3.250	Material Name	e Color	Unit Weight (Ibs/ft3)	Sat. Unit Weight (Ibs/ft3)	Strength Type	Cohesion Phi (psf) (deg)		/1	.737							
		3.750	Material 1		112	122 1	Mohr-Coulomb	200 25		/_								
		4.000	Material 2		112	122 1	Mohr-Coulomb	200 24		_/		$\overline{}$			<i>"</i> "		250.00 lbs/ft2	
		4.250 4.500	Material 3		110		Mohr-Coulomb	150 22		Method Name	Min FS		$\overline{}$	250.00 lbs	s/ft2			
		4.750	Material 4		118		Mohr-Coulomb	150 24		Bishop simplified	1.843							
096		5.000 5.250	Material 5 Material 6		125		Mohr-Coulomb Mohr-Coulomb	0 31 400 34	/	Janbu simplified	1.737					Ů		
		5.500									o		W					ů
		5.750 6.000+						Į					=					
940																		
		0																, in the second s
		•																
920																		
-																		
006																		
6																		
-1	60	-140			120		-100		80		-60		-40	-20	0	20		40
						Project							MED-18 Lan	dslide at Sta	166			
			-			Analysis D	Description						Circular-Effect	tive Stress Anal	ysis			
		55	Ie	7	CA	Drawn By		ZM				Scale	1:253	Company Na	ational Engineeri	ng & Architec	tural Service	es, Inc.
SLIDEIN	ITERPRET 7.02					Date		1/	26/20	17, 11:23	:54 AM			File Name	Sta166_Circu	ar_Effective_	B_027_1.slir	n

940 960 980 1000 1020	Safety	<pre>/ Factor 0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.500 2.500 3.000 3.250 3.500 3.750 4.000 4.250 4.500 4.500 4.750 5.000 5.500 5.750 6.000+</pre>	ame Color 1 2 3 4 5 6 7 8 9	Unit Weight (lbs/ft3) 112 112 110 118 125 122 140 140 140 128	Sat. Unit Weight (Ibs/ft3) 122 122 122 122 123 124 125 122 123 124 125 122 124 125 122 124 125 122 140 128	Strength Type Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb Mohr-Coulomb	(psf) (di 1750 (di 1800 (di 1350 (di 4100 (di 0 3 2250 (di 6250 (di 0 4	2 Method Na Bishop simplifi Janbu simplifie	ed 5.85	58		5.650			250.00 lbs/ft	2	250.	00 lbs/ft2	
900 920			。 。 。	i	i				i					i					
م لم		160	-14(20	-1		-80			 60	-40		-20	0	20		40
						Project							MED-18 Lar	ndslide	at Sta 166				
7						Analysis De	scription												
		20	in	0		Drawn By	,					Scale	Circular-Tot	tal Stre					
		-1-	IE		5 6	Date		ZM					1:264		National	Engineering &			Inc.
SLIDEINT	ERPRET 7.02	22				Date		1/2	6/201	7, 11:23	8:54 AM			File N	^{vame} S	ta166_Circular_	Total_B_02	7_2.slim	

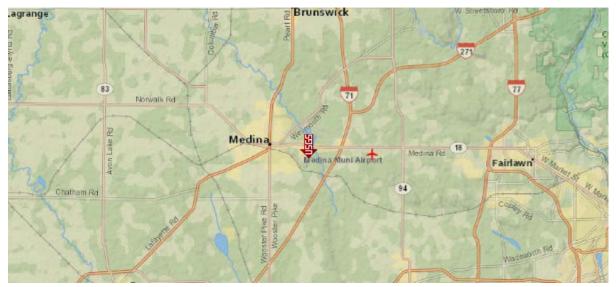
APPENDIX D

SEISMIC ANALYSIS

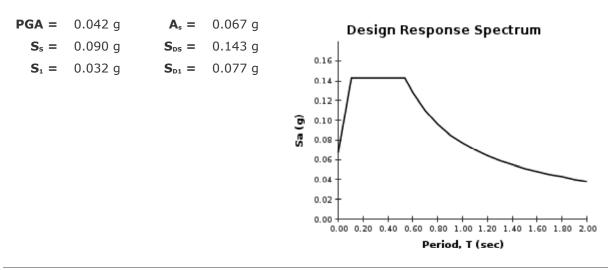
EUSGS Design Maps Summary Report

User-Specified Input

Report Title Historical Landslide Location Sta 127+00


Wed February 1, 2017 18:45:21 UTC

(which utilizes USGS hazard data available in 2002)


Building Code Reference Document 2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design

Site Coordinates 41.13791°N, 81.82656°W

Site Soil Classification Site Class D - "Stiff Soil"

USGS-Provided Output

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

EUSGS Design Maps Detailed Report

2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design (41.13791°N, 81.82656°W)

Site Class D – "Stiff Soil"

Article 3.4.1 — Design Spectra Based on General Procedure

Note: Maps in the 2009 AASHTO Specifications are provided by AASHTO for Site Class B. Adjustments for other Site Classes are made, as needed, in Article 3.4.2.3.

From <u>Figure 3.4.1-2</u> ^[1]	PGA = 0.042 g
From <u>Figure 3.4.1-3</u> ^[2]	$S_{s} = 0.090 \text{ g}$
From <u>Figure 3.4.1-4</u> ^[3]	$S_1 = 0.032 \text{ g}$

Article 3.4.2.1 — Site Class Definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Article 3.4.2.

SITE CLASS	SOIL PROFILE NAME	Soil shear wave velocity, v _s , (ft/s)	Standard penetration resistance, \overline{N}	Soil undrained shear strength, \overline{s}_{ur} (psf)
А	Hard rock	$\overline{v}_{s} > 5,000$	N/A	N/A
В	Rock	$2,500 < \overline{v}_{s} \le 5,000$	N/A	N/A
С	Very dense soil and soft rock	$1,200 < \overline{v}_{s} \le 2,500$	N > 50	>2,000 psf
D	Stiff soil profile	$600 \le \overline{v}_{s} < 1,200$	$15 \le \overline{N} \le 50$	1,000 to 2,000 psf
Е	Stiff soil profile	$\overline{v}_{s} < 600$	$\overline{N} < 15$	<1,000 psf
E	_	 Plasticity index <i>PI</i> > Moisture content <i>w</i> Undrained shear str 	\geq 40%, and	characteristics:
F	_	 characteristics: Soils vulnerable to as liquefiable soils, cemented soils. Peats and/or highly organic clay where Very high plasticity 	oils having one or more of t potential failure or collapse quick and highly sensitive of organic clays ($H > 10$ feet H = thickness of soil) clays ($H > 25$ feet with plas lium stiff clays ($H > 120$ feet	under seismic loading such lays, collapsible weakly of peat and/or highly sticity index <i>PI</i> > 75)

Table 3.4.2.1-1 Site Class Definitions

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

Article 3.4.2.3 — Site Coefficients

Table 3.4.2.3-1 (for F_{pga})—Values of F_{pga} as a Function of Site Class and Mapped Peak Ground Acceleration Coefficient

Site		Mapped F	Peak Ground Acc	celeration	
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See A	ASHTO Article	3.4.3	

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.042 g, F_{PGA} = 1.600

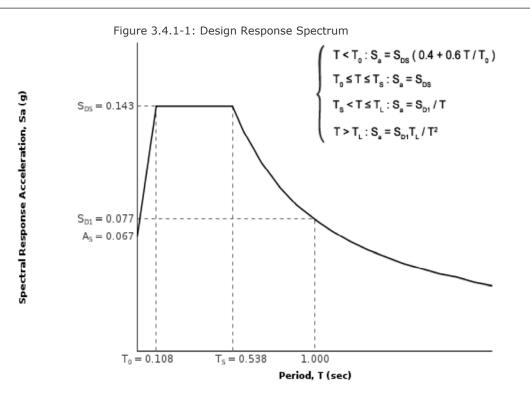
Table 3.4.2.3-1 (for F_a)—Values of F_a as a Function of Site Class and Mapped Short-Period Spectral Acceleration Coefficient

A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0	Site Class	Spectr	al Response Ac	celeration Parar	neter at Short I	Periods
B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0		S _s ≤ 0.25	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25
C 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0	А	0.8	0.8	0.8	0.8	0.8
D 1.6 1.4 1.2 1.1 1.0	В	1.0	1.0	1.0	1.0	1.0
	С	1.2	1.2	1.1	1.0	1.0
	D	1.6	1.4	1.2	1.1	1.0
E 2.5 1.7 1.2 0.9 0.4	E	2.5	1.7	1.2	0.9	0.9
F See AASHTO Article 3.4.3	F		See A	AASHTO Article	3.4.3	

Note: Use straight-line interpolation for intermediate values of S_s

For Site Class = D and S_s = 0.090 g, F_a = 1.600

Site Class	Mapped Sp	ectral Response	e Acceleration C	Coefficient at 1-	sec Periods
	$S_1 \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
Е	3.5	3.2	2.8	2.4	2.4
F		See A	ASHTO Article	3.4.3	
N	ote: Use straigh	it–line interpola	tion for interme	ediate values of	• S ₁
	For Site	Class = D and	S ₁ = 0.032 g, F _v	= 2.400	
Equation ((3.4.1-1):		$A_s = F_{PG}$	$_{A} PGA = 1.600$	0 x 0.042 = 0.


Table 3.4.2.3-2—Values of $F_{\!\scriptscriptstyle V}$ as a Function of Site Class and Mapped 1-sec Period Spectral Acceleration Coefficient

Equation (3.4.1-2):

 $S_{\text{DS}} = F_{\text{a}} S_{\text{S}} = 1.600 \times 0.090 = 0.143 \text{ g}$

Equation (3.4.1-3):

 $S_{D1} = F_v S_1 = 2.400 \times 0.032 = 0.077 g$

Article 3.5 - Selection of Seismic Design Category (SDC)

VALUE OF Sp1	
	SDC
S _{D1} < 0.15g	A
$0.15g \le S_{D1} < 0.30g$	В
$0.30g \le S_{D1} < 0.50g$	С
0.50g ≤ S _{D1}	D

Table 3.5-1—Partitions for Seismic Design Categories A, B, C, and D

For $S_{D1} = 0.077$ g, Seismic Design Category = A

Seismic Design Category \equiv "the design category in accordance with Table 3.5-1" = A

References

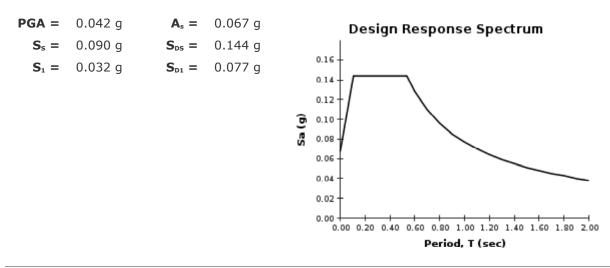
- 1. *Figure 3.4.1-2*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/AASHTO-2009-Figure-3.4.1-2.pdf
- 2. *Figure 3.4.1-3*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/AASHTO-2009-Figure-3.4.1-3.pdf
- 3. *Figure 3.4.1-4*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/AASHTO-2009-Figure-3.4.1-4.pdf

SGS Design Maps Summary Report

User-Specified Input

Report Title Historical Landslide Location Sta 166+00 Wed February 1, 2017 18:42:55 UTC

(which utilizes USGS hazard data available in 2002)


Building Code Reference Document 2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design

Site Coordinates 41.13658°N, 81.81247°W

Site Soil Classification Site Class D - "Stiff Soil"

USGS-Provided Output

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

EUSGS Design Maps Detailed Report

2009 AASHTO Guide Specifications for LRFD Seismic Bridge Design (41.13658°N, 81.81247°W)

Site Class D – "Stiff Soil"

Article 3.4.1 — Design Spectra Based on General Procedure

Note: Maps in the 2009 AASHTO Specifications are provided by AASHTO for Site Class B. Adjustments for other Site Classes are made, as needed, in Article 3.4.2.3.

From <u>Figure 3.4.1-2</u> ^[1]	PGA = 0.042 g
From <u>Figure 3.4.1-3</u> ^[2]	$S_{s} = 0.090 \text{ g}$
From <u>Figure 3.4.1-4</u> ^[3]	$S_1 = 0.032 \text{ g}$

Article 3.4.2.1 — Site Class Definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Article 3.4.2.

SITE CLASS	SOIL PROFILE NAME	Soil shear wave velocity, v _s , (ft/s)	Standard penetration resistance, <i>N</i>	Soil undrained shear strength, \bar{s}_{u} , (psf)			
А	Hard rock	$\overline{v}_{s} > 5,000$	N/A	N/A			
В	Rock $2,500 < \overline{v}_{s} \le 5,000$ N/A N/A						
С	Very dense soil and soft rock						
D	Stiff soil profile	$600 \le \overline{v_{s}} < 1,200$	$15 \le \overline{N} \le 50$	1,000 to 2,000 psf			
Е	Stiff soil profile	$\overline{v}_{s} < 600$	$\overline{N} < 15$	<1,000 psf			
E	_	 Plasticity index <i>PI</i> > Moisture content <i>w</i> Undrained shear str 	≥ 40%, and				
F	_	 characteristics: Soils vulnerable to as liquefiable soils, cemented soils. Peats and/or highly organic clay where Very high plasticity 	oils having one or more of t potential failure or collapse quick and highly sensitive of organic clays ($H > 10$ feet H = thickness of soil) clays ($H > 25$ feet with plas ium stiff clays ($H > 120$ fee	under seismic loading such lays, collapsible weakly of peat and/or highly sticity index <i>PI</i> > 75)			

Table 3.4.2.1-1 Site Class Definitions

For SI: $1ft/s = 0.3048 \text{ m/s} 1lb/ft^2 = 0.0479 \text{ kN/m}^2$

Article 3.4.2.3 — Site Coefficients

Table 3.4.2.3-1 (for F_{pga})—Values of F_{pga} as a Function of Site Class and Mapped Peak Ground Acceleration Coefficient

Site	Mapped Peak Ground Acceleration				
Class	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50
A	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See A	AASHTO Article	3.4.3	

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.042 g, F_{PGA} = 1.600

Table 3.4.2.3-1 (for F_a)—Values of F_a as a Function of Site Class and Mapped Short-Period Spectral Acceleration Coefficient

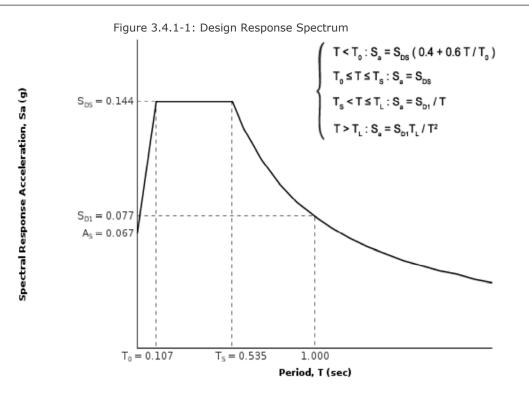
A 0.8 0.8 0.8 0.8 0.8 B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0	Site Class	Spectral Response Acceleration Parameter at Short Periods				
B 1.0 1.0 1.0 1.0 1.0 C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0		$S_s \leq 0.25$	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25
C 1.2 1.2 1.1 1.0 1.0 D 1.6 1.4 1.2 1.1 1.0	А	0.8	0.8	0.8	0.8	0.8
D 1.6 1.4 1.2 1.1 1.0	В	1.0	1.0	1.0	1.0	1.0
	С	1.2	1.2	1.1	1.0	1.0
	D	1.6	1.4	1.2	1.1	1.0
E 2.5 1.7 1.2 0.9 0.4	E	2.5	1.7	1.2	0.9	0.9
F See AASHTO Article 3.4.3	F	See AASHTO Article 3.4.3				

Note: Use straight-line interpolation for intermediate values of S_s

For Site Class = D and S_s = 0.090 g, F_a = 1.600

Site Class Mapped Spectral Response Acceleration Coefficient at 1-sec Periods							
	$S_1 \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$		
A 0.8 0.8 0.8 0.8 0.8							
B 1.0 1.0 1.0 1.0 1.0							
C 1.7 1.6 1.5 1.4 1.3							
D	2.4	2.0	1.8	1.6	1.5		
E 3.5 3.2 2.8 2.4 2.4							
F See AASHTO Article 3.4.3							
Note: Use straight-line interpolation for intermediate values of S_1							
For Site Class = D and $S_1 = 0.032$ g, $F_v = 2.400$							
Equation (3.4.1-1): $A_s = F_{PGA} PGA = 1.600 \times 0.042 = 0.0$							

Table 3.4.2.3-2—Values of F_v as a Function of Site Class and Mapped 1-sec Period Spectral
Acceleration Coefficient


 $PGA = 1.600 \times 0.042 = 0.067 g$ $A_{S} = F_{PGA}$

Equation (3.4.1-2):

 $S_{DS} = F_a S_S = 1.600 \times 0.090 = 0.144 g$

Equation (3.4.1-3):

 $S_{D1} = F_v S_1 = 2.400 \times 0.032 = 0.077 g$

Article 3.5 - Selection of Seismic Design Category (SDC)

VALUE OF Sp1	
	SDC
S _{D1} < 0.15g	A
$0.15g \le S_{D1} < 0.30g$	В
$0.30g \le S_{D1} < 0.50g$	С
0.50g ≤ S _{D1}	D

Table 3.5-1—Partitions for Seismic Design Categories A, B, C, and D

For $S_{D1} = 0.077$ g, Seismic Design Category = A

Seismic Design Category \equiv "the design category in accordance with Table 3.5-1" = A

References

- 1. *Figure 3.4.1-2*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/AASHTO-2009-Figure-3.4.1-2.pdf
- 2. *Figure 3.4.1-3*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/AASHTO-2009-Figure-3.4.1-3.pdf
- 3. *Figure 3.4.1-4*: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/AASHTO-2009-Figure-3.4.1-4.pdf