

Calculation Cover Sheet

Client: Ohio Department of Transportation, District 10

Project: MEG-33-13.96 (Task Order 10-5)

PID 119143

HDR Project No: 10399410 Rev: 0

Calculation No: 1 Page: 1 of 431

Title: Embankment Analyses and Design

Prepare slope stability and settlement analyses for the widening of US Route 33 (US 33) in

Meigs County, Ohio from a Super 2 to a 4-lane divided freeway.

Originator: AKB/MM Date: 5/3/2024

Checked by: MM/AKB/DCM Date: 5/7/2024

QC Review by: DMV Date: 5/9/2024

Summary

Purpose:

- 1. ODOT is currently developing the plans for the widening of a portion of US 33 within Meigs County from a Super 2 to a 4-lane divided freeway. HDR was requested to provide slope stability analyses and embankment design for the widened embankments at Sta. 707+50 LT, Sta. 794+00 LT, Sta. 834+50 LT, and Sta. 904+50 LT. Settlement analyses were also requested for the proposed embankments at Sta. 794+00 and Sta. 834+50.
- 2. ODOT provided historic geotechnical information and plan sheets presenting the original groundline and embankment slopes from the Super 2 construction, as well as recently developed cross-sections depicting the proposed embankment slopes for the four-lane highway along with relatively recent borings performed at select locations in support of the MEG-33-13.96 project. The historic information was obtained from the MEG-124-22.72 (Prime Engineering & Architecture, 1999), MEG-124-26.66 (Resource International, 1999), and MEG-33-15.5 (ODOT, 2009) projects. The pertinent information from these project documents as well as the recent boring logs utilized in our analyses are provided in the reference materials attached.

- 3. In general accordance with ODOT Geotechnical Design Manual (GDM) recommendations, an initial set of soil strength parameters for the soil layers depicted on the attached Slope/W output plots were selected based on the data provided on the boring logs, the laboratory test results, published correlations of soil strength with SPT N₆₀ values, and our engineering judgement. A statistical basis for selecting the initial soil parameters was performed and is included in the attached printed spreadsheets entitled "Soil Strength Parameter Determination." These initial parameters were then entered into the Slope/W slope stability modeling software to model the existing condition simulating a series of trial searches to determine the critical mode of failure based on a Morgenstern-Price stability model. Additionally, the Slope/W optimization feature was utilized, which generates a hybrid circular and translational failure shape. As all the analyses for the existing condition generated a FS of 1.0 or greater, the initial parameters were carried forward for design. The proposed embankment sections were added to the existing condition analyses, and where required, a special benching scheme, shear key, and/or rock fill was used to meet or exceed the minimum target factor of safety of 1.30 for both drained and undrained conditions. Additional slope stability analyses were performed as needed for constructability, with a minimum target factor of safety of 1.20 utilized for the undrained condition. Further discussion on the slope stability analyses at the individual design sections (Sta. 707+50 LT, Sta. 794+00 LT, Sta. 834+50 LT, and Sta. 904+50 LT) is provided below.
- 4. For the sections where settlement analyses were performed (Sta. 794+00 LT and Sta. 834+50 LT), the settlement parameters were determined from published correlations as no consolidation testing was available. Section 504 of the ODOT Geotechnical Design Manual (GDM) indicates settlement of 3 inches or less is considered reasonable if settlement does not influence a structure, utility, or other roadway infrastructure. As such, settlement times are reported for the time to 3 inches of settlement remaining, as well as 90% consolidation. Drainage was considered at the current ground surface, bottom of granular layers, and the bottom of the existing embankment material assuming rock fill (claystone, shale, and/or sandstone) was placed at the base of the embankment at the time of construction based on the percent gravel in the sampled embankment fill. Descriptions of specific considerations for the analyses at each of these design sections are presented in the following paragraphs where appropriate.

5. Sta. 707+50 LT

A total of 3 borings were used in the analyses at Sta. 707+50: Historic Boring CU-01A from the MEG-124-22.72 project, and Borings B-001-0-23 (Sta. 707+72, 79' RT) and B-001-1-23 (Sta. 707+48, 176' LT) from ODOT's recent subsurface exploration program. Historic Boring CU-01A was conducted at Sta. 713+05, and was included in the analyses to supplement the subsurface profile information to the right of the US-33 centerline. This boring was selected based on its relative location on the side of a hill, similar to that of the design cross-section, with the elevations of the ground surface and various stratigraphic breaks as encountered in the historic boring and Boring B-001-0-23 adjusted to match that at their projected locations on the design cross-section. Groundwater was assumed to be at top of rock to the right of the alignment due to the lack of water encountered in the borings, and daylighting at the ground surface near the toe of the existing slope based on the presence of a nearby culvert/swale.

The slope stability analyses as presented in the attachments indicate the minimum target factor of safety of 1.30 was met without the need for a shear key or special benching for both the short-term (undrained) and long-term (drained) conditions.

6. Sta. 794+00 LT

A total of 6 borings were used in the analyses at Sta. 794+00: Historic Borings CU-07, CU-07A, and CU-07B as drilled at approximate Sta. 794+75 for the MEG-124-22.72 project, and Borings B-002-0-23 (Sta. 794+91, 12' RT), B-002-1-23 (Sta. 794+99, 93' LT), and B-002-2-23 (Sta. 794+16, 77' LT) from ODOT's recent explorations. The elevations of the ground surface and various stratigraphic breaks as encountered in the historic borings were adjusted to match the depths below existing grade at their respective projected locations on the design cross-section.

As most of the borings were performed between about 60 and 90 feet upstation of the design cross-section, top of rock elevations varied across the profile, with a local high point in Boring B-002-2-23 as this boring was closest to the design section at Sta. 794+16. As such, a matrix analyses was performed. The initial case was performed including this local high point, and a second case was considered assuming a more gradual slope in the top of rock elevation between Borings CU-07B and CU-07, lowering the top of rock as encountered in Boring B-002-2-23. Groundwater was assumed to be at the ground surface to the toe of the existing embankment based on the presence of a wetland mapped in the developed ORD files.

For both cases, modeling the proposed additional embankment without modification yielded a factor of safety less than the target minimum of 1.30. As such, a rock fill berm and shear key, as well as special benching, was required to achieve a factor of safety of 1.30 or greater. The top of the temporary 1H:1V slope ties into existing grade approximately 5 feet left of the baseline. The temporary 1H:1V slope extends to a 9-foot wide construction bench located at El. 714, and continues with 9-foot wide construction benches spaced at 12-foot vertical intervals with 1H:1V backslopes until reaching the bottom of the shear key at El. 630. The shear key extends 45 feet towards the left, and ties back into existing grade at a 2H:1V slope. The face of the embankment is sloped at 2H:1V, with rock fill up to El. 654. Item 203 embankment material continues at a 2H:1V slope to the crest of the embankment. If practical, it is recommended that the shear key be drained by the inclusion of a drainage gallery.

Upon establishing the criteria required to meet a global factor of safety greater than 1.30, analyses were performed to evaluate the constructability of the shear key and temporary benching scheme. The Factors of Safety were determined to be greater than the minimum target Factor of Safety of 1.20 under short term (undrained) conditions for the temporary slopes. However, a Factor of Safety below 1.0 was obtained under long term (drained) conditions for the temporary slopes if the excavation was to be left open for an extended period of time. As such, this temporary excavation shall not be left exposed any longer than necessary, with reconstruction of the slope to begin shortly after the excavation has been made. It is also recommended that when excavating for the shear key, no more than 50 to 100 feet along the back of the key should be excavated without replacing with dumped rock fill. Finally, drainage and run-off should also be diverted away from the excavation during construction.

Other cut-slope stability measures/configurations or sheet piling may be needed to maintain the slope during construction of the shear key and sidehill benches should a higher factor of safety be required during construction. Determination of temporary shoring (if necessary) is to be determined by the contractor.

Settlement analyses were performed considering top of rock elevations with the local high point at Boring B-002-0-23. In addition, a preconsolidation pressure of 18 ksf as determined in the attached analyses was applied to the existing embankment material. Finally, the settlement model as developed in the software program Settle3 included the portion of the existing profile that is to be removed and replaced with rock fill (shear key and special benching) to include the effects of replacing the compressible clay materials. As shown in the attached output, the total settlement is estimated to be about 13 to 14 inches, with less than 3 inches of settlement remaining after approximately 6 months, and 90% consolidation completed after roughly 11 months. These values do not consider any settlement of the new embankment material. Due to the anticipated settlement timeframes, it is recommended that a quarantine period be adopted following construction of the embankment and prior to paving to allow for consolidation of the underlying soils to occur.

7. Sta. 834+50 LT

A total of 9 borings were used in the analyses at Sta. 854+50: Historic Borings B-47, B-47EL, B-47ER, CU-10C, and SRB-3 from the MEG-124-22.72 project, Historic Borings B-001-0-09, B-002-0-09, and B-003-0-09 from the MEG-33-15.5 project, and Boring B-003-0-23 (Sta. 834+32, 84' LT) from ODOT's recent exploration program. For the analyses, the elevations of the ground surface and the various stratigraphic breaks as encountered in Historic Borings B-47EL, B-47, and B-47ER (drilled respectively at Sta. 833+83, Sta. 833+94, and Sta. 834+12) were adjusted to match the depths below existing grade at their projected locations on the design cross-section. The top of rock elevations were derived from the borings located within about 20 to 30 feet of the design cross section (B-47ER, CU-10C, SRB-3, and B-003-0-23) as the historic plans indicate a higher ground surface for the 2009 borings performed about 40 feet upstation of the design cross-section.

As shown in the reference material within the attachments, there is an existing service road (Service Road B) with the centerline located approximately 160 feet from the toe of the existing US-33 embankment, and about 70 feet from the toe of the proposed US-33 embankment. No information was available on the type of material used for the construction of the service road embankment, with Boring B-003-0-23, performed about 35 feet from the toe of the existing US-33 embankment, encountering predominantly granular materials. As this boring was located in close proximity to an existing culvert, it is unknown if this material is representative of the entirety of the backfill materials located between the US 33 and Service Road B embankments. As such, separate analyses were performed to consider:

 New embankment material comprised of either A-4a or A-7-6 materials. The existing embankment material is predominantly comprised of A-4a. However, A-7-6 materials were encountered on site in some of the historic borings. As the strength parameters for

- new embankment materials presented in the GDM are the lowest for A-7-6 materials, these analyses were included as a lower bound.
- The existing embankment material for Service Road B being comprised of either granular fill materials where the same properties as Layer 3 (loose to medium dense embankment fill) were assumed, or cohesive fill materials assuming the same properties as Layer 1 (medium stiff to stiff embankment fill.)
- The materials at Boring B-003-0-23 to be comprised of cohesive fill rather than the granular fill as-encountered in the boring (Layer 3). For this case, the cohesive soils are assumed to match the properties of the cohesive materials assumed for the existing service road embankment fill.

The slope stability analyses, as presented in the attachments, indicate that the minimum target factor of safety of 1.30 is met without the need for a shear key or special benching for both the short-term (undrained) and long-term (drained) conditions.

Settlement analyses were performed considering:

- the existing fill material for Service Road B to be comprised of cohesive fill, as it would be more conservative than assuming granular material.
- the material in B-003-0-23 to be as-encountered (granular) during the exploration, as well as assuming the material to be comprised of cohesive embankment fill.

Initially, the existing cohesive embankment material for both US 33 and Service Road B was considered to have a preconsolidation pressure of 18 ksf. However, the settlement analyses under this condition indicate only about 6 to 7 inches of total settlement, the magnitude of which does not correlate well with the historic settlement issues reported by ODOT at this embankment location. Considering the borings performed within the existing embankment more closely, the embankment fill was noted to contain gravel and/or stone fragment percentages ranging from about 20 to 40 percent indicating the existing fill is likely comprised of locally derived claystone and shale from nearby rock cuts. and that the rock fill may not have been completely brokendown during placement and compaction. As such, analyses were also performed considering the existing embankment fill to be normally consolidated. The estimated settlement increased significantly under this condition to roughly 17 to 18 inches.

As shown in the attached output, the total settlement is estimated to be about 6 to 7 inches for the overconsolidated fill, with 3 inches of settlement remaining after approximately one month, and 90% consolidation reached after roughly 6 months. For the normally-consolidated embankment fill, the total settlement is estimated to be about 17 to 18 inches, with 3 inches of settlement remaining after roughly 6 months, and 90% consolidation reached after approximately 8 to 9 months. These values do not consider any settlement of the newly placed embankment material.

Due to the anticipated settlement timeframes, it is recommended a quarantine period be adopted following construction of the embankment and prior to paving to allow consolidation of the underlying soils to occur.

8. Sta. 904+50 LT

A total of 3 borings were used in the analyses at Sta. 904+50: Historic Borings B-26 and B-27 from the MEG-124-26.66 project, and Boring B-004-0-23 (Sta. 904+75, 121' LT) from ODOT's recent subsurface exploration. Borings B-26 and B-27 were conducted at Sta. 912+50, and were included in the analyses to supplement the subsurface profile information beneath the existing embankment. These borings were selected based on their relative locations along the bottom of an adjacent valley or swale similar to that of the design cross-section, with the elevations of the ground surface and various stratigraphic breaks as encountered in the historic borings adjusted to match that at its projected location on the design cross-section. Groundwater levels within the embankment were assumed based on the field observations obtained by HDR during the ATH/MEG-33-18.75/0.00 embankment inspections, which indicated seeps along the left embankment face.

The slope stability analyses as presented in the attachments yielded a factor of safety less than the minimum target safety factor of 1.30 under the long term (drained) soil conditions. As such, a rock fill shear key and special benching on the lower portion of the slope was required to achieve a factor of safety of 1.30 or greater. The top of the temporary 1H:1V slope ties into existing grade approximately 87 feet left of the baseline at the design section. The temporary 1H:1V slope extends to an 8-foot wide construction bench located at El. 686, and continues at a 1H:1V backslope until reaching the bottom of the shear key at El. 676. The shear key extends 10 feet towards the left, and ties back into existing grade at a 1.5H:1V slope. The rock fill extends from the bottom of the excavation to the bench at El. 686, with Item 203 embankment material utilized to fill the remainder of the excavation. If practical, it is recommended that the shear key be drained by the inclusion of a drainage gallery.

Upon establishing the criteria required to meet a global factor of safety greater than 1.30, analyses were performed to evaluate the constructability of the shear key and temporary benching scheme. The Factors of Safety were determined to be greater than the minimum target Factor of Safety of 1.20 under short term (undrained) conditions for the temporary slopes. However, a Factor of Safety below 1.0 was obtained under long term (drained) conditions for the temporary slopes if the excavation was to be left open for an extended period of time. As such, this temporary excavation shall not be left exposed any longer than necessary, with reconstruction of the slope to begin shortly after the excavation has been made. It is also recommended that when excavating for the shear key, no more than 50 to 100 feet along the back of the key be excavated without replacing with dumped rock fill. Finally, drainage and runoff should also be diverted away from the excavation during construction.

Other cut-slope stability measures/configurations or sheet piling may be needed to maintain the slope during construction of the shear key and sidehill benches should a higher factor of safety be required during construction. Determination of temporary shoring (if necessary) is to be determined by the contractor.

Sta. 707+50

References

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

90. HORIZONTAL

B.W. 1/24/01 W.I.N.
CHECKED

DRAWN REVIEWED E.D.S. B.M.

SOIL PROFILE

MEG-124-22.72

 \bigcirc

 \bigcirc

 \bigcirc

Zoo Zoo

DATE CALCULATED
1/24/0| W.I.N.
CHECKED

.D.S. B.M. 1/2

OIL PROFILE

MEG-124-22.72

Stote of Ohio
Oepartment of Transportation
Oivision of Highways
Testing Laboratory
LOG OF BORING

 Oate Started
 3/18/99
 Sampler: Type SS
 Dia. 2.0"
 Water Elev. ft

 Oate Campleted
 3/18/99
 Casing: Length
 Dia. 3.25"

 \bigcirc

 \bigcirc

Project: MEG-124-22.72

Project No.: 99011 Location: Meigs County, Ohio

	g Na. <u>C</u>			fset_71	3+80.00, 42.00 RT Surface Elev. 767	.72ft	Loc	ation	: Mei	qs Co	unty,	Ohio	<u> </u>		
Elev.	0epth (ft)	Std. Pen., ROO	Rec.	Lass (ft)	Description	Sample				cal C	harac	ter i si	ics		OD07
767.7	0					Na.	X Agg	c.s.	F.S.	Silt	clay	L.L.	P.I.	W.C.	Class
767.2		6-12-17			<u>IOPSOIL</u> Very stiff to hard, reddish brown <u>SILI AND CLAY</u> , some sand, trace rock fragments, moist.	1								19	VISUAL
700 1		10-15-16				2	11	12	17		61*	28	+1	ł5	A-6a
762.1		34-42-49			Hard, brown <u>SANDY SILT</u> , some clay, trace rock fragments, moist.	3								10	VISUAL
		27-29-37				4								13	VISUAL
	10	23-20-23				5	3	3	16		78*	29	10	15	A-4a
756.3	_	12-17-21			Hard, brown <u>SILT AND CLAY</u> , some sand, trace rock fragments, moist,	6								15	VISUAL
	_	11-15-18				7								17	VISUAL
	15	ID-12-18				8	ı	4	17		78*	36	14	19	A-6a
		:													
749.5	_	15-30-27			Very eoft. brown. decomposed <u>SANDSTONE</u> .	9								13	VICILA
747.7	20					,								13	VISUAL
					TERMINATION OEPTH = 20.0 FEE7				*Silt	and c	lav o	ombine			

Particle Sizes: Agg => 2.00mm, Coarse Sand = 2.00-0.42mm, Fine Sand = D.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm.

State of Ohio Oepartment of Tronsportation Oivision of Highways Testing Laboratory LOG OF BORING

 Date Storted
 3/18/99
 Sampler: Type SS
 Dia. 2.0"
 Water Elev. ft

 Oate Campleted
 3/18/99
 Casing: Length
 0ia. 3.25"

Project: MEG-124-22.72
Project No.: 99011
Location: Meigs County Obio

Baring) Na. <u>C</u>	U-OIA Stati	an & 01	ffset 71	3+05.00, 140.00 RT Surface Elev. 790	.58ft	Loc	ation	: Mei	gs Co	unty,	0hi c		······································	
Elev.	0epth (ft)	Std. Pen., ROD	Rec.	Lass	0escriptian (Sample		***	Physi	cal C	harac	terist	ics		ODOT
790.6	0	NOV	1117	1 111/		Na.	% Agg	c.s.	F.S.	Š 1+	cfav	L.L.	P.1.	W.C.	Claes
790.2					TOPSOIL Stiff to hard, reddish brown <u>CLAY</u> , little rock fragments, trace			1	1.3.	3111	City				
		4-6-7			sand, moist.									19	VISUAL
					- <i>'</i>										
		6-15-33												_	
		0 13 33				2	19	2	2		77*	43	17	15	A-7-6
704.0	_5														
784.8 _		50/4in			Very soft, brown, decomposed <u>CLAY SHALE</u> .	3								۱D	VISUAL
70.1.5		50.61				4								12	VISUAL
781.6		50/5in R00 = 84%	4.9	0.1	Nate: Auger refusal an bedrack at 9.0 feet. Began caring rack. Hard, gray, slightly weathered to weathered, slightly micaceous, fine grained <u>SANDSTONE</u> with very thin to thick bedding, little iron staining. Ouality at bedrack good as per ROO.	·								12	VISUAL
					U.C. Strength at II.2 feet = 1783 psi										
777.4 _	_				Word grow from to all table to make a discount of the second of the seco										
776.6					Hard, gray, fresh to slightly weathered, microcrystalline L <u>IMESTONI</u> with indistinct bedding. Note: Slightly micaceous from 13.2 feet to 13.3 feet.										
					U.C. Strength at 13.4 feet = 8443 psi TERMINATION DEPTH = 14.0 FEET				ac: +	- 6	alay c	k !			

Particle Sizes: Agg => 2.00mm, Caarse Sond = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm.

From "meg-33-13.96~pid119143~SPT_boring_logs.pdf"

PROJECT TYPE: PID:11	T: MEG-33-13.96 ROADWAY 19143 SFN:	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD:	SER: O	ODOT / CAREY DOT / BENNING 25" HSA	HAM	MER:		CKER REE KER AUTO ATE:1			STAT ALIGI ELEV	NMEI	NT: _			07+7: US 3:) E	-			ATION ID 1-0-23 PAGE
START: _	11/27/23 END: 11/28/2	3 SAMPLING METHOD:		SPT	ENE	RGY F	ATIO (90*	$=$ \bot	LAT /	_			_			.96049	92	1 OF 1
	MATERIAL DESC		ELEV.	DEPTHS	SPT/	N ₆₀	_	SAMPLE			GRAD	_	$\overline{}$	_		ERBI	_		ODOT CLASS (GI)	BACK
	AND NOT	ES	763.8		RQD	- 00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	02/100 (01)	1 ILL
TOPSOI	IL (18") 		762.3	- 1 -																(1120 < 5) (120
	YELLOWISH BROWN, SANDY ENTS, LITTLE CLAY, DAMP	SILT, LITTLE STONE		_ 2 _	5 6 3	14	44	SS-1	2.00	17	1	42	24	16	23	20	3	13	A-4a (1)	1 L 1 L
			760.3																	1 > Codo
SILT AN	/I STIFF, REDDISH BROWN, B ID CLAY, SOME SAND, TRACI ENTS, MOIST			- 4 -	2 2 3	8	33	SS-2	1.00	3	1	23	33	40	30	19	11	19	A-6a (8)	
	,	\///	757.8																	12/12
	TIFF, BROWN AND REDDISH CLAY, LITTLE STONE FRAGME		756.3	- 6 T	3 8 19	41	67	SS-3	3.00	17	0	38	21	24	24	19	5	13	A-4a (2)	

DARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 12/28/23 14:38 - X:\GINT\PROJECTS\601^

From "meg-33-13.96~pid119143~SPT_boring_logs.pdf"

PROJECT: MEG-33-13.96 DRILLING FIRM / OPERA YPE: ROADWAY SAMPLING FIRM / LOGG	ER:	ODOT / CAREY ODOT / LEWIS	_ Hami	MER:	AC	CKER REB	MATIC	_	ALIG	NME	NT: _			US 33			EXPLOR B-00′	ATION 1-1-23 PAGE
PID:19143	3.	25" HSA SPT	-		ATIO (ATE:11 (%):!	90*		LAT /		_				EOB: _. 9, -81	.96036		1 OF
MATERIAL DESCRIPTION AND NOTES	ELEV. 748.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD		N (%)) CL	ATT LL	ERBE	ERG	wc	ODOT CLASS (GI)	BAC _l FILL
TOPSOIL (18") STIFF, REDDISH BROWN, SILT AND CLAY, SOME SAND, LITTLE STONE FRAGMENTS, DAMP	746.8	- - 1 - - 2 -	4 7 7	21	44		1.00				29	27	33	20	13	13	A-6a (5)	
@3.5'; VERY STIFF		- 3 - - 4 - - 5 -	7 11 8	29	33	SS-2	4.00	-	-	-	-	-	-	-	-	13	A-6a (V)	1 L 1
DENSE, REDDISH BROWN, STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, DAMP	742.3	- 6 - - 7 - - 8 -	10 10 10 16	39	56	SS-3	-	35	11	21	18	15	26	17	9	12	A-2-4 (0)	
SHALE, OLIVE GRAY, MODERATELY WEATHERED, WEAK, LAMINATED.	739.8	TR—— 9 - — 10 -	18 15 22	56	78	SS-4	-	-	-	-	-	-	-	-	-	12	Rock (V)	
CLAYSTONE, REDDISH BROWN, MODERATELY WEATHERED, VERY WEAK TO WEAK.	737.3	- 11 - - 12 - - 13 -	30	84	67	SS-5	-	-	-	-	-	-	-	-	-	10	Rock (V)	
		- 14 - - 15 -	12 21 42	95	72	SS-6	-	-	-	-	-	-	-	-	-	13	Rock (V)	
	730.8	- 16 - - - 17 -	20 37 73	165	67	SS-7	-	-	-	-	-	-	-	-	-	12	Rock (V)	

NOTES: LAT/LONG/ELEV FROM DISTRICT SURVEY GRADE INSTRUMENTS. HOLE DRY UPON COMPLETION.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

From "MEG-19718_COMPLETE PLAN SET.pdf"

Soil Parameter Determination

		Undr	ained Shear S	Strength (Su	ı) (psf)	Dry Unit We	ight (pcf)	Moist Unit	Wt. (pcf)		_			Long-Term	Strength Va	lues		Adopted Long Term Strength
Layer		PPR	N-va	lues	Tested	1 1	. ,		.,	Adopted Short Terr	n Parameters		N ₆₀ Value	ODOT GB-7 Co	rrelations	Tes	ted	Parameters
		PPR	Sowers	T and P	Values	Correlation	Tested	Correlation	Tested				N ₆₀ value	Cohesion (psf)	phi (deg)	Cohesion (psf)	phi (deg)	
	Max	4000	4000	4000		120		130		_		Max	48	250	28			
	Min	1000	3075	2793		105		125		S _u =	3350 psf	Min	21	170	25			c' = 215 psf
Layer 1	Average	2667	3688	3663		111		126		Φ =	0 deg	Average	35	217	27			Φ' = 27 deg
VERY STIFF TO HARD COHESIVE	Std Dev	1528	436	584		8		3		_		Std Dev	12	40	2			<u></u>
(A-4A, A-6A, A-7-6)										$Y_{dry} =$	110 pcf							Y _{dry} = 110 pcf
(A-4A, A-0A, A-1-0)	Avg + Std	4194	4124	4246		119		129		Y _{moist} =	125 pcf	Avg + Std	47	257	28			Y _{moist} = 125 pcf
	Avg - Std	1139	3251	3079		104		124		-	-	Avg - Std	23	177	25			
	Max	2000	3250	1862		100		120		_		Max	14	143	24			
	Min	1000	1050	1064		95		110		$S_u =$	1650 psf	Min	8	100	22			c' = 125 psf
Layer 2	Average	1500	1900	1552		98		117		Φ =	0 deg	Average	12	126	23			Φ' = 23 deg
MEDIUM STIFF TO STIFF	Std Dev	707	1182	428		3		6		_		Std Dev	3	23	1			
COHESIVE (A4A, A-6A, A-7-6)										$Y_{dry} =$	100 pcf							Y _{dry} = 100 pcf
0011E017E (A4A, A-0A, A-1-0)	Avg + Std	2207	3082	1979		101		122		Y _{moist} =	120 pcf	Avg + Std	15	149	24			Y _{moist} = 120 pcf
	Avg - Std	793	718	1124		95		111			_	Avg - Std	8	103	22			
	Max	N/A	N/A	N/A		115		130		_		Max	39	N/A	35			
	Min	N/A	N/A	N/A		115		130		S _u =	0 psf	Min	39	N/A	35			c' = 0 psf
Layer 3	Average	N/A	N/A	N/A		115		130		Φ =	35 deg	Average	39	N/A	35			Φ' = 35 deg
	Std Dev	N/A	N/A	N/A		N/A		N/A		<u>.</u>		Std Dev	N/A	N/A	N/A			
DENSE GRANULAR (A-2-4)										$Y_{dry} =$	115 pcf							Y _{dry} = 115 pcf
	Avg + Std	N/A	N/A	N/A		N/A		N/A		Y _{moist} =	130 pcf	Avg + Std	N/A	N/A	N/A			Y _{moist} = 130 pcf
	Avg - Std	N/A	N/A	N/A		N/A		N/A				Avg - Std	N/A	N/A	N/A			

V	• 10
Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated			
Layer 1														Shor	t-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	48	67	4.0	19	11	38	77	27	43	26	17	15	Max	4000	4000	4000	250	28	7.0	786.6	120	130	0.297	2.72	0.616
Min	21	33	1.0	12	0	2	21	24	24	19	5	13	Min	1000	3075	2793	170	25	2.0	744.3	105	125	0.126	2.65	0.414
Average	35	48	2.7	16	4	20	42	26	33	22	12	14	Average	2667	3688	3663	217	27	4.3	758.5	111	126	0.210	2.70	0.521
Std Dev	12	17	1.5	4	6	18	30	2	10	4	6	1	Std Dev	1528	436	584	40	2	2.1	19.5	8	3	0.086	0.04	0.110
Avg + Std	47	65	4.2	20	10	38	73	28	43	25	18	15	Avg + Std	4194	4124	4246	257	28	6.3	778.0	119	129	0.296	2.74	0.632
Avg - Std	23	31	1.1	12	-2	2	12	23	24	18	6	13	Avg - Std	1139	3251	3079	177	25	2.2	739.0	104	124	0.124	2.67	0.411

Correlated

Correlated

Correlated

																						Shor	t-Term Cohes	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values	i	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
US 33	763.8	B-001-0-23	6	-	7.5	SS-3	41	67	3	17	0	38	21	24	24	19	5	13	A-4A	Cohesive	1	3000	3075	4000	250	28	7.0	756.8	120	130	0.126	2.72	0.414
US 33	748.3	B-001-1-23	1.5	-	3	SS-1	21	44	1	12	11	21	29	27	33	20	13	13	A-6A	Cohesive	1	1000	3675	2793	170	25	2.0	746.3	105	125	0.207	2.72	0.616
US 33	748.3	B-001-1-23	3.5	-	5	SS-2	29	33	4	-	-	-	-	-	-	-	-	13	A-6A	Cohesive	1	4000	4000	3857	197	26	4.0	744.3	105	125		2.72	0.616
US 33	790.6	CU-01A	3.5	-	5	2	48	-	-	19	2	2	77		43	26	17	15	A-7-6	Cohesive	1	N/A	4000	4000	250	28	4.0	786.6	115	125	0.297	2.65	0.438

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated			
Layer 2														Shor	t-Term Cohesi	on (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	14	44	2.0	17	1	42	33	40	30	20	11	19	Max	2000	3250	1862	143	24	4.0	788.6	100	120	0.180	2.72	0.787
Min	8	33	1.0	3	1	23	24	16	23	19	3	13	Min	1000	1050	1064	100	22	2.0	759.8	95	110	0.117	2.65	0.654
Average	12	39	1.5	10	1	33	29	28	27	20	7	17	Average	1500	1900	1552	126	23	2.7	770.1	98	117	0.149	2.70	0.712
Std Dev	3	8	0.7	10	0	13	6	17	5	1	6	3	Std Dev	707	1182	428	23	1	1.2	16.1	3	6	0.045	0.04	0.068
Avg + Sto	15	46	2.2	20	1	46	35	45	31	20	13	20	Avg + Std	2207	3082	1979	149	24	3.8	786.1	101	122	0.193	2.74	0.780
Avg - Std	8	31	0.8	0	1	19	22	11	22	19	1	14	Avg - Std	793	718	1124	103	22	1.5	754.0	95	111	0.104	2.66	0.645

																									Correlated				Correlated	Correlated			
																						Shor	t-Term Cohes	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI \	NC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
US 33	763.8	B-001-0-23	1.5	-	3	SS-1	14	44	2	17	1	42	24	16	23	20	3	13	A-4A	Cohesive	2	2000	1050	1862	143	24	2.0	761.8	100	120	0.117	2.72	0.697
US 33	763.8	B-001-0-23	3.5	-	5	SS-2	8	33	1	3	1	23	33	40	30	19	11	19	A-6A	Cohesive	2	1000	1400	1064	100	22	4.0	759.8	95	110	0.18	2.72	0.787
US 33	790.6	CU-01A	1	-	2.5	1	13	-	-	-	-	-	-	-	-	-	-	19	A-7-6	Cohesive	2	N/A	3250	1729	136	23	2.0	788.6	100	120		2.65	0.654

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated			
Layer 3		ľ												Short	-Term Cohesio	on (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	39	56	N/A	35	11	21	18	15	26	17	9	12	Max	N/A	N/A	N/A	N/A	35	7.0	741.3	115	130	0.144	2.71	0.470
Min	39	56	N/A	35	11	21	18	15	26	17	9	12	Min	N/A	N/A	N/A	N/A	35	7.0	741.3	115	130	0.144	2.71	0.470
Average	39	56	N/A	35	11	21	18	15	26	17	9	12	Average	N/A	N/A	N/A	N/A	35	7.0	741.3	115	130	0.144	2.71	0.470
Std Dev	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Std Dev	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Avg + Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Avg + Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Avg - Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Avg - Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

																									Correlated				Correlated	Correlated			
																				_	S	Short-Ter	m Cohesior	n (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
																														(pcf)			
Alignment	Surface Elevation	Exploration ID	From	То	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	기	wc c	Class.	Soil Type	Layer	PPR	R S	owers	T&P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
US 33	748.3																													130			

Stote of Ohio
Oepartment of Transportation
Oivision of Highways
Testing Laboratory
LOG OF BORING

 Oate Started
 3/18/99
 Sampler: Type
 SS

 Oate Campleted
 3/18/99
 Casing:
 Length
 ____ Water Elev. <u>ft</u> ___Sampler: Type <u>SS</u> Dia. <u>2.0"</u> Dia. 3.25°

 \bigcirc

 \bigcirc

Project: MEG-124-22.72
Project No.: 99011

 \bigcirc

 \bigcirc

Barin	g Na. <u>C</u>			fset_71	3+80.00, 42.00' RT Surface Elev. 767	.72ft	Loc	ati on	: MG1	qs to	uniy	Ohio			
Elev.	0epth (ft)	Std. Pen., ROO	Rec.	Lass (ft)	Description	Sample					harac	terist	ics		OD07
767.7	0					Na.	Agg	c.s.	F.S.	Silt	clay	L.L.	P.I.	W.C.	Class
767.2		6-12-17			TOPSOIL Very stiff to hard, reddish brown <u>SILT AND CLAY</u> , some sand, trace rock fragments, moist.	ı								19	VISUAL
	5	ł0-15-16				2	11	12	17		61*	28	H	15	A-6a
762.1		34-42-49			Hard, brown <u>SANDY SILT</u> , some clay, trace rock fragments, moist.	3								10	VISUAL
	10	27-29-37				4								13	VISUAL
	-19	23-20-23				5	3	3	16		78*	29	10	15	A-4a
756.3		12-17-21			Hard, brown <u>SILT AND CLAY</u> , some sand, trace rock fragments, moist.	6					- -			15	VISUA
		11-15-18				7								17	VISUA
	_15	ID-12-18				8	ı	4	17		78*	36	14	19	A-6a
749.5															
		15-30-27			Very eoft. brown. decomposed <u>SANDSTONE</u> .	9								13	VISUAL
747.7	20				TERMINATION OEPTH = 20.0 FEE7										

Particle Sizes: Agg => 2.00mm, Coarse Sand = 2.00-0.42mm, Fine Sand = D.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm.

State of Ohio Oepartment of Tronsportation Oivision of Highways Testing Laboratory

LOG OF BORING Date Storted 3/18/99
Oate Campleted 3/18/99 _Sampler: Type <u>SS</u> _Casing: Length Dia. 2.0" Water Elev. <u>ft</u>
Oia. 3.25" Project: MEG-124-22.72

Elev. (ft)	0epth (ft)	Std. Pen ROD	Rec.	Lass (ft)	0escription	Samp	le l		Phys	ical (harac	teris	ics		ODOT
790.6	0	NOD	1117	1 11/		Na		c.s.	, X c	X I+	c¥	L.L.	P.1.	w.c.	Class
790.2 . 788.1		4-6-7			TOPSOIL Stiff to hard, reddish brown CLAY, little rock fragments, trace sand, moist. Layer 2	ı								19	VISUAL
	5	6-15-33			Layer 1	2	19	2	2		77*	43	17	15	A-7-6
784.8 _		50/4in			Very soft, brown, decomposed <u>CLAY SHALE</u> .	7 3								1D	VISUAL
781.6		50/5in R00 = 84%	4.9		Omitted Nate: Auger refusel an bedraek at 9.0 feet. Began caring rack. Hard, gray, slightly weathered to weathered, slightly micaceous.	4								12	V I SUAL
	.10	100 - 04 <i>8</i>	4.3	0.1	Hard, gray, slightly weathered to weathered, slightly micaceous, fine grained <u>SANDSTONE</u> with very thin to thick bedding, little iron staining. Ouality of bedrack good as per ROO.										
				-	U.C. Strength at 11.2 feet = 1783 psi										
777.4 _					Word grow from to all this to make a discount of the state of the stat										
776.6					Hard, gray, fresh to slightly weathered, microcrystalline L <u>IMESTONE</u> with indistinct bedding. Nate: Slightly micaceaus fram 13.2 feet to 13.3 feet. U.C. Strength at 13.4 feet = 8443 psi TERMINATION DEPTH = 14.0 FEET										

Particle Sizes: Agg => 2.00mm, Caarse Sond = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm.

PROJECT: MEG-33-13.96 TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ODOT / CAREY	DRILL I	_	ACKER REE		— 1		ON / OF MENT:	FSET		07+72 US 33	,	LT.		ATION ID 1-0-23
PID: <u>119143</u> SFN: START: 11/27/23 END: 11/28/23	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT	CALIBR	RATION	DATE:1	1/7/23	_ E	ELEVA	TION: ONG:	763	3.8 (ft))E	OB:	7. .96049	.5 ft.	PAGE 1 OF 1
MATERIAL DESCRIPTI AND NOTES	ON	ELEV. 763.8	DEPTHS	SPT/ RQD	N	EC SAMPLE 6) ID	I –			TION (%) CL	ATT	ERBE	_	wc	ODOT CLASS (GI)	BACK FILL
TOPSOIL (18")		762.3	 - 1 -														100 C S
STIFF, YELLOWISH BROWN, SANDY SILT, FRAGMENTS, LITTLE CLAY, DAMP	LITTLE STONE Layer 2	760.3	- 2 - - 3 -	5 6 3	14 4	4 SS-1	2.00	17	1	42 24	16	23	20	3	13	A-4a (1)	4
MEDIUM STIFF, REDDISH BROWN, BROWI SILT AND CLAY, SOME SAND, TRACE STO FRAGMENTS. MOIST		7 55.5	4 -	2 2 3	8 3	3 SS-2	1.00	3	1	23 33	40	30	19	11	19	A-6a (8)	
,		757.8															13/12
VERY STIFF, BROWN AND REDDISH BROV SOME CLAY, LITTLE STONE FRAGMENTS,		756.3	- 7 -	3 8 19	41 6	7 SS-3	3.00	17	0	38 21	24	24	19	5	13	A-4a (2)	
			LOD			•											

Layer '

NOTES: LAT/LONG/ELEV FROM DISTRICT SURVEY GRADE INSTRUMENTS. HOLE DRY UPON COMPLETION.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

. DII 1:	DJECT: MEG-33-13.96 PE: ROADWAY	DRILLING FIRM / OPI SAMPLING FIRM / LO	OGGER:	ODOT / CAREY ODOT / LEWIS	HAMI	MER:	ACK	KER REE	MATIC		ALIG	NMEN	NT: _			JS 33				ATION 1-1-23 PAG
	: <u>119143</u> SFN:	DRILLING METHOD: SAMPLING METHOD		.25" HSA SPT	.		ON DA ATIO (NTE:1 %)·	<u>1///23</u> 90*			LON					OB:	.96036	7.5 ft 39	1 OF
0171	MATERIAL DESCRIPT	l .	ELEV.		SPT/			SAMPLE		$=$ \perp		ATIO			ATT			100000	ODOT	BAC
	AND NOTES		748.3	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FIL
	PSOIL (18")		746.8																	
	IFF, REDDISH BROWN, SILT AND CLAY TLE STONE FRAGMENTS, DAMP	, SOME SAND,		- 2 - - 3 -	4 7 7	21	44	SS-1	1.00	12	11	21	29	27	33	20	13	13	A-6a (5)	1 5/10 A
@3	3.5'; VERY STIFF	Layer 1		- 4 - - 5	7 11 8	29	33	SS-2	4.00	-	-	-	-	-	-	-	-	13	A-6a (V)	
	NSE, REDDISH BROWN, STONE FRAGM ND AND SILT, LITTLE CLAY, DAMP	MENTS WITH	742.3	6 - 7 -	10 10	39	56	SS-3	-	35	11	21	18	15	26	17	9	12	A-2-4 (0)	7 / /
er.	ALE, OLIVE GRAY, MODERATELY WEA	Layer 3	739.8	- 8 -	16															42 N
	MINATED.	INERED, WEAR,	737.3	9 +	15 7 22	56	78	SS-4	-	-	-	-	-	-	-	-	-	12	Rock (V)	
	AYSTONE, REDDISH BROWN, MODERA EATHERED, VERY WEAK TO WEAK.		737.3	12	31 7 26 30	84	67	SS-5	-	-	-	-	-	-	-	-	-	10	Rock (V)	
		Omitted —		- 13 - - 14 -	12 21 42	95	72	SS-6	-	-	-	-	-	-	-	-	-	13	Rock (V)	
				15	20	165	67	00.7										40	Daals (A.)	
			730.8	EOB - 17 -	>3 7 73	165	67	SS-7	-	-	-	-	-	-	-	-	-	12	Rock (V)	RACE

NOTES: LAT/LONG/ELEV FROM DISTRICT SURVEY GRADE INSTRUMENTS. HOLE DRY UPON COMPLETION.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

Slope Stability

As the planned embankment fill material is not known, the assumed embankment fill properties for an A-7-6 material as presented in Table 500-2 from the ODOT Geotechnical Design Manual were assumed for conservatism.

Table 500-2: Assumed Embankment Fill Properties

Borrow Source Soil Class	c (psf)	φ (deg)	c' (psf)	φ' (deg)	γ (pcf)
Granular	0	32	0	32	125
A-4a/A-4b	2000	0	200	30	125
A-6a	2500	0	250	28	125
A-6b	2500	0	250	28	125
A-7-6	2000	0	200	26	125
Unknown	2500	0	250	26	125

1.76

1	Existina	
١.		

Sta. 707+50 LT SlopeW.gsz

05/06/2024 1:400

Short Term (Undrained) Condition Color Name Angle (°) Bedrock Existing Embankment Fill (Assumed A-7-6) (ST) 2,000 Layer 1 Very Stiff to Hard Cohesive (ST) 125 3,350 Layer 2 Medium Stiff to Stiff Cohesive (ST) 120 1,650 2.57 Layer 3 Dense Granular 130 0 35 New Embankment Fill (Assumed A-7-6) (ST) 125 2,000 840 г CU-01A 830 Sta. 713+05 (Adjusted ground surface) 820 810 800 Elevation 790 780 770 B-001-1-23 Sta. 707+48 760 750 740 730 720 -250-240-230-220-210-200-190-180-170-160-150-140-130-120-110-100-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 Distance 2a. Proposed (ST) Sta. 707+50 LT SlopeW.gsz 05/06/2024 1:400

Sta. 794+00

References

 \sim

MEG-124-22.7

with the more recent borings designated as B-002-0-23, B-002-1-23, and B-002-2-23 to develop the subsurface profile along Sta. 794+00.

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Stote of Ohio Deportment of Tronsportation Division of Highwoys Testing Loborotory LOG OF BORING

Date Started <u>5/13/99</u>
Date Campleted <u>5/14/99</u>
 Sampler:
 Type
 SS
 Oia.
 2.0°

 Cosing:
 Length
 Dia.
 3.25°
 _____ Water Elev. <u>ft</u>

 \bigcirc

 \bigcirc

Project: <u>MEG-124-22.72</u>

 \bigcirc

Project No.: 99011

Barin-	No C	1-07	Stat:	. e. n.f.	feet 70	4+75.00, 42.00' RT Surface Elev. 644.	33f+	Loc	ation	: Meio	qs Co	unty,	0hi o)		
Elev.	Depth	Std.	Pen./	Rec.	Lgss			T		Physi	cal C	harac	terist	ics		0007
(ft)	(ft)	RQD		(ft)	(ft)	Description	Sample Na.	% Agg	c.s.	* F.S.		clay			w.c	ODOT Closs
644.3 643.7 _	0					TOPSOIL		Agg	c.s.	F.S.	Silt	Clay	L.L.	1	".	01000
- 1.540	†					Stiff, brown <u>SILTY CLAY</u> , trace sand, moist.										
		3-4	-5				1								19	VISUAL
				l												
			_				_									
		3-4	-6				2								14	VISUAL
	5															
		3-3	-5	l			3	0	1	3		97*	36	16	22	A-6b
637.4	-			Ì			-					- '	••	'-		
		2-3	_4			Medium stiff to stiff, brown to gray <u>SILT AND CLAY</u> , moist.	١,			ļ					2.	WICHAI
		2-3	~~				4								21	VISUAL
	_															
	ا ۱۰۰	2-2	-3				5	1	ı	7		91*	31	12	22	A-6a
	10														İ	
		1-3	-4				6								18	VISUAL
				ŀ												
														1		
-	_													[
		3-7	-5				7								12	VICUAL
	-	J - 1	-				'								13	VISUAL
	15															
627.8	-															
-]	R00 =	1%	4.7	8.0	Nate: Auger refusal an bedrack of 16.5 feet. Began coring rack, very soft, gray, decomposed <u>SILTSTONE</u> , with indistinct bedding, very paar condition as per ROD.										
						very paar condition as per ROD.								ŀ		
														ļ		
				ĺ		RUN I FROM 16.5 FEET TD 22.0 FEET										
	20															
623.3																
			ŀ	İ		U.C. Strength at 20.5 feet = IOD psi										
		RQD =	0%	0.1	7.4											
												1				
	25									ĺ						
						Nate: Calar change ta reddish brown at 25.0 feet.										
								1								
	_					NW 0 5004 00 0 5557 70 00 5 5557										
}						RUN 2 FROM 22.0 FEET TO 29.5 FEET Run 2 bedrack quality very paar as per ROD.			***************************************							
	-															
	_															
	30		F			Nate: Used raller bit method of drilling from 29.5 feet to 32.0										
	70					l teet becouse care barrel lacked at 29.5 teet. Na rack somple										
	-					recavery between these depths.					1					
		R00 =	0%	0.3	4.8											
											[
	35					RUN 3 FROM 32.0 FEET TO 37.0 FEET Run 3 bedrock quality very paar os per ROO.			1					1		1
						The second desired the second										
		ROD =	n y	3.7	0.3	-			1							
		- עטא	U A	۱۰ د	0.3								1			
									1					1		
						DIN 4 FROM 37 O FEET TO 41 D FFFT			1							
	40					RUN 4 FROM 37.0 FEET TO 41.D FEET Run 4 bedrack quality very paar as per ROD.									1	
	7.															
603.3	1					TERMINATION OFFILE - ALO FEET										

TERMINATION OEPTH = 41.0 FEET

*Silt and clay combined

Particle Sizes: Agg => 2.00mm, Coorse Sand = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm.

*Silt and clay combined

State of Ohia Deportment af Transportation Division of Highways Testing Loborátorý LOG OF BORING

Sompler: Type <u>SS</u> Dote Storted 4/14/99 _ Dio. <u>2.0"</u> __ Woter Elev. <u>ft</u> Dote Completed 4/14/99 _Dio. <u>3.25</u>" __Cosing: Length__

 \bigcirc

 \bigcirc

Project: <u>MEG-124-22.72</u>

 \bigcirc

Project No.: 99011 Location: Meigs County, Ohio

Boring No. <u>CU-07A</u> Stotion & Offset 794+75.00, 200.00' RT Surfoce Elev. 647.87ft Elev. Depth (ft) (ft) Std. Pen. Rec. Loss R00 (ft) (ft) Physical Characteristics Description Somple 000T No. X Agg F.S. Silt Clay L.L. P.I. W.C. Closs 647.9 0 TOPSOIL
Medium stiff, brown <u>SANDY SILT</u>, some cloy, moist. 647.4 1-2-3 -24 VISUAL 1-2-3 37 25 2 0 5 32 29 10 30 A-40 643.0 Stiff to very stiff, brown SILT AND CLAY, troce sond, moist. 3-4-B 3 20 VISUAL 3-4-6 0 90 * 36 16 9 23 A-60 6-B-16 5 15 VISUAL 15 632.4 Note: Auger refused on bedrock of 15.5 feet. Begon coring rock, Very soft, reddish brown, decomposed <u>SILISTONE</u> with indistinct bedding, very poor condition os per ROD. 0.1 ROD = 36%6.9 Note: Siltstone chonging to soft, weothered to highly weothered, ond grey of 16.4 feet. 20 U.C. Strength of 21.2 feet = 196 psi 625.4 TERMINATION DEPTH = 22.5 FEET

Porticle Sizes: Agg => 2.00mm, Coorse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm.

Stote of Ohia Department of Transportotian Division of Highwoys Testing Loborotory LOG OF BORING

___ Woter Elev. <u>f</u>† Dote Storted 3/31/99 __Sompler: Type <u>_SS</u>___ _ Dia. <u>2.0"</u> Oote Completed 3/31/99 Cosing: Length_ _Dia. <u>3.25"</u>

Project: MEG-124-22.72

Project No.: 99011

Location: Meigs County, Ohio Boring No. <u>CU-09</u> Stotion & Offset 813+30.00, 42.00' RT Surfoce Elev. 767.23ft Std. ROO 0epth (ft) Pen. Loss (ft) Physical Characteristics 0escription 000T Somple Agg C.S. F.S. Silt Clay L.L. P.I. W.C. No. Closs 767.2 0 TOPSOIL 766.6 Very soft, highly weothered to decomposed, brown CLAY SHALE. 6-16-18 П VISUAL 50/4in 2 --VISUAL 50/5in 3 --7 V ISUAL 50/4in VISUAL 4 6 757.2 10 Note: Auger refusol on bedrock of 10.0 feet. Begon coring rock/ Very soft, highly weothered to decomposed, brown <u>CLAY SHALE</u> with horizontol laminor bedding (fissile) to 11.5 feet; indistinct bedding from 11.5 feet to 15.0 feet. Rock in very poor condition os per ROD. U.C. Strength of 10.9 feet = 166 psi R00 = 0%5.0 0.0 752.2 TERMINATION DEPTH = 15.0 FEET

*Silt and clay combined

Porticle Sizes: Agg => 2.00mm, Coorse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm.

MEG-124-22.72

SOIL PROFILE

REVIEWED DATE CALCULATE 1/24/01 W.J.N. CHECKED S.S.S.

PRIME ENGINEERING

& ARCHITECTURE.INC.

COLUMBRIS: ARCHI(6(4) 457-2100 (330) 666-5432

 \bigcirc

State of Ohio Department of Transportation Division of Highways Testing Laboratory LOG OF BORING

 Sompler: Type
 SS
 0ia.
 2.0"

 Cosing: Length
 0io.
 3.25"
 Woter Elev. 632.6ft 7/5/00 Oate Started ___ Oate Completed 7/6/00 ____ 0io. <u>3.25"</u>

Project: <u>MEG-124-22.72</u>

 \bigcirc

Boring No. CII-07B Station & Offset 794+60 79

 \bigcirc

 \bigcirc

Project No.: 99011 Location: Meigs County, Ohio

Boring	No. Cl	J-07B Stotio	n & 0f1	fse† <u>79</u>	1+60.79 189.96'LT Surfoce Elev. <u>648.</u>	94f†									
Elev.	0ep†h	Std. Pen./	Rec.	Loss (f†)	0escriptian	Somple			Physic	cal Cha	racte	ristics	 i		000T
(f†) 648.9	(††)	R00	(f†)	1117		Na.	% Agg	c.s.	F.S.	% Silt	X Clay	L.L.	P.I.	W.C.	Class
648.9					TOPSOIL			t.3.	F.3.	3111	city				
647.4	-														
011.4	2	3 - 3 - 4			Medium stiff to very stiff, reddish brown SILTY CLAY (A-6b), little sand,	1 1								16	VISUAL
	-				Medium stiff ta very stiff, reddish brawn <u>SILTY CLAY</u> (A-6b), little sand, troce ta some rock fragments, trace roats, moist.										
	,=														
	-	5 - 15 - 15				2								9	VISUAL
643.9					Note: Encauntered a sondstone cobble of 4.5 feet.										
	6				Note: Encauntered a sondstone cobble ot 4.5 feet. Soft ta hard, brown ond gray <u>SANDY SILT</u> (A-4o), same ta little cloy, no ta little gravel ond rock frogments, maist ta wet.										
		2 - 3 - 3			Ta Tittle graverena rock frogments, maist la wet.	3								19	VISUAL
	=	2 3 3													
	10	3 - 4 - 6				4								21	VISUAL
		5 , 0													
	12														
	12-	3 - 4 - 4				5								21	VISUAL
		3 7 7													
	14														
	14	2 - 1 - 3			Note: Bushed a Shellor Tube from 14 to 15 feet pout to existed test	6A	0	1	12	48	40	30	10	21	A-40
		2 - 1 - 3			Note: Pushed a Shelby Tube from 14 to 16 feet next to original test boring.	6B								21	VISUAL
	⊥ ₁₆ —				•										
	¥	4 6 7			Note: Encountered groundwoter ot 16.3 feet during drilling.	7								14	VISUAL
		4 - 6 - 7			notos Enodamoros groundworos of tota foot daring driffing.	Ì							İ		
	18														
		4 5 00				8A	1	6	ll ll		82 *	31	10	24	A-4a
	20	4 - 5 - 29				8B								14	VISUAL
628.4		10-44-50/0.4			Vary saft decomposed raddish brown MUNCTONE with indictinat hadding	9								9	VISUAL
		10-44-30/0.4			Very saft, decomposed, reddish brawn <u>MUDSTONE</u> with indistinct bedding. The quality of the mudstone in all three runs is considered very paor										
	22				as per ROO.										
	1 7	E0 /0 E				10								10	VISUAL
	24	50/0.5													·
623.9					Nate: Augered ta 25.0 feet ond began caring.										
	26	ROD = 18%	4.7	0.8	Very soft to medium hord, decampased ta weathered, reddish brown <u>MUDSTONE</u> with indistinct bedding.	1									
					<u>MUDSTONE</u> with indistinct bedding.										
					U.C. Strength af dec. mudstone at 25.8 feet = 152 psi										
	28		İ		dic. 311 engitt di dec. iliudatore di 23.0 feet - 132 psi										
										Ì					
	30														
		D00 000		<u> </u>											
		R00 = 0%	4.0	1.0											
	32														
								1							
	34														
							1								
	,,=	500	<u> </u>	 											
	36	R00 = 10%	3.5	1.5											
1							1								
	38						1								
	-						1			1					
	40						1								
608.4	40		<u> </u>	<u> </u>			<u>L</u>			<u> </u>					
					TERMINATION OEPTH = 40.5 FEET										

Particle Sizes: Agg => 2.00mm, Caarse Sand = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm

(*Indicates silt & cloy combined)

State of Ohio Department of Transportation Division of Highways Testing Laboratory LOG OF BORING

_____ Water Elev. _ft_ Sampler: Type SS 0ia. 2.0"
Cosing: Length 0ia. 3.25" Oate Completed 7/27/00

Baring Na. CU-08 Stotion & Offset 812+63.51 128.85' RT

Surface Flev. 775.52ff

Project No.: 99011 Location: Meigs County, Ohio

Project: <u>MEG-124-22.72</u>

) Na. <u>L</u>		וט א חוכ	TSOT 812	2+63.51 [28.85] R1 Surface Elev Surface Elev	0211									
Elev.	0epth (ft)	Std. Pen./ R00	Rec.	Loss (f†)	0escription	Somple			Physic	cal Cho	rocte	ristics	;		000T
775.5	0	RUU	(117	00		Na.	X Agg	c.s.	% F.S.	X Silt	% Clay	L.L.	P.I.	W.C.	Class
774.9	- U		 	 	TOPSOIL		Agg	6.5.	г.э.	3[1]	City				
114.3	2=	6 - 9 - 6			Stiff, brawn <u>CLAY</u> (A-7-6), some sand, trace rack tragments, trace roats, maist.	l	2	6	20		72 *	52	28	19	A-7-6
	4=	4 - 4 - 6				2								19	VISUAL
769.0	6	5 - 11 - 16	***************************************		Medium dense, brawn <u>COARSE AND FINE SAND</u> (A-3a), little silt, trace rack fragments, moist.	3								12	VISUAL
767.0	- 8	7 - 11 - 17			Very stiff, brown <u>CLAY</u> (A-7-6), little sand, moist.	4								21	VISUAL
764.0		8 - 21 - 34			Very saft, decampased, brown and block <u>SANOSTONE</u> .	5								15	VISUAL
761.5	14	15 - 43 - 22			Very saft, decomposed to highly weathered, brown <u>CLAY SHALE</u> .	6A 6B								8 12	VISUAL VISUAL
	16 	60/0.5	With the second			7								9	VISUAL
	20	39 - 56				8								Ю	VISUAL
753.0	22	24 - 31 - 48				9								11	VISUAL
					TERMINATION OEPTH = 22.5 FEET										

Particle Sizes: Agg => 2.00mm, Caorse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm

(*Indicates silt & clay cambined)

MEG-124-22.72

SOIL PROFILE

REVIEWED B.M. DRAWN E.D.S. DATE 1/24/01 CALCULATE W.I.N. CHECKED S.S.S.

PRIME ENGINEERING

& ARCHITECTURE.INC.
COLUMBUS: AKRON:
(8(4) 457-2100 (330) 666-5432

MPLING FIRM / L LLING METHOD MPLING METHOD	:		DEOT / BIN 25" HSA SPT DEPT	HS - 1 - 2 3 4	CALI	BRATI	ON DA		1/7/23 81	GR	ALIGN ELEV LAT / GRAD CS	ATIO LON ATIO	N: G: N (%)		.6 (ft) 39.02		OB: 3, - 81	50 .94018 wc	O.O ft. B5 ODOT CLASS (GI)	
		732.6		- 1 - 2 3 4	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD. CS	ATIO FS	N (%)) CL	ATT LL	PL	PI	WC	ODOT CLASS (GI)	BACK FILL
				- 2 - - 3 - - 4 -	2 9 7															
				- 2 - - 3 - - 4 -	2	22	39	SS-1	4.50	29	4	15	29	23	30	18	12	1/		1>1 T
				- - 4 -	2	22	39	33-1	4.50	29	4	10	/9 I	/.n I						
				- '	2 2										30	10	12	14	A-6a (4)	1 1 1
					1	8	33	SS-2	3.50	28	4	9	31	28	32	19	13	13	A-6a (6)	
		1		- 5 -	- 4															
				- 6 - - 7 -	5 5 5	13	44	SS-3	3.50	-	-	-	-	-	-	-	-	10	A-6a (V)	
				_ 8 -																2 de 1
		722.6		<u> </u>	0 3 3	8	39	SS-4	4.50	-	-	-	-	-	-	-	-	12	A-6a (V)	A NATO
OME		122.0	-	- 10 - - - 11 -	6 30	86	61	SS-5	3.50	33	3	19	26	19	26	17	9	9	A-4a (2)	1901;
				- - 12 -	34															
				_ 13 -																4900 C
				<u> </u>	3 4 6	13	56	SS-6	4.50	-	-	-	-	-	-	-	-	9	A-4a (V)	4 > 4 18 1
				- 15 - -	4 11	26	61	SS-7	4.00	_	_	_	-	-	_	-	-	9	A-4a (V)	1 7 1
				- - 17 -	8															
				18 -																2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		712.6		— 19 – –	5 10	24	56	SS-8	4.50	-	-	-	-	-	-	-	-	9	A-4a (V)	
ND" STONE		712.0	-	20 -	2 7	24	50	SS-9	4.50	47	4	9	25	15	28	17	11	6	A-6a (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				-	11															Sept de la constant d
		709.1		_ 23 -	_															1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E STONE				24 -	4 4 。	16	67	SS-10	2.00	24	6	5	22	43	45	24	21	22	A-7-6 (11)) 448 6
				— 25 -	6 9	30	67	SS-11	4.50	_	_	_	_	_	_	_	_	18	A-7-6 (V)	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
				- '	13														- ()	4>1
		704.1		_ 28 -	-															
STONE		10		_ 29 -	8 23	67	67	SS-12	4.50	26	3	8	34	29	31	18	13	10	A-6a (7)	
				_ 30 _	27															
				-																
				- 33 -	-															
NTS				- 34 -	28 33	66	17	SS-13	4.50	-	-	-	-	-	-	-	-	4	A-6a (V)	
				35	16															
				-																
				- 38 -	-															
				_ 39 -	10 15	40	33	SS-14	4.50	-	-	-	-	-	-	-	-	8	A-6a (V)	
				- 40 -	- 13															
				- 41 - - 42 -																
				- - - 43 -																
				44 -	4 15	46	39	SS-15	4.50	-	-	-	-	-	-	-	-	9	A-6a (V)	
				- 45 -	19															
			∇ 685.5	L .																
				- - 48 -																
		683.6		- - - 49 -	5 11	26	22	SS-16	4.50	1	-	-	-	-	-	-	-	7	A-6a (V)	
	ND" STONE E STONE NTS	E STONE	709.1 E STONE 704.1	709.1 = STONE 704.1 TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	TOP STONE 709.1 STONE 709.1 TOP STONE 709.1 TOP STONE 704.1 TOP STONE 705.1 TOP STONE 706.1 TOP STONE 706.1 TOP STONE 707.1 TOP STONE 708.1 TOP STONE 709.1 TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	TOWALL STONE 712.6 712.6 712.6 712.6 712.6 712.6 713.	TOP STONE 712.6 709.1 TOP STONE 709.1 TOP STONE 704.1 TOP STONE 705.1 TOP STONE 705.1 TOP STONE 706.1 TOP STONE 707.1 TOP STONE 708.1 TOP S	TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TOURL TO	TOUL TOUS TONE 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6 712.6	TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE	TOUL STONE	T12.6 ND' STONE 712.6 709.1 TOM: 704.1 TOM: 704.1 TSTONE 704.1 TOM: 704.1 TOM: 705.5 706.1 TOM: 704.1 TOM: 706.5 TOM: 706.5 TOM: 706.5 TOM: 706.5 TOM: 706.5 TOM: 706.5 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 706.7 TOM: 707.7 TOM: 707.7 TOM: 707.7 TOM: 707.7 TOM: 707.7 TOM: 708.7 TOM	TOP STONE 709.1 FOR TORE 709.1 FOR TORE 704.1 704.1 FOR TORE 708.5 FOR TORE 708.5 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1 FOR TORE 709.1	TILE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE TOP IND STONE	TOP: STONE 709.1 704.1 704.1 70685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 685.5 70 6	TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE TOTONE	TOP: STONE TOP: TOP: TOP: TOP: TOP: TOP: TOP: TOP:	TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE TOWE	TOP STONE 712.6 712.7 13	

From "MEG-33-13.96~pid119143~SPT_boring logs.pdf"

TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	ER: C		HAM	MER:	ACI	CKER REE	MATI	2	STAT ALIG	NMEI	NT: _			US 33	3			ATION II 2-1-23 PAGE
PID: <u>119143</u> SFN: START: 11/8/23 END: 11/8/23	DRILLING METHOD: SAMPLING METHOD:	3.	25" HSA SPT	- 1	BRAII RGY R		ATE:1	<u>1/7/23</u> 90*		ELEV		_					.93994	8.0 ft.	1 OF 1
MATERIAL DESCRIPTION		ELEV.		SPT/			SAMPLE			GRAD					ERBE		.9099-	ODOT	BACK
AND NOTES	014	683.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)				SI		LL	_	_	wc	CLASS (GI)	
TOPSOIL (2")	17/7/	۱ <u>683.</u> 7																	27 L 400
VERY STIFF, RED AND GRAY, SILT AND CL			_ 1 _																
STONE FRAGMENTS, TRACE SAND, DAMP			_ 2 _	2	6	17	SS-1	3.00									15	A-6a (V)	1 × 1
			_ 3 _	2		17	33-1	3.00	_	_	_	_	_		_	_	13	A-0a (V)	1 / 1
	\///			1															20 > 100 ×
	\///		- 4 1	2 2	6	28	SS-2	1.00	25	3	5	32	35	33	18	15	16	A-6a (8)	
	\///		_ 5 _																LV
			<u> </u>	5															TX VIII
	\///		F 7 -	3 ,	11	33	SS-3	4.00	-	-	-	-	-	-	-	-	14	A-6a (V)	
	\///			4															- Fall & S
STIFF, BROWN AND GRAY, SANDY SILT , S	OME CLAY	675.3	8 -	1															- 4
TRACE STONE FRAGMENTS, MOIST	OIVIE CLAT,		9 -	່ 3 ຼ	12	61	SS-4	2.00	5	5	23	40	27	28	18	10	18	A-4a (6)	
			<u></u> 10 <u></u> 10	5					l										
VEDVICTIES COAVICIA TANDOLAY "AND	L STONE	672.8	- 11 -	5															7000 1
VERY STIFF, GRAY, SILT AND CLAY , "AND' FRAGMENTS, LITTLE SAND, DAMP	STONE		- - 12 -	5	12	67	SS-5	3.50	45	6	8	26	15	30	19	11	8	A-6a (1)	SAN J
- ,	\///			3															- 400 mm
CAS SI OTISE DEGINER AND DED COME OF			13 -	2															11 1
@13.5'; STIFF, BROWN AND RED, SOME ST FRAGMENTS, TRACE SAND	IONE ////		14	3 5	18	67	SS-6	1.00	25	3	6	37	29	33	21	12	14	A-6a (7)	<0750 <
Trutometrio, Trutoe of and			- 15 -																WSAM N
		667.8	16																00 AUS
HARD, BROWN, SANDY SILT , SOME CLAY, FRAGMENTS, DAMP	SOME STONE		- - 17 -	5 4	24	78	SS-7	4.50	21	2	27	29	21	24	18	6	12	A-4a (3)	2 > 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TVACINEIVIO, DAIVII				12															7 7
		665.3	<u> </u>																all all
VERY STIFF, BROWN AND GRAY, SILT AND STONE FRAGMENTS, LITTLE SAND, DAMP	CLAY, SOME		- 19 -	4 6	20	78	SS-8	3.00	25	3	11	32	29	33	19	14	14	A-6a (7)	
STONE I MOMENTO, ETTTLE SAND, DAM	\///		_ ₂₀ _	7														. ,	12/1
	<i>\///</i>		 - 21 -																arting 1
			-																Furth &
	(///		— 22 — -																< / <
			23																A CERT
	<i>\///</i>			4	12	72	SS-9	2.50	l _	_	_	_	_	_	_	_	16	A-6a (V)	
	\///		_ 25 _	5														(*)	
	<i>\///</i>		 - 26 -																
	\///		-																
@28.0'; AUGER REFUSAL, ENCOUNTERED	CULVERT ////	655.8	- 27 - 																
		1 000.0	EOB28-	<u> </u>	<u> </u>		l .	<u> </u>								1			nosmo
NOTES: LAT/LONG/ELEV FROM DISTRICT																			
ABANDONMENT METHODS, MATERIALS, Q	UANTITIES: AUGER CU	I HNGS N	/IIXED WITH 50 LB.	RFNIC	INITE	CHIPS	•												

 \bigcirc

Soil Parameter Determination

	Г										Long-Term Streng	h Values	Adopted Long Term Strength	Cor	nsolidation Va	alues		
	-	Und	rained Shear		<i>, ,</i>	Dry Unit Weight	(pcf) Moist Unit Wt. (pcf)	Adopted Short Term Parameters					Parameters				Adopted Consolida	tion Parameters
Layer		PPR		alues	Tested Values	Correlation Te	sted Correlation Tested	- '		N ₆₀ Value	ODOT GB-7 Correlation		4		ODOT GB-7		'	
	Max	4500	Sowers 2275	T and P 1729	values	110	125		Max	13	Cohesion (psf) phi (cohesion 0/ (1 / 1 (0/	+	Max	eo 0.787	Cc 0.207			
	Min	500	450	798		95	110	S _u = 1400 psf	Min	6	75 2°		c' = 110 psf	Min	0.767	0.207	eo = 0.681	Ko = 0.63
Layer 1	Average	2865	1532	1321		101	120	$\Phi = 0$ deq	Average	10	112 22		Φ' = 22 deg	Average		0.181	Cc = 0.181	Es = N/A ksf
Layer 1	Std Dev	1285	559	350		6	6	+ <u>U</u> ucg	Std Dev	3	23 1		+ <u>22</u> ucg	Std Dev		0.019	Cr = 0.018	L3 - N/A K3
MEDIUM STIFF TO STIFF								Y _{dry} = 100 pcf		•			Y _{dry} = 100 pcf				$Cv = \frac{0.13}{\text{ft}^2/\text{day}}$	
EMBANKMENT FILL	Avg + Std	4151	2091	1671		107	126	Y _{moist} = 120 pcf	Avg + Std	13	134 23		Y _{moist} = 120 pcf	Avg + Sto	d 0.781	0.200	$\sigma_p' = \frac{18}{18}$ ksf	
	Avg - Std	1580	972	971		95	115	mostP	Avg - Std	7	89 22		most	Ava - Std		0.162	10 10	
	Max	4500	4000	3990		120	135		Max	30	200 26		†	Max	0.476	0.315		
	Min	1000	1800	2128		115	130	S _u = 3000 psf	Min	16	153 24		c' = 175 psf	Min	0.378	0.126	eo = 0.444	Ko = 0.58
Layer 2	Average	3500	3025	3026		117	132	Φ = 0 deg	Average	23	176 25		Φ' = 25 deg	Average	0.444	0.203	Cc = 0.203	Es = N/A ksf
	Std Dev	1363	1018	602		3	3		Std Dev	5	15 1			Std Dev	0.046	0.071	Cr = 0.020	
VERY STIFF EMBANKMENT FILL								Y _{dry} = 115 pcf					Y _{dry} = 115 pcf				$Cv = 0.11 ft^2/day$	
	Avg + Std	4863	4043	3628		119	134	Y _{moist} = 130 pcf	Avg + Std	27	191 26	i	Y _{moist} = 130 pcf	Avg + Sto	d 0.490	0.274	$\sigma_p' = 18$ ksf	
	Avg - Std	2137	2007	2424		114	129		Avg - Std	18	161 24			Avg - Std	d 0.398	0.132		
	Max	4500	4000	4000		135	145		Max	67	250 28			Max	0.476	0.198		
	Min	3000	3150	2394		115	130	S _u = 3700 psf	Min	18	160 24		c' = 215 psf	Min	0.257	0.189	eo = 0.362	Ko = 0.55
Layer 3	Average	4313	3894	3663		125	138	Φ = 0 deg	Average	40	217 27		Φ' = 27 deg	Average		0.194	Cc = 0.194	Es = N/A ksf
VERY STIFF TO HARD	Std Dev	530	301	568		8	5		Std Dev	19	37 1		I	Std Dev	0.084	0.006	Cr = 0.019	
EMBANKMENT FILL								Y _{dry} = 125 pcf					Y _{dry} = 125 pcf				Cv = 0.12 ft ² /day	
	Avg + Std	4843	4194	4230		133	143	Y _{moist} = 140 pcf	Avg + Std	58	254 28		Y _{moist} = 140 pcf	Avg + Sto		0.200	$\sigma_p' = $ 18 ksf	
	Avg - Std	3782	3593	3095		117	132		Avg - Std	21	180 25			Avg - Std		0.187		
	Max	N/A	1750	1330		105	125		Max	10	114 23			Max	0.787	0.234		
	Min	N/A	300	532		95	110	S _u = 930 psf	Min	4	50 20		c' = 85 psf	Min	0.616	0.171	eo = 0.756	Ko = 0.64
Layer 4	Average	N/A	933	931		97 3	118 5	Φ = 0 deg	Average Std Dev	2	86 2 ⁻		Φ' = 21 deg	Average		0.194	Cc = 0.194 Cr = 0.019	Es = N/A ksf
MEDIUM STIFF TO STIFF	Std Dev	N/A	496	260		3	٥	Y _{dry} = 95 pcf	Stu Dev	2	21 1		Y _{dry} = 95 pcf	Std Dev	0.056	0.028	2	
COHESIVE	Avg + Std	N/A	1429	1191		100	123	Y _{moist} = 120 pcf	Ava + Std	q	107 22		· · · · · · · · · · · · · · · · · · ·	Avg + Sto	d 0.812	0.221	OCR = 1 1 ft²/day	
	Avg + Std Avg - Std	N/A N/A	436	671		93	113	pci	Avg + Std	9	107 22 64 2		Y _{moist} = 120 pcf	Avg - Std		0.221	OCR - I	
	Max	N/A	2100	1729		110	125		Max	13	136 23		<u> </u>	Max	0.616	0.100		
	Min	N/A	975	1330		105	125	S _u = 1650 psf	Min	10	114 23		c' = 125 psf	Min	0.543	0.234	eo = 0.580	Ko = 0.61
Layer 5	Average	N/A	1731	1563		108	125	$\Phi = 0$ deq	Average	12	127 23		Φ' = 23 deg	Average		0.234	Cc = 0.234	Es = N/A ksf
,	Std Dev	N/A	530	167		3	0		Std Dev	1	9 0			Std Dev		N/A	Cr = 0.023	
STIFF COHESIVE								Y _{dry} = 110 pcf					Y _{dry} = 110 pcf				$Cv = 0.38 ft^2/day$	
	Avg + Std	N/A	2262	1730		110	125	Y _{moist} = 125 pcf	Avg + Std	13	136 23		Y _{moist} = 125 pcf	Avg + Sto	d 0.622	N/A	OCR = 1	
	Avg - Std	N/A	1201	1395		105	125		Avg - Std		118 23		motor	Avg - Std		N/A		
	Max	3000	4000	4000		125	135		Max	34	200 27			Max	0.476	0.189		
	Min	3000	2550	3059		115	130	S _u = 3300 psf	Min	23	177 25		c' = 185 psf	Min	0.358	0.189	eo = 0.416	Ko = 0.56
Layer 6	Average	3000	3517	3417		120	133	Φ = 0 deg	Average	27	186 26		Φ' = 26 deg	Average	0.416	0.189	Cc = 0.189	Es = N/A ksf
	Std Dev	N/A	837	509		5	3		Std Dev	6	13 1			Std Dev	0.059	N/A	Cr = 0.019	
VERY STIFF TO HARD COHESIVE								Y _{dry} = 120 pcf					Y _{dry} = 120 pcf				$Cv = 0.50 ft^2/day$	
	Avg + Std	N/A	4354	3926		125	136	Y _{moist} = 135 pcf	Avg + Std	33	198 27		Y _{moist} = 135 pcf	Avg + Sto	d 0.475	N/A	OCR = 1	
	Avg - Std	N/A	2680	2908		115	130		Avg - Std	21	173 25			Avg - Std	d 0.357	N/A		

Ko = 1 - sin(phi)

Assumed Cc/Cr = 10

OCR selected as 1 considering the native materials to be normally consolidated. Preconsolidation pressure for existing fill selected based on correlations with LI in NAVFAC DM 7.1, Chapter 3, Figure 3. Cv values selected based on correlations with LL in USACE EM 1110-1-1904.

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

Layer 1		%		%	%	%	%	%				%			t-Term Cohes N-values	ч ,	Correlated LT Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	ы	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	U _c	Gravity (G _s)	Ratio (e)	LI
Max	13	67	4.5	45	6	23	40	35	33	20	15	18	Max	4500	2275	1729	136	23	14.0	728.6	110	125	0.207	2.72	0.787	0.00
Min	6	6	0.5	5	3	5	26	15	27	18	9	8	Min	500	450	798	75	21	2.0	671.8	95	110	0.153	2.72	0.543	-1.00
Average	10	39	2.9	26	4	13	31	26	30	19	11	12	Average	2865	1532	1321	112	22	7.7	691.6	101	120	0.181	2.72	0.681	-0.47
Std Dev	3	19	1.3	14	1	8	5	6	2	1	2	3	Std Dev	1285	559	350	23	1	4.0	20.8	6	6	0.019	0.00	0.100	0.39
Avg + Std	13	58	4.2	40	5	21	36	32	32	19	13	15	Avg + Std	4151	2091	1671	134	23	11.8	712.4	107	126	0.200	2.72	0.781	-0.08
Avg - Std	7	19	1.6	12	3	6	26	20	28	18	9	9	Avg - Std	1580	972	971	89	22	3.7	670.8	95	115	0.162	2.72	0.580	-0.87

Correlated

																					Shor	-Term Cohe	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	ODO	Г			N-value:	S	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI WO	Clas	. Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	732.6	B-002-0-23	3.5	-	5	SS-2	8	33	3.5	28	4	9	31	28	32	19	13 13	A-6a	Cohesive	1	3500	1400	1064	100	22	4.0	728.6	95	110	0.198	2.72	0.787	-0.46
US 33	732.6	B-002-0-23	6	-	7.5	SS-3	13	44	3.5	-	-	-	-	-	-	-	- 10	A-6a	Cohesive	1	3500	2275	1729	136	23	7.0	725.6	105	125		2.72	0.616	
US 33	732.6	B-002-0-23	8.5	-	10	SS-4	8	39	4.5	-	-	-	-	-	-	-	- 12	A-6a	Cohesive	1	4500	1400	1064	100	22	9.0	723.6	95	120		2.72	0.787	
US 33	732.6	B-002-0-23	13.5	-	15	SS-6	13	56	4.5	-	-	-	-	-	-	-	- 9	A-4a	Cohesive	1	4500	975	1729	136	23	14.0	718.6	110	125		2.72	0.543	
US 33	683.8	B-002-1-23	1.5	-	3	SS-1	6	17	3	-	-	-	-	-	-	-	- 15	A-6a	Cohesive	1	3000	1050	798	75	21	2.0	681.8	95	110		2.72	0.787	
US 33	683.8	B-002-1-23	3.5	-	5	SS-2	6	28	1	25	3	5	32	35	33	18	15 16	A-6a	Cohesive	1	1000	1050	798	75	21	4.0	679.8	95	110	0.207	2.72	0.787	-0.13
US 33	683.8	B-002-1-23	6	-	7.5	SS-3	11	33	4	-	-	-	-	-	-	-	- 14	A-6a	Cohesive	1	4000	1925	1463	121	23	7.0	676.8	105	125		2.72	0.616	
US 33	683.8	B-002-1-23	8.5	-	10	SS-4	12	61	2	5	5	23	40	27	28	18	10 18	A-4a	Cohesive	1	2000	900	1596	129	23	9.0	674.8	105	125	0.162	2.72	0.616	0.00
US 33	683.8	B-002-1-23	11	-	12.5	SS-5	12	67	3.5	45	6	8	26	15	30	19	11 8	A-6a	Cohesive	1	3500	2100	1596	129	23	12.0	671.8	110	125	0.18	2.72	0.543	-1.00
US 33	690.1	B-002-2-23	1.5	-	3	SS-1	12	28	2.5	-	-	-	-	-	-	-	- 10	A-6a	Cohesive	1	2500	2100	1596	129	23	2.0	688.1	100	120		2.72	0.697	
US 33	690.1	B-002-2-23	3.5	-	5	SS-2	11	50	1.5	40	3	8	27	22	31	20	11 9	A-6a	Cohesive	1	1500	1925	1463	121	23	4.0	686.1	100	120	0.189	2.72	0.697	-1.00
US 33	690.1	B-002-2-23	6	-	7.5	SS-3	11	6	-	-	-	-	-	-	-	-	- 11	A-6a	Cohesive	1	N/A	1925	1463	121	23	7.0	683.1	105	125		2.72	0.616	
US 33	690.1	B-002-2-23	8.5	-	10	SS-4	6	39	0.5	16	3	23	32	26	27	18	9 14	A-4a	Cohesive	1	500	450	798	75	21	9.0	681.1	95	120	0.153	2.72	0.787	-0.44
US 33	690.1	B-002-2-23	11	-	12.5	SS-5	8	11	-	-	-	-	-	-	-	-	- 12	A-6a	Cohesive	1	N/A	1400	1064	100	22	12.0	678.1	95	120		2.72	0.787	
US 33	690.1	B-002-2-23	13.5	-	15	SS-6	12	67	3.25	22	4	17	29	28	30	19	11 16	A-6a	Cohesive	1	3250	2100	1596	129	23	14.0	676.1	110	125	0.18	2.72	0.543	-0.27

Values for Soil Strength	Correlation Property of the Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

Layer 2	N ₆₀	% Rec	HP	% Gr	% CS	% FS	% Silt	% Clay	LL	PL	PI	% WC		Shor	t-Term Cohes N-values Sowers	ion (psf)	Correlated LT Cohesion (psf) per GB-7	phi (deg)	Midpoint Sample Depth (ft.)	Midpoint Sample Elevation (ft.)	Correlated Dry Unit Wt. (pcf) per GB-7	Correlated Moist Unit Wt. (pcf) per GB-7	Correlated C _c	Assumed Specific Gravity (G _s)	Computed Void Ratio (e)	LI
Max	30	78	4.5	47	6	27	37	43	45	24	21	22	Max	4500	4000	3990	200	26	26.0	716.6	120	135	0.315	2.72	0.476	-0.10
Min	16	50	1.0	21	2	5	22	15	24	17	6	6	Min	1000	1800	2128	153	24	14.0	664.8	115	130	0.126	2.65	0.378	-1.00
Average	23	66	3.5	28	4	12	29	27	33	20	13	13	Average	3500	3025	3026	176	25	19.5	694.8	117	132	0.203	2.70	0.444	-0.61
Std Dev	5	10	1.4	11	2	9	6	11	8	3	5	5	Std Dev	1363	1018	602	15	1	4.0	23.1	3	3	0.071	0.03	0.046	0.40
Avg + Std	27	75	4.9	39	5	21	35	38	40	23	18	18	Avg + Std	4863	4043	3628	191	26	23.5	717.9	119	134	0.274	2.73	0.490	-0.21
Avg - Std	18	56	2.1	18	2	3	23	17	25	17	7	8	Avg - Std	2137	2007	2424	161	24	15.5	671.7	114	129	0.132	2.67	0.398	-1.01

Correlated

																					Shor	-Term Cohes	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL P	L PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	732.6	B-002-0-23	15	-	16.5	SS-7	26	61	4	-	-	-	-	-		-	9	A-4a	Cohesive	2	4000	1950	3458	187	25	16.0	716.6	115	130		2.72	0.476	
US 33	732.6	B-002-0-23	18.5	-	20	SS-8	24	56	4.5	-	-	-	-	-		-	9	A-4a	Cohesive	2	4500	1800	3192	180	25	19.0	713.6	115	130		2.72	0.476	
US 33	732.6	B-002-0-23	20	-	21.5	SS-9	24	50	4.5	47	4	9	25	15	28 1	7 11	6	A-6a	Cohesive	2	4500	4000	3192	180	25	21.0	711.6	120	135	0.162	2.72	0.414	-1.00
US 33	732.6	B-002-0-23	23.5	-	25	SS-10	16	67	2	24	6	5	22	43	45 2	4 21	22	A-7-6	Cohesive	2	2000	4000	2128	153	24	24.0	708.6	120	135	0.315	2.65	0.378	-0.10
US 33	732.6	B-002-0-23	25	-	26.5	SS-11	30	67	4.5	-	-	-	-	-		-	18	A-7-6	Cohesive	2	4500	4000	3990	200	26	26.0	706.6	120	135		2.65	0.378	
US 33	683.8	B-002-1-23	13.5	-	15	SS-6	18	67	1	25	3	6	37	29	33 2	1 12	14	A-6a	Cohesive	2	1000	3150	2394	160	24	14.0	669.8	115	130	0.207	2.72	0.476	-0.58
US 33	683.8	B-002-1-23	16	-	17.5	SS-7	24	78	4.5	21	2	27	29	21	24 1	8 6	12	A-4a	Cohesive	2	4500	1800	3192	180	25	17.0	666.8	115	130	0.126	2.72	0.476	-1.00
US 33	683.8	B-002-1-23	18.5	-	20	SS-8	20	78	3	25	3	11	32	29	33 1	9 14	14	A-6a	Cohesive	2	3000	3500	2660	167	25	19.0	664.8	115	130	0.207	2.72	0.476	-0.36

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																		Correlated				Correlated	Correlated				
Layer 3															Shor	t-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
			%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
		N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max		67	78	4.5	38	3	16	34	29	32	18	14	12	Max	4500	4000	4000	250	28	49.0	703.6	135	145	0.198	2.72	0.476	-0.50
Min		18	17	3.0	26	1	8	20	25	31	18	13	4	Min	3000	3150	2394	160	24	17.0	666.1	115	130	0.189	2.72	0.257	-0.62
Averag	je	40	42	4.3	32	2	12	27	27	32	18	14	9	Average	4313	3894	3663	217	27	31.9	684.8	125	138	0.194	2.72	0.362	-0.56
Std De	ev.	19	21	0.5	8	1	6	10	3	1	0	1	3	Std Dev	530	301	568	37	1	11.7	13.7	8	5	0.006	0.00	0.084	0.08
Avg + S	Std	58	63	4.8	40	3	18	37	30	32	18	14	11	Avg + Std	4843	4194	4230	254	28	43.5	698.5	133	143	0.200	2.72	0.446	-0.48
Avg - S	itd	21	21	3.8	24	1	6	17	24	31	18	13	6	Avg - Std	3782	3593	3095	180	25	20.2	671.1	117	132	0.187	2.72	0.278	-0.64

Correlated

																					Shor	rt-Term Cohe	esion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	ODO:	Г			N-value	s	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL I	PL F	NC WC	Class	. Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	732.6	B-002-0-23	28.5	-	30	SS-12	67	67	4.5	26	3	8	34	29	31	18 1	3 10	A-6a	Cohesive	3	4500	4000	4000	250	28	29.0	703.6	130	140	0.189	2.72	0.306	-0.62
US 33	732.6	B-002-0-23	33.5	-	35	SS-13	66	17	4.5	-	-	-	-	-	-		- 4	A-6a	Cohesive	3	4500	4000	4000	250	28	34.0	698.6	130	140		2.72	0.306	
US 33	732.6	B-002-0-23	38.5	-	40	SS-14	40	33	4.5	-	-	-	-	-	-		- 8	A-6a	Cohesive	3	4500	4000	4000	250	28	39.0	693.6	130	140		2.72	0.306	
US 33	732.6	B-002-0-23	43.5	-	45	SS-15	46	39	4.5	-	-	-	-	-	-		- 9	A-6a	Cohesive	3	4500	4000	4000	250	28	44.0	688.6	135	145		2.72	0.257	
US 33	732.6	B-002-0-23	48.5	-	50	SS-16	26	22	4.5	-	-	-	-	-	-		- 7	A-6a	Cohesive	3	4500	4000	3458	187	25	49.0	683.6	125	140		2.72	0.358	
US 33	690.1	B-002-2-23	16	-	17.5	SS-7	30	78	4.5	-	-	-	-	-	-		- 12	A-6a	Cohesive	3	4500	4000	3990	200	26	17.0	673.1	115	130		2.72	0.476	
US 33	690.1	B-002-2-23	18.5	-	20	SS-8	26	39	4.5	-	-	-	-	-	-		- 10	A-6a	Cohesive	3	4500	4000	3458	187	25	19.0	671.1	115	130		2.72	0.476	
US 33	690.1	B-002-2-23	23.5	-	25	SS-9	18	39	3	38	1	16	20	25	32	18 1	4 11	A-6a	Cohesive	3	3000	3150	2394	160	24	24.0	666.1	120	135	0.198	2.72	0.414	-0.50

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																		Correlated				Correlated	Correlated				
Layer 4															Shor	rt-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
			%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
	N	60	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T&P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max		10	N/A	N/A	1	5	32	97	40	36	20	16	30	Max	N/A	1750	1330	114	23	15.0	646.9	105	125	0.234	2.72	0.787	1.10
Min		4	N/A	N/A	0	1	3	37	25	29	19	10	14	Min	N/A	300	532	50	20	2.0	633.3	95	110	0.171	2.70	0.616	0.10
Avera	ge	7	N/A	N/A	0	2	14	68	33	32	20	12	21	Average	N/A	933	931	86	21	7.2	639.4	97	118	0.194	2.71	0.756	0.39
Std De	ev	2	N/A	N/A	1	2	13	30	11	3	1	3	4	Std Dev	N/A	496	260	21	1	4.2	4.5	3	5	0.028	0.01	0.056	0.48
Avg + S	Std	9	N/A	N/A	1	4	26	98	43	35	20	15	24	Avg + Std	N/A	1429	1191	107	22	11.5	644.0	100	123	0.221	2.72	0.812	0.87
Avg - S	Std	5	N/A	N/A	0	0	1	38	22	28	19	9	17	Avg - Std	N/A	436	671	64	21	3.0	634.9	93	113	0.166	2.70	0.700	-0.08

Correlated

																						Shor	t-Term Cohe	esion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%				%	ODOT				N-value	S	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	644.3	CU-07	1	-	2.5	1	9	-	-	-	-	-	-	-	-	-	-	19	A-6b	Cohesive	4	N/A	1575	1197	107	22	2.0	642.3	100	120		2.70	0.685	
US 33	644.3	CU-07	3.5	-	5	2	10	-	-	-	-	-	-	-	-	-	-	14	A-6b	Cohesive	4	N/A	1750	1330	114	23	4.0	640.3	100	120		2.70	0.685	
US 33	644.3	CU-07	6	-	7.5	3	8	-	-	0	1	3	97		36	20	16	22	A-6b	Cohesive	4	N/A	1400	1064	100	22	7.0	637.3	95	120	0.234	2.70	0.773	0.13
US 33	644.3	CU-07	7.5	-	9	4	7	-	-	-	-	-	-	-	-	-	-	21	A-6a	Cohesive	4	N/A	1225	931	88	22	8.0	636.3	95	120		2.72	0.787	
US 33	644.3	CU-07	9	-	10.5	5	5	-	-	1	1	7	91		31	19	12	22	A-6a	Cohesive	4	N/A	875	665	63	21	10.0	634.3	95	120	0.189	2.72	0.787	0.25
US 33	644.3	CU-07	10.5	-	12	6	7	-	-	-	-	-	-	-	-	-	-	18	A-6a	Cohesive	4	N/A	1225	931	88	22	11.0	633.3	95	120		2.72	0.787	
US 33	647.9	CU-07A	1	-	2.5	1	5	-	-	-	-	-	-	-	-	-	-	24	A-4a	Cohesive	4	N/A	375	665	63	21	2.0	645.9	95	110		2.72	0.787	
US 33	647.9	CU-07A	3.5	-	5	2	5	-	-	0	5	32	37	25	29	19	10	30	A-4a	Cohesive	4	N/A	375	665	63	21	4.0	643.9	95	110	0.171	2.72	0.787	1.10
US 33	648.9	CU-07B	1.5	-	3	1	7	-	-	-	-	-	-	-	-	-	-	16	A-6b	Cohesive	4	N/A	1225	931	88	22	2.0	646.9	95	110		2.70	0.773	
US 33	648.9	CU-07B	6.5	-	8	3	6	-	-	-	-	-	-	-	-	-	-	19	A-4a	Cohesive	4	N/A	450	798	75	21	7.0	641.9	95	120		2.72	0.787	
US 33	648.9	CU-07B	9	-	10.5	4	10	-	-	-	-	-	-	-	-	-	-	21	A-4a	Cohesive	4	N/A	750	1330	114	23	10.0	638.9	105	125		2.72	0.616	
US 33	648.9	CU-07B	11.5	-	13	5	8	-	-	-	-	-	-	-	-	-	-	21	A-4a	Cohesive	4	N/A	600	1064	100	22	12.0	636.9	95	120		2.72	0.787	
US 33	648.9	CU-07B	14	-	15.5	6A	4	-	-	0	1	12	48	40	30	20	10	21	A-4a	Cohesive	4	N/A	300	532	50	20	15.0	633.9	95	115	0.18	2.72	0.787	0.10

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

Layer 5		0/		0/	0/	0/	0/	0/				٥,	·	Sho	rt-Term Cohes	ion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.	0	Assumed	Computed	
	N ₆₀	% Rec	HP	% Gr	% CS	% FS	% Silt	% Clay	LL	PL	PI	WC		PPR	N-values Sowers	T & P	(psf) per GB-7	phi (deg)	Sample Depth (ft.)	Sample Elevation (ft.)	(pcf) per GB-7	(pcf) per GB-7	Correlated C _c	Specific Gravity (G _s)	Void Ratio (e)	LI
Max	13	N/A	N/A	0	1	9	90	N/A	36	20	16	23	Max	N/A	2100	1729	136	23	17.0	640.9	110	125	0.234	2.72	0.616	0.19
Min	10	N/A	N/A	0	1	9	90	N/A	36	20	16	13	Min	N/A	975	1330	114	23	7.0	630.3	105	125	0.234	2.72	0.543	0.19
Average	12	N/A	N/A	0	1	9	90	N/A	36	20	16	18	Average	N/A	1731	1563	127	23	11.8	635.5	108	125	0.234	2.72	0.580	0.19
Std Dev	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5	Std Dev	N/A	530	167	9	0	4.6	5.2	3	0	N/A	0.00	0.042	N/A
Avg + Std	13	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	22	Avg + Std	N/A	2262	1730	136	23	16.3	640.7	110	125	N/A	2.72	0.622	N/A
Avg - Std	10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	Avg - Std	N/A	1201	1395	118	23	7.2	630.4	105	125	N/A	2.72	0.537	N/A

																								Correlated				Correlated	Correlated				
																					Sho	rt-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	ODO:	Г			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL I	PL I	PI WO	Class	. Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	644.3	CU-07	13.5	-	15	7	12	-	-	-	-	-	-	-	-	-	- 13	A-6a	Cohesive	5	N/A	2100	1596	129	23	14.0	630.3	110	125		2.72	0.543	
US 33	647.9	CU-07A	6	-	7.5	3	12	-	-	-	-	-	-	-	-	-	- 20	A-6a	Cohesive	5	N/A	2100	1596	129	23	7.0	640.9	105	125		2.72	0.616	
US 33	647.9	CU-07A	8.5	-	10	4	10	-	-	0	1	9	90		36	20 1	16 23	A-6a	Cohesive	5	N/A	1750	1330	114	23	9.0	638.9	105	125	0.234	2.72	0.616	0.19
US 33	648.9	CU-07B	16.5	-	18	7	13	-	-	-	-	-	-	-	-	-	- 14	A-4a	Cohesive	5	N/A	975	1729	136	23	17.0	631.9	110	125		2.72	0.543	

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated				
Layer 6														Shor	t-Term Cohes	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
		%		%	%	%	%	%				%			N-values	i	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max	34	33	3.0	1	6	11	82	N/A	31	21	10	24	Max	3000	4000	4000	200	27	34.0	656.1	125	135	0.189	2.72	0.476	0.30
Min	23	33	3.0	1	6	11	82	N/A	31	21	10	12	Min	3000	2550	3059	177	25	14.0	628.9	115	130	0.189	2.72	0.358	0.30
Average	27	33	3.0	1	6	11	82	N/A	31	21	10	17	Average	3000	3517	3417	186	26	22.7	639.6	120	133	0.189	2.72	0.416	0.30
Std Dev	6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6	Std Dev	N/A	837	509	13	1	10.3	14.5	5	3	N/A	0.00	0.059	N/A
Avg + Std	33	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	23	Avg + Std	N/A	4354	3926	198	27	32.9	654.1	125	136	N/A	2.72	0.475	N/A
Avg - Std	21	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11	Avg - Std	N/A	2680	2908	173	25	12.4	625.2	115	130	N/A	2.72	0.357	N/A

																								Correlated				Correlated	Correlated				
																					Shor	t-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL F	L P	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	647.9	CU-07A	13.5	-	15	5	24	-	-	-	-	-	-	-	-		15	A-6a	Cohesive	6	N/A	4000	3192	180	25	14.0	633.9	115	130		2.72	0.476	
US 33	648.9	CU-07B	19	-	20.5	8A	34	-	-	1	6	11	82		31 2	1 10	24	A-4a	Cohesive	6	N/A	2550	4000	200	27	20.0	628.9	125	135	0.189	2.72	0.358	0.30
US 33	690.1	B-002-2-23	33.5	-	35	SS-11	23	33	3	-	-	-	-	-	-		12	A-6a	Cohesive	6	3000	4000	3059	177	25	34.0	656.1	120	135		2.72	0.414	

Stote of Ohio Deportment of Tronsportation Division of Highwoys Testing Loborotory LOG OF BORING

Date Started 5/13/99 Sampler: Type SS 0ia. 2.0" Water Elev. ft

Date Campleted 5/14/99 Cosing: Length Dia. 3.25"

 \bigcirc

 \bigcirc

Project: MEG-124-22.72
Project No.: 99011
Location: Meigs County, Ohio

 \bigcirc

 \bigcirc

Location: Meigs County, Oh

Doring	. No. C	1_07	C+a+: an	. a. n.f.	Fac+ 70	4+75.00, 42.00' RT Surface Elev. 644.	77f+	Loc	ation	: Mei	qs Co	unty,	0hi c)		
Elev.	Depth	Std.	Pen./ F	Rec.	Lass			T		Physi	cal C	harac	terist	ics		0007
(ft)	(ft)	RQD		(f†)	(ft)	Description	Sample Na.	% Agg	c.s.	* F.S.		clay			w.C.	ODOT Closs
644.3 643.7	0					TOPSOIL		Agg	ι.s.	F.S.	3117	Clay			" " "	0,000
0.3.7 -		7.4	_			Stiff, brown <u>SILTY CLAY</u> , trace sand, moist.									١	
		3-4-	.,				ı								19	VISUAL
				l												1
		3-4-	-6				2								14	VISUAL
	5					Layer 4										
	_		_													
637.4		3-3	-5				3	0	1	3		97*	36	16	22	A-6b
-						Medium stiff to stiff, brown to gray <u>SILT AND CLAY</u> , moist.										
	-	2-3	-4				4								21	VISUAL
															Ì	
		2-2	-3				5	ı	-1	7		91*	31	12	22	A-6a
	10														İ	
		I-3·	-4				6								18	VISUAL
1	-			1												
		3-7-	-5				7								13	VISUAL
	15					Layer 5										
	13			i		Edyor o										
607.8	-															
627.8		R00 =	1%	4.7	0.8	Nate: Auger refusal an bedrack of 16.5 feet. Began coring rack, Very soft, gray, decomposed <u>SILTSTONE</u> , with indistinct bedding, very paar conditian as per ROD.										
						very paar condition as per ROD.										
			İ													
	20					RUN I FROM 16.5 FEET TD 22.0 FEET										
623.3						U.C. Strength at 20.5 feet = 10D psi										
						0.0. 311 dilgin di 20.3 1861 - 100 psi										
		RQD =	0%	0.1	7.4											
	25													ļ		
						Nate: Calar change ta reddish brown at 25.0 feet.										
	 _															
						RUN 2 FROM 22.0 FEET TO 29.5 FEET Run 2 bedrack quality very paar as per ROD.										
	-															
	-							ļ								
	30		F			Nate: Used raller bit method of drilling from 29.5 feet to 32.0										
						feet becouse care barrel lacked at 29.5 feet. Na rack somple recavery between these depths.										
	-		-			<u>'</u>										
		D00 -	, L	0.7	4.0											
		R00 =	J.	0.3	4.8											
													ļ			
	35					RUN 3 FROM 32.0 FEET TO 37.0 FEET			ĺ							
						Run 3 bedrock quality very paar os per ROO.										
	-								[
		ROD =	D¥	3.7	0.3	1			1							
			-	J.,	3.3											
									1]		
	-					RUN 4 FROM 37.0 FEET TO 41.D FEET			1							
	40					Run 4 bedrack quality very paar as per ROD.										
603.3																
		L				TERMINATION OFFILE - AL O FEET	L			<u> </u>				1	1	

TERMINATION OEPTH = 41.0 FEET

*Silt and clay combined

Particle Sizes: Agg => 2.00mm, Coorse Sand = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm.

State of Ohia Deportment af Transportotion Division of Highways Testing Loboratory LOG OF BORING

Dote Storted 4/14/99 __Sompler: Type _SS__ ____ Dio. <u>2.0"</u> Woter Elev. <u>ft</u> Dote Completed 4/14/99 Cosing: Length Dio. 3.25"

 \bigcirc

 \bigcirc

Project: <u>MEG-124-22.72</u>

Project No.: 99011

 \bigcirc

 \bigcirc

*Silt and clay combined

Location: Meigs County, Ohio

Boring				fset_79	4+75.00, 200.00' RT Surfoce Elev. 647.	87ft									
Elev. (ft)	Depth (ft)	Std. Pen., RQO	Rec.	Loss (ft)	Description	Somple			Physi	col C	horoct	erist	ics		000T
647.9	0	RUU	(11)	(11)		No.	X Agg	c.s.	¥ F.S.	X S11+	Clay	L.L.	P.1.	W.C.	Closs
647.4					TOPSOIL		-94	0.3.	1.3.	3111	City				
					Medium stiff, brown <u>SANDY SILT</u> , some cloy, moist.										
		1-2-3				'								24	VISUAL
					Layer 4										
					Layer 4										
		1-2-3				2	0	5	32	37	25	29	10	30	A-4o
643.0	5														
'				1	Stiff to very stiff, brown <u>SILT AND CLAY</u> , troce sond, moist.										
		3-4-B				3		Ì						20	VISUAL
		3 7 5				,								20	VISUAL
		:			Layer 5										
		3-4-6			Layer 3	4	0	1	9		90 *	36	16	23	A-60
	10														
	1														
		6-B-16				-								٠	
	-	0-0-10			Layer 6	5								15	VISUAL
670 4	15				•										
632.4	1	ROD = 36%	6.9	0.1	Note: Auger refused on bedrock of 15.5 feet. Begon coring rock. Very soft, reddish brown, decomposed SILISIONE with indistinct										
					bedding, very poor condition os per ROD.										
	-				Note: Siltstone chonging to soft, weothered to highly weothered,										
	_				ond grey of 16.4 feet.		1								
	20														
]			U.C. Strength of 21.2 feet = 196 psi									-	
625.4	<u> </u>	1	<u></u>	<u></u>]				<u> </u>		<u> </u>		
					TERMINATION DEPTH = 22.5 FEET										

Porticle Sizes: Agg => 2.00mm, Coorse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm.

Stote of Ohia Department of Transportotian Division of Highwoys Testing Loborotory

LOG OF BORING
 Dote Storted
 3/31/99
 Sompler: Type SS
 Dia.
 2.0"

 0ote Completed
 3/31/99
 Cosing: Length
 Dia.
 3.25"
 ___ Woter Elev. <u>f</u>†

Project: MEG-124-22.72

Project No.: 99011

Location: Meigs County, Ohio

Elev. (ft)	0epth (ft)	Std. Pen./ ROO	Rec.	Loss (ft)	0escription	Somple			Physi						000T
767.2	0	NUU		(11)		No.	Agg	C.S.	F.S.	Silt.	Clay	L.L.	P.1.	W.C.	Closs
766.6		· · · · · · · · · · · · · · · · · · ·			TOPSOIL										
.00.0 _		6-16-18			Very soft, highly weothered to decomposed, brown <u>CLAY SHALE</u> .	I								11	VISUAL
		50/4in				2	-					-	33 195	6	VISUA
		50/5in				3							1	7	VISUA
		50/4in				4								6	VISU
757.2 ₋	10 	ROO = 0%	5.0	0.0	Note: Auger refusol on bedrock of 10.0 feet. Begon coring rock/ Very soft, highly weothered to decomposed, brown <u>CLAY SHALE</u> with horizontol laminor bedding (fissile) to 11.5 feet; indistinct bedding from 11.5 feet to 15.0 feet. Rock in very poor condition os per ROD. U.C. Strength of 10.9 feet = 166 psi				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		1						***************************************							
752.2															

*Silt and clay combined

Porticle Sizes: Agg => 2.00mm, Coorse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm.

MEG-124-22.72

SOIL PROFILE

REVIEWED B.M. DATE 1/24/01 CALCULATE W.J.N. CHECKED S.S.S.

PRIME ENGINEERING

& ARCHITECTURE.INC.
COLUMBIS:
(6(4) 457-2100 (330) 666-5432

State of Ohio Department of Transportation Division of Highways Testing Laboratory LOG OF BORING

Woter Elev. 632.6ft 7/5/00 Sompler: Type <u>SS</u> 0ia. <u>2.0"</u> Oate Started Oate Completed 7/6/00 __ Cosing: Length __ __ 0io. <u>3.25"</u>

Project: <u>MEG-124-22.72</u> Project No.: 990II Location: Meigs County, Ohio

 \bigcirc

 \bigcirc

Boring No. <u>CU-07B</u> Stotion & Offset <u>794+60.79</u> 189.96' LT

 \bigcirc

 \bigcirc

Surfoce Elev. 648.94ft Std. Pen./ ROO Elev. (f†) Rec. (f†) Loss (ft) Physical Characteristics 000T 0escriptian Somple X Agg c.s. Silt Clay L.L. Na. F.S. Class 648.9 0 TOPSOIL 647.4 VISUAL Medium stiff to very stiff, reddish brown <u>SILTY CLAY</u> (A-6b), little sand, troce to some rock fragments, trace roots, moist. 16 3 - 3 - 4 Omit 2 VISUAL 9 5 - 15 - 15 643.9 Note: Encauntered a sondstone cobble ot 4.5 feet.
Soft ta hard, brown ond gray <u>SANDY SILT</u> (A-4o), same ta little cloy, no
ta little gravel ond rock frogments, maist ta wet. 3 ----19 VISUAL 2 - 3 - 3 VISUAL 21 Layer 4 5 VISUAL 21 3 - 4 - 4 0 12 48 40 --30 10 21 21 4-40 Note: Pushed a Shelby Tube from 14 to 16 feet next to original test boring. 2 - 1 - 3 6B VISUAL 7 VISUAL Note: Encountered groundwater at 16.3 feet during drilling. 4 - 6 - 7 Layer 5 82 * 88 6 31 10 24 A-4a 4 - 5 - 29 Layer 6 8B VISUAL Very saft, decomposed, reddish brawn <u>MUDSTONE</u> with indistinct bedding. The quality of the mudstone in all three runs is considered very paor as per ROO. 628.4 --VISUAL 10-44-50/0.4 10 VISUAL 10 50/0.5 Nate: Augered ta 25.0 feet ond began caring. 623.9 Very soft to medium hord, decampased ta weathered, reddish brown <u>MUDSTONE</u> with indistinct bedding. U.C. Strength af dec. mudstone at 25.8 feet = 152 psi R00 = 0% 4.0 1.0 R00 = 10% 3.5 1.5 40 608.4

TERMINATION OEPTH = 40.5 FEET Particle Sizes: Agg => 2.00mm, Caarse Sand = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm

(*Indicates silt & cloy combined)

State of Ohio Department of Transportation Division of Highways Testing Laboratory LOG OF BORING

 Sampler: Type
 SS
 0ia.
 2.0"

 Cosing: Length
 0ia.
 3.25"
 ____ Water Elev. <u>ft</u> Oate Completed 7/27/00

Project: <u>MEG-124-22.72</u> Project No.: 99011

Location: Meigs County, Ohio Baring Na. <u>CU-08</u> Stotion & Offset <u>812+63.51 128.85′ RT</u> Surface Elev. 775.52ft Elev. 0epth Std. Pen./ Rec. Loss (ft) (ft) R00 (ft) (ft) Physical Chorocteristics Somple 0escription

775.5	0	NOO	(117	(11)	•	Na.	X Agg	c.s.	% F.S.	X Silt	% Clay	L.L.	P.I.	W.C.	Class
774.9	2	6 - 9 - 6			TOPSOIL STIFF, brawn <u>CLAY</u> (A-7-6), some sand, trace rack fragments, trace roats, maist.		2	6	20	1	72 *	52	28	19	A-7-6
	4	4 - 4 - 6				2								19	VISUAL
769.0	6	5 - 11 - 16			Medium dense, brawn <u>COARSE AND FINE SAND</u> (A-3a), little silt, trace	3								12	VISUAL
767.0	8	7 - 11 - 17			rack fragments, moist. Very stiff, brown <u>CLAY</u> (A-7-6), little sand, moist.	4								21	VISUAL
764.0	10	8 - 21 - 34				5								15	VISUAL
761.5	14	15 - 43 - 22			Very saft, decampased, brown and block <u>SANOSTONE</u> .	6A				. 				8	VISUAL
	6				Very saft, decomposed to highly weathered, brown <u>CLAY SHALE</u> .	6B								12 9	VISUAL

	20	4	***************************************			8								10	VISUAL
753.0	22	24 - 31 - 48			TERMINATION OEPTH = 22.5 FEET	9								ll .	VISUAL

Particle Sizes: Agg => 2.00mm, Caorse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm

(*Indicates silt & clay cambined)

MEG-124-22.72

SOIL PROFILE

DRAWN E.D.S. DATE 1/24/01 REV!EWED CALCULATE B.M. CHECKED S.S.S.

PRIME ENGINEERING

& ARCHITECTURE.INC.
COLUMBUS:
(614) 457-2100 (330) 666-5432

000T

	ROJECT	Γ:	MEG-33		DRILLING FIRM / OF			ODOT / LE					CKER REE			STAT	TION .	/ OFF	SET:			9, 93'	LT.		ATION ID
	'PE: _		ROADW	AY	SAMPLING FIRM / L			DOT / BINI	KLEY				KER AUTO			ALIG		_			US 3				2-1-23 PAGE
			SFN: 23 END:	11/8/23	DRILLING METHOD SAMPLING METHOD		3	.25" HSA SPT		_				1/7/23 90*	_	ELE\			683				.93994	3.0 ft.	1 OF 1
1	ART.	11/8/2		RIAL DESCRIPT). <u> </u>	ELEV.	JP1			RGY F	_	SAMPLE		\vdash	GRAE			`		ERBI		.9399 ²		
				AND NOTES	ION		683.8	DEPT	HS	SPT/ RQD		(%)	ID	(tsf)	-	CS				LL	PL	_	wc	ODOT CLASS (GI)	BACK FILL
h 7	OPSOI	L (2")		7.1.12 110120	,-	7/7/	\ 683.7 _J		L			(,0)		(10.)	-	1					<u> </u>				SURP S
			ED AND GR	AY, SILT AND C	CLAY, SOME				- 1 -	_															SAN 9
1	TONE	FRAGM	ENTS, TRA	CE SAND, DAM	P				_ 2 -	2															7>17
									-	2 2	6	17	SS-1	3.00	-	-	-	-	-	-	-	-	15	A-6a (V)	1 L 1 L
							1		<u> </u>	1															R > 000
				Lavar 1					_ 4 -	2	6	28	SS-2	1.00	25	3	5	32	35	33	18	15	16	A-6a (8)	
				Layer 1					- 5 -	2	2													` '	THE LY COOL
									- 6 -	1															12/ 12
										5 3	11	33	SS-3	4.00	۱.	-	_	_	١.	_	_	_	14	A-6a (V)	3/11/2
									_ / -	4	1			-										(1)	400 and
							675.3		8 -																- Name Name
				, SANDY SILT,	SOME CLAY,				<u> </u>	1 3	12	61	SS-4	2.00	5	5	23	40	27	28	18	10	18	A-4a (6)	A CENT LA
02.G	RACE	SIUNE	FRAGMENT	13, MOIST					L 10 -		5	Ŭ.		2.00	Ļ	ļ .								71 14 (0)	of Warfine
03							672.8		- 11	1															7 V 1 2
XISK				ND CLAY, "ANI	O" STONE				- 11 - -	5 5	12	67	SS-5	3.50	45	6	8	26	15	30	19	11	8	A-6a (1)	X DODY X
띩	RAGMI	ENTS, L	ITTLE SANI	D, DAMP					_ 12 -	3	3 12	07	33-3	3.30	45	0	°	20	13	30	19	''	٥	A-0a (1)	4 North 10
- 12/28/23 14:39 - X:\GINT\PROJECTS\601102.GPJ									- 13 -	-															A > MANA
Ž (D RED, SOME S	SIONE	////	1		<u></u> 14 -	H³ E	18	67	SS-6	1.00	25	2	6	37	29	33	21	12	14	A-6a (7)	43 JX
Ş F	RAGMI	ENTS, T	RACE SAN	D					- 15 -	5 7	7 10	67	33-0	1.00	25	3	6	31	29	33	21	12	14	A-0a (7)	STAP S
68							667.8		- 13	4															25 AUS 11
1 14 F				LT, SOME CLAY	, SOME STONE		007.0	-	16	5	1 04				١.,	<u> </u>				٦.	1			(0)	7>7
78/Z	RAGMI	ENTS, [17 -	4	24	78	SS-7	4.50	21	2	27	29	21	24	18	6	12	A-4a (3)	1 7 7
				Layer 2			665.3		<u> </u>																
	ERY S	TIFF. BF	ROWN AND	GRAY. SILT AN	ID CLAY, SOME		000.0	-	- 19 -	4															
S S				LE SAND, DAMI					F	6	20	78	SS-8	3.00	25	3	11	32	29	33	19	14	14	A-6a (7)	Jap L apl
HO	This	lave	r was oi	mitted on t	he design				_ 20 -	7															Z Valen
5					ance Boring				21 -	_															2) > WILLIAM
X			0		0				_ 22 -	1															THE SAME
(8)				m the desi					- 23 -	_															A WAY
IRING LOG (8.5 X 11) - OH DOT.GDT		•	,	in compari			1		H	4															
SING	Bori	ng B	-002-2-2	23 (16 feet)	and that				<u> </u>	3 ,	12	72	SS-9	2.50	-	-	-	-	-	-	-	-	16	A-6a (V)	
	this	layer	was no	t encounte	ered in		Omit		25 -	-	-														
ő		02-2-							_ 26 -	1															
OTS							1		- 27 -	_															
8 0	028.0';	AUGER	REFUSAL,	ENCOUNTERE	D CULVERT		655.8		² ′	4															
STANDARD ODOT SOIL BC								LOD	20																
Ā																									
20																									

NOTES: LAT/LONG/ELEV FROM DISTRICT SURVEY GRADE INSTRUMENTS. HOLE DRY UPON COMPLETION.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

TYPE: <u>ROAD'</u> PID: 119143 SFN:	33-13.96 WAY	SAMPLING FIRM / LO DRILLING METHOD:	OGGEF	₹:0	ODOT / LE DOT / BENN 25" HSA	NING			ACI	CKER REI KER AUTO ATE: 1	OMATIO		ALIG	NME				US 33	3		EXPLOR B-002	2-2-23 PA
START: 11/28/23 END		SAMPLING METHOD	D:		SPT		ENE	RGY F	RATIO	(%):	90*		LAT /	LON	IG: _		39.0	2954	8, -81	.94021	8	10
	TERIAL DESCRIPT AND NOTES	TION	I	ELEV. 690.1	DEPTH	lS .	SPT/ RQD		REC (%)	SAMPLE ID	HP (tsf)		GRAE cs) CL		ERBI PL	ERG PI	wc	ODOT CLASS (GI)	
TOPSOIL (18")				000.0		 1																7 L
VERY STIFF, DARK RED	AND GRAY, SILT	AND CLAY, "AND"		688.6_			3 4	12	28	SS-1	2.50									10	A 60 (\(\)	7>1
STONE FRAGMENTS, LIT	TILE SAND, DAM	P				- - ₃]	4 4	12	20	33-1	2.50	-	-	-	-	-	-	-	-	10	A-6a (V)	1 7
@3.5'; STIFF						- - 4 -	3	11	50	SS-2	1.50	40	3	8	27	22	31	20	11	9	A-6a (3)	A L
	Layer 1					_ ₅	4														(-)	77
@6.0'; POOR RECOVERY	/, AUGER CUTTIN	NGS TAKEN				- 6 7	10			20.0												4 > 2
						_ 7 	4 3	11	6	SS-3	-	-	-	-	-	-	-	-	-	11	A-6a (V)	7
MEDIUM STIFF, BROWN	AND RED SAND	VSII T SOME		681.6		– 8 – -	2															2 L
CLAY, LITTLE STONE FR	AGMENTS, DAM	IP				- 9 -	2 2	6	39	SS-4	0.50	16	3	23	32	26	27	18	9	14	A-4a (5)	THE PARTY OF THE P
				679.1		10 - ¹ 11																J 92
MEDIUM STIFF, BROWN FRAGMENTS, SOME SAN	ND, POOR RECO					11 - 12	5 2 3	8	11	SS-5	-	-	-	-	-	-	-	-	-	12	A-6a (V)	12
CUTTINGS TAKEN, DAMI	•					_	. 3															G L
@13.5'; VERY STIFF						- 14 -	2 3	12	67	SS-6	3.25	22	4	17	29	28	30	19	11	16	A-6a (5)	ON SO
						_ ₁₅	5														(-)	7 7 7
@16.0'; HARD, TRACE R0	OOTS					- 16 -	9	000														1
						17 - -	9 11	30	78	SS-7	4.5+	-	-	-	-	-	-	-	-	12	A-6a (V)	-12 -12
						18 [5		_													3/7 2/7 2/1
	Layer 3					— 19 – -	8	26	39	SS-8	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	\$00 \$2
	· ·					— 20 ^{_1} - — 21 —																
						- 21 - - 22 -																S L
						- 23 -																700
@23.5'; VERY STIFF, BRO	OWN AND GRAY,	"AND" STONE				- 24 -	3 6	18	39	SS-9	3.00	38	1	16	20	25	32	18	14	11	A-6a (3)	- 400 - 20 > - 20
FRAGMENTS, LITTLÉ SA	IND					- ₂₅ -	6		39	33-9	3.00	30	'	10	20	25	32	10	14	11	A-0a (3)	1 L
						- 26				nal Grad						at						AS C
						27 27				-00 = -6 sidered t												4000 A'> €
						— 28 —				ing emb												7 (A) >
@28.5'; BROWN AND RE FRAGMENTS	DDISH BROWN, S	SOME STONE				29 	40 60	150	100	SS-10	2.75	34	2	16	20	28	31	20	11	14	A-6a (3)	S L
				Omit		- 30 J	- 00															17
	Layer 6					31 32																400
						- 33 -																4 × 4
						- 34 -	4 7	23	33	SS-11	3.00	_								12	A-6a (V)	200 200
						- - ₃₅	8		33	33-11	3.00	_	-	-	-	_	_	-	-	12	A-0a (V)	***
						- - 36 -																
						37																
				651.6	TR-	38																
SANDSTONE , BROWN, F GRAINED.	HIGHLY WEATHER	RED, WEAK, FINE				39 -	5 29 101	195	100	SS-12	-	-	-	-	-	-	-	-	-	9	Rock (V)	
						40 - ¹	101															
						41 - 42																
						42 43																
			l•.•.1	646.1			82	_	100	SS-13								_	-	5	Rock (V)	-1923

FIGURE 3
Preconsolidation Pressure vs. Liquidity Index

As LI values for the fill are all negative (moisture contents below the plastic limit), the fill was considered to be overconsolidated. Considering a LI of 0, a preconsolidation pressure of 9 tsf (18 ksf) was used in analyses. The underlying native soils were considered to be normally consolidated.

Figure 3-18. Correlations between coefficient of consolidation and liquid limit (NAVFAC DM 7.1)

```
Layer 1: LL = 30, Cv = 0.13 ft²/day
Layer 2: LL = 33, Cv = 0.11 ft²/day
Layer 3: LL = 32, Cv = 0.12 ft²/day
Layer 4: LL = 32, Cv = 0.48 ft²/day
Layer 5: LL = 36, Cv = 0.38 ft²/day
Layer 6: LL = 31, Cv = 0.50 ft²/day
```

Source: Settle3 Software

Elastic settlement parameters included in Settle3 for granular layers with "immediate" settlement. This is reflected in the estimated settlement at time = 0 days.

Slope Stability (Rock Surface as Encountered in Boring B-002-2-23)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

01. Sta. 794+00 Existing	
Sta. 794+00 LT Slope Stability.gsz	

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (LT)	Mohr-Coulomb	125	250	28

Embankment fill properties for an A-6a material as presented in Table 500-2 from the ODOT Geotechnical Design Manual were assumed for the new embankment material based on the majority of the soil types encountered in the surrounding borings.

Table 500-2: Assumed Embankment Fill Properties

Borrow Source Soil Class	c (psf)	φ (deg)	c' (psf)	φ' (deg)	γ (pcf)
Granular	0	32	0	32	125
A-4a/A-4b	2000	0	200	30	125
A-6a	2500	0	250	28	125
A-6b	2500	0	250	28	125
A-7-6	2000	0	200	26	125
Unknown	2500	0	250	26	125

02. Sta. 794+00 Proposed No Benching

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1. M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (LT)	Mohr-Coulomb	125	250	28
	Rock Fill	Mohr-Coulomb	135	0	38

03	3. Sta.	794+00	Proposed	Overall
----	---------	--------	----------	---------

Sta. 794+00 LT Slope Stability.gsz

Co	olor	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
		M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
		2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
		3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
		4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
		5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
		6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
		Bedrock	Bedrock (Impenetrable)			
		New Embankment Fill (Assumed A-6a) (LT)	Mohr-Coulomb	125	250	28
		Rock Fill	Mohr-Coulomb	135	0	38

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (ST)	Mohr-Coulomb	125	2,500	0
	Rock Fill	Mohr-Coulomb	135	0	38

	05. Sta. 794+00 Proposed Overall (ST)
--	---------------------------------------

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (ST)	Mohr-Coulomb	125	2,500	0
	Rock Fill	Mohr-Coulomb	135	0	38

06. Sta. 794+00 Proposed Upper Slope (ST)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

08. Sta. 794+00 Proposed Upper Benches (Constructability) (ST)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

09. Sta. 794+00 Proposed Lower Benches (Constructability) (ST)

Sta. 794+00 LT Slope Stability.gsz

Cok	r Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1. M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

11. Sta. 794+00 Proposed Overall (Constructability)	(LT)
---	------

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

14. Sta. 794+00 Proposed Shear Key (Constructability) (LT)

Sta. 794+00 LT Slope Stability.gsz

Slope Stability (Lowered Rock Surface at Boring B-002-2-23)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (LT)	Mohr-Coulomb	125	250	28

02. Sta. 794+00 Proposed No Benching (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (LT)	Mohr-Coulomb	125	250	28
	Rock Fill	Mohr-Coulomb	135	0	38

03. Sta.	794+00 Proposed	Overall (LT)	(Lowered Rock)
----------	-----------------	--------------	----------------

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (LT)	Mohr-Coulomb	125	250	28
	Rock Fill	Mohr-Coulomb	135	0	38

04. Sta. 794+00 Proposed Upper Slope (LT) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Material Model Weight Cohesion I		Effective Friction Angle (°)	
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (ST)	Mohr-Coulomb	125	2,500	0
	Rock Fill	Mohr-Coulomb	135	0	38

05. Sta. 794+00 Proposed Overall (ST) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Colo	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-6a) (ST)	Mohr-Coulomb	125	2,500	0
	Rock Fill	Mohr-Coulomb	135	0	38

06. Sta. 794+00 Proposed Upper Slope (ST) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

07. Sta. 794+00 Proposed Overall (Constructability) (ST) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Col	or Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

08. Sta. 794+00 Proposed Upper Benches (Constructability) (ST) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

09. Sta. 794+00 Proposed Lower Benches (Constructability) (ST) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	120	1,400	0
	2. V. Stiff Embankment Fill (ST)	Mohr-Coulomb	130	3,000	0
	3. V. Stiff to Hard Embankment Fill (ST)	Mohr-Coulomb	140	3,700	0
	4. M. Stiff to Stiff Cohesive (ST)	Mohr-Coulomb	120	930	0
	5. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,650	0
	6. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	135	3,300	0
	Bedrock	Bedrock (Impenetrable)			

10. Sta. 794+00 Proposed Shear Key (Constructability) (ST) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

11. Sta. 794+00 Proposed Overall (Constructability) (LT) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

12. Sta. 794+00 Proposed Upper Benches (Constructability) (LT) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

13. Sta. 794+00 Proposed Lower Benches (Constructability) (LT) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	120	110	22
	2. V. Stiff Embankment Fill (LT)	Mohr-Coulomb	130	175	25
	3. V. Stiff to Hard Embankment Fill (LT)	Mohr-Coulomb	140	215	27
	4. M. Stiff to Stiff Cohesive (LT)	Mohr-Coulomb	120	85	21
	5. Stiff Cohesive (LT)	Mohr-Coulomb	125	125	23
	6. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	135	185	26
	Bedrock	Bedrock (Impenetrable)			

14. Sta. 794+00 Proposed Shear Key (Constructability) (LT) (Lowered Rock)

Sta. 794+00 LT Slope Stability.gsz

Settlement

Project: MEG-33-13.96 Client: ODOT D10

Task: Settlement Analysis Summary

Calculated By: AKB Date: 5/1/2024
Checked By: DCM Date: 5/3/2024

Analyses	Maximum Settlement (in.)	<3-in. Remaining (in.)	Time to <3-in. Remaining	90% Complete (in.)	Time to 90% Complete
Sta. 794+00	13.58	Target: 10.58	6 months	Target: 12.22	11 months
3td. 794+00	13.36	Actual: 10.79	6 months	Actual: 12.40	11 111011(113

Per ODOT Geotechnical Design Manual Section 504, 3 inches of settlement of less is considered reasonable if settlement does not influence structure, utility, or other roadway infrastructure. As such, analyses highlight time required to reach 3 inches of remaining settlement.

	Project		MEG-33-13.96		
	Analysis Description		Sta. 794+00		
	Drawn By	A. Baratta	Company	HDR	
7	Date	4/23/2024, 2:17:24 PM	File Name	Sta. 794+00 Settlement.s3z	

MEG-33-13.96 HDR

Date Created: 2024/05/09, 14:07:54

Table of Contents

Projec	t Settings	. 4
Stage	Settings	5
Result	ts	. 6
	Stage: 0 d = 0 d	. 6
	Stage: 7 d = 7 d	. 6
	Stage: 14 d = 14 d	7
	Stage: 21 d = 21 d	8
	Stage: 30 d (1 m) = 30 d	. 9
	Stage: 60 d (2 m) = 60 d	10
	Stage: 90 d (3 m) = 90 d	11
	Stage: 183 d (6 m) = 183 d	12
	Stage: 274 d (9 m) = 274 d	13
	Stage: 335 d (11 m) = 334 d	14
	Stage: 365 d (1 y) = 365 d	15
	Stage: 1825 d (5 y) = 1825 d	16
	Stage: 3650 d (10 y) = 3650 d	17
	Stage: 18,250 (50 y) = 18250 d	18
	Stage: 36,500 d (100 y) = 36500 d	19
	Stage: 182,500 d (500 y) = 182500 d	20
Emba	nkments	22
	1. Embankment: "Embankment Load 1"	22
Soil La	ayers	23
	RT Crest (B-002-0-23/CU-07)	23
	LT Crest (B-002-0-23/CU-07)	23
	RT Toe (CU-07A)	24
	LT Slope (B-002-2-23)	25
	LT Toe (CU-07B)	26
	LT Base (CU-07B)	27
	LT New Toe (CU-07B)	28
	RT Crest 2 (B-002-0-23/CU-07)	29
	LT Crest 2 (B-002-0-23/CU-07)	30
	RT Toe 2 (CU-07A)	31
	LT Slope 2 (B-002-2-23)	32
	LT Toe 2 (CU-07B)	33
	LT Base 2 (CU-07B)	34
	LT New Toe 2 (CU-07B)	35
	LT Far (CU-07B)	36
	LT Far 2 (CU-07B)	37
	LT Far Shear Key (CU-07B)	38
	LT Far Shear Key 2 (CU-07B)	39
	LT Near Shear Key (CU-07B)	40
	LT Near Shear Key 2 (CU-07B)	41

LT Shear Key (B-002-1-23/CU-07B)	42
LT Shear Key 2 (B-002-1-23/CU-07B)	43
Soil Properties	
Groundwater	47
Piezometric Line Entities	
Field Point Grid	48
Grid Coordinates	48

Settle3 Analysis Information

MEG-33-13.96

Project Settings

Document Name Project Title Analysis Author

Company Date Created

Stress Computation Method

Time-dependent Consolidation Analysis

Time Units

Permeability Units

Minimum settlement ratio for subgrade modulus Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Sta. 794+00 Settlement.s3z

MEG-33-13.96 Sta. 794+00 A. Baratta HDR

4/23/2024, 2:17:24 PM

Boussinesq

days feet/day 0.9

Stage Settings

Stage #	Name	Time [days]
1	0 d	0
2	7 d	7
3	14 d	14
4	21 d	21
5	30 d (1 m)	30
6	60 d (2 m)	60
7	90 d (3 m)	90
8	183 d (6 m)	183
9	274 d (9 m)	274
10	335 d (11 m)	334
11	365 d (1 y)	365
12	1825 d (5 y)	1825
13	3650 d (10 y)	3650
14	18,250 (50 y)	18250
15	36,500 d (100 y)	36500
16	182,500 d (500 y)	182500

Results

Time taken to compute: 99.4831 seconds

Stage: 0 d = 0 d

Total Settlement [in]	Data Type	Minimum	Maximum
Total Consolidation Settlement	2.5		
Fin			
Virgin Consolidation Settlement [in] 0 0 Recompression Consolidation Settlement [in] 0 0 Settlement [in] 0 0.380254 Secondary Settlement [in] 0 0 Loading Stress ZZ [ksf] 0 6.48287 Loading Stress XX [ksf] -2.78242 6.43617 Loading Stress YY [ksf] -0.643095 3.67332 Effective Stress ZZ [ksf] 0 12.3715 Effective Stress XX [ksf] -0.862419 7.86682 Effective Stress YY [ksf] -0.317717 7.76451 Total Stress XX [ksf] -0.654891 14.3497 Total Stress XY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0		0	0
[In] Recompression Consolidation Settlement [in] 0		0	0
Settlement [in] 0 0.380254 Secondary Settlement [in] 0 0 Loading Stress ZZ [ksf] 0 6.48287 Loading Stress XX [ksf] -2.78242 6.43617 Loading Stress YY [ksf] -0.643095 3.67332 Effective Stress ZZ [ksf] 0 12.3715 Effective Stress XX [ksf] -0.862419 7.86682 Effective Stress YX [ksf] -0.317717 7.76451 Total Stress YZ [ksf] 0 13.1386 Total Stress YX [ksf] -0.654891 14.3497 Total Stress YY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Total Strain 0 0 0 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation Stress [ksf] 0 0 Over-consolidation Ratio 1 28434.4 Void Ratio 0	[in]	U	U
Immediate Settlement [in] 0		0	0
Secondary Settlement [in] 0 0 Loading Stress ZZ [ksf] 0 6.48287 Loading Stress XX [ksf] -2.78242 6.43617 Loading Stress YY [ksf] -0.643095 3.67332 Effective Stress YY [ksf] -0.862419 7.86682 Effective Stress XY [ksf] -0.317717 7.76451 Total Stress ZZ [ksf] 0 13.1386 Total Stress XX [ksf] -0.654891 14.3497 Total Stress YY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Total Strain 0 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 0 Total Strain 0 0 0 0 Fexcess Pore Water Pressure [ksf] 0 6.48287 0 Degree of Consolidation [%] 0 0 0 Permeability [ft/d] 0	Settlement [in]	O	
Loading Stress ZZ [ksf]		0	0.380254
Loading Stress XX [ksf]	,	0	0
Loading Stress YY [ksf]	Loading Stress ZZ [ksf]	0	6.48287
Effective Stress ZZ [ksf] 0 12.3715 Effective Stress XX [ksf] -0.862419 7.86682 Effective Stress YY [ksf] -0.317717 7.76451 Total Stress ZZ [ksf] 0 13.1386 Total Stress XX [ksf] -0.654891 14.3497 Total Stress YY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Immediate) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Total Strain 0 0.00182858 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.55 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] Put/reconsolidation Settlement	Loading Stress XX [ksf]	-2.78242	6.43617
Effective Stress XX [ksf]	Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress YY [ksf] -0.317717 7.76451 Total Stress ZZ [ksf] 0 13.1386 Total Stress XX [ksf] -0.654891 14.3497 Total Stress YY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Immediate) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Total Strain 0 0.00182858 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation [%] 0 0 Over-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0 0.5 Hydroconsolidation Settlement 0 0.5	Effective Stress ZZ [ksf]	0	12.3715
Total Stress ZZ [ksf] 0 13.1386 Total Stress XX [ksf] -0.654891 14.3497 Total Stress YY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Immediate) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Total Strain 0 0.00182858 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation [%] 0 0 Over-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0 0.5 Hydroconsolidation Sattlement 0 0.5	Effective Stress XX [ksf]	-0.862419	7.86682
Total Stress XX [ksf] -0.654891 14.3497 Total Stress YY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Immediate) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Total Strain 0 0.00182858 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation [%] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0.5 Hydroconsolidation Settlement 0 0.5	Effective Stress YY [ksf]	-0.317717	7.76451
Total Stress YY [ksf] -0.281346 11.5848 Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Immediate) [ksf/ft] 0 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 0 Total Strain 0 0.00182858 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation [%] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0 0.5 Hydroconsolidation Settlement 0 0.5	Total Stress ZZ [ksf]	0	13.1386
Modulus of Subgrade Reaction (Total) [ksf/ft] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Stress XX [ksf]	-0.654891	14.3497
(Total) [ksf/ft] 0 Modulus of Subgrade Reaction (Immediate) [ksf/ft] 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 Total Strain 0 Pore Water Pressure [ksf] 0 Excess Pore Water Pressure [ksf] 0 Degree of Consolidation [%] 0 0 0 Pre-consolidation Stress [ksf] 0.0006 0 18 Over-consolidation Ratio 1 28434.4 0.756 Permeability [ft/d] 0 Coefficient of Consolidation [ft^2/d] 0 Hydroconsolidation Sattlement 0		-0.281346	11.5848
Modulus of Subgrade Reaction (Immediate) [ksf/ft]		0	0
(Immediate) [ksf/ft] 0 Modulus of Subgrade Reaction (Consolidation) [ksf/ft] 0 Total Strain 0 0.00182858 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation [%] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0 0.5 Hydroconsolidation Settlement 0 0.5			
Modulus of Subgrade Reaction (Consolidation) [ksf/ft] Total Strain Pore Water Pressure [ksf] Excess Pore Water Pressure [ksf] Degree of Consolidation [%] Ore-consolidation Stress [ksf] Over-consolidation Ratio Void Ratio Permeability [ft/d] Coefficient of Consolidation [ft^2/d] Hydroconsolidation Settlement	_	0	0
(Consolidation) [ksf/ft]00.00182858Total Strain00.00182858Pore Water Pressure [ksf]06.48287Excess Pore Water Pressure [ksf]06.48287Degree of Consolidation [%]00Pre-consolidation Stress [ksf]0.000618Over-consolidation Ratio128434.4Void Ratio00.756Permeability [ft/d]02.39786Coefficient of Consolidation [ft^2/d]00.5	7 - 1 -	•	
Total Strain 0 0.00182858 Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 0 6.48287 Degree of Consolidation [%] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] Hydroconsolidation Settlement	_	0	0
Pore Water Pressure [ksf] 0 6.48287 Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation [%] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] Hydroconsolidation Settlement		0	0.00102050
Excess Pore Water Pressure [ksf] 0 6.48287 Degree of Consolidation [%] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] Hydroconsolidation Settlement			
Degree of Consolidation [%] 0 0 Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] Hydroconsolidation Settlement			
Pre-consolidation Stress [ksf] 0.0006 18 Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0.5			
Over-consolidation Ratio 1 28434.4 Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0.5		•	
Void Ratio 0 0.756 Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0.5			
Permeability [ft/d] 0 2.39786 Coefficient of Consolidation [ft^2/d] 0.5		_	
Coefficient of Consolidation [ft^2/d] Hydroconsolidation Settlement		•	
[ft^2/d] Hydroconsolidation Settlement	, = . =	0	2.39/86
Hydroconsolidation Settlement		0	0.5
Invaroconsolidation Settlement .			
		0	0
Average Degree of Consolidation			
[%] 100		0	100
Undrained Shear Strength -4.44089e-16 1.11022e-16		-4.44089e-16	1.11022e-16

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00911844	2.89298
Total Consolidation Settlement	0.00011944	2 85003
[in]	-0.00911844	2.85903
Virgin Consolidation Settlement	0	2.57192
[in]		2.07.132
Recompression Consolidation Settlement [in]	-0.0136661	0.487973
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.3762
Effective Stress XX [ksf]	-0.846641	12.3369
Effective Stress YY [ksf]	-0.30915	10.205
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]	G	·
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0142169	0.170466
Pore Water Pressure [ksf]	-2.68821e-37	5.97279
Excess Pore Water Pressure [ksf]	-2.68821e-37	5.97279
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993003	18
Over-consolidation Ratio	1	13082.9
Void Ratio	0	0.756027
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement	0	0
[in]	U	U
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00233238	0.840417

Data Type	Minimum	Maximum
Total Settlement [in]	-0.0176544	3.89824
Total Consolidation Settlement	0.0176544	2.06420
[in]	-0.0176544	3.86429
Virgin Consolidation Settlement	0	3.49984
[in]		3. 1930 1
Recompression Consolidation Settlement [in]	-0.0176544	0.633441
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.3781
Effective Stress XX [ksf]	-0.830624	12.3369
Effective Stress YY [ksf]	-0.470148	10.205
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0103725	0.170471
Pore Water Pressure [ksf]	-1.18478e-38	5.41401
Excess Pore Water Pressure [ksf]	-1.00857e-16	5.41401
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993004	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.756021
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00480961	0.840417

Data Type	Minimum	Maximum
Total Settlement [in]	-0.0188165	4.62167
Total Consolidation Settlement	-0.0188165	4.58772
[in]		
Virgin Consolidation Settlement [in]	0	4.16168
Recompression Consolidation Settlement [in]	-0.0513191	0.72651
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.3797
Effective Stress XX [ksf]	-0.817308	12.3369
Effective Stress YY [ksf]	-0.50991	10.205
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0114446	0.170473
Pore Water Pressure [ksf]	-1.00801e-37	4.9257
Excess Pore Water Pressure [ksf]	-1.15533e-16	4.9257
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993005	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.756026
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00386188	0.840417

Stage: 30 d (1 m) = 30 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	-0.0174055	5.37102
Total Consolidation Settlement	-0.0174055	5.33707
[in]	-0.0174033	3.33/0/
Virgin Consolidation Settlement	0	4.83563
[in]		
Recompression Consolidation Settlement [in]	-0.0523409	0.814673
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.3816
Effective Stress XX [ksf]	-0.804072	12.3369
Effective Stress YY [ksf]	-0.487756	10.205
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0108949	0.170474
Pore Water Pressure [ksf]	-5.67269e-39	4.77433
Excess Pore Water Pressure [ksf]	-1.15454e-16	4.77433
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993005	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.756031
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement	0	0
[in]	U	U
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00333821	0.840417

Stage: 60 d (2 m) = 60 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	-0.0010854	7.1898
Total Consolidation Settlement [in]	-0.0010854	7.15585
Virgin Consolidation Settlement [in]	0	6.47221
Recompression Consolidation Settlement [in]	-0.0185948	1.00625
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.3893
Effective Stress XX [ksf]	-0.777426	12.3369
Effective Stress YY [ksf]	-0.419023	10.205
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0106949	0.170475
Pore Water Pressure [ksf]	-3.00008e-39	4.4291
Excess Pore Water Pressure [ksf]	-1.00878e-16	4.17904
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993005	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.756034
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.000872876	0.840417

Stage: 90 d (3 m) = 90 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	8.46913
Total Consolidation Settlement	0	8.43518
[in]	O .	0.43310
Virgin Consolidation Settlement	0	7.65563
[in]		
Recompression Consolidation Settlement [in]	-0.0187979	1.13525
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.3977
Effective Stress XX [ksf]	-0.762136	12.3369
Effective Stress YY [ksf]	-0.3951	10.205
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00754159	0.170476
Pore Water Pressure [ksf]	-2.29886e-39	4.02474
Excess Pore Water Pressure [ksf]	-1.57774e-16	3.66376
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.756029
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.000732048	0.840417

Stage: 183 d (6 m) = 183 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	10.7903
Total Consolidation Settlement	0	10.7562
[in]	0	10.7563
Virgin Consolidation Settlement	0	9.86939
[in]	· ·	5.00555
Recompression Consolidation	-0.00297507	1.40129
Settlement [in]	0	0.200254
Immediate Settlement [in]	0	0.380254 0
Secondary Settlement [in]	0	
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0 749096	12.4189
Effective Stress XX [ksf] Effective Stress YY [ksf]	-0.748986 -0.281346	12.6385 10.205
Total Stress ZZ [ksf]		
Total Stress XX [ksf]	0	13.1386 14.3497
Total Stress YY [ksf]	-0.654891 -0.281346	11.5848
Modulus of Subgrade Reaction	-0.261346	11.5040
(Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00469214	0.170476
Pore Water Pressure [ksf]	-6.9692e-24	3.45101
Excess Pore Water Pressure [ksf]	-2.45748e-16	3.45101
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.755999
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement	0	0
[in]	U	U
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.000565763	0.840417

Stage: 274 d (9 m) = 274 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	11.9378
Total Consolidation Settlement	0	11 0020
[in]	0	11.9039
Virgin Consolidation Settlement	0	10.9938
[in]	· ·	10.5550
Recompression Consolidation	-0.00110603	1.57122
Settlement [in]		
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.4325
Effective Stress XX [ksf]	-0.743292	13.1001
Effective Stress YY [ksf]	-0.281346	10.3352
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0043767	0.170477
Pore Water Pressure [ksf]	-3.13399e-23	3.21422
Excess Pore Water Pressure [ksf]	-1.55782e-16	3.21422
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.755987
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement		
[in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.000565763	0.840417

Stage: 335 d (11 m) = 334 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	12.4033
Total Consolidation Settlement	0	12 2002
[in]	0	12.3693
Virgin Consolidation Settlement	0	11.4548
[in]	O .	11.4540
Recompression Consolidation Settlement [in]	-0.000184086	1.6556
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.4387
Effective Stress XX [ksf]	-0.740781	13.3079
Effective Stress YY [ksf]	-0.281346	10.543
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00418595	0.170477
Pore Water Pressure [ksf]	-3.20688e-23	3.06574
Excess Pore Water Pressure [ksf]	-2.4462e-16	3.06574
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.755987
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.840417

Stage: 365 d (1 y) = 365 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	12.5864
Total Consolidation Settlement	0	12 5524
[in]	U	12.5524
Virgin Consolidation Settlement	0	11.6367
[in]		11.0307
Recompression Consolidation Settlement [in]	-0.000570904	1.69294
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.4413
Effective Stress XX [ksf]	-0.739757	13.3977
Effective Stress YY [ksf]	-0.281346	10.6329
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0040845	0.170477
Pore Water Pressure [ksf]	-5.56859e-23	2.98459
Excess Pore Water Pressure [ksf]	-2.44502e-16	2.98459
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.8
Void Ratio	0	0.755986
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.840417

Stage: 1825 d (5 y) = 1825 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	13.5837
Total Consolidation Settlement	0	13.5497
[in] Virgin Consolidation Settlement [in]	0	12.6321
Recompression Consolidation Settlement [in]	-0.000147139	2.19909
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.4936
Effective Stress XX [ksf]	-0.733774	14.3306
Effective Stress YY [ksf]	-0.281346	11.5657
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00148819	0.170477
Pore Water Pressure [ksf]	-0.00591849	1.35414
Excess Pore Water Pressure [ksf]	-0.00676881	0.849251
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.7
Void Ratio	0	0.755986
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.840417

Stage: 3650 d (10 y) = 3650 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	13.5842
Total Consolidation Settlement	0	12 5502
[in]	0	13.5503
Virgin Consolidation Settlement	0	12.6326
[in]	· ·	12.0320
Recompression Consolidation Settlement [in]	-0.000139778	2.28824
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.4962
Effective Stress XX [ksf]	-0.733771	14.3495
Effective Stress YY [ksf]	-0.281346	11.5847
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]	O .	
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.000424688	0.170477
Pore Water Pressure [ksf]	-0.0064969	1.35408
Excess Pore Water Pressure [ksf]	-0.00741615	0.257002
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.7
Void Ratio	0	0.755986
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement	0	0
[in]	U	V
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.840417

Stage: 18,250 (50 y) = 18250 d

Data Type	М	inimum		Maximum
Total Settlement [in]	0		3.5842	
Total Consolidation Settlement	0	4	2 5502	
[in]	0	1	3.5503	
Virgin Consolidation Settlement	0	1	2.6326	
[in]	O	1	2.0320	
Recompression Consolidation	-0.000152035	2	.29633	
Settlement [in]				
Immediate Settlement [in]	0	_	.380254	
Secondary Settlement [in]	0	0		
Loading Stress ZZ [ksf]	0		.48287	
Loading Stress XX [ksf]	-2.78242		.43617	
Loading Stress YY [ksf]	-0.643095		.67332	
Effective Stress ZZ [ksf]	0		2.4962	
Effective Stress XX [ksf]	-0.733771		4.3497	
Effective Stress YY [ksf]	-0.281346		1.5848	
Total Stress ZZ [ksf]	0		3.1386	
Total Stress XX [ksf]	-0.654891		4.3497	
Total Stress YY [ksf]	-0.281346	1	1.5848	
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0		
Modulus of Subgrade Reaction				
(Consolidation) [ksf/ft]	0	0		
Total Strain	-8.56593e-07		.170477	
Pore Water Pressure [ksf]	-0.0107699		.35408	
Excess Pore Water Pressure [ksf]	-0.0197588		.00786865	
Degree of Consolidation [%]	0		00	
Pre-consolidation Stress [ksf]	0.000993006		8	
Over-consolidation Ratio	1		3082.7	
Void Ratio	0	_	.755986	
Permeability [ft/d]	0	2	.39786	
Coefficient of Consolidation [ft^2/d]	0	0	.5	
Hydroconsolidation Settlement [in]	0	0		
Average Degree of Consolidation [%]	0	1	00	
Undrained Shear Strength	0	0	.840417	

Stage: 36,500 d (100 y) = 36500 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	13.5842
Total Consolidation Settlement	0	12 5502
[in]	0	13.5503
Virgin Consolidation Settlement	0	12.6326
[in]	· ·	12.0320
Recompression Consolidation	-0.00015211	2.29633
Settlement [in]		
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.4962
Effective Stress XX [ksf]	-0.733771	14.3497
Effective Stress YY [ksf]	-0.281346	11.5848
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Immediate) [ksf/ft]	· ·	
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-2.15891e-09	0.170477
Pore Water Pressure [ksf]	-0.0107172	1.35408
Excess Pore Water Pressure [ksf]	-0.0196852	0.00792529
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.7
Void Ratio	0	0.755986
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement	0	0
[in]	U	U
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.840417

Stage: 182,500 d (500 y) = 182500 d∠

Data Type	Minimum	Maximum
Total Settlement [in]	0	13.5842
Total Consolidation Settlement	0	13.5503
[in]	U	13.3303
Virgin Consolidation Settlement	0	12.6326
[in]		12.0320
Recompression Consolidation Settlement [in]	-0.000152179	2.29633
Immediate Settlement [in]	0	0.380254
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	6.48287
Loading Stress XX [ksf]	-2.78242	6.43617
Loading Stress YY [ksf]	-0.643095	3.67332
Effective Stress ZZ [ksf]	0	12.4962
Effective Stress XX [ksf]	-0.733771	14.3497
Effective Stress YY [ksf]	-0.281346	11.5848
Total Stress ZZ [ksf]	0	13.1386
Total Stress XX [ksf]	-0.654891	14.3497
Total Stress YY [ksf]	-0.281346	11.5848
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	0	0.170477
Pore Water Pressure [ksf]	-0.0106675	1.35408
Excess Pore Water Pressure [ksf]	-0.0196149	0.00797884
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000993006	18
Over-consolidation Ratio	1	13082.7
Void Ratio	0	0.755986
Permeability [ft/d]	0	2.39786
Coefficient of Consolidation [ft^2/d]	0	0.5
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.840417

Embankments

1. Embankment: "Embankment Load 1"

Label		Embankment Load	d 1
Center Line	(0, 79350) to (0, 79450)		
Near End Angle		90 degrees	
Far End Angle		90 degrees	
Number of Zones		5	
Number of Sections		2	
Zone	Naı	me	Unit Weight (kips/ft3)
1	New Zone		0.115
2	New Zone 2		0.115
3	New Zone 3		0.115
4	New Zone 4		0.135
5	New Zone 5		0.125

Soil Layers

Ground Surface Drained: Yes

RT Crest (B-002-0-23/CU-07)

XY Location:		RT Cres	st (B-002-0-23/CU-07)	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	14.7	-732.3	No
2	2. V. Stiff Embankment Fill	13.5	-717.6	No
3	3. V. Stiff to Hard Embankment Fill	55.8	-704.1	Yes
4	Rock Fill	0	-648.3	Yes
5	4. M. Stiff to Stiff Cohesive	10.2	-648.3	No
6	5. Stiff Cohesive	3.9	-638.1	No
7	6. V. Stiff to Hard Cohesive	0.3	-634.2	No
		· ·	732.3	
			717.6	
			704.1	
			648.3	
			638.1 623.7 ft	
L		903,3,000	OZSI NIC	

LT Crest (B-002-0-23/CU-07)

RT Toe (CU-07A)←

XY Location:		RT Toe (CU-07A): (241, 79350	0)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-646.6	No
2	2. V. Stiff Embankment Fill	0	-646.6	No
3	3. V. Stiff to Hard Embankment Fill	0	-646.6	Yes
4	Rock Fill	0	-646.6	Yes
5	4. M. Stiff to Stiff Cohesive	6.8	-646.6	No
6	5. Stiff Cohesive	8.6	-639.8	No
7	V. Stiff to Hard Cohesive	2	-631.2	No
			732.3 —646.6 —639.8 —631.2 —623.7 ft	

LT Slope (B-002-2-23) ←

XY Location:		LT Slop	oe (B-002-2-23): (-77,	79350)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	16.2	-690.3	No
2	2. V. Stiff Embankment Fill	0	-674.1	No
3	V. Stiff to Hard Embankment Fill	10.6	-674.1	Yes
4	Rock Fill	0	-663.5	Yes
5	M. Stiff to Stiff Cohesive	0	-663.5	No
6	5. Stiff Cohesive	0	-663.5	No
7	V. Stiff to Hard Cohesive	11.9	-663.5	No
			732.3 	

LT Toe (CU-07B)

XY Location:		LT Toe (0	CU-07B): (-151, 79350	0)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	6.7	-660.7	No
2	2. V. Stiff Embankment Fill	0	-654	No
3	3. V. Stiff to Hard Embankment Fill	0	-654	Yes
4	Rock Fill	16	-654	Yes
5	4. M. Stiff to Stiff Cohesive	0	-638	No
6	5. Stiff Cohesive	0	-638	No
7	V. Stiff to Hard Cohesive	4.6	-638	No
			732.3 660.7 654 638 623.7 ft	

LT Base (CU-07B)←

XY Location:		LT Base ((CU-07B): (-190, 793	50)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-654.3	No
2	2. V. Stiff Embankment Fill	0	-654.3	No
3	3. V. Stiff to Hard Embankment Fill	0	-654.3	Yes
4	Rock Fill	24.3	-654.3	Yes
5	M. Stiff to Stiff Cohesive	0	-630	No
6	5. Stiff Cohesive	0.1	-630	No
7	V. Stiff to Hard Cohesive	6.2	-629.9	No
			732.3 — 654.3 — 630	

LT New Toe (CU-07B)←

XY Location:		LT New	Toe (CU-07B): (-240,	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-645.5	No
2	2. V. Stiff Embankment Fill	0	-645.5	No
3	3. V. Stiff to Hard Embankment Fill	0	-645.5	Yes
4	Rock Fill	0	-645.5	Yes
5	4. M. Stiff to Stiff Cohesive	13.1	-645.5	No
6	5. Stiff Cohesive	2.5	-632.4	No
7	V. Stiff to Hard Cohesive	6.2	-629.9	No
			732.3 —645.5 = 632.4 = 623.7 ft	

RT Crest 2 (B-002-0-23/CU-07)

LT Crest 2 (B-002-0-23/CU-07) Header for point on following page (software output limitation)

RT Toe 2 (CU-07A) ←

XY Location:		RT Toe	2 (CU-07A): (241, 794	150)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-646.6	No
2	2. V. Stiff Embankment Fill	0	-646.6	No
3	3. V. Stiff to Hard Embankment Fill	0	-646.6	Yes
4	Rock Fill	0	-646.6	Yes
5	4. M. Stiff to Stiff Cohesive	6.8	-646.6	No
6	5. Stiff Cohesive	8.6	-639.8	No
7	V. Stiff to Hard Cohesive	2	-631.2	No
			732.3 646.6 639.8 631.2 623.7 ft	

LT Slope 2 (B-002-2-23) ←

XY Location:		LT Slope	2 (B-002-2-23): (-77	, 79450)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	16.2	-690.3	No
2	2. V. Stiff Embankment Fill	0	-674.1	No
3	V. Stiff to Hard Embankment Fill	10.6	-674.1	Yes
4	Rock Fill	0	-663.5	Yes
5	M. Stiff to Stiff Cohesive	0	-663.5	No
6	5. Stiff Cohesive	0	-663.5	No
7	V. Stiff to Hard Cohesive	11.9	-663.5	No
			732.3 — 690.3 — 674.1 — 663.5 — 651.6	

LT Toe 2 (CU-07B) ←

XY Location:		LT Toe 2	(CU-07B): (-151, 794	ł50)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	6.7	-660.7	No
2	2. V. Stiff Embankment Fill	0	-654	No
3	3. V. Stiff to Hard Embankment Fill	0	-654	Yes
4	Rock Fill	16	-654	Yes
5	4. M. Stiff to Stiff Cohesive	0	-638	No
6	5. Stiff Cohesive	0	-638	No
7	V. Stiff to Hard Cohesive	4.6	-638	No
			732.3 660.7 654 638 623.7 ft	

LT Base 2 (CU-07B)←

XY Location:		LT Base 2	2 (CU-07B): (-190, 79	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-654.3	No
2	2. V. Stiff Embankment Fill	0	-654.3	No
3	3. V. Stiff to Hard Embankment Fill	0	-654.3	Yes
4	Rock Fill	24.3	-654.3	Yes
5	4. M. Stiff to Stiff Cohesive	0	-630	No
6	5. Stiff Cohesive	0.1	-630	No
7	V. Stiff to Hard Cohesive	6.2	-629.9	No
			732.3 —654.3 —630	

LT Far 2 (CU-07B) ← Header for point on following page (software output limitation)

XY Location:		LT Far Sh	near Key (CU-07B): ((-206, 79350)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-648.6	No
2	V. StiffEmbankment Fill	0	-648.6	No
3	3. V. Stiff to Hard Embankment Fill	0	-648.6	Yes
4	Rock Fill	18.6	-648.6	Yes
5	4. M. Stiff to Stiff Cohesive	0	-630	No
6	5. Stiff Cohesive	0.1	-630	No
7	V. Stiff to Hard Cohesive	6.2	-629.9	No

LT Far Shear Key 2 (CU-07B) Header for

XY Location:		LT Far Sh	near Key 2 (CU-07B)	: (-206, 79450)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-648.6	No
<u>)</u>	V. Stiff Embankment Fill	0	-648.6	No
3	3. V. Stiff to Hard Embankment Fill	0	-648.6	Yes
ł	Rock Fill	18.6	-648.6	Yes
5	4. M. Stiff to Stiff Cohesive	0	-630	No
5	5. Stiff Cohesive	0.1	-630	No
7	V. Stiff to Hard Cohesive	6.2	-629.9	No

XY Location:		LT Near	Shear Key 2 (CU-07B)): (-161, 79450)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	4.6	-658.6	No
2	V. Stiff Embankment Fill	0	-654	No
3	3. V. Stiff to Hard Embankment Fill	0	-654	Yes
4	Rock Fill	24	-654	Yes
5	4. M. Stiff to Stiff Cohesive	0	-630	No
6	5. Stiff Cohesive	0	-630	No
7	V. Stiff to Hard Cohesive	0	-630	No
			732.3 —658.6 —630 —623.7 ft	

LT Shear Key (B-002-1-23/CU-07B) Header for point on following page (software output limitation)

XY Location:		LT Shear	Key (B-002-1-23/CU	J-07B): (-128, 79350)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	11.5	-668.5	No
2	2. V. Stiff Embankment Fill	0	-657	No
3	V. Stiff to Hard Embankment Fill	0	-657	Yes
4	Rock Fill	0	-657	Yes
5	M. Stiff to Stiff Cohesive	0	-657	No
6	5. Stiff Cohesive	8.6	-657	No
7	V. Stiff to Hard Cohesive	9.4	-648.4	No
			— 732.3 — 668.5 — 657 — 648.4 — 639 — 623.7 ft	

LT Shear Key 2 (B-002-1-23/CU-07B) Header for point on following page (software output limitation)

XY Location:		LT Shear 79450)	Key 2 (B-002-1-23/C	CU-07B): (-128,
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	11.5	-668.5	No
2	2. V. Stiff Embankment Fill	0	-657	No
3	V. Stiff to Hard Embankment Fill	0	-657	Yes
4	Rock Fill	0	-657	Yes
5	4. M. Stiff to Stiff Cohesive	0	-657	No
6	5. Stiff Cohesive	8.6	-657	No
7	V. Stiff to Hard Cohesive	9.4	-648.4	No
			— 732.3 — 668.5 — 657 — 648.4 — 639 — 623.7 ft	

Soil Properties

Property	1. M. Stiff to Stiff Embankment Fill	2. V. S Embank Fil	ment	3. V. Stiff t Hard Embankme Fill	4. M. Stiff to
Color					
Unit Weight [kips/ft3]	0.12	0.13		0.14	0.12
Saturated Unit Weight [kips/ft3]	0.125	0.135		0.145	0.125
КО	0.63	0.58		0.55	0.64
Primary Consolidation	Enabled	Enabled		Enabled	Enabled
Material Type Cc Cr e0 Pc [ksf] OCR Cv [ft2/d] Cvr [ft2/d] B-bar Undrained Su A [kips/ft2] Undrained Su S Undrained Su m Piezo Line ID	Non-Linear 0.181 0.018 0.681 18 - 0.13 0.13 1 0 0.2 0.8 1	Non-Linea 0.203 0.02 0.444 18 - 0.11 0.11 1 0 0.2 0.8 1	ar	Non-Linear 0.194 0.019 0.362 18 - 0.12 0.12 1 0 0.2 0.8 1	Non-Linear 0.194 0.019 0.756 - 1 0.48 0.48 1 0 0.2 0.8 1
Property		Cohesive	6. V.	Stiff to Hard	Rock Fill
	J. 5till	Collesive		Cohesive	ROCK I III
Color Unit Weight [kips/ft3] Saturated Unit	0.125		0.135		0.135 0.14
Weight [kips/ft3] K0	0.61		0.56		0.38
Immediate	Disabled		Disable	مط	Enabled
Settlement Es [ksf]	Disabled		DISable	eu	Eliablea
			_		2800
Esur [ksf]	-		-		2800 2800
I	- - Enabled		- - Enable	ed	
Esur [ksf] Primary	Enabled Non-Linea 0.234 0.023 0.58 1 0.38	ar	- Enable Non-Li 0.189 0.019 0.416 1 0.5		2800
Esur [ksf] Primary Consolidation Material Type Cc Cr e0 OCR Cv [ft2/d] Cvr [ft2/d]	Non-Linea 0.234 0.023 0.58 1 0.38 0.38	ar	Non-Li 0.189 0.019 0.416 1 0.5 0.5		2800
Esur [ksf] Primary Consolidation Material Type Cc Cr e0 OCR Cv [ft2/d] Cvr [ft2/d] B-bar Undrained Su A	Non-Linea 0.234 0.023 0.58 1 0.38	ar	Non-Li 0.189 0.019 0.416 1 0.5		2800
Esur [ksf] Primary Consolidation Material Type Cc Cr e0 OCR Cv [ft2/d] Cvr [ft2/d] B-bar	Non-Linea 0.234 0.023 0.58 1 0.38 0.38	ar	Non-Li 0.189 0.019 0.416 1 0.5 0.5		2800 Disabled

Groundwater

Groundwater method Water Unit Weight Piezometric Lines 0.0624 kips/ft3

Generating excess pore pressure above water table

Piezometric Line Entities

ID	Depth (ft)
1	-645.4 ft

Field Point Grid

Number of points 2287 Expansion Factor 1

Grid Coordinates

X [ft]	Y [ft]
294.515	79503.5
294.515	79296.5
-363.515	79296.5
-363.515	79503.5

Sta. 834+50

References

3-2-1

4-7-11

5-6-9

4-5-8 3-6-9

2-3-5

4-4-4

6-10-9

8-17-30

39-50/0.3

-ROD-43%

850

846

847

848

720

-700

844

843

842

849

845

B-52ER 85.00' R

16

21

PROP. 36'

CULVERT

849

-19 PP

740

730

720

710

850

10-17-8

837

100% ROD-100%

BROD-88%

ROD=100%

838

839

Soft, decomposed, brown SHALE.

CU-IIC

840

(A)—Soft, decomposed to highly weathered, reddish brown SHALE.

Soft to medium hard, highly weathered to weathered, gray and reddish brown SHALE with laminar to very thin bedding.

841

TR 14-50/0.3

CULVERT;

B-47 54.60' RT

Soft to medium hard,
gray, weathered CLAY
SHALE with horizontal
laminar bedding (fissle).
RUN I: from 18.0' to 23.0'; REC-96%, ROD-82%

833

834

835

836

Sta. 834+50

Very hard, gray, slightly weathered to fresh,

micaceous, calcareous, fine grained SANDSTONE with thin to thick

832

bedding.

831

830

829

 \bigcirc

 \bigcirc

 \bigcirc

Soft, gray, highly weathered CLAY

— SHALE with horizontal laminar
bedding (fissle).

740

Very soft to soft, gray to reddish
brown, decomposed to highly weathered
LIMESTONE with indidtinct bedding.
RUN I: from 20.0' to 30.0'; REC-88%,
ROD-30%

Ø— Soft, brown, decomposed, micaceous, medium grained SANDSTONE.

827

828

<u>B-46</u>

826

730

720

710

825

PRO 0 Ś \sim 22.7 6-124-ME

 \bigcirc

 \bigcirc

 \bigcirc

SUMMARY OF SOIL TEST DATA

NOTE: NP SHOWN IN LIQUID LIMIT AND PLASTICITY INDEX COLUMNS INDICATES THAT THE MATERIAL IS NON-PLASTIC

** DENOTES SAMPLE TAKEN AT OR NEAR GRADE.

										** DE	NOTES SAMPLI	E TAKI
Station & Offset	0ept From	h To	% Agg.	c.s.	F.S.	Sīl†	% Clay	L.L	P.I.	% W.C.	000T Class	
806+88.00. 42.00' RT (B-40)	1.00	2.SO S.OO 7.50 9.SO	BROWN	OECO	63 MPOSED MPOSED MPOSEO	SANDS	TONE	NP	NP	1S 11 11 10	A-3q VISUAL VISUAL VISUAL	
806+88.00. 5S.00' RT (B-40CL1)	3.50	2.50 S.00 7.SO	BROWN D O	CLAY 1 1	6 2		94* 97*	4D 39	14 1S	29 17 14	VISUAL A-6a A-6a	
806+88.00. OS.00' RT (B-40CL2)	3.50	2.S0 S.00 7.S0			MPOSEO MPOSEO 61			NP	NP	12 11 9	VISUAL VISUAL A-30	
8D6+88.DO. 100.DD' RT (B-40CR1)	3.50	2.S0 5.00 7.50 10.00	BROWN	OECD	MPOSEO MPOSEO MPOSEO S7	SANOS	TONE			17 13 12 12	VISUAL VISUAL VISUAL A-30	
812+77.30. 22.20' RT (B-41)		2.S0 S.00 7.S0					96* EO CLAY EO CLAY		31	29 16 9	A-7-5 VISUAL VISUAL	
817+70.00. 80.00' RT (B-43)	3.SO 6.00 8.SO 13.SO	2.S0 S.00 7.50 10.00 15.00	BROWN BROWN 3	SILT A	11 ANO CLA ANO CLA ANO CLA	ΔY	87* 96*	30 56	11 28	26 22 14 13 54	A–6a VISUAL VISUAL VISUAL A–7–6	
817+7D.00.	18.SO 23.50	20.00 25.00	BROWN BROWN	CLAY	AND CL/	ΔY				37 27 14	VISUAL VISUAL VISUAL	
15.DD' RT (8-43L)	3.5D 6.0D 8.SD	5.DD 7.SO 10.SO 15.00	D 8ROWN 8ROWN	2 SILT A	12 AND CLA AND CLA D	ΑY	86* 10D*	31 S9	13 30	20 20 29 33	A-6a VISUAL VISUAL A-7-6	
817+70.DD.	13.50 18.50	20.D0 2.S0	O 8RDWN 4	D CLAY 3	21	43	28	26	9	29 20	VISUAL A-4a	
42.DO' RT (8-43R)	3.SO 6.00 8.50 13.50	S.DO 7.SO 1D.DO 1S.DO	8RDWN BROWN BROWN O	SANDY SANOY ELAST D	SILT IC CLA' O	(99*	60	29	9 22 3D 34 28	VISUAL VISUAL VISUAL A-7-5	
821+80.00, 42.00' RT (B-44)		20.D0 2.S0 5.00 7.S0 10.D0 15.00	O REOOIS REOOIS GRAY	O SH BROV SH BROV HIGHL	WN. DE	COMPOS COMPOS HEREO	98* EO CLAY EO CLAY CLAY SHA	SHALE	41	27 18 12 9 5	VISUAL A-7-S VISUAL VISUAL VISUAL VISUAL	
825+74.00. 42.00' RT (B-4S)	1.00 3.S0 6.00 8.S0 13.50 18.S0	2.50 5.00 7.50 10.D0 15.00 20.00	BROWN BROWN	OECOI OECOI	28 MPOSEO MPOSEO MPOSED MPOSED Y WEATH	CLAY CLAY CLAY	SHALE SHALE	24 NE	4	18 11 15 13 11	A-4a VISUAL VISUAL VISUAL VISUAL VISUAL	
829+67.00. 42.00' RT (8-46)		2.50 5.00 7.50 1D.DO	BROWN .	OECO	13 MPOSED MPOSED LY WEA	SANOS		32 DNE	12	21 14 9 6	A-6a VISUAL VISUAL VISUAL	_
833+94.00. \$4.60' RT (8-47)		2.50 5.00 7.50 1D.00 15.00	O BROWN O 8RDWN BRDWN	1 CLAY	24 20		75* 79*	42 41	19 19	20 18 18 19	A-7-6 VISUAL A-7-6 VISUAL VISUAL	
833+83.1D. 08.30' LT (8-47EL)		2.50 5.00 7.50 10.00 15.00		SANDY 11 0ECOI						17 17 16 1S 11	VISUAL VISUAL A-30 VISUAL VISUAL	
834+12.30. 100.60' RT (B-47ER)		2.S0 5.D0 7.50 10.00	BROWN 8ROWN O 8RDWN	SILTY 1		SANDS	64* TONE	39	22	24 20 20 18	VISUAL VISUAL A-6b VISUAL	
836+40.00. 42.0D' RT (B-48)		2.50 S.DO 7.SO 10.00	BROWN.	OECO	71 MPOSED MPOSEO DECOMF	SANOS		NP NE	NP	12 11 11 15	A-3q VISUAL VISUAL* VISUAL	•
838+54.00. 42.DD' RT (B-49)	1.00 3.SD 6.00 8.SO	2.50 5.00 7.SO 10.00	BROWN.	0ECO	63 MPOSED MPOSEO LY WEAT	SANOS		ONE		1S 9 11 8	A-3a VISUAL VISUAL VISUAL	

Station & Offset	Dep From	oth To	% % % % % Agg. C.S. F.S. Silt Clay L.L	P. I.	% W.C.	000T Class
838+54.DD.		2.50	BROWN COARSE AND FINE SANO		13	VISUAL
00.00'	3.SO	5.00	13 22 42 23*		9	A-3a
(B-49CL)	6.00	7.50	BROWN, DECOMPOSEO SANOSTONE		11	VISUAL
(B 43CL)	8.50	10.00	BROWN, HIGHLY WEATHERED SANOSTONE		7	VISUAL
	4 50		DOUBL OF COURSES CAMPS TONE		4.4	VISUAL
838+54.DD		2.SD	BROWN. OECOMPOSED SANDSTONE		11	
90.0D' RT		s.00	BROWN, OECOMPDSED SANOSTONE		12	VISUAL
(8-49CR)		7.SO	BROWN, OECOMPOSEO SANOSTONE		10	VISUAL
	8.50	8.90	12 16 46 2S*		14	A-3a
842+57.00.	1.00	2.50	O 1 1 98* S8	28	30	A-7-5
42.00' RT	3.50	s.00	REODISH BROWN CLAY		22	VISUAL
(8-SD)	6.00	7.50	REODISH BRDWN CLAY		19	VISUAL:
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.50	8.70	GRAY, DECDMPOSEO CLAY SHALE		12	VISUAL
84S+7S.DD.	1.00	2.SD	4 4 8 85* S1	2S	24	A-7-6
42.DD' RT		2.00	REDDISH BROWN CLAY		26	VISUAL:
(B-51)	6.DD	7.50	REDDISH BROWN CLAY		21	VISUAL
(0 317	8.50	10.00	BROWN. DECOMPOSEO CLAY SHALE		14	VISUAL
	13.50	13.60	BROWN, OECOMPOSEO CLAY SHALE		6	VISUAL
349+69.00.	1.00	2.50	BROWN SILTY CLAY		19	VISUAL
85.00' RT		S.00	S 8 22 65* 39	18	16	A-6b
	6.00	7.SO	BROWN SILTY CLAY	· -	16	VISUAL
VD SELIV	8.50	10.SO	BROWN SILTY CLAY		21	VISUAL
BS3+63.00.	1.00	2.50	1 14 2S 60* 3S	15	14	A-6a
42.00' RT		5.00	BROWN SILT AND CLAY		19	VISUAL
(B-53)	6.00	7.50	BROWN, OECOMPOSEO CLAY SHALE		17	VISUAL
(0 33)	8.50	9.8D	BROWN. OECOMPOSEO CLAY SHALE		14	VISUAL
857+89.DO.	1 . DD	2.SD	2 2 15 38 43 33	8	18	A-4a
42.DD' RT		S.OD	REDOISH BROWN, DECOMPOSED CLAY SHALE	_	13	VISUAL
(8-S4)	6.00	7.50	BRDWN. DECOMPOSED CLAY SHALE		11	VISUAL
(0 34)	8.50	10.DD	BROWN. DECDMPOSED CLAY SHALE		9	VISUAL
860+39.00,	1.00	2.SD	8 3 11 78* 32	11	26	A-6a
42.DD' RT		S.DD	BRDWN. DECOMPOSEO CLAY SHALE		21	VISUAL
(8-SS)	6.00	7.SD	REDOISH BROWN. DECOMPDSED CLAY SHALE		14	VISUAL
(0 33/	8.50	10.00	REDDISH BROWN. HIGHLY WEATHEREO CLAY		9	VISUAL
	13.SO	15.00	BROWN, HIGHLY WEATHERED CLAY SHALE	5.1/ALL	8	VISUAL
	18.50	20.00	BROWN, HIGHLY WEATHERED CLAY SHALE		7	VISUAL
	23.50	25.00	BROWN, HIGHLY WEATHERED CLAY SHALE		ė	VISUAL
			AY COMBINEO		Ū	
	₩ 3 .	ILI ANU	AT COMBINED			

PROFIL 7105

MEG-124-22.72

 \bigcirc

Locotion: Meigs County, Ohio

Historic S	Subsurface	Exploration	s
------------	------------	-------------	---

 \bigcirc

 \bigcirc

State of Ohio
Department of Transportotion
Division af Highways
Testing Laborotary

						LOG	0F	BORIN	IG		
ote)	Started	7/27/00	Sampler: Type	SS	Oio.	2.0"	Woter	Elev.	ft	Project:	MEG-124-22.72
ote	Completed	7/27/00	Cosing: Length		Oio.	3.25*				Project No.:	99011

					+14.91	0011									
Elev. (0epth (fti	Std. Pen./ RQD	Rec. (ft)	Loes (f†)	Description	Sample			Physic	ol Cha	rocte	ristics			000T
747.1	0	NGU	1117	(11)		No.	Agg	c.s.	¥ F.S.	silt	Clay	L.L.	P.I.	W.C.	Close
746.8	2 = 4	HS RQD = 50%	\$.0	0.0	TOPSOIL Soft, highly weothered, gray <u>SILISTONE</u> . Note: Augered to 4.0 feet and began coring bedrack. Soft to medium hard, highly weathered to weothered, gray <u>SILISTONE</u>	I								4	VISUAL
738.1	6 = 8				with thin bedding. TERMINATION OEPTH = 9.0 FEET										

Porticle Sizes: Agg => 2.00mm, Coorse Sond = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.00Smm, Cloy =< 0.00Smm (*Indicates eilt & cloy combined)

Stote of Ohia
Deportment of Tronsportation
Division af Highwoys
Testing Laborotory
LOG OF BORING

 Oote Started
 7/25/00
 Sompler: Type
 SS
 Oio.
 2.0"
 Woter Elev.
 ft
 Project:
 MEG-|24-22.72

 0ote Completed
 7/25/00
 Casing: Length
 0io.
 3.25"
 Project No.:
 990||

Elev. (ft)	0epth (ft)	Std. Pen./ ROO	Rec.	Loss (ft)	0escription	Somple			Physi	col Cho	rocte	ristics	3		000T
749.4	0	ROU	(11)	(11)	1	Na.	¥ Agg	c.s.	F.S.	Silt	Clay	L.L.	P.I.	W.C.	Close
	2	O - 7 - B			Medium dense, dork brawn <u>COARSE AND FINE SAND</u> (A-3o), little silt and cloy, trace gravel, moist.	ı	10	21	56		12 *	NP	NP	II	A-3c
745.9	4=	4 - 50/0.3			Very soft to saft, decomposed to highly weathered, brown <u>SANDSTONE</u> .	2								10	VISUAI
743.9 _	- 6 - 8 - 10	R00 = 100%	5.5	0.0	Note: Augered to 5.5 feet ond began coring bedrock. Medium hord to hard, slightly weothered to weothered, brown, coarse groined <u>SANDSTONE</u> with thin to thick bedding. U.C. Strength of sandstone ot 6.5 feet = 452 psi U.C. Strength of sandstone ot 7. feet = 43 psi		The second secon								
		ROO = 88%	5.0	0.0	Note: Block and brown in colar at 10.9 feet. U.C. Strength of sandstone ot 11.1 feet = 1488 pei Note: Light brown in color ot 13.0 feet.										
	16				Note: One inch thick grovelseom of 4.9 feet.										
	18	ROO = 00%	4.0	0.0			and the second state of th								
729.4 729.1	20	\$0/0.3	<u> </u>	<u> </u>	Saft, decomposed, brown <u>SHALE</u> . (drove a split epoon eomple from 20.0 / to 20.3 feet)	3				L	<u> </u>	<u> </u>	<u> </u>	12	VISUA

Stote of Ohia

Stote of Ohia Department of Tronspartatian Division af Highways Testing Laborotory LOG OF BORING

Particle Sizee: Agg => 2.00mm, Coarse Sond = 2.00-0.42mm, Fins Sand = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm (*Indicates silt & cloy combined)

 Oote Started
 7/24/00
 Sampler: Type
 SS
 Oio.
 2.0"
 Woter Elsv.
 ft

 Dote Completed
 7/24/00
 Cosing: Length
 0io.
 3.25"

Project: MEC-124-22.72
Project No.: 99011
Locotion: Meigs Countý, Ohio

REVIEWED B.M.

drawn E.D.S.

Boring	No. C		n & Of1	set_84	9+49.92 70.13'LT Surfoce Elev. 728.7	<u> 18f†</u>			_						
Elev.	0epth (ft)	Std. Pen./ RQD	Rec. (ft)	Loss (ft)	0escriptian	Sample			Physi	col Cho	rocte	ristics	3		000T
728.8	0	KUD	(11)	(11)		No.	X Agg	c.s.	F.S.	x Silt	Clay	L.L.	P.J.	w.c.	Closs
728.3	"				TOPSOIL		- Myy		1.3.	3115					
	,=	3 - 2 - 1			Soft to very etiff, brown SILTY CLAY (A-6b), little to troce sond, moist.	1	0	2	18		79 *	36	16	23	A-6b
														Î	
	4=					2							l	20	VISUAL
Ī	1	4 - 7 - 11				-									TIOORE
									i e						
	-	S - 6 - 9				3								21	VISUAL
	.=														
	-	4 5 9				4								23	VISUAL
719.3	 տ=	4 - S - 8			11. 12										11001112
					Medium stiff to very stiff, brown <u>SANDY SILI</u> (A-40), some cloy, troce gravel to little rock frogments, moist to wet.	_					1				
	12 =	3 - 6 - 9			•	5								21	VISUAL
	<u></u>	2 - 3 - 5				6								24	VISUAL
		2-3-3													
	16					_								١	l
		4 - 4 - 4			Note: Wet ot 16.0 feet during drilling.	7								23	VISUAL
	18														
		6 - 10 - 9				8								18	VISUAL
	20	0 10 0													
	_					9								20	VISUAL
706.8	22	8 - 17 - 30				,								20	A120AL
					Saft, decamposed to highly weathered, reddish brown <u>SHALE</u> .										
	24					10	l	l	l					12	VISUAL
		39 - \$0/0.3				10			"-					12	VIQUAL
	26									1					
7017	==				Note: August to 27 S feet and honor paring hadrank										
701.3	28	RQ0 = 43%	\$.0	0.0	Note: Augered to 27.5 feet and began coring bedrack. Soft to medium hord, highly weathered to weathered, gray and reddish								l		
	=				brown SHALE with laminor to very thin bedding.										
	30														
	=														
696.3	32				Microfolding present from 31.0 to 32.S feet.										
200.3	<u> </u>		L	I	TERMINATION OEPTH = 32.5 FEET	L				<u> </u>	L		L	L	I
L	04*-1-				C - 1 0 0 0 0 10 - 5' - 0 - 1 0 10 0 0 71 - 5'H 0 0 71 0 0 0 0										

Porticle Sizes: Agg => 2.00mm, Cooree Sand = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.00Smm, Clay =< 0.005mm (*Indicates silt & clay combin@drm TE-|S| Revised 9/94

 \bigcirc

 \bigcirc

 \bigcirc

Historic Subsurface Explorations

 \bigcirc

Stote of Ohio Deportment of Transportotion Division of Highways Testing Laboratory LOG OF BORING

Date Started ____7/26/00 Sompler: Type SS 0ia. <u>2.0"</u> _____ Wotsr Elev. <u>ft</u> Oote Completed 7/26/00 Cosing: Length 0ia. 3.25"

 \bigcirc

Project: <u>MEG-124-22.72</u> Project No.: 99011

 \bigcirc

gar!na	No. SI	DD_1 c+a+:a	on & Off	+ C+	40.9E		Loc	otion	Meio	is Cou	<u>intý,</u>	<u>Ohio</u>			
Elsv.	0epth	Std. Pen./	Rec.	Loss											
(ft)	(††)	R00	(ft)	(ft)	0escription	Samp le	<u> </u>					ristics	T	T	0D07
824.8	0					No.	Agg	c.s.	F.S.	sitt	Ckay	L.L.	P.I.	W.C.	Class
824.4	2	3 - 3 - 6			70PSOIL STITT to hord, brown <u>SANDY SILT</u> (A-4o), little cloy, troce rack frogments, troce to no roots, moist.	ł								16	VISUAL
	4=	9 - 15 - 18				2								Ю	VISUAL
817.8	-6-	15-23-50/0.3				3								17	VISUAL
	8=	50/0.4			Very soft to soft, decamposed to highly weothered, brown, micaceous SANDSTONE.	4		ļ <u></u>						8	VISUAL
8I4.B	₁₀ =	50, 01,			Note: Augered to 10.0 feet and begon caring bedrock.										
	12	RQD = 85%	9.9	0.1	Medium hard to hord, weothered to elightly weothered, brown, micoceous, medium groined <u>SANDSTONE</u> with very thin to mossive bedding. Iron stoined from 10.0 to 20.6 feet.					THE THE PROPERTY OF THE PROPER		E.		***************************************	
		ROD = 98%	9.8	0.2	U.C. Strength of sondstone ot 15.8 feet = 644 psi Nate: Oork brown from 16.3 to 17.5 feet.										
		Null - Jus	3.0	0.2	Note: Color chonged ta groy ot 20.8 feet.										
794.8	30=														
139.6	1 30	L <u></u>	L	L	7ERMINATION OEPTH = 30.0 FEET	I	1	1	L	L	L	L	<u> </u>	L	L
L					Cond = 2.00-0.42mm Fine Cond = 0.40-0.074mm Cit = 0.074-0.005mm Cl										

Porticle Sizes: Agg => 2.00mm, Coarse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm (*Indicotes silt & clay combin@drm 7E-I5I Revised 9/94

Stote of Ohio
Oeportment of Transportotion
Division of Highways
Testing Laboratory
LOG OF BORING

_____ Woter Elev. _ft
 Oote Started
 7/27/00
 Sompler: Type
 SS

 Oote Completed
 7/27/00
 Cosing: Length
 ____ Sompler: Type <u>SS</u>

Project: MEG-124-22.72
Project No.: 99011 Locotion: Meigs County, Ohio

Boring			n & 0f	fset <u>10</u>	+49.03 0.07'LT Surfoce Elev. 772.	95f†	200								
Elev. (f†)	0epth (ft)	Std. Pen./ R00	Rec.	Lose (f†)	0escription	Sample			Physi	col Cho	rocte	ristics	3		0007
773.0	0	100	(117	1117		No.	% Agg	c.s.	¥ F.S.	Sitt	Clay	L.L.	P.I.	W.C.	Closs
772.3	2	2 - 2 - 4			70PSOIL Medium stiff to very stiff, brown <u>SANDY SILT</u> (A-4a), some to little cloy, trace to no roots, no to little sandstone frogments, moist.	I	0	13	26		60 *	27	9	15	A-40
	4	3 - 4 - 7				2	-							20	VISUAL
	6	16 - 15 - 10				3								12	VISUAL
763.0	10	9 - 12 - 16				4								16	VISUAL
					7FRMINA7ION DEP7H = IO.O FFF7		+			<u> </u>					

Porticle Sizee: Agg => 2.00mm, Coorse Sand = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm (*Indicates silt & cloy combined)

					Stote of Ohio Deportment of Transportotion Oivision of Highways Testing Laboratory LOG OF BORING										
Oote S	Started	7/26/00		Sompler			Pri	oiect:	MEG	-124-23	2.72				
Oote (Complete	d <u>7/26/00</u>			Length 0io. 3.25"	1	Projec	ť No.	990	1					
Borino	No. S	DD_7 C+a+:	on & Off	foot 14	LEO DA 17 EV DT	40.£4	Loc	otion:	Meio	s Cou	ıntÿ,	<u>Ohio</u>			
lev.	Depth	Std. Pen./	Rec.	Loss					DL	- 1 01					
(f†)	(††)	R00	(f†)	(ft)	0eecription	Somple No.	X Agg	x			racte			Tu. 0	0D07 Cloes
17.4 17.1					70PS0IL	- 110.	Agg	c.s.	F.S.	sit	Clay	L.L.	P.I.	W.C.	CIUES
	2=	3 - 4 - 5			Stiff, brown and groy <u>CLAY</u> (A-7-6), some eand, trace roots, moiet.	l	0	3	27		70 *	54	30	22	A-7-6
	4=	3 - 4 - 7				2								19	VISUAL
10.9 09.8	-6=	3 - 4 - 36			Hard, brown and gray, micoceaus <u>SANDY SILT</u> (A-4a), little clay, maist.	3		-						18	VISUAL
	8	6 - 11 - 19			Very soft ta soft, decamposed to highly weothered, reddieh brown CLAY SHALE.	4								17	VISUAL
	12	18-33-50/0.5				5							*-	10	VISUAL
	14	40 - 50/0.4				6								10	VISUAL
99.9	16	21 - 55 -			7ERMINATION OEPTH = 17.5 FEET	7		<u> </u>						12	VISUAL

From "Sta. 834+50 Geotech/Boring Plan.pdf" Historic Subsurface Explorations STATION TO STATION 24"Sed. Tank Oil Well (J.D. OrilJing) R/W 20 T0 836+80 RT 186 20 T0 827+30 RT 256 S T0 SUB SUM 1697 REMOVAL CONTINUED oi CONST. LIMITS STATION TO STATION & SERVICE ROAD B 00 (EC-5) 7.5'\(\frac{1}{2}\) N (R-5) GUARDRAIL TAPER: STA. 829+75, 2.36' LT. STA. 830+50, 3.00' RT. \mathbf{x} (EC-3) S * TOTALS CARRIED TO CALCULATIONS SEE SHEET No. 68 DRAINAGE AND EROSION CONTROL (EC-2) -ANCH. ASSY. TYPE A CONSTRUCTION S.R. 124 STATION TO STATION 0 0 (EC-I) Future WB K B-001-5-08 £50-UD 831+00 828+00 7.54 ۵ 827+00 B-001-4-08 246-UD 0 D ⋖ 245-UD 244-UD) \$37-UD) bx N B-001- Z-08 \Q49-UD 248-UD) \triangleleft (EC-6) X 24" Locust (247-UD) 242-UD) 241-UD) 240-UD) B-001-0-08 L.O.N. STA. 829+00 9.5' STATION TO STATION CONST. LIMITS-(R-2)EC-7 7.5' 90.54 (EC-8) EC-9 LA-R/W BITURN AROUND No. 2 2 . TOTALS TO SUB SUM 126 42 22 S.R. 124 CURVE DATA: CURVE 4 P.I. Sta = 837+71.54Δ = 8° 47′ 34" (RT) -124 FOR UNDERDRAIN QUANTITIES SEE SHEET No. 674. STATION Dc = 0° 30' 00" TO STATION FOR TURN AROUND No. 2 PLAN & PROFILE SEE SHEET No. 588. EG L = 1,758.54'FOR SERVICE ROAD B PLAN & PROFILE SEE SHEET No. 565. E = 33.82'Σ $e_{max} = 0.017$ FOR CULVERT DETAIL SEE SHEET No. 657. 107 V////// 8" EXCAVATION, 8" EMBANKMENT, AND SEEDING AND MULCHING 823

PROJECT: MEG-33-15.5 IYPE: LANDSLIDE	DRILLING FIRM / OPERATOR SAMPLING FIRM / LOGGER:		ISH I	HAMMEF	t: <u>C</u>	E 850R TF		_	STAT ALIGI			ET:		+90 US 33).0 RT	EXPLOR B-00	1-0-09
PID: <u>NOPID</u> BR ID: <u>N/A</u> START: 4/8/09 END: 4/9/09	DRILLING METHOD: SAMPLING METHOD:	3.25" HSA / NQ2 SPT / NQ2		CALIBRA ENERGY			/10/09 83.6		ELEV COOF)_ EOE) N, 213		5.0 ft. 37 F	PAG 1 OF
MATERIAL DESCRIPT AND NOTES	ION EL	LEV. DEPTHS	s s	SPT/ RQD N ₆	REC	SAMPLE			GRAD	ATIOI	N (%)		ATTE	RBERO	3	ODOT CLASS (GI)	INC
TOPSOIL (6") VERY STIFF, BROWN, SILT AND CLAY , "AI	75	50.5	- 1 -		(11)		()										
TRACE STONE FRAGMENTS, DAMP	74	48.0	- 2 - 4	6 20	67	SS-1	2.50	2	7	39	33	19	28	16 12	15	A-6a (4)	
MEDIUM DENSE, BROWN, COARSE AND F SOME SILT, LITTLE CLAY, TRACE STONE I MOIST	ERACMENTS	46.5	. /	8 24	100	SS-2	2.00	5	13	50	22	10	NP	NP N	14	A-3a (0)	
VERY STIFF TO HARD, BROWN, SANDY SI CLAY, TRACE STONE FRAGMENTS, DAMP	LT, LITTLE		- 5 - 4 - 6 - 7	7 26	100	SS-3	2.50	6	8	43	27	16	19	14 5	14	A-4a (2)	
			7 - 7	7 21	100	SS-4	3.50	-	-	-	-	-	-	- -	14	A-4a (V)	
@9.0'; SOME CLAY			- 8 - 7 - 9 - 3	6 17	67	SS-5	3.25	-	-	-	-	-	-	- -	15	A-4a (V)	
30.0, 00ML 02 W			10 3	6 20	+	SS-6	4.50	4	7	49	17	23	27	18 9		A-4a (1)	
			12 3	6 18	+	SS-7	4.00	-	-	-	-	-	-	- -	21	A-4a (V)	
@13.5'; STIFF			- 13 - 2 - 14 - 2	4 14 6 3 13	+	SS-8 SS-9	2.50	-	-	-	-	-	-	- -	17	A-4a (V)	
@15.0'; REDDISH BROWN			15 2	4 14	+	SS-10	1.25	3	9	47	17	24	26	17 9	17	A-4a (V) A-4a (1)	
@16.5'; VERY STIFF			10 6	8 28	+	SS-11	2.00	-	-	-	-	<u>- </u>	-		17	A-4a (V)	
/ERY STIFF, REDDISH BROWN, SILTY CL . FRACE STONE FRAGMENTS, SLIGHTLY O	AY, "AND" SAND,	33.0	- 18 - 4 - 19 -	6 21	100	SS-12	2.00	1	11	38	23	27	32	12 20	18	A-6b (7)	
			20 - 4	7 21	100	SS-13	3.25	-	-	-	-	-	-		21	A-6b (V)	
	72	28.5	- 21 - 6	12 11 11	100	SS-14	4.00	ı	-	-	-	-	_	- -	19	A-6b (V)	
HARD, BROWN, SILT , SOME SAND, LITTLE STONE FRAGMENTS, DAMP	72	27.0 TR	- 23 - 11 - 24 - 24	9 33	100	SS-15	4.50	1	4	22	59	14	NP	NP N	17	A-4b (8)	
CLAYSTONE , LIGHT BROWN, HIGHLY WE. WEAK, THICK BEDDED; RQD 57%, REC 10	0%.	-	- 24 - 22 - 25 - 26 - 27 -	40 -	100	SS-16	-	-	-	-	-	-	-		13	Rock (V)	
SANDSTONE, GRAY, SLIGHTLY WEATHER MODERATELY STRONG, VERY FINE TO FI THIN BEDDED, ARGILLACEOUS; RQD 36%	ED, NE GRAINED,	23.5	- 28 - - 29 -														

PID: NOPID	BR ID:	N/A	PROJECT:	MEG-3	33-15.5		STATION /	OFFSE	T:8	334+90	100.0 RT	_ s	START	: _4/	8/09_	END	4	9/09	_ P	G 2 OF	2 B-00	1-0-09
	MATE	RIAL DESCRIP	TION		ELEV.	ח	EPTHS	SPT/	N	REC	SAMPLE	HP		GRAD	ATION	1 (%)	AT	TERB	ERG		ODOT	INCL.
		AND NOTES			721.0		LF II IO	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI C	L LL	PL	PI	wc	CLASS (GI)	INCL.
MODERATELY	STRÓNG, \	HTLY WEATHE /ERY FINE TO F EOUS; RQD 369	INE GRAINED,		716.0	EOI	- - - - - - - - - - 33 - - - - - 34 - - - - - - - - - - - - - - - - - - -	41		100	NQ2-1										CORE	

PROJECT: MEG-33-15.5	DRILLING FIRM / OPERA	TOR:	ODOT / SABO	DRIL	L RIG:	C	ME 55 TF	RUCK		STAT	ION /	OFFS	SET:	83	4+90	32 .0	RT	EXPLOR	
TYPE: LANDSLIDE	SAMPLING FIRM / LOGG	ER: 0	DOT / MCLEISH	HAM	MER:	CN	IE AUTON	ИАТІС	,	ALIG	NMEN	T:		CL	US	33		B-002	2-0-09
PID: NOPID BR ID: N/A	DRILLING METHOD:	3.25"	HSA / NQ2	CALI	BRATI	ON DA	TE: 3	/10/09		ELEV	OITA	J: 78	85.0				46	6.0 ft.	PAGE
START: 4/22/09 END: 4/23/09	SAMPLING METHOD:	S	PT / NQ2	- I ENE	RGY R	ATIO (%):	81.3	,	COOF	RD:	3	7318	82.02	 8 N. :	21308	387.30	0 E	1 OF 2
MATERIAL DESCRIPT	· L	ELEV.		SPT/			SAMPLE		-		ATION		_	ATTI		_			
AND NOTES	TON		DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	-			CL	LL	PL	PI	wc	ODOT CLASS (GI)	INCL.
TOPSOIL (6")		785.0		TTQD		(70)	טו	(131)	GIX	03	13	31	OL.	LL	ГL	г	WC	, ,	<u> </u>
MEDIUM STIFF, REDDISH BROWN WITH O		784.5																	
CLAY, SOME SAND, SOME STONE FRAGN				4															\otimes
CEAT, COME OF WAS, COME OF CIVE FIX OF	VILITIO, DI IVII		<u></u> 2 →	4 3	8	67	SS-1	1.00	24	8	21	35	12	30	18	12	17	A-6a (3)	
		1	[_ ₃ _ 1	3	Ů	<u> </u>		1.00						-				71 04 (0)	\otimes
@3.0'; STIFF	\///	1		1															
	\///	1		4 4	12	89	SS-2	1.00	_	_	_	_	-	_	_	_	15	A-6a (V)	
]	_ 5 -	5														7.00(1)	
@5.0'; TRACE ASPALT FRAGMENTS	<i>\///</i>			5 5	15	100	SS-3	2.00		_	_					_	12	A-6a (V)	\bowtie
		778.5	<u> </u>	1 3 6	13	100	33-3	2.00	-	-	-	-	-	-	-	-	12	A-0a (V)	
VERY STIFF, BROWN WITH GRAY, SAND	Y SILT, LITTLE		L 7 -	6					1	_			_ [\bowtie
STONE FRAGMENTS, TRACE CLAY, WET		777.0		8 10	24	100	SS-4	2.00	15	6	40	32	7	22	18	4	22	A-4a (1)	
MEDIUM DENSE, BROWN, COARSE AND	FINE SAND	111.0	8 	4															\bowtie
SOME SILT, TRACE STONE FRAGMENTS,			_ 9 	4 ,	11	100	SS-5	2.00	6	4	56	31	3	NP	NP	NP	13	A-3a (0)	
DAMP				2															\mathbb{N}
MAMP @11.0'; LOOSE, MOIST	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>	3	12	100	SS-6	1.00	-	-	-	-	-	-	-	-	14	A-3a (V)	
				6														. , ,	\bowtie
@11.0'; LOOSE, MOIST			-	3	9	100	SS-7	2.00	_	_	_	_	_	_	_	_	26	A-3a (V)	
	• • • • •	772.5	<u> </u>	4	Ů	.00												7 (00 (7)	$\bowtie \bowtie$
MEDIUM STIFF TO STIFF, REDDISH BROV			- 13 -	3 ,	12	100	SS-8	2 50	26	5	25	39	5	20	10	10	4.4	A 40 (2)	
SANDY SILT, SOME STONE FRAGMENTS, DAMP	, TRACE CLAY,			4 5		100	SS-0	2.50	26	5	25	39	٦	29	19	10	14	A-4a (2)	\bowtie
DAMP			14	4															\mathbb{W}
2			<u> </u>	4 ,	11	100	SS-9	0.50	-	-	-	-	-	-	-	-	12	A-4a (V)	\mathbb{M}
, ,			- 40	5															\boxtimes
			16	6	19	100	SS-10	2.00	-	-	-	-	-	-	-	-	15	A-4a (V)	
			- 17 -	3															\otimes
5				4	11	100	SS-11	0.50	-	-	-	-	-	-	-	-	15	A-4a (V)	
		766.5	18	4														. ,	\otimes
STIFF TO VERY STIFF, REDDISH BROWN			- 19 -	2 2	9	100	SS-12	1.00	39	9	11	32	9	34	23	11	16	A-6a (1)	
5 SILT AND CLAY , "AND" STONE FRAGMEN 2 DAMP	ITS, LITTLE SAND,		_ 20 -			100	00 12	1.00	00		'''	02		0,1	20			7 (Od (1)	\otimes
5		1	20	3 _	14	100	SS-13	2.00									12	A 60 (\A)	
	V///	1	<u> </u>	5 5		100	SS-13	2.00	-	-	-	-	-	-	-	-	13	A-6a (V)	
<		1	_ 22 -	3															
				5 6	15	89	SS-14	3.00	-	-	-	-	-	-	-	-	14	A-6a (V)	\bowtie
SILT AND CLAY, "AND" STONE FRAGMEN DAMP		1	- 23	3								-	\neg						X /
	<i>\///</i>	1	_ 24 -	5	12	100	SS-15	2.50	-	-	-	-	-	-	-	-	11	A-6a (V)	
	<i>\///</i>	1	l	4					\vdash			-+	-						
	V///	1	25	4	11	100	SS-16	2.00	-	-	-	-	-	-	-	-	14	A-6a (V)	
VERY STIFE REDDISH BROWN AND BRO		759.0	26	50/4"							\perp	\perp						, ,	
VERY STIFF, REDDISH BROWN AND BRO				50/4"	<u>├</u> ─┤	_50_	_SS-17_	<u>↑</u>	┝╌┤	<u> </u>			∤	- -	-	\vdash	13	A-2-4 (V)	\mathbb{N}
FRAGMENTS WITH SAND AND SILT, TRAG @ 26.0' - 27.5'; CONTAINS BOULDERS D	CE CLAY, DAMP	,	27	1															
DESCRIPTION	MILLENS	1	_ ₂₈ _	5	26	100	00.40	2 50	20		20	$^{-}$	\Box	20	4-7		40	A O 4 (0)	
5		4		8 11	26	100	SS-18	3.50	32	5	28	30	5	26	17	9	12	A-2-4 (0)	
DESCRIPTION		j	29	6		100	SS-19	2.00		_							10	A-2-4 (V)	$\mathbb{M} \mathbb{K}$
ō		1		57		100	33-19	2.00		-	-	-	-	-	-	-	10	Λ-2- 4 (V)	\otimes

PID:	NOPID	BR ID:		N/A	PROJECT:	MEG-	33-15.5	ST	TATION /	OFFSE	T:	834+9	0 22.0 RT	_ s	TART	: _4/2	22/09	_ E	ND:	4/23	3/09	_ P	G 2 O	F 2 B-00	2-0-09
		MA		L DESCRIP	TION		ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE		_			N (%		ATT	ERBE			ODOT	INCL
				ID NOTES		Paki ilai	755.0	<u> </u>	1.0	RQD	1 460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	W//
FR/	- ,				OWN, STONE CE CLAY, DAMP		753.0		31	3 5 5	14	100	SS-20	3.00	-	-	-	-	-	-	-	-	13	A-2-4 (V)	
TR/		FRAGM			ND, SOME SILT, Y, DECOMPOSED				- 32 - - 33 -	2 4	8	100	SS-21	1.00	3	4	59	33	1	NP	NP	NP	14	A-3a (0)	
_	4.0'; DENSI						750.0		- 34 - - - 35 -	3 11 20	42	100	SS-22	2.00	-	-	-	-	-	-	-	-	17	A-3a (V)	
HAF	RD, LIGHT	BROWN,	SILT A	ND CLAY, "	AND" SAND, DAMP		749.0	TR	36	11 50	-	67	SS-23	-	0	13	33	40	14	35	21	14	16	A-6a (5)	
SLI	GHTLY STE	RONG, FI	NE TO	MEDIUM GF	ELY WEATHERED, RAINED, THIN %, REC 91%.				- - - - - - - - 39 - - - - - 40 -																
@4	0.4'; SLIGH	ITLY WE	ATHER	ED					- 41 -	61		94	NQ2											CORE	
	1.8' - 42.3'; ARSE GRA		WITH Y	ELLOWISH	BROWN, FINE TO		742.7	_	- 42 - - - 43 -																
STF ARE @ 4	RONG, FINE ENACEOUS	E GRAINE S; RQD 63 SANDST	ED, THI 8%, RE			/ •••	739.5 739.0	FOR	- 45 - 44 - - 45 -																
MO	DERATELÝ	WEATH	ERED,		ROWN, STRONG, FINE TO CEOUS. FRIABLE:				-4 0																

MEDIUM GRAINED, THIN BEDDED, MICACEOUS, FRIABLE; RQD 0%, REC 100%.

NOTES: HOLE DRY BEFORE CORING; SLOPE INCLINOMETER INSTALLED; MONITORING WELL INSTALLED ADJACENT TO THIS BORING. ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 25 LB. BENTONITE POWDER; 94 LB. CEMENT

PROJECT:	MEG-3	3-15.5	DRILLING FIRM / OF	ERA	TOR:	ODOT / CA	AREY	DRIL	L RIG:	: (CME 55 TF	RUCK		STAT	ION	OFF	SET:	8:	34+9	0 34.0) LT	EXPLORA	TION ID
TYPE:	LANDSLI	IDE	SAMPLING FIRM / LO	OGG	ER: 0	DOT / MCL	.EISH	HAM	MER:	CN	JE AUTON	MATIC	I.	ALIG	NMEI	NT:		CI	L US	33		B-003	-0-09
PID: NOF	PID BR ID:	N/A	DRILLING METHOD:		3.25"	HSA / NQ2	2	CALI	BRATI	ON DA	ATE: 3	/10/09		ELEV	/ATIC	N: -	784.0	(MS	L) E	EOB:	36	3.0 ft.	PAGE
START: 4	4/14/09 END:	4/15/09	SAMPLING METHOD):	S	PT / NQ2		- I ENE	RGY R	ATIO ((%):	81.3		COO		_					906.97	'6 E	1 OF 2
_		RIAL DESCRIPT	TION		ELEV.			SPT/			SAMPLE					N (%			ERBI				MON.
		AND NOTES	1014			DEPTI	HS	RQD	N ₆₀	(%)	ID	(tsf)		CS			CL	LL		PI	wc	ODOT CLASS (GI)	WELL
TOPSOIL (AND NOTES			784.0			TTQD		(70)	טו	(131)	GIV	03	13	31	CL	LL	F.L.	г	WC	` ,	TT
1~	VERY STIFF, BRO		/	ШΠ	7 <u>83.5</u>		_ 1 _																k
	NDY SILT, SOME						⊦ ' ,	1.1															
FRAGMEN		OLYTT, OOME C	TONE				<u></u>	14 6	18	78	SS-1	1.00	21	3	26	26	24	24	16	8	15	A-4a (3)	
	•						L 3 -	7						Ů						Ľ		71 10 (0)	\otimes
							-	6	16	67	SS-2	3.00									13	A 40 () ()	
							 	6		07	33-2	3.00	-	-	-	-	-	_	-	-	13	A-4a (V)	\otimes
							F 5 -	5						_									
							⊦	6 7	18	78	SS-3	2.50	25	2	31	22	20	25	17	8	15	A-4a (1)	\bowtie
							F 6	5															
					776 F		F 7	10	27	28	SS-4	1.00	-	-	-	-	-	-	-	-	12	A-4a (V)	X K
MEDILIM D	DENSE, BROWN	WITH CDAY CT	ONE		776.5		⊢ :	8 8															
	ITS WITH SAND			1/V	1		<u></u> 8	11	23	78	SS-5	2.00	31	2	42	17	8	NP	NP	NP	8	A-2-4 (0)	\otimes
		, at 5 0121, 110 to	5E 6E (1, 57 ava				<u></u> 9	6														` '	
				191	1		F	9	26	78	SS-6	1.50	_	_	_	_	_	_	_	_	11	A-2-4 (V)	X X
2				1 N	773.5		<u></u> 10	Ŭ10		,,,	00 0	1.00										/(Z + (V)	
	VERY STIFF, REI						<u></u> 11 -	4 ,	12	100	SS-7	1.00	21	3	26	22	18	23	16	7	13	A 40 (1)	\otimes
SOME STO	ONE FRAGMENTS	S, LITTLE CLAY	, DAMP				├ . <u>.</u>	4 5		100	33-1	1.00	31	3	20	22	10	23	16	'	13	A-4a (1)	\mathbb{X}
							<u> </u>	4															\bowtie
3							- 13 -	5 6	15	100	SS-8	2.50	-	-	-	-	-	-	-	-	12	A-4a (V)	\mathbb{X}
@13.5'; SO	ME CLAY						ا 🚛 ا	3															\otimes
@13.5;	INIE OEI (I						<u></u> 14	3	9	78	SS-9	1.00	22	4	5	39	30	31	22	9	15	A-4a (7)	\bowtie
							- 15 -	3															\bowtie
7							F I	5	15	78	SS-10	2.50	_	_	_	_	_	_	_	_	11	A-4a (V)	\otimes
0							<u></u> 16	6														(.)	\bowtie
							 17 	3	11	100	SS-11	1.50	_	_	_	_	_	_	_	_	16	A-4a (V)	
9							L 10 J	٠ 5	1	100	00 11	1.00									10	7(40(0)	\bowtie
5							18	3	4.5		00.40										40		\otimes
5							- 19 -	3 8	15	78	SS-12	2.00	-	-	-	-	-	-	-	-	10	A-4a (V)	$\bowtie \aleph$
3							20	5															\otimes
5							L 20	5	12	78	SS-13	2.50	33	3	5	32	27	26	19	7	8	A-4a (5)	
_							- 21	3															\bowtie
<							_ 22 -	2	4	78	SS-14	2.00	-	-	-	-	-	-	-	-	11	A-4a (V)	
<u> </u>					761.5		22	1															
P WEDIOW D	DENSE, BLACK A		VN, COARSE	•	761.0	——TR——	23	18 16	56	78	SS-15	3.50	0	7	70	16	7	NP	NP	NP	12	A-3a (0)	
	SAND, LITTLE SI				1		_ 24	25				5.55	Ľ					L.,	ļ. "	_ "			
	NE, LIGHT BROV STRONG, FINE		ELY WEATHERED,	•••]		24	21	81	70	CC 1C	4.50									10	Dook () ()	
	MICACEOUS, FR		%. REC 98%.		<u> </u>		25	36 24	01	78	SS-16	4.50	-	-	-	-	-	-	-	-	10	Rock (V)	
₹ 	2,	, , , , , , , , , , , , , , , , , ,	,	•••]		26	67	-	100	SS-17	-	-	-	-	-	-	-	-	-	11	Rock (V)	::目::
<u> </u>				•••	 		²⁰																.: 目: ˈ
3				•••	1		- 27 -	1															∷⊟::
				•••	 		L 28 -																:: : ⊟::
K				•••	<u> </u>		- I	-															
				•••]		29	1															
5				• • •	•																		<u>∴⊟:</u>

PID: NOPID	BR ID: N/A	PROJECT:	MEG-	33-15.5		STATION /	OFFSE	ET:	834+9	0 34.0 LT	_ s	TART	: <u>4/1</u>	4/09	END	D: <u>4/</u>	15/09	P	PG 2 OF	2 B-00	3-0-09
	MATERIAL DESC	RIPTION		ELEV.	DI	EPTHS	SPT/	N ₆₀	REC	SAMPLE	HP	(GRAD	ATION	(%)	ΑT	TERE	BERG		ODOT	MON.
	AND NOTE	S		754.0	DI		RQD	1160	(%)	ID	(tsf)	GR	CS	FS	SI (CL LL	PL	PI	WC	CLASS (GI)	WELL
SLIGHTLY STR	LIGHT BROWN, MODEF RONG, FINE TO MEDIUN ACEOUS, FRIABLE; RQI	GRAINED, THIN		748.0	EOF	- 31 - 32 - 34 - 35 - 36 - 36 - 36 - 36 - 36 - 36 - 36	55		98	NQ2-1										CORE	

Û

0

Soil Parameter Determination

Settlement parameters were selected based on Borings SRB-3 and B-47.

		Undra	ained Shear	Strength (Su	ı) (psf)	Dry Unit Weight (pcf)	Moist Unit Wt. (pcf)				Long-Term	Strength Va	lues	Adopted Long Term Strength	Consolidation Values		
Layer		PPR	N-va	alues	Tested			Adopted Short Term Parameters		N ₆₀ Value	ODOT GB-7 Co		Tested	Parameters	DDOT GB-7 Correlation	Adopted Consolic	ation Parameters
			Sowers	T and P	Values	Correlation Tested	Correlation Tested				Cohesion (psf)	phi (deg)	Cohesion (psf) phi (deg)		eo Cc Max 0.787 0.216		
	Max Min	3000 500	2625 825	1995 1064		115 95	130 110	S _u = 1200 psf	Max Min	15 8	150 100	24 22		c' = 130 psf	Max 0.787 0.216 Min 0.476 0.117	eo = 0.559	Ko = 0.61
Layer 1	Average	1654	1644	1606		109	125	$\Phi = 0$ deg	Average	12	129	23		Φ' = 23 deg	Average 0.559 0.171	Cc = 0.171	Es = N/A ksf
MEDIUM STIFF TO STIFF	Std Dev	851	698	295		6	5		Std Dev	2	16	1			Std Dev 0.093 0.041	Cr = 0.017	<u> </u>
EMBANKMENT FILL								Y _{dry} = 110 pcf						Y _{dry} = 110 pcf		Cv = 0.13 ft ² /day	
	Avg + Std Avg - Std	2505 803	2343 946	1901 1312		115 103	130 120	Y _{moist} = 125 pcf	Avg + Std Avg - Std	14 10	145 113	24 23		Y _{moist} = 125 pcf	Avg + Std 0.651 0.212 Avg - Std 0.466 0.130	$\sigma_p' = $ 18 ksf	
	Max	3000	2450	3591		110	125		Max	27	190	26			Max 0.616 0.162		
	Min	1000	1200	1862		105	125	S _u = 1700 psf	Min	14	143	24		c' = 160 psf	Min 0.543 0.126	eo = 0.587	Ko = 0.59
Layer 2	Average	2000	1675	2474		107	125	Φ = 0 deg	Average	19	161	24		Φ' = 24 deg	Average 0.587 0.141	Cc = 0.141	Es = N/A ksf
STIFF TO VERY STIFF	Std Dev	935	539	662		3	0	Y _{dry} = 105 pcf	Std Dev	5	18	1		V - 105 not	Std Dev 0.040 0.019	Cr = 0.014 $Cv = 0.16$ ft ² /day	
EMBANKMENT FILL	Avg + Std	2935	2214	3136		110	125	Y _{moist} = 125 pcf	Ava + Std	24	179	25		Y _{dry} = 105 pcf Y _{moist} = 125 pcf	Avg + Std 0.627 0.160	$\sigma_p' = 0.16$ ff ² /day ksf	
	Avg - Std	1065	1136	1811		104	125	niolat	Avg - Std	14	144	24		moist 122	Avg - Std 0.547 0.122		
	Max	N/A	N/A	N/A		110	130	F	Max	26	N/A	33			Max 0.654 N/A		
	Min	N/A	N/A	N/A		100	120	$S_u = 0$ psf	Min	8	N/A	29		c' = 0 psf	Min 0.503 N/A	eo = N/A	Ko = 0.48
Layer 3	Average Std Dev	N/A N/A	N/A N/A	N/A N/A		106 3	126 3	Φ = 31 deg	Average Std Dev	17 6	N/A N/A	31 1		Φ' = 31 deg	Average 0.576 N/A Std Dev 0.052 N/A	Cc = N/A Cr = N/A	Es = 550 ksf
LOOSE TO MEDIUM DENSE	Old Dev	19/75	19/75	N/A		3	ŭ	Y _{dry} = 105 pcf	Old Dev	Ü	N/A			Y _{dry} = 105 pcf	0.032 NA	$Cv = N/A$ ft^2/day	
EMBANKMENT FILL	Avg + Std	N/A	N/A	N/A		109	129	Y _{moist} = 125 pcf	Avg + Std	22	N/A	32		Y _{moist} = 125 pcf	Avg + Std 0.628 N/A	$\sigma_p' = N/A$ ksf	
	Avg - Std	N/A	N/A	N/A		102	122		Avg - Std	11	N/A	30			Avg - Std 0.523 N/A		
	Max Min	4500 1250	3500 825	3458 1197		125 100	130 120	S _u = 1600 psf	Max Min	26 a	187 107	25 22		c' = 145 psf	Max 0.654 0.396 Min 0.323 0.081	eo = 0.466	Ko = 0.59
Layer 4	Average	2615	1547	2093		112	125	$\Phi = 0$ deg	Average	16	147	24		Φ' = 24 deg	Average 0.508 0.204	Cc = 0.342	Es = N/A ksf
, in the second second	Std Dev	977	763	610		6	2		Std Dev	5	22	1			Std Dev 0.085 0.103	Cr = 0.034	
STIFF TO VERY STIFF COHESIVE								Y _{dry} = 110 pcf						Y _{dry} = 110 pcf		Cv = 0.19 ft ² /day	
	Avg + Std Avg - Std	3592 1638	2310 784	2703 1482		118 106	127 122	Y _{moist} = 125 pcf	Avg + Std Avg - Std	20 11	169 125	25 23		Y _{moist} = 125 pcf	Avg + Std 0.593 0.306 Avg - Std 0.423 0.101	OCR = 1	
	Max	4000	4000	4000		130	140		Max	40	250	28			Max 0.476 0.198		
	Min	2000	2100	2793		115	130	S _u = 2800 psf	Min	21	170	25		c' = 195 psf	Min 0.296 0.198	eo = 0.422	Ko = 0.56
Layer 5	Average	2813	3290	3462		119	132	$\Phi = 0$ deg	Average	28	197	26		Φ' = 26 deg	Average 0.423 0.198	Cc = 0.198	Es = N/A ksf
VERY STIFF TO HARD COHESIVE	Std Dev	987	758	621		7	4	Y _{dry} = 120 pcf	Std Dev	8	33	1		Y _{dry} = 120 pcf	Std Dev 0.075 N/A	Cr = 0.020 $Cv = 0.48$ ft^2/day	
VERT STIFF TO HARD CONESIVE	Avg + Std	3799	4048	4083		126	136	$Y_{dry} = 120$ pcf $Y_{moist} = 130$ pcf	Avg + Std	36	229	27		Y _{moist} = 130 pcf	Avg + Std 0.498 N/A	OCR = 1 ft²/day	
	Avg - Std	1826	2532	2841		112	128	most 100	Avg - Std	20	164	25		moist 100	Avg - Std 0.348 N/A		
	Max	N/A	N/A	N/A		120	140		Max	42	N/A	35			Max 0.654 0.144		
	Min	N/A	N/A	N/A		100	120	S _u = 0 psf	Min	25	N/A	33		c' = 0 psf	Min 0.378 0.144	eo = N/A	Ko = 0.44
Layer 6	Average Std Dev	N/A N/A	N/A N/A	N/A N/A		114 9	132 10	Φ = 34 deg	Average Std Dev	31 10	N/A N/A	34 1		Φ' = 34 deg	Average 0.470 0.144 Std Dev 0.130 N/A	Cc = N/A Cr = N/A	Es = 950 ksf
MEDIUM DENSE TO DENSE GRANULAR	1					-		Y _{dry} = 110 pcf		-		•		Y _{dry} = 110 pcf		$Cv = N/A ext{ft}^2/day$	
GRANULAR	Avg + Std	N/A	N/A	N/A		123	142	Y _{moist} = 130 pcf	Avg + Std	41	N/A	35		Y _{moist} = 130 pcf	Avg + Std 0.600 N/A	OCR = N/A	
	Avg - Std	N/A	N/A	N/A		104	121		Avg - Std	21	N/A	33			Avg - Std 0.340 N/A		
	Max Min	N/A N/A	N/A N/A	N/A N/A		115 110	135 130	$S_u = 0$ psf	Max Min	14 8	N/A N/A	31 29		c' = 0 psf	Max 0.503 N/A Min 0.470 N/A	eo = N/A	Ko = 0.50
Layer 7	Average	N/A	N/A	N/A		113	133	$\Phi = 30$ deg	Average	11	N/A	30		Φ' = 30 deg	Average 0.487 N/A	Cc = N/A	Es = 450 ksf
LOOSE TO MEDIUM DENSE	Std Dev	N/A	N/A	N/A		4	4		Std Dev	4	N/A	1			Std Dev 0.023 N/A	Cr = N/A	
GRANULAR	.					440	400	Y _{dry} = 115 pcf		4-				Y _{dry} = 115 pcf		Cv = N/A ft²/day	
	Avg + Std Avg - Std	N/A N/A	N/A N/A	N/A N/A		116 109	136 129	Y _{moist} = 135 pcf	Avg + Std Avg - Std	15 7	N/A N/A	31 29		Y _{moist} = 135 pcf	Avg + Std 0.510 N/A Avg - Std 0.464 N/A	OCR = N/A	
	Max	2000	450	798		105	125		Max	6	75	21			Max 0.697 0.144		
	Min	500	300	532		100	120	Su = 700 psf	Min	4	50	20		c' = 65 psf	Min 0.616 0.144	eo = 0.657	Ko = 0.64
Layer 8	Average Std Dov	1250 1061	375 106	665 188		103 4	123 4	Φ = 0 deg	Average Std Dov	5	63 18	21		Φ' = 21 deg	Average 0.657 0.144	Cc = 0.144	Es = N/A ksf
SOFT TO MEDIUM STIFF	Std Dev	1061	106	188		4	4	Ydry = 105 pcf	Std Dev	ı	18	1		Ydry = 105 pcf	Std Dev 0.057 N/A	$Cr = 0.014$ $Cv = 0.64$ ft^2/day	
COHESIVE	Avg + Std	2311	481	853		106	126	Ymoist = 125 pcf	Avg + Std	6	80	21		Ymoist = 125 pcf	Avg + Std 0.714 N/A	OCR = 1	
	Avg - Std	189	269	477		99	119		Avg - Std	4	45	20			Avg - Std 0.600 N/A		
				_		•								_			_

Ko = 1 - sin(phi)

Assumed Cc/Cr = 10

OCR selected as 1 considering the native materials to be normally consolidated. Preconsolidation pressure for existing fill selected based on correlations with LI in NAVFAC DM 7.1, Chapter 3, Figure 3. Cv values selected based on correlations with LL in USACE EM 1110-1-1904. Es selected based on ranges provided in Settle3 software, referencing "Essentials of Soil Mechanics and Foundations: Basic Geotechnics, Fifth Edition" by D.F. McCarthy (1998).

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated				
Layer 1													_	Shor	rt-Term Cohesi	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max	15	100	3.0	39	9	26	39	18	34	23	12	17	Max	3000	2625	1995	150	24	25.0	783.0	115	130	0.216	2.72	0.787	-0.08
Min	8	67	0.5	24	3	11	22	5	23	16	7	11	Min	500	825	1064	100	22	2.0	760.0	95	110	0.117	2.72	0.476	-0.64
Average	12	97	1.7	30	6	21	32	11	29	19	10	14	Average	1654	1644	1606	129	23	14.8	770.0	109	125	0.171	2.72	0.559	-0.41
Std Dev	2	9	0.9	7	3	7	7	5	5	3	2	2	Std Dev	851	698	295	16	1	7.6	7.5	6	5	0.041	0.00	0.093	0.24
Avg + Std	14	106	2.5	37	9	28	39	16	34	22	12	15	Avg + Std	2505	2343	1901	145	24	22.4	777.5	115	130	0.212	2.72	0.651	-0.18
Avg - Std	10	87	0.8	23	3	14	25	6	24	16	8	12	Avg - Std	803	946	1312	113	23	7.3	762.5	103	120	0.130	2.72	0.466	-0.65

Correlated

Correlated

Correlated

																						Short	-Term Coh	esion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%				% O	DOT				N-value	es	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI V	vc c	lass.	Soil Type	Layer	PPR	Sowers	T&P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	785.0	B-002-0-09	1.5	-	3	SS-1	8	67	1	24	8	21	35	12	30	18	12	17 <i>F</i>	A-6a	Cohesive	1	1000	1400	1064	100	22	2.0	783.0	95	110	0.18	2.72	0.787	-0.08
US 33	785.0	B-002-0-09	3.5	-	5	SS-2	12	89	1	-	-	-	-	-	-	-	- '	15 A	A-6a	Cohesive	1	1000	2100	1596	129	23	4.0	781.0	100	120		2.72	0.697	
US 33	785.0	B-002-0-09	5	-	6.5	SS-3	15	100	2	-	-	-	-	-	-	-	- '	12 <i>F</i>	A-6a	Cohesive	1	2000	2625	1995	150	24	6.0	779.0	105	125		2.72	0.616	
US 33	785.0	B-002-0-09	12.5	-	14	SS-8	12	100	2.5	26	5	25	39	5	29	19	10	14 <i>A</i>	A-4a	Cohesive	1	2500	900	1596	129	23	13.0	772.0	110	125	0.171	2.72	0.543	-0.500
US 33	785.0	B-002-0-09	14	-	15.5	SS-9	11	100	0.5	-	-	-	-	-	-	-	- '	12 <i>F</i>	A-4a	Cohesive	1	500	825	1463	121	23	15.0	770.0	110	125		2.72	0.543	
US 33	785.0	B-002-0-09	17	-	18.5	SS-11	11	100	0.5	-	-	-	-	-	-	-	- '	15 A	A-4a	Cohesive	1	500	825	1463	121	23	18.0	767.0	110	125		2.72	0.543	
US 33	785.0	B-002-0-09	18.5	-	20	SS-12	9	100	1	39	9	11	32	9	34	23	11 1	16 <i>A</i>	A-6a	Cohesive	1	1000	1575	1197	107	22	19.0	766.0	110	125	0.216	2.72	0.543	-0.64
US 33	785.0	B-002-0-09	20	-	21.5	SS-13	14	100	2	-	-	-	-	-	-	-	- '	13 A	A-6a	Cohesive	1	2000	2450	1862	143	24	21.0	764.0	115	130		2.72	0.476	
US 33	785.0	B-002-0-09	21.5	-	23	SS-14	15	100	3	-	-	-	-	-	-	-	- '	14 <i>A</i>	A-6a	Cohesive	1	3000	2625	1995	150	24	22.0	763.0	115	130		2.72	0.476	
US 33	785.0	B-002-0-09	23	-	24.5	SS-15	12	100	2.5	-	-	-	-	-	-	-	- '	11 <i>A</i>	A-6a	Cohesive	1	2500	2100	1596	129	23	24.0	761.0	115	130		2.72	0.476	
US 33	785.0	B-002-0-09	24.5	-	26	SS-16	11	100	2	-	-	-	-	-	-	-	- '	14 <i>A</i>	A-6a	Cohesive	1	2000	1925	1463	121	23	25.0	760.0	115	130		2.72	0.476	
US 33	784.0	B-003-0-09	10.5	-	12	SS-7	12	100	1	31	3	26	22	18	23	16	7	13 A	A-4a	Cohesive	1	1000	900	1596	129	23	11.0	773.0	110	125	0.117	2.72	0.543	-0.429
US 33	784.0	B-003-0-09	12	-	13.5	SS-8	15	100	2.5	-	-	-	-	-	-	-	- '	12 <i>F</i>	A-4a	Cohesive	1	2500	1125	1995	150	24	13.0	771.0	110	125		2.72	0.543	

Values for Soil Strengt	h Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																		Correlated				Correlated	Correlated				
	Layer 2		ľ												Shor	rt-Term Cohes	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
			%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
		N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
ı	Max	27	78	3.0	36	3	31	28	24	28	17	11	15	Max	3000	2450	3591	190	26	14.0	782.0	110	125	0.162	2.72	0.616	-0.13
ı	Min	14	28	1.0	21	1	12	22	20	24	16	8	12	Min	1000	1200	1862	143	24	2.0	743.7	105	125	0.126	2.72	0.543	-0.45
ı	Average	19	60	2.0	27	2	23	25	22	26	17	9	13	Average	2000	1675	2474	161	24	6.4	772.3	107	125	0.141	2.72	0.587	-0.28
ı	Std Dev	5	21	0.9	8	1	10	3	2	2	1	2	2	Std Dev	935	539	662	18	1	4.6	16.1	3	0	0.019	0.00	0.040	0.17
	Avg + Std	24	82	2.9	35	3	33	28	24	28	17	11	15	Avg + Std	2935	2214	3136	179	25	11.0	788.5	110	125	0.160	2.72	0.627	-0.11
ı	Avg - Std	14	39	1.1	20	1	13	22	20	24	16	7	12	Avg - Std	1065	1136	1811	144	24	1.8	756.2	104	125	0.122	2.72	0.547	-0.44

																						Shor	-Term Cohes	sion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%				%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI 1	WC (Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	784.0	B-003-0-09	1.5	-	3	SS-1	18	78	1	21	3	26	26	24	24	16	8	15	A-4a	Cohesive	2	1000	1350	2394	160	24	2.0	782.0	105	125	0.126	2.72	0.616	-0.125
US 33	784.0	B-003-0-09	3	-	4.5	SS-2	16	67	3	-	-	-	-	-	-	-	-	13	A-4a	Cohesive	2	3000	1200	2128	153	24	4.0	780.0	105	125		2.72	0.616	
US 33	784.0	B-003-0-09	4.5	-	6	SS-3	18	78	2.5	25	2	31	22	20	25	17	8	15	A-4a	Cohesive	2	2500	1350	2394	160	24	5.0	779.0	105	125	0.135	2.72	0.616	-0.250
US 33	784.0	B-003-0-09	6	-	7.5	SS-4	27	28	1	-	-	-	-	-	-	-	-	12	A-4a	Cohesive	2	1000	2025	3591	190	26	7.0	777.0	110	125		2.72	0.543	
US 33	757.7	B-003-0-23	13.5	-	15	SS-6	14	50	2.5	36	1	12	28	23	28	17	11	12	A-6a	Cohesive	2	2500	2450	1862	143	24	14.0	743.7	110	125	0.162	2.72	0.543	-0.455

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated				
Layer 3														Shor	t-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
		%		%	%	%	%	%				%	ľ		N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max	26	100	2.0	34	4	57	31	11	N/A	N/A	N/A	26	Max	N/A	N/A	N/A	N/A	33	24.0	776.0	110	130	N/A	2.71	0.654	N/A
Min	8	61	1.0	6	1	42	14	3	N/A	N/A	N/A	8	Min	N/A	N/A	N/A	N/A	29	2.0	733.7	100	120	N/A	2.65	0.503	N/A
Average	17	80	1.7	20	2	50	20	8	N/A	N/A	N/A	14	Average	N/A	N/A	N/A	N/A	31	11.0	757.0	106	126	N/A	2.67	0.576	N/A
Std Dev	6	14	0.4	12	1	7	6	3	N/A	N/A	N/A	4	Std Dev	N/A	N/A	N/A	N/A	1	6.0	15.8	3	3	N/A	0.03	0.052	N/A
Avg + Std	22	94	2.1	32	3	57	27	11	N/A	N/A	N/A	18	Avg + Std	N/A	N/A	N/A	N/A	32	17.0	772.8	109	129	N/A	2.70	0.628	N/A
Avg - Std	11	65	1.3	8	0	43	14	5	N/A	N/A	N/A	9	Avg - Std	N/A	N/A	N/A	N/A	30	5.0	741.3	102	122	N/A	2.64	0.523	N/A

Correlated

Correlated

Correlated

																						Sho	ort-Term Cohesio	n (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%				%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI \	VC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	785.0	B-002-0-09	8	-	9.5	SS-5	11	100	2	6	4	56	31	3	NP	NP	NP	13	A-3a	Granular	3	N/A				30	9.0	776.0	105	125	N/A	2.65	0.575	
US 33	785.0	B-002-0-09	9.5	-	11	SS-6	12	100	1	-	-	-	-	-	-	-	-	14	A-3a	Granular	3	N/A				30	10.0	775.0	105	125		2.65	0.575	
US 33	785.0	B-002-0-09	11	-	12.5	SS-7	9	100	2	-	-	-	-	-	-	-	-	26	A-3a	Granular	3	N/A				30	12.0	773.0	105	125		2.65	0.575	
US 33	784.0	B-003-0-09	7.5	-	9	SS-5	23	78	2	31	2	42	17	8	NP	NP	NP	8	A-2-4	Granular	3	N/A				33	8.0	776.0	105	125	N/A	2.71	0.611	
US 33	784.0	B-003-0-09	9	-	10.5	SS-6	26	78	1.5	-	-	-	-	-	-	-	-	11	A-2-4	Granular	3	N/A				33	10.0	774.0	105	125		2.71	0.611	
US 33	757.7	B-003-0-23	1	-	2.5	SS-1	20	72	-	17	1	51	20	11	NP	NP	NP	13	A-3a	Granular	3	N/A				32	2.0	755.7	100	120	N/A	2.65	0.654	
US 33	757.7	B-003-0-23	3.5	-	5	SS-2	18	67	-	-	-	-	-	-	-	-	-	13	A-3a	Granular	3	N/A				32	4.0	753.7	100	120		2.65	0.654	
US 33	757.7	B-003-0-23	6	-	7.5	SS-3	14	67	-	-	-	-	-	-	-	-	-	11	A-3a	Granular	3	N/A				31	7.0	750.7	105	125		2.65	0.575	
US 33	757.7	B-003-0-23	8.5	-	10	SS-4	18	61	-	34	1	43	14	8	NP	NP	NP	11	A-2-4	Granular	3	N/A				32	9.0	748.7	105	125	N/A	2.71	0.611	
US 33	757.7	B-003-0-23	11	-	12.5	SS-5	23	78	-	-	-	-	-	-	-	-	-	10	A-2-4	Granular	3	N/A				33	12.0	745.7	110	130		2.71	0.537	
US 33	757.7	B-003-0-23	16	-	17.5	SS-7	18	83	-	12	1	57	19	11	NP	NP	NP	16	A-3a	Granular	3	N/A				32	17.0	740.7	110	130	N/A	2.65	0.503	
US 33	757.7	B-003-0-23	18.5	-	20	SS-8	17	89	-	-	-	-	-	-	-	-	-	16	A-3a	Granular	3	N/A				31	19.0	738.7	110	130		2.65	0.503	
US 33	757.7	B-003-0-23	23.5	-	25	SS-9	8	61	-	-	-	-	-	-	-	-	-	17	A-3a	Granular	3	N/A				29	24.0	733.7	110	130		2.65	0.503	

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

Layer 4														Shor	t-Term Cohes	ion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed	
	N ₆₀	% Rec	НР	% Gr	% CS	% FS	% Silt	% Clav	LL	PL	PI	% WC		PPR	N-values Sowers	T & P	(psf) per GB-7	phi (deg)	Sample Depth (ft.)	Sample Elevation (ft.)	(pcf) per GB-7	(pcf) per GB-7	Correlated C.	Specific Gravity (G _s)	Void Ratio (e)	LI
Max	26	100	4.5	33	9	49	75	27	54	24	30	24	Max	4500	3500	3458	187	25	20.0	768.0	125	130	0.396	2.72	0.654	0.22
Min	9	67	1.3	0	1	5	17	16	19	14	5	8	Min	1250	825	1197	107	22	2.0	712.4	100	120	0.081	2.65	0.323	-1.57
Average	16	86	2.6	6	5	34	42	22	33	19	14	17	Average	2615	1547	2093	147	24	8.8	740.5	112	125	0.204	2.70	0.508	-0.20
Std Dev	5	14	1.0	11	3	15	24	4	11	3	9	4	Std Dev	977	763	610	22	1	5.8	13.9	6	2	0.103	0.03	0.085	0.57
Avg + Std	20	100	3.6	17	8	48	66	26	44	22	23	21	Avg + Std	3592	2310	2703	169	25	14.6	754.4	118	127	0.306	2.73	0.593	0.36
Avg - Std	11	73	1.6	-5	2	19	18	17	21	15	5	13	Avg - Std	1638	784	1482	125	23	3.0	726.6	106	122	0.101	2.67	0.423	-0.77

																					Sh	ort-Term C	ohesion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	ODO	-			N-va	ues	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alianment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clav	LL	PL I	PI WO			Laver	PPR	Sower	s T&P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	740.8	B-47	1	_	2.5	1	-	-	_	0	1	24	75		42	23 1	9 20	A-7-6	Cohesive	4	N/A	N/A			(* - 3)	2.0	738.8	115		0.288	2.65	0.438	-0.158
US 33	740.8	B-47	3.5	_	5	2	_			-				_			- 18			4	N/A	N/A	N/A			4.0	736.8	115		0.200	2.65	0.438	0.100
US 33	740.8	B-47	6	-	7.5	3	_				-						- 18			4	N/A	N/A	N/A			7.0	733.8	120			2.65	0.378	
US 33	740.8	B-47	8.5	-	10	4	-	-	-	-	-	-	-	-	-	-	- 19	A-7-6		4	N/A	N/A	N/A			9.0	731.8	120			2.65	0.378	
US 33	740.8	B-47	13.5	-	15	5	-			-	-	-		-	-		- 19	A-7-6	Cohesive	4	N/A	N/A	N/A			14.0	726.8	125			2.65	0.323	
US 33	737.5	B-47EL	1	-	2.5	1	-			-	-	-		-	-		- 17	A-4a	Cohesive	4	N/A	N/A	N/A			2.0	735.5	115			2.72	0.476	
US 33	737.5	B-47EL	3.5	-	5	2	-	-	-	-	-	-	-	-	-	-	- 17	A-4a	Cohesive	4	N/A	N/A	N/A			4.0	733.5	115			2.72	0.476	
US 33	741.3	B-47ER	1	-	2.5	1	-	-	-	-	-	-	-	-	-	-	- 24	A-4a	Cohesive	4	N/A	N/A	N/A			2.0	739.3	115			2.72	0.476	
US 33	741.3	B-47ER	3.5	-	5	2	-	-	-	-	-	-	-	-	-	-	- 20	A-6b	Cohesive	4	N/A	N/A	N/A			4.0	737.3	115			2.70	0.465	
US 33	741.3	B-47ER	6	-	7.5	3	-	-	-	0	1	35	64		39	17 2	2 20	A-6b	Cohesive	4	N/A	N/A	N/A			7.0	734.3	120		0.261	2.70	0.404	0.136
US 33	717.4	SRB-3	1.5	-	3	1	9	-	-	0	3	27	70		54	24 3	0 22	A-7-6	Cohesive	4	N/A	2250	1197	107	22	2.0	715.4	100	120	0.396	2.65	0.654	-0.067
US 33	717.4	SRB-3	4	-	5.5	2	11	-	-	-	-	-	-	-	-	-	- 19	A-7-6	Cohesive	4	N/A	2750	1463	121	23	5.0	712.4	100	120		2.65	0.654	
US 33	751.0	B-001-0-09	1.5	-	3	SS-1	20	67	2.5	2	7	39	33	19	28	16 1	2 15	A-6a	Cohesive	4	2500	3500	2660	167	25	2.0	749.0	105	125	0.162	2.72	0.616	-0.08
US 33	751.0	B-001-0-09	4.5	-	6	SS-3	26	100	2.5	6	8	43	27	16	19	14	5 14	A-4a	Cohesive	4	2500	1950		187	25	5.0	746.0	105	125	0.081	2.72	0.616	0.00
US 33	751.0	B-001-0-09	6	-	7.5	SS-4	21	100	3.5	-	-	-	-	-	-	-	- 14	A-4a	Cohesive	4	3500	1575	2793	170	25	7.0	744.0	110	125		2.72	0.543	
US 33	751.0	B-001-0-09	7.5	-	9	SS-5	17	67	3.25	-	-		-	-	-	-	- 15	A-4a	Cohesive	4	3250	1275		157	24	8.0	743.0	110	125		2.72	0.543	
US 33	751.0	B-001-0-09	9	-	10.5	SS-6	20	100	4.5	4	7	49	17	23	27	18	9 17	A-4a	Cohesive	4	4500	1500	2660	167	25	10.0	741.0	110	125	0.153	2.72	0.543	-0.111
US 33	751.0	B-001-0-09	10.5	-	12	SS-7	18	100	4	-	-	-	-	-	-	-	- 21	A-4a		4	4000	1350	2394	160	24	11.0	740.0	115	130		2.72	0.476	
US 33	751.0	B-001-0-09	12	-	13.5	SS-8	14	78	2.5	-	-	-	-	-	-	-	- 17	A-4a		4	2500	1050	1862	143	24	13.0	738.0	110	125		2.72	0.543	
US 33	751.0	B-001-0-09	13.5	-	15	SS-9	13	78	1.25	-	-	-	-	-		-	- 17	A-4a	Cohesive	4	1250	975	1729	136	23	14.0	737.0	110	125	2 4 4 4	2.72	0.543	0.000
US 33	751.0	B-001-0-09	15	-	16.5	SS-10	14	100	1.5	3	9	47	17	24	26	17	9 19	A-4a	Cohesive	4	1500	1050	1862	143	24	16.0	735.0	110	125	0.144	2.72	0.543	0.222
US 33	784.0	B-003-0-09	15	-	16.5	SS-10	15	/8	2.5	-	-		-				- 11	A-4a		4	2500	1125		150	24	16.0	768.0	110	125		2.72	0.543	
US 33	784.0	B-003-0-09	16.5	-	18	SS-11	11	100	1.5	-	-	-	-	-	-	-	- 16	A-4a		4	1500	825	1463	121	23	17.0	767.0	110	125		2.72	0.543	
US 33	784.0	B-003-0-09	18	-	19.5	SS-12	15	78	2	-	-	-	-	-		-	- 10	A-4a	Cohesive	4	2000	1125	1995	150	24	19.0	765.0	110	125	2444	2.72	0.543	4.574
US 33	784.0	B-003-0-09	19.5	-	21	SS-13	12	78	2.5	33	3	5	32	27	26	19	/ 8	A-4a	Cohesive	4	2500	900	1596	129	23	20.0	764.0	110	125	0.144	2.72	0.543	-1.5/1

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated				
Layer 5														Shor	t-Term Cohes	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	Cc	Gravity (G _s)	Ratio (e)	LI
Max	40	100	4.0	1	11	38	23	27	32	12	20	21	Max	4000	4000	4000	250	28	22.0	734.0	130	140	0.198	2.72	0.476	0.30
Min	21	100	2.0	1	11	38	23	27	32	12	20	17	Min	2000	2100	2793	170	25	7.0	710.4	115	130	0.198	2.70	0.296	0.30
Average	28	100	2.8	1	11	38	23	27	32	12	20	19	Average	2813	3290	3462	197	26	17.0	727.3	119	132	0.198	2.71	0.423	0.30
Std Dev	8	0	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	Std Dev	987	758	621	33	1	5.9	9.6	7	4	N/A	0.01	0.075	N/A
Avg + Std	36	100	3.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	Avg + Std	3799	4048	4083	229	27	22.9	736.9	126	136	N/A	2.72	0.498	N/A
Avg - Std	20	100	1.8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17	Avg - Std	1826	2532	2841	164	25	11.1	717.7	112	128	N/A	2.70	0.348	N/A

																									Correlated				Correlated	Correlated				
																						Shor	t-Term Cohe	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%				%	ODOT				N-value:	S	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	717.4	SRB-3	6.5	-	8	3	40	-	-	-	-	-	-	-	-	-	-	18	A-4a	Cohesive	5	N/A	3000	4000	250	28	7.0	710.4	120	130		2.72	0.414	
US 33	751.0	B-001-0-09	16.5	-	18	SS-11	28	100	2	-	-	-	-	-	-	-	-	17	A-4a	Cohesive	5	2000	2100	3724	193	26	17.0	734.0	115	130		2.72	0.476	
US 33	751.0	B-001-0-09	18	-	19.5	SS-12	21	100	2	1	11	38	23	27	32	12	20	18	A-6b	Cohesive	5	2000	3675	2793	170	25	19.0	732.0	115	130	0.198	2.70	0.465	0.300
US 33	751.0	B-001-0-09	19.5	-	21	SS-13	21	100	3.25	-	-	-	-	-	-	-	-	21	A-6b	Cohesive	5	3250	3675	2793	170	25	20.0	731.0	115	130		2.70	0.465	
US 33	751.0	B-001-0-09	21	-	22.5	SS-14	32	100	4	-	-	-	-	-	-	-	-	19	A-6b	Cohesive	5	4000	4000	4000	200	26	22.0	729.0	130	140		2.70	0.296	

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated				
Layer 6													_	Shor	t-Term Cohesi	on (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T&P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max	42	100	3.5	32	21	56	30	5	26	17	9	17	Max	N/A	N/A	N/A	N/A	35	34.0	757.0	120	140	0.144	2.71	0.654	-0.56
Min	25	100	2.0	10	5	28	12	5	26	17	9	11	Min	N/A	N/A	N/A	N/A	33	2.0	730.5	100	120	0.144	2.65	0.378	-0.56
Average	31	100	2.8	17	12	45	24	5	26	17	9	14	Average	N/A	N/A	N/A	N/A	34	17.8	746.5	114	132	0.144	2.67	0.470	-0.56
Std Dev	10	0	1.1	13	8	15	10	N/A	N/A	N/A	N/A	3	Std Dev	N/A	N/A	N/A	N/A	1	15.6	11.4	9	10	N/A	0.03	0.130	N/A
Avg + Std	41	100	3.8	30	20	59	34	N/A	N/A	N/A	N/A	17	Avg + Std	N/A	N/A	N/A	N/A	35	33.4	757.8	123	142	N/A	2.70	0.600	N/A
Avg - Std	21	100	1.7	5	4	30	14	N/A	N/A	N/A	N/A	11	Avg - Std	N/A	N/A	N/A	N/A	33	2.1	735.1	104	121	N/A	2.64	0.340	N/A

																						Short	-Term Cohesio	on (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	00	OOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL I	PL F	PI W	C Cla	ass. Soil T	ype	Layer	PPR	Sowers	T&P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	737.5	B-47EL	6	-	7.5	3	-	-	-	10	11	50	29		-	-	- 16	6 A-	-3a Granı	ılar	6	N/A			_		7.0	730.5	120			2.65	0.378	
US 33	749.4	CU-10C	1.5	-	3	1	25	-	-	10	21	56	12		NP 1	IP N	NP 11	1 A-	-3a Granı	ılar	6	N/A				33	2.0	747.4	100	120	N/A	2.65	0.654	
US 33	785.0	B-002-0-09	27.5	-	29	SS-18	26	100	3.5	32	5	28	30	5	26	17 !	9 12	2 A-	2-4 Granı	ılar	6	N/A				33	28.0	757.0	115	135	0.144	2.71	0.470	-0.556
US 33	785.0	B-002-0-09	33.5	-	35	SS-22	42	100	2	-	-	-	-	-	-	-	- 17	7 A-	-3a Grani	ılar	6	N/A				35	34.0	751.0	120	140		2.65	0.378	

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

Layer 7														Shor	t-Term Cohesi	on (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed	
		_%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max	14	100	3.0	3	4	59	33	1	N/A	N/A	N/A	14	Max	N/A	N/A	N/A	N/A	31	33.0	754.0	115	135	N/A	2.71	0.503	N/A
Min	8	100	1.0	3	4	59	33	1	N/A	N/A	N/A	13	Min	N/A	N/A	N/A	N/A	29	31.0	752.0	110	130	N/A	2.65	0.470	N/A
Average	11	100	2.0	3	4	59	33	1	N/A	N/A	N/A	14	Average	N/A	N/A	N/A	N/A	30	32.0	753.0	113	133	N/A	2.68	0.487	N/A
Std Dev	4	0	1.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1	Std Dev	N/A	N/A	N/A	N/A	1	1.4	1.4	4	4	N/A	0.04	0.023	N/A
Avg + Std	15	100	3.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	Avg + Std	N/A	N/A	N/A	N/A	31	33.4	754.4	116	136	N/A	2.72	0.510	N/A
Avg - Std	7	100	0.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13	Avg - Std	N/A	N/A	N/A	N/A	29	30.6	751.6	109	129	N/A	2.64	0.464	N/A

																							Correlateu				Correlateu	Correlateu				
																				Shor	t-Term Cohesi	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
					Sample		%		%	%	%	%	%			%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From	To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	785.0	B-002-0-09	30.5	- 32	SS-20	14	100	3	-	-	-	-	-	-		13	A-2-4	Granular	7	N/A				31	31.0	754.0	115	135		2.71	0.470	
US 33	785.0	B-002-0-09	32	- 33.5	SS-21	8	100	1	3	4	59	33	1	NP I	NP NF	14	A-3a	Granular	7	N/A				29	33.0	752.0	110	130	N/A	2.65	0.503	

Values for Soil Strength	1 Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

Layer 8		%		%	%	%	%	%				%	r	Shor	t-Term Cohesi N-values	ion (psf)	Correlated LT Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void	
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
Max	6	78	2.0	2	3	40	29	26	26	18	8	23	Max	2000	450	798	75	21	29.0	762.0	105	125	0.144	2.72	0.697	0.625
Min	4	67	0.5	2	3	40	29	26	26	18	8	11	Min	500	300	532	50	20	22.0	728.7	100	120	0.144	2.72	0.616	0.625
Average	5	73	1.3	2	3	40	29	26	26	18	8	17	Average	1250	375	665	63	21	25.5	745.4	103	123	0.144	2.72	0.657	0.625
Std Dev	1	8	1.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8	Std Dev	1061	106	188	18	1	4.9	23.5	4	4	N/A	0.00	0.057	N/A
Avg + Std	6	80	2.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	25	Avg + Std	2311	481	853	80	21	30.4	768.9	106	126	N/A	2.72	0.714	N/A
Avg - Std	4	65	0.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9	Avg - Std	189	269	477	45	20	20.6	721.8	99	119	N/A	2.72	0.600	N/A

																								Correlated				Correlated	Correlated				
																					Sho	rt-Term Coh	esion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	
						Sample		%		%	%	%	%	%			%	ODOT				N-value	es .	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL I	PL PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)	LI
US 33	784.0	B-003-0-09	21	-	22.5	SS-14	4	78	2	-	-	-	-	-	-		11	A-4a	Cohesive	8	2000	300	532	50	20	22.0	762.0	100	120		2.72	0.697	
US 33	757.7	B-003-0-23	28.5	-	30	SS-10	6	67	0.5	2	3	40	29	26	26	18 8	23	A-4a	Cohesive	8	500	450	798	75	21	29.0	728.7	105	125	0.144	2.72	0.616	0.625

 \bigcirc

 \bigcirc

IN. 1/24/01 W.I.N.

CHECKED

CHECKED

DRAWN REVIEWEO DATE E.D.S. B.M. 1/24/0

OIL PROFILE

MEG-124-22.72

State of Ohio Department of Transportotion Division af Highways Testing Laborotary LOG OF BORING

 Sampler: Type
 SS
 0io.
 2.0"

 Cosing: Length
 0io.
 3.25"
 ____ Woter Elev. <u>f</u>t Dote Completed 7/27/00

 \bigcirc

 \bigcirc

Project: <u>MEG-124-22.72</u> Project No.: 99011

 \bigcirc

 \bigcirc

Locotion: Meigs County, Ohio
 Boring No.
 CU-08A
 Stotion & Offeet 8|3+|4.9|
 |39.34'LT

 lev.
 0epth (ft)
 Std. Pen./ Rec. (ft)
 Loes (ft)
 Surfoce Elev. 747.08ft Physical Characteristics Elev. (ft) Description 000T Agg C.S. F.S. Silt Clay L.L. P.J. W.C. Close 747.I 746.8 TOPSOIL Soft, highly weothered, groy <u>SILTSTONE</u>. 4 VISUAL H\$ Note: Augered to 4,0 feet ond begon coring bedrock,
Sott to medium hard, highly weathered to weothered, groy <u>SILTSTONE</u>
with thin bedding. 743.1 RQD = 50% 5.0 0.0 738.1 TERMINATION OEPTH = 9.0 FEET

Porticle Sizes: Agg => 2.00mm, Coorse Sond = 2.00-0.42mm, Fine Sand = 0.42-0.074mm, Silt = 0.074-0.00Smm, Cloy =< 0.00Smm (*Indicates eilt & cloy combined)

Stote of Ohia Deportment of Tronsportation Division af Highwoys Testing Laborotory LOG OF BORING

__Sompler:Type <u>__SS</u>__Casing:Length ____ Oote Started _ 7/25/00 0io. <u>2.0</u>" ___ Woter Elev. <u>ft</u>

Project: <u>MEG-124-22.72</u> Project No.: 99011

Oote Completed 7/25/00 0io. 3.25" Location: Meigs County, Ohio
 Boring No.
 CU-IOC
 Stotion & Offset
 834+49.65
 0.04' RT

 lev.
 Depth (ft)
 Std. Pen./ Rec. Loss (ft)
 Loss (ft)
 Surfoce Elev. 749.35ft Physical Characteristics 0escription Somple F.S. Silt Clay L.L. P.1. W.C. Close 749.4 Medium dense, dork brawn <u>COARSF AND FINE SAND</u> (A-30), little silt and cloy, trace gravel, moist. 21 10 56 12 * NP NP Ш A-3a 10 - 17 - 8 Layer 6 745.9 Very soft to saft, decomposed to highly weathered, brown **SANDSTONE**. 2 VISUAL 10 14 - 50/0.3 743.9 Note: Augered to 5.S feet ond began coring bedrock. Medium hard to hard, slightly weathered to weathered, brown, coarse groined <u>SANDSTONE</u> with thin to thick bedding. R00 = 100% 5.5 0.0 U.C. Strength of sandstone ot 6.5 feet = 452 psi U.C. Strength of sandstone ot 7.|feet = 43|psi Note: Block and brown in colar at 10.9 feet. U.C. Strength of sandstone of 11.1 feet = 1488 pei ROO = 88% 5.0 0.0 Note: Light brown in color of 13.0 feet. Note: One inch thick grovel seem of 14.9 feet. R00 = 100% 4.0 0.0 \$0/0.3 VISUAL Saft, decomposed, brown <u>SHALE</u>. (drove a split epoon eomple from 20.0 to 20.3 feet)
TERMINATION DEPTH = 20.3 FEET Particle Sizee: Agg => 2.00mm, Coarse Sond = 2.00-0.42mm, Fins Sand = 0.42-0.074mm, Silt = 0.074-0.00Smm, Cloy =< 0.005mm (*Indicates silt & cloy combined)

> Stote of Ohia Department of Tronspartatian Division af Highways Testing Laborotory LOG OF BORING

 Sampler: Type
 SS
 0io.
 2.0"

 Cosing: Length
 0io.
 3.25"
 Woter Elsv. <u>f</u>† Oote Started _ 7/24/00 Dote Completed 7/24/00

Project: <u>MEG-124-22.72</u> Project No.: 99011 Location: Meigs County, Ohio

Boring	No. <u>C</u>		on & Of	fset <u>84</u>	9+49.92 70.13'LT Surfoce Elev. 728.	78ft	LOC	10111	<u></u>	40 000	ın⊺y,	OINO			
Elev.	0epth (ft)	Std. Pen./ ROD	Rec.	Loss (ft)	0escription	Sample			Physi	col Cho	rocte	ristics	3		000T
728.8	0	RGU	(11)	1117		No.	X Agg	c.s.	F.S.	x Silt	X Clay	۱.L.	P.J.	w.C.	Closs
728.3	+ -			<u> </u>	TOPSOIL		i								
	,=	3 - 2 - 1			Soft to very etiff, brown SILTY CLAY (A-6b), little to troce sond, moist.	1	0	2	18		79 *	36	16	23	A-6b
			İ												
		4 - 7 - 11				2								20	VISUAL
	_						ł								
	6					3								21	VISUAL
		S - 6 - 9													TIJONE
	8=														
719.3		4 - 5 - 8				4								23	VISUAL
11313	1_0_				Medium stiff to very stiff, brown <u>SANDY SILT</u> (A-4o), some cloy, troce gravel to little rock frogments, moist to wet.										}
		3 - 6 - 9			graveito httle rock trogments, moist to wet.	5								21	VISUAL
	12														
	14					6								24	VISUAL
	14	2 - 3 - 5												27	TIJUAL
	16														
		4 - 4 - 4			Note: Wet ot 16.0 feet during drilling.	7								23	VISUAL
	18 =														
		6 - 10 - 9				8								18	VISUAL
	20	10 0													
						9								20	V)SUAL
706.8	22	8 - 17 - 30		ļ		*								20	TIJUAL
	_				Saft, decamposed to highly weathered, reddish brown <u>SHALE</u> .										
	24	39 - SO/0.3				10								12	VISUAL
		39 - 30/0.3									Ì				
	26														
701.3]				Note: Augered to 27.S feet and began coring bedrack.										
	28	RQO = 43%	\$.0	0.0	Soft to medium hord, highly weathered to weathered, gray and reddish brown SHALE with laminor to very thin bedding.	-									
	30				with mining to very trial bodding.										
	32				Microfolding present from 31.0 to 32.5 feet.										
696.3			<u></u>]	TERMINATION OEPTH = 32.5 FEET	L			<u> </u>	<u> </u>	L	J		L	<u></u>
	Portiolo	Cizac: taa -\	2 00mm	Coores	Sand = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.00Smm, Clay =< (N 00E	/41-	dicate	:1+	0 -1-		e-p			

Porticle Sizes: Agg => 2.00mm, Cooree Sand = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm

(*Indicates silt & clay combin@drm TE-|SI Revised 9/94

DRAWN E.D.S. REVIEWED CHECKED S.S.S. Stote of Ohio
Deportment of Transportation
Division of Highways
Testing Laboratory
LOG OF BORING

Date Started 7/26/00 Sompler: Type SS 0ia. <u>2.0"</u> Wotsr Elev. <u>ft</u> Oote Completed 7/26/00 Cosing: Length 0ia. 3.25"

 \bigcirc

 \bigcirc

Project: <u>MEG-124-22.72</u> Project No.: 99011

 \bigcirc

 \bigcirc

Borino	No. S	DD_1 C+o+:	n e 0-f-	fset 6+	49.85 0.01' RT Surface Elev. 824.6		Loc	otion	Meic	ıs Cou	intý,	0hio			
Elsv.	0epth	Std. Pen./	Rec.	Loss	49.85 0.01' RT Surface Elev. 824.1		Т-		Physic	ool Cho	raata	ristics			
(f†) 824.8	(††)	R00	(ft)	(ft)	Uescription	Sample No.	X Agg	c.s.	F.S.	Sitt	Ckay	L.L.	P.J.	wc	ODO7 Class
824.4 -	+ "=				_TOPSOIL		Agg	C.S.	1.5.	SITT	Clay	L	1	W.C.	CIGOS
	2=	3 - 3 - 6			Stitt to hord, brown <u>SANDY SILT</u> (A-4o), little cloy, troce rack frogments, troce to no roots, moist.	I								16	VISUAL
	4=	9 - 15 - 18				2								10	VISUAL
817.8	6	15-23-50/0.3				3								17	VISUAL
	8 =	50/0.4			Very soft to soft, decamposed to highly weothered, brown, micaceous SANDSTONE.	4								8	VISUAL
814.B	10	RQD = 85%	9.9	0.1	Note: Augered to 10.0 feet and begon caring bedrock.										
	12 14 11 16 16 16 16 16 16 16 16 16 16 16 16	KUU - 03%	3.9	U.I	Medium hard to hord, weothered to elightly weothered, brown, micoceous, medium groined <u>SANDSTONE</u> with very thin to mossive bedding. Iron stoined from 10.0 to 20.6 feet.										
					U.C. Strength of sondstone of 15.8 feet = 644 psi Nate: Oork brown from 16.3 to 17.5 feet.										
		ROD = 98%	9.8	0.2	Note: Color chonged ta groy ot 20.8 feet.										
	26														
794.8	30														
					TERMINATION OEP7H = 30.0 FEET			-t	·		L	·		L	L

Porticle Sizes: Agg => 2.00mm, Coarse Sond = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Clay =< 0.005mm (*Indicotes silt & clay combin@drm 7E-151 Revised 9/94

Stote of Ohio
Oeportment of Transportotion
Division of Highways
Testing Laboratory
LOG OF BORING

 Oote Started
 7/27/00
 Sompler: Type
 SS

 Oote Completed
 7/27/00
 Cosing: Length
 0io. 2.0" 0io. 3.25" ____ Woter Elev. _ft Sompler: Type SS

Project: MEG-124-22.72
Project No.: 99011 Locotion: Meigs County, Ohio

Bo	ing No		on & Of	fset <u>10</u>	+49.03 0.07'LT Surfoce Elev. 772.	95ft									
Elev (ft	. 0epth (ft)	Std. Pen./ R00	Rec.	Lose (f†)	0escription	Sample			Physic	col Cho	rocte	ristics	3		0007
773.0			VIII/	1117		No.	% Agg	c.s.	¥ F.S.	X Silt	Clay	L.L.	P.I.	W.C.	Closs
772.	3	2 - 2 - 4			70PSOIL Medium stiff to very stiff, brown <u>SANDY SILT</u> (A-4a), some to little cloy, trace to no roots, no to little sandstone frogments, moist.	I	0	13	26		60 *	27	9	15	A-40
	4	3 - 4 - 7				2								20	VISUAL
	6	16 - 15 - 10				3								12	VISUAL
763.	- 8	9 - 12 - 16				4								16	VISUAL
			·		7FRMINATION DEPTH = 10.0 FFF7	l					L	L	L		L

Porticle Sizee: Agg => 2.00mm, Coorse Sand = 2.00-0.42mm, Fine Sond = 0.42-0.074mm, Silt = 0.074-0.005mm, Cloy =< 0.005mm (*Indicates silt & cloy combined)

								0	ivision Testing	of High Labora	sportotion ways tory											
									OG OF	BORIN	IG											
	Started Completed	7/26/00		Sompler	:Type <u>_S</u> Length	SS		3.25"	Wot	er Elev.	<u>f</u> †					MEG		2.72				
00.0	- compioned	17 207 00		, cosing-	Longin		010.	<u>J.23</u>						rojec Loco		Meic		intý. (0hio			
.	No. SRB-				60.04	13.51' RT					Surfoce Elev.	. <u>717.42</u> ft										
Elev. (f†)	Depth St	d. Pen./ R00	Rec. (ft)	Loss (f†)				0eec	ription				mp le						rietice			0D07
717.4 717.1					~70PS0IL			•					vo.	Agg	c.s.	F.S.	silt	Clay	L.L.	P.I.	W.C.	Cloes
• • • • • • • • • • • • • • • • • • • •					Stiff, bro	own and	groy C	LAY (A-7-6),	some ear	nd, trace	roots, moiet.		1	٥	3	27		70 *	54	30	22	A-7-6
		3 - 4 - 5					L	ayer 4				1		ľ	•	١.'		10 7	٦,	30	**	A-1-6
	4=												2									lucius.
		3 - 4 - 7											2			*-					19	VISUAL
710.9	_6												_									
709.8		3 - 4 - 36			Hard, bro	wn ond	groy, m	icoceous Si	ANDY SILT	(A-40), lit	tle cloy, mois	it.	3								18	VISUAL
	-				Very sof	t ta so [.] E.	ft, deco	imposed to	highly w	eothered,	reddieh brow	'n										
	10 = 6	- 11 - 19											4								17	VISUAL
							Laye	r 5										l .				
	12 18	-33-50/0.5											5								10	VISUAL
	40	- 50/0.4											6								10	VISUAL
		21 - 55 -											7								12	VISUAL
699.9			<u> </u>	<u> </u>	7ERMINA710	ON AED7L	1 - 17 5	CCC7	***************************************				***************************************	<u> </u>	<u> </u>	<u> </u>	L	L	L	L	<u> </u>	L

							т —											-	7		TEVEL OF	A T.
	:G-33-15.5	DRILLING FIRM / O			ODOT / CA		-			E 850R TF					OFFS	SET:) RT_	EXPLOF B-00	
	DSLIDE	SAMPLING FIRM / I			DOT / MCL		HAM	-		ME AUTON			ALIG		_			. US 3				
PID: <u>Nopid</u> Br id		DRILLING METHOD			'HSA / NQ2	2	- 1				/10/09				N: <u>7</u>	51.0	(MSL	<u>.) E</u>	OB:	35	5.0 ft.	PA
START: <u>4/8/09</u> E	ND: <u>4/9/09</u>	SAMPLING METHO	D:	S	PT / NQ2		ENER	RGY R	ATIO ((%):	83.6		COOF	RD: _	3	7312	25.41	9 N, 2	21308	334.33	7 E	10
М	ATERIAL DESCRIPT	TION		ELEV.	DEDT	10	SPT/	N	REC	SAMPLE	HP	(SRAD	ATIO	N (%)		ATTE	ERBE	RG		ODOT	x
	AND NOTES			751.0	DEPTI	15	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	, IN
TOPSOIL (6")			\angle	750.5		L -	0	1														[[,1
VERY STIFF, BROWN,	SILT AND CLAY. "A	ND" SAND.		\/		<u></u> 1 −	Omit		`													M
TRACE STONE FRAGE		- ,				├ . ⊪	4	_	$\overline{}$													->>/
						2 1	6	20	67	SS-1	2.50	2	7	39	33	19	28	16	12	15	A-6a (4)	\mathbb{N}
MEDIUM DENIGE DDO	4/11 004 DOE 411D I	EINE CAND		748.0		⊢ з 🕂	8			\ 						_						->>
MEDIUM DENSE, BRO							l′ 8	24	100	SS-2	2.00	5	13	50	22	10	NP	NP	NP	14	A-3a (0)	K
SOME SILT, LITTLE CL MOIST	AT, TRACE STONE	FRAGIVIENTS,		746.5		L 4 T	9			002	2.00)									, (00 (0)	
VERY STIFF TO HARD	DDOWN CANDY C	" T LITTLE				<u> </u>	4 _	00	400	00.0	0.50	,		40	0-	4.0	40		_		4 (0)	K
CLAY, TRACE STONE						- 1	7	26	100	SS-3	2.50	6	8	43	27	16	19	14	5	14	A-4a (2)	
OLAT, TIVAOL OTONE	TV-OWEITTO, DAW	TO MOIOT				 6	7															K//
						_ ₇	7	21	100	SS-4	3.50	-	-	-	-	-	-	-	-	14	A-4a (V)	\otimes
						⊦ ′ ⊦	8															-\/
	Layer 4					 8 +	6	17	67	SS-5	3.25	_	_	_	_	_	_	_	_	15	A-4a (V)	X
	Layer +					Ĺ 9 ↓	6			000	0.20									.0	/ Ia (1)	_>>/
@9.0'; SOME CLAY						⁹	3	20	400	00.0	4.50		_	40	4-		0-7	40	_	47	A 4 = (4)	\mathbb{K}
						<u></u> 10 +	6 ₈	20	100	SS-6	4.50	4	7	49	17	23	27	18	9	17	A-4a (1)	\gg
							3															↢
						11	6 _	18	100	SS-7	4.00	-	-	-	-	-	-	-	-	21	A-4a (V)	\triangleright
						12	7															-K/
						- 1	4	14	78	SS-8	2.50	_	_	_	_	_	_	_	_	17	A-4a (V)	
						13	6				2.00									.,	π ια (τ)	_\//
@13.5'; STIFF						<u></u> 14 −	2	12	70	00.0	4.05									47	A 4- 00	
							3 6	13	78	SS-9	1.25	-	-	-	-	-	-	-	-	17	A-4a (V)	8/
@15.0'; REDDISH BRC	WN					15	2															\mathbb{X}
@ 10.0 , NEDBIOLI BING	****					<u> </u>	4	14	100	SS-10	1.50	3	9	47	17	24	26	17	9	19	A-4a (1)	\mathbb{Z}
O 40 EL VEDVOTIEE							6									_						-{<
@16.5'; VERY STIFF						- 17 -	l° 8	28	100	SS-11	2.00	_	_	_	_	_	_	_	_	17	A-4a (V)	\otimes
			ШШШ	733.0		18	12														/ · · · · · · (·)	_K<
VERY STIFF, REDDISH						L 10	4	24	400	00.40	0.00				00	<u> </u>	00	40	00	40	A Ob (7)	\otimes
TRACE STONE FRAGE	MENTS, SLIGHTLY C	RGANIC, MOIST				- 19 -	6	21	100	SS-12	2.00	1	11	38	23	27	32	12	20	18	A-6b (7)	K
						- aa 1	4															$\rightarrow \!$
	Layer 5					20	7	21	100	SS-13	3.25	-	-	-	-	-	-	-	-	21	A-6b (V)	X/
	Layor					_ 21 -	8															-133
					Omit		6 12	32	100	SS-14	4.00	_	_	_	_	_	_	_	_	19	A-6b (V)	$\langle \rangle /$
				728.5	Omit	22	121	52	100	00-14	7.00			_		_			_	10	74-05 (V)	X
HARD, BROWN, SILT,	SOME SAND, LITTLE	E CLAY, TRACE	++++			- ₂₃ -	11_			00.45												$\supset > $
STONE FRAGMENTS,	DAMP		++++	727.0			9,5	33	100	SS-15	4.50	1	4	22	59	14	NP	NP	NP	17	A-4b (8)	\mathbb{K}
CLAYSTONE, LIGHT B	ROWN HIGHLY WE	ATHERED	<i>77.77</i>	121.0	TR-	24	22 22		400	00.40										40	D! 00	->>>
WEAK, THICK BEDDE			1////				40	-	100	SS-16	-	-	-	-	-	-	-	-	-	13	Rock (V)	_\\\/
	.,		1///3			25																
						<u> </u>																
						- 1																X
				723.5		27	j															$\langle \rangle /$
SANDSTONE, GRAY, S	LIGHTLY WEATHER	RED,	•••			_ ₂₈ _																X
MODERATELY STRON	G, VERY FINE TO F	INE GRAINED,				⊢ ⊪																
THIN BEDDED, ARGILI	ACEOUS; RQD 36%	6, REC 100%.				<u> </u>																\mathbb{N}
			1				1															\otimes

PID: NOPID BR ID: N/A	PROJECT:	MEG-	33-15.5		STATION /	OFFSE	T:	34+90	100.0 RT	_ s	TART	: _4/	8/09	_ EN	1D: _	4/9	/09	_ P	G 2 OI	2 B-00	1-0-09	
MATERIAL DES	CRIPTION		ELEV.	DE	PTHS	SPT/	N	REC	SAMPLE	HP	(GRAD	ATIC	N (%))	ATT	ERBI	ERG		ODOT	INCL.	
AND NO	ES		721.0		FIIIO	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	IINCL.	
SANDSTONE, GRAY, SLIGHTLY WE MODERATELY STRONG, VERY FINE THIN BEDDED, ARGILLACEOUS; RG (continued)	TO FINE GRAINED,		716.0	EOB	- - - 31 - - - 32 - - - 33 - - - 34 -	41		100	NQ2-1											CORE		

								T_									_		$-\bar{j}$	4		EVEL OF	A T: -
PROJECT:	MEG-33		DRILLING FIRM / (_	ODOT / S		-	L RIG:		CME 55 TF			STAT			SET:				RT	EXPLOR B-002	
TYPE:	LANDSLIC		SAMPLING FIRM /			DOT / MC		-	MER:		ME AUTON			ALIGN		_	'0F ^		. US :			. —	-0-c
PID: NOPID		N/A	DRILLING METHO			'HSA / NC	Q2	-				/10/09		ELEV		_						6.0 ft.	10
START:4/22		4/23/09	SAMPLING METHO	υD:	1	PT / NQ2			RGY R			81.3		COOF							887.30	10 E	1 (
		NAL DESCRIPT	ION		ELEV.	DEP ⁻	THS	SPT/ RQD	N ₆₀		SAMPLE	1		GRAD				ATT		_		ODOT CLASS (GI)	IN
TODOO!! (O!!)		AND NOTES			785.0		_	RQD	- 00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	OLAGO (GI)	11 -
TOPSOIL (6")	= ====================================				784.5		L , -																
		STONE FRAGN	RAY, SILT AND				1 -	1															\bigotimes
OLAT, COME	OAIND, OOME	OTONE TIVION	ILITIO, DAIVII		1		<u></u>	4 3	8	67	SS-1	1.00	24	8	21	35	12	30	18	12	17	A-6a (3)	M
					1		$[\]_3 \rfloor$	3													· ·	71 00 (0)	W
@3.0'; STIFF		Layer 1						4															K
					1		F 4 1	4 _	12	89	SS-2	1.00	-	-	-	-	-	-	-	-	15	A-6a (V)	
@E O': TDACE	ASPALT FRAC	CMENTS			1		<mark>-</mark> − 5 +	5															K
@5.0, TRACE	. ASPALI FRAC	GIVIENTS]	Omit	6	ັ 5	15	100	SS-3	2.00	-	-	-	-	-	-	-	-	12	A-6a (V)	\bowtie
VEDV STIFE I		CDAY CANDY	'CILT LITTLE		778.5		¹├ [°]	6															K
	BROWN WITH BMENTS, TRAC	I GRAY, SANDY CE CLAY WET	SIL1, LITTLE		l		<u></u>	8	24	100	> SS-4	2.00	15	6	40	32	7	22	18	4	22	A-4a (1)	\bowtie
	•		INE CAND		777.0		8	10															\mathbb{K}
		COARSE AND F FRAGMENTS,					- 9	4	11	100	SS-5	2.00	6	4	56	31	3	NP	NP	NP	13	A-3a (0)	\gg
DAMP	10102 010112	TTO CONTENTIO,	110102 0211,				°	2														` ,	X
		Layer 3					<u></u> 10	² 3	12	100	SS-6	1.00	-	-	-	-	-	-	_	-	14	A-3a (V)	\rangle
044 01 1 000	E MOIOT						- 11 -	4														` ′	X
@11.0'; LOOS	E, MOIST						+ ,, t	4 3	9	100	SS-7	2.00	_	_	_	-	-	_	_	_	26	A-3a (V)	
					772.5		12	4														` ,	\mathbb{W}
		REDDISH BROW FRAGMENTS,	N WITH GRAY,				13	3 4	12	100	SS-8	2.50	26	5	25	39	5	29	19	10	14	A-4a (2)	
DAMP	SOIVIL STOINL	TRAGINLINTS,	TRACE CLAT,				¬ [- 14 -	5														(_/	×
						Omit		4	11	100	SS-9	0.50	l _	_	_	_	_	_	_	_	12	A-4a (V)	
							- 15	4				0.00										71.0(1)	W
		Layer 1					<u> </u>	5	19	100	SS-10	2.00	l _	_	_	_	_	_	_	_	15	A-4a (V)	
							17	8		100	00 10	2.00									10	7 (Ta (V)	W
								3 4	11	100	SS-11	0.50	l _	_	_	_	_	_	_	_	15	A-4a (V)	
				ЩЩ	766.5		18	⁷ 4	'''	100	33-11	0.50								_	13	Λ- 4 α (V)	\bigotimes
		DISH BROWN			1		19	2 2	9	100	SS-12	1.00	39	9	11	32	9	34	23	11	16	A-6a (1)	
SILT AND CLA	AY, "AND" STO	NE FRAGMEN	rs, little sand,				L 20 1	² 5	9	100	33-12	1.00	39	9	' '	32	9	34	23	11	10	A-0a (1)	W
DAIVII					1		20	3 5	14	100	SS-13	2.00									13	A-6a (V)	
					1		21	5	- +	100	33-13	2.00	-	-	-	-	_	-	-	-	13	A-0a (V)	\gg
							_ 22 _	3	15	00	CC 14	2 00									11	A 60 (\)	K
					1		- H	5 6	15	89	SS-14	3.00		-		-		_	-		14	A-6a (V)	\gg
					1	Omit	23	3	12	100	CC 15	2.50									11	A 60 (\\)	K
						Cilii	- 24	5 4	12	100	SS-15	2.50	-	-	-	-	-	-	-	-	11	A-6a (V)	
					1		25	4		100	00.40	2.00									14	A 65 () ()	M
					759.0		- H	4 4	11	100	SS-16	2.00	-	-	-	-	-	-	-	-	14	A-6a (V)	
VERY STIFF, I	REDDISH BRC	WN AND BROV	VN, STONE	MYN			26	50/4"	-	_ 50	SS-17	\ <u>-</u>	-	-	-		_	-		-	13	A-2-4 (V)	K
			E CLAY, DAMP		3			1															
@ 26.0' - 27.5' DESCRIPTION		OULDERS DI	KILLER'S		1		28	5	00	4.5-					25	2.5							M
DEGUNI HON	N .			M		Omit	—	8	26	100	SS-18	3.50	32	5	28	30	5	26	17	9	12	A-2-4 (0)	
		Layer 6			1		29	6		100	SS-19	2.00	<u> </u>	_	_	-		_			10	A-2-4 (V)	M
					1			57		100	-00-19	2.00	<u> </u>		_	-			~	Ĺ	10	/\-Z- - +(V)	$\langle \rangle \rangle$

NOTES: HOLE DRY BEFORE CORING; SLOPE INCLINOMETER INSTALLED; MONITORING WELL INSTALLED ADJACENT TO THIS BORING.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: PUMPED 25 LB. BENTONITE POWDER; 94 LB. CEMENT

																				•	-			: - : -
PROJECT: MEG-33-15.5 DRILLING FIRM / OPER					ODOT / CA		DRILL RIG: CME 55 TRUCK						STATION / OFFSET: 834) LT	EXPLORATION ID			
TYPE: LANDSLIDE SAMPLING FIRM / LOGO					HAMMER: CME AUTOMATIC						ALIGNMENT:					L US		B-003-0-09						
PID: NOPID BR ID: N/A DRILLING METHOD: DRILLING METHOD:						3.25" HSA / NQ2			CALIBRATION DATE: 3/10/09													6.0 ft.	PAGE	
START: <u>4/14/09</u> END: <u>4/15/09</u> SAMPLING METHOD: _					SPT / NQ2			ENERGY RATIO (%): 81.3						COOF						2130	6 E	1 OF 2		
MATERIAL DESCRIPTION				ELEV. DEPTHS		HS				SAMPLE HP			GRADATION (%)					ERBI	_		ODOT	MON.		
AND NOTES						784.0	DE: 1	1	RQD	1 460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	WELL
TOPSOIL (6")					hhih	~7 <u>83.5</u> ~		- -	-															
	STIFF TO VERY STIFF, BROWN, REDDISH BROWN, AND GRAY, SANDY SILT , SOME CLAY, SOME STONE FRAGMENTS, DAMP			, AND			- 1 - - 2 	1				1.00												
								14 6	18	18 78	78 SS-1		21	3	26	26	24	24	16	8	15	A-4a (3)		
						L 3	7	-	,,,		1.00			20					L	-10	71 44 (0)			
							⊦	6	16	67	SS-2	3.00			_	_	_	_	_	_	13	A-4a (V)		
			Lover 2					<u> </u>	6		07	00-2	3.00									13	Λ- 1 α (V)	
			Layer 2					F 5 F	5 6	18	78	SS-3	2.50	25	2	31	22	20	25	17	8	15	A-4a (1)	
								L 6	7	10	70	33-3	2.50	23		31	22	20	23	17	0	13	A-4a (1)	
								⊢	5	27	28	SS-4	1.00							1 _	l _	12	A-4a (V)	
						776.5		- 7 -	10 10		20	33-4	1.00	-	-	-	-	-	-	-	-	12	A-4a (V)	
			WITH GRAY, ST	ONE		1		8 -	8	22	70	CC F	2 00	24		40	47		ΝD	NP	ND	٥	A O 4 (O)	\mathbb{W}
FF	RAGMENTS	WITH SAND A	AND SILT , TRAC	CE CLAY, DAMP	ВH	3		- I	11 6	23	78	SS-5	2.00	31	2	42	17	8	NP	NP	NP	8	A-2-4 (0)	
2			Layer 3		M	1		9	6		70	00.0	4.50									44	40400	\mathbb{M}
<u>.</u>					1 N	773.5		10	9	26	78	SS-6	1.50	-	-	-	-	-	-	-	-	11	A-2-4 (V)	
55 S7			DDISH BROWN,					- 11 -	4		400	00.7	4.00	0.4			-00	40		40	_	40	A 4 (4)	\mathbb{M}
SC SC	OME STONE	FRAGMENTS	S, LITTLE CLAY,	, DAMP				- I	4 5	12	100	SS-7	1.00	31	3	26	22	18	23	16	7	13	A-4a (1)	
<u> </u>			1					12	4															\mathbb{M}
SOL	Layer 1						13	5 6	15	100	SS-8	2.50	-	-	-	-	-	-	-	-	12	A-4a (V)) 🚫 🖔	
SINTYPROJECTS/100241.GPJ	@13.5'; SOME CLAY						Omit -	<u>-</u> 14 -	3															\mathbb{M}
	,							├ ' ⁻	3 4	9	78	SS-9	1.00	22	4	5	39	30	31	22	9	15	A-4a (7)	
ž 💳		<u> </u>		+	15	3															\mathbb{N}			
:52								F 16	5 6	15	78	SS-10	2.50	-	-	-	-	-	-	-	-	11	A-4a (V)	
9 16								- ·	2															\mathbb{N}
74/0	Layer 4							17	3 _	11	100	SS-11	1.50	-	-	-	-	-	-	-	-	16	A-4a (V)	
9								<u> </u>	3									-						\bowtie
25								19	3	15	78	SS-12	2.00	-	-	-	-	-	-	-	-	10	A-4a (V)	
2								H	5															\aleph
扎								20	5	12	78	SS-13	2.50	33	3	5	32	27	26	19	7	8	A-4a (5)	
<u>-</u>							Omit	21	3															\otimes
×			Layer 8				Unit	L 22	3 2	4	78	SS-14	2.00	-	-	-	-	-	_	-	-	11	A-4a (V)	
% 5.57						761.5		22	1							\rightarrow							. ,	-
უ ⊢ IVII			ND DARK BROV	VN, COARSE			TR-	23	8 16	56	78	SS-15	3.50	0	7	70	16	7	NP	NP	NP	12	A-3a (0)	
			LT, TRACE CLA	LY WEATHERED,		1		L 24	25 21					_						1			(0)	
			TO MEDIUM GR	AINED, THIN	···	1		⊢	21 36	81	78	SS-16	4.50	_	_	_	_		_	_	_	10	Rock (V)	
BE BE			IABLE; RQD 55%	%, REC 98%.		1		25	36 24	ļ .														
Į,					•••	•		_ 26 -	67	-	100	SS-17	-	-	-	-	-		-	-	-	11	Rock (V)	::目::
<u></u>					·:•	1		27																: :目: :
Ö						<u> </u>		- H																[∷ ⊟∷
					•	1		_ 28 -																::目::
STANDARD ODOT SOIL						<u> </u>		<u>-</u> 29 -																l: :
STA						1								<u> </u>										<u> :: </u> :

PID: NOPID BR ID: N/A PROJECT: I			MEG-33-15.5			STATION / OFFSET: _			834+90 34.0 LT			START: <u>4/14/09</u>			_ EN	ID: _	4/15/09		_ P(G 2 OF	2 B-00	3-0-09
MATERIAL DESCRIPTION				ELEV.		EPTHS	SPT/	N	REC	SAMPLE	HP	GRADATION			N (%)) .	ATTERBER				ODOT	MON.
AND NOTES				754.0	DL	_F1110	RQD	N ₆₀	(%)	ID (ts	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	WELL
SLIGHTLY STROI	GHT BROWN, MODERATE NG, FINE TO MEDIUM GF EOUS, FRIABLE; RQD 55	RAINED, THIN		748.0	—-EOE	- 31 - 32 - 34 - 35 - 36	55		98	NQ2-1											CORE	

ROJECT: <u>MEG-33-13.96</u> YPE: <u>LANDSLIDE</u> ID: 119143 SFN:	DRILLING FIRM / OPER/ SAMPLING FIRM / LOGO DRILLING METHOD:	GER:	ODOT / LE\ DOT / BINK 25" HSA		HAM	MER:	ACŁ	CKER REE KER AUTO ATE: 1	MATIC		STAT ALIG ELEV	NME	NT: _			US 33	3		EXPLOR B-00:	RATION 3-0-23 PAG
TART: 11/6/23 END: 11/7/23	SAMPLING METHOD:	J.	SPT			RGY R			90*		LAT /		_	131				.92830		1 OF
MATERIAL DESCRIPT AND NOTES	TON	ELEV. 757.7	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs			CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI)	
TOPSOIL (2") MEDIUM DENSE, BROWN, COARSE AND I SOME SILT, LITTLE STONE FRAGMENTS,	FINE SAND,	↑ <u>757.</u> 6		 - 1 T	6															7 L
DAMP	,		-	- 2 - - 3 -	7 6	20	72	SS-1	-	17	1	51	20	11	NP	NP	NP	13	A-3a (0)	1 < K
			 - -	- - 4 -	4 5 7	18	67	SS-2	-	-	-	-	-	-	-	-	-	13	A-3a (V)	-ALV
			- - -	- 5 - - 6 - - 1	3 4	14	67	SS-3	_	_		_	_	_	_	_		11	A-3a (V)	77
		749.2		- 7 - 8 -	5		07	33-3	-	-	-	-	-	-	-	-	-	11	A-3a (V)	1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×
MEDIUM DENSE, BROWN, STONE FRAGN Sand and Silt, Trace Clay, Damp	IENTS WITH	10.2		- - 9 - - 10	4 5 7	18	61	SS-4	-	34	1	43	14	8	NP	NP	NP	11	A-2-4 (0)	
Layer 3				- 11 -	15 10	23	78	SS-5	_	_	_	_	_	_	_	_	_	10	A-2-4 (V)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
,		744.2		12 13	5													10	(v)	
YERY STIFF, RED, GRAY AND BROWN, SI AND" STONE FRAGMENTS, LITTLE SAND			_	14 15	3 5 4	14	50	SS-6	2.50	36	1	12	28	23	28	17	11	12	A-6a (4)	
Layer 2 MEDIUM DENSE, YELLOWISH BROWN, CO	DARSE AND FINE	741.7		- ¹⁰ -	1															
AND, LITTLE SILT, LITTLE STONE FRAGI CLAY, MOIST				- - 17 -	7 5	18	83	SS-7	-	12	1	57	19	11	NP	NP	NP	16	A-3a (0)	
			-	- 18 - - - 19 - -	2 3 8	17	89	SS-8	-	-	-	-	-	-	-	-	-	16	A-3a (V)	
			737.4	20 - - 21 																
				22 23																
@23.5'; LOOSE, BROWN AND GRAY				- 24 - - 25 -	2 2 3	8	61	SS-9	-	-	-	-	-	-	-	-	-	17	A-3a (V)	
Layer 3	••••		 - -	 - 26 -																
		729.2		27 28																
MEDIUM STIFF, BROWN, GRAY AND BLAC SOME CLAY, TRACE STONE FRAGMENTS DRGANIC (LOI = 3.2%) TRACE WOOD FRA	, SLIGHTLY		-	- 29 - - 30	2 2 2	6	67	SS-10	0.50	2	3	40	29	26	26	18	8	23	A-4a (4)	
Layer 8			-	- 31 - - 32 - 																
SHALE, GRAY, HIGHLY WEATHERED, VER	RY WEAK,	724.2 723.5	TR-	- 33 - - - 34 -	43 65/3"	_	100	SS-11	_	-	_	_	_	_	_	_	_	10	Rock (V)	

FIGURE 3
Preconsolidation Pressure vs. Liquidity Index

As LI values for the fill are all negative (moisture contents below the plastic limit), the fill was considered to be overconsolidated. Considering a LI of 0, a preconsolidation pressure of 9 tsf (18 ksf) was used in analyses. The underlying native soils were considered to be normally consolidated.

Figure 3-18. Correlations between coefficient of consolidation and liquid limit (NAVFAC DM 7.1)

Layer 1: LL = 29, $Cv = 0.13 \text{ ft}^2/\text{day}$ Layer 2: LL = 26, $Cv = 0.16 \text{ ft}^2/\text{day}$

Layer 3: LL = N/A

Layer 4 (SRB-3 and B-47 only): LL = 48, Cv = 0.19 ft²/day

Layer 5: LL = 32, Cv = 0.48 ft²/day

Layer 6: LL = N/A Layer 7: LL = N/A

Layer 8: LL = 26, $Cv = 0.64 \text{ ft}^2/\text{day}$

Source: Settle3 Software

Source: Settle3 Software

Elastic settlement parameters included in Settle3 for granular layers with "immediate" settlement. This is reflected in the estimated settlement at time = 0 days.

Slope Stability

Long Term (Drained) Condition

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1. M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	Roadway Fill (Granular)	Mohr-Coulomb	125	0	31

← Granular Embankment Fill Assumed

01. Sta. 834+50 Existing Granular Roadway Fill

Sta. 834+50 LT Slope Stability.gsz

Long Term (Drained) Condition

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	Roadway Fill (Cohesive) (LT)	Mohr-Coulomb	125	130	23

Cohesive Embankment Fill Assumed

02. Sta. 834+50 Existing Cohesive Roadway Fill

Sta. 834+50 LT Slope Stability.gsz

Long Term (Drained) Condition New Embankment (A-4a)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-4a) (LT)	Mohr-Coulomb	125	200	30
	Roadway Fill (Granular)	Mohr-Coulomb	125	0	31

← Granular Embankment Fill Assumed

Sta. 834+50 LT Slope Stability.gsz

Long Term (Drained) Condition New Embankment (A-4a)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-4a) (LT)	Mohr-Coulomb	125	200	30
	Roadway Fill (Cohesive) (LT)	Mohr-Coulomb	125	130	23

— Cohesive Embankment Fill Assumed

05. Sta. 834+50 Proposed A-4a Cohesive Roadway Fill (LT)

Sta. 834+50 LT Slope Stability.gsz

Long Term (Drained) Condition New Embankment (A-4a)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-4a) (LT)	Mohr-Coulomb	125	200	30
	Roadway Fill (Cohesive) (LT)	Mohr-Coulomb	125	130	23

← Cohesive Embankment Fill Assumed

06. Sta. 834+50 Proposed A-4a Cohesive Roadway Fill No Gran. (LT)

Sta. 834+50 LT Slope Stability.gsz

Long Term (Drained) Condition New Embankment (A-7-6)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-7-6) (LT)	Mohr-Coulomb	125	200	26
	Roadway Fill (Granular)	Mohr-Coulomb	125	0	31

Granular Embankment Fill Assumed

07. Sta. 834+50 Proposed A-7-6 Granular Roadway Fill (LT)

Sta. 834+50 LT Slope Stability.gsz

Long Term (Drained) Condition New Embankment (A-7-6)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-7-6) (LT)	Mohr-Coulomb	125	200	26
	Roadway Fill (Cohesive) (LT)	Mohr-Coulomb	125	130	23

Cohesive Embankment Fill Assumed

09. Sta. 834+50 Proposed A-7-6 Cohesive Roadway Fill (LT)

Sta. 834+50 LT Slope Stability.gsz

Long Term (Drained) Condition New Embankment (A-7-6)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (LT)	Mohr-Coulomb	125	130	23
	2. Stiff to V. Stiff Embankment Fill (LT)	Mohr-Coulomb	125	160	24
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (LT)	Mohr-Coulomb	125	145	24
	5. V. Stiff to Hard Cohesive (LT)	Mohr-Coulomb	130	195	26
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (LT)	Mohr-Coulomb	125	65	21
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-7-6) (LT)	Mohr-Coulomb	125	200	26
	Roadway Fill (Cohesive) (LT)	Mohr-Coulomb	125	130	23

← Cohesive Embankment Fill Assumed

10. Sta. 834+50 Proposed A-7-6 Cohesive Roadway Fill No Gran. (LT)

Sta. 834+50 LT Slope Stability.gsz

Short Term (Undrained) Condition New Embankment (A-4a)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,200	0
	2. Stiff to V. Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,700	0
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,600	0
	5. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	130	2,800	0
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (ST)	Mohr-Coulomb	125	700	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-4a) (ST)	Mohr-Coulomb	125	2,000	0
	Roadway Fill (Granular)	Mohr-Coulomb	125	0	31

 $\longleftarrow {\sf Granular\ Embankment\ Fill\ Assumed}$

11. Sta. 834+50 Proposed A-4a Granular Roadway Fill (ST)

Sta. 834+50 LT Slope Stability.gsz

Short Term (Undrained) Condition New Embankment (A-4a)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,200	0
	2. Stiff to V. Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,700	0
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,600	0
	5. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	130	2,800	0
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (ST)	Mohr-Coulomb	125	700	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-4a) (ST)	Mohr-Coulomb	125	2,000	0
	Roadway Fill (Cohesive) (ST)	Mohr-Coulomb	125	1,500	0

← Cohesive Embankment Fill Assumed

13. Sta. 834+50 Proposed A-4a Cohesive Roadway Fill (ST)

Sta. 834+50 LT Slope Stability.gsz

Short Term (Undrained) Condition New Embankment (A-4a)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,200	0
	2. Stiff to V. Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,700	0
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,600	0
	5. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	130	2,800	0
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (ST)	Mohr-Coulomb	125	700	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-4a) (ST)	Mohr-Coulomb	125	2,000	0
	Roadway Fill (Cohesive) (ST)	Mohr-Coulomb	125	1,500	0

← Cohesive Embankment Fill Assumed

14. Sta. 834+50 Proposed A-4a Cohesive Roadway Fill No Gran. (ST)

Sta. 834+50 LT Slope Stability.gsz

Short Term (Undrained) Condition New Embankment (A-7-6)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	1. M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,200	0
	2. Stiff to V. Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,700	0
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,600	0
	5. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	130	2,800	0
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (ST)	Mohr-Coulomb	125	700	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-7-6) (ST)	Mohr-Coulomb	125	2,000	0
	Roadway Fill (Granular)	Mohr-Coulomb	125	0	31

← Granular Embankment Fill Assumed

15. Sta. 834+50 Proposed A-7-6 Granular Roadway Fill (ST)

Sta. 834+50 LT Slope Stability.gsz

Short Term (Undrained) Condition New Embankment (A-7-6)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,200	0
	2. Stiff to V. Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,700	0
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,600	0
	5. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	130	2,800	0
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (ST)	Mohr-Coulomb	125	700	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-7-6) (ST)	Mohr-Coulomb	125	2,000	0
	Roadway Fill (Cohesive) (ST)	Mohr-Coulomb	125	1,500	0

Cohesive Embankment Fill Assumed

17. Sta. 834+50 Proposed A-7-6 Cohesive Roadway Fill (ST)

Sta. 834+50 LT Slope Stability.gsz

Short Term (Undrained) Condition New Embankment (A-7-6)

Color	Name	Slope Stability Material Model	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	M. Stiff to Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,200	0
	2. Stiff to V. Stiff Embankment Fill (ST)	Mohr-Coulomb	125	1,700	0
	3. Loose to M. Dense Embankment Fill	Mohr-Coulomb	125	0	31
	4. Stiff to V. Stiff Cohesive (ST)	Mohr-Coulomb	125	1,600	0
	5. V. Stiff to Hard Cohesive (ST)	Mohr-Coulomb	130	2,800	0
	6. M. Dense to Dense Granular	Mohr-Coulomb	130	0	34
	8. Soft to M. Stiff Cohesive (ST)	Mohr-Coulomb	125	700	0
	Bedrock	Bedrock (Impenetrable)			
	New Embankment Fill (Assumed A-7-6) (ST)	Mohr-Coulomb	125	2,000	0
	Roadway Fill (Cohesive) (ST)	Mohr-Coulomb	125	1,500	0

Cohesive Embankment Fill Assumed

18. Sta. 834+50 Proposed A-7-6 Cohesive Roadway Fill No Gran. (ST)

Sta. 834+50 LT Slope Stability.gsz

Settlement

Project: MEG-33-13.96
Client: ODOT D10

Task: Settlement Analysis Summary

Calculated By: AKB Date: 5/1/2024 Checked By: DCM Date: 5/6/2024

Analyses	Maximum Settlement (in.)	<3-in. Remaining (in.)	Time to <3-in. Remaining	90% Complete (in.)	Time to 90% Complete	
Sta. 834+50		Target: 3.08		Target: 5.47	6 months	
Overconsolidated Existing Embankment	6.08	Actual: 3.30	1 month	Actual: 5.62		
Granular Roadway Fill at Toe		Actual. 5.50		Actual. 5.02		
Sta. 834+50	47.40	Target: 14.43	6	Target: 15.69	9 months	
Normally Consolidated Existing Embankment	17.43	Actual: 15.01	6 months	Actual: 16.12		
Granular Roadway Fill at Toe		7(0:001: 15:01		71010011 10112		
Sta. 834+50		Target: 3.30		Target: 5.67		
Overconsolidated Existing Embankment	6.30	Actual: 3.49	1 month	Actual: 5.85	6 months	
Cohesive Roadway Fill at Toe		Actual: 3.49		Actual, 5.65		
Sta. 834+50		Target: 14.65		Target: 15.89		
Normally Consolidated Existing Embankment	17.65	Actual: 15.23	6 months	Actual: 16.05	8 months	
Cohesive Roadway Fill at Toe		/\ccai. 13.23		7.000011 10.05		

Per ODOT Geotechnical Design Manual Section 504, 3 inches of settlement of less is considered reasonable if settlement does not influence structure, utility, or other roadway infrastructure. As such, analyses highlight time required to reach 3 inches of remaining settlement.

Settlement (Overconsolidated Existing Embankment, Granular Fill at Toe)

Toisience	
ETTLE3 5.007	_

Project	MEG-33-13.96	
Analysis Description	Sta. 834+50	
Drawn By A. Bara	tta Company	HDR
Date 4/25/2024, 12	56:29 PM File Name	Sta. 834+50 Settlement.s3z

MEG-33-13.96 HDR

Date Created: 2024/05/07, 06:01:50

Table of Contents

Project	Settings	. 3
Stage S	ettings	. 4
Results		. 5
	Stage: 0 d = 0 d	. 5
	Stage: 7 d = 7 d	. 5
	Stage: 14 d = 14 d	. 6
	Stage: 21 d = 21 d	. 7
	Stage: 30 d (1 m) = 30 d	. 8
	Stage: 183 d (6 m) = 183 d	. 9
	Stage: 274 d (9 m) = 274 d	10
	Stage: 365 d (1 y) = 365 d	11
	Stage: 3650 d (10 y) = 3650 d	12
	Stage: 36,500 d (100 y) = 36500 d	13
	Stage: 182,500 d (500 y) = 182500 d	14
Embank	ments	16
	1. Embankment: "Embankment Load 1"	16
Soil Lay	ers	17
	RT Toe (B-001-0-09)	17
	RT Slope (B-002-0-09/B-47ER)	17
	RT Crest (B-002-0-09)	
	CL Crest (B-002-0-09/B-47)	19
	LT Crest (B-003-0-09/CU-10C)	20
	LT Toe (B-003-0-09)	21
	LT Fill (B-003-0-23)	22
	LT New Toe (B-003-0-23/SRB-3)	23
	LT Roadway Slope (SRB-3)	24
	RT Toe 2 (B-001-0-09)	25
	RT Slope 2 (B-002-0-09/B-47ER)	26
	RT Crest 2 (B-002-0-09)	27
	CL Crest 2 (B-002-0-09/B-47)	28
	LT Crest 2 (B-003-0-09/CU-10C)	29
	LT Toe 2 (B-003-0-09)	30
	LT Fill 2 (B-003-0-23)	31
	LT New Toe 2 (B-003-0-23/SRB-3)	32
	LT Roadway Slope 2 (SRB-3)	33
	LT Special Bench (B-003-0-09)	34
	LT Special Bench 2 (B-003-0-09)	35
Soil Pro	perties	37
Ground	water	39
	Piezometric Line Entities	39
Field Po	int Grid	40
	Grid Coordinates	40

Settle3 Analysis Information

MEG-33-13.96

Project Settings

Document Name

Project Title

Analysis

Author

Company

Date Created

Stress Computation Method

Time-dependent Consolidation Analysis

Time Units

Permeability Units

Minimum settlement ratio for subgrade modulus

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement

calculations

Sta. 834+50 Settlement.s3z

MEG-33-13.96

Sta. 834+50

A. Baratta

HDR

4/25/2024, 12:56:29 PM

Boussinesq

days

feet/day

0.9

Stage Settings

Stage #	Name	Time [days]
1	0 d	0
2	7 d	7
3	14 d	14
4	21 d	21
5	30 d (1 m)	30
6	183 d (6 m)	183
7	274 d (9 m)	274
8	365 d (1 y)	365
9	3650 d (10 y)	3650
10	36,500 d (100 y)	36500
11	182,500 d (500 v)	182500

Results

Time taken to compute: 12.9792 seconds

Stage: 0 d = 0 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	1.33145
Total Consolidation Settlement	0	0
[in]	0	0
Virgin Consolidation Settlement	0	0
[in]	G	
Recompression Consolidation Settlement [in]	0	0
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66246
Effective Stress XX [ksf]	-0.253991	6.86472
Effective Stress YY [ksf]	-0.142571	3.95837
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	0	0.00764898
Pore Water Pressure [ksf]	0	4.70196
Excess Pore Water Pressure [ksf]	0	4.70196
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [ksf]	0.000947083	18
Over-consolidation Ratio	1	36781.6
Void Ratio	0	0.657
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-1.11022e-16	4.44089e-16

Stage: 7 d = 7 d

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00317638	2.33619
Total Consolidation Settlement		
[in]	-0.00317638	1.67098
Virgin Consolidation Settlement	0	1.38274
[in]	O .	1.50274
Recompression Consolidation Settlement [in]	-0.00537466	0.288232
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66285
Effective Stress XX [ksf]	-0.420529	9.45028
Effective Stress YY [ksf]	-0.420529	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00640303	0.0789852
Pore Water Pressure [ksf]	0	3.64819
Excess Pore Water Pressure [ksf]	-8.71321e-34	3.2112
Degree of Consolidation [%]	0	99.9049
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.657195
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00139418	0.568481

Stage: 14 d = 14 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00277535	2.73321
Total Consolidation Settlement		
[in]	-0.00277535	2.29013
Virgin Consolidation Settlement [in]	0	1.89493
Recompression Consolidation Settlement [in]	-0.00277535	0.395205
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66301
Effective Stress XX [ksf]	-0.432298	9.45028
Effective Stress YY [ksf]	-0.432298	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0082481	0.0790162
Pore Water Pressure [ksf]	0	3.57509
Excess Pore Water Pressure [ksf]	-5.01365e-34	3.17958
Degree of Consolidation [%]	0	99.9999
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.65725
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00145859	0.568481

Stage: 21 d = 21 d←

Data Type	Minimum	Maximum
Data Type Total Settlement [in]	-0.000586058	3.02286
Total Consolidation Settlement	-0.000360036	3.02280
[in]	-0.000586058	2.73249
Virgin Consolidation Settlement [in]	0	2.25865
Recompression Consolidation Settlement [in]	-0.000586058	0.473845
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66314
Effective Stress XX [ksf]	-0.380484	9.45028
Effective Stress YY [ksf]	-0.380484	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00652233	0.0790295
Pore Water Pressure [ksf]	0	3.41387
Excess Pore Water Pressure [ksf]	-5.18137e-34	3.13435
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.657115
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.000485802	0.568481

Stage: 30 d (1 m) = 30 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	0	3.30198
Total Consolidation Settlement		
[in]	0	3.17973
Virgin Consolidation Settlement	0	2.62846
[in] Recompression Consolidation		
Settlement [in]	0	0.551279
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66328
Effective Stress XX [ksf]	-0.306776	9.45028
Effective Stress YY [ksf]	-0.306776	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00480906	0.0790391
Pore Water Pressure [ksf]	0	3.14716
Excess Pore Water Pressure [ksf]	-3.24815e-34	3.09999
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656916
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-3.31148e-07	0.568481

Stage: 183 d (6 m) = 183 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	0	5.62361
Total Consolidation Settlement		
[in]	0	5.53602
Virgin Consolidation Settlement	0	4.50006
[in]		
Recompression Consolidation Settlement [in]	0	1.03596
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.7808
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00165994	0.0790766
Pore Water Pressure [ksf]	-8.44199e-17	1.73515
Excess Pore Water Pressure [ksf]	-8.44199e-17	1.59264
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656636
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.568481

Stage: 274 d (9 m) = 274 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	0	5.88595
Total Consolidation Settlement		
[in]	0	5.79836
Virgin Consolidation Settlement [in]	0	4.66863
Recompression Consolidation Settlement [in]	0	1.12973
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.94493
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0011642	0.0790789
Pore Water Pressure [ksf]	-8.35538e-17	1.71659
Excess Pore Water Pressure [ksf]	-8.35538e-17	1.00023
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656561
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.568481

Stage: 365 d (1 y) = 365 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	0	5.98826
Total Consolidation Settlement		
[in]	0	5.90066
Virgin Consolidation Settlement [in]	0	4.71964
Recompression Consolidation Settlement [in]	0	1.18102
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.98722
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.000809998	0.0790794
Pore Water Pressure [ksf]	-8.31543e-17	1.70486
Excess Pore Water Pressure [ksf]	-8.31543e-17	0.626155
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.65652
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.568481

Stage: 3650 d (10 y) = 3650 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.08244
Total Consolidation Settlement	0	F 00 40 F
[in]	0	5.99485
Virgin Consolidation Settlement	0	4.74227
[in]	G	117 1227
Recompression Consolidation	0	1.25917
Settlement [in]	0	1 22145
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf] Effective Stress ZZ [ksf]	-0.467566	2.8005 6.00189
Effective Stress XX [ksf]	0 -0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction		
(Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]	O .	O
Total Strain	-2.45527e-08	0.0790796
Pore Water Pressure [ksf]	-1.82839e-16	1.6848
Excess Pore Water Pressure [ksf]	-8.36329e-06	1.41763e-05
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.568481

Stage: 36,500 d (100 y) = 36500 d←

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.08244
Total Consolidation Settlement		
[in]	0	5.99485
Virgin Consolidation Settlement	0	4.74227
[in]		
Recompression Consolidation Settlement [in]	0	1.25917
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00189
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	0	0.0790796
Pore Water Pressure [ksf]	-1.06224e-15	1.6848
Excess Pore Water Pressure [ksf]	-8.35356e-06	9.6962e-06
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.568481

Stage: 182,500 d (500 y) = 182500 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.08244
Total Consolidation Settlement	0	5.99485
[in]		3.99 103
Virgin Consolidation Settlement	0	4.74227
[in]		
Recompression Consolidation Settlement [in]	0	1.25917
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00188
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]	•	
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Consolidation) [ksf/ft]	0	0
Total Strain	0	0.0790796
Pore Water Pressure [ksf]	-1.08046e-15	1.6848
Excess Pore Water Pressure [ksf]	-9.69317e-06	8.34988e-06
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00102395	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.568481

Embankments

1. Embankment: "Embankment Load 1"

Label		Embankment Load	1
Center Line	(-4, 83400) to (-4, 83500)		
Near End Angle		90 degrees	
Far End Angle	90 degrees		
Number of Zones	4		
Number of Sections	1		
Zone	Na	me	Unit Weight (kips/ft3)
1	New Zone	0.	115
2	New Zone 2	0.	115
3	New Zone 3 0.115		
4	New Zone 4	0.	125

Soil Layers

Ground Surface Drained: Yes

RT Toe (B-001-0-09)

_			33400)
Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1. M. Stiff to Stiff Embankment Fill	0	-743	No
2. Stiff to V. Stiff Embankment Fill	0	-743	No
3. Loose to M. Dense Embankment Fill	0	-743	Yes
Cohesive Roadway Fill	0	-743	Yes
 M. Stiff to Stiff Embankment Fill 	0	-743	Yes
6. M. Dense to Dense Granular	0	-743	Yes
4. Stiff to V. Stiff Cohesive	8.5	-743	No
8. Soft to M. Stiff Cohesive	0	-734.5	No
5. V. Stiff to Hard Cohesive	7.5	-734.5	No
		786.1 	
	Embankment Fill 2. Stiff to V. Stiff Embankment Fill 3. Loose to M. Dense Embankment Fill Cohesive Roadway Fill 1. M. Stiff to Stiff Embankment Fill 6. M. Dense to Dense Granular 4. Stiff to V. Stiff Cohesive 8. Soft to M. Stiff Cohesive 5. V. Stiff to Hard	Embankment Fill 2. Stiff to V. Stiff Embankment Fill 3. Loose to M. Dense Embankment Fill Cohesive Roadway Fill 1. M. Stiff to Stiff Embankment Fill 6. M. Dense to Dense Granular 4. Stiff to V. Stiff Cohesive 8. Soft to M. Stiff Cohesive 5. V. Stiff to Hard 7. 5	Embankment Fill 2. Stiff to V. Stiff Embankment Fill 3. Loose to M. Dense Embankment 0 Fill Cohesive Roadway Fill 1. M. Stiff to Stiff Embankment Fill 6. M. Dense to Dense Granular 4. Stiff to V. Stiff Cohesive 8. Soft to M. Stiff Cohesive 5. V. Stiff to Hard Cohesive 7.5 786.1

RT Slope (B-002-0-09/B-47ER)←

XY Location:		RT Slope	e (B-002-0-09/B-47ER)	: (100, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-769.6	No
2	Stiff to V. Stiff Embankment Fill	0	-769.6	No
3	3. Loose to M. Dense Embankment Fill	0	-769.6	Yes
4	Cohesive Roadway Fill	0	-769.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.5	-769.6	Yes
6	6. M. Dense to Dense Granular	0	-745.1	Yes
7	4. Stiff to V. Stiff Cohesive	6.9	-745.1	No
8	8. Soft to M. Stiff Cohesive	0	-738.2	No
9	5. V. Stiff to Hard Cohesive	0	-738.2	No
			786.1	
		*****	769.6	
			—745.1 —738.2	

RT Crest (B-002-0-09)

XY Location:		RT Crest	(B-002-0-09): (69.9,	•
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	9.1	-786.1	No
2	Stiff to V. Stiff Embankment Fill	0	-777	No
3	3. Loose to M. Dense Embankment Fill	4.5	-777	Yes
4	Cohesive Roadway Fill	0	-772.5	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.5	-772.5	Yes
6	6. M. Dense to Dense Granular	0	-748	Yes
7	4. Stiff to V. Stiff Cohesive	7.4	-748	No
8	8. Soft to M. Stiff Cohesive	0	-740.6	No
9	5. V. Stiff to Hard Cohesive	0	-740.6	No
			786.1	
			— 777 — 772.5	
			— 748 — 740.6	

CL Crest (B-002-0-09/B-47) ←

XY Location:		CL Crest	: (B-002-0-09/B-47): ((55, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	8.3	-786.1	No
2	2. Stiff to V. Stiff Embankment Fill	0.9	-777.8	No
3	3. Loose to M. Dense Embankment Fill	4.3	-776.9	Yes
4	Cohesive Roadway Fill	0	-772.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	23.4	-772.6	Yes
6	6. M. Dense to Dense Granular	0	-749.2	Yes
7	4. Stiff to V. Stiff Cohesive	7.5	-749.2	No
8	8. Soft to M. Stiff Cohesive	0	-741.7	No
9	5. V. Stiff to Hard Cohesive	0	-741.7	No
			786.1 777.8 772.6 	

LT Crest (B-003-0-09/CU-10C)←

LT Toe (B-003-0-09) ←

XY Location:	LT Toe (B-003-0-09): (-48, 83400)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-760.6	No
2	Stiff to V. Stiff Embankment Fill	0	-760.6	No
3	3. Loose to M. Dense Embankment Fill	0	-760.6	Yes
4	Cohesive Roadway Fill	0	-760.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	16.6	-760.6	Yes
6	6. M. Dense to Dense Granular	0	-744	Yes
7	4. Stiff to V. Stiff Cohesive	4	-744	No
8	8. Soft to M. Stiff Cohesive	6.5	-740	No
9	V. Stiff to Hard Cohesive	0	-733.5	No
			786.1 —760.6	
			744 -733.5 -713 ft	

LT Fill (B-003-0-23) ←

XY Location:	LT Fill (B-003-0-23): (-84, 83400)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-755.8	No
2	2. Stiff to V. Stiff Embankment Fill	0	-755.8	No
3	3. Loose to M. Dense Embankment Fill	21.4	-755.8	Yes
4	Cohesive Roadway Fill	0	-734.4	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-734.4	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.2	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-724.2	No
			786.1	
			— 755.8 — 734.4	

LT New Toe (B-003-0-23/SRB-3) ←

XY Location:		LT New	Toe (B-003-0-23/SRB	3-3): (-137, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-752.3	No
2	Stiff to V. Stiff Embankment Fill	0	-752.3	No
3	Loose to M.Dense Embankment Fill	10.8	-752.3	Yes
4	Cohesive Roadway Fill	16.4	-741.5	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-725.1	Yes
6	6. M. Dense to Dense Granular	0	-725.1	Yes
7	4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8	8. Soft to M. Stiff Cohesive	0	-717.4	No
9	5. V. Stiff to Hard Cohesive	0	-717.4	No
			786.1 	
		****	717.4 713 ft	

LT Roadway Slope (SRB-3) ←

RT Toe 2 (B-001-0-09) ←

XY Location:		RT Toe 2	(B-001-0-09): (153.8	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
l	 M. Stiff to Stiff Embankment Fill 	0	-743	No
2	Stiff to V. Stiff Embankment Fill	0	-743	No
}	3. Loose to M. Dense Embankment Fill	0	-743	Yes
1	Cohesive Roadway Fill	0	-743	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-743	Yes
5	6. M. Dense to Dense Granular	0	-743	Yes
7	4. Stiff to V. Stiff Cohesive	8.5	-743	No
3	8. Soft to M. Stiff Cohesive	0	-734.5	No
e	5. V. Stiff to Hard Cohesive	7.5	-734.5	No
			786.1 	
			734.5 727 	

RT Slope 2 (B-002-0-09/B-47ER)←

XY Location: RT Slope 2 (B-002-0-09/B-47ER): (100, 83500)				ER): (100, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-769.6	No
2	Stiff to V. Stiff Embankment Fill	0	-769.6	No
3	3. Loose to M. Dense Embankment Fill	0	-769.6	Yes
4	Cohesive Roadway Fill	0	-769.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.5	-769.6	Yes
6	6. M. Dense to Dense Granular	0	-745.1	Yes
7	4. Stiff to V. Stiff Cohesive	6.9	-745.1	No
8	8. Soft to M. Stiff Cohesive	0	-738.2	No
9	5. V. Stiff to Hard Cohesive	0	-738.2	No
			786.1 	
			745.1 738.2	
			713 ft	

RT Crest 2 (B-002-0-09)

XY Location:	ion: RT Crest 2 (B-002-0-09): (69.9, 83500)				
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom	
1	 M. Stiff to Stiff Embankment Fill 	9.1	-786.1	No	
2	Stiff to V. Stiff Embankment Fill	0	-777	No	
3	3. Loose to M. Dense Embankment Fill	4.5	-777	Yes	
4	Cohesive Roadway Fill	0	-772.5	Yes	
5	 M. Stiff to Stiff Embankment Fill 	24.5	-772.5	Yes	
6	6. M. Dense to Dense Granular	0	-748	Yes	
7	4. Stiff to V. Stiff Cohesive	7.4	-748	No	
8	8. Soft to M. Stiff Cohesive	0	-740.6	No	
9	5. V. Stiff to Hard Cohesive	0	-740.6	No	
		e	786.1		
		1	— 777 — 772.5		
			— 748 — 740.6		

CL Crest 2 (B-002-0-09/B-47)

LT Crest 2 (B-003-0-09/CU-10C) <

LT Toe 2 (B-003-0-09) <

XY Location:		LT Toe 2	LT Toe 2 (B-003-0-09): (-48, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom		
1	 M. Stiff to Stiff Embankment Fill 	0	-760.6	No		
2	Stiff to V. Stiff Embankment Fill	0	-760.6	No		
3	3. Loose to M. Dense Embankment Fill	0	-760.6	Yes		
4	Cohesive Roadway Fill	0	-760.6	Yes		
5	 M. Stiff to Stiff Embankment Fill 	16.6	-760.6	Yes		
6	6. M. Dense to Dense Granular	0	-744	Yes		
7	Stiff to V. Stiff Cohesive	4	-744	No		
8	8. Soft to M. Stiff Cohesive	6.5	-740	No		
9	V. Stiff to Hard Cohesive	0	-733.5	No		
			786.1 — 760.6 — 744			
			733.5 -713 ft			

LT Fill 2 (B-003-0-23)

XY Location:	LT Fill 2 (B-003-0-23): (-84, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-755.8	No
2	2. Stiff to V. Stiff Embankment Fill	0	-755.8	No
3	3. Loose to M. Dense Embankment Fill	21.4	-755.8	Yes
4	Cohesive Roadway Fill	0	-734.4	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-734.4	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.2	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-724.2	No
			786.1 - 755.8 - 734.4 - 724.2	
]	

LT New Toe 2 (B-003-0-23/SRB-3) <

XY Location:		LT New	Toe 2 (B-003-0-23/SR	B-3): (-137, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-752.3	No
2	2. Stiff to V. Stiff Embankment Fill	0	-752.3	No
3	3. Loose to M. Dense Embankment Fill	10.8	-752.3	Yes
4	Cohesive Roadway Fill	16.4	-741.5	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-725.1	Yes
6	6. M. Dense to Dense Granular	0	-725.1	Yes
7	4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8	8. Soft to M. Stiff Cohesive	0	-717.4	No
9	V. Stiff to Hard Cohesive	0	-717.4	No
			786.1	

LT Roadway Slope 2 (SRB-3) ←

XY Location:		LT Roadv	vay Slope 2 (SRB-3):	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-749.2	No
2	Stiff to V. Stiff Embankment Fill	0	-749.2	No
3	3. Loose to M. Dense Embankment Fill	0	-749.2	Yes
4	Cohesive Roadway Fill	26.1	-749.2	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-723.1	Yes
6	6. M. Dense to Dense Granular	0	-723.1	Yes
7	4. Stiff to V. Stiff Cohesive	10.1	-723.1	No
8	8. Soft to M. Stiff Cohesive	0	-713	No
9	5. V. Stiff to Hard Cohesive	0	-713	No
			786.1 	
			713	

LT Special Bench 2 (B-003-0-09) ←

XY Location:		LT Speci	al Bench 2 (B-003-0-0	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-758.9	No
2	2. Stiff to V. Stiff Embankment Fill	0	-758.9	No
3	3. Loose to M. Dense Embankment Fill	5.8	-758.9	Yes
4	Cohesive Roadway Fill	0	-753.1	Yes
5	 M. Stiff to Stiff Embankment Fill 	18.7	-753.1	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.9	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-723.5	No
			786.1 — 758.9 — 753.1 — 734.4 — 723.5 — 713 ft	

Soil Properties

Property	1. M. Stiff to Stiff Embankment Fill	2. Stiff to V. Stiff Embankment Fill	3. Loose to M. Dense Embankment Fill	4. Stiff to V. Stiff Cohesive
Color				
Unit Weight [kips/ft3]	0.125	0.125	0.125	0.125
Saturated Unit Weight [kips/ft3]	0.13	0.13	0.13	0.13
К0	0.61	0.59	0.48	0.59
Immediate Settlement	Disabled	Disabled	Enabled	Disabled
Es [ksf] Esur [ksf]	-	-	550 550	-
Primary Consolidation	Enabled	Enabled	Disabled	Enabled
Material Type Cc Cr e0 Pc [ksf] OCR	Non-Linear 0.171 0.017 0.559 18 - 0.13	Non-Linear 0.141 0.014 0.59 18 - 0.16	- - - -	Non-Linear 0.342 0.034 0.466 - 1 0.19
Cv [ft2/d] Cvr [ft2/d] B-bar	0.13 0.13 1	0.16 1	- -	0.19 1
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S Undrained Su m Piezo Line ID	0.2 0.8 1	0.2 0.8 1	0.2 0.8 1	0.2 0.8 1
Property	5. V. Stiff to Hard Cohesive	6. M. Dense to Dense Granular	8. Soft to M. Stiff Cohesive	Cohesive Roadway Fill
Color				
Unit Weight [kips/ft3]	0.13	0.13	0.135	0.125
Saturated Unit Weight [kips/ft3]	0.135	0.135	0.14	0.13
K0	0.56	0.44	0.64	0.61
Immediate Settlement	Disabled	Enabled	Disabled	Disabled
Es [ksf]	-	950	-	-
Esur [ksf]	-	950	-	-
Primary Consolidation	Enabled	Disabled	Enabled	Enabled
Material Type Cc Cr	Non-Linear 0.198 0.02	-	Non-Linear 0.144 0.014	Non-Linear 0.171 0.017

e0	0.423	-	0.657	0.559	
Pc [ksf]	-	-	-	18	
OCR	1	-	1	-	
Cv [ft2/d]	0.48	-	0.64	0.13	
Cvr [ft2/d]	0.48	-	0.64	0.13	
B-bar	1	-	1	1	
Undrained Su A [kips/ft2]	0	0	0	0	
Undrained Su S	0.2	0.2	0.2	0.2	
Undrained Su m	0.8	0.8	0.8	0.8	
Piezo Line ID	1	1	1	1	

Groundwater

Groundwater method Water Unit Weight Piezometric Lines 0.0624 kips/ft3

Generating excess pore pressure above water table

Piezometric Line Entities

ID	Depth (ft)
1	-740 ft

Field Point Grid

Number of points 520 Expansion Factor 1

Grid Coordinates

	X [ft]	Y [ft]	
203.8		83550	
203.8		83350	
-221		83350	
-221		83550	

Settlement (Normally Consolidated Existing Embankment, Granular Fill at Toe)

701	2		
SETTLE3 5.007	अन	en	ce

Project MEG-33-13.96			
Analysis Description	Sta. 834+50 Normally Consolidated Embankment		
Drawn By	A. Baratta	Company	HDR
Date	4/25/2024, 12:56:29 PM	File Name	Sta. 834+50 Settlement_Normally Consolidated Embankment.s3z

MEG-33-13.96 HDR

Date Created: 2024/05/07, 06:03:13

Table of Contents

Project Settings	4
Stage Settings	5
Results	6
Stage: 0 d = 0 d	6
Stage: 7 d = 7 d	6
Stage: 14 d = 14 d	7
Stage: 21 d = 21 d	8
Stage: 30 d (1 m) = 30 d	9
Stage: 60 d (2 m) = 60 d	10
Stage: 90 d (3 m) = 90 d	11
Stage: 183 d (6 m) = 183 d	12
Stage: 274 d (9 m) = 274 d	13
Stage: 365 d (1 y) = 365 d	14
Stage: 3650 d (10 y) = 3650 d	15
Stage: 36,500 d (100 y) = 36500 d	16
Stage: 182,500 d (500 y) = 182500 d	17
Embankments	19
1. Embankment: "Embankment Load 1"	19
Soil Layers	20
RT Toe (B-001-0-09)	20
RT Slope (B-002-0-09/B-47ER)	20
RT Crest (B-002-0-09)	21
CL Crest (B-002-0-09/B-47)	22
LT Crest (B-003-0-09/CU-10C)	23
LT Toe (B-003-0-09)	24
LT Fill (B-003-0-23)	25
LT New Toe (B-003-0-23/SRB-3)	26
LT Roadway Slope (SRB-3)	
RT Toe 2 (B-001-0-09)	
RT Slope 2 (B-002-0-09/B-47ER)	
RT Crest 2 (B-002-0-09)	30
CL Crest 2 (B-002-0-09/B-47)	
LT Crest 2 (B-003-0-09/CU-10C)	
LT Toe 2 (B-003-0-09)	33
LT Fill 2 (B-003-0-23)	
LT New Toe 2 (B-003-0-23/SRB-3)	
LT Roadway Slope 2 (SRB-3)	
LT Special Bench (B-003-0-09)	
LT Special Bench 2 (B-003-0-09)	
Soil Properties	
Groundwater	
Piezometric Line Entities	

MEG-33-13.96	Tuesday, May 7, 2024

Field Point Grid	. 43
Grid Coordinates	43

Settle3 Analysis Information

MEG-33-13.96

Project Settings

Document Name

Project Title Analysis Author Company

Date Created Stress Computation Method

Time-dependent Consolidation Analysis

Time Units

Permeability Units

Minimum settlement ratio for subgrade modulus Use average properties to calculate layered stresses Improve consolidation accuracy Ignore negative effective stresses in settlement

calculations

Sta. 834+50 Settlement_Normally Consolidated

Embankment.s3z MEG-33-13.96

Sta. 834+50 Normally Consolidated Embankment

A. Baratta **HDR**

4/25/2024, 12:56:29 PM

Boussinesq

days feet/day 0.9

Stage Settings

Stage #	Name	Time [days]
1	0 d	0
2	7 d	7
3	14 d	14
4	21 d	21
5	30 d (1 m)	30
6	60 d (2 m)	60
7	90 d (3 m)	90
8	183 d (6 m)	183
9	274 d (9 m)	274
10	365 d (1 y)	365
11	3650 d (10 y)	3650
12	36,500 d (100 y)	36500
13	182,500 d (500 y)	182500

Results

Time taken to compute: 23.9546 seconds

Stage: 0 d = 0 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	1.33145
Total Consolidation Settlement	0	0
[in]	0	0
Virgin Consolidation Settlement	0	0
[in]	o .	ŭ
Recompression Consolidation	0	0
Settlement [in]	0	1 22145
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	1 40643	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf] Effective Stress ZZ [ksf]	-0.467566	2.8005 5.66246
Effective Stress XX [ksf]	0 -0.253991	6.86472
Effective Stress YY [ksf]	-0.142571	3.95837
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction		
(Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]	O .	O .
Total Strain	0	0.00764898
Pore Water Pressure [ksf]	0	4.70196
Excess Pore Water Pressure [ksf]	0	4.70196
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [ksf]	0.000489375	5.65319
Over-consolidation Ratio	1	1
Void Ratio	0	0.657
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation	0	0.64
[ft^2/d]		
Hydroconsolidation Settlement	0	0
[in] Average Degree of Consolidation		
[%]	0	100
Undrained Shear Strength	-1.11022e-16	5.55112e-17

Stage: 7 d = 7 d←

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00317638	4.38319
Total Consolidation Settlement		
[in]	-0.00317638	4.2956
Virgin Consolidation Settlement [in]	0	4.29763
Recompression Consolidation Settlement [in]	-0.183666	0
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66285
Effective Stress XX [ksf]	-0.691545	9.45028
Effective Stress YY [ksf]	-0.691545	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00854363	0.122511
Pore Water Pressure [ksf]	0	3.64819
Excess Pore Water Pressure [ksf]	-1.79412e-33	3.2112
Degree of Consolidation [%]	0	99.9049
Pre-consolidation Stress [ksf]	0.000557429	5.65355
Over-consolidation Ratio	1	8.74923
Void Ratio	0	0.657195
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 14 d = 14 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00277535	5.96908
Total Consolidation Settlement		
[in]	-0.00277535	5.88149
Virgin Consolidation Settlement	0	5.88309
[in]	O	3.00309
Recompression Consolidation Settlement [in]	-0.197553	0
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66301
Effective Stress XX [ksf]	-0.87027	9.45028
Effective Stress YY [ksf]	-0.87027	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00976081	0.122728
Pore Water Pressure [ksf]	0	3.57509
Excess Pore Water Pressure [ksf]	-1.03252e-33	3.17958
Degree of Consolidation [%]	0	99.9999
Pre-consolidation Stress [ksf]	0.000557429	5.65371
Over-consolidation Ratio	1	3.824
Void Ratio	0	0.65725
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 21 d = 21 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	-0.000586058	7.11109
Total Consolidation Settlement		
[in]	-0.000586058	7.0235
Virgin Consolidation Settlement	0	7.02361
[in]	U	7.02361
Recompression Consolidation Settlement [in]	-0.203589	0
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66314
Effective Stress XX [ksf]	-0.90623	9.45028
Effective Stress YY [ksf]	-0.90623	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0102563	0.122819
Pore Water Pressure [ksf]	0	3.41387
Excess Pore Water Pressure [ksf]	-5.43986e-34	3.13435
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000557429	5.65384
Over-consolidation Ratio	1	4.30012
Void Ratio	0	0.657115
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 30 d (1 m) = 30 d←

Data Type	Minimum	Maximum
Total Settlement [in]	0	8.25931
Total Consolidation Settlement		0.23331
[in]	0	8.17172
Virgin Consolidation Settlement [in]	0	8.17172
Recompression Consolidation Settlement [in]	-0.200934	0
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66328
Effective Stress XX [ksf]	-0.899321	9.45028
Effective Stress YY [ksf]	-0.899321	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0102908	0.122888
Pore Water Pressure [ksf]	0	3.14716
Excess Pore Water Pressure [ksf]	-6.69013e-34	3.09999
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000557429	5.65398
Over-consolidation Ratio	1	62.9706
Void Ratio	0	0.656916
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 60 d (2 m) = 60 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	0	10.8193
Total Consolidation Settlement		
[in]	0	10.7317
Virgin Consolidation Settlement	0	10.7317
[in]	O	10.7317
Recompression Consolidation Settlement [in]	-0.176145	0
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66366
Effective Stress XX [ksf]	-1.04145	9.45028
Effective Stress YY [ksf]	-1.04145	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00735909	0.122991
Pore Water Pressure [ksf]	-5.09681e-21	2.83986
Excess Pore Water Pressure [ksf]	-5.09681e-21	2.83986
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	5.65436
Over-consolidation Ratio	1	270.806
Void Ratio	0	0.656846
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 90 d (3 m) = 90 d←

Data Type	Minimum	Maximum
Total Settlement [in]	0	12.4221
Total Consolidation Settlement	0	12 2245
[in]	0	12.3345
Virgin Consolidation Settlement	0	12.3345
[in]		12.33 13
Recompression Consolidation	-0.203076	0.132842
Settlement [in]	0	1 22145
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	1 40643	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885 2.8005
Loading Stress YY [ksf] Effective Stress ZZ [ksf]	-0.467566 0	5.66394
Effective Stress XX [ksf]	-1.02286	9.45028
Effective Stress YY [ksf]	-1.02286	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction		
(Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]	U	O .
Total Strain	-0.00991128	0.12303
Pore Water Pressure [ksf]	-6.00309e-21	2.50673
Excess Pore Water Pressure [ksf]	-6.00309e-21	2.50673
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	5.65464
Over-consolidation Ratio	1	27.118
Void Ratio	0	0.656779
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement	0	0
[in]		
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 183 d (6 m) = 183 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	15.0078
Total Consolidation Settlement		
[in]	0	14.9202
Virgin Consolidation Settlement	0	14.9202
[in]		1 113202
Recompression Consolidation Settlement [in]	-0.184344	0.252842
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.78078
Effective Stress XX [ksf]	-0.477884	9.45028
Effective Stress YY [ksf]	-0.477884	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00502732	0.123079
Pore Water Pressure [ksf]	-8.37026e-17	1.73515
Excess Pore Water Pressure [ksf]	-8.37026e-17	1.63061
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	5.78031
Over-consolidation Ratio	1	2.99634
Void Ratio	0	0.656636
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 274 d (9 m) = 274 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	16.1198
Total Consolidation Settlement		
[in]	0	16.0322
Virgin Consolidation Settlement	0	16.0322
[in]	G	1010322
Recompression Consolidation Settlement [in]	-0.146993	0.255185
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.94492
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction		_
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]		
Total Strain	-0.00404985	0.1231
Pore Water Pressure [ksf]	-5.6015e-17	1.71659
Excess Pore Water Pressure [ksf]	-5.6015e-17	1.17663
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	5.94446
Over-consolidation Ratio	1	2.37704
Void Ratio	0	0.656561
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement	0	0
[in] Average Degree of Consolidation		
[%]	0	100
Undrained Shear Strength	-0.0320936	0.083821

Stage: 365 d (1 y) = 365 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	16.6867
Total Consolidation Settlement		10.0007
[in]	0	16.5992
Virgin Consolidation Settlement [in]	0	16.5992
Recompression Consolidation Settlement [in]	-0.115347	0.255185
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.98722
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00325642	0.123111
Pore Water Pressure [ksf]	-0.00125122	1.70486
Excess Pore Water Pressure [ksf]	-0.00125122	0.973886
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	5.98676
Over-consolidation Ratio	1	2.00041
Void Ratio	0	0.65652
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.0839729

Stage: 3650 d (10 y) = 3650 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	0	17.4293
Total Consolidation Settlement		
[in]	0	17.3417
Virgin Consolidation Settlement	0	17.3417
[in]	· ·	17.5117
Recompression Consolidation Settlement [in]	-0.000111998	0.255179
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00188
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-6.64883e-07	0.123128
Pore Water Pressure [ksf]	-0.00202422	1.6848
Excess Pore Water Pressure [ksf]	-0.00202422	0.00364926
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	6.00143
Over-consolidation Ratio	1	1.00906
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00014676	0.0845797

Stage: 36,500 d (100 y) = 36500 d←

Data Type	Minimum	Maximum
Total Settlement [in]	0	17.4293
Total Consolidation Settlement		
[in]	0	17.3417
Virgin Consolidation Settlement	0	17.3417
[in]	O .	17.5417
Recompression Consolidation Settlement [in]	-7.50872e-05	0.255182
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00189
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-3.54094e-07	0.123128
Pore Water Pressure [ksf]	-0.00295218	1.6848
Excess Pore Water Pressure [ksf]	-0.00295218	0.00213129
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	6.00143
Over-consolidation Ratio	1	1.00333
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00014676	0.0845797

Stage: 182,500 d (500 y) = 182500 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	17.4293
Total Consolidation Settlement	0	17 2417
[in]	U	17.3417
Virgin Consolidation Settlement	0	17.3417
[in]		17.13.117
Recompression Consolidation Settlement [in]	-0.000114723	0.255181
Immediate Settlement [in]	0	1.33145
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00188
Effective Stress XX [ksf]	-0.246338	9.45028
Effective Stress YY [ksf]	-0.141687	7.57969
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.246338	10.4305
Total Stress YY [ksf]	-0.141687	7.57969
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-3.56071e-07	0.123128
Pore Water Pressure [ksf]	-0.00213544	1.6848
Excess Pore Water Pressure [ksf]	-0.00213544	0.00290686
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00055743	6.00143
Over-consolidation Ratio	1	1.00814
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.790512
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00014676	0.0845797

Embankments

1. Embankment: "Embankment Load 1"

Label	Em	nbankment Load 1	
Center Line	(-4, 83400) to (-4, 83500)		
Near End Angle	90	degrees	
Far End Angle	90	degrees	
Number of Zones	4		
Number of Sections	1		
Zone	Name	e Ur	it Weight (kips/ft3)
1	New Zone	0.115	
2	New Zone 2	0.115	
3	New Zone 3	0.115	
4	New Zone 4	0.125	

Soil Layers

Ground Surface Drained: Yes

RT Toe (B-001-0-09)

XY Location:		RT Toe (E	3-001-0-09): (153.8, 8	-
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-743	No
2	Stiff to V. Stiff Embankment Fill	0	-743	No
3	3. Loose to M. Dense Embankment Fill	0	-743	Yes
4	Cohesive Roadway Fill	0	-743	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-743	Yes
6	6. M. Dense to Dense Granular	0	-743	Yes
7	4. Stiff to V. Stiff Cohesive	8.5	-743	No
8	8. Soft to M. Stiff Cohesive	0	-734.5	No
9	5. V. Stiff to Hard Cohesive	7.5	-734.5	No
			786.1	
			743 734.5	
			727 713 ft	

RT Slope (B-002-0-09/B-47ER)

XY Location:		RT Slope	e (B-002-0-09/B-47ER)	: (100, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-769.6	No
2	Stiff to V. Stiff Embankment Fill	0	-769.6	No
3	3. Loose to M. Dense Embankment Fill	0	-769.6	Yes
4	Cohesive Roadway Fill	0	-769.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.5	-769.6	Yes
6	6. M. Dense to Dense Granular	0	-745.1	Yes
7	4. Stiff to V. Stiff Cohesive	6.9	-745.1	No
8	8. Soft to M. Stiff Cohesive	0	-738.2	No
9	V. Stiff to Hard Cohesive	0	-738.2	No
			786.1	
		*****	769.6	
			—745.1 —738.2	

RT Crest (B-002-0-09) ←

CL Crest (B-002-0-09/B-47)

XY Location:		CL Crest	(B-002-0-09/B-47): (55, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	8.3	-786.1	No
2	Stiff to V. Stiff Embankment Fill	0.9	-777.8	No
3	3. Loose to M. Dense Embankment Fill	4.3	-776.9	Yes
4	Cohesive Roadway Fill	0	-772.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	23.4	-772.6	Yes
6	6. M. Dense to Dense Granular	0	-749.2	Yes
7	4. Stiff to V. Stiff Cohesive	7.5	-749.2	No
8	8. Soft to M. Stiff Cohesive	0	-741.7	No
9	5. V. Stiff to Hard Cohesive	0	-741.7	No
			786.1 = 777.8 - 772.6 - 749.2 - 741.7	

LT Crest (B-003-0-09/CU-10C) ←

XY Location:		LT Crest	(B-003-0-09/CU-10C)): (-4, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	5.1	-786.1	No
2	Stiff to V. Stiff Embankment Fill	4.4	-781	No
3	3. Loose to M. Dense Embankment Fill	3.2	-776.6	Yes
4	Cohesive Roadway Fill	0	-773.4	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.8	-773.4	Yes
6	6. M. Dense to Dense Granular	3	-748.6	Yes
7	4. Stiff to V. Stiff Cohesive	0	-745.6	No
8	8. Soft to M. Stiff Cohesive	0	-745.6	No
9	5. V. Stiff to Hard Cohesive	0	-745.6	No
			786.1 781 776.6	
			748,6	

LT Toe (B-003-0-09) <

XY Location:		LT Toe (B-003-0-09): (-48, 83	400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-760.6	No
2	Stiff to V. Stiff Embankment Fill	0	-760.6	No
3	3. Loose to M. Dense Embankment Fill	0	-760.6	Yes
4	Cohesive Roadway Fill	0	-760.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	16.6	-760.6	Yes
6	6. M. Dense to Dense Granular	0	-744	Yes
7	4. Stiff to V. Stiff Cohesive	4	-744	No
8	8. Soft to M. Stiff Cohesive	6.5	-740	No
9	5. V. Stiff to Hard Cohesive	0	-733.5	No
			786.1 — 760.6	
			744 733.5	

LT Fill (B-003-0-23)

XY Location:		LT Fill (B	3-003-0-23): (-84, 8340	00)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-755.8	No
2	2. Stiff to V. Stiff Embankment Fill	0	-755.8	No
3	3. Loose to M. Dense Embankment Fill	21.4	-755.8	Yes
4	Cohesive Roadway Fill	0	-734.4	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-734.4	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.2	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-724.2	No
			786.1 —755.8	
			—734.4 —724.2	
			713 ft	

LT New Toe (B-003-0-23/SRB-3)

XY Location:	LT New Toe (B-003-0-23/SRB-3): (-137, 83400)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-752.3	No
2	2. Stiff to V. Stiff Embankment Fill	0	-752.3	No
3	3. Loose to M. Dense Embankment Fill	10.8	-752.3	Yes
4	Cohesive Roadway Fill	16.4	-741.5	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-725.1	Yes
6	6. M. Dense to Dense Granular	0	-725.1	Yes
7	4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8	8. Soft to M. Stiff Cohesive	0	-717.4	No
9	5. V. Stiff to Hard Cohesive	0	-717.4	No
			786.1 	

LT Roadway Slope (SRB-3)←

XY Location:	LT Roadway Slope (SRB-3): (-171, 83400)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-749.2	No
2	2. Stiff to V. Stiff Embankment Fill	0	-749.2	No
3	3. Loose to M. Dense Embankment Fill	0	-749.2	Yes
4	Cohesive Roadway Fill	26.1	-749.2	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-723.1	Yes
6	6. M. Dense to Dense Granular	0	-723.1	Yes
7	4. Stiff to V. Stiff Cohesive	10.1	-723.1	No
8	8. Soft to M. Stiff Cohesive	0	-713	No
9	5. V. Stiff to Hard Cohesive	0	-713	No
			786.1	
			723.1	

RT Toe 2 (B-001-0-09)

XY Location:		RT Toe 2	(B-001-0-09): (153.8	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-743	No
2	Stiff to V. Stiff Embankment Fill	0	-743	No
3	3. Loose to M. Dense Embankment Fill	0	-743	Yes
4	Cohesive Roadway Fill	0	-743	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-743	Yes
6	6. M. Dense to Dense Granular	0	-743	Yes
7	4. Stiff to V. Stiff Cohesive	8.5	-743	No
8	8. Soft to M. Stiff Cohesive	0	-734.5	No
9	V. Stiff to Hard Cohesive	7.5	-734.5	No
			786.1 - 743 - 734.5 - 727	

RT Slope 2 (B-002-0-09/B-47ER) ←

XY Location:	RT Slope 2 (B-002-0-09/B-47ER): (100, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-769.6	No
2	2. Stiff to V. Stiff Embankment Fill	0	-769.6	No
3	3. Loose to M. Dense Embankment Fill	0	-769.6	Yes
4	Cohesive Roadway Fill	0	-769.6	Yes
5	1. M. Stiff to Stiff Embankment Fill	24.5	-769.6	Yes
6	6. M. Dense to Dense Granular	0	-745.1	Yes
7	4. Stiff to V. Stiff Cohesive	6.9	-745.1	No
8	8. Soft to M. Stiff Cohesive	0	-738.2	No
9	5. V. Stiff to Hard Cohesive	0	-738.2	No
			786.1	
		*****	— 769.6	
			— 745.1 — 738.2	

RT Crest 2 (B-002-0-09)

XY Location:	RT Crest 2 (B-002-0-09): (69.9, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	9.1	-786.1	No
2	Stiff to V. Stiff Embankment Fill	0	-777	No
3	3. Loose to M. Dense Embankment Fill	4.5	-777	Yes
4	Cohesive Roadway Fill	0	-772.5	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.5	-772.5	Yes
6	6. M. Dense to Dense Granular	0	-748	Yes
7	4. Stiff to V. Stiff Cohesive	7.4	-748	No
8	8. Soft to M. Stiff Cohesive	0	-740.6	No
9	V. Stiff to Hard Cohesive	0	-740.6	No
			786.1 	
			— 748 — 740.6	

CL Crest 2 (B-002-0-09/B-47) <

(Y Location:	_		2 (B-002-0-09/B-47)	Drained at
Layer #	Туре	Thickness [ft]	Depth [ft]	Bottom
	1. M. Stiff to Stiff Embankment Fill	8.3	-786.1	No
	Stiff to V. Stiff Embankment Fill	0.9	-777.8	No
	3. Loose to M. Dense Embankment Fill	4.3	-776.9	Yes
ŀ	Cohesive Roadway Fill	0	-772.6	Yes
i	 M. Stiff to Stiff Embankment Fill 	23.4	-772.6	Yes
j	6. M. Dense to Dense Granular	0	-749.2	Yes
7	4. Stiff to V. Stiff Cohesive	7.5	-749.2	No
3	8. Soft to M. Stiff Cohesive	0	-741.7	No
)	5. V. Stiff to Hard Cohesive	0	-741.7	No
			786.1	
			= 777.8 772.6	
			— 749.2 — 741.7	

LT Crest 2 (B-003-0-09/CU-10C)

XY Location:	LT Crest 2 (B-003-0-09/CU-10C): (-4, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	5.1	-786.1	No
2	Stiff to V. Stiff Embankment Fill	4.4	-781	No
3	3. Loose to M. Dense Embankment Fill	3.2	-776.6	Yes
4	Cohesive Roadway Fill	0	-773.4	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.8	-773.4	Yes
6	6. M. Dense to Dense Granular	3	-748.6	Yes
7	4. Stiff to V. Stiff Cohesive	0	-745.6	No
8	8. Soft to M. Stiff Cohesive	0	-745.6	No
9	V. Stiff to Hard Cohesive	0	-745.6	No
			786.1 781 776.6	
			 748.6	

LT Toe 2 (B-003-0-09) ←

XY Location:	LT Toe 2 (B-003-0-09): (-48, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-760.6	No
2	2. Stiff to V. Stiff Embankment Fill	0	-760.6	No
3	3. Loose to M. Dense Embankment Fill	0	-760.6	Yes
4	Cohesive Roadway Fill	0	-760.6	Yes
5	1. M. Stiff to Stiff Embankment Fill	16.6	-760.6	Yes
6	6. M. Dense to Dense Granular	0	-744	Yes
7	4. Stiff to V. Stiff Cohesive	4	-744	No
8	8. Soft to M. Stiff Cohesive	6.5	-740	No
9	5. V. Stiff to Hard Cohesive	0	-733.5	No
			786.1 -760.6	
			733.5 	

LT Fill 2 (B-003-0-23) <

XY Location:		LT Fill 2 ((B-003-0-23): (-84, 83	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-755.8	No
2	2. Stiff to V. Stiff Embankment Fill	0	-755.8	No
3	3. Loose to M. Dense Embankment Fill	21.4	-755.8	Yes
4	Cohesive Roadway Fill	0	-734.4	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-734.4	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.2	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-724.2	No
			786.1	
			— 755.8 — 734.4	

LT New Toe 2 (B-003-0-23/SRB-3) ←

	LT New 7	Toe 2 (B-003-0-23/SRE	3-3): (-137, 83500)
Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1. M. Stiff to Stiff Embankment Fill	0	-752.3	No
2. Stiff to V. Stiff Embankment Fill	0	-752.3	No
	10.8	-752.3	Yes
Cohesive Roadway Fill	16.4	-741.5	Yes
1. M. Stiff to Stiff Embankment Fill	0	-725.1	Yes
6. M. Dense to Dense Granular	0	-725.1	Yes
4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8. Soft to M. Stiff Cohesive	0	-717.4	No
5. V. Stiff to Hard Cohesive	0	-717.4	No
		786.1 -752.3 -741.5 -725.1	
	1. M. Stiff to Stiff Embankment Fill 2. Stiff to V. Stiff Embankment Fill 3. Loose to M. Dense Embankment Fill Cohesive Roadway Fill 1. M. Stiff to Stiff Embankment Fill 6. M. Dense to Dense Granular 4. Stiff to V. Stiff Cohesive 8. Soft to M. Stiff Cohesive 5. V. Stiff to Hard	1. M. Stiff to Stiff Embankment Fill 2. Stiff to V. Stiff Embankment Fill 3. Loose to M. Dense Embankment Fill Cohesive Roadway Fill 1. M. Stiff to Stiff Embankment Fill 6. M. Dense to Dense Granular 4. Stiff to V. Stiff Cohesive 8. Soft to M. Stiff Cohesive 5. V. Stiff to Hard 0	1. M. Stiff to Stiff Embankment Fill 2. Stiff to V. Stiff Embankment Fill 3. Loose to M. Dense Embankment Fill Cohesive Roadway Fill 1. M. Stiff to Stiff Embankment Fill 6. M. Dense to Dense Granular 4. Stiff to V. Stiff Cohesive 8. Soft to M. Stiff Cohesive 5. V. Stiff to Hard Cohesive 7.725.3 7.72 7.73 7.741.5 7.741.5 7.741.5

LT Roadway Slope 2 (SRB-3) ←

Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at
,	1. M. Stiff to Stiff			Bottom
	Embankment Fill	0	-749.2	No
!	Stiff to V. Stiff Embankment Fill	0	-749.2	No
}	3. Loose to M. Dense Embankment Fill	0	-749.2	Yes
ŀ	Cohesive Roadway Fill	26.1	-749.2	Yes
5	 M. Stiff to Stiff Embankment Fill 	0	-723.1	Yes
;	6. M. Dense to Dense Granular	0	-723.1	Yes
,	4. Stiff to V. Stiff Cohesive	10.1	-723.1	No
}	8. Soft to M. Stiff Cohesive	0	-713	No
)	5. V. Stiff to Hard Cohesive	0	-713	No
			786.1 	
			723.1	
			713	

LT Special Bench (B-003-0-09) ←

LT Special Bench 2 (B-003-0-09) ←

XY Location:		LT Speci	al Bench 2 (B-003-0-0	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-758.9	No
2	2. Stiff to V. Stiff Embankment Fill	0	-758.9	No
3	3. Loose to M. Dense Embankment Fill	5.8	-758.9	Yes
4	Cohesive Roadway Fill	0	-753.1	Yes
5	 M. Stiff to Stiff Embankment Fill 	18.7	-753.1	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.9	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-723.5	No
			786.1 — 758.9 — 753.1 — 734.4 — 723.5 — 713 ft	

Soil Properties

Property	1. M. Stiff to Stiff Embankment	2. Stiff to V. Stiff Embankment	3. Loose to M. Dense Embankment	4. Stiff to V. Stiff Cohesive
Color	Fill	Fill	Fill	
Unit Weight				
[kips/ft3]	0.125	0.125	0.125	0.125
Saturated Unit Weight [kips/ft3]	0.13	0.13	0.13	0.13
К0	0.61	0.59	0.48	0.59
Immediate Settlement	Disabled	Disabled	Enabled	Disabled
Es [ksf]	-	_	550	-
Esur [ksf]	-	-	550	-
Primary Consolidation	Enabled	Enabled	Disabled	Enabled
Material Type	Non-Linear	Non-Linear		Non-Linear
Cc	0.171	0.141	-	0.342
Cr	0.017	0.014	-	0.034
e0	0.559	0.59	-	0.466
OCR	1	1	-	1
Cv [ft2/d]	0.13	0.16	-	0.19
Cvr [ft2/d]	0.13	0.16	-	0.19
B-bar	1	1	-	1
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8
Piezo Line ID	1	1	1	1
Property	5. V. Stiff to Hard Cohesive	6. M. Dense to Dense Granular	8. Soft to M. Stiff Cohesive	Cohesive Roadway Fill
Color				
Unit Weight [kips/ft3]	0.13	0.13	0.135	0.125
Saturated Unit Weight [kips/ft3]	0.135	0.135	0.14	0.13
К0	0.56	0.44	0.64	0.61
Immediate Settlement	Disabled	Enabled	Disabled	Disabled
Es [ksf]	-	950	-	-
Esur [ksf]	-	950	-	-
Primary Consolidation	Enabled	Disabled	Enabled	Enabled
Material Type	Non-Linear		Non-Linear	Non-Linear
Сс	0.198	-	0.144	0.171
Cr	0.02	-	0.014	0.017
e0	0.423	-	0.657	0.559

OCR	1	-	1	1	
Cv [ft2/d]	0.48	-	0.64	0.13	
Cvr [ft2/d]	0.48	-	0.64	0.13	
B-bar	1	-	1	1	
Undrained Su A [kips/ft2]	0	0	0	0	
Undrained Su S	0.2	0.2	0.2	0.2	
Undrained Su m	0.8	0.8	0.8	0.8	
Piezo Line ID	1	1	1	1	

Groundwater

Groundwater method Water Unit Weight Piezometric Lines 0.0624 kips/ft3

Generating excess pore pressure above water table

Piezometric Line Entities

ID	Depth (ft)
1	-740 ft

Field Point Grid

Number of points 520 Expansion Factor 1

Grid Coordinates

>	[ft] Y [ft]
203.8	83550
203.8	83350
-221	83350
-221	83550

Settlement (Overconsolidated Existing Embankment, Cohesive Roadway Fill at Toe)

7015	
SETTLE3 5.007	

F	Project	MEG-33-13.96		
7	Analysis Description	Sta. 834+50 Cohesive Roadway Fill		
	Drawn By	A. Baratta	Company	HDR
Z	Date	4/25/2024, 12:56:29 PM	File Name	Sta. 834+50 Settlement_No Granular.s3z

MEG-33-13.96 HDR

Date Created: 2024/05/07, 06:04:47

Table of Contents

Project Settings	4
Stage Settings	5
Results	6
Stage: 0 d = 0 d	6
Stage: 7 d = 7 d	6
Stage: 14 d = 14 d	7
Stage: 21 d = 21 d	8
Stage: 30 d (1 m) = 30 d	9
Stage: 60 d (2 m) = 60 d	10
Stage: 90 d (3 m) = 90 d	11
Stage: 183 d (6 m) = 183 d	12
Stage: 365 d (1 y) = 365 d	13
Stage: 3650 d (10 y) = 3650 d	14
Stage: 36,500 d (100 y) = 36500 d	15
Stage: 182,500 d (500 y) = 182500 d	16
Embankments	18
1. Embankment: "Embankment Load 1"	18
Soil Layers	19
RT Toe (B-001-0-09)	19
RT Slope (B-002-0-09/B-47ER)	19
RT Crest (B-002-0-09)	20
CL Crest (B-002-0-09/B-47)	21
LT Crest (B-003-0-09/CU-10C)	22
LT Toe (B-003-0-09)	23
LT Fill (B-003-0-23)	24
LT New Toe (B-003-0-23/SRB-3)	25
LT Roadway Slope (SRB-3)	26
RT Toe 2 (B-001-0-09)	27
RT Slope 2 (B-002-0-09/B-47ER)	28
RT Crest 2 (B-002-0-09)	29
CL Crest 2 (B-002-0-09/B-47)	30
LT Crest 2 (B-003-0-09/CU-10C)	31
LT Toe 2 (B-003-0-09)	32
LT Fill 2 (B-003-0-23)	33
LT New Toe 2 (B-003-0-23/SRB-3)	34
LT Roadway Slope 2 (SRB-3)	35
LT Special Bench (B-003-0-09)	36
LT Special Bench 2 (B-003-0-09)	37
Soil Properties	39
Groundwater	41
Piezometric Line Entities	41
Field Point Grid	42

MEG-33-13.96	Tuesday, May 7, 2024
Grid Coordinates	42

Settle3 Analysis Information

MEG-33-13.96

Project Settings

Document Name

Project Title

Analysis

Author

Company

Date Created

Stress Computation Method

Time-dependent Consolidation Analysis

Time Units

Permeability Units

Minimum settlement ratio for subgrade modulus

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement

calculations

Sta. 834+50 Settlement_No Granular.s3z

MEG-33-13.96

Sta. 834+50 Cohesive Roadway Fill

A. Baratta

HDR

4/25/2024, 12:56:29 PM

Boussinesq

days

feet/day

0.9

Stage Settings

Stage #	Name	Time [days]
1	0 d	0
2	7 d	7
3	14 d	14
4	21 d	21
5	30 d (1 m)	30
6	60 d (2 m)	60
7	90 d (3 m)	90
8	183 d (6 m)	183
9	365 d (1 y)	365
10	3650 d (10 y)	3650
11	36,500 d (100 y)	36500
12	182,500 d (500 y)	182500

Results

Time taken to compute: 14.3672 seconds

Stage: 0 d = 0 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.0236131
Total Consolidation Settlement	0	
[in]	0	0
Virgin Consolidation Settlement	0	0
[in]	ŭ	
Recompression Consolidation	0	0
Settlement [in]	0	0.0226121
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66246
Effective Stress XX [ksf]	-0.22514	6.86472
Effective Stress YY [ksf]	-0.103538	3.95837
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	0	0.00226711
Pore Water Pressure [ksf]	0	4.70196
Excess Pore Water Pressure [ksf]	0	4.70196
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [ksf]	0.00375	18
Over-consolidation Ratio	1	36781.6
Void Ratio	0	0.657
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation	0	0.64
[ft^2/d]	0	0.64
Hydroconsolidation Settlement	0	0
[in]	· ·	ĭ
Average Degree of Consolidation	0	100
[%]		
Undrained Shear Strength	-1.11022e-16	4.44089e-16

Stage: 7 d = 7 d ←

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00317638	1.98042
Total Consolidation Settlement		
[in]	-0.00317638	1.98042
Virgin Consolidation Settlement [in]	0	1.38274
Recompression Consolidation	-0.053159	0.690399
Settlement [in] Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0.0236131
Loading Stress ZZ [ksf]	1 40643	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66285
Effective Stress XX [ksf]	-0.420529	9.06216
Effective Stress YY [ksf]	-0.420529	6.59317
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0161124	0.0789852
Pore Water Pressure [ksf]	0	3.64819
Excess Pore Water Pressure [ksf]	0	3.62116
Degree of Consolidation [%]	0	99.9049
Pre-consolidation Stress [ksf]	0.00377388	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.657195
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00139418	0.257839

Stage: 14 d = 14 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00277535	2.59983
Total Consolidation Settlement	-0.00277535	2.59983
[in]	-0.00277333	2.59905
Virgin Consolidation Settlement	0	1.89493
[in]	•	
Recompression Consolidation Settlement [in]	-0.00277535	0.898667
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66301
Effective Stress XX [ksf]	-0.432298	9.06216
Effective Stress YY [ksf]	-0.432298	6.59317
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00920132	0.0790162
Pore Water Pressure [ksf]	0	3.57509
Excess Pore Water Pressure [ksf]	0	3.45039
Degree of Consolidation [%]	0	99.9999
Pre-consolidation Stress [ksf]	0.00377388	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.65725
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.00145859	0.257839

Stage: 21 d = 21 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	-0.000586058	3.04219
Total Consolidation Settlement		
[in]	-0.000586058	3.04219
Virgin Consolidation Settlement	0	2.25865
[in]	O	2.23003
Recompression Consolidation Settlement [in]	-0.000586058	1.02684
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66314
Effective Stress XX [ksf]	-0.380484	9.06216
Effective Stress YY [ksf]	-0.380484	6.92109
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]	O	O
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]	O	O
Total Strain	-0.0104642	0.0790295
Pore Water Pressure [ksf]	0	3.41387
Excess Pore Water Pressure [ksf]	0	3.40605
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377388	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.657115
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation	0	100
[%] Undrained Shear Strength	-0.000485802	0.257839

Stage: 30 d (1 m) = 30 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	3,48944
Total Consolidation Settlement		2 40044
[in]	0	3.48944
Virgin Consolidation Settlement	0	2.62846
[in]	O	2.02070
Recompression Consolidation	0	1.15732
Settlement [in]		
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66328
Effective Stress XX [ksf]	-0.306776	9.06216
Effective Stress YY [ksf]	-0.306776	7.1427
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Consolidation) [ksf/ft]	0	0
Total Strain	-0.00823797	0.0790391
Pore Water Pressure [ksf]	0	3.29631
Excess Pore Water Pressure [ksf]	0	3.29631
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377388	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656916
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-3.31148e-07	0.257839

Stage: 60 d (2 m) = 60 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	4.46411
Total Consolidation Settlement		
[in]	0	4.46411
Virgin Consolidation Settlement	0	3.42821
[in]		
Recompression Consolidation Settlement [in]	0	1.43173
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66366
Effective Stress XX [ksf]	-0.2246	9.24708
Effective Stress YY [ksf]	-0.132	7.38059
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00505043	0.079056
Pore Water Pressure [ksf]	-5.09681e-21	2.83986
Excess Pore Water Pressure [ksf]	-5.09681e-21	2.83986
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377389	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656846
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.257839

Data Type	Minimum	Maximum
Total Settlement [in]	0	5.03927
Total Consolidation Settlement	0	F 02027
[in]	0	5.03927
Virgin Consolidation Settlement	0	3.88997
[in]	O	3.00397
Recompression Consolidation	0	1.58297
Settlement [in]		
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66394
Effective Stress XX [ksf]	-0.2246	9.32551
Effective Stress YY [ksf]	-0.101899	7.45865
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction	0	0
(Immediate) [ksf/ft]		
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]	0.00467522	0.0700654
Total Strain	-0.00467532	0.0790654
Pore Water Pressure [ksf]	-6.00309e-21	2.56387
Excess Pore Water Pressure [ksf]	-6.00309e-21	2.56387
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377389	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656779
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation		100
[%]	0	100
Undrained Shear Strength	0	0.257839

Stage: 183 d (6 m) = 183 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	5.84571
Total Consolidation Settlement	0	E 04E71
[in]	0	5.84571
Virgin Consolidation Settlement	0	4.50005
[in]	· ·	1.50005
Recompression Consolidation	0	1.78292
Settlement [in]		
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.78078
Effective Stress XX [ksf]	-0.2246	9.41631
Effective Stress YY [ksf]	-0.101899	7.54774
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction	0	0
(Immediate) [ksf/ft] Modulus of Subgrade Reaction		
(Consolidation) [ksf/ft]	0	0
Total Strain	-0.00428201	0.0790766
Pore Water Pressure [ksf]	-8.37026e-17	1.88076
Excess Pore Water Pressure [ksf]	-8.37026e-17	1.88076
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377389	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656636
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation		
[ft^2/d]	0	0.64
Hydroconsolidation Settlement		
[in]	0	0
Average Degree of Consolidation	0	100
[%]	U	100
Undrained Shear Strength	0	0.257839

Stage: 365 d (1 y) = 365 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.21035
Total Consolidation Settlement		
[in]	0	6.21035
Virgin Consolidation Settlement [in]	0	4.71963
Recompression Consolidation		
Settlement [in]	0	1.86734
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.98721
Effective Stress XX [ksf]	-0.2246	9.46223
Effective Stress YY [ksf]	-0.101899	7.59207
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		•
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00407327	0.0790794
Pore Water Pressure [ksf]	-8.26748e-17	1.70486
Excess Pore Water Pressure [ksf]	-8.26748e-17	0.965012
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377389	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.65652
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement	0	0
Average Degree of Consolidation	0	100
Undrained Shear Strength	0	0.257839

Stage: 3650 d (10 y) = 3650 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.30455
Total Consolidation Settlement	0	6 20455
[in]	0	6.30455
Virgin Consolidation Settlement	0	4.74227
[in]	G	117 1227
Recompression Consolidation	0	1.88327
Settlement [in]	0	0.0226121
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00188
Effective Stress XX [ksf]	-0.2246	9.47403
Effective Stress YY [ksf]	-0.101899	7.60343
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]		
Total Strain	-0.00390738	0.0790796
Pore Water Pressure [ksf]	-1.35225e-16	1.6848
Excess Pore Water Pressure [ksf]	-9.02465e-06	4.71351e-05
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377389	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement	0	0
[in]		
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.257839

Stage: 36,500 d (100 y) = 36500 d 🕢

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.30455
Total Consolidation Settlement	0	6 20455
[in]	0	6.30455
Virgin Consolidation Settlement	0	4.74227
[in]		==-
Recompression Consolidation Settlement [in]	0	1.88327
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00188
Effective Stress XX [ksf]	-0.2246	9.47403
Effective Stress YY [ksf]	-0.101899	7.60343
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]	O .	O .
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	
(Consolidation) [ksf/ft]	0	0
Total Strain	-0.00390738	0.0790796
Pore Water Pressure [ksf]	-2.08674e-15	1.6848
Excess Pore Water Pressure [ksf]	-8.99054e-06	7.61967e-06
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377389	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement	0	0
[in] Average Degree of Consolidation		
[%]	0	100
Undrained Shear Strength	0	0.257839

Stage: 182,500 d (500 y) = 182500 d 🕢

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.30455
Total Consolidation Settlement	0	6.30455
[in]	O .	0.50455
Virgin Consolidation Settlement	0	4.74227
[in]		
Recompression Consolidation	0	1.88327
Settlement [in]	0	0.0226121
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643 -0.467566	4.72885 2.8005
Loading Stress YY [ksf] Effective Stress ZZ [ksf]	0	6.00188
Effective Stress XX [ksf]	-0.2246	9.47403
Effective Stress YY [ksf]	-0.101899	7.60343
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction		
(Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]	U	O
Total Strain	-0.00390738	0.0790796
Pore Water Pressure [ksf]	-2.14199e-15	1.6848
Excess Pore Water Pressure [ksf]	-8.98793e-06	8.09875e-06
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00377389	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.32068
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	0	0.257839

Embankments

1. Embankment: "Embankment Load 1"

Label	Embankment Load 1		
Center Line	(-4, 83400) to (-4, 83500)		
Near End Angle	90 degrees		
Far End Angle	90 degrees		
Number of Zones	4		
Number of Sections	1		
Zone	Nar	ne	Unit Weight (kips/ft3)
1	New Zone	0.1	15
2	New Zone 2	0.1	.15
3	New Zone 3	0.1	.15
4	New Zone 4	0.1	.25

Soil Layers

Ground Surface Drained: Yes

RT Toe (B-001-0-09)

XY Location:	RT Toe (B-001-0-09): (153.8, 83400)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-743	No
2	2. Stiff to V. Stiff Embankment Fill	0	-743	No
3	3. Loose to M. Dense Embankment Fill	0	-743	Yes
4	Cohesive Roadway Fill	0	-743	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-743	Yes
6	6. M. Dense to Dense Granular	0	-743	Yes
7	4. Stiff to V. Stiff Cohesive	8.5	-743	No
8	8. Soft to M. Stiff Cohesive	0	-734.5	No
9	5. V. Stiff to Hard Cohesive	7.5	-734.5	No
			786.1 -743 -734.5 -727	

RT Slope (B-002-0-09/B-47ER) ←

XY Location:		RT Slope	(B-002-0-09/B-47ER)	: (100, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-769.6	No
2	2. Stiff to V. Stiff Embankment Fill	0	-769.6	No
3	3. Loose to M. Dense Embankment Fill	0	-769.6	Yes
4	Cohesive Roadway Fill	0	-769.6	Yes
5	1. M. Stiff to Stiff Embankment Fill	24.5	-769.6	Yes
6	6. M. Dense to Dense Granular	0	-745.1	Yes
7	4. Stiff to V. Stiff Cohesive	6.9	-745.1	No
8	8. Soft to M. Stiff Cohesive	0	-738.2	No
9	5. V. Stiff to Hard Cohesive	0	-738.2	No
			786.1	

RT Crest (B-002-0-09)

XY Location:	RT Crest (B-002-0-09): (69.9, 83400)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	9.1	-786.1	No
2	2. Stiff to V. Stiff Embankment Fill	0	-777	No
3	3. Loose to M. Dense Embankment Fill	4.5	-777	Yes
4	Cohesive Roadway Fill	0	-772.5	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.5	-772.5	Yes
6	6. M. Dense to Dense Granular	0	-748	Yes
7	4. Stiff to V. Stiff Cohesive	7.4	-748	No
8	8. Soft to M. Stiff Cohesive	0	-740.6	No
9	5. V. Stiff to Hard Cohesive	0	-740.6	No
		(d)	786.1	
			──777 	
			— 748 — 740.6	

CL Crest (B-002-0-09/B-47) <

XY Location:		CL Crest	t (B-002-0-09/B-47): (5	55, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	8.3	-786.1	No
2	2. Stiff to V. Stiff Embankment Fill	0.9	-777.8	No
3	3. Loose to M. Dense Embankment Fill	4.3	-776.9	Yes
4	Cohesive Roadway Fill	0	-772.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	23.4	-772.6	Yes
6	6. M. Dense to Dense Granular	0	-749.2	Yes
7	4. Stiff to V. Stiff Cohesive	7.5	-749.2	No
8	8. Soft to M. Stiff Cohesive	0	-741.7	No
9	5. V. Stiff to Hard Cohesive	0	-741.7	No
		**	786.1 777.8	
		1	772.6	
			713 ft	

LT Crest (B-003-0-09/CU-10C)

XY Location:		LT Crest	(B-003-0-09/CU-10C):	(-4, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	5.1	-786.1	No
2	2. Stiff to V. Stiff Embankment Fill	4.4	-781	No
3	3. Loose to M. Dense Embankment Fill	3.2	-776.6	Yes
4	Cohesive Roadway Fill	0	-773.4	Yes
5	 M. Stiff to Stiff Embankment Fill 	24.8	-773.4	Yes
6	6. M. Dense to Dense Granular	3	-748.6	Yes
7	4. Stiff to V. Stiff Cohesive	0	-745.6	No
8	8. Soft to M. Stiff Cohesive	0	-745.6	No
9	5. V. Stiff to Hard Cohesive	0	-745.6	No
			786.1 781 776.6	
			<u> </u>	

XY Location:		LT Toe (E	3-003-0-09): (-48, 834	100)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	0	-760.6	No
2	Stiff to V. Stiff Embankment Fill	0	-760.6	No
3	3. Loose to M. Dense Embankment Fill	0	-760.6	Yes
4	Cohesive Roadway Fill	0	-760.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	16.6	-760.6	Yes
6	6. M. Dense to Dense Granular	0	-744	Yes
7	4. Stiff to V. Stiff Cohesive	4	-744	No
8	8. Soft to M. Stiff Cohesive	6.5	-740	No
9	5. V. Stiff to Hard Cohesive	0	-733.5	No
			786.1 	

LT Fill (B-003-0-23)

XY Location:		LT Fill (B	3-003-0-23): (-84, 8340	-
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-755.8	No
2	2. Stiff to V. Stiff Embankment Fill	0	-755.8	No
3	3. Loose to M. Dense Embankment Fill	0	-755.8	Yes
4	Cohesive Roadway Fill	21.4	-755.8	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-734.4	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.2	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-724.2	No
			786.1 —755.8	
			 734.4	
			724.2 713 ft	

LT New Toe (B-003-0-23/SRB-3)

XY Location:		LT New 1	Гое (B-003-0-23/SRB-3	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-752.3	No
2	2. Stiff to V. Stiff Embankment Fill	0	-752.3	No
3	3. Loose to M. Dense Embankment Fill	0	-752.3	Yes
4	Cohesive Roadway Fill	27.2	-752.3	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-725.1	Yes
6	6. M. Dense to Dense Granular	0	-725.1	Yes
7	4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8	8. Soft to M. Stiff Cohesive	0	-717.4	No
9	5. V. Stiff to Hard Cohesive	0	-717.4	No
			786.1 — 752.3	

LT Roadway Slope (SRB-3) ←

XY Location:		LT Roadw	ay Slope (SRB-3): (-1	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-749.2	No
2	2. Stiff to V. Stiff Embankment Fill	0	-749.2	No
3	3. Loose to M. Dense Embankment Fill	0	-749.2	Yes
4	Cohesive Roadway Fill	26.1	-749.2	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-723.1	Yes
6	6. M. Dense to Dense Granular	0	-723.1	Yes
7	4. Stiff to V. Stiff Cohesive	10.1	-723.1	No
8	8. Soft to M. Stiff Cohesive	0	-713	No
9	5. V. Stiff to Hard Cohesive	0	-713	No
			786.1 749.2 723.1 713	

RT Toe 2 (B-001-0-09) <

XY Location:	RT Toe 2 (B-001-0-09): (153.8, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-743	No
2	2. Stiff to V. Stiff Embankment Fill	0	-743	No
3	3. Loose to M. Dense Embankment Fill	0	-743	Yes
4	Cohesive Roadway Fill	0	-743	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-743	Yes
6	6. M. Dense to Dense Granular	0	-743	Yes
7	4. Stiff to V. Stiff Cohesive	8.5	-743	No
8	8. Soft to M. Stiff Cohesive	0	-734.5	No
9	5. V. Stiff to Hard Cohesive	7.5	-734.5	No
			786.1 -743 -734.5 -727 -713 ft	

RT Slope 2 (B-002-0-09/B-47ER) ←

RT Crest 2 (B-002-0-09)

XY Location:		RT Crest 2	2 (B-002-0-09): (69.9	, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	9.1	-786.1	No
2	2. Stiff to V. Stiff Embankment Fill	0	-777	No
3	3. Loose to M. Dense Embankment Fill	4.5	-777	Yes
4	Cohesive Roadway Fill	0	-772.5	Yes
5	1. M. Stiff to Stiff Embankment Fill	24.5	-772.5	Yes
6	6. M. Dense to Dense Granular	0	-748	Yes
7	4. Stiff to V. Stiff Cohesive	7.4	-748	No
8	8. Soft to M. Stiff Cohesive	0	-740.6	No
9	5. V. Stiff to Hard Cohesive	0	-740.6	No
			786.1	
			748 	

CL Crest 2 (B-002-0-09/B-47)

XY Location:	CL Crest 2 (B-002-0-09/B-47): (55, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	 M. Stiff to Stiff Embankment Fill 	8.3	-786.1	No
2	Stiff to V. Stiff Embankment Fill	0.9	-777.8	No
3	3. Loose to M. Dense Embankment Fill	4.3	-776.9	Yes
4	Cohesive Roadway Fill	0	-772.6	Yes
5	 M. Stiff to Stiff Embankment Fill 	23.4	-772.6	Yes
6	6. M. Dense to Dense Granular	0	-749.2	Yes
7	4. Stiff to V. Stiff Cohesive	7.5	-749.2	No
8	8. Soft to M. Stiff Cohesive	0	-741.7	No
9	5. V. Stiff to Hard Cohesive	0	-741.7	No
			786.1 = 777.8 - 772.6	
			—749.2 —741.7	
			713 ft	

LT Crest 2 (B-003-0-09/CU-10C) <

LT Toe 2 (B-003-0-09)

XY Location:		LT Toe 2	(B-003-0-09): (-48, 83	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-760.6	No
2	2. Stiff to V. Stiff Embankment Fill	0	-760.6	No
3	3. Loose to M. Dense Embankment Fill	0	-760.6	Yes
4	Cohesive Roadway Fill	0	-760.6	Yes
5	1. M. Stiff to Stiff Embankment Fill	16.6	-760.6	Yes
6	6. M. Dense to Dense Granular	0	-744	Yes
7	4. Stiff to V. Stiff Cohesive	4	-744	No
8	8. Soft to M. Stiff Cohesive	6.5	-740	No
9	5. V. Stiff to Hard Cohesive	0	-733.5	No
			786.1 	
			733.5 713 ft	

LT Fill 2 (B-003-0-23) <

LT New Toe 2 (B-003-0-23/SRB-3)

XY Location:		LT New	Toe 2 (B-003-0-23/SR	3-3): (-137, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-752.3	No
2	2. Stiff to V. Stiff Embankment Fill	0	-752.3	No
3	3. Loose to M. Dense Embankment Fill	0	-752.3	Yes
4	Cohesive Roadway Fill	27.2	-752.3	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-725.1	Yes
6	6. M. Dense to Dense Granular	0	-725.1	Yes
7	4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8	8. Soft to M. Stiff Cohesive	0	-717.4	No
9	5. V. Stiff to Hard Cohesive	0	-717.4	No
			786.1 752.3	

LT Roadway Slope 2 (SRB-3) ←

XY Location:		LT Roadw	ay Slope 2 (SRB-3): ((-171, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-749.2	No
2	2. Stiff to V. Stiff Embankment Fill	0	-749.2	No
3	3. Loose to M. Dense Embankment Fill	0	-749.2	Yes
4	Cohesive Roadway Fill	26.1	-749.2	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-723.1	Yes
6	6. M. Dense to Dense Granular	0	-723.1	Yes
7	4. Stiff to V. Stiff Cohesive	10.1	-723.1	No
8	8. Soft to M. Stiff Cohesive	0	-713	No
9	5. V. Stiff to Hard Cohesive	0	-713	No
			786.1	
			723.1 713	

LT Special Bench (B-003-0-09)←

XY Location:		LT Specia	al Bench (B-003-0-09)	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-758.9	No
2	2. Stiff to V. Stiff Embankment Fill	0	-758.9	No
3	3. Loose to M. Dense Embankment Fill	0	-758.9	Yes
4	Cohesive Roadway Fill	5.8	-758.9	Yes
5	1. M. Stiff to Stiff Embankment Fill	18.7	-753.1	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.9	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-723.5	No
			786.1	

LT Special Bench 2 (B-003-0-09) ←

XY Location:		LT Speci	al Bench 2 (B-003-0-0	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-758.9	No
2	2. Stiff to V. Stiff Embankment Fill	0	-758.9	No
3	3. Loose to M. Dense Embankment Fill	0	-758.9	Yes
4	Cohesive Roadway Fill	5.8	-758.9	Yes
5	1. M. Stiff to Stiff Embankment Fill	18.7	-753.1	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.9	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-723.5	No
			786.1 —758.9 —753.1 —734.4 —723.5 —713 ft	

Soil Properties

Property	1. M. Stiff to Stiff Embankment Fill	2. Stiff to V. Stiff Embankment Fill	3. Loose to M. Dense Embankment Fill	4. Stiff to V. Stiff Cohesive
Color				
Unit Weight [kips/ft3]	0.125	0.125	0.125	0.125
Saturated Unit Weight [kips/ft3]	0.13	0.13	0.13	0.13
К0	0.61	0.59	0.48	0.59
Immediate Settlement	Disabled	Disabled	Enabled	Disabled
Es [ksf] Esur [ksf]	-	-	550 550	-
Primary Consolidation	Enabled	Enabled	Disabled	Enabled
Material Type Cc Cr e0 Pc [ksf] OCR	Non-Linear 0.171 0.017 0.559 18 - 0.13	Non-Linear 0.141 0.014 0.59 18 - 0.16	- - - -	Non-Linear 0.342 0.034 0.466 - 1 0.19
Cv [ft2/d] Cvr [ft2/d] B-bar	0.13 0.13 1	0.16 1	- -	0.19 1
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S Undrained Su m Piezo Line ID	0.2 0.8 1	0.2 0.8 1	0.2 0.8 1	0.2 0.8 1
Property	5. V. Stiff to Hard Cohesive	6. M. Dense to Dense Granular	8. Soft to M. Stiff Cohesive	Cohesive Roadway Fill
Color				
Unit Weight [kips/ft3]	0.13	0.13	0.135	0.125
Saturated Unit Weight [kips/ft3]	0.135	0.135	0.14	0.13
K0	0.56	0.44	0.64	0.61
Immediate Settlement	Disabled	Enabled	Disabled	Disabled
Es [ksf]	-	950	-	-
Esur [ksf]	-	950	-	-
Primary Consolidation	Enabled	Disabled	Enabled	Enabled
Material Type Cc Cr	Non-Linear 0.198 0.02	- -	Non-Linear 0.144 0.014	Non-Linear 0.171 0.017

e0	0.423	-	0.657	0.559	
Pc [ksf]	-	-	-	18	
OCR	1	-	1	-	
Cv [ft2/d]	0.48	-	0.64	0.13	
Cvr [ft2/d]	0.48	-	0.64	0.13	
B-bar	1	-	1	1	
Undrained Su A [kips/ft2]	0	0	0	0	
Undrained Su S	0.2	0.2	0.2	0.2	
Undrained Su m	0.8	0.8	0.8	0.8	
Piezo Line ID	1	1	1	1	

Groundwater

Groundwater method Water Unit Weight Piezometric Lines 0.0624 kips/ft3

Generating excess pore pressure above water table

Piezometric Line Entities

ID	Depth (ft)
1	-740 ft

Field Point Grid

Number of points 520 Expansion Factor 1

Grid Coordinates

	X [ft]	Y [f	t]
203.8		83550	
203.8		83350	
-221		83350	
-221		83550	

7			
	SIS	ier	1ce
SETTLE3 5.007			

MEG-33-13.96			
Analysis Description	Sta. 834+50 No.	rmally Consolidated Embankment Cohesive Roadway Fill	
Drawn By	A. Baratta	Company HDR	
Date 4/25/2024, 12:56:29 PM File Name Sta. 834+50 Settlement_No Granular_Normally Consolidated Embankment.s3z			

MEG-33-13.96 HDR

Date Created: 2024/05/07, 06:06:08

Table of Contents

Project Settings	4
Stage Settings	5
Results	6
Stage: 0 d = 0 d	6
Stage: 7 d = 7 d	6
Stage: 14 d = 14 d	7
Stage: 21 d = 21 d	8
Stage: 30 d (1 m) = 30 d	9
Stage: 60 d (2 m) = 60 d	10
Stage: 90 d (3 m) = 90 d	11
Stage: 183 d (6 m) = 183 d	12
Stage: 243 d (8 m) = 243 d	13
Stage: 365 d (1 y) = 365 d	14
Stage: 426 d (14 m) = 426 d	15
Stage: 3650 d (10 y) = 3650 d	16
Stage: 36,500 d (100 y) = 36500 d	17
Stage: 182,500 d (500 y) = 182500 d	18
Embankments	20
1. Embankment: "Embankment Load 1"	20
Soil Layers	21
RT Toe (B-001-0-09)	21
RT Slope (B-002-0-09/B-47ER)	21
RT Crest (B-002-0-09)	22
CL Crest (B-002-0-09/B-47)	23
LT Crest (B-003-0-09/CU-10C)	24
LT Toe (B-003-0-09)	25
LT Fill (B-003-0-23)	26
LT New Toe (B-003-0-23/SRB-3)	27
LT Roadway Slope (SRB-3)	28
RT Toe 2 (B-001-0-09)	29
RT Slope 2 (B-002-0-09/B-47ER)	30
RT Crest 2 (B-002-0-09)	31
CL Crest 2 (B-002-0-09/B-47)	32
LT Crest 2 (B-003-0-09/CU-10C)	33
LT Toe 2 (B-003-0-09)	34
LT Fill 2 (B-003-0-23)	35
LT New Toe 2 (B-003-0-23/SRB-3)	36
LT Roadway Slope 2 (SRB-3)	37
LT Special Bench (B-003-0-09)	38
LT Special Bench 2 (B-003-0-09)	39
Soil Properties	41
Groundwater	43

Piezometric Line Entities	43
Field Point Grid	44
Grid Coordinates	44

Settle3 Analysis Information

MEG-33-13.96

Project Settings

Document Name

Project Title

Analysis

Author Company Date Created

Stress Computation Method

Time-dependent Consolidation Analysis

Time Units

Permeability Units

Minimum settlement ratio for subgrade modulus Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Sta. 834+50 Settlement_No Granular_Normally

Consolidated Embankment.s3z

MEG-33-13.96

Sta. 834+50 Normally Consolidated Embankment

Cohesive Roadway Fill

A. Baratta HDR

4/25/2024, 12:56:29 PM

Boussinesq

days feet/day 0.9

Stage Settings

Stage #	Name	Time [days]
1	0 d	0
2	7 d	7
3	14 d	14
4	21 d	21
5	30 d (1 m)	30
6	60 d (2 m)	60
7	90 d (3 m)	90
8	183 d (6 m)	183
9	243 d (8 m)	243
10	365 d (1 y)	365
11	426 d (14 m)	426
12	3650 d (10 y)	3650
13	36,500 d (100 y)	36500
14	182,500 d (500 y)	182500

Results

Time taken to compute: 15.4838 seconds

Stage: 0 d = 0 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.0236131
Total Consolidation Settlement	0	0
[in]	O .	
Virgin Consolidation Settlement	0	0
[in] Recompression Consolidation		
Settlement [in]	0	0
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66246
Effective Stress XX [ksf]	-0.22514	6.86472
Effective Stress YY [ksf]	-0.103538	3.95837
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	0	0.00226711
Pore Water Pressure [ksf]	0	4.70196
Excess Pore Water Pressure [ksf]	0	4.70196
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [ksf]	0.000616295	18
Over-consolidation Ratio	1	36781.6
Void Ratio	0	0.657
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-1.11022e-16	5.55112e-17

Stage: 7 d = 7 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00317638	4.60504
Total Consolidation Settlement		
[in]	-0.00317638	4.60504
Virgin Consolidation Settlement [in]	0	4.29763
Recompression Consolidation Settlement [in]	-0.183666	0.539431
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66285
Effective Stress XX [ksf]	-0.691545	9.06216
Effective Stress YY [ksf]	-0.691545	6.59317
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0161124	0.122511
Pore Water Pressure [ksf]	0	3.64819
Excess Pore Water Pressure [ksf]	0	3.62116
Degree of Consolidation [%]	0	99.9049
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.657195
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Stage: 14 d = 14 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	-0.00277535	6.19119
Total Consolidation Settlement		
[in]	-0.00277535	6.19119
Virgin Consolidation Settlement [in]	0	5.88309
Recompression Consolidation Settlement [in]	-0.197553	0.692623
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66301
Effective Stress XX [ksf]	-0.87027	9.06216
Effective Stress YY [ksf]	-0.87027	6.59317
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00976081	0.122728
Pore Water Pressure [ksf]	0	3.57509
Excess Pore Water Pressure [ksf]	0	3.45039
Degree of Consolidation [%]	0	99.9999
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.65725
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Data Type	Minimum	Maximum
Total Settlement [in]	-0.000586058	7.3332
Total Consolidation Settlement		
[in]	-0.000586058	7.3332
Virgin Consolidation Settlement	0	7.02361
[in]	U	7.02301
Recompression Consolidation Settlement [in]	-0.203589	0.793353
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66314
Effective Stress XX [ksf]	-0.90623	9.06216
Effective Stress YY [ksf]	-0.90623	6.92109
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0104642	0.122819
Pore Water Pressure [ksf]	0	3.41387
Excess Pore Water Pressure [ksf]	0	3.40605
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.657115
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Data Type	Minimum	Maximum
Total Settlement [in]	0	8.48142
Total Consolidation Settlement		
[in]	0	8.48142
Virgin Consolidation Settlement	0	8.17172
[in]		
Recompression Consolidation Settlement [in]	-0.200934	0.888704
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66328
Effective Stress XX [ksf]	-0.899321	9.06216
Effective Stress YY [ksf]	-0.899321	7.1427
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.0102908	0.122888
Pore Water Pressure [ksf]	0	3.29631
Excess Pore Water Pressure [ksf]	0	3.29631
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656916
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Data Type	Minimum	Maximum
Total Settlement [in]	0	11.0414
Total Consolidation Settlement		
[in]	0	11.0414
Virgin Consolidation Settlement	0	10.7317
[in]		10.7317
Recompression Consolidation Settlement [in]	-0.176145	1.08263
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66366
Effective Stress XX [ksf]	-1.04145	9.24708
Effective Stress YY [ksf]	-1.04145	7.38059
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00735909	0.122991
Pore Water Pressure [ksf]	-5.09681e-21	2.83986
Excess Pore Water Pressure [ksf]	-5.09681e-21	2.83986
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656846
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Data Type	Minimum	Maximum
Total Settlement [in]	0	12.6442
Total Consolidation Settlement		
[in]	0	12.6442
Virgin Consolidation Settlement [in]	0	12.3345
Recompression Consolidation Settlement [in]	-0.203076	1.19482
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.66394
Effective Stress XX [ksf]	-1.02286	9.32551
Effective Stress YY [ksf]	-1.02286	7.45865
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00991128	0.12303
Pore Water Pressure [ksf]	-6.00309e-21	2.56387
Excess Pore Water Pressure [ksf]	-6.00309e-21	2.56387
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656779
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Stage: 183 d (6 m) = 183 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	15.2299
Total Consolidation Settlement		
[in]	0	15.2299
Virgin Consolidation Settlement	0	14.9202
[in]	O .	14.9202
Recompression Consolidation Settlement [in]	-0.184344	1.38479
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.78078
Effective Stress XX [ksf]	-0.477884	9.41631
Effective Stress YY [ksf]	-0.477884	7.54774
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00502732	0.123079
Pore Water Pressure [ksf]	-8.37026e-17	1.88076
Excess Pore Water Pressure [ksf]	-8.37026e-17	1.88076
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656636
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Stage: 243 d (8 m) = 243 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	16.0478
Total Consolidation Settlement	0	16.0478
[in]	O .	10.0476
Virgin Consolidation Settlement	0	15.7381
[in]		
Recompression Consolidation Settlement [in]	-0.159325	1.47776
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.91147
Effective Stress XX [ksf]	-0.2246	9.44016
Effective Stress YY [ksf]	-0.141309	7.57081
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]	0	0
Total Strain	-0.00436739	0.123094
Pore Water Pressure [ksf]	-8.3228e-17	1.72198
Excess Pore Water Pressure [ksf]	-8.3228e-17	1.50736
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656582
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation		
[%]	0	100
Undrained Shear Strength	-0.0347854	0.597442

Stage: 365 d (1 y) = 365 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	16.9088
Total Consolidation Settlement		
[in]	0	16.9088
Virgin Consolidation Settlement [in]	0	16.5991
Recompression Consolidation Settlement [in]	-0.115347	1.59426
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.98721
Effective Stress XX [ksf]	-0.2246	9.46223
Effective Stress YY [ksf]	-0.101899	7.59207
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00407327	0.123111
Pore Water Pressure [ksf]	-8.2483e-17	1.70486
Excess Pore Water Pressure [ksf]	-8.2483e-17	0.973886
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.65652
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0320936	0.597442

Stage: 426 d (14 m) = 426 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	17.1358
Total Consolidation Settlement		
[in]	0	17.1358
Virgin Consolidation Settlement [in]	0	16.8261
Recompression Consolidation		
Settlement [in]	-0.111684	1.63083
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	5.99597
Effective Stress XX [ksf]	-0.2246	9.46704
Effective Stress YY [ksf]	-0.101899	7.59671
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction	0	0
(Consolidation) [ksf/ft]		
Total Strain	-0.00403951	0.123116
Pore Water Pressure [ksf]	-0.000478408	1.69954
Excess Pore Water Pressure [ksf]	-0.000478408	0.863121
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656504
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement	0	0
[in]		
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-0.0440821	0.597442

Stage: 3650 d (10 y) = 3650 d Header for table on following page (software output limitation)

Data Type	Minimum	Maximum
Total Settlement [in]	0	17.6514
Total Consolidation Settlement		
[in]	0	17.6514
Virgin Consolidation Settlement [in]	0	17.3417
Recompression Consolidation Settlement [in]	-6.18195e-05	1.74983
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00189
Effective Stress XX [ksf]	-0.2246	9.47403
Effective Stress YY [ksf]	-0.101899	7.60343
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00390738	0.123128
Pore Water Pressure [ksf]	-0.00194346	1.6848
Excess Pore Water Pressure [ksf]	-0.00194346	0.00220185
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-8.83605e-05	0.597442

Stage: 36,500 d (100 y) = 36500 d <

Data Type	Minimum	Maximum
Total Settlement [in]	0	17.6514
Total Consolidation Settlement	0	17.6514
[in]	0	17.6514
Virgin Consolidation Settlement	0	17.3417
[in]		- 12 12
Recompression Consolidation Settlement [in]	-3.51117e-05	1.74983
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00188
Effective Stress XX [ksf]	-0.2246	9.47403
Effective Stress YY [ksf]	-0.101899	7.60343
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction	0	0
(Total) [ksf/ft]		
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.00390738	0.123128
Pore Water Pressure [ksf]	-0.00188516	1.6848
Excess Pore Water Pressure [ksf]	-0.00188516	0.00198162
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation [ft^2/d]	0	0.64
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	100
Undrained Shear Strength	-8.83605e-05	0.597442

Stage: 182,500 d (500 y) = 182500 d Header for table or

Data Type	Minimum	Maximum
Total Settlement [in]	0	17.6514
Total Consolidation Settlement	0	17.6514
[in]	U	17.0314
Virgin Consolidation Settlement	0	17.3417
[in]		17.3 117
Recompression Consolidation	-2.56497e-05	1.74983
Settlement [in]	0	0.0226121
Immediate Settlement [in]	0	0.0236131
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	4.70196
Loading Stress XX [ksf]	-1.49643	4.72885
Loading Stress YY [ksf]	-0.467566	2.8005
Effective Stress ZZ [ksf]	0	6.00189
Effective Stress XX [ksf]	-0.2246	9.47403
Effective Stress YY [ksf]	-0.101899	7.60343
Total Stress ZZ [ksf]	0	7.0265
Total Stress XX [ksf]	-0.2246	10.4305
Total Stress YY [ksf]	-0.101899	7.60343
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction		
(Consolidation) [ksf/ft]	0	0
Total Strain	-0.00390738	0.123128
Pore Water Pressure [ksf]	-0.00198524	1.6848
Excess Pore Water Pressure [ksf]	-0.00198524	0.00184915
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.000629845	18
Over-consolidation Ratio	1	32291.1
Void Ratio	0	0.656473
Permeability [ft/d]	0	0.627714
Coefficient of Consolidation	0	0.64
[ft^2/d]	U	0.04
Hydroconsolidation Settlement	0	0
[in]		
Average Degree of Consolidation	0	100
[%]		
Undrained Shear Strength	-8.83605e-05	0.597442

Embankments

1. Embankment: "Embankment Load 1"

Label	Embankment Load 1		
Center Line	(-4, 83400) to (-4, 83500)		
Near End Angle		90 degrees	
Far End Angle		90 degrees	
Number of Zones	4		
Number of Sections		1	
Zone	Na	me	Unit Weight (kips/ft3)
1	New Zone	0.	115
2	New Zone 2 0.115		
3	New Zone 3 0.115		
4	New Zone 4	0.	125

Soil Layers

Ground Surface Drained: Yes

RT Toe (B-001-0-09)

XY Location:	RT Toe (B-001-0-09): (153.8, 83400)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-743	No
2	2. Stiff to V. Stiff Embankment Fill 3. Loose to M.	0	-743	No
3	Dense Embankment	0	-743	Yes
4	Cohesive Roadway Fill	0	-743	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-743	Yes
6	6. M. Dense to Dense Granular	0	-743	Yes
7	4. Stiff to V. Stiff Cohesive	8.5	-743	No
8	8. Soft to M. Stiff Cohesive	0	-734.5	No
9	5. V. Stiff to Hard Cohesive	7.5	-734.5	No
			786.1 -743 -734.5	

RT Slope (B-002-0-09/B-47ER)

RT Crest (B-002-0-09) <

CL Crest (B-002-0-09/B-47)

LT Crest (B-003-0-09/CU-10C) <

LT Toe (B-003-0-09) Header for point on following page (software output limitation)

XY Location:		LT Toe (B	-003-0-09): (-48, 834	00)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-760.6	No
2	2. Stiff to V. Stiff Embankment Fill	0	-760.6	No
3	3. Loose to M. Dense Embankment Fill	0	-760.6	Yes
4	Cohesive Roadway Fill	0	-760.6	Yes
5	1. M. Stiff to Stiff Embankment Fill	16.6	-760.6	Yes
6	6. M. Dense to Dense Granular	0	-744	Yes
7	4. Stiff to V. Stiff Cohesive	4	-744	No
8	8. Soft to M. Stiff Cohesive	6.5	-740	No
9	5. V. Stiff to Hard Cohesive	0	-733.5	No
			786.1	
			744	
			733.5	
			J _{713 ft}	

LT Fill (B-003-0-23) <

XY Location:		LT Fill (B	3-003-0-23): (-84, 8340	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-755.8	No
2	2. Stiff to V. Stiff Embankment Fill	0	-755.8	No
3	3. Loose to M. Dense Embankment Fill	0	-755.8	Yes
4	Cohesive Roadway Fill	21.4	-755.8	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-734.4	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.2	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-724.2	No
			786.1 —755.8	
				
			724.2 	

LT New Toe (B-003-0-23/SRB-3)

XY Location:		LT New	Toe (B-003-0-23/SRB-	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-752.3	No
2	2. Stiff to V. Stiff Embankment Fill	0	-752.3	No
3	3. Loose to M. Dense Embankment Fill	0	-752.3	Yes
4	Cohesive Roadway Fill	27.2	-752.3	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-725.1	Yes
6	6. M. Dense to Dense Granular	0	-725.1	Yes
7	4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8	8. Soft to M. Stiff Cohesive	0	-717.4	No
9	5. V. Stiff to Hard Cohesive	0	-717.4	No
			786.1 — 752.3	
			725.1 717.4 713 ft	

LT Roadway Slope (SRB-3)←

RT Toe 2 (B-001-0-09)

XY Location:		RT Toe 2	(B-001-0-09): (153.8	1
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-743	No
2	2. Stiff to V. Stiff Embankment Fill	0	-743	No
3	3. Loose to M. Dense Embankment Fill	0	-743	Yes
4	Cohesive Roadway Fill	0	-743	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-743	Yes
6	6. M. Dense to Dense Granular	0	-743	Yes
7	4. Stiff to V. Stiff Cohesive	8.5	-743	No
8	8. Soft to M. Stiff Cohesive	0	-734.5	No
9	5. V. Stiff to Hard Cohesive	7.5	-734.5	No
			786.1 - 743 - 734.5	
			727 713 ft	

RT Slope 2 (B-002-0-09/B-47ER) ←

XY Location:		RT Slope	e 2 (B-002-0-09/B-47EI	R): (100, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-769.6	No
2	2. Stiff to V. Stiff Embankment Fill	0	-769.6	No
3	3. Loose to M. Dense Embankment Fill	0	-769.6	Yes
4	Cohesive Roadway Fill	0	-769.6	Yes
5	1. M. Stiff to Stiff Embankment Fill	24.5	-769.6	Yes
6	6. M. Dense to Dense Granular	0	-745.1	Yes
7	4. Stiff to V. Stiff Cohesive	6.9	-745.1	No
8	8. Soft to M. Stiff Cohesive	0	-738.2	No
9	5. V. Stiff to Hard Cohesive	0	-738.2	No
			786.1 —769.6	
			→ 745.1	
			738.2	
			713 ft	

RT Crest 2 (B-002-0-09) <

CL Crest 2 (B-002-0-09/B-47) <

LT Crest 2 (B-003-0-09/CU-10C) ←

LT Toe 2 (B-003-0-09)

LT Fill 2 (B-003-0-23) <

XY Location:		LT Fill 2	(B-003-0-23): (-84, 83	
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-755.8	No
2	2. Stiff to V. Stiff Embankment Fill	0	-755.8	No
3	3. Loose to M. Dense Embankment Fill	0	-755.8	Yes
4	Cohesive Roadway Fill	21.4	-755.8	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-734.4	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.2	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-724.2	No
			786.1 —755.8	
			734.4	
			724.2 713 ft	

LT New Toe 2 (B-003-0-23/SRB-3)

XY Location:		LT New 1	Toe 2 (B-003-0-23/SRE	3-3): (-137, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-752.3	No
2	2. Stiff to V. Stiff Embankment Fill	0	-752.3	No
3	3. Loose to M. Dense Embankment Fill	0	-752.3	Yes
4	Cohesive Roadway Fill	27.2	-752.3	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-725.1	Yes
6	6. M. Dense to Dense Granular	0	-725.1	Yes
7	4. Stiff to V. Stiff Cohesive	7.7	-725.1	No
8	8. Soft to M. Stiff Cohesive	0	-717.4	No
9	5. V. Stiff to Hard Cohesive	0	-717.4	No
			786.1 - 752.3 - 725.1 - 717.4 713 ft	

LT Roadway Slope 2 (SRB-3)←

XY Location:		LT Roadw	ay Slope 2 (SRB-3): ((-171, 83500)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-749.2	No
2	2. Stiff to V. Stiff Embankment Fill	0	-749.2	No
3	3. Loose to M. Dense Embankment Fill	0	-749.2	Yes
4	Cohesive Roadway Fill	26.1	-749.2	Yes
5	1. M. Stiff to Stiff Embankment Fill	0	-723.1	Yes
6	6. M. Dense to Dense Granular	0	-723.1	Yes
7	4. Stiff to V. Stiff Cohesive	10.1	-723.1	No
8	8. Soft to M. Stiff Cohesive	0	-713	No
9	5. V. Stiff to Hard Cohesive	0	-713	No
			786.1 749.2 723.1	
			723.1	

LT Special Bench (B-003-0-09)

XY Location:		LT Specia	al Bench (B-003-0-09):	: (-60, 83400)
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-758.9	No
2	2. Stiff to V. Stiff Embankment Fill	0	-758.9	No
3	3. Loose to M. Dense Embankment Fill	0	-758.9	Yes
4	Cohesive Roadway Fill	5.8	-758.9	Yes
5	1. M. Stiff to Stiff Embankment Fill	18.7	-753.1	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.9	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-723.5	No
			786.1 - 758.9 - 753.1 - 734.4 - 723.5	

LT Special Bench 2 (B-003-0-09) ∠

XY Location:	LT Special Bench 2 (B-003-0-09): (-60, 83500)			
Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	1. M. Stiff to Stiff Embankment Fill	0	-758.9	No
2	2. Stiff to V. Stiff Embankment Fill	0	-758.9	No
3	3. Loose to M. Dense Embankment Fill	0	-758.9	Yes
4	Cohesive Roadway Fill	5.8	-758.9	Yes
5	1. M. Stiff to Stiff Embankment Fill	18.7	-753.1	Yes
6	6. M. Dense to Dense Granular	0	-734.4	Yes
7	4. Stiff to V. Stiff Cohesive	0	-734.4	No
8	8. Soft to M. Stiff Cohesive	10.9	-734.4	No
9	5. V. Stiff to Hard Cohesive	0	-723.5	No
			786.1 —758.9 —753.1 —734.4 —723.5 —713 ft	

Soil Properties

Property	1. M. Stiff to Stiff Embankment	2. Stiff to V. Stiff Embankment	3. Loose to M. Dense Embankment	4. Stiff to V. Stiff Cohesive
Color	Fill	Fill	Fill	
Unit Weight				
[kips/ft3]	0.125	0.125	0.125	0.125
Saturated Unit Weight [kips/ft3]	0.13	0.13	0.13	0.13
К0	0.61	0.59	0.48	0.59
Immediate Settlement	Disabled	Disabled	Enabled	Disabled
Es [ksf]	-	_	550	-
Esur [ksf]	-	-	550	-
Primary Consolidation	Enabled	Enabled	Disabled	Enabled
Material Type	Non-Linear	Non-Linear		Non-Linear
Cc	0.171	0.141	-	0.342
Cr	0.017	0.014	-	0.034
e0	0.559	0.59	-	0.466
OCR	1	1	-	1
Cv [ft2/d]	0.13	0.16	-	0.19
Cvr [ft2/d]	0.13	0.16	-	0.19
B-bar	1	1	-	1
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8
Piezo Line ID	1	1	1	1
Property	5. V. Stiff to Hard Cohesive	6. M. Dense to Dense Granular	8. Soft to M. Stiff Cohesive	Cohesive Roadway Fill
Color				
Unit Weight [kips/ft3]	0.13	0.13	0.135	0.125
Saturated Unit Weight [kips/ft3]	0.135	0.135	0.14	0.13
К0	0.56	0.44	0.64	0.61
Immediate Settlement	Disabled	Enabled	Disabled	Disabled
Es [ksf]	-	950	-	-
Esur [ksf]	-	950	-	-
Primary Consolidation	Enabled	Disabled	Enabled	Enabled
Material Type	Non-Linear		Non-Linear	Non-Linear
Сс	0.198	-	0.144	0.171
Cr	0.02	-	0.014	0.017
e0	0.423	-	0.657	0.559

Pc [ksf]	-	-	-	18	
OCR	1	-	1	-	
Cv [ft2/d]	0.48	-	0.64	0.13	
Cvr [ft2/d]	0.48	-	0.64	0.13	
B-bar	1	-	1	1	
Undrained Su A [kips/ft2]	0	0	0	0	
Undrained Su S	0.2	0.2	0.2	0.2	
Undrained Su m	0.8	0.8	0.8	0.8	
Piezo Line ID	1	1	1	1	

Groundwater

Groundwater method Water Unit Weight Piezometric Lines 0.0624 kips/ft3

Generating excess pore pressure above water table

Piezometric Line Entities

ID	Depth (ft)	
1	-740 ft	

Field Point Grid

Number of points 520 Expansion Factor 1

Grid Coordinates

	X [ft]	Υ [1	t]
203.8		83550	
203.8		83350	
-221		83350	
-221		83550	

Sta. 904+50

References

910+00

STA. -OO TO STA SOIL PROFILE 884+00

MEIGS COUNTY MEG-124-26.66

٠ ٧

10/36

C

890+00 891+00 892+00 893+00 894+00 895+00 896+00 897+00 898+00 899+00 900+00 901+00 902+00 903+00 904+00

CORE LOSS = 2% RQO = 40%

MASSIVE, SLIGHTLY JOINTEO.

MICACEOUS, FINE GRAINEO.

CORE LOSS - 3%

© RC-3 SILTSTONE; GRAY, SOFT TO MEDIUM HARD, SLIGHLTY

SANOSTONE; GRAY, MODERATELY HARO, MASSIVE,

905+00

R00 - 53%

0 5 \triangleleft S SOIL 00 ∞ ∞ \triangleleft \circ 99 COUN .26. , 2, 2, \odot J. -5 ME G

630

620

HORIZONTAL SCALE IN FEE

630

620

30/40/50-5"

50-5"

BORING B-16

RGO - 56%

A RC-1 SILTSTONE; GRAY, MOOERATELY HARO, MASSIVE, MOOERATELY JOINTEO, TRACE LIMESTONE INCLUSIONS, FOSSILIFEROUS,

CORE LOSS - 10%

889+00

184.

From "Soil Profile Begin at Morning Star.pdf"

NDTE: NP SHOWN IN LIDUID LIMIT AND PLASTICITY INDEX COLUMNS INDICATES THAT THE MATERIAL IS NON-PLASTIC.

LOCATIDN & OFFSET	DEPTH % % % % % % DDDT FRDM TD AGD C.S. F.S. SILT CLAY L.L. P.I. W.C. CLASS 8DRINGS REFERENCED TD CENTERLINE	LDCATION & DFFSET DEPTH % % % % % % % % % % % % % % % % % % %
(B-1) 859+50• 50′ LT	0-1.5 SAME AS 1.5-3.0 24 VISUAL 1.5-3.0 0 15 VISUAL 3.5-5.0 SAME AS 1.5-3.0 8 VISUAL 6.0-7.5 8RDWN TD REDDISH 8RDWN WEATHERED MUDSTONE VISUAL 8.5-9.5 SAME AS 6.0-7.5 VISUAL 13.5-14.5 LIGHT 8RDWN WEATHERED SILTSTDNE VISUAL	(B-14) 885+50, Q
(8-2) 861+50, 30' RT	0-1.5 SAME AS 1.5-3.0 27 VISUAL 1.5-3.0 2 18 14 33 33 41 19 19 A-7-6 3.5-5.0 SAME AS 1.5-3.0 16 VISUAL 6.0-7.5 8RDWN WEATHERED MUDSTDNE VISUAL 9.5-9.0 BRDWN WEATHERED SANDSTDNE VISUAL VISUAL	(B-15) 887+50, 100' LT
(B-5) 864+6Ø+ €	0-1.5 SAME AS 1.5-3.0 VISUAL 1.5-3.0 0 9 42 22 27 13 VISUAL 3.5-4.5 SAME AS 1.5-3.0 VISUAL 6.0-6.5 BRDWN WEATHERED SANDSTONE VISUAL 8.5-9.0 SAME AS 6.0-6.5 VISUAL	(8-16) 887+000, 1000' RT
(B-6) 866+75, €	0-1.5 SAME AS 1.5-3.0 21 VISUAL 1.5-3.0 21 VISUAL 1.5-3.0 0 20 37 21 22 27 14 17 A-6a 3.5-5.0 SAME AS 1.5-3.0 17 VISUAL 6.0-7.5 SAME AS 1.5-3.0 15 VISUAL 8.5-9.5 GRAY WEATHERED INDURATED SILT/WEATHERED SILTSTDNE VISUAL 13.5-14.0 SAME AS 8.5-9.5	(8-17) 890+00. Q 0-1.5 SAME AS 3.5-5.0 21 VISUAL 1.5-3.0 SAME AS 3.5-5.0 13 VISUAL 3.5-5.0 0 11 30 23 36 34 18 19 A-6b 16 VISUAL 16 VISUAL 8.5-10.0 SAME AS 3.5-5.0 16 VISUAL 16 VISUAL 17.5-15.0 SAME AS 3.5-5.0 16 VISUAL 17.5-15.0 SAME AS 3.5-5.0 17.5-15.0 SAME AS 3.5-5.0 17.5-15.0 SAME AS 3.5-5.0 17.5-15.0 SAME AS 3.5-5.0 17.5-15.0 SAME AS 3.5-5.0 17.5-15.0 SAME AS 3.5-5.0 17.5-15.0 SAME AS 3.5-5.0 17.5-15.0 17.5-15.0 SAME AS 3.5-5.0 17.5-15.
(8-7) 866+75, 100′ RT	0-1.5 SAME AS 1.5-3.0 21 VISUAL 1.5-3.0 14 19 23 28 16 22 7 17 A-4a 3.5-5.0 BRDWN AND REDDIN INDURATED SILT/WEATHERED SILTSTONE VISUAL 6.0-7.0 SAME AS 3.5-5.0 Although closer, Borings B-21 and VISUAL 9.5-9.5 SAME AS 3.5-5.0 BRDWN AND REDDING SAME AS 3.5-5.0 BRDWN EATHERED MUDSTONE 13.5-14.5 RED HIGHLY WEATHERED MUDSTONE GRAY WEATHERED SILTSTDNE B-22 were drilled on top of the hill where top of bedrock was relatively	18.5-20.0 BRDWN INDURATED CLAY/WEATHERED SHALE VISUAL
(8-B) 868+40, 100′ RT	0-1.5 SAME AS 3.5-5.0 shallow, thus not included in design. VISUAL 1.5-3.0 SAME AS 3.5-5.0 shallow, thus not included in design. VISUAL 1.5-3.0 SAME AS 3.5-5.0 shallow, thus not included in design. VISUAL 1.5-3.0 shallow, thus not included in design. VISUAL 2.5-3.0 shallow, thus not included in d	18.5-19.5 SAME AS 3.5-5.0 VISUAL 23.5-24.5 DARK GRAY WEATHERED SHALE 28.5-29.0 SAME AS 23.5-24.5 VISUAL (B-21) 898+50.50' RT 0-1.5 8RDWN INDURATED SILTY CLAY/HIGHLY WEATHERED MUDSTDNE. VISUAL
(8-9) B69+00, 100′ RT	0-1.5 MOTTLED BROWN AND GRAY SILTY SAND, LITTLE CLAY, TRACE GRAYEL, TRACE ORGANICS 13 VISUAL 15-3.0 0 4 5 32 59 42 25 19 A-7-6 3.5-5.0 SAME AS 1.5-3.0 19 VISUAL 6.0-7.0 GREENISH 9RDWN WEATHERED MUDSTDNE VISUAL 8.5-9.0 GRAY WEATHERED SILTSTDNE Sta.	3.5-4.5 SAME AS 1.5-3.0 VISUAL
(8-10) 871+50, €	## 0-1.5 SAME AS 3.5-5.0 904+50 19 VISUAL	3.5-4.5 8RDWN INDURATEO CLAY/WEATHERED CLAY-SHALE. VISUAL 6.0-6.5 8ROWN HIGHLY WEATHERED SANDSTDNE. VISUAL 8.5-9.5 BRDWN INDURATED CLAY/WEATHERED CLAY-SHALE. VISUAL (8-26) 912-50, 50' LT 0-1.5 SAME AS 1.5-3.0 1.5-3.0 0 4 33 38 25 22 7 21 A-40 3.5-5.0 SAME AS 1.5-3.0 26 VISUAL 3.5-5.0 SAME AS 1.5-3.0 6.0-7.5 SAME AS 1.5-3.0 8.5-9.5 GREENISH-GRAY WEATHERED SILTSTONE. VISUAL
(B-11) 875+00, 100' LT	0-1.5 SAME AS 1.5-3.0 27 VISUAL 1.5-3.0 27 VISUAL 1.5-3.0 27 VISUAL 21.5-3.0 29 57 31 21 VISUAL 22.5-5.0 SAME AS 1.5-3.0 21 VISUAL 22.5-5.0 21 VISUAL 23.5-5.0 21 VISUAL 24.5-10.0 25.0 21 VISUAL 25.5-10.0 25.0 26.0 27.5 27.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	(8-27) 912+50, 100' RT
(8-12) 879+ 00 •	23.5-25.0 MOTTLED DRANGE AND GRAY TD GRAY SILTY CLAY/WEATHERED MUDSTONE VISUAL 28.5-29.0 SAME AS 23.5-25.0 VISUAL 0-1.5 8RDWN CLAYEY SILT, LITTLE SAND, TRACE ORGANICS 21 VISUAL 1.5-3.0 MDTTLED BRDWN AND 8LACK SILTY SAND, LITTLE CLAY 19 VISUAL 3.5-5.0 SAME AS 1.5-3.0 21 VISUAL 6.0-7.0 LIGHT 8RDWN HIGHLY WEATHERED SANDSTONE VISUAL	(8-28) 914-75, 50' LT
	8.5-9.0 SAME AS 6.0-7.0 VISUAL 13.5-14.0 SAME AS 6.0-7.0 VISUAL 18.5-19.0 SAME AS 6.0-7.0 VISUAL 23.5-24.5 SAME AS 6.0-7.0 VISUAL 28.5-30.0 LIGHT 8RDWN INDURATED CLAY/WEATHERED MUDSTONE VISUAL 33.5-34.0 SAME AS 28.5-30.0 VISUAL	1.5-3.0 SAME AS 0-1.5 3.5-5.0 0 7 30 28 35 39 21 21 A-6b 6.0-7.0 BRDWN HIGHLY WEATHERED SANDSTONE. VISUAL 8.5-10.0 REDDISH-8RDWN WEATHERED MUDSTDNE VISUAL 13.5-14.0 GRAY WEATHERED SI ISTINE.
(B-13) 882+50, 100′ LT	0-1.5 DARK BROWN AND ORANGISH BROWN CLAYEY SILT, TRACE SAND, TRACE DRGANICS 21 VISUAL 1.5-3.0 Ø 13 32 33 22 19 VISUAL 3.5-5.0 Ø 8 64 -28- 13 A-30 6.0-7.5 DARK BROWN, BLACK AND DRANGISH BROWN HIGHLY WEATHERED SANDSTONE. VISUAL 8.5-9.5 SAME AS 6.0-7.5	(8-30) 917+00, 100' RT 1.0-1.5 SAME AS 1.5-3.0 25 VISUAL 1.5-3.0 1 11 28 33 27 26 10 20 A-6a 15 VISUAL 25 VISUAL 25 VISUAL 26 10 20 A-6a 15 VISUAL 26.0-7.0 8RDWN HIGHLY WEATHERED SILTSTONE.
	13.5-14.5 SAME AS 6.0-7.5 VISUAL 18.5-19.5 SAME AS 6.0-7.5 VISUAL 23.5-25.0 GRAY AND BROWN INDURATED SILT/WEATHERED SILTSTONE VISUAL	(8-31) 918+85, 60' LT

From "Soils Report Begin at Morning Star.pdf"

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

REPORT OF SOIL EXPLORATION

Clier	nt K	orda/Ne	meth E	ngineering, Inc.	Boring Numbe	er <u>B</u> -2	26	
Proje	ect N	1EG-124	1-26.66		Sheet1			
		nber			Completion D			
					Date Star Date Finis Drilled By	shed: 6/	7/99	
Stati	ion	912+	50		Boring Metho	d <u>3.7</u>	5" HSA	/RC
Offs	et	50' Lt	•		. Hammer Weig		40 lbs.	
Eleva	ation _	684.1	ft		Hammer Drop	3	0 inche	s
SAMPLE NO	BLOWS PER 6"	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION		MOISTURE CONTENT	ATTER	BERG PL
SS-1	2	89	_	4" - Brown SANDY SILT, some organics, so clay (Topsoil). Moist.	ome 0.3	20		
<i>\$\$-2</i>	1 1 1	100	2.5	Mottled brown and orange coarse to fine SANDY SILT, some clay. Soft to medium s Moist to wettrace organics in SS-1 -SS-1: qh = 4.0 ksf	tiff.	21	22	15
SS-3	1 1	50	5.0	-SS-2: ODOT A-4a (6); $qh = 2.5 \text{ ksf}$ -SS-3: $qh = 2.0 \text{ ksf}$		26		
SS-4	1 4	56	- - -			19		
	2		7.5					
SS-5	16 50/1"	57	10.0	Greenish gray weathered SILTSTONE. Hard soil/very soft bedrock.	8.5			
RC-1		100	12.5_	SANDSTONE; gray, moderately hard, slightl	13.0			
		. 50	-	broken to slightly massive, slightly jointed, a grained, micaceous.				
NOTES.		!				JJ.		
	SAM	PLE TYPE		GROUND WATER READING		BORING M	IETHOD	

SS - 2" OD Split Spoon

GS - Geoprobe Sample

ST - Shelby Tube

RC - Rock Core

AS - Auger Sample

At Completion \(\frac{\fint}{\fint}}}}}}}}{\frac}}}}}}{\fraccc}\firigigar{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fi

After 8 Hrs V/A

* Wash water used during coring process

HSA - Hollow Stem Augers

PCM - Pavement Core Machine

MD - Mud Drilling

WD - Wash Drilling

RC - Rock Coring

From "Soils Report Begin at Morning Star.pdf"

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

REPORT OF SOIL EXPLORATION

Clien				ingineerir	ng, Inc.					Borin	g Nui	mbe	r <u>B-2</u>	26	
Proje	ect/	AEG-124	1-26.66	;		·-··							of		
	ect Nun		W-901						· · · · · ·	Com				18.0	r
SAMPLE NO	BLOWS PER 6"	PERCENT RECOVERY	DEPTH				SOIL D	ESCRIPTIOI	1				MOISTURE CONTENT	ATTER	RBERG PL
			17.5	-RC-1 -RQD	: No co = 40%	re lo:	SS				18.0				
			_		Botton	of E	Boring	= 18.0	feet	· ·- · · · · · · · · · · · · · · · · ·	70.0				
					,										
													,		
				-											
					•										
								÷							
NOTES:															
<u> </u>		 	<u>. </u>											· 	

From "Soils Report Begin at Morning Star.pdf"

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

REPORT OF SOIL EXPLORATION

Client _	Korda/Ne	emeth E	ngineering, Inc.	Boring Number	. <u>B</u> -2	?7	
Project _	MEG-124	4-26.66	<u>; </u>	Sheet 1		1	
Project N	umber	W-901	12	Completion De		15.0	
				Date Start Date Finisi Drilled By:	ed: 6/1 hed: 6/1	7/99	
Station _	912+	50		Boring Method	3.7	5" HSA	/RC
Offset _	100' /	Rt		Hammer Weigh	nt <u>1</u>	40 lbs.	·····
Elevation	674.6	ft		Hammer Drop	3) inche	s
SAMPLE BLOW NO PER 6		DEPTH	SOIL DESCRIPTION	Į.	MOISTURE CONTENT	ATTER	BERG PL
SS-1 5 5	89	_	1" - Brown SANDY SILT, some organics, so clay (Topsoil). Moist.	me 0.1	16		
SS-2 8 8	33 11	- 2.5	Orangish brown CLAYEY fine SAND, some a trace coarse sand, trace fine gravel. Very sta Moist to damp. -trace organics in SS-1 -SS-1: qh = 9.0+ ksf		12	2 9	16
SS-3 7 7	94	- - - 5.0_	-SS-2: ODOT A-6a (5); qh = 9.0+ ksf -SS-3: qh = 9.0+ ksf	6.0	13	1	
SS-4 8 40 50/2	l l	- - 7.5_	Greenish gray highly weathered SILTSTONE. Hard soil/very soft bedrock.				
SS-5 29 50/2	50	- - -		10.0			
RC-1	94	10.0_ - -	SANDSTONE; light to dark gray, hard, slight broken, jointed, fine grained, micaceous.				
		12.5	-RC-1: Core loss = 4 inches -RQD = 26%	0 0		-	
		_	Bottom of Boring = 15.0 feet	15.0			
NOTES:	· · · · · · · · · · · · · · · · · · ·					<u>. </u>	

SAMPLE TYPE

SS - 2" OD Split Spoon

GS - Geoprobe Sample

ST - Shelby Tube

RC - Rock Core

AS - Auger Sample

GROUND WATER READING

At Completion V/A *

After 8 Hrs V/A

* Wash water used during coring process

BORING METHOD

H\$A - Hollow Stem Augers

PCM - Pavement Core Machine

MD - Mud Drilling

WD - Wash Drilling

RC - Rock Coring

From "meg-33-13.96~pid119143~SPT_boring_logs.pdf"

PROJECT: MEG-33-13.96 TYPE: ROADWAY PID: 119143 SFN:	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD:	GER: 0	ODOT / LEW DOT / BENNII 25" HSA	NG	HAMN CALIE	MER: BRATI	ACK ON DA	CKER REB	MATIC /7/23	<u></u>	STATI ALIGN ELEV	NMEN ATIO	NT: _ N:	688	.2 (ft)	JS 33 E	OB:	11	.5 ft.	RATION I 4-0-23 PAGE 1 OF 1
START: 11/27/23 END: 11/27/23 MATERIAL DESCRIPT AND NOTES	SAMPLING METHOD:	ELEV. 688.2	SPT DEPTHS	. !	SPT/ RQD	N ₆₀	ATIO (REC (%)	%): SAMPLE ID	90* HP (tsf)	_	SRADA cs		N (%))		ERBE PL		.90900 wc	ODOT CLASS (GI)	BACH
TOPSOIL (18") VERY STIFF, BROWN AND GRAY, SANDY CLAY, LITTLE STONE FRAGMENTS, DAMI		686.7	-	- 1 - - 2 - 3	7 2	14	33	SS-1	2.50	18	3	18	39	22	28	20	8	11	A-4a (5)	
@3.5'; STIFF VERY STIFF, RED AND REDDISH BROWN.	CH T AND CLAY	682.2	- - -	4 1	2 3	8	78	SS-2	1.50	16	6	19	32	27	30	20	10	18	A-4a (5)	<i>COUNTY</i> <
LITTLE SAND, TRACE STONE FRAGMENT	S, DAMP		- - -	7 - 2 - 8 5	2 3	8	67		3.00	7	2	8	32	51	37	22	15	20	A-6a (10)	
@8.5'; RED, REDDISH BROWN AND GRAY FRAGMENTS ¬,@11.0'; RED		677.0 676.7	- - - - -	10 - 11 - 6	4 5 8	14	100		3.25 2.50	-	-	-	-	-	-	-	-	17	A-6a (V)	
SANDSTONE.		(=-911)																		

NOTES: LAT/LONG/ELEV FROM DISTRICT SURVEY GRADE INSTRUMENTS. HOLE DRY UPON COMPLETION.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

Points from ATH/MEG-33-18.75/0.00 embankment inspection indicating start and end of a line of seeps along the embankment face.

From "MEG-19719_COMPLETE PLAN SET.pdf" SEEDING END SQ. WIDTH YDS. END AREA VOLUME
CUT FILL CUT FILL 129 17950 Historic cross-section 720 720 904+50 68 9676 904+50 671.0 331 7.10 710 120'RT. SECTIONS TO STA 9 700 700 MATCH LINE SEE THIS : 690 690 MATCH SEE B-27 CROSS 904+50 680 680 Adjusted ground surface from El. 674.6' to El. 682.5' (B-27) B-26 670 Adjusted top of rock from El. 664.6' to El 672.5' (B-27) A ST **Estimated Top of** Adjusted top of rock from El. 671.1 to El 656.3' (B-26) Rock 120' RT. SHEET 700 Ground surface at EI

G88.2'

(B-004-0-23)

Top of rock at EI

677.0'

(B-004-0-23) BS 写書 B-004-0-23 690 24:1 4 + 5.7 24:1 MATCH SEE 685.5 684.0 680 MEG-124-26.66 1703 94 501

SHEET TOTAL

129 17950

1703 SHEET TOTAL

Soil Parameter Determination

		Undra	ained Shear S	Strenath (Su	u) (psf)	Dry Unit We	eight (ncf)	Moist Unit	Wt. (ncf)				Long-Term	Strength Va	lues		Adopted Long Term Strength
Layer				alues	Tested]	(p)		([Adopted Short Term Parameters			ODOT GB-7 Co	rrelations	Teste	d	Parameters
		PPR	Sowers	T and P	Values	Correlation	Tested	Correlation	Tested			N ₆₀ Value	Cohesion (psf)	phi (deg)	Cohesion (psf)	phi (deg)	
	Max	2500	1050	1862		100		120			Max	14	143	24	·		
	Min	1500	600	1064		95		110		S _u = 1450 psf	Min	8	100	22			c' = 120 psf
Layer 1	Average	2000	825	1463		98		115		Φ = 0 deg	Average	11	122	23			Φ' = 23 deg
OTIFE TO VEDY OTIFE	Std Dev	707	318	564		4		7			Std Dev	4	30	1			
STIFF TO VERY STIFF EMBANKMENT FILL (A-4A)										$Y_{dry} = 100 pcf$							Y _{dry} = 100 pcf
EMBARRMERT FILE (A-4A)	Avg + Std	2707	1143	2027		101		122		Y _{moist} = 115 pcf	Avg + Std	15	152	24			Y _{moist} = 115 pcf
	Avg - Std	1293	507	899		94		108			Avg - Std	7	91	22			<u> </u>
	Max	3000	1400	1064		95		120			Max	8	100	22			
	Min	1000	150	266		85		105		$S_u = $ 600 psf	Min	2	25	18			c' = 55 psf
Layer 2	Average	1813	475	559		90		111		$\Phi = 0$ deg	Average	4	53	20			Φ' = 20 deg
SOFT TO MEDIUM STIFF	Std Dev	898	532	357		5		8			Std Dev	3	33	2			
COHESIVE (A-4A, A-6A)										$Y_{dry} = 90$ pcf							$Y_{dry} = 90$ pcf
	Avg + Std	2711	1007	915		95		119		Y _{moist} = 110 pcf	Avg + Std	7	86	21			Y _{moist} = 110 pcf
	Avg - Std	914	-57	202		85		103			Avg - Std	2	19	18			
	Max	N/A	N/A	N/A		N/A		N/A			Max	N/A	250	28			<u>, </u>
	Min	N/A	N/A	N/A		N/A		N/A		$S_u = 4000$ psf	Min	N/A	250	28			c' = 250 psf
Layer 3	Average	N/A	N/A	N/A		N/A		N/A		$\Phi = 0$ deg	Average	N/A	250	28			Φ' = 28 deg
HARD RESIDUUM (WEATHERED	Std Dev	N/A	N/A	N/A		N/A		N/A			Std Dev	N/A	0	0			
SILTSTONE)										$Y_{dry} = 120$ pcf							$Y_{dry} = 120$ pcf
,	Avg + Std	N/A	N/A	N/A		N/A		N/A		Y _{moist} = 130 pcf	Avg + Std	N/A	250	28			Y _{moist} = 130 pcf
	Avg - Std	N/A	N/A	N/A		N/A		N/A			Avg - Std	N/A	250	28			
	Max	4500	3325	2527		105		125			Max	19	163	25			
	Min	4500	2625	1995		100		120		S _u = 3200 psf	Min	15	150	24			c' = 155 psf
Layer 4	Average	4500	2917	2217		103		123		Φ = 0 deg	Average	17	155	24			Φ' = 24 deg
	Std Dev	0	364	277		3		3		v [Std Dev	2	7	0			V 105 .
VERY STIFF COHESIVE (A-6A)										$Y_{dry} = 105$ pcf	1						$Y_{dry} = 105$ pcf
	Avg + Std	4500	3281	2494		106		126		Y _{moist} = 125 pcf	Avg + Std	19	162	24			Y _{moist} = 125 pcf
	Avg - Std	4500	2552	1940		100		120			Avg - Std	15	149	24			

Values for Soil Strengt	h Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																		Correlated				Correlated	Correlated			
Layer 1															Shor	t-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
			%		%	%	%	%	%				%	Ī		N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
		N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max		14	78	2.5	18	6	19	39	27	30	20	10	18	Max	2500	1050	1862	143	24	4.0	686.2	100	120	0.180	2.72	0.787
Min		8	33	1.5	16	3	18	32	22	28	20	8	11	Min	1500	600	1064	100	22	2.0	684.2	95	110	0.162	2.72	0.697
Averag	je	11	56	2.0	17	5	19	36	25	29	20	9	15	Average	2000	825	1463	122	23	3.0	685.2	98	115	0.171	2.72	0.742
Std De	v	4	32	0.7	1	2	1	5	4	1	0	1	5	Std Dev	707	318	564	30	1	1.4	1.4	4	7	0.013	0.00	0.063
Avg + S	itd	15	87	2.7	18	7	19	40	28	30	20	10	19	Avg + Std	2707	1143	2027	152	24	4.4	686.6	101	122	0.184	2.72	0.805
Avg - St	td	7	24	1.3	16	2	18	31	21	28	20	8	10	Avg - Std	1293	507	899	91	22	1.6	683.8	94	108	0.158	2.72	0.679

Correlated

Correlated

Correlated

																					Sho	rt-Term Cohe	esion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%			%	ODOT				N-values	s	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
US 33	688.2	B-004-0-23	1.5	-	3	SS-1	14	33	2.5	18	3	18	39	22	28	20 8	11	A-4a	Cohesive	1	2500	1050	1862	143	24	2.0	686.2	100	120	0.162	2.72	0.697
US 33	688.2	B-004-0-23	3.5	-	5	SS-2	8	78	1.5	16	6	19	32	27	30	20 10	18	A-4a	Cohesive	1	1500	600	1064	100	22	4.0	684.2	95	110	0.18	2.72	0.787

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated			
Layer 2													_	Short	t-Term Cohesi	on (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T&P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	8	100	3.0	7	4	33	38	51	37	22	15	26	Max	3000	1400	1064	100	22	7.0	683.1	95	120	0.243	2.72	0.997
Min	2	50	1.0	0	2	8	32	25	22	15	7	19	Min	1000	150	266	25	18	1.0	677.1	85	105	0.108	2.72	0.787
Average	4	72	1.8	4	3	21	35	38	30	19	11	21	Average	1813	475	559	53	20	4.2	680.7	90	111	0.176	2.72	0.891
Std Dev	3	21	0.9	5	1	18	4	18	11	5	6	3	Std Dev	898	532	357	33	2	2.8	2.3	5	8	0.095	0.00	0.105
Avg + Std	7	94	2.7	8	4	38	39	56	40	23	17	24	Avg + Std	2711	1007	915	86	21	7.0	683.0	95	119	0.271	2.72	0.996
Avg - Std	2	51	0.9	-1	2	3	31	20	19	14	5	18	Avg - Std	914	-57	202	19	18	1.4	678.4	85	103	0.080	2.72	0.785

Correlated

Correlated

Correlated

																					Short	Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
					Sample		%		%	%	%	%	%			9	% OD	OT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From	То	ID	N_{60}	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL I	PI W	IC Cla	iss. So	oil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
US 33	688.2	B-004-0-23	6	- 7.5	SS-3	8	67	3	7	2	8	32	51	37	22	5 2	20 A-	6a Co	Cohesive	2	3000	1400	1064	100	22	7.0	681.2	95	120	0.243	2.72	0.787
US 33	684.1	B-26	0	- 1.5	SS-1	3	89	2	-	-	-	-	-	-	-	- 2	20 A-	4a Co	Cohesive	2	2000	225	399	38	19	1.0	683.1	90	105		2.72	0.886
US 33	684.1	B-26	1.5	- 3	SS-2	2	100	1.25	0	4	33	38	25	22	15	7 2	21 A-	4a Co	Cohesive	2	1250	150	266	25	18	2.0	682.1	85	105	0.108	2.72	0.997
US 33	684.1	B-26	3.5	- 5	SS-3	2	50	1	-	-	-	-	-	-	-	- 2	26 A-	4a Co	Cohesive	2	1000	150	266	25	18	4.0	680.1	85	105		2.72	0.997
US 33	684.1	B-26	6	- 7.5	SS-4	6	56	-	-	-	-	-	-	-	-	- 1	19 A-	4a Co	Cohesive	2	N/A	450	798	75	21	7.0	677.1	95	120		2.72	0.787

Values for Soil Strength	Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																		Correlated				Correlated	Correlated			
Layer 3														_	Shor	t-Term Cohesi	on (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
			%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
		N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Ma	x	N/A	86	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Max	N/A	N/A	N/A	250	28	9.0	675.1	N/A	N/A	N/A	N/A	N/A
Mir	n	N/A	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Min	N/A	N/A	N/A	250	28	7.0	667.0	N/A	N/A	N/A	N/A	N/A
Avera	age	N/A	64	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Average	N/A	N/A	N/A	250	28	8.3	670.4	N/A	N/A	N/A	N/A	N/A
Std D	Dev	N/A	19	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Std Dev	N/A	N/A	N/A	0	0	1.2	4.2	N/A	N/A	N/A	N/A	N/A
Avg +	Std	N/A	83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Avg + Std	N/A	N/A	N/A	250	28	9.5	674.6	N/A	N/A	N/A	N/A	N/A
Avg -	Std	N/A	45	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Avg - Std	N/A	N/A	N/A	250	28	7.2	666.1	N/A	N/A	N/A	N/A	N/A

																					Char	t-Term Coh	naion (nof)	Correlate LT Cohesi		Midpoint	Midnaint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Accumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT	Ī			esion (psi) es	_		•	Midpoint Sample	(pcf)	(pcf)	Correlated	Assumed Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To		N ₆₀																			Depth (ft.)				C _c		Ratio (e)
US 33	684.1	B-26	8.5	-	9.1	SS-5	Refusal	57	-	-	-	-	-	-	-	-	-	-	W. Rock	3	N/A	N/A	N/A	250	28	9.0	675.1					
US 33	676.0	B-27	6	-	7.2	SS-4	Refusal	86	-	-	-	-	-	-	-	-	-	-	W. Rock	3	N/A	N/A	N/A	250	28	7.0	669.0					
US 33	676.0	B-27	8.5	-	9.2	SS-5	Refusal	50	-	-	-	-	-	-	-	-	-	-	W. Rock	3	N/A	N/A	N/A	250	28	9.0	667.0					

Values for Soil Strength	1 Correlation
Reference	Value
HI PI (Sowers)	0.25
MD PI (Sowers)	0.175
LO PI (Sowers)	0.075
T&P	0.133

																	Correlated				Correlated	Correlated			
Layer 4														Shor	t-Term Cohesi	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
		%		%	%	%	%	%				%			N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	wc		PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
Max	19	94	4.5	2	8	38	20	32	29	16	13	16	Max	4500	3325	2527	163	25	4.0	673.6	105	125	0.171	2.72	0.697
Min	15	33	4.5	2	8	38	20	32	29	16	13	12	Min	4500	2625	1995	150	24	1.0	670.6	100	120	0.171	2.72	0.616
Average	17	72	4.5	2	8	38	20	32	29	16	13	14	Average	4500	2917	2217	155	24	2.3	672.3	103	123	0.171	2.72	0.643
Std Dev	2	34	0.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2	Std Dev	0	364	277	7	0	1.5	1.5	3	3	N/A	0.00	0.047
Avg + Std	19	106	4.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16	Avg + Std	4500	3281	2494	162	24	3.9	673.8	106	126	N/A	2.72	0.690
Avg - Std	15	38	4.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12	Avg - Std	4500	2552	1940	149	24	0.8	670.7	100	120	N/A	2.72	0.597

																									Correlated				Correlated	Correlated			
																						Sho	rt-Term Cohe	sion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values	;	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		To	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
US 33	674.6	B-27	0	-	1.5	SS-1	15	89	4.5	-	-	-	-	-	-	-	-	16	A-6a	Cohesive	4	4500	2625	1995	150	24	1.0	673.6	100	120		2.72	0.697
US 33	674.6	B-27	1.5	-	3	SS-2	19	33	4.5	2	8	38	20	32	29	16	13	12	A-6a	Cohesive	4	4500	3325	2527	163	25	2.0	672.6	105	125	0.171	2.72	0.616
US 33	674.6	B-27	3.5	-	5	SS-3	16	94	4.5	-	-	-	-	-	-	-	-	13	A-6a	Cohesive	4	4500	2800	2128	153	24	4.0	670.6	105	125		2.72	0.616

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

REPORT OF SOIL EXPLORATION

				ingineering, Inc.	Boring Numb			
		1EG-124			Sheet			
Proje	ct Nun	nber	W-901	2	Completion	Depth _	18.0	·
						arted: 6/ nished: 6/ By: M.	7/99	
Stati	'on	912+	50		Boring Meth	od 3.7	5" HSA	/RC
Offse		50' Lt			. Hammer We			
Eleva		684.1	ft		Hammer Dro	~	0 inche	
SAMPLE NO	BLOWS PER 6"	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION	Transmitter Die	MOISTURE CONTENT	ATTER	BERG PI
	2	89		4" - Brown SANDY SILT, some organic	s, some0.3			
SS-2	1 1 1	100	- - 2.5	\clay (Topsoil). Moist. Mottled brown and orange coarse to fin SANDY SILT, some clay. Soft to media Moist to wet. -trace organics in SS-1		20	22	1:
SS-3	1 1	50	- - -	-SS-1: qh = 4.0 ksf -SS-2: ODOT A-4a (6); qh = 2.5 ksf -SS-3: qh = 2.0 ksf		26		
	1		5.0					
SS-4	1 4	5 6		Layer 2		19		
	2		7.5 <u> </u>					
SS-5	16	57	_	Greenish gray weathered SILTSTONE.	8.5 Hard	<u> </u>		
	50/1"		10.0_	soil/very soft bedrock.		4		
			-	Layer 3	 			
			12.5 _		13.0			
RC-1		100	-	SANDSTONE; gray, moderately hard, sl broken to slightly massive, slightly joint grained, micaceous.	ightly			
NOTES:								

GS - Geoprobe Sample

ST - Shelby Tube

RC - Rock Core

AS - Auger Sample

After 8 Hrs V/A

* Wash water used during coring process

PCM - Pavement Core Machine

MD - Mud Drilling

WD - Wash Drilling

RC - Rock Coring

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

REPORT OF SOIL EXPLORATION

Clien				ngineering, Inc.	Boring Numbe	r <u>B</u> -2	6	
Proje	ect _N	1EG-124	1-26.66		Sheet 2			
	ct Nun		W-901		Completion De	epth	18.0'	
SAMPLE NO	BLOWS PER 6"	PERCENT RECOVERY	DEPTH	SOIL DESCRIPTION		MOISTURE CONTENT	ATTERI	BERG PL
			17.5	-RC-1: No core loss -RQD = 40%	18.0			
				Bottom of Boring = 18.0 feet				
			, , , , , , , , , , , , , , , , , , ,					
e e e e e e e e e e e e e e e e e e e							-	
NOTES:								
			- · · · <u>- · · · · · · · · · · · · · · ·</u>					

RESOURCE INTERNATIONAL, INC. 281 ENTERPRISE DRIVE WESTERVILLE, OHIO 43081 (614) 885-1959

REPORT OF SOIL EXPLORATION

Client Korda/Nem	neth Engineering, Inc.	Boring Number <u>B-27</u>
Project MEG-124	26.66	Sheet1 of1
Project NumberV	N-9012	Completion Depth15.0'
		Date Started: 6/7/99 Date Finished: 6/7/99 Drilled By: M.F.
Station912+5	0	Boring Method 3.75" HSA/RC
Offset100' Rt		Hammer Weight140 lbs.
Elevation 674.6 f	t	Hammer Drop30 inches
SAMPLE BLOWS PERCENT NO PER 6" RECOVERY	DEPTH SOIL DESCRIPTION	MOISTURE ATTERBERG
SS-1 5 89	1" - Brown SANDY SILT, some organi	1
SS-2 8 33 8 11	\clay (Topsoil). Moist. Orangish brown CLAYEY fine SAND, itrace coarse sand, trace fine gravel. V Moist to damp. -trace organics in SS-1	some silt,
SS-3 7 94 7 9	-SS-1: qh = 9.0+ ksf -SS-2: ODOT A-6a (5); qh = 9.0+ -SS-3: qh = 9.0+ ksf	/3
SS-4 8 86	Greenish gray highly weathered SILTS	6.0
40 50/2"	Hard soil/very soft bedrock.	
SS-5 29 50 50/2"	Layer 3	
RC-1 94	SANDSTONE; light to dark gray, hard, broken, jointed, fine grained, micaceou	
	-RC-1: Core loss = 4 inches -RQD = 26%	
	Bottom of Boring = 15.0 fee	t 15.0
NOTES:		
SAMPLE TYPE	GROUND WATER READING At Completion N/A*	BORING METHOD

GS - Geoprobe Sample

ST - Shelby Tube

RC - Rock Core

AS - Auger Sample

After 8 Hrs V/A

* Wash water used during coring process

PCM - Pavement Core Machine

MD - Mud Drilling

WD - Wash Drilling

RC - Rock Coring

PROJECT: MEG-33-13.9 TYPE: ROADWAY	DRILLING FIRM / OPER SAMPLING FIRM / LOG	_	ODOT / LEWIS DOOT / BENNING	HAM	MER:	ACK	CKER REE	OMATIO			TION /)4+75 US 33		LT.	EXPLOR B-00	4-0-23
PID:119143 SFN:	DRILLING METHOD: _	3	.25" HSA				ATE:1				/ATIO	_	688					1.5 ft	PAGE 1 OF 1
START: <u>11/27/23</u> END: <u>11</u>		T	SPT		RGY R			90*			LON			_			.9090	02	1 OF 1
	DESCRIPTION	ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE				ATIO		-		ERBI	_	,,,,	ODOT CLASS (GI)	BACK
TOPSOIL (18")	NOTES	688.2		KQD		(%)	ID	(tst)	GR	CS	FS	SI	CL	LL	PL	PI	wc	02.00 (01)	FILL
TOFSOIL (10)		686.7	L 1 -																CASSATTAL S
VERY STIFF, BROWN AND GRA	(SANDY SILT. SOME	000.7	t	3															7 > 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CLAY, LITTLE STONE FRAGMEN			_ 2 _	7 2	14	33	SS-1	2.50	18	3	18	39	22	28	20	8	11	A-4a (5)	Apply <
			3 -																1 / 1 7 / 1
@3.5'; STIFF	Layer 1		- 4	1 2	8	78	SS-2	1.50	16	6	19	32	27	30	20	10	18	A-4a (5)	
	Layer			3						ļ .								(0)	2007) 10 10 10 10 10 10 10 10 10 10 10 10 10
		682.2	6																1511
VERY STIFF, RED AND REDDISH LITTLE SAND, TRACE STONE FF			-	2	8	67	SS-3	3.00	7	2	8	32	51	37	22	15	20	A-6a (10)	
LITTLE SAND, TRACE STONE FF	AGINENTS, DAINF		7 1	3					Ľ				Ŭ .	<u> </u>				7.04(.0)	
			_ 8 _																10000
@8.5'; RED, REDDISH BROWN A	ND GRAY, TRACE WOOD		- 9 -	5 4	14	100	SS-4	3.25	_	l _	_	_	_	_	_	_	17	A-6a (V)	
FRAGMENTS	Layer 2		10	<u>1 5</u>		100		0.20									L''	7104(1)	
	· · · · · · · · · · · · · · · · · · ·	677.0		1															165 56
\@11.0'; RED	/[*	677.0	ETR3 / -	68	-	117	SS-5	2.50	-	-	-	-	-	-	-	-	17	A-6a (V)	

NOTES: LAT/LONG/ELEV FROM DISTRICT SURVEY GRADE INSTRUMENTS. HOLE DRY UPON COMPLETION.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: AUGER CUTTINGS MIXED WITH 50 LB. BENTONITE CHIPS

Slope Stability

Short Term (Undrained) Condition

Embankment fill properties for an A-4a material as presented in Table 500-2 from the ODOT Geotechnical Design Manual were assumed for both the new and existing embankment materials based on the soil types as encountered in the historic borings, as well as the upper soil layer as encountered in Boring B-04-0-23 located near the toe of the existing embankment slope.

Table 500-2: Assumed Embankment Fill Properties

Borrow Source Soil Class	c (psf)	φ (deg)	c' (psf)	φ' (deg)	γ (pcf)
Granular	0	32	0	32	125
A-4a/A-4b	2000	0	200	30	125
A-6a	2500	0	250	28	125
A-6b	2500	0	250	28	125
A-7-6	2000	0	200	26	125
Unknown	2500	0	250	26	125

2a. Proposed No Shear Key (ST)	
Za. i Toposca No offical Ney (OT)	

Sta. 904+50 LT SlopeW.gsz

2b. Proposed No Shear Key (LT)

Sta. 904+50 LT SlopeW.gsz

4a. Proposed Overall (S

Sta. 904+50 LT SlopeW.gsz

Sta. 904+50 LT SlopeW.gsz

Short Term (Undrained) Condition

3a. Constructability High Bench (ST)

Sta. 904+50 LT SlopeW.gsz

0.63

3b. Constructability High Bench (LT)

Sta. 904+50 LT SlopeW.gsz

1.26

3c. Constructability Lower Bench (ST)

Sta. 904+50 LT SlopeW.gsz

0.63

3d. Constructability Lower Bench (LT)

Sta. 904+50 LT SlopeW.gsz

4.16

3e. Constructability Shear Key Backslope (ST)

Sta. 904+50 LT SlopeW.gsz

0.65

3f. Constructability Shear key Backslope (LT)

Sta. 904+50 LT SlopeW.gsz