

#### REPORT OF LANDSLIDE EXPLORATION MRG-78-10.96 (TASK 10G) (FINAL)

PID: 118670 Morgan County, Ohio

December 30, 2024

Prepared for: Andrew Moreland, PE Ohio Department of Transportation, District 10 Marietta, Ohio

Prepared by: Stantec Consulting Services Inc. Cincinnati, Ohio

Project Number: 175578434

# Report of Landslide Exploration MRG-78-10.96

| Revision | Description | Author    | Date     | Quality<br>Check | Date     | Independent<br>Review | Date     |
|----------|-------------|-----------|----------|------------------|----------|-----------------------|----------|
| 01       | Draft       | G. Khatri | 8/7/24   | J. Swindler      | 8/7/24   | E. Kistner            | 8/8/24   |
| 02       | Final       | G. Khatri | 12/30/24 | J. Swindler      | 12/30/24 | E. Kistner            | 12/30/24 |
|          |             |           |          |                  |          |                       |          |

The conclusions in the Report titled MRG-78-10.96 (Task 10G) report of Landslide Exploration are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Ohio Department of Transportation (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

- 0

| af-                       |
|---------------------------|
| Signature                 |
| Gokul Khatri, EIT         |
| Printed Name              |
|                           |
| Signature                 |
| James R. Swindler Jr., PE |
| Printed Name              |
|                           |
| Signature                 |
|                           |
| Eric M. Kistner, PE       |
| Printed Name              |
|                           |

## **Table of Contents**

| EXECU             | LIVE SUMMARYI                           | I           |
|-------------------|-----------------------------------------|-------------|
| ACRON             | YMS / ABBREVIATIONSII                   | I           |
| 1                 | INTRODUCTION1                           | I           |
| <b>2</b>          | GEOLOGY AND OBSERVATIONS OF THE PROJECT | 2           |
| 2.2               | SOIL GEOLOGY                            | 2           |
| 2.3               | HYDROLOGY                               | -<br>3      |
| 2.5<br>2.6<br>2.7 | SEISMIC                                 | 5<br>3<br>2 |
| 3                 | EXPLORATION                             | ,<br>t      |
| 3.1<br>3.2        | HISTORIC EXPLORATION PROGRAMS           | 1<br>1      |
| 4                 | FINDINGS                                | 5           |
| 5                 | ANALYSIS AND RECOMMENDATIONS            | 7           |
| 5.1<br>5.2        | DRILLED SHAFT WALL                      | (<br>7      |
| 5.3<br>LIST OF    | RECOMMENDATIONS                         | 3           |
| Table 1. I        | 3oring Summary                          | ł           |

#### LIST OF FIGURES

 $\bigcirc$ 

| Figure | 1: Site Vicinity |  | 1 |
|--------|------------------|--|---|
|--------|------------------|--|---|

#### LIST OF APPENDICES

Appendix A: Boring and DCP Locations, Boring Logs, DCP Logs, Rock Core Photographs and Results of Laboratory Testing Appendix B: Slope Stability Analysis Appendix C: UA Slope Analysis Appendix D: LPile Analysis

i

## **Executive Summary**

A landslide is located along State Route (SR) 78, approximate 7 miles southwest of McConnelsville near straight line mileage 10.96 in Morgan County, Ohio. The landslide head scarp is near the center of roadway, and the toe of the landslide is located downhill (southeast) from SR 78. The landslide affects approximately 250 feet of the road. The Ohio Department of Transportation (ODOT) is planning to repair and stabilize the roadway where the landslide is located. The proposed remediation design consists of a drilled shaft wall beyond the southeast shoulder of SR 78. Stantec Consulting Services Inc. (Stantec) was contracted by ODOT to perform the geotechnical exploration, analysis, and preliminary drilled shaft wall design for this project.

Four borings were advanced to obtain geotechnical data for the proposed landslide stabilization. Three borings (B-001-0-24, B-002-0-24, and B-003-0-24) were advanced along the eastbound lane of the road, and one boring (B-002-1-24) was advanced in the westbound shoulder. Two dynamic cone penetrometer tests (D-001-0-24 and D-002-0-24) were completed on the downslope of the embankment.

The surface materials encountered in the borings consisted of approximately 1 to 3.5 feet of pavement material (asphalt and aggregate base). Below the surface material, the soil was fine-grained, classifying as silt and clay (A-6a), silty clay (A-6b), and clay (A-7-6). The fine-grained soils were described as soft to hard, brown to gray, damp to moist, and medium plasticity. Bedrock was encountered at depths of 6.5 to 20 feet. The bedrock was a weathered shale underlain by interbedded shale (90 percent) and sandstone (10 percent) or claystone. The shale was described as gray to brown, weak, highly weathered, highly fractured and thinly laminated to laminated. The sandstone was described as strong, moderately to highly weathered, moderately fractured, and thick bedded. The claystone was described as brown to red, weak, highly weathered, highly fractured, and laminated. The borings were terminated after coring approximately 10 to 20 feet in the bedrock. Groundwater was not observed in any of the borings.

A drilled shaft wall is recommended beyond the shoulder of SR 78 approximately 23 feet right of the centerline from Station 577+50 to 580+00 to protect the roadway from future movement caused by the landslide. The recommended drilled shaft wall configuration includes 3-foot diameter drilled shafts reinforced with W24x131 steel beams at 5.75-foot center-to-center spacing. The reinforced drilled shafts should be socketed at least 10 feet into bedrock. To protect against loss of material through the drilled shafts wall, unreinforced plug drilled shafts are recommended to be installed between the reinforced drilled shafts from the existing grade to the top of bedrock. To provide additional roadway shoulder, the W-sections should extend upward to parallel the elevation of SR 78, and concrete lagging should be installed between the W-Sections above grade to retain backfill.

# Acronyms / Abbreviations

| ASTM | American Society for Testing and<br>Materials |
|------|-----------------------------------------------|
| DCP  | Dynamic Cone Penetration                      |
| ER   | Energy Ratio                                  |
| ODNR | Ohio Department of Natural Resources          |
| ODOT | Ohio Department of Transportation             |
| RQD  | Rock Quality Designation                      |
| SGE  | Specifications for Geotechnical Exploration   |
| SPT  | Standard Penetration Test                     |
| SR   | State Route                                   |
| TIMS | Traffic Information Management System         |
| UC   | Unconfined Compression                        |
| UCR  | Unconfined Compression Strength for Rock Core |
| USDA | United States Department of Agriculture       |

# 1 INTRODUCTION

 $\bigcirc$ 

A landslide is located along State Route (SR) 78 approximately 7 miles southwest of McConnelsville near straight line mileage 10.96 in Union Township, Morgan County, Ohio. The landslide head scarp is near the centerline of roadway, and the toe of the landslide is located downhill (southeast) from SR 78. The landslide is occurring along a gently curving portion of SR 78 that is aligned southwest-northeast near two unnamed tributaries of West Branch Wolf Creek. The landslide affects approximately 250 feet of the road. A previous repair using driven piles and guardrail as lagging between the piles was done at the site on the southeast side of SR 78.

The Ohio Department of Transportation (ODOT) is planning to repair and stabilize the roadway where the landslide is located. The proposed remediation design consists of a drilled shaft wall located downslope of the existing pile wall between the existing pile wall and the existing right-of-way. Stantec Consulting Services Inc. (Stantec) was contracted by ODOT to perform the geotechnical exploration, analysis and preliminary drilled shaft wall design for this project. Figure 1 shows the site vicinity.



#### **Figure 1: Site Vicinity**

#### (Ohio Department of Natural Resources Interactive Mapping)

# 2 GEOLOGY AND OBSERVATIONS OF THE PROJECT

#### 2.1 GENERAL

The *Physiographic Regions of Ohio Map* (Ohio Department of Natural Resources (ODNR), 1998) indicates that the project is located within the Marietta Plateau Region of the Allegheny Plateaus. The Marietta Plateau Region is described as a dissected plateau with mostly fine-grained rocks with red shales and red soils relatively common. Landslides and remnants of the ancient lacustrine clay filled Teays drainage system are common. The region consists of Pennsylvanian-age Upper Conemaugh Group through Permian-age Dunkard Group bedrock with cyclic sequences of red and gray shales and siltstones, sandstones, limestones, and coals. The soils are composed of Pleistocene (Teays) age Milford clay, red and brown silty-clay loam colluvium, and landslide deposits. The region has high relief (generally 350 to 600 feet) with elevations of 515 to 1,400 feet.

### 2.2 SOIL GEOLOGY

According to the *Quaternary Geology of Ohio* map (ODNR, 1999), the project site is underlain by colluvium from the Cenozoic era. These soils, which are derived from local bedrock in unglaciated areas, includes scattered areas of residuum, weathered material, landslides, and bedrock outcrop. The soil survey (*Web Soil Survey of Morgan County, Ohio*, United States Department of Agriculture [USDA], 2024) indicates that the project site is underlain by soils from the Lowell-Gilpin Complex (35 to 70 percent slopes) on the west end and from the Guernsey-Upshur Complex (12 to 20 percent slopes) on the east end. Lowell-Gilpin Complex soils primarily consist of 20 inches of silty clay loam underlain by 24 inches of channery clay, terminating at weathered bedrock. The soil is typically well-drained with moderately high capacity of transmitting water. Guernsey-Upshur Complex soils primarily consist of up to 14 inches of silt loam or silty clay loam, underlain by up to 66 inches of silty clay or channery silty clay, terminating at weathered bedrock. The soil sity clay or channery silty clay, terminating at weathered bedrock well-drained with a moderately low to moderately high capacity to transmit water. The Drift Thickness Map of Ohio (ODNR, 2004) suggests that the project site is an unglaciated region.

## 2.3 BEDROCK GEOLOGY

Bedrock mapping (*Ohio Geology Interactive Map*, ODNR, 2024) and *Descriptions of Geologic Map Units* (ODNR, 2011) indicate that the overburden soils at the project site are underlain primarily by sedimentary bedrock of the Pennsylvanian system from the Conemaugh Group. The bedrock in this system is comprised of shale, siltstone, sandstone, mudstone, and lesser amounts of limestone and coal. The bedrock is described as shades of gray, green, red, brown, and black and exhibits thickness between 350 to 490 feet. The diagnostic feature of the rock includes multicolored mudstones, rare coal beds, thin to thick marine shale and limestone in the lower two-thirds of the unit, and rapid vertical and horizontal changes in rock type.

According to the *Ohio Mine Locator* (ODNR, 2023), there is a single abandoned coal mine within a 2-mile radius of the project footprint. There are several abandoned underground mines and surface mines producing coal west of the project site. The closest of these mines is an underground coal mine located 2.9 miles from the project area. The *Karst Interactive Map* (ODNR, 2023) indicates there are no known karst features in Morgan County.

### 2.4 HYDROLOGY

Buck Run and Hedgehog Creek located less than 1.5 miles east of the site, flow south into West Branch Wolf Creek. West Branch Wolf Creek flows approximately 25 miles southeast into the Muskingum River in Beverly, Ohio. The Muskingum River then flows approximately 11 miles east into the Ohio River near Carlington, Ohio.

### 2.5 HYDROGEOLOGY

The Ohio Geology Interactive Map (ODNR, 2024) shows that the site is underlain by a sand and gravel aquifer, which has a yield of 0 to 5 gallons per minute. According to the *Groundwater Resources of Morgan County Map* (ODNR, 2023), the project site is in an area where wells yield 1 to 50 gallons per minute

A search was performed using the ODNR *Ohio Water Wells Map* (2023) to determine if any water wells are located near the project site. Eleven water wells have been drilled within a 1-mile radius of the project footprint. The well logs indicate a bedrock depth ranging from 1 to 45 feet. The bedrocks encountered at these wells were described as shale, limestone, and/or sandstone. The logs also indicate a considerable variation of the static water depth in the area surrounding the site, ranging from 3 to 54 feet.

#### 2.6 SEISMIC

A review of the seismic data available in the project vicinity was completed using the ODNR *Ohio Earthquake Epicenters Map* (2023). Overall, Ohio has a relatively limited amount of seismic activity. Within a 10-mile radius of the project, there have been two earthquake epicenters with magnitude of 1.8 and 3.9. The available data reviewed included events that occurred in Ohio from 1804 to present day.

#### 2.7 SITE RECONNAISSANCE

Stantec representatives visited the site on April 5, 2024, to make observations and evaluate access to proposed boring locations. The land surrounding the project site can be described as rural with some residential buildings in the vicinity. The pavement was observed to be in fair condition, however, there is longitudinal cracking near the head scarp of the landslide. Previous repairs and asphalt resurfacing was observed within the vicinity of the landslide. The landslide affects approximately 225 feet of the road.

# **3 EXPLORATION**

### 3.1 HISTORIC EXPLORATION PROGRAMS

The ODOT Traffic Information Management System (TIMS) provides documentation for three geotechnical explorations performed along SR 78. The MRG-78-10.30 project, completed in 2005, was for geohazard (landslide) rehabilitation located approximately 0.6 miles southwest of the site. The exploration consisted of four borings. Fill material was observed in all the borings to a depth of 4.8 to 7 feet. The fill was described as medium stiff to stiff, brown to gray silty clay (A-6b). Below the fill, soils were predominantly classified as gravel with sand, silt and clay (A-2-6), silt and clay (A-6a), silty clay (A-6b), and clay (A-7-6). Bedrock was encountered at depths of 14.5 to 20 feet and described as gray to brown, thin to medium bedded, clay shale.

The MRG-78-10.20, completed in 1991, was another project for geohazard remediation, located approximately 0.76 miles southwest of the project site. The exploration consisted of four borings and encountered overburden soils predominantly classified as sandy silt (A-4a), silt and clay (A-6a), silty clay (A-6b), and clay (A-7-6). Bedrock was encountered at depths ranging from 7.5 to 41 ft and was described and gray to brown shale.

#### 3.2 PROJECT EXPLORATION PROGRAM

Four borings were advanced to obtain geotechnical data for the proposed landslide stabilization. Three borings (B-001-0-24, B-002-0-24, and B-003-0-24) were advanced along the eastbound lane of the road, and one boring (B-002-1-24) was advanced in the westbound shoulder. Two dynamic cone penetration (DCP) tests (D-001-0-24 and D-002-0-24) were performed on the downslope of the suspected landslide near its toe. A summary of these borings is shown in Table 1. Boring locations are shown on the site plan in Appendix A.

| Boring No. | Station<br>(feet)* | Offset<br>(feet)* | Ground Surface<br>Elevation<br>(feet)* | Top of Bedrock<br>Elevation<br>(feet)* | Bottom of Boring<br>Elevation<br>(feet) |
|------------|--------------------|-------------------|----------------------------------------|----------------------------------------|-----------------------------------------|
| B-001-0-24 | 577+69             | 7.0 Rt            | 934.4                                  | 927.9                                  | 905.9                                   |
| B-002-0-24 | 578+75             | 6.0 Rt            | 926.3                                  | 917.3                                  | 889.8                                   |
| B-002-1-24 | 578+62             | 9.0 Lt            | 927.3                                  | 918.5                                  | 915.1                                   |
| B-003-0-24 | 579+86             | 6.0 Rt            | 914.3                                  | 894.3                                  | 872.3                                   |
| D-001-0-24 | 578+24             | 45.0 Rt           | 917.0                                  | 908.5                                  | 908.5                                   |
| D-002-0-24 | 579+10             | 40.0 Rt           | 912.0                                  | 891.4                                  | 891.4                                   |

#### Table 1. Boring Summary

\*(Note: Survey information was not available for D-001-0-24 and D-002-0-24. The station, offset, and ground surface elevation were approximated using Google Earth).

The borings were advanced in accordance with the ODOT Specifications for Geotechnical Explorations (SGE). The borings were performed by Ohio TestBor with a Mobile B57 track-mounted drill rig using 3¼inch inside diameter (ID) hollow stem augers to advance the borings through soil. Standard Penetration Test (SPT) sampling was performed at 2.5-foot in borings B-001-0-24, B-002-0-24, B-003-0-24 while continuous sampling was performed in B-002-1-24. SPT sampling was continued until bedrock was encountered. Undisturbed Shelby tube (ST) samples were obtained at various depths. The energy ratio (ER) of the Mobile B57 automatic hammer and drill rod system was measured to be 91% on January 3, 2023.

The depths and elevations of the SPTs with the corresponding  $N_{60}$ -values are shown on the boring logs in Appendix A.

Upon encountering competent bedrock, approximately 10 to 20 feet of rock coring was performed in borings B-001-0-24, B-002-0-24, and B-003-0-24 using NQ2-size equipment. Recovery, core loss, and rock quality designation (RQD) values were recorded as percentages for each coring run. These values are shown on the boring logs contained in Appendix A.

The materials encountered were logged by a geotechnical engineer from Stantec, with attention given to soil type, consistency, and moisture content. The borings were checked for the presence of groundwater during drilling and at its conclusion with the depth of water recorded. The borings were sealed with soil cuttings and bentonite chips to the termination depth and capped with asphalt cold patch where necessary.

DCP testing was performed using a dual mass automatic dynamic cone penetrometer in accordance with ASTM D6951. The model of the penetrometer was a Pagani DPM 30 with a 66-pound hammer falling from a height of 7.88 inches to drive a cone point with a 60-degree tip. The number of hammer blows required to advance the DCP rod was recorded on the logs provided in Appendix A.

The soil samples obtained from the borings were returned to a geotechnical laboratory for visual classification and tested for water content. Engineering classification testing was performed on samples reflecting each of the main soil horizons. The engineering classification tests conducted on the samples were sieve and hydrometer analysis (ASTM D422) and Atterberg limits (ASTM D4318). The samples were classified according to the ODOT classification method.

Two undisturbed Shelby tubes were extruded in the laboratory and one sample was subjected to unconfined compression (UC) testing (ASTM D2166). Four rock core samples were subjected to unconfined compressive strength of rock core (UCR) testing (ASTM D7012)

The results of laboratory testing are included in Appendix A.

# 4 FINDINGS

The surface materials encountered in the borings consisted of approximately 1 to 3.5 feet of pavement material (asphalt and aggregate base). Below the surface material, the soil was fine-grained, classifying as silt and clay (A-6a), silty clay (A-6b), and clay (A-7-6). These fine-grained soils were described as soft to hard, brown to gray, and damp to moist with medium plasticity (plasticity index of 13 to 22, average of 17). The N<sub>60</sub> values (SPT blow counts normalized to a 60 percent hammer efficiency) ranged from 0 to 53 blows per foot (bpf) with an average of 15 bpf. The natural moisture content ranged from 2 to 30 percent with an average of 17 percent.

Bedrock was encountered at depths of 6.5 to 20 feet (Elevation 894.3 to 927.9 feet), with bedrock surface elevations dipping from west to east in the borings. Directly beneath the overburden soil, the bedrock in B-001-0-24 was augered to a depth of 18.5 feet (Elevation 915.9 feet) and was described as brown to gray weathered shale. Interbedded shale (90 percent) and sandstone (10 percent) was next observed in the boring to the termination depth. The recovery ranged from 92 to 96 percent and the RQD ranged from 16 to 34 percent. UCR testing within this interbedded shale and sandstone yielded a strength of 8,760 psi.

Beneath the overburden soil in B-002-0-24, bedrock was augered to a depth of 16.5 feet (Elevation 909.8 feet) and was described as brown to gray weathered shale. Beneath the weathered shale, claystone described as brown, gray to red, highly weathered, weak, fine-grained, laminated, and highly fractured was encountered to the boring termination depth. The recovery of each run was 100 percent and the RQD ranged from 18 to 64 percent. UCR testing was performed on three samples from this stratum, yielding strengths of 47 to 162 psi. Coring was not performed in boring B-002-1-24.

Bedrock was deeper in B-003-0-24 and the bedrock was observed to be weaker and softer than in the other borings. After encountering bedrock at a depth of 20 feet and augering through soft bedrock to a depth of 40 feet, coring within boring B-003-0-24 was terminated after 2 feet due to issues with the water pressure regulator valve in the drill rig.

Groundwater was not observed in any of the borings during drilling activities, but this may be obscured by the addition of water during rock coring. Boring logs, photographs of the rock core, and laboratory testing results are presented in Appendix A.

Two dynamic cone penetration (DCP) tests (D-001-0-24 and D-002-0-24) were performed on the downslope of the suspected landslide near its toe. Penetrometer rods were refused at depths of 8.5 feet and 20.7 feet in D-001-0-24 and D-002-0-24 respectively. The DCP test results are presented in Appendix A.

# 5 ANALYSIS AND RECOMMENDATIONS

## 5.1 GENERAL

The recommendations that follow are based on the information discussed in this report and the interpretation of the subsurface conditions encountered at the site during the fieldwork. If future design changes are made, Stantec should be notified so that such changes can be reviewed, and the recommendations amended as necessary.

These conclusions and recommendations are based on data and subsurface conditions from the borings advanced during this exploration using the degree of care and skill ordinarily exercised under similar circumstances by competent members of the engineering profession. No warranties can be made regarding the continuity of conditions.

#### 5.2 DRILLED SHAFT WALL

It appears the landslide is occurring along a gently curved portion of SR 78 that is aligned southwestnortheast near two unnamed tributaries of West Branch Wolf Creek. ODOT has indicated that a drilled shaft wall downhill of SR 78, between the previous lagging wall and the existing right-of-way, is the preferred repair.

To estimate the failure surface of the landslide, a back analysis was performed using conventional, limit equilibrium methods as implemented in GeoStudio SLOPE/W 2018 R2 software. A cross section was developed at approximate Station 578+60 using information from borings B-002-0-24 and B-002-1-24, as well as information from DCP-001-0-24 and DCP-002-0-24. The selection of this cross section is deemed a representation of where the landslide has occurred based on the field exploration and site visit. A subsurface stratigraphy consisting of cohesive soil and bedrock was modeled based on the soil and rock encountered in the borings. A failure surface along the soil-bedrock interface appeared to replicate the failure observed at the site. Therefore, a 2-foot layer of weak soil was modeled. The analysis cross section is shown in Appendix B.

The foundation soils were given shear strength parameters based on recommendations from the ODOT Geotechnical Design Manual (GDM). It was assumed that the soil layers had zero drained cohesion at the time of failure. To achieve a factor of safety of 1.0, the friction angle of the weak layer was adjusted to 15.1 degrees. The material parameter derivations and results of the slope stability back analysis is provided in Appendix B.

The UA Slope program was used to estimate the loading on the drilled shaft wall. The analysis cross section and failure surface developed in the slope stability back analysis was modeled in the UA Slope program. As described in the ODOT GDM, existing conditions without the drilled shafts were analyzed and a drained friction angle of 15.2 degrees in the weak zone was required to achieve a factor of safety of 1.00. This closely resembles the back analysis results within the SLOPE/W model.

Using the same material parameters to achieve the factor of safety of 1.00 in the UA Slope program, the proposed drilled shaft wall geometry was analyzed. The drilled shaft wall was modelled approximately 23 feet right of the centerline of SR 78 and it was assumed that fill would be placed behind the wall to rebuild the shoulder after wall construction. Fill material was assigned a cohesion of 250 pounds per square foot (psf), a friction angle of 28 degrees, and a unit weight of 125 pounds per cubic foot (pcf) based on ODOT GDM Table 500-2. A drilled shaft wall consisting of 3-foot diameter drilled shafts at 5.75 feet center-to-center spacing was analyzed. Unreinforced plug drilled shafts are recommended to be installed between the reinforced drilled shafts; therefore, it was assumed that the drilled shafts would take the full loading from the uphill slices without any arching or load transfer to the downhill slices. The resulting unfactored load on the wall was 78 kips per shaft. The results of UA Slope analyses are presented in Appendix C.

The loading estimated from UA Slope Program combined with a traffic surcharge live load of 250 psf was modelled as a trapezoidal distributed load in a drilled shaft analysis using LPile v2022 software. The boring and the laboratory testing results were used to estimate the soil and rock parameters. It was assumed that downhill soil above the assumed failure depth would provide no passive resistance because the sliding surface is at the soil-bedrock interface, and it was assumed that some movement would continue along that plane creating a gap between the soil and the drilled shafts. A weak layer of claystone was modelled with an unconfined compressive strength of 90 psi, which was determined based on the testing of severely weathered claystone. The analysis was performed at both Service (I) and Strength (I) Limit States.

The analysis resulted in a deflection of 1.92 inches at Service (I) Limit State and a maximum moment of 1083.3 kip-feet at Strength (I) Limit State. The maximum shear was taken as 292.9 kips at Strength (I) Limit State. Calculations indicate that the W24X131 section has adequate capacity to withstand the maximum moment and shear values estimated from LPile. The results of the LPile analysis and associated calculates are presented in Appendix D.

## 5.3 **RECOMMENDATIONS**

Using the results of the analysis discussed in Section 5.2, it is estimated that 3-foot diameter shafts installed at 5.75 feet center-to-center spacing socketed 10 feet into bedrock would adequately resist the anticipated loading of the failed slope. A W24x131 steel beam was modeled as reinforcement for the drilled shafts. To protect against loss of material through the drilled shaft wall, unreinforced plug drilled shafts are recommended to be installed between the reinforced drilled shafts from the existing grade to the top of bedrock.

The wall length can be estimated to extend from approximate Station 577+50 to 580+00, for a total length of about 250 feet, at an offset of 23 feet left of centerline. Before the final design, the required length should be re-evaluated based on observations of slope instability. To provide additional roadway shoulder, the W-sections should extend above the ground surface to an elevation consistent with the SR 78 elevation, and concrete lagging should be installed between the W-sections above grade to retain backfill.



# Report of Landslide Exploration MRG-78-10.96

Lengths of steel sections and drilled shafts along the length of the wall may vary based on depth to bedrock and proposed grade. The borings indicate a dipping top of rock elevation from west to east. The W-section lengths are estimated to be 22 to 35 feet.

# APPENDIX A BORING AND DCP LOCATIONS, BORING AND DCP LOGS, ROCK CORE PHOTOGRPAHS AND RESULTS OF LABORATORY TESTING



| GP           |                                                         |                   |                         |          |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                |              |
|--------------|---------------------------------------------------------|-------------------|-------------------------|----------|----------|-----------------------|-------------|-------------------|-------------------|-----------|-------|--------|--------------|------|---------------|-------|---------------|--------|----------------|--------------|
| 0.96.0       | PROJECT: MRG-SR 78-10.96 DRILLING FIRM / OPERA          | TOR: OH           | IIIO TESTB              | OR/CS    | DRIL     | L RIG:                |             | MOBIL E           | 357               |           | STATI | ON / ( | OFFS         | SET: | 5             | 77+6  | 9, 7' I       | RT.    | EXPLOR         | ATION ID     |
| 78-1(        | TYPE: <u>GEOHAZARD EXPLORATION</u> SAMPLING FIRM / LOGG | ER:               | STANTEC                 | / GK     | HAM      | MER:                  | MOE         |                   |                   | 2         | ALIGN | IMEN   | Г:           | 04.4 | (1.10)        | SR 78 | 3             |        |                |              |
| IRG-         | PID:                                                    | 3.25              |                         | 2        |          |                       | ON DA       | AIE:1             | 0.0*              | _         |       |        | : <u>9</u> ; | 34.4 | (MSI<br>30.50 | L) E  | :OB:          | 28     | <u>3.5 ft.</u> | 1 OF 2       |
| SS N         | START ENDSAMPLING METHOD                                |                   |                         |          |          |                       |             | 20).<br>SAMDIE    | 90<br>UD          | <u> </u>  |       |        |              |      | 39.58<br>ATT  | EPRE  | 9, -01<br>-PC | .94773 |                |              |
| ГО           | AND NOTES                                               | 034.4             | DEPT                    | HS       | RQD      | N <sub>60</sub>       | (%)         | ID                | (tsf)             | GR        |       | FS     | si           | CL   |               |       | PI            | wc     | CLASS (GI)     | FILL         |
| UIU          | PAVEMENT AND BASE                                       | 304.4             |                         | L        |          |                       | (/          |                   | ()                |           |       |        |              |      |               |       |               |        |                |              |
| .96          | XX                                                      | 933.2             |                         | - 1      |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                |              |
| 8-10         | STIFF, BROWN TO GRAY, CLAY, TRACE GRAVEL, LITTLE        |                   |                         |          | 1        |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                |              |
| 2G-7         | SAND, "AND" SILI, DAMP                                  |                   |                         | 2 -      | 4 3      | 11                    | 60          | SS-1              | 2.50              | 6⁄        | 4     | 8      | 37           | 45   | 46            | 29    | 17            | 23     | A-7-6 (12)     | 9 - AL       |
| N<br>-       |                                                         | 020.0             |                         | <u> </u> | 4        |                       |             |                   |                   | /         |       |        |              |      |               |       |               |        |                |              |
| N10G         | HARD BROWN TO GRAY SILT AND CLAY LITTLE                 | 930.9             |                         |          |          |                       |             |                   |                   | ~         |       |        |              |      |               |       |               |        |                |              |
| ATA          | GRAVEL, LITTLE SAND, DAMP                               |                   |                         |          | 5        |                       |             |                   | $\langle \rangle$ | $\frown$  |       |        |              |      |               |       |               |        |                | RIN S        |
|              |                                                         | 1                 |                         | - 5 -    | 8<br>20  | 42                    | 100         | SS-2              | 4.50              | 17        | 9     | 7      | 44           | 23   | 38            | 25    | 13            | 13     | A-6a (8)       |              |
| <b>FIEL</b>  |                                                         |                   |                         |          |          |                       |             |                   | <u> </u>          |           |       |        | $\forall$    |      |               |       |               |        |                | H L Vapl     |
| NOL          |                                                         | 927.9             | TR                      |          | 50/5"    | -                     | 100         | <u></u>           |                   | -         | -     | -      | -4           | -    | -             | -     | -             | 2      | A-6a (V)       | 171 17       |
| LDU<br>C     | SHALE, BROWN TO GRAY, HIGHLY WEATHERED,                 |                   |                         | - 7 -    |          |                       | $\langle  $ | $\langle \rangle$ |                   | $\geq$    |       |        |              |      |               |       |               |        | l              | J Z J Z      |
| ROL          |                                                         |                   |                         |          |          |                       |             | $\sim$            |                   |           |       |        |              |      |               |       |               |        |                | AND AD       |
| ۲<br>۲       |                                                         | ł                 |                         | - 0 -    |          |                       |             | $\rightarrow$     | <u> </u>          |           |       |        |              |      |               |       |               |        |                |              |
| NIC/         |                                                         |                   |                         | - 9 -    | 13<br>48 | /-                    | 100         | ss-4              | -                 | -         | -     | -      | -            | -    | -             | -     | -             | 7      | Rock (V)       | HARD 1 4     |
| НOН          |                                                         |                   |                         |          | \$0/4"   | 4                     |             |                   |                   | $\rangle$ |       |        |              |      |               |       |               |        | L              | à Napri      |
| 34/T         |                                                         | ł                 |                         |          |          | $\backslash \uparrow$ |             |                   | $\backslash$      |           |       |        |              |      |               |       |               |        |                | Vere Vere    |
| 5784         |                                                         | ł                 |                         | - 11 -   | 15       | $\rightarrow$         | 400         | / CO.E. /         | /                 |           |       |        |              |      |               |       |               | 0      | Deak () ()     | 10012        |
| \175         |                                                         |                   |                         |          | 50/4"    | - 4                   | / 100       | / 33-9./          | -                 | -         | -     | -      | -            | -    | -             | -     | -             | 0      | ROCK (V)       | 42570        |
| :<br>-       |                                                         | 1                 |                         |          |          | $\setminus$           | $\langle  $ |                   |                   |           |       |        |              |      |               |       |               |        | l              |              |
| 12:10        |                                                         |                   |                         | - 13 -   | )        | $\setminus$           |             |                   |                   |           |       |        |              |      |               |       |               |        |                | 1×           |
| )/24         |                                                         | <                 |                         | -/14 -   | 50/5"    | - \                   | 100         | SS-6              | -                 | -         | -     | -      | -            | -    | -             | -     | -             | 6      | Rock (V)       | A Card       |
| 12/3(        |                                                         |                   | $\setminus$ $\setminus$ |          |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                |              |
| -<br>H       |                                                         |                   |                         | 15 −     |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                | 1>1-15       |
| T.GI         |                                                         |                   | $\land \land$           | - 16,-   |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                | 7676         |
| ВQ           |                                                         |                   |                         | × `      |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                |              |
| ō<br>'       |                                                         | 1                 | $ \land \land$          |          |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                |              |
| <del>1</del> |                                                         | 015.0             |                         | - 18     |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        |                | 121 12       |
| (8.5.)       | INTERBEDDED SHALE (90%) AND SANDSTONE (10%). ROD        | 313.3             |                         |          |          |                       |             |                   |                   |           |       | +      | +            | -    |               |       |               |        | l              | THE THE      |
| ЭOG          | 25%, REC. 95%;                                          |                   | V /                     | - 19 -   |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        | l              |              |
| √G L         | SHALE, BROWN TO GRAY, HIGHLY WEATHERED,                 | Ň                 |                         | - 20 -   |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        | l              |              |
| ORI          | FRACTURED;                                              | $\mid$ $\searrow$ | Y                       |          | 16       |                       | 00          |                   |                   |           |       |        |              |      |               |       |               |        | CODE           | A della 1 he |
| OIL B        |                                                         |                   |                         |          | 10       |                       | 92          | INQZ-1            |                   |           |       |        |              |      |               |       |               |        | CURE           | A Valence    |
| T SC         | THICK BEDDED, MODERATELY FRACTURED.                     | ŧ                 |                         | - 22 -   |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        | l              | SSA LA       |
| go           |                                                         | ł                 |                         |          |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        | l              | 76 76        |
| RD (         |                                                         | ŧ                 |                         | - 23 -   |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        | l              | AN I         |
| NDA          |                                                         | ŧ                 |                         | - 24 -   |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        | l              |              |
| STA          |                                                         | ŧ                 |                         |          |          |                       |             |                   |                   |           |       |        |              |      |               |       |               |        | ł              | 1-1-         |

| 5.GP                                                                                                                              |        | 10670                    | SEN-       | NI/A                          |                             |                       | 70 10 00   |                  | STATION                            |      | т.              | 677 <i>. (</i> |           | 0           |     | . 7/ | 15/04 |    |         | 7/4 | E/04 |    | <u></u> |                    | 1 0 24 |
|-----------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------|------------|-------------------------------|-----------------------------|-----------------------|------------|------------------|------------------------------------|------|-----------------|----------------|-----------|-------------|-----|------|-------|----|---------|-----|------|----|---------|--------------------|--------|
| 10.96                                                                                                                             | PID: 1 | 18670                    |            |                               | PROJECT:                    | MRG-SI                |            |                  | STATION                            |      | : I :<br>       | 5//+           | 09, 7 KI. |             | ARI |      | 15/24 |    | ND: _   | 7/1 | 5/24 |    | 5 2 OF  | 2 Б-00             | DAOK   |
| 3-78-                                                                                                                             |        |                          | IVIA I     | AND NOTES                     | TION                        |                       |            | DEI              | PTHS                               | RQD  | N <sub>60</sub> |                | ID        | ⊓P<br>(tsf) | GR  |      | FS    | SI | )<br>CI |     |      | PI | wc      | ODOT<br>CLASS (GI) | FILL   |
| 3-10.96\GINT LOGS MR0                                                                                                             | FROM   | 26.5 FE                  | ET TO 26.9 | 9 FEET, UCR = 87              | 760 PSI                     |                       | 905.9      | EOB              | -<br>26 -<br>- 27 -<br>-<br>- 28 - | - 34 |                 | 96             | NQ2-2     |             |     |      |       |    |         |     |      |    |         | CORE               |        |
| STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 12/30/24 12:10 - U:/175578434/TECHNICAL_PRODUCTIONIFIELD_DATA/10G - MRG-7 | NOTES  | <u>S: NO G</u><br>DONMEN | ROUNDW     | ATER ENCOUNT<br>DS. MATERIALS | TERED DURING<br>QUANTITIES: | DRILLING.<br>BACKFILL | STATION. ( | OFFSE<br>SOIL CL |                                    |      | VARE<br>TH BE   |                |           |             |     |      |       |    |         |     |      |    |         |                    |        |

| GP     |                                                    |              |                    |                       |         |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          | -                  |            |
|--------|----------------------------------------------------|--------------|--------------------|-----------------------|---------|---------|-----------------|-------------|---------------|-----------------------|--------------|------------------------|---------------|---------------|----------|-------|-------|---------------|----------|--------------------|------------|
| .96.0  | PROJECT: MRG-SR 78-10.96 DRILLING FIRM / C         | PERA         | TOR: O             | HO TESTB              | OR / CS | DRIL    | L RIG:          |             | MOBIL E       | 357                   |              | STAT                   | ION /         | OFF           | SET:     | 5     | 578+7 | 5, 6' F       | RT.      | EXPLOR             | ATION ID   |
| 78-10  | TYPE: <u>GEOHAZARD EXPLORATION</u> SAMPLING FIRM / | LOGG         | ER:                | STANTEC               | GK      | HAM     | MER:            | MOE         | BILE AUT      | OMATI                 | <u>C</u>     | ALIG                   | NME           | NT: _         |          |       | SR 78 | 3             |          | B-002              | -0-24      |
| RG-    | PID: 118670 SFN: N/A DRILLING METHOD               | ):           | 3.25               | HSA / NQ2             | 2       |         | BRATI           |             | ATE:          | 1/3/23                |              | ELEV                   |               | N: _9         | 926.3    | 6 (MS | L) E  | OB:           | 36       | <u>8.5 ft.</u>     |            |
| N<br>S | START:                                             | D:           |                    | SP1/NQ2               |         |         | KGY R           |             | (%):<br>      | 90*                   |              | LAI /                  | LUN           | G:            | <u> </u> | 39.5  | 95427 | 7, -81<br>-DO | .9475    | 8                  |            |
| LOG    | MATERIAL DESCRIPTION                               |              | ELEV.              | DEPT                  | HS      | SPT/    | N <sub>60</sub> | REC (%)     | SAMPLE        | (tef)                 | GP           |                        |               | NN (%)        | )        |       |       |               | wc       | ODOT<br>CLASS (GI) | BACK       |
| T<br>Z | PAVEMENT AND BASE                                  | $\mathbb{X}$ | 926.3              |                       |         | TROED   |                 | (70)        |               |                       |              |                        | 10            | 01            | UL       |       |       |               | ***      | . ,                |            |
| 96\G   |                                                    |              |                    |                       |         |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    |            |
| 3-10.  |                                                    |              |                    |                       | - ' -   |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    |            |
| G-78   |                                                    |              |                    |                       | - 2 -   |         |                 |             |               |                       |              | $\left\{ \right\}$     | >             |               |          |       |       |               |          |                    |            |
| ΜR     |                                                    |              |                    |                       | _ 3 _   |         |                 |             |               |                       | $\bigvee$    |                        |               |               |          |       |       |               |          |                    |            |
| 100    |                                                    | $\mathbb{K}$ | 922.8              |                       |         | •       |                 |             |               | $\vdash$              | 1            | $\left  \right\rangle$ |               |               |          |       |       |               |          |                    |            |
| TA/    | SOME SILT. DAMP TO MOIST                           |              |                    |                       | - 4 -   | 0       | 0               | 33          | SS-1          | 4.50                  | $\backslash$ | _ }                    | <u>\-</u>     | _             | -        | -     | -     | -             | 30       | A-7-6 (V)          | A L and    |
|        | - ,                                                |              |                    |                       |         | 0       |                 |             | $\frown$      | $\bigvee$             |              | $\square$              |               |               |          |       |       |               |          | - ( )              | action 7 - |
|        |                                                    |              |                    |                       |         |         |                 |             |               | P                     |              |                        |               | $\backslash$  |          |       |       |               |          |                    |            |
| ONF    |                                                    |              |                    |                       | - 6 -   |         |                 |             | $\vdash$      |                       |              |                        | $\rightarrow$ | $\rightarrow$ |          |       |       |               |          |                    | 7 L 7 L    |
| Ĕ      |                                                    |              |                    |                       | _ 7 _   |         |                 | *5          | ST-2          | 4 50                  |              | 1                      | 5             | 28            | 22       | 47    | 29    | 18            | 7        | A-7-6 (6)          |            |
| DOD    |                                                    |              | 018.3              |                       |         |         |                 |             |               |                       |              | .                      | Ŭ             | 20            |          |       | 20    | 10            |          | /// 0 (0)          |            |
| H I    | VERY STIFF TO HARD. BROWN. SILT AND CLAY. DAMP     |              | 310.5              |                       | - 8 -   |         |                 |             | $\overline{}$ | $\langle -$           |              |                        |               |               |          |       |       |               |          |                    | 12112      |
| ICAL   |                                                    |              | 917.3              |                       | _ 9 _   | 10      | /               | 100         | SS-3          |                       | -            | -                      | -             | -             | -        | -     | -     | -             | 11       | A-6a (V)           |            |
| CHN    | SHALE, BROWN TO GRAY, HIGHLY WEATHERED,            |              |                    |                       |         |         |                 |             |               |                       | 5            |                        |               |               |          |       |       |               |          |                    |            |
| 4/TE   | AUGLICED.                                          |              |                    |                       | - 10    |         | $\bigwedge$     |             |               | $\left \right\rangle$ | ſ            |                        |               |               |          |       |       |               |          |                    |            |
| 7843   |                                                    | E            |                    |                       | - 11 -  | 50/4"   | $\rightarrow$   |             | ~~~~ /        |                       |              |                        |               |               |          |       |       |               | <u> </u> | Deek (\/)          | THE T L    |
| 7557   |                                                    |              |                    |                       |         | 50/4    | -\              |             | / 33-4        | 4.50                  | -            |                        | -             | -             | -        | -     | -     | -             |          |                    |            |
| U:\1   |                                                    |              |                    |                       | - 12    |         | $\setminus$     |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | SSP AR     |
| 10     |                                                    | E            | l                  |                       | - 13 -  | )       |                 | $  \rangle$ |               |                       |              |                        |               |               |          |       |       |               |          |                    | 700 7 12   |
| 24 12  |                                                    |              |                    |                       | トノロ     | /<br>25 | $\rightarrow$   | 100         | 00 F          |                       |              |                        |               |               |          |       |       |               | F        | Deek (\/)          | 4000       |
| /30/2  |                                                    |              |                    |                       |         | 50/3"   |                 | 100         | 55-5          | -                     | -            | -                      | -             | -             | -        | -     | -     | -             | 5        | ROCK (V)           |            |
| - 12   |                                                    |              |                    | $ $ $\checkmark$      |         |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | 1111       |
| GDT    |                                                    | EZ           |                    |                       |         |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | Sept S     |
| DOT.   |                                                    | Z.           | 909.8              | $  \setminus \rangle$ |         | 50/4"   | -               | _100_       | SS-6          |                       | -            | -                      | -             | -             |          | -     | -     |               | 3        | Rock (V)           |            |
| Н      | CLAYSTONE, BROWN GRAY TO RED, HIGHLY               |              |                    |                       |         | >       |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | 1          |
| - (    | LAMINATED. HIGHLY FRACTURED: RQD 43%. REC 100%.    |              |                    | $\langle \rangle$     | -       |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | 7 5 7 5    |
| 5 X 1  |                                                    | SII)         |                    |                       | - 18 -  |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    |            |
| 8.     |                                                    |              |                    |                       | - 19 -  | 40      |                 | 100         | NQ2-1         |                       |              |                        |               |               |          |       |       |               |          | CORE               | The The    |
| ГÓ     |                                                    |              | $\setminus$ $\vee$ |                       | -       |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | € LV EL    |
| SING   |                                                    |              | $\langle \rangle$  |                       | 20 -    |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    |            |
| BOF    | FROM 20.6 FEET TO 21 FEET, UCR = 64 PSI            |              | $\mid \sim$        |                       | - 21 -  |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    |            |
| õL     |                                                    |              |                    |                       | -       |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | FUR AL     |
| OT S   |                                                    |              | 1                  |                       | 22 -    |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    |            |
| OO     |                                                    | 1////        | }                  |                       | - 23 -  |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | ALL ALL    |
| ARC    |                                                    |              | 1                  |                       |         | 10      |                 |             |               |                       |              |                        |               |               |          |       |       |               |          | 00055              | S Valence  |
| AND    |                                                    |              |                    |                       | 24 -    | 18      |                 | 100         | NQ2-2         |                       |              |                        |               |               |          |       |       |               |          | CORE               | VIT AN     |
| ST     |                                                    | V:///        | ł                  |                       |         |         |                 |             |               |                       |              |                        |               |               |          |       |       |               |          |                    | 100001     |

| D: N/A PROJECT: MRG-SR 78-10.96 STATION / OFFSET: 578+75, 6' RT. START: 7/16/24 END: 7/16/24 PG 2 OF 2 B-002-0-2   MATERIAL DESCRIPTION<br>AND NOTES ELEV.<br>901.3 DEPTHS SPT/<br>RQD N <sub>80</sub> REC<br>(%) SAMPLE<br>ID HP GRADATION (%) ATTERBERG<br>ATTERBERG ODOT<br>CLASS (GI) BAC   CLAYSTONE, BROWN GRAY TO RED, HIGHLY Image: Comparison of the company for the company |                            |       |                                                |      |                  |     |        |       |    |      |       |       |      | 02-0-24 |       |    |            |                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|------------------------------------------------|------|------------------|-----|--------|-------|----|------|-------|-------|------|---------|-------|----|------------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IION                       | ELEV. |                                                | SPT/ | N                | REC | SAMPLE | HP    | (  | GRAE | DATIC | N (%) | A    | TTE     | RBERG | i  | ODOT       | BACK                                        |
| AND NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 901.3 | DEPTHS                                         | RQD  | IN <sub>60</sub> | (%) | ID     | (tsf) | GR | CS   | FS    | SI    | CL L | LI      | PL PI | WC | CLASS (GI) | FILL                                        |
| CLAYSTONE, BROWN GRAY TO RED, HIG<br>WEATEHRED WEATHERED, WEAK, FINE<br>LAMINATED, HIGHLY FRACTURED; RQD 4<br>(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GRAINED,<br>43%, REC 100%. |       | - 26 -<br>- 27 -<br>- 27 -<br>- 28 -           |      |                  |     |        |       |    |      |       |       |      |         |       |    |            |                                             |
| FROM 29.0 FEET TO 29.4 FEET, UCR = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 PSI                      |       | -<br>- 29<br>- 30<br>- 31                      | 52   |                  | 100 | NQ-3   |       |    |      |       |       |      |         |       |    | CORE       |                                             |
| FROM 35.1 FEET TO 35.5 FEET, UCR = 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSI                        |       | - 32 -<br>- 33 -<br>- 34 -<br>- 35 -<br>- 36 - | 64   |                  | 100 | NQ.4   |       |    |      |       |       |      |         |       |    | CORE       | AC EN & A A A A A A A A A A A A A A A A A A |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |       |                                                |      |                  |     |        |       |    |      |       |       |      |         |       |    |            |                                             |

| G.         |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
|------------|-----------------------------------|------------------------|-------------------------|--------------------------------------|----------------|-----------------|--------------|-------------|------------------------|---------------|------------------------|---------------|---------------|----------|--------------|---------------------------|----------|------------|---------------------------|
| 96.0       | PROJECT: MRG-SR 78-10.96          | DRILLING FIRM / OPERA  | ATOR: OF                | HO TESTBOR / CS                      | DRIL           | L RIG:          |              | MOBIL E     | 357                    |               | STAT                   | ION /         | OFFS          | SET:     | 578          | 8+62, 9'                  | LT.      | EXPLOR/    | ATION ID                  |
| -10        | TYPE: GEOHAZARD EXPLORATION       | SAMPLING FIRM / LOGO   | GER:                    | STANTEC / GK                         | HAM            | MER:            | MOE          | BILE AUTO   | OMATIO                 | C             | ALIG                   | NMEN          | IT:           | -        | SR           | 78                        |          | B-002      | 2-1-24                    |
| 32-5       | PID: 118670 SFN: N/A              | DRILLING METHOD:       | 3.25"                   | HSA / NQ2                            | CALI           | BRATI           | ON DA        | ATE: 1      | /3/23                  | _             | ELEV                   | ATIO          | N: 9          | 27.3 (   | MSL)         | EOB:                      | 12       | 2.2 ft.    | PAGE                      |
| MR         | START: 7/15/24 END: 7/15/24       | SAMPLING METHOD:       | 5                       | SPT/NQ2                              | ENEF           | RGY R           | ATIO (       | %):         | 90*                    |               | LAT /                  | LON           | G:            | 3        | 9.595        | -<br>422, -8 <sup>,</sup> | .94758   | 37         | 1 OF 1                    |
| GS         | MATERIAL DESCRIP                  | - I                    | <b>FI FV</b>            |                                      | SPT/           |                 | REC          | SAMPLE      | HP                     |               | GRAD                   | ΑΤΙΟ          | N (%)         |          | <b>ATTEF</b> | RBFRG                     |          |            | BACK                      |
| Õ          | AND NOTES                         | non                    | 027.3                   | DEPTHS                               | RQD            | N <sub>60</sub> | (%)          |             | (tsf)                  | GR            |                        | FS            | si l          | CL /     |              |                           | wc       | CLASS (GI) | FILL                      |
| LN 1       | PAVEMENT AND BASE                 | XX                     | 321.5                   |                                      |                |                 | (/0)         |             | ((0.))                 | -             |                        |               |               | -        |              |                           | -        |            | ******                    |
| 96/G       |                                   |                        | 926 1                   |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| 10.        | STIFE TO VERY STIFE BROWN SILT AN |                        | 320.1                   |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| -78        | GRAVEL, SOME SAND, DAMP           |                        |                         | - 2 -                                | 4              | ~               |              | <u> </u>    | 4 00                   | <u>-</u> /    |                        | 2.5           | 4-            |          |              |                           |          |            | A Car                     |
| <b>ARG</b> |                                   |                        |                         |                                      | 3              | 9               | /3           | SS-1        | 1.00                   | 11            |                        | 15            | 45            | 26       | 36   2       | 1 15                      | 20       | A-6a (9)   | 4450000 9<br>FX - 4772777 |
| -          |                                   |                        | 1                       | - 3 -                                | <u> </u>       |                 |              |             |                        | <u> </u>      | K                      |               |               |          |              |                           |          |            |                           |
| /100       |                                   |                        | 1                       |                                      | <sup>2</sup> 8 | 30              | 80           | SS-2        | /-                     | ~             |                        | -             | -             | -        | _   .        | -   -                     | 17       | A-6a (V)   |                           |
| ATA        |                                   |                        | 922.8                   | _ 4 _                                | 12             |                 |              |             | Κ /                    | $Y \setminus$ |                        | $\setminus$   |               |          |              |                           |          | ( )        | R > Color                 |
|            | VERY STIFF TO HARD, BROWN TO GRAY | (, SILTY CLAY,         |                         | - 5 -                                | 4              |                 |              | $\wedge$    | $\left  \right\rangle$ |               | $\left  \right\rangle$ | $\backslash$  |               |          |              |                           |          |            |                           |
| Π          | SOME GRAVEL, SOME SAND, DAMP TO I | MOIST                  |                         |                                      | 4              | 18              | 100          | S8-3        | 1.50                   | 15            | 6                      | 7             | 35            | 37 4     | 10   2       | 4   16                    | 25       | A-6b (10)  |                           |
| <b>N</b>   |                                   |                        | -                       | - 6 -                                | 0              |                 |              | $\vdash$    |                        |               |                        | $\overline{}$ | $\rightarrow$ |          |              |                           |          |            | He L' CAPL                |
| Ê          |                                   |                        |                         |                                      | 6<br>13        | 53              | 100          | 85-4        | 4 50                   | k -           | _                      | _ ]           | $\checkmark$  | _        | _   .        |                           | 11       | A-6h (\/)  |                           |
| Ď          |                                   |                        |                         | - 7 -                                | 22             |                 |              |             | //                     | ľ             |                        |               |               |          |              |                           |          | /(05(1))   |                           |
| RO         |                                   |                        | -                       |                                      | 10             |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            | FUN ADE                   |
| Ļ          |                                   |                        | 918 5                   |                                      | 15<br>50/4"    | -               | 100          | <b>SS-5</b> | 4.50                   | -             | -                      | -             | -             | -        | -   -        | -   -                     | 9        | A-6b (V)   |                           |
| AIC A      | SHALE GRAY TO REDDISH BROWN HIG   | ЭНГҮ                   | - 010.0                 | TR                                   | 35             |                 |              |             | $\vdash$               |               |                        |               |               | _        |              |                           |          |            | A CED 1 4                 |
| Ë          | WEATHERED, AUGERED.               |                        | 1                       |                                      | 50/2"          | - `             | 100          | SS-6        | - \                    | -             | -                      | -             | -             | -        | -            |                           | 4        | Rock (V)   |                           |
| ΗE         |                                   |                        | 1                       | - 10                                 |                | $\sim$          |              |             | $\backslash$           | ľ             |                        |               |               |          |              |                           |          |            | JAP LO                    |
| 3434       |                                   | F.                     |                         |                                      | 50/4"          | 4               | 100          | SS-7        | À.                     | -             |                        | -             | -             | -        |              | -   -                     | 4        | Rock (V)   | 9- 1 B                    |
| 5578       |                                   |                        | 1                       |                                      | $\backslash$   |                 |              | $\frown$    | ſ                      |               |                        |               |               |          |              |                           |          |            | A CONTRACT                |
| :/17       |                                   |                        | 915.1                   |                                      | 50/2"          | $\setminus$     | 100          |             |                        |               |                        |               |               |          |              | _                         | 2        | Deek (\/)  | AND A                     |
| Э<br>Ч     |                                   |                        | *                       |                                      | <u>00/3</u>    | ᠆᠆              |              | 55-8        | <u>~-</u> ⁄            | <u> </u>      | <u> </u>               | _ <u>_</u>    |               | <u> </u> |              |                           | <u> </u> |            |                           |
| 2:10       |                                   |                        |                         |                                      | )              |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| 24 1       |                                   |                        | /                       |                                      |                |                 | $\rangle$    |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| /30/:      |                                   |                        |                         |                                      |                | $\rightarrow$   | $\checkmark$ |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| - 12       |                                   |                        |                         | $\backslash$ $\checkmark$ $\frown$   |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| Ы          |                                   |                        | $\frown$                |                                      |                | ~               |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| Ð.F.       |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ğ          |                                   |                        | $\frown$                |                                      | >              |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ġ          |                                   |                        | Ň                       | $\setminus$ $\setminus$ $\checkmark$ |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| 11)        |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| 5 X        |                                   | $\sim$                 | $\backslash$            | ) )                                  |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| 8)         |                                   | $\sim$                 | $\backslash$            |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ŏ          |                                   |                        | $\setminus$ $\setminus$ |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| Ю<br>Z     |                                   |                        | $\backslash$            |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ORI        |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ف<br>_     |                                   |                        | •                       |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| SO         |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ğ          |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ğ          |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| AR         |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| Å          |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
| ST/        |                                   |                        |                         |                                      |                |                 |              |             |                        |               |                        |               |               |          |              |                           |          |            |                           |
|            | NOTES: NO GROUNDWATER ENCOUNT     | TERED DURING DRILLING. | STATION                 | OFFSET AND ELE                       | VATION         | ARE             | APPR         | OXIMATE     | •                      |               |                        |               |               |          |              |                           |          |            |                           |
|            | ABANDONMENT METHODS, MATERIALS,   | QUANTITIES: BACKFILLE  | ED WITH                 | SOIL CUTTING MIX                     | ED WI          | TH BE           | NTON         | ITE CHIPS   | 3                      |               |                        |               |               |          |              |                           |          |            |                           |

| GP          |                  |          |          |               |                    |           |              |         |                       |               | 1              |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            |           |
|-------------|------------------|----------|----------|---------------|--------------------|-----------|--------------|---------|-----------------------|---------------|----------------|-------------------|--------------|---------------------|-------------------|------------|------------------------|--------------------|--------|---------|-------|-------|---------|--------|------------|-----------|
| .96.0       | PROJEC           | T:       | MRG-S    | SR 78-10.96   | <u> </u>           | DRILLING  | FIRM / OPER/ | ATOR: 0 | HIO TESTE             | BOR / CS      | DRIL           | RIG               |              | MOBIL E             | 357               |            | STAT                   | ION /              | / OFF  | SET:    | 5     | 579+8 | 6, 6' I | RT.    | EXPLOR     | ATION ID  |
| 78-1(       | TYPE:            | GEOH     | AZARD    | EXPLORAT      | ION                | SAMPLING  | FIRM / LOGO  |         | STANTEC               | / GK          | HAM            | MER:              | MOE          | BILE AUTO           | DMATI             | <u>c</u>   | ALIG                   | NME                | NT: _  | <u></u> | (1.10 | SR 78 | 3       |        |            |           |
| RG-         | PID: <u>1</u>    | 7/17/2   |          | N/A<br>□·7/17 | 1/24               |           |              | 3.25    | " HSA / NQ<br>SDT/NO2 | 2             |                |                   |              | AIE:1               | 0.0*              | _          |                        |                    | )N:    | 914.3   | 30 5  | L) E  | :OB:    | 42     | 2.0 ft.    | 1 OF 2    |
| N SS        | 51AR1.           | 1/11/2   |          |               |                    |           |              |         |                       |               |                | GIR               |              | 70).                | 90                | <u> </u>   |                        |                    | NI /04 | )       | 39.5  | 9000  | I, -01  | .94723 | 99         |           |
| ГО          |                  |          | IVIA     | AND NC        | DTES               |           |              | 01/1 3  | DEPT                  | ΉS            | RQD            | N <sub>60</sub>   | (%)          |                     | (tsf)             | GR         |                        | FS                 | si     | )<br>CL |       |       | PI      | wc     | CLASS (GI) | FILL      |
| UIU         | PAVEM            | ENT AN   | BASE     |               |                    |           | $\otimes$    | 3       |                       |               |                |                   | (/           |                     | ()                |            |                        |                    |        |         |       |       |         |        |            |           |
| .96\0       |                  |          |          |               |                    |           |              | 913.0   |                       | - 1 -         |                |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            |           |
| 8-10        | STIFF, C         | GRAY, C  | LAY, SO  | ME GRAVE      | EL, LITTL          | E TO SOME |              |         | -                     |               | 7              |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            |           |
| 7-95        | SAND, S          | SOME SI  | LT, DAM  | IP TO MOIS    | ST                 |           |              |         |                       | 2             | 3              | 9                 | 22           | SS-1                | -                 | 24⁄        | 12                     | <sup>&gt;</sup> 11 | 24     | 29      | 43    | 25    | 18      | 4      | A-7-6 (7)  | 9 - AL    |
| N<br>-      | <i>w</i> ss-1.1  | DRT      |          |               |                    |           |              |         |                       |               | 3              |                   |              |                     |                   | $\swarrow$ |                        |                    |        |         |       |       |         |        |            |           |
| N10G        |                  |          |          |               |                    |           |              |         |                       | F . I         | 2              |                   |              |                     |                   |            | $\left  \right\rangle$ |                    |        |         |       |       |         |        |            |           |
| ATA         |                  |          |          |               |                    |           |              |         |                       |               | <sup>2</sup> 3 | 11                | 53           | SS-2                | 2.50              | 24         | 12                     | 11                 | 24     | 29      | 43    | 25    | 18      | 23     | A-7-6 (7)  | RIS CON   |
|             |                  |          |          |               |                    |           |              | 1       |                       | - 5 -         | 4              |                   |              | $ \longrightarrow $ | $\searrow$        |            | $\left  \right\rangle$ | $\rightarrow$      |        |         |       |       |         |        |            |           |
| FIEL        |                  |          |          |               |                    |           |              | 1       |                       |               |                |                   |              | / /                 | 1                 |            |                        | $\setminus$        |        |         |       |       |         |        |            | A LY CAL  |
| NOL         | FROM 6           | 6.0 FEET | TO 8.0 I | FEET, UC =    | = 0.73 TS          | F         |              |         |                       |               |                |                   |              |                     |                   |            |                        | $\overline{}$      |        |         |       |       |         |        |            | 1         |
| UCT         |                  |          |          |               |                    |           |              |         |                       | - 7 -         |                |                   | ₹5           | ST-3                | 3.00              | 26         | 3                      | 8                  | 22     | 41      | 48    | 27    | 21      | 27     | A-7-6 (11) | The The   |
| ROL         |                  |          |          |               |                    |           |              | 906.3   |                       |               |                |                   |              | $\bigvee$           |                   |            |                        |                    |        |         |       |       |         |        |            | AND AL    |
| L<br>L      | STIFF T          | O VERY   | STIFF, C | GRAY TO B     | ROWN,              | SILTY CLA | <b>Y</b> ,   |         |                       |               |                |                   |              |                     | K                 |            |                        |                    |        |         |       |       |         |        |            |           |
| NIC/        | TRACE            | GRAVE    | ., SOME  | SAND, DAI     | MP                 |           |              |         |                       | - 9 -         | $^{2}$         | 12                | 87           | SS-4                | 2.50              | 7          | 12                     | 14                 | 35     | 32      | 38    | 22    | 16      | 19     | A-6b (9)   | A CONT LA |
| ECH         |                  |          |          |               |                    |           |              |         |                       |               | <u> </u>       | ~                 | 5            |                     | 2.00              | <u>)</u>   |                        |                    | 00     | 02      |       |       | 10      | 10     | // 00 (0)  | à Napri   |
| 34/T        |                  |          |          |               |                    |           |              |         |                       |               |                | $\backslash$      |              |                     | $\downarrow \lor$ |            |                        |                    |        |         |       |       |         |        |            | Vere La   |
| 5784        |                  |          |          |               |                    |           |              |         |                       | - 11 -        | 3              | $\rightarrow$     |              | $\sim$              | $\sim$            |            |                        |                    |        |         |       |       |         |        |            | A Star    |
| \175        |                  |          |          |               |                    |           |              |         |                       |               | ັ 5            | ∖ 17 <sup>∖</sup> | 53⁄          | SS-5                | 2.50              | -          | -                      | -                  | -      | -       | -     | -     | -       | 17     | A-6b (V)   | AND T     |
|             |                  |          |          |               |                    |           |              | 0013    |                       |               | 6              | $\rightarrow$     | $\leftarrow$ |                     |                   |            |                        |                    |        |         |       |       |         |        |            |           |
| 12:10       | VERY S           | TIFF TO  | HARD. E  | BROWN TO      | GRAY.              | CLAY. DAM | IP H         | 901.3   |                       | <u> </u>      | )              |                   | $  \rangle$  |                     |                   |            |                        |                    |        |         |       |       |         |        |            | AND JE    |
| /24         |                  |          | ,        |               | ,                  | ,         |              |         |                       | -/14 -        | 2              |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            |           |
| 12/30       |                  |          |          |               |                    |           |              |         | $\land \land$         | K             | 35             | 12                | 100          | SS-6                | 2.75              | 0          | 1                      | 3                  | 41     | 55      | 49    | 27    | 22      | 26     | A-7-6 (15) | K SIL     |
| ,<br>H      |                  |          |          |               |                    |           |              |         |                       | <15 -         |                |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            | 1<        |
| T.GI        |                  |          |          |               |                    |           |              |         | $\land \land$         | - 16          |                |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            | TETE      |
| 0<br>T<br>D |                  |          |          |               |                    |           |              |         |                       |               | 3              | 17                | 100          | SS-7                | 3.00              |            |                        | _                  | _      | _       | _     | _     | _       | 21     | A-7-6 (\/) |           |
| ġ.          |                  |          |          |               |                    |           |              |         | $\backslash /$        |               | 6              |                   | 100          | 007                 | 0.00              |            |                        |                    |        |         |       |       |         | 21     | /// 0(0)   | ~ ~ ~     |
| (11)        |                  |          |          |               |                    |           |              |         | $  \rangle \rangle$   | - 18 -        |                |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            | JZT J>    |
| 8.5 X       |                  |          |          |               |                    |           |              |         |                       |               | 5              |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            | X X X Y   |
| 00          |                  |          |          |               |                    |           |              |         |                       | 19            | 8              | 41                | 60           | SS-8                | 4.50              | -          | -                      | -                  | -      | -       | -     | -     | -       | 13     | A-7-6 (V)  |           |
| ВL          | 01141 5          | DDOW     | 1 70 00  |               | \ A / ET A TT · ·· |           |              | 894.3   |                       | <u> </u>      | 19             |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            | 74 40     |
| JRIN        | SHALE,<br>AUGERI | BROWI    | I IO REI | J, HIGHLY     | WEATH              | ERED,     |              |         | Y                     |               |                |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            | Sal The   |
| IL BC       |                  |          |          |               |                    |           |              |         |                       | <sup>21</sup> | 10             |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            |           |
| OS L        |                  |          |          |               |                    |           |              | 1       |                       | - 22 -        | 19<br>24       | 65                | 47           | SS-9                | 4.50              | -          | -                      | -                  | -      | -       | -     | -     | -       | 12     | Rock (V)   | Jung Me   |
| DOD         |                  |          |          |               |                    |           |              |         |                       |               | 24             |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            | 7- 16     |
| SD C        |                  |          |          |               |                    |           |              | 1       |                       | 23 -          |                |                   |              |                     |                   |            |                        |                    |        |         |       |       |         |        |            |           |
| <b>IDAF</b> |                  |          |          |               |                    |           |              | 1       |                       | - 24 -        | 10             | 52                | 00           | CC 10               | 1 50              |            |                        |                    |        |         |       |       |         | 10     | Book (1.)  |           |
| STA         |                  |          |          |               |                    |           | Ē            |         |                       | + +           | 20             | 55                | 00           | 33-10               | 4.50              | -          | -                      | -                  | -      | -       | -     | -     | -       | 12     |            |           |

| GP          |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
|-------------|---------------|----------------------------|------------|---------------|----------------|---------------------------|---------------------------|---------------------------|---------------------|--------|-----------------|-----------------------|----------------------|----------------|------|-----------------|---------------|---------------|-------|-----|------|-------|--------|------------|-----------------------------------------|
| 0.96.       | PID: <u>1</u> | 18670                      | SFN:       | N/A           | PROJECT:       | MRG-SR 7                  | 78-10.96                  | S1                        | TATION /            | OFFSE  | :T:             | 579+8                 | 36, 6' RT.           | S <sup>-</sup> | TART | : _7/1          | 7/24          | _ EN          | ND: _ | 7/1 | 7/24 | _   P | G 2 OF | = 2   B-00 | 03-0-24                                 |
| 78-1        |               |                            | MAT        | ERIAL DESCRIP | PTION          |                           | ELEV.                     | DEPT                      | HS                  | SPT/   | Neo             | REC                   | SAMPLE               | HP             |      | GRAD            |               | N (%          | )     | ATT | ERBE | RG    |        | ODOT       | BACK                                    |
| Ъ,          |               |                            |            | AND NOTES     |                |                           | 889.3                     |                           | 1                   | RQD    | 00              | (%)                   | U                    | (tsf)          | GR   | CS              | FS            | SI            | CL    | LL  | PL   | PI    | WC     | CLASS (GI) | FILL                                    |
| SS N        | AUGEF         | , вком<br>RED. <i>(с</i> о | ntinued)   | , HIGHLY WEAT | HERED,         |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            | A L MAD                                 |
| Р           |               | (**                        |            |               |                |                           |                           |                           | 26 7                | 11     |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            | and the The                             |
| Σ           |               |                            |            |               |                | 三                         |                           |                           | - 27 -              | 19     | 63              | 47                    | SS-11                | 4.50           | -    | -               | -             | -             | -     | -   | -    | -     | 7      | Rock (V)   | 7-1-5                                   |
| 9(G         |               |                            |            |               |                |                           |                           |                           | _ <i>_</i> ′ ∣      | 23     |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            | 1 5 1 5                                 |
| -10.9       |               |                            |            |               |                |                           |                           |                           | - 28 -              | -      |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| -78         |               |                            |            |               |                | 三                         |                           |                           |                     | 7      |                 |                       |                      |                |      | $\mathbb{N}$    | >             |               |       |     |      |       |        |            | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| MRG         |               |                            |            |               |                |                           |                           |                           | <b>29</b>           | 16     | 50              | 80                    | SS-12                | 4.50           |      | - /             | -             | -             | -     | -   | -    | -     | 12     | Rock (V)   | JLV JL                                  |
| -<br>5      |               |                            |            |               |                |                           |                           |                           | - 30                | 17     |                 |                       |                      |                | ſ    | K               |               |               |       |     |      |       |        |            | 17115                                   |
| A/10        |               |                            |            |               |                | 三三 二                      |                           |                           |                     | -      |                 |                       |                      |                |      | $ $ $\setminus$ |               |               |       |     |      |       |        |            |                                         |
| DAT         |               |                            |            |               |                |                           |                           |                           | <sup>31</sup>       | 9      |                 |                       | ~                    | K/             | ŕ    | $\mathbf{k}$    | $\overline{}$ |               |       |     |      |       |        |            | gad and                                 |
| ٦           |               |                            |            |               |                |                           |                           |                           | - 32 -              | 13     | 41              | 87                    | SS-13                | 4.50           | -    |                 | - }           | <u>\-</u>     | -     | -   | -    | -     | 13     | Rock (V)   |                                         |
| NFIE        |               |                            |            |               |                |                           |                           |                           | - I                 | 14     |                 |                       | +-+                  |                |      |                 |               | $\rightarrow$ |       |     |      |       |        |            | A CONTRACT                              |
| 20L         |               |                            |            |               |                |                           |                           |                           | - 33 -              |        |                 |                       |                      |                | l    |                 |               | $\checkmark$  |       |     |      |       |        |            | A LA AND                                |
| DUC         |               |                            |            |               |                |                           |                           |                           | _ 34 -              | 7      |                 | $\left \right\rangle$ | $\overline{\langle}$ |                |      |                 |               | -             |       |     |      |       |        |            |                                         |
| ROL         |               |                            |            |               |                | 三                         |                           |                           |                     | 20     | 80              | 100                   | SS-14                | 4.50           | -    | -               | -             | -             | -     | -   | -    | -     | 12     | Rock (V)   | 100 12                                  |
| L<br>L      |               |                            |            |               |                |                           |                           |                           | - 35 -              | 00     |                 |                       | $\overline{}$        | K              |      |                 |               |               |       |     |      |       |        |            | Sala a                                  |
| NICA        |               |                            |            |               |                |                           |                           |                           | - 36 -              |        |                 |                       |                      | $\backslash$   |      |                 |               |               |       |     |      |       |        |            | 23 > 2008/39<br>24/11/29 <              |
| E CH        |               |                            |            |               |                |                           |                           |                           | _ 30                | 14     | 100             |                       | 00.45                | 4 50           | 5    |                 |               |               |       |     |      |       |        | Desta 0.0  |                                         |
| 4/TE        |               |                            |            |               |                |                           |                           |                           | - 37 -              | 28     | 408             | 93                    | \$5-15               | ¥.50           | ŕ-   | -               | -             | -             | -     | -   | -    | -     | 11     | ROCK (V)   | SEP S                                   |
| 7843        |               |                            |            |               |                | 三司                        |                           |                           |                     |        |                 | $\vdash$              | ~                    | $\geq$         |      |                 |               |               |       |     |      |       |        |            | ABON S                                  |
| 755         |               |                            |            |               |                |                           |                           |                           | - 38 -              |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| U:\1        |               |                            |            |               |                |                           |                           |                           | - 39                | 15     | 110             | 100                   | SS 16                | 1 50           |      |                 |               |               |       |     |      |       | 12     | Deak () () |                                         |
| - 10        |               |                            |            |               |                |                           | 874.3                     |                           | $\sim$              | ) 30   |                 | 100                   | 55-10                | 4.50           | -    | -               | -             | -             | -     | -   | -    | -     | 13     | ROCK (V)   | R SKOR                                  |
| 4 12        | CLAYS         | STONE, I                   | RED, HIGH  | LY WEATHEREI  | D, WEAK, FINE  |                           |                           |                           |                     |        |                 | $\left \right\rangle$ |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| 30/2        | GRAIN         | ED, LAN                    | 1INATED, ⊢ | IIGHLY FRACTU | JRED; RQD 54%, |                           | <                         | $\langle \langle \rangle$ | 41 -                | 55     | $ \rightarrow $ | 75                    | NQ2                  |                |      |                 |               |               |       |     |      |       |        | CORE       |                                         |
| - 12/       | REC /S        | 5%.                        |            |               |                |                           | 872.3                     | $\backslash$              | $1 \sim$            |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            | ZL JZL                                  |
| 1<br>L<br>L |               |                            |            |               |                |                           |                           | EOB                       | <u>+</u>            |        | $\sim$          |                       |                      |                |      |                 | !             | !             |       |     | !!   |       |        |            | Re V_e v                                |
| 01.0        |               |                            |            |               |                |                           | $\sim$                    | //                        | $\langle \ \rangle$ |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| ЦЦ          |               |                            |            |               |                |                           |                           |                           | $\mathbf{i}$        | >      |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| 0-          |               |                            |            |               |                | $\langle \langle \rangle$ |                           |                           | $\sim$              |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| ×           |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| 8.5.        |               |                            |            |               |                | $\langle \rangle$         |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| 00          |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| Ц<br>С      |               |                            |            |               |                |                           | $\backslash$ $\checkmark$ |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| RIN         |               |                            |            |               |                |                           | $\langle \rangle$         |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| LBC         |               |                            |            |               |                |                           | ~                         |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| SOI         |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| DOT         |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| O O         |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| DAR         |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| TAN         |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| °           |               |                            |            |               |                |                           |                           |                           |                     |        |                 |                       |                      |                |      |                 |               |               |       |     |      |       |        |            |                                         |
| F           | ABAND         |                            | IT METHO   | DS. MATERIALS | QUANTITIES: E  | BACKFILLED                | WITH                      | SOIL CUT                  | TING MI             | XED WI | TH BE           | NTON                  | ITE CHIPS            | S              |      |                 |               |               |       |     |      |       |        |            |                                         |

|        | Dynamic Cone Penetrometer Log Sheet |            |                  |            |         |      |                  |                |            |       |   |                |  |
|--------|-------------------------------------|------------|------------------|------------|---------|------|------------------|----------------|------------|-------|---|----------------|--|
|        |                                     |            |                  |            | Loca    | tio  | n Informa        | tion           |            |       |   |                |  |
|        |                                     | Client     | Stantec Consulti | ng Service | s Inc.  |      |                  | Pavemen        | t Material | AC    |   |                |  |
|        |                                     | State      | OH               |            |         |      | F                | Pavement 7     | hickness   |       |   |                |  |
|        | , -                                 | Location   | MRG-78-10.96mr   | n          |         |      |                  | Base           | Material   |       |   |                |  |
| Peneti | rometer O                           | perators   | JAK              |            |         |      |                  | Base           | nickness   |       |   |                |  |
|        | St                                  | an Ime     |                  |            |         |      |                  | SubBase        | hickson    |       |   |                |  |
|        | Fini                                | sn ime     |                  |            | Data    |      | c //2023 -       | SUDBASE        | nickness   |       |   |                |  |
|        | Penetrom                            | formation  | 1                |            | Date    | //10 | b//2024          | Data           | Recorder   |       |   |                |  |
|        | Other In                            | iormation  |                  |            |         |      |                  |                |            |       |   |                |  |
|        |                                     |            |                  |            |         |      |                  |                |            |       |   |                |  |
|        |                                     |            |                  |            |         |      |                  |                |            |       |   |                |  |
| in     | ft                                  | cm         | Pre              |            | SPT     |      | in               | ft             | cm         | Pre   |   | SPT            |  |
| depth  | depth                               | depth      | Blows            |            | N-Value |      | depth            | depth          | depth      | Blows |   | N-Value        |  |
| 3.94   | 0.33                                | 10         | 2                |            | 1.532   |      | 200.79           | 16.73          | 510        |       |   | #VALUE!        |  |
| 7.87   | 0.66                                | 20         | 3                |            | 2.298   |      | 204.72           | 17.06          | 520        |       |   | #VALUE!        |  |
| 11.81  | 0.98                                | 30         | 4                |            | 3.064   |      | 208.66           | 17.38          | 530        |       |   | #VALUE!        |  |
| 15.75  | 1.31                                | 40         | 4                |            | 3.064   |      | 212.60           | 17.71          | 540        |       |   | #VALUE!        |  |
| 19.69  | 1.64                                | 50<br>60   | 1                |            | 0.1522  |      | 216.54           | 18.04<br>19.27 | 550        |       |   | #VALUE!        |  |
| 23.02  | 1.9/                                | 70         | 0.2              |            | 0.1532  |      | 220.47           | 10.37          | 570        |       |   | #VALUE!        |  |
| 31 50  | 2.30                                | 80         | 0.2              |            | 0.1532  |      | 224.41           | 19.70          | 580        |       |   | #VALUE!        |  |
| 35.43  | 2.02                                | 90         | 0.2              |            | 0.1532  |      | 232.03           | 19.35          | 590        |       |   | #VALUE!        |  |
| 39.37  | 3.28                                | 100        | 0.2              |            | 0.1532  |      | 236.22           | 19.68          | 600        |       | 1 | #VALUE!        |  |
| 43.31  | 3.61                                | 110        | 0.2              |            | 0.1532  |      | 240.16           | 20.01          | 610        |       |   | #VALUE!        |  |
| 47.24  | 3.94                                | 120        | 2                |            | 1.532   |      | 244.09           | 20.34          | 620        |       |   | #VALUE!        |  |
| 51.18  | 4.26                                | 130        | 0.2              |            | 0.1532  |      | 248.03           | 20.66          | 630        |       |   | <b>#VALUE!</b> |  |
| 55.12  | 4.59                                | 140        | 2                |            | 1.532   |      | 251.97           | 20.99          | 640        |       |   | <b>#VALUE!</b> |  |
| 59.06  | 4.92                                | 150        | 2                |            | 1.532   |      | 255.91           | 21.32          | 650        |       |   | <b>#VALUE!</b> |  |
| 62.99  | 5.25                                | 160        | 3                |            | 2.298   |      | 259.84           | 21.65          | 660        |       |   | <b>#VALUE!</b> |  |
| 66.93  | 5.58                                | 170        | 5                |            | 3.83    |      | 263.78           | 21.98          | 670        |       |   | #VALUE!        |  |
| 70.87  | 5.90                                | 180        | 9                |            | 6.894   |      | 267.72           | 22.30          | 680        |       |   | #VALUE!        |  |
| 74.80  | 6.23                                | 190        | 10               |            | 7.66    |      | 271.65           | 22.63          | 690        |       |   | #VALUE!        |  |
| /8./4  | 6.56                                | 200        | 41               |            | 31.406  |      | 275.59           | 22.96          | 700        |       |   | #VALUE!        |  |
| 82.68  | 0.89                                | 210        | 30               |            | 20.81   |      | 219.53           | 23.29          | 710        |       |   | #VALUE!        |  |
| 00.01  | 754                                 | 220        | 23               |            | 17 618  |      | 203.40           | 23.02          | 720        |       |   | #VALUE:        |  |
| 94 49  | 7.34                                | 230        | 136              |            | 104 176 |      | 201.40           | 20.04          | 740        |       |   | #VALUE:        |  |
| 98 43  | 8.20                                | 250        | 127              |            | 97,282  |      | 295.28           | 24.60          | 750        |       |   | #VALUE!        |  |
| 102.36 | 8.53                                | 260        | 50               |            | 38.3    |      | 299.21           | 24.93          | 760        |       |   | #VALUE!        |  |
| 106.30 | 8.86                                | 270        |                  |            | 0       |      | 303.15           | 25.26          | 770        |       |   | <b>#VALUE!</b> |  |
| 110.24 | 9.18                                | 280        |                  |            | 0       |      | 307.09           | 25.58          | 780        |       |   | #VALUE!        |  |
| 114.17 | 9.51                                | 290        |                  |            | 0       |      | 311.02           | 25.91          | 790        |       |   | #VALUE!        |  |
| 118.11 | 9.84                                | 300        |                  |            | 0       |      | 314.96           | 26.24          | 800        |       |   | #VALUE!        |  |
| 122.05 | 10.17                               | 310        |                  |            | 0       |      | 318.90           | 26.57          | 810        |       |   | #VALUE!        |  |
| 125.98 | 10.50                               | 320        |                  |            | 0       |      | 322.83           | 26.90          | 820        |       |   | #VALUE!        |  |
| 129.92 | 10.82                               | 330        |                  |            | 0       |      | 326.77           | 27.22          | 830        |       |   | #VALUE!        |  |
| 133.86 | 11.15                               | 340        |                  |            | 0       |      | 330.71           | 27.55          | 840        |       |   | #VALUE!        |  |
| 137.80 | 11.48                               | 350        |                  |            | 0       |      | 334.65           | 27.88          | 850        |       |   | #VALUE!        |  |
| 141.73 | 11.81                               | 30U<br>370 |                  |            | 0       |      | 338.58<br>342.52 | 28.21          | 870        |       |   | #VALUE!        |  |
| 140.07 | 12.14                               | 380        |                  |            | 0       |      | 346.46           | 20.04<br>28.86 | 880        |       |   | #VALUE!        |  |
| 153 54 | 12.40                               | 390        |                  |            | 0       |      | 350.39           | 29.00          | 890        |       |   | #VALUE!        |  |
| 157.48 | 13.12                               | 400        |                  |            | 0       |      | 354.33           | 29.52          | 900        |       | 1 | #VALUE!        |  |
| 161.42 | 13.45                               | 410        |                  |            | 0       |      | 358.27           | 29.85          | 910        |       |   | #VALUE!        |  |
| 165.35 | 13.78                               | 420        |                  |            | 0       |      | 362.20           | 30.18          | 920        |       |   | #VALUE!        |  |
| 169.29 | 14.10                               | 430        |                  |            | 0       |      | 366.14           | 30.50          | 930        |       | 1 | #VALUE!        |  |
| 173.23 | 14.43                               | 440        |                  |            | 0       |      | 370.08           | 30.83          | 940        |       |   | #VALUE!        |  |
| 177.17 | 14.76                               | 450        |                  |            | 0       |      | 374.02           | 31.16          | 950        |       |   | #VALUE!        |  |
| 181.10 | 15.09                               | 460        |                  |            | 0       |      | 377.95           | 31.49          | 960        |       |   | #VALUE!        |  |
| 185.04 | 15.42                               | 470        |                  |            | 0       |      | 381.89           | 31.82          | 970        |       |   | #VALUE!        |  |
| 188.98 | 15.74                               | 480        |                  |            | 0       |      | 385.83           | 32.14          | 980        |       |   | #VALUE!        |  |
| 192.91 | 16.07                               | 490        |                  |            | 0       |      | 389.76           | 32.47          | 990        |       |   | #VALUE!        |  |
| 196.85 | 16.40                               | 500        |                  |            | 0       |      | 393.70           | 32.80          | 1000       |       | 1 | #VALUE!        |  |

|        | Dynamic Cone Penetrometer Log Sheet |             |                  |            |                |      |           |                |               |       |     |                |  |
|--------|-------------------------------------|-------------|------------------|------------|----------------|------|-----------|----------------|---------------|-------|-----|----------------|--|
|        |                                     | <b>.</b>    |                  |            | Loca           | tio  | n Informa | tion           |               |       |     |                |  |
|        |                                     | Client      | Stantec Consulti | ng Service | s Inc.         |      |           | Pavemen        | t Material    | AC    |     |                |  |
|        |                                     | State       | OH               |            |                |      | F         | avement        | hickness      |       |     |                |  |
|        |                                     | Location    | MRG-78-10.96m    | n          |                |      |           | Base           | Material      |       |     |                |  |
| Penetr | rometer Op                          | perators    | JAK              |            |                |      |           | Base           | hickness      |       |     |                |  |
|        | Sta                                 | art Time    |                  |            |                |      |           | SubBase        | material      |       |     |                |  |
|        | Fini                                | sh Time     |                  |            |                |      |           | SubBase 1      | hickness      |       |     |                |  |
|        | Penetrome                           | eter test # | 2                |            | Date           | 7/10 | 6//2024   | Data           | Recorder      |       |     |                |  |
|        | Other In                            | formation   |                  |            |                |      |           |                |               |       |     |                |  |
|        |                                     |             |                  |            |                |      |           |                |               |       |     |                |  |
|        |                                     |             |                  |            |                |      |           |                |               |       |     |                |  |
| 1      | 4                                   |             | Des              |            | ODT            |      | 1         | ۵              |               | Dee   |     | ODT            |  |
| IN     | π<br>donth                          | cm          | Pre              |            | SPT<br>N Value |      | In        | π<br>dopth     | cm            | Pre   |     | SPT<br>N Value |  |
|        | depth                               | 10          | BIOWS            |            |                |      | 0eptn     | 16 72          | ceptri<br>E10 | BIOWS |     |                |  |
| 3.94   | 0.33                                | 20          | 4                |            | 3.004          |      | 200.79    | 10.73          | 510           | 19    |     | 14.004         |  |
| 11.07  | 0.00                                | 20          | 3                |            | 2.290          |      | 204.72    | 17.00          | 520           | 24    |     | 24 512         |  |
| 15.75  | 0.50                                | 40          |                  |            | 2 208          |      | 200.00    | 17.50          | 540           | 30    |     | 24.312         |  |
| 19.69  | 1.51                                | 50          | 6                |            | 4 596          |      | 212.00    | 18.04          | 550           | 26    |     | 19 916         |  |
| 23.62  | 1.97                                | 60          | 10               |            | 7,66           |      | 220.47    | 18.37          | 560           | 18    |     | 13,788         |  |
| 27.56  | 2.30                                | 70          | 11               |            | 8.426          |      | 224.41    | 18.70          | 570           | 21    | 1   | 16.086         |  |
| 31.50  | 2.62                                | 80          | 13               |            | 9.958          |      | 228.35    | 19.02          | 580           | 34    | 1   | 26.044         |  |
| 35.43  | 2.95                                | 90          | 8                |            | 6.128          |      | 232.28    | 19.35          | 590           | 37    | 1   | 28.342         |  |
| 39.37  | 3.28                                | 100         | 15               |            | 11.49          |      | 236.22    | 19.68          | 600           | 27    |     | 20.682         |  |
| 43.31  | 3.61                                | 110         | 12               |            | 9.192          |      | 240.16    | 20.01          | 610           | 32    |     | 24.512         |  |
| 47.24  | 3.94                                | 120         | 11               |            | 8.426          |      | 244.09    | 20.34          | 620           | 42    |     | 32.172         |  |
| 51.18  | 4.26                                | 130         | 9                |            | 6.894          |      | 248.03    | 20.66          | 630           | 50    |     | 38.3           |  |
| 55.12  | 4.59                                | 140         | 5                |            | 3.83           |      | 251.97    | 20.99          | 640           |       |     | <b>#VALUE!</b> |  |
| 59.06  | 4.92                                | 150         | 7                |            | 5.362          |      | 255.91    | 21.32          | 650           |       |     | <b>#VALUE!</b> |  |
| 62.99  | 5.25                                | 160         | 4                |            | 3.064          |      | 259.84    | 21.65          | 660           |       |     | <b>#VALUE!</b> |  |
| 66.93  | 5.58                                | 170         | 5                |            | 3.83           |      | 263.78    | 21.98          | 670           |       |     | #VALUE!        |  |
| 70.87  | 5.90                                | 180         | 6                |            | 4.596          |      | 267.72    | 22.30          | 680           |       |     | #VALUE!        |  |
| 74.80  | 6.23                                | 190         | 5                |            | 3.83           |      | 271.65    | 22.63          | 690           |       |     | #VALUE!        |  |
| 78.74  | 6.56                                | 200         | 10               |            | 7.66           |      | 275.59    | 22.96          | 700           |       |     | #VALUE!        |  |
| 82.68  | 6.89                                | 210         | 12               |            | 9.192          |      | 279.53    | 23.29          | 710           |       |     | #VALUE!        |  |
| 86.61  | 7.22                                | 220         | 5                |            | 3.83           |      | 283.46    | 23.62          | 720           |       |     | #VALUE!        |  |
| 90.55  | 7.54                                | 230         | 5                |            | 3.83           |      | 287.40    | 23.94          | 730           |       |     | #VALUE!        |  |
| 94.49  | 1.87                                | 240         | 6                |            | 4.596          |      | 291.34    | 24.27          | 740           |       |     | #VALUE!        |  |
| 90.43  | 0.20                                | 250         | 6                |            | 4.090          |      | 295.20    | 24.00          | 750           |       |     | #VALUE!        |  |
| 102.30 | 0.JJ<br>8.86                        | 200         | 6                |            | 4.596          |      | 299.21    | 24.93          | 700           |       |     | #VALUE:        |  |
| 110 24 | 9.18                                | 280         | 7                |            | 5 362          |      | 307.09    | 25.58          | 780           |       |     | #VALUE!        |  |
| 114 17 | 9.51                                | 290         | 6                |            | 4.596          |      | 311.02    | 25.91          | 790           |       |     | #VALUE!        |  |
| 118.11 | 9.84                                | 300         | 7                |            | 5.362          |      | 314.96    | 26.24          | 800           |       | 1   | #VALUE!        |  |
| 122.05 | 10.17                               | 310         | 6                |            | 4.596          |      | 318.90    | 26.57          | 810           |       |     | #VALUE!        |  |
| 125.98 | 10.50                               | 320         | 11               |            | 8.426          |      | 322.83    | 26.90          | 820           |       | 1   | #VALUE!        |  |
| 129.92 | 10.82                               | 330         | 12               |            | 9.192          |      | 326.77    | 27.22          | 830           |       | 1   | #VALUE!        |  |
| 133.86 | 11.15                               | 340         | 9                |            | 6.894          |      | 330.71    | 27.55          | 840           |       |     | #VALUE!        |  |
| 137.80 | 11.48                               | 350         | 10               |            | 7.66           |      | 334.65    | 27.88          | 850           |       |     | #VALUE!        |  |
| 141.73 | 11.81                               | 360         | 17               |            | 13.022         |      | 338.58    | 28.21          | 860           |       |     | <b>#VALUE!</b> |  |
| 145.67 | 12.14                               | 370         | 12               |            | 9.192          |      | 342.52    | 28.54          | 870           |       |     | #VALUE!        |  |
| 149.61 | 12.46                               | 380         | 13               |            | 9.958          |      | 346.46    | 28.86          | 880           |       |     | #VALUE!        |  |
| 153.54 | 12.79                               | 390         | 12               |            | 9.192          |      | 350.39    | 29.19          | 890           |       |     | #VALUE!        |  |
| 157.48 | 13.12                               | 400         | 11               |            | 8.426          |      | 354.33    | 29.52          | 900           |       |     | #VALUE!        |  |
| 161.42 | 13.45                               | 410         | 14               |            | 10.724         |      | 358.27    | 29.85          | 910           |       |     | #VALUE!        |  |
| 165.35 | 13.78                               | 420         | 12               |            | 9.192          |      | 362.20    | 30.18          | 920           |       |     | #VALUE!        |  |
| 169.29 | 14.10                               | 430         | 16               |            | 12.256         |      | 366.14    | 30.50          | 930           |       |     | #VALUE!        |  |
| 173.23 | 14.43                               | 440         | 21               |            | 16.086         |      | 370.08    | 30.83          | 940           |       |     | #VALUE!        |  |
| 1/7.17 | 14.76                               | 450         | 23               |            | 17.618         |      | 374.02    | 31.16          | 950           |       |     | #VALUE!        |  |
| 181.10 | 15.09                               | 460         | 24               |            | 18.384         |      | 311.95    | 31.49          | 960           |       |     | #VALUE!        |  |
| 185.04 | 15.42                               | 4/0         | 19               |            | 14.554         |      | 301.09    | 31.82          | 970           |       |     | #VALUE!        |  |
| 100.98 | 10./4                               | 400         | 10               |            | 11.40          |      | 380.76    | 32.14          | 900           |       |     | #VALUE!        |  |
| 192.91 | 10.07                               | 490<br>500  | 14               |            | 10 724         |      | 303.10    | 32.41<br>32.80 | 1000          |       |     | #VALUE!        |  |
| 100.00 | 10.40                               | 000         | 1.4              | 1          | 10.124         |      | 000.10    | 02.00          | 1000          |       | i i | # TALUE!       |  |



















Project Name MRG-78-10.96 (Landslide Exploration)

|                                                                                  |                      |                   |         |          |          |        |        |           |            |            | -           |             |
|----------------------------------------------------------------------------------|----------------------|-------------------|---------|----------|----------|--------|--------|-----------|------------|------------|-------------|-------------|
| Maximum Particle Size in Sample                                                  | No. 10               | No. 4             | 3/8"    | 3/4"     | 1 1/2"   | 3"     |        |           |            |            | -           |             |
| Recommended Minimum Mass (g)                                                     | 20                   | 100               | 500     | 2,500    | 10,000   | 50,000 |        |           |            | ٦          | Fest Method | ASTM        |
| Material Type: <u>Str</u> atified, <u>Lam</u> inated, <u>Len</u> sed, <u>Hom</u> | <u>i</u> ogeneous, f | <u>Dist</u> urbed |         |          |          |        | ·      |           |            |            |             |             |
|                                                                                  |                      |                   |         | Γ        | Maximum  | Mat    | .erial | Pass Min. |            | Wet Soil & | Dry Soil &  |             |
|                                                                                  |                      |                   | Date    | Material | Particle | Excl   | uded   | Mass?     | Can Weight | Can Weight | CanWeight   | Moisture    |
| Source                                                                           |                      | Lab ID            | Tested  | Туре     | Size     | Amount | Size   | (Y/N)     | (g)        | (g)        | (g)         | Content (%) |
| B-001-0-24, 1.5'-3.0'                                                            |                      | 217               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.92      | 52.68      | 46.66       | 23.4        |
| B-001-0-24, 4.0'-5.5'                                                            |                      | 218               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.05      | 52.66      | 49.11       | 12.7        |
| B-001-0-24, 6.0'-7.5'                                                            |                      | 219               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.71      | 112.26     | 110.11      | 2.4         |
| B-001-0-24, 8.5'-10.0'                                                           |                      | 220               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.88      | 88.67      | 83.98       | 7.4         |
| B-001-0-24, 11.0'-12.5'                                                          |                      | 221               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.97      | 83.44      | 78.73       | 8.2         |
| B-001-0-24, 13.5'-15.0'                                                          |                      | 222               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.93      | 134.77     | 128.55      | 5.8         |
| B-002-0-24, 3.5'-5.0'                                                            |                      | 223               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 31.25      | 61.86      | 54.81       | 29.9        |
| B-002-0-24, 8.5'-10.0'                                                           |                      | 224               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.65      | 75.79      | 70.45       | 10.7        |
| B-002-0-24, 11.0'-12.5'                                                          |                      | 225               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 32.32      | 132.75     | 130.90      | 1.9         |
| B-002-0-24, 13.5'-15.0'                                                          |                      | 226               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 32.09      | 104.23     | 101.10      | 4.5         |
| B-002-0-24, 16.0'-17.5'                                                          |                      | 227               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.26      | 121.37     | 118.57      | 2.9         |
| B-002-1-24, 1.5'-3.0'                                                            |                      | 228               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.19      | 51.71      | 46.53       | 20.4        |
| B-002-1-24, 3.0'-4.5'                                                            |                      | 229               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.05      | 96.57      | 85.81       | 16.6        |
| B-002-1-24, 4.5'-6.0'                                                            |                      | 230               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.72      | 50.99      | 44.90       | 25.2        |
| B-002-1-24, 6.0'-7.5'                                                            |                      | 231               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.08      | 121.76     | 111.79      | 11.0        |
| B-002-1-24, 7.5'-9.0'                                                            |                      | 232               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.78      | 91.89      | 85.82       | 9.3         |
| B-002-1-24, 9.0'-10.5'                                                           |                      | 233               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.11      | 97.33      | 94.12       | 4.4         |
| B-002-1-24, 10.5'-12.0'                                                          |                      | 234               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.19      | 104.44     | 101.54      | 3.6         |
| B-002-1-24, 12.0'-13.5'                                                          |                      | 235               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.89      | 75.85      | 74.46       | 2.6         |
| B-003-0-24, 1.5'-3.0'                                                            |                      | 237               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.78      | 51.11      | 49.89       | 4.2         |
| B-003-0-24, 3.5'-5.0'                                                            |                      | 238               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.84      | 50.97      | 45.30       | 23.2        |
| B-003-0-24, 8.5'-10.0'                                                           |                      | 239               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.17      | 52.68      | 47.76       | 18.5        |
| B-003-0-24, 11.0'-12.5'                                                          |                      | 240               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.96      | 107.79     | 94.98       | 17.3        |
| B-003-0-24, 13.5'-15.0'                                                          |                      | 241               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.04      | 72.76      | 62.11       | 25.9        |
| B-003-0-24, 16.0'-17.5'                                                          |                      | 242               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.93      | 54.45      | 48.65       | 20.9        |
| B-003-0-24, 18.5'-20.0'                                                          |                      | 243               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.93      | 117.11     | 106.07      | 13.0        |
| B-003-0-24, 21.0'-22.5'                                                          |                      | 244               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 20.80      | 95.46      | 87.25       | 12.4        |
| B-003-0-24, 23.5'-25.0'                                                          |                      | 245               | 7/24/24 | Dist     | No. 10   |        |        | Yes       | 21.20      | 80.05      | 73.56       | 12.4        |

Tested By

Project Number 175578434

ASTM D 2216

JP

Version: 20240531

Approved By: RJ



B-003-0-24, 38.5'-40.0'

#### Project Name MRG-78-10.96 (Landslide Exploration)

| Project Number | 175578434 |
|----------------|-----------|
| Tested By      | JP        |

54.92

20.85

Yes

59.34

**Moisture Content of Soil** 

|                                                                                  |             |                   |         |          |          |        | -     |           |            |            | , s         |
|----------------------------------------------------------------------------------|-------------|-------------------|---------|----------|----------|--------|-------|-----------|------------|------------|-------------|
| Maximum Particle Size in Sample                                                  | No. 10      | No. 4             | 3/8"    | 3/4"     | 1 1/2"   | 3"     |       |           |            |            |             |
| Recommended Minimum Mass (g)                                                     | 20          | 100               | 500     | 2,500    | 10,000   | 50,000 |       |           |            | Т          | Fest Method |
| Material Type: <u>Str</u> atified, <u>Lam</u> inated, <u>Len</u> sed, <u>Hom</u> | ogeneous, [ | <u>Dist</u> urbed |         | -        |          |        |       |           |            |            |             |
|                                                                                  |             |                   |         |          | Maximum  | Mate   | erial | Pass Min. |            | Wet Soil & | Dry Soil &  |
|                                                                                  |             |                   | Date    | Material | Particle | Exclu  | uded  | Mass?     | Can Weight | Can Weight | CanWeight   |
| Source                                                                           |             | Lab ID            | Tested  | Туре     | Size     | Amount | Size  | (Y/N)     | (g)        | (g)        | (g)         |
| B-003-0-24, 26.0'-27.5'                                                          |             | 246               | 7/24/24 | Dist     | No. 10   |        |       | Yes       | 20.80      | 54.01      | 51.98       |
| B-003-0-24, 28.5'-30.0'                                                          |             | 247               | 7/24/24 | Dist     | No. 10   |        |       | Yes       | 20.91      | 74.61      | 69.08       |
| B-003-0-24, 31.0'-32.5'                                                          |             | 248               | 7/24/24 | Dist     | No. 10   |        |       | Yes       | 31.57      | 95.51      | 88.36       |
| B-003-0-24, 33.5'-35.0'                                                          |             | 249               | 7/24/24 | Dist     | No. 10   |        |       | Yes       | 20.78      | 127.13     | 116.20      |
| B-003-0-24, 36.0'-37.5'                                                          |             | 250               | 7/24/24 | Dist     | No. 10   |        |       | Yes       | 32.03      | 143.16     | 131.79      |

Dist

No. 10

251

7/24/24

ASTM D 2216

ASTM

Moisture Content (%)

6.5

11.5

12.6

11.5

11.4

13.0



#### Project Name MRG-78-10.96 (Landslide Exploration)

| Maximum Particle Size in Sample                                                                              | No. 10 | No. 4 | 3/8" | 3/4"  | 1 1/2"  | 3"     |       |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------|-------|------|-------|---------|--------|-------|--|--|--|
| Recommended Minimum Mass (g)                                                                                 | 20     | 100   | 500  | 2,500 | 10,000  | 50,000 |       |  |  |  |
| Material Type: <u>Str</u> atified, <u>Lam</u> inated, <u>Len</u> sed, <u>Hom</u> ogeneous, <u>Dist</u> urbed |        |       |      |       |         |        |       |  |  |  |
|                                                                                                              |        |       |      |       | Maximum | Mat    | erial |  |  |  |

Pass Min. Wet Soil & Dry Soil & Mass? Can Weight CanWeight Date Material Particle Excluded Can Weight Size Source Lab ID Tested Туре Size Amount (Y/N) (g) (g) (g) B-002-0-24, 6.0'-8.0' 252 8/1/24 No. 10 Yes 21.27 91.27 86.77 Dist 253 B-003-0-24, 6.0'-8.0' 8/1/24 21.07 81.64 Dist No. 10 Yes 68.94

#### Page 1 of 1

#### **Moisture Content of Soil**

ASTM D 2216

Moisture

Content (%)

6.9

26.5

#### Project Number 175578434 Tested By JP

| Test Method    | ASTM    |
|----------------|---------|
| 100t Mictiliou | 7.01101 |



**Summary of Soil Tests** 

| Project Name                | MRG-78-10.96       | (Landslide Explora | ation) Project Number 175578434                  |
|-----------------------------|--------------------|--------------------|--------------------------------------------------|
| Source                      | B-001-0-24, 1.5    | 5'-3.0'            | Lab ID 217                                       |
| -                           |                    |                    |                                                  |
| Sample Type                 | SPT                |                    | Date Received 7-24-24                            |
|                             |                    |                    | Date Reported 8-5-24                             |
|                             |                    |                    | Test Results                                     |
|                             |                    |                    |                                                  |
| <u>Natur</u><br>Taat Mathad | ral Moisture Co    | ontent             |                                                  |
| I est Method                | : ASTM D 2216      | 00.4               | Prenered Dr.                                     |
| MOISLUI                     | re Content (%):    |                    | Prepared: Dry                                    |
|                             |                    |                    | Liquid Limit: 40                                 |
| Der                         | tiolo Sizo Anol    |                    | Plastic Liffill. 29                              |
| Proporation I               | Anthod: ASTM       | <u>ysis</u>        |                                                  |
| Credation M                 | othod: ASTMD       | 421                | Activity index. 0.5                              |
| Hydrometer                  | Method: ASTM D     | 422<br>D 422       |                                                  |
| riyurunleteri               |                    |                    | Moisture-Density Relationship                    |
| Parti                       | cle Size           | <u> </u>           | Test Not Performed                               |
|                             | (mm)               |                    |                                                  |
| Sieve Size                  | . (11111)          | Passing            |                                                  |
|                             | N/A                |                    | Maximum Dry Density (kg/m³): N/A                 |
|                             | N/A                |                    | Optimum Moisture Content (%): N/A                |
|                             | N/A                |                    | Over Size Correction %: N/A                      |
|                             | N/A                |                    |                                                  |
| 3/4"                        | 19                 | 100.0              |                                                  |
| 3/8"                        | 9.5                | 98.4               | California Bearing Ratio                         |
| No. 4                       | 4.75               | 97.7               | Test Not Performed                               |
| No. 10                      | 2                  | 93.3               | Bearing Ratio (%): N/A                           |
| No. 40                      | 0.425              | 89.5               | Compacted Dry Density (lb/ft <sup>3</sup> ): N/A |
| No. 200                     | 0.075              | 81.7               | Compacted Moisture Content (%): N/A              |
|                             | 0.02               | 60.0               |                                                  |
|                             | 0.005              | 44.5               |                                                  |
|                             | 0.002              | 32.5               | Specific Gravity                                 |
| Estimated                   | 0.001              | 24.9               | Estimated                                        |
|                             |                    |                    |                                                  |
| Plus 3 in. Ma               | iterial, Not Inclu | ded: 0 (%)         | Particle Size: No. 10                            |
|                             |                    |                    | Specific Gravity at 20° Celsius: 2.70            |
| Dana-                       | ASTM               |                    |                                                  |
| Kange                       | (%)                |                    | Classification                                   |
| Gravel                      | <u>2.3</u>         |                    | Linified Group Symbols Mi                        |
| Medium Sar                  | u 4.4              | 3.0                | Group Name: City Stringer Stringer               |
| Fine Sand                   | 10 J.O<br>7 Q      |                    |                                                  |
|                             | 1.0                |                    | ODOT Classification = A 7.6 (12)                 |
|                             | <u> </u>           |                    |                                                  |
| Ciay                        | 44.5               | 44.5               |                                                  |
| Commente:                   |                    |                    |                                                  |
| - comments:                 |                    |                    |                                                  |
| -                           |                    |                    | Reviewed By DEL                                  |
| -                           |                    |                    |                                                  |

#### Particle-Size Analysis of Soils ASTM D 422

Stantec

| Project Nam  | е                   | MRG-78-10.9    | 96 (Land  | slide Explor             | ation)          |             | Proj     | ect Number | 175578434 |
|--------------|---------------------|----------------|-----------|--------------------------|-----------------|-------------|----------|------------|-----------|
| Source       |                     | B-001-0-24,    | 1.5'-3.0' |                          |                 |             |          | Lab ID     | 217       |
|              |                     |                |           |                          |                 |             |          | -          |           |
|              |                     | Sieve          | Analysis  | s for the Po             | rtion Coarser 1 | han the No. | 10 Sieve |            |           |
|              |                     |                |           |                          |                 |             | %        | ]          |           |
| Test M       | Nethod              | ASTM           | D 422     |                          |                 | Sieve Size  | Passing  |            |           |
| Prepared     | Using               | ASTM           | D 421     |                          |                 |             |          | 1          |           |
|              | 0                   |                |           |                          |                 |             |          | 1          |           |
| Particle \$  | Shape:              | Ang            | ular      |                          |                 |             |          | 1          |           |
| Particle Har | dness:              | Hard and       | Durable   | <del>,</del>             |                 |             |          | 1          |           |
|              |                     |                |           |                          |                 |             |          | 1          |           |
| Tes          | sted By             | JP             |           |                          |                 |             |          | 1          |           |
| Tes          | st Date             | 07-25-2024     | -         |                          |                 |             |          | 1          |           |
| Date Re      | eceived             | 07-24-2024     | -         |                          |                 | 3/4"        | 100.0    | 1          |           |
|              |                     |                | -         |                          |                 | 3/8"        | 98.4     | 1          |           |
| Maximum Pa   | article S           | ize: 3/4" Siev | ۵         |                          |                 | No 4        | 97 7     | 1          |           |
|              |                     |                | C         |                          |                 | No. 4       | 00.0     | -          |           |
|              |                     |                |           |                          |                 | NO. 10      | 93.3     |            |           |
|              | A                   | nalvsis for t  | he Porti  | on Finer th              | an the No. 10 S | Sieve       |          |            |           |
| Analvsis Bas | ed on               | -3 inch Fracti | on Only   |                          |                 | No. 40      | 89.5     | 1          |           |
| ,            |                     |                | ,         |                          |                 | No. 200     | 81.7     | 1          |           |
| Specific (   | Gravity             | 2.7            |           |                          |                 | 0.02 mm     | 60.0     | 1          |           |
|              | ,                   |                | -         |                          |                 | 0.005 mm    | 44.5     | 1          |           |
| Dispersed    | Using               | Apparatus A    | - Mecha   | nical, for 1 M           | Minute          | 0.002 mm    | 32.5     | 1          |           |
| •            | 0                   |                |           |                          |                 | 0.001 mm    | 24.9     | 1          |           |
|              |                     |                |           |                          |                 |             |          | -          |           |
|              | area Cravel         | Fine Crovel    | C Sand    | Madium Sand              |                 | 1           | Silt     | Clay       |           |
| ASTM CO.     | 0.0                 | 2.3            | 4.4       | 3.8                      | 7.8             |             | 37.2     | 44.5       |           |
| AASHTO       |                     | Gravel         |           | Coarse Sand              | Fine Sand       |             | Silt     |            | Clay      |
|              | n Inches            | 6.7            |           | 3.8<br>Sieve Size in Sie | 7.8             | 1           | 49.2     |            | 32.5      |
| Sieve Size i | 2 1                 | 3/4 3/8        | 4 1       | 0 16 30                  | 40 100          | 200         |          |            |           |
| TTTTTT       | <del>, ,, , ,</del> |                |           |                          |                 |             |          |            | <u> </u>  |

**A** | | | 90 80 70 Percent Passing ¢, 60 4 50 40 30 Δ 20 10 0 100 10 1 Diameter (mm) 0.1 0.01 0.001 Reviewed By Comments

Stantec Consulting Services Inc. Cincinnati, Ohio Reported By: REL Report Date: 08/06/2024





#### ATTERBERG LIMITS

| Project   | MRG-78-10.96 (Lan    | dslide Exploratio | n)            |           | Project No.   | 175578434    |
|-----------|----------------------|-------------------|---------------|-----------|---------------|--------------|
| Source    | B-001-0-24, 1.5'-3.0 | '                 |               |           | Lab ID        | 217          |
|           |                      |                   |               |           | % + No. 40    | 11           |
| Tested By | NU                   | Test Method       | ASTM D 4318 M | ethod A   | Date Received | 07-24-2024   |
| Test Date | 08-06-2024           | Prepared          | Dry           |           | -             |              |
|           |                      | -                 |               |           |               |              |
|           | Wet Soil and         | Dry Soil and      |               |           |               |              |
|           | Tare Mass            | Tare Mass         | Tare Mass     | Number of | Water Content |              |
|           | (g)                  | (g)               | (g)           | Blows     | (%)           | Liquid Limit |
|           | 20.42                | 17.28             | 10.56         | 23        | 46.7          |              |
|           | 20.07                | 17.21             | 11.04         | 26        | 46.4          |              |
|           | 19.64                | 16.86             | 10.60         | 33        | 44.4          | 46           |
|           |                      |                   |               |           |               |              |
|           |                      |                   |               |           |               |              |
|           | •                    |                   |               | -         | •             |              |



NUMBER OF BLOWS

#### PLASTIC LIMIT AND PLASTICITY INDEX

| Wet Soil and | Dry Soil and |           | Water   |               |                  |
|--------------|--------------|-----------|---------|---------------|------------------|
| Tare Mass    | Tare Mass    | Tare Mass | Content |               |                  |
| (g)          | (g)          | (g)       | (%)     | Plastic Limit | Plasticity Index |
| 23.04        | 20.26        | 10.66     | 29.0    | 29            | 17               |
| 22.57        | 20.04        | 11.07     | 28.2    |               |                  |

Remarks:

Reviewed By


| Project Name | MRG-78-10.96      | (Landslide Explo | pration) Project Number 175578434              |
|--------------|-------------------|------------------|------------------------------------------------|
| Source       | B-001-0-24, 4.0   | '-5.5'           | Lab ID 218                                     |
|              |                   |                  |                                                |
| Sample Type  | SPT               |                  | Date Received 7-24-24                          |
|              |                   |                  | Date Reported 8-5-24                           |
|              |                   |                  |                                                |
|              |                   |                  |                                                |
| <u>Natı</u>  | ural Moisture Co  | ontent           | Atterberg Limits                               |
| Test Metho   | d: ASTM D 2216    |                  | Test Method: ASTM D 4318 Method A              |
| Moistu       | ure Content (%):  | 12.7             | Prepared: Dry                                  |
|              |                   |                  | Liquid Limit: 38                               |
|              |                   |                  | Plastic Limit: 25                              |
| <u>Pa</u>    | rticle Size Anal  | <u>ysis</u>      | Plasticity Index: 13                           |
| Preparation  | Method: ASTM      | D 421            | Activity Index: 1.0                            |
| Gradation M  | lethod: ASTM D    | 422              |                                                |
| Hydrometer   | Method: ASTM      | D 422            |                                                |
|              |                   | <u> </u>         | Moisture-Density Relationship                  |
| Par          | ticle Size        | %                | Test Not Performed                             |
| Sieve Siz    | e (mm)            | Passing          | Maximum Dry Density (lb/ft <sup>3</sup> ): N/A |
|              | N/A               |                  | Maximum Dry Density (kg/m <sup>3</sup> ): N/A  |
|              | Ν/Δ               |                  |                                                |
|              |                   |                  | Over Size Correction 9/1                       |
| 1 1/0"       | N/A               | 100.0            | Over Size Correction %. N/A                    |
| 1 1/2        | 37.5              | 100.0            |                                                |
| 3/4          | 19                | 93.1             | Colifornia Decring Batia                       |
| 3/0          | 9.5               | 91.5             | California Bearing Rallo                       |
| No. 4        | 4.75              | 09.0             | Peering Detic (%):                             |
| NO. 10       | 2                 | 03.3             |                                                |
| No. 40       | 0.425             | 74.3             | Compacted Dry Density (lb/ft°): N/A            |
| NO. 200      | 0.075             | 66.9             |                                                |
|              | 0.02              | 42.0             |                                                |
|              | 0.005             | 22.5             | On a sifin Oravity                             |
|              | 0.002             | 13.2             | Specific Gravity                               |
| Estimated    | 0.001             | 8.0              | Estimated                                      |
| Dius 2 in M  | atorial Not Inclu | dad: 0 (%)       | Dortiolo Sizo: No. 10                          |
|              |                   | ueu. 0 (%)       | Particle Size. No. 10                          |
|              | ASTM              |                  | Specific Gravity at 20 Celsius. 2.70           |
| Pange        | (%)               | (%)              |                                                |
| Gravel       | 10.2              |                  | Classification                                 |
| Coarse So    | nd 65             |                  | Unified Group Symbol: MI                       |
| Medium Sc    | and 0.0           | 3.0              | Group Name:                                    |
| Fine Son     | d 7/              |                  |                                                |
|              |                   |                  | ODOT Classification $A_{-62}$ (8)              |
|              | 90 5              | 22.5             | Description:                                   |
|              | 22.5              | 22.5             |                                                |
|              |                   |                  |                                                |
| Comments:    |                   |                  |                                                |
|              |                   |                  | Poviewed By DC                                 |
|              |                   |                  |                                                |

Stantec

Project Name

Source

| MRG-78-10.96 (Landslide Exploration) | Project Number | 175578434 |
|--------------------------------------|----------------|-----------|
| B-001-0-24 4 0'-5 5'                 | Iab ID _       | 218       |

%

Lab ID \_\_\_\_\_218

Sieve Analysis for the Portion Coarser than the No. 10 Sieve

| Test Method    | ASTM D 422 |
|----------------|------------|
| Prepared Using | ASTM D 421 |

B-001-0-24, 4.0'-5.5'

Particle Shape: Angular Particle Hardness: Hard and Durable

Tested By NU Test Date 07-25-2024 Date Received 07-24-2024

Maximum Particle Size: 1 1/2" Sieve

| 0     |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
| 100.0 |
| 93.1  |
| 91.5  |
| 89.8  |
| 83.3  |
|       |

Sieve Size Passing

Analysis for the Portion Finer than the No. 10 Si

Analysis Based on -3 inch Fraction Only

Specific Gravity 2.7

Dispersed Using Apparatus A - Mechanical, for 1 Minute

| leve     |      |
|----------|------|
| No. 40   | 74.3 |
| No. 200  | 66.9 |
| 0.02 mm  | 42.0 |
| 0.005 mm | 22.5 |
| 0.002 mm | 13.2 |
| 0.001 mm | 8.0  |



Template: tmp\_sum\_input.xlsm Version: 20170217 Approved By: RJ

Stantec Consulting Services Inc. Cincinnati, Ohio

Reported By: REL Report Date: 08/06/2024



## **ATTERBERG LIMITS**

175578434

218

26

07-24-2024

| S) s      | tantec               |                     |               |         | ATTER         |
|-----------|----------------------|---------------------|---------------|---------|---------------|
| Project   | MRG-78-10.96 (Lan    | ndslide Exploratior | ר)            |         | Project No.   |
| Source    | B-001-0-24, 4.0'-5.5 | 5'                  |               |         | Lab ID        |
|           |                      |                     |               |         | % + No. 40    |
| Tested By | NU                   | Test Method /       | ASTM D 4318 M | ethod A | Date Received |
| Test Date | 08-05-2024           | Prepared            | Dry           |         | -             |
|           |                      |                     |               |         |               |
|           | Wat Sail and         | Dm ( Call and       |               |         |               |

| Wet Soil and | Dry Soil and |           |           |               |              |
|--------------|--------------|-----------|-----------|---------------|--------------|
| Tare Mass    | Tare Mass    | Tare Mass | Number of | Water Content |              |
| (g)          | (g)          | (g)       | Blows     | (%)           | Liquid Limit |
| 20.85        | 18.11        | 10.99     | 20        | 38.5          |              |
| 21.31        | 18.50        | 11.10     | 30        | 38.0          |              |
| 19.60        | 17.16        | 10.63     | 34        | 37.4          | 38           |
|              |              |           |           |               |              |
|              |              |           |           |               |              |



NUMBER OF BLOWS

| PLASTIC LIMIT | AND PLASTICITY | INDEX |
|---------------|----------------|-------|
|               |                |       |

| Wet Soil and<br>Tare Mass | Dry Soil and<br>Tare Mass | Tare Mass | Water<br>Content |               |                  |
|---------------------------|---------------------------|-----------|------------------|---------------|------------------|
| (g)                       | (g)                       | (g)       | (%)              | Plastic Limit | Plasticity Index |
| 23.36                     | 20.90                     | 11.07     | 25.0             | 25            | 13               |
| 23.01                     | 20.58                     | 10.65     | 24.5             |               |                  |

#### Remarks:

Reviewed By



| Project Name   | MRG-78-10.96      | (Landslide Explo | loration) Project Number 175578434               |
|----------------|-------------------|------------------|--------------------------------------------------|
| Source         | B-002-1-24, 1.5   | 5'-3.0'          | Lab ID 228                                       |
|                |                   |                  |                                                  |
| Sample Type    | SPT               |                  | Date Received 7-24-24                            |
|                |                   |                  | Date Reported 8-5-24                             |
|                |                   |                  | Test Results                                     |
| Natu           | ural Moisturo Co  | ontont           | Attorborg Limite                                 |
| Test Method    | 1. ASTM D 2216    | Jinteint         | Test Method: ASTM D 4318 Method A                |
| Moist          | re Content (%).   | 20.4             | Prepared <sup>1</sup> Dry                        |
|                |                   |                  | Liquid Limit: 36                                 |
|                |                   |                  | Plastic Limit: 21                                |
| Pa             | rticle Size Anal  | vsis             | Plasticity Index: 15                             |
| Preparation    | Method: ASTM      | D 421            | Activity Index: 0.8                              |
| Gradation M    | lethod: ASTM D    | 422              |                                                  |
| Hvdrometer     | Method: ASTM      | D 422            |                                                  |
| ,,             |                   |                  | Moisture-Density Relationship                    |
| Part           | ticle Size        | %                | Test Not Performed                               |
| Sieve Siz      | e (mm)            | Passing          | Maximum Dry Density (lb/ft <sup>3</sup> ): N/A   |
|                | Ν/Δ               |                  | Maximum Dry Donsity $(kg/m^3)$ : N/A             |
|                |                   |                  |                                                  |
|                | N/A               |                  | Optimum Moisture Content (%): N/A                |
|                | N/A               |                  | Over Size Correction %: <u>N/A</u>               |
| 0/48           | N/A               | 400.0            |                                                  |
| 3/4"           | 19                | 100.0            | Outfounds Desider Defin                          |
| 3/8"           | 9.5               | 98.2             | California Bearing Ratio                         |
| No. 4          | 4.75              | 96.7             | lest Not Performed                               |
| NO. 10         | 2                 | 93.2             |                                                  |
| No. 40         | 0.425             | 86.1             | Compacted Dry Density (lb/ft <sup>v</sup> ): N/A |
| No. 200        | 0.075             | 70.9             | Compacted Moisture Content (%): N/A              |
|                | 0.02              | 41.1             |                                                  |
|                | 0.005             | 20.3             | Specific Crowity                                 |
| Estimated      | 0.002             | 10.0             | Specific Gravity                                 |
|                | 0.001             | 13.0             |                                                  |
| Plue 3 in M    | aterial Not Inclu | ded: 0 (%)       | Particle Size: No. 10                            |
| 1 103 0 11. 10 |                   |                  | Specific Gravity at 20° Celsius: 2 70            |
|                | ASTM              |                  |                                                  |
| Range          | (%)               | (%)              |                                                  |
| Gravel         | 3.3               | 6.8              | Classification                                   |
| Coarse Sa      | nd 3.5            | 7.1              | Unified Group Symbol: CL                         |
| Medium Sa      | ind 7.1           |                  | Group Name: Lean Clav with Sand                  |
| Fine San       | d 15.2            | 15.2             |                                                  |
| Silt           | 44.6              | 44.6             | ODOT Classification A-6a (9)                     |
| Clay           | 26.3              | 26.3             | Description: Silt and Clay                       |
|                | 1                 | 1 1              |                                                  |
| Commenter      |                   |                  |                                                  |
| Comments.      |                   |                  |                                                  |
|                |                   |                  | Reviewed By                                      |
|                |                   |                  |                                                  |

Stantec

Project Name

Source

| MRG-78-10.96 (Landslide Exploration) | Project Number | 175578434 |
|--------------------------------------|----------------|-----------|
| B-002-1-24, 1.5'-3.0'                | Lab ID         | 228       |

%

#### Sieve Analysis for the Portion Coarser than the No. 10 Sieve

| Test Method    | ASTM D 422 |
|----------------|------------|
| Prepared Using | ASTM D 421 |

Particle Shape: Angular Hard and Durable Particle Hardness:

Tested By NU Test Date 07-25-2024 Date Received 07-24-2024

Maximum Particle Size: 3/4" Sieve

| Sieve Size | Passing |
|------------|---------|
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
| 3/4"       | 100.0   |
| 3/8"       | 98.2    |
| No. 4      | 96.7    |
| No. 10     | 93.2    |

#### Analysis for the Portion Finer than the No. 10 Sieve

Analysis Based on -3 inch Fraction Only

Specific Gravity 2.7

Dispersed Using Apparatus A - Mechanical, for 1 Minute

| leve     |      |  |  |  |  |
|----------|------|--|--|--|--|
| No. 40   | 86.1 |  |  |  |  |
| No. 200  | 70.9 |  |  |  |  |
| 0.02 mm  | 41.1 |  |  |  |  |
| 0.005 mm | 26.3 |  |  |  |  |
| 0.002 mm | 18.8 |  |  |  |  |
| 0.001 mm | 13.0 |  |  |  |  |

**Particle Size Distribution** 



Stantec Consulting Services Inc. Cincinnati, Ohio

Reported By: REL Report Date: 08/06/2024





## ATTERBERG LIMITS

| Project   | MRG-78-10.96 (Lan    | dslide Exploratio |               | Project No. | 175578434     |              |
|-----------|----------------------|-------------------|---------------|-------------|---------------|--------------|
| Source    | B-002-1-24, 1.5'-3.0 | '                 |               |             | Lab ID        | 228          |
|           |                      |                   |               |             | % + No. 40    | 14           |
| Tested By | NU                   | Test Method       | ASTM D 4318 M | lethod A    | Date Received | 07-24-2024   |
| Test Date | 07-26-2024           | Prepared          | Dry           | _           | -             |              |
|           |                      |                   |               | •           |               |              |
|           | Wet Soil and         | Dry Soil and      |               |             |               |              |
|           | Tare Mass            | Tare Mass         | Tare Mass     | Number of   | Water Content |              |
|           | (g)                  | (g)               | (g)           | Blows       | (%)           | Liquid Limit |
|           | 19.36                | 17.02             | 10.51         | 25          | 35.9          |              |
|           | 19.24                | 17.04             | 10.64         | 28          | 34.4          |              |
|           | 19.83                | 17.51             | 10.61         | 32          | 33.6          | 36           |
|           |                      |                   |               |             |               |              |
|           |                      |                   |               |             |               |              |
|           |                      | • • • •           |               |             | •             |              |



NUMBER OF BLOWS

| Wet Soil and<br>Tare Mass<br>(g) | Dry Soil and<br>Tare Mass<br>(g) | Tare Mass<br>(g) | Water<br>Content<br>(%) | Plastic Limit | Plasticity Index |
|----------------------------------|----------------------------------|------------------|-------------------------|---------------|------------------|
| 23.02                            | 20.92                            | 11.03            | 21.2                    | 21            | 15               |
| 23.14                            | 20.94                            | 10.54            | 21.2                    |               |                  |

## PLASTIC LIMIT AND PLASTICITY INDEX

Remarks:

Reviewed By

RE



| Project Name MRG-78-10.96 (Landslide Exploration) Project Number 175578434 |                        |             |                                                  |  |  |
|----------------------------------------------------------------------------|------------------------|-------------|--------------------------------------------------|--|--|
| Source                                                                     | B-002-1-24, 4.5        | 5'-6.0'     | Lab ID 230                                       |  |  |
| -                                                                          | · · ·                  |             |                                                  |  |  |
| Sample Type                                                                | SPT                    |             | Date Received 7-24-24                            |  |  |
| _                                                                          |                        |             | Date Reported 8-5-24                             |  |  |
|                                                                            |                        |             |                                                  |  |  |
|                                                                            |                        |             |                                                  |  |  |
| <u>Natur</u>                                                               | <u>al Moisture Co</u>  | ontent      | Atterberg Limits                                 |  |  |
| Test Method:                                                               | ASTM D 2216            |             | Test Method: ASTM D 4318 Method A                |  |  |
| Moistur                                                                    | e Content (%):         | 25.2        | Prepared: Dry                                    |  |  |
|                                                                            |                        |             | Liquid Limit: 40                                 |  |  |
|                                                                            |                        |             | Plastic Limit: 24                                |  |  |
| <u>Par</u>                                                                 | <u>ticle Size Anal</u> | <u>ysis</u> | Plasticity Index: 16                             |  |  |
| Preparation N                                                              | Method: ASTM           | D 421       | Activity Index: 0.7                              |  |  |
| Gradation Me                                                               | ethod: ASTM D          | 422         |                                                  |  |  |
| Hydrometer N                                                               | Method: ASTM           | D 422       |                                                  |  |  |
|                                                                            |                        |             | Moisture-Density Relationship                    |  |  |
| Partie                                                                     | cle Size               | %           | Test Not Performed                               |  |  |
| Sieve Size                                                                 | (mm)                   | Passing     | Maximum Dry Density (lb/ft <sup>3</sup> ): N/A   |  |  |
|                                                                            | N/A                    |             | Maximum Dry Density (kg/m <sup>3</sup> ): N/A    |  |  |
|                                                                            | N/A                    |             | Optimum Moisture Content (%): N/A                |  |  |
|                                                                            |                        | ┼───┤│      | Over Size Correction %: N/A                      |  |  |
|                                                                            |                        | <u> </u>    |                                                  |  |  |
| 2/4"                                                                       | 10                     | 100.0       |                                                  |  |  |
| 3/4                                                                        | 19                     | 100.0       | Colifornia Pooring Potio                         |  |  |
| 3/0                                                                        | 9.5                    | 90.3        | Test Net Derformed                               |  |  |
| No. 4                                                                      | 4.75                   | 95.5        | Rearing Patio (%): NI/A                          |  |  |
| No. 10                                                                     | 0.405                  | 70.0        |                                                  |  |  |
| No. 40                                                                     | 0.425                  | 78.8        | Compacted Dry Density (Ib/ft <sup>-</sup> ): N/A |  |  |
| NO. 200                                                                    | 0.075                  | 71.9        | Compacied Moisture Content (%): N/A              |  |  |
|                                                                            | 0.02                   | 35.0        |                                                  |  |  |
|                                                                            | 0.005                  | 37.3        | Specific Crowity                                 |  |  |
| Fatimated                                                                  | 0.002                  | 24.0        | Specific Gravity                                 |  |  |
| Estimated                                                                  | 0.001                  | 10.3        | Estimated                                        |  |  |
| Dlue 3 in Ma                                                               | terial Not Inclu       | ded: 0 (%)  | Particle Size: No. 10                            |  |  |
| F 105 5 111. Ma                                                            | terial, Not melu       |             | Specific Gravity at 20° Celsius: 2 70            |  |  |
|                                                                            | ASTM                   |             |                                                  |  |  |
| Range                                                                      | (%)                    | (%)         |                                                  |  |  |
| Gravel                                                                     | <u> </u>               |             | Classification                                   |  |  |
| Coarea San                                                                 | d 10.1                 | 64          |                                                  |  |  |
| Medium San                                                                 | d 64                   |             | Group Name: Lean Clay with Sand                  |  |  |
| Fine Sand                                                                  | 60                     | 69          |                                                  |  |  |
| Silt                                                                       | 34.6                   | 34.6        | ODOT Classification $A_{-6h}$ (10)               |  |  |
|                                                                            | 27.2                   | 37.3        | Description:                                     |  |  |
| Ciay                                                                       | 57.5                   | 57.5        |                                                  |  |  |
|                                                                            |                        |             | L                                                |  |  |
| Comments:                                                                  |                        |             |                                                  |  |  |
| -                                                                          |                        |             |                                                  |  |  |
| -                                                                          |                        |             |                                                  |  |  |
|                                                                            |                        |             |                                                  |  |  |

Stantec

Project Name

Source

| Exploration) | Project Number | 175578434 |
|--------------|----------------|-----------|
|              | Lab ID         | 230       |

%

Sieve Analysis for the Portion Coarser than the No. 10 Sieve

| Test Method    | ASTM D 422 |
|----------------|------------|
| Prepared Using | ASTM D 421 |

MRG-78-10.96 (Landslide B-002-1-24, 4.5'-6.0'

Particle Shape: Angular Hard and Durable Particle Hardness:

Tested By NU Test Date 07-25-2024 Date Received 07-24-2024

Maximum Particle Size: 3/4" Sieve

| Sieve Size | Passing |
|------------|---------|
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
| 3/4"       | 100.0   |
| 3/8"       | 96.3    |
| No. 4      | 95.3    |
| No. 10     | 85.2    |

Analysis for the Portion Finer than the No. 10 Sieve

Analysis Based on -3 inch Fraction Only

Specific Gravity 2.7

Dispersed Using Apparatus A - Mechanical, for 1 Minute

| EVE      |      |  |  |  |  |
|----------|------|--|--|--|--|
| No. 40   | 78.8 |  |  |  |  |
| No. 200  | 71.9 |  |  |  |  |
| 0.02 mm  | 55.6 |  |  |  |  |
| 0.005 mm | 37.3 |  |  |  |  |
| 0.002 mm | 24.5 |  |  |  |  |
| 0.001 mm | 16.3 |  |  |  |  |

**Particle Size Distribution** Coarse Gravel Fine Gravel C. Sand Medium Sand Fine Sand Silt Clay ASTM 10.1 34.6 0.0 4.7 6.4 6.9 37.3 Clay Gravel Fine Sand Coarse Sand Silt AASHTO 14.8 6.4 47.4 6.9 24.5 Sieve Size in Sieve Numbers Sieve Size in Inches 3 2 3/4 3/8 Δ 10 16 30 40 100 200 1 100 Å 90 80 70 Percent Passing 60 50 Δ 40 30 20 Δ 10 0 100 10 0.1 0.01 0.001 1 Diameter (mm) Reviewed By

Comments

Stantec Consulting Services Inc. Cincinnati, Ohio





## ATTERBERG LIMITS

| Project   | MRG-78-10.96 (Lan    | idslide Exploratio |               | Project No. | 175578434     |              |
|-----------|----------------------|--------------------|---------------|-------------|---------------|--------------|
| Source    | B-002-1-24, 4.5'-6.0 | )'                 |               | Lab ID      | 230           |              |
|           |                      |                    |               |             | % + No. 40    | 21           |
| Tested By | NU                   | Test Method        | ASTM D 4318 M | lethod A    | Date Received | 07-24-2024   |
| Test Date | 07-26-2024           | Prepared           | Dry           | _           | -             |              |
|           |                      | -                  |               |             |               |              |
|           | Wet Soil and         | Dry Soil and       |               |             |               |              |
|           | Tare Mass            | Tare Mass          | Tare Mass     | Number of   | Water Content |              |
|           | (g)                  | (g)                | (g)           | Blows       | (%)           | Liquid Limit |
|           | 20.00                | 17.38              | 11.00         | 18          | 41.1          |              |
|           | 21.34                | 18.35              | 11.07         | 21          | 41.1          |              |
|           | 20.40                | 17.67              | 10.62         | 34          | 38.7          | 40           |
|           |                      |                    |               |             |               |              |
|           |                      |                    |               |             |               |              |
|           |                      |                    |               |             | · · · · · ·   |              |



NUMBER OF BLOWS

## PLASTIC LIMIT AND PLASTICITY INDEX

| Wet Soil and | Dry Soil and |           | Water   |               |                  |
|--------------|--------------|-----------|---------|---------------|------------------|
| Tare Mass    | Tare Mass    | Tare Mass | Content |               |                  |
| (g)          | (g)          | (g)       | (%)     | Plastic Limit | Plasticity Index |
| 23.33        | 20.97        | 11.06     | 23.8    | 24            | 16               |
| 23.59        | 21.21        | 11.05     | 23.4    |               |                  |

Remarks:

Reviewed By

Reported By: REL Report Date: 08/06/2024



| Project Name             | MRG-78-10.96      | (Landslide Explora | tion) Project Number 175578434                             |
|--------------------------|-------------------|--------------------|------------------------------------------------------------|
| Source                   | B-003-0-24, 1.5   | 5'-3.0', 3.5'-5.0' | Lab ID 236                                                 |
|                          |                   |                    |                                                            |
| Sample Type              | SPT Composite     | 9                  | Date Received 7-24-24                                      |
|                          |                   |                    | Date Reported 8-5-24                                       |
|                          |                   |                    | Test Results                                               |
| Nati                     | ural Moisture Co  | ontent             | Atterberg Limits                                           |
| Test Method: ASTM D 2216 |                   |                    | Test Method: ASTM D 4318 Method A                          |
| Moist                    | ure Content (%)   | 13.7               | Prepared: Dry                                              |
| inolota                  |                   |                    | Liquid Limit <sup>.</sup> 43                               |
|                          |                   |                    | Plastic Limit: 25                                          |
| Pa                       | article Size Anal | vsis               | Plasticity Index: 18                                       |
| Preparation              | Method: ASTM      | D 421              | Activity Index: 0.8                                        |
| Gradation N              | lethod: ASTM D    | 422                |                                                            |
| Hvdrometer               | Method: ASTM      | D 422              |                                                            |
| ,                        |                   |                    | Moisture-Density Relationship                              |
| Par                      | ticle Size        | %                  | Test Not Performed                                         |
| Sieve Siz                | e (mm)            | Passing            | Maximum Dry Density (lb/ft <sup>3</sup> ) <sup>.</sup> N/A |
|                          | N/A               |                    | Maximum Dry Density (kg/m <sup>3</sup> ): N/A              |
|                          |                   |                    |                                                            |
|                          | N/A               |                    | Optimum Moisture Content (%): N/A                          |
|                          | N/A               |                    | Over Size Correction %:N/A                                 |
|                          | N/A               |                    |                                                            |
| 3/4"                     | 19                | 100.0              |                                                            |
| 3/8"                     | 9.5               | 93.6               | California Bearing Ratio                                   |
| No. 4                    | 4.75              | 86.5               | Test Not Performed                                         |
| NO. 10                   | 2                 | /5.8               | Bearing Ratio (%): N/A                                     |
| No. 40                   | 0.425             | 63.6               | Compacted Dry Density (lb/ft <sup>o</sup> ): <u>N/A</u>    |
| No. 200                  | 0.075             | 53.1               | Compacted Moisture Content (%): <u>N/A</u>                 |
|                          | 0.02              | 41.2               |                                                            |
|                          | 0.005             | 29.3               | Creatific Creatify                                         |
| Fatimated                | 0.002             | 23.2               | Specific Gravity                                           |
|                          | 0.001             | 10.4               | Esumated                                                   |
| Dlue 3 in M              | aterial Not Inclu | ded: 0 (%)         | Particle Size: No. 10                                      |
| 1 103 5 111. 101         |                   |                    | Specific Gravity at 20° Celsius: 270                       |
|                          | ASTM              |                    |                                                            |
| Rande                    | (%)               |                    | L                                                          |
| Gravel                   | 13.5              | 24.2               | Classification                                             |
| Coarse Sa                | nd 10.7           | 12.2               | Unified Group Symbol: CL                                   |
| Medium Sa                | and 12.2          |                    | Group Name: Sandy Lean Clay                                |
| Fine San                 | d 10.5            | 10.5               |                                                            |
| Silt                     | 23.8              | 23.8               | ODOT Classification A-7-6 (7)                              |
| Clav                     | 29.3              | 29.3               | Description: Clay                                          |
|                          |                   |                    |                                                            |
| Commente                 |                   |                    |                                                            |
| Comments.                |                   |                    |                                                            |
|                          |                   |                    | Reviewed By                                                |
|                          |                   |                    | -pt-th-                                                    |

Stantec

| Project Name         | MRG-78-10.      | RG-78-10.96 (Landslide Exploration) |            |                  |          |                      |      |                      | Project Number 175578434 |          |      |   |       |                     |              |
|----------------------|-----------------|-------------------------------------|------------|------------------|----------|----------------------|------|----------------------|--------------------------|----------|------|---|-------|---------------------|--------------|
| Source               | B-003-0-24,     | 1.5'-3.0',                          | 3.5'-5.    | 0'               | ,        |                      |      |                      |                          |          |      |   | Lab I | D                   | 236          |
|                      |                 |                                     |            |                  |          |                      |      |                      |                          |          |      |   |       |                     |              |
|                      | Sieve           | Analysis                            | s for th   | e Port           | ion Co   | barser               | than | the N                | No.                      | 10 Siev  | /e   |   |       |                     |              |
|                      |                 |                                     |            |                  |          |                      |      |                      |                          | %        |      |   |       |                     |              |
| Test Method          | ASTM            | D 422                               |            |                  |          |                      | Sie  | eve Si               | ze                       | Passir   | ng   |   |       |                     |              |
| Prepared Using       | ASTM            | D 421                               |            |                  |          |                      |      |                      |                          |          |      |   |       |                     |              |
|                      |                 |                                     |            |                  |          |                      |      |                      | $ \rightarrow$           |          |      |   |       |                     |              |
| Particle Shape:      | Ang             | ular                                |            |                  |          |                      |      |                      | $\rightarrow$            |          |      |   |       |                     |              |
| Particle Hardness:   | Hard and        | Durable                             | ;          |                  |          |                      | -    |                      | _                        |          |      |   |       |                     |              |
| Tested By            | NU              |                                     |            |                  |          |                      |      |                      |                          |          |      |   |       |                     |              |
| Test Date            | 07-26-2024      | _                                   |            |                  |          |                      |      |                      |                          |          |      |   |       |                     |              |
| Date Received        | 07-24-2024      | -                                   |            |                  |          |                      |      | 3/4"                 |                          | 100.0    | )    |   |       |                     |              |
|                      |                 | _                                   |            |                  |          |                      |      | 3/8"                 |                          | 93.6     |      |   |       |                     |              |
| Maximum Particle S   | Size: 3/4" Siev | e                                   |            |                  |          |                      |      | No. 4                |                          | 86.5     |      |   |       |                     |              |
|                      |                 |                                     |            |                  |          |                      | 1    | No. 10               | ,                        | 75.8     |      |   |       |                     |              |
|                      |                 | he Deuti                            | <b>- -</b> |                  | . 46 a N | 1- 40 0              | <br> |                      |                          |          |      |   |       |                     |              |
| Analysis Dasad an    | Analysis for t  |                                     |            | er thar          | i the r  | 10. 10 3             |      |                      | <u> </u>                 | 62.6     |      |   |       |                     |              |
| Analysis based on    | -5 Inch Fracu   | on Only                             |            |                  |          |                      |      | NO. 40               | $\frac{1}{2}$            | <u> </u> |      |   |       |                     |              |
| Specific Gravity     | 27              |                                     |            |                  |          |                      |      | $\frac{10.20}{12}$ m | m                        |          | _    |   |       |                     |              |
| Opecine Oravity      | 2.1             | _                                   |            |                  |          |                      | 0.0  | $\frac{100}{100}$ m  | m                        | 29.3     | _    |   |       |                     |              |
| Dispersed Using      | Apparatus A     | - Mecha                             | nical fo   | or 1 Mi          | nute     |                      | 0.0  | )02 m                | m                        | 23.2     | _    |   |       |                     |              |
| Dispersed comg       | , apparatao , t | moona                               | ineal, i   |                  | nato     |                      | 0.0  | )01 m                | m                        | 18.4     | _    |   |       |                     |              |
|                      |                 |                                     | Doutio     | I.a. C:          | Diata    | : h <b>t</b> ! a . m |      |                      |                          |          |      |   |       |                     |              |
| Coarse Grave         | Fine Gravel     | C. Sand                             | Medium     | IE SIZE          |          | IDULION<br>le Sand   | -    |                      |                          | Silt     |      | _ | C     | av                  | 7            |
| ASTM 0.0             | 13.5            | 10.7                                | 12         | .2               |          | 10.5                 |      |                      | 2                        | 3.8      |      |   | 29    | ).3                 |              |
| AASHTO               | Gravel<br>24.2  |                                     | Coarse     | <u>Sand</u><br>2 | Fir      | ne Sand<br>10.5      | _    |                      |                          | 29.9     |      |   |       | <u>Clay</u><br>23.2 | _            |
| Sieve Size in Inches | <u> </u>        |                                     | Sieve Siz  | ze in Sieve      | Numbers  | 10.0                 |      |                      |                          | 20.0     |      |   |       |                     | _            |
| 3 2 1                | 3/4 3/8         | 4 1                                 | 0 16       | 30 4             | 0        | 100                  | 200  |                      |                          |          |      |   |       |                     | <b>—</b> 100 |
|                      |                 |                                     |            |                  |          |                      |      |                      |                          |          |      |   |       |                     |              |
|                      |                 |                                     |            |                  |          |                      |      |                      |                          |          | +++- |   |       | +                   | - 90         |
|                      |                 |                                     |            |                  |          |                      |      |                      |                          |          |      |   |       |                     | +            |
|                      |                 |                                     |            |                  |          |                      |      |                      |                          |          |      |   |       | -                   | + 80         |
|                      |                 |                                     | $\square$  |                  |          |                      |      |                      |                          |          |      |   |       |                     | - 70         |

Comments

10

100

Stantec Consulting Services Inc. Cincinnati, Ohio

Diameter (mm)

Δ

1

⊿

0.1

4

0.01

Reviewed By

Reported By: REL Report Date: 08/06/2024

Percent Passing

60

50

40

30

10 0

<u>→</u> 20

0.001



## ATTERBERG LIMITS

| Project   | MRG-78-10.96 (Lan                | dslide Exploratio | n)            |           | Project No.   | 175578434    |
|-----------|----------------------------------|-------------------|---------------|-----------|---------------|--------------|
| Source    | B-003-0-24, 1.5'-3.0             | ', 3.5'-5.0'      |               |           | Lab ID        | 236          |
|           |                                  |                   |               |           | % + No. 40    | 36           |
| Tested By | NU                               | Test Method       | ASTM D 4318 M | lethod A  | Date Received | 07-24-2024   |
| Test Date | est Date 08-05-2024 Prepared Dry |                   |               |           |               |              |
|           |                                  | -                 |               | •         |               |              |
|           | Wet Soil and                     | Dry Soil and      |               |           |               |              |
|           | Tare Mass                        | Tare Mass         | Tare Mass     | Number of | Water Content |              |
|           | (g)                              | (g)               | (g)           | Blows     | (%)           | Liquid Limit |
|           | 20.71                            | 17.76             | 11.05         | 24        | 44.0          |              |
|           | 19.93                            | 17.33             | 11.08         | 28        | 41.6          |              |
|           | 20.95                            | 18.14             | 11.07         | 35        | 39.7          | 43           |
|           |                                  |                   |               |           |               |              |
|           |                                  |                   |               |           |               |              |
|           |                                  |                   |               |           |               |              |



NUMBER OF BLOWS

#### PLASTIC LIMIT AND PLASTICITY INDEX

| Wet Soil and | Dry Soil and |           | Water   |               |                  |
|--------------|--------------|-----------|---------|---------------|------------------|
| Tare Mass    | Tare Mass    | Tare Mass | Content |               |                  |
| (g)          | (g)          | (g)       | (%)     | Plastic Limit | Plasticity Index |
| 22.13        | 19.91        | 11.00     | 24.9    | 25            | 18               |
| 22.19        | 20.03        | 11.07     | 24.1    |               |                  |

Remarks:

Reviewed By

PF.



| Project Name MRG-78-10.96 (Landslide Exploration) Project Number 175578434 |                   |             |                                                  |  |  |  |  |
|----------------------------------------------------------------------------|-------------------|-------------|--------------------------------------------------|--|--|--|--|
| Source                                                                     | B-003-0-24, 8.5   | 5'-10.0'    | Lab ID 239                                       |  |  |  |  |
|                                                                            |                   |             |                                                  |  |  |  |  |
| Sample Type                                                                | SPT               |             | Date Received 7-24-24                            |  |  |  |  |
| _                                                                          |                   |             | Date Reported 8-5-24                             |  |  |  |  |
|                                                                            |                   |             | Tost Rosults                                     |  |  |  |  |
|                                                                            |                   | 1           |                                                  |  |  |  |  |
| Natu                                                                       | ral Moisture Co   | ontent      | Atterberg Limits                                 |  |  |  |  |
| l est Method                                                               | : ASTM D 2216     | 10 F        | I lest Method: ASTM D 4318 Method A              |  |  |  |  |
| Moistur                                                                    | re Content (%):   | 18.5        | Prepared: Dry                                    |  |  |  |  |
|                                                                            |                   |             |                                                  |  |  |  |  |
|                                                                            |                   | · · · · ·   |                                                  |  |  |  |  |
| Par                                                                        | ticle Size Anal   | <u>ysis</u> | Plasticity Index: 16                             |  |  |  |  |
| Preparation I                                                              | Method: ASIM      | D 421       | Activity Index: 0.6                              |  |  |  |  |
| Gradation Me                                                               | ethod: ASIM D     | 422         |                                                  |  |  |  |  |
| Hydrometer                                                                 | Method: ASTM      | D 422       | Malatana Danaita Dalatianakin                    |  |  |  |  |
|                                                                            |                   | 0/          | MOISTURE-DENSITY Relationship                    |  |  |  |  |
|                                                                            |                   |             |                                                  |  |  |  |  |
| Sieve Size                                                                 | (mm)              | Passing     | Maximum Dry Density (lb/ft³):N/A                 |  |  |  |  |
|                                                                            | N/A               |             | Maximum Dry Density (kg/m <sup>3</sup> ): N/A    |  |  |  |  |
|                                                                            | N/A               |             | Optimum Moisture Content (%): N/A                |  |  |  |  |
|                                                                            | N/A               |             | Over Size Correction %: N/A                      |  |  |  |  |
|                                                                            | N/A               |             |                                                  |  |  |  |  |
|                                                                            | N/A               |             |                                                  |  |  |  |  |
| 3/8"                                                                       | 9.5               | 100.0       | California Bearing Ratio                         |  |  |  |  |
| No. 4                                                                      | 4.75              | 99.6        | Test Not Performed                               |  |  |  |  |
| No. 10                                                                     | 2                 | 93.0        | Bearing Ratio (%): N/A                           |  |  |  |  |
| No. 40                                                                     | 0.425             | 80.8        | Compacted Dry Density (lb/ft <sup>3</sup> ). N/A |  |  |  |  |
| No. 200                                                                    | 0.075             | 66.8        | Compacted Moisture Content (%): N/A              |  |  |  |  |
|                                                                            | 0.02              | 45.2        |                                                  |  |  |  |  |
|                                                                            | 0.005             | 32.4        |                                                  |  |  |  |  |
|                                                                            | 0.002             | 25.6        | Specific Gravity                                 |  |  |  |  |
| Estimated                                                                  | 0.001             | 21.2        | Estimated                                        |  |  |  |  |
|                                                                            |                   |             |                                                  |  |  |  |  |
| Plus 3 in. Ma                                                              | terial, Not Inclu | ded: 0 (%)  | Particle Size: No. 10                            |  |  |  |  |
|                                                                            |                   |             | Specific Gravity at 20° Celsius: 2.70            |  |  |  |  |
| _                                                                          | ASTM              | ODOT        |                                                  |  |  |  |  |
| Range                                                                      | (%)               | (%)         |                                                  |  |  |  |  |
| Gravel                                                                     | 0.4               | 7.0         | Classification                                   |  |  |  |  |
| Coarse San                                                                 | d 6.6             | 12.2        | Unified Group Symbol: CL                         |  |  |  |  |
| Medium Sar                                                                 | nd 12.2           |             | Group Name: Sandy Lean Clay                      |  |  |  |  |
| Fine Sand                                                                  | 14.0              | 14.0        |                                                  |  |  |  |  |
|                                                                            | 34.4              | 34.4        | ODOT Classification <u>A-6b (9)</u>              |  |  |  |  |
| Clay                                                                       | 32.4              | 32.4        | Description:                                     |  |  |  |  |
|                                                                            |                   |             | J L                                              |  |  |  |  |
| Comments:                                                                  |                   |             |                                                  |  |  |  |  |
| -                                                                          |                   |             | Povioused By Dr                                  |  |  |  |  |
| -                                                                          |                   |             |                                                  |  |  |  |  |

Stantec

| Project NameMRG-78-10.96 (Landslide Exploration)SourceB-003-0-24, 8.5'-10.0' |                |           |                               |                     |              | Projec       | t Number _<br>Lab ID _ | <u>175578434</u><br>239 |
|------------------------------------------------------------------------------|----------------|-----------|-------------------------------|---------------------|--------------|--------------|------------------------|-------------------------|
|                                                                              |                |           |                               |                     |              |              | _                      |                         |
|                                                                              | Sieve          | Analysis  | s for the Por                 | tion Coarser t      | than the No. | 10 Sieve     |                        |                         |
| Test Method                                                                  |                | 1 D 422   |                               |                     | Sieve Size   | %<br>Passing |                        |                         |
| Prepared Using                                                               |                | 1 D 421   |                               |                     |              | 1 dooling    |                        |                         |
|                                                                              |                |           |                               |                     |              |              |                        |                         |
| Particle Shape                                                               | : <u>Ang</u>   | gular     |                               |                     |              |              |                        |                         |
| Particle Hardness                                                            | : Hard an      | d Durable | 9                             |                     |              |              |                        |                         |
| Tested By                                                                    | / NU           |           |                               |                     |              |              |                        |                         |
| Test Date                                                                    | 07-25-2024     | <u> </u>  |                               |                     |              |              |                        |                         |
| Date Received                                                                | 07-24-2024     | 1         |                               |                     |              |              |                        |                         |
|                                                                              |                |           |                               |                     | 3/8"         | 100.0        |                        |                         |
| Maximum Particle Size: 3/8" Sieve No.                                        |                |           |                               |                     |              | 99.6         |                        |                         |
|                                                                              |                |           |                               |                     | No. 10       | 93.0         |                        |                         |
|                                                                              | Analvsis for   | the Porti | on Finer tha                  | n the No. 10 S      | Sieve        |              |                        |                         |
| Analysis Based on                                                            | -3 inch Fract  | ion Only  |                               |                     | No. 40       | 80.8         |                        |                         |
|                                                                              |                |           |                               |                     | No. 200      | 66.8         |                        |                         |
| Specific Gravity                                                             | /2.7           | _         |                               |                     | 0.02 mm      | 45.2         |                        |                         |
| Dianaraad Llaina                                                             | Apparatua A    | Moobo     | nical for 1 M                 | liputo              | 0.005 mm     | 32.4         |                        |                         |
| Dispersed Using                                                              | j Apparatus A  |           |                               | innute              | 0.002 mm     | 25.0         |                        |                         |
|                                                                              |                |           | Dortiolo Siz                  |                     |              |              |                        |                         |
| ASTM Coarse Grave                                                            | el Fine Gravel | C. Sand   | Medium Sand                   | Fine Sand           |              | Silt         | Clay                   |                         |
| 0.0                                                                          | 0.4<br>Gravel  | 6.6       | 12.2<br>Coarse Sand           | 14.0<br>Eine Sand   |              | 34.4<br>Silt | 32.4                   | Clay                    |
| AASHTO                                                                       | 7.0            |           | 12.2                          | 14.0                |              | 41.2         |                        | 25.6                    |
| Sieve Size in Inches<br>3 2                                                  | 1 3/4 3/8      | 4 1       | Sieve Size in Siev<br>0 16 30 | e Numbers<br>40 100 | 200          |              |                        | 400                     |
|                                                                              | · · · A        |           |                               |                     |              |              |                        |                         |
|                                                                              |                |           |                               |                     |              |              |                        | 90                      |
|                                                                              |                |           |                               | <b>A</b>            |              |              |                        | 80                      |
|                                                                              |                |           |                               |                     |              |              |                        |                         |
|                                                                              |                |           |                               |                     |              |              |                        | 70                      |
|                                                                              |                |           |                               |                     |              |              |                        |                         |
|                                                                              |                |           |                               |                     |              |              |                        |                         |
|                                                                              |                | +         |                               |                     |              |              |                        | ℃                       |
|                                                                              |                |           |                               |                     |              | A A          |                        | 40 <b>ia</b>            |

Comments

10

100

Stantec Consulting Services Inc. Cincinnati, Ohio

Diameter (mm)

0.1

1

4 20

0.01

A

Reviewed By

30

10 0

20

0.001



# ATTERBERG LIMITS

| Stantec |  |
|---------|--|
|---------|--|

| Project   | MRG-78-10.96 (Lar   | ndslide Exploratio | n)        |             | Project No.      | . 175578434  |
|-----------|---------------------|--------------------|-----------|-------------|------------------|--------------|
| Source    | B-003-0-24, 8.5'-10 | .0'                |           |             | Lab ID           | 239          |
|           |                     |                    |           |             | % + No. 40       | 19           |
| Tested By | NU                  | Test Method        | ASTM D 43 | 18 Method A | Date Received    | 07-24-2024   |
| Test Date | 07-26-2024          | _ Prepared         | Dry       |             |                  |              |
|           |                     |                    |           |             |                  |              |
|           | Wet Soil and        | Dry Soil and       |           |             |                  |              |
|           | Tare Mass           | Tare Mass          | Tare Mas  | s Number    | of Water Content |              |
|           | (g)                 | (g)                | (g)       | Blows       | (%)              | Liquid Limit |
|           | 20.23               | 17.58              | 10.89     | 15          | 39.6             |              |
|           | 19.40               | 16.98              | 10.67     | 21          | 38.4             |              |
|           | 19.40               | 17.04              | 10.58     | 35          | 36.5             | 38           |
|           |                     |                    |           |             |                  |              |
|           |                     |                    |           |             |                  |              |
|           |                     |                    |           |             |                  |              |
|           | 50                  |                    | Lic       | uid Limit   |                  |              |
|           |                     |                    |           |             |                  |              |



NUMBER OF BLOWS

#### Wet Soil and Dry Soil and Water Tare Mass Tare Mass Tare Mass Content (%) **Plastic Limit Plasticity Index** (g) (g) (g) 21.06 19.24 10.92 21.9 22 16

22.2

## PLASTIC LIMIT AND PLASTICITY INDEX

Remarks:

21.63

19.67

Reviewed By

PF.

10.85



| Project Name MRG-78-10.96 (Landslide Exploration) Project Number 175578434 |                  |             |                                               |  |  |  |  |
|----------------------------------------------------------------------------|------------------|-------------|-----------------------------------------------|--|--|--|--|
| Source                                                                     | B-003-0-24, 13   | .5'-15.0'   | Lab ID 241                                    |  |  |  |  |
| -                                                                          |                  |             |                                               |  |  |  |  |
| Sample Type                                                                | SPT              |             | Date Received 7-24-24                         |  |  |  |  |
|                                                                            |                  |             | Date Reported 8-5-24                          |  |  |  |  |
|                                                                            |                  |             | Tost Posults                                  |  |  |  |  |
|                                                                            |                  |             |                                               |  |  |  |  |
| Natu                                                                       | ral Moisture Co  | ontent      | Atterberg Limits                              |  |  |  |  |
| Test Method                                                                | : ASTM D 2216    |             | Test Method: ASTM D 4318 Method A             |  |  |  |  |
| Moistur                                                                    | re Content (%):  | 25.9        | Prepared: Dry                                 |  |  |  |  |
|                                                                            |                  |             | Liquid Limit: 49                              |  |  |  |  |
|                                                                            |                  |             |                                               |  |  |  |  |
| Par                                                                        | ticle Size Anal  | <u>ysis</u> | Plasticity Index: 22                          |  |  |  |  |
| Preparation I                                                              | Method: ASIM     | D 421       | Activity Index: 0.5                           |  |  |  |  |
| Gradation Me                                                               | ethod: ASIM D    | 422         |                                               |  |  |  |  |
| Hydrometer I                                                               | Method: ASTM     | D 422       |                                               |  |  |  |  |
| Dut                                                                        |                  |             | Moisture-Density Relationship                 |  |  |  |  |
| Parti                                                                      | cle Size         | - %         | lest Not Performed                            |  |  |  |  |
| Sieve Size                                                                 | (mm)             | Passing     | Maximum Dry Density (lb/ft <sup>3</sup> ):N/A |  |  |  |  |
|                                                                            | N/A              |             | Maximum Dry Density (kg/m <sup>3</sup> ): N/A |  |  |  |  |
|                                                                            | N/A              |             | Optimum Moisture Content (%): N/A             |  |  |  |  |
|                                                                            | N/A              | <u> </u>    | Over Size Correction %: N/A                   |  |  |  |  |
|                                                                            | N/Δ              |             |                                               |  |  |  |  |
|                                                                            | N/Δ              |             |                                               |  |  |  |  |
|                                                                            | N/A              |             | California Bearing Ratio                      |  |  |  |  |
| No. 4                                                                      | 4 75             | 100.0       | Test Not Performed                            |  |  |  |  |
| No. 10                                                                     | 2                | 99.5        | Bearing Ratio (%). N/A                        |  |  |  |  |
| No. 10                                                                     | 0.425            | 08.0        | Composted Dry Density (Ib/ft <sup>3</sup> ):  |  |  |  |  |
| No. 200                                                                    | 0.425            | 90.4        | Compacted Moisture Content (%): NI/A          |  |  |  |  |
| 110.200                                                                    | 0.073            | 88.0        |                                               |  |  |  |  |
|                                                                            | 0.02             | 55.2        |                                               |  |  |  |  |
|                                                                            | 0.003            | 12.4        | Specific Gravity                              |  |  |  |  |
| Estimated                                                                  | 0.002            | 25.6        | Estimated                                     |  |  |  |  |
| Lotinated                                                                  | 0.001            | 20.0        | Estimated                                     |  |  |  |  |
| Plus 3 in Ma                                                               | terial Not Inclu | ded: 0 (%)  | Particle Size No. 10                          |  |  |  |  |
|                                                                            |                  |             | Specific Gravity at 20° Celsius: 2 70         |  |  |  |  |
|                                                                            | ASTM             |             |                                               |  |  |  |  |
| Range                                                                      | (%)              | (%)         | L                                             |  |  |  |  |
| Gravel                                                                     | 0.0              | 0.5         | Classification                                |  |  |  |  |
| Coarse San                                                                 | d 0.5            |             | Unified Group Symbol: CL                      |  |  |  |  |
| Medium Sar                                                                 | nd 1.1           |             | Group Name:                                   |  |  |  |  |
| Fine Sand                                                                  | 2.8              | 2.8         |                                               |  |  |  |  |
| Silt                                                                       | 40.4             | 40.4        | ODOT Classification A-7-6 (15)                |  |  |  |  |
| Clav                                                                       | 55.2             | 55.2        | Description:                                  |  |  |  |  |
|                                                                            |                  |             |                                               |  |  |  |  |
| Commonte                                                                   |                  |             |                                               |  |  |  |  |
|                                                                            |                  |             |                                               |  |  |  |  |
| -                                                                          |                  |             | Reviewed By                                   |  |  |  |  |
| -                                                                          |                  |             |                                               |  |  |  |  |

Stantec

| Project Na | ame                     | MRG-78-10.96 (Landslide Exploration) Project Number <u>175578434</u> |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
|------------|-------------------------|----------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Source     |                         | B-003-0-24,                                                          | 13.5'-15.  | 0'                                                                                                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          | Lab ID   | 241                                                                                                                                            |
|            |                         |                                                                      |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
|            |                         | Sieve                                                                | Analysis   | s for the F                                                                                                     | ortior                 | Coarser t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | than the No. | 10 Sieve |          |                                                                                                                                                |
|            |                         |                                                                      |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | %        |          |                                                                                                                                                |
| Te         | st Method               | ASTN                                                                 | 1 D 422    |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sieve Size   | Passing  |          |                                                                                                                                                |
| Prepa      | red Using               | ASTN                                                                 | 1 D 421    |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | _        |          |                                                                                                                                                |
|            |                         |                                                                      |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
| Partic     | le Shape:               | An                                                                   | gular      |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
| Particle I | Hardness:               | Hard an                                                              | d Durable  | )                                                                                                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
|            |                         |                                                                      |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
| -          | Tested By               | JP                                                                   | <u> </u>   |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
| <b>-</b> · | Test Date               | 07-25-2024                                                           | 1          |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
| Date       | Received                | 07-24-2024                                                           | 1          |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
|            |                         |                                                                      |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          |                                                                                                                                                |
| Maximum    | n Particle S            | ize: No. 4 S                                                         | eve        |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. 4        | 100.0    |          |                                                                                                                                                |
|            |                         |                                                                      |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. 10       | 99.5     |          |                                                                                                                                                |
|            |                         | nalvaia far                                                          | the Dorti  | on Einard                                                                                                       | hon th                 | - No. 10 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |          |          |                                                                                                                                                |
| Analysia [ | <b>H</b><br>Deceder     | analysis for                                                         | the Porti- | on Finer t                                                                                                      | nan tr                 | ie no. 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 09.4     |          |                                                                                                                                                |
| Analysis   | based on                | -3 Inch Frac                                                         | Ion Only   |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. 40       | 90.4     |          |                                                                                                                                                |
| Speci      | fic Gravity             | 27                                                                   |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.200      | 95.0     |          |                                                                                                                                                |
| Speci      | ne Gravity              | 2.1                                                                  | _          |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02 mm      | 55.2     |          |                                                                                                                                                |
| Disper     | sed I Isina             | Annaratus A                                                          | . Mecha    | nical for 1                                                                                                     | Minut                  | ۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003 mm     | 42.4     |          |                                                                                                                                                |
| Вюрен      | ocu oomg                | / oppulated /                                                        | ( Meena    |                                                                                                                 | i wiinat               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002 mm     | 25.6     |          |                                                                                                                                                |
|            |                         |                                                                      |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00111111   | 20.0     |          |                                                                                                                                                |
|            | Cooroo Crovel           | Eine Crovel                                                          | C Sond     | Particle Son                                                                                                    | Size D                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | Cilt     | Clay     |                                                                                                                                                |
| ASTM       | 0.0                     | 0.0                                                                  | 0.5        | 1.1                                                                                                             | u                      | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 40.4     | 55.2     |                                                                                                                                                |
| AASHTO     |                         | Crovel                                                               |            | Coarse San                                                                                                      | d                      | Fine Sand<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Silt     |          | Clay                                                                                                                                           |
|            |                         | 0.5                                                                  |            |                                                                                                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 53.2     |          | 42.4                                                                                                                                           |
| Sieve S    | Size in Inches          | 0.5                                                                  |            | Sieve Size in                                                                                                   | Sieve Num              | bers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 53.2     |          | 42.4                                                                                                                                           |
| Sieve S    | Size in Inches<br>3 2 1 | 0.5<br>3/4 3/8                                                       | <u>4</u> 1 | Sieve Size in Sieve Size in Sieve Size in Sieve Size in Size in Sieve Size in Sieve Size in Sieve Size in Sieve | Sieve Num<br>30 40     | bers<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200          | 53.2     | <u> </u> | <u>42.4</u> 100                                                                                                                                |
| Sieve S    | Size in Inches<br>3 2 1 | 0.5<br>3/4 3/8                                                       | 4 1<br>    | Sieve Size in 5                                                                                                 | Sieve Num<br>30 40     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200          | 53.2     |          | <u>42.4</u><br>100                                                                                                                             |
| Sieve 5    | Size in Inches          | 0.5<br>3/4 3/8                                                       |            | Sieve Size in 5<br>0 16 3                                                                                       | Sieve Num<br>30 40     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 53.2     |          | 42.4<br>100<br>90                                                                                                                              |
| Sieve 5    | Size in Inches          | 3/4 3/8                                                              |            | Sieve Size in 2<br>0 16                                                                                         | Sieve Num              | 100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |          |          | 42.4<br>100<br>90<br>80                                                                                                                        |
| Sieve 5    | Size in Inches          | 3/4 3/8                                                              |            | Sieve Size in 2                                                                                                 | Sieve Num<br>30 40     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 53.2     |          | 42.4<br>100<br>90<br>80                                                                                                                        |
| Sieve 5    | Size in Inches 3 2 1    | 3/4 3/8                                                              |            | Sieve Size in 1                                                                                                 | Sieve Num<br>30 40     | 100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |          |          | 42.4<br>100<br>90<br>80<br>70                                                                                                                  |
| Sieve 5    | Size in Inches          | 0.5                                                                  |            | Sieve Size in 2                                                                                                 | Sieve Num<br>30 40     | 100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60                                                                                                            |
| Sieve 5    | Size in Inches          | 3/4 3/8                                                              |            | Sieve Size in 2<br>0 16                                                                                         | Sieve Num<br>30 40     | 100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>sec                                                                                                     |
|            | Size in Inches          | 3/4 3/8                                                              |            | Sieve Size in F                                                                                                 | Sieve Num<br>30 40<br> | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>U<br>50<br>U<br>100<br>91<br>92<br>91<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 |
|            | Size in Inches          |                                                                      |            |                                                                                                                 | Sieve Num<br>30 40<br> | 100           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '           '                                                                                                                                                                                                                                                                                                 |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                     |
|            | Size in Inches          |                                                                      |            |                                                                                                                 | Sieve Num<br>30 40<br> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>40<br>40                                                                                    |
|            | Size in Inches          |                                                                      |            |                                                                                                                 | Sieve Num<br>30 40<br> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>40<br>30                                                                                    |
|            | Size in Inches          |                                                                      |            |                                                                                                                 | Sieve Num<br>30 40<br> | 100           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>40<br>30<br>20                                                                              |
|            | Size in Inches          |                                                                      |            |                                                                                                                 | Sieve Num<br>30 40<br> | 100           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>40<br>30<br>20                                                                              |
|            | Size in Inches          |                                                                      |            |                                                                                                                 | Sieve Num<br>30 40<br> | 100           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>50<br>40<br>20<br>10                                                                        |
|            | Size in Inches          |                                                                      |            |                                                                                                                 | Sieve Num<br>30 40<br> | 100           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           -           - |              |          |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>90<br>60<br>50<br>40<br>20<br>10<br>0                                                       |
| Sieve 5    | Size in Inches          |                                                                      |            |                                                                                                                 |                        | 100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 0.01     |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>50<br>40<br>20<br>10<br>0<br>0.001                                                          |
| Sieve 5    | Size in Inches          |                                                                      |            |                                                                                                                 |                        | 100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 0.01     |          | 42.4<br>100<br>90<br>80<br>70<br>60<br>50<br>40<br>50<br>40<br>20<br>10<br>0<br>0.001                                                          |

Comments

Stantec Consulting Services Inc. Cincinnati, Ohio

Reported By: REL Report Date: 08/06/2024

Reviewed By





## ATTERBERG LIMITS

| Project   | MRG-78-10.96 (Lan   | dslide Exploratio | on)           |           | Project No.   | 175578434    |
|-----------|---------------------|-------------------|---------------|-----------|---------------|--------------|
| Source    | B-003-0-24, 13.5'-1 | 5.0'              |               |           | Lab ID        | 241          |
|           |                     |                   |               |           | % + No. 40    | 2            |
| Tested By | NU                  | Test Method       | ASTM D 4318 M | ethod A   | Date Received | 07-24-2024   |
| Test Date | 07-26-2024          | Prepared          | Dry           |           |               |              |
|           |                     | -                 |               |           |               |              |
|           | Wet Soil and        | Dry Soil and      |               |           |               |              |
|           | Tare Mass           | Tare Mass         | Tare Mass     | Number of | Water Content |              |
|           | (g)                 | (g)               | (g)           | Blows     | (%)           | Liquid Limit |
|           | 19.07               | 16.38             | 10.96         | 23        | 49.6          |              |
|           | 18.56               | 16.09             | 11.08         | 26        | 49.3          |              |
|           | 20.47               | 17.36             | 10.69         | 35        | 46.6          | 49           |
|           |                     |                   |               |           |               |              |
|           |                     |                   |               |           |               |              |



NUMBER OF BLOWS

#### PLASTIC LIMIT AND PLASTICITY INDEX

| Wet Soil and<br>Tare Mass | Dry Soil and<br>Tare Mass | Tare Mass | Water<br>Content |               |                  |
|---------------------------|---------------------------|-----------|------------------|---------------|------------------|
| (g)                       | (g)                       | (g)       | (%)              | Plastic Limit | Plasticity Index |
| 23.28                     | 20.65                     | 11.00     | 27.3             | 27            | 22               |
| 23.06                     | 20.39                     | 10.50     | 27.0             |               |                  |

Remarks:

Reviewed By



| Project Name MRG-78-10.96 (Landslide Exploration) Project Number 175578434 |                   |             |                                                  |  |  |  |  |
|----------------------------------------------------------------------------|-------------------|-------------|--------------------------------------------------|--|--|--|--|
| Source                                                                     | B-002-0-24, 6.0   | )'-8.0'     | Lab ID 252                                       |  |  |  |  |
| -                                                                          |                   |             |                                                  |  |  |  |  |
| Sample Type                                                                | ST                |             | Date Received 7-24-24                            |  |  |  |  |
|                                                                            |                   |             | Date Reported 8-5-24                             |  |  |  |  |
|                                                                            |                   |             | Tost Posults                                     |  |  |  |  |
|                                                                            |                   |             |                                                  |  |  |  |  |
| Natur                                                                      | ral Moisture Co   | ontent      | Atterberg Limits                                 |  |  |  |  |
| Test Method:                                                               | : ASTM D 2216     |             | Test Method: ASTM D 4318 Method A                |  |  |  |  |
| Moistur                                                                    | re Content (%):   | 6.9         | Prepared: Dry                                    |  |  |  |  |
|                                                                            |                   |             | Liquid Limit: 47                                 |  |  |  |  |
|                                                                            |                   |             | Plastic Limit: 29                                |  |  |  |  |
| Par                                                                        | ticle Size Anal   | <u>ysis</u> | Plasticity Index: 18                             |  |  |  |  |
| Preparation I                                                              | Method: ASIM      | D 421       | Activity Index: <u>1.2</u>                       |  |  |  |  |
| Gradation Me                                                               | ethod: ASIM D     | 422         |                                                  |  |  |  |  |
| Hydrometer                                                                 | vietnod: AS I M   | D 422       | Maiatura Danaita Dalatianakin                    |  |  |  |  |
|                                                                            |                   |             | MOISTURE-DENSITY Relationship                    |  |  |  |  |
|                                                                            |                   |             |                                                  |  |  |  |  |
| Sieve Size                                                                 | (mm)              | Passing     | Maximum Dry Density (lb/ft°): N/A                |  |  |  |  |
|                                                                            | N/A               |             | Maximum Dry Density (kg/m <sup>3</sup> ): N/A    |  |  |  |  |
|                                                                            | N/A               |             | Optimum Moisture Content (%): N/A                |  |  |  |  |
|                                                                            | N/A               |             | Over Size Correction %: N/A                      |  |  |  |  |
| 1 1/2"                                                                     | 37.5              | 100.0       |                                                  |  |  |  |  |
| 3/4"                                                                       | 19                | 92.2        |                                                  |  |  |  |  |
| 3/8"                                                                       | 9.5               | 78.7        | California Bearing Ratio                         |  |  |  |  |
| No. 4                                                                      | 4.75              | 70.5        | Test Not Performed                               |  |  |  |  |
| No. 10                                                                     | 2                 | 55.5        | Bearing Ratio (%): N/A                           |  |  |  |  |
| No. 40                                                                     | 0.425             | 54.5        | Compacted Dry Density (lb/ft <sup>3</sup> ). N/A |  |  |  |  |
| No. 200                                                                    | 0.075             | 49.8        | Compacted Moisture Content (%): N/A              |  |  |  |  |
|                                                                            | 0.02              | 39.6        |                                                  |  |  |  |  |
|                                                                            | 0.005             | 21.6        |                                                  |  |  |  |  |
|                                                                            | 0.002             | 14.5        | Specific Gravity                                 |  |  |  |  |
| Estimated                                                                  | 0.001             | 9.8         | Estimated                                        |  |  |  |  |
|                                                                            |                   |             |                                                  |  |  |  |  |
| Plus 3 in. Ma                                                              | terial, Not Inclu | ded: 0 (%)  | Particle Size: No. 10                            |  |  |  |  |
|                                                                            |                   |             | Specific Gravity at 20° Celsius: 2.70            |  |  |  |  |
| _                                                                          | ASTM              | ODOT        |                                                  |  |  |  |  |
| Range                                                                      | (%)               | (%)         |                                                  |  |  |  |  |
| Gravel                                                                     | 29.5              | 44.5        | <u>Classification</u>                            |  |  |  |  |
| Coarse San                                                                 |                   | 1.0         | Unified Group Symbol: GM                         |  |  |  |  |
| INIEdium Sar                                                               |                   |             | Group Name: Silty Gravel with Sand               |  |  |  |  |
| Fine Sand                                                                  | 4./               | 4./         |                                                  |  |  |  |  |
|                                                                            | 28.2              | 28.2        |                                                  |  |  |  |  |
|                                                                            | 21.0              |             | Clay                                             |  |  |  |  |
|                                                                            |                   |             | L                                                |  |  |  |  |
| Comments:                                                                  |                   |             |                                                  |  |  |  |  |
| -                                                                          |                   |             | Poviound Pre NC                                  |  |  |  |  |
| -                                                                          |                   |             |                                                  |  |  |  |  |

Stantec

Project Name

Source

| MRG-78-10.96 (Landslide Exploration) | Project Number | 175578434 |
|--------------------------------------|----------------|-----------|
| B-002-0-24, 6.0'-8.0'                | Lab ID         | 252       |

Sieve Size

%

Passing

Sieve Analysis for the Portion Coarser than the No. 10 Sieve

| Test Method    | ASTM D 422 |
|----------------|------------|
| Prepared Using | ASTM D 421 |

Particle Shape: Angular Particle Hardness: Hard and Durable

Tested By JP Test Date 08-02-2024 Date Received 07-24-2024

Maximum Particle Size: 1 1/2" Sieve

| 100.0 |
|-------|
| 92.2  |
| 78.7  |
| 70.5  |
| 55.5  |
|       |

Analysis for the Portion Finer than the No. 10 Sieve

Analysis Based on -3 inch Fraction Only

Specific Gravity 2.7

Dispersed Using Apparatus A - Mechanical, for 1 Minute

| No. 40   | 54.5 |
|----------|------|
| No. 200  | 49.8 |
| 0.02 mm  | 39.6 |
| 0.005 mm | 21.6 |
| 0.002 mm | 14.5 |
| 0.001 mm | 9.8  |
|          |      |

**Particle Size Distribution** 



Stantec Consulting Services Inc. Cincinnati, Ohio

Reported By: REL Report Date: 08/06/2024





## ATTERBERG LIMITS

| Project   | MRG-78-10.96 (Lan    | dslide Exploratio | Project No.   | 175578434 |               |              |
|-----------|----------------------|-------------------|---------------|-----------|---------------|--------------|
| Source    | B-002-0-24, 6.0'-8.0 | •                 |               |           | Lab ID        | 252          |
|           |                      |                   |               |           | % + No. 40    | 45           |
| Tested By | NU                   | Test Method       | ASTM D 4318 M | lethod A  | Date Received | 07-24-2024   |
| Test Date | 08-05-2024           | Prepared          | Dry           | _         | -             |              |
|           |                      |                   |               | •         |               |              |
|           | Wet Soil and         | Dry Soil and      |               |           |               |              |
|           | Tare Mass            | Tare Mass         | Tare Mass     | Number of | Water Content |              |
|           | (g)                  | (g)               | (g)           | Blows     | (%)           | Liquid Limit |
|           | 20.29                | 17.33             | 11.07         | 24        | 47.3          |              |
|           | 19.11                | 16.60             | 11.08         | 29        | 45.5          |              |
|           | 19.74                | 17.13             | 11.04         | 34        | 42.9          | 47           |
|           |                      |                   |               |           |               |              |
|           |                      |                   |               |           |               |              |
|           |                      |                   |               |           |               |              |



NUMBER OF BLOWS

#### PLASTIC LIMIT AND PLASTICITY INDEX

| Wet Soil and | Dry Soil and |           | Water   |               |                  |
|--------------|--------------|-----------|---------|---------------|------------------|
| Tare Mass    | Tare Mass    | Tare Mass | Content |               |                  |
| (g)          | (g)          | (g)       | (%)     | Plastic Limit | Plasticity Index |
| 20.70        | 18.42        | 10.56     | 29.0    | 29            | 18               |
| 21.79        | 19.31        | 10.57     | 28.4    |               |                  |

Remarks:

Reviewed By



| Project Name  | roject Name MRG-78-10.96 (Landslide Exploration) Project Number 175578434 |             |                                                  |  |  |  |
|---------------|---------------------------------------------------------------------------|-------------|--------------------------------------------------|--|--|--|
| Source I      | 3-003-0-24, 6.0                                                           | '-8.0'      | Lab ID 253                                       |  |  |  |
|               |                                                                           |             |                                                  |  |  |  |
| Sample Type   | ST                                                                        |             | Date Received 7-24-24                            |  |  |  |
| -             |                                                                           |             | Date Reported 8-5-24                             |  |  |  |
|               |                                                                           |             |                                                  |  |  |  |
|               |                                                                           |             |                                                  |  |  |  |
| Natur         | al Moisture Co                                                            | ontent      | Atterberg Limits                                 |  |  |  |
| Test Method:  | ASTM D 2216                                                               |             | Test Method: ASTM D 4318 Method A                |  |  |  |
| Moistur       | e Content (%):                                                            | 26.5        | Prepared: Dry                                    |  |  |  |
|               |                                                                           |             | Liquid Limit: 48                                 |  |  |  |
|               |                                                                           |             | Plastic Limit: 27                                |  |  |  |
| Par           | <u>ticle Size Anal</u>                                                    | <u>ysis</u> | Plasticity Index: 21                             |  |  |  |
| Preparation N | /lethod: ASTM                                                             | D 421       | Activity Index: 0.6                              |  |  |  |
| Gradation Me  | ethod: ASTM D                                                             | 422         |                                                  |  |  |  |
| Hydrometer N  | lethod: ASTM                                                              | D 422       |                                                  |  |  |  |
|               |                                                                           |             | Moisture-Density Relationship                    |  |  |  |
| Partio        | cle Size                                                                  | %           | Test Not Performed                               |  |  |  |
| Sieve Size    | (mm)                                                                      | Passing     | Maximum Dry Density (lb/ft <sup>3</sup> ): N/A   |  |  |  |
|               | N/A                                                                       |             | Maximum Drv Density (kg/m <sup>3</sup> ): N/A    |  |  |  |
|               | N/A                                                                       |             | Ontimum Moisture Content (%): N/A                |  |  |  |
|               |                                                                           |             | Over Size Correction %:                          |  |  |  |
| 1 1/0"        | N/A                                                                       | 100.0       | Over Size Correction %. N/A                      |  |  |  |
| 2/4"          | 10                                                                        | 07.1        |                                                  |  |  |  |
| 3/4           | 19                                                                        | 97.1        | California Boaring Batia                         |  |  |  |
| 3/0           | 9.5                                                                       | 90.1        | Test Net Derformed                               |  |  |  |
| No. 4         | 4.75                                                                      | 74.0        | Rearing Patio (%): N/A                           |  |  |  |
| No. 10        | 0.405                                                                     | 74.0        | $\frac{1}{10000000000000000000000000000000000$   |  |  |  |
| No. 40        | 0.425                                                                     | 71.4        | Compacted Dry Density (Ib/It <sup>-</sup> ): N/A |  |  |  |
| NO. 200       | 0.075                                                                     | 03.Z        |                                                  |  |  |  |
|               | 0.02                                                                      | 55.9        |                                                  |  |  |  |
|               | 0.005                                                                     | 41.2        | Specific Crowity                                 |  |  |  |
| Fatimated     | 0.002                                                                     | 32.9        | Specific Gravity                                 |  |  |  |
| Estimated     | 0.001                                                                     | 20.5        |                                                  |  |  |  |
| Plus 3 in Ma  | terial Not Inclu                                                          | ded: 0 (%)  | Particle Size: No. 10                            |  |  |  |
|               |                                                                           | ueu. 0 (70) | Specific Gravity at 20° Celsius: 2 70            |  |  |  |
|               | ASTM                                                                      |             |                                                  |  |  |  |
| Range         | (%)                                                                       |             | L                                                |  |  |  |
| Gravel        | 12.6                                                                      |             | Classification                                   |  |  |  |
| Coarse San    | d 13.4                                                                    | 26          | Unified Group Symbol: CI                         |  |  |  |
| Medium San    | d 26                                                                      |             | Group Name: Sandy Lean Clay                      |  |  |  |
| Fine Sand     | 82                                                                        | 8.2         |                                                  |  |  |  |
| Silt          | 22.0                                                                      | 22.0        | ODOT Classification A-7-6 (11)                   |  |  |  |
| Clav          | 41.2                                                                      | 41.2        | Description:                                     |  |  |  |
|               |                                                                           |             |                                                  |  |  |  |
| Commontei     |                                                                           |             |                                                  |  |  |  |
| Comments: -   |                                                                           |             |                                                  |  |  |  |
| -             |                                                                           |             | Reviewed By DC                                   |  |  |  |
| -             |                                                                           |             |                                                  |  |  |  |

Stantec

Project Name

Source

| Project Number | 175578434 |
|----------------|-----------|
| Lab ID         | 253       |

Sieve Analysis for the Portion Coarser than the No. 10 Sieve

| Test Method    | ASTM D 422 |
|----------------|------------|
| Prepared Using | ASTM D 421 |

B-003-0-24, 6.0'-8.0'

Particle Shape: Angular Particle Hardness: Hard and Durable

Tested By JP Test Date 08-02-2024 Date Received 07-24-2024

Maximum Particle Size: 1 1/2" Sieve

| Δnal   | vsis fo  | r the P | ortion | Finer than | the No   | 10 Sieve |
|--------|----------|---------|--------|------------|----------|----------|
| Allaly | y 313 10 | і ше г  | ULIULI |            | LITE NO. |          |

MRG-78-10.96 (Landslide Exploration)

Analysis Based on -3 inch Fraction Only

Specific Gravity 2.7

Dispersed Using Apparatus A - Mechanical, for 1 Minute

|            | %       |
|------------|---------|
| Sieve Size | Passing |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
|            |         |
| 1 1/2"     | 100.0   |
| 3/4"       | 97.1    |
| 3/8"       | 90.1    |
| No. 4      | 87.4    |
| No. 10     | 74.0    |

| eve      |      |
|----------|------|
| No. 40   | 71.4 |
| No. 200  | 63.2 |
| 0.02 mm  | 55.9 |
| 0.005 mm | 41.2 |
| 0.002 mm | 32.9 |
| 0.001 mm | 28.5 |

|          |                  |        |       |      |     |        |           |            |            |              |                 |    | Pé | aru  | ICI         | e    | <b>3</b> 1 | ze  |     | รเ   | rip           | นแ   | on |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               |     |       |
|----------|------------------|--------|-------|------|-----|--------|-----------|------------|------------|--------------|-----------------|----|----|------|-------------|------|------------|-----|-----|------|---------------|------|----|----------|-----------|----------|------|------|-----|-----|------------------|------------------|-----|----------|----|------|-----|---------------|-----|-------|
| ASTM     | (                | Coars  | se Gr | avel |     | Fine ( | Grav      | el         | _          | C.           | San             | d  | 1  | Medi | ium         | Sar  | nd         |     |     | Fi   | ine S         | Sand |    |          |           |          |      | Silt |     |     |                  |                  |     |          |    | Clay |     |               |     |       |
| ASTM     |                  |        | 2.9   |      |     | 9      | .7        |            |            | 1            | 3.4             |    |    |      | 2.6         |      |            |     |     |      | 8.            | 2    |    |          |           |          | :    | 22.0 |     |     |                  |                  |     |          |    | 41.2 |     |               |     |       |
| AASHTO   |                  |        |       |      | (   | Grave  | 9         |            | _          |              |                 |    |    | Coa  | rse         | Sar  | nd         |     |     | F    | ine S         | Sand |    |          |           |          |      |      | Si  | lt  |                  |                  |     |          |    |      | Cla | ıy.           |     |       |
| 70.01110 |                  |        |       |      |     | 26.0   |           |            |            |              |                 |    |    |      | 2.6         |      |            |     |     |      | 8.            | 2    |    |          |           |          |      |      | 30. | .3  |                  |                  |     |          |    |      | 32. | 9             |     |       |
| Sieve    | Size             | e in l | nche  | s    |     |        |           |            |            |              |                 |    | Si | eve  | Size        | e in | Sie        | eve | Num | bers |               |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               |     |       |
|          | 3                | 2      |       | 1    | 3/4 |        | 3/8       |            | 4          |              |                 | 10 | )  | 16   | 3           |      | 30         | 4   | 0   |      |               | 100  |    | 20       | 0         |          | <br> |      |     |     |                  |                  |     |          |    |      |     |               | 100 | )     |
|          |                  |        |       |      | Å   |        | Ľ.        | Ш          | Ľ          |              |                 |    |    |      |             |      |            |     |     |      |               |      |    | <u> </u> |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               |     |       |
|          |                  |        |       |      |     | $\geq$ | A         |            | $\vdash$   |              |                 |    |    |      | $\parallel$ |      |            | _   |     |      |               |      | _  |          |           | _        |      |      |     | +   |                  |                  | _   |          |    |      |     | _             | 90  |       |
|          | $\square$        |        |       |      |     |        | +++       |            | <u>⊢</u> ₽ | $\checkmark$ |                 |    |    |      | ++          |      |            | +   | -   |      |               |      | _  |          | $\square$ | +        |      | _    |     | _   | $\square$        | $\square$        | _   |          |    | _    |     | $\rightarrow$ |     |       |
|          | $\left  \right $ |        | -     |      |     |        | +++       |            | $\vdash$   | +            | $\left \right $ |    |    |      | +           |      |            | +   |     |      | -             |      | -  | +        | ++        | +        |      | _    |     | +   | $\left  \right $ | $\left  \right $ | +   |          | -  | _    |     | $\rightarrow$ | 80  |       |
|          |                  |        |       |      |     |        |           |            |            |              |                 | 7  | 7  |      |             | -    |            |     |     |      |               |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               | 70  |       |
|          |                  |        |       |      |     |        |           |            |            |              |                 |    |    |      |             |      |            |     |     |      | $\rightarrow$ |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               | 10  | 5     |
|          |                  |        |       |      |     |        |           |            | $\square$  |              |                 |    |    |      |             |      |            |     |     |      |               |      |    | 12       |           | $\vdash$ | A    |      |     |     |                  |                  |     |          |    |      |     | _             | 60  | sin   |
|          |                  |        | _     |      | _   |        | ++        |            | $\vdash$   |              | _               | _  |    |      | +           |      | -          | +   |     |      |               |      | _  | +        |           | -        | -    | •    | _   | +   | $\square$        |                  | -   |          |    |      |     | _             |     | Dac   |
|          |                  |        |       |      |     |        | ++        |            | H          |              |                 |    |    |      | +           |      |            | ╈   |     |      |               |      | -  | Ħ        |           | +        |      |      |     | 4   |                  |                  |     |          |    |      |     |               | 50  | t t   |
|          |                  |        |       |      |     |        |           |            | $\square$  |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     |                  | Y                | •   |          |    |      |     |               | 40  | a Cuc |
|          |                  |        |       |      | _   |        |           |            | $\vdash$   |              |                 | _  |    |      | ++          |      |            | _   | _   |      |               |      | _  |          | $\square$ | -        |      |      |     | _   |                  |                  |     | $\vdash$ |    |      |     | _             |     | ă     |
|          |                  |        | -     |      |     |        | +++       | $ \square$ | $\vdash$   |              |                 | _  |    |      | ╢           |      |            | +   |     |      |               |      | -  | +        | $\square$ | +        |      |      |     | +   | $\parallel$      |                  | +   |          |    | -    |     | ∕▲            | 30  |       |
|          |                  |        |       |      |     |        | +++       |            | $\vdash$   |              |                 |    |    |      |             |      |            | -   |     |      |               |      | -  |          |           |          |      |      |     | +   |                  |                  | +   |          |    |      |     |               |     |       |
|          |                  |        |       |      |     |        | $\square$ |            |            |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               | 20  |       |
|          |                  |        |       |      |     |        |           |            |            |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               | 10  |       |
|          |                  |        |       |      |     |        |           | Ш          | $\square$  |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     | _             | 10  |       |
|          |                  |        |       |      |     |        | Ш         | Ш          |            |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               | 0   |       |
| 100      |                  |        |       |      |     |        | 10        |            |            |              |                 |    |    |      | 1           | I    | Dia        | am  | ete | r (n | nm            | )    | 0. | 1        |           |          |      |      | (   | 0.0 | 1                |                  |     |          |    |      |     | 0.0           | 01  |       |
|          |                  |        |       |      |     |        |           |            |            |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     |                  |                  |     |          |    |      |     |               |     |       |
|          | ~~               | mn     | nor   | ote  |     |        |           |            |            |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     | F                | م                | vic |          | Ъс | B.   | , 1 | p             | E   |       |
| ,        | 00               |        |       |      |     |        |           |            |            |              |                 |    |    |      |             |      |            |     |     |      |               |      |    |          |           |          |      |      |     |     | Г                | 101              | VIC |          | Ju | Ъу   | -1  | <u> </u>      | C   | -     |

Stantec Consulting Services Inc. Cincinnati, Ohio

Reported By: REL Report Date: 08/06/2024

# 





| ATTERBERG L | IMITS |
|-------------|-------|
|-------------|-------|

| Project   | MRG-78-10.96 (Lan    | dslide Exploratio | n)            |           | Project No.   | 175578434    |
|-----------|----------------------|-------------------|---------------|-----------|---------------|--------------|
| Source    | B-003-0-24, 6.0'-8.0 | '                 |               |           | Lab ID        | 253          |
|           |                      |                   |               |           | % + No. 40    | 29           |
| Tested By | NU                   | Test Method       | ASTM D 4318 M | lethod A  | Date Received | 07-24-2024   |
| Test Date | 08-05-2024           | Prepared          | Dry           |           |               |              |
|           |                      | -                 |               | -         |               |              |
|           | Wet Soil and         | Dry Soil and      |               |           |               |              |
|           | Tare Mass            | Tare Mass         | Tare Mass     | Number of | Water Content |              |
|           | (g)                  | (g)               | (g)           | Blows     | (%)           | Liquid Limit |
|           | 19.71                | 16.91             | 11.03         | 25        | 47.6          |              |
|           | 19.99                | 16.99             | 10.52         | 30        | 46.4          |              |
|           | 19.10                | 16.58             | 11.05         | 35        | 45.6          | 48           |
|           |                      |                   |               |           |               |              |
|           |                      |                   |               |           |               |              |
|           |                      | •                 |               |           |               |              |



NUMBER OF BLOWS

| Wet Soil and<br>Tare Mass | Dry Soil and<br>Tare Mass | Tare Mass | Water<br>Content |               |                  |
|---------------------------|---------------------------|-----------|------------------|---------------|------------------|
| (g)                       | (g)                       | (g)       | (%)              | Plastic Limit | Plasticity Index |
| 22.55                     | 20.12                     | 11.07     | 26.9             | 27            | 21               |
| 22.06                     | 19.71                     | 11.05     | 27.1             |               |                  |

#### Remarks:

Reviewed By

PF.



## Unconfined Compressive Strength of Cohesive Soil

ASTM D 2166

|                                                                        |                         | ASTM D 2100           |
|------------------------------------------------------------------------|-------------------------|-----------------------|
| Project Name MRG-78-10.96 (Landslide Exploration)                      | Project Nur             | nber <u>175578434</u> |
| Source B-003-0-24, 6.0'-8.0'                                           | La                      | ıb ID 253             |
| Visual Description Sandy Lean Clay (CL)                                |                         | 4 41                  |
| K                                                                      | ecovered                | 1.4                   |
|                                                                        |                         | 0.0 - 7.4             |
| PI N/A                                                                 | Date Extri              | uded 08/01/2024       |
| Initial Wet Density (pcf) 126.7                                        | Date Te                 | sted 08/01/2024       |
| Initial Moisture Content (%) 26.5 Initial MC Taken Before Test, From T | rimmings                |                       |
| Initial Dry Density (pcf) 100.1                                        |                         |                       |
| At Test Moisture Content (%) 26.5 At Test MC Taken Before Test, From 1 | rimmings                |                       |
| At Test Dry Density (pcf) 100.1                                        |                         |                       |
| Specific Gravity <u>N/A</u>                                            |                         |                       |
| Degree of Saturation (%) N/A Unconfined Compressive Stre               | ngth (tsf)              | $\frac{0.73}{0.27}$   |
| Average Height (in) <u>5.480</u> Undrained Shear Street                | ngin (isi)<br>tross (%) | $\frac{0.37}{4.4}$    |
| Height to Diameter Ratio 19 Strain Rate to Failure (                   | % / min)                | 4.4                   |
|                                                                        | /o / mm.)               | 1.00                  |
| Stress vs. Strain                                                      |                         |                       |
| 0.80                                                                   |                         |                       |
|                                                                        |                         |                       |
| 0.70                                                                   |                         | <b>_</b>              |
| 0.60                                                                   |                         |                       |
| € 0.50                                                                 |                         |                       |
| (t)                                                                    |                         |                       |
|                                                                        |                         |                       |
| <b>ö</b> 0.30                                                          |                         |                       |
| 0.20                                                                   |                         |                       |
|                                                                        |                         |                       |
| 0.10                                                                   |                         |                       |
|                                                                        |                         |                       |
| 0.0 1.0 2.0 3.0 4.0 5.0                                                | ) 6.0                   | 7.0                   |
| Strain (%)                                                             |                         |                       |
|                                                                        |                         |                       |
| Failura Skotah Packet Penetra                                          | meter Reading           | (tsf) N/A             |
|                                                                        | e Reading (kg/          | $(m^2) N/A$           |
| Comments                                                               | ouung (ng/              | <u></u>               |

Stantec Consulting Services Inc. Cincinnati, Ohio Reported By: REL

Reviewed By



## Unconfined Compressive Strength of Cohesive Soil

ASTM D 2166

|                                                                        |                         | ASTM D 2100           |
|------------------------------------------------------------------------|-------------------------|-----------------------|
| Project Name MRG-78-10.96 (Landslide Exploration)                      | Project Nur             | nber <u>175578434</u> |
| Source B-003-0-24, 6.0'-8.0'                                           | La                      | ıb ID 253             |
| Visual Description Sandy Lean Clay (CL)                                |                         | 4 41                  |
| K                                                                      | ecovered                | 1.4                   |
|                                                                        |                         | 0.0 - 7.4             |
| PI N/A                                                                 | Date Extri              | uded 08/01/2024       |
| Initial Wet Density (pcf) 126.7                                        | Date Te                 | sted 08/01/2024       |
| Initial Moisture Content (%) 26.5 Initial MC Taken Before Test, From T | rimmings                |                       |
| Initial Dry Density (pcf) 100.1                                        |                         |                       |
| At Test Moisture Content (%) 26.5 At Test MC Taken Before Test, From 1 | rimmings                |                       |
| At Test Dry Density (pcf) 100.1                                        |                         |                       |
| Specific Gravity <u>N/A</u>                                            |                         |                       |
| Degree of Saturation (%) N/A Unconfined Compressive Stre               | ngth (tsf)              | $\frac{0.73}{0.27}$   |
| Average Height (in) <u>5.480</u> Undrained Shear Street                | ngin (isi)<br>tross (%) | $\frac{0.37}{4.4}$    |
| Height to Diameter Ratio 19 Strain Rate to Failure (                   | % / min)                | 4.4                   |
|                                                                        | /o / mm.)               | 1.00                  |
| Stress vs. Strain                                                      |                         |                       |
| 0.80                                                                   |                         |                       |
|                                                                        |                         |                       |
| 0.70                                                                   |                         | <b>_</b>              |
| 0.60                                                                   |                         |                       |
| € 0.50                                                                 |                         |                       |
| (t)                                                                    |                         |                       |
|                                                                        |                         |                       |
| <b>ö</b> 0.30                                                          |                         |                       |
| 0.20                                                                   |                         |                       |
|                                                                        |                         |                       |
| 0.10                                                                   |                         |                       |
|                                                                        |                         |                       |
| 0.0 1.0 2.0 3.0 4.0 5.0                                                | ) 6.0                   | 7.0                   |
| Strain (%)                                                             |                         |                       |
|                                                                        |                         |                       |
| Failura Skotah Packet Penetra                                          | meter Reading           | (tsf) N/A             |
|                                                                        | e Reading (kg/          | $(m^2) N/A$           |
| Comments                                                               | ouung (ng/              | <u></u>               |

Stantec Consulting Services Inc. Cincinnati, Ohio Reported By: REL

Reviewed By

# Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

| Project Name                                                       | MRG-78-10.9                                                                                                               | 6                                                       |                |            | Project Number    | 175578434    |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|------------|-------------------|--------------|
| Lithology                                                          | Shale, light gr                                                                                                           | ey, medium strong                                       |                |            | Lab ID            | UCR-254      |
| Hole Number                                                        | B-001-0-24                                                                                                                | Depth (ft)                                              | 26.5'-26.9'    |            | Date Received     | 07/24/2024   |
| Temperature (°C)                                                   | 23.8                                                                                                                      | Moisture Condition                                      | As Prepared, I | Moist      | Date Tested       | 08/02/2024   |
| Side Planeness<br>Perpendicularity                                 | <u> </u>                                                                                                                  | Height (in)<br>Diameter (in)                            | 4.466          | Wet<br>Drv | Unit Weight (pcf) | 160.9<br>N/A |
| End Planeness                                                      | N/A                                                                                                                       | Area (in <sup>2</sup> )                                 | 3.098          | Moi        | sture Content (%) | N/A          |
| Parallelism                                                        | N/A                                                                                                                       | ( )                                                     |                |            |                   |              |
| Dimensions were                                                    | not confirmed.                                                                                                            |                                                         |                |            |                   |              |
|                                                                    |                                                                                                                           |                                                         |                | Fai        | lure Sketches     |              |
| Loading F<br>Pe<br>Compressive S<br>Compressive S<br>Compressive S | Rate (lbf/sec) _<br>pak Load (lbf) _<br>Failure Type <u>(</u><br>Strength (psi) _<br>Strength (psf) _<br>Strength (tsf) _ | 83<br>27130<br>Cone and Split<br>8760<br>1261440<br>631 |                |            |                   |              |

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone. Dimensional tolerances were not confirmed.







| Project Name MRG-78-10.96                                   | Project Number | 175578434 |
|-------------------------------------------------------------|----------------|-----------|
| Lithology Shale, light grey, medium strong                  | Lab ID         | UCR-254   |
| Hole Number B-001-0-24 Depth (ft) 26.5'-26.9'               |                |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core |                |           |
| As Received                                                 |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
| Stantec Laboratory Testing                                  |                |           |
| Project Number175578434                                     |                |           |
| Project Name MEG-78-10.96 Landslide                         |                |           |
| Test ID UCR-254                                             |                |           |
| Hole Number B- DOI - 0 - 24                                 |                |           |
| Doub 26.5-26.9                                              |                |           |
| Deput <b>XOII</b>                                           |                |           |
| Stantec Consulting Services Inc.                            |                |           |
| 4 175578434                                                 |                |           |
|                                                             |                |           |

**Core Preparation** 

|   | Stantec Laboratory Testing          |
|---|-------------------------------------|
|   | Project Number 175578434            |
|   | Project Name MEG-78-10.96 Landslide |
|   | Test ID UCR-254                     |
| 1 | Hole Number <b>B-001-0-24</b>       |
|   | Depth 26.5-26.9                     |
|   | Stantec Consulting Services Inc.    |
| 1 | 175578434                           |
|   | ULR-2543                            |
|   | B-001 A                             |
|   |                                     |



| Project Name MRG-78-10.96                                   | Project Number | 175578434 |
|-------------------------------------------------------------|----------------|-----------|
| Lithology Shale, light grey, medium strong                  | Lab ID         | UCR-254   |
| Hole Number <u>B-001-0-24</u> Depth (ft) <u>26.5'-26.9'</u> | _              |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core | _              |           |
| Core Preparation                                            |                |           |
|                                                             |                |           |
|                                                             | and the second |           |
|                                                             |                |           |
|                                                             |                |           |
| Stanter Laboratory Testing                                  |                |           |
|                                                             |                |           |
| Project Number 175578434                                    |                |           |
| Project Name MEG-78-10.96 Landslide                         |                |           |
| Test ID UCR-254                                             |                |           |
| B- OALO - 2H                                                |                |           |
| Hole Number B-001-0-24                                      |                |           |
| Depth 26.5-26.4                                             |                |           |
| Stantec Consulting Services Inc.                            |                |           |
|                                                             |                |           |
| L 175578434                                                 |                |           |
|                                                             | •              |           |
| 3 U(K-1543                                                  |                |           |
| a.001 6                                                     |                |           |
|                                                             |                |           |
|                                                             |                |           |

#### Post Test

|   | Stantec Laboratory Testing                                                                                     |  |
|---|----------------------------------------------------------------------------------------------------------------|--|
|   | Project Number 175578434                                                                                       |  |
|   | Project Name MEG-78-10.96 Landslide                                                                            |  |
|   | Test ID UCR-254                                                                                                |  |
|   | Hole Number B-001-0-24                                                                                         |  |
|   | Depth 26.5-26.9                                                                                                |  |
|   |                                                                                                                |  |
|   |                                                                                                                |  |
| - | The second s |  |



| Project Name MRG-7 | 78-10.96                                     | Project Number | 175578434 |
|--------------------|----------------------------------------------|----------------|-----------|
| Lithology Shale,   | , light grey, medium strong                  | Lab ID         | UCR-254   |
| Hole Number B-001- | -0-24 Depth (ft) 26.5'-26.9'                 |                |           |
| Test Type Uniaxi   | ial Compressive Strength of Intact Rock Core |                |           |
|                    | Post Test                                    |                |           |
|                    |                                              |                |           |
|                    |                                              |                |           |
|                    |                                              |                |           |
|                    | Stantec Laboratory Testing                   |                |           |
|                    | Project Number 175578434                     |                |           |
|                    | Project Name MEG-78-10.96 Landslide          |                |           |
|                    | Test ID UCR-254                              |                |           |
|                    | Hole Number <b>B - 001 - 0 - 24</b>          |                |           |
|                    | Depth 26.5-26.9                              |                |           |
| - inclusion        | 175570H24                                    |                |           |
|                    | - 1140 - 0 - 1316                            |                |           |
|                    | 9 ULR-25U.P                                  |                |           |
|                    | 10 10 11 10                                  |                |           |
|                    | B.Col 4                                      |                |           |
| -                  |                                              |                |           |
|                    |                                              |                |           |
|                    |                                              |                |           |
|                    |                                              |                |           |

# Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

| Project Name                                    | MRG-78-10.96                                                                 |                                |              | Project Number        | 175578434  |
|-------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|--------------|-----------------------|------------|
| Lithology                                       | Shale/Clayston                                                               | e, dark grey, soft             |              | Lab ID                | UCR-255    |
| Hole Number                                     | B-002-0-24                                                                   | Depth (ft)                     | 20.6'-21.0'  | Date Received         | 07/24/2024 |
| Temperature (°C)                                | 24.8                                                                         | Moisture Condition             | As Prepared, | Moist Date Tested     | 08/02/2024 |
| Side Planeness                                  | N/A                                                                          | Height (in)                    | 4.746        | Wet Unit Weight (pcf) | 149.7      |
| Perpendicularity                                | N/A                                                                          | Diameter (in)                  | 1.972        | Dry Unit Weight (pcf) | N/A        |
| End Planeness                                   | N/A                                                                          | Area (in <sup>2</sup> )        | 3.053        | Moisture Content (%)  | N/A        |
| Parallelism                                     | N/A                                                                          | · · ·                          |              | ( ).                  |            |
| Dimensions were                                 | not confirmed.                                                               |                                |              |                       |            |
|                                                 |                                                                              |                                |              | Failure Sketches      |            |
| Loading F                                       | Rate (lbf/sec)                                                               | 1                              |              |                       |            |
| Pe                                              | ak Load (lbf)                                                                | 195                            |              |                       |            |
| Compressive S<br>Compressive S<br>Compressive S | Failure Type <u>Ur</u><br>Strength (psi)<br>Strength (psf)<br>Strength (tsf) | ndetermined<br>64<br>9216<br>5 |              |                       |            |

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone. Dimensional tolerances were not confirmed.







| Project Name MRG-78-10.96                                   | Project Number                                                                                                  | 175578434 |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|
| Lithology Shale/Claystone, dark grey, soft                  | Lab ID                                                                                                          | UCR-255   |
| Hole Number B-002-0-24 Depth (ft) 20.6'-21.0'               | -                                                                                                               |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core | _                                                                                                               |           |
| As Received                                                 | -                                                                                                               |           |
|                                                             |                                                                                                                 |           |
|                                                             | the second se |           |
|                                                             |                                                                                                                 |           |
|                                                             | 2010                                                                                                            |           |
|                                                             |                                                                                                                 |           |
| Stantec Laboratory Testing                                  |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |
| Project Number 175578434                                    |                                                                                                                 |           |
| Project Name MEG-78-10.96 Landslide                         |                                                                                                                 |           |
| Test ID VCR-255                                             |                                                                                                                 |           |
| Hole Number B-001-0-24                                      |                                                                                                                 |           |
| Denth 70,6-71 A                                             |                                                                                                                 |           |
| Deput Core Cr.B                                             |                                                                                                                 |           |
| Z- 20.6 Stanlec Consulting Services Inc. ZI ->              |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |
|                                                             |                                                                                                                 |           |

| Core Preparation                                                                                                |   |
|-----------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
| Stantec Laboratory Testing                                                                                      |   |
| Project Number 175578434                                                                                        |   |
| Project Name MEG-78-10.96 Landslide                                                                             |   |
| Test ID VCR-255                                                                                                 | - |
| Hole Number B - 001 - 0 - 74                                                                                    |   |
| Depth 20,6-21.0                                                                                                 |   |
| - 20.6 Stantec Consulting Services Inc. 21 ->                                                                   |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
| Canada and a second a second a se |   |



| Project Name MRG-78-10.96                                   | Project Number _ | 175578434 |
|-------------------------------------------------------------|------------------|-----------|
| Lithology Shale/Claystone, dark grey, soft                  | Lab ID           | UCR-255   |
| Hole Number B-002-0-24 Depth (ft) 20.6'-21.                 | .0'              |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core |                  |           |
| Core Preparation                                            |                  |           |
|                                                             |                  |           |
| Stantec Laboratory                                          | Testing          |           |
| Project Number 175578434                                    |                  |           |
| Project Name MEG-78-10.96 Landslide                         | e                |           |
| Test ID VCR-255                                             |                  |           |
| Hole Number 8-001-0-                                        | 24               |           |
| Depth 20,6-21.6                                             |                  |           |
| 20.6 Stantec Consulting Services Inc. 2                     | 1->              |           |
| C B C C C C C C C C C C C C C C C C C C                     |                  |           |
|                                                             |                  |           |
|                                                             |                  |           |
|                                                             |                  |           |
|                                                             |                  |           |
|                                                             |                  |           |

| Post Test                                     |  |
|-----------------------------------------------|--|
|                                               |  |
|                                               |  |
| Stantec Laboratory Testing                    |  |
| Project Number 175578434                      |  |
| Project Name MEG-78-10.96 Landslide           |  |
| Test ID VCR-255                               |  |
| Hole Number 8-001-0-74                        |  |
| Depth 20.6-21.0                               |  |
| - 20.6 Stantec Consulting Services Inc. 21 -> |  |
|                                               |  |
| Star And And And                              |  |
|                                               |  |
|                                               |  |
| A State State State                           |  |



| Project Name MRG-78-10.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Number        | 175578434 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| Lithology Shale/Claystone, dark grey, soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lab ID                | UCR-255   |
| Hole Number <u>B-002-0-24</u> Depth (ft) <u>20.6'-21.0'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |           |
| Post Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second second |           |
| Stantec Laboratory Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |           |
| Project Number 175578434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |           |
| Project Name MEG-78-10.96 Landslide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |
| Test ID UCR-255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
| Hole Number B-001-0-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |           |
| Depth 20,6-21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
| E-20.6 Stantec Consulting Services to 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |           |
| All and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
| Printing of the second se |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |

# Uniaxial Compressive Strength of Intact Rock Core Specimens

ASTM D 7012, Method C

| Project Name                   | MRG-78-10.96                                               |                                      |              | F      | roject Number    | 175578434  |
|--------------------------------|------------------------------------------------------------|--------------------------------------|--------------|--------|------------------|------------|
| Lithology                      | Claystone, dark                                            | t brown, soft                        |              |        | Lab ID           | UCR-256    |
| Hole Number                    | B-002-0-24                                                 | Depth (ft)                           | 29.0'-29.4'  |        | Date Received    | 07/24/2024 |
| Temperature (°C)               | 24.4                                                       | Moisture Condition                   | As Prepared, | Moist  | Date Tested      | 08/02/2024 |
| Side Planeness                 | N/A                                                        | Height (in)                          | 4.621        | Wet Ur | nit Weight (pcf) | 141.4      |
| Perpendicularity               | N/A                                                        | Diameter (in)                        | 1.988        | Dry Ur | nit Weight (pcf) | N/A        |
| End Planeness                  | N/A                                                        | Area (in <sup>2</sup> )              | 3.103        | Moistu | re Content (%)   | N/A        |
| Parallelism                    | N/A                                                        | · · ·                                |              |        | · · ·            |            |
| Dimensions were                | not confirmed.                                             |                                      |              |        |                  |            |
|                                |                                                            |                                      |              | Failur | e Sketches       |            |
| Loading F                      | Rate (lbf/sec)                                             | 4                                    |              |        |                  |            |
| Compressive S<br>Compressive S | Failure Type <u>Co</u><br>Strength (psi)<br>Strength (psf) | 503<br>one and Split<br>162<br>23328 |              |        |                  |            |
| Complessive                    |                                                            | 12                                   |              |        |                  |            |

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone. Dimensional tolerances were not confirmed.







| Project Name MRG-78-10.96                                   | Project Number          | 175578434 |
|-------------------------------------------------------------|-------------------------|-----------|
| Lithology Claystone, dark brown, soft                       | Lab ID                  | UCR-256   |
| Hole Number B-002-0-24 Depth (ft) 29.0'-29.4'               |                         |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core | _                       |           |
| As Received                                                 |                         |           |
|                                                             | 1.                      |           |
|                                                             |                         |           |
|                                                             | And the second          |           |
|                                                             | The second second       |           |
| () Stantas                                                  | a far the second second |           |
|                                                             |                         |           |
| Project Number 175578434                                    |                         |           |
| Project Name MEG-78-10.96 Landslide                         |                         |           |
| Tast ID W(R-256                                             |                         |           |
| Banda an all                                                |                         |           |
| Hole Number D'OBC-B-CY                                      |                         |           |
| Depth . [9.0 - 21. 9                                        |                         |           |
| ←29 Startec Consulting Services Inc. Z1.4 →                 |                         |           |
|                                                             |                         |           |
|                                                             |                         |           |
| . Harris 14                                                 |                         |           |
|                                                             |                         |           |
|                                                             |                         |           |
|                                                             |                         |           |

#### **Core Preparation**

|   | Stantec Laboratory Testing                    |
|---|-----------------------------------------------|
|   | Project Number 175578434                      |
|   | Project Name MEG-78-10.96 Landslide           |
|   | Test ID UCR - 256                             |
|   | Hole Number 8-002-0-24                        |
| - | Depth . 29.0 - 29.4                           |
|   | ← 21 Stantec Consulting Services Inc. Z 7.4 → |
|   |                                               |
|   | Art and and                                   |
|   |                                               |


| Project Name MRG-78-10.96                                   | Project Number | 175578434 |
|-------------------------------------------------------------|----------------|-----------|
| Lithology Claystone, dark brown, soft                       | Lab ID         | UCR-256   |
| Hole Number B-002-0-24 Depth (ft) 29.0'-29.4'               |                |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core | _              |           |
| Core Preparation                                            | -              |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
| Stantas Istantas                                            |                |           |
| July Stantec Laboratory resting                             |                |           |
| Project Number 175578434                                    |                |           |
| Project Name MEG-78-10.96 Landslide                         |                |           |
| Test ID UCR-256                                             |                |           |
| Hole Number B-002 -0 -2 H                                   |                |           |
| 790-2911                                                    |                |           |
| Deptn - C-1, O - C 1, Y                                     |                |           |
| 579 Stantec Consulting Services Inc. 79 al S                |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |
|                                                             |                |           |

## Post Test

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stantec Laboratory Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project Number 175578434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project Name MEG-78-10.96 Landslide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test ID UCR-256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hole Number 8-002-0-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Depth . 29.0 - 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E-29 Stantec Consulting Services Inc. 29.4 →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| and the second sec | The state of the second |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and a function of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |



| Project Name MRG-78-10.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | Project Number | 175578434 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------|-----------|
| Lithology Claystone, dark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | brown, soft                                   | Lab ID         | UCR-256   |
| Hole Number B-002-0-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth (ft) 29.0'-29.4'                        |                |           |
| Test Type <u>Uniaxial Compre</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | essive Strength of Intact Rock Core           |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Post Test                                     |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               | Car I a wall   |           |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stantec Laboratory Testing                    |                |           |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Number 175578434                      |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Name MEG-78-10.96 Landslide           |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test ID UCR - 256                             |                |           |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hole Number 8-002-0-24                        |                |           |
| 1. "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth . 29.0 - 29.4                           |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E-29 Stantec Consulting Services Inc. 29.4 -> |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                |           |
| and the second se |                                               |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second of the                         |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second second                         | 1              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                             |                |           |



ASTM D 7012, Method C

| Project Name MRG-                         | -78-10.96                                                                      |                         |                | Pr      | oject Number   | 175578434  |
|-------------------------------------------|--------------------------------------------------------------------------------|-------------------------|----------------|---------|----------------|------------|
| Lithology Clays                           | tone, dark brown, so                                                           | oft                     |                |         | Lab ID         | UCR-257    |
| Hole Number B-002                         | 2-0-24                                                                         | Depth (ft) 35.1         | '-35.5'        |         | ate Received   | 07/24/2024 |
| Temperature (°C) 24                       | 4.4 Moisture                                                                   | Condition As F          | Prepared, Mois | st      | Date Tested    | 08/02/2024 |
| Side Planeness <u>N</u>                   | I/A H                                                                          | Height (in)             | 4.838          | Wet Uni | t Weight (pcf) | 141.6      |
| Perpendicularity N                        | I/A Dia                                                                        | meter (in)              | 2.025          | Dry Uni | t Weight (pcf) | N/A        |
| End Planeness N                           | I/A                                                                            | Area (in <sup>2</sup> ) | 3.222          | Moistur | e Content (%)  | N/A        |
| Parallelism N                             | I/A                                                                            |                         |                |         |                |            |
| Dimensions were not co                    | onfirmed.                                                                      |                         |                |         |                |            |
|                                           |                                                                                |                         |                | Failure | Sketches       |            |
| Loading Rate (II                          | bf/sec) <u>1</u>                                                               |                         |                |         |                |            |
| Peak Loa<br>Failure                       | ad (lbf) <u>150</u><br>e Type <u>Shear</u>                                     |                         |                |         |                |            |
| Compressive Strengt<br>Compressive Streng | $\begin{array}{c} (p3) & -47 \\ h (psf) & 6768 \\ th (tsf) & 3 \\ \end{array}$ |                         |                |         |                |            |

Comments Fragile nature of specimen inhibited preparation, required capping of ends with Hydro-Stone. Dimensional tolerances were not confirmed.



Stantec Consulting Services Inc. Cincinnati, Ohio





| Project Name MRG-78-10.96                                               | Project Number 175578434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lithology Claystone, dark brown, soft                                   | Lab ID UCR-257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hole Number B-002-0-24 Depth (ft) 35.1-35.5                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| As Received                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Core Preparation                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Stantec       Laboratory Testing         Project Number       175578434 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Project Name MEG-78-10.96 Landslide                                     | and the second se |
| Test ID UCR-2)7                                                         | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Hole Number **B-002-0-24** Depth 35.1-35.5

← 3.5.1 Stantec Consulting Services Inc. 35.5→

Template: tmp\_ucr\_input.xlsm Version: 20170215 Approved By: RJ



| Project Name MRG-78-10.96                                   | Project Number               | 175578434 |
|-------------------------------------------------------------|------------------------------|-----------|
| Lithology Claystone, dark brown, soft                       | Lab ID                       | UCR-257   |
| Hole Number B-002-0-24 Depth (ft) 35.1'-35.5'               |                              |           |
| Test Type Uniaxial Compressive Strength of Intact Rock Core | -                            |           |
| Core Preparation                                            | -                            |           |
|                                                             |                              |           |
|                                                             | a the second                 |           |
|                                                             |                              |           |
| Stantec Laboratory Testing                                  |                              |           |
| J Stantes                                                   |                              |           |
| Project Number 175578434                                    |                              |           |
| Devicet Name MEG-78-10.96 Landslide                         | and the second second second |           |
| Project Name ILC R. 757                                     |                              |           |
| Test ID VCP C7                                              |                              |           |
| Hole Number 8-00 2- 8-24                                    |                              |           |
| Depth 35.1-35.5                                             | 1                            |           |
| 1 36 Stanlac Consulting Services Inc. 35.5->                |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |
|                                                             |                              |           |

#### Post Test

|         | Stantec Laboratory Testing                    |
|---------|-----------------------------------------------|
|         | Project Number 175578434                      |
|         | Project Name MEG-78-10.96 Landslide           |
|         | Test ID UCR-257                               |
|         | Hole Number <b>B-002-0-24</b>                 |
| 1 2 - 1 | Depth 35.1-35.5                               |
|         | - 35.1 Stantec Consulting Services Inc. 35.54 |
|         | Company and the second second                 |
|         |                                               |
| · ·     |                                               |
|         |                                               |



| Project Name MRG-78-10.96                                                                                        | i                                                         | Project Number | 175578434 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------|-----------|
| Lithology Claystone, dar                                                                                         | k brown, soft                                             | Lab ID         | UCR-257   |
| Hole Number B-002-0-24                                                                                           | le Number <u>B-002-0-24</u> Depth (ft) <u>35.1'-35.5'</u> |                |           |
| Test Type <u>Uniaxial Comp</u>                                                                                   | ressive Strength of Intact Rock Core                      |                |           |
|                                                                                                                  | Post Test                                                 |                |           |
|                                                                                                                  |                                                           |                |           |
|                                                                                                                  |                                                           |                |           |
| and the second |                                                           |                |           |
|                                                                                                                  | Character Laboratory Testing                              |                |           |
|                                                                                                                  | Stantec Laboratory resulty                                |                |           |
| and the second | Project Number 175578434                                  |                |           |
|                                                                                                                  | Devicet Name MEG-78-10.96 Landslide                       |                |           |
|                                                                                                                  | Project Name Inc. R 257                                   |                |           |
| A CONTRACTOR OF THE OWNER                                                                                        | Test ID COP COP                                           |                |           |
|                                                                                                                  | Hole Number D-002-0-24                                    |                |           |
| · · ·                                                                                                            | Depth 35.1-55.3                                           |                |           |
|                                                                                                                  | 4 3 Stantec Consulting Services Inc. 35.5-                |                |           |
|                                                                                                                  |                                                           |                |           |
|                                                                                                                  |                                                           |                |           |
|                                                                                                                  |                                                           |                |           |
|                                                                                                                  |                                                           |                |           |
|                                                                                                                  |                                                           |                |           |
|                                                                                                                  |                                                           |                |           |
| i i i i i i i i i i i i i i i i i i i                                                                            |                                                           |                |           |
|                                                                                                                  |                                                           |                |           |

# APPENDIX B SLOPE STABILITY ANALYSIS

#### MRG-78-10.96 landslide Exploration

#### **Estimation of Soil and Rock Fill Parameters**

Using B-002-0-24 and B-002-1-24 as the cross section was taken along them and are located in the middle of the slide with lower blow counts.

| Layer                   | Boring     | N <sub>60</sub> |
|-------------------------|------------|-----------------|
|                         | B-001-0-24 | 11              |
|                         | B-002-1-24 | 9               |
|                         | D-002-1-24 | 18              |
| Fine-Grained Soil       |            | 9               |
|                         | B-003-0-24 | 11              |
|                         |            | 12              |
|                         |            | 12              |
|                         |            | 17              |
|                         |            | 17              |
| Average N <sub>60</sub> | 12.9       |                 |

Taking  $N_{60}$  = 12 for clay layer

Estimation of Soil Properties based on Table 400-4 and Section 404.1 (ODOT GDM)

| Layer             | N <sub>60</sub> | Υ (pcf) | с'  | Φ' |
|-------------------|-----------------|---------|-----|----|
| Fine-Grained Soil | 12.0            | 120     | 150 | 20 |

(c' and  $\Phi$ ' values are estimated based on field conditions and engineering judgement)

#### Selection of 2 feet thick soft zone

Based on ODOT GDM Section 704.5

| Layer     | Ύ (pcf) | c' | Φ'   |
|-----------|---------|----|------|
| Soft Zone | 118     | 0  | 15.2 |

(Y is taken less than the fine-grained layer for the soft zone)

#### Selection of Rock Parameters for LPile Analysis

#### Rock Parameters basaed on lab testing

| Boring     | Depth          | UC (psi) | Rock type | Avergae UC (psi) | Wet Unit Wt (pcf) |
|------------|----------------|----------|-----------|------------------|-------------------|
| B-001-0-24 | 26.5' to 26.9' | 8760     | Shale     | 8760             | 160.9             |
| B-002-0-24 | 20.6' to 21.0' | 64       | Claystone | 91               | 149.7             |
| B-002-0-24 | 29.0' to 29.4' | 162      |           |                  | 141.4             |
| B-002-0-24 | 35.1' to 35.5' | 47       |           |                  | 141.6             |
| Average    |                |          | 91        | 144              |                   |

#### Unconfined Compressive Strength and Unit Weight of Bedrock

(Note: Taking average UC and Unit weight of of claystones from B-002-0-24 to be conseravtive)

#### RQD

| Boring     | Depth          | Coring Length (in) | RQD length (in) | RQD (%) |
|------------|----------------|--------------------|-----------------|---------|
| P 001 0 24 | 18.5' to 23.5' | 60                 | 9.6             | 16.00   |
| D-001-0-24 | 23.5' to 28.5' | 60                 | 20.4            | 34.00   |
|            | 16.5' to 21.5' | 60                 | 24              | 40.00   |
| P 002 0 24 | 21.5' to 26.5' | 60                 | 10.8            | 18.00   |
| D-002-0-24 | 26.5' to 31.5' | 60                 | 31.2            | 52.00   |
|            | 31.5' to 36.5' | 60                 | 38.4            | 64.00   |
| B-003-0-24 | 40.0' to 42.0' | 24                 | 13.2            | 55.00   |
|            |                | 384                | 147.6           | 38.44   |

(taking 38% RQD to be conservative)



Project No. 175578434

Note: The results of the analysis shown here are based on available subsurface information, laboratory test results and approximate soil properties. The drawing depicts approximate subsurface conditions based on historical drawings or specific borings at the time of drilling. No warranties can be made regarding the continuity of subsurface conditions.

| ame             | Model                     | Unit<br>Weight<br>(pcf) | Cohesion'<br>(psf) | Phi'<br>(°) |
|-----------------|---------------------------|-------------------------|--------------------|-------------|
| ne-Grained Soil | Mohr-Coulomb              | 120                     | 150                | 20          |
| oft Zone        | Mohr-Coulomb              | 118                     | 0                  | 15.1        |
| eak Rock        | Bedrock<br>(Impenetrable) |                         |                    |             |

Performed By: G. Khatri 08/06/2024 Checked By: J. Swindler 08/07/2024

# APPENDIX C UA SLOPE ANALYSIS

#### MRG-78-10.96

### UA Slope: Back Analysis

| File Run Options Help                       |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calculated Results                          |                        |                                                                   | Chart (Double-Click for More Options)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                             | Factor of Safety: 1.00 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             | Force per Shaft 0.000  | lb                                                                | 200 <sup>-50</sup> 0 50 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Acting Point X: 0.000                       | ft Y: 0.000            | ft                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Analysis Unit System                        |                        |                                                                   | -910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| English                                     | ◯ Metric               |                                                                   | -900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of Vertical Sections and Soil Layers |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vertical Section Num:                       | 20 Soil Layer Num:     | 3                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analysis Method                             |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O Total Stress                              | Effective Stress       |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Soil Properties                             |                        |                                                                   | Slope Profile Vertical Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cohesion (psf)                              | Friction Angle         | Total Unit Weight (pcf)                                           | Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Section 9 Section 10 Section 11 Section 12 Section 13 Section 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ▶ Layer1 150.0                              | 20.0                   | 120.0                                                             | ▶ X (ft) -31.81 -27.50 -18.71 -16.81 -12.65 -12.40 -4.50 0.00 2.76 12.61 13.12 17.81 19.69 21.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Layer2 0.0                                  | 15.2                   | 118.0                                                             | Y1(ft) -929/76 -92982 -92588 -92588 -92584 -92684 -92683 -927.08 -927.23 -927.15 -926.86 -92666 -926.07 -922.28 -927.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Layer3 2000.0                               | 40.0                   | 140.0                                                             | 12 (m) -927/12 -923/17 -919.97 -916.83 -910.83 -910.00 -910.00 -910.00 -912.27 -912.07 -910.30 -900.862 -906.82<br>92 (m) -02572 - 02317 - 01107 - 016.85 -011.88 -014.10 -011.00 -0110.00 -01127 - 910.00 -910.00 -910.00 -910.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             |                        |                                                                   | Y4(m) -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 |
|                                             |                        |                                                                   | Perfora 15 Perfora 17 Perfora 17 Perfora 10 Perfora 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             |                        |                                                                   | 26.06 15 Securit 16 Securit 17 Securit 16 Securit 16 Securit 16 Securit 20<br>26.06 35.40 44.66 53.81 60.88 78.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                        |                                                                   | 907.17 -903.63 -900.10 -896.05 -894.05 -893.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                        |                                                                   | -905.17 -901.63 -898.10 -894.05 -892.05 -891.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                        |                                                                   | -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11 -873.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                        |                                                                   | ۶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             |                        |                                                                   | Coordinates of Crest X: 0.00 ft Y: -927.23 ft Coordinates of Toe X: 60.00 ft Y: -903.93 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Drilled Shaft Information                   |                        |                                                                   | Pore Waler Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Calculate without Drilled Shaft             |                        |                                                                   | Pore Pressure Options: O No Pore Pressure O Constant Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| O Automatic Load Transfer Factor            |                        | Anchor force: 0.00 lb                                             | Point 1 Point 2 Point 3 Point 4 Point 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O Manually Defined Load Transfer Factor     |                        | Anchor angle: 0.00                                                | ▶ X(ff) -31.81 -12.09 2.50 61.00 78.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Anchor (On/Off)                             |                        | Anchor spacing: 0.00 ft                                           | Y (ft) -925.92 -914.11 -914.30 -892.13 -891.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                        | Auto On Off 0.000 (n)                                             | Slin Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                             |                        | Xmin 0.00 Diameter: 0.30 ft                                       | Point 2 Point 3 Point 5 Point 5 Point 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Auto Save Data                              |                        | Xmax 0.00 CTC Spacing: 0.00 ft                                    | ▶ X(m) 0.36 1115 19.85 30.95 39.95 53.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ⊳<br>Run                                    |                        | XDelta         0.00         X Coordinate:         0.00         ft | Y (#) 927.22 -912.70 907.51 903.31 -901.79 905.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             |                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

UA Slope Program Version 2.3 - U:\175578434\technical\_production\analysis\10G-MRG-78-10.96\UA Slope\back analysis revised.ua3\*
File Run Options Help

#### MRG-78-10.96

### UA Slope: Force Per Shaft

| File Run     | Options Help                      |                   |                  |              |                         |           |               |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
|--------------|-----------------------------------|-------------------|------------------|--------------|-------------------------|-----------|---------------|---------------|--------------|------------|---------------|---------------|--------------|------------|------------|-------------|--------------|--------------|---------------|--------------|--------------|
| Calculated I | Results                           |                   |                  |              |                         |           | Chart (Double | e-Click for M | ore Options) |            |               |               |              |            |            |             |              |              |               |              |              |
|              |                                   | Factor of Safety: | 3.45             |              |                         |           |               |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
|              |                                   | Force per Shaft:  | 77608.035        |              |                         | lb        | -50           |               | 0            |            | 50            |               | ► X          |            |            |             |              |              |               |              |              |
| Acting Poir  | nt X: 23.000                      |                   | ft Y: -913.097   |              |                         | ft        | -920          |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
| Analysis Un  | it System                         |                   |                  |              |                         |           | -910          |               | -            |            |               |               |              |            |            |             |              |              |               |              |              |
| English      |                                   | (                 | ) Metric         |              |                         |           | -900          |               |              | -          |               |               |              |            |            |             |              |              |               |              |              |
| Number of    | Vertical Sections and Soil Layers |                   |                  |              |                         |           | -890          |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
| Vertical Sec | tion Num:                         | 22                | Soil Layer Num:  |              |                         | 4         | -880          |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
| Analysis Me  | ethod                             |                   |                  |              |                         |           | Y             |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
| O Total Str  | ess                               | (                 | Effective Stress |              |                         |           |               |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
| Soil Propert | ties                              |                   |                  |              |                         |           | Slope Profile | Vertical Sec  | tions        |            |               |               |              |            |            |             |              |              |               |              |              |
|              | Cohesion (psf)                    | Friction Angle    |                  | Total Unit W | eight (pcf)             |           |               | Section 1     | Section 2    | Section    | 3 Section 4   | Section 5     | Section 6    | Section 7  | Section 8  | Section 9   | Section 10   | ) Section 11 | Section 12    | Section 13   | 3 Section 14 |
| Layer1       | 250.0                             | 28.0              |                  | 125.0        |                         |           | ► X (ft)      | -31.81        | -27.50       | -18.71     | -16.81        | -12.65        | -12.40       | -4.50      | 0.00       | 2.76        | 12.61        | 13.12        | 17.81         | 19.69        | 21.70        |
| Layer2       | 150.0                             | 20.0              |                  | 120.0        |                         |           | Y1 (ft)       | -929.76       | -929.82      | -925.88    | -925.58       | -926.64       | -926.83      | -927.08    | -927.23    | -927.15     | -926.86      | -926.62      | -926.86       | -926.86      | -926.86      |
| Layer3       | 0.0                               | 15.2              |                  | 118.0        |                         |           | Y2 (ft)       | -929.77       | -929.82      | -925.88    | -925.58       | -926.64       | -926.83      | -927.08    | -927.23    | -927.15     | -926.86      | -926.62      | -925.07       | -922.98      | -921.08      |
| Layer4       | 2000.0                            | 40.0              |                  | 140.0        |                         |           | Y4 (ff)       | -927.72       | -923.17      | -917.97    | -916.85       | -914.38       | -914.00      | -914.00    | -914.00    | -914.00     | -910.27      | -910.07      | -910.30       | -909.58      | -906.82      |
|              |                                   |                   |                  |              |                         |           | Y5 (ft)       | -873.11       | -873.11      | -873.11    | -873.11       | -873.11       | -873.11      | -873.11    | -873.11    | -873.11     | -873.11      | -873.11      | -873.11       | -873.11      | -873.11      |
|              |                                   |                   |                  |              |                         |           |               |               |              | Sec        | tion 15 Secti | on 16 Section | n 17 Section | 18 Section | 19 Section | 20 Section  | 21 Section 2 | 22           |               |              |              |
|              |                                   |                   |                  |              |                         |           |               |               |              | 23.0       | 0 23.00       | 26.06         | 35.40        | 44.66      | 53.81      | 60.68       | 78.25        |              |               |              |              |
|              |                                   |                   |                  |              |                         |           |               |               |              | -926       | .86 -920.     | 10 -917.7     | 9 -912.25    | -907.32    | -905.14    | -903.95     | -903.11      | -            |               |              |              |
|              |                                   |                   |                  |              |                         |           |               |               |              | -908       | .33 -908.3    | 33 -907.1     | 7 -903.63    | -900.10    | -896.65    | -894.05     | -893.16      |              |               |              |              |
|              |                                   |                   |                  |              |                         |           |               |               |              | -906       | .33 -906.3    | 33 -905.1     | 7 -901.63    | -898.10    | -894.15    | -892.05     | -891.16      |              |               |              |              |
|              |                                   |                   |                  |              |                         |           |               |               |              | -873       | .11 -873.1    | 11 -873.1     | 1 -873.11    | -873.11    | -873.11    | -873.11     | -873.11      |              |               |              |              |
|              |                                   |                   |                  |              |                         |           |               |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
|              |                                   |                   |                  |              |                         |           |               |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
|              |                                   |                   |                  |              |                         |           | <             |               |              |            |               |               |              |            |            |             |              |              |               |              | >            |
|              |                                   |                   |                  |              |                         |           |               | Coordinates   | s of Crest   | <b>X</b> : | 0.00 ft       | Y: [          | -927.2       | 3 ft       | Co         | ordinates o | fToe X:      | : 60         | ).00 ft       | Y: -         | 903.93 ft    |
| Drilled Shat | ft Information                    |                   |                  |              |                         |           | Pore Water P  | ressure       |              |            |               |               |              |            |            |             |              |              |               |              |              |
| O Calcula    | te without Drilled Shaft          |                   |                  |              |                         |           |               | Pore          | Pressure Op  | tions: O   | No Pore Pre   | essure        |              | С          | Constar    | nt Ratio    |              | ۰ د          | pecified phre | atic surface |              |
| O Automa     | tic Load Transfer Factor          |                   |                  |              | Anchor force:           | 0.00 lb   | F             | Point 1 Poi   | nt 2 Point 3 | Point 4    | Point 5       |               |              |            |            |             |              |              |               |              |              |
| Manual       | IIv Defined Load Transfer Factor  |                   |                  |              | Anchor angle:           | 0.00      | ► X (ft) -3   | 31.81 -12.    | 09 2.50      | 61.00      | 78.25         |               |              |            |            |             |              |              |               |              |              |
| Anchor       | (On/Off)                          |                   |                  |              | Anchor spacing:         | 0.00 ft   | Ƴ (ft) -9     | 925.92 -914   | l.11 -914.30 | -892.13    | -891.40       |               |              |            |            |             |              |              |               |              |              |
|              |                                   |                   | A                | uto On       | <ul> <li>Off</li> </ul> | 0.000 (n) | Slip Surface  |               |              |            |               |               |              |            |            |             |              |              |               |              |              |
|              | Deve Dete                         |                   | х                | min 0.00     | Diameter:               | 3.00 ft   | F             | Point 1 Poi   | nt2 Point3   | Point 4    | Point 5 P     | oint 6        |              |            |            |             |              |              |               |              |              |
| L Auto S     | iave Data                         |                   | X                | max 0.00     | CTC Spacing:            | 5.75 ft   | ► X (ft) 0    | .36 11.1      | 5 19.85      | 30.95      | 39.95 53      | 3.81          |              |            |            |             |              |              |               |              |              |
| Run          |                                   |                   | XI               | Delta 0.00   | X Coordinate            | 23.00 ft  | Y (ft) -9     | 927.22 -912   | 2.70 -907.51 | -903.31    | -901.79 -9    | 05.14         |              |            |            |             |              |              |               |              |              |
|              |                                   |                   |                  | 0.00         | t o o o rannatto.       |           |               |               |              |            |               |               |              |            |            |             |              |              |               |              |              |

🛃 UA Slope Program Version 2.3 - U:\175578434\technical\_production\analysis\10G-MRG-78-10.96\UA Slope\back analysis revised with shaft.ua3\*

Performed By: G. Khatri 08/06/2024 Checked By: J. Swindler 08/07/2024 - 0 ×

# APPENDIX D LPILE ANALYSIS

#### SUMMARY OF DRILLED SHAFT CALCULATIONS

#### LOADING CONDITIONS

Loading conditions were evaluated using shaft loads determined from the UA SLOPE (Version 2.3) computer program. This shaft load, combined with an assumed traffic surcharge live load, was applied to the drilled shaft above the assumed failure surface. The drilled shaft was evaluated using LPILEv2022 which is a program for the analysis of piles and drilled shafts under lateral loads. Unfactored loads (Service I Limit State) were utilized to estimate shaft head deflection and factored loads (Strength I Limit State) were used to evaluate geotechnical resistance.



| Estimated Depth to Bedrock =        | 20.55 feet    | UA Slope Input  |
|-------------------------------------|---------------|-----------------|
| Estimated Depth to Failure Surface= | 20.55 feet    | UA Slope Input  |
| Shaft Size =                        | 3 feet        | UA Slope Input  |
| Center to Center Spacing =          | 5.75 feet     | UA Slope Input  |
| F <sub>shaft</sub> =                | 77,608 pounds | UA Slope Output |
| Factor of Safety =                  | 3.45          | UA Slope Output |
| p = (2*Fshaft)/H * (1 ft/12 in)     | 629 pounds    | per inch        |

#### DISTRIBUTED LOAD FOR LPILE INPUT

| $F_{iive}$ = assumed traffic surchar<br>Phi =<br>$K_a$ = | ge load =         |        | 250<br>20.0<br>0.490 | psf<br>degrees              |
|----------------------------------------------------------|-------------------|--------|----------------------|-----------------------------|
| x1 = F <sub>live</sub> * s * Ka * (1 ft/12 in)           |                   |        | 59                   | pounds per inch             |
| x2 = [2*Fshaft/(Depth to Failu                           | re Surface)] + x1 |        |                      |                             |
|                                                          |                   |        |                      |                             |
| Service (I) Limit State:                                 |                   |        |                      |                             |
|                                                          | x1 =              | 59     | pounds pe            | r inch                      |
|                                                          | x2 =              | 688    | pounds pe            | r inch                      |
|                                                          | Total Load =      | 92092  | pounds               |                             |
| Strength (I) Limit State:                                |                   |        |                      |                             |
| 2                                                        | x1 =              | 103    | pounds pe            | r inch (Load Factor = 1.75) |
|                                                          | x2 =              | 1047   | pounds pe            | r inch (Load Factor = 1.5)  |
|                                                          | Total Load =      | 154431 | pounds               |                             |

#### CHOOSE MATERIAL p-y CURVES for LPILE Program

| Material Type              | Value Units         | -                                                          |
|----------------------------|---------------------|------------------------------------------------------------|
| Bedrock - Claysotone/Shale |                     |                                                            |
| Y'=<br>E=                  | 82 pcf<br>8,100 psi | based on UCR performed on soft shale/claystone<br>=90 x qu |
| qu=                        | 90 psi              | conservative for weak shale/claystone                      |
| RQD=<br>Km=                | 38 %<br>0.00005     | conservative for weak rock<br>conservative for weak rock   |
| p-y Modification Factor    |                     |                                                            |

p = 0.64 (Spacing/Diameter)<sup>0.34</sup>

### 0.80

#### SHAFT CONCRETE AND STEEL MATERIAL PROPERTIES FOR LPILE

| Parameter              | Value         | <u>Not</u> e                        |
|------------------------|---------------|-------------------------------------|
| f' <sub>c</sub> =      | 4,000 psi     | (ODOT Class S Concrete)             |
| E <sub>c</sub> =       | 3,604,997 psi | E <sub>c</sub> = 57,000 * SQRT(f'c) |
| f <sub>y steel</sub> = | 50,000 psi    |                                     |
| E <sub>steel</sub> =   | 2.9E+07 psi   |                                     |

#### LPILE VERSION 2022 RUNS

#### SERVICE (I) AND STRENGTH (I) LIMIT STATES

Purpose: Achieve a shaft head deflection of 2 inches or less for Service (I) Limit State. Recommend a rock socket length by observation of the shear and moment curves. Provide shear and moment design parameters for the selection of steel beam reinforcement.

| Run ID | Filename               | Reinforcement<br>Description | Deflection at Pile<br>Head<br>(in) | Maximum<br>Moment (in-lbs) | Average Shear per<br>FHWA-NHI-10-<br>01(lbs) |
|--------|------------------------|------------------------------|------------------------------------|----------------------------|----------------------------------------------|
| 1      | W24x131_3ftD_5.75ftCTC | W24x131                      | 1.92                               | 7,786,862                  | 180,682                                      |
| 2      | W24x131_3ftD_5.75ftCTC | W24x131                      | 3.77                               | 13,000,000                 | 292,126                                      |

Based on the calculations and assumptions presented above, it appears a 36-inch diameter drilled shaft with a center-to-center spacing of 69 inches can provide tolerable deflections. A minimum 10-foot rock socket is recommended.

#### **PROPERTIES OF SELECTED SECTIONS**

| Run ID | Source                               | Reinforcement<br>Description | Area of Steel<br>(in <sup>2</sup> ) | Moment of Inertia<br>(in <sup>4</sup> ) | Section Modulus<br>(in <sup>3</sup> ) |
|--------|--------------------------------------|------------------------------|-------------------------------------|-----------------------------------------|---------------------------------------|
| 1 & 2  | AISC Manual of Steel<br>Construction | W24x131                      | 38.6                                | 4,020                                   | 329                                   |

#### \_\_\_\_\_\_

LPile for Windows, Version 2022-12.006

Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved

\_\_\_\_\_

This copy of LPile is being used by:

d d

d

Serial Number of Security Device: 253581973

This copy of LPile is licensed for exclusive use by:

STANTEC, LPILE Global, Global License

Use of this software by employees of STANTEC other than those of the office site in LPILE Global, Global License is a violation of the software license agreement.

Files Used for Analysis

Path to file locations: \\us0268-ppfss01\shared\_projects\175578434\technical\_production\analysis\10G-MRG-78-10.96\LPile\3 ft dia 5.75 cc spacing\revised\

Name of input data file: MRG-78-10.96\_3ft\_5.75 cc\_W24x131.lp12d

Name of output report file: MRG-78-10.96\_3ft\_5.75 cc\_W24x131.lp12o Name of plot output file: MRG-78-10.96\_3ft\_5.75 cc\_W24x131.lp12p

Name of runtime message file: MRG-78-10.96\_3ft\_5.75 cc\_W24x131.lp12r

|                       | Date and Time of Analysis |                  |         |  |  |  |  |  |  |
|-----------------------|---------------------------|------------------|---------|--|--|--|--|--|--|
|                       |                           |                  |         |  |  |  |  |  |  |
| Date:                 | August 6, 2024            | Time             | 8:49:39 |  |  |  |  |  |  |
|                       |                           |                  |         |  |  |  |  |  |  |
|                       | Probl                     | .em Title        |         |  |  |  |  |  |  |
| Project Name: MRG-78- | 10.96                     |                  |         |  |  |  |  |  |  |
| Job Number: 175578434 | ,                         |                  |         |  |  |  |  |  |  |
| Client: ODOT          |                           |                  |         |  |  |  |  |  |  |
| Engineer: G. Khatri   |                           |                  |         |  |  |  |  |  |  |
| Description: LPile Ar | alysis for Drilled        | l Shaft          |         |  |  |  |  |  |  |
|                       |                           |                  |         |  |  |  |  |  |  |
|                       | Program Optic             | ons and Settings |         |  |  |  |  |  |  |

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 1.0000E-05 in
- Deflection tolerance for convergence
- Maximum allowable deflection
- Number of pile increments

Loading Type and Number of Cycles of Loading:

- Static loading specified
- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined

2

500

100

= 100.0000 in

=

=

-

| Total length of pile  | -                       | = 30.550 ±  | ft |
|-----------------------|-------------------------|-------------|----|
| Depth of ground surfa | ace below top of pile = | = 20.5500 1 | ft |

Pile diameters used for p-y curve computations are defined using 4 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

|       | Depth Below | Pile     |
|-------|-------------|----------|
| Point | Pile Head   | Diameter |
| No.   | feet        | inches   |
|       |             |          |
| 1     | 0.000       | 12.9000  |
| 2     | 6.800       | 12.9000  |
| 3     | 6.800       | 36.0000  |
| 4     | 30.550      | 36.0000  |

Input Structural Properties for Pile Sections:

-----

Pile Section No. 1:

| Section 1 is a AISC strong axis steel pile<br>Length of section<br>AISC Section Type | = 6.800000 ft<br>= W              |
|--------------------------------------------------------------------------------------|-----------------------------------|
| AISC Section Name                                                                    | = W24X131                         |
| Pile width                                                                           | = 12.900000 in                    |
| Pile Section No. 2:                                                                  |                                   |
| Section 2 is an elastic pile                                                         |                                   |
| Cross-sectional Shape                                                                | = Circular Pile                   |
| Length of section                                                                    | = 23.750000 ft                    |
| Width of top of section                                                              | = 36.000000 in                    |
| Width of bottom of section                                                           | = 36.000000 in                    |
| Top Area                                                                             | = 34.400000 sq. in                |
|                                                                                      | Barfamad by: C. Khatri 08/06/2024 |

| Bottom Area                 | = | 34.400000 sq. in |
|-----------------------------|---|------------------|
| Moment of Inertia at Top    | = | 4020. in^4       |
| Moment of Inertia at Bottom | = | 4020. in^4       |
| Elastic Modulus             | = | 29000000. psi    |

| <br> | <br> |
|------|------|

Soil and Rock Layering Information

\_\_\_\_\_

The soil profile is modelled using 1 layers

Layer 1 is weak rock, p-y criteria by Reese, 1997

| Distance from top of pile to top of layer        | = | 20.550000 | ft  |
|--------------------------------------------------|---|-----------|-----|
| Distance from top of pile to bottom of layer     | = | 35.000000 | ft  |
| Effective unit weight at top of layer            | = | 81.600000 | pcf |
| Effective unit weight at bottom of layer         | = | 81.600000 | pcf |
| Uniaxial compressive strength at top of layer    | = | 90.000000 | psi |
| Uniaxial compressive strength at bottom of layer | = | 90.000000 | psi |
| Initial modulus of rock at top of layer          | = | 8100.     | psi |
| Initial modulus of rock at bottom of layer       | = | 8100.     | psi |
| RQD of rock at top of layer                      | = | 38.000000 | %   |
| RQD of rock at bottom of layer                   | = | 38.000000 | %   |
| k rm of rock at top of layer                     | = | 0.0000500 |     |
| k rm of rock at bottom of layer                  | = | 0.0000500 |     |

(Depth of the lowest soil layer extends 4.450 ft below the pile tip)

|       | Summa                    | ary of Input s | Soil Propertie  | 25<br>    |       |           |                |
|-------|--------------------------|----------------|-----------------|-----------|-------|-----------|----------------|
| Layer | Soil Type                | Layer          | Effective       | Uniaxial  |       | E50       | Rock Mass      |
| Num.  | Name<br>(p-y Curve Type) | Depth<br>ft    | Unit Wt.<br>pcf | qu<br>psi | RQD % | or<br>krm | Modulus<br>psi |

| 1         | Weak              | 20.5500                               | 81.6000       | 90.0000       | 38.0000  | 5.00E-05 | 8100. |
|-----------|-------------------|---------------------------------------|---------------|---------------|----------|----------|-------|
|           | Rock              | 35.0000                               | 81.6000       | 90.0000       | 38.0000  | 5.00E-05 | 8100. |
|           |                   |                                       |               |               |          |          |       |
|           |                   |                                       |               |               |          |          |       |
|           |                   | Static Loadi                          | ng Type       |               |          |          |       |
|           |                   |                                       |               |               |          |          |       |
| Static lo | ading criteria we | re used when comp                     | uting p-v cur | ves for all a | nalvses. |          |       |
|           |                   | · · · · · · · · · · · · · · · · · · · |               |               |          |          |       |
|           |                   |                                       |               |               |          |          |       |
|           |                   |                                       |               |               |          |          |       |
|           | Distributed       | Lateral Loading f                     | or Individual | Load Cases    |          |          |       |
|           |                   |                                       |               |               |          |          |       |

Distributed lateral load intensity for Load Case 1 defined using 2 points

| Point | Depth X | Dist. Load |
|-------|---------|------------|
| No.   | ft      | lb/in      |
|       |         |            |
| 1     | 0.000   | 59.000     |
| 2     | 26.700  | 688.000    |

Distributed lateral load intensity for Load Case 2 defined using 2 points

| Point | Depth X | Dist. Load |
|-------|---------|------------|
| No.   | ft      | lb/in      |
|       |         |            |
| 1     | 0.000   | 103.000    |
| 2     | 26.700  | 1047.000   |

Pile-head Loading and Pile-head Fixity Conditions

\_\_\_\_\_

Number of loads specified = 2

| Load | Load |     | Condition  |     | Condition     | Axial Thrust | Compute Top y   | Run Analysis |
|------|------|-----|------------|-----|---------------|--------------|-----------------|--------------|
| No.  | Туре |     | 1          |     | 2             | Force, lbs   | vs. Pile Length |              |
|      |      |     |            |     |               |              |                 |              |
| 1    | 1    | V = | 0.0000 lbs | M = | 0.0000 in-lbs | 0.000000     | No              | Yes          |
| 2    | 1    | V = | 0.0000 lbs | M = | 0.0000 in-lbs | 0.000000     | No              | Yes          |

V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions

Number of Pile Sections Analyzed = 2

Pile Section No. 1:

-----

Dimensions and Properties of Steel AISC Strong Axis:

-----

| Length of Section    | = | 6.800000  | ft  |     |
|----------------------|---|-----------|-----|-----|
| Flange Width         | = | 12.900000 | in  |     |
| Section Depth        | = | 24.500000 | in  |     |
| Flange Thickness     | = | 0.960000  | in  |     |
| Web Thickness        | = | 0.605000  | in  |     |
| Yield Stress of Pipe | = | 50.000000 | ksi |     |
| Elastic Modulus      | = | 29000.    | ksi |     |
| Cross-sectional Area | = | 38.600000 | sq. | in. |

| Moment of Inertia                      | = | 4020. in^4          |
|----------------------------------------|---|---------------------|
| Elastic Bending Stiffness              | = | 116580000. kip-in^2 |
| Plastic Modulus, Z                     | = | 370.000000in^3      |
| Plastic Moment Capacity = Fy Z         | = | 18500.in-kip        |
| Axial Structural Capacities:           |   |                     |
|                                        |   |                     |
| Nom. Axial Structural Capacity = Fy As | = | 1930.000 kips       |
| Nominal Axial Tensile Capacity         | = | -1930.000 kips      |

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

| Number | Axial Thrust Force |
|--------|--------------------|
|        | kips               |
|        |                    |
| 1      | 0.000              |

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

|   | Bending    | Bending<br>Momont | Bending    | Depth to   | Max Total Run |
|---|------------|-------------------|------------|------------|---------------|
|   | rad/in.    | in-kip            | kip-in2    | in         | ksi           |
| - | 0.00000568 | 660.9014790       | 116349762. | 12.2500000 | 1.9977471     |
|   | 0.00001136 | 1322.             | 116349762. | 12.2500000 | 3.9954942     |
|   | 0.00001704 | 1983.             | 116349762. | 12.2500000 | 5.9932413     |
|   | 0.00002272 | 2644.             | 116349762. | 12.2500000 | 7.9909884     |
|   | 0.00002840 | 3305.             | 116349762. | 12.2500000 | 9.9887355     |
|   | 0.00003408 | 3965.             | 116349762. | 12.2500000 | 11.9864827    |
|   | 0.00003976 | 4626.             | 116349762. | 12.2500000 | 13.9842298    |
|   | 0.00004544 | 5287.             | 116349762. | 12.2500000 | 15.9819769    |
|   | 0.00005112 | 5948.             | 116349762. | 12.2500000 | 17.9797240    |
|   |            |                   |            |            |               |

| 0.00005680 | 6609.  | 116349762. | 12.2500000 | 19.9774711 |   |
|------------|--------|------------|------------|------------|---|
| 0.00006248 | 7270.  | 116349762. | 12.2500000 | 21.9752182 |   |
| 0.00006816 | 7931.  | 116349762. | 12.2500000 | 23.9729653 |   |
| 0.00007384 | 8592.  | 116349762. | 12.2500000 | 25.9707124 |   |
| 0.00007952 | 9253.  | 116349762. | 12.2500000 | 27.9684595 |   |
| 0.00008520 | 9914.  | 116349762. | 12.2500000 | 29.9662066 |   |
| 0.00009088 | 10574. | 116349762. | 12.2500000 | 31.9639538 |   |
| 0.00009657 | 11235. | 116349762. | 12.2500000 | 33.9617009 |   |
| 0.0001022  | 11896. | 116349762. | 12.2500000 | 35.9594480 |   |
| 0.0001079  | 12557. | 116349762. | 12.2500000 | 37.9571951 |   |
| 0.0001136  | 13218. | 116349762. | 12.2500000 | 39.9549422 |   |
| 0.0001193  | 13879. | 116349762. | 12.2500000 | 41.9526893 |   |
| 0.0001250  | 14540. | 116349762. | 12.2500000 | 43.9504364 |   |
| 0.0001306  | 15201. | 116349762. | 12.2500000 | 45.9481835 |   |
| 0.0001363  | 15862. | 116349762. | 12.2500000 | 47.9459306 |   |
| 0.0001420  | 16523. | 116349762. | 12.2500000 | 49.9436777 |   |
| 0.0001477  | 16968. | 114888363. | 12.2500000 | 50.0000000 | Υ |
| 0.0001534  | 17154. | 111851123. | 12.2500000 | 50.0000000 | Y |
| 0.0001590  | 17244. | 108419070. | 12.2500000 | 50.0000000 | Υ |
| 0.0001647  | 17324. | 105168186. | 12.2500000 | 50.0000000 | Y |
| 0.0001704  | 17397. | 102087640. | 12.2500000 | 50.0000000 | Y |
| 0.0001761  | 17462. | 99165667.  | 12.2500000 | 50.0000000 | Y |
| 0.0001818  | 17522. | 96394720.  | 12.2500000 | 50.0000000 | Y |
| 0.0001874  | 17576. | 93763791.  | 12.2500000 | 50.0000000 | Y |
| 0.0001931  | 17625. | 91261877.  | 12.2500000 | 50.0000000 | Y |
| 0.0001988  | 17671. | 88881762.  | 12.2500000 | 50.0000000 | Y |
| 0.0002045  | 17712. | 86616109.  | 12.2500000 | 50.0000000 | Y |
| 0.0002102  | 17751. | 84457536.  | 12.2500000 | 50.0000000 | Y |
| 0.0002159  | 17786. | 82397606.  | 12.2500000 | 50.0000000 | Y |
| 0.0002215  | 17818. | 80431012.  | 12.2500000 | 50.0000000 | Y |
| 0.0002329  | 17876. | 76757122.  | 12.2500000 | 50.0000000 | Y |
| 0.0002443  | 17926. | 73392499.  | 12.2500000 | 50.0000000 | Y |
| 0.0002556  | 17970. | 70302757.  | 12.2500000 | 50.0000000 | Y |
| 0.0002670  | 18008. | 67453674.  | 12.2500000 | 50.0000000 | Y |
| 0.0002783  | 18042. | 64820970.  | 12.2500000 | 50.0000000 | Y |
| 0.0002897  | 18072. | 62381700.  | 12.2500000 | 50.0000000 | Y |
| 0.0003011  | 18098. | 60115855.  | 12.2500000 | 50.0000000 | Y |
| 0.0003124  | 18122. | 58005893.  | 12.2500000 | 50.0000000 | Y |
| 0.0003238  | 18143. | 56035116.  | 12.2500000 | 50.0000000 | Y |
| 0.0003351  | 18162. | 54192109.  | 12.2500000 | 50.0000000 | Y |
| 0.0003465  | 18179. | 52465506.  | 12.2500000 | 50.0000000 | Υ |

Perfomed by: G. Khatri 08/06/2024 Checked by: J. Swindler 08/07/2024

| 0.0003579 | 18195. | 50843593. | 12.2500000 | 50.0000000 | Y |
|-----------|--------|-----------|------------|------------|---|
| 0.0003692 | 18209. | 49317062. | 12.2500000 | 50.0000000 | Y |
| 0.0003806 | 18222. | 47880019. | 12.2500000 | 50.0000000 | Y |
| 0.0003919 | 18234. | 46521248. | 12.2500000 | 50.0000000 | Y |
| 0.0004033 | 18245. | 45238568. | 12.2500000 | 50.0000000 | Y |
| 0.0004147 | 18254. | 44022289. | 12.2500000 | 50.0000000 | Y |
| 0.0004260 | 18264. | 42870877. | 12.2500000 | 50.0000000 | Y |
| 0.0004374 | 18272. | 41775785. | 12.2500000 | 50.0000000 | Y |
| 0.0004487 | 18280. | 40735990. | 12.2500000 | 50.0000000 | Y |
| 0.0004601 | 18287. | 39745903. | 12.2500000 | 50.0000000 | Y |
| 0.0004715 | 18294. | 38802144. | 12.2500000 | 50.0000000 | Y |
| 0.0004828 | 18300. | 37902797. | 12.2500000 | 50.0000000 | Y |
| 0.0004942 | 18306. | 37042855. | 12.2500000 | 50.0000000 | Y |
| 0.0005055 | 18311. | 36221025. | 12.2500000 | 50.0000000 | Y |
| 0.0005169 | 18317. | 35435319. | 12.2500000 | 50.0000000 | Y |
| 0.0005283 | 18321. | 34682162. | 12.2500000 | 50.0000000 | Y |
| 0.0005396 | 18326. | 33959956. | 12.2500000 | 50.0000000 | Y |
| 0.0005510 | 18330. | 33267531. | 12.2500000 | 50.0000000 | Y |
| 0.0005623 | 18334. | 32603083. | 12.2500000 | 50.0000000 | Y |
| 0.0005737 | 18338. | 31963442. | 12.2500000 | 50.0000000 | Y |
| 0.0005851 | 18341. | 31348555. | 12.2500000 | 50.0000000 | Y |
| 0.0005964 | 18344. | 30757091. | 12.2500000 | 50.0000000 | Y |
| 0.0006078 | 18348. | 30187738. | 12.2500000 | 50.0000000 | Y |
| 0.0006192 | 18351. | 29638484. | 12.2500000 | 50.0000000 | Y |
| 0.0006305 | 18353. | 29108574. | 12.2500000 | 50.0000000 | Y |
| 0.0006419 | 18356. | 28597422. | 12.2500000 | 50.0000000 | Y |
| 0.0006532 | 18359. | 28104049. | 12.2500000 | 50.0000000 | Y |
| 0.0006646 | 18361. | 27627543. | 12.2500000 | 50.0000000 | Y |
| 0.0006760 | 18363. | 27166572. | 12.2500000 | 50.0000000 | Y |
| 0.0007214 | 18371. | 25466100. | 12.2500000 | 50.0000000 | Y |
|           |        |           |            |            |   |

# Summary of Results for Nominal Moment Capacity for Section 1

\_\_\_\_\_

\_\_\_\_\_

|      | kips   | in-kips  |
|------|--------|----------|
| No.  | Thrust | Capacity |
| Load | Axial  | Moment   |
|      |        | Nominal  |

#### 1 0.0000000 18371.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Pile Section No. 2:

-----

Moment-curvature properties were derived from elastic section properties

# Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

| Shear force<br>Applied mom<br>Axial thrus | e at pile he<br>ment at pile<br>st load on p | ad<br>head<br>ile head |          | :        | =        | 0.0 lbs<br>0.0 in-lbs<br>0.0 lbs |           |           |           |
|-------------------------------------------|----------------------------------------------|------------------------|----------|----------|----------|----------------------------------|-----------|-----------|-----------|
| Depth                                     | Deflect.                                     | Bending                | Shear    | Slope    | Total    | Bending                          | Soil Res. | Soil Spr. | Distrib.  |
| X                                         | y                                            | Moment                 | Force    | S        | Stress   | Stiffness                        | p         | Es*H      | Lat. Load |
| feet                                      | inches                                       | in-lbs                 | lbs      | radians  | psi*     | lb-in^2                          | lb/inch   | lb/inch   | lb/inch   |
| 0.00                                      | 1.9200                                       | 1.27E-04               | 0.00     | -0.00805 | 2.04E-07 | 1.16E+11                         | 0.00      | 0.00      | 60.7992   |
| 0.3055                                    | 1.8905                                       | 408.5575               | 232.7841 | -0.00805 | 0.6555   | 1.16E+11                         | 0.00      | 0.00      | 66.1970   |
| 0.6110                                    | 1.8610                                       | 1707.                  | 488.6543 | -0.00805 | 2.7385   | 1.16E+11                         | 0.00      | 0.00      | 73.3940   |
| 0.9165                                    | 1.8315                                       | 3991.                  | 770.9087 | -0.00805 | 6.4041   | 1.16E+11                         | 0.00      | 0.00      | 80.5910   |

| 1.2220  | 1.8020 | 7359.    | 1080.  | -0.00805 | 11.8075  | 1.16E+11 | 0.00 | 0.00 | 87.7879  |
|---------|--------|----------|--------|----------|----------|----------|------|------|----------|
| 1.5275  | 1.7725 | 11907.   | 1415.  | -0.00805 | 19.1039  | 1.16E+11 | 0.00 | 0.00 | 94.9849  |
| 1.8330  | 1.7430 | 17731.   | 1776.  | -0.00805 | 28.4485  | 1.16E+11 | 0.00 | 0.00 | 102.1819 |
| 2.1385  | 1.7135 | 24928.   | 2164.  | -0.00805 | 39.9965  | 1.16E+11 | 0.00 | 0.00 | 109.3789 |
| 2.4440  | 1.6840 | 33595.   | 2578.  | -0.00805 | 53.9031  | 1.16E+11 | 0.00 | 0.00 | 116.5759 |
| 2.7495  | 1.6545 | 43830.   | 3019.  | -0.00805 | 70.3235  | 1.16E+11 | 0.00 | 0.00 | 123.7729 |
| 3.0550  | 1.6250 | 55727.   | 3485.  | -0.00804 | 89.4129  | 1.16E+11 | 0.00 | 0.00 | 130.9699 |
| 3.3605  | 1.5955 | 69385.   | 3979.  | -0.00804 | 111.3264 | 1.16E+11 | 0.00 | 0.00 | 138.1668 |
| 3.6660  | 1.5660 | 84899.   | 4498.  | -0.00804 | 136.2193 | 1.16E+11 | 0.00 | 0.00 | 145.3638 |
| 3.9715  | 1.5365 | 102368.  | 5045.  | -0.00804 | 164.2467 | 1.16E+11 | 0.00 | 0.00 | 152.5608 |
| 4.2770  | 1.5071 | 121886.  | 5617.  | -0.00803 | 195.5639 | 1.16E+11 | 0.00 | 0.00 | 159.7578 |
| 4.5825  | 1.4776 | 143552.  | 6216.  | -0.00803 | 230.3260 | 1.16E+11 | 0.00 | 0.00 | 166.9548 |
| 4.8880  | 1.4482 | 167461.  | 6841.  | -0.00802 | 268.6882 | 1.16E+11 | 0.00 | 0.00 | 174.1518 |
| 5.1935  | 1.4188 | 193711.  | 7493.  | -0.00802 | 310.8057 | 1.16E+11 | 0.00 | 0.00 | 181.3487 |
| 5.4990  | 1.3894 | 222399.  | 8171.  | -0.00801 | 356.8338 | 1.16E+11 | 0.00 | 0.00 | 188.5457 |
| 5.8045  | 1.3601 | 253620.  | 8875.  | -0.00800 | 406.9275 | 1.16E+11 | 0.00 | 0.00 | 195.7427 |
| 6.1100  | 1.3307 | 287472.  | 9606.  | -0.00800 | 461.2422 | 1.16E+11 | 0.00 | 0.00 | 202.9397 |
| 6.4155  | 1.3014 | 324051.  | 10363. | -0.00799 | 519.9329 | 1.16E+11 | 0.00 | 0.00 | 210.1367 |
| 6.7210  | 1.2722 | 363455.  | 11147. | -0.00798 | 583.1549 | 1.16E+11 | 0.00 | 0.00 | 217.3337 |
| 7.0265  | 1.2430 | 405779.  | 11957. | -0.00796 | 1817.    | 1.17E+11 | 0.00 | 0.00 | 224.5307 |
| 7.3320  | 1.2138 | 451121.  | 12793. | -0.00795 | 2020.    | 1.17E+11 | 0.00 | 0.00 | 231.7276 |
| 7.6375  | 1.1847 | 499577.  | 13656. | -0.00794 | 2237.    | 1.17E+11 | 0.00 | 0.00 | 238.9246 |
| 7.9430  | 1.1556 | 551245.  | 14545. | -0.00792 | 2468.    | 1.17E+11 | 0.00 | 0.00 | 246.1216 |
| 8.2485  | 1.1266 | 606220.  | 15460. | -0.00790 | 2714.    | 1.17E+11 | 0.00 | 0.00 | 253.3186 |
| 8.5540  | 1.0977 | 664599.  | 16402. | -0.00788 | 2976.    | 1.17E+11 | 0.00 | 0.00 | 260.5156 |
| 8.8595  | 1.0688 | 726480.  | 17370. | -0.00786 | 3253.    | 1.17E+11 | 0.00 | 0.00 | 267.7126 |
| 9.1650  | 1.0401 | 791959.  | 18365. | -0.00783 | 3546.    | 1.17E+11 | 0.00 | 0.00 | 274.9096 |
| 9.4705  | 1.0114 | 861132.  | 19386. | -0.00781 | 3856.    | 1.17E+11 | 0.00 | 0.00 | 282.1065 |
| 9.7760  | 0.9828 | 934097.  | 20433. | -0.00778 | 4183.    | 1.17E+11 | 0.00 | 0.00 | 289.3035 |
| 10.0815 | 0.9543 | 1010950. | 21507. | -0.00775 | 4527.    | 1.17E+11 | 0.00 | 0.00 | 296.5005 |
| 10.3870 | 0.9260 | 1091787. | 22607. | -0.00772 | 4889.    | 1.17E+11 | 0.00 | 0.00 | 303.6975 |
| 10.6925 | 0.8978 | 1176707. | 23734. | -0.00768 | 5269.    | 1.17E+11 | 0.00 | 0.00 | 310.8945 |
| 10.9980 | 0.8697 | 1265804. | 24887. | -0.00764 | 5668.    | 1.17E+11 | 0.00 | 0.00 | 318.0915 |
| 11.3035 | 0.8417 | 1359177. | 26066. | -0.00760 | 6086.    | 1.17E+11 | 0.00 | 0.00 | 325.2884 |
| 11.6090 | 0.8139 | 1456921. | 27272. | -0.00756 | 6524.    | 1.17E+11 | 0.00 | 0.00 | 332.4854 |
| 11.9145 | 0.7863 | 1559134. | 28504. | -0.00751 | 6981.    | 1.17E+11 | 0.00 | 0.00 | 339.6824 |
| 12.2200 | 0.7589 | 1665912. | 29762. | -0.00746 | 7459.    | 1.17E+11 | 0.00 | 0.00 | 346.8794 |
| 12.5255 | 0.7316 | 1777351. | 31047. | -0.00740 | 7958.    | 1.17E+11 | 0.00 | 0.00 | 354.0764 |
| 12.8310 | 0.7046 | 1893550. | 32358. | -0.00735 | 8479.    | 1.17E+11 | 0.00 | 0.00 | 361.2734 |
| 13.1365 | 0.6778 | 2014604. | 33696. | -0.00729 | 9021.    | 1.17E+11 | 0.00 | 0.00 | 368.4704 |
| 13.4420 | 0.6512 | 2140609. | 35060. | -0.00722 | 9585.    | 1.17E+11 | 0.00 | 0.00 | 375.6673 |

| 13.7475 | 0.6248   | 2271664. | 36450.   | -0.00715  | 10172. | 1.17E+11 | 0.00   | 0.00     | 382.8643 |
|---------|----------|----------|----------|-----------|--------|----------|--------|----------|----------|
| 14.0530 | 0.5987   | 2407864. | 37867.   | -0.00708  | 10781. | 1.17E+11 | 0.00   | 0.00     | 390.0613 |
| 14.3585 | 0.5729   | 2549307. | 39310.   | -0.00700  | 11415. | 1.17E+11 | 0.00   | 0.00     | 397.2583 |
| 14.6640 | 0.5474   | 2696088. | 40780.   | -0.00692  | 12072. | 1.17E+11 | 0.00   | 0.00     | 404.4553 |
| 14.9695 | 0.5222   | 2848305. | 42276.   | -0.00683  | 12754. | 1.17E+11 | 0.00   | 0.00     | 411.6523 |
| 15.2750 | 0.4973   | 3006055. | 43798.   | -0.00674  | 13460. | 1.17E+11 | 0.00   | 0.00     | 418.8493 |
| 15.5805 | 0.4728   | 3169434. | 45347.   | -0.00664  | 14191. | 1.17E+11 | 0.00   | 0.00     | 426.0462 |
| 15.8860 | 0.4486   | 3338538. | 46922.   | -0.00654  | 14949. | 1.17E+11 | 0.00   | 0.00     | 433.2432 |
| 16.1915 | 0.4249   | 3513465. | 48523.   | -0.00643  | 15732. | 1.17E+11 | 0.00   | 0.00     | 440.4402 |
| 16.4970 | 0.4015   | 3694312. | 50151.   | -0.00632  | 16542. | 1.17E+11 | 0.00   | 0.00     | 447.6372 |
| 16.8025 | 0.3786   | 3881174. | 51805.   | -0.00620  | 17378. | 1.17E+11 | 0.00   | 0.00     | 454.8342 |
| 17.1080 | 0.3561   | 4074150. | 53486.   | -0.00607  | 18242. | 1.17E+11 | 0.00   | 0.00     | 462.0312 |
| 17.4135 | 0.3340   | 4273335. | 55193.   | -0.00594  | 19134. | 1.17E+11 | 0.00   | 0.00     | 469.2281 |
| 17.7190 | 0.3125   | 4478826. | 56926.   | -0.00580  | 20054. | 1.17E+11 | 0.00   | 0.00     | 476.4251 |
| 18.0245 | 0.2915   | 4690720. | 58686.   | -0.00566  | 21003. | 1.17E+11 | 0.00   | 0.00     | 483.6221 |
| 18.3300 | 0.2710   | 4909113. | 60472.   | -0.00551  | 21981. | 1.17E+11 | 0.00   | 0.00     | 490.8191 |
| 18.6355 | 0.2511   | 5134103. | 62285.   | -0.00535  | 22989. | 1.17E+11 | 0.00   | 0.00     | 498.0161 |
| 18.9410 | 0.2318   | 5365786. | 64124.   | -0.00519  | 24026. | 1.17E+11 | 0.00   | 0.00     | 505.2131 |
| 19.2465 | 0.2131   | 5604259. | 65989.   | -0.00501  | 25094. | 1.17E+11 | 0.00   | 0.00     | 512.4101 |
| 19.5520 | 0.1950   | 5849619. | 67881.   | -0.00483  | 26192. | 1.17E+11 | 0.00   | 0.00     | 519.6070 |
| 19.8575 | 0.1776   | 6101962. | 69799.   | -0.00465  | 27322. | 1.17E+11 | 0.00   | 0.00     | 526.8040 |
| 20.1630 | 0.1609   | 6361385. | 71743.   | -0.00445  | 28484. | 1.17E+11 | 0.00   | 0.00     | 534.0010 |
| 20.4685 | 0.1450   | 6627984. | 73714.   | -0.00425  | 29678. | 1.17E+11 | 0.00   | 0.00     | 541.1980 |
| 20.7740 | 0.1298   | 6901857. | 70813.   | -0.00403  | 30904. | 1.17E+11 | -2672. | 75466.   | 548.3950 |
| 21.0795 | 0.1154   | 7147188. | 62409.   | -0.00381  | 32002. | 1.17E+11 | -3017. | 95827.   | 555.5920 |
| 21.3850 | 0.1019   | 7359439. | 52766.   | -0.00358  | 32953. | 1.17E+11 | -3362. | 120999.  | 562.7890 |
| 21.6905 | 0.08915  | 7534070. | 41886.   | -0.00335  | 33735. | 1.17E+11 | -3707. | 152440.  | 569.9859 |
| 21.9960 | 0.07730  | 7666544. | 29767.   | -0.00311  | 34328. | 1.17E+11 | -4052. | 192157.  | 577.1829 |
| 22.3015 | 0.06634  | 7752321. | 16410.   | -0.00287  | 34712. | 1.17E+11 | -4397. | 242967.  | 584.3799 |
| 22.6070 | 0.05627  | 7786862. | 1815.    | -0.00262  | 34867. | 1.17E+11 | -4742. | 308908.  | 591.5769 |
| 22.9125 | 0.04710  | 7765630. | -14018.  | -0.00238  | 34771. | 1.17E+11 | -5086. | 395893.  | 598.7739 |
| 23.2180 | 0.03883  | 7684085. | -31089.  | -0.00214  | 34406. | 1.17E+11 | -5431. | 512832.  | 605.9709 |
| 23.5235 | 0.03144  | 7537689. | -49398.  | -0.00190  | 33751. | 1.17E+11 | -5776. | 673585.  | 613.1678 |
| 23.8290 | 0.02492  | 7321903. | -68546.  | -0.00166  | 32785. | 1.17E+11 | -5904. | 868555.  | 620.3648 |
| 24.1345 | 0.01924  | 7035112. | -87795.  | -0.00144  | 31501. | 1.17E+11 | -5846. | 1113779. | 627.5618 |
| 24.4400 | 0.01438  | 6678188. | -106691. | -0.00122  | 29902. | 1.17E+11 | -5725. | 1459824. | 634.7588 |
| 24.7455 | 0.01028  | 6252852. | -124984. | -0.00102  | 27998. | 1.17E+11 | -5532. | 1972166. | 641.9558 |
| 25.0510 | 0.00691  | 5761802. | -142379. | -8.30E-04 | 25799. | 1.17E+11 | -5249. | 2785676. | 649.1528 |
| 25.3565 | 0.00420  | 5208927. | -158495. | -6.57E-04 | 23324. | 1.17E+11 | -4848. | 4233201. | 656.3498 |
| 25.6620 | 0.00209  | 4599717. | -172754. | -5.03E-04 | 20596. | 1.17E+11 | -4251. | 7459411. | 663.5467 |
| 25.9675 | 5.10E-04 | 3942292. | -180682. | -3.69E-04 | 17652. | 1.17E+11 | -1408. | 1.01E+07 | 670.7437 |

| 26.2730 | -6.14E-04 | 3274958. | -177558. | -2.55E-04 | 14664.   | 1.17E+11 | 1764.    | 1.05E+07 | 677.9407 |
|---------|-----------|----------|----------|-----------|----------|----------|----------|----------|----------|
| 26.5785 | -0.00136  | 2640437. | -164518. | -1.62E-04 | 11823.   | 1.17E+11 | 4058.    | 1.09E+07 | 614.7236 |
| 26.8840 | -0.00180  | 2068710. | -147178. | -8.82E-05 | 9263.    | 1.17E+11 | 4788.    | 9728486. | 0.00     |
| 27.1895 | -0.00201  | 1561327. | -129063. | -3.11E-05 | 6991.    | 1.17E+11 | 5095.    | 9300529. | 0.00     |
| 27.4950 | -0.00203  | 1122418. | -110031. | 1.11E-05  | 5026.    | 1.17E+11 | 5288.    | 9538163. | 0.00     |
| 27.8005 | -0.00193  | 754578.  | -90452.  | 4.06E-05  | 3379.    | 1.17E+11 | 5394.    | 1.03E+07 | 0.00     |
| 28.1060 | -0.00174  | 459227.  | -70621.  | 5.97E-05  | 2056.    | 1.17E+11 | 5425.    | 1.15E+07 | 0.00     |
| 28.4115 | -0.00149  | 236782.  | -50804.  | 7.06E-05  | 1060.    | 1.17E+11 | 5387.    | 1.33E+07 | 0.00     |
| 28.7170 | -0.00122  | 86730.   | -32562.  | 7.57E-05  | 388.3433 | 1.17E+11 | 4565.    | 1.37E+07 | 0.00     |
| 29.0225 | -9.35E-04 | -1964.   | -17578.  | 7.70E-05  | 8.7948   | 1.17E+11 | 3609.    | 1.42E+07 | 0.00     |
| 29.3280 | -6.53E-04 | -42154.  | -6213.   | 7.63E-05  | 188.7491 | 1.17E+11 | 2591.    | 1.46E+07 | 0.00     |
| 29.6335 | -3.75E-04 | -47516.  | 1324.    | 7.49E-05  | 212.7571 | 1.17E+11 | 1520.    | 1.48E+07 | 0.00     |
| 29.9390 | -1.03E-04 | -32445.  | 4879.    | 7.37E-05  | 145.2779 | 1.17E+11 | 419.1591 | 1.48E+07 | 0.00     |
| 30.2445 | 1.65E-04  | -11742.  | 4425.    | 7.30E-05  | 52.5750  | 1.17E+11 | -666.832 | 1.48E+07 | 0.00     |
| 30.5500 | 4.31E-04  | 0.00     | 0.00     | 7.28E-05  | 0.00     | 1.17E+11 | -1747.   | 7423650. | 0.00     |

\* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

| Pile-head deflection             | = | 1.92003173  | inches       |      |      |
|----------------------------------|---|-------------|--------------|------|------|
| Computed slope at pile head      | = | -0.0080497  | radians      |      |      |
| Maximum bending moment           | = | 7786862.    | inch-lbs     |      |      |
| Maximum shear force              | = | -180682.    | lbs          |      |      |
| Depth of maximum bending moment  | = | 22.60700000 | feet below p | oile | head |
| Depth of maximum shear force     | = | 25.96750000 | feet below p | oile | head |
| Number of iterations             | = | 28          |              |      |      |
| Number of zero deflection points | = | 2           |              |      |      |
| Pile deflection at ground        | = | 0.14093823  | inches       |      |      |
|                                  |   |             |              |      |      |

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

Pile-head conditions are Shear and Moment (Loading Type 1)

| Shear force at pile head       | = | 0.0 lbs    |
|--------------------------------|---|------------|
| Applied moment at pile head    | = | 0.0 in-1bs |
| Axial thrust load on pile head | = | 0.0 lbs    |

| Depth<br>X | Deflect.<br>y | Bending<br>Moment | Shear<br>Force | Slope<br>S | Total<br>Stress | Bending<br>Stiffness | Soil Res.<br>p | Soil Spr.<br>Es*H | Distrib.<br>Lat. Load |
|------------|---------------|-------------------|----------------|------------|-----------------|----------------------|----------------|-------------------|-----------------------|
| теет       | inches        | 1N-1DS            | 105            | radians    | ps1*            | 10-1n^2              | ID/INCN        | ID/incn           | 10/1ncn               |
| 0.00       | 3.7698        | 1.42E-04          | 0.00           | -0.01504   | 2.28E-07        | 1.16E+11             | 0.00           | 0.00              | 105.7003              |
| 0.3055     | 3.7147        | 710.2827          | 402.3463       | -0.01504   | 1.1396          | 1.16E+11             | 0.00           | 0.00              | 113.8012              |
| 0.6110     | 3.6595        | 2950.             | 839.3400       | -0.01504   | 4.7332          | 1.16E+11             | 0.00           | 0.00              | 124.6024              |
| 0.9165     | 3.6044        | 6864.             | 1316.          | -0.01504   | 11.0137         | 1.16E+11             | 0.00           | 0.00              | 135.4036              |
| 1.2220     | 3.5493        | 12598.            | 1832.          | -0.01504   | 20.2139         | 1.16E+11             | 0.00           | 0.00              | 146.2048              |
| 1.5275     | 3.4941        | 20297.            | 2388.          | -0.01504   | 32.5668         | 1.16E+11             | 0.00           | 0.00              | 157.0060              |
| 1.8330     | 3.4390        | 30107.            | 2983.          | -0.01504   | 48.3052         | 1.16E+11             | 0.00           | 0.00              | 167.8072              |
| 2.1385     | 3.3839        | 42171.            | 3618.          | -0.01504   | 67.6622         | 1.16E+11             | 0.00           | 0.00              | 178.6084              |
| 2.4440     | 3.3287        | 56636.            | 4293.          | -0.01504   | 90.8706         | 1.16E+11             | 0.00           | 0.00              | 189.4096              |
| 2.7495     | 3.2736        | 73646.            | 5007.          | -0.01503   | 118.1634        | 1.16E+11             | 0.00           | 0.00              | 200.2108              |
| 3.0550     | 3.2185        | 93347.            | 5761.          | -0.01503   | 149.7734        | 1.16E+11             | 0.00           | 0.00              | 211.0120              |
| 3.3605     | 3.1634        | 115884.           | 6554.          | -0.01503   | 185.9335        | 1.16E+11             | 0.00           | 0.00              | 221.8132              |
| 3.6660     | 3.1083        | 141402.           | 7387.          | -0.01502   | 226.8767        | 1.16E+11             | 0.00           | 0.00              | 232.6144              |
| 3.9715     | 3.0533        | 170047.           | 8260.          | -0.01502   | 272.8358        | 1.16E+11             | 0.00           | 0.00              | 243.4156              |
| 4.2770     | 2.9982        | 201962.           | 9172.          | -0.01501   | 324.0439        | 1.16E+11             | 0.00           | 0.00              | 254.2168              |
| 4.5825     | 2.9432        | 237294.           | 10124.         | -0.01501   | 380.7337        | 1.16E+11             | 0.00           | 0.00              | 265.0180              |
| 4.8880     | 2.8882        | 276188.           | 11115.         | -0.01500   | 443.1382        | 1.16E+11             | 0.00           | 0.00              | 275.8192              |
| 5.1935     | 2.8332        | 318789.           | 12146.         | -0.01499   | 511.4904        | 1.16E+11             | 0.00           | 0.00              | 286.6204              |
| 5.4990     | 2.7783        | 365242.           | 13216.         | -0.01498   | 586.0231        | 1.16E+11             | 0.00           | 0.00              | 297.4216              |
| 5.8045     | 2.7234        | 415692.           | 14327.         | -0.01496   | 666.9692        | 1.16E+11             | 0.00           | 0.00              | 308.2228              |
| 6.1100     | 2.6686        | 470285.           | 15476.         | -0.01495   | 754.5617        | 1.16E+11             | 0.00           | 0.00              | 319.0240              |
| 6.4155     | 2.6138        | 529165.           | 16666.         | -0.01494   | 849.0334        | 1.16E+11             | 0.00           | 0.00              | 329.8252              |
| 6.7210     | 2.5591        | 592478.           | 17895.         | -0.01492   | 950.6174        | 1.16E+11             | 0.00           | 0.00              | 340.6264              |
| 7.0265     | 2.5044        | 660368.           | 19163.         | -0.01490   | 2957.           | 1.17E+11             | 0.00           | 0.00              | 351.4276              |
| 7.3320     | 2.4499        | 732982.           | 20471.         | -0.01488   | 3282.           | 1.17E+11             | 0.00           | 0.00              | 362.2288              |
| 7.6375     | 2.3954        | 810464.           | 21819.         | -0.01485   | 3629.           | 1.17E+11             | 0.00           | 0.00              | 373.0300              |
| 7.9430     | 2.3410        | 892959.           | 23206.         | -0.01482   | 3998.           | 1.17E+11             | 0.00           | 0.00              | 383.8312              |
| 8.2485     | 2.2867        | 980613.           | 24633.         | -0.01480   | 4391.           | 1.17E+11             | 0.00           | 0.00              | 394.6324              |
| 8.5540     | 2.2325        | 1073570.          | 26100.         | -0.01476   | 4807.           | 1.17E+11             | 0.00           | 0.00              | 405.4336              |

| 8.8595  | 2.1784 | 1171977. | 27606.  | -0.01473 | 5248.  | 1.17E+11 | 0.00   | 0.00   | 416.2348 |
|---------|--------|----------|---------|----------|--------|----------|--------|--------|----------|
| 9.1650  | 2.1245 | 1275977. | 29152.  | -0.01469 | 5713.  | 1.17E+11 | 0.00   | 0.00   | 427.0360 |
| 9.4705  | 2.0707 | 1385716. | 30737.  | -0.01465 | 6205.  | 1.17E+11 | 0.00   | 0.00   | 437.8372 |
| 9.7760  | 2.0171 | 1501340. | 32362.  | -0.01460 | 6722.  | 1.17E+11 | 0.00   | 0.00   | 448.6384 |
| 10.0815 | 1.9637 | 1622993. | 34026.  | -0.01455 | 7267.  | 1.17E+11 | 0.00   | 0.00   | 459.4396 |
| 10.3870 | 1.9104 | 1750821. | 35730.  | -0.01450 | 7839.  | 1.17E+11 | 0.00   | 0.00   | 470.2407 |
| 10.6925 | 1.8574 | 1884969. | 37474.  | -0.01444 | 8440.  | 1.17E+11 | 0.00   | 0.00   | 481.0419 |
| 10.9980 | 1.8045 | 2025582. | 39257.  | -0.01438 | 9070.  | 1.17E+11 | 0.00   | 0.00   | 491.8431 |
| 11.3035 | 1.7519 | 2172805. | 41080.  | -0.01432 | 9729.  | 1.17E+11 | 0.00   | 0.00   | 502.6443 |
| 11.6090 | 1.6996 | 2326783. | 42943.  | -0.01424 | 10418. | 1.17E+11 | 0.00   | 0.00   | 513.4455 |
| 11.9145 | 1.6475 | 2487662. | 44845.  | -0.01417 | 11139. | 1.17E+11 | 0.00   | 0.00   | 524.2467 |
| 12.2200 | 1.5957 | 2655586. | 46787.  | -0.01409 | 11891. | 1.17E+11 | 0.00   | 0.00   | 535.0479 |
| 12.5255 | 1.5442 | 2830701. | 48768.  | -0.01400 | 12675. | 1.17E+11 | 0.00   | 0.00   | 545.8491 |
| 12.8310 | 1.4930 | 3013152. | 50789.  | -0.01391 | 13492. | 1.17E+11 | 0.00   | 0.00   | 556.6503 |
| 13.1365 | 1.4422 | 3203085. | 52849.  | -0.01381 | 14342. | 1.17E+11 | 0.00   | 0.00   | 567.4515 |
| 13.4420 | 1.3917 | 3400643. | 54949.  | -0.01371 | 15227. | 1.17E+11 | 0.00   | 0.00   | 578.2527 |
| 13.7475 | 1.3417 | 3605973. | 57089.  | -0.01360 | 16146. | 1.17E+11 | 0.00   | 0.00   | 589.0539 |
| 14.0530 | 1.2920 | 3819220. | 59268.  | -0.01348 | 17101. | 1.17E+11 | 0.00   | 0.00   | 599.8551 |
| 14.3585 | 1.2428 | 4040528. | 61487.  | -0.01336 | 18092. | 1.17E+11 | 0.00   | 0.00   | 610.6563 |
| 14.6640 | 1.1941 | 4270044. | 63746.  | -0.01323 | 19120. | 1.17E+11 | 0.00   | 0.00   | 621.4575 |
| 14.9695 | 1.1459 | 4507911. | 66044.  | -0.01309 | 20185. | 1.17E+11 | 0.00   | 0.00   | 632.2587 |
| 15.2750 | 1.0981 | 4754276. | 68381.  | -0.01294 | 21288. | 1.17E+11 | 0.00   | 0.00   | 643.0599 |
| 15.5805 | 1.0510 | 5009283. | 70759.  | -0.01279 | 22430. | 1.17E+11 | 0.00   | 0.00   | 653.8611 |
| 15.8860 | 1.0044 | 5273078. | 73175.  | -0.01263 | 23611. | 1.17E+11 | 0.00   | 0.00   | 664.6623 |
| 16.1915 | 0.9584 | 5545806. | 75632.  | -0.01246 | 24832. | 1.17E+11 | 0.00   | 0.00   | 675.4635 |
| 16.4970 | 0.9130 | 5827611. | 78128.  | -0.01228 | 26094. | 1.17E+11 | 0.00   | 0.00   | 686.2647 |
| 16.8025 | 0.8683 | 6118640. | 80664.  | -0.01209 | 27397. | 1.17E+11 | 0.00   | 0.00   | 697.0659 |
| 17.1080 | 0.8244 | 6419037. | 83239.  | -0.01189 | 28742. | 1.17E+11 | 0.00   | 0.00   | 707.8671 |
| 17.4135 | 0.7811 | 6728947. | 85854.  | -0.01169 | 30130. | 1.17E+11 | 0.00   | 0.00   | 718.6683 |
| 17.7190 | 0.7387 | 7048516. | 88508.  | -0.01147 | 31561. | 1.17E+11 | 0.00   | 0.00   | 729.4695 |
| 18.0245 | 0.6970 | 7377888. | 91202.  | -0.01124 | 33035. | 1.17E+11 | 0.00   | 0.00   | 740.2707 |
| 18.3300 | 0.6562 | 7717210. | 93936.  | -0.01101 | 34555. | 1.17E+11 | 0.00   | 0.00   | 751.0719 |
| 18.6355 | 0.6163 | 8066626. | 96709.  | -0.01076 | 36119. | 1.17E+11 | 0.00   | 0.00   | 761.8731 |
| 18.9410 | 0.5773 | 8426280. | 99522.  | -0.01050 | 37730. | 1.17E+11 | 0.00   | 0.00   | 772.6743 |
| 19.2465 | 0.5393 | 8796320. | 102374. | -0.01023 | 39387. | 1.17E+11 | 0.00   | 0.00   | 783.4755 |
| 19.5520 | 0.5023 | 9176888. | 105266. | -0.00995 | 41091. | 1.17E+11 | 0.00   | 0.00   | 794.2767 |
| 19.8575 | 0.4664 | 9568132. | 108198. | -0.00965 | 42842. | 1.17E+11 | 0.00   | 0.00   | 805.0779 |
| 20.1630 | 0.4316 | 9970195. | 111169. | -0.00934 | 44643. | 1.17E+11 | 0.00   | 0.00   | 815.8791 |
| 20.4685 | 0.3979 | 1.04E+07 | 114180. | -0.00902 | 46492. | 1.17E+11 | 0.00   | 0.00   | 826.6803 |
| 20.7740 | 0.3654 | 1.08E+07 | 112332. | -0.00869 | 48391. | 1.17E+11 | -2672. | 26807. | 837.4815 |
| 21.0795 | 0.3342 | 1.12E+07 | 104994. | -0.00834 | 50180. | 1.17E+11 | -3017. | 33097. | 848.2827 |

| 21.3850 | 0.3042   | 1.16E+07 | 96431.   | -0.00799  | 51838.   | 1.17E+11 | -3362. | 40510.   | 859.0839 |
|---------|----------|----------|----------|-----------|----------|----------|--------|----------|----------|
| 21.6905 | 0.2756   | 1.19E+07 | 86644.   | -0.00762  | 53346.   | 1.17E+11 | -3707. | 49303.   | 869.8851 |
| 21.9960 | 0.2484   | 1.22E+07 | 75631.   | -0.00724  | 54683.   | 1.17E+11 | -4052. | 59800.   | 880.6863 |
| 22.3015 | 0.2226   | 1.25E+07 | 63394.   | -0.00685  | 55829.   | 1.17E+11 | -4397. | 72421.   | 891.4875 |
| 22.6070 | 0.1982   | 1.27E+07 | 49931.   | -0.00645  | 56764.   | 1.17E+11 | -4742. | 87716.   | 902.2887 |
| 22.9125 | 0.1752   | 1.28E+07 | 35244.   | -0.00605  | 57468.   | 1.17E+11 | -5086. | 106410.  | 913.0899 |
| 23.2180 | 0.1538   | 1.29E+07 | 19333.   | -0.00565  | 57921.   | 1.17E+11 | -5431. | 129474.  | 923.8911 |
| 23.5235 | 0.1338   | 1.30E+07 | 2196.    | -0.00524  | 58103.   | 1.17E+11 | -5776. | 158234.  | 934.6923 |
| 23.8290 | 0.1154   | 1.30E+07 | -16166.  | -0.00483  | 57993.   | 1.17E+11 | -6121. | 194520.  | 945.4935 |
| 24.1345 | 0.09839  | 1.29E+07 | -35752.  | -0.00443  | 57572.   | 1.17E+11 | -6466. | 240923.  | 956.2947 |
| 24.4400 | 0.08290  | 1.27E+07 | -56563.  | -0.00403  | 56819.   | 1.17E+11 | -6811. | 301187.  | 967.0959 |
| 24.7455 | 0.06888  | 1.24E+07 | -78599.  | -0.00363  | 55715.   | 1.17E+11 | -7156. | 380878.  | 977.8971 |
| 25.0510 | 0.05628  | 1.21E+07 | -101860. | -0.00324  | 54239.   | 1.17E+11 | -7501. | 488548.  | 988.6983 |
| 25.3565 | 0.04509  | 1.17E+07 | -126345. | -0.00287  | 52371.   | 1.17E+11 | -7846. | 637886.  | 999.4995 |
| 25.6620 | 0.03524  | 1.12E+07 | -152056. | -0.00251  | 50091.   | 1.17E+11 | -8191. | 851978.  | 1010.    |
| 25.9675 | 0.02669  | 1.06E+07 | -178696. | -0.00217  | 47379.   | 1.17E+11 | -8374. | 1150402. | 1021.    |
| 26.2730 | 0.01935  | 9876781. | -205020. | -0.00185  | 44224.   | 1.17E+11 | -8040. | 1523241. | 1032.    |
| 26.5785 | 0.01315  | 9078083. | -230052. | -0.00155  | 40648.   | 1.17E+11 | -7584. | 2113947. | 935.5487 |
| 26.8840 | 0.00800  | 8190038. | -254974. | -0.00128  | 36672.   | 1.17E+11 | -6948. | 3183921. | 0.00     |
| 27.1895 | 0.00379  | 7208617. | -278657. | -0.00103  | 32277.   | 1.17E+11 | -5973. | 5774167. | 0.00     |
| 27.4950 | 4.16E-04 | 6146925. | -292126. | -8.24E-04 | 27524.   | 1.17E+11 | -1375. | 1.21E+07 | 0.00     |
| 27.8005 | -0.00225 | 5066746. | -284368. | -6.48E-04 | 22687.   | 1.17E+11 | 5608.  | 9127405. | 0.00     |
| 28.1060 | -0.00434 | 4061937. | -261586. | -5.05E-04 | 18188.   | 1.17E+11 | 6821.  | 5766414. | 0.00     |
| 28.4115 | -0.00595 | 3148797. | -235125. | -3.91E-04 | 14099.   | 1.17E+11 | 7615.  | 4690572. | 0.00     |
| 28.7170 | -0.00720 | 2338004. | -206077. | -3.05E-04 | 10469.   | 1.17E+11 | 8232.  | 4188712. | 0.00     |
| 29.0225 | -0.00819 | 1637842. | -174947. | -2.42E-04 | 7334.    | 1.17E+11 | 8751.  | 3918329. | 0.00     |
| 29.3280 | -0.00898 | 1055293. | -142017. | -2.00E-04 | 4725.    | 1.17E+11 | 9214.  | 3760689. | 0.00     |
| 29.6335 | -0.00965 | 596573.  | -107582. | -1.74E-04 | 2671.    | 1.17E+11 | 9572.  | 3634858. | 0.00     |
| 29.9390 | -0.01026 | 266503.  | -72221.  | -1.61E-04 | 1193.    | 1.17E+11 | 9719.  | 3473191. | 0.00     |
| 30.2445 | -0.01083 | 67050.   | -36348.  | -1.55E-04 | 300.2223 | 1.17E+11 | 9852.  | 3334440. | 0.00     |
| 30.5500 | -0.01140 | 0.00     | 0.00     | -1.54E-04 | 0.00     | 1.17E+11 | 9978.  | 1604800. | 0.00     |

\* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 2:

| Pile-head deflection             | = | 3.76980099  | inches               |
|----------------------------------|---|-------------|----------------------|
| Computed slope at pile head      | = | -0.0150397  | radians              |
| Maximum bending moment           | = | 12976249.   | inch-lbs             |
| Maximum shear force              | = | -292126.    | lbs                  |
| Depth of maximum bending moment  | = | 23.52350000 | feet below pile head |
| Depth of maximum shear force     | = | 27.49500000 | feet below pile head |
| Number of iterations             | = | 57          |                      |
| Number of zero deflection points | = | 1           |                      |
| Pile deflection at ground        | = | 0.38923714  | inches               |

Summary of Pile-head Responses for Conventional Analyses

\_\_\_\_\_

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

| Load Load |           | Load     |           | Axial   | Pile-head  | Pile-head | Max Shear | Max Moment |
|-----------|-----------|----------|-----------|---------|------------|-----------|-----------|------------|
| Case Type | Pile-head | Туре     | Pile-head | Loading | Deflection | Rotation  | in Pile   | in Pile    |
| No. 1     | Load 1    | 2        | Load 2    | lbs     | inches     | radians   | lbs       | in-lbs     |
| 1 V, lb   | 0.00      | M, in-lb | 0.00      | 0.00    | 1.9200     | -0.00805  | -180682.  | 7786862.   |
| 2 V, lb   | 0.00      | M, in-lb | 0.00      | 0.00    | 3.7698     | -0.01504  | -292126.  | 1.30E+07   |

Maximum pile-head deflection = 3.7698009889 inches Maximum pile-head rotation = -0.0150397075 radians = -0.861712 deg.

Summary of Warning Messages

The following warning was reported 1914 times

\*\*\*\* Warning \*\*\*\*

An unreasonable input value for compressive strength has been specified for a soil defined using the weak rock criteria. The input value is less than 100 psi. Please check your input data for correctness.

The analysis ended normally.


# **Stantec**

### CHECK FOR BEAM CLEARANCE

- Chosen beam size: W24x131
- d = 24.5 in
- b<sub>f</sub> = 12.90 in
- $\sqrt{24.5^2 + 12.90^2} = 27.7$  in
- 3-inch clearance for a drilled shaft size of 69 inches = 36 in - 2 (3 in) = 30 in
- 27.7 in < 30 in  $\rightarrow$  **ACCEPTABLE**

#### **CHECK FOR DEFLECTION**

- Allowable Deflection 2 inches
- W24x131 deflection from LPILE is 1.92 inches
- 1.92 in < 2 in  $\rightarrow$  **ACCEPTABLE**

#### CHECK FOR SHEAR CAPACITY OF BEAM

- Section 6 of 8<sup>th</sup> edition of LRFD Bridge Design Manual
- Chosen beam size: W24x131 •
  - Maximum Shear from LPILE 292.13 kips
- $V_n = C V_p$

$$V_p = 0.58 F_{yw} Dt_w$$
(6.10.9.3.2-3)

where:

- $d_o =$  transverse stiffener spacing (in.)
- $V_n$  = nominal shear resistance of the web panel (kip)
- $V_p$  = plastic shear force (kip) C = ratio of the shear-buckling resistance to the shear yield strength
- $V_n = 1.0 (0.58 F_{yw} D t_w)$
- V<sub>n</sub> = 1.0 (0.58) (50 ksi) (24.5 in) (0.605 in)
- $V_n$  = 429.85 kips > 292.13 kips  $\rightarrow$  **ACCEPTABLE**



#### CHECK FOR BUCKLING OF BEAM

• Chosen beam size: W24x131

• If 
$$\frac{D}{t_w} \le 1.12 \sqrt{\frac{Ek}{F_{yw}}}$$
, then:  
 $C = 1.0$  (6.10.9.3.2-4)

in which:

$$k = \text{shear-buckling coefficient}$$

$$=5 + \frac{5}{\left(\frac{d_o}{D}\right)^2}$$
(6.10.9.3.2-7)

• 
$$k = 5 + \frac{5}{\left(\frac{69in}{24.5 \text{ in}}\right)^2} = 5.63$$

• 
$$1.12 \sqrt{\frac{(29,000 \text{ ksi})(5.63)}{50 \text{ ksi}}} = 64.00$$

•  $\frac{D}{t_w} = \frac{24.5}{0.605} = 40.50 < 64.00 \rightarrow \text{ACCEPTABLE}$ 

## CHECK MOMENT CAPACITY

- Chosen beam size: W24x131
  - Beam stickup is approx. 6.8 feet for moment calculation
  - Maximum moment from LPILE 1083.3 ft-kips
  - From "Steel Construction Manual", AISC 14<sup>th</sup> Edition an unbraced length of 6.8 feet for a W24x131 beam can support a moment capacity of approximately 1387 ft-kips, which is greater than 1083.3 ft-kips → ACCEPTABLE