STRUCTURE ESTIMATED QUANTITIES

Bridge No. SUM-77-0927R
Ramp C2 over I.R. 77 NB

SUM-77/277/224-VARIOUS

PID No. 106002

Summit County, Ohio

Prepared For:

The Ohio Department of Transportation District 4

520 South Main Street, Suite 2531
Akron, Ohio 44311
(330) 572-2100
www.gpdgroup.com
January 18, 2021

Project:	Bridge No. SUM-77-0927R	Design:	RHC
Subject:	Stage 3 Estimated Quantities	Check:	DGN
Date:	$1 / 18 / 2021$		

1/18/2021
ITEM 202 - STRUCTURE REMOVED, OVER 20 FOOT SPAN
area $=$
7010 sf
unit cost $=\quad \$ 18.00$ per sf
Lump sum $=\$ 126,180$

ITEM 202 - APPROACH SLAB REMOVED

length $=$	25 ft		
width $=$	28 ft		
No. of approach slabs $=$	2		
		Total $=\quad$	$\underline{156}$ sy

ITEM 503-UNCLASSIFIED EXCAVATION

Rear Abutment:	
length =	49.33 ft
width $=$	7.75 ft
depth $=$	15 ft

Forward Abutment:	
length $=$	ft
width $=$	ft
depth $=$	ft

Abutment Subtotal $=\quad 212.39$ cy

Piers:	
length $=$	24.5 ft
width $=$	24.5 ft
depth =	6.5 ft
no. of ftgs per pier =	1
no. of piers =	2
Pier Subtotal =	$\mathbf{2 8 9 . 0 1} \mathbf{~ c y ~}$
Total =	$\underline{\mathbf{5 0 2} \mathbf{~ c y ~}}$

ITEM 505 - PILE DRIVING EQUIPMENT MOBILIZATION

Lump sum $=\$ 15,000$

ITEM 507-STEEL PILES HP10x42, FURNISHED

Frwd. Abutment:
length $=\quad 40 \mathrm{ft}$
no. of piles $=$
10

Total $=\quad \underline{400} \mathrm{ft}$

ITEM 507-STEEL PILES HP10x42, DRIVEN

Frwd. Abutment:
length =
35 ft
no. of piles =

10
Total $=\quad \underline{350} \mathrm{ft}$

ITEM 509 - EPOXY COATED REINFORCING STEEL

Abutments $=$	13,275	lbs
Pier $=$	97,512	lbs
Parapets $=$	19,903	lbs
Slab $=$	92,954	lbs

ITEM 509 - NO. 4 GFRP DEFORMED BARS
SBR-1-20 Parapets $=\quad 12,353 \quad \mathrm{lbs}$
Total $=\quad 12,353 \mathrm{lbs}$

ITEM 511 - CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK
BRIDGE
Deck:
thickness $=\quad 8.5$ in
edge of deck
to bridge limits $=\quad 0.75 \mathrm{ft}$
total sum of spans $=\quad 343.25 \mathrm{ft}$
total length $=\quad 344.75 \mathrm{ft}$
O/O of deck width $=\quad 29.33 \mathrm{ft}$
$\begin{array}{ll}\text { Deck Volume }= & 265 \text { cy }\end{array}$
Haunch:
t/flange width $=\quad 22$ in
t/deck to t/web = $\quad 13$ in
haunch thick. $=\quad 2.7$ in
t/flange thick. (avg) $=\quad 1.8$ in
total no. of beams = $\quad 4$

Over C.I.P. integral pier caps:	
pier cap width $=$	7.00 ft.
length between beams $=$	6.17 ft.
Number of Pier caps $=$	2
Pier Cap Haunch Subtotal $=$	$\mathbf{3 ~ c y}$

Pier Cap Haunch Subtotal =
3 cy
Haunch Volume $=$
24 cy

Cantilever:

cantilever length (right) $=\quad 2.66 \mathrm{ft}$ cantilever length (left) $=\quad 2.66 \mathrm{ft}$ Cantilever Volume = 17 cy

Total $=$

306 cy

ITEM 511 - CLASS QC2 CONCRETE WITH QC/QA, BRIDGE DECK (PARAPET)

area (left $)=$	4.08 sf
area (right $=$	4.08 sf
length $($ left $)=$	425.13 ft (Includes App Slab Parapets)
length $($ rightt $)=$	402.91 ft (Includes App Slab Parapets)
	Total $=$
	$\underline{\mathbf{1 2 6}} \mathbf{~ c y}$

ITEM 511 - CLASS QC4 MASS CONCRETE, SUBSTRUCTURE (PIER COLUMNS

Column area $=$	28.27 sf
Column diameter $=$	6.00 ft
Total column height Pier 1=	22.07 ft
Total column height Pier 2=	20.86 ft

ITEM 511 - CLASS QC1 CONCRETE WITH QC/QA, ABUTMENT NOT INCLUDING FOOTING

Skew angle =

Rear Abutment:

Beam Seat

beam seat length $=$	29.00 ft
average beam seat height $=$	5.00 ft
beam seat width $=$	3.00 ft
Beam Seat Volume $=$	688.75 cf
Backwall	7.05 ft
average backwall height	1.75 ft
backwall thickness =	1.42 ft
approach slab thickness =	29.00 ft
backwall length $=$	337.20 cf

Wingwalls

Left
thickness $=\quad 1.75 \mathrm{ft}$
L1 =
10.20 ft
7.25 ft

L2 =
H1 =
H2 =
12.50 ft
9.00 ft

Left wingwall area =
Left Wingwall Volume =
Right
thickness = $\quad 1.75 \mathrm{ft}$
L1 =
L2 $=$
H1 =
$\mathrm{H} 2=$
Right wingwall area =
Right Wingwall Volume =

Rear Abutment Subtotal

114.8125 sf 200.92188 cf
10.14 ft
7.25 ft
11.30 ft
7.80 ft
101.8945 sf 178.31538 cf

Forward Abutment:
Beam Seat
beam seat length = 29.00 ft
average beam seat height $=\quad 4.21 \mathrm{ft}$
beam seat width $=$
3.00 ft

Beam Seat Volume =

Backwall	
average backwall height	6.97 ft
backwall thickness =	1.75 ft
approach slab thickness =	1.42 ft
backwall length =	29.00 ft
Back Wall Volume =	333.14 cf
Wingwalls	
Left	
thickness =	
L1 =	1.75 ft
L2 =	12.65 ft
H1 =	8.71 ft
H2 =	11.40 ft
Left wingwall area =	7.00 ft
Left Wingwall Volume =	125.048 sf
Right	218.834 cf
thickness =	
L1 =	
L2 =	ft
H1 =	ft
H2 =	ft
Right wingwall area =	ft
Right Wingwall Volume =	ft
Forward Abutment Subtotal =	0 sf
	0 cf

ITEM 511 - CLASS QC1 CONCRETE WITH QC/QA, FOOTING

Pier:	
thickness =	4.75 ft
width $=$	22.5 ft
length $=$	22.5 ft
no. of footing $=$	2
Footing Volume $=$	178.13 cy

Rear Abut. Footing	
footing thickness =	3.00 ft
footing width $=$	5.75 ft
footing length $=$	35.33 ft
Footing Volume $=$	22.57 cy

Frwd. Abut. Footing
footing thickness $=\quad 3.00 \mathrm{ft}$
footing width $=\quad 7.25 \mathrm{ft}$
footing length $=\quad 33.67 \mathrm{ft}$
Footing Volume $=\quad 27.12$ cy

Total $=\quad \underline{228}$ cy
ITEM 511 - CLASS QC4 CONCRETE MISC.: INTEGRAL POST-TENSIONED PIER CAPS
Pier Caps:

pier cap width $=$	7.00 ft
pier cap height $=$	5.17 ft
pier cap length $=$	29.33 ft
no. of pier caps $=$	2

Total $=\quad \underline{79} \mathrm{cy}$

Bridge deck	
Left	
perimeter $=$	9.81 ft
length $=$	425.13 ft
Right	
perimeter $=$	9.81 ft
length =	402.91 ft
Bridge Deck Subtotal =	8123 sf
Abutments	
Rear Abutment:	
backwall height =	7.05 ft
beam seat width =	3.00 ft
exposed breastwall height =	1.00 ft
backwall/breastwall length =	29.00 ft
Abutment total =	320.45
Rear left wingwall	
exposed height behind wall =	$\begin{aligned} & 5.00 \mathrm{ft} \\ & 0.50 \mathrm{ft} \end{aligned}$
front exposed area =	63.81 sf
top of wall =	15.80 sf
back of wall =	2.29 sf
Rear left total =	81.90 sf
Rear right wingwall	
depth of fill in front of wall $=$	5.00 ft
exposed height behind wall =	0.50 ft
front exposed area =	51.19 sf
top of wall =	15.63 sf
back of wall =	2.27 sf
Rear right total $=$	69.09 sf
Rear Abutment Subtotal $=$	471 sf

Forward Abutment:	
backwall height $=$	6.97 ft
beam seat width $=$	3.00 ft
exposed breastwall height $=$	4.21 ft
backwall/breastwall length $=$	29.00 ft
Abutment total $=$	411.22

Forward left wingwall	
depth of fill in front of wall =	2.00 ft
exposed height behind wall =	0.50 ft
front exposed area =	99.75 sf
top of wall $=$	19.86 sf
back of wall $=$	2.95 sf
Forward left total $=$	122.56 sf

Forward right wingwall	
depth of fill in front of wall =	0.00 ft
exposed height behind wall $=$	0.00 ft
front exposed area =	0.00 sf
top of wall =	0.00 sf
back of wall =	0.00 sf
Forward right total =	0.00 sf
Forward Abutment Subtotal $=$	534 sf
Abutment Subtotal $=$	1005 sf

Piers	
Caps	
length $=$	
thickness $=$	29.33
height $=$	7.00
Cap area $=$	5.17
Columns	552.6879
diameter $=$	6.00 ft
average exposed height $=$	18.00 ft
no. of columns =	1
Column area =	339.292 sf
No. of Piers =	2
Pier Subtotal $=$	1784 sf

Total $=\quad 1,213$ sy

ITEM 513 - STRUCTURAL STEEL MEMBERS, LEVEL 5, AS PER PLAN

BRIDGE

Girders Properties

	Unit Weight (lb./ft.)	Dimension Input (for plate girders) (all units are inches)						
Section ID	267.5434	18	1	62	0.6875	18	1	
Section 1	519.349	22	2.5	62	0.6875	22	2.5	
Section 2	519.349	22	2.5	62	0.6875	22	2.5	
Section 3	350.9115	22	1	62	0.6875	22	1.75	
Section 4			tfl. top	Dweb	tweb	Bfl. bot	top	

Section Lengths

Section ID	Unit Weight (lb./ft.)	Girder 1	Girder 2	Girder 3	Girder 4	Total Lengths
Section 1	267.54	90.00	88.83	87.66	86.5	352.99
Section 2	519.35	126.01	123.52	121.3	119	489.83
Section 3	519.35	36.42	35.92	35.42	35	142.76
Section 4	350.91	108.41	106.28	104.14	102	420.83

Detail factor $=\quad 1.010$

Girder Subtotal =

576,400 lbs

Splices:

Splice 1

Splice 1
Top Flange
outside plates =
inside plates $=$
fill plates =
Bottom Flange
outside plates =
inside plates =
fill plates =
Web
plates $=$

\# of plates	length (in)	width (in)	thick (in)
1	36.75	18	0.625
2	36.75	8	0.75
1	18	18	1.5
1	36.75	18	0.625
2	36.75	8	0.75
1	18.5	18	1.5
2	56.5	15.75	0.375

Plate weight/splice =
953 lbs
Splice 2

Top Flange
outside plates =
inside plates =
fill plates =
Bottom Flange
outside plates =
inside plates =
fill plates =
Web
plates $=$

\# of plates	length (in)	width (in)	thick (in)
1	43.75	22	0.625
2	43.75	10	0.75
1	21.5	22	1.5
1	64.75	22	1
2	64.75	10	1.125
1	32.375	22	0.75
2	55.25	15.75	0.375

Plate weight/splice =
1711 lbs

Splice Bolts
Splice 1
Top Flange $=$
Bot. Flange $=$
Web $=$

Bolt + Washer weight	
Top Flange $=$	64 lbs
Bot. Flange $=$	64 lbs
Web $=$	70 lbs
Total weight/splice =	1151 lbs
No. of splices =	8
Splice 2	\# of bolts len
Top Flange $=$	48
Bot. Flange $=$	72
Web $=$	44
	* from steel ma
	washer weigh
Bolt + Washer weight	
Top Flange $=$	76 lbs
Bot. Flange $=$	715 lbs
Web $=$	70 lbs
Total weight/splice $=$	1973 lbs
No. of splices $=$	8

Splice + Bolts Subtotal =
 24,988 Ibs

Intermediate Crossframes:

Length of Diagonals =	7.00 ft (weighted avg.)
No. of Diagonals =	2
Length of Horiz. =	6.50 ft (weighted avg.)
No. of Horiz. =	2
Angle weight / ft. =	$15.00 \mathrm{lbs} / \mathrm{ft}$
Crossframe weight $=$	405 lbs ==> per x-frame assembly
x-frame stiffeners?	y y or n
Length =	62.000 in ==> web depth
Width =	8.000 in
Thickness =	0.500 in
Stiffener weight $=$	141 lbs ==> per x -frame assembly
x-frame gusset plates?	y y or n
Length =	17.500 in ==> web depth
Width =	15.000 in
Thickness =	0.500 in
Gusset plate weight $=$	149 lbs ==> per x-frame assembly
Total Intermediate Crossframe	
Assembly Weight =	695 lbs. ==> per x-frame assembly
No. of assemblies =	72
Detail Factor =	1.05
Intermediate Crossframe Subtotal $=$	52506 lbs

End Crossframes:

Length of Diagonals =	6.50 ft (weighted avg.)
No. of Diagonals =	2
Length of Horiz. =	8.00 ft (weighted avg.)
No. of Horiz. =	,
Angle weight / ft. =	$9.80 \mathrm{lbs} / \mathrm{ft}$
End crossframe weight =	206 lbs. ==> per x-frame assembly
End x -frame stiffeners (bearing stiffeners)?	y y or n
Length =	62.000 in ==> web depth
Width =	8.500 in
Thickness =	1.000 in
Stiffener weight $=$	299 lbs ==> per x-frame assembly
Total x-frame End	
Assembly Weight =	505 lbs ==> per x-frame assembly
No. of assemblies =	8
Detail Factor =	1.10
End Crossframe Subtotal $=$	4441 lbs
Crossframe Subtotal $=$	56,947 lbs
	Total $=6 \underline{65,400} \mathrm{lbs}$

ITEM 513 - WELDED STUD SHEAR CONNECTORS

No. rows per beam:	
Girder 1	391
Girder 2	449
Girder 3	443
Girder 4	384
No. per row =	3
Total =	$\underline{\mathbf{5 , 0 0 1}} \mathbf{~ e a ~}$

ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, INTERMEDIATE COAT
ITEM 514 - FIELD PAINTING STRUCTURAL STEEL, FINISH COAT

Average Flange width $=$	21.00 in
Total Girder Depth $=$	66.00 in
Total beam Length $=$	1406.41
Detail Factor $=$	1.20

Total $=\quad \underline{27,500} \mathbf{~ s f}$

ITEM 514 - FINAL INSPECTION REPAIR

Length =

$$
\begin{array}{r}
1406.41 \mathrm{ft} \\
4 \mathrm{ea}
\end{array}
$$

No. Girders =
No. Crossframes =
Total $=\quad \underline{42}$ ea

ITEM 516 -ARMORLESS PREFORMED JOINT SEAL

Forward approach slab width $=\quad 29.00 \mathrm{ft}$
Total $=\quad \underline{29} \mathrm{ft}$

ITEM 516 -STRUCTURAL EXPANSION JOINT INCLUDING ELASTOMERIC STRIP SEAL

RA Length $=$	28.50 ft
FA Length $=$	28.50 ft

Total $=\quad \underline{57} \mathrm{ft}$

ITEM 518 - POROUS BACKFILL WITH GEOTEXTILE FABRIC

Rear Abutment:	
Thickness =	2.00 ft
Height =	10.63 ft
app. Slab thickness =	1.42 ft
length =	29.00 ft
Left wingwall =	104.61 sf
Right wingwall =	91.75 sf
Rear Abutment Subtotal =	927 cf
Forward Abutment:	2.00 ft
Thickness =	9.76 ft
Height =	1.42 ft
app. Slab thickness =	29.00 ft
length =	112.40 sf
Left wingwall =	0.00 sf
Right wingwall =	
	709 cf
Frwd. Abutment Subtotal =	

Total $=\quad \underline{61} \mathrm{cy}$

ITEM 518-6" PERFORATED CORRUGATED PLASTIC PIPE

Rear Abutment:

length $=\quad 49.34 \mathrm{ft}$
Forward Abutment:
length =
41.65 ft

Total $=\quad \underline{91} \mathrm{ft}$
ITEM 518-6" NON-PERFORATED CORRUGATED PLASTIC PIPE INCLUDING SPECIALS

Forward Abutment:
length $=\quad 10.00 \mathrm{ft}$
Forward Abutment: length $=\quad 0.00 \mathrm{ft}$
Total $=\quad \underline{10} \mathrm{ft}$

ITEM 524 - DRILLED SHAFTS, 42" DIAMETER, INTO BEDROCK WITH QC/QA, AS PER PLAN

```
Rear Abutment:
length = 6 ft
no. of shafts =
    3
    Total= 
```


ITEM 524 - DRILLED SHAFTS, 48" DIAMETER, ABOVE BEDROCK WITH QC/QA, AS PER PLAN

Rear Abutment:
length $=\quad 11.2 \mathrm{ft}$
no. of shafts =
3

Total $=\quad \underline{34} \mathrm{ft}$

ITEM 524 - DRILLED SHAFTS, 48" DIAMETER, INTO BEDROCK WITH QC/QA, AS PER PLAN

Pier 1

length $=\quad 7 \mathrm{ft}$
no. of shafts $=\quad 4$

Pier 2
length $=\quad 7 \mathrm{ft}$
no. of shafts $=\quad 4$

Total $=\quad \underline{56} \mathrm{ft}$

ITEM 524 - DRILLED SHAFTS, 54" DIAMETER, ABOVE BEDROCK WITH QC/QA, AS PER PLAN

Pier 1
length =
no. of shafts =

Pier 2
length = no. of shafts $=$

27 ft
4
27.3 ft

4

Total $=$
218 ft

ITEM 526 - REINFORCED CONCRETE APPROACH SLABS WITH QC/QA (T=17")

Rear Approach Slab:	
Width =	29 ft
Length $=$	30 ft
Frwd. Approach Slab:	
Width $=$	29 ft
Length $=$	30 ft

ITEM 526-TYPE A INSTALLATION

Rear Approach Slab:
26 ft
Total $=\quad \underline{26} \mathrm{ft}$

ITEM 526 - TYPE C INSTALLATION

Forward Approach Slab: length =
length =

29 ft
Total $=\quad \underline{29} \mathrm{ft}$

ITEM SPECIAL - STRUCTURES: TEMPORARY SUPPORT OF STEEL GIRDERS

Temporary Bents:
$\begin{array}{rr}\text { Cost per temporary bent }= & \$ 20,000.00 \\ \text { No. of temporary bents }= & 5\end{array}$

ITEM 846 - POLYMER MODIFIED EXPANSION JOINT SYSTEM

Rear approach slab = depth $=$ width $=$
26.00 ft

2 in
20 in
Total $=$

ITEM 855 - POST-TENSIONING STRAND TENDON

Unit wieght per strand= No. strands of per tendon $=$ Tendon 1 length = Tendon 2 length = No. of Tendon $1=$ No. of Tendon $2=$
$0.74 \mathrm{lbs} . / \mathrm{ft}$
19.00 each
27.9 ft
27.4 ft

6 each
6 each

Total $=\quad \underline{4665} \mathrm{lbs}$.

ITEM 869 - HIGH LOAD MULIT-ROTATIONAL (HLMR) BEARINGS, AS PER PLAN
Rear abutment $=$
4 each
Forward abutment $=$
4 each

Total $=\quad \underline{8}$ each

