ITEM 614, MAINTAINING TRAFFIC

<u>TR-77</u>
A MINIMUM OF ONE LANE OF TRAFFIC IN EACH DIRECTION SHALL
BE MAINTAINED AT ALL TIMES ON TR-77, EXCEPT FOR A PERIOD
NOT TO EXCEED 150 CONSECUTIVE CALENDAR DAYS, WHEN
THROUGH TRAFFIC MAY BE DETOURED AS SHOWN ON SHEET 12.
A DISINCENTIVE SHALL BE ASSESSED ACCORDING TO THE
LANE VALUE CONTRACT TABLE.

PAYMENT FOR THE ERECTION, MAINTENANCE AND REMOVAL FOR THE DETOUR SIGNING SHALL BE MADE PER ITEM 614- DETOUR SIGNING.

SR-48

A MINIMUM OF 2 LANES OF TRAFFIC IN EACH DIRECTION SHALL BE MAINTAINED AT ALL TIMES ON SR-48 BY USE OF THE EXISTING PAVEMENT EXCEPT AS NOTED IN THE PERMITTED LANE CLOSURE TIME NOTE.

NO WORK SHALL BE PERFORMED AND ALL EXISTING LANES SHALL BE OPEN TO TRAFFIC DURING THE FOLLOWING DESIGNATED HOLIDAYS OR EVENTS:

CHRISTMAS	FOURTH OF JULY							
NEW YEARS	LABOR DAY							
MEMORIAL DAY	THANKSGIVING							

THE PERIOD OF TIME THAT THE LANES ARE TO BE OPEN DEPENDS ON THE DAY OF THE WEEK ON WHICH THE HOLIDAY OR EVENT FALLS. THE FOLLOWING SCHEDULE SHALL BE USED TO DETERMINE THIS PERIOD:

DAY OF HOLI	DAY TIME ALL LANES
OR EVENT	MUST BE OPEN TO TRAFFIC
SUNDA Y	12:00N FRIDAY THROUGH 6:00AM MONDAY
MONDAY	12:00N FRIDAY THROUGH 6:00AM TUESDAY
TUESDA Y	12:00N MONDAY THROUGH 6:00AM WEDNESDA
WEDNESDAY	12:00N TUESDAY THROUGH 6:00AM THURSDAY
THURSDA Y	12:00N WEDNESDAY THROUGH 6:00AM FRIDAY
THURSDA Y	(THANKSGIVING ONLY)
	6:00AM WEDNESDAY THROUGH 6:00AM MONDA

FRIDAY 12:00N THURSDAY THROUGH 6:00AM MONDAY SATURDAY 12:00N FRIDAY THROUGH 6:00AM MONDAY

SHOULD THE CONTRACTOR FAIL TO MEET ANY OF THESE REQUIREMENTS, THE CONTRACTOR SHALL BE ASSESSED A DISINCENTIVE PER THE LANE VALUE CONTRACT (PN 127).

LENGTH AND DURATION OF LANE CLOSURES AND RESTRICTIONS SHALL BE AT THE APPROVAL OF THE ENGINEER. IT IS THE INTENT TO MINIMIZE THE IMPACT TO THE TRAVELING PUBLIC. LANE CLOSURES OR RESTRICTIONS OVER SEGMENTS OF THE PROJECT IN WHICH NO WORK IS ANTICIPATED WITHIN A REASONABLE TIMEFRAME, AS DETERMINED BY THE ENGINEER, SHALL NOT BE PERMITTED. THE LEVEL OF UTILIZATION OF MAINTENANCE OF TRAFFIC DEVICES SHALL BE COMMENSURATE WITH THE WORK IN PROGRESS.

NOTICE OF CLOSURE SIGNS (W20-H13) SHALL BE ERECTED BY THE CONTRACTOR PRIOR TO THE SCHEDULED ROAD OR RAMP CLOSURE IN ACCORDANCE WITH THE NOTICE OF CLOSURE TIME-TABLE BELOW. LAT THE APPROVAL OF THE ENGINEER. PORTABLE CHANGEABLE MESSAGE SIGNS MAY BE USED IN LIEU OF THE STANDARD FLATSHEET SIGN FOR CLOSURE DURATIONS OF LESS THAN 1 WEEKT

THE SIGNS SHALL BE ERECTED ON THE RIGHT-HAND SIDE OF THE ROAD/RAMP FACING TRAFFIC. THEY SHALL BE PLACED SO AS NOT TO INTERFERE WITH THE VISIBILITY OF ANY OTHER TRAFFIC CONTROL SIGNS. ON ROADWAYS, THEY SHOULD BE ERECTED AT OR NEAR THE POINT OF CLOSURE. THE SIGNS MAY BE ERECTED ANYWHERE ON RAMPS AS LONG AS THEY ARE VISIBLE TO THE MOTORISTS USING THE RAMP. ON ENTRANCE RAMPS. THE SIGN SHALL BE ERECTED WELL IN ADVANCE OF THE MERGE AREA TO AVOID DISTRACTING MOTORISTS.

NOTICE TEM I OF 0	OF CLOSURE S. DURATION CLOSURE TO	IGN TIME TABLE SIGN DISPLAYED O PUBLIC
RAMP &	>=2 WEEKS	14 CALENDAR DAYS PRIOR TO CLOSURE
ROAD	> 12 HOURS & < 2 WEEKS	7 CALENDAR DAYS PRIOR TO CLOSURE
CLOSURES	< 12 HOURS	2 BUSINESS DAYS PRIOR TO CLOSURE

THE SIGN SHALL DISPLAY THE DATE OF THE CLOSURE IN MMM-DD FORMAT AND THE NUMBER OF DAYS OF THE CLOSURE. THE LAST LINE OF THE W20-H13 SIGN LISTS A PHONE NUMBER WHICH A MOTORIST MAY CALL FOR ADDITIONAL INFORMATION. THIS IS TO BE A SPECIFIC OFFICE WITHIN THE DISTRICT RATHER THAN THE GENERAL SWITCHBOARD NUMBER.

PAYMENT FOR THIS WORK SHALL BE INCLUDED IN THE LUMP SUM BID FOR ITEM 614. MAINTAINING TRAFFIC AND SHALL INCLUDE FURNISHING, ERECTING, MAINTAINING AND REMOVING THE SIGNS INCLUDING SUPPORTS.

THE CONTRACTOR SHALL PROVIDE, ERECT AND MAINTAIN STANDARD 48 X 30 INCH ROAD CLOSED SIGNS, SIGN SUPPORTS, BARRICADES AND LIGHTS, AS DETAILED IN SCD MT-101.60 AT THE FOLLOWING LOCATIONS DURING PERIODS IN WHICH THE AFFECTED ROADS ARE CLOSED TO TRAFFIC:

ON NORTHBOUND TR-77 JUST WEST OF THE INTERSECTION WITH RAMPS A AND C.

ON SOUTHBOUND TR-77 JUST EAST OF THE INTERSECTION WITH DEERFIELD ROAD.

THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN INCLUDED IN THE GENERAL SUMMARY FOR USE AS DETERMINED BY THE ENGINEER FOR THE MAINTENANCE OF TRAFFIC:

410,	TRAFFIC COMPACTED SURFACE, TYPE B	6 CU. YD.
614,	ASPHALT CONCRETE FOR MAINTAINING TRAFFIC	10 CU. YD.
616,	WATER	4 M. GAL.

YD.

ALL WORK AND TRAFFIC CONTROL DEVICES SHALL BE IN ACCORDANCE WITH C&MS 614 AND OTHER APPLICABLE PORTIONS OF THE SPECIFICATIONS, AS WELL AS THE OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES.

PAYMENT FOR ALL LABOR, EQUIPMENT AND MATERIALS SHALL BE INCLUDED IN THE LUMP SUM CONTRACT PRICE FOR ITEM 614, MAINTAINING TRAFFIC, UNLESS SEPARATELY ITEMIZED IN THE PLAN.

SR-48 MEDIAN ACCESS

IF NECESSARY, MEDIAN ACCESS SHALL CONFORM TO ODOT SCD MT-103.10. THE COST TO CONSTRUCT AND MAINTAIN THIS ACCESS IS TO BE INCLUDED IN ITEM 614 - MAINTAINING TRAFFIC.

CLEARANCE NOTICE FOR SR-48 TRAFFIC

ANY WORK (FALSEWORK, TRAFFIC PROTECTION, CONTAINMENT, ETC.) OVER LIVE TRAFFIC BY THE CONTRACTOR THAT REDUCES THE EXISTING VERTICAL CLEARANCE IS PROHIBITED UNLESS 30 DAYS ADVANCED NOTICE IS PROVIDED WITH NEW PROPOSED VERTICAL CLEARANCES. THE CONTRACTOR SHALL PROVIDE FIELD MEASUREMENTS BEFORE ALLOWING TRAFFIC UNDERNEATH. IF ANY WORK IS TO OCCUR BELOW 14'-6". THEN SIGNS ON THE STRUCTURE AND ADVANCE WARNING SIGNS SHALL BE INSTALLED A MINIMUM OF 2 WEEKS PRIOR TO PERFORMING SUCH WORK. SIGNING SHALL BE IN ACCORDANCE WITH THE "OHIO MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES" (OMUTCD) AND THE OHIO "TRAFFIC ENGINEERING MANUAL" (TEM). NO WORK OVER TRAFFIC SHALL OCCUR WITH A VERTICAL CLEARANCE LESS THAN 14'-O". LOWERING THE VERTICAL CLEARANCE DURING CONSTRUCTION IS CONSIDERED THE CONTRACTOR'S MEANS AND METHODS OF ACCOMPLISHING THE WORK, AND THEREFORE THE STATE IS NOT RESPONSIBLE FOR ANY DAMAGE FROM VEHICULAR IMPACTS THAT MAY RESULT AS PER 107.10.

PERMITTED LANE CLOSURE TIMES

SHORT TERM LANE CLOSURES ARE THOSE WHICH ARE PERMITTED BY THE PERMITTED LANE CLOSURE NOTE. THESE TIMES SHALL NOT BE REVISED WITHOUT PRIOR APPROVAL FROM THE DISTRICT 8 WORK ZONE TRAFFIC CONTROL ENGINEER. SHORT TERM LANE CLOSURES SHALL ONLY BE IMPLEMENTED WHEN WORK IS BEING CONTINUOUSLY PERFORMED IN THE LANE. THE CLOSURE SHALL BE REMOVED AS SOON AS POSSIBLE AFTER WORK HAS STOPPED. PERMITTED LANE CLOSURES SHALL ONLY BE ALLOWED DURING THE TIMES SPECIFIED IN THE LANE VALUE CONTRACT TABLE INCLUDED IN THESE PLANS. NO LANE OR SHOULDER CLOSURE SHALL BE IN PLACE WHEN NO WORK IS BEING PERFORMED.

SHORT TERM LANE CLOSURES ARE NOT PERMITTED ON SOUTHBOUND SR-48 FROM 6 AM TO 9 AM, ON NORTHBOUND SR-48 FROM 3 PM TO 7 PM, AND NORTH AND SOUTHBOUND UP AND OVER (@ TR-77 RAMPS) FROM 6 AM TO 9 PM.

SHORT DURATION CLOSURES OF 2 LANES ON SR-48 FOR THE ERECTION AND REMOVAL OF BEAMS SHALL BE PER ODOT SCD MT-99.60.

LANE VALUE CONTRACT TABLE

	DESCRIPTION OF CRITICAL LANE/RAMP TO BE MAINTAINED	RESTRICTED TIME PERIOD	TIME UNIT	DISINCENTIVE \$ PER TIME UNIT
	NB SR-48 FROM MM 10 TO MM 11	3 PM TO 7 PM	1 MINUTE	\$120
	SB SR-48 FROM MM 11 TO MM 10	6 AM TO 9 AM	1 MINUTE	\$120
	SR-48 UP AND OVER @ TR-77 RAMPS	6 AM TO 9 PM	1 MINUTE	\$120
	TR-77 (ROAD CLOSURE)	120 DAYS	1 DAY	\$3,700
<	\checkmark \land \land \land \land \land \land \land \land		$ \land \land \land \land$	

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

NOTIFICATION OF TRAFFIC RESTRICTIONS

THROUGHOUT THE DURATION OF THE PROJECT, THE CONTRACTOR SHALL NOTIFY THE PROJECT ENGINEER IN WRITING OF ALL TRAFFIC RESTRICTIONS AND UPCOMING MAINTENANCE OF TRAFFIC CHANGES. THE CONTRACTOR SHALL ENSURE THE WRITING OF ALL TRAFFIC RESTRICTIONS AND UPCOMING MAINTENANCE OF TRAFFIC CHANGES. THE CONTRACTOR SHALL ENSURE THE WRITTEN NOTIFICATION IS SUBMITTED IN A TIMELY MANNER TO ALLOW THE PROJECT ENGINEER TO MEET THE REQUIRED TIMEFRAMES SET FORTH IN THE TABLE BELOW TO INFORM THE SPECIAL HAULING PERMITS SECTION (HAULING.PERMITS@DOT.OHIO.GOV) AND THE DISTRICT PUBLIC INFORMATION OFFICE (PIO). THIS NOTIFICATION SHALL BE RECEIVED BY THE PROJECT ENGINEER PRIOR TO THE PHYSICAL SETUP OF ANY APPLICABLE SIGNS OR MESSAGE BOARDS.

INFORMATION SHOULD INCLUDE, BUT IS NOT LIMITED TO, ALL CONSTRUCTION ACTIVITIES THAT IMPACT OR INTERFERE WITH TRAFFIC AND SHALL LIST THE SPECIFIC LOCATION. TYPE OF WORK, ROAD STATUS, DATE AND TIME OF RESTRICTION, DURATION OF RESTRICTION. NUMBER OF LANES MAINTAINED. NUMBER OF LANES CLOSED, MINIMUM VERTICAL CLEARANCE, MINIMUM WIDTH OF DRIVABLE PAVEMENT, DETOUR ROUTES, IF APPLICABLE, AND ANY OTHER INFORMATION REQUESTED BY THE PROJECT ENGINEER.

NOTIFIC	ATION TIME TABL	Ε								
ITEM	DURATION OF CLOSURE	NOTICE DUE TO PERMITS & PIO								
RAMP & ROAD CLOSURES	>= 2 WEEKS	21 CALENDAR DAYS PRIOR TO CLOSURE								
	> 12HOURS	14 CALENDAR DAYS								
	& < 2 WEEKS	PRIOR TO CLOSURE								
	< 12 HOURS	4 CALENDAR DAYS PRIOR TO CLOSURE								
LANE CLOSURES & RESTRICTION	>= 2 WEEKS	14 CALENDAR DAYS PRIOR TO CLOSURE								
	< 2 WEEKS	5 BUSINESS DAYS PRIOR TO CLOSURE								
START OF CONSTRUCTIC TRAFFIC PAT CHANGES	DN & N/A TERN	14 CALENDAR DAYS PRIOR TO IMPLEMENTATION								
ANY UNFORESEEN CONDITIONS NOT SPECIFIED IN THE PLANS REQUIRING TRAFFIC RESTRICTIONS SHALL ALSO BE REPORTED										

EXTRA ADVANCE WARNING SIGNS

AN EXTRA ADVANCE WARNING SIGN GROUP CONSISTS OF TWO W20-1 (ROAD WORK AHEAD) SIGNS, TWO W20-5 (RIGHT /LEFT LANE CLOSED AHEAD) SIGNS WITH W16-3A DISTANCE PLATES. AND TWO W3-H7 (WATCH FOR STOPPED TRAFFIC) SIGNS AND REQUIRED WARNING LIGHTS.

TO THE PROJECT ENGINEER USING THE NOTIFICATION TIME TABLE.

THE CONTRACTOR SHALL PROVIDE, ERECT, MAINTAIN AND REMOVE EXTRA ADVANCE WARNING SIGN GROUPS AS SHOWN ON TRAFFIC SCD MT-95.50 AT THE FOLLOWING DISTANCES IN ADVANCE OF THE LANE TAPERS WITH THE APPROPRIATE W16-3A DISTANCE PLATES:

1) LANE TAPER AT STATION 537+76, PHASES 1A & 4; PROVIDE A SIGN GROUP AT 2 MILES. 2) LANE TAPER AT STATION 537+68, PHASES 2 & 5; PROVIDE A SIGN GROUP AT 2 MILES.

PAYMENT FOR PROVIDING, ERECTING, MAINTAINING AND REMOVING EXTRA ADVANCE WARNING SIGN GROUPS SHALL BE INCLUDED IN THE LUMP SUM BID FOR ITEM 614, MAINTAINING TRAFFIC.

F 0 Ζ C ш ш ∢ £ ⊢ ш 0 ш C Ζ ∢ Ζ ш F AIN Σ

S

ш

4 D ω £ 4 ∡ с ч ◄ ≥

92

ITEM 614, PORTABLE CHANGEABLE MESSAGE SIGNS, AS PER PLAN (CONTINUED)

ALL MESSAGES TO BE DISPLAYED ON THE SIGN WILL BE PROVIDED BY THE ENGINEER. A LIST OF ALL REQUIRED PRE-PROGRAMMED MESSAGES WILL BE GIVEN TO THE CONTRACTOR AT THE PROJECT PRECONSTRUCTION CONFERENCE. THE SIGN SHALL HAVE THE CAPABILITY TO STORE UP TO 99 MESSAGES. MESSAGE MEMORY OR PRE-PROGRAMMED DISPLAYS SHALL NOT BE LOST AS A RESULT OF POWER FAILURES TO THE ON-BOARD COMPUTER. THE SIGN LEGEND SHALL BE CAPABLE OF BEING CHANGED IN THE FIELD. THREE-LINE PRESENTATION FORMATS WITH UP TO SIX MESSAGE PHASES SHALL BE SUPPORTED. PCMS FORMAT SHALL PERMIT THE COMPLETE MESSAGE FOR EACH PHASE TO BE READ AT LEAST TWICE.

THE PCMS SHALL CONTAIN AN ACCURATE CLOCK AND PROGRAMMING LOGIC WHICH WILL ALLOW THE SIGN TO BE ACTIVATED, DEACTIVATED OR MESSAGES CHANGED AUTOMATICALLY AT DIFFERENT TIMES OF THE DAY FOR DIFFERENT DAYS OF THE WEEK.

THE PCMS SHALL CONTAIN A CELLULAR TELEPHONE DATA LINK WHICH WILL (IN ACTIVE CELLULAR PHONE AREAS) ALLOW REMOTE SIGN ACTIVATION, MESSAGE CHANGES, MESSAGE ADDITIONS AND REVISIONS TO TIME OF DAY PROGRAMS. THE SYSTEM SHALL ALSO PERMIT VERIFICATION OF CURRENT AND PROGRAMMED MESSAGES. ONE REMOTE DATA INPUT DEVICE (LAPTOP COMPUTER PLUS MODEM OR EQUIVALENT) SHALL BE FURNISHED FOR USE BY THE DISTRICT TRAFFIC ENGINEER, OR EQUIVALENT, AND SHALL BE INSURED AGAINST THEFT.) THE PCMS UNIT SHALL BE MAINTAINED IN GOOD WORKING ORDER BY THE CONTRACTOR IN ACCORDANCE WITH THE PROVISIONS OF C&MS 614.07. THE CONTRACTOR SHALL, PRIOR TO ACTIVATING THE UNIT, MAKE ARRANGEMENTS, WITH AN AUTHORIZED SERVICE AGENT FOR THE PCMS, TO ASSURE PROMPT SERVICE IN THE EVENT OF FAILURE. ANY FAILURE SHALL NOT RESULT IN THE SIGN BEING OUT OF SERVICE FOR MORE THAN 12 HOURS, INCLUDING WEEKENDS. FAILURE TO COMPLY MAY RESULT IN AN ORDER TO STOP WORK AND OPEN ALL TRAFFIC LANES AND/OR IN THE DEPARTMENT TAKING APPROPRIATE ACTION TO SAFELY CONTROL TRAFFIC. THE ENTIRE COST TO CONTROL TRAFFIC ACCRUED BY THE DEPARTMENT DUE TO THE CONTRACTOR'S NONCOMPLIANCE, WILL BE DEDUCTED FROM MONEYS DUE, OR TO BECOME DUE THE CONTRACTOR ON HIS CONTRACT.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR 24-HOUR-PER-DAY OPERATION AND MAINTENANCE OF THESE SIGNS ON THE PROJECT FOR THE DURATION OF THE PHASES WHEN THE PLAN REQUIRES THEIR USE.

PAYMENT FOR THE ABOVE DESCRIBED ITEM SHALL BE AT THE CONTRACT UNIT PRICE. PAYMENT SHALL INCLUDE ALL LABOR, MATERIALS, EQUIPMENT, FUELS, LUBRICATING OILS, SOFTWARE, HARDWARE, AND INCIDENTALS TO PERFORM THE DESCRIBED WORK.

614,	PORTABLE CHANGEABLE MESSAGE	20 SIGN
	SIGN, AS PER PLAN	MONTHS
	(ASSUMING 5 PCMS FOR 4 MONTHS)	

ITEM 614 - LAW ENFORCEMENT OFFICER (WITH PATROL CAR) FOR ASSISTANCE DURING CONSTRUCTION OPERATIONS

USE OF LAW ENFORCEMENT OFFICERS (LEOS) BY CONTRACTORS OTHER THAN THE USES SPECIFIED BELOW WILL NOT BE PERMITTED AT PROJECT COST. LEOS SHOULD NOT BE USED WHERE THE OMUTCD INTENDS THAT FLAGGERS BE USED.

IN ADDITION TO THE REQUIREMENTS OF C&MS 614 AND THE OMUTCD, A UNIFORMED LEO WITH AN OFFICIAL PATROL CAR (CAR WITH TOP-MOUNTED EMERGENCY FLASHING LIGHTS AND COMPLETE MARKINGS OF THE APPROPRIATE LAW ENFORCEMENT AGENCY) SHALL BE PROVIDED FOR THE FOLLOWING TRAFFIC CONTROL TASKS:

- DURING THE ENTIRE ADVANCE PREPARATION AND CLOSURE SEQUENCE WHERE COMPLETE BLOCKAGE OF TRAFFIC IS REQUIRED. - DURING A TRAFFIC SIGNAL INSTALLATION WHEN IMPACTING THE NORMAL FUNCTION OF THE SIGNAL OR THE FLOW OF TRAFFIC, OR WHEN TRAFFIC NEEDS TO BE DIRECTED THROUGH AN ENERGIZED TRAFFIC SIGNAL CONTRARY TO THE SIGNAL DISPLAY (E.G., DIRECTING MOTORISTS THROUGH A RED LIGHT).

IN ADDITION TO THE REQUIREMENT OF C&MS 614 AND THE OMUTCD, A UNIFORMED LEO WITH AN OFFICIAL PATROL CAR (CAR WITH TOP-MOUNTED EMERGENCY FLASHING LIGHTS AND COMPLETE MARKINGS OF THE APPROPRIATE LAW ENFORCEMENT AGENCY) SHOULD BE PROVIDED FOR THE FOLLOWING TRAFFIC CONTROL TASKS AS APPROVED BY THE ENGINEER:

- FOR LANE CLOSURES: DURING INITIAL SET-UP PERIODS, TEAR DOWN PERIODS, SUBSTANTIAL SHIFTS OF A CLOSURE POINT OR WHEN A NEW LANE CLOSURE ARRANGEMENTS ARE INITIATED FOR LONG-TERM LANE CLOSURES/SHIFTS (FOR THE FIRST AND LAST DAY OF MAJOR CHANGES IN TRAFFIC CONTROL SETUP). - FOR OPERATIONS WITHOUT POSITIVE PROTECTION OCCURRING WITHIN 10 FEET OF AN OPEN TRAVELED LANE THAT MEET ALL OF THE FOLLOWING CRITERIA:

> - ON A MULTI-LANE DIVIDED INTERSTATE, OTHER FREEWAY OR EXPRESSWAY; AND

> - AN AUTHORIZED SPEED LIMIT OF 45 MPH OR GREATER THAT IS IN EFFECT AT THE TIME OF THE OPFRATION: AND

- AADT OF 50,000 (OR AADT OF 30,000 WITH 25% OR HIGHER PERCENT TRUCKS)

"WITHOUT POSITIVE PROTECTION" MEANS USE OF DRUMS, CONES, SHADOW VEHICLE, ETC, WITHOUT PROTECTION FROM PORTABLE BARRIER OR OTHER RIGID BARRIER ALONG THE WORK AREA. THIS PHRASE DOES NOT APPLY TO CASES WHERE POSITIVE PROTECTION IS REQUIRED. MOBILE OPERATIONS ARE REGARDED AS "WITHOUT POSITIVE PROTECTION". FOR WORK ZONES USING A COMBINATION OF BARRIER AND TEMPORARY TRAFFICE CONTROL DEVICES (CONES, DRUMS, ETC), THE DESIGNATION SHALL BE BASED UPON THE TYPE OF DEVICES USED IN THE AREA THAT WORKERS ARE LOCATED.

IF MULTIPLE ACTIVE LOCALIZED QUALIFYING WORK AREAS OCCUR WITHOUT POSITIVE PROTECTION, PER MAINLINE TRAFFIC DIRECTION, PROVIDE A UNIFORMED LEO AND OFFICIAL PATROL CAR IN ADVANCE OF:

- THE FIRST ACTIVE WORK AREA THAT DRIVERS WILL ENCOUNTER; OR
- THE ACTIVE WORK AREA LATERALLY CLOSEST TO THE
- OPEN TRAVELED LANE; OR - OTHER LOCATION AS APPROVED BY THE ENGINEER.

THE UNIFORMED LEO AND OFFICIAL PATROL CAR MAY RELOCATE AMONG THE LISTED LOCATIONS AS APPROPRIATE AS THE OPERATIONS PROCEED IN THE LOCALIZED QUALIFYING WORK AREAS.

IN GENERAL, LEOS SHOULD BE POSITIONED IN ADVANCE OF AND ON THE SAME SIDE AS THE LANE RESTRICTION (OR AT THE POINT OF ROAD CLOSURE) AND TO MANUALLY CONTROL TRAFFIC MOVEMENTS THROUGH SIGNALIZED INTERSECTIONS IN WORK ZONES.

LEOS SHOULD NOT FORGO THEIR TRAFFIC CONTROL RESPONSIBILITIES TO APPREHEND MOTORISTS FOR ROUTINE TRAFFIC VIOLATIONS. HOWEVER, IF A MOTORIST'S ACTIONS ARE CONSIDERED TO BE RECKLESS, THEN PURSUIT OF THE MOTORIST IS APPROPRIATE.

THE LEOS WORK AT THE DIRECTION OF THE CONTRACTOR. THE CONTRACTOR IS RESPONSIBLE FOR SECURING THE SERVICES OF THE LEOS WITH THE APPROPRIATE AGENCIES AND COMMUNICATING THE INTENTIONS OF THE PLANS WITH RESPECT TO DUTIES OF THE LEOS. THE ENGINEER SHALL HAVE FINAL CONTROL OVER THE LEO'S DUTIES AND PLACEMENT, AND WILL RESOLVE ANY ISSUES THAT MAY ARISE BETWEEN THE TWO PARTIES.

ENSURE PROVIDED LEOS HAVE BEEN TRAINED APPROPRIATE TO THE JOB DECISIONS THEY ARE REQUIRED TO MAKE WHILE ON THE PROJECT, IN ACCORDANCE WITH C&MS 614.03. THE LEO SHALL REPORT IN TO THE CONTRACTOR PRIOR TO THE START OF THE SHIFT, IN ORDER TO RECEIVE INSTRUCTIONS REGARDING THE SPECIFIC WORK ASSIGNMENTS DURING HIS/HER SHIFT. THE LEO IS EXPECTED TO STAY AT THE PROJECT SITE FOR THE ENTIRE DURATION OF HIS/HER SHIFT. THE LEO SHALL REPORT TO THE CONTRACTOR AT THE END OF HIS/HER SHIFT. SHOULD IT BE NECESSARY TO LEAVE THE PROJECT SITE, THE LEO SHALL NOTIFY THE ENGINEER. THE CONTRACTOR SHALL PROVIDE THE LEO WITH A TWO-WAY COMMUNICATION DEVICE WHICH SHALL BE RETURNED TO THE CONTRACTOR AT THE END OF HIS/HER SHIFT.

LEOS (WITH PATROL CAR) REQUIRED BY THE TRAFFIC MAINTENANCE TASKS ABOVE SHALL BE PAID FOR ON A UNIT PRICE (HOURLY) BASIS UNDER ITEM 614, LAW ENFORCEMENT OFFICER (WITH PATROL CAR) FOR ASSISTANCE. THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN CARRIED TO THE GENERAL SUMMARY:

614, LAW ENFORCEMENT OFFICER WITH PATROL CAR FOR ASSISTANCE

THE HOURS PAID SHALL INCLUDE ANY MINIMUM SHOW-UP TIME REQUIRED BY THE LAW ENFORCEMENT AGENCY INVOLVED.

ANY ADDITIONAL COSTS (ADMINISTRATIVE OR OTHERWISE) INCURRED BY THE CONTRACTOR TO OBTAIN THE SERVICES OF A LEO ARE INCLUDED WITH THE BID UNIT PRICE FOR ITEM 614, LAW ENFORCEMENT OFFICER WITH PATROL CAR FOR ASSISTANCE.

DETECTION MAINTENANCE

IF THE VEHICLE DETECTION BECOMES UNEXPECTEDLY DISABLED, REQUIRES MODIFICATION, OR IS SCHEDULED TO BE TEMPORARILY REMOVED DURING THE CONSTRUCTION PROJECT, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE PROJECT ENGINEER AND DISTRICT TRAFFIC ENGINEER.

IF THE LOSS OF VEHICLE DETECTION IS KNOWN PRIOR TO THE START OF CONSTRUCTION, IT SHALL BE DISCUSSED AT THE PRECONSTRUCTION MEETING. AT SUCH TIME, THE DISTRICT TRAFFIC ENGINEER SHALL ADVISE THE PROJECT ENGINEER AND CONTRACTOR ON THE APPROPRIATE ACTION TO RECTIFY ANY LOSS OF VEHICLE DETECTION. THIS MAY INCLUDE PLACING THE TRAFFICE SIGNAL ON MINIMUM OR MAXIMUM RECALL, MODIFYING THE MINIMUM GREEN TIMES, AND REMOVING THE MALFUNCTIONING DETECTION FROM SERVICE. WHERE NON-INTRUSIVE DETECTION (I.E. VIDEO, RADAR) ALREADY EXISTS, THE CONTRACTOR SHALL INSURE THAT DETECTION IS OPERATING AND MAINTAINED BY RECONFIGURING THE DETECTION UNITS ACCORDINGLY DURING ALL CONSTRUCTION PHASES. THIS IS TO AVOID THE SIGNAL FROM MAXING OUT THE EFFECTED SIGNAL PHASE AND CREATING UNNECESSARY DELAYS.

LOCATIONS WHERE NON-INTRUSIVE DETECTION IS PROPOSED AND THE EXISTING VEHICLE DETECTION IS TO BE ABANDONED, THE NON-INTRUSIVE VEHICLE DETECTION SHALL BE INSTALLED, CONFIGURED AND MADE FULLY FUNCTIONAL PRIOR TO THE EXISTING DETECTION BEING DISABLED. THE CONTRACTOR SHALL CONTINUE TO MAINTAIN AND MODIFY THE DETECTION UNTIL FINAL ACCEPTANCE OF THE TRAFFIC SIGNAL. THIS IS TO ENSURE VEHICLE DETECTION REMAINS FULLY FUNCTIONAL THROUGHOUT CONSTRUCTION.

AT THE KINGSVIEW DRIVE INTERSECTION, ADJUST RADAR DETECTION AS NECESSARY FOR THE SOUTHBOUND LEFT TURN PHASE DURING LEFT TURN LANE CLOSURES.

DELINEATION OF PORTABLE AND PERMANENT BARRIER

BARRIER REFLECTORS AND OBJECT MARKERS SHALL BE INSTALLED ON ALL PORTABLE BARRIER (PB) USED FOR TRAFFIC CONTROL; AND, ON PERMANENT CONCRETE BARRIER (INCLUDING BRIDGE PARAPETS) LOCATED WITHIN 5 FEET OF THE EDGE OF THE ADJACENT TRAVEL LANE.

 \bigcirc

 \bigcirc

DELINEATION OF PORTABLE AND PERMANENT BARRIER (CONTINUED)	LCULATEC MDK CHECKED MWZ	
BARRIER REFLECTORS SHALL CONFORM TO C&MS 626, EXCEPT THAT THE SPACING SHALL BE AS PER TRAFFIC SCD MT-101.70. OBJECT MARKERS AND THEIR INSTALLATION SHALL CONFORM TO C&MS 614.03 AND SCD MT-101.70. WHEN THE PB CONTAINS GLARE SCREEN, ONE SET OF THREE VERTICAL STRIPES OF SHEETING SHALL BE CONSIDERED EQUIVALENT TO AN OBJECT MARKER, ONE WAY.	CP	
INCREASED BARRIER DELINEATION, AS SPECIFIED HEREIN, SHALL BE INSTALLED ON ALL PB AND PERMANENT CONCRETE BARRIER LOCATED WITHIN 5 FEET OF THE EDGE OF THE TRAVELED LANE UNDER EITHER OF THE FOLLOWING CONDITIONS: ALONG TAPERS AND TRANSITION AREAS; OR ALONG CURVES (OUTSIDE ONLY) WITH DEGREE OF CURVATURE GREATER THAN OR EQUAL TO 3 DEGREES.	IOTES	
THE INCREASED BARRIER DELINEATION SHALL CONSIST OF EITHER DELINEATION PANELS OR THE TRIPLE STACKING OF WORK ZONE BARRIER REFLECTORS.	AL N	
DELINEATION PANELS SHALL CONSIST OF PANELS OF DELINEATION, APPROXIMATELY 34 INCHES LONG AND 6 INCHES WIDE AND SHALL BE "CRIMPED." PANELS SHALL BE INSTALLED AND SPACED PER TRAFFIC SCD MT-101.70.	GENER	
TRIPLE-STACKED BARRIER REFLECTORS SHALL CONSIST OF ALIGNING THREE BARRIER REFLECTORS VERTICALLY, AT LOCATIONS WHERE A SINGLE BARRIER REFLECTOR WOULD BE OTHERWISE ATTACHED. THERE SHALL BE NO OPEN SPACE BETWEEN THE ADJACENT BARRIER REFLECTORS. THE TRIPLESTACKED BARRIER REFLECTORS SHALL CONFORM TO C&MS 626, EXCEPT THAT THEY SHALL BE SPACED AND ALIGNED PER TRAFFIC SCD MT-101.70.	TRAFFIC	
THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN INCLUDED IN THE PLANS AND CARRIED TO THE GENERAL SUMMARY:	0 Е	
614, BARRIER REFLECTOR, TYPE 1, ONE WAY 72 EACH 614, OBJECT MARKER, ONE-WAY 48 EACH 614, INCREASED BARRIER DELINEATION 431 FT	ЕС	
PAYMENT SHALL BE FULL COMPENSATION FOR ALL MATERIAL, LABOR, INCIDENTALS AND EQUIPMENT NECESSARY FOR FURNISHING, INSTALLING, MAINTAINING AND REMOVING EACH OF THE ABOVE ITEMS.	TENAN	
ALONG RUNS OF INCREASED BARRIER DELINEATION WHERE THIS ITEM IS PROVIDED, THE QUANTITY SHALL BE MEASURED AS THE ENTIRE LENGTH OF THE RUN OF INCREASED BARRIER DELINEATION, INCLUDING THE SPACES BETWEEN THE INDIVIDUAL DELINEATION PANELS OR STACKS OF BARRIER REFLECTORS.	MAIN	
DELINEATION OF TEMPORARY AND PERMANENT GUARDRAIL		
BARRIER REFLECTORS SHALL BE INSTALLED ON ALL TEMPORARY GUARDRAIL USED FOR TRAFFIC CONTROL AND ON ALL PERMANENT GUARDRAIL LOCATED WITHIN 5 FEET OF THE EDGE OF THE ADJACENT TRAVEL LANE. BARRIER REFLECTORS SHALL CONFORM TO C&MS 626.		
OBJECT MARKERS SHALL BE INSTALLED ON ALL TEMPORARY AND PERMANENT GUARDRAIL LOCATED WITHIN 5 FEET OF THE EDGE OF THE ADJACENT TRAVEL LANE. GUARDRAIL-MOUNTING OF OBJECT MARKERS SHALL BE MADE BY INSTALLING THE OBJECT MARKERS ON THE EXTENSION BLOCKS RATHER THAN DIRECTLY ONTO THE GUARDRAIL ITSELF. OBJECT MARKERS SHALL CONFORM TO C&MS 614.03 AND THE SPACING SHALL BE APPROXIMATELY 50 FEET WITH A 25 FOOT OFFSET FROM THE BARRIER REFLECTORS.	8-48-11.54 ART 1	
THE FOLLOWING ESTIMATED QUANTITIES HAVE BEEN INCLUDED IN THE PLANS AND CARRIED TO THE GENERAL SUMMARY:	V AF P	
614, BARRIER REFLECTOR, TYPE 3, ONE WAY 15 EACH 614, OBJECT MARKER, ONE-WAY 7 EACH		
PAYMENT SHALL BE FULL COMPENSATION FOR ALL MATERIAL, LABOR, INCIDENTALS AND EQUIPMENT NECESSARY FOR FURNISHING, INSTALLING, MAINTAINING AND REMOVING THE ABOVE ITEM(S)	10	

						SHEE	T NUM.						PA	RT.		ITEM	GRAND		
	28	29	30	57	58	63							01/S>2/BR	,02/СМQ/О Т	IIEM	EXT	TOTAL	UNIT	
		40											40		301	46000	40	СҮ	ASPHALT CONCRETE BASE, PG64-22
	294	346											485	155	304	20000	640	СҮ	AGGREGATE BASE
	379	243											521	101	407	20000	622	GAL	NON-TRACKING TACK COAT
	103	71											145	29	441	50000	174	CY	ASPHALT CONCRETE SURFACE COURSE
0	176	99											234	41	441	50200	275	CY	ASPHALT CONCRETE INTERMEDIATE COU
A	1,063	1,262											2,325		452	13010	2,325	SY	9" NON-REINFORCED CONCRETE PAVEME
			25			$\gamma \sim \gamma$	$P \cup \cup$	$P \cup \cup$	$\mathcal{P}^{\mathcal{O}\mathcal{O}}$	$\sum_{i=1}^{n}$	$\sum_{i=1}^{n}$	$\sum_{i=1}^{i}$	25		609	24510	25	FT	CURB, TYPE 4-C
			748										748		609	26000	748	FT	CURB, TYPE 6
				118									118		621	00100	118	EACH	RPM
\bigcirc				80									80		621	54000	80	EACH	RAISED PAVEMENT MARKER REMOVED
0		21			21C E								21		626	00110	21	EACH	BARRIER REFLECTOR, TYPE 2, BIDIREC
					216.5								216.5		630	03100	216.5	FT FT	ONF WAY SUPPORT. NO. 3 POST
					6								6		630	08600	6	EACH	SIGN POST REFLECTOR
					100.5								100.5		630	80100	100.5	SF	SIGN, FLAT SHEET
aro					25 5								<u>25</u> 5		630	84900 85100	<u>25</u> 5	EACH EACH	REMOVAL OF GROUND MOUNTED SIGN A
					21								21		630	86002	21	EACH	REMOVAL OF GROUND MOUNTED POST S
M				0.75									0.75		642	00100	0.75		
00:				0.35									0.35		642	00300	0.35	MILE	CENTER LINE, TYPE 1, 4". DOUBLE SOL
3:20				62									62		642	00400	62	FT	CHANNELIZING LINE, 8", TYPE 1, WHITE
122				4									4		642	01300	4	EACH	LANE ARROW, TYPE 1
7/20				0.07									0.07		644	00104	0.07	MILE	EDGE LINE, 6", WHITE
3/7				0.09									0.09		644	00104	0.09	MILE	EDGE LINE, 6", YELLOW
+				0.54									0.54		644 644	00200	0.54	MILE FT	LANE LINE, 4", WHITE
She				33									33		644	00500	33	FT	STOP LINE
цб				112									112		644	00600	112	FT	CROSSWALK LINE
02.d				2									2		644	01300	2	EACH	LANE ARROW
2000				0.11									0.11		646	10000	0.11	MILE	EDGE LINE, 4", WHITE
816_1				0.06									0.06		646	10200	0.06	MILE	CENTER LINE, 4", DOUBLE SOLID, YELL
100																			STR
heets.						LS 134							LS 134		202 202	11203 22900	LS 134	SY	PORTIONS OF STRUCTURE REMOVED, O APPROACH SLAB REMOVED
						15							15		503	11100	15		COFFERDAMS AND EXCAVATION BRACING
						LS							LS		503	21300	LS		UNCLASSIFIED EXCAVATION
Roc						171.004							110 0 4 0	10.15.4	500	10000	171.004		FROMY COATER REINFORCING STEEL
ign						131,994							119,840	12,154	509	20001	131,994	LB I B	REINFORCING STEEL . REPLACEMENT OF
Des						4,393							4,393		509	30020	4,393	FT	NO. 4 GFRP DEFORMED BARS
816 \						150							150		510	10001	150	EACH	DOWEL HOLES WITH NONSHRINK, NONME
NIOC						2							2		511	33501	2	EACH	SEMI-INTEGRAL DIAPHRAGM GUIDE, AS I
-1154						39							39		511	45712	39	СҮ	CLASS QCI CONCRETE WITH QC/QA, AB
-48						93							93	122	511	53014	93	CY	CLASS QC3 CONCRETE, MISC .: PARAPET
WAR						370							370	122	511	53014	370	CY	CLASS QC3 CONCRETE, MISC.:SIDEWAEK
.959_																10.55			
079(530							1.053	530	512	10050 10100	530 1.053	5Y 5Y	SEALING OF CONCRETE SURFACES (NON
01/						121							121		512	10600	121	<u>FT</u>	CONCRETE REPAIR BY EPOXY INJECTION
DOV						13							13		512	33000	13	SY	TYPE 2 WATERPROOFING
nts						151							151		512	14000	151	SY	REMOVAL OF EXISTING COATINGS FROM
Clie						3,276							3,276		513	10201	3,276	LB	STRUCTURAL STEEL MEMBERS, LEVEL U
\DE.						2,628							2,628		513	20000	2,628	EACH	WELDED STUD SHEAR CONNECTORS
Ö		<u> </u>	i	<u> </u>		1 /							1 /		010	00000	1 /	1 1 1	JUNDER OTAL STELL, MISCHART OF I

	-	
DESCRIPTION	SEE SHEET NO.	CALCULATED AKB CHECKED MWZ
PAVEMENT (CONTINUED)		
	_	
TYPE 1 (440) DCC4 22		
ITE 1, (440), F604-22 IRSE, TYPE 1, (448)		
NT. CLASS OG IP		
TRAFFIC CONTROL	-	
τιον		>
TONAL		AR
ST		Ň
		Σ
ND DISPOSAL		ns
ND REERECTION	_	
UPPORT AND DISPOSAL	-	AL
ID YELLOW		R R
lb, IELLOW		NE
		Ш
OW		
JCTURE REPAIR (WAR-48-1154)		
VER 20 FOOT SPAN, AS PER PLAN	60	
	_	
,		
EXISTING REINFORCING STEEL, AS PER PLAN	61	
TALLIC GROUT. AS PER PLAN	61	4
	61	ຳ2
UTMENT		1 <u>-</u> -
CONCRETE WITH QC/QA, AS PER PLAN	61	8. T
RUCTURE CONCRETE WITH QC/QA, AS PER PLAN	61	A F
-EPOXY)		A R
XY-URETHANE)		Ň
γ	+	
CONCRETE SURFACES	1	
F, AS PER PLAN	78	(26)
	61	92
AWAOLD WAIN WEINDEN, CONNELLE ELIVEERATION WELDING	/	

	SHEET NUM.			PART.			AL T		ITEM	GRAND								
8	9	10	11	12	63					01/S>2/BR	02/СМQ/О Т	03/CMQ/	(X)	ITEM	EXT	TOTAL	UNIT	
											,	01						STRUCTURE
					2,805					2,805				514	00050	2,805	SF	SURFACE PREPARATION OF EXISTING ST
					2,805					2,805				514	00056	2,805	SF	FIELD PAINTING OF EXISTING STRUCTUR
					2,868					2,868				514	00060	2,868	SF	FIELD PAINTING STRUCTURAL STEEL, IN
					2,000					2,000				514	00504	2,000	MNHR	GRINDING FINS. TEARS. SI IVERS ON EX
					3					3				514	10000	3	EACH	FINAL INSPECTION REPAIR
					LS					LS				514	21001	LS		FIELD PAINTING OF DAMAGED STRUCTUR
					107					10.7				516	10000	10.7	FT	PREFORMED ELASTOMERIC COMPRESSIO
					18					18				516	13600	18	SE	1" PREFORMED ELASTOMENIC COMPRESSION
					158					158				516	13900	158	SF	2" PREFORMED EXPANSION JOINT FILLE
					107					107				516	14020	107	FT	SEMI-INTEGRAL ABUTMENT EXPANSION
					12					12				516	11101	12	EACH	ELASTOMEDIC READING WITH INTERNAL
					12					12				510	44401	12	LAUT	(11.5"X16"x3.75" PAD WITH 12.5"x17"x1.25
					18					18				516	44401	18	EACH	ELASTOMERIC BEARING WITH INTERNAL
																		(12"X19"x3.75" PAD WITH 13"x20"x1.25" F
					LS					LS				516	47001	LS		JACKING AND TEMPORARY SUPPORT OF
	-				110					110				518	21200	110	CY	POROUS BACKETUL WITH GEOTEXTILE E
					172					172				518	40000	172	FT	6" PERFORATED CORRUGATED PLASTIC
					65					65				518	40010	65	FT	6" NON-PERFORATED CORRUGATED PLAS
														510				
					22					22				519	11101	22	SF SV	PATCHING CONCRETE STRUCTURE, AS P
					107					107				526	90010	107	FT	TYPE A INSTALLATION
					412					412				601	20000	412	SY	CRUSHED AGGREGATE SLOPE PROTECTIO
					15					15				816	00110	15	CE.	DOLYMED MODIETED ASPUALT EXPANSIO
					45					45				849	10000	45	LF	DAMAGE ASSESSMENT
					LS					LS				849	10500	LS		SURFACE PREPARATION
					27					27				849	10600	27	HOUR	REPAIRING DAMAGED MEMBERS BY GRINL
	-				LS					LS				849	10700	LS		STRAIGHTENING DAMAGED MEMBERS
					242							242	v	517	76300	242	ET	STRUCTURE
					242							242	× X	517	76300	242	FT	RAILING, MISC. DECORATIVE W/ CHAINE
					242					242			X	607	39910	242	FT	VANDAL PROTECTION FENCE, 8' STRAIG
					285					285			X	607	39930	285	FT	VANDAL PROTECTION FENCE, 12' CURVE
6										6				410	11000	6	СҮ	TRAFFIC COMPACTED SURFACE, TYPE B
		\sim	$\uparrow \sim$	\sim	\sim	$\uparrow \sim$	$\uparrow \sim$	\sim	\sim	$\uparrow \uparrow \uparrow \uparrow$	\sim	\sim	$\sim\sim\sim$			\sim		
	<u> </u>	1,100	\square	\square						1,100				614	11110	1,100	HOUR	LAW ENFORCEMENT OFFICER WITH PATR
		431	12							12				614	12380	12	FACH	WORK ZONF IMPACT ATTENUATION 24"
				LS						LS				614	12420	LS		DETOUR SIGNING
	125									125				614	12600	125	EACH	REPLACEMENT DRUM
10	-									10				614	13000	10	CV	ASPHALT CONCRETE FOR MAINTAINING
10		72								72				614	13310	72	FACH	BARRIER REFIECTOR. TYPE 1. ONE WAY
		15								15				614	13314	15	EACH	BARRIER REFLECTOR, TYPE 3, ONE WAY
		55								55				614	13350	55	EACH	OBJECT MARKER, ONE WAY
		20								20				614	18601	20	SNMT	PORTABLE CHANGEABLE MESSAGE SIGN,
	0.24									0.24				614	20010	0.24	MIL F	WORK ZONE LANE LINE, CLASS I. 6". (W
	0.27		0.6							0.6				614	22000	0.6	MILE	WORK ZONE EDGE LINE, CLASS I, 4", (W
			0.9							0.9				614	22000	0.9	MILE	WORK ZONE EDGE LINE, CLASS I, 4", ()
			1,409							1,409				614	23000	1,409	FT	WORK ZONE CHANNELIZING LINE, CLASS
			3,350							3,350				614	24000	3,350	FI	WORK ZONE DUTTED LINE, CLASS I, (W)
	1					1								017	30000		LAUII	MONT ZONE ANNON, CLASS I
	LS									LS				615	10000	LS		ROADS FOR MAINTAINING TRAFFIC
			755							755				615	20000	755	SY	PAVEMENT FOR MAINTAINING TRAFFIC,
4	14		2 000							18				616	10000	18	MGAL	WATER
			2,398							2,398				022	41100	2,330	<i>F1</i>	FURTADLE DARRIER, UNANCHURED
LS										LS IS				614 623	1000	LS		MAINTAINING TRAFFIC CONSTRUCTION LAYOUT STAKES AND ST
							1	1		1.5				624	10000	1.5		MOBILIZATION

 \bigcirc

 \bigcirc

 \bigcirc

DESCRIPTION	SEE SHEET NO.	CALCULATED AKB CHECKED MWZ
REPAIR (WAR-48-1154) (CONTINUED)		
TRUCTURAL STEEL	61	
RAL STEEL PRIME COAT	60	
ITERMEDIATE COAT	00	
INISH COAT		
ISTING STRUCTURAL STEEL		
DAL STEEL AS DED DLAN	61	
TAL STEEL, AS FER FLAN	01	
N IOINT SEAL		
N JOINT SEAL		
JUINT SEAL		
	77	
LAMINATES AND LOAD PLATE (NEOPRENE), AS PER PLAN	11	
5" PLATE)		
LAMINATES AND LOAD PLATE (NEOPRENE), AS PER PLAN	78	
PLATE)		
SUPERSTRUCTURE, AS PER PLAN	62	
ABRIC		
PIPE		2
STIC PIPE. INCLUDING SPECIALS		
ER PLAN	62	
LIVILAN	61	
55 WITH QUZQA (T=157), AS PER PLAN	01	
)N		4
		Ē
N JOINT SYSTEM		ш
		Z
		ш
DING		5
REPAIR (WAR-48-1154) ALTERNATES		
INK FENCE, 8-FT TALL (ALTERNATE 2)	62A	
INK FENCE, 12-FT TALL (ALTERNATE 2)	62A	
HT. COATED FABRIC (ALTERNATE 1)		
D. COATED FABRIC (ALTERNATE 1)		
MAINTENANCE OF TRAFFIC		
AINTENANCE OF TRAFFIC		
IN CAR FOR ASSISTANCE		
UL CAN FUN ASSISTANCE		
WIDE HAZARDS, (UNIDIRECTIONAL)		
TRAFFIC		
,		
· /		
· /		
AS PER PLAN	10	
AS PER PLAN	10	4
AS PER PLAN	10	54
AS PER PLAN (HITE) (HITE)	10	1.54 1
AS PER PLAN WHITE) WHITE) WHITE)	10	11.54 1
AS PER PLAN WHITE) WHITE) YELLOW) I. 8". (WHITE)	10	t −11.54 F 1
AS PER PLAN WHITE) WHITE) WHITE) TELLOW) I, 8", (WHITE) HITE)	10	18-11.54 ₹Т 1
AS PER PLAN WHITE) WHITE) WHITE) YELLOW) I, 8", (WHITE) HITE)	10	-48-11.54 \RT 1
AS PER PLAN (HITE) (HITE) (ELLOW) 1, 8", (WHITE) (HITE)	10	8-48-11.54 ◊ ART 1
AS PER PLAN (HITE) (HITE) (ELLOW) 1, 8", (WHITE) HITE)	10	\R-48-11.54 PART 1
AS PER PLAN (HITE) (HITE) (ELLOW) I, 8", (WHITE) (LASS A	10	/ AR - 48 - 11.54 P ART 1
AS PER PLAN (HITE) (HITE) (ELLOW) I, 8", (WHITE) HITE) CLASS A	10	WAR-48-11.54 PART 1
AS PER PLAN (HITE) (HITE) (ELLOW) 1, 8", (WHITE) HITE) CLASS A	10	WAR-48-11.54 PART 1
AS PER PLAN (HITE) (HITE) (ELLOW) I, 8", (WHITE) HITE) CLASS A	10 9	WAR-48-11.54 PART 1
AS PER PLAN (HITE) (HITE) (ELLOW) I, 8", (WHITE) HITE) CLASS A INCIDENTALS	10 9	WAR-48-11.54 PART 1
AS PER PLAN (HITE) (HITE) (ELLOW) I, 8", (WHITE) HITE) CLASS A INCIDENTALS	9	WAR-48-11.54 PART 1
AS PER PLAN (HITE) (HITE) (ELLOW) I, 8", (WHITE) HITE) CLASS A INCIDENTALS	9	WAR-48-11.54 PART 1
AS PER PLAN (HITE) (HITE) (ELLOW) I, 8", (WHITE) HITE) CLASS A INCIDENTALS JRVEYING	9	WAR-48-11.54 PART 1

								204	204	204	204	254	301	304	407	441	441	441		452	e E
		>					REA	NC	Ε, 12″	E C, 12"	()	НАL Т	ISE,	*	04 T	FACE 564-22,	PYPE 1,	TYPE 1,		CRETE IP	CALCULAT AKB CHECKED
		101		Ш	H1 QI,	aREA 9	ED A	40770	GRAD	TYPE	IBRIC	ASP 3″	, <i>E B</i> /	Ĕ, 6		SUR	RETE »E, 1	RETE SE, 1 NLE)		con con	
STAT	ION RANGE	SEC	DE	ANC D)		A) XW/S	RA TI	T-dWC	SUB	4 <i>L</i> ,	E FA	ING,	2, 9	BAS	TAU	RETE (448	ONC DURS 1.75	ONC		CED	
0141		CAL	SI	y LSIG	RAGI	RFAC (ENE	E CC	OF	TERI	עדורי	CRE	20MC	4 TE	SNING	DNCF 1.25	E CC 8),	E CC		r, C	
		IYPI		1	A VE	SUF	9 ac	RAD	NOI	MA	DTE)	LT P COM	PG6	REG.	RACI	T CC	PHAL DIA T, (44	14 T. 14 T. 14 8)		NEN	
							CAL	UBG	VA T.	AR	GEC	MEN	PHA	AGG	N-77	E,	ASF	ASF ASF MED		A VEN	
								N N	XCA	ANUI		A VE	AS		NO	4 <i>SP</i>	ITER	ITEA) N C	
									Έ	CR,		ч				² S	~~	4		6	
				FT	FT	SQ YD	SQ YD	SY	СҮ	CY	SY	SY	CY	СҮ	GAL	CY	СҮ	CY		SY	-
42+15.00	TO 46+45.64	1	1 T	430.64																	-
	RESURFACING				9.74	466.00						466.00			55.92	16.18	22.65			\sim	
	FULL DEPTH				3.22	153.89		153.89						25.65	18.47	5.34	7.48		3	(153.89)	
	+ AGG COURSE			322.83	1.00	35.87		35.87						5.98						$\left\langle \right\rangle$	1.
	SUP FULL DEPTH			.310.00	10.00	.344.44		344,44						57.41	413.3	11.96	16.74			$\left\langle \right\rangle$	
	+ AGG COURSE				1.00	34.44		34.44						5.74						\sum	L ∎
																				$\geq \prec$	Σ
ADD INTER	SECTION RAMP A		LT				_													\geq	Ξ
	RESURFACING						203.81	17 77				203.81		7.00	36.69	7.08	9.91	16.98		(17 77)	
	+ AGG COURSE						47.57	10.32						1.72	0.00	1.04	2.30	5.95		$\left(\begin{array}{c} +1.31\\ \end{array}\right)$	m m
																				()	5
42+15.00	TO 46+45.64	1	RT	430.64		500.00											07.57			$\langle \rangle$	l N
	RESURFACING				11.90	569.28		158 81				569.28		26.47	68.31	19.77	27.67			(158 84)	┤∟
	+ BASE COURSE			208.50	0.33	7.72		7.72						1.29	13.00	0.02	1.12			(7.72)	Ξ
	+ AGG COURSE				0.50	11.58		11.58						1.93						$\langle \rangle$	Ξ
ADD INTERSE			RT.																	\leftarrow	
ADD INTENSE	RESURFACING						53.08					53.08			6.37	1.84	2.58			\succ	
	FULL DEPTH						12.71	12.71						2.12	1.53	0.44	0.62			> 12.71 <	Ā
	+ BASE COURSE						1.30	1.30						0.22						\geq 1.30 \downarrow	
	T AGG COURSE						1.94	1.94						0.52						$\succ \prec$	-
ADD INTER	SECTION RAMP C		RT																	\geq \leq	
	RESURFACING						81.63	10.00				81.63		7.10	14.69	2.83	3.97	6.80			-
	+ BASE COURSE						19.08	1 37						0.23	5.45	0.66	0.95	1.59		(137)	-
	+ AGG COURSE						2.11	2.11						0.35						$\langle \rangle$	
70 77 514 05																				$\left(\right)$	_
1R-11-FULL DEI 46+45_64	TO 48+35.57	2	1.7	189.93																()	-
10.10.01	FULL DEPTH	-	- 1	,	12.79	269.97		269.97	89.99	89.99	269.97			44.99	32.40	9.37	13.12			(269.97)	1
	+ AGG COURSE			153.70	1.00	17.08		17.08	5.69	5.69	17.08			2.85						$\langle \rangle$	
	+ EXCAVATION & FILL				0.50	8.52		8.52	2.84	2.84	34.14									$\left \right\rangle$	-
	SUP FULL DEPTH			184.09	10.00	204.54		204.54						34.09	24.55	7.10	9.94			$ \vdash $	1
	+ AGG COURSE				1.00	20.45		20.45						3.41						$\left \right\rangle$	1
			17																	$\succ \rightarrow$	<u> </u>
AUU INIER	SEUTION RAMP A		LI				19.20	19.20	6.40	6.40	19.20			.3.20	.3.46	0.67	0.93	1.60		\geq 19.20 \leq	1
	+ AGG_COURSE						4.31	4.31	1.44	1.44	4.31			0.72						\geq	4
	+ EXCAVATION & FILL						2.11	2.11	0.70	0.70	8.38									\geq	ູ
46+45 64	TO 48+35.57	2	RT	189 93																$ \leftarrow \prec$	┤╤╹
10.07	FULL DEPTH	-	111	100.00	15.28	322.38		322.38	107.46	107.46	322.38			53.73	38.69	11.19	15.67			322.38	1 <u> </u> F
	+ BASE COURSE			140.60	0.33	5.21		5.21	1.74	1.74	5.21			0.87						<u> </u>	46
	+ EXCAVATION & ETU			151.20	0.54	9.01		9.01	3.00	3.00	9.01			1.50						\leftarrow	- م - م
<u> </u>	· LACAVATION & FILL				0.50	0.40		0.40	2.00	2.00	33.00									$\langle \rangle$	
ADD INTER	SECTION RAMP C		RT																	()	2
	FULL DEPTH						39.64	39.64	13.21	13.21	39.64			6.61	4.76	1.38	1.93			(39.64)	
	+ BASE COURSE						1.38	1.38	0.46	0.46	1.38 2.06			0.23						$\left(\begin{array}{c} 1.58 \end{array}\right)$	1
	+ EXCAVATION & FILL						2.06	2.06	0.69	0.69	8.09			0.07						$\langle \rangle$	<u> </u>
									075	075										$\langle \rangle$	28
				TOTAL	S CARRIEN	TO CENERAL	SUMMADY	1780	238 238	238	775	1374		294	379	103	145	<u> 31</u> 76		(1063)	92
				TUTAL	S CANNIED	, O OLNERAL	JUNINARI	1100	200	200	115			234	513	105	1	10	1	ц 1000)	

 \bigcirc

 \bigcirc

 \bigcirc

									204	204	204	204		254		301	304	
STA	4 <i>TION F</i>	RANGE	TYPICAL SECTION	SIDE	DISTANCE (D)	AVERAGE WIDTH (W)	SURFACE AREA (A) A=DXW/9	CADD GENERATED AREA	SUBGRADE COMPACTION	EXCAVATION OF SUBGRADE, 12"	GRANULAR MATERIAL, TYPE C, 12"	CEOTEXTILE FABRIC		PAVEMENT PLANING, ASPHAL T CONCRETE, 3"		ASPHALT CONCRETE BASE, PG64-22, 9"	2 AGGREGATE BASE, 6"	
TR-77-FIII D	EPTH R	PECONSTRUCTION			F1	F I	SQYD	SQYD	SY	CY	UY	SY		SY		CY	CY	 —
ADD TRANS	ITION I	TO APP. SLAB																
48+35.57	TO	48+60.57	2	LT & RT	25.00													
		FULL DEPTH				27.93	77.58		77.58	25.86	25.86	77.58				19.40	12.93	
		+ AGG COURSE				2.00	5.57		5.57	1.86	1.86	5.57					0.93	
	+E	XCAVATION & FILL				1.00	2.76		2.76	0.92	0.92	6.93						
TR-77 -	APPRC	ACH SLAB																
48+60.57	TO	48+85.57	3	LT & RT	25.00													
		+AGG COURSE				46.33	128.70		128.70								21.45	
51+21.77	TO	51+46.77	3	LT & RT	25.00													
		+AGG COURSE				46.33	128.70		128.70								21.45	
			[
IR-77-FULL D	EPTH R	ECONSTRUCTION																
ADD TRANS	TTON	O APP. SLAB	0		05.00													
51+40.77	10	51+71.77	2	LI&RI	25.00	20.04	70.54		70.54	20.51	20 51	70.54				10,00	 17.00	
≥	_	FULL DEPTH			07.77	28.64	79.54		79.54	26.51	26.51	79.54				19.89	13.26	
L N	_	+ BASE COURSE			23.33	0.55	0.86		0.86	0.29	0.29	0.86				0.21	 0.14	
-		+ AGG LOURSE			24.00	1.50	4.01		4.01	1.34	1.34	4.01					 0.07	
	72	ACAVATION & FILL				1.00	2.09		2.09	0.90	0.90	0.05					 	
51+71 77	TO	53+07.76	Δ	1 T	135 99													
011111	10		7	<i>L1</i>	150.00	18 34	277 11		277 11	92 37	92 37	277 11					46.19	
		+AGG_COURSE			131.60	1.00	14 62		14 62	4 87	4 87	14 62					2 44	
	+ F	XCAVATION & FILL			151.00	0.50	7 31		7 31	2 44	2 44	29.24					1 22	
						0.00	1.07		1.57	2.11	2.11	20.27					1.22	
D		SUP FULL DEPTH			155.89	10.00	173.21		173.21								 28.87	- 2
-		+ AGG COURSE				1.00	17.32		17.32								 2.89	
5																		
51+71.77	TO	53+07.76	4	RT	135.99													
		FULL DEPTH				17.90	270.49		270.49	90.16	90.16	270.49					45.08	3
0		+ BASE COURSE			140.10	0.33	5.19		5.19	1.73	1.73	5.19					0.86	-
00		+ AGG COURSE				0.50	7.78		7.78	2.59	2.59	7.78					1.30	
	+ E	XCAVATION & FILL				0.50	7.78		7.78	2.59	2.59	31.13						
			1															
<u>1R-77 - 0</u>	VERLA	K WIDENING	_	1.7.0.57														
53+01.16	10	55+14.00	5	LI&RI	66.24			744 04						744.04				
	_	KESUKFACING		-				544.94	25 10					544.94			1 20	
ž		+ BASE COUDSE	<u> </u>					23.19	23.19								4.20	
ž		+ ACC COURSE						7 20	7 20								0.21	
2		AUGUUUNSE	1					5.20	5.20								0.00	
op		SUP FULL DEPTH						118.86	118.86								19.81	
		+ AGG COURSE	<u> </u>					9.74	.9.74								1.62	
SR-48 - FL	ULL DEF	TH WIDENING										1						
549+13.92	TO	552+43.00	6	RT	329.08							1						
0		FULL DEPTH						317.74	317.74								52.96	3
		+ BASE COURSE						11.78	11.78								1.96	
*		+ AGG COURSE						17.62	17.62								2.94	
e																		
549+03.03	ΤO	551+41.30	6	LT	238.27													
2		FULL DEPTH						339.30	339.30								56.55	4
	_	+ BASE COURSE						11.81	11.81								1.97	
2	_	+ AGG COURSE						17.67	17.67								2.94	
	_																	
Ð																		
							C'	BTOTALS	2005	25 <i>5</i>	255	017		7 <i>1</i> E		10	316	
2					TOTAL	S CADDIEN .	JL TO CENEDAI	SUMMADV	2000	200	200	011 Q17		J40 7/F		40	340	
					TUTAL	J CANNIEU I	O GENERAL	JUNINATI	2000	200	200	017		545		40	540	

 \bigcirc

 \bigcirc

 \bigcirc

407	441	441	441		452	ED
	Ń	1,	1,		Lu	JLAT KB WZ
17	4 <i>CE</i> 4-2	ЪС	٦E		ETH O	ALCU CHE M
207	PLF J	7 YI	1 XI		C II	0
<i>X</i> (), F	RE1 ,	7E7 (E,		0 G G	
TAC	17E	URS 75'	INC! URS IAB		ASS	
ЭN	CRE 25 °	, , CC	AR CO		CL	
CKII	1. 1.	1L T TE 48)	1 1 1 1 1 1		VFC	
RAI	77	НН И (4	РН <i>4</i> ЛІА 448		MEN	
V-7	E,	ASi MEI	, MEI		I VE	
NOI	ISS I	TER	TER		PZ NC	
-	201	NI	NI		ő	
G4/	C.Y	CY	C.Y		SY	
0/12						
9.31	2.69	3.77				
						≻
						Ŕ
						A
						5
						1
						SI
						m
						5
						S
9.55	2.76	3.87				
						Z
						ш
						Σ
						ш
				<u>A</u>	\frown	>
33.25	9.62	13.47		/3	277.11	4
					$\langle \rangle$	٩
					()	
20 70	6.01	<i>Q 1</i> 2			$\left\{ \right\}$	
20.79	6.01	8.42				
20.79	6.01	8.42				
20.79	6.01	8.42				
20.79	6.01 9.39	8.42			270.49	
20.79	6.01 9.39	8.42			270.49 5.19	
20.79 32.46	6.01 9.39	8.42			270.49	
20.79 32.46	6.01 9.39	8.42			270.49	
20.79 32.46	6.01 9.39	8.42			270.49	
20.79 32.46	6.01 9.39	8.42			270.49	
20.79	6.01 9.39	8.42			270.49	
20.79 32.46 41.39	6.01 9.39 11.98	8.42 13.15 16.77			270.49	
20.79 32.46 41.39 3.02	6.01 9.39 11.98 0.87	8.42 13.15 16.77 1.22			270.49 5.19 25.19 25.19	
20.79 32.46 41.39 3.02	6.01 9.39 11.98 0.87	8.42 13.15 16.77 1.22			270.49 5.19 25.19 25.19 25.19 1.28	
20.79 32.46 41.39 3.02	6.01 9.39 11.98 0.87	8.42 13.15 16.77 1.22			270.49 5.19 25.19 25.19 25.19 1.28	
20.79 32.46 41.39 3.02	6.01 9.39 11.98 0.87 4.13	8.42 13.15 16.77 1.22 5.78			270.49 5.19 225.19 25.19 25.19	
20.79 32.46 41.39 3.02 14.26	6.01 9.39 11.98 0.87 4.13	8.42 13.15 16.77 1.22 5.78			270.49 5.19 225.19 25.19 25.19 25.19	4
20.79 32.46 41.39 3.02 14.26	6.01 9.39 11.98 0.87 4.13	8.42 13.15 16.77 1.22 5.78			270.49 5.19 25.19 25.19 25.19 25.19	54
20.79 32.46 41.39 3.02 14.26	6.01 9.39 11.98 0.87 4.13	8.42 13.15 16.77 1.22 5.78			270.49 5.19 25.10 25.10	1.54 1
20.79 32.46 41.39 3.02 14.26	6.01 9.39 11.98 0.87 4.13	8.42 13.15 16.77 1.22 5.78			270.49 5.19 25.19 25.19 25.19 25.19	-11.54 1
20.79 32.46 41.39 3.02 14.26 14.26	6.01 9.39 11.98 0.87 4.13 11.03	8.42 13.15 16.77 1.22 5.78 15.45			270.49 5.19 25.19 25.19 25.19 1.28 1.28	8-11.54 T 1
20.79 32.46 41.39 3.02 14.26 38.13	6.01 9.39 11.98 0.87 4.13 11.03	8.42 13.15 16.77 1.22 5.78 15.45			270.49 5.19 5.19 25.19 25.19 1.28 1.28 317.74 11.78	48-11.54 RT 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13	6.01 9.39 11.98 0.87 4.13 11.03	8.42 13.15 16.77 1.22 5.78 15.45			270.49 5.19 5.19 25.19 25.19 1.28 317.74 11.78	- 48 - 11 .54 ART 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13	6.01 9.39 11.98 0.87 4.13 11.03	8.42 13.15 16.77 1.22 5.78 15.45			270.49 5.19 5.19 25.19 25.19 1.28 317.74 11.78	R-48-11。54 PART 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13	6.01 9.39 11.98 0.87 4.13 11.03	8.42 13.15 16.77 1.22 5.78 15.45 15.45			270.49 5.19 5.19 25.19 25.19 1.28 317.74 11.78	AR-48-11。54 PART 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13 40.72	6.01 9.39 11.98 0.87 4.13 11.03 11.03	8.42 13.15 16.77 1.22 5.78 15.45 16.49			270.49 5.19 5.19 25.19 25.19 1.28 1.28 317.74 11.78 317.74 11.78	WAR-48-11。54 PART 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13	6.01 9.39 11.98 0.87 4.13 11.03 11.03	8.42 13.15 16.77 1.22 5.78 15.45 16.49			270.49 5.19 5.19 25.19 25.19 1.28 1.28 317.74 11.78 317.74 11.78 339.30 11.81	W AR - 48 - 11 .54 P A R T 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13 40.72	6.01 9.39 11.98 0.87 4.13 11.03 11.78	8.42 13.15 16.77 1.22 5.78 15.45 16.49			270.49 5.19 5.19 25.19 25.19 1.28 1.28 317.74 11.78 317.74 11.78 11.78	W A R - 48 - 11 .54 P A R T 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13 40.72	6.01 9.39 11.98 0.87 4.13 11.03 11.78	8.42 13.15 16.77 1.22 5.78 15.45 16.49			270.49 5.19 5.19 25.19 1.28 1.28 317.74 11.78 339.30 339.30	W A R - 48 - 11 .54 P A R T 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13 40.72	6.01 9.39 11.98 0.87 4.13 11.03 11.78	8.42 13.15 16.77 1.22 5.78 15.45 16.49			270.49 5.19 5.19 25.19 1.28 1.28 317.74 317.74 11.78 339.30 11.81	WAR-48-11.54 PART 1
20.79 32.46 41.39 3.02 14.26 14.26 38.13 40.72 243	6.01 9.39 11.98 0.87 4.13 11.03 11.78 11.78	8.42 13.15 16.77 1.22 5.78 15.45 16.49 16.49 99			270.49 5.19 5.19 25.19 1.28 1.28 317.74 11.78 317.74 11.78 11.81 11.81	Φ Φ 48 - 11.54 Φ P ART
20.79 32.46 41.39 3.02 14.26 14.26 14.26 14.26 243 243 243	6.01 9.39 11.98 0.87 4.13 11.03 11.03 11.78	8.42 13.15 16.77 1.22 5.78 15.45 16.49 16.49 99 99			270.49 5.19 5.19 25.19 1.28 1.28 317.74 317.74 11.78 317.74 11.78 11.81 11.81 11.81 11.81 11.81 11.81 11.81	

BEARING PLAN

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

(ALL PLATES CENTERED ABOUT INTERSECTION OF @ BRG. & @ BEAM)

	BEARING DATA																
SUBSTRUCTURE	PEAM	BEARING				BEARING D	IMENSIONS			HP POST	HEIGHT SERVICE REACTIONS (KIP:				S)	DESIGN ROTATION	
UNIT	DEAM	TYPE	L	W	Ti	Te	Ni	Ne	T	H	BEVEL	Hp	DL	LLmax	LLmin	TOTAL	(RAD)
DEAD ADUTMENT	INTERIOR	EXP.	11 1/2″	1' - 4"	1/2″	5/16″	5	1	3 3/4″	5″	1.82%	1′ – 11″±	85.39	46.72	-6.47	132.11	-0.022914
REAR ABUIMENT	EXTERIOR	EXP.	11 1/2″	1' - 4"	1/2″	5/16″	5	1	3 3/4″	5″	1.82%	1′ – 11″±	66.50	48.58	-8.74	115.08	-0.022893
FORWARD	INTERIOR	EXP.	11 1/2″	1' - 4"	1/2″	5/16″	5	1	3 3/4″	5″	0.04%	1′ – 11″±	90.47	47.82	-5.55	138.29	0.008075
ABUTMENT	EXTERIOR	EXP.	11 1/2″	1' - 4"	1/2″	5/16″	5	1	3 3/4″	5″	0.04%	1′ - 11″±	70.11	50.42	-7.47	120.53	0.008524

HP POST DETAIL

LEGEND:

- *Ti = INTERIOR LAYER THICKNESS Te = EXTERIOR LAYER THICKNESS Ni = NUMBER OF INTERIOR LAYERS*
- Ne = NUMBER OF EXTERIOR LAYERS
- DL = DEAD LOAD
- LL = LIVE LOAD (WITHOUT IMPACT)

NOTES:

- 1. THE ELASTOMER SHALL HAVE A HARDNESS OF 50 DUROMETER. THE BEARINGS WERE DESIGNED IN ACCORDANCE WITH SECTION 14.7.6 (METHOD A) OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.
- 2. ALL BEARINGS SHALL BE MARKED PRIOR TO SHIPPING. THE MARKS SHALL INCLUDE THE BEAM, SUBSTRUCTURE LOCATION ON THE BRIDGE, AND A DIRECTION ARROW THAT POINTS UP-STATION. ALL MARKS SHALL BE PERMANENT AND BE VISIBLE AFTER THE BEARING IS INSTALLED.
- 3. STEEL PLATES SHALL BE ASTM A709 GRADE 50 STRUCTURAL STEEL AND SHALL BE CLEANED AND COATED. SURFACE PREPARATION AND PRIMING SHALL BE PERFORMED IN THE SHOP. THE STEEL LOAD PLATES SHALL BE BONDED BY VULCANIZATION TO THE ELASTOMERIC BEARING DURING THE MOLDING PROCESS.
- 4. THE BEARINGS, STEEL PLATES, POSTS, AND MISCELLANEOUS COMPONENTS SHALL BE PAID FOR UNDER ITEM 516 ELASTOMERIC BEARINGS WITH INTERNAL LAMINATES AND LOAD PLATE, AS PER PLAN.
- 5. INTERNAL STEEL LAMINATE THICKNESS = 0.0747 INCHES (14 GAUGE).
- 6. CONTRACTOR'S ATTENTION IS DRAWN TO HEAT CONTROL REQUIREMENTS OF C&MS 516.07.
- FOR BIDDING PURPOSES.

7. THE CONTRACTOR IS REQUIRED TO FIELD MEASURE THE EXISTING BOTTOM OF BEAM AND BEAM SEAT ELEVATIONS, AT € BEARING, PRIOR TO DECK REMOVAL AND JACKING OPERATIONS. THE CONTRACTOR IS TO SUBMIT THE FIELD MEASURED ELEVATIONS TO SCOTT KRAMER, DISTRICT 8 BRIDGE DESIGN ENGINEER PRIOR TO THE JACKING OPERATIONS. APPROVAL OF THE ELEVATIONS IS NOT REQUIRED. THE CONTRACTOR IS TO DETERMINE THE FINAL HP SECTION HEIGHT BY SUBTRACTING THE EXISTING BEAM SEAT ELEVATION AND PROPOSED BEARING HEIGHT FROM THE EXISTING BOTTOM OF BEAM ELEVATION AT EACH BEARING LOCATION. THIS HP SECTION HEIGHT IS TO BE INCREASED BY THE AMOUNT THE BRIDGE IS TO BE RAISED OF 1.60 FT. THIS HP SECTION HEIGHT IS A CONTRACTOR CALCULATED DIMENSION AND ANY SHIMS NEEDED AS A RESULT AMOUNT THE BRIDGE IS TO BE RAISED OF 1.60 FT. THIS HP SECTION HEIGHT IS A CONTRACTOR CALCULATED DIMENSION AND ANY SHIMS NEEDED AS A RESULT OF THE CONTRACTOR'S ERROR WILL BE AT THE CONTRACTOR'S EXPENSE AND WILL NEED TO BE APPROVED BY THE DISTRICT 8 BRIDGE DESIGN ENGINEER. FOR BIDDING PURPOSES, THE HP SECTION HEIGHTS ARE ANTICIPATED TO VARY BETWEEN 23 INCHES AND 28 INCHES. USE AN HP SECTION HEIGHT OF 28 INCHES FOR BIDDING PURPOSES.

2 ADDENDUM 2: FIX DIMENSION

MAR Σ 1154 48-(TR-WAR-RD. (IT BE E NO. ABUTMENT BRIDGE N TLE CREEK-UN / AR - 48 - 11.54 PART 1 ID No. 100816 - םום ≥ 19 / 77 92