HISTORIC RECORDS

NO HISTORICAL RECORDS WERE FOUND FOR THIS PROJECT.

GEOLOGY

THE PROJECT IS LOCATED WITHIN THE CENTRAL OHIO CLAYEY TILL PLAIN PHYSIOGRAPHIC REGION WHICH IS CHARACTERIZED BY MODERATE RELIEF WITH WELL-DEFINED MORAINES AND RELATIVELY FLAT GROUND MORAINES BETWEEN. THE SITE IS LOCATED WITHIN AN INTERMORAINAL LAKE BASIN WHICH CONTAIN SILT AND CLAY. SOIL SURVEY FOR THE AREA INDICATES THAT THE SOILS IS COMPRISED PREDOMINATELY OF CLAY OR SILT LOAM. OVERBURDEN SOILS ARE UNDERLAIN BY SILURIAN AGED TYMOCHTEE AND GREENFIELD FORMATIONS, UNDIFFERENTIATED, WHICH IS COMPRISED OF DOLOSTONES.

RECONNAISSANCE

FIELD RECONNAISSANCE WAS COMPLETED BY PERSONNEL FROM THE OFFICE OF GEOTECHNICAL ENGINEERING ON MARCH 18, 2020. THE PROJECT AREA IS LOCATED WITH AN AGRICULTURAL AREA WITH THE APPROACH ROADWAY SUPPORT ON EMBANKMENT FILLS. THE EMBANKMENTS ARE IN GOOD CONDITION WITH NO SIGNS OF INSTABILITY. LITTLE TYMOCHTEE CREEK STREAM CHANNEL IS DEEPLY INCISED AND WELL VEGETATED. DUMP ROCK SLOPE PROTECTION IS PRESENT ALONG THE SPILL THROUGH SLOPES. THE EXISTING STRUCTURE IS IN POOR CONDITION WITH HEAVY SPALLING AND LOSE OF THE CONCRETE DECK. CRACKING AND SEALING OF THE ROADWAY DUE TO AGE WAS NOTED.

SUBSURFACE EXPLORATION

THREE BORINGS, B-001-0-20 THROUGH B-003-0-20, WERE COMPLETED AS PART OF THE SUBSURFACE EXPLORATION BETWEEN MARCH 31 AND APRIL 6, 2020 UTILIZING A TRACK MOUNTED CME 850 ROTARY DRILL RIG, USING 3.75-INCH I.D. HOLLOW STEM AUGERS TO ADVANCE THE BORINGS. DISTURBED SAMPLES WERE COLLECTED IN ACCORDANCE WITH THE STANDARD PENETRATION TEST (AASHTO T206) AT CONTINUOUS, 2.5 AND 5.0-FOOT INTERVALS WITHIN THE OVERBURDEN SOILS. THE HAMMER SYSTEM USED WAS CALIBRATED ON MAY 1, 2019 WITH AN AVERAGE DRILL ROD ENERGY RATIO (ER) OF 89.1%. ALL BORINGS WERE ADVANCED INTO BEDROCK AND SAMPLED (AASHTO T225) USING AN N SERIES WIRELINE CORE BARREL, WATER METHOD.

EXPLORATION FINDINGS

B-001 AND B-003 WERE COMPLETED WITHIN THE EXISTING ROADWAY AND ENCOUNTERED 6 INCHES OF ASPHALT UNDERLAIN BY AGGREGATE BASE AND MEDIUM DENSE STONE FRAGMENTS WITH SAND (A-1-b) TO A DEPTH OF 3 FEET. BENEATH THE SURFACE MATERIALS THE BORINGS ENCOUNTERED VERY STIFF SANDY SILT (A-4a) AND LOOSE GRAVEL WITH SAND (A-1-b) IN B-001 AND VERY STIFF SILT AND CLAY (A-6b) IN B-002 WITHIN THE EMBANKMENT FILL. NATURAL SOILS ENCOUNTERED FIRST CONSISTED OF COHESIVE SOILS CONSISTING OF SILT AND CLAY (A-6a) AND SILTY CLAY (A-6b) RANGING FROM STIFF TO HARD IN CONSISTENCY AND DAMP OR MOIST IN CONDITION. NON-COHESIVE SOILS CONSISTING OF GRAVEL WITH SAND (A-1-b) AND COARSE AND FINE SAND (A-3a) WHICH WAS MEDIUM DENSE TO DENSE IN COMPACTNESS AND WET IN CONDITION WAS ENCOUNTERED BETWEEN ELEVATION 793.6 AND 792.3 FEET. BENEATH THE NON-COHESIVE MATERIAL BETWEEN ELEVATION 784.8 AND 781.1 FEET BOTH B-001 AND B-003 ENCOUNTERED SANDY SILT (A-4a) IN STIFF TO HARD CONSISTENCY. B-003 ENCOUNTERED HARD SILT (A-4b) AT ELEVATION 772.3 FEET. B-002 WAS COMPLETED THROUGH THE EXISTING BRIDGE DECK ENCOUNTERING VERY LOOSE SANDY SILT (A-4a) WITHIN THE STREAM CHANNEL UNDERLAIN BY SILT AND CLAY (A-6a) IN VERY STIFF TO HARD CONSISTENCY. BETWEEN ELEVATION 792.7 AND 782.7 FEET THE BORING ENCOUNTERED GRAVEL WITH SAND (A-1-b) IN LOOSE TO DENSE COMPACTNESS IN WET CONDITION WHICH WAS UNDERLAIN BY VERY STIFF TO HARD SANDY SILT (A-4a).

BEDROCK WAS ENCOUNTERED IN ALL THREE BORINGS BETWEEN ELEVATION 770.3 AND 769.3 FEET, DROPPING TO THE NORTH. THE BEDROCK WAS ENCOUNTERED CONSISTED OF LIMESTONE WHICH WAS THIN BEDDED, SLIGHTLY WEATHERED AND VUGGY. THE UNCONFINED COMPRESSIVE STRENGTH WAS HIGHLY VARIABLE RANGING FROM 5,225 PSI TO 28,556 PSI. ELEVATED HYDROSTATIC PRESSURES WERE NOTED IN THE NON-COHESIVE LAYERS WITH UP TO 9 FEET OF HEAD PRESSURE PRIOR TO WASHING OUT HEAVING SANDS.

<u>SPECIFICATIONS</u>

THIS GEOTECHNICAL EXPLORATION WAS PERFORMED IN ACCORDANCE WITH THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, OFFICE OF GEOTECHNICAL ENGINEERING, SPECIFICATIONS FOR GEOTECHNICAL EXPLORATIONS, DATED JANUARY 2020.

AVAILABLE INFORMATION

THE SOIL, BEDROCK, AND GROUNDWATER INFORMATION COLLECTED FOR THIS SUBSURFACE EXPLORATION THAT CAN BE CONVENIENTLY DISPLAYED ON THE SOIL PROFILE SHEETS HAS BEEN PRESENTED. GEOTECHNICAL REPORTS, IF PREPARED, ARE AVAILABLE FOR REVIEW ON THE OFFICE OF CONTRACT SALES WEBSITE.

	<u>LE</u>	EGEND				
		DESCRIPTION	ODOT CLASS	CLASS MECH./		
	0.4	GRAVEL OR STONE FRAGMENTS WITH SAND	A-1-b	4	5	
		COARSE AND FINE SAND	A-3a	2	4	
		SANDY SILT	A-4a	6	9	
	* * * * * * * * * * * * * * *	SILT	A-4b	1	1	
		SILT AND CLAY	A-6a	9	5	
		SILTY CLAY	A-6b	7	9	
			TOTAL	29	26	
		LIMESTONE	VISUAL			
1	XXXXX	PAVEMENT OR BASE = X = APPROXIMATE THICKNESS	VISUAL			

BORING LOCATION - PLAN VIEW.

W- INDICATES FREE WATER ELEVATION.

□ INDICATES WATER AT COMPLETION.

γ INDICATES UNIT WEIGHT OF ROCK.

LOI INDICATES ORGANIC CONTENT BY LOSS ON IGNITION, AASHTO T267.

N₆₀ INDICATES STANDARD PENETRATION RESISTANCE NORMALIZED TO 60% DRILL ROD ENERGY RATIO.

NP INDICATES A NON-PLASTIC SAMPLE.

"N" SERIES ROCK CORE BARREL OF "Q" WIRELINE BIT SIZE.

INDICATES UNCONFINED COMPRESSION TEST, ASTM D7012.

INDICATES A SPLIT SPOON SAMPLE.

R INDICATES TOP OF ROCK ELEVATION.

INDICATES WATER CONTENT IN PERCENT.

Swell 3/6,	
\$ 81.0m/15 87.0m	0;tch
SALEM (23) (199)	YA-199-8.85 C-41 61
Geo# 3	
1.03 1.03 1.03 1.03	
UPPER SANDUSKY Crassportation, No.	CSS Transportation, Inc.
537	6) 155 157 1
LOC	CATION MAP
SCA	LE IN MILES

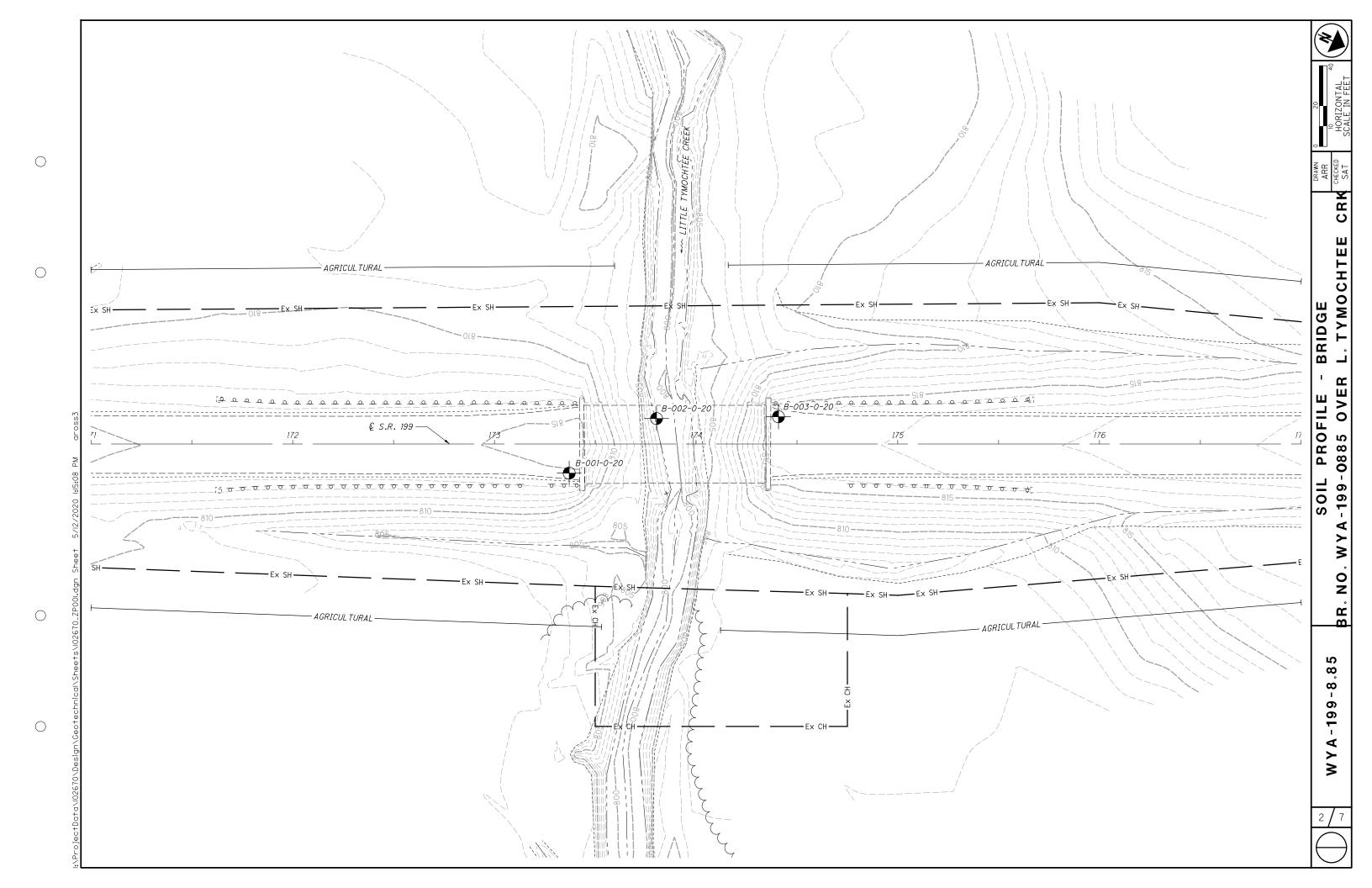
PARTICLE SIZE DEFINITIONS

12	." 3	<i>"</i> 2.0	mm	0.42	mm	0.07	4 mm 0.00	5 mm
BOULDERS	COBBLES	GRAVEL	COARSE	SAND	FINE	SAND	SILT	CLAY
'		No. 10	SIEVE	No. 40	SIEVE	No. 200	SIEVE	1

BEDROCK TEST SUMMARY											
BORING ID	SAMPLE ELEVATION	SAMPLE DEPTH	Qu (PSI)								
B-001-0-20	767.8′	46.8′ - 47.1′	28,556								
	762.2′	52.4′ - 52.8′	7,794								
B-002-0-20	768.9′	32.3′ - 32.7′	5,225								
B-003-0-20	766.4′	49.4' - 49.8'	15,130								
	760.5′	55.3′ - 55.7′	14,614								

ORGANIC CONTENT BY LOSS ON IGNITION										
BORING ID	SAMPLE ELEVATION	SAMPLE DEPTH	LOI (%)							
B-001-0-20	806.1′	8.5′ - 10.0′	4.1							
B-002-0-20	801.2′	0.0′ - 1.5′	4.2							
B-003-0-20	807.3′	8.5′ - 10.0′	4.3							

RECON. - AMJ,PPP 03/18/20


DRILLING - JMB 03/31/20 - 04/06/20

DRAWN - ARR 05/12/20 **REVIEWED -** SAT 05/12/20

ш

 $\mathbf{\omega}$

≥

5/12/2020 I:15:09 PM ts\102670_ZL001.dgn Sheet

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

ALIGNMENT: CL SR 199 ELEVATION: 814.6 (ft) EOB: 56 LAT / LONG: 40.881325, -83.32275 GRADATION (%) ATTERBERG	WC		50 18 11 17 4 NP NP 5 A-1-b(0)	17 8 12 35 28 26 16 10 18 A-4a(6)	8 A-1-b (V)	22 A-6b (V)	12 3 12 40 33 35 19 16 25 A-6b (10)	23 A-6b (V)		3 5 41 47 36 19 17 18	3 8 38 50 36 17 19 18	5 4 7 38 46 33 16 17 16 A-6b(11)		17 52 22 7 2 NP NP NP 17 A-1-b (0)	16 A-1-b (V)	16 31 39 12 2 NP NP NP 16 A-3a(0)	16 A-3a (V)	12 A·3a (V)	12 8 14 39 27 19 14 5 12 A-4a(6)	10 A-4a(V)	12 A-4a (V)	13 A4a(V)	CORE	
HAMMER: CME AUTOM. CALIBRATION DATE: 5/ ENERGY RATIO (%): 8 SPT/ REC SAMPIF	SPT/ REC SAMPLE HP RQD (%) ID (tsf)		13 22 SS-1 - 13	3 10 61 SS-2 3.50	2 3 9 22 SS-3 -	2 3 4 10 0 SS-4 -	2 9 0 SS-5 -	2		8 27 72 SS-7 4	28 83 SS-8 4 11 SS-8 84	28 100 SS-9 4.50 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	18 28 SS-11	10 24 89 SS-12 -	4 8 25 56 SS-13 -	9 31 89 SS-14 -	4 b 22 78 SS-15 -	- 11 30 100 SS-16 -	5 89 SS-17 2.50 ·	14 22 82 89 SS-18 4.50	21 32 101 94 SS-19 4.50	38 50 50/4" - 69 SS-20A 4.50 SS-20B -	88 100 NQ2-1	
ODO 75" HS/ SPT /	ELEV. DEPTHS		2	810.1	9808		\(\triangle \t	803.6 W 803.0 11 12 12 12 12 12 12 12 12 12 12 12 12		41 - 15	1 16	796.6		- 21		788.6		32 31	781.1	- 30 - 36 - 36 - 37		 770.3 TR— 44	######################################	15 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TYPE: BRIDGE SAMPLING FIRM / LOGGER: PID: 102670 SFN: 8803242 (E) DRILLING METHOD: 3 START: 3/31/20 END: 3/31/20 SAMPLING METHOD: 3 MATERIAL DESCRIPTION ELE	MATERIAL DESCRIPTION AND NOTES	SPHALT (6.0") & BASE (12.0")	MEDIUM DENSE, GRAY, STONE FRAGMENTS WITH SAND , LITTLE SILT, TRACE CLAY, DAMP	VERY STIFF, BROWN, SANDY SILT , SOME CLAY, LITTLE STONE FRAGMENTS, MOIST	LOOSE, GRAY, GRAVEL WITH SAND , TRACE SILT, TRACE CLAY, (NOT ENOUGH MATERIAL TO TEST), DAMP	STIFF, GRAY, SILTY CLAY , LITTLE SAND, LITTLE GRAVEL, SLIGHTLY ORGANIC, NO RECOVERY, AUGER CUTTINGS TAKEN, MOIST	@8.5'; DARK GRAY, MODERATELY ORGANIC (LOI = 4.1%), NO RECOVERY, AUGER CUTTINGS TAKEN	VERY STIFF, BROWN AND GRAY MOTTTLED, SILTY CLAY , TRACE SAND, TRACE GRAVEL, MOIST	M3 R: HADD	(#15.0., right) (#15.0. LITT F.SAND	@16.5; GRAY	HARD, GRAY, SILT AND CLAY, LITTLE SAND, TRACE	GRAVEL, DAWIN	MEDIUM DENSE, BLACK, GRAVEL WITH SAND , TRACE SILT, TRACE CLAY, WET	@23.5; 4.0' OF HEAVING SAND ENCOUNTERED	DENSE, BLACK, COARSE AND FINE SAND , LITTLE GRAVEL, LITTLE SILT, TRACE CLAY, WET	@28.5'; MEDIUM DENSE, 4.0' OF HEAVING SAND ENCOUNTERED		VERY STIFF, GRAY, SANDY SILT , SOME CLAY, LITTLE GRAVEL, DAMP	@36.0°; HARD		@43.5; "AND" STONE FRAGMENTS LIMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, STRONG TO VERY STRONG, THIN BEDDED, VUGGY,	SLIGHTLY STYOLITIC, BLOCKY, VERY GOOD TO GOOD; RQD 91%, REC 100%. @ 46.8' - 47.1'; \(\mathcal{Y} = 166\) pcf; Qu = 28,556\) psi	@51.7' - 52.0'; HIGH ANGLE FRACTURE @ 52.4' - 52.8'; y = 167 pcf; Qu = 7,794 psi

WYA-199-8.85

SOIL PROFILE - BRIDGE BRIDGE NO. WYA-199-0885 OVER LITTLE TYMOCHTEE BORING LOG B-001-0-20

CREEK

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

EXPLORATION ID B-002-0-20 PAGE 1 OF 1 ODOT CLASS (GI) A-6a (10) A-6a (10) A-1-b (V) A-4a (3) A-1-b (V) A-1-b (V) A-4a (V) 0 A-6a (9) A-6a (9) (9) S 4 S CORE CORE A-1-b A-4a A-4a A-4a A-4a I. CL SR 199 I: 801.2 (ft) FO 15 8 29 17 9 19 17 7 12 10 7 21 20 6 Ą 4 13 15 13 ₽ 1 4 1 ∞ - 1 - 1 1 . $\stackrel{\mathsf{P}}{\vdash}$ 16 16 16 P 17 12 12 - 1 1 ₽ 31 29 31 29 F 16 20 1 49 45 17 53 47 1 20 4 - 1 1 1 1 32 31 4 35 37 48 36 7 . 12 46 7 7 9 27 1 20 . 13 1 46 4 9 7 က က ∞ 6 DRILL RIG: CME 850R TRACKED
HAMMER: CME AUTOMATIC
CALIBRATION DATE: 5/1/19
ENERGY RATIO (%): 89.1 _ 7 2 7 7 16 7 22 . . 1 . 1 (%): 89.1 SAMPLE HP ID (tsf) 2.00 4.50 4.50 3.50 4.50 3.50 4.00 4.50 4.50 4.50 NQ2-2 NQ2-1 SS-1 **SS-2 SS-3** SS-4 **SS-5 SS-9** 10 13 SS-7 SS SS-SS SS SS-100 100 83 99 83 89 89 26 89 89 0 29 29 89 83 26 $\overset{\circ}{\mathsf{Z}}$ 18 13 21 15 10 10 9 16 19 0 42 62 20 62 15, 20, 22, 22, 23 26 26 17 13 100 4 9 0 7 2 91 က က 2 2 4
 WYA-199-8.85
 DRILLING FIRM / OPERATOR:
 ODOT / MCINTOSH

 BRIDGE
 SAMPLING FIRM / LOGGER:
 ODOT / BINKLEY

 SFN:
 8803242 (E)
 DRILLING METHOD:
 3.75" HSA / NQ2

 END:
 4/6/20
 SAMPLING METHOD:
 SPT / NQ2

 MATERIAL DESCRIPTION
 ELEV.
 DEPTHS
 6 2 8 4 3 9 / 8 - 41 - 31 19 -- 22 34 - og 9 7 12 33 16 - 7 20 2 23 32 35 36 4 33 37 DEPTHS 792.7 782.7 770.2 801.2 799.7 LIMESTONE, LIGHT GRAY, SLIGHTLY WEATHERED, MODERATELY STRONG, THIN BEDDED, VUGGY, SLIGHTLY STYOLITIC, BLOCKY, GOOD; RQD 95%, REC 100%.

(33.1.3 - 31.6; HEALED HIGH ANGLE FRACTURE
(33.3 - 32.3; HIGH ANGLE FRACTURE
(33.3 - 32.7; \mathbf{y} = 161 pdf; Qu = 5.225 psi
(33.3 - 34.3; HIGH ANGLE FRACTURE
(33.4 - 34.3; HIGH ANGLE FRACTURE
(33.4 - 34.3; HIGH ANGLE FRACTURE AND NOTES

VERY LOOSE, GRAY AND BLACK, SANDY SILT, LITTLE
CLAY, TRACE GRAVEL, MODERATELY ORGANIC (LOI = 4.2%), MOIST
HARD, GRAY, SILT AND CLAY, LITTLE SAND, TRACE
GRAVEL, MOIST HEAVING SAND ENCOUNTERED LOOSE, BLACK AND DARK GRAY, **GRAVEL WITH SAND**, TRACE SILT, TRACE CLAY, WET @8.5; 7.0' OF HEAVING SAND ENCOUNTERED VERY STIFF, GRAY, **SANDY SILT**, LITTLE CLAY, TRACE GRAVEL, DAMP HEAVING SAND OF HEAVING SAND ENCOUNTERED - 37.8'; HIGH ANGLE FRACTURE HIGH ANGLE FRACTURE Ю 3.0' DENSE, @4.5' - 6.0'; VERY STIFF Я @3.0'; TRACE SAND @16.0'; DENSE, 3.0' 102670 { @13.5'; MEDIUM ENCOUNTERED 39.0'; @23.5'; HARD @11.0'; 3.0' @37.0' -9 @38. STANDARD ODOT SOIL BORING LOG (11 X 17) - OH DOT.GDT - 5/12/20 12:49 - X:/GINT/PROJECTS/600734.GPJ

 ∞ ∞ တ 19 ⋖ >

YMOCHTE - BRIDGE LITTLE T) 3-002-0-20 SOIL PROFILE A-199-0885 OVER BORING LOG B > ≥ 0 N ш G RID \mathbf{B}

CREEK

Ш

≥ 4 /

rs\102670_ZL003.dgn Sheet

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

THE PROPERTY OF THE PROPERTY O	WAND CHANGE NAME WAND CHANGE	0 WC 42 22 15 6 19 00 10 10 10 10 10 10 10 10 10 10 10 10	
WAND	WAND	6 7 2 6	-1-b (0)
0.00 0.00	AND	22 1	
Well by the control of the control o	WAND WAND STATE OF THE PROPERTY OF THE PROPERT	22 19	-6a (5)
WAND WAND WAND WAND WAND WAND WAND WAND	## OF PARTICIPATES Columbia	2	-6a (V)
The state of the s	MANO NATIONALIAN AND AND AND AND AND AND AND AND AND A	24	6a (10)
W.L. W. W. Trans. W. Trans. S.	MANONER NATIONENNISA The state of the state	22 24	-6a (6)
NAME	The base of the color of the co	20	6b (11) 6b (12)
AND AND AND AND AND AND AND AND	WE. W.	6 8	6b (12) 6a (10)
VE. Total 8 V 7044 8	VEL. 1. 1. 1. 1. 1. 1. 1.	6 6	-6a (V) -3a (0)
724.8 W 784.6 S 7 22 61 SS-15 · · · · · · · · · · · · · · · · · · ·	794.8 W 724.8 3 3 2 2 61 SS-15	9	-3a (V)
784.6 W 784.9	724.8 W 794.8 1 1 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	15	-3a (V)
7723 TR93 TR	772.3 - 34 - 6 5 5 5 5 5 5 5 5 5	13	-4a (6)
7723 TR 46 57 - 100 SS-21 450 111	TTZ3	₹	4a (V)
772.3 772.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 769.3 772.3 77	772.3 TR9.3 TR	5	-4a (V)
772.3 - 41 - 42 - 42 - 43 - 44 - 28 114 89 SS-20 4.50 22 4 5 60 19 18 16 2 13 A 11 A A	772.3 - 41 - 42 - 43 - 44 - 258 114 89 \$\$\$-\$20 4.50 22 4 5 50 19 18 16 2 13 A - 44 - 25 - 49 114 89 \$\$\$-\$20 4.50 22 4 5 50 19 18 16 2 13 A - 46 - 47 98 NO2-1 98 NO2-2 - 50 - 49 - 47 98 NO2-2 6 6 6 6 - 51 - 52 - 53 6 NO2-2 6 6 - 52 - 4 5 50 19 18 16 2 13 A - 53 - 54 5 50 19 18 16 2 13 A - 54 - 88 98 NO2-2 6 - 55 - 65 - 65 6 NO2-2 6 - 55 - 75 - 75 75 75 75 75 - 65 - 75 75 75 75 75 75 - 759.3 EOB 75 75 75 75 75 75 - 60 - 75 75 75 75 75 75 - 759.3 FOB 75 75 75 75 75 - 759.3 FOB 75 75 75 75 75 - 759.3 FOB 75 75 75 75 75 - 759.3 75 75 75 75 75 - 759.3 75 75 75 75 75 - 759.3 75 75 75 75 75 - 759.3 75 75 75 75 - 759.3 75 75 75 75 - 759.3 75 75 75 75 - 759.3 75 75 75 75 - 759.3 75 75 75 - 750.1 75 75 75 - 750.1 75 75 75 - 750.1 75	0 4	-4a (V)
769.3 TR 46 57 - 100 SS-21 4.50 22 4 5 50 19 18 16 2 13 A	769.3 TR 44 28 114 89 SS-20 4.50 22 4 5 50 19 18 16 2 13 A 4 45 50		
### 769.3 TR 46 57 - 100 SS-21 4.50 11 A	### 769.3 TR 46 57 - 100 58-21 4.50 111 A 4 49 47 98 NQ2-1	4 A	(-4b (7)
Qu = 14,614 psi	Qu = 14,614 psi	11 A A 3	30RE
	1 🗀	8	SORE
1 🗀	SS: POURED 50 LB. BENTONITE CHIPS; TREMIED 150 LB. BENTONITE GROUT; 90 GAL. WATER		7

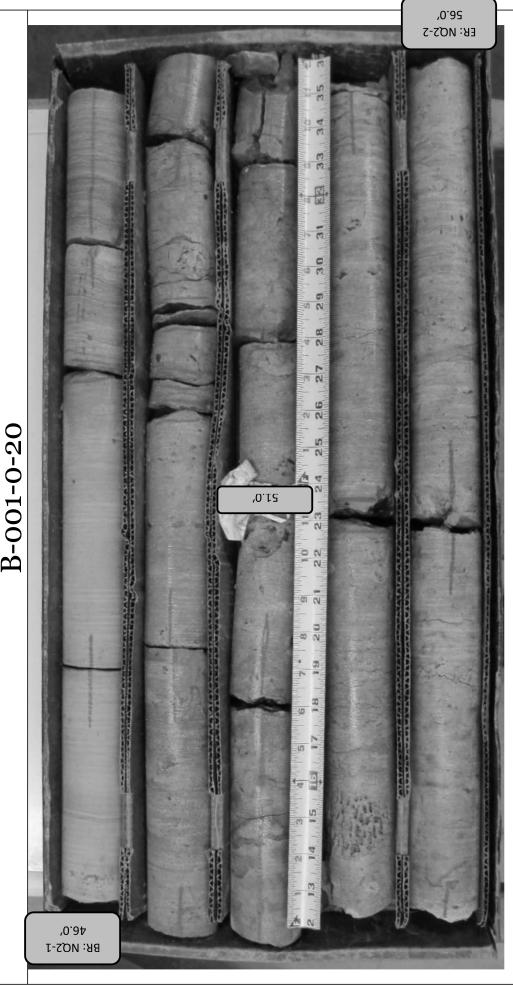
WYA-199-8.85

SOIL PROFILE - BRIDGE BRIDGE NO. WYA-199-0885 OVER LITTLE TYMOCHTEE CREEK BORING LOG B-003-0-20

 \bigcirc

 \bigcirc

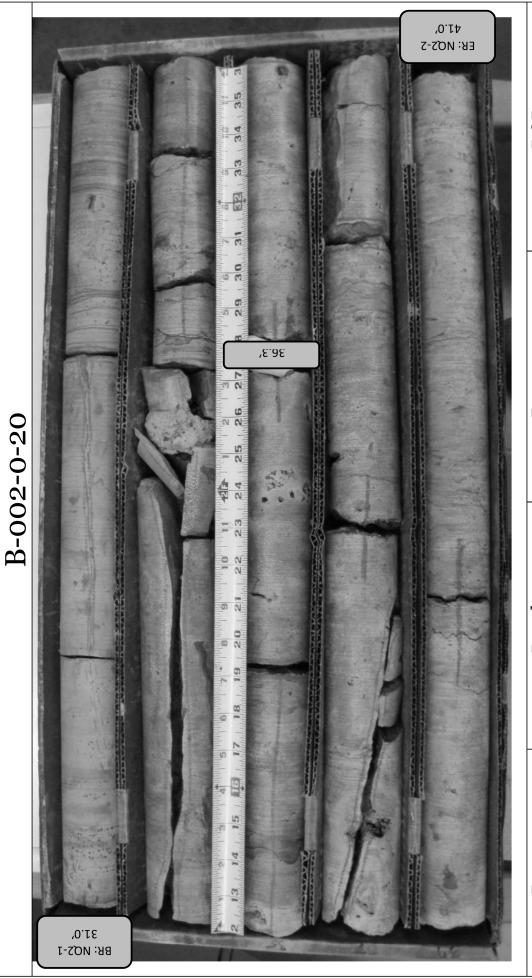
OHIO DEPARTMENT OF TRANSPORTATION


DIVISION OF ENGINEERING

Office of Geotechnical Engineering

 \bigcirc

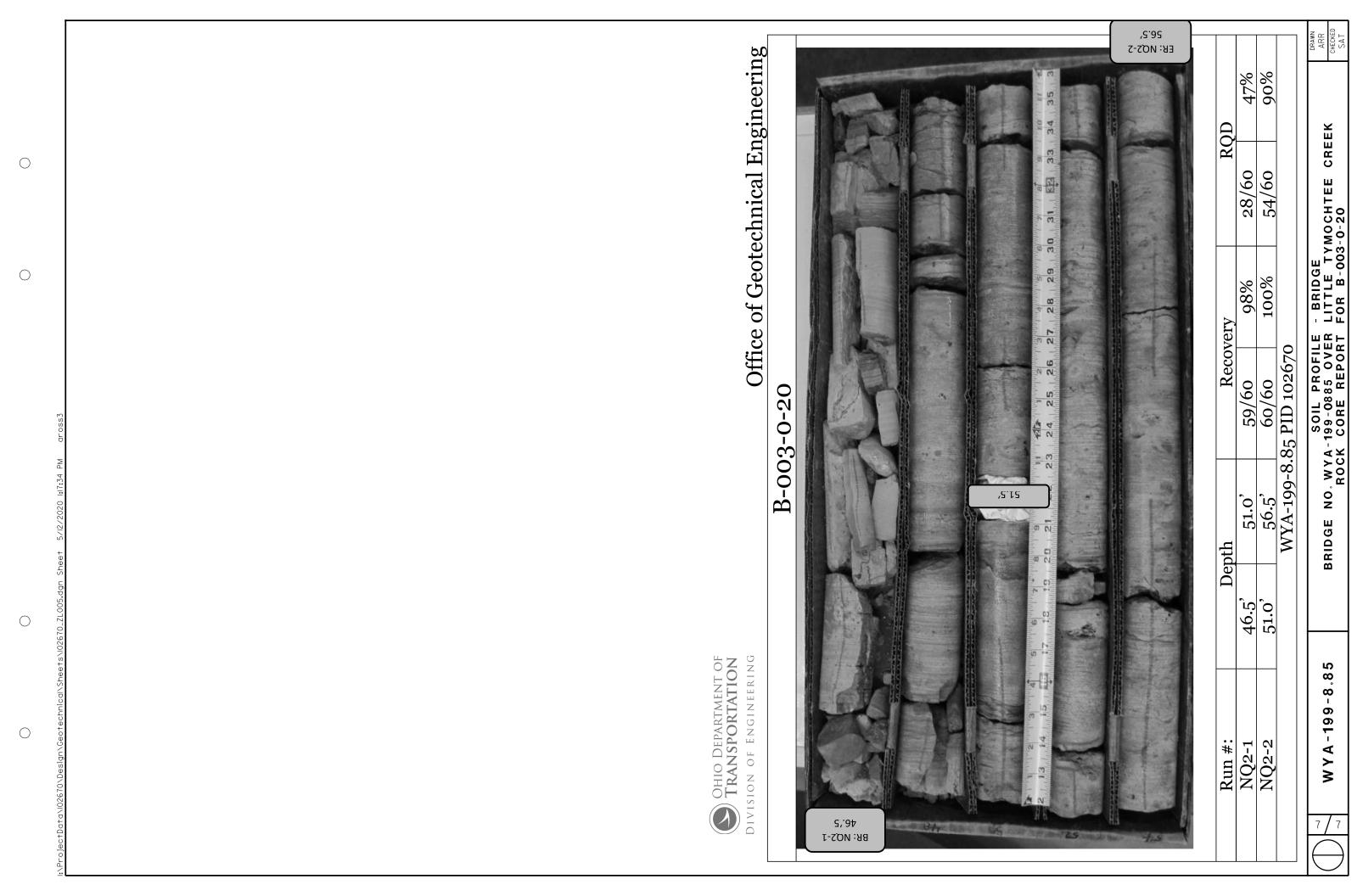
 \bigcirc


B-001-0-20

88% 93% RQD 53/60 100% Recovery 51.0' 60/60 56.0' 60/60 WYA-199-8.85 PID 102670 Depth 46.0 51.0 Run #: NQ2-1 NQ2-2

OHIO DEPARTMENT OF TRANSPORTATION DIVISION OF ENGINEERING

Office of Geotechnical Engineering


(D	91%	100%	
RQD	58/64	54/54	
very	%86	100%	(
Recovery	64/66	54/54	WYA-199-8.85 PID 102670
pth	36.3'	41.0,	WYA-199-8.
Dep	31.0	36.3	
Run #:	NQ2-1	NQ2-2	

6

WYA-199-8.85

SOIL PROFILE - BRIDGE
BRIDGE NO.WYA-199-0885 OVER LITTLE TYMOCHTEE
ROCK CORE REPORTS FOR B-001-0-20 & B-002-0

CREEK -20

