

CUY-90-14.90

PID 77332/85531

APPENDIX EC-11

ESA Phase II Reports (Contract Document)

State of Ohio Department of Transportation Jolene M. Molitoris, Director

Innerbelt Bridge Construction Contract Group 1 (CCG1)

Revision Date: February 18, 2010

This Appendix includes Phase II Environmental Site Assessment reports completed by the Department for this project. Please note that many of the reports come from the Cleveland Innerbelt Corridor report, which includes locations outside the footprint of Construction Contract Group 1. This Appendix only includes locations within the CCG1 project limits.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

CUY-CLEVELAND INNERBELT COMMERCIAL ROAD ALIGNMENT PROJECT AREA (PID 77510) CLEVELAND, CUYAHOGA COUNTY, OHIO

JANUARY 2010

Prepared for:

Ohio Department of Transportation Office of Environmental Services 1980 West Broad Street Columbus, Ohio 43223

Prepared by:

6105 Heisley Road ♦ Mentor, Ohio 44060 440-357-1260 ♦ Fax 440-357-1510

H09004-14

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	.i
SIGNA	ATURE PAGEi	ii
1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION	2
2.1	Physiography	2
2.2	TOPOGRAPHY	2
2.3	Bedrock Geology	2
2.4	Bedrock Topography	2
2.5	GLACIAL GEOLOGY	2
2.6	Hydrology	3
2.7	Hydrogeology	3
2.8	Soils	
2.9	OIL AND GAS WELLS	3
3.0	FIELD ACTIVITIES AND SAMPLING PROCEDURES	4
3.1	SAMPLING METHODS	
3.2	SOIL BORING INSTALLATION AND SAMPLE COLLECTION	4
3.3	SAMPLE SELECTION METHODS	5
3.4	ANALYTICAL METHODS	5
3.5	QUALITY ASSURANCE/QUALITY CONTROL	5
4.0	PHASE II FINDINGS, DATA EVALUATION & REGULATORY INTERPRETATION	6
4.1	BORING LOG DESCRIPTIONS	-
4.2	SOIL ANALYTICAL RESULTS	
4.3	DATA EVALUATION CRITERIA/REGULATORY DISCUSSION	7
5.0	CONCLUSIONS AND RECOMMENDATIONS	9

TABLES

Table 1: Summary of Soil Analytical Results & Comparison Standards

FIGURES

Figure 1: General Location of the Project Area Figure 2A: Soil Bore Location Map Figure 2B: Soil Bore Location Map

TABLE OF CONTENTS (continued)

APPENDICES

Appendix A: Project Plans Appendix B: Physiographic Map of Ohio Appendix C: USGS Topographic Map Appendix D: Geologic Map of Ohio Appendix E: Bedrock Topography Map Appendix F: Glacial Geology Map of Cuyahoga County Appendix G: Principal Streams and Drainage Areas Map of Ohio Appendix G: Principal Streams and Drainage Areas Map of Ohio Appendix H: Ground Water Resources Map for Cuyahoga County Appendix I: Soil Survey of Cuyahoga County Appendix I: Soil Survey of Cuyahoga County Appendix J: Oil and Gas Well Map Appendix K: Site Specific Health and Safety Plan Appendix L: Soil Boring Logs Appendix M: Laboratory Analytical Reports

DMW:dmw/jaz/js Appendices I:\2009\H09004-14\CUY-Innerbelt_Commercial Phase II.doc

EXECUTIVE SUMMARY

HzW Environmental Consultants, LLC (HzW) was contracted by the Ohio Department of Transportation (ODOT) Office of Environmental Services (OES) to conduct a Phase II Environmental Site Assessment (ESA) of the CUY-Cleveland Innerbelt, Commercial Road Alignment Project Area (PID 77510), Cleveland, Cuyahoga County, Ohio (herein referred to as the "Project Area"). This project was conducted in accordance with HzW's proposal dated November 3, 2009, which was authorized by ODOT OES on November 19, 2009. The purpose of the Phase II ESA investigation was to assess the unknown fill materials encountered during installation of geotechnical borings in July 2009 within the Project Area prior to property acquisition and/or the initiation of construction activities.

The CUY-Cleveland Innerbelt, Commercial Road Alignment Project Area involves the realignment of Commercial Road between Canal Road and the proposed East Ninth Street Extension. In July 2009, geotechnical drilling crews installed a series of borings for the proposed realignment of Commercial Road. During installation of four (4) borings, drilling crews encountered unknown fill materials at depths of less than five (5) feet in three (3) borings and to a depth over 20 feet in one (1) boring. The unknown fill materials ranged in color from white to blue and odors were identified in several borings.

Phase II ESA activities were conducted in December 2009, and consisted of the installation of four (4) soil borings (designated HB-071, HB-072, HB-073 and HB-075) within the Project Area. The soil borings were installed adjacent to the geotechnical soil borings installed in July 2009. Subsurface materials encountered during boring installation consisted of non-native fill materials comprised of sandy clay, sand and sandy slag with varying amounts of gravel, slag, brick and wood fragments. Odors were identified at multiple depths in one (1) boring. No evidence of groundwater was encountered during boring installation.

Soil analytical results were compared against the Ohio Environmental Protection Agency's (EPA's) Voluntary Action Program (VAP) single-chemical Generic Direct Contact Soil Standards (GDCS) for commercial/industrial land use and construction/excavation activities and the State of Ohio's Bureau of Underground Storage Tank Regulations' (BUSTR) Petroleum-Contaminated Soil (PCS) Re-Use Levels. The regulatory standards referenced as part of this project are for comparative use only and may not be directly applicable to the Project Area.

Soil analytical results indicate that concentrations of several volatile organic compounds (VOCs), polynuclear aromatic hydrocarbon (PAH) compounds, one or more fractions of total petroleum hydrocarbons (TPH), total metals and/or total sulfide were detected in the soil samples collected within the Project Area. None of the concentrations of the constituents detected in soil samples exceeded the Ohio EPA's VAP GDCS for commercial/industrial land use or construction/excavation activities. However, concentrations of several constituents exceeded BUSTR's PCS Re-Use Levels, which consist of the following:

- Benzo(a)anthracene, benzo(a)pyrene, chrysene, indeno(1,2,3-cd)pyrene and naphthalene in HB-071 (8-10');
- ▶ Benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene in HB-071 (10-12');
- ➤ Indeno(1,2,3-cd)pyrene in HB-071 (16-18'), HB-072 (2-4') and HB-073 (0-2');
- Benzene, benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene in HB-072 (4-6'); and
- Benzo(a)anthracene, benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene in HB-075 (0-2') and HB-075 (2-4').

Therefore, based upon the above constituent concentrations exceeding BUSTR's PCS Re-Use Levels, a plan note should be included in construction documents for the proper handling, management and/or disposal of PCS in accordance with all applicable laws and regulations. The detected concentrations of total lead in HB-073 (0-2') and HB-075 (2-4') are 20 times the Toxicity Characteristic Leaching Procedure (TCLP) level for lead. In addition, although concentrations did not exceed VAP GDCS for commercial/industrial land use or construction/excavation activities, total cyanide was detected in six (6) soil samples and hexavalent chromium in one (1) soil sample. As a result, should construction plans/activities anticipate excavation and disposal of soils from these locations, properly characterize soils prior to disposal.

SIGNATURE PAGE

This Phase II Environmental Site Assessment report for the CUY-Cleveland Innerbelt, Commercial Road Alignment Project Area (PID 77510) was prepared by HzW Environmental Consultants, LLC. Mr. Douglas M. Wetzel, Environmental Scientist, was the primary author of the report and Mr. John A. Zampino, Senior Geologist, reviewed the report. The signatures for Mr. Wetzel and Mr. Zampino are presented below.

Douglas M Wetzel Environmental Scientist

w

Senior Geologist, CPG

PHASE II ENVIRONMENTAL SITE ASSESSMENT CUY-Cleveland Innerbelt, Commercial Road Alignment Project Area (PID 77510) Cleveland, Cuyahoga County, Ohio (*HzW Project No. H09004-14*)

1.0 INTRODUCTION

The CUY-Cleveland Innerbelt, Commercial Road Alignment Project Area (PID 77510) consists of realignment of Commercial Road between Canal Road and the proposed East Ninth Street Extension. A map showing the general location of the CUY-Cleveland Innerbelt, Commercial Road Alignment Project Area is presented as **Figure 1**. The location of the proposed realignment of Commercial Road within the Project Area is presented in **Appendix A**.

In July 2009, geotechnical drilling crews installed a series of borings for the proposed realignment of Commercial Road. During installation of four (4) borings (designated B-071, B-072, B-073 and B-075, which are presented on the proposed realignment map of Commercial Road in Appendix A), drilling crews encountered materials described as:

- Having a "bad odor" or being an "unknown blue/white material" that "looked [corrosive]" to a depth of over 20 feet below ground surface in B-071;
- An "unknown blue material" at a depth of less than five (5) feet in B-072;
- An "unknown blue/green rock material" to a depth of less than five (5) feet in B-073; and
- A "nasty...blue/green material" from 1.5 to 4.5 feet in B-075, which "smells bad" and the drilling crew was "...not sure if [it was] safe to touch."

A review of historic Sanborn fire insurance maps provided to HzW by the Ohio Department of Transportation's (ODOT's) Office of Environmental Services (OES) indicated that the areas in question were historically occupied by railroad yards that were "full of tracks".

The purpose of the Phase II Environmental Site Assessment (ESA) investigation was to assess whether adverse subsurface impacts have occurred prior to property acquisition and/or the initiation of construction activities within the Project Area. Phase II ESA activities were conducted in accordance with the ODOT's April 2009 Environmental Site Assessment Guidelines for Phase II Environmental Site Assessments. Details regarding the sampling efforts and evaluation methods along with the corresponding findings of this study are presented in separate subsections of this report.

2.0 BACKGROUND INFORMATION

The background geologic information pertaining to the Project Area is presented below.

2.1 Physiography

According to the *Physiographic Regions of Ohio* map, published by the Ohio Department of Natural Resources (ODNR), the Project Area is located within the Erie Lake Plain of the Huron-Erie Lake Plains Section. The Erie Lake Plain is an Ice-Age lake basin separated from modern Lake Erie by shoreline cliffs and has major streams in deep gorges. Elevations of the Erie Lake Plain are generally of low relief between 570 and 800 feet. A copy of the Physiographic Map of Ohio is included as **Appendix B**.

2.2 Topography

According to the 1994 Cleveland South, Ohio quadrangle 7.5-minute USGS topographic map, the topography of the Project Area varies from an elevation of approximately 630 feet above National Geodetic Vertical Datum (NGVD) in the southern portion to an elevation of 670 feet above NGVD in the northern portion. The locations in which soil borings were installed in the Project Area are nearly level. A copy of the 1994 Cleveland South, Ohio quadrangle USGS topographic map is included as **Appendix C**.

2.3 Bedrock Geology

According to the *Geologic Map of Ohio*, published by the ODNR, bedrock beneath the Property consists of the Upper Devonian shales of the Cleveland, Chagrin and Huron groups. Bedrock is not exposed at the ground surface within the Project Area. A copy of the *Geologic Map of Ohio* is included as **Appendix D**.

2.4 Bedrock Topography

According to the Revised 1996 Bedrock Topography Map of the USGS 7.5-minute Cleveland South, Ohio quadrangle published by the ODNR, bedrock beneath the Project Area is at an elevation of approximately 450 feet above NGVD. Bedrock within the vicinity of the Project Area slopes east/southeast. A copy of the Bedrock Topography Map is included as **Appendix E**.

2.5 Glacial Geology

According to the *Glacial and Surficial Geology Map of Cuyahoga County*, published by the ODNR, the subsurface beneath the Project Area consists of Made Land. The areas of Made Land consist of reclaimed land, cut and fill, dumps, and continuous urban cover where 90 percent or more of the surface is covered with concrete, asphalt, building complexes, structures, or other manmade surfaces. A copy of the *Glacial and Surficial Geology Map of Cuyahoga County* is included as **Appendix F**.

2.6 Hydrology

According to the *Principal Streams and Their Drainage Area Map*, published by the ODNR, the Project Area is located within the 809 square mile drainage basin of the Cuyahoga River. A copy of the *Principal Streams and Their Drainage Areas Map* is included as **Appendix G**.

2.7 Hydrogeology

Based on local topographic conditions, local groundwater flow beneath the Project Area is anticipated to flow to the south/southwest towards the Cuyahoga River. However, actual groundwater flow direction is often influenced by factors such as underground structures, seasonal fluctuations, soil and bedrock geology, production wells and other factors beyond the scope of this study. According to the *Ground Water Resources Map of Cuyahoga County, Ohio*, published by the ODNR, two (2) hydrogeologic units underlie the Project Area. The majority of the Project Area is underlain by buried valleys that contain 200 to 300 feet of fine sand, silt and clay. Wells drilled within the buried valleys yield meager supplies (generally 3 to 10 gallons of groundwater per minute) unless thin, isolated sand and gravel lenses are encountered. The remaining portion of the Project Area is underlain by permeable sand and gravel deposits interbedded with silt and clay in a buried valley. Drilled wells within the permeable sand and gravel unit yield 100 to 300 gallons of groundwater per minute in locations where sufficient coarse material is present. A copy of the *Ground Water Resources Map of Cuyahoga County* is included in **Appendix H**.

2.8 Soils

According to the *Soil Survey of Cuyahoga County, Ohio*, published by the United States Department of Agriculture, the Project Area is underlain by one (1) soil type, Urban land (Ub). The Urban land soil type consists of areas in where more than 80 percent of the surface is covered by asphalt, concrete, buildings or other manmade surfaces. A copy of the *Soil Survey* is included as **Appendix I**.

2.9 Oil and Gas Wells

According to the Oil and Gas Well Map for the Cleveland South, Ohio 7.5-minute quadrangle published by the ODNR, no oil or gas wells are located within the Project Area. A copy of the Oil and Gas Well Map is included as **Appendix J**.

3.0 FIELD ACTIVITIES AND SAMPLING PROCEDURES

3.1 Sampling Methods

Phase II ESA activities were conducted on December 17, 2009, and consisted of the installation of four (4) soil borings (designated "HB-071," "HB-072," "HB-073" and "HB-075"). The soil borings were installed adjacent to the geotechnical soil borings installed in July 2009 and the designation of each soil boring was kept consistent with the geotechnical soil borings (e.g., HzW soil boring HB-071 was installed adjacent to geotechnical soil boring B-071). Visual evidence of two (2) geotechnical soil borings (HB-071 and HB-072) remained, which consisted of wooden stakes with the respective boring numbers and the auger hole. However, no visual evidence of the remaining two (2) geotechnical boring locations (HB-073 and HB-075) was identified. Therefore, in order to locate HB-073 and HB-075 and to verify the locations of HB-071 and HB-072, HzW utilized a Trimble® GeoXHTM Global Positioning System unit to locate the state plane coordinates for each boring, which were included on the geotechnical soil borings logs provided by ODOT OES. The locations of the soil borings on the Property are depicted on **Figure 2**.

All personnel on-site, or otherwise associated with the sample collection, were trained in accordance with Occupation Safety and Health Administration (OSHA) requirements, as stipulated under 29 CFR 1910.120. A copy of the site-specific Health and Safety Plan (HASP) prepared for use by all on-site personnel is included as **Appendix K**.

3.2 Soil Boring Installation and Sample Collection

Soil samples were collected from ground surface to terminal depths. The soil borings were installed using hydraulic Geoprobe[®] direct push subsurface sampling techniques. Hydraulic Geoprobe[®] marco core direct push subsurface sampling techniques utilize a series of 5-foot long steel rods driven into the subsurface. Soil samples were collected using a five-foot long sample tube attached to five-foot long steel rods. The sample tube consists of a clean, disposable acetate (plastic) liner that is driven into the subsurface to obtain a core sample of the subsurface material.

Upon extraction from the soil, the plastic liner, with core intact, was removed from the sample tube. Each sample liner was initially split into two-foot intervals following sample collection and examined separately. Each two-foot soil sample was transferred to a clean, labeled sample container (provided by the laboratory) and placed in an ice cooler for preservation in the field. The sample intervals were characterized by a qualified environmental technician. Observations noted by the technician included the sample location/number, sample depth, sediment description, color, moisture content, odor, and presence or absence of contamination based on visual/olfactory observation. The observations were recorded on a boring log completed for each soil boring.

Following completion of soil sampling activities, all borings installed within the Project Area were filled with granular bentonite and hydrated. All equipment used during Phase II ESA sampling activities was decontaminated with a Liqui-Nox[®] and distilled water solution and triple-rinsed with distilled water after each use to limit the potential for cross contamination.

3.3 Sample Selection Methods

Soil samples were selected for laboratory analysis based upon visual and olfactory observations in the field and depths at which unknown materials were encountered by the geotechnical drilling crews as recorded in the geotechnical soil boring logs. The samples were shipped in a sample cooler, chilled to 4°C, under chain-of-custody documentation.

3.4 Analytical Methods

The soil samples from each boring were submitted to TestAmerica Laboratories, Inc. (TestAmerica) of North Canton, Ohio, for analysis of volatile organic compounds (VOCs) by EPA Method 8260, polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270, total petroleum hydrocarbons (TPH) gasoline and diesel range organics by modified EPA Method 8015, total concentrations of arsenic, cadmium, chromium and lead by EPA Method 6010, total concentrations of cyanide by EPA Method 335.2, hexavalent chromium by EPA Method 7196, total sulfide by EPA Methods 9030/9034 and corrosivity (pH) by EPA Method 9045.

3.5 Quality Assurance/Quality Control

HzW developed Quality Assurance/Quality Control (QA/QC) measures to ensure the Phase II ESA was conducted in accordance with consistent professional standards and specific ODOT requirements. The main elements of the QA/QC program include the following:

- > Peer review of all project correspondence, notes, chain-of-titles, etc;
- Multi-layered report examination by the QA/QC team;
- > Daily involvement by HzW's project manager in all aspects of the project; and
- Regular discussion with technical personnel to review elements to be included in the reports; report format changes, and internal routing/review procedures.

Specific QA/QC procedures for this project included the following elements:

- 1. Review of the project Scope-of-Services between the HzW Project Manager and the field representatives;
- 2. Continual reference to the Phase II proposal by the field representatives during project implementation;
- 3. During field work, completion of thorough and accurate field notes (such as site drawings, information obtained from the property representative, and observations made during the site assessment);
- 4. During data evaluation, identifying appropriate and applicable reference standards with which to compare results, comparing results to field observations to identify any discrepancies; and
- 5. During report preparation:
 - completion of report in a format required by ODOT,
 - review of report by the author,
 - editing report, as needed,
 - review and editing of report by the Technical Editor, as needed,
 - review of report by the Project Manager, and
 - finalization of the report.

4.0 PHASE II FINDINGS, DATA EVALUATION & REGULATORY INTERPRETATION

The findings of this Phase II ESA investigation are presented below. A discussion of the geology and hydrology of the Project Area based on soil boring logs, and the soil sample analytical results, are presented in separate subsections below.

4.1 Boring Log Descriptions

Soil borings within the Project Area were installed to terminal depths of six (6) or 20 feet below ground surface (bgs). Subsurface materials encountered during boring installation consisted of non-native fill materials including brown, black and dark gray sandy clay, dark gray, black and brown sand, and dark brown, black and dark gray sandy slag with varying amounts of gravel, slag, brick and wood fragments. Slight to strong sulfur odors were identified in HB-071 (6-14' and 16-18'). No odors were identified in the remaining soil borings. Although damp soils were encountered in HB-073 and HB-075 (both of which terminated at six [6] feet bgs), no evidence of groundwater was encountered during boring installation. Copies of the boring logs for the borings installed within the Project Area are included as **Appendix L**.

4.2 Soil Analytical Results

The analytical results of the soil samples collected from soil borings installed within the Project Area (HB-071, HB-072, HB-073 and HB-075) are presented in **Table 1**. The complete laboratory analytical report from TestAmerica, including the laboratory's internal QA/QC sample results, is included in **Appendix M**. The laboratory QA/QC reporting was determined to be acceptable with the exception of the following:

- The matrix spike/matrix spike duplicate (MS/MSD) for a batch of samples for VOC analysis had relative percent differences (RPDs) and recoveries outside acceptance limits. However, since the associated method blank and laboratory control sample was in control, no corrective action was necessary.
- The internal standard areas for VOC analysis were outside acceptance limits for samples HB-071 (10-12'), HB-071 (16-18') and HB-072 (2-4') due to matrix effects.
- Sample HB-071 (8-10') had elevated reporting limits due to tentatively identified compounds in the VOC analysis.
- Samples HB-071 (10-12'), HB-071 (16-18') and HB-072 (2-4') were reanalyzed at a dilution due to internal standard recoveries outside of acceptance limits, per Ohio VAP standards. Only compounds associated with internal standards that met criteria are reported from each analysis.
- Sample HB-075 (0-2') had elevated reporting limits in SVOC analysis due to matrix interferences.
- The batch QC for SVOC analysis batch 9353017 was unable to be reported due to repreparation of the parent sample and the original sample was not reported.
- The MS/MSD for a batch of samples for TPH analysis had recoveries outside acceptance limits. However, since the associated method blank and laboratory control sample was in control, no corrective action was necessary.
- The reported concentration of a TPH fraction in HB-075 (0-2') is flagged with a "J" as the results were between the method detection limit and the reporting limit. The possibility of false positive or mis-identification at these quantification levels exist. In analytical methods requiring confirmation of the anlayte reported, confirmation was

performed only down to the standard reporting limit. The acceptance criteria for QC samples may not be met at these quantification levels.

- The generic batch MS/MSDs for a TPH analysis batch was extracted and analyzed, but unable to be reported due to the laboratory system limitations.
- Sample HB-072 (4-6') for hexavalent chromium is suspect to have a reducing agent based on the results obtained from method of standard addition.
- The MS/MSD data for certain batches are not included in this report. The batch QC samples, which document the effect of a specific sample matrix on method performance, were not associated with a sample reported in this lot. The data, therefore, has no bearing on samples reported herein. In order to document compliance with the QC requirement for an MS/MSD per 20 environmental samples, a summary of sample/QC associations has been provided.

4.3 Data Evaluation Criteria/Regulatory Discussion

Soil analytical results were compared against the Ohio Environmental Protection Agency's Voluntary Action Program (VAP) single-chemical Generic Direct Contact Soil Standards (GDCS) for commercial/industrial land use and construction/excavation activities and the State of Ohio's Bureau of Underground Storage Tank Regulations' (BUSTR) Petroleum-Contaminated Soil (PCS) Re-Use Levels. The GDCS values were developed to be protective of the environment and human health based on predictive models regarding potential exposures to adults from dermal contact with soil, inhalation of vapors and particles from soil, and ingestion of soil. The VAP and BUSTR comparative standards are included with the soil analytical results in **Table 1**.

The regulatory standards referenced as part of this project are for comparative use only and may not be directly applicable to the Project Area. The Ohio VAP and BUSTR standards referenced in this report apply only to sites that are participants in Ohio's Voluntary Action Program or sites regulated by BUSTR. However, because the Ohio Environmental Protection Agency and BUSTR recognize these standards as being protective of human health and the environment, they provide a useful tool for assessing environmental conditions within the Project Area.

According to soil analytical results, low concentrations of several VOCs consisting of acetone, benzene, carbon disulfide, ethylbenzene, methylene chloride, toluene and/or total xylenes were detected in soil samples HB-71 (10-12'), HB-71 (16-18'), HB-072 (2-4'), HB-072 (4-6'), HB-073 (0-2') and HB-075 (0-2'). None of the detected concentrations of VOCs exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities. However, the detected concentration of benzene in HB-072 (4-6'), 0.027 milligrams per kilogram (mg/kg), exceeded the BUSTR PCS Re-Use Level of 0.015 mg/kg.

Concentrations of PAH compounds consisting of acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene and/or pyrene were detected in soil samples from all soil borings. Although none of the detected concentrations of PAH compounds exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities, concentrations of several PAH compounds exceeded BUSTR PCS Re-Use Levels. The compounds exceeding Re-Use Levels consists of benzo(a)anthracene, benzo(a)pyrene, chrysene, indeno(1,2,3-cd)pryene and naphthalene in HB-071 (8-10'); benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene in HB-071 (10-12'); indeno(1,2,3-cd)pryene in HB-071 (10-12'); benzo(a)pyrene, chrysene and indeno(1,2,4') and HB-073 (0-2'); benzo(a)pyrene, chrysene and

indeno(1,2,3-cd)pyrene in HB-072 (4-6'); and benzo(a)anthracene, benzo(a)pryene, chrysene and indeno(1,2,3-cd)pyrene in HB-075 (0-2') and HB-075 (2-4').

Soil analytical results indicate that concentrations of one or more fractions of TPH were detected in the soil samples from all soil borings. None of the detected concentrations of TPH fractions exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities or BUSTR PCS Re-Use Levels.

Concentrations of total arsenic, cadmium, chromium and/or lead were detected in soil samples from all soil borings. None of the detected concentrations of total metals exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities. However, the detected concentrations of lead in HB-073 (0-2') and HB-075 (2-4'), 115 mg/kg and 107 mg/kg, respectively, are 20 times the Toxicity Characteristic Leaching Procedure (TCLP) level for lead (5.0 mg/kg).

According to soil analytical results, concentrations of total cyanide were detected in HB-071 (8-10'), HB-071 (10-12'), HB-071 (16-18'), HB-072 (2-4'), HB-072 (4-6') and HB-073 (0-2') and hexavalent chromium detected in HB-072 (4-6'). The detected concentrations of total cyanide or hexavalent chromium did not exceed VAP GDCS for commercial/industrial land use or construction/excavation activities.

No comparative standards currently exist for total sulfide or corrosivity (pH). Total sulfide concentrations in soil samples ranged from below detection limits in HB-075 (2-4') to 302 mg/kg in HB-073 (0-2'). Concentrations of pH ranged from 8.7 in HB-075 (2-4') to 11.5 in HB-075 (0-2').

5.0 CONCLUSIONS AND RECOMMENDATIONS

The results of Phase II ESA activities conducted within the CUY-Cleveland Innerbelt, Commercial Road Alignment Project Area (PID 77510) indicate that concentrations of several VOCs, PAH compounds, one or more fractions of TPH, several total metals and total sulfide were detected in soil samples collected within the Project Area. None of the concentrations of the constituents detected in soil samples within the Project Area exceeded VAP GDCS for commercial/industrial land use or construction/excavation activities. However, concentrations of several constituents exceeded BUSTR's PCS Re-Use Levels, which consist of the following:

- Benzo(a)anthracene, benzo(a)pyrene, chrysene, indeno(1,2,3-cd)pyrene and naphthalene in HB-071 (8-10');
- Benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene in HB-071 (10-12');
- ▶ Indeno(1,2,3-cd)pyrene in HB-071 (16-18'), HB-072 (2-4') and HB-073 (0-2');
- Benzene, benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene in HB-072 (4-6'); and
- Benzo(a)anthracene, benzo(a)pyrene, chrysene and indeno(1,2,3-cd)pyrene in HB-075 (0-2') and HB-075 (2-4').

Based upon the above constituent concentrations exceeding BUSTR's PCS Re-Use Levels, a plan note should be included in construction documents for the proper handling, management and/or disposal of PCS in accordance with all applicable laws and regulations.

The detected concentrations of total lead in HB-073 (0-2') and HB-075 (2-4') are 20 times the TCLP level for lead. In addition, although concentrations did not exceed VAP GDCS for commercial/industrial land use or construction/excavation activities, total cyanide was detected in six (6) soil samples and hexavalent chromium in one (1) soil sample. As a result, should construction plans/activities anticipate excavation and disposal of soils from these locations, properly characterize soils prior to disposal.

TABLES

Table 1 Summary of Soil Analytical Results Commercial Road Alignment Project Area (PID 77510) Cleveland, Ohio

(All values presented in mg/kg, unless otherwise noted)

Sample ID Sample Date		HB-071 (10-12') 12/17/2009	HB-071 (16-18') 12/17/2009	HB-072 (2-4') 12/17/2009	HB-072 (4-6') 12/17/2009	HB-073 (0-2') 12/17/2009	HB-075 (0-2') 12/17/2009	HB-075 (2-4') 12/17/2009	CIGDCS ¹	CEGDCS ²	BUSTR Re-Use ⁶
VOCs - EPA Method 8260											
Acetone	<23.0	0.036	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.022	100,000	100,000	
Benzene	<5.7	< 0.006	< 0.006	< 0.006	0.027	< 0.006	< 0.006	< 0.006	140	150	0.015
Carbon disulfide	<5.7	0.014	0.012	0.008	0.027	< 0.006	< 0.006	< 0.006	1,400	190	
Ethylbenzene	<5.7	< 0.006	< 0.028	< 0.028	< 0.006	0.011	< 0.006	< 0.006	230	230	4.55
Methylene chloride	<5.7	0.012	0.007	0.011	< 0.006	< 0.006	< 0.006	< 0.006	570	1,500	
Toluene	<5.7	0.007	< 0.028	< 0.028	0.044	0.006	< 0.006	< 0.006	520	520	4.91
Total Xylenes	<5.7	0.011	< 0.028	< 0.028	0.02	0.047	0.026	< 0.006	370	370	15.7
PAHs - EPA Method 8270											
Acenaphthene	7.0	1.3	0.9	0.11	0.14	0.082	0.19	0.57	56,000	440,000	
Acenaphthylene	< 0.38	0.27	0.12	0.14	0.34	0.15	0.1	0.072	170,000 ³	51,000 4	
Anthracene	2.4	0.94	0.49	0.36	0.41	0.24	0.86	1.3	280,000	1,000,000	
Benzo(a)anthracene	2.2	1.5	0.81	0.84	1.3	1.1	2.9	2.9	76	680	2.2
Benzo(a)pyrene	2.2	1.3	0.66	0.63	1.2	1.0	2.1	2.5	7.7	69	1.1
Benzo(b)fluoranthene	3.3	2.2	1.0	1.1	2.1	1.5	2.5	3.2	77	690	5.53
		0.96		0.5	0.85				23,000 ³		0.00
Benzo(g,h,i)perylene	0.83	0.96	0.45	0.39	0.85	0.82	1.2	1.6		25,000 ⁴	1.07
Benzo(k)fluoranthene	0.57 2.2	1.5	0.42 0.85		1.5	0.42 0.96	0.94 2.6	1.2 2.6	770	6,900	1.97
Chrysene Dibenz(a,h)anthracene				0.84			0.46	0.5	7,600	69,000	1.27 0.94
	<0.38	0.38	0.18	0.15	0.26	0.29			7.7	69 200 000	0.94
Fluoranthene	8.8	4.0	2.2	1.5	2.1	1.6	5.1	5.5	37,000	290,000	
Fluorene	5.3 1.4	1.3 0.94	0.87	0.14	0.18	0.087	0.21	0.57 1.5	37,000	290,000	0.15
Indeno(1,2,3-cd)pyrene			0.44	0.46	0.76	0.6	1.1		77	690 260	0.15
1-Methylnaphthalene	4.1	2.0	0.96	0.52	0.86	1.0	0.15	0.61	360	360	
2-Methylnaphthalene	7.9	3.3	1.6	0.78	1.4	1.5	0.18	1.0	94,000 ³	62,000 ⁴	
Naphthalene	55.0	3.7	3.4	0.58	0.91	0.88	0.23	0.82	150	84	3.98
Phenanthrene	13.0	5.4	2.7	1.1	1.4	1.2	2.5	4.8	870,000 ³	260,000 4	
Pyrene	5.6	3.1	1.8	1.4	2.1	1.5	6.1	5.4	28,000	220,000	
TPH - Modified EPA Method 8015											
C6-C12	2.7	0.17	0.15	< 0.11	0.7	0.21	0.78	< 0.11	1,000 5	1,000 5	1,000
C10-C20	260	170	72	44	82	120	100	48	2,000 5	2,000 5	2,000
C20-C34	250	220	150	140	220	130	610	110	5,000 ⁵	5,000 ⁵	5,000
Total Metals - EPA Method 6010											
Arsenic	10.0	11.3	9.7	8.6	9.3	9.3	4.7	10.4	82	420	
Cadmium	<0.23	0.31	<0.23	<0.23	<0.23	0.33	0.23	<0.22	2,300	420	
Chromium	11.2	14.4	22.9	10.6	19.7	10.6	18.6	<0.22 8.9	1,000,000	1,000,000	
Lead	38.8	65.9	55.7	27.0	38.4	115	21.3	107	1,800	750	
Total Cyanide - EPA Method 335.2	0.8	2.1	0.73	2.9	2.1	4.6	<0.57	<0.55	59,000	39,000	
Hexavalent Chromium - EPA Method 7196	<0.92	<0.92	<0.91	<0.9	2.5	<0.9	<0.91	<0.88	7,900	13,000	
Total Sulfide - EPA Methods 9030/9034	48.5	90.2	148	287	289	302	61.6	<33.1	NGS	NGS	
Corrosivity - EPA Method 9045 (unitless)	9.5	10.1	10.4	10.2	10.2	11.0	11.5	8.7	NGS	NGS	

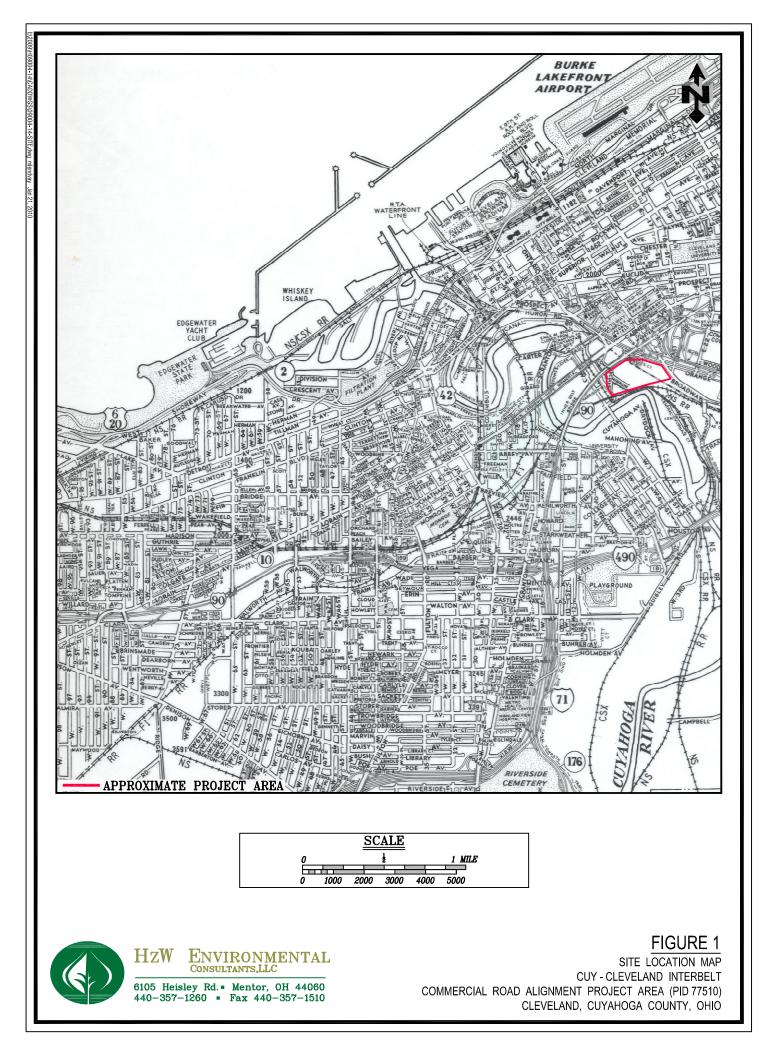
Bolded values indicate laboratory detections

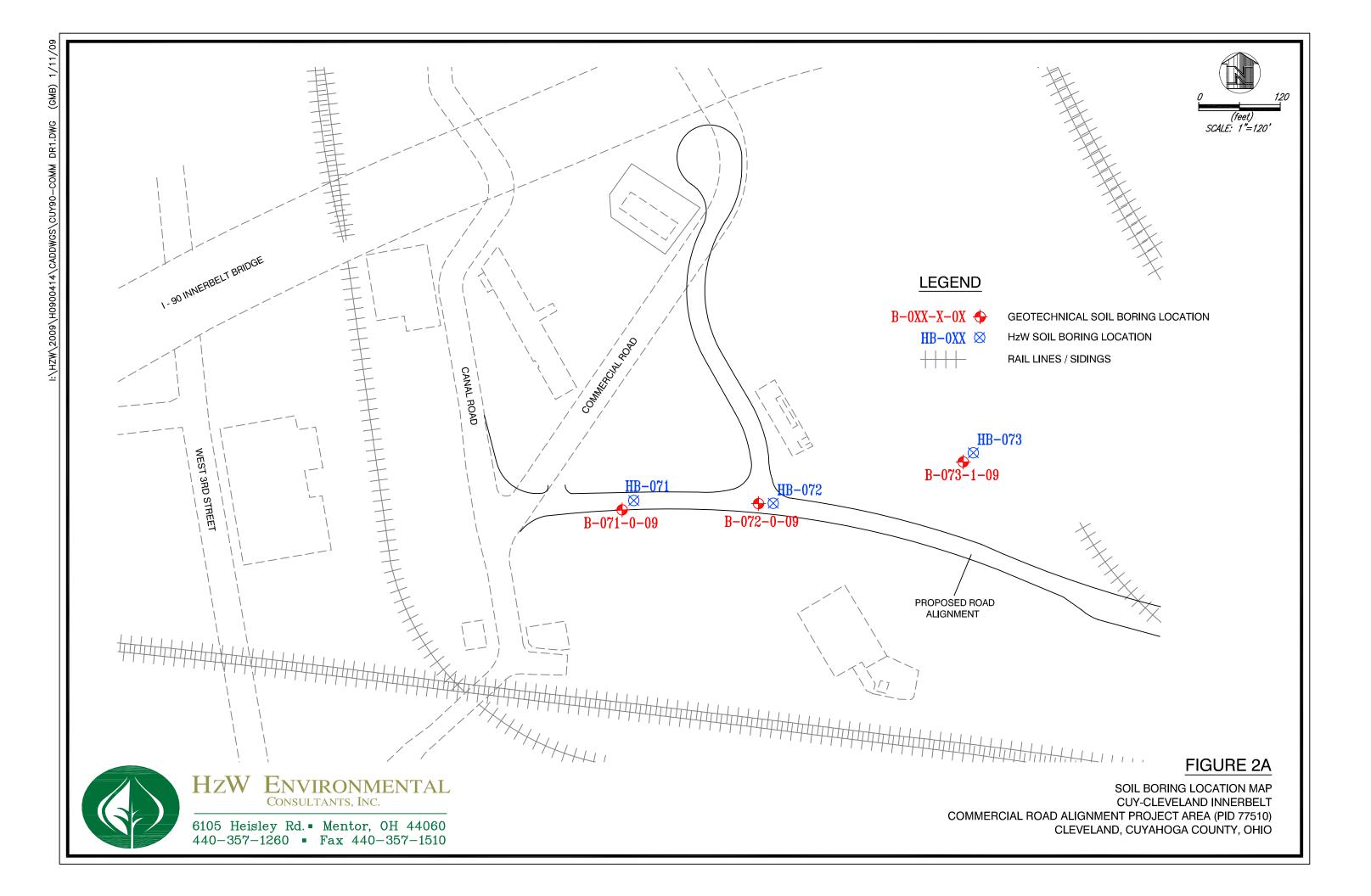
¹VAP Generic Direct Contact Soil Standards for Commercial/Industrial Land Use per OAC 3745-300-08(C)(3)(c), Table II

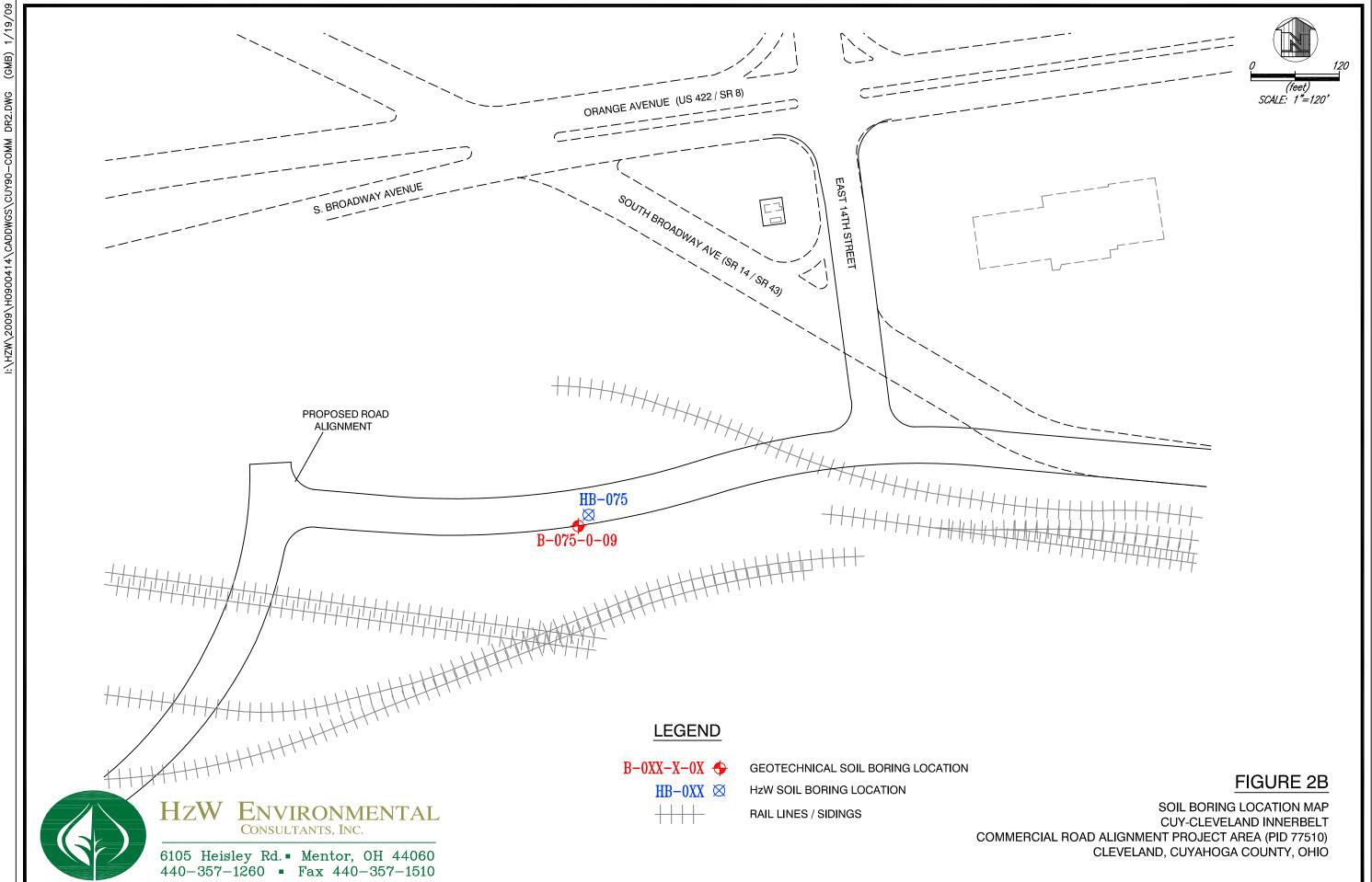
²VAP Generic Direct Contact Soil Standards for Construction and Excavation Activities per OAC 3745-300-08(C)(3)(d), Table III

³VAP Supplemental Direct Contact Soil Values for Commercial/Industrial Land Use, January 25, 2006

⁴VAP Supplemental Direct Contact Soil Values for Construction and Excavation Activities, January 25, 2006

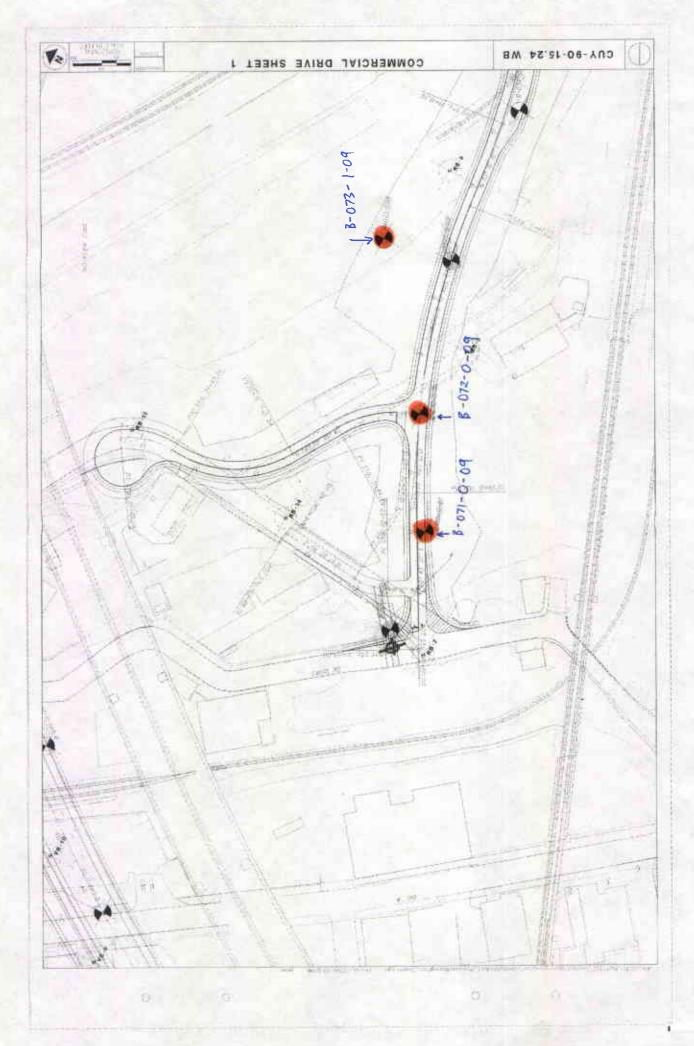

⁵Petroleum standards are BUSTR standards per VAP Technical Guidance Compendium VA30008.09.001

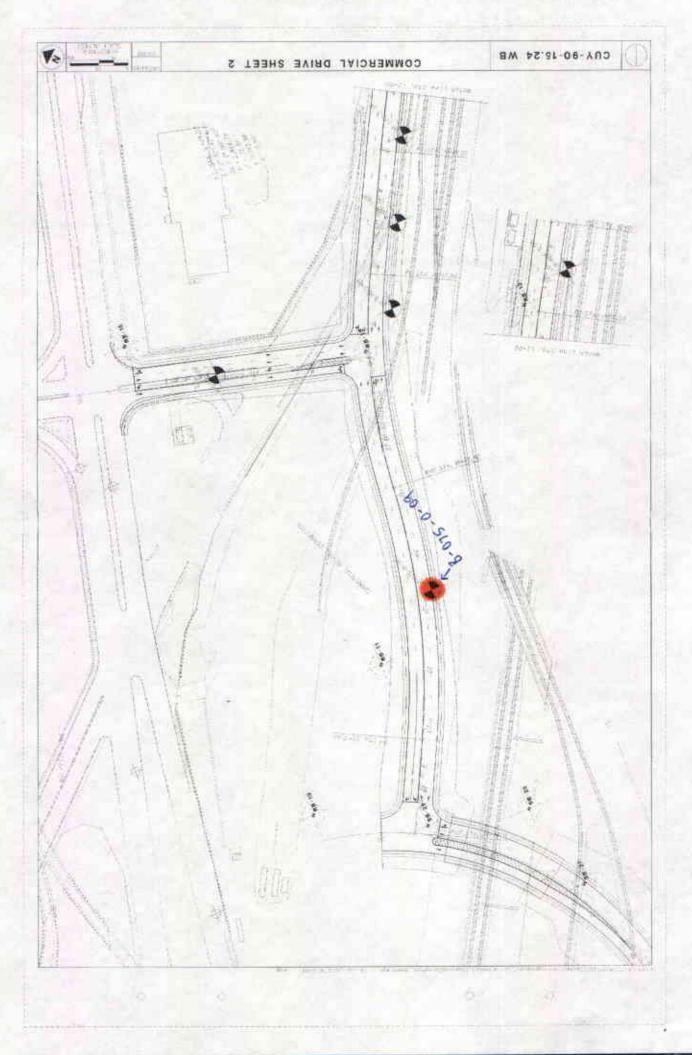

⁶BUSTR's Petroleum Contaminated Soil Re-Use Levels per OAC 1301:7-9-16(D)(1), Table 1


= Value exceeds BUSTR's PCS Re-Use Levels

= J-qualified analytical results

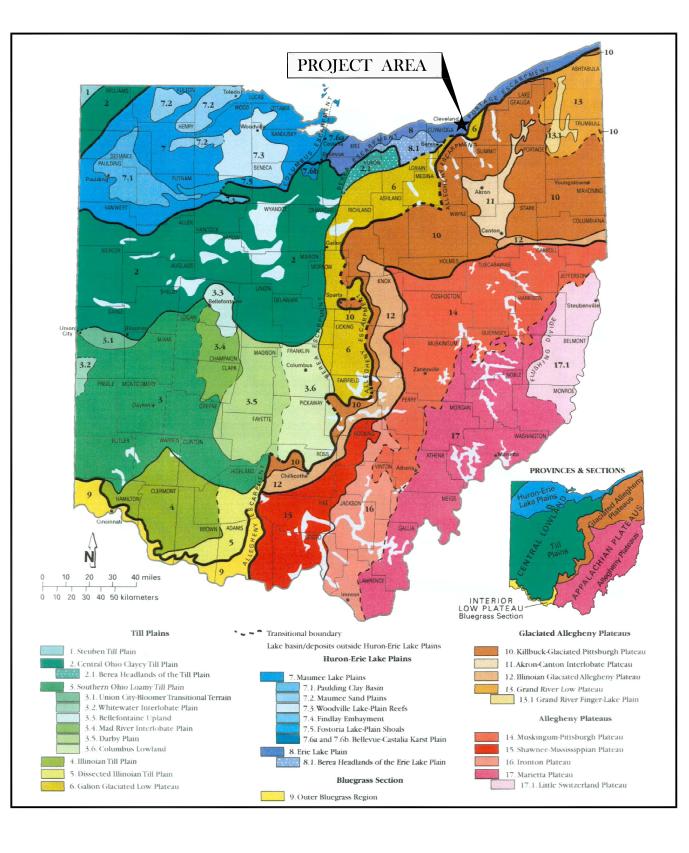
FIGURES




1/19/09

APPENDIX A

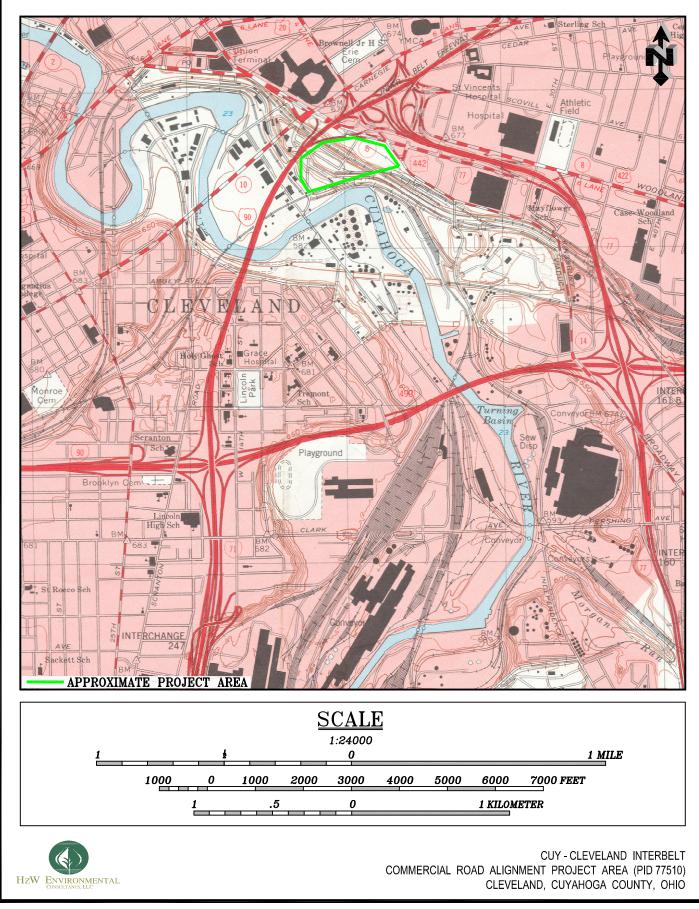
PROJECT PLANS


ł

APPENDIX B

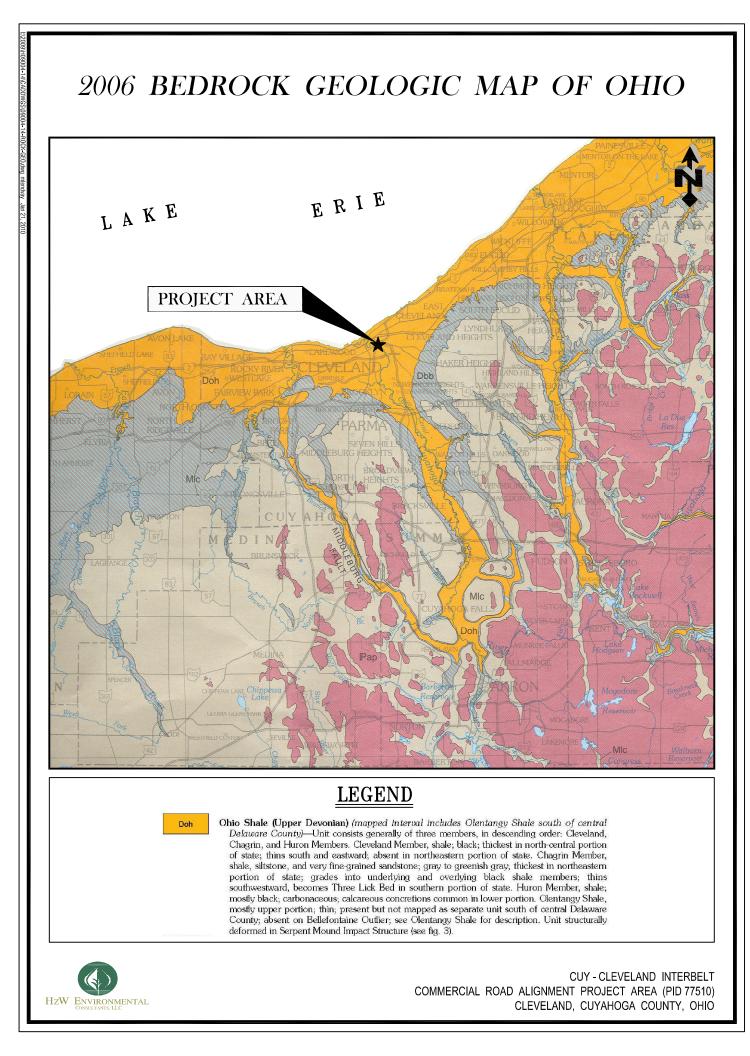
PHYSIOGRAPHIC MAP OF OHIO

PHYSIOGRAPHIC REGIONS OF OHIO



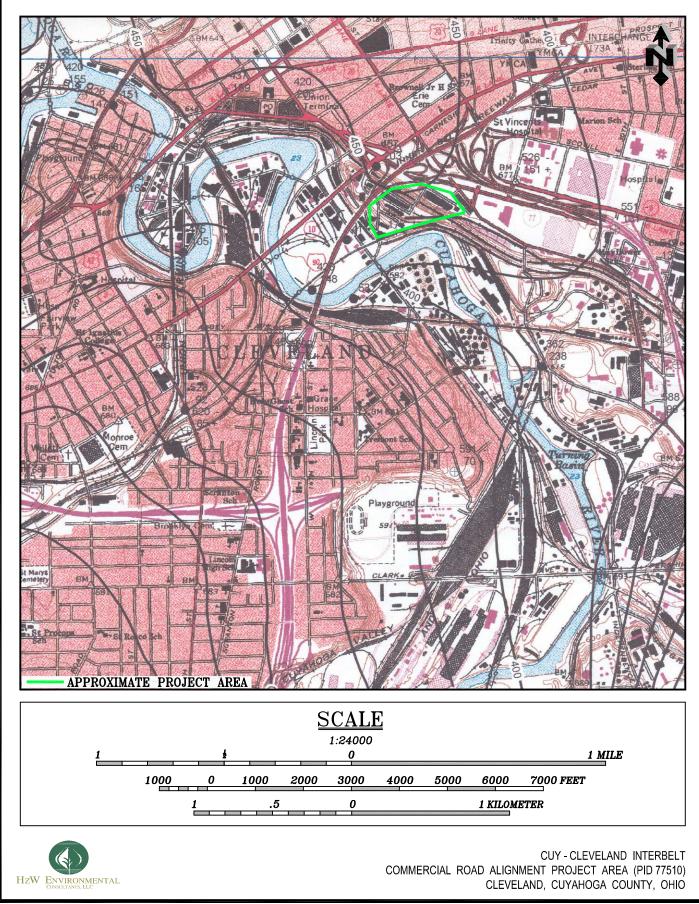
CUY-CLEVELAND INTERBELT COMMERCIAL ROAD ALIGNMENT PROJECT AREA (PID 77510) CLEVELAND, CUYAHOGA COUNTY, OHIO

APPENDIX C

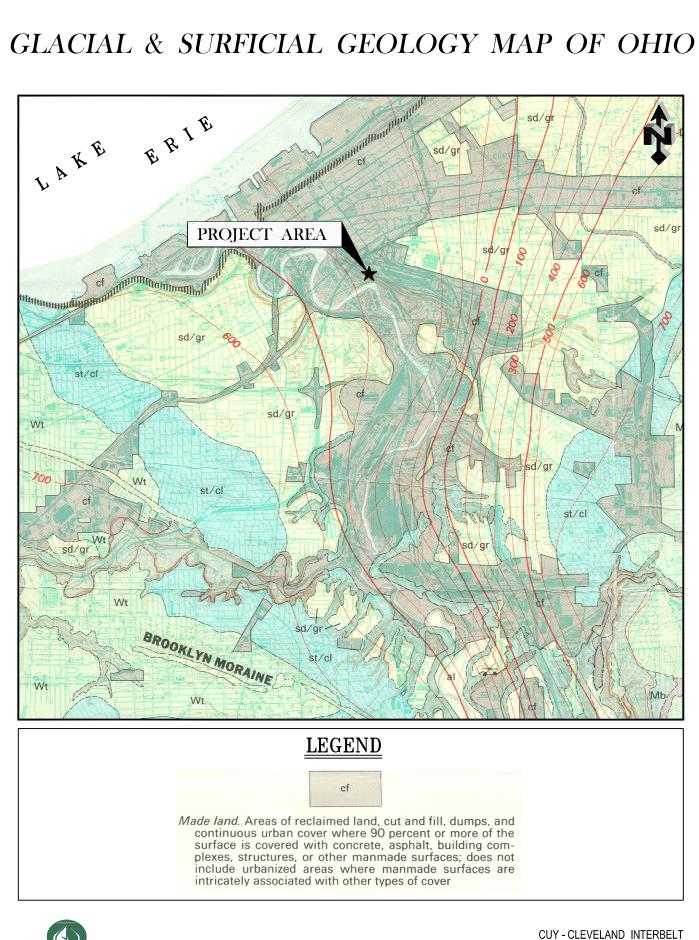

USGS TOPOGRAPHIC MAP

USGS TOPOGRAPHIC MAP 1994 CLEVELAND SOUTH, OHIO QUADRANGLE

APPENDIX D


GEOLOGIC MAP OF OHIO

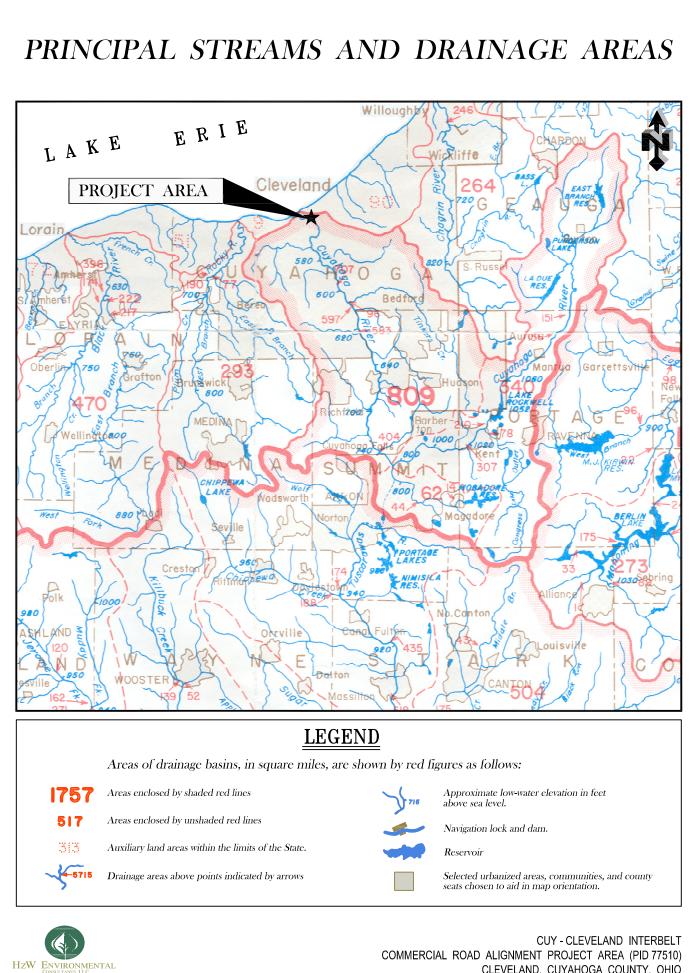
APPENDIX E


BEDROCK TOPOGRAPHY MAP

BEDROCK TOPOGRAPHY MAP 1996 CLEVELAND SOUTH, OHIO QUADRANGLE

APPENDIX F

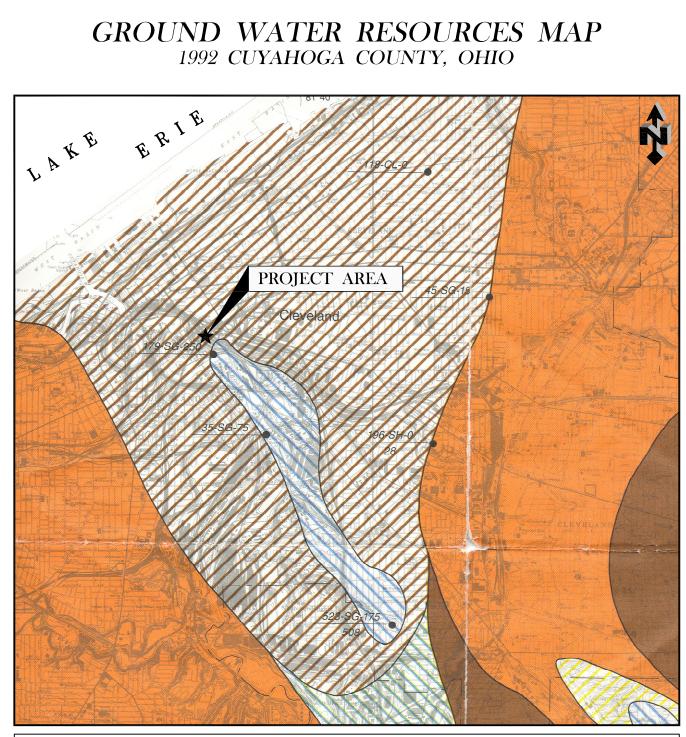
GLACIAL GEOLOGY MAP OF CUYAHOGA COUNTY



HZW ENVIRONMENTAL

CUY - CLEVELAND INTERBELT COMMERCIAL ROAD ALIGNMENT PROJECT AREA (PID 77510) CLEVELAND, CUYAHOGA COUNTY, OHIO

APPENDIX G


PRINCIPAL STREAMS & THEIR DRAINAGE AREAS MAP OF OHIO

CLEVELAND, CUYAHOGA COUNTY, OHIO

APPENDIX H

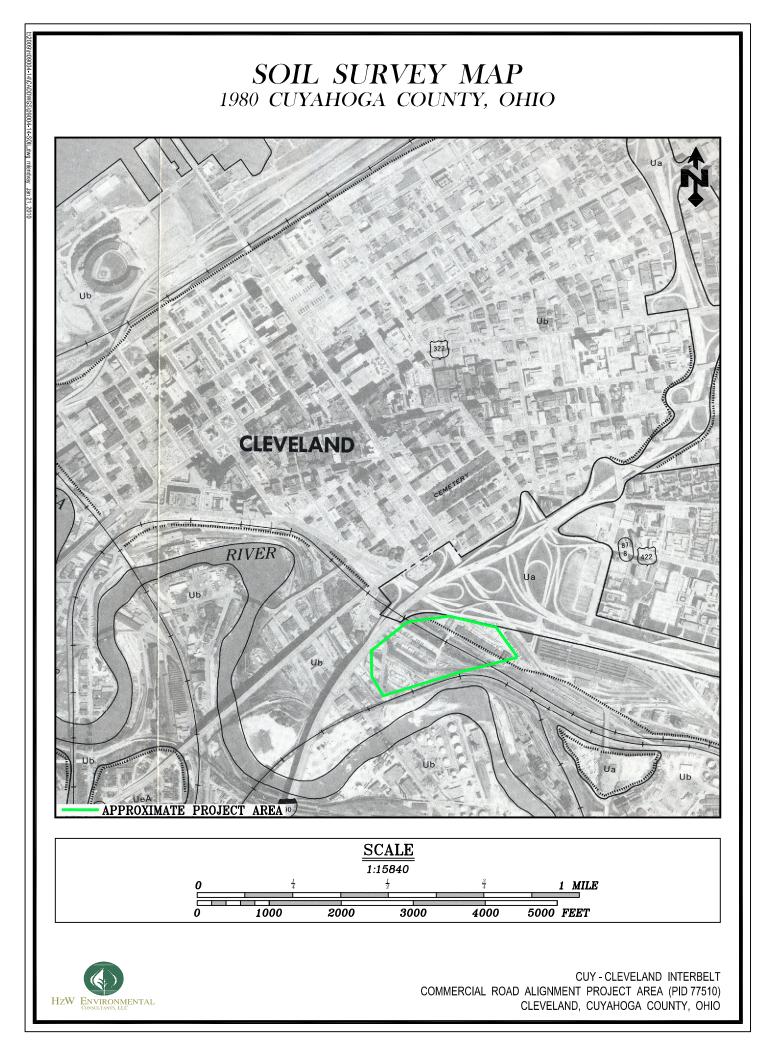
GROUND WATER RESOURCES MAP OF CUYAHOGA COUNTY

LEGEND

AREAS IN WHICH 100 TO 300 GALLONS PER MINUTE MAY BE DEVELOPED

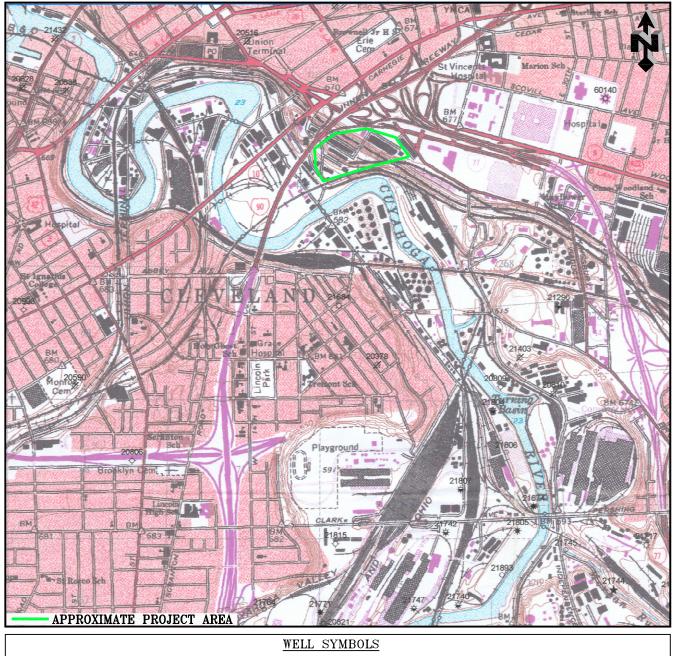
Good ground water areas. Permeable sand and gravel deposits interbedded with silt and clay lie in a buried valley. Yields of as much as 250 gallons per minute are available where sufficient coarse material is found. Exploratory drilling may be required to locate such deposits.

AREAS IN WHICH 3 TO 10 GALLONS PER MINUTE MAY BE DEVELOPED


Buried valleys contain 200 to 300 feet of fine sand, silt, and clay. Drilled wells yield meager supplies unless encountering thin, isolated sand and gravel lenses.

CUY-CLEVELAND INTERBELT COMMERCIAL ROAD ALIGNMENT PROJECT AREA (PID 77510) CLEVELAND, CUYAHOGA COUNTY, OHIO

APPENDIX I


SOIL SURVEY OF CUYAHOGA COUNTY

APPENDIX J

OIL AND GAS WELL MAP

OIL AND GAS WELL MAP 2006 CLEVELAND SOUTH, OHIO QUADRANGLE

- 👻 GAS AND OIL SHOW
- Optimize the image of the im
- ↔ LOST HOLE
- ダ OBSERVATION
- OIL AND GAS CONVERTED TO WATER
- OIL
- 🗮 OIL AND GAS
- ✤ OIL WITH GAS SHOW
- ⊖ OIL SHOW
- × PLUGGED BRINE FOR DUST CONTROL

- 举 PLUGGED GAS
- 🔆 PLUGGED GAS WITH OIL SHOW
- ♥ PLUGGED OIL
- ✤ PLUGGED OIL AND GAS
- ✤ PLUGGED OIL WITH GAS SHOW
- ™ → RADIOACTIVE TOOL LOST IN HOLE
- SOLUTION MINING
- CAS STORAGE
- lpha Stratigraphy test
- WATER SUPPLY

ά

墩

-ф-

ф-

₩

÷

ø

☆ GAS

-ở- GAS SHOW

★ UNKNOWN STATUS

DRY HOLE

COALBED METHANE

╈ GAS WITH OIL SHOW

BRINE FOR DUST CONTROL

DRY HOLE WITH GAS SHOW

DRY HOLE WITH OIL SHOW

EXPIRED PERMIT LOCATION

DRY HOLE WITH OIL AND GAS SHOW

CUY - CLEVELAND INTERBELT COMMERCIAL ROAD ALIGNMENT PROJECT AREA (PID 77510) CLEVELAND, CUYAHOGA COUNTY, OHIO

APPENDIX K

SITE SPECIFIC HEALTH AND SAFETY PLAN

SITE-SPECIFIC HEALTH AND SAFETY PLAN

CUY-CLEVELAND INNERBELT COMMERCIAL ROAD ALIGNMENT (PID 77510) CLEVELAND, CUYAHOGA COUNTY, OHIO

December 2009

Prepared by HzW Environmental Consultants, LLC 6105 Heisley Road Mentor, Ohio 44060

EMPLOYEE ACKNOWLEDGEMENT FORM

I have read this site-specific health and safety plan, understand the material presented, have been given an opportunity to ask questions and will abide by the provisions stated in this site-specific plan under which this project is to be implemented.

Site Manager:	
(Optional)	
HzW Project Manager:	
Contractor's Site Supervisor: (Optional)	
Field Technician:	

TABLE OF CONTENTS

1.0	OBJECTIVE	1
2.0	RESPONSIBILITIES	1
	 2.1 Project Manager 2.2 HzW's Health and Safety Department	1
		2
3.0	SITE DESCRIPTION AND SCOPE OF WORK	2
4.0	SITE CHARACTERIZATION AND CHEMICAL HAZARD	
	ASSESSMENT	3
5.0	GENERAL WORK PRACTICES	3
6.0	PERSONAL PROTECTIVE EQUIPMENT	3
·	6.1 Respiratory Protection	
	6.2 Levels of Protection	4
	6.3 Using Personal Protective Equipment	7
	6.4 Personal Protective Equipment Selection	8
7.0	SITE MONITORING	
8.0	PERSONAL EXPOSURE AIR MONITORING	0
	8.1 Real-Time Sampling Methods	0
	8.2 Integrated Air Monitoring	ŏ
	8.3 Noise Monitoring	0
	8.4 Equipment Tampering1	0
	8.5 Monitoring Record	Ô.
	8.6 Notification	0
9.0	MEDICAL SURVEILLANCE EXAMINATION1	1
10.0	FIRST AID AND MEDICAL TREATMENT1	1
11.0	MEDICAL RESTRICTION1	
12.0	MEDICAL RECORDS1	2
13.0	EMERGENCY PROCEDURES1	2
14.0	TRAINING1	
15.0	SAFETY MEETINGS1	3
16.0	MATERIAL SAFETY DATA SHEETS1	3

APPENDICES

	Key HASP Personnel
Appendix B -	HzW's Proposal
Appendix C -	List of Potential Chemicals at Site
Appendix D -	PPE Requirements for Project
Appendix E -	Nearest Hospital Location
Appendix F -	Emergency Information

HEALTH AND SAFETY PLAN

1.0 OBJECTIVE

The objective of this Health and Safety Plan (HASP) is to identify, evaluate, and control safety and health hazards, and provide for emergency response to hazardous materials which may be encountered in the course of these field activities. This HASP has been prepared as a proactive and precautionary measure to deal with unanticipated health and safety concerns encountered during field activities. This HASP is applicable to HzW personnel and will remain at the project site for the duration of the project.

2.0 RESPONSIBILITIES

All HzW personnel are responsible for continuous adherence to the health and safety procedures, covered in this HASP, during the performance of their work. No person may work in any manner that conflicts with the intent or the inherent safety and environmental precautions expressed in these procedures.

2.1 Project Manager

The Project Manager or his/her designee is ultimately responsible for ensuring that all project activities are completed in compliance with requirements set forth in this plan.

The Project Manager or his/her designee in conjunction with HzW's Health and Safety Department will be responsible for developing, modifying, amending, and/or deleting the site-specific provisions of this HASP. The HASP will be revised if warranted by changing site conditions.

The Project Manager or his/her designee and/or HzW's Health and Safety Department are the contacts for regulatory agencies on matters of health and safety.

The Project Manager or his/her designee responsibilities include:

- General health and safety program administration in the field;
- Updating equipment or procedures based on information obtained during field operations;
- Establishing sampling and analysis parameters based on expected contaminants;
- Stopping work as required to ensure the health and safety of personnel;
- Developing site-specific and project specific employee response plans as required, based on expected hazards; and
- Distributing copies of the HASP to the appropriate persons, and ensuring that all distributed copies are promptly updated to include modifications, amendments, and/or deletions.

2.2 HzW's Health and Safety Department

HzW's Health and Safety Department in conjunction with the Project Manager will assist in developing, modifying, amending, and/or deleting the site-specific provisions of this HASP. The HASP will be revised if warranted by changing site conditions.

HzW's Health and Safety Department and/or the Project Manager or his/her designee are the contacts for regulatory agencies on matters of health and safety.

HzW's Health and Safety Department responsibilities include:

- Determining initial and subsequent personnel protection requirements;
- Reviewing significant accidents and illnesses related to possible environmental causes, and implementing corrective actions; and
- Developing site-specific and project specific employee response plans as required based on expected hazards.

2.3 Field Technicians

All field technicians working at the project site are required to comply with the provision of this HASP and all applicable federal, state, and local regulations. All field technicians will read and sign off on the Employee Acknowledgement Form included at the beginning of this HASP prior to arriving at the project site. A Field Technician's responsibilities include:

- Ensuring his/her own health and safety by completing tasks in a safe manner, and reporting any unsafe acts or conditions to their Project Manager or their designee;
- Monitoring themselves and their fellow employees for signs and symptoms of heat or cold stress and chemical exposure;
- Maintaining the operation and calibration of monitoring equipment; and
- Assuring that adequate first aid is present on site.

Key HASP personnel for this project are listed in Appendix A.

3.0 SITE DESCRIPTION AND SCOPE OF WORK

In general, the site is located to the north and east of Commercial Drive and Canal Road in the city of Cleveland, Cuyahoga County, Ohio. The site is comprised of separate parcels/properties owned by Norfolk Southern Railway. Two (2) properties consist of vacant land and one (1) is currently developed as parking lot. A scope of services was developed based on the findings of geotechnical drilling conducted in July 2009. A copy of HzW's proposal is included as **Appendix B**.

4.0 SITE CHARACTERIZATION AND CHEMICAL HAZARD ASSESSMENT

During July 2009, geotechnical drilling crews installed a series of soil borings for the proposed realignment of Commercial Drive between Canal Road and the proposed East Ninth Street Extension within the CUY-Cleveland Innerbelt project area. The geotechnical drilling crews documented encountering materials with odors and varying colors indicative of being corrosive. Historic Sanborn fire insurance maps indicate that the location of the site was previously utilized as railroad yards. Therefore, there is a potential for field personnel to be exposed to hazardous substance and petroleum constituents during assessment activities. A list of worst-case scenario chemicals is presented in **Appendix C**.

5.0 GENERAL WORK PRACTICES

- No food, beverages or tobacco products will be present, consumed, or used in areas where project activities are being conducted.
- Before eating, drinking or smoking, employees must wash their hands and remove any outer protective garments.
- First aid kits must be readily accessible at the project site.
- Fire extinguishers must be readily accessible at the project site. Where there is fire potential, fire extinguishers will be located in the adjacent area.
- Should there be any contaminated protective equipment, such as respirators, hoses, boots, etc., said equipment shall not be removed from the project site until such equipment has been cleaned, or properly packaged and labeled.
- Legible and understandable precautionary labels which comply with hazard communication requirements must be affixed prominently to containers of contaminated waste, debris and/or clothing.
- Where work is being performed at or near roadways, orange vests must be worn.
- Removal of any contaminated soil from protective clothing or equipment by blowing, shaking, or any other means that disperse contaminants into the air is prohibited.
- All areas that have been determined as contaminated at the project site must be clearly marked as such. No personnel, equipment, etc., must be removed from the site until they have been properly decontaminated, according to applicable state and federal regulations.

6.0 PERSONAL PROTECTIVE EQUIPMENT

This section is provided as a proactive measure should unanticipated hazardous materials or wastes be encountered during the project. The items in this section are presented to give a broad spectrum of alternative personal protective equipment (PPE) options to address a worst case scenario. It is not likely that the more comprehensive of these options will need to be implemented.

This section outlines maintenance and storage of PPE, decontamination, donning and doffing procedures, inspection and monitoring effectiveness and limitation.

3

6.1 Respiratory Protection

- Only employees who have been trained to wear and maintain respirators properly shall be allowed to enter areas requiring respiratory protection.
- Only properly cleaned, maintained, National Institute of Occupational Safety and Health (NIOSH) approved respirators shall be used on site.
- Selection of respirators, as well as any decision regarding upgrading or downgrading of respiratory protection, will be made by HzW's Health and Safety Department.
- Used air-purifying cartridges shall be replaced at the end of each shift or when breakthrough is suspected.
- Positive and negative pressure tests shall be performed each time the respiratory is donned.
- Only employees who have been both fit tested and have had a medical surveillance examination within the last 12 months will be allowed to work in atmospheres where respirators are required. Contractors hired by HzW shall provide certificates of respirator fit testing completed within the last 12 months for each employee on site.
- Respirator users shall be instructed in the proper use and limitation of respirators.
- If an employee has difficulty in breathing during the fit test or during use, he/she shall be evaluated medically to determine if he/she can wear a respirator safely while performing assigned tasks.
- No employee shall be assigned to tasks requiring the use of respirators if, based upon the most recent medical surveillance examination, a physician determines that the health or safety of the employee will be impaired by respirator use.
- Contact lenses shall not be worn while using any type of respiratory protection.
- Respirators shall be cleaned and sanitized daily after use.
- Respirators shall be inspected during cleaning. Worn or deteriorated parts shall be replaced.
- Facial hair that might interfere with a good face-piece seal or proper operation of the respirator is prohibited.
- The Project Manager in conjunction with HzW's Health and Safety Department will review the respiratory protection program daily to ensure employees are properly wearing and maintaining their respirators and that the selected respiratory protection is adequately protecting the employees.

6.2 Levels of Protection

The following sections outline four (4) basic levels of PPE based on guidelines issued by NIOSH, the Occupational Safety and Health Administration (OSHA) and the United States Environmental Protection Agency (U.S. EPA). Selection of PPE is typically based upon the location and nature of the project, past use at the project site, the likelihood of encountering hazardous materials or waste, and any additional information gathered from previous sampling and analysis performed or sampling and analysis performed as part of this HASP's Scope of Work. The PPE selected for this project site is outlined in **Appendix D**.

Specific levels of protection will be changed whenever additional information is obtained and/or site conditions and activities so dictate. Levels of protection can either be increased to the next higher level, or decreased to the next lower level. The decision to change levels of protection will be made by the Project Manager in conjunction with HzW's Health and Safety Department. If the need arises to protect health and safety, the Project Manager can upgrade protection levels without input from HzW's Health and Safety Department. However, the Project Manager must then discuss the decision with the Health and Safety Department as soon as feasible. Levels of protection will not be downgraded without prior approval from HzW's Health and Safety Department.

6.2.1 Level A Protection

Level A protection would be used when the greatest level of skin, respiratory and eye protection is required. This level of protection is typically required for fire fighting activities, oxygen deficient environments or immediately dangerous to life and health (IDLH) atmospheres. <u>Level A Protection is not</u> <u>anticipated at this time for HzW personnel at the project site.</u> The following equipment will be used for Level A protection:

- Full-face pressure demand SCBA (self-contained breathing apparatus) or a pressure demand (positive pressure) air line respirator with an escape bottle for IDLH atmospheres. (Assigned Protection Factor approximately 10,000 and 2000, respectively)
- Fully encapsulated chemical protective suit.
- Gloves: inner and outer chemically resistant.
- Chemical resistant, safety-toe boots.
- Booties/disposable boot covers.
- Hard hat (under suit).

6.2.2 Level B Protection

Level B respiratory protection is the same as Level A respiratory protection. However, the protective clothing is different. <u>Level B Protection is not</u> <u>anticipated at this time for HzW personnel at the project site.</u> The following equipment will be used for Level B protection:

- Full-face, positive pressure SCBA or a pressure demand (positive pressure) airline respirator with an escape bottle for IDLH atmospheres.
- Coated Tyvek (or other chemical resistant) coveralls with hood.
- Inner and outer chemical resistant gloves.
- Chemical resistant safety toe boots.
- Booties/disposable boot covers.

Hard Hat.

6.2.3 Level C Protection

Level C Protection is mandatory for any personnel entering an area where the airborne contaminants exceed or may exceed OSHA PELs. <u>Level C</u> <u>Protection is not anticipated at this time for HzW personnel at the project site</u>. A full-face air-purifying respirator may only be utilized if:

- The chemical compounds have adequate warning properties;
- The personnel have passed qualitative fits tests for the particular mask as previous required in the HASP;
- The appropriate filter cartridges are used and their service limitation are not exceeded; and
- The project's operations will not encounter unknown compounds or excessive concentrations of known compounds.

Half face respirators will be used only when approved by the Project Manager in conjunction with HzW's Health and Safety Department.

The following equipment will be used for Level C protection:

- Full-faced, air purifying canister-equipped respirator;
- Coated Tyvek® (or other chemical resistant) coverall with hood;
- Chemical resistant, safety-toe boots;
- Booties/disposable boot covers;
- Inner and outer chemical resistant gloves;
- Hard had (with goggles if half-face respirator is used);
- Respirator cartridges will be changed daily, and also upon the detection of any chemical odor by the worker.

6.2.4 Level D Protection

Level D protection is the minimum level of protection required at the site. Level D protection is anticipated at this time for HzW personnel the project site. The following equipment will be used for Level D protection:

- Half-face air-purifying respirators, as necessary;
- Protective coveralls;
- Safety glasses;
- Safety-toe boots or shoes;
- Gloves of an appropriate material;
- Hard hat, as necessary; and
- Hearing protection, as necessary.

6.3 Using Personal Protective Equipment

All personnel at the project site will comply with the required PPE, according to established procedures in this HASP to minimize exposure potential. When leaving the project site, personal protective equipment will be removed according to these established procedures to minimize the potential for the spread of contamination.

6.3.1 Donning Procedure – Level D

- Put on protective coveralls;
- Put on boots;
- Put on gloves;
- If hearing protection is required, put in earplugs;
- Put on hardhat, if necessary; and
- Put on safety glasses or goggles.

6.3.2 Doffing Procedure – Level D

- Remove excess soil and/or other material from outer clothing and boots while at excavation area;
- Before leaving the project site, remove coveralls, boots, gloves, safety goggles and hard hat;
- If disposable coveralls are used, place them in the appropriate refuse container; and
- If coveralls require laundering, place in appropriate laundry receptacle.

6.3.3 Donning Procedures – Levels C and B

- Remove street clothes and store in a clean location;
- Put on protective coveralls;
- Put on boots and boot covers and tape the coveralls;
- Don respirator and check for secure fit;
- Put on gloves;
- Tape the cuff of the gloves over the coveralls at the wrist;
- If hearing protection is required, put in earplugs;
- Put hood or head covering over the respirator;
- Put on hard hat, if necessary, over the hood and respirator (Tape to secure from falling off); and
- Put on any remaining protective equipment such as safety glasses or goggles.

6.3.4 Doffing Procedures – Levels C and B

At the discretion of HzW's Health and Safety Department and depending on the activities, one person may remain outside the project site to assist in decontamination of personnel leaving the site. Whenever a person requires decontamination, the following sequence of stations will be used:

Station 1. Exiting personnel will remove excess soil and/or other materials from their outer clothing and boots.

Station 2. Required equipment at Station 2 shall include the following:

- Plastic lined receptacle
- Chair
- Clean, damp cloths
- Paper towels
- Plastic bags

At Station 2, personnel will wipe their respirators (if used), hard hats, and boots with clean, damp cloths and then remove those items. If the inner gloves are contaminated or appear to be dirty, they must be removed and replaced prior to wiping off equipment. All items removed are then hand-carried to the next station.

Station 3. Required equipment at Station 3 shall include the following:

- Wash basin with soap and water
- Respirator sanitation station

At this Station, personnel will thoroughly wash their hands and face. Respirators will be sanitized and then placed in a clean, plastic ziplock bag. Lined waste receptacles containing disposable equipment, garments and PPE will be removed and disposed in accordance with RCRA regulations.

6.4 Personal Protective Equipment Selection

The level of PPE can be based on measurements of the work environment when such measurements can be made in real-time. When the assessment of the work environment depends on laboratory analysis of samples collected or past land use, then the selection of PPE will be made on the professional judgment of possible or expected exposures.

7.0 SITE MONITORING

If determined necessary by field personnel, HzW's Project Manager or HzW's Health and Safety Department, monitoring of atmospheric and/or breathing zone atmospheric conditions will be performed during on-site activities using real-time instrumentation, a photoionization detector (PID) and a lower explosive limit (LEL) meter, to determine total organic contaminant concentrations and/or the percentage of explosive gas vapors. <u>Site monitoring of atmospheric conditions will not be conducted at the site during on-site activities</u>. As necessary, monitoring of the breathing zone will be conducted prior to initiation of on-site activities and continue during activities. Site monitoring will be performed at the point of highest expected concentration with the sample media located at the ground surface and within the breathing zone at 4 to 6 feet above the ground surface.

The work area air monitoring program addressed in this section has been developed to aid in the selection of PPE and to document exposures to on-site personnel. Prior to commencement of project activities, PID scans will be utilized as a preliminary indication of site conditions. PID and LEL readings will also be taken in the breathing zone and over excavated soil as sampling activities proceed. PID and LEL reading times will be recorded on an air monitoring log. Monitoring may be decreased if the results prove to be negative or uniform below $\frac{1}{2}$ of PEL for the chemicals of concern. Based on known site conditions, the monitoring program will take into account the following factors:

• Determining when peak concentrations may be encountered; and

• Determining when and where unusual contaminants may be present.

8.0 PERSONAL EXPOSURE AIR MONITORING

The personal exposure air monitoring program addressed in this section has been developed to aid in the selection of PPE and to document exposures to on-site personnel. <u>Personal exposure air monitoring is not anticipated at this time.</u> However, information pertaining to personal exposure air monitoring is presented below should personal exposure air monitoring be deemed necessary at the project site by the Project Manager and/or HzW's Health and Safety Department.

The frequency and duration of personnel monitoring will be at the discretion of HzW's Health and Safety Department. In situations where personnel exposure is being evaluated, the personnel sample will be collected in the breathing zone of the employee.

When applicable, site personnel will be notified of air sampling results as soon as they are available. Where samples require laboratory analysis, the results will be made known to site personnel the day following receipt of results.

The personal exposure air monitoring program may include real-time instrumentation (direct reading instruments) and/or integrated air sampling (personal sampling pump methods). Appropriate NIOSH or OSHA sampling and analytical procedures will be utilized for time-weighted average monitoring. All air monitoring equipment will be maintained and operated in accordance with manufacturers' recommendations. Real time instrument maintenance and calibration data will be recorded in the air-monitoring log. When applicable, calibration of sampling pumps will also be documented in the daily field notes.

8.1 Real-Time Sampling Methods

Real-time air monitoring will be conducted using the PID. Direct reading Draeger tubes for detection of specific contaminants may also be used periodically during the project.

8.2 Integrated Air Monitoring

Integrated air monitoring may be performed to determine;

- The presence of a specific contaminants or contaminants;
- Peak concentrations; and
- Time–weighted average concentrations.

Personal air monitoring will be conducted when high concentrations of volatile organics are anticipated. Air samples will be collected using Draeger tubes, diffusion type organic vapor monitor badges or 8-hour personal monitoring pumps. Air analysis will be done for targeted contaminants as determined by the Project Manager in conjunction with HzW's Health and Safety Department.

8.3 Noise Monitoring

Noise monitoring will not be conducted at the project site.

8.4 Equipment Tampering

On-site personnel must wear monitoring equipment and the required personal protective equipment. Refusal to wear appropriate equipment and/or intentional tampering with sampling apparatus will lead to disciplinary action and immediate dismissal from the project site.

8.5 Monitoring Record

The Project Manager will be responsible for establishing and maintaining records of all required monitoring as described below:

- Employee name and social security number;
- Date, time, pertinent task information and exposure information;
- Type of PPE worn; and
- Engineering controls used to reduce exposure.

8.6 Notification

Employees will be notified of exposure in excess of the permissible exposure limit and will be provided with follow-up medical monitoring when required.

9.0 MEDICAL SURVEILLANCE EXAMINATION

All HzW field personnel will have successfully completed an initial and annual physical examination. The examination is designed to meet the requirements of 29 CFR 1920.120 for possible exposure to hazardous materials or waste. The medical surveillance examination consists of the following:

- Medical and occupational medical history and physical examination;
- Visual test
- Urinalysis
- Audiogram
- Spirometry
- EKG (Age 40 and over)
- dt Tetanus
- Chest X-ray
- CBC with differential
- 13 Blood Chemistry Tests
- Blood Lead and Zinc Protoporphrin
- Cholinesterase
- PCBs
- Mercury
- Cadmium

The following information is provided to the examining physician:

- Description of employee's duties;
- Anticipated chemical exposures and levels;
- Description of PPE to be used; and
- Information from previous medical examinations.

Exit medical surveillance examinations are provided to HzW field personnel upon termination of employment.

A copy of the medical examination report is provided at the employee's request. The employee will be informed of any medical conditions that would result in work restriction.

10.0 FIRST AID AND MEDICAL TREATMENT

All field personnel must report any near-miss incident, accident, injury, or illness to HzW's Health and Safety Department as well as their Project Manager. First aid will be rendered expeditiously by a person qualified to do so. The employee's Project Manager will complete an accident/injury report and conduct an investigation of the incident as soon as emergency conditions (if any) no longer exist and medical or first-aid treatment has been rendered. The investigation should follow completion of the accident/injury report. HzW's Health and Safety Department shall promptly receive for review a copy of the accident/injury report, and the results of the incident investigation.

11.0 MEDICAL RESTRICTION

When the examining physician determines a need to restrict a field employee from their job activities, that determination will be communicated to the employee's Project Manager as well as the Health and Safety Department. The Project Manager will ensure that the employee complies with the work restriction(s).

12.0 MEDICAL RECORDS

Medical and exposure monitoring records will be maintained according to the requirements of 29 CFR 1910.120, and retained for a minimum of 30 years. Confidentiality of these records shall be maintained through retention.

13.0 EMERGENCY PROCEDURES

Should the need for outside medical attention arise, St. Vincent Charity Hospital located in Cleveland, Ohio will be used. In addition, a map, as well as directions from the project site to the hospital, is also included as **Appendix E**. The City of Cleveland Police Department will be called to handle any security incidents at the project site.

The Project Manager will establish evacuation routes and assembly areas for the project site. All personnel entering the site will be informed of these routes and assembly areas.

Unusual events, activities, odors, and conditions will be reported to the Project Manager and subsequently HzW's Health and Safety Department. Emergency telephone numbers will be available in each motor vehicle at the project site, along with a map and directions to the nearest hospital. A list of emergency telephone numbers is included as **Appendix F**.

All incidents will be dealt with in a manner which minimizes health risks to project site workers, the environment and the local community. In the case of a medical emergency, paramedics will be summoned without delay.

14.0 TRAINING

All field personnel shall have taken a 40-hour HAZWOPER training course with annual refreshers as well as first aid and CPR training. In addition, training shall cover Hazard Communication and Respiratory Protection.

All training shall be documented by a certificate signed by the instructor. A copy of each and every training certificate shall be maintained by HzW's Health and Safety Department. Subcontractors must provide to HzW's Health and Safety Department copies of certificates of training for all subcontractors personnel at the project site.

15.0 SAFETY MEETINGS

The Project Manager shall conduct a safety meeting at the beginning of each shift, or whenever new employees arrive at the project site once the project commences. Topics to be discussed at these meetings include health and safety considerations for the day's activities, necessary protective equipment (as applicable), problems encountered, and new operations. Attendance records and meeting notes shall be maintained by the Project Manager.

16.0 MATERIAL SAFETY DATA SHEETS

This HASP includes Material Safety Data Sheets (MSDSs) for the chemicals listed in **Appendix C**. The MSDSs shall be maintained on site as part of this HASP, and shall be accessible to all employees. A copy of each chemical's MSDS is also included in **Appendix C**.

APPENDIX A

KEY HASP PERSONNEL

The following is a list of potential personnel having responsibilities under this HASP:

Doug Wetzel Joan Sablar Steve Sablar Joshua Derico Joseph Harcher Project Manager Health and Safety Representative Senior Field Technician Field Technician Field Technician

APPENDIX B

HzW's PROPOSAL

ATTACHMENT 1

SCOPE OF SERVICES for TARGETED PHASE II ENVIRONMENTAL SITE ASSESSMENT CUY-CLEVELAND INNERBELT, COMMERCIAL DRIVE ALIGNMENT PROJECT AREA

BACKGROUND

During July 2009, geotechnical drilling crews installed a series of borings for the proposed realignment of Commercial Drive between Canal Road and the proposed East Ninth Street Extension in the CUY-Cleveland Innerbelt project area. During installation of four borings (designated B-071, B-072, B-073 and B-075), the drilling crew encountered materials variously described as:

- Having a "bad odor" or being an "unknown blue/white material" that "looked [corrosive]" to a depth of over 20 feet below ground surface in B-071;
- An "unknown blue material" at a depth of less than 5 feet in B-072;
- An "unknown blue/green rock material" to a depth of less than 5 feet in B-073; and
- A "nasty...blue/green material" from 1.5 to 4.5 feet in B-075 which "smells bad" and the drilling crew was
 "...not sure if [it was] safe to touch."

A review of Sanborn fire insurance maps provided to HzW by ODOT's Office of Environmental Services (OES) indicated that the areas in question were historically occupied by railroad yards that were "full of tracks". Therefore, it is unclear what this discolored material could be.

In ODOT's Request for Task Order Proposal, it was requested that HzW install five soil borings to a depth of 20 feet. Based upon the above information, it would appear that the geotechnical drilling crews only encountered the material to a depth of 20 feet in one of the four borings. The material was encountered at a depth of less than 5 feet in three of the four geotechnical borings where this material was observed. Based upon a discussion with ODOT OES on November 3, 2009, it was agreed to reduce the number of borings from five (5) to four (4), and to reduce the depth at three of the four borings (those installed near locations B-072, B-073, and B-075) from 20 feet to 6 feet.

SCOPE OF TARGETED PHASE II ENVIRONMENTAL SITE ASSESSMENT (ESA)

The proposed scope of investigation in the project area will consist of the following:

Task A: Pre-Assessment Planning and Support

- 1. Coordinating the location of proposed soil borings with the original geotechnical drilling crew, ODOT and affected property owners and/or tenants (as directed by ODOT), obtaining utility clearances, and otherwise obtaining clear access to soil boring locations.
- 2. Preparation of a site-specific health and safety plan (HASP) to be used by personnel responsible for implementing the targeted Phase II ESA. The HASP will be reviewed and signed by all personnel prior to initiation of field activities.

Task B: Physical Site Assessment

- 1. Using Geoprobe® subsurface sampling techniques, install four (4) soil borings in the project area. One (in the general location of original geotechnical boring B-071) will penetrate to a terminal depth of twenty (20) feet below ground surface, while the other three borings (in the general locations of original geotechnical borings B-072, B-073, and B-075) will penetrate to a terminal depth of six (6) feet below ground surface. Soil samples will be collected continuously at 2-foot intervals in each boring from ground surface to terminal depth, with recovered materials logged in the field by a qualified field technician or field geologist.
- 2. In the event that any boring encounters the types of materials referenced by the geotechnical drilling crew, samples of the material will be collected and transferred to laboratory-supplied containers, and placed in an ice chest for preservation in the field. Based upon the geotechnical boring logs, HzW would anticipate encountering this material from between: depths of 0-14 feet at location B-071 (the strongest odor was noted at 8-10 feet) and perhaps near the terminal depth (20 feet); depths of 1-5 feet at location B-072; depths of 2-4 feet at location B-073; and depths of 1.5-4.5 feet at location B-075. Based upon this, it is anticipated that HzW would collect a maximum of: three (3) samples from the boring installed at location B-071; two (2) samples from the boring installed at location B-072; one (1) sample from the boring installed at location B-073; and two (2) samples from the boring installed at location B-075.
- 3. The eight (8) soil samples collected from these borings would be submitted to Test America Labs, Inc. of North Canton, Ohio, for analysis of: pH; hydrogen sulfide; arsenic, cadmium, chromium, hexavalent chromium, lead, and cyanide; volatile organic compounds (VOCs); semi-volatile organic compounds (SVOCs), and total petroleum hydrocarbons (TPH) by approved laboratory methods. Test America Labs, Inc. would be instructed in the proper preparation and handling of these samples, and to "hold" the samples for possible identification of tentatively identified compounds (TICs), which is included as a contingency analytical cost to this task order proposal.
- 4. Abandon all four (4) borings following installation using hydrated bentonite chips.

Task C: Data Evaluation/Report Preparation/Coordination

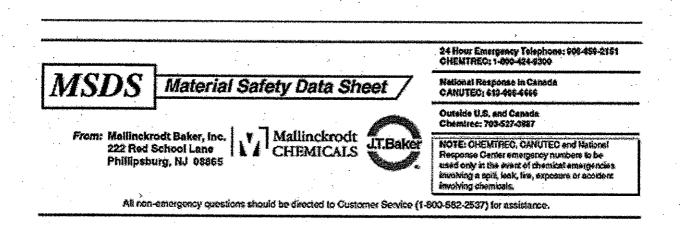
This element will be conducted following completion of the physical site assessment portion of the Phase II ESA scope of work, and would consist of evaluating all analytical results upon receipt, and preparation of a report for submission to ODOT OES. This report will include a narrative of the circumstances surrounding the need and scope of Phase II ESA activities, site drawings showing the location of borings relative to on-site property features, and a discussion of the analytical results relative to comparable environmental standards in the State of Ohio. Three (3) copies of this report would be submitted to ODOT OES upon completion. In addition, this task includes time for coordination with ODOT District 12 and ODOT OES at ODOT District 12 Headquarters or via telephone to discuss the findings, the need for delineation of the materials encountered, and potential remedial options during anticipated construction activities in the CUY-Cleveland Innerbelt project area.

APPENDIX C

LIST OF POTENTIAL CHEMICAL CONTAMINANTS AT THE PROJECT SITE

POTENTIAL CHEMICAL CONTAMINANTS AT THE PROJECT SITE

A listing of the chemicals that are likely to be encountered at the Property is presented below.


- Trichloroethene
- Benzene
- Benzo(a)pyrene
- Arsenic
- Cadmium
- Cyanide
- ♦ Lead

A copy of each of these chemicals Material Safety Data Sheet is included for review.

IKICHLUKUEIHILENE

Page 1 of 8

MSDS Number: T4940 * * * * * Effective Date: 12/06/07 * * * * * Supercedes: 08/01/05

TRICHLOROETHYLENE

1. Product Identification

Synonyms: Trichloroethene; TCE; acetylene trichloride; Ethinyl trichloride CAS No.: 79-01-6 Molecular Weight: 131.39 Chemical Formula: C2HCl3 Product Codes: J.T. Baker: 5376, 9454, 9458, 9464, 9473 Mallinckrodt: 8600, 8633

2. Composition/Information on Ingredients

	Ingredient	CAS No	Percent	Hazardous	
. '					
•	Trichloroethylene	7901-6	100%	Yes	•
•					

3. Hazards Identification

Emergency Overview

WARNING! HARMFUL IF SWALLOWED OR INHALED. AFFECTS HEART, CENTRAL NERVOUS SYSTEM, LIVER AND KIDNEYS. CAUSES SEVERE SKIN

IRRITATION. CAUSES IRRITATION TO EYES AND RESPIRATORY TRACT. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 2 - Moderate (Poison) Flammability Rating: 1 - Slight Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER **GLOVES**

Storage Color Code: Blue (Health)

Potential Health Effects

Inhalation:

Vapors can irritate the respiratory tract. Causes depression of the central nervous system with symptoms of visual disturbances and mental confusion, incoordination, headache, nausea, euphoria, and dizziness. Inhalation of high concentrations could cause unconsciousness, heart effects, liver effects, kidney effects, and death.

Ingestion:

Cases irritation to gastrointestinal tract. May also cause effects similar to inhalation. May cause coughing, abdominal pain, diarrhea, dizziness, pulmonary edema, unconsciousness. Kidney failure can result in severe cases. Estimated fatal dose is 3-5 ml/kg.

Skin Contact:

Cause irritation, redness and pain. Can cause blistering. Continued skin contact has a defatting action and can produce rough, dry, red skin resulting in secondary infection.

Eve Contact:

Vapors may cause severe irritation with redness and pain. Splashes may cause eye damage.

Chronic Exposure:

Chronic exposures may cause liver, kidney, central nervous system, and peripheral nervous system effects. Workers chronically exposed may exhibit central nervous system depression, intolerance to alcohol, and increased cardiac output. This material is linked to mutagenic effects in humans. This material is also a suspect carcinogen.

Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders, cardiovascular disorders, impaired liver or kidney or respiratory function, or central or peripheral nervous system disorders may be more susceptible to the effects of the substance.

4. First Aid Measures

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician.

Ingestion:

Induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. Call a physician.

Skin Contact:

TRICHLOROETHYLENE

Immediately flush skin with plenty of soap and water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

Note to Physician:

Do not administer adrenaline or epinephrine to a victim of chlorinated solvent poisoning.

5. Fire Fighting Measures

Fire:

Autoignition temperature: 420C (788F)

Flammable limits in air % by volume:

lel: 8; uel: 12.5

Explosion:

A strong ignition source, e. g., a welding torch, can produce ignition. Sealed containers may rupture when heated.

Fire Extinguishing Media:

Use water spray to keep fire exposed containers cool. If substance does ignite, use CO2, dry chemical or foam.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Combustion by-products include phosgene and hydrogen chloride gases. Structural firefighters' clothing provides only limited protection to the combustion products of this material.

6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from any source of heat or ignition. Isolate from incompatible substances. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

Trichloroethylene: -OSHA Permissible Exposure Limit (PEL):

100 ppm (TWA), 200 ppm (Ceiling),

300 ppm/5min/2hr (Max)

-ACGIH Threshold Limit Value (TLV):

10 ppm (TWA) 25 ppm (STEL); A2 Suspected Human Carcinogen.

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded and engineering controls are not feasible, wear a supplied air, fullfacepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Breathing air quality must meet the requirements of the OSHA respiratory protection standard (29CFR1910.134). This substance has poor warning properties. Where respirators are required, you

must have a written program covering the basic requirements in the OSHA respirator standard. These include training, fit testing, medical approval, cleaning, maintenance, cartridge change schedules, etc. See 29CFR1910.134 for details.

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact. Neoprene is a recommended material for personal protective equipment.

Eye Protection:

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

9. Physical and Chemical Properties

```
Appearance:
Clear, colorless liquid.
Odor:
Chloroform-like odor.
Solubility:
Practically insoluble in water. Readily miscible in organic solvents.
Specific Gravity:
1.47 @ 20C/4C
pH:
No information found.
% Volatiles by volume @ 21C (70F):
100
Boiling Point:
87C (189F)
```

IKICHLOKUEIHYLENE

Melting Point: -73C (-99F) Vapor Density (Air=1): 4.5 Vapor Pressure (mm Hg): 57.8 @ 20C (68F) Evaporation Rate (BuAc=1): No information found.

10. Stability and Reactivity

Stability:

Stable under ordinary conditions of use and storage. Will slowly decompose to hydrochloric acid when exposed to light and moisture.

Hazardous Decomposition Products:

May produce carbon monoxide, carbon dioxide, hydrogen chloride and phosgene when heated to decomposition.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

Strong caustics and alkalis, strong oxidizers, chemically active metals, such as barium, lithium, sodium, magnesium, titanium and beryllium, liquid oxygen.

Conditions to Avoid:

Heat, flame, ignition sources, light, moisture, incompatibles

11. Toxicological Information

Toxicological Data:

Trichloroethylene: Oral rat LD50: 5650 mg/kg; investigated as a tumorigen, mutagen, reproductive effector.

Reproductive Toxicity:

This material has been linked to mutagenic effects in humans.

\Cancer Lists\			·
	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Trichloroethylene (79-01-6)		·	
fitchioidechytene (7901~8)	No	Yes	2A

12. Ecological Information

Environmental Fate:

When released into the soil, this material may leach into groundwater. When released into the soil, this material is expected to quickly evaporate. When released to water, this material is expected to quickly evaporate. This material has an experimentally-determined bioconcentration factor (BCF) of less than 100. This material is not expected to significantly bioaccumulate. When released into

http://www.jtbaker.com/msds/englishhtml/t4940.htm

INCHLOKUEIHILENE

the air, this material may be moderately degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to have a half-life between 1 and 10 days.

Environmental Toxicity:

The LC50/96-hour values for fish are between 10 and 100 mg/l. This material is expected to be slightly toxic to aquatic life.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: TRICHLOROETHYLENE Hazard Class: 6.1 UN/NA: UN1710 Packing Group: III Information reported for product/size: 4L

International (Water, I.M.O.)

Proper Shipping Name: TRICHLOROETHYLENE Hazard Class: 6.1 UN/NA: UN1710 Packing Group: III Information reported for product/size: 4L

15. Regulatory Information

\Chemical Inventory Status - Part 1\ Ingredient				Australia
Trichloroethylene (79-01-6)	Yes	Yes	Yes	Yes
\Chemical Inventory Status - Part 2\				
Ingredient		Car	nada NDSL	
Trichloroethylene (79-01-6)	Yes	Yes	No	Yes
\Federal, State & International Regulati -SARA				313

http://www.jtbaker.com/msds/englishhtml/t4940.htm

I KIUTLUKUE I TI LENE

Page / 01 8

Ingredient	RQ TPQ	List	Chemical Catg.
Trichloroethylene (79-01-6)	No No	Yes	No
\Federal, State & International Ingredient	Regulations - CERCLA	Part 2\ -RCRA- 261.33	-TSCA- 8 (d)
Trichloroethylene (79-01-6)	100	U228	No
Chemical Weapons Convention: No TSCA	12(b): No	CDTA:	No

SARA 311/312: Acute: Yes Chronic: Yes Fire: No Pressure: No Reactivity: No (Pure / Liquid)

WARNING:

THIS PRODUCT CONTAINS A CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER.

Australian Hazchem Code: None allocated.

Poison Schedule: S6

WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 2 Flammability: 1 Reactivity: 0

Label Hazard Warning:

WARNING! HARMFUL IF SWALLOWED OR INHALED. AFFECTS HEART, CENTRAL NERVOUS SYSTEM, LIVER AND KIDNEYS. CAUSES SEVERE SKIN IRRITATION. CAUSES IRRITATION TO EYES AND RESPIRATORY TRACT. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe vapor.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Keep away from heat and flame.

Label First Aid:

If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Wash clothing before reuse. In all cases call a physician. Note to physician: Do not administer adrenaline or epinephrine to a victim of chlorinated solvent poisoning.

Product Use:

Laboratory Reagent.

Revision Information:

MSDS Section(s) changed since last revision of document include: 8.

Disclaimer:

http://www.jtbaker.com/msds/englishhtml/t4940.htm

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

Material Safety Data Sheet

Benzene

C# 02610

Section 1 - Chemical Product and Company Identification

MSDS Name: Benzene

Catalog Numbers: AC167660000, AC167660010, AC167660025, AC167660250, AC167665000, AC168650250, AC295330000, AC295330010, AC295330025, AC295330250, AC296880000, AC296880010, AC296880025, AC296880250, AC610230010, AC610231000, AC611001000, B243-4, B243J, B245-4, B245-500, B411-1, B411-4, B412-1, S79920ACS Synonyms: Benzol; Cyclohexatriene; Phenyl hydride. Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100

For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

	CAS#	Chemical Name	Percent	EINECS/ELINCS
Г	71-43-2	Benzene		200-753-7

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: clear colorless liquid. Flash Point: -11 deg C.

Danger! Extremely flammable liquid and vapor. Vapor may cause flash fire. Harmful if swallowed, inhaled, or absorbed through the skin. Causes eye, skin, and respiratory tract irritation. Contains benzene. Benzene can cause cancer. Aspiration hazard if swallowed. Can enter lungs and cause damage. May cause blood abnormalities. May cause central nervous system effects.

Target Organs: Blood, central nervous system, respiratory system, eyes, bone marrow, immune system, skin.

Potential Health Effects

Eye: Causes eye irritation.

Skin: Causes skin irritation. Harmful if absorbed through the skin. Prolonged and/or repeated contact may cause defatting of the skin and dermatitis.

Ingestion: May cause central nervous system depression, characterized by excitement, followed by headache, dízziness, drowsiness, and nausea. Advanced stages may cause collapse, unconsciousness, coma and possible death due to respiratory failure. May cause effects similar to those for inhalation exposure. Aspiration of material into the lungs may cause chemical pneumonitis, which may be fatal.

halation: Causes respiratory tract irritation. May cause drowsiness, unconsciousness, and central ...ervous system depression. Exposure may lead to irreversible bone marrow injury. Exposure may lead to aplastic anemia. Potential symptoms of overexposure by inhalation are dizziness, headache, vomiting, visual disturbances, staggering gait, hilarity, fatigue, and other symptoms of CNS depression.

rage 2 01 /

Chronic: May cause bone marrow abnormalities with damage to blood forming tissues. May cause anemia and other blood cell abnormalities. Chronic exposure to benzene has been associated with an increased incidence of leukemia and multiple myeloma (tumor composed of cells of the type normally found in the bone marrow). Immunodepressive effects have been reported. This substance has caused adverse vroductive and fetal effects in laboratory animals.

Section 4 - First Aid Measures

Eyes: In case of contact, immediately flush eyes with plenty of water for a t least 15 minutes. Get medical aid.

Skin: In case of contact, flush skin with plenty of water. Remove contaminated clothing and shoes. Get medical aid if irritation develops and persists. Wash clothing before reuse.

Ingestion: Potential for aspiration if swallowed. Get medical aid immediately. Do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, have victim lean forward.

Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.

Notes to Physician: Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. Use water spray to keep fire-exposed containers cool. Extremely flammable liquid and vapor. Vapor may cause flash fire. Approach fire from

wind to avoid hazardous vapors and toxic decomposition products. Vapors are heavier than air and may avel to a source of ignition and flash back. Vapors can spread along the ground and collect in low or confined areas. This liquid floats on water and may travel to a source of ignition and spread fire. May accumulate static electricity.

Extinguishing Media: Use water spray, dry chemical, carbon dioxide, or appropriate foam.

Flash Point: -11 deg C (12.20 deg F)

Autoignition Temperature: 498 deg C (928.40 deg F)

Explosion Limits, Lower: 1.3 vol %

Upper: 7.1 vol %

NFPA Rating: (estimated) Health: 2; Flammability: 3; Instability: 0

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container. Avoid runoff into storm sewers and ditches which lead to waterways. Remove all sources of ignition. Provide ventilation. Approach spill from upwind. Use water spray to cool and disperse vapors, protect personnel, and dilute spills to form nonflammable mixtures.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Ground and bond containers when transferring material. Avoid contact with eyes, skin, and clothing. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Take precautionary measures against static discharges. Keep container tightly closed. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. Use only with adequate ventilation. Keep away from heat, sparks and flame. Avoid breathing vapor.

Storage: Keep away from sources of ignition. Store in a tightly closed container. Keep from contact with idizing materials. Store in a cool, dry, well-ventilated area away from incompatible substances.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Use process enclosure, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. See 29CFR 1910.1028 for the regulatory requirements for the control of employee exposure to benzene. **Exposure Limits**

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Benzene	0.5 ppm TWA; 2.5 ppm STEL; Skin - potential significant contribution to overall exposure by the cutaneous r oute	0.1 ppm TWA 500 ppm IDLH	1 ppm TWA; 10 ppm TWA (applies to industry segments exempt from the benzene stan dard at 29 CFR 1910.1028); 25 ppm Ceiling (applies to industry segments exempt from the 1 ppm TWA and 5 ppm STEL of th e benzene standard); 0.5 ppm Action Level; 1 ppm TWA; 5 ppm STEL (Cancer hazard, Flammable - see 29 C FR 1910.1028)

SHA Vacated PELs: Benzene: 10 ppm TWA (unless specified in 1910.1028)

Personal Protective Equipment

Eyes: Wear chemical splash goggles.

Skin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant respirator use.

Section 9 - Physical and Chemical Properties

Physical State: Liquid Appearance: clear colorless Odor: sweetish odor - aromatic odor pH: Not applicable. Vapor Pressure: 75 mm Hg @ 20 deg C Vapor Density: 2.8 (air=1) Evaporation Rate:Not available. Viscosity: 0.647mPa @ 20 deg C Boiling Point: 80.1 deg C Freezing/Melting Point:5.5 deg C Pecomposition Temperature:Not available. Jubility: 0.180 g/100 ml @ 25°C Specific Gravity/Density:0.8765 @ 20°C Molecular Formula:C6H6 Molecular Weight:78.11

https://fscimage.fishersci.com/msds/02610.htm

Section 10 - Stability and Reactivity

emical Stability: Stable under normal temperatures and pressures. Conditions to Avoid: Ignition sources, excess heat, confined spaces. Incompatibilities with Other Materials: Strong oxidizing agents. Hazardous Decomposition Products: Carbon monoxide, carbon dioxide. Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#:

CAS# 71-43-2: CY1400000 **LD50/LC50:**

CAS# 71-43-2:

Dermal, guinea pig: LD50 = >9400 uL/kg; Draize test, rabbit, eye: 88 mg Moderate; Draize test, rabbit, eye: 2 mg/24H Severe; Draize test, rabbit, skin: 20 mg/24H Moderate; Inhalation, mouse: LC50 = 9980 ppm; Inhalation, mouse: LC50 = 24 mL/kg/2H; Inhalation, rat: LC50 = 10000 ppm/7H; Inhalation, rat: LC50 = 34 mL/kg/2H; Inhalation, rat: LC50 = 6.5 mL/kg/4H; Oral, mouse: LD50 = 4700 mg/kg; Oral, rat: LD50 = 930 mg/kg; Oral, rat: LD50 = 1 mL/kg;

Oral, rat: LD50 = 1800 Benzene is considered very toxic; probable human oral lethal dose would be 50-500 mg/kg. Human inhalation of approximately 20,000 ppm (2% in air) was fatal in 5-10 minutes.While percutaneous absorption of liquid benzene through intact human skin can be limited (e.g., 0.05% of the applied dose), the absorbed dose via direct dermal contact combined with that received from body surface exposure to benzene in workplace air is such that a substantial fraction (20-40%) of the total exposure is due to skin absorption.

Carcinogenicity:

CAS# 71-43-2:

- ACGIH: A1 Confirmed Human Carcinogen
- California: carcinogen, initial date 2/27/87
- NTP: Known carcinogen
- IARC: Group 1 carcinogen

Epidemiology: IARC has concluded that epidemiological studies have established the relationship between benzene exposure and the development of acute myelogenous leukemia, and that there is sufficient evidence that benzene is carcinogenic to humans.

Teratogenicity: Inhalation, rat: TCLO = 50 ppm/24H (female 7-14 day(s) after conception) Effects on Embryo or Fetus - extra-embryonic structures (e.g., placenta, umbilical cord) and Effects on Embryo or Fetus - fetotoxicity (except death, e.g., stunted fetus).; Inhalation,mouse: TCLo = 5 ppm (female 6-15 day(s) after conception) Effects on Embryo or Fetus - cytological changes (including somatic cell genetic

aterial) and Specific Developmental Abnormalities - blood and lymphatic systems (including spleen and arrow).

Reproductive Effects: Inhalation, rat: TCLO = 670 mg/m3/24H (female 15 day(s) pre-mating and female 1-22 day(s) after conception) female fertility index (e.g. # females pregnant per # sperm positive females; # females pregnant per # females mated).; Oral, mouse: TDLo = 12 gm/kg (female 6-15 day(s)

after conception) Fertility - post-implantation mortality (e.g. dead and/or resorbed implants per total number of implants).

Mutagenicity: DNA Inhibition: Human, Leukocyte = 2200 umol/L.; DNA Inhibition: Human, HeLa cell = 2200 umol/L.; Mutation Test Systems - not otherwise specified: Human, Lymphocyte = 5 umol/L.;

Sogenetic Analysis: Inhalation, Human = 125 ppm/1Y.; Cytogenetic Analysis: Human, Leukocyte = 1 ...nol/L/72H.; Cytogenetic Analysis: Human, Lymphocyte = 1 mg/L.

Neurotoxicity: See actual entry in RTECS for complete information. **Other Studies:**

Section 12 - Ecological Information

Ecotoxicity: Fish: Mosquito Fish: TLm = 395 mg/L; 24 Hr; UnspecifiedFish: Goldfish: LC50 = 46 mg/L; 24 Hr; Modified ASTM D 1345Fish: Fathead Minnow: LC50 = 15.1 mg/L; 96 Hr; Flow-through at 25°C (pH 7.9-8.0)Fish: Rainbow trout: LC50 = 5.3 mg/L; 96 Hr; Flow-through at 25°C (pH 7.9-8.0)Fish: Bluegill/Sunfish: LD50 = 20 mg/L; 24-48 Hr; Unspecified If benzene is released to soil, it will be subject to rapid volatilization near the surface and that which does not evaporate will be highly to very highly mobile in the soil and may leach to groundwater. If benzene is released to water, it will be subject to rapid volatilization. It will not be expected to significantly adsorb to sediment, bioconcentrate in aquatic organisms or hydrolyze. It may be subject to biodegradation.

Environmental: If benzene is released to the atmosphere, it will exist predominantly in the vapor phase. Gas-phase benzene will not be subject to direct photolysis but it will react with photochemically produced hydroxyl radicals with a half-life of 13.4 days. The reaction time in polluted atmospheres which contain nitrogen oxides or sulfur dioxide is accelerated with the half-life being reported as 4-6 hours. Benzene is fairly soluble in water and is removed from the atmosphere in rain.

Physical: Products of photooxidation include phenol, nitrophenols, nitrobenzene, formic acid, and peroxyacetyl nitrate.

^ther: No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series:

CAS# 71-43-2: waste number U019 (Ignitable waste, Toxic waste).

Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	BENZENE	BENZENE
Hazard Class:	3.	3
UN Number:	UN1114	UN1114
Packing Group:	II	II
Additional Info:		FLASHPOINT -11 C

Section 15 - Regulatory Information

US FEDERAL

https://fscimage.fishersci.com/msds/02610.htm

TSCA

CAS# 71-43-2 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

uemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

CERCLA Hazardous Substances and corresponding RQs

CAS# 71-43-2: 10 lb final RQ (receives an adjustable RQ of 10 lbs based on potential carcinoge

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 71-43-2: immediate, delayed, fire.

Section 313

This material contains Benzene (CAS# 71-43-2, > 99%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

CAS# 71-43-2 is listed as a hazardous air pollutant (HAP).

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

CAS# 71-43-2 is listed as a Hazardous Substance under the CWA. CAS# 71-43-2 is listed as a Priority Pollutant under the Clean Water Act. CAS# 71-43-2 is listed as a Toxic Pollutant under the Clean Water Act.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA.

_ ATE

CAS# 71-43-2 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

California Prop 65

The following statement(s) is(are) made in order to comply with the California Safe Drinking Water Act:

WARNING: This product contains Benzene, a chemical known to the state of California to cause cancer. WARNING: This product contains Benzene, a chemical known to the state of California to cause male reproductive toxicity.

California No Significant Risk Level: CAS# 71-43-2: 6.4 æg/day NSRL (oral); 13 æg/day NSRL (inhalation)

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols:

ΤF

Risk Phrases:

R 11 Highly flammable.

R 36/38 Irritating to eyes and skin.

R 45 May cause cancer.

R 46 May cause heritable genetic damage.

R 48/23/24/25 Toxic : danger of serious damage to health by

prolonged exposure through inhalation, contact with skin and if swallowed.

R 65 Harmful: may cause lung damage if swallowed.

Safety Phrases:

https://fscimage.fishersci.com/msds/02610.htm

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 53 Avoid exposure - obtain special instructions before use.

7K (Water Danger/Protection)

CAS# 71-43-2: 3

Canada - DSL/NDSL

CAS# 71-43-2 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of B2, D2A, D2B.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations. **Canadian Ingredient Disclosure List**

CAS# 71-43-2 is listed on the Canadian Ingredient Disclosure List.

Section 16 - Additional Information

MSDS Creation Date: 6/11/1999 **Revision #8 Date:** 3/15/2007

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

Material Safety Data Sheet

Benzo(a)pyrene, 98%

ACC# 37175

Section 1 - Chemical Product and Company Identification

MSDS Name: Benzo(a)pyrene, 98% Catalog Numbers: AC105600000, AC105600010, AC105601000 Synonyms: 3,4-Benzopyrene; 3,4-Benzpyrene. Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
50-32-8	Benzo[a]pyrene	98.0	200-028-5

Hazard Symbols: T Risk Phrases: 45 46

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: slightly brown solid. Cancer suspect agent. Possible risk of harm to the unborn child. **Caution!** The toxicological properties of this material have not been fully investigated. May cause eye and skin irritation. May cause respiratory and digestive tract irritation. **Target Organs:** None.

Potential Health Effects

Eye: May cause eye irritation.

Skin: May cause skin irritation.

Ingestion: May cause irritation of the digestive tract. The toxicological properties of this substance have not been fully investigated.

Inhalation: May cause respiratory tract irritation. The toxicological properties of this substance have not been fully investigated.

Chronic: May cause cancer in humans.

Section 4 - First Aid Measures

Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.

Skin: Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.

https://fscimage.fishersci.com/msds/37175.htm

Ingestion: Never give anything by mouth to an unconscious person. Get medical aid. Do NOT induce vomiting. If conscious and alert, rinse mouth and drink 2-4 cupfuls of milk or water.

Inhalation: Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.

Notes to Physician: Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.

Extinguishing Media: In case of fire, use water, dry chemical, chemical foam, or alcohol-resistant foam. Use agent most appropriate to extinguish fire. Use water spray, dry chemical, carbon dioxide, or appropriate foam.

Flash Point: Not available.

Autoignition Temperature: Not available.

Explosion Limits, Lower:Not available.

Upper: Not available.

NFPA Rating: (estimated) Health: ; Flammability: ; Instability:

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Clean up spills immediately, observing precautions in the Protective Equipment section. Sweep up, then place into a suitable container for disposal. Avoid generating dusty conditions. Provide ventilation.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Use with adequate ventilation. Minimize dust generation and accumulation. Avoid contact with eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation.

Storage: Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate ventilation to keep airborne concentrations low. Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Benzo[a]pyrene	none listed	none listed	none listed

OSHA Vacated PELs: Benzo[a]pyrene: No OSHA Vacated PELs are listed for this chemical. **Personal Protective Equipment**

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.

Skin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant a respirator's use. Wear a NIOSH/MSHA or European Standard EN 149 approved full-facepiece airline respirator in the positive pressure mode with emergency escape provisions.

Section 9 - Physical and Chemical Properties

Physical State: Solid Appearance: slightly brown Odor: faint aromatic odor pH: Not available. Vapor Pressure: Not available. Vapor Density: Not available. Evaporation Rate:Not available. Viscosity: Not available. Boiling Point: 495 deg C @ 760.00mm Hg Freezing/Melting Point:175 - 177 deg C Decomposition Temperature:Not available. Solubility: 1.60x10-3 mg/l @25°C Specific Gravity/Density:Not available. Molecular Formula:C20H12 Molecular Weight:252.31

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures.

Conditions to Avoid: Incompatible materials, dust generation.

Incompatibilities with Other Materials: Strong oxidizing agents.

Hazardous Decomposition Products: Carbon monoxide, irritating and toxic fumes and gases, carbon dioxide, acrid smoke and fumes.

Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#: CAS# 50-32-8: DJ3675000 LD50/LC50: Not available.

Carcinogenicity:

CAS# 50-32-8: **ACGIH:** A2 - Suspected Human Carcinogen **California:** carcinogen, initial date 7/1/87 **NIOSH:** potential occupational carcinogen (listed as Coal tar pitches) **NTP:** Suspect carcinogen **OSHA:** Possible Select carcinogen **IARC:** Group 2A carcinogen

https://fscimage.fishersci.com/msds/37175.htm

Epidemiology: No information available. **Teratogenicity:** No information available. **Reproductive Effects:** No information available. **Neurotoxicity:** No information available. **Mutagenicity:** No information available. **Other Studies:** No data available.

Section 12 - Ecological Information

Ecotoxicity: No data available. No information available. **Environmental:** No information found. **Physical:** No information found. **Other:** No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series: CAS# 50-32-8: waste number U022.

Section 14 - Transport Information

	US DOT	ΙΑΤΑ	RID/ADR	IMO	Canada TDG
Shipping Name:	DOT regulated - small quantity provisions apply (see 49CFR173.4)				No information available.
Hazard Class:				÷ .	
UN Number:					
Packing Group:					

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 50-32-8 is listed on the TSCA inventory. Health & Safety Reporting List None of the chemicals are on the Health & Safety Reporting List. Chemical Test Rules None of the chemicals in this product are under a Chemical Test Rule. Section 12b None of the chemicals are listed under TSCA Section 12b. TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

https://fscimage.fishersci.com/msds/37175.htm

SARA

CERCLA Hazardous Substances and corresponding RQs

CAS# 50-32-8: 1 lb final RQ; 0.454 kg final RQ

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 50-32-8: acute, chronic.

Section 313

This material contains Benzo[a]pyrene (CAS# 50-32-8, 98 0%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

This material does not contain any hazardous air pollutants. This material does not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 50-32-8 is listed as a Priority Pollutant under the Clean Water Act. None of the chemicals in this product are listed as Toxic Pollutants under the CWA.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA.

STATE

CAS# 50-32-8 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

The following statement(s) is(are) made in order to comply with the California Safe Drinking Water Act: WARNING: This product contains Benzo[a]pyrene, a chemical known to the state of California to cause cancer. California No Significant Risk Level: CAS# 50-32-8: 0.06 æg/day NSRL

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols:

T Risk Phrases:

R 45 May cause cancer.

R 46 May cause heritable genetic damage.

R 60 May impair fertility.

R 61 May cause harm to the unborn child.

Safety Phrases:

S 37 Wear suitable gloves.

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 53 Avoid exposure - obtain special instructions before use.

S 28A After contact with skin, wash immediately with plenty of water.

WGK (Water Danger/Protection)

CAS# 50-32-8: No information available.

Canada - DSL/NDSL

CAS# 50-32-8 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D2A.

Canadian Ingredient Disclosure List

CAS# 50-32-8 is listed on the Canadian Ingredient Disclosure List.

Exposure Limits

CAS# 50-32-8: OEL-AUSTRALIA;Carcinogen OEL-BELGIUM;Carcinogen OEL-FINLAND:TWA 0.01 mg/m3;Skin;Carcinogen OEL-FRANCE;Carcinogen OEL-GER MANY;Carcinogen OEL-RUSSIA:STEL 0.00015 mg/m3;Carcinogen OEL-SWEDEN: TWA 0.005 mg/m3;STEL 0.03 mg/m3;Skin OEL IN BULGARIA, COLOMBIA, JORDA N, KOREA check ACGIH TLV OEL IN NEW ZEALAND, SINGAPORE, VIETNAM check ACGI TLV

Section 16 - Additional Information

MSDS Creation Date: 9/02/1997 **Revision #5 Date:** 3/18/2003

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

MATERIAL SAFETY DATA SHEET

ICD GROUP METALS LLC 600 MADISON AVENUE NEW YORK, N.Y. 10022 TEL: 212-644-1500 FAX: 212-644-1480

FOR EMERGENCY CALL: C H E M T R E C 1-800-424-9300

TIM:12	
HEALTH: 4	FLAMMABILITY: 0
REACTIVITY; 1	PROTECTION: H
· · ·	

SECTION A - PRODUCT INFORMATION

REVISION DATE : AUGUST 1, 2001

TRADE NAME : CAS NUMBER : EYNONYMS : CHEMICAL FAMILY : FORMULA : ARSENIC METAL 7440-38-2 ARSENIC MFTAL METALS GROUP 5a As

SECTION B - HAZARDOUS COMPONENTS

	COMPONENT	CAS NO.	%	PEL/TLV
ARSENIC ME	TAL	7440-38-2	100 %	0.01mg(As)m ³ OSHA TWA CFR 29
			• •	(1910.1018) 0.5mg/m ³ OSHA TWA (AS INORGANIO COMPOUND)
				0.2mg/m ³ ACGIH TWA 0.002mg/m ³ /15 min NIOSH 100mg/m ³ IDLH-CARCINOGEN
<u></u>		SECTION C - PHYSIC	AL PROPERTIES	·····
	Boiling Point (° C Melting Point (° C Vapor Pressure (mm H Vapor Density (air = Solubility in Wate Odor Threshol Appearance & Odo	2): 814 @ 36 ATM g): 1 mm @ 372 ° C (): N/A R: INSOLURI F D: N/A R: SILVER GRAY CRY ODOR	FREJ PERCENT VOL EVAP Ph (STALS/NO ODOR AS M	SFIC GRAVITY: 5.727 EZING POINT (°): N/A ATILE (BY WT.): N/A ORATION RATE: N/A % IN WATER): NONE METAL, AS COMPOUND A=H ₃ HAS GARLK
· .		SECTION D - FIRE & E	EXPLOSION DATA	
FLAMMABLI EXTINGUISHING	LIMITS ; LEL :	РОІNT (°): N/A (N/A) UEL : (N/ R : (X) РОЛМ : (ITION TEMP (° F): (N/A) DRY CHEMICAL: (X)
UNUSUAL FIRE & ;LICHT SPILL, CONTACT	EXPLOSION HAZARDS :	FIRE WITH SAND, DRY M WATER & ALWAYS WEA VAPOR RESPIRATOR. HEATED ARSENIC IN COI TOXIC FUMES.	EDIA, FOAM, OR CO2 R SELF CONTAINED E NTACT WITH ACID O ASENIC REACTS VIG HAZARD IN THE FOR THE STAT	E EQUIPMENT FROM AREA. TRY TO SNUF IF NO OTHER OPTIONS AVAILABLE, US BREATHING APPARATUS OR NIOSH TOXI R WATER VAPOR CAN PRODUCE HIGHLY FOROUSLY WITH OXIDIZING MATERIALS. M OF DUST. IN THE EVENT OF A FIRE O E DEPT. OF THE ENVIRONMENT & YOU NMENTAL PROTECTION AGENCY.

PRODUCT: ARSENIC METAL

Page -2-

Date: AUGUST 1, 2001

SECTION E - REACTIVITY DATA

IAZARD	STABILITY : INCOMPATIBILITY : OUS OFCOMPOSITION PRODUCTS : HAZARDOUS POLYMERIZATION : CONDITIONS TO AVOID :	STABLE ACIDS, OXIDIZING AGENTS SUCH AS HALOGENS, PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, HYDROCHLORIC ACID, SULFURIC ACID, NITRIC ACID, BROMINE AZIDE, DIRUBIDIUM ACETYLIDE, ZINC, NCI3, NITRATES, No202, HEXAFLUORO ISOPROPYL IDEMEAMINO LITHIUM ARSENIC FUMES, ARSINE, OTHER ARSENIC COMPOUNDS WILL NOT OCCUR AVOID OPEN CONTAINERS SITTING IN HUMID ATMOSPHERE	
		and the second secon	

SECTION F - PERSONAL PROTECTIVE EQUIPMENT INFO

RESPIRATORY EQUIPMENT :	NIOSH APPROVED TOXIC VAPOR RESPIRATOR TO PARTICULATE & FUME AIR LEVEL
PROTECTIVE GLOVES :	NEOPRENE OR PLASTIC
EYE PROTECTION :	GOGGLES/GLASSES
VENTILATION :	LOCAL EXHAUST/MECHANICAL (GENERAL) SCRUBBER OR TRAP IF POSSIBLE
OTHER PROTECTIVE EQUIPMENT :	LAB COAT

SECTION G - HEALTH HAZARD DATA

THRESHOLD LIMIT VALUE :	AIR 0.002mg/m³/15min,		g/kg/55Y :SKN(:GIT OF	ALI
PRIMARY ROUTES OF EXPOSURE :	INHALATION/INGESTION			
ORAL LD 50 :	NO, ORAL RAT TOL: 609	ug/kg, ORAL-MAN TD	La 7857mg/kg/55y SK	N
DERMAL IRRITATION-RABBIT :	NO, SUBCUTANEOUS IM	PLANT RABBIT TDLo 7	/5mg/kg	
EYE (RRITATION-RABBIT :	NO	and the second second second		
OSHA PEL :	9.91ms/m³		· .	
ACGIH TLV :	0,2mg/m ³		· .	· · · ·
EFFECTS OF OVEREXPOSURE :	ORAL - NAUSEA, COLD S	WEATS, VOMITING, D	ARRHEA, BLOOD STO	DLS, COLLAPSE,
	SHOCK, LOSS OF APPET	ITE, CRAMPS, JAUND	ICE, SKIN ABNORMALI	TIES
KNOWN EFFECTS ON OTHER ILLNESSES :	GASTROINTESTINAL, NER	vous system, liver :	8. Kidney Probleme, A	FTER EXPOSURE
	HAVE URINE TEST.			
LISTED CARCINOGEN :	NONE (IOSHA (Y)	NTP (Y)	IARC (Y)	OTHERM

SECTION H - EMERGENCY & FIRST AID DATA

SKIN : FLUSH WITH SOAP WATER, AVOID RUBBING INTO THE SKIN. CONTACT PHYSICIAN IMMEDIATELY.

EYES : INHALATION : INGESTION : FLUSH WITH WATER FOR 15 MINUTES. CONTACT PHYSICIAN IMMEDIATELY.

REMOVE TO FRESH AIR. PROVIDE OXYGEN IF NECESSARY. CONTACT PHYSICIAN IMMEDIATELY. TREATMENT WITH BASIDIMERCAPTOLI IS OF QUESTIONABLE EFFECTIVENESS IN TRIVALENT ARSENIC COMPOUNDS. INDUCE VOMITING & DO GASTRIC LAVAGE. GEI PERSONNEL TO HOSPITAL IMMEDIATELY. A PHYSICIAN CAN INITIATE AN EXCHANGE TRANSFUSION & DIALYSIS. ALSO ADSORPTION & REMOVAL WITH ANIMAL BONE COAL OR Fe(OH)₃ PRODUCT: ARSENIC METAL

Page -3-

Date: AUGUST 1, 2001

SECTION I - SPILL & DISPOSAL INFORMATION

STEPS TO BE TAKEN IN CASE OF SPILL OR LEAK:

WEARING RESPIRATOR, GLOVES, GOGGLES, LAB COAT, GATHER UP CHUNKS, GRANULES, OR POWDER WITH VACUUM OR UTENSILS RESERVED FOR POISONOUS SOLIDS.

WASTE DISPOSAL INFORMATION:

SOLID WASTES SHOULD BE VITRIFIED, PLACED IN LABELLED CONTAINER & BURIED IN A EPA SUPERVISED FACILITY. ETCHING SOLUTIONS & CUTTING WASTES SHOULD BE PRECIPITATED, CEMENTED/VITRIFIED & BURIED IN METALIPLASTIC LABELLED CONTAINERS & BURIED IN EPA SUPERVISED FACILITY. PASS GAS THROUGH POTASSIUM PERMANGANATE, PRECIPITATE & TREAT AS ABOVE.

RCRA HAZARDOUS WASTE :NO () YES (X) RCRA # : () D004 CERCLA : NO () YES (X) RO (1 LE.)

FOLLOW ALL LOCAL, STATE AND FEDERAL INFORMATION AND REGULATIONS

SECTION J - OTHER REGULATORY INFORMATION

TSCA: WE CERTIFY THAT ALL COMPONENTS OF THIS PRODUCT ARE REGISTERED UNDER THE REGULATIONS OF THE TOXIC SUBSTANCES CONTROL ACT.

SARA TITLE III, SECT. 313: LISTED (X) NOT LISTED ()

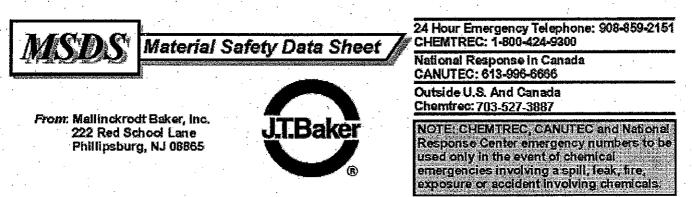
DOT REGULATED : YES: (X) NO: () RQ : (1 LB.) UN/NA NO.: (X) UN 1555 PROPER SHIPPING NAME: ARSENIC EMERGENCY RESPONSE GUIDE NO.: 53 HAZARD CLASSIFICATION : (X) POISON 6.1 LABEL : (X) POISON PG II

SECTION K - SPECIAL PRECAUTIONS

FOR INDUSTRIAL USE ONLY

HANDLING & STORAGE INFORMATION: PRIOR TO WORKING WITH ARSENIC, PERSONNEL SHOULD BE TRAINED IN PROPER HANDLING & STORAGE, STORE IN ORIGINAL PACKAGING IN COOL DRY AREA. WHEN HANDLING PLACE INTO INERT ATOMSPHERE IMMEDIATELY, WEAR RESPIRATORY PROTECTION, GLOVES & EYE PROTECTION.

OTHER PRECAUTIONS : MINIMUM - HAVE QUARTERLY MEDICAL CHECKS INCLUDING URINE TESTS OF PERSONNEL WORKING WITH ARSENIC OR ARSENIC COMPOUNDS. DO NOT SMOKE OR EAT IN WORK AREA.


IN ACCORDANCE WITH GOOD PRACTICES OF PERSONAL HYGIENE, HANDLE WITH DUE CARE AND AVOID ANY UNNECESSARY CONTACT WITH THIS PRODUCT.

This information is being supplied to you under osha "Hight to know" regulation 29 CFR 1810.1200 and is offered in good faith as typical values and not as product specification. The information is believed to be true and accurate. No warranty, expressed or implied, regarding the accuracy of this data. The hazard connected with use of the material. Or the results to be obtained from the use thereof, is made. Ico group metals lic and its suppliers assume no responsibility for damage or injury from the use of the product described herein.

ICD GROUP METALS LLC

ARSENIC TRIOXIDE

MSDS Number: A7512 * * * * * Effective Date: 02/16/06 * * * * * Supercedes: 05/08/03

All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance.

ARSENIC TRIOXIDE

1. Product Identification

Synonyms: Arsenic (III) oxide; arsenic sesquioxide; arsenous trioxide, white arsenic CAS No.: 1327-53-3 Molecular Weight: 197.84

Chemical Formula: As2O3

Product Codes: 0061

2. Composition/Information on Ingredients

Ingredient		CAS No	Percent	Hazardous
	·			
Arsenic Trioxide		132753-3	99 - 100%	Yes
				· · · ·

3. Hazards Identification

Emergency Overview

DANGER! MAY BE FATAL IF SWALLOWED OR INHALED. CANCER HAZARD. CONTAINS INORGANIC ARSENIC WHICH CAN CAUSE CANCER. Risk of cancer depends on duration and level of exposure. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. MAY CAUSE LIVER AND KIDNEY DAMAGE. USE ONLY WITH ADEQUATE VENTILATION AND RESPIRATORY EQUIPMENT.

http://www.jtbaker.com/msds/englishhtml/a7512.htm

J.T. Baker SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 4 - Extreme (Cancer Causing) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 1 - Slight Lab Protective Equip: GOGGLES; LAB COAT; PROPER GLOVES Storage Color Code: Blue (Health)

Potential Health Effects

Inhalation:

Arsenic may cause inflammation of the mucous membranes with cough and foamy sputum, restlessness, dyspnea, cyanosis, and rales. Symptoms like those from ingestion exposure may follow. May cause pulmonary edema.

Ingestion:

Arsenic is highly toxic! May cause burning in esophagus, vomiting, and bloody diarrhea. Symptoms of cold and clammy skin, low blood pressure, weakness, headache, cramps, convulsions, and coma may follow. May cause damage to liver and kidneys. A suspected fetal toxin. Death may occur from circulatory failure. Estimated lethal dose 120 milligrams.

Skin Contact:

May cause irritation, symptoms including redness, itching, and pain.

Eye Contact:

May cause irritation with itching, burning, watering of eyes; may cause conjunctiva damage. Chronic Exposure:

Arsenic on repeated or prolonged skin contact may cause bronzing of the skin, edema, dermatitis, and lesions. Repeated or prolonged inhalation of dust may cause damage to the nasal septum. Chronic exposure from inhalation or ingestion may cause hair and weight loss, a garlic odor to the breath and perspiration, excessive salivation and perspiration, central nervous system damage, hepatitis, gastrointestinal disturbances, cardiovascular damage, and kidney and liver damage. Arsenic compounds are known human carcinogens and may be teratogenic based on effects in laboratory animals.

Aggravation of Pre-existing Conditions:

No information found.

4. First Aid Measures

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Ingestion:

Induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention immediately.

Skin Contact:

Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Thoroughly clean shoes before reuse. Contaminated work clothes should be laundered by individuals who have been informed of the hazards of exposure to this substance.

ARSENIC TRIOXIDE

Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

Note to Physician:

If emesis if unsuccessful after two doses of Ipecac, consider gastric lavage. Monitor urine arsenic level. Alkalization of urine may help prevent disposition of red cell breakdown products in renal tubular cells. If acute exposure is significant, maintain high urine output and monitor volume status, preferably with central venous pressure line. Abdominal X-rays should be done routinely for all ingestions. Chelation therapy with BAL, followed by n-penicillamine is recommended, but specific dosing guidelines are not clearly established.

5. Fire Fighting Measures

Fire:

Not considered to be a fire hazard. Toxic fumes of arsenic trioxide and arsine may be formed in fire situations.

Explosion:

Not considered to be an explosion hazard.

Fire Extinguishing Media:

Use any means suitable for extinguishing surrounding fire.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Spills: Sweep up and containerize for reclamation or disposal. Vacuuming or wet sweeping may be used to avoid dust dispersal. US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from incompatible substances. Wear special protective equipment (Sec. 8) for maintenance break-in or where exposures may exceed established exposure levels. Wash hands, face, forearms and neck when exiting restricted areas. Shower, dispose of outer clothing, change to clean garments at the end of the day. Avoid cross-contamination of street clothes. Wash hands before eating and do not eat, drink, or smoke in workplace. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

Airborne Exposure Limits:

-OSHA Permissible Éxposure Limit (PEL): 10 ug(As)/m3 ppm (TWA) -ACGIH Threshold Limit Value (TLV): 0.01 mg(As)/m3 (TWA), listed as A1, confirmed human carcinogen.

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded, a half-face high efficiency dust/mist respirator may be worn for up to ten times the exposure limit or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. A full-face piece high efficiency dust/mist respirator may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. For emergencies or instances where the exposure levels are not known, use a full-facepiece positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

Eye Protection:

Use chemical safety goggles and/or full face shield where dusting or splashing of solutions is possible. Maintain eye wash fountain and quick-drench facilities in work area.

Other Control Measures:

Any area where inorganic arsenic is stored, handled, used, etc., must be established as a 'Regulated Area' with controlled access, limited to authorized persons. Containers of inorganic arsenic and Regulated Areas must be labeled to show a CANCER SUSPECT AGENT is present. Eating, drinking, and smoking should not be permitted in areas where solids or liquids containing arsenic or lead compounds are handled, processed, or stored. See OSHA substance-specific standard for more information on personal protective equipment, engineering and work practice controls, medical surveillance, record keeping, and reporting requirements. (arsenic: 29 CFR 1910.1018; lead: 29 CFR 1910.1025).

9. Physical and Chemical Properties

Appearance: Transparent crystals, or white powder. Odor: Odorless. Solubility: 3.7 g/100 ml water @ 20C (68F) Specific Gravity: 3.74 pH: No information found. % Volatiles by volume @ 21C (70F): 0 Boiling Point: 465C (869F) Melting Point: 315C (599F) Vapor Density (Air=1): No information found. Vapor Pressure (mm Hg): No information found. Evaporation Rate (BuAc=1): No information found.

10. Stability and Reactivity

Stability:

Stable under ordinary conditions of use and storage.

Hazardous Decomposition Products:

Emits toxic fumes of arsenic when heated to decomposition.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

Oxidizers, tannic acid, infusion cinchona and other vegetable astringent infusions and decoctions, iron solutions, rubidium carbide, chlorine trifluoride, fluorine, hydrogen fluoride, oxygen difluoride, acids, bases, sodium chlorate, zinc filings, other reactive metals and mercury. Corrosive to metals in the presence of moisture.

Conditions to Avoid:

Incompatibles.

11. Toxicological Information

Toxicological Data:

Oral rat LD50: 14.6 mg/kg; investigated as a mutagen, tumorigen, reproductive effector.

Reproductive Toxicity:

Has shown teratogenic effects in laboratory animals.

\Cancer Lists\				
Ingredient	NTP Known	Carcinogen Anticipated	IARC Category	
Arsenic Trioxide (1327-53-3)	Yes	No	1	

2. Ecological Information

Environmental Fate:

http://www.jtbaker.com/msds/englishhtml/a7512.htm

When released into the soil, this material may biodegrade to a moderate extent. When released into water, this material may biodegrade to a moderate extent. This material is not expected to significantly bioaccumulate.

Environmental Toxicity: No information found.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: RQ, ARSENIC TRIOXIDE Hazard Class: 6.1 UN/NA: UN1561 Packing Group: II Information reported for product/size: 500G

International (Water, I.M.O.)

Proper Shipping Name: ARSENIC TRIOXIDE Hazard Class: 6.1 UN/NA: UN1561 Packing Group: II Information reported for product/size: 500G

International (Air, I.C.A.O.)

Proper Shipping Name: ARSENIC TRIOXIDE Hazard Class: 6.1 UN/NA: UN1561 Packing Group: II Information reported for product/size: 500G

15. Regulatory Information

Ingredient				Australia
Arsenic Trioxide (1327-53-3)	Yes	Yes	Yes	Yes

http://www.jtbaker.com/msds/englishhtml/a7512.htm

ARSENIC TRIOXIDE

rage / OI 8

\Chemical Inventory Status - Part Ingredient		Cana	da NDSL Phil.
Arsenic Trioxide (1327-53-3)	Yes	Yes	No Yes
\Federal, State & International B Ingredient	-SARA 302-		-SARA 313 Chemical Cate
Arsenic Trioxide (1327-53-3)	1 100*	No	Arsenic comp
\Federal, State & International 1 Ingredient	Regulations - CERCLA	-RCRA-	-TSCA-
Arsenic Trioxide (1327-53-3)	1	P012	No

WARNING:

Reactivity: No

THIS PRODUCT CONTAINS CHEMICALS KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER AND BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM.

Australian Hazchem Code: 2Z

Poison Schedule: S6 WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 3 Flammability: 0 Reactivity: 0 Label Hazard Warning:

(Pure / Solid)

DANGER! MAY BE FATAL IF SWALLOWED OR INHALED. CANCER HAZARD. CONTAINS INORGANIC ARSENIC WHICH CAN CAUSE CANCER. Risk of cancer depends on duration and level of exposure. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. MAY CAUSE LIVER AND KIDNEY DAMAGE. USE ONLY WITH ADEQUATE VENTILATION AND RESPIRATORY EQUIPMENT.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe dust.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Label First Aid:

If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention immediately. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Wash clothing before reuse. In all cases, get medical attention.

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

Material Safety Data Sheet

Cadmium metal, granular

CC# 03720

Section 1 - Chemical Product and Company Identification

MSDS Name: Cadmium metal, granular Catalog Numbers: AC612135000, S79935, C3-500 Synonyms: None. Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7440-43-9	Cadmium	100	231-152-8

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: silver white granules.

Danger! Flammable solid. May be fatal if inhaled. Harmful if swallowed. Causes eye, skin, and respiratory tract irritation. Contains cadmium. Cancer hazard. Avoid creating dust. Can cause lung and kidney disease. Inhalation of fumes may cause metal-fume fever. Air sensitive. May cause reproductive and fetal effects.

Target Organs: Blood, kidneys, liver, lungs, skeletal structures, prostate.

Potential Health Effects

Eye: Causes eye irritation.

Skin: Causes skin irritation.

Ingestion: Harmful if swallowed. May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Ingestion may produce fluid loss, acute renal failure, and cardiopulmonary depression.

Inhalation: May be fatal if inhaled. Inhalation of fumes may cause metal fume fever, which is characterized by flu-like symptoms with metallic taste, fever, chills, cough, weakness, chest pain, muscle pain and increased white blood cell count. Damage may be delayed. May cause nausea, vomiting, abdominal pain, diarrhea, chest tightness, weakness, and delayed pulmonary edema. In humans inhalation causes proteinuria, an excess of protein in the urine.

Chronic: May cause respiratory tract cancer. Repeated inhalation may cause chronic bronchitis. Chronic inhalation may cause nasal septum ulceration and perforation. Cadmium and compounds may cause lung, "ver and kidney damage and lung and prostate cancer in humans. May cause loss of smell, emphysema,

nemia, bone demineralization, and lung fibrosis. The primary target organ for chronic cadmium disease is clearly the kidney.

Section 4 - First Aid Measures

res: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.

Skin: Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.

Ingestion: Do not induce vomiting. If victim is conscious and alert, give 2-4 cupfuls of milk or water. Never give anything by mouth to an unconscious person. Get medical aid immediately.

Inhalation: POISON material. If inhaled, get medical aid immediately. Remove victim to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Attempt rescue only after notifying at least one other person of the emergency and putting into effect established emergency procedures. Do not become a casualty yourself.

Notes to Physician: Administration of calcium disodium EDTA may be useful in acute poisoning with its use at the discretion of qualified medical personnel. Persons with kidney disease, chronic respiratory disease, liver disease, or skin disease may be at increased risk from exposure to this substance.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. Material can spontaneously ignite (pyrophoric) when exposed to air at normal or slightly elevated temperatures. Dust can be an explosion hazard when exposed to heat or flame. Flammable solid. May burn rapidly with flare burning effect. May re-ignite after fire is extinguished. Dangerous fire hazard in the form of dust when exposed to heat or flame.

*xtinguishing Media: Use dry sand, graphite powder, dry sodium chloride-based extinguishers. ash Point: Not available.

Autoignition Temperature: Not available.

Explosion Limits, Lower:Not available.

Upper: Not available.

NFPA Rating: (estimated) Health: 4; Flammability: 2; Instability: 1

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Vacuum or sweep up material and place into a suitable disposal container. Avoid generating dusty conditions. Remove all sources of ignition. Use a spark-proof tool. Provide ventilation. Place under an inert atmosphere.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Minimize dust generation and accumulation. Use spark-proof tools and explosion proof equipment. Avoid contact with skin and eyes. Do not breathe dust, vapor, mist, or gas. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Keep away from

eat, sparks and flame. Do not ingest or inhale. Handle under an inert atmosphere. Store protected from ir. Use only in a chemical fume hood. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames.

Storage: Keep away from heat and flame. Keep away from sources of ignition. Store in a tightly closed

https://fscimage.fishersci.com/msds/03720.htm

container. Store in a cool, dry, well-ventilated area away from incompatible substances. Do not expose to air. Store under an inert atmosphere.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use only under a chemical fume hood. See 29CFR 1910.1027 for regulations applying to all occupational exposures to cadmium and cadmium compounds, in all forms.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Cadmium	0.01 mg/m3 TWA; 0.002 mg/m3 TWA (respirable fraction)	9 mg/m3 IDLH (dust and fume)	0.2 mg/m3 TWA (dust); 0.1 mg/m3 TWA (fume); 0.6 mg/m3 Ceiling (dust); 0.3 mg/m3 Ceiling (fume); 2.5 æg/m3 Action Level; 5 æg/m3 TWA (Do not eat, drink or chew tobacco or gum or apply cosmetics in reg ulated areas. Carcinogen - dust can cause lung and kidney disease. See 29 CFR 1910.1027)

OSHA Vacated PELs: Cadmium: No OSHA Vacated PELs are listed for this chemical. Personal Protective Equipment

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and "ace protection regulations in 29 CFR 1910.133 or European Standard EN166.

kin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant respirator use.

Section 9 - Physical and Chemical Properties

Physical State: Granules Appearance: silver white Odor: odorless pH: Not available. Vapor Pressure: Not applicable. Vapor Density: Not available. Evaporation Rate:Not applicable. Viscosity: Not applicable. Boiling Point: 765 deg C @ 760 mmHg Freezing/Melting Point:321 deg C Decomposition Temperature:Not available. Solubility: Insoluble. Specific Gravity/Density:8.64 @ 25°C Molecular Formula:Cd iolecular Weight:112.40

Section 10 - Stability and Reactivity

Page 4 of 6

Chemical Stability: Oxidizes when exposed to air. Easily tarnishes in moist air. Powder or liquid is rophoric. Contact with acid liberates gas.

Jnditions to Avoid: Ignition sources, dust generation, excess heat, prolonged exposure to air. Incompatibilities with Other Materials: Strong oxidizing agents, acids, sulfur, zinc, selenium, tellurium.

Hazardous Decomposition Products: Toxic cadmium oxide fumes. Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#:

CAS# 7440-43-9: EU9800000 LD50/LC50: CAS# 7440-43-9:

> Inhalation, rat: LC50 = 25 mg/m3/30M; Oral, mouse: LD50 = 890 mg/kg; Oral, rat: LD50 = 2330 mg/kg;

Carcinogenicity:

CAS# 7440-43-9:

- ACGIH: A2 Suspected Human Carcinogen
- California: carcinogen, initial date 10/1/87
- NTP: Known carcinogen
- IARC: Group 1 carcinogen

Epidemiology: Occupational exposure to cadmium has been implicated in a significant increase in prostate and respiratory tract cancer. There is evidence of a significant excess of respiratory cancer deaths among a cohort of cadmium production workers, and concluded that cadmium and its compounds are potential carcinogens.

Teratogenicity: Oral, rat: TDLo = 155 mg/kg (male 13 week(s) pre-mating and female 13 week(s) premating - 3 week(s) after conception) Effects on Newborn - growth statistics (e.g.%, reduced weight gain) and Effects on Newborn - behavioral.; Oral, rat: TDLo = 23 mg/kg (female 1-22 day(s) after conception) Specific Developmental Abnormalities - blood and lymphatic systems (including spleen and marrow).; Oral, mouse: TDLo = 1700 mg/kg (female 8-12 day(s) after conception) Effects on Newborn - viability index (e.g., # alive at day 4 per # born alive) and Effects on Newborn - growth statis

Reproductive Effects: Oral, rat: TDLo = 21500 ug/kg (multigenerations) Fertility - pre-implantation mortality (e.g. reduction in number of implants per female; total number of implants per corpora lutea).; Intraperitoneal, rat: TDLo = 1124 ug/kg (male 1 day(s) pre-mating) Paternal Effects - spermatogenesis (incl. genetic material, sperm morphology, motility, and count).

Mutagenicity: Micronucleus Test: Mouse, Embryo = 6 umol/L.; Cytogenetic Analysis: Hamster, Ovary = 1 umol/L.

Neurotoxicity: No information found **Other Studies:**

Section 12 - Ecological Information

Ecotoxicity: Fish: Rainbow trout: TLm = 30 ppm; 24 Hr; Hard waterFish: Striped bass: LC50 = 0.001

ppm; 24-48 Hr; Static bioassayFish: Fathead Minnow: TL50 = 7.2 ppm; 96 Hr; UnspecifiedFish: Bluegill/Sunfish: LCO = 0.08 ppm; 96 Hr; Static bioassay (Hard water) No data available. Environmental: Cadmium can enter the air from natural sources.

Physical: No information available.

Ther: No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series: None listed.

Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	TOXIC SOLIDS, FLAMMABLE, ORGANIC, N.O.S.	Toxic Solid, Flammable, Organic, N.O.S. (CADMIUM METAL)
Hazard Class:	6.1	6.1
UN Number:	UN2930	UN2930
Packing Group:	I	I

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 7440-43-9 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

CERCLA Hazardous Substances and corresponding RQs

CAS# 7440-43-9: 10 lb final RQ (no reporting of releases of this hazardous substance is required SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 7440-43-9: immediate, delayed, fire.

Section 313

This material contains Cadmium (CAS# 7440-43-9, 100%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

CAS# 7440-43-9 (listed as Chromium compounds) is listed as a hazardous air pollutant (HAP). This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS#

https://fscimage.fishersci.com/msds/03720.htm

11/29/2007

Water Act. CAS# 7440-43-9 is listed as a

7440-43-9 is listed as a Priority Pollutant under the Clean Toxic Pollutant under the Clean Water Act.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA.

TATE

CAS# 7440-43-9 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

California Prop 65

The following statement(s) is(are) made in order to comply with the California Safe Drinking Water Act:

WARNING: This product contains Cadmium, a chemical known to the state of California to cause cancer. WARNING: This product contains Cadmium, a chemical known to the state of California to cause male reproductive toxicity.

California No Significant Risk Level: CAS# 7440-43-9: 0.05 æg/day NSRL (inhalation)

European/International Regulations

European Labeling in Accordance with EC Directives

Hazard Symbols:

T+ F

Risk Phrases:

R 11 Highly flammable.

R 25 Toxic if swallowed.

R 26 Very toxic by inhalation.

R 45 May cause cancer.

Safety Phrases:

S 36/37/39 Wear suitable protective clothing, gloves and eye/face pr otection.

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 53 Avoid exposure - obtain special instructions before use.

WGK (Water Danger/Protection)

CAS# 7440-43-9: No information available.

Canada - DSL/NDSL

CAS# 7440-43-9 is listed on Canada's DSL List.

Canada - WHMIS

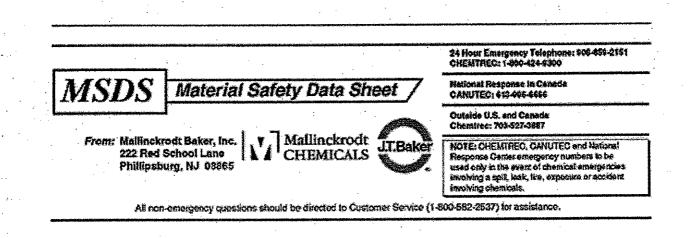
This product has a WHMIS classification of D1A, B4.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

Canadian Ingredient Disclosure List

CAS# 7440-43-9 is listed on the Canadian Ingredient Disclosure List.

Section 16 - Additional Information


MSDS Creation Date: 6/28/1999 **Revision #6 Date:** 6/06/2006

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

.

Page 1 of 8

MSDS Number: P5708 * * * * * Effective Date: 02/21/07 * * * * * Supercedes: 01/19/06

POTASSIUM CYANIDE

1. Product Identification

POTASSIUM CYANIDE

Synonyms: Potassium cyanide, solid; hydrocyanic acid, potassium salt CAS No.: 151-50-8 Molecular Weight: 65.12 Chemical Formula: KCN Product Codes: J.T. Baker: 3080 Mallinckrodt: 6881

2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Potassium Cyanide	15150-8	96 - 100%	Yes

3. Hazards Identification

Emergency Overview

POISON! DANGER! MAY BE FATAL IF SWALLOWED, INHALED OR ABSORBED THROUGH SKIN. CONTACT WITH ACIDS LIBERATES POISONOUS GAS. CAUSES

http://www.jtbaker.com/msds/englishhtml/p5708.htm

BURNS TO SKIN, EYES, AND RESPIRATORY TRACT. AFFECTS BLOOD, CARDIOVASCULAR SYSTEM, CENTRAL NERVOUS SYSTEM AND THYROID.

SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 4 - Extreme (Poison) Flammability Rating: 0 - None Reactivity Rating: 2 - Moderate Contact Rating: 3 - Severe (Life) Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: Blue (Health)

Potential Health Effects

In most cases, cyanide poisoning causes a deceptively healthy pink to red skin color. However, if a physical injury or lack of oxygen is involved, the skin color may be bluish. Reddening of the eyes and pupil dilation are symptoms of cyanide poisoning. Cyanosis (blue discoloration of the skin) tends to be associated with severe cyanide poisonings.

Inhalation:

Corrosive to the respiratory tract. The substance inhibits cellular respiration and may cause blood, central nervous system, and thyroid changes. May cause headache, weakness, dizziness, labored breathing nausea and vomiting, which can be followed by weak and irregular heart beat, unconsciousness, convulsions, coma and death.

Ingestion:

Highly Toxic! Corrosive to the gastro-intestinal tract with burning in the mouth and esophagus, and abdominal pain. Larger doses may produce sudden loss of consciousness and prompt death from respiratory arrest. Smaller but still lethal doses may prolong the illness for one or more hours. Bitter almonds odor may be noted on the breath or vomitus. Other symptoms may be similar to those noted for inhalation exposure.

Skin Contact:

Corrosive. May cause severe pain and skin burns. Solutions are corrosive to the skin and eyes, and may cause deep ulcers which heal slowly. May be absorbed through the skin, with symptoms similar to those noted for inhalation.

Eye Contact:

Corrosive. Symptoms may include redness, pain, blurred vision, and eye damage.

Chronic Exposure:

Prolonged or repeated skin exposure may cause a "cyanide" rash and nasal sores.

Aggravation of Pre-existing Conditions:

Workers using cyanides should have a preplacement and periodic medical exam. Those with history of central nervous system, thyroid, skin, heart or lung diseases may be more susceptible to the effects of this substance.

4. First Aid Measures

IN CASE OF CYANIDE POISONING, start first aid treatment immediately, then get medical attention. A cyanide antidote kit (amyl nitrite, sodium nitrite and sodium thiosulfate) should be available in any cyanide work area. Actions to be taken in case of cyanide poisoning should be

POTASSIUM CYANIDE

planned and practiced before beginning work with cyanides. Oxygen and amyl nitrite can be given by a first responder before medical help arrives. Allow victim to inhale amyl nitrite for 15-30 seconds per minute until sodium nitrite and sodium thiosulfate can be administered intravenously (see Note to Physician). A new amyl nitrite ampule should be used every 3 minutes. If conscious but symptoms (nausea, difficult breathing, dizziness, etc.) are evident, give oxygen. If consciousness is impaired (non-responsiveness, slurred speech, confusion, drowsiness) or the patient is unconscious but breathing, give oxygen and amyl nitrite by means of a respirator. If not breathing, give oxygen and amyl nitrite immediately by means of a positive pressure respirator (artificial respiration).

Inhalation:

If inhaled, remove to fresh air. Administer antidote kit and oxygen per pre-planned instructions if symptoms occur. Keep patient warm and at rest. Do not give mouth to mouth resuscitation. **Ingestion:**

If ingested, antidote kit and oxygen should be administered per above. If the patient is conscious, immediately give the patient activated charcoal slurry. Never give anything by mouth to an unconscious person. Do not induce vomiting as it could interfere with resuscitator use.

Skin Contact:

Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Thoroughly clean shoes before reuse. Administer antidote kit and oxygen per preplanned instructions if symptoms occur.

Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

Note to Physician:

If patient does not respond to amyl nitrite, inject intravenously with 10mL of a 3% solution of sodium nitrite at a rate of not more than 2.5 to 5 mL per minute. Once nitrite administration is complete, follow directly with 50 mL of a 25% solution of sodium thiosulfate at the same rate by the same route. Give victim oxygen and keep under observation. If exposure was severe, watch victim for 24-48 hours. If signs of cyanide poisoning persist or reappear, repeat nitrite and thiosulfate injections 1 hour later in 1/2 the original doses. Cyanocabalamin (B12), 1 mg intramuscularly, may speed recovery. Moderate cyanide exposures need be treated only by supportive measures such as bed rest and oxygen.

5. Fire Fighting Measures

Fire:

Not combustible, but upon decomposition or contact with acids, this material releases highly flammable and toxic hydrogen cyanide gas.

Explosion:

Not considered an explosion hazard, but upon heating with chlorates or nitrites to 450C (842F) may cause an explosion. Violent explosion occurs if melted with nitrite salt. Sealed containers may rupture when heated.

Fire Extinguishing Media:

Do Not use carbon dioxide. Carbon dioxide can react with this material in the presence of moisture to produce hydrogen cyanide. Water may be used on nearby fires not involving this material. Use alkali dry chemical. Water spray may be used to keep fire exposed containers cool. Reacts slowly with water to form hydrogen cyanide. Use any means suitable for extinguishing surrounding fire.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing

apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

... Accidental Release Measures

Spills: Ventilate area of leak or spill. Allow only qualified personnel to handle spill. Clean-up personnel require protective clothing and respiratory protection from vapors. Collect material and place in a closed container for recovery or disposal. Do not flush to sewer! Decontaminate liquid or solid residues in spill area with sodium or calcium hypochlorite solution.

US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Separate from incompatibles. Workers must carefully follow good hygienic practices, including no eating, drinking, or smoking in workplace. Proper use and maintenance of protective equipment is essential. Workers using cyanide need preplacement and annual medical exams. Special training should be given to workers using cyanide. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product. Do not store near combustibles or flammables because subsequent fire fighting with water could lead to cyanide poisoning should be trained to provide immediate First Aid using oxygen and amyl nitrite. A cyanide anitdote kit (amyl nitrite, sodium nitrite, and sodium thiosulfate) should be readily available in cyanide workplaces. The antidotes should be checked annually to ensure they are still within their shelf-lives. Identification of community hospital resources and emergency medical squads in order to equip and train them on handling cyanide emergencies is essential.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

-OSHA Permissible Exposure Limit (PEL):

5 mg/m3 skin (TWA) (as CN)

-ACGIH Threshold Limit Value (TLV):

5 mg/m3 (STEL) Ceiling, skin, as CN

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded and engineering controls are not feasible, wear a supplied air, full-

POTASSIUM CYANIDE

facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Breathing air quality must meet the requirements of the OSHA respiratory protection standard

(29CFR1910.134). This substance has poor warning properties.

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

Eye Protection:

Use chemical safety goggles and/or full face shield where dusting or splashing of solutions is possible. Maintain eye wash fountain and quick-drench facilities in work area.

9. Physical and Chemical Properties

Appearance: White deliquescent granular solid. **Odor:** Bitter almonds. Solubility: Very soluble in water. **Specific Gravity:** 1.55 @ 20C/4C pH: 11 (0.1 N aqueous solution) % Volatiles by volume @ 21C (70F): **Boiling Point:** 1625C (2957F) **Melting Point:** 634C (1173F) Vapor Density (Air=1): No information found. Vapor Pressure (mm Hg): No information found. **Evaporation Rate (BuAc=1):** No information found.

10. Stability and Reactivity

Stability:

Very stable when dry. Moisture will cause slow decomposition, releasing poisonous hydrogen cyanide gas.

Hazardous Decomposition Products:

Emits toxic fumes of cyanide and oxides of nitrogen when heated to decomposition.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

Strong acids and strong oxidizers. Reacts with acids to liberate toxic and flammable hydrogen cyanide gas. Water or weak alkaline solutions can produce dangerous amounts of hydrogen cyanide in confined areas. Can react with carbon dioxide in ordinary air to form hydrogen cyanide gas.

POTASSIUM CYANIDE

Conditions to Avoid:

Heat, moisture, incompatibles.

11. Toxicological Information

Oral rat LD50: 6 mg/kg. Investigated as a mutagen, reproductive effector.

Ingredient	NTP Carcinogen Known Anticipated	IARC Category
 Potassium Cyanide (151-50-8)	NO NO	None

12. Ecological Information

Environmental Fate:

This material has an estimated bioconcentration factor (BCF) of less than 100. This material is not expected to significantly bioaccumulate.

Environmental Toxicity:

This material is expected to be very toxic to aquatic life. This material is expected to be very toxic to terrestrial life.

13. Disposal Considerations

Cyanides must be oxidized to harmless waste before disposal. An alkaline solution (pH about 10) is treated with chlorine or commercial bleach in excess to decompose cyanide. When cyanide-free, it can be neutralized. Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: RQ, POTASSIUM CYANIDE, SOLID Hazard Class: 6.1 UN/NA: UN1680 Packing Group: I Information reported for product/size: 12KG

International (Water, I.M.O.)

http://www.jtbaker.com/msds/englishhtml/p5708.htm

International (Air, I.C.A.O.)

Proper Shipping Name: POTASSIUM CYANIDE, SOLID Hazard Class: 6.1 UN/NA: UN1680 Packing Group: I Information reported for product/size: 220LB

15. Regulatory Information

\Chemical Inventory Status - Part Ingredient		TSCA	EC	Japan	Australia
Potassium Cyanide (151-50-8)			Yes	Yes	Yes
\Chemical Inventory Status - Part Ingredient		Kore	Ca a DSL	nada , NDSI	Phil.
Potassium Cyanide (151-50-8)		Yes	Yes	No	Yes
\Federal, State & International H	-SARA RQ	302- TPQ	 Li	SARA	. 313 mical Catg.
Potassium Cyanide (151-50-8)					nide comp
\Federal, State & International Ingredient	CERCI		-RCRA-	 -TS 33 8	CA-
Potassium Cyanide (151-50-8)	10		P098	N	0

Chemical Weapons Convention: Yes TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: Yes Fire: No Pressure: No Reactivity: No (Pure / Solid)

Australian Hazchem Code: 4X Poison Schedule: S7 WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

http://www.jtbaker.com/msds/englishhtml/p5708.htm

16. Other Information

NFPA Ratings: Health: 3 Flammability: 0 Reactivity: 0

Label Hazard Warning:

POISON! DANGER! MAY BE FATAL IF SWALLOWED, INHALED OR ABSORBED THROUGH SKIN. CONTACT WITH ACIDS LIBERATES POISONOUS GAS. CAUSES BURNS TO SKIN, EYES, AND RESPIRATORY TRACT. AFFECTS BLOOD, CARDIOVASCULAR SYSTEM, CENTRAL NERVOUS SYSTEM AND THYROID.

Label Precautions:

Do not breathe dust.

Do not get in eyes, on skin, or on clothing.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Label First Aid:

IN ALL CASES, GET MEDICAL ATTENTION IMMEDIATELY. KEEP A CYANIDE

ANTIDOTE KIT (amyl nitrite, sodium nitrite and sodium thiosulfate) in area of product use or storage. First-aiders must take precautions to avoid contact with cyanide substance. If ingested, administer antidote kit and oxygen per pre-planned instructions. If the patient is conscious, immediately give the patient activated charcoal slurry. Never give anything by mouth to an unconscious person. Do not induce vomiting as it could interfere with resuscitator use. If inhaled, remove to fresh air. Administer antidote kit and oxygen per pre-planned instructions if symptoms occur. Keep patient warm and at rest. Do not give mouth to mouth resuscitation. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Administer antidote kit and oxygen per preplanned instructions if symptoms occur.

Product Use:

Laboratory Reagent.

Revision Information:

MSDS Section(s) changed since last revision of document include: 14.

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

International Chemical Safety Cards

CALCIUM CYANIDE

CALCIUM CYANIDE Calcid Calcyanide Calcyan C ₂ CaN ₂ /Ca(CN) ₂ Molecular mass: 92.1						
CAS # 592-01-8 RTECS # EW0700000 ICSC # 0407 UN # 1575 EC # 020-002-00-5						
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO		PREVENTION		FIRST AID/ FIRE FIGHTING	
FIRE	Not combustible but for fammable gas on con- water or damp air.				Powder, dry sand. NO hydrous agents. NO water. NO carbon dioxide.	
EXPLOSION						
EXPOSURE			STRICT HYGIENE!		IN ALL CASES CONSULT A DOCTOR!	
• INHALATION	ION Burning sensation. Cough. Dizziness. Headache. Red colouration of the skin. Laboured breathing. Nausea. Shortness of breath. Unconsciousness. Vomiting. Convulsions. Coma. Death.			Fresh air, rest. Half-upright position. Artificial respiration if indicated. Refer for medical attention. See Notes.		
• SKIN			Protective gloves. Protective clothing.		Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention. See Notes.	
• EYES	permanent loss of vision. Severe deep burns.		Face shield or eye protection in combination with breathing protection if powder. Contact		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.	
• INGESTION Confusion. Burning sensation in the mouth. Numbness or tightness in throat. Salivation. Convulsions followed by paralysis (further see Inhalation).		Do not eat, drink, or smoke during work.		Rinse mouth. Induce vomiting (ONLY IN CONSCIOUS PERSONS!). Refer for medical attention. See Notes.		
SPILLAGE	E DISPOSAL		STORAGE	PA	CKAGING & LABELLING	
Evacuate danger area! Consult an expert! Fireproo Do NOT wash away into sewer. Sweep acids, for		acids, food ar	parated from strong oxidants, ad feedstuffs. Cool. Dry. II-ventilated room.	feedst T sym R: 28- S: 7/8	bol	

http://www2.siri.org/msds/mf/cards/file/0407.html

ICSC: 0407

International Chemical Safety Cards (WHO/IPCS/ILO)

protection: complete protective clothing including self-contained breathing apparatus).

UN Packing Group: I

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0407

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities © IPCS CEC 1993

International Chemical Safety Cards

CALCIUM CYANIDE

ICSC: 0407

I M P O R T A N T D A T A	 PHYSICAL STATE; APPEARANCE: WHITE CRYSTALS OR POWDER. CRYSTALLINE POWDER, WITH CHARACTERISTIC ODOUR. PHYSICAL DANGERS: CHEMICAL DANGERS: The substance decomposes on heating above 350°C producing toxic fumes (hydrogen cyanide, nitrous oxides). Reacts violently with water, moist air, carbon dioxide, acids, acidic salts producing highly toxic and flammable hydrogen cyanide. Reacts violently when heated with nitrites, nitrates, chlorates and perchlorates. OCCUPATIONAL EXPOSURE LIMITS (OELs): TLV (as CN): ppm; 5 mg/m³ (skin) (ACGIH 1991-1992). 	 ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin or or by ingestion. INHALATION RISK: A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20° C when dispersed. EFFECTS OF SHORT-TERM EXPOSURE: The substance is corrosive to the eyes, the skin and the respiratory tract. Inhalation of the substance may cause lung oedema (see Notes). The substance may cause effects on the nervous system, blood, heart and respiratory tract. Exposure at high level may result in death. EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: Repeated or prolonged contact with skin may cause dermatitis. May cause reproductive toxicity in humans.
PHYSICAL PROPERTIES	Decomposes below melting point at >350°C°C Relative density (water = 1): 1.85	Solubility in water: reaction
ENVIRONMENTA DATA	L This substance may be hazardous to the environmen organisms, soil.	t; special attention should be given to water, aquatic
	NOTES	
become manifest unti therefore essential. St	gree of exposure, periodic medical examination is indical a few hours have passed and they are aggravated by p pecific treatment is necessary in case of poisoning with e odour warning when the exposure limit value is exceed as are trade names.	hysical effort. Rest and medical observation are this substance; the appropriate means with instructions
	ADDITIONAL INFORMA	ITION
······		
ICSC: 0407	© IPCS, CEC, 1993	CALCIUM CYANIDE
11 1	Neither the CEC or the IPCS nor any person acting on use which might be made of this information. This care Review Committee and may not reflect in all cases all	d contains the collective views of the IPCS Peer

rage 1 of 8

MSDS Number: L2347 * * * * Effective Date: 07/05/07 * * * * * Supercedes: 05/07/07

24 Hour Emergency Telephone: 908-459-2151 CHEMITRED: 1-000-424-0300 MSDS Material Safety Data Sheet National Response in Canada CANUTEC: 613-496-6666 Outside U.S. and Canada Chemirec: 703-527-3687 From: Mallinckrodt Baker, Inc. Mallinckrodt . ¥ NOTE: CHEMTRED, CANUTED and Hational 222 Red School Lane CHEMICALS Response Center emergency numbers to be used only in the event of chemical emergencies. Phillipsburg, NJ 08865 involving a spill, loak, ice, exposure or accident involving chemicals. All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance.

LEAD METAL

1. Product Identification

Synonyms: Granular lead, pigment metal; C.I. 77575 CAS No.: 7439-92-1 Molecular Weight: 207.19 Chemical Formula: Pb Product Codes: J.T. Baker: 2256, 2266 Mallinckrodt: 5668

2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Lead	743992-1	95 - 100%	Yes
		· · · · ·	· · ·

3. Hazards Identification

Emergency Overview

POISON! DANGER! MAY BE FATAL IF SWALLOWED OR INHALED. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. NEUROTOXIN. AFFECTS

THE GUM TISSUE, CENTRAL NERVOUS SYSTEM, KIDNEYS, BLOOD AND REPRODUCTIVE SYSTEM. POSSIBLE CANCER HAZARD. MAY CAUSE CANCER BASED ON ANIMAL DATA. Risk of cancer depends on duration and level of exposure.

SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 3 - Severe (Cancer Causing) Flammability Rating: 3 - Severe (Flammable) Reactivity Rating: 1 - Slight Contact Rating: 2 - Moderate (Life) Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES

Storage Color Code: Red (Flammable)

Potential Health Effects

Inhalation:

Lead can be absorbed through the respiratory system. Local irritation of bronchia and lungs can occur and, in cases of acute exposure, symptoms such as metallic taste, chest and abdominal pain, and increased lead blood levels may follow. See also Ingestion.

Ingestion:

POISON! The symptoms of lead poisoning include abdominal pain and spasms, nausea, vomiting, headache. Acute poisoning can lead to muscle weakness, "lead line" on the gums, metallic taste, definite loss of appetite, insomnia, dizziness, high lead levels in blood and urine with shock, coma and death in extreme cases.

Skin Contact:

Lead and lead compounds may be absorbed through the skin on prolonged exposure; the symptoms of lead poisoning described for ingestion exposure may occur. Contact over short periods may cause local irritation, redness and pain.

Eye Contact:

Absorption can occur through eye tissues but the more common hazards are local irritation or abrasion.

Chronic Exposure:

Lead is a cumulative poison and exposure even to small amounts can raise the body's content to toxic levels. The symptoms of chronic exposure are like those of ingestion poisoning; restlessness, irritability, visual disturbances, hypertension and gray facial color may also be noted.

Aggravation of Pre-existing Conditions:

Persons with pre-existing kidney, nerve or circulatory disorders or with skin or eye problems may be more susceptible to the effects of this substance.

4. First Aid Measures

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Ingestion:

Induce vomiting immediately as directed by medical personnel. Never give anything by mouth to

an unconscious person. Get medical attention. Skin Contact:

Immediately flush skin with plenty of soap and water for at least 15 minutes. Remove contaminated

clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes

before reuse.

Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

5. Fire Fighting Measures

Fire:

Not considered to be a fire hazard. Powder/dust is flammable when heated or exposed to flame. **Explosion:**

Not considered to be an explosion hazard.

Fire Extinguishing Media:

Use any means suitable for extinguishing surrounding fire. Do not allow water runoff to enter sewers or waterways.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Can produce toxic lead fumes at elevated temperatures and also react with oxidizing materials.

6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Spills: Sweep up and containerize for reclamation or disposal. Vacuuming or wet sweeping may be used to avoid dust dispersal. US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from incompatible substances. Areas in which exposure to lead metal or lead compounds may occur should be identified by signs or appropriate means, and access to the area should be limited to authorized persons. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

8. Exposure Controls/Personal Protection

http://www.jtbaker.com/msds/englishhtml/l2347.htm

LEAD METAL

Airborne Exposure Limits:

For lead, metal and inorganic dusts and fumes, as Pb:

-OSHA Permissible Exposure Limit (PEL): 0.05 mg/m3 (TWA)

For lead, elemental and inorganic compounds, as Pb:

-ACGIH Threshold Limit Value (TLV): 0.05 mg/m3 (TWA), A3 animal carcinogen

ACGIH Biological Exposure Indices (BEI): 30 ug/100ml, notation B (see actual Indices for more information).

For lead, inorganic:

-NIOSH Recommended Exposure Limit (REL): 0.1 mg/m3 (TWA)

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded and engineering controls are not feasible, a half-face high efficiency particulate respirator (NIOSH type N100 filter) may be worn for up to ten times the exposure limit or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. A full-face piece high efficiency particulate respirator (NIOSH type N100 filter) may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. If oil particles (e.g. lubricants, cutting fluids, glycerine, etc.) are present, use a NIOSH type R or P filter. For emergencies or instances where the exposure levels are not known, use a full-facepiece positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

Eye Protection:

Use chemical safety goggles and/or full face shield where dusting or splashing of solutions is possible. Maintain eye wash fountain and quick-drench facilities in work area.

Other Control Measures:

Eating, drinking, and smoking should not be permitted in areas where solids or liquids containing lead compounds are handled, processed, or stored. See OSHA substance-specific standard for more information on personal protective equipment, engineering and work practice controls, medical surveillance, record keeping, and reporting requirements. (29 CFR 1910.1025).

9. Physical and Chemical Properties

Appearance:

Small, white to blue-gray metallic shot or granules.
Odor:
Odorless.
Solubility:
Insoluble in water.
Density:
11.34
pH:
No information found.
% Volatiles by volume @ 21C (70F):

0

Boiling Point: 1740C (3164F) Melting Point: 327.5C (622F) Vapor Density (Air=1): No information found. Vapor Pressure (mm Hg): 1.77 @ 1000C (1832F) Evaporation Rate (BuAc=1): No information found.

10. Stability and Reactivity

Stable under ordinary conditions of use and storage.

Hazardous Decomposition Products:

Does not decompose but toxic lead or lead oxide fumes may form at elevated temperatures.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

Ammonium nitrate, chlorine trifluoride, hydrogen peroxide, sodium azide, zirconium, disodium acetylide, sodium acetylide and oxidants.

Conditions to Avoid:

Heat, flames, ignition sources and incompatibles.

11. Toxicological Information

Toxicological Data:

Investigated as a tumorigen, mutagen, reproductive effector.

Reproductive Toxicity:

Lead and other smelter emissions are human reproductive hazards. (Chemical Council on Environmental Quality; Chemical Hazards to Human Reproduction, 1981). Carcinogenicity:

EPA / IRIS classification: Group B2 - Probable human carcinogen, sufficient animal evidence.

\Cancer Lists\	· · ·		
Ingredient	NTP Known	Carcinogen Anticipated	IARC Category
Lead (7439-92-1)	No	No	2B

12. Ecological Information

Environmental Fate:

When released into the soil, this material is not expected to leach into groundwater. This material

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste facility. Although not a listed RCRA hazardous waste, this material may exhibit one or more characteristics of a hazardous waste and require appropriate analysis to determine specific disposal requirements. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Not regulated.

15. Regulatory Information

\Chemical I: Ingredient	nventory Status - Pa	irt 1\	TSCA	 EC	Japan	Australia
Lead (7439-92-1)			<u> </u>		-	
					* .	
\Chemical I	nventory Status - Pa	irt 2\		Cai	nada	
Ingredient						Phil.
Lead (7439-92-1)			Yes	Yes	No	Yes
\Federal, S	tate & Internationa	l Regulati	ons - 1	Part 1		313
Ingredient		RQ	TPQ	Li	st Che	mical Catg
Lead (7439-92-1)					3	
\Federal, S	tate & Internationa	l Regulati			 -TS	
Ingredient		CERCL	A		3 . 8	
Lead (7439-92-1)		10		No		
			-			
Chemical Weapons Conv SARA 311/312: Acute:						

activity: No (Pure / Solid)

WARNING:

THIS PRODUCT CONTAINS CHEMICALS KNOWN TO THE STATE OF CALIFORNIA TO

http://www.jtbaker.com/msds/englishhtml/l2347.htm

CAUSE CANCER AND BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM.

Australian Hazchem Code: None allocated.

Poison Schedule: S6

WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 3 Flammability: 1 Reactivity: 0

Label Hazard Warning:

POISON! DANGER! MAY BE FATAL IF SWALLOWED OR INHALED. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. NEUROTOXIN. AFFECTS THE GUM TISSUE, CENTRAL NERVOUS SYSTEM, KIDNEYS, BLOOD AND REPRODUCTIVE SYSTEM. POSSIBLE CANCER HAZARD. MAY CAUSE CANCER BASED ON ANIMAL DATA. Risk of cancer depends on duration and level of exposure.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe dust.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Label First Aid:

If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Wash clothing before reuse. In all cases, get medical attention.

Product Use:

Laboratory Reagent.

Revision Information:

MSDS Section(s) changed since last revision of document include: 3.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety

http://www.jtbaker.com/msds/englishhtml/l2347.htm

APPENDIX D

PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

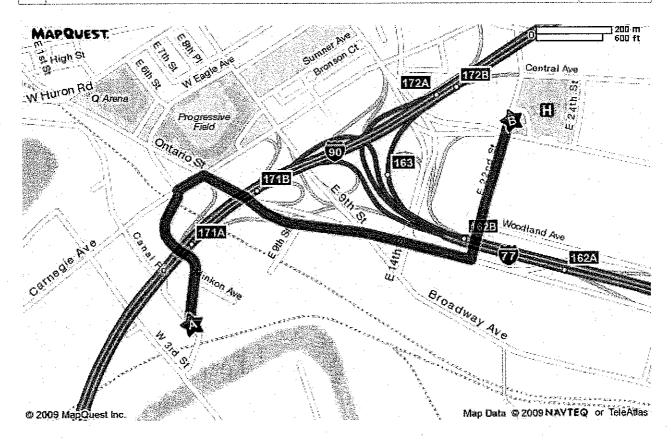
CUY-CLEVELAND INNERBELT COMMERCIAL ROAD ALIGNMENT (PID 77510) CLEVELAND, CUYAHOGA COUNTY, OHIO

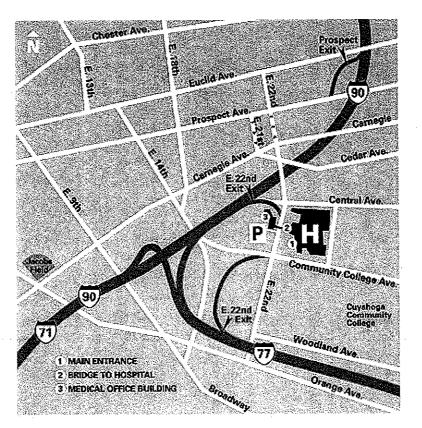
PERSONAL PROTECTION EQUIPMENT

The personal protective equipment requirements for HzW personnel for on-site activities were selected and based on previous land use and previous investigations. Therefore, unless more information is obtained regarding employee exposure at this specific site, such as personal or area air monitoring data or data from the PID indicates that a higher level of PPE is required, then the following PPE, at a minimum is required to be worn:

Respirator:	As necessary
Protective Clothing:	Protective Coveralls/As necessary
Gloves:	Nitrile
Boots:	Safety-toe boots or shoes
Hard Hat:	As necessary
Safety Glasses:	As necessary
Ear Protection:	Disposable, 30-32 dB noise reduction

ANY PPE REQUIREMENTS OF THE FACILITY SHALL SUPERSEDE THOSE PRESENTED IN THIS HASP.


APPENDIX E


LOCATION, MAP AND DIRECTIONS TO NEAREST HOSPITAL

St. Vincent Charity Hospital 2351 East 22nd Street Cleveland, Ohio 44115 Phone: (216) 816-6200

Directions:

1.	Go NORTH on COMMERCIAL ROAD towards CARNEGIE AVENUE	0.3 mile
2.	Turn RIGHT onto CARNEGIE AVENUE	
3.	Stay in RIGHT LANE , continue to intersection with BROADWAY AVENUE (US 422/SR 14/SR 43/SR 87)	0.1 mile
4.	Turn RIGHT onto BROADWAY AVENUE and stay in LEFT LANE	
5.	Continue on BROADWAY AVENUE to EAST 22 ND STREET	0.5 mile
6.	Turn LEFT onto EAST 22 ND STREET	
7.	Continue to ST. VINCENT CHARITY HOSPITAL on RIGHT	0.3 mile

. . .

APPENDIX F

EMERGENCY INFORMATION AND PHONE NUMBERS

EMERGENCY INFORMATION AND PHONE NUMBERS

OHIO EPA

• NORTHEAST DISTRICT OFFICE (TWINSBURG) 1-330-963-1200	
OFFICE OF EMERGENCY RESPONSE	
<u>UNITED STATES EPA</u>	
CERCLA/RCRA HOTLINE	
NATIONAL RESPONSE CENTER	
• EPCRA HOTLINE	
HAZMAT	
• EMERGENCY	
CITY OF CLEVELAND DEPT. OF PUBLIC HEALTH 1-216-664-2324	
CLEVELAND FIRE DEPARTMENT	
(non-emergency) 1-216-664-6664	
CLEVELAND POLICE DEPARTMENT	
(non-emergency) 1-216-623-5000	
(non-enlergency) 1-210-025-5000	
CITY OF CLEVELAND WATER DEPARTMENT 1-216-664-3060	
(water main breaks/leaks)	
OUIO LITILITY DEOTECTION SERVICE (OLDS) 1 800 262 2764	

APPENDIX L

SOIL BORING LOGS

Project No.: H09004-14

Project: Phase II ESA

HzW Representative: JAD/JAH

Location: CUY-Innerbelt Commercial Road (PID 77510)

Drill Date: 12/17/2009

Drilled By: HzW Environmental

Drill Method: Hydrualic Direct Push

Sample Method: Macro Core

		Description		
Depth (feet)	0		(mdd	Remarks
Deptl	Symbol		PID (ppm)	
0-		Ground Surface	1	
- 1-		Brown sandy CLAY w/ gravel, slag and brick fragments, dry, firm		
2-				
3-				
4-	4831837 	Brown CLAY w/ sand, black slag and brick fragments, dry, firm	_	
5-	Z,			
6- - 7-		Black and dark brown sandy CLAY w/ slag and gravel, dry, firm, slight sulfur odor		
- 8-			_	
- 9-		Black and dark brown sandy SLAG w/ clay, gravel and wood fragments, strong sulfur odor		The 8-10 foot interval submitted
- 10-		Dark gray and brown sandy CLAY w/ gray slag, dry, firm, slight sulfur odor	-	for laboratory analysis
11-		Dark gray and brown sandy CLAT w/ gray siag, dry, inm, slight sulfur odor		The 10-12 foot interval submitted
12-				for laboratory analysis
13-				
14-	1.1.1	Dark gray and black SAND w/ slag, trace clay, dry, dense	-	
15-				
16-		Dark brown and gray sandy SLAG w/ trace clay, dry, dense, slight sulfur odor from 16-18'	-	
17				The 16-18 foot interval submitted for laboratory analysis
19				
-		End of Bore		
21-				

HZW ENVIRONMENTAL

CONSULTANTS, LLC

Project No.: H09004-14

Project: Phase II ESA

HzW Representative: JAD/JAH

HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: CUY-Innerbelt Commercial Road (PID 77510)

Drill Date: 12/17/2009

Drilled By: HzW Environmental

Drill Method: Hydrualic Direct Push

Sample Method: Macro Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
	S	Ground Surface Dak brown and black coarse sandy SLAG w' trace clay, dry, loose Dark brown and black sandy SLAG, dry, dense Black and dark gray sandy SLAG w' additional large slag pieces, dry, dense End of Bore		The 2-4 foot interval submitted for laboratory analysis
7-				

Project No.: H09004-14

Project: Phase II ESA

HzW Representative: JAD/JAH

()

HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: CUY-Innerbelt Commercial Road (PID 77510)

Drill Date: 12/17/2009

Drilled By: HzW Environmental

Drill Method: Hydrualic Direct Push

Sample Method: Macro Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface White and gray SLAG	-	
	••••			
-				
1_				Strong unidentifable odor in 0-2'
		Brown and black sandy SLAG w/ brick fragments		Strong, unidentifable odor in 0-2' interval; the 0-2' interval submitted for laboratory analysis
-	•			
	-			
2-		Brown and black coarse sandy SLAG w/ trace clay, brick and gravel, damp, dense	1	
-	•			
	• •			
3-	••••			
	••••			
4-	•			
	• • •			
-	• • •			
5-			-	
		Brown medium SAND, damp, dense		
-				
6				
6-		End of Bore		
-				
7-				

Project No.: H09004-14

Project: Phase II ESA

HzW Representative: JAD/JAH

()

HZW ENVIRONMENTAL CONSULTANTS, LLC

Location: CUY-Innerbelt Commercial Road (PID 77510)

Drill Date: 12/17/2009

Drilled By: HzW Environmental

Drill Method: Hydrualic Direct Push

Sample Method: Macro Core

		Description		
Depth (feet)	Symbol		PID (ppm)	Remarks
0-		Ground Surface		
		Brown coasre SAND w/ gray crushed slag, dry, loose		
_				
1-				The 0-2 foot interval submitted
				for laboratory analysis
-				
2-				
-				
3-				The 2-4 foot interval submitted for laboratory analysis
4-				
		Brown coarse SAND w/ gravel		
-				
5-		Gray silty SAND, damp, soft		
-				
	. 1 . 1 .			
6-		End of Bore		
7-				

APPNEDIX M

LABORATORY ANALYTICAL REPORTS

<u>TestAmerica</u>
THE LEADER IN ENVIRONMENTAL TESTING

D)	E	C	E		V	R L	$\left \widehat{\Pi} \right $
Ų		JAN	1	4	201	0	IJ

HZW ENVIRUMMENTAL CONSULTANTS ILC

Affidavit by Certified Lab Pursuant to OAC 3745-300-13(M)

SS:

TestAmerica Laboratories, Inc.

State of Ohio

County of Stark

I, Opal Davis-Johnson, being first duly sworn according to law, state that, to the best of my knowledge, information and belief:

- 1. I am an adult over the age of eighteen (18) years old and competent to testify herein.
- 2. I am employed by TestAmerica Laboratories, Inc. as Laboratory Director and authorized to submit this affidavit on behalf of TestAmerica North Canton.
- The purpose of this submission is to support a request for a no further action letter or other aspects of a voluntary action, under Ohio's Voluntary Action Program (VAP) as set forth in Ohio Revised Code Chapter 3746 and Ohio Administrative Code (OAC) Chapter 3745-300.
- TestAmerica North Canton performed analyses on behalf of HZW Environmental Consultants for a voluntary action at property known as Commercial Road, located Northeast of Commercial & Canal Roads in Cleveland
- 5. This affidavit applies to and is submitted with the following information, data, documents or reports for the property:

Laboratory Report Number A9L180492 Report Date January 11, 2010

- 6. TestAmerica North Canton was a VAP certified laboratory pursuant to OAC 3745-300-04 when it performed analyses referenced herein.
- The analyses under this affidavit consist of certified data, as described by OAC 3745-300-04(B) with the exception of the analytes, parameter groups, or methods listed below: Method: Analyte/Compound:

9030B/9034	Sulfide
9045	Corrosivity

- 8. TestAmerica North Canton performed the analyses within its current VAP certification. The laboratory was certified for each analyte, parameter group and method used at the time that it performed the analyses. The analyses were performed consistent with the laboratory's standard operating procedures and quality assurance program plan as approved under OAC 3745-300-04.
- 9. The information, data, documents, and reports identified under this affidavit are true, accurate, and complete.

Further affiant sayeth naught.	Signature of Affiant
Sworn to before me this 13 day of	
NOT THE REAL PROPERTY AND THE	JEFFREY C. SMITH Notary Public, State of Ohio Wy Commission Expires Feb. 12, 2012
OF ON	Page 1 of 1 <i>Revised 06/0</i> 9

CONSULTANTS, LLC

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

PROJECT NO. H09004-14

COMMERCIAL RD.

Lot #: A9L180492

Doug Wetzel

HZW Environmental Consultants 6105 Heisley Rd Mentor, OH 44060

TESTAMERICA LABORATORIES, INC.

Approved for release. Nathan Pietras Project Manager 1/11/2010 3:20 PM

Nathan Pietras Project Manager nathan.pietras@testamericainc.com

January 11, 2010

CASE NARRATIVE A9L180492

The following report contains the analytical results for eight solid samples submitted to TestAmerica North Canton by HZW Environmental Consultants from the Commercial Rd. Site, project number H09004-14. The samples were received December 18, 2009, according to documented sample acceptance procedures.

TestAmerica utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. Preliminary results were provided to Doug Wetzel on January 04, 2010, and January 07, 2010. A summary of QC data for these analyses is included at the back of the report.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by a dry weight adjustment footnote at the bottom of the analytical report page. The list of parameters which are never reported on a dry weight basis is included on the Sample Summary.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

All parameters were evaluated to the reporting limit with the exception of Total Residue as Percent Solids, Extractable Petroleum Hydrocarbons and Semivolatile Organic Compounds by GC/MS which were evaluated to the method detection limit and include appropriate qualifiers.

Please refer to the Quality Control Elements Narrative following this case narrative for additional quality control information.

If you have any questions, please call the Project Manager, Nathan Pietras, at 330-497-9396.

This report is sequentially paginated. The final page of the report is labeled as "END OF REPORT."

CASE NARRATIVE (continued)

SUPPLEMENTAL QC INFORMATION

SAMPLE RECEIVING

The temperature of the cooler upon sample receipt was 0.0°C.

GC/MS VOLATILES

The matrix spike/matrix spike duplicate(s) for batch(es) 9356203 had RPD's and recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

The internal standard areas were outside acceptance limits for sample(s) HB-071(10-12'), HB-071(16-18') and HB-072(2-4') due to matrix effects. (Refer to IS report following this case narrative for additional detail.)

Sample(s) HB-071(8-10') had elevated reporting limits due to TICs.

Sample(s) HB-071(10-12'), HB-071(16-18') and HB-072(2-4') were reanalyzed at a dilution due to internal standard recoveries outside of acceptance limits, per Ohio VAP requirements. Only compounds associated with internal standards that met criteria are reported from each analysis.

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch 9356563. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

GC/MS SEMIVOLATILES

Sample HB-075(0-2') had elevated reporting limits due to matrix interferences.

The batch QC for batch 9353017 was unable to be reported due to re-preparation of the parent sample and the original sample was not reported.

CASE NARRATIVE (continued)

PURGEABLE PETROLEUM HYDROCARBONS-8015

The matrix spike/matrix spike duplicate(s) for batch(es) 9363092 had recoveries outside acceptance limits. However, since the associated method blank(s) and laboratory control sample(s) were in control, no corrective action was necessary.

There were no client requested Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples in batch 9354104. Therefore, the laboratory has included a Laboratory Control Sample Duplicate (LCSD) in the QC batch. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system.

EXTRACTABLE PETROLEUM HYDROCARBONS-8015

The sample(s) that contain results between the MDL and the RL were flagged with "J". There is a possibility of false positive or mis-identification at these quantitation levels. In analytical methods requiring confirmation of the analyte reported, confirmation was performed only down to the standard reporting limit (SRL). The acceptance criteria for QC samples may not be met at these quantitation levels.

The generic batch MS/MSDs for batch(es) 9353014 was extracted and analyzed. But unable to be reported due to LIMS limitations

METALS

The analytical results met the requirements of the laboratory's QA/QC program.

GENERAL CHEMISTRY

Sample HB-072(4-6') for Hexavalent Chromium is suspect to have a reducing agent based on the results obtained from method of standard addition.

The matrix spike/matrix spike duplicate data for batch(es) 9357388 and 9362384 are not included in this report. The batch QC samples, which document the effect of a specific sample matrix on method performance, were not associated with a sample reported in this lot. The data, therefore, has no bearing on the samples reported herein. In order to document compliance with the QC requirement for an MS/MSD per 20 environmental samples, a summary of sample/QC associations has been provided following this case narrative.

QUALITY CONTROL ELEMENTS NARRATIVE

TestAmerica conducts a quality assurance/quality control (QA/QC) program designed to provide scientifically valid and legally defensible data. Toward this end, several types of quality control indicators are incorporated into the QA/QC program, which is described in detail in QA Policy, QA-003. These indicators are introduced into the sample testing process to provide a mechanism for the assessment of the analytical data. Program or agency specific requirements take precedence over the requirements listed in this narrative.

<u>QC BATCH</u>

Environmental samples are taken through the testing process in groups called QUALITY CONTROL BATCHES (QC batches). A QC batch contains up to twenty environmental samples of a similar matrix (water, soil) that are processed using the same reagents and standards. TestAmerica North Canton requires that each environmental sample be associated with a QC batch.

Several guality control samples are included in each QC batch and are processed identically to the twenty environmental samples.

For SW846/RCRA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) pair or a MATRIX SPIKE/SAMPLE DUPLICATE (MS/DU) pair. If there is insufficient sample to perform an MS/MSD or an MS/DU, then a LABORATORY CONTROL SAMPLE DUPLICATE (LCSD) is included in the QC batch.

For 600 series/CWA methods, QC samples include a METHOD BLANK (MB), a LABORATORY CONTROL SAMPLE (LCS) and, where appropriate, a MATRIX SPIKE (MS). An MS is prepared and analyzed at a 10% frequency for GC Methods and at a 5% frequency for GC/MS methods.

LABORATORY CONTROL SAMPLE

The Laboratory Control Sample is a QC sample that is created by adding known concentrations of a full or partial set of target analytes to a matrix similar to that of the environmental samples in the QC batch. Multi peak responders may not be included in the target spike list due to co-elution. The LCS analyte recovery results are used to monitor the analytical process and provide evidence that the laboratory is performing the method within acceptable guidelines. All control analytes indicated by a bold type in the LCS must meet acceptance criteria. Failure to meet the established recovery guidelines requires the repreparation and reanalysis of all samples in the QC batch. Comparison of only the failed parameters from the first batch are evaluated. The only exception to the rework requirement is that if the LCS recoveries are biased high and the associated sample is ND (non-detected) for the parameter(s) of interest, the batch is acceptable.

At times, a Laboratory Control Sample Duplicate (LCSD) is also included in the QC batch. An LCSD is a QC sample that is created and handled identically to the LCS. Analyte recovery data from the LCSD is assessed in the same way as that of the LCS. The LCSD recoveries, together with the LCS recoveries, are used to determine the reproducibility (precision) of the analytical system. Precision data are expressed as relative percent differences (RPDs). If the RPD fails for an LCS/LCSD and yet the recoveries are within acceptance criteria, the batch is still acceptable.

METHOD BLANK

The Method Blank is a QC sample consisting of all the reagents used in analyzing the environmental samples contained in the QC batch. Method Blank results are used to determine if interference or contamination in the analytical system could lead to the reporting of false positive data or elevated analyte concentrations. All target analytes must be below the reporting limits (RL) or the associated sample(s) must be ND except under the following circumstances:

• Common organic contaminants may be present at concentrations up to 5 times the reporting limits. Common metals contaminants may be present at concentrations up to 2 times the reporting limit, or the reported blank concentration must be twenty fold less than the concentration reported in the associated environmental samples. (See common laboratory contaminants listed in the table.)

Volatile (GC or GC/MS)	Semivolatile (GC/MS)	Metals ICP-MS	Metals ICP Trace
Methylene Chloride,	Phthalate Esters	Copper, Iron, Zinc,	Copper, Iron, Zinc, Lead
Acetone, 2-Butanone		Lead, Calcium,	
		Magnesium, Potassium,	
		Sodium, Barium,	
		Chromium, Manganese	

QUALITY CONTROL ELEMENTS NARRATIVE (continued)

- Organic blanks will be accepted if compounds detected in the blank are present in the associated samples at levels 10 times the blank level. Inorganic blanks will be accepted if elements detected in the blank are present in the associated samples at 20 times the blank level.
- Blanks will be accepted if the compounds/elements detected are not present in any of the associated environmental samples.

Failure to meet these Method Blank criteria requires the repreparation and reanalysis of all samples in the QC batch.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

A Matrix Spike and a Matrix Spike Duplicate are a pair of environmental samples to which known concentrations of a full or partial set of target analytes are added. The MS/MSD results are determined in the same manner as the results of the environmental sample used to prepare the MS/MSD. The analyte recoveries and the relative percent differences (RPDs) of the recoveries are calculated and used to evaluate the effect of the sample matrix on the analytical results. Due to the potential variability of the matrix of each sample, the MS/MSD results may not have an immediate bearing on any samples except the one spiked; therefore, the associated batch MS/MSD may not reflect the same compounds as the samples contained in the analytical report. When these MS/MSD results fail to meet acceptance criteria, the data is evaluated. If the LCS is within acceptance criteria, the batch is considered acceptable.

For certain methods, a Matrix Spike/Sample Duplicate (MS/DU) may be included in the QC batch in place of the MS/MSD. For the parameters (i.e. pH, ignitability) where it is not possible to prepare a spiked sample, a Sample Duplicate may be included in the QC batch. However, a Sample Duplicate is less likely to provide usable precision statistics depending on the likelihood of finding concentrations below the standard reporting limit. When the Sample Duplicate result fails to meet acceptance criteria, the data is evaluated.

For certain methods (600 series methods/CWA), a Matrix Spike is required in place of a Matrix Spike/Matrix Spike Duplicate (MS/MSD) or Matrix Spike/Sample Duplicate (MS/DU).

The acceptance criteria do not apply to samples that are diluted.

SURROGATE COMPOUNDS

In addition to these batch-related QC indicators, each organic environmental and QC sample is spiked with surrogate compounds. Surrogates are organic chemicals that behave similarly to the analytes of interest and that are rarely present in the environment. Surrogate recoveries are used to monitor the individual performance of a sample in the analytical system.

If surrogate recoveries are biased high in the LCS, LCSD, or the Method Blank, and the associated sample(s) are ND, the batch is acceptable. Otherwise, if the LCS, LCSD, or Method Blank surrogate(s) fail to meet recovery criteria, the entire sample batch is reprepared and reanalyzed. If the surrogate recoveries are outside criteria for environmental samples, the samples will be reprepared and reanalyzed unless there is objective evidence of matrix interference or if the sample dilution is greater than the threshold outlined in the associated method SOP.

The acceptance criteria do not apply to samples that are diluted. All other surrogate recoveries will be reported.

For the GC/MS BNA methods, the surrogate criterion is that two of the three surrogates for each fraction must meet acceptance criteria. The third surrogate must have a recovery of ten percent or greater.

For the Pesticide and PCB methods, the surrogate criterion is that one of two surrogate compounds must meet acceptance criteria. The second surrogate must have a recovery of 10% or greater.

TestAmerica Certifications and Approvals:

The laboratory is certified for the analytes listed on the documents below. These are available upon request. California (#01144CA), Connecticut (#PH-0590), Florida (#E87225),

Illinois (#200004), Kansas (#E10336), Minnesota (#39-999-348), New Jersey (#OH001), New York (#10975), Nevada (#OH-000482008A), OhioVAP (#CL0024), Pennsylvania (#008), West Virginia (#210), Wisconsin (#999518190), NAVY, ARMY, USDA Soil Permit

N:\QAQC\Customer Service\Narrative - Combined RCRA CWA 032609.doc

[(s10H Data File: \\cansvr11\dd\chem\MSV\a3ux8a.i\M91223A.b\UX81645.D Report Date: 24-Dec-2009 14:30

TestAmerica North Canton

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: a3ux8a.i Lab File ID: UX81645.D Lab Smp Id: LRCRC1AK Analysis Type: VOA Quant Type: ISTD Operator: 402279 Method File: \\cansvr11\dd\chem\MSV\a3ux8a.i\M91223A.b\8260SUX8.m Misc Info: M91223A,8260SUX8,1-8260.SUB,402279 Calibration Date: 23-DEC-2009 Calibration Date: 19:33 Client Smp ID: HB-071(10-12') Level: LOW Sample Type: SOIL 091223A,8260SUX8,1-8260.SUB,402279

		AREA I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	====== =	======= =	=========	==================	======
1 Fluorobenzene	895502	447751	1791004	717055	-19.93
2 Chlorobenzene-d5	695105	347553	1390210	403978	-41.88
3 1,4-Dichlorobenze	375553	187777	751106	107352	-71.41 <

		RT I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	==========	=======		======
1 Fluorobenzene	5.31	4.81	5.81	5.30	-0.02
2 Chlorobenzene-d5	7.85	7.35	8.35	7.85	-0.01
3 1,4-Dichlorobenze	10.04	9.54	10.54	10.04	0.05
!]	1			

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area. RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT. E(s10H
Data File: \\cansvrll\dd\chem\MSV\a3ux8a.i\M91223A.b\UX81630.D
Report Date: 24-Dec-2009 14:13

TestAmerica North Canton

INTERNAL STANDARD COMPOUNDS AREA AND RI SUMMARY

Instrument ID: a3ux8a.i Calibration Date: 23-DEC-2009 Lab File ID: UX81630.D Calibration Time: 19:33 Lab Smp Id: LRCRE1AK Client Smp ID: HB-071(10-12') Analysis Type: VOA Level: LOW Quant Type: ISTD Sample Type: SOIL Operator: 402279 Method File: \\cansvrll\dd\chem\MSV\a3ux8a.i\M91223A.b\8260SUX8.m Misc Info: M91223A,8260SUX8,1-8260.SUB,402279

		AREA I	TIMI	l l	
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	==========================	==== === =	===========	========	======
1 Fluorobenzene	895502	447751	1791004	664514	-25.79
2 Chlorobenzene-d5	695105	347553	1390210	333803	-51.98 <-
3 1,4-Dichlorobenze	375553	187777	751106	78423	-79.12 <-
	i	t		I	I

		RT I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	&DIFF
========================	==============		=============	=========	======
1 Fluorobenzene	5.31	4.81	5.81	5.31	0.05
2 Chlorobenzene-d5	7.85	7.35	8.35	7.85	-0.04
3 1,4-Dichlorobenze	10.04	9.54	10.54	10.04	0.03
1				I	I

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area. RT UPPER LIMIT = +0.50 minutes of internal standard RT. RT LOWER LIMIT = -0.50 minutes of internal standard RT.](s10H
Data File: \\cansvr11\dd\chem\MSV\a3ux8a.i\M91223A.b\UX81631.D
Report Date: 24-Dec-2009 14:16

TestAmerica North Canton

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: a3ux8a.i Lab File ID: UX81631.D Lab Smp Id: LRCRH1AK Analysis Type: VOA Quant Type: ISTD Operator: 402279 Method File: \\cansvr11\dd\chem\MSV\a3ux8a.i\M91223A.b\8260SUX8.m Misc Info: M91223A,8260SUX8,1-8260.SUB,402279 Calibration Date: 23-DEC-2009 Calibration Time: 19:33 Client Smp ID: HB-072(2-4') Level: LOW Sample Type: SOIL 0923A,8260SUX8,1-8260.SUB,402279

	i	AREA I	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	&DIFF
	========			============	=====
1 Fluorobenzene	895502	447751!	1791004	684851	-23.52
2 Chlorobenzene-d5	695105	347553	1390210	332213	-52.21 <
3 1,4-Dichlorobenze	375553	187777	751106	77254	-79.43 <
]		1

		RT L	IMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	===================			=========	======
1 Fluorobenzene	5.31	4.81	5.81	5.31	0.05
1 2 Chlorobenzene-d5	7.85	7.35	8.35	7.85	0.04
3 1,4-Dichloroberze	10.04	9.54	10.54	10.04	0.03
:		1			ļ

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area. RT UPPER LIMIT = +0.50 minutes of internal standard RT. RT LOWER LIMIT = -0.50 minutes of internal standard RT.

TESTAMERICA LABORATORIES, INC.

MS RUN NUMBER REVIEW

Lot ID	Smp#	Work Order	Batch	MS Run#	SDG	Prep Date	Method
A9L180470	001	LRA5L1AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	002	LRA5R1AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	003	LRA5T1AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	004	LRA5V1AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	005	LRA5W1AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	006	LRA5X1AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	007	LRA511AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	008	LRA531AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	009	LRA541AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	010	LRA551AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	011	LRA571AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180470	012	LRA591AE	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180492	001	LRCET1AL	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180492	002	LRCRC1AL	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L180492	003	LRCRE1AL	9357388	9357236		12/23/09	MCAWW 335.2 CLP-M
A9L220458	004	LRG481AH	9357388	9357236	9L03652	12/23/09	MCAWW 335.2 CLP-M
A9L220458	004	LRG481AL D	9357388	9357236	9L03652	12/23/09	MCAWW 335.2 CLP-M
A9L220458	004	LRG481AK S	9357388	9357236	9L03652	12/23/09	MCAWW 335.2 CLP-M
A9L170448	001	LQ8JA1AR	9357395	9357236		12/23/09	SW846 9012A
A9L150490	003	LQ4981AA	9362383	9362205		12/28/09	SW846 9012A
A9L150490	003	LQ4981AD D	9362383	9362205		12/28/09	SW846 9012A
A9L150490	003	LQ4981AC S	9362383	9362205		12/28/09	SW846 9012A
A9L180492	004	LRCRH1AL	9362384	9362205		12/28/09	MCAWW 335.2 CLP-M
A9L180492	005	LRCRK1AL	9362384	9362205		12/28/09	MCAWW 335.2 CLP-M
A9L180492	006	LRCRM1AL	9362384	9362205		12/28/09	MCAWW 335.2 CLP-M
A9L180492	007	LRCRP1AL	9362384	9362205		12/28/09	MCAWW 335.2 CLP-M
A9L180492	008	LRCRRIAL	9362384	9362205		12/28/09	MCAWW 335.2 CLP-M

A9L180492

PARAMETER		RESULT	REPORTING RESULT LIMIT		ANALYTICAL METHOD	
нв-0	71(8-10') 12/17/09 11:40 001					
	C20-C34	250	31	mg/kg	SW846 8015B	
	C10-C20	260	23	mg/kg	SW846 8015B	
	Gasoline Range Organics (C6-C12)	2700	1200	ug/kg	SW846 8015A MOD	
	Arsenic	10.0	1.2	mg/kg	SW846 6010B	
	Chromium	11.2	0.58	mg/kg	SW846 6010B	
	Lead	38.8	0.35	mg/kg	SW846 6010B	
	Benzo(a)anthracene	2200	380	ug/kg	SW846 8270C	
	Benzo(b)fluoranthene	3300	380	ug/kg	SW846 8270C	
	Benzo(k)fluoranthene	570	380	ug/kg	SW846 8270C	
	Benzo(a)pyrene	2200	380	ug/kg	SW846 8270C	
	Chrysene	2200	380	ug/kg	SW846 8270C	
	Indeno(1,2,3-cd)pyrene	1400	380	ug/kg	SW846 8270C	
	Naphthalene	55000	380	ug/kg	SW846 8270C	
	Acenaphthene	7000	380	ug/kg	SW846 8270C	
	Anthracene	2400	380	ug/kg	SW846 8270C	
	Benzo(ghi)perylene	830	380	ug/kg	SW846 8270C	
	Fluoranthene	8800	380	ug/kg	SW846 8270C	
	Fluorene	5300	380	ug/kg	SW846 8270C	
	2-Methylnaphthalene	7900	380	ug/kg	SW846 8270C	
	Phenanthrene	13000	380	ug/kg	SW846 8270C	
	Pyrene	5600	380	ug/kg	SW846 8270C	
	1-Methylnaphthalene	4100	380	ug/kg	SW846 8270C	
	Corrosivity	9.5		No Units	SW846 9045A	
	Percent Solids	86.8	10.0	8	MCAWW 160.3 MOD	
	Acid-soluble sulfide	48.5	34.6	mg/kg	SW846 9030B/9034	
	Total Cyanide	0.80	0.58	mg/kg	MCAWW 335.2 CLP-M	
HB-0	71(10-12') 12/17/09 11:40 002					
	C20-C34	220	31	mg/kg	SW846 8015B	
	C10-C20	170	23	mg/kg	SW846 8015B	
	Gasoline Range Organics (C6-C12)	170	120	ug/kg	SW846 8015A MOD	
	Arsenic	11.3	1.2	mg/kg	SW846 6010B	
	Cadmium	0.31	0.23	mg/kg	SW846 6010B	
	Chromium	14.4	0.58	mg/kg	SW846 6010B	
	Lead	65.9	0.35	mg/kg	SW846 6010B	
	Benzo(a)anthracene	1500	51	ug/kg	SW846 8270C	
	Benzo(b)fluoranthene	2200	51	ug/kg	SW846 8270C	
	Benzo(k)fluoranthene	830	51	ug/kg	SW846 8270C	
	Benzo(a)pyrene	1300	51	ug/kg	SW846 8270C	
	Chrysene	1500	51	ug/kg	SW846 8270C	
				—		

A9L180492

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
HB-071(10-12') 12/17/09 11:40 002				
Dibenz(a,h)anthracene	380	51	ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	940	51	ug/kg	SW846 8270C
Naphthalene	3700	51	ug/kg	SW846 8270C
Acenaphthene	1300	51	ug/kg	SW846 8270C
Acenaphthylene	270	51	ug/kg	SW846 8270C
Anthracene	940	51	ug/kg	SW846 8270C
Benzo(ghi)perylene	960	51	ug/kg	SW846 8270C
Fluoranthene	4000	51	ug/kg	SW846 8270C
Fluorene	1300	51	ug/kg	SW846 8270C
2-Methylnaphthalene	3300	51	ug/kg	SW846 8270C
Phenanthrene	5400	51	ug/kg	SW846 8270C
Pyrene	3100	51	ug/kg	SW846 8270C
1-Methylnaphthalene	2000	51	ug/kg	SW846 8270C
Methylene chloride	12	5.8	ug/kg	SW846 8260A
Acetone	36	23	ug/kg	SW846 8260A
Carbon disulfide	14	5.8	ug/kg	SW846 8260A
Toluene	7.1	5.8	ug/kg	SW846 8260A
Xylenes (total)	11	5.8	ug/kg	SW846 8260A
Corrosivity	10.1		No Units	SW846 9045A
Percent Solids	86.8	10.0	ક	MCAWW 160.3 MOD
Acid-soluble sulfide	90.2	34.6	mg/kg	SW846 9030B/9034
Total Cyanide	2.1	0.58	mg/kg	MCAWW 335.2 CLP-M
HB-071(16-18') 12/17/09 11:40 003				
C20-C34	150	31	mg/kg	SW846 8015B
C10-C20	72	23	mg/kg	SW846 8015B
Gasoline Range Organics (C6-C12)	150	110	ug/kg	SW846 8015A MOD
Arsenic	9.7	1.1	mg/kg	SW846 6010B
Chromium	22.9	0.57	mg/kg	SW846 6010B
Lead	55.7	0.34	mg/kg	SW846 6010B
Benzo(a)anthracene	810	30	ug/kg	SW846 8270C
Benzo(b)fluoranthene	1000	30	ug/kg	SW846 8270C
Benzo(k)fluoranthene	420	30	ug/kg	SW846 8270C
Benzo(a)pyrene	660	30	ug/kg	SW846 8270C
Chrysene	850	30	ug/kg	SW846 8270C
Dibenz(a,h)anthracene	180	30	ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	440	30	ug/kg	SW846 8270C
Naphthalene	3400	30	ug/kg	SW846 8270C
Acenaphthene	900	30	ug/kg	SW846 8270C
Acenaphthylene	120	30	ug/kg	SW846 8270C
Anthracene	490	30	ug/kg	SW846 8270C

A9L180492

PARAMETER	RESULT	REPORTING	UNITS	ANALYTICAL METHOD
HB-071(16-18') 12/17/09 11:40 003				
Benzo(ghi)perylene	450	30	ug/kg	SW846 8270C
Fluoranthene	2200	30	ug/kg	SW846 8270C
Fluorene	870	30	ug/kg	SW846 8270C
2-Methylnaphthalene	1600	30	ug/kg	SW846 8270C
Phenanthrene	2700	30	ug/kg	SW846 8270C
Pyrene	1800	30	ug/kg	SW846 8270C
1-Methylnaphthalene	960	30	ug/kg	SW846 8270C
Methylene chloride	7.3	5.7	ug/kg	SW846 8260A
Carbon disulfide	12	5.7	ug/kg	SW846 8260A
Corrosivity	10.4		No Units	SW846 9045A
Percent Solids	87.9	10.0	8	MCAWW 160.3 MOD
Acid-soluble sulfide	148	34.1	mg/kg	SW846 9030B/9034
Total Cyanide	0.73	0.57	mg/kg	MCAWW 335.2 CLP-M
HB-072(2-4') 12/17/09 12:20 004				
C20-C34	140	30	mg/kg	SW846 8015B
C10-C20	44	23	mg/kg	SW846 8015B
Arsenic	8.6	1.1	mg/kg	SW846 6010B
Chromium	10.6	0.56	mg/kg	SW846 6010B
Lead	27.0	0.34	mg/kg	SW846 6010B
Benzo(a)anthracene	840	7.5	ug/kg	SW846 8270C
Benzo(b)fluoranthene	1100	7.5	ug/kg	SW846 8270C
Benzo(k)fluoranthene	390	7.5	ug/kg	SW846 8270C
Benzo(a)pyrene	630	7.5	ug/kg	SW846 8270C
Chrysene	840	7.5	ug/kg	SW846 8270C
Dibenz(a,h)anthracene	150	7.5	ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	460	7.5	ug/kg	SW846 8270C
Naphthalene	580	7.5	ug/kg	SW846 8270C
Acenaphthene	110	7.5	ug/kg	SW846 8270C
Acenaphthylene	140	7.5	ug/kg	SW846 8270C
Anthracene	360	7.5	ug/kg	SW846 8270C
Benzo(ghi)perylene	500	7.5	ug/kg	SW846 8270C
Fluoranthene	1500	7.5	ug/kg	SW846 8270C
Fluorene	140	7.5	ug/kg	SW846 8270C
2-Methylnaphthalene	780	7.5	ug/kg	SW846 8270C
Phenanthrene	1100	7.5	ug/kg	SW846 8270C
Pyrene	1400	7.5	ug/kg	SW846 8270C
1-Methylnaphthalene	520	7.5	ug/kg	SW846 8270C
Methylene chloride	11	5.6	ug/kg	SW846 8260A
Carbon disulfide	8.0	5.6	ug/kg	SW846 8260A
Corrosivity	10.2		No Units	SW846 9045A
Percent Solids	88.7	10.0	ક	MCAWW 160.3 MOD

A9L180492

PARAMETER	RESULT	REPORTING	UNITS	ANALYTICAL METHOD
HB-072(2-4') 12/17/09 12:20 004				
Acid-soluble sulfide	287	33.8 0.56	mg/kg	SW846 9030B/9034 MCAWW 335.2 CLP-M
Total Cyanide	2.9	0.00	mg/kg	MCAWW 555.2 CLP-M
HB-072(4-6') 12/17/09 12:20 005				
C20-C34	220	31	mg/kg	SW846 8015B
C10-C20	82	23	mg/kg	SW846 8015B
Gasoline Range Organics (C6-C12)	700	580	ug/kg	SW846 8015A MOD
Arsenic	9.3	1.2	mg/kg	SW846 6010B
Chromium	19.7	0.58	mg/kg	SW846 6010B
Lead	38.4	0.35	mg/kg	SW846 6010B
Benzo(a)anthracene	1300	15	ug/kg	SW846 8270C
Benzo(b)fluoranthene	2100	15	ug/kg	SW846 8270C
Benzo(k)fluoranthene	750	15	ug/kg	SW846 8270C
Benzo(a)pyrene	1200	15	ug/kg	SW846 8270C
Chrysene	1500	15	ug/kg	SW846 8270C
Dibenz(a,h)anthracene	260	15	ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	760	15	ug/kg	SW846 8270C
Naphthalene	910	15	ug/kg	SW846 8270C
Acenaphthene	140	15	ug/kg	SW846 8270C
Acenaphthylene	340	15	ug/kg	SW846 8270C
Anthracene	410	15	ug/kg	SW846 8270C
Benzo(ghi)perylene	850	15	ug/kg	SW846 8270C
Fluoranthene	2100	15	ug/kg	SW846 8270C
Fluorene	180	15	ug/kg	SW846 8270C
2-Methylnaphthalene	1400	15	ug/kg	SW846 8270C
Phenanthrene	1400	15	ug/kg	SW846 8270C
Pyrene	2100	15	ug/kg	SW846 8270C
1-Methylnaphthalene	860	15	ug/kg	SW846 8270C
Carbon disulfide	27	5.8	ug/kg	SW846 8260A
Benzene	27	5.8	ug/kg	SW846 8260A
Toluene	44	5.8	ug/kg	SW846 8260A
Xylenes (total)	20	5.8	ug/kg	SW846 8260A
Hexavalent	2.5	0.92	mg/kg	SW846 7196A
Chromium				
Corrosivity	10.2		No Units	SW846 9045A
Percent Solids	86.7	10.0	8	MCAWW 160.3 MOD
Acid-soluble sulfide	289	34.6	mg/kg	SW846 9030B/9034
Total Cyanide	2.1	0.58	mg/kg	MCAWW 335.2 CLP-M

A9L180492

PARAMETER	RESULT	REPORTING	UNITS	ANALYTICAL METHOD
HB-073(0-2') 12/17/09 12:50 006				
C20-C34	130	31	mg/kg	SW846 8015B
C10-C20	120	23	mg/kg	SW846 8015B
Gasoline Range Organics	210	110	ug/kg	SW846 8015A MOD
(C6-C12)				
Arsenic	9.3	1.1	mg/kg	SW846 6010B
Cadmium	0.33	0.23	mg/kg	SW846 6010B
Chromium	10.6	0.57	mg/kg	SW846 6010B
Lead	115	0.34	mg/kg	SW846 6010B
Benzo(a)anthracene	1100	15	ug/kg	SW846 8270C
Benzo(b) fluoranthene	1500	15	ug/kg	SW846 8270C
Benzo(k) fluoranthene	420	15	ug/kg	SW846 8270C
Benzo(a)pyrene	1000	15	ug/kg	SW846 8270C
Chrysene	960	15	ug/kg	SW846 8270C
Dibenz(a,h)anthracene	290	15	ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	600	15	ug/kg	SW846 8270C
Naphthalene	880	15	ug/kg	SW846 8270C
Acenaphthene	82	15	ug/kg	SW846 8270C
Acenaphthylene	150	15	ug/kg	SW846 8270C
Anthracene	240	15	ug/kg	SW846 8270C
Benzo(ghi)perylene	820	15	ug/kg	SW846 8270C
Fluoranthene	1600	15	ug/kg	SW846 8270C
Fluorene	87	15	ug/kg	SW846 8270C
2-Methylnaphthalene	1500	15	ug/kg	SW846 8270C
Phenanthrene	1200	15	ug/kg	SW846 8270C
Pyrene	1500	15	ug/kg	SW846 8270C
1-Methylnaphthalene	1000	15	ug/kg	SW846 8270C
Toluene	5.8	5.7	ug/kg	SW846 8260A
Ethylbenzene	11	5.7	ug/kg	SW846 8260A
Xylenes (total)	47	5.7	ug/kg	SW846 8260A
Corrosivity	11.0		No Units	SW846 9045A
Percent Solids	88.4	10.0	ક	MCAWW 160.3 MOD
Acid-soluble sulfide	302	33.9	mg/kg	SW846 9030B/9034
Total Cyanide	4.6	0.57	mg/kg	MCAWW 335.2 CLP-M
HB-075(0-2') 12/17/09 13:20 007				
C20-C34	610	150	mg/kg	SW846 8015B
C10-C20	100 J	110	mg/kg	SW846 8015B
Gasoline Range Organics	780	570	ug/kg	SW846 8015A MOD
(C6-C12)				
Arsenic	4.7	1.1	mg/kg	SW846 6010B
Cadmium	0.23	0.23	mg/kg	SW846 6010B
Chromium	18.6	0.57	mg/kg	SW846 6010B

A9L180492

	PARAMETER	REPOR PARAMETER RESULT LIMIT		UNITS	ANALYTICAL METHOD	
HB-07	5(0-2') 12/17/09 13:20 007					
	Lead	21.3	0.34	mg/kg	SW846 6010B	
	Benzo(a)anthracene	2900	76	ug/kg	SW846 8270C	
	Benzo(b)fluoranthene	2500	76	ug/kg	SW846 8270C	
	Benzo(k)fluoranthene	940	76	ug/kg	SW846 8270C	
	Benzo(a)pyrene	2100	76	ug/kg	SW846 8270C	
	Chrysene	2600	76	ug/kg	SW846 8270C	
	Dibenz(a,h)anthracene	460	76	ug/kg	SW846 8270C	
	Indeno(1,2,3-cd)pyrene	1100	76	ug/kg	SW846 8270C	
	Naphthalene	230	76	ug/kg	SW846 8270C	
	Acenaphthene	190	76	ug/kg	SW846 8270C	
	Acenaphthylene	100	76	ug/kg	SW846 8270C	
	Anthracene	860	76	ug/kg	SW846 8270C	
	Benzo(ghi)perylene	1200	76	ug/kg	SW846 8270C	
	Fluoranthene	5100	76	ug/kg	SW846 8270C	
	Fluorene	210	76	ug/kg	SW846 8270C	
	2-Methylnaphthalene	180	76	ug/kg	SW846 8270C	
	Phenanthrene	2500	76	ug/kg	SW846 8270C	
	Pyrene	6100	76	ug/kg	SW846 8270C	
	1-Methylnaphthalene	150	76	ug/kg	SW846 8270C	
	Xylenes (total)	26	5.7	ug/kg	SW846 8260A	
	Corrosivity	11.5		No Units	SW846 9045A	
	Percent Solids	87.9	10.0	8	MCAWW 160.3 MOD	
	Acid-soluble sulfide	61.6	34,1	mg/kg	SW846 9030B/9034	
HB-07	5(2-4') 12/17/09 13:20 008					
	C20-C34	110	15	mg/kg	SW846 8015B	
	C10-C20	48	11	mg/kg	SW846 8015B	
	Arsenic	10.4	1.1	mg/kg	SW846 6010B	
	Chromium	8.9	0.55	mg/kg	SW846 6010B	
	Lead	107	0.33	mg/kg	SW846 6010B	
	Benzo(a)anthracene	2900	29	ug/kg	SW846 8270C	
	Benzo(b)fluoranthene	3200	29	ug/kg	SW846 8270C	
	Benzo(k)fluoranthene	1200	29	ug/kg	SW846 8270C	
	Benzo(a)pyrene	2500	29	ug/kg	SW846 8270C	
	Chrysene	2600	29	ug/kg	SW846 8270C	
	Dibenz(a,h)anthracene	500	29	ug/kg	SW846 8270C	
	Indeno(1,2,3-cd)pyrene	1500	29	ug/kg	SW846 8270C	
	Naphthalene	820	29	ug/kg	SW846 8270C	
	Acenaphthene	570	29	ug/kg	SW846 8270C	
	Acenaphthylene	72	29	ug/kg	SW846 8270C	
	Anthracene	1300	29	ug/kg	SW846 8270C	
	Benzo(ghi)perylene	1600	29	ug/kg	SW846 8270C	

A9L180492

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
HB-075(2-4') 12/17/09 13:20 008				
Fluoranthene	5500	29	ug/kg	SW846 8270C
Fluorene	570	29	ug/kg	SW846 8270C
2-Methylnaphthalene	1000	29	ug/kg	SW846 8270C
Phenanthrene	4800	29	ug/kg	SW846 8270C
Pyrene	5400	29	ug/kg	SW846 8270C
1-Methylnaphthalene	610	29	ug/kg	SW846 8270C
Corrosivity	8.7		No Units	SW846 9045A
Percent Solids	90.6	10.0	£	MCAWW 160.3 MOD

ANALYTICAL METHODS SUMMARY

A9L180492

PARAMETER	ANALYTICAL METHOD
Corrosivity	SW846 9045A
Extractable Petroleum Hydrocarbons	SW846 8015B
Hexavalent Chromium	SW846 7196A
Semivolatile Organic Compounds by GC/MS	SW846 8270C
Sulfides, Total 9030B/9034	SW846 9030B/9034
Total Cyanide	MCAWW 335.2 CLP-M
Total Residue as Percent Solids	MCAWW 160.3 MOD
Trace Inductively Coupled Plasma (ICP) Metals	SW846 6010B
Volatile Organics	SW846 8015A MOD
Volatile Organics by GC/MS	SW846 8260A

References:

- MCAWW "Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.
- SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

A9L180492

<u>wo # </u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED <u>DATE</u>	SAMP TIME
LRCET	001	HB-071(8-10')	12/17/09	11:40
LRCRC	001	HB-071(10-12')	12/17/09	
LRCRE	003	HB-071(16-18')	12/17/09	11:40
LRCRH	004	HB-072(2-4')	12/17/09	
LRCRK	005	HB-072(4-6')	12/17/09	
LRCRM	006	HB-073(0-2')	12/17/09	
LRCRP	007	HB-075(0-2')	12/17/09	
LRCRR	800	HB-075(2-4')	12/17/09	13:20

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: HB-071(8-10')

GC/MS Volatiles

Lot-Sample #:	A9L180492-001	Work Order #:	LRCET1AK	Matrix	SO
Date Sampled:	12/17/09 11:40	Date Received:	12/18/09		
Prep Date:	12/20/09	Analysis Date:	12/24/09		
Prep Batch #:	9356563				
Dilution Factor:	19.92				
<pre>% Moisture:</pre>	13	Method:	SW846 8260A		

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Acetone	ND	23000	ug/kg
Benzene	ND	5700	ug/kg
Bromodichloromethane	ND	5700	ug/kg
Bromoform	ND	5700	ug/kg
Bromomethane	ND	11000	ug/kg
2-Butanone	ND	23000	ug/kg
Carbon disulfide	ND	5700	ug/kg
Carbon tetrachloride	ND	5700	ug/kg
Chlorobenzene	ND	5700	ug/kg
Dibromochloromethane	ND	5700	ug/kg
Chloroethane	ND	11000	ug/kg
Chloroform	ND	5700	ug/kg
Chloromethane	ND	11000	ug/kg
1,1-Dichloroethane	ND	5700	ug/kg
1,2-Dichloroethane	ND	5700	ug/kg
1,1-Dichloroethene	ND	5700	ug/kg
1,2-Dichloroethene	ND	5700	ug/kg
(total)			
1,2-Dichloropropane	ND	5700	ug/kg
cis-1,3-Dichloropropene	ND	5700	ug/kg
trans-1,3-Dichloropropene	ND	5700	ug/kg
Ethylbenzene	ND	5700	ug/kg
2-Hexanone	ND	23000	ug/kg
Methylene chloride	ND	5700	ug/kg
4-Methyl-2-pentanone	ND	23000	ug/kg
Styrene	ND	5700	ug/kg
1, 1, 2, 2-Tetrachloroethane	ND	5700	ug/kg
Tetrachloroethene	ND	5700	ug/kg
Toluene	ND	5700	ug/kg
1,1,1-Trichloroethane	ND	5700	ug/kg
1,1,2-Trichloroethane	ND	5700	ug/kg
Trichloroethene	ND	5700	ug/kg
Vinyl chloride	ND	2300	ug/kg
Xylenes (total)	ND	5700	ug/kg
	PERCENT	RECOVERY	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	74 DIL	(59 - 138)
1,2-Dichloroethane-d4	0.0 DIL,*	(61 - 130)
Toluene-d8	70 DIL	(60 - 143)
4-Bromofluorobenzene	76 DIL	(47 - 158)

Client Sample ID: HB-071(8-10')

GC/MS Volatiles

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

* Surrogate recovery is outside stated control limits.

Client Sample ID: HB-071(8-10')

GC/MS Semivolatiles

Lot-Sample #:	A9L180492-001	Work Order #:	LRCET1AD	Matrix:	SO
Date Sampled:	12/17/09 11:40	Date Received:	12/18/09		
Prep Date:	12/19/09	Analysis Date:	12/24/09		
Prep Batch #:	9353017				
Dilution Factor:	50				
<pre>% Moisture:</pre>	13	Method:	SW846 8270C		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	2200	380	ug/kg
Benzo(b)fluoranthene	3300	380	ug/kg
Benzo(k)fluoranthene	570	380	ug/kg
Benzo(a)pyrene	2200	380	ug/kg
Chrysene	2200	380	ug/kg
Dibenz(a,h)anthracene	ND	380	ug/kg
Indeno(1,2,3-cd)pyrene	1400	380	ug/kg
Naphthalene	55000	380	ug/kg
Acenaphthene	7000	380	ug/kg
Acenaphthylene	ND	380	ug/kg
Anthracene	2400	380	ug/kg
Benzo(ghi)perylene	830	380	ug/kg
Fluoranthene	8800	380	ug/kg
Fluorene	5300	380	ug/kg
2-Methylnaphthalene	7900	380	ug/kg
Phenanthrene	13000	380	ug/kg
Pyrene	5600	380	ug/kg
1-Methylnaphthalene	4100	380	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	65 DIL	(24 - 112))
2-Fluorobiphenyl	0.0 DIL,*	(34 - 110))
Terphenyl-d14	87 DIL	(41 - 119))
Phenol-d5	63 DIL	(28 - 110))
2-Fluorophenol	61 DIL	(26 - 110))
2,4,6-Tribromophenol	0.0 DIL,*	(10 - 118))

NOTE(S):

DIL. The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

* Surrogate recovery is outside stated control limits.

Client Sample ID: HB-071(8-10')

GC Volatiles

Lot-Sample #: A9L180492-001 Date Sampled: 12/17/09 11:4 Prep Date: 12/19/09 Prep Batch #: 9354104 Dilution Factor: 10		12/18/09	Matrix SO
% Moisture: 13	Method:	SW846 8015	A MOD
PARAMETER Gasoline Range Organics (C6-C12)	<u>RESULT</u> 2700	REPORTING LIMIT 1200	UNITS ug/kg
<u>SURROGATE</u> Trifluorotoluene	PERCENT <u>RECOVERY</u> 103	RECOVERY <u>LIMITS</u> (10 - 150)	

NOTE(S):

Client Sample ID: HB-071(8-10')

GC Semivolatiles

Lot-Sample #: A9L180492-0 Date Sampled: 12/17/09 11 Prep Date: 12/19/09 Prep Batch #: 9353014 Dilution Factor: 10	:40 Date Received:	12/18/09	Matrix SO
<pre>% Moisture: 13</pre>	Method	SW846 8015	В
PARAMETER C20-C34 C10-C20	RESULT 250 260	REPORTING LIMIT 31 23	UNITS mg/kg mg/kg
<u>SURROGATE</u> C9 (nonane)	PERCENT <u>RECOVERY</u> 28 DIL	RECOVERY <u>LIMITS</u> (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-071(8-10')

TOTAL Metals

	: A9L180492 : 12/17/09 : 13		Received	: 12/18/09	Matrix: SO
		REPORTII	١G		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	- 9354052				
Arsenic	10.0	1.2	mg/kg	SW846 6010B	12/21-12/23/09 LRCET1AE
		Dilution Fac	ctor: 1		
Cadmium	ND	0.23	mg/kg	SW846 6010B	12/21-12/23/09 LRCET1AF
		Dilution Fac	ctor: 1		
Chromium	11.2	0.58	mg/kg	SW846 6010B	12/21-12/23/09 LRCET1AG
	11,0	Dilution Fac	~ -		
Lead	38.8	0.35	mg/kg	SW846 6010B	12/21-12/23/09 LRCET1AH
Leau	20.0	Dilution Fac		PHOAO OOTOD	12/21 12/25/05 Incuitin
NOTE(C).					

 $\underline{NOTE(S)}$:

Client Sample ID: HB-071(8-10')

General Chemistry

PARAMETER Acid-soluble sulfide	RESULT 48.5	RL 34.6 Dilution Facto	<u>UNITS</u> mg/kg or: 1	<u>METHOI</u> SW846	о 9030в/9034	PREPARATION- <u>ANALYSIS DATE</u> 12/23/09	PREP <u>BATCH #</u> 9357096
Corrosivity	9.5	Dilution Facto	No Units	SW846	9045A	12/19/09	9353120
Hexavalent Chromium	ND	0.92 Dilution Facto	mg/kg pr: 1	SW846	7196A	12/23-12/24/09	9357236
Percent Solids	86.8	10.0 Dilution Facto	% or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	0.80	0.58 Dilution Facto	mg/kg pr: 1	MCAWW	335.2 CLP-	M 12/23/09	9357388

NOTE(S):

RL Reporting Limit

Client Sample ID: HB-071(10-12')

GC/MS Volatiles

Lot-Sample #:	A9L180492-002	Work Order #:	LRCRC1AK	Matrix SO
Date Sampled:	12/17/09 11:40	Date Received:	12/18/09	
Prep Date:	12/24/09	Analysis Date:	12/24/09	
<pre>Prep Batch #:</pre>	9362414			
Dilution Factor:	1			
<pre>% Moisture:</pre>	13	Method:	SW846 8260A	

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	12	ug/kg
Bromomethane	ND	12	ug/kg
Vinyl chloride	ND	2.3	ug/kg
Chloroethane	ND	12	ug/kg
Methylene chloride	12	5.8	ug/kg
Acetone	36	23	ug/kg
Carbon disulfide	14	5.8	ug/kg
1,1-Dichloroethene	ND	5.8	ug/kg
1,1-Dichloroethane	ND	5.8	ug/kg
1,2-Dichloroethene	ND	5.8	ug/kg
(total)			
Chloroform	ND	5.8	ug/kg
1,2-Dichloroethane	ND	5.8	ug/kg
2-Butanone	ND	23	ug/kg
1,1,1-Trichloroethane	ND	5.8	ug/kg
Carbon tetrachloride	ND	5.8	ug/kg
Bromodichloromethane	ND	5.8	ug/kg
1,2-Dichloropropane	ND	5.8	ug/kg
cis-1,3-Dichloropropene	ND	5.8	ug/kg
Trichloroethene	ND	5.8	ug/kg
Dibromochloromethane	ND	5.8	ug/kg
1,1,2-Trichloroethane	ND	5.8	ug/kg
Benzene	ND	5.8	ug/kg
trans-1,3-Dichloropropene	ND	5.8	ug/kg
Bromoform	ND	5.8	ug/kg
4-Methyl-2-pentanone	ND	23	ug/kg
2-Hexanone	ND	23	ug/kg
Tetrachloroethene	ND	5.8	ug/kg
Toluene	7.1	5.8	ug/kg
Chlorobenzene	ND	5.8	ug/kg
Ethylbenzene	ND	5.8	ug/kg
Styrene	ND	5.8	ug/kg
Xylenes (total)	11	5.8	ug/kg

PERCENT	RECOVERY
RECOVERY	LIMITS
81	(59 - 138)
81	(61 - 130)
83	(60 - 143)
63	(47 - 158)
	RECOVERY 81 81 83

Client Sample ID: HB-071(10-12')

GC/MS Volatiles

NOTE(S):

Client Sample ID: HB-071(10-12')

GC/MS Volatiles

Lot-Sample #: A9L180492-002 Date Sampled: 12/17/09 11:40 Prep Date: 12/23/09 Prep Batch #: 9362414 Dilution Factor: 10		12/18/09	Matrix SO
% Moisture: 13	Method:	SW846 8260	A
		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
1,1,2,2-Tetrachloroethane	ND	58	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	94	(59 - 138)	
1,2-Dichloroethane-d4	88	(61 - 130)	
Toluene-d8	96	(60 - 143)	
4-Bromofluorobenzene	84	(47 - 158)	

NOTE(S):

Client Sample ID: HB-071(10-12')

GC/MS Semivolatiles

Lot-Sample #: A9L180492	-002 Work Order #	.: LRCRC1AD	Matrix SO
Date Sampled: 12/17/09	11:40 Date Received.	.: 12/18/09	
Prep Date: 12/19/09	Analysis Date.	.: 12/24/09	
Prep Batch #: 9353017			
Dilution Factor: 6.66			
% Moisture: 13	Method	.: SW846 8270C	

		REPORTING	ł
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	1500	51	ug/kg
Benzo(b)fluoranthene	2200	51	ug/kg
Benzo(k)fluoranthene	830	51	ug/kg
Benzo(a)pyrene	1300	51	ug/kg
Chrysene	1500	51	ug/kg
Dibenz(a,h)anthracene	380	51	ug/kg
Indeno(1,2,3-cd)pyrene	940	51	ug/kg
Naphthalene	3700	51	ug/kg
Acenaphthene	1300	51	ug/kg
Acenaphthylene	270	51	ug/kg
Anthracene	940	51	ug/kg
Benzo(ghi)perylene	960	51	ug/kg
Fluoranthene	4000	51	ug/kg
Fluorene	1300	51	ug/kg
2-Methylnaphthalene	3300	51	ug/kg
Phenanthrene	5400	51	ug/kg
Pyrene	3100	51	ug/kg
1-Methylnaphthalene	2000	51	ug/kg
	PERCENT	RECOVERY	
SURROGATE	<u>RECOVERY</u>	LIMITS	
Nitrobenzene-d5	66 DIL	(24 - 112	,
2-Fluorobiphenyl	64 DIL	(34 - 110	
Terphenyl-d14	91 DIL	(41 - 119	,
Phenol-d5	72 DIL	(28 - 110	
2-Fluorophenol	79 DIL	(26 - 110	
2,4,6-Tribromophenol	76 DIL	(10 - 118))

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-071(10-12')

GC Volatiles

	12/17/09 11:40 12/23/09 9358085	Work Order #: Date Received: Analysis Date:	12/18/09	Matrix: SO
<pre>% Moisture:</pre>	-	Method:	SW846 8015.	A MOD
PARAMETER Gasoline Range O (C6-C12)	rganics	RESULT 170	REPORTING <u>LIMIT</u> 120	<u>UNITS</u> ug/kg
SURROGATE Trifluorotoluene		PERCENT <u>RECOVERY</u> 92	RECOVERY LIMITS (10 - 150)	

NOTE(S):

Client Sample ID: HB-071(10-12')

GC Semivolatiles

Date Sampled:	12/17/09 11:40 12/19/09 9353014	Work Order #: Date Received: Analysis Date:	12/18/09	Matrix SO
<pre>% Moisture:</pre>		Method:	SW846 8015	В
<u>PARAMETER</u> C20-C34 C10-C20		<u>RESULT</u> 220 170	REPORTING LIMIT 31 23	UNITS mg/kg mg/kg
<u>SURROGATE</u> C9 (nonane)		PERCENT <u>RECOVERY</u> 23 DIL	RECOVERY LIMITS (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-071(10-12')

TOTAL Metals

Lot-Sample #: A9L180492-002 Matrix: S0 Date Sampled: 12/17/09 11:40 Date Received: 12/18/09 % Moisture: 13							
		REPORTI			PREPARATION- WORK		
PARAMETER	RESULT	LIMIT	<u>UNITS</u>	METHOD	<u>ANALYSIS DATE</u> ORDER #		
Prep Batch #.	: 9354052						
Arsenic	11.3	1.2	mg/kg	SW846 6010B	12/21-12/23/09 LRCRC1AE		
	Dilution Factor: 1						
Cadmium	0.31	0.23	mg/kg	SW846 6010B	12/21-12/23/09 LRCRC1AF		
	Dilution Factor: 1						
Chromium	14.4	0.58	mg/kg	SW846 6010B	12/21-12/23/09 LRCRC1AG		
	Dilution Factor: 1						
Lead	65.9	0.35	mg/kg	SW846 6010B	12/21-12/23/09 LRCRC1AH		
	Dilution Factor: 1						
NOTE(S):							

Client Sample ID: HB-071(10-12')

General Chemistry

Lot-Sample #...: A9L180492-002 Work Order #...: LRCRC Matrix...... SO Date Sampled...: 12/17/09 11:40 Date Received..: 12/18/09 % Moisture....: 13

PARAMETER	RESULT	RL	UNITS	METHO)	PREPARATION- ANALYSIS DATE	PREP <u>BATCH #</u>
Acid-soluble sulfide	90.2	34.6 Dilution Facto	mg/kg pr: 1	SW846	9030B/9034	12/23/09	9357096
Corrosivity	10.1	Dilution Facto	No Units or: 1	SW846	9045A	12/19/09	9353120
Hexavalent Chromium	ND	0.92	mg/kg	SW846	7196A	12/23-12/24/09	9357236
Dilution Factor: 1							
Percent Solids	86.8	10.0 Dilution Facto	% or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	2.1	0.58 Dilution Facto	mg/kg or: 1	MCAWW	335.2 CLP-M	12/23/09	9357388

NOTE(S):

RL Reporting Limit

Client Sample ID: HB-071(16-18')

GC/MS Volatiles

Lot-Sample #:	A9L180492-003	Work Order #:	LRCRE1AK	Matrix SO
Date Sampled:	12/17/09 11:40	Date Received:	12/18/09	
Prep Date:	12/23/09	Analysis Date:	12/23/09	
Prep Batch #:	9362414			
Dilution Factor:	1			
<pre>% Moisture:</pre>	12	Method:	SW846 8260A	

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	11	ug/kg
Vinyl chloride	ND	2.3	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	7.3	5.7	ug/kg
Acetone	ND	23	ug/kg
Carbon disulfide	12	5.7	ug/kg
1,1-Dichloroethene	ND	5.7	ug/kg
1,1-Dichloroethane	ND	5.7	ug/kg
1,2-Dichloroethene	ND	5.7	ug/kg
(total)			
Chloroform	ND	5.7	ug/kg
1,2-Dichloroethane	ND	5.7	ug/kg
2-Butanone	ND	23	ug/kg
1,1,1-Trichloroethane	ND	5.7	ug/kg
Carbon tetrachloride	ND	5.7	ug/kg
Bromodichloromethane	ND	5.7	ug/kg
1,2-Dichloropropane	ND	5.7	ug/kg
cis-1,3-Dichloropropene	ND	5.7	ug/kg
Trichloroethene	ND	5.7	ug/kg
Benzene	ND	5.7	ug/kg
4-Methyl-2-pentanone	ND	23	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	98	(59 - 138)	
1,2-Dichloroethane-d4	88	(61 - 130)	
Toluene-d8	78	(60 - 143)	

56

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

4-Bromofluorobenzene

(47 - 158)

Client Sample ID: HB-071(16-18')

GC/MS Volatiles

Lot-Sample #:	A9L180492-003	Work Order #:	LRCRE2AK	Matrix SO
Date Sampled:	12/17/09 11:40	Date Received:	12/18/09	
Prep Date:	12/24/09	Analysis Date:	12/24/09	
Prep Batch #:	9362414			
Dilution Factor:	5			
<pre>% Moisture:</pre>	12	Method:	SW846 8260A	

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dibromochloromethane	ND	28	ug/kg
1,1,2-Trichloroethane	ND	28	ug/kg
trans-1,3-Dichloropropene	ND	28	ug/kg
Bromoform	ND	28	ug/kg
2-Hexanone	ND	110	ug/kg
Tetrachloroethene	ND	28	ug/kg
1,1,2,2-Tetrachloroethane	ND	28	ug/kg
Toluene	ND	28	ug/kg
Chlorobenzene	ND	28	ug/kg
Ethylbenzene	ND	28	ug/kg
Styrene	ND	28	ug/kg
Xylenes (total)	ND	28	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Dibromofluoromethane	97	(59 - 138)	I
1,2-Dichloroethane-d4	86	(61 - 130)	I Contraction of the second
Toluene-d8	92	(60 - 143)	ı.
4-Bromofluorobenzene	80	(47 - 158)	

<u>NOTE(S):</u>

Client Sample ID: HB-071(16-18)

GC/MS Semivolatiles

Lot-Sample #:	A9L180492-003	Work Order #:	LRCRE1AD	Matrix:	SO
Date Sampled:	12/17/09 11:40	Date Received:	12/18/09		
Prep Date	12/19/09	Analysis Date:	12/24/09		
<pre>Prep Batch #:</pre>	9353017				
Dilution Factor:	4				
<pre>% Moisture:</pre>	12	Method:	SW846 8270C		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	810	30	ug/kg
Benzo(b)fluoranthene	1000	30	ug/kg
Benzo(k)fluoranthene	420	30	ug/kg
Benzo(a)pyrene	660	30	ug/kg
Chrysene	850	30	ug/kg
Dibenz(a,h)anthracene	180	30	ug/kg
Indeno(1,2,3-cd)pyrene	440	30	ug/kg
Naphthalene	3400	30	ug/kg
Acenaphthene	900	30	ug/kg
Acenaphthylene	120	30	ug/kg
Anthracene	490	30	ug/kg
Benzo(ghi)perylene	450	30	ug/kg
Fluoranthene	2200	30	ug/kg
Fluorene	870	30	ug/kg
2-Methylnaphthalene	1600	30	ug/kg
Phenanthrene	2700	30	ug/kg
Pyrene	1800	30	ug/kg
1-Methylnaphthalene	960	30	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	63 DIL	(24 - 112)
2-Fluorobiphenyl	61 DIL	(34 - 110)
Terphenyl-d14	85 DIL	(41 - 119)
Phenol-d5	73 DIL	(28 - 110)
2-Fluorophenol	74 DIL	(26 - 110)
2,4,6-Tribromophenol	58 DIL	(10 - 118)

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-071(16-18')

GC Volatiles

Lot-Sample #: A9L180492-003 Date Sampled: 12/17/09 11:40 Prep Date: 12/23/09 Prep Batch #: 9358085 Dilution Factor: 1		12/18/09	Matrix SO
% Moisture: 12	Method:	SW846 8015	A MOD
PARAMETER Gasoline Range Organics (C6-C12)	RESULT	REPORTING <u>LIMIT</u> 110	<u>UNITS</u> ug/kg
<u>SURROGATE</u> Trifluorotoluene	PERCENT <u>RECOVERY</u> 90	RECOVERY <u>LIMITS</u> (10 - 150)	

NOTE(S):

Client Sample ID: HB-071(16-18')

GC Semivolatiles

Date Sampled:	12/17/09 11:40 12/19/09 9353014	Work Order #: Date Received: Analysis Date:	12/18/09	Matrix: SO
<pre>% Moisture:</pre>	12	Method:	SW846 8015	В
PARAMETER C20-C34 C10-C20		RESULT 150 72	REPORTING LIMIT 31 23	UNITS mg/kg mg/kg
<u>SURROGATE</u> C9 (nonane)		PERCENT <u>RECOVERY</u> 21 DIL	RECOVERY LIMITS (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-071(16-18')

TOTAL Metals

Lot-Sample #: A9L180492-003 Matrix: S0 Date Sampled: 12/17/09 11:40 Date Received: 12/18/09 % Moisture: 12					
		REPORTII	NG		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 9354052				
Arsenic	9.7	1.1	mg/kg	SW846 6010B	12/21-12/23/09 LRCRE1AE
		Dilution Fac	ctor: 1		
Cadmium	ND	0.23	mg/kg	SW846 6010B	12/21-12/23/09 LRCRE1AF
		Dilution Fac	ctor: 1		
Chromium	22.9	0.57	mg/kg	SW846 6010B	12/21-12/23/09 LRCRE1AG
		Dilution Fac	2. 0		
Lead	55.7	0 34	mg/kg	SW846 6010B	12/21-12/23/09 LRCRE1AH
2000		Dilution Fac	<u> </u>		
NOTE(S):					

Client Sample ID: HB-071(16-18')

General Chemistry

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOI	>	PREPARATION- ANALYSIS DATE	PREP <u>BATCH #</u>
Acid-soluble sulfide	148	34.1 Dilution Facto	mg/kg pr: 1	SW846	9030B/9034	12/23/09	9357096
Corrosivity	10.4	Dilution Facto	No Units pr: 1	SW846	9045A	12/19/09	9353120
Hexavalent Chromium	ND	0.91	mg/kg	SW846	7196A	12/23-12/24/09	9357236
		Dilution Facto	or: 1				
Percent Solids	87.9	10.0 Dilution Facto	% or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	0.73	0.57 Dilution Facto	mg/kg pr: 1	MCAWW	335.2 CLP-M	12/23/09	9357388

NOTE(S):

RL Reporting Limit

Client Sample ID: HB-072(2-4')

GC/MS Volatiles

Lot-Sample #:	A9L180492-004	Work Order #:	LRCRH1AK	Matrix SO
Date Sampled:	12/17/09 12:20	Date Received:	12/18/09	
Prep Date:	12/23/09	Analysis Date:	12/23/09	
Prep Batch #:	9362414			
Dilution Factor:	1			
€ Moisture:	11	Method:	SW846 8260A	

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	11	ug/kg
Vinyl chloride	ND	2.3	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	11	5.6	ug/kg
Acetone	ND	23	ug/kg
Carbon disulfide	8.0	5.6	ug/kg
1,1-Dichloroethene	ND	5.6	ug/kg
1,1-Dichloroethane	ND	5.6	ug/kg
1,2-Dichloroethene	ND	5.6	ug/kg
(total)			
Chloroform	ND	5.6	ug/kg
1,2-Dichloroethane	ND	5.6	ug/kg
2-Butanone	ND	23	ug/kg
1,1,1-Trichloroethane	ND	5.6	ug/kg
Carbon tetrachloride	ND	5.6	ug/kg
Bromodichloromethane	ND	5.6	ug/kg
1,2-Dichloropropane	ND	5.6	ug/kg
cis-1,3-Dichloropropene	ND	5.6	ug/kg
Trichloroethene	ND	5.6	ug/kg
Benzene	ND	5.6	ug/kg
4-Methyl-2-pentanone	ND	23	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(59 - 138)	
1,2-Dichloroethane-d4	90	(61 - 130)	
Toluene-d8	81	(60 - 143)	
4-Bromofluorobenzene	57	(47 - 158)	

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: HB-072(2-4')

GC/MS Volatiles

Lot-Sample #:	A9L180492-004	Work Order #:	LRCRH2AK	Matrix SO
Date Sampled:	12/17/09 12:20	Date Received:	12/18/09	
Prep Date:	12/24/09	Analysis Date:	12/24/09	
Prep Batch #:	9362414			
Dilution Factor:	5			
<pre>% Moisture:</pre>	11	Method	SW846 8260A	

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Dibromochloromethane	ND	28	ug/kg
1,1,2-Trichloroethane	ND	28	ug/kg
trans-1,3-Dichloropropene	ND	28	ug/kg
Bromoform	ND	28	ug/kg
2-Hexanone	ND	110	ug/kg
Tetrachloroethene	ND	28	ug/kg
1,1,2,2-Tetrachloroethane	ND	28	ug/kg
Toluene	ND	28	ug/kg
Chlorobenzene	ND	28	ug/kg
Ethylbenzene	ND	28	ug/kg
Styrene	ND	28	ug/kg
Xylenes (total)	ND	28	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	-
Dibromofluoromethane	98	(59 - 138)	
1,2-Dichloroethane-d4	90	(61 - 130)	
Toluene-d8	94	(60 - 143)	
4-Bromofluorobenzene	79	(47 - 158)	

NOTE(S):

Client Sample ID: HB-072(2-4')

GC/MS Semivolatiles

Lot-Sample #:	A9L180492-004	Work Order #:	LRCRH1AD	Matrix SO
Date Sampled:	12/17/09 12:20	Date Received:	12/18/09	
Prep Date:	12/19/09	Analysis Date:	12/24/09	
Prep Batch #:	9353017			
Dilution Factor:	1			
<pre>% Moisture:</pre>	11	Method:	SW846 8270C	

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	840	7.5	ug/kg
Benzo(b)fluoranthene	1100	7.5	ug/kg
Benzo(k)fluoranthene	390	7.5	ug/kg
Benzo(a)pyrene	630	7.5	ug/kg
Chrysene	840	7.5	ug/kg
Dibenz(a,h)anthracene	150	7.5	ug/kg
Indeno(1,2,3-cd)pyrene	460	7.5	ug/kg
Naphthalene	580	7.5	ug/kg
Acenaphthene	110	7.5	ug/kg
Acenaphthylene	140	7.5	ug/kg
Anthracene	360	7.5	ug/kg
Benzo(ghi)perylene	500	7.5	ug/kg
Fluoranthene	1500	7.5	ug/kg
Fluorene	140	7.5	ug/kg
2-Methylnaphthalene	780	7.5	ug/kg
Phenanthrene	1100	7.5	ug/kg
Рутепе	1400	7.5	ug/kg
1-Methylnaphthalene	520	7.5	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	58	(24 - 112	2)
2-Fluorobiphenyl	64	(34 - 110))
Terphenyl-d14	86	(41 - 119))
Phenol-d5	70	(28 - 110))
2-Fluorophenol	72	(26 - 110))
2,4,6-Tribromophenol	51	(10 - 118))

NOTE(S):

Client Sample ID: HB-072(2-4')

GC Volatiles

Lot-Sample #: A9L180492-004 Date Sampled: 12/17/09 12:20 Prep Date: 12/23/09 Prep Batch #: 9358085 Dilution Factor: 1		12/18/09	Matrix : SO
% Moisture: 11	Method	SW846 8015	A MOD
<u>PARAMETER</u> Gasoline Range Organics (C6-C12)	RESULT ND	REPORTING <u>LIMIT</u> 110	<u>UNITS</u> ug/kg
<u>SURROGATE</u> Trifluorotoluene	PERCENT <u>RECOVERY</u> 82	RECOVERY LIMITS (10 - 150)	

NOTE(S):

Client Sample ID: HB-072(2-4')

GC Semivolatiles

—	12/17/09 12:20 12/19/09 9353014	Work Order #: Date Received: Analysis Date:	12/18/09	Matrix: SO
<pre>% Moisture:</pre>	11	Method	SW846 8015	В
PARAMETER C20-C34 C10-C20		RESULT 140 44	REPORTING LIMIT 30 23	UNITS mg/kg mg/kg
SURROGATE C9 (nonane)		PERCENT <u>RECOVERY</u> 24 DIL	RECOVERY LIMITS (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-072(2-4')

TOTAL Metals

Lot-Sample #: A9L180492-004 Matrix: S0 Date Sampled: 12/17/09 12:20 Date Received: 12/18/09 % Moisture: 11					
		REPORTI	NG		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 9354052				
Arsenic	8.6	1.1	ng/kg	SW846 6010B	12/21-12/23/09 LRCRH1AE
		Dilution Fac	ctor: 1		
Cadmium	ND	0.23	mg/kg	SW846 6010B	12/21-12/23/09 LRCRH1AF
		Dilution Fac	ctor: 1		
Chromium	10.6	0.56	mg/kg	SW846 6010B	12/21-12/23/09 LRCRH1AG
		Dilution Fac	ctor: 1		
Lead	27.0	0.34	mg/kg	SW846 6010B	12/21-12/23/09 LRCRH1AH
		Dilution Fac	ctor: 1		
NOTE(S):					

Client Sample ID: HB-072(2-4')

General Chemistry

PARAMETER	RESULT	<u>RL</u>	UNITS	METHO	D	PREPARATION- ANALYSIS DATE	PREP <u>BATCH #</u>
Acid-soluble sulfide	287	33.8 Dilution Facto	mg/kg or: 1	SW846	9030B/9034	12/23/09	9357096
Corrosivity	10.2	Dilution Facto	No Units	SW846	9045A	12/19/09	9353120
Hexavalent Chromium	ND	0.90	mg/kg	SW846	7196A	12/23-12/24/09	9357236
		Dilution Facto	or: 1				
Percent Solids	88.7	10.0 Dilution Facto	% or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	2.9	0.56 Dilution Facto	mg/kg pr: 1	MCAWW	335.2 CLP-1	1 12/28/09	9362384

NOTE(S):

RL Reporting Limit

Client Sample ID: HB-072(4-6')

GC/MS Volatiles

Lot-Sample #:	A9L180492-005	Work Order #:	LRCRK1AK	Matrix: S	30
Date Sampled:	12/17/09 12:20	Date Received:	12/18/09		
Prep Date:	12/23/09	Analysis Date:	12/23/09		
Prep Batch #:	9362414				
Dilution Factor:	1				
<pre>% Moisture:</pre>	13	Method:	SW846 8260A		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	12	ug/kg
Bromomethane	ND	12	ug/kg
Vinyl chloride	ND	2.3	ug/kg
Chloroethane	ND	12	ug/kg
Methylene chloride	ND	5.8	ug/kg
Acetone	ND	23	ug/kg
Carbon disulfide	27	5.8	ug/kg
1,1-Dichloroethene	ND	5.8	ug/kg
1,1-Dichloroethane	ND	5.8	ug/kg
1,2-Dichloroethene	ND	5.8	ug/kg
(total)			
Chloroform	ND	5.8	ug/kg
1,2-Dichloroethane	ND	5.8	ug/kg
2-Butanone	ND	23	ug/kg
1,1,1-Trichloroethane	ND	5.8	ug/kg
Carbon tetrachloride	ND	5.8	ug/kg
Bromodichloromethane	ND	5.8	ug/kg
1,2-Dichloropropane	ND	5.8	ug/kg
cis-1,3-Dichloropropene	ND	5.8	ug/kg
Trichloroethene	ND	5.8	ug/kg
Dibromochloromethane	ND	5.8	ug/kg
1,1,2-Trichloroethane	ND	5.8	ug/kg
Benzene	27	5.8	ug/kg
trans-1,3-Dichloropropene	ND	5.8	ug/kg
Bromoform	ND	5.8	ug/kg
4-Methyl-2-pentanone	ND	23	ug/kg
2-Hexanone	ND	23	ug/kg
Tetrachloroethene	ND	5.8	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.8	ug/kg
Toluene	44	5.8	ug/kg
Chlorobenzene	ND	5.8	ug/kg
Ethylbenzene	ND	5.8	ug/kg
Styrene	ND	5.8	ug/kg
Xylenes (total)	20	5.8	ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	91	(59 - 138)
1,2-Dichloroethane-d4	81	(61 - 130)
Toluene-d8	85	(60 - 143)
4-Bromofluorobenzene	74	(47 - 158)

(Continued on next page)

Client Sample ID: HB-072(4-6')

GC/MS Volatiles

Lot-Sample #...: A9L180492-005 Work Order #...: LRCRK1AK Matrix......... S0

NOTE(S):

Client Sample ID: HB-072(4-6')

GC/MS Semivolatiles

Lot-Sample #:	A9L180492-005	Work Order #:	LRCRK1AD	Matrix	SO
Date Sampled:	12/17/09 12:20	Date Received:	12/18/09		
Prep Date:	12/19/09	Analysis Date:	12/24/09		
<pre>Prep Batch #:</pre>	9353017				
Dilution Factor:	2				
<pre>% Moisture:</pre>	13	Method:	SW846 8270C		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	1300	15	ug/kg
Benzo(b)fluoranthene	2100	15	ug/kg
Benzo(k)fluoranthene	750	15	ug/kg
Benzo(a)pyrene	1200	15	ug/kg
Chrysene	1500	15	ug/kg
Dibenz(a,h)anthracene	260	15	ug/kg
Indeno(1,2,3-cd)pyrene	760	15	ug/kg
Naphthalene	910	15	ug/kg
Acenaphthene	140	15	ug/kg
Acenaphthylene	340	15	ug/kg
Anthracene	410	15	ug/kg
Benzo(ghi)perylene	850	15	ug/kg
Fluoranthene	2100	15	ug/kg
Fluorene	180	15	ug/kg
2-Methylnaphthalene	1400	15	ug/kg
Phenanthrene	1400	15	ug/kg
Pyrene	2100	15	ug/kg
1-Methylnaphthalene	860	15	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	60 DIL	(24 - 112	>
2-Fluorobiphenyl	65 DIL	(34 - 110)
Terphenyl-d14	82 DIL	(41 - 119)
Phenol-d5	73 DIL	(28 - 110))
2-Fluorophenol	70 DIL	(26 - 110)
2,4,6-Tribromophenol	60 DIL	(10 - 118))

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-072(4-6')

GC Volatiles

Lot-Sample #: A9L180492-009 Date Sampled: 12/17/09 12:2 Prep Date: 12/23/09 Prep Batch #: 9358085 Dilution Factor: 5		12/18/09	Matrix SO
% Moisture: 13	Method:	SW846 8015	A MOD
PARAMETER Gasoline Range Organics (C6-C12)	RESULT 700	REPORTING LIMIT 580	UNITS ug/kg
<u>SURROGATE</u> Trifluorotoluene	PERCENT RECOVERY 92	RECOVERY <u>LIMITS</u> (10 - 150)	

NOTE(S):

Client Sample ID: HB-072(4-6')

GC Semivolatiles

Lot-Sample #: A Date Sampled: 1 Prep Date: 1 Prep Batch #: 9 Dilution Factor: 1	12/17/09 12:20 12/19/09 9353014	Date Received:	12/18/09	Matrix SO
<pre>% Moisture: 1</pre>		Method:	SW846 8015	В
PARAMETER C20-C34 C10-C20		RESULT 220 82	REPORTING LIMIT 31 23	UNITS mg/kg mg/kg
<u>SURROGATE</u> C9 (nonane)		PERCENT <u>RECOVERY</u> 26 DIL	RECOVERY LIMITS (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-072(4-6')

TOTAL Metals

Lot-Sample #. Date Sampled. % Moisture	Matrix: SO				
		REPORTIN	IG		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 9354052				
Arsenic	9.3	1.2	mg/kg	SW846 6010B	12/21-12/23/09 LRCRK1AE
		Dilution Fac	tor: 1		
Cadmium	ND	0.23	mg/kg	SW846 6010B	12/21-12/23/09 LRCRK1AF
		Dilution Fac	tor: 1		
Chromium	19.7	0.58	mg/kg	SW846 6010B	12/21-12/23/09 LRCRK1AG
CHIL ONLY ON		Dilution Fac	3. 5		
Lead	38.4	0.35	mg/kg	SW846 6010B	12/21-12/23/09 LRCRK1AH
		Dilution Fac			

NOTE(S):

Client Sample ID: HB-072(4-6')

General Chemistry

PARAMETER	RESULT	RL	UNITS	METHO	0	PREPARATION- ANALYSIS DATE	PREP <u>BATCH #</u>
Acid-soluble sulfide		34.6 Dilution Facto	mg/kg or: 1	SW846	9030B/9034	12/23/09	9357096
Corrosivity	10.2	Dilution Facto	No Units or: 1	SW846	9045A	12/19/09	9353120
Hexavalent Chromium	2.5	0.92	mg/kg	SW846	7196A	12/23-12/24/09	9357236
	I	Dilution Facto	or: 1				
Percent Solids	86.7	10.0 Dilution Facto	8 or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	2.1	0.58 Dilution Facto	mg/kg pr: 1	MCAWW	335.2 CLP-M	12/28/09	9362384

NOTE(S):

RL Reporting Limit

Client Sample ID: HB-073(0-2')

GC/MS Volatiles

Lot-Sample #:	A9L180492-006	Work Order #:	LRCRM1AK	Matrix SO
Date Sampled:	12/17/09 12:50	Date Received:	12/18/09	
Prep Date:	12/23/09	Analysis Date:	12/23/09	
Prep Batch #:	9362414			
Dilution Factor:	1			
<pre>% Moisture:</pre>	12	Method:	SW846 8260A	

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	11	ug/kg
Vinyl chloride	ND	2.3	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	ND	5.7	ug/kg
Acetone	ND	23	ug/kg
Carbon disulfide	ND	5.7	ug/kg
1,1-Dichloroethene	ND	5.7	ug/kg
1,1-Dichloroethane	ND	5.7	ug/kg
1,2-Dichloroethene	ND	5.7	ug/kg
(total)			
Chloroform	ND	5.7	ug/kg
1,2-Dichloroethane	ND	5.7	ug/kg
2-Butanone	ND	23	ug/kg
1,1,1-Trichloroethane	ND	5.7	ug/kg
Carbon tetrachloride	ND	5.7	ug/kg
Bromodichloromethane	ND	5.7	ug/kg
1,2-Dichloropropane	ND	5.7	ug/kg
cis-1,3-Dichloropropene	ND	5.7	ug/kg
Trichloroethene	ND	5.7	ug/kg
Dibromochloromethane	ND	5.7	ug/kg
1,1,2-Trichloroethane	ND	5.7	ug/kg
Benzene	ND	5.7	ug/kg
trans-1,3-Dichloropropene	ND	5.7	ug/kg
Bromoform	ND	5.7	ug/kg
4-Methyl-2-pentanone	ND	23	ug/kg
2-Hexanone	ND	23	ug/kg
Tetrachloroethene	ND	5.7	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.7	ug/kg
Toluene	5.8	5.7	ug/kg
Chlorobenzene	ND	5.7	ug/kg
Ethylbenzene	11	5.7	ug/kg
Styrene	ND	5.7	ug/kg
Xylenes (total)	47	5.7	ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	91	(59 - 138)
1,2-Dichloroethane-d4	85	(61 - 130)
Toluene-d8	90	(60 - 143)
4-Bromofluorobenzene	71	(47 - 158)

(Continued on next page)

Client Sample ID: HB-073(0-2')

GC/MS Volatiles

Lot-Sample #...: A9L180492-006 Work Order #...: LRCRM1AK Matrix...... SO

NOTE(S):

Client Sample ID: HB-073(0-2')

GC/MS Semivolatiles

Lot-Sample #:	A9L180492-006	Work Order #:	LRCRM1AD	Matrix: SO	
Date Sampled:	12/17/09 12:50	Date Received:	12/18/09		
Prep Date:	12/19/09	Analysis Date:	12/24/09		
Prep Batch #:	9353017				
Dilution Factor:	2				
<pre>% Moisture:</pre>	12	Method:	SW846 8270C		

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	1100	15	ug/kg
Benzo(b)fluoranthene	1500	15	ug/kg
Benzo(k)fluoranthene	420	15	ug/kg
Benzo(a)pyrene	1000	15	ug/kg
Chrysene	960	15	ug/kg
Dibenz(a,h)anthracene	290	15	ug/kg
Indeno(1,2,3-cd)pyrene	600	15	ug/kg
Naphthalene	880	15	ug/kg
Acenaphthene	82	15	ug/kg
Acenaphthylene	150	15	ug/kg
Anthracene	240	15	ug/kg
Benzo(ghi)perylene	820	15	ug/kg
Fluoranthene	1600	15	ug/kg
Fluorene	87	15	ug/kg
2-Methylnaphthalene	1500	15	ug/kg
Phenanthrene	1200	15	ug/kg
Pyrene	1500	15	ug/kg
1-Methylnaphthalene	1000	15	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
Nitrobenzene-d5	68 DIL	(24 - 112)	
2-Fluorobiphenyl	66 DIL	(34 - 110)	
Terphenyl-d14	79 DIL	(41 - 119)	
Phenol-d5	67 DIL	(28 - 110)	
2-Fluorophenol	74 DIL	(26 - 110)	
2,4,6-Tribromophenol	48 DIL	(10 - 118)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-073(0-2')

GC Volatiles

Lot-Sample #: A9L180492-0 Date Sampled: 12/17/09 12 Prep Date: 12/28/09 Prep Batch #: 9363092		: SO
Dilution Factor: 1 % Moisture: 12	Method: SW846 8015A MOD	
PARAMETER Gasoline Range Organics (C6-C12)	REPORTING <u>RESULT LIMIT UNITS</u> 210 110 ug/kg	
<u>SURROGATE</u> Trifluorotoluene	PERCENTRECOVERYRECOVERYLIMITS99(10 - 150)	

NOTE(S):

Client Sample ID: HB-073(0-2')

GC Semivolatiles

Date Sampled:	12/17/09 12:50 12/19/09 9353014	Work Order #: Date Received: Analysis Date:	12/18/09	Matrix: SO
% Moisture:	12	Method:	SW846 8015	В
PARAMETER C20-C34 C10-C20		RESULT 130 120	REPORTING LIMIT 31 23	UNITS mg/kg mg/kg
<u>SURROGATE</u> C9 (nonane)		PERCENT <u>RECOVERY</u> 34 DIL	RECOVERY LIMITS (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-073(0-2')

TOTAL Metals

Lot-Sample #: A9L180492-006 Date Sampled: 12/17/09 12:50 Date Received: 12/18/09 % Moisture: 12					Matrix:	SO
PARAMETER	RESULT	REPORTING	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK <u>ORDER #</u>
Prep Batch #: 9354052 Arsenic 9.3 1.1 mg/kg SW846 6010B 12/21-12/23/09 LRCRM1AE Dilution Factor: 1 Dilution Factor: 1 Dilution Factor: 1 Dilution Factor: 1 Dilution Factor: 1						

Cadmium	0.33	0.23 Dilution Fac	mg/kg ctor: 1	SW846 6010B	12/21-12/23/09 LRCRM1AF
Chromium	10.6	0.57 Dilution Fac	mg/kg ctor: 1	SW846 6010B	12/21-12/23/09 LRCRM1AG
Lead	115	0.34 Dilution Fac	mg/kg ctor: 1	SW846 6010B	12/21-12/23/09 LRCRM1AH

NOTE(S):

Client Sample ID: HB-073(0-2')

General Chemistry

PARAMETER	RESULT	RL	UNITS	METHOI	0	PREPARATION- ANALYSIS DATE	PREP <u>BATCH #</u>
Acid-soluble sulfide		33.9 Dilution Facto	mg/kg or: 1	SW846	9030B/9034	12/23/09	9357096
Corrosivity	11.0	Dilution Facto	No Units pr: 1	SW846	9045A	12/19/09	9353120
Hexavalent Chromium	ND	0.90	mg/kg	SW846	7196A	12/23-12/24/09	9357236
		Dilution Facto	or: 1				
Percent Solids	88.4	10.0 Dilution Facto	% or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	4.6	0.57 Dilution Facto	mg/kg pr: 1	MCAWW	335.2 CLP-M	12/28/09	9362384

NOTE(S):

RL Reporting Limit

Client Sample ID: HB-075(0-2')

GC/MS Volatiles

Lot-Sample #:	A9L180492-007	Work Order #:	LRCRP1AK	Matrix SO
Date Sampled:	12/17/09 13:20	Date Received:	12/18/09	
Prep Date:	12/21/09	Analysis Date:	12/21/09	
Prep Batch #:	9356203			
Dilution Factor:	1			
<pre>% Moisture:</pre>	12	Method:	SW846 8260A	

		REPORTING	3
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	11	ug/kg
Vinyl chloride	ND	2.3	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	ND	5.7	ug/kg
Acetone	ND	23	ug/kg
Carbon disulfide	ND	5.7	ug/kg
1,1-Dichloroethene	ND	5.7	ug/kg
1,1-Dichloroethane	ND	5.7	ug/kg
1,2-Dichloroethene	ND	5.7	ug/kg
(total)			
Chloroform	ND	5.7	ug/kg
1,2-Dichloroethane	ND	5.7	ug/kg
2-Butanone	ND	23	ug/kg
1,1,1-Trichloroethane	ND	5.7	ug/kg
Carbon tetrachloride	ND	5.7	ug/kg
Bromodichloromethane	ND	5.7	ug/kg
1,2-Dichloropropane	ND	5.7	ug/kg
cis-1,3-Dichloropropene	ND	5.7	ug/kg
Trichloroethene	ND	5.7	ug/kg
Dibromochloromethane	ND	5.7	ug/kg
1,1,2-Trichloroethane	ND	5.7	ug/kg
Benzene	ND	5.7	ug/kg
trans-1,3-Dichloropropene	ND	5.7	ug/kg
Bromoform	ND	5.7	ug/kg
4-Methyl-2-pentanone	ND	23	ug/kg
2-Hexanone	ND	23	ug/kg
Tetrachloroethene	ND	5.7	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.7	ug/kg
Toluene	ND	5.7	ug/kg
Chlorobenzene	ND	5.7	ug/kg
Ethylbenzene	ND	5.7	ug/kg
Styrene	ND	5.7	ug/kg
Xylenes (total)	26	5.7	ug/kg

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	89	(59 - 138)
1,2-Dichloroethane-d4	83	(61 - 130)
Toluene-d8	102	(60 - 143)
4-Bromofluorobenzene	118	(47 - 158)

(Continued on next page)

Client Sample ID: HB-075(0-2')

GC/MS Volatiles

Lot-Sample #...: A9L180492-007 Work Order #...: LRCRP1AK Matrix...... SO

NOTE(S):

Client Sample ID: HB-075(0-2')

GC/MS Semivolatiles

Lot-Sample #:	A9L180492-007	Work Order #:	LRCRP1AD	Matrix SO
Date Sampled:	12/17/09 13:20	Date Received:	12/18/09	
Prep Date:	12/19/09	Analysis Date:	12/24/09	
Prep Batch #:	9353017			
Dilution Factor:	10			
<pre>% Moisture:</pre>	12	Method:	SW846 8270C	

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	2900	76	ug/kg
Benzo(b) fluoranthene	2500	76	ug/kg
Benzo(k) fluoranthene	940	76	ug/kg
Benzo(a)pyrene	2100	76	ug/kg
Chrysene	2600	76	ug/kg
Dibenz(a,h)anthracene	460	76	ug/kg
Indeno(1,2,3-cd)pyrene	1100	76	ug/kg
Naphthalene	230	76	ug/kg
Acenaphthene	190	76	ug/kg
Acenaphthylene	100	76	ug/kg
Anthracene	860	76	ug/kg
Benzo(ghi)perylene	1200	76	ug/kg
Fluoranthene	5100	76	ug/kg
Fluorene	210	76	ug/kg
2-Methylnaphthalene	180	76	ug/kg
Phenanthrene	2500	76	ug/kg
Pyrene	6100	76	ug/kg
1-Methylnaphthalene	150	76	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	99 DIL	(24 - 112)
2-Fluorobiphenvl	70 DIL	(34 - 110	
Terphenyl-d14	110 DIL	(41 - 119	·
Phenol-d5	73 DIL	(28 - 110))
2-Fluorophenol	90 DIL	(26 - 110)
2,4,6-Tribromophenol	64 DIL	(10 - 118)

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-075(0-2')

GC Volatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	12/17/09 13:20 12/23/09 9358085		12/18/09	Matrix SO
% Moisture:	12	Method:	SW846 8015.	A MOD
PARAMETER Gasoline Range Or (C6-C12)	ganics	<u>RESULT</u> 780	REPORTING LIMIT 570	UNITS ug/kg
<u>SURROGATE</u> Trifluorotoluene		PERCENT <u>RECOVERY</u> 99	RECOVERY <u>LIMITS</u> (10 - 150)	

NOTE(S):

Client Sample ID: HB-075(0-2')

GC Semivolatiles

Date Sampled:	12/17/09 13:20 12/19/09 9353014	Work Order #: Date Received: Analysis Date:	12/18/09	Matrix SO
<pre>% Moisture:</pre>	12	Method:	SW846 8015	В
PARAMETER C20-C34 C10-C20		RESULT 610 100 J	REPORTING <u>LIMIT</u> 150 110	UNITS mg/kg mg/kg
<u>SURROGATE</u> C9 (nonane)		PERCENT <u>RECOVERY</u> 35 DIL	RECOVERY LIMITS (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than RL.

Client Sample ID: HB-075(0-2')

TOTAL Metals

Lot-Sample #: A9L180492-007		Matrix: SO
Date Sampled: 12/17/09 13:20	Date Received: 12/18/09	
% Moisture: 12		

		REPORTING	f		PREPARATION-	WORK	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	<u>ORDER #</u>	
Prep Batch #: 9354052							
Arsenic	4.7	1.1	mg/kg	SW846 6010B	12/21-12/23/09	LRCRP1AE	
		Dilution Facto	or: 1				
Cadmium	0.23	0.23	mg/kg	SW846 6010B	12/21-12/23/09	LRCRP1AF	
		Dilution Facto	or: 1				
Chromium	18.6	0.57	mg/kg	SW846 6010B	12/21-12/23/09	LRCRP1AG	
		Dilution Facto	3. 3		10,11 10,00,00		
T 1	91 0	0.24	(1	CT1046 6010D	10/01 10/00/00		
Lead	21.3	0.34 Dilution Facto	mg/kg pr: 1	SW846 6010B	12/21-12/23/09	LKCKPIAH	

NOTE(S):

Client Sample ID: HB-075(0-2')

General Chemistry

 Lot-Sample #...: A9L180492-007
 Work Order #...: LRCRP
 Matrix.....
 SO

 Date Sampled...: 12/17/09 13:20
 Date Received..: 12/18/09
 12/18/09
 8

 % Moisture....: 12
 12
 12
 12
 12

PARAMETER	RESULT	RL	UNITS	METHO	ס	PREPARATION- ANALYSIS DATE	PREP <u>BATCH</u> #
Acid-soluble sulfide		34.1 Dilution Facto	mg/kg er: 1	SW846	9030B/9034	12/23/09	9357096
Corrosivity	11.5	Dilution Facto	No Units r: 1	SW846	9045 A	12/19/09	9353120
Hexavalent Chromium	ND	0.91	mg/kg	SW846	7196A	12/23-12/24/09	9357236
	I	Dilution Facto	or: 1				
Percent Solids	87.9 I	10.0 Dilution Facto	% or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	ND	0.57 Dilution Facto	mg/kg r: 1	MCAWW	335.2 CLP-1	1 12/28/09	9362384

NOTE(S):

RL Reporting Limit

Client Sample ID: HB-075(2-4')

GC/MS Volatiles

Lot-Sample #:	A9L180492-008	Work Order #:	LRCRR1AK	Matrix SO
Date Sampled:	12/17/09 13:20	Date Received:	12/18/09	
Prep Date:	12/21/09	Analysis Date:	12/21/09	
Prep Batch #:	9356203			
Dilution Factor:	1			
_			CT1046 00603	

8	Moisture.				•	9.4	1
ъ	norscure.	٠	٠	٠	-		Ξ.

Method....: SW846 8260A

		REPORTING	
PARAMETER	RESULT	LIMIT	UNITS
Chloromethane	ND	11	ug/kg
Bromomethane	ND	11	ug/kg
Vinyl chloride	ND	2.2	ug/kg
Chloroethane	ND	11	ug/kg
Methylene chloride	ND	5.5	ug/kg
Acetone	ND	22	ug/kg
Carbon disulfide	ND	5.5	ug/kg
1,1-Dichloroethene	ND	5.5	ug/kg
1,1-Dichloroethane	ND	5.5	ug/kg
1,2-Dichloroethene	ND	5.5	ug/kg
(total)			
Chloroform	ND	5.5	ug/kg
1,2-Dichloroethane	ND	5.5	ug/kg
2-Butanone	ND	22	ug/kg
1,1,1-Trichloroethane	ND	5.5	ug/kg
Carbon tetrachloride	ND	5.5	ug/kg
Bromodichloromethane	ND	5.5	ug/kg
1,2-Dichloropropane	ND	5.5	ug/kg
cis-1,3-Dichloropropene	ND	5.5	ug/kg
Trichloroethene	ND ·	5.5	ug/kg
Dibromochloromethane	ND	5.5	ug/kg
1,1,2-Trichloroethane	ND	5.5	ug/kg
Benzene	ND	5.5	ug/kg
trans-1,3-Dichloropropene	ND	5.5	ug/kg
Bromoform	ND	5.5	ug/kg
4-Methyl-2-pentanone	ND	22	ug/kg
2-Hexanone	ND	22	ug/kg
Tetrachloroethene	ND	5.5	ug/kg
1,1,2,2-Tetrachloroethane	ND	5.5	ug/kg
Toluene	ND	5.5	ug/kg
Chlorobenzene	ND	5.5	ug/kg
Ethylbenzene	ND	5.5	ug/kg
Styrene	ND	5.5	ug/kg
Xylenes (total)	ND	5.5	ug/kg
	PERCENT	RECOVERY	

	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Dibromofluoromethane	102	(59 - 138)	
1,2-Dichloroethane-d4	78	(61 - 130)	
Toluene-d8	103	(60 - 143)	
4-Bromofluorobenzene	111	(47 - 158)	

(Continued on next page)

Client Sample ID: HB-075(2-4')

GC/MS Volatiles

NOTE(S):

Client Sample ID: HB-075(2-4')

GC/MS Semivolatiles

Lot-Sample #:	A9L180492-008	Work Order #:	LRCRR1AD	Matrix SO
Date Sampled:	12/17/09 13:20	Date Received:	12/18/09	
Prep Date:	12/19/09	Analysis Date:	12/24/09	
Prep Batch #:	9353017			
Dilution Factor:	4			
<pre>% Moisture:</pre>	9.4	Method:	SW846 8270C	

		REPORTIN	G
PARAMETER	RESULT	LIMIT	UNITS
Benzo(a)anthracene	2900	29	ug/kg
Benzo(b)fluoranthene	3200	29	ug/kg
Benzo(k)fluoranthene	1200	29	ug/kg
Benzo(a)pyrene	2500	29	ug/kg
Chrysene	2600	29	ug/kg
Dibenz(a,h)anthracene	500	29	ug/kg
Indeno(1,2,3-cd)pyrene	1500	29	ug/kg
Naphthalene	820	29	ug/kg
Acenaphthene	570	29	ug/kg
Acenaphthylene	72	29	ug/kg
Anthracene	1300	29	ug/kg
Benzo(ghi)perylene	1600	29	ug/kg
Fluoranthene	5500	29	ug/kg
Fluorene	570	29	ug/kg
2-Methylnaphthalene	1000	29	ug/kg
Phenanthrene	4800	29	ug/kg
Pyrene	5400	29	ug/kg
1-Methylnaphthalene	610	29	ug/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	
Nitrobenzene-d5	68 DIL	(24 - 11	2)
2-Fluorobiphenyl	56 DIL	(34 - 11	0)
Terphenyl-d14	87 DIL	(41 - 11	9)
Phenol-d5	70 DIL	(28 - 11	0)
2-Fluorophenol	72 DIL	(26 - 11	0)
2,4,6-Tribromophenol	44 DIL	(10 - 11)	8)

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-075(2-4')

GC Volatiles

	12/17/09 13:20 12/23/09 9358085	Work Order #: Date Received: Analysis Date:	12/18/09	Matrix: SO
<pre>% Moisture:</pre>	9.4	Method:	SW846 8015.	A MOD
<u>PARAMETER</u> Gasoline Range Or (C6-C12)	rganics	<u>RESULT</u> ND	REPORTING LIMIT 110	<u>UNITS</u> ug/kg
<u>SURROGATE</u> Trifluorotoluene		PERCENT <u>RECOVERY</u> 99	RECOVERY <u>LIMITS</u> (10 - 150)	

NOTE(S):

Client Sample ID: HB-075(2-4')

GC Semivolatiles

Lot-Sample #: A Date Sampled: 1 Prep Date: 1 Prep Batch #: 9 Dilution Factor: 5	2/17/09 13:20 2/19/09 353014	Date Received:	12/18/09	Matrix SO
% Moisture: 9	.4	Method	SW846 8015	В
PARAMETER C20-C34 C10-C20		RESULT 110 48	REPORTING LIMIT 15 11	UNITS mg/kg mg/kg
<u>SURROGATE</u> C9 (nonane)		PERCENT <u>RECOVERY</u> 25 DIL	RECOVERY <u>LIMITS</u> (10 - 110)	

NOTE(S):

DIL The concentration is estimated or not reported due to dilution or the presence of interfering analytes.

Client Sample ID: HB-075(2-4')

TOTAL Metals

Lot-Sample #: A9L180492-008 Matrix: S0 Date Sampled: 12/17/09 13:20 Date Received: 12/18/09 % Moisture: 9.4 Matrix				
	REPORTIN	1G		PREPARATION- WORK
RESULT	LIMIT	<u>UNITS</u>	METHOD	ANALYSIS DATE ORDER #
.: 9354052				
10.4	1.1	mg/kg	SW846 6010B	12/21-12/23/09 LRCRR1AE
	Dilution Fac	tor: 1		
ND	0.22	mg/kg	SW846 6010B	12/21-12/23/09 LRCRR1AF
	Dilution Fac	tor: 1		
8.9	0.55 Dilution Fac	mg/kg stor: 1	SW846 6010B	12/21-12/23/09 LRCRR1AG
	.: 12/17/09 .: 9.4 <u>RESULT</u> .: 9354052 10.4 ND	.: 12/17/09 13:20 Date .: 9.4 REPORTIN <u>RESULT LIMIT</u> .: 9354052 10.4 1.1 Dilution Fac ND 0.22 Dilution Fac 8.9 0.55	.: 12/17/09 13:20 Date Received .: 9.4 REPORTING RESULT LIMIT UNITS .: 9354052 10.4 1.1 mg/kg Dilution Factor: 1 ND 0.22 mg/kg Dilution Factor: 1	<pre>.: 12/17/09 13:20 Date Received: 12/18/09 .: 9.4 <u>REPORTING</u> <u>RESULT LIMIT UNITS METHOD</u> .: 9354052 10.4 1.1 mg/kg SW846 6010B Dilution Factor: 1 ND 0.22 mg/kg SW846 6010B Dilution Factor: 1 8.9 0.55 mg/kg SW846 6010B</pre>

SW846 6010B

12/21-12/23/09 LRCRR1AH

0.33 mg/kg

Dilution Factor: 1

NOTE(S):

Lead

Results and reporting limits have been adjusted for dry weight.

107

Client Sample ID: HB-075(2-4')

General Chemistry

Lot-Sample #...: A9L180492-008 Work Order #...: LRCRR Matrix...... SO Date Sampled...: 12/17/09 13:20 Date Received..: 12/18/09 % Moisture....: 9.4

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOI	0	PREPARATION- ANALYSIS DATE	PREP <u>BATCH #</u>
Acid-soluble sulfide		33.1 Dilution Facto	mg/kg or: 1	SW846	9030B/9034	12/23/09	9357096
Corrosivity	8.7	Dilution Facto	No Units pr: 1	SW846	9045A	12/19/09	9353120
Hexavalent Chromium	ND	0.88	mg/kg	SW846	7196A	12/23-12/24/09	9357236
	I	Dilution Facto	or: 1				
Percent Solids	90.6	10.0 Dilution Facto	% or: 1	MCAWW	160.3 MOD	12/22-12/23/09	9356363
Total Cyanide	ND	0.55 Dilution Facto	mg/kg r: 1	MCAWW	335.2 CLP-M	12/28/09	9362384

NOTE(S):

RL Reporting Limit

THE LEADER IN ENVIRONMENTAL TESTING

QUALITY CONTROL SECTION

GC/MS Volatiles

Client Lot #: A9L180492	Work Order #: LRGQR1AA	Matrix SOLID
MB Lot-Sample #: A9L220000-203		
	Prep Date: 12/21/09	
Analysis Date: 12/21/09	Prep Batch #: 9356203	

Dilution Factor: 1

REPORTING <u>lim</u>it UNITS METHOD RESULT PARAMETER SW846 8260A Chloromethane ND 10 ug/kg 10 SW846 8260A Bromomethane ND ug/kg SW846 8260A 2.0 Vinyl chloride ND ug/kg Chloroethane ND 10 ug/kg SW846 8260A ND 5.0 ug/kg SW846 8260A Methylene chloride SW846 8260A Acetone ND 20 ug/kg Carbon disulfide ND 5.0 ug/kg SW846 8260A 5.0 1,1-Dichloroethene ND ug/kg SW846 8260A 1,1-Dichloroethane ND 5.0 SW846 8260A ug/kg 5.0 SW846 8260A 1,2-Dichloroethene ug/kg ND (total) Chloroform \mathbb{ND} 5.0 SW846 8260A ug/kg 5.0 SW846 8260A 1,2-Dichloroethane ND ug/kg 2-Butanone ND20 ug/kg SW846 8260A 1,1,1-Trichloroethane ND5.0 ug/kg SW846 8260A Carbon tetrachloride ND5.0 ug/kg SW846 8260A Bromodichloromethane ND5.0 ug/kg SW846 8260A 5.0 1,2-Dichloropropane ND ug/kg SW846 8260A ug/kg cis-1,3-Dichloropropene ND5.0 SW846 8260A SW846 8260A 5.0 ND Trichloroethene ug/kg Dibromochloromethane 5.0 SW846 8260A ND ug/kg 5.0 1,1,2-Trichloroethane ND SW846 8260A ug/kg ND 5.0 ug/kg SW846 8260A Benzene trans-1,3-Dichloropropene ND 5.0 SW846 8260A ug/kg Bromoform ND5.0 ug/kg SW846 8260A 4-Methyl-2-pentanone ND20 ug/kg SW846 8260A 2-Hexanone ND20 ug/kg SW846 8260A 5.0 Tetrachloroethene NDug/kg SW846 8260A 1,1,2,2-Tetrachloroethane 5.0 SW846 8260A NDug/kg SW846 8260A Toluene 5.0 ND ug/kg Chlorobenzene ND 5.0 ug/kg SW846 8260A Ethylbenzene ND 5.0 SW846 8260A ug/kg ND 5.0 Styrene ug/kg SW846 8260A Xylenes (total) ND5.0 ug/kg SW846 8260A DEDCENT DECOURDY

	PERCENT	RECOVERY
SURROGATE	<u>RECOVERY</u>	LIMITS
Dibromofluoromethane	99	(59 - 138)
1,2-Dichloroethane-d4	76	(61 - 130)
Toluene-d8	95	(60 - 143)
4-Bromofluorobenzene	91	(47 - 158)

(Continued on next page)

GC/MS Volatiles

Client Lot #...: A9L180492

Work Order #...: LRGQR1AA Matrix..... SOLID

NOTE(S):

GC/MS Volatiles

Client Lot #: A9L180492	Work Order #: LRH4C1AA	Matrix SOLID
MB Lot-Sample #: A9L220000-563		
	Prep Date: 12/20/09	
Analysis Date: 12/22/09	Prep Batch #: 9356563	

Dilution Factor: 1

PARAMETER RESULT LIMIT UNITS METHOD Acctone ND 1000 ug/kg SW846 8260A Benzene ND 250 ug/kg SW846 8260A Bromodichloromethane ND 250 ug/kg SW846 8260A Bromodichloromethane ND 250 ug/kg SW846 8260A Carbon disulfide ND 250 ug/kg SW846 8260A Carbon cetrachloride ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloropthane ND 250 ug/kg SW846			REPORTING		
Acetone ND 1000 ug/kg SW846 8260A Benzene ND 250 ug/kg SW846 8260A Bromodichloromethane ND 250 ug/kg SW846 8260A Bromodichloromethane ND 250 ug/kg SW846 8260A Bromomethane ND 1000 ug/kg SW846 8260A Carbon disulfide ND 250 ug/kg SW846 8260A Carbon tetrachloride ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Chlorobethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg	PARAMETER	RESULT			METHOD
Benzene ND 250 ug/kg SW846 8260A Bromodichloromethane ND 250 ug/kg SW846 8260A Bromoform ND 260 ug/kg SW846 8260A Bromoform ND 1000 ug/kg SW846 8260A 2-Butanone ND 1000 ug/kg SW846 8260A Carbon disulfide ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Chloroethane ND 250 ug/kg SW846 8260A Chloroethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroptopane ND 250 ug/kg SW84	Acetone				
Bromodichloromethane ND 250 ug/kg SW846 8260A Bromonethane ND 500 ug/kg SW846 8260A 2-Butanone ND 1000 ug/kg SW846 8260A Carbon disulfide ND 250 ug/kg SW846 8260A Carbon tetrachloride ND 250 ug/kg SW846 8260A Dibromochloromethane ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Chloromethane ND 500 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroptopane ND 250 ug/kg SW846 8260A 1,2-Dichloropropane ND 250	Benzene	ND	250		
Bromoform ND 250 ug/kg SW846 8260A Bromomethane ND 500 ug/kg SW846 8260A 2-Butanone ND 1000 ug/kg SW846 8260A Carbon disulfide ND 250 ug/kg SW846 8260A Carbon tetrachloride ND 250 ug/kg SW846 8260A Dibromochloromethane ND 250 ug/kg SW846 8260A Chlorochane ND 250 ug/kg SW846 8260A Chlorochane ND 250 ug/kg SW846 8260A Chlorochane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroptopene ND 250 ug/kg SW846 8260A 1,2-Dichloropropene ND 250 ug/kg SW846 8260A trans.1,3-Dichloropropene ND 250 <t< td=""><td>Bromodichloromethane</td><td>ND</td><td></td><td></td><td></td></t<>	Bromodichloromethane	ND			
Bromomethane ND 500 ug/kg SW846 8260A 2-Butanone ND 1000 ug/kg SW846 8260A Carbon disulfide ND 250 ug/kg SW846 8260A Carbon tetrachloride ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Dibromochloromethane ND 250 ug/kg SW846 8260A Chloroethane ND 250 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroptopane ND 250 ug/kg SW846 8260A trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A Etyylbenzene ND 1000	Bromoform	ND	250		SW846 8260A
2-Butanone ND 1000 ug/kg SW846 8260A Carbon disulfide ND 250 ug/kg SW846 8260A Carbon tetrachloride ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Dibromochloromethane ND 500 ug/kg SW846 8260A Chloroethane ND 500 ug/kg SW846 8260A Chloroethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroptopene ND 250 ug/kg SW846 8260A (total) 1 2-Dichloroptopene ND 250 ug/kg SW846 8260A trans-1, 3-Dichloropropene ND 250 ug/kg SW846 8260A	Bromomethane	ND	500		
Carbon disulfide ND 250 ug/kg SW846 8260A Carbon tetrachloride ND 250 ug/kg SW846 8260A Chlorobenzene ND 250 ug/kg SW846 8260A Dibromochloromethane ND 250 ug/kg SW846 8260A Chlorobethane ND 250 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroptopane ND 250 ug/kg SW846 8260A (cotal) 1,2-Dichloropropane ND 250 ug/kg . . . 1,2-Dichloropropene <td< td=""><td>2-Butanone</td><td>ND</td><td>1000</td><td></td><td>SW846 8260A</td></td<>	2-Butanone	ND	1000		SW846 8260A
Chlorobenzene ND 250 ug/kg SW846 8260A Dibromochloromethane ND 250 ug/kg SW846 8260A Chlorobtane ND 500 ug/kg SW846 8260A Chloroethane ND 250 ug/kg SW846 8260A Chloromethane ND 250 ug/kg SW846 8260A (1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroptopane ND 250 ug/kg SW846 8260A (total) 1 1 1 1 250 ug/kg SW846 8260A 2-Hexanone ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane	Carbon disulfide	ND	250	ug/kg	SW846 8260A
Dibromochloromethane ND 250 ug/kg SN846 8260A Chloroethane ND 500 ug/kg SN846 8260A Chloromethane ND 250 ug/kg SN846 8260A Chloromethane ND 250 ug/kg SN846 8260A 1,1-Dichloroethane ND 250 ug/kg SN846 8260A 1,2-Dichloroethane ND 250 ug/kg SN846 8260A 1,2-Dichloroethane ND 250 ug/kg SN846 8260A (total) 1 2 ug/kg SN846 8260A (total) 1 2 Dichloropropane ND 250 ug/kg SN846 8260A trans-1, 3-Dichloropropene ND 250 ug/kg SN846 8260A Ethylbenzene ND 1000 ug/kg SN846 8260A 2-Hexanone ND 1000 ug/kg SN846 8260A 1,1,2,2-Tetrach	Carbon tetrachloride	ND	250	ug/kg	SW846 8260A
Chloroethane ND 500 ug/kg SW846 8260A Chloroethane ND 250 ug/kg SW846 8260A Chloroethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloropropane ND 250 ug/kg SW846 8260A cis-1,3-Dichloropropane ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A 1,1,2-Teichloroethane ND 250	Chlorobenzene	ND	250	ug/kg	SW846 8260A
Chloroform ND 250 ug/kg SW846 8260A Chloromethane ND 500 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A (total) 1 - - - - - 1,2-Dichloropropane ND 250 ug/kg SW846 8260A cis-1,3-Dichloropropane ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A Z-Hexanone ND 1000 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachoroethane ND 250 <td>Dibromochloromethane</td> <td>ND</td> <td>250</td> <td>ug/kg</td> <td>SW846 8260A</td>	Dibromochloromethane	ND	250	ug/kg	SW846 8260A
Chloromethane ND Disciple String String <thstring< th=""> String <thstri< td=""><td>Chloroethane</td><td>ND</td><td>500</td><td>ug/kg</td><td>SW846 8260A</td></thstri<></thstring<>	Chloroethane	ND	500	ug/kg	SW846 8260A
1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethene ND 250 ug/kg SW846 8260A 1,2-Dichloroethene ND 250 ug/kg SW846 8260A (total) 1 1 2-Dichloropropane ND 250 ug/kg SW846 8260A trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2,2-Trichloroethane ND 250 ug/kg SW	Chloroform	ND	250	ug/kg	SW846 8260A
1,1-Dichloroethane ND 250 ug/kg SW846 8260A 1,2-Dichloroethane ND 250 ug/kg SW846 8260A 1,1-Dichloroethene ND 250 ug/kg SW846 8260A 1,2-Dichloroethene ND 250 ug/kg SW846 8260A (total) 1,2-Dichloropropane ND 250 ug/kg SW846 8260A cis-1,3-Dichloropropene ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A 5tyrene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A	Chloromethane	ND	500	ug/kg	SW846 8260A
1,1-Dichloroethene ND 250 ug/kg SW846 S260A 1,2-Dichloroethene ND 250 ug/kg SW846 S260A (total) 1,2-Dichloropropane ND 250 ug/kg SW846 S260A cis-1,3-Dichloropropene ND 250 ug/kg SW846 S260A cis-1,3-Dichloropropene ND 250 ug/kg SW846 S260A Ethylbenzene ND 250 ug/kg SW846 S260A 2-Hexanone ND 1000 ug/kg SW846 S260A 4-Methylene chloride ND 250 ug/kg SW846 S260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 S260A 5tyrene ND 250 ug/kg SW846 S260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 S260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 S260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 S260A	1,1-Dichloroethane	ND	250		SW846 8260A
1,2-Dichloroethene ND 250 ug/kg SW846 8260A (total) 1,2-Dichloropropane ND 250 ug/kg SW846 8260A cis-1,3-Dichloropropene ND 250 ug/kg SW846 8260A trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A 4-Methylene chloride ND 250 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A	1,2-Dichloroethane	ND	250	ug/kg	SW846 8260A
(total) 1,2-Dichloropropane ND 250 ug/kg SW846 8260A cis-1,3-Dichloropropene ND 250 ug/kg SW846 8260A trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A 4-Methylene chloride ND 250 ug/kg SW846 8260A 4-Methylene chloride ND 1000 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260	1,1-Dichloroethene	ND	250	ug/kg	SW846 8260A
1,2-Dichloropropane ND 250 ug/kg SW846 8260A cis-1,3-Dichloropropene ND 250 ug/kg SW846 8260A trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A Methylene chloride ND 1000 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A 5tyrene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 7cluene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,1-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride	1,2-Dichloroethene	ND	250	ug/kg	SW846 8260A
cis-1,3-Dichloropropene ND 250 ug/kg SW846 8260A trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A A-Methylene chloride ND 1000 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A styrene ND 1000 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,2,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride	(total)				
trans-1,3-Dichloropropene ND 250 ug/kg SW846 8260A Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A Methylene chloride ND 250 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A 5tyrene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A 7oluene ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Xylenes (total) ND <td>1,2-Dichloropropane</td> <td>ND</td> <td>250</td> <td>ug/kg</td> <td>SW846 8260A</td>	1,2-Dichloropropane	ND	250	ug/kg	SW846 8260A
Ethylbenzene ND 250 ug/kg SW846 8260A 2-Hexanone ND 1000 ug/kg SW846 8260A Methylene chloride ND 250 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A 5tyrene ND 1000 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethane ND 250 ug/kg SW846 8260A 1,1,1-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride ND 250 ug/kg SW846 8260A Vinyl chloride ND 250 ug/kg SW846 8260A Xylenes (total) ND 250	cis-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260A
2-Hexanone ND 1000 ug/kg SW846 8260A Methylene chloride ND 250 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A Styrene ND 1000 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethane ND 250 ug/kg SW846 8260A Toluene ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Xylenes (total) ND 250 ug/kg SW846 8260A SURROGATE PERCENT RECOVERY	trans-1,3-Dichloropropene	ND	250	ug/kg	SW846 8260A
Methylene chloride ND 250 ug/kg SW846 8260A 4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A Styrene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethene ND 250 ug/kg SW846 8260A Toluene ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Ylenes (total) ND 250 ug/kg SW846 8260A Vinyl chloride ND 250 ug/kg SW846 8260A SURROGATE PERCENT <t< td=""><td>Ethylbenzene</td><td>ND</td><td>250</td><td>ug/kg</td><td>SW846 8260A</td></t<>	Ethylbenzene	ND	250	ug/kg	SW846 8260A
4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A Styrene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethane ND 250 ug/kg SW846 8260A Toluene ND 250 ug/kg SW846 8260A 1,1,1-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Xylenes (total) ND 250 ug/kg SW846 8260A SURROGATE PERCENT RECOVERY LIMITS 100 100 100 100 100 100 <td>2-Hexanone</td> <td>ND</td> <td>1000</td> <td>ug/kg</td> <td>SW846 8260A</td>	2-Hexanone	ND	1000	ug/kg	SW846 8260A
4-Methyl-2-pentanone ND 1000 ug/kg SW846 8260A Styrene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethene ND 250 ug/kg SW846 8260A Toluene ND 250 ug/kg SW846 8260A 1,1,1-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Vinyl chloride ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Xylenes (total) ND 250 ug/kg SW846 8260A EECOVERY Dibromofluoromethane 100 (59 - 138) 1.2-Dichloroethane-d4 105 <td< td=""><td>Methylene chloride</td><td>ND</td><td>250</td><td>ug/kg</td><td>SW846 8260A</td></td<>	Methylene chloride	ND	250	ug/kg	SW846 8260A
Styrene ND 250 ug/kg SW846 8260A 1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethene ND 250 ug/kg SW846 8260A Toluene ND 250 ug/kg SW846 8260A 1,1,1-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Trichloroethene ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Xylenes (total) ND 250 ug/kg SW846 8260A SURROGATE PERCENT RECOVERY LIMITS 100 100 100 100 100 100 100 100 100 100 100 100 100 100	4-Methyl-2-pentanone	ND	1000		SW846 8260A
1,1,2,2-Tetrachloroethane ND 250 ug/kg SW846 8260A Tetrachloroethene ND 250 ug/kg SW846 8260A Toluene ND 250 ug/kg SW846 8260A 1,1,1-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Trichloroethene ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Xylenes (total) ND 100 ug/kg SW846 8260A SURROGATE PERCENT RECOVERY LIMITS 100 108 100 109 100 <td< td=""><td>Styrene</td><td>ND</td><td>250</td><td>-</td><td>SW846 8260A</td></td<>	Styrene	ND	250	-	SW846 8260A
Tetrachloroethene ND 250 ug/kg SW846 8260A Toluene ND 250 ug/kg SW846 8260A 1,1,1-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A 1,1,2-Trichloroethane ND 250 ug/kg SW846 8260A Trichloroethene ND 250 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Vinyl chloride ND 100 ug/kg SW846 8260A Xylenes (total) ND 250 ug/kg SW846 8260A SURROGATE PERCENT RECOVERY EIMITS Ibiromofluoromethane 100 (59 - 138) 1,2-Dichloroethane-d4 105 (61 - 130) Ibiromofluoromethane Ibiromofluoromethane Ibiromofluoromethane 100 (60 - 143) 97 (60 - 143) Ibiromofluoromethane Ibiromofluoromethane Ibiromofluoromethane Ibiromofluoromethane Ibiromofluoromethan	1,1,2,2-Tetrachloroethane	ND	250		SW846 8260A
1,1,1-TrichloroethaneND250ug/kgSW8468260A1,1,2-TrichloroethaneND250ug/kgSW8468260ATrichloroethaneND250ug/kgSW8468260AVinyl chlorideND100ug/kgSW8468260AXylenes (total)ND250ug/kgSW8468260APERCENTSURROGATERECOVERYLIMITSDibromofluoromethane100(59 - 138)1,2-Dichloroethane-d4105(61 - 130)Toluene-d897(60 - 143)	Tetrachloroethene	ND	250	ug/kg	SW846 8260A
1,1,2-TrichloroethaneND250ug/kgSW8468260ATrichloroetheneND250ug/kgSW8468260AVinyl chlorideND100ug/kgSW8468260AXylenes (total)ND250ug/kgSW8468260APERCENTRECOVERYSURROGATERECOVERYLIMITSDibromofluoromethane100(59 - 138)1,2-Dichloroethane-d4105(61 - 130)Toluene-d897(60 - 143)	Toluene	ND	250	ug/kg	SW846 8260A
TrichloroetheneND250ug/kgSW8468260AVinyl chlorideND100ug/kgSW8468260AXylenes (total)ND250ug/kgSW8468260APERCENTRECOVERYSURROGATERECOVERYLIMITSDibromofluoromethane100(59 - 138)1,2-Dichloroethane-d4105(61 - 130)Toluene-d897(60 - 143)	1, 1, 1-Trichloroethane	ND	250	ug/kg	SW846 8260A
Vinyl chlorideND100ug/kgSW8468260AXylenes (total)ND250ug/kgSW8468260APERCENTRECOVERYLIMITSDibromofluoromethane100(59 - 138)1,2-Dichloroethane-d4105(61 - 130)Toluene-d897(60 - 143)	1,1,2-Trichloroethane	ND	250	ug/kg	SW846 8260A
Xylenes (total)ND250ug/kgSW8468260APERCENTRECOVERYLIMITSSURROGATERECOVERYLIMITSDibromofluoromethane100(59 - 138)1,2-Dichloroethane-d4105(61 - 130)Toluene-d897(60 - 143)	Trichloroethene	ND	250	ug/kg	SW846 8260A
SURROGATEPERCENTRECOVERYDibromofluoromethane100(59 - 138)1,2-Dichloroethane-d4105(61 - 130)Toluene-d897(60 - 143)	Vinyl chloride	ND	100	ug/kg	SW846 8260A
SURROGATE RECOVERY LIMITS Dibromofluoromethane 100 (59 - 138) 1,2-Dichloroethane-d4 105 (61 - 130) Toluene-d8 97 (60 - 143)	Xylenes (total)	ND	250	ug/kg	SW846 8260A
SURROGATE RECOVERY LIMITS Dibromofluoromethane 100 (59 - 138) 1,2-Dichloroethane-d4 105 (61 - 130) Toluene-d8 97 (60 - 143)					
Dibromofluoromethane 100 (59 - 138) 1,2-Dichloroethane-d4 105 (61 - 130) Toluene-d8 97 (60 - 143)		PERCENT	RECOVERY	ζ	
1,2-Dichloroethane-d4 105 (61 - 130) Toluene-d8 97 (60 - 143)		<u>RECOVERY</u>	LIMITS		
Toluene-d8 97 (60 - 143)	······································			/	
4-Bromofluorobenzene 92 (47 - 158)			•	•	
	4-Bromofluorobenzene	92	(47 - 15	58)	

(Continued on next page)

GC/MS Volatiles

Client Lot #...: A9L180492

Work Order #...: LRH4C1AA Matrix.....: SOLID

NOTE(S):

GC/MS Volatiles

Client Lot #:	A9L180492	Work Order #:	LRNH41AA	Matrix S	SOLID
MB Lot-Sample #:	A9L280000-414				
		Prep Date:	12/23/09		
Analysis Date:	12/23/09	Prep Batch #:	9362414		
Dilution Factor:	1				

		REPORTI	REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Chloromethane	ND	10	ug/kg		
Bromomethane	ND	10	ug/kg	SW846 8260A	
Vinyl chloride	ND	2.0	ug/kg	SW846 8260A	
Chloroethane	ND	10	ug/kg	SW846 8260A	
Methylene chloride	ND	5.0	ug/kg	SW846 8260A	
Acetone	ND	20	ug/kg	SW846 8260A	
Carbon disulfide	ND	5.0	ug/kg	SW846 8260A	
1,1-Dichloroethene	ND	5.0	ug/kg	SW846 8260A	
1,1-Dichloroethane	ND	5.0	ug/kg	SW846 8260A	
1,2-Dichloroethene	ND	5.0	ug/kg	SW846 8260A	
(total)					
Chloroform	ND	5.0	ug/kg	SW846 8260A	
1,2-Dichloroethane	ND	5.0	ug/kg	SW846 8260A	
2-Butanone	ND	20	ug/kg	SW846 8260A	
1,1,1-Trichloroethane	ND	5.0	ug/kg	SW846 8260A	
Carbon tetrachloride	ND	5.0	ug/kg	SW846 8260A	
Bromodichloromethane	ND	5.0	ug/kg	SW846 8260A	
1,2-Dichloropropane	ND	5.0	ug/kg	SW846 8260A	
cis-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260A	
Trichloroethene	ND	5.0	ug/kg	SW846 8260A	
Dibromochloromethane	ND	5.0	ug/kg	SW846 8260A	
1,1,2-Trichloroethane	ND	5.0	ug/kg	SW846 8260A	
Benzene	ND	5.0	ug/kg	SW846 8260A	
trans-1,3-Dichloropropene	ND	5.0	ug/kg	SW846 8260A	
Bromoform	ND	5.0	ug/kg	SW846 8260A	
4-Methyl-2-pentanone	ND	20	ug/kg	SW846 8260A	
2-Hexanone	ND	20	ug/kg	SW846 8260A	
Tetrachloroethene	ND	5.0	ug/kg	SW846 8260A	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	SW846 8260A	
Toluene	ND	5.0	ug/kg	SW846 8260A	
Chlorobenzene	ND	5.0	ug/kg	SW846 8260A	
Ethylbenzene	ND	5.0	ug/kg	SW846 8260A	
Styrene	ND	5.0	ug/kg	SW846 8260A	
Xylenes (total)	ND	5.0	ug/kg	SW846 8260A	
	PERCENT	RECOVERY	7		
SURROGATE	RECOVERY	LIMITS			
Dibromofluoromethane	95	(59 - 13			
1,2-Dichloroethane-d4	89	(61 - 13			
Toluono-d8	06	160 14	21		

(Continued on next page)

96

88

4-Bromofluorobenzene

Toluene-d8

(60 - 143)(47 - 158)

GC/MS Volatiles

Client Lot #...: A9L180492

Work Order #...: LRNH41AA Matrix...... SOLID

NOTE(S):

GC/MS Semivolatiles

.: SOLID

Client Lot #: A9L180492	Work Order #: LRDRM1AA	Matrix
MB Lot-Sample #: A9L190000-017		
	Prep Date: 12/19/09	
Analysis Date: 12/24/09	Prep Batch #: 9353017	

Analysis Date..: 12/24/09 Dilution Factor: 1

		REPORTI		MERIAE
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Acenaphthene	ND	6.7	ug/kg	SW846 8270C
Acenaphthylene	ND	6.7	ug/kg	SW846 8270C
Anthracene	ND	6.7	ug/kg	SW846 8270C
Benzo(a)anthracene	ND	6.7	ug/kg	SW846 8270C
Benzo(b)fluoranthene	ND	6.7	ug/kg	SW846 8270C
Benzo(k)fluoranthene	ND	6.7	ug/kg	SW846 8270C
Benzo(ghi)perylene	ND	6.7	ug/kg	SW846 8270C
Benzo(a)pyrene	ND	6.7	ug/kg	SW846 8270C
Chrysene	ND	6.7	ug/kg	SW846 8270C
Dibenz(a,h)anthracene	ND	6.7	ug/kg	SW846 8270C
Fluoranthene	ND	6.7	ug/kg	SW846 8270C
Fluorene	ND	6.7	ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	ND	6.7	ug/kg	SW846 8270C
2-Methylnaphthalene	ND	6.7	ug/kg	SW846 8270C
Naphthalene	ND	6.7	ug/kg	SW846 8270C
Phenanthrene	ND	6.7	ug/kg	SW846 8270C
Pyrene	ND	6.7	ug/kg	SW846 8270C
	PERCENT	RECOVER	Y	
SURROGATE	<u>RECOVERY</u>	LIMITS		
Nitrobenzene-d5	82	(24 - 1)	12)	
2-Fluorobiphenyl	74	(34 - 1)	10)	

(41 - 119)

(28 - 110) (26 - 110)

(10 - 118)

2-Fluorophenol 2,4,6-Tribromophenol

Terphenyl-d14

Phenol-d5

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

117

87

92

51

GC Volatiles

Client Lot #: A9L180492 MB Lot-Sample #: A9L200000-104 Analysis Date: 12/19/09 Dilution Factor: 1	Work Order # Prep Date Prep Batch #	.: 12/19/0	_	atrix SOLID
PARAMETER Gasoline Range Organics (C6-C12)	<u>RESULT</u> ND	REPORTING LIMIT 100	<u>UNITS</u> ug/kg	METHOD SW846 8015A MOD
<u>SURROGATE</u> Trifluorotoluene	PERCENT <u>RECOVERY</u> 99	RECOVERY <u>LIMITS</u> (10 - 150)	

NOTE(S):

GC Volatiles

Client Lot #: A9L180492 MB Lot-Sample #: A9L240000-085 Analysis Date: 12/23/09	Work Order # Prep Date Prep Batch #	.: 12/23/0	9	Matrix SOLID
Dilution Factor: 1				
PARAMETER Gasoline Range Organics (C6-C12)	RESULT ND	REPORTING LIMIT 100	<u>UNITS</u> ug/kg	METHOD SW846 8015A MOD
<u>SURROGATE</u> Trifluorotoluene	PERCENT <u>RECOVERY</u> 99	RECOVERY <u>LIMITS</u> (10 - 150)	

NOTE(S):

GC Volatiles

Client Lot #: A9L180492	Work Order #: LRNPP1AA	Matrix: SOLID
MB Lot-Sample #: A9L290000-092		
	Prep Date: 12/28/09	
Analysis Date: 12/28/09	Prep Batch #: 9363092	
Dilution Factor: 1		
	REPORTING	

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Gasoline Range Organics (C6-C12)	ND 100 ug/kg SW846 8			SW846 8015A MOD	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
Trifluorotoluene	101	(10 - 15	0)		

NOTE(S):

GC Semivolatiles

Client Lot #: MB Lot-Sample #:	Work Order #	: LRDRJ1A	a Ma	trix SOLID
-	Prep Date	.: 12/19/0	19	
Analysis Date: Dilution Factor:	Prep Batch #.			
		REPORTING	ł	
PARAMETER	 RESULT	LIMIT	UNITS	METHOD
C20-C34	ND	2.7	mg/kg	SW846 8015B
C10-C20	ND	2.0	ma/ka	SW846 8015B

SW846 8015B

C10-C20	ND	2.0	mg/kg
	PERCENT	RECOVERY	
SURROGATE	RECOVERY	LIMITS	_
C9 (nonane)	33	(10 - 110)

NOTE(S):

TOTAL Metals

Client Lot #	.: A9L180492				Matri	x: SOI	DID
PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD		PREPARATION- ANALYSIS DATE	WORK <u>ORDER #</u>
MB Lot-Sample	#: A9L200000-0	52 Prep Ba	t ch #: 9	354052			
Arsenic	ND		mg/kg	SW846 601	10B	12/21-12/23/09	LREWX1AA
		Dilution Fact	or: 1				
Cadmium	ND	0.20	mg/kg	SW846 601	10B	12/21-12/23/09	LREWX1AC
		Dilution Fact	or: 1				
Chromium	ND	0.50	mg/kg	SW846 601	10B	12/21-12/23/09	LREWX1AD
		Dilution Fact	or: 1				
Lead	ND	0.30	mg/kg	SW846 601	10B	12/21-12/23/09	LREWX1AE
		Dilution Fact	5 5			,,,	

NOTE(S):

General Chemistry

Client Lot #...: A9L180492

Matrix..... SOLID

<u>PARAMETER</u> Acid-soluble sulf:	<u>RESULT</u> ide ND	Work Order #	mg/kg	METHOD MB Lot-Sample #: SW846 9030B/9034		PREP <u>BATCH #</u> 9357096
Hexavalent Chromium		Work Order #	#: LRJPH1AA	MB Lot-Sample #:	A9L230000-236	
	ND	0.80 Dilution Facto		SW846 7196A	12/23-12/24/09	9357236
Percent Solids	ND	Work Order # 10.0 Dilution Facto:	8	MB Lot-Sample #: MCAWW 160.3 MOD		9356363
Total Cyanide	ND		mg/kg	MB Lot-Sample #: MCAWW 335.2 CLP-M		9357388
Total Cyanide	ND		mg/kg	MB Lot-Sample #: MCAWW 335.2 CLP-M		9362384

NOTE(S):

GC/MS Volatiles

Client Lot #: A9L180 LCS Lot-Sample#: A9L220 Prep Date: 12/21/ Prep Batch #: 935620 Dilution Factor: 1	000-203 09 Analysis D a	<pre>#: LRGQR1</pre>	AD-LCSD	x SOLID
	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS	<u>RPD LIMITS</u>	METHOD
1,1-Dichloroethene	107	(55 - 142)		SW846 8260A
-	105	(55 - 142)	2.5 (0-27)	SW846 8260A
Trichloroethene	104	(70 - 131)		SW846 8260A
	102	(70 - 131)	1.7 (0-23)	
Benzene	99	(75 - 129)		SW846 8260A
	100	(75 – 12 9)	1.3 (0-20)	
Toluene	99	(71 - 130)		SW846 8260A
	101	(71 - 130)	2.5 (0-24)	
Chlorobenzene	96	(75 – 127)		SW846 8260A
	97	(75 - 127)	1.6 (0-22)	SW846 8260A
		PERCENT	RECOVERY	
SURROGATE		RECOVERY	LIMITS	
Dibromofluoromethane		100	(59 - 138)	
		104	(59 - 138)	
1,2-Dichloroethane-d4		78	(61 - 130)	
		78	(61 - 130)	
Toluene-d8		97	(60 - 143)	
		101	(60 - 143)	
4-Bromofluorobenzene		96	(47 - 158)	
		95	(47 - 158)	

NOTE(S):

GC/MS Volatiles

Client Lot #: A9L180492 LCS Lot-Sample#: A9L220000-56 Prep Date: 12/20/09 Prep Batch #: 9356563 Dilution Factor: 1	3	#: LRH4C1 LRH4C1 te: 12/22/	AD-LCS		x SOLID
	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	100	(75 - 129)			SW846 8260A
	92	(75 - 129)	7.9	(0-20)	SW846 8260A
Chlorobenzene	96	(75 - 127)			SW846 8260A
	91	(75 - 127)	5.4	(0-22)	
1,1-Dichloroethene	100	(55 - 142)			SW846 8260A
	91	(55 - 142)	9.4	(0-27)	
Toluene	93	(71 - 130)			SW846 8260A
	88	(71 - 130)	5.2	(0-24)	
Trichloroethene	96	(70 - 131)			SW846 8260A
	92	(70 - 131)	4.5	(0-23)	SW846 8260A
		PERCENT	RECOV	ERY	
SURROGATE		RECOVERY	LIMIT	S	
Dibromofluoromethane		111	(59 -	138)	
		104	(59 -	138)	
1,2-Dichloroethane-d4		111	(61 -	130)	
		106	(61 -		
Toluene-d8		101	(60 -	•	
		95	(60 -	-	
4-Bromofluorobenzene		100	(47 -	•	
		95	(47 -	158)	

NOTE(S):

GC/MS Volatiles

Client Lot #: A9L180492		#: LRNH41	AC-LCS	Matri	x: SOLID
LCS Lot-Sample#: A9L280000-41	_4	LRNH41	AD-LCS	D	
Prep Date: 12/23/09 Analysis Date: 12/23/09					
Prep Batch #: 9362414					
Dilution Factor: 1					
	PERCENT	RECOVERY		RPD	
PARAMETER	<u>RECOVERY</u>	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	118	(55 - 142)			SW846 8260A
	124	(55 - 142)	4.9	(0-27)	SW846 8260A
Trichloroethene	107	(70 - 131)			SW846 8260A
	102	(70 - 131)	4.2	(0-23)	SW846 8260A
Benzene	103	(75 - 129)			SW846 8260A
	99	(75 - 129)	3.8	(0-20)	SW846 8260A
Toluene	100	(71 - 130)			SW846 8260A
	91	(71 - 130)	9.6	(0-24)	SW846 8260A
Chlorobenzene	99	(75 - 127)			SW846 8260A
	94	(75 – 127)	5.3	(0-22)	SW846 8260A
		PERCENT	RECOV	ERY	
SURROGATE		<u>RECOVERY</u>	<u>LIMI</u> T	<u>s</u>	
Dibromofluoromethane		96	(59 -	138)	
		98	(59 -	138)	
1,2-Dichloroethane-d4		87	(61 -	130)	
		87	(61 -	130)	
Toluene-d8		100	(60 -	143)	
		96	(60 -	143)	
4-Bromofluorobenzene		93	(47 -	158)	
		92	(47 -	158)	

NOTE(S):

GC/MS Semivolatiles

Client Lot #: A9L180492 LCS Lot-Sample#: A9L190000-017 Prep Date: 12/19/09 Prep Batch #: 9353017 Dilution Factor: 1		#: LRDRM1AC te: 12/24/09		Matrix SOLID
	PERCENT	RECOVERY		
PARAMETER	RECOVERY	LIMITS	METHO	D
1,2,4-Trichloro-	63	(43 - 110)	SW846	8270C
benzene				
2,4-Dinitrotoluene	83	(55 - 116)	SW846	8270C
N-Nitrosodi-n-propyl- amine	75	(40 - 114)	SW846	8270C
1,4-Dichlorobenzene	64	(38 - 110)	SW846	8270C
Pentachlorophenol	5 6	(10 - 110)	SW846	8270C
Phenol	77	(39 - 110)	SW846	8270C
2-Chlorophenol	70	(39 - 110)	SW846	8270C
4-Chloro-3-methylphenol	84	(42 - 110)	SW846	8270C
4-Nitrophenol	85	(24 - 117)	SW846	8270C
Acenaphthene	7 1	(46 - 110)	SW846	8270C
Pyrene	89	(58 - 113)	SW846	8270C
SURROGATE Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol		PERCENT <u>RECOVERY</u> 72 64 97 75 80 57	RECOVI <u>LIMIT</u> (24 - (34 - (41 - (28 - (26 - (10 -	5 112) 110) 119) 110) 110)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Volatiles

Matrix..... SOLID Work Order #...: LRE0V1AC-LCS **Client Lot #...:** A9L180492 LRE0V1AD-LCSD LCS Lot-Sample#: A9L200000-104 Analysis Date..: 12/19/09 Prep Date....: 12/19/09 **Prep Batch #...:** 9354104 Dilution Factor: 1 RECOVERY RPD PERCENT LIMITS RPD LIMITS METHOD RECOVERY PARAMETER SW846 8015A MOD (60 - 142) 111 Gasoline Range Organics (C6-C12) (0-27) SW846 8015A MOD 109 (60 - 142) 1.8 PERCENT RECOVERY <u>RECOVERY</u> LIMITS SURROGATE (10 - 150)104 Trifluorotoluene (10 - 150)101

NOTE(S):

GC Volatiles

Client Lot #: A9L180492 LCS Lot-Sample#: A9L240000-08 Prep Date: 12/23/09 Prep Batch #: 9358085 Dilution Factor: 1	Work Order 5 Analysis Da	LRMPJ1	AD-LCSD	x SOLID
PARAMETER Gasoline Range Organics (C6-C12)	PERCENT <u>RECOVERY</u> 98 112	RECOVERY LIMITS (60 - 142) (60 - 142)	RPD RPD 13 (0-27)	METHOD SW846 8015A MOD SW846 8015A MOD
<u>SURROGATE</u> Trifluorotoluene		PERCENT <u>RECOVERY</u> 102 104	RECOVERY <u>LIMITS</u> (10 - 150) (10 - 150)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Volatiles

Matrix....: SOLID Work Order #...: LRNPP1AC-LCS **Client Lot #...:** A9L180492 **LCS Lot-Sample#:** A9L290000-092 LRNPP1AD-LCSD Analysis Date..: 12/29/09 **Prep Date....:** 12/28/09 **Prep Batch #...:** 9363092 Dilution Factor: 1 PERCENT RECOVERY RPD <u>RECOVERY</u> LIMITS RPD LIMITS METHOD PARAMETER SW846 8015A MOD (60 - 142) Gasoline Range Organics 106 (C6-C12) (0-27) SW846 8015A MOD 108 (60 - 142) 2.3 RECOVERY PERCENT RECOVERY LIMITS SURROGATE 102 (10 - 150)Trifluorotoluene 101 (10 - 150)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC Semivolatiles

Client Lot #: LCS Lot-Sample#:		Work Order	#: LRDRJ1AC	Matrix: SOLID
Prep Date: Prep Batch #: Dilution Factor:	12/19/09 9353014	Analysis Da	te: 12/23/09	
PARAMETER TPH (as Diesel)		PERCENT <u>RECOVERY</u> 79	RECOVERY <u>LIMITS</u> (47 - 138)	METHOD SW846 8015B
<u>SURROGATE</u> C9 (nonane)			PERCENT <u>RECOVERY</u> 34	RECOVERY LIMITS (10 - 110)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #...: A9L180492

Matrix..... SOLID

PARAMETER	PERCENT <u>RECOVERY</u>	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sample#: Arsenic	A9L200000- 95		tch #: 9354052 SW846 6010B or: 1	12/21-12/23/09	LREWX1AF
Cadmium	97	(80 - 120) Dilution Fact	SW846 6010B or: 1	12/21-12/23/09	LREWX1AG
Chromium	95	(80 - 120) Dilution Facto	SW846 6010B or: 1	12/21-12/23/09	LREWX1AH
Lead	99	(80 - 120) Dilution Fact	SW846 6010B or: 1	12/21-12/23/09	LREWX1AJ

NOTE(S):

General Chemistry

Client Lot #	: A9L180492	Matrix: SOLID
<u>PARAMETER</u> Acid-soluble su		RECOVERYPREPARATION-PREPLIMITSMETHODANALYSIS DATEBATCH #Work Order #: LRKCN1ACLCS Lot-Sample#: A9L230000-096(70 - 130)SW846 9030B/903412/23/099357096Dilution Factor: 1
Corrosivity	99	Work Order #: LREE21AA LCS Lot-Sample#: A9L190000-120 (97 - 103) SW846 9045A 12/19/09 9353120 Dilution Factor: 1
Hexavalent Chromium	110	Work Order #: LRJPH1AC LCS Lot-Sample#: A9L230000-236 (80 - 120) SW846 7196A 12/23-12/24/09 9357236 Dilution Factor: 1
Total Cyanide	102	Work Order #: LRKK41AC LCS Lot-Sample#: A9L230000-388 (68 - 123) MCAWW 335.2 CLP-M 12/23/09 9357388 Dilution Factor: 1
Total Cyanide	107	Work Order #: LRNER1AC LCS Lot-Sample#: A9L280000-384 (68 - 123) MCAWW 335.2 CLP-M 12/28/09 9362384 Dilution Factor: 1

NOTE(S):

GC/MS Volatiles

Client Lot #:	A9L180492	Work Order #:	LRD521AF-MS	Matrix:	SOLID
MS Lot-Sample #:	A9L190450-001		LRD521AG-MSD		
Date Sampled:	12/18/09 11:45	Date Received:	12/19/09		
Prep Date:	12/21/09	Analysis Date:	12/21/09		
Prep Batch #:	9356203				
Dilution Factor:	0.92	<pre>% Moisture:</pre>	19		

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
1,1-Dichloroethene	97	(43 - 147)			SW846 8260A
	88	(43 - 147)	16	(0-27)	SW846 8260A
Trichloroethene	73	(46 - 143)			SW846 8260A
	66	(46 - 143)	17	(0-23)	SW846 8260A
Benzene	82	(55 - 138)			SW846 8260A
	73	(55 - 138)	19	(0-20)	SW846 8260A
Toluene	87	(46 - 147)			SW846 8260A
	57 p	(46 - 147)	45	(0-24)	SW846 8260A
Chlorobenzene	65	(49 - 139)			SW846 8260A
	47 a,p	(49 - 139)	40	(0-22)	SW846 8260A

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	107	(59 - 138)
	104	(59 - 138)
1,2-Dichloroethane-d4	83	(61 - 130)
	82	(61 - 130)
Toluene-d8	113	(60 - 143)
	100	(60 - 143)
4-Bromofluorobenzene	174 *	(47 - 158)
	107	(47 - 158)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

Results and reporting limits have been adjusted for dry weight.

p Relative percent difference (RPD) is outside stated control limits.

a Spiked analyte recovery is outside stated control limits.

* Surrogate recovery is outside stated control limits.

GC/MS Volatiles

Client Lot #:	A9L180492	Work Order #:	LRKXH1AG-MS	Matrix SOLID
MS Lot-Sample #:	A9L230573-001		LRKXH1AH-MSD	
Date Sampled:	12/23/09 10:30	Date Received:	12/23/09	
Prep Date:	12/24/09	Analysis Date:	12/24/09	
Prep Batch #:	9362414			
Dilution Factor:	1	<pre>% Moisture:</pre>	18	

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD_	LIMITS	METHOD
1,1-Dichloroethene	108	(43 - 147)			SW846 8260A
	108	(43 - 147)	0.06	(0-27)	SW846 8260A
Trichloroethene	93	(46 - 143)			SW846 8260A
	90	(46 - 143)	3.0	(0-23)	SW846 8260A
Benzene	93	(55 - 138)			SW846 8260A
	89	(55 - 138)	4.2	(0-20)	SW846 8260A
Toluene	88	(46 - 147)			SW846 8260A
	83	(46 - 147)	6.4	(0-24)	SW846 8260A
Chlorobenzene	83	(49 - 139)			SW846 8260A
	81	(49 - 139)	2.4	(0-22)	SW846 8260A

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Dibromofluoromethane	96	(59 - 138)
	98	(59 - 138)
1,2-Dichloroethane-d4	84	(61 - 130)
	86	(61 - 130)
Toluene-d8	97	(60 - 143)
	100	(60 - 143)
4-Bromofluorobenzene	88	(47 - 158)
	93	(47 - 158)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC Volatiles

	PERCENT	RECOVERY		RPD			
PARAMETER	<u>RECOVERY</u>	LIMITS	<u>RPD</u>	LIMITS	<u>METHOI</u>)	
Gasoline Range Organics (C6-C12)	45	(10 - 142)			SW846	8015A	MOD
•	21	(10 - 142)	24	(0-94)	SW846	8015A	MOD
		PERCENT		RECOVERY			
SURROGATE		RECOVERY		LIMITS	_		
Trifluorotoluene	_	100		(10 - 150)		
		98		(10 - 150)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

GC Volatiles

Client Lot #: A9L18049 MS Lot-Sample #: A9L17047 Date Sampled: 12/16/09 Prep Date: 12/29/09 Prep Batch #: 9363092 Dilution Factor: 10	6-009 15:40 Date R Analys		LQ8TD1AK 12/17/09 12/29/09	-MSD	rix SOLID
PARAMETER Gasoline Range Organics (C6-C12)	PERCENT RECOVERY 112 178 a	RECOVERY <u>LIMITS</u> (10 - 142) (10 - 142)		RPD LIMITS (0-94)	METHOD SW846 8015A MOD SW846 8015A MOD
<u>SURROGATE</u> Trifluorotoluene	-	PERCENT <u>RECOVERY</u> 101 101		RECOVERY <u>LIMITS</u> (10 - 150 (10 - 150	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

a Spiked analyte recovery is outside stated control limits.

TOTAL Metals

PARAMETER	PERCENT RECOVERY	RECOVERY RPD LIMITS RPD LIMITS	METHOD	PREPARATION- WORK <u>ANALYSIS DATE</u> ORDER #						
MS Lot-Sample #: A9L180492-001 Prep Batch #: 9354052										
Arsenic	90	(75 - 125)	SW846 6010B	12/21-12/23/09 LRCET1AQ						
	89	(75 - 125) 0.73 (0-20)	SW846 6010B	12/21-12/23/09 LRCET1AR						
	Dilution Factor: 1									
Cadmium	86	(75 - 125)	SW846 6010B	12/21-12/23/09 LRCET1AT						
	85	(75 - 125) 1.1 (0-20)	SW846 6010B	12/21-12/23/09 LRCET1AU						
Dilution Factor: 1										
Chromium	89	(75 - 125)	SW846 6010B	12/21-12/23/09 LRCET1AV						
	93	(75 - 125) 2.8 (0-20)	SW846 6010B	12/21-12/23/09 LRCET1AW						
		Dilution Factor: 1								
Lead	87	(75 - 125)	SW846 6010B	12/21-12/23/09 LRCET1AX						
	92	(75 - 125) 3.5 (0-20) Dilution Factor: 1	SW846 6010B	12/21-12/23/09 LRCET1A0						

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #: A9L180492 Matrix SOLID Date Sampled: 12/14/09 13:10 Date Received: 12/15/09 Matrix SOLID								
	PERCENT	RECOVERY	RPD		PREPARATION- PREP			
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DATE BATCH #			
					% Moisture: 13			
Acid-soluble	sulfide	WO#:	LQ8JA1AX-MS/	LQ8JA1A0-MSD MS L	ot-Sample #: A9L170448-001			
	102	(10 - 154)		SW846 9030B/9034	12/23/09 9357096			
	107	(10 - 154)	3.3 (0-20)	SW846 9030B/9034	12/23/09 9357096			
		Dilut	ion Factor: 1					
Change de la companya	1				% Moisture: 13			
Cyanide, Tota					ot-Sample #: A9L150490-003			
	78			MCAWW 335.2 CLP-M				
	64	(50 - 134)	19 (0-20)	MCAWW 335.2 CLP-M	12/28/09 9362383			
		Dilut	ion Factor: 1					
		//			% Moisture: 13			
Total Cyanide					ot-Sample #: A9L220458-004			
	72	(50 - 134)			12/23/09 9357388			
	61	(50 - 134)	12 (0-20)	MCAWW 335.2 CLP-M	12/23/09 9357388			
		Dilut	ion Factor: 1					

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #:	A9L180492	Work	Order		RCRR-SMP RCRR-DUP	Matrix: SO	
Date Sampled:	12/17/09 13:2	20 Date 1	Receiv	red: 12	2/18/09		
<pre>% Moisture:</pre>	9.4						
	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	<u>RPD</u>	LIMIT	METHOD	ANALYSIS DATE	<u>BATCH #</u>
Corrosivity					SD Lot-Sampl	e #: A9L180492-008	
8.7	8.5	No Units	1.9	(0-20)	SW846 9045A	12/19/09	9353120
	Di	lution Fact	tor: 1				

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #:	A9L180492	Work	Order	#: LÇ LÇ	01E4-SMP Mat 01E4-DUP	rix: SOLID	
Date Sampled:	12/10/09 09:	55 Date	Receiv	red: 12	2/11/09		
<pre>% Moisture:</pre>	19						
	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	<u>RPD</u>	LIMIT	METHOD	ANALYSIS DATE	<u> BATCH #</u>
Percent Solids					SD Lot-Sample #	: A9L110613-010	
81.1	79.6	8	1.8	(0-20)	MCAWW 160.3 MOD	12/22-12/23/09	9356363
	D	ilution Fac	ctor: 1				

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #:	A9L180492	Work Order		CRE-SMP Matr CRE-DUP	i x: SO	
Date Sampled:	12/17/09 11:40	Date Receiv	red: 12	/18/09		
<pre>% Moisture:</pre>	12					
	DUPLICATE		RPD		PREPARATION-	PREP
PARAM RESULT	RESULT U	NITS RPD	LIMIT	METHOD	ANALYSIS DATE	<u>BATCH #</u>
Percent Solids				SD Lot-Sample #:	A9L180492-003	
87.9	88.7 %	0.94	(0-20)	MCAWW 160.3 MOD	12/22-12/23/09	9356363
	Dilu	tion Factor: 1				

gicoa. Tradinates i aconteriar inc. Ai tobe searved. Fasilinatos i Courto V wa Yakimake di Tutifuncion Lukuntsine. No.	Reinfugines 19: Allensen	Relinquished by:	Relinquished by:		Special Instructions/QC Requirements & Comments:	Possible Hazard Identification			HB-075(0-21)	HB-073 (0-21)	HB-072 (4-6')	HB-072 (2-41)	<u> </u>	HB-071 (10-12)	HB-071 (8-101)	Sample Identification		Project Number:	Project Nume COMWALVELTU Rd	(440)357-1260	Mentor Ohio 44000	6165 Heisky Road	COMPANY NAME: HZW ENVIRONMENTAL	Client Contact	-
ut.	Company: HZL	Сотрану:	Company:			Skin Irritaat 🔄 Poissm B		V 13:20	13:70	12:50	01:11	02:61	11:40	04:11	94.11 W/21	Sample Date Sample Time		Shipping/Tracking No:	Method of Shipment/Carrier:		dwetzel @ hewenv.com	(440) 357-12-60	- WHA WETZU	Regulatory program:	Foot A merica I situratory keestion:
	12-18-09/11:00	Date/Time:	Date/Time:		7	Unknown Sample Disp		×		X	X		X	×	X	Aqueous Sediment Solid Other: H2SQ4 HNO3 HC1				TAT if diffe	Nenv.com	О генерацияе:	Site Contact:		Chain of Custody Record
	Received in Laboratory 6)	Raceived by:	Received by:		•	Disposal (A fee may be aspessed if samp Return to Client (A) Disposal B		X	X	X	X	X		X	X	NaOH ZaAc/ NaOH Unpres Other:		2 days	2 weeks	and from below	19日、山田には、山田建岡、山田、田、田、田、山、山、山、山、山、山、山、山、山、山、山、山、山、山、山	周		RCRA 🗡 Other -	ody Record
•	Company:	Company	Company:			f samples are retained longer than 1 month) osal By Lab Archive For		$G \times \times \times \times \times$	6 X X X X	GXXXXX	$X \times X \times X$	6 X X X X	G X X X X X	XXXXX	GXXXXX	Corro NOC SNOC TPH- Hexa	5-8	26	ptf) 0 10 macs Cr) 80	S Analyses	(3)99 966-8796	Lub Contact: Nart Pretras	"_OH VAP	• • •
• •	NC		Da			(h) Months		\times \times \times	XXX	\times \times \times	XXX	メメメ	XXX		* × × ×	Tota Tota Mel			ide vde - la		78C5	296	-	TertA	lest
TAL-0018 (1008)	Date Tight 108 100	Date/Fime:	teTime:	-				-	7		- - -	OWH	cd. Cr. Pb	Include: As,	* Mutuls to	Sample Specific Notes / Special Instructions:							C No:	TestAmerica Laboratories, Inc.	<u> TestAmerica</u>

110 of 113

Cooler Received on 12/12 0? (Signature) / FedEx UPS DHL FAS Steison Client Drop Off [X] TestAmerica Courier Other	North Canton Facility		
Cooler Received on 12/12/16/2 (Signature) FedEx UPS DHL FAS Statson Client Drop Off () TestAmerica Courier. Other EestAmerica Cooler # Multiple Coolers Foam Box Client Cooler () Other If YES, Quantity Quantity Unsalvageable Intact? Yes No NA Were custody seals on the outside of cooler(s); signed and dated? Yes No NA Were custody seals on the bottle(s)? Yes () No NA Statpers' packing slip attached to the cooler(s)? Yes No Xo Stationary packing slip attached to the cooler(s)? Yes () No Xo Stating material used: Buble Wrap Foam () None () Yes () No Stating material used: Buble to () Order () Yes () No Xo Cooler temperature upon receipt Other Yes () No Xo Xo COLLANT: Wet ice (X) Blue ice () Dry ice () Water () No No Xo 10. Were corect bottle(s); updod condition () Unbroken? Yes () No No Xo	Client <u>H2w</u>		
FedS L UPS L DHL FAS Stetson Client Drop Off [0] TestAmerica Couler. Other TestAmerica Cooler # Multiple Coolers Pam Box Client Cooler M Other Intext? Yes No NA If YES, Quantity Quantity Unsalvageable Yes No NA NA Were custody seals on the outside of cooler(s) signed and dated? Yes No NA NA Shippers' packing sign atched to the cooler(s)? Yes No NA No NA Shippers' packing sign atched to the cooler(s)? Yes No Size No No No Size No No Size No No Size No No No Size No No No Size No No No No <t< td=""><td></td><td>Project By</td><td></td></t<>		Project By	
TestAmprice Cooler #Multiple Coolers □ Foam Box □ Client Cooler O ther	Cooler Received on2	2/18/04 Opened on /2/18/07	
t. Were custody seals on the outside of the cooler(s)? Yes □ No □ Xi □ Yes □ No □ NA □ If YES, Quantity	FedEx 🔲 UPS 🛄 DHL 🗌	FAS 🔲 Stetson 📋 Client Drop Off 🕅 TestAmerica Cou	irier L. Other
If YES, Quantity			
Were custody seals on the outside of cooler(s) signed and dated? Yes No NA A Were custody seals on the bottle(s)? Yes No NA A If YES, are there any exceptions? Yes No No A 2. Shippers' packing slip attached to the cooler(s)? Yes No Relinquished by client? Yes No A 3. Did custody papers accompany the sample(s)? Yes No Relinquished by client? Yes No A 4. Ware the custody papers signed in the appropriate place? Yes No Cooler temperature upon receipt O Cooler temperature upon receipt O Cooler Yes No A A 5. Coolel tamberature in good condition (Unbroken)? Yes No No A A 6. Outra all bottle labels be reconciled with the COC? Yes No No A A 7. Did all bottle labels of mn in any VOA vials? Yes No No A A A 8. Were ample(s) at the corect perform indicated analyses?, Yes No No A A A A A A A A A A			es 🗋 No 🚺 NA 🗖
Were custody seals on the bottle(s)? Yes No No If YES, are there any exceptions? Yes No No 2. Shipper's packing silp attached to the cooler(s)? Yes No Mo 3. Did custody papers accompany the sample(s)? Yes No Relinquished by client? Yes No 5. Packing material used: Bubbe Wrap Foam None Yes No 5. Cooler temperature upon receipt			
If YES, are there any exceptions?	Were custody seals on t		
2. Shippers' packing slip attached to the coller(s)? Yes □ No □ 3. Did custody papers accompany the sample(s)? Yes □ No □ Relinquished by client? Yes □ No □ 4. Wore the custody papers signed in the appropriate place? Yes □ No □ 5. Packing material used: Bubble Wrap □ Foam □ None □ Other □ 5. Packing material used: Bubble Wrap □ Foam □ None □ Other □ 6. Cooler temperature upon receipt □	Were custody seals on t	the bottle(s)? Ye	es 🔲 No 🕅
3. Did custody papers accompany the sample(s)? Yes [] No □ Relinquished by client? Yes [] No □ 4. Were the custody papers signed in the appropriate place? Yes [] No □ 5. Packing material used: Bubble Wrap □ Foam □ None [] 6. Cooler temperature upon receiptOeC See back of form for multiple coolers/temps □ METHOD: IR [], Other □ 7. Did all bottle sarrive in good condition (Unbroken)? Yes [] No □ No □ 7. Did all bottle sarrive in good condition (Unbroken)? Yes [] No □ No □ 8. Could all bottle labels be reconciled with the COC? Yes [] No □ NA [] 9. Were sample(s) at the correct pH upon receipt? Yes [] No □ NA [] 10. Were correct bottle(s) used for the test(s) indicated? Yes [] No □ NA [] 12. Sufficient quanity received to perform indicated analyses?, Yes □ No □ Yes [] No □ 13. Was at in blank present in the cooler(s)? Yes □ No [] Yeir/r/ Concarcing			
3. Did custody papers accompany the sample(s)? Yes [] No □ Relinquished by client? Yes [] No □ 4. Were the custody papers signed in the appropriate place? Yes [] No □ 5. Packing material used: Bubble Wrap □ Foam □ None [] Yes [] No □ 3. Cooler temperature upon receiptOeC See back of form for multiple coolers/temps □ METHOD: IR [], Other □	2. Shippers' packing slip at	ttached to the cooler(s)?	es 🔲 No 🕅 🛛 🗸
4. Were the custody papers signed in the appropriate place? Yes X No 5. Packing material used: Bubble Wrap Foam None None Yes 5. Cooler temperature upon receipt OC See back of form for multiple coolers/temps No METHOD: IR OC See back of form for multiple coolers/temps No 7. Did all bottle labels be reconciled with the COC? Yes X No No 8. Could all bottle labels be reconciled with the COC? Yes X No NA 9. Were correct bottle(s) used for the test(s) indicated? Yes X No NA 11. Were air bubbles >6 mm in any VOA vials? Yes X No NA 12. Sufficient quantify received to perform indicated analyses?, Yes X No A 13. Was a trip blank present in the cooler(s)? Yes No X Were VOAs on the COC? Yes X No- 14. CHAIN OF CUSTODY	3. Did custody papers acco	ompany the sample(s)? Yes 🖾 No 🗌 🛛 🛛 🛛 Relingu	uished by client? Yes 💢 No [
5. Cooler temperature upon preceipt O°C See back of form for multiple coolers/temps METHOD: IR M. Other	A More the sustain naner	rs signed in the appropriate place?	
5. Cooler temperature upon preceipt O°C See back of form for multiple coolers/temps METHOD: IR M. Other	5. Packing material used:	Bubble Wrap 🔲 Foam 🗌 None 🕅 Other	
METHOD: IR Divertion Divertion <td< td=""><td>6. Cooler temperature upo</td><td>on receiptO . O °C See back of form for multiple of</td><td>coolers/temps</td></td<>	6. Cooler temperature upo	on receiptO . O °C See back of form for multiple of	coolers/temps
COOLANT: Wet Ice Dry Ice Water None	METHOD: IR	Ď, Other □	
7. Did all bottles arrive in good condition (Unbroken)? Yes No 8. Could all bottle labels be reconciled with the COC? Yes No 9. Were sample(s) at the correct pH upon receipt? Yes No NA 10. Were correct bottle(s) used for the test(s) indicated? Yes No NA 11. Were air bubbles >6 mm in any VOA vials? Yes No NA 12. Sufficient quantity received to perform indicated analyses?, Yes No NA 13. Was a trip blank present in the cooler(s)? Yes No No Yes No 13. Was a trip blank present in the cooler(s)? Yes No Yes No Yes 14. CHAIN OF CUSTODY Date by via Verbal Voice Mail Other 15. SAMPLE CONDITION			
Could all bottle labels be reconciled with the COC? Yes No □ NA Yes No □ Yes No Yes No □ NA Yes No □ Yes No Yes No Yes Yes No □ Yes No Yes Yes Yes No		acod condition (Unbroken)?	es 🖾 No 🗆
3. Were sample(s) at the correct pH upon receipt? Yes No NA 10. Were correct bottle(s) used for the test(s) indicated? Yes No NA 11. Were air bubbles >6 mm in any VOA vials? Yes No NA 12. Sufficient quantity received to perform indicated analyses?, Yes No NA 13. Was a trip blank present in the cooler(s)? Yes No No A 2. Sufficient quantity received to perform indicated analyses?, Yes No No 2. Sufficient quantity received to perform indicated analyses?, Yes No No 2. Sufficient quantity received to perform indicated analyses?, Yes No No A 2. Sufficient quantity received to perform indicated analyses?, Yes No No A 2. Contacted PM		e reconciled with the COC? Ye	es 🕅 No 🗖
10. Were correct bottle(s) used for the test(s) indicated? Yes No NA 11. Were air bubbles >6 mm in any VOA vials? Yes No NA 12. Sufficient quantity received to perform indicated analyses?, Yes No Na 13. Was a trip blank present in the cooler(s)? Yes No No Article ? Contacted PM			es 🗋 No 🗖 NA 🕅
11. Were air bubbles >6 mm in any VOA vials? Yes No NA 12. Sufficient quantity received to perform indicated analyses?, Yes No Yes 13. Was a trip blank present in the cooler(s)? Yes No Yes No Contacted PM Date by via Verbal Voice Mail Other Concerning 0 Via Verbal Voice Mail Other 14. CHAIN OF CUSTODY The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 16. SAMPLE PRESERVATION Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO3. Sufficie and Zinc Acetate Lot# 100108-NaOH; Hydrochloric Acid Lot# 08200-HAC; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COC)2ZN/NeOH. What time was preservative added to sample(s)?		· · ·	s K No T
12. Sufficient quantity received to perform indicated analyses?, Yes A No A Gamma (Section 1) 13. Was a trip blank present in the cooler(s)? Yes D No A Were VOAs on the COC? Yes No A Other Contacted PM Date by via Verbal Voice Mail Other Concerning 14. CHAIN OF CUSTODY The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s)			
13. Was a trip blank present in the cooler(s)? Yes □ No 囟 Were VOAs on the COC? Yes 囟 No 合 □ (x) (x) Contacted PM Date by via Verbal □ Voice Mail □ Other □ Concerning 14. CHAIN OF CUSTODY The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s)			
Contacted PM Date by via Verbal Voice Mail Other Concerning			
Concerning 14. CHAIN OF CUSTODY The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. Sample(s) were received in a broken container. Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 16. SAMPLE PRESERVATION sample(s) Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO3, Sufuric Acid Lot# 082509-H ₂ SO4, Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108- (CH ₃ COO) ₂ ZN/NaOH. What time was preservative added to sample(s)?	Contacted DM	Date by via Ver	hal 🗌 Voice Mail 🗌 Other 🗍
14. CHAIN OF CUSTODY The following discrepancies occurred: 15. SAMPLE CONDITION Sample(s) were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. Sample(s) were received after the recommended holding time had expired. Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 16. SAMPLE PRESERVATION sample(s) Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot# 082509-H2SQ, Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108- (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)?		Dato Dy Dy	
15 SAMPLE CONDITION Sample(s) were received after the recommended holding time had expired. Sample(s) were received in a broken container. Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 16 SAMPLE PRESERVATION Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO3, Sulfuric Acid Lot# 082509-H2SO4; Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Acetate Lot# 100108-(CH3COO)2ZN/NaOH. What time was preservative added to sample(s)?	14. CHAIN OF CUSTODY		
Sample(s)			
Sample(s)	· · · · · · · · · · · · · · · · · · ·		·····
Sample(s) were received after the recommended holding time had expired. Sample(s) were received in a broken container. Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 16 SAMPLE PRESERVATION Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO3; Sutfuric Acid Lot# 082509-H2SO4, Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108- (CH3COO)2ZN/NaOH. What time was preservative added to sample(s)?			
Sample(s) were received in a broken container. Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 16 SAMPLE PRESERVATION Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot# 082509-H2SO4; Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108- CH3COOJ2ZN/NaOH. What time was preservative added to sample(s)?			
Sample(s) were received with bubble >6 mm in diameter. (Notify PM) 16. SAMPLE PRESERVATION were further preserved in Sample Sample(s) were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot# 082509-H2SO4; Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108- CH3COO)2ZN/NaOH. What time was preservative added to sample(s)?			
16. SAMPLE PRESERVATION Sample(s)	Sample(s)	were received after the recommen	
Sample(s)were further preserved in Sample Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO ₃ ; Sulfuric Acid Lot# 082509-H ₂ SO ₄ ; Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc Acetate Lot# 100108- (CH ₃ COO) ₂ ZN/NaOH. What time was preservative added to sample(s)?	Sample(s) Sample(s)	were received after the recommen were received after the recommen	ceived in a broken container
Receiving to meet recommended pH level(s). Nitric Acid Lot# 082509-HNO ₃ , Sutfuric Acid Lot# 082509-H ₂ SO ₄ , Sodium Hydroxide Lot# 100108 -NaOH; Hydrochloric Acid Lot# 092006-HCI; Sodium Hydroxide and Zinc Acetate Lot# 100108- (CH ₃ COO) ₂ ZN/NaOH. What time was preservative added to sample(s)?	Sample(s) Sample(s) Sample(s)	were received after the recommen were received with bubble >6	ceived in a broken container
	Sample(s) Sample(s) Sample(s)	were received after the recommen were received with bubble >6	ceived in a broken container
	Sample(s) Sample(s) Sample(s) 16 SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH	were received after the recommen were re were received with bubble >6 Were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid L H; Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc	eceived in a broken container 3 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium
	Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-
	Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-
	Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-
	Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-
	Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-
	Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-
	Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-
	Sample(s) Sample(s) Sample(s) 16. SAMPLE PRESERVAT Sample(s) Receiving to meet recomme Hydroxide Lot# 100108 -NaOH (CH3COO)2ZN/NaOH. What t	were received after the recommen were received with bubble >6 TION were further ended pH level(s). Nitric Acid Lot# 082509-HNO3; Sulfuric Acid Lot Hydrochloric Acid Lot# 092006-HCl; Sodium Hydroxide and Zinc time was preservative added to sample(s)?	preserved in a broken container 5 mm in diameter. (Notify PM preserved in Sample ot# 082509-H ₂ SO ₄ , Sodium Acetate Lot# 100108-

orth Canton Faci <u>Client ID</u>	lity <u>pH</u>	Date	Initials
		P	
<u></u>			
······································			
· · · · · · · · · · · · · · · · · · ·		• <u>•</u> ••••••••••••••••••••••••••••••••••	<u> </u>
			··
			· · · · · · · · · · · · · · · · · · ·
		<u> </u>	
		······································	· · ·
		<u></u>	
		<u></u>	ļ <u> </u>
4 4 .	· · · · · · · · · · · · · · · · · · ·	1	
······································			
······································	•		
<u></u>			
		<u> </u>	
	Temp. °C	Method	Coolar
Cooler #		BIGLING	
		•	·
· · · · · · · · · · · · · · · · · · ·			
·		<u>+</u>	
		l Salaran (Secondaria)	
		an dha ya	
screpancies Contid:			
sorepančies Contidi			
sarepancies Contidi			
		······································	
screpancies Coniidi			

. . . . ·

.

SOF: NC-SC-000 Sample Receiving N:12A22WARUTTBET esumerica Cabler Receipt TestAmerica COOLER_TestAmerica_Rev 72_090108.doc

THE LEADER IN ENVIRONMENTAL TESTING

END OF REPORT

PHASE II ENVIRONMENTAL SITE ASSESSMENT

INNERBELT STUDY CLEVELAND, OHIO

CUY-CLEVELAND INNERBELT CORRIDOR PID NO. 77510

Prepared for

and in

The Ohio Department of Transportation District 12 5500 Transportation Boulevard Garfield Heights, Ohio 44125

January 17, 2007

1375 Euclid Avenue Suite 600 Cleveland, Ohio 44115 216-622-2400

Project No. 15016633

EXECUTIVE S	UMMARY ES-1
SECTION 1	INTRODUCTION1-1
	1.1Objective1-11.2Project Dates1-11.3Report Organization1-1
SECTION 2	PROJECT BACKGROUND2-1
	2.1 Summary of Phase I 2-1 2.2 Work Plan 2-2
SECTION 3	PHYSICAL SETTING
	3.1Topography And Drainage
SECTION 4	
	4.1Site Reconnaissance
SECTION 5	DATA EVALUATION5-1
	5.1 Data Review and Laboratory Certification Documentation
SECTION 6	PHASE II FINDINGS
	6.1Site 2 – Former Bauer Auto6-26.1.1Field Activities6-26.1.2Conclusion6-26.2Site 13 – Former Glove Cleaning Service/Scanton Averell6-36.2.1Field Activities6-46.2.2Site-Specific Geology/Hydrogeology6-46.2.3Geophysical Survey6-4

	6.2.4	Soil Analytical Results	. 6-5
	6.2.5	Groundwater Analytical Results	. 6-5
	6.2.6	Comparison Standards	
	6.2.7	Conclusions	
6.3	Site 14	4 – Bojacks Meats	. 6-6
	6.3.1	Field Activities	
	6.3.2	Site-Specific Geology/Hydrogeology	. 6-6
	6.3.3	Geophysical Survey	. 6-7
	6.3.4	Soil Analytical Results	. 6-7
	6.3.5	Groundwater Analytical Results	. 6-7
	6.3.6	Comparison Standards	. 6-8
	6.3.7	Conclusions	
6.4	Site 15	5 – Leon Rudnick	. 6-9
	6.4.1	Field Activities	. 6-9
	6.4.2	Geophysical Survey	. 6-9
	6.4.3	Conclusions	
6.5	Site 16	5 – Wendell & Carroll Collins	6-11
	6.5.1	Field Activities	6-11
	6.5.2	Site-Specific Geology/Hydrogeology	6-11
	6.5.3	Soil Analytical Results	6-11
	6.5.4	Groundwater Analytical Results	6-12
	6.5.5	Comparison Standards	6-12
	6.5.6	Conclusions	6-12
6.6	Site 17	7 - Terminal Oil	
	6.6.1	Field Activities	6-13
	6.6.2	Site-Specific Geology/Hydrogeology	6-13
	6.6.3	Geophysical Survey	6-14
	6.6.4	Soil Analytical Results	6-14
	6.6.5	Groundwater Analytical Results	6-15
	6.6.6	Comparison Standards	
	6.6.7	Conclusions	
6.7	Site 18	8 – Cleveland Fire Station	
	6.7.1	Field Activities	6-17
	6.7.2	Site-Specific Geology/Hydrogeology	
	6.7.3		6-18
	6.7.4	Soil Analytical Results	6-18
	6.7.5	Groundwater Analytical Results	6-19
	6.7.6	Comparison Standards	6-19
	6.7.7	Conclusions	
6.8		9 - Gillota Fuel Products	6-20
	6.8.1	Field Activities	0-21
	6.8.2	Site-Specific Geology/Hydrogeology	0-21
	6.8.3	Geophysical Survey	0-21
	6.8.4	Soil Analytical Results	0-22
	6.8.5	Groundwater Analytical Results	0-22

	6.8.6	Comparison Standards	6-22
	6.8.7	Conclusions	6-23
6.9	Site 20	– Earl Lee	6-24
	6.9.1	Field Activities	6-24
	6.9.2	Site-Specific Geology/Hydrogeology	6-24
	6.9.3	Soil Analytical Results	
	6.9.4	Groundwater Analytical Results	6-25
	6.9.5	Comparison Standards	
	6.9.6	Conclusions	6-26
6.10	Site 21	- White Properties	6-27
	6.10.1	Field Activities	6-27
	6.10.2	Site-Specific Geology/Hydrogeology	6-27
		Geophysical Survey	
	6.10.4	Soil Analytical Results	6-28
	6.10.5	Groundwater Analytical Results	6-29
	6.10.6	Comparison Standards	6-29
		Conclusions	
6.11	Site 22	– Nova Properties	6-31
	6.11.1	Field Activities	6-31
	6.11.2	Site-Specific Geology/Hydrogeology	6-31
	6.11.3	Geophysical Survey	6-31
	6.11.4	Soil Analytical Results	6-32
		Groundwater Analytical Results	
		Comparison Standards	
		Conclusions	
6.12		– NS Railroad Building	
		Field Activities	
		Site-Specific Geology/Hydrogeology	
	6.12.3	Geophysical Survey	6-35
		Soil Analytical Results	
		Groundwater Analytical Results	
		Comparison Standards	
		Conclusions	
6.13		- James Vincent	
		Field Activities	
		Site-Specific Geology/Hydrogeology	
	6.13.3	Soil Analytical Results	6-39
	6.13.4	Groundwater Analytical Results	6-40
		Comparison Standards	
		Conclusions	
6.14		- Meridian Properties/Independent Towel	
		Field Activities	
	6.14.2	Site-Specific Geology/Hydrogeology	0-41
	6.14.3	Geophysical Survey	0-42
	6.14.4	Soil Analytical Results	6-42

)

j

•	6.14.5 Groundwater Analytical Results	6-43
	6.14.6 Comparison Standards	
	6.14.7 Conclusions	
6.15	Site 29 – BP Gas Station	6-45
	6.15.1 Field Activities	6-45
	6.15.2 Site-Specific Geology/Hydrogeology	6-45
	6.15.3 Soil Analytical Results	6-45
	6.15.4 Groundwater Analytical Results	6-46
	6.15.5 Comparison Standards	6-46
	6.15.6 Conclusions	
6.16	Site 33 – State Industrial Products	
	6.16.1 Field Activities	6-47
	6.16.2 Site-Specific Geology/Hydrogeology	6-48
	6.16.3 Geophysical Survey	6-48
	6.16.4 Soil Analytical Results	6-48
	6.16.5 Groundwater Analytical Results	6-49
	6.16.6 Comparison Standards	6-49
	6.16.7 Conclusions	
6.17	Site 34 – Former Teledyne Metal Finishing	
	6.17.1 Field Activities	
	6.17.2 Site-Specific Geology/Hydrogeology	6-52
	6.17.3 Soil Analytical Results	6-52
	6.17.4 Groundwater Analytical Results	6-53
	6.17.5 Comparison Standards	
	6.17.6 Conclusions	
6.18	Site 42 – CB Realty	6-54
	6.18.1 Field Activities	
	6.18.2 Site-Specific Geology/Hydrogeology	6-54
	6.18.3 Soil Analytical Results	6-54
	6.18.4 Groundwater Analytical Results	
	6.18.5 Comparison Standards	6-55
	6.18.6 Conclusions	
6.19	Site 43 – KNC Building	6-57
	6.19.1 Field Activities	0-3/
	6.19.2 Site-Specific Geology/Hydrogeology	6 57
	6.19.3 Geophysical Survey	0-5/
	6.19.4 Soil Analytical Results	0-38
	6.19.5 Groundwater Analytical Results	6 50
	6.19.6 Comparison Standards	6 50
	6.19.7 Conclusions	6 50
6.20	Site 45 – Harold Moss, Trustee	6 50
	6.20.1 Field Activities	6 50
	6.20.2 Site-Specific Geology/Hydrogeology	6 20
	6.20.3 Geophysical Survey	6 40
	6.20.4 Soil Analytical Results	0-00

		6.20.5 Groundwater Analytical Results	i-60
		6.20.6 Comparison Standards	
		6.20.7 Conclusions	
	6.21	Site 51 – Temp Craft Plastics	
		6.21.1 Field Activities	
		6.21.2 Site-Specific Geology/Hydrogeology6	
		6.21.3 Soil Analytical Results	
		6.21.4 Groundwater Analytical Results	
		6.21.5 Comparison Standards 6	
		6.21.6 Conclusions	
	6.22	Site 53 – Cleveland Fire Academy	
		6.22.1 Field Activities	
		6.22.2 Site-Specific Geology/Hydrogeology6	-65
		6.22.3 Soil Analytical Results	-65
		6.22.4 Groundwater Analytical Results	6-66
		6.22.5 Comparison Standards 6	i-66
		6.22.6 Conclusions	
	6.23	Site 57 – Charles Martin	
		6.23.1 Field Activities	-68
		6.23.2 Site-Specific Geology/Hydrogeology6	-68
		6.23.3 Soil Analytical Results	-68
		6.23.4 Groundwater Analytical Results	-69
		6.23.5 Comparison Standards	
		6.23.6 Conclusions	
	6.24	Site 59 – Parking Lot	
		6.24.1 Field Activities	i-70
		6.24.2 Site-Specific Geology/Hydrogeology	<i>i</i> -70
		6.24.3 Geophysical Survey	»-70
		6.24.4 Soil Analytical Results	»-71
		6.24.5 Groundwater Analytical Results	»-71
		6.24.6 Comparison Standards6)-72
		6.24.7 Conclusions)-72
SECTION 7	CONC	LUSIONS AND RECOMMENDATIONS	.7-1
	7.1	CONCLUSIONS	7-1
SECTION 8	REFEI	RENCES	.8-1

LIST OF TABLES

Table ES-1	Phase II Site Conclusion Summary
Table 2-1	Phase I ESA Summary
Table 2-2	Master List
Table 4-1	Geophysical Survey Sites
Table 6-2A	Summary of Detected Chemicals in Soil – Site 13 Former Glove Cleaning Service / Scranton Averell
Table 6-3A	Summary of Detected Chemicals in Soil – Site 14 Bojacks Meats
Table 6-3B	Summary of Detected Chemicals in Groundwater – Site 14 Bojacks Meats
Table 6-5A	Summary of Detected Chemicals in Soil – Site 16 Wendell & Carroll Collins / 1501 Companies
Table 6-6A	Summary of Detected Chemicals in Soil – Site 17 Terminal Oil
Table 6-6B	Summary of Detected Chemicals in Groundwater – Site 17 Terminal Oil
Table 6-7A	Summary of Detected Chemicals in Soil – Site 18 Cleveland Fire Station
Table 6-7B	Summary of Detected Chemicals in Groundwater - Site 18 Cleveland Fire Station
Table 6-8A	Summary of Detected Chemicals in Soil – Site 19 Gillota Fuel Products
Table 6-8B	Summary of Detected Chemicals in Groundwater – Site 19 Gillota Fuel Products
Table 6-9A	Summary of Detected Chemicals in Soil – Site 20 Earl Lee
Table 6-9B	Summary of Detected Chemicals in Groundwater – Site 20 Earl Lee
Table 6-10A	Summary of Detected Chemicals in Soil – Site 21 White Properties
Table 6-10B	Summary of Detected Chemicals in Groundwater - Site 21 White Properties
Table 6-11A	Summary of Detected Chemicals in Soil – Site 22 Nova Properties
Table 6-11B	Summary of Detected Chemicals in Groundwater – Site 22 Nova Properties
Table 6-12A	Summary of Detected Chemicals in Soil – Site 23 NS railroad Building
 Table 6-12B	Summary of Detected Chemicals in Groundwater – Site 23 NS railroad Building
Table 6-13A	Summary of Detected Chemicals in Soil – Site 24 James Vincent
Table 6-13B	Summary of Detected Chemicals in Groundwater – Site 24 James Vincent
Table 6-14A	Summary of Detected Chemicals in Soil – Site 27 Meridian Properties / Independent Towel
Table 6-14B	Summary of Detected Chemicals in Groundwater – Site 27 Meridian Properties / Independent Towel
Table 6-15A	Summary of Detected Chemicals in Soil – Site 29 BP Gas Station
Table 6-15B	Summary of Detected Chemicals in Groundwater – Site 29 BP Gas Station

- Table 6-16A Summary of Detected Chemicals in Soil Site 33 State Industrial Products
- Table 6-16B Summary of Detected Chemicals in Groundwater Site 33 State Industrial Products
- Table 6-17A Summary of Detected Chemicals in Soil Site 34 Former Teledyne Metal Finishing
- Table 6-17B
 Summary of Detected Chemicals in Groundwater Site 34 Former Teledyne

 Metal Finishing
- Table 6-18A Summary of Detected Chemicals in Soil Site 42 CB Realty
- Table 6-18B Summary of Detected Chemicals in Groundwater Site 42 CB Realty
- Table 6-19A Summary of Detected Chemicals in Soil Site 43 KNC Building
- Table 6-19B
 Summary of Detected Chemicals in Groundwater Site 43 KNC Building
- Table 6-20A Summary of Detected Chemicals in Soil Site 45 Harold Moss, Trustee
- Table 6-20B Summary of Detected Chemicals in Groundwater Site 45 Harold Moss, Trustee
- Table 6-21A
 Summary of Detected Chemicals in Soil Site 51 Temp Craft Plastics
- Table 6-21B Summary of Detected Chemicals in Groundwater Site 51 Temp Craft Plastics
- Table 6-22A Summary of Detected Chemicals in Soil Site 53 Cleveland Fire Academy
- Table 6-22B Summary of Detected Chemicals in Groundwater Site 53 Cleveland Fire Academy
- Table 6-23A
 Summary of Detected Chemicals in Soil Site 57 Charles Martin
- Table 6-23B
 Summary of Detected Chemicals in Groundwater Site 57 Charles Martin
- Table 6-24A
 Summary of Detected Chemicals in Soil Site 59 Parking Lot
- Table 6-24B Summary of Detected Chemicals in Groundwater Site 59 Parking Lot
- Table 7-1Phase II Site Conclusion Summary

LIST OF FIGURES

- Figure 1-1 Project Area and Phase II Site Location Map
- Figure 6-1A Site Location Map, Site 2
- Figure 6-2A Sample Location Map, Site 13
- Figure 6-2B Geophysical Study Area Map, Site 13
- Figure 6-3A Sample Location Map, Site 14
- Figure 6-3B Geophysical Study Area Map, Site 14
- Figure 6-4A Site Location Map, Site 15
- Figure 6-4B Geophysical Study Area Map, Site 15
- Figure 6-5A Sample Location Map, Site 16

- Figure 6-6A Sample Location Map, Site 17
- Figure 6-6B Geophysical Study Area Map, Site 17
- Figure 6-7A Sample Location Map, Site 18
- Figure 6-7B Geophysical Study Area Map, Site 18
- Figure 6-8A Sample Location Map, Site 19
- Figure 6-8B Geophysical Study Area Map, Site 19
- Figure 6-9A Sample Location Map, Site 20
- Figure 6-10A Sample Location Map, Site 21
- Figure 6-10B Geophysical Study Area Map, Site 21
- Figure 6-11A Sample Location Map, Site 22
- Figure 6-12A Sample Location Map, Site 23
- Figure 6-12B Geophysical Study Area Map, Site 23
- Figure 6-13A Sample Location Map, Site 24
- Figure 6-14A Sample Location Map, Site 27
- Figure 6-14B Geophysical Study Area Map, Site 27
- Figure 6-15A Sample Location Map, Site 29
- Figure 6-16A Sample Location Map, Site 33
- Figure 6-16B Geophysical Study Area Map, Site 33
- Figure 6-17A Sample Location Map, Site 34
- Figure 6-18A Sample Location Map, Site 42
- Figure 6-19A Sample Location Map, Site 43
- Figure 6-20A Sample Location Map, Site 45
- Figure 6-21A Sample Location Map, Site 51
- Figure 6-22A Sample Location Map, Site 53
- Figure 6-23A Sample Location Map, Site 57
- Figure 6-24A Sample Location Map, Site 59

LIST OF APPENDICES

- Appendix A ODOT-OES' Inter-Office Communication
- Appendix B Analytical Laboratory Reports (CD)
- Appendix C Disposal Documentation

PROJECT DESCRIPTION

URS Corporation was retained by the Ohio Department of Transportation (ODOT) to conduct Phase II Environmental Site Assessments (ESAs) for select properties within the Cleveland Innerbelt Study. The Cleveland Innerbelt Study begins at the Interstate 71 (I-71) and Fulton Road interchange and extends north through the merge with Interstate 90 (I-90) across the Central Viaduct Bridge, which spans the Cuyahoga River, through the Central Interchange and terminates at the I-90 curve just east of the I-90 merge with State Route (SR) 2 (the Project Area). In addition, the Cleveland Innerbelt Study includes the portion of Interstate 77 (I-77) that begins at the Central Interchange and extends south to the I-77 and East 30th Street interchange. The Project Area, which is wholly located in the City of Cleveland, Cuyahoga County, spans approximately seven miles.

To determine the potential for encountering hazardous substances during the project, URS conducted an Environmental Site Assessment (ESA) Screening of the entire Project Area and Phase I ESAs of select properties within the Project Area. Based on the review of these documents, ODOT's Office of Environmental Services (OES) indicated further investigation via a Phase II ESA was warranted for twenty-four properties. A copy of the ODOT-OES' Inter-Office Communication is included in Appendix A. A Project Area and Phase II Site Location Map is included as Figure 1-1.

The Phase II ESA was conducted in accordance with ODOT Environmental Site Assessment Guidelines (ODOT, 1999). URS advanced up to eight soil borings/monitoring wells at each Site and submitted a soil sample from each boring for laboratory analysis. Soil data was compared to Ohio Environmental Protection Agency's (OEPA) Voluntary Action Program (VAP) generic standards for direct contact and the Bureau of Underground Storage Tanks Regulations (BUSTR) standards. Boring Location Maps are included as **Figures 6-1A through 6-24A**.

CONCLUSIONS

This Phase II ESA was conducted on 24 parcels of land located within the Cleveland Innerbelt Study Project Area. The Phase II ESA sites were selected because of known current or historic operations; known current or historic petroleum product and/or hazardous substance consumption, storage or use; or, the site is proposed for acquisition.

The objective of the Phase II ESA was to evaluate subsurface conditions relative to the current and former uses of the sites in the Project Area. The soil borings and monitoring wells were located in accessible areas of the site. The Project Area, which is wholly located in the City of Cleveland, Cuyahoga County, spans approximately seven miles.

Based on the analytical results, 14 sites listed on Table ES-1, Phase II Site Summary, have impacted soil and/or groundwater that exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels. Two sites did not have Phase II sampling conducted but are recommende to have Construction Plan Notes prepared as a result of past history. The remaining eight sites did not display contamination levels exceeding applicable standards.

EXECUTIVE SUMMARY

	Phi	Table ES-1 ase 11 Site Conclusion Sumr	nary
Site Number	Site	Address	Conclusion
2	Former Bauer Auto	3553 West 25 th Street	Plan Note Recommended
13	Former Glove Cleaning Service/Scranton Averell	2132-2150 West 15 th Street	No exceedances of applicable standards.
14	Bojacks Meats	2000 W. 14 th /1425 University	Impacted Groundwater
15	Leon Rudnick	1402-1408 Abbey Road	Plan Note Recommended
16	Wendell & Carroll Collins/1501 Companies	West 15 th Street	No exceedances of applicable standards.
17	Terminal Oil	308 Central Viaduct	Impacted Soil & Groundwater
18	Cleveland Fire Station	310 Carnegie	No exceedances of applicable standards.
19	Gillota Fuel Products	206-300 Central Viaduct	Impacted Soil & Groundwater
20	Earl Lee	2394 Canal Road	Impacted Soil & Groundwater
21	White Properties	1996 West 3 rd Street	Potential USTs on Site
22	Nova Properties	West 4 th Street	Impacted Soil & Groundwater
23	NS Railroad Building	840 Minkon Lane	Impacted Soil
24	James Vincent	2515 Canal Road	Impacted Soil
27	Meridian Properties/ Independent Towel	1802 Central Avenue	Potential USTs on Site and Impacted Groundwater
29	BP Gas Station	2701 Chester Avenue	Impacted Groundwater
33	State Industrial Products	3100 Hamilton Avenue	Impacted Groundwater
34	Former Teledyne Metal Finishing	1725 East 27th Street	Impacted Groundwater
42	CB Realty	2975 Superior Avenue	No exceedances of applicable standards.
43	KNC Building	2635 Payne Avenue	No exceedances of applicable standards.

EXECUTIVE SUMMARY

	Pha	Table ES-1ase II Site Conclusion Sumr	nary
Site Number	Site	Address	Conclusion
45	Harold Moss, Trustee	1748 East 27th Street	No exceedances of applicable standards.
51	Temp Craft Plastics	3960 South Marginal Road	Impacted Soil & Groundwater
53	Cleveland Fire Academy	3101 Lakeside Avenue	No exceedances of applicable standards.
57	Charles Martin	3501 Croton Avenue	No exceedances of applicable standards.
59	Parking Lot	Central Viaduct	Impacted Groundwater

1.1 OBJECTIVE

The Cleveland Innerbelt Study has been undertaken by ODOT for the purpose of developing a strategy for the renewal of the transportation infrastructure in the I-71/I-90 corridor through downtown Cleveland. A Project Location Map is provided as **Figure 1-1**.

The pavements and structures comprising the existing Innerbelt through Cleveland are approaching the end of their service life. Further, the capacity of the existing Innerbelt is restricted by a series of interchanges and subsequent bottlenecks, which do not conform to current highway design standards, thereby contributing to traffic congestion, high accident rates, and traffic diversions through central city neighborhoods, which degrades the quality of life for Cleveland residents.

The objective of the Phase II ESA was to evaluate subsurface conditions relative to the current and former uses of the sites in the Project Area. The soil borings and monitoring wells were located in accessible areas of the site. The soil boring and monitoring well locations are depicted on Figures 6-1A through 6-24A. The Project Area, which is wholly located in the City of Cleveland, Cuyahoga County, spans approximately seven miles.

1.2 PROJECT DATES

The Phase I ESA was completed in December 2005. A Work Plan was developed and approved by ODOT in March 2006. The Phase II field activities began in July 2006. Analytical data review, the required Phase II determinations, and supporting documentation generated, were completed in December 2006. This report was finalized on December 31, 2006.

1.3 REPORT ORGANIZATION

This report is organized into eight sections, including this Introduction. Sections 2.0 and 3.0 describe the Project Area background and physical setting. Section 4.0 summarizes the field investigation conducted in support of this Phase II. Sections 5.0 and 6.0 provide summary and interpretation of the collected data and are presented also on a site-by-site basis. The Phase II conclusions are included in Section 7.0. Section 8.0 provides a list of references used in the preparation of this report.

2.1 SUMMARY OF PHASE I

The Environmental Site Assessment Screening and associated Phase I ESAs were conducted in accordance with the ODOT guidance. The Project Area encompasses commercial, industrial, institutional, municipal, and residential properties. The Screening process consisted of historical research, regulatory records review, and a Project Area reconnaissance. As a result of the Screening, the 33 properties listed below were recommended for Phase I ESAs.

9	Pha	Table 2-1 ase I ESA Summary	
Site Number	Site	Address	Rationale
2	Former Bauer Auto	3553 West 25th Street	LUST
	CENT	TRAL VIADUCT - NORTH	
11	Stripmatic	1501 Abbey Road	LUST
13	Former Glove Cleaning Service/Scranton Averell	2132-2150 West 15th Street	Historic Operations
14	Bojacks Meats	1425 University/2000 West 14 th Street	Property Take
15	Leon Rudnick	1402-1408 Abbey Road	Property Take
16	Wendell & Carroll Collins/1501 Companies	West 15th Street	Property Take
17	Terminal Oil	308 Central Viaduct	UST
18	Cleveland Fire Station	310 Carnegie	Property Take
19	Gillota Fuel Products	206-300 Central Viaduct	Property Take
20	Earl Lee	2394 Canal Road	Property Take
21	White Properties	1996 West 3rd Street	Property Take
22	Nova Properties	West 4th Street	Property Take
23	NS Railroad Building	840 Minkon Lane	Property Take
-24	James Vincent	2515 Canal Road	Property Take
	CEI	NTRAL INTERCHANGE	
27	Meridian Properties/Independent Towel	1802 Central Avenue	RCRA SQG, LUST
57	Charles Martin	3501 Croton	Property Take
58	JF Sanson	3561 Burwell	Property Take
<u></u>		TRENCH	
29	BP Gas Station	2701 Chester	UST

ì

	Pha	Table 2-1 ise I ESA Summary	
Site Number	Site	Address	Rationale
33	State Industrial Products/ Information Systems Building	3100 Hamilton	RCRA SQG, LUST, OH Spills, PCBs
34	Former Teledyne Metal Finishing	1725 East 27th Street	RCRA TSD
41	1400 East 30th Partners	1400 East 30th Street	Property Take
42	CB Realty	2975 Superior	Property Take
43	KNC Building	2635 Payne	Property Take
44	EJ Investments	2630 Payne	Property Take
45	Harold Moss, Trustee	1748 East 27th Street	Property Take
46	Tri Building	2728 Euclid	Property Take
47	GKC Limited	2729 Prospect	Property Take
48	Parkwood Corporation	2829 Euclid	Property Take
49	Julius Sorma	3004 St. Clair	Property Take
	1	NNERBELT CURVE	
50	Cleveland Mounted Police	1150 East 38th Street	Property Take
51	Temp Craft Plastics	3960 South Marginal	Manufacturing
52	Architectural Real Estate	3000 Lakeside	Property Take
53	Cleveland Fire Academy	3101 Lakeside	Property Take

The Phase I ESA process conducted for the above-referenced sites consisted of additional historic research, regulatory agency file reviews, a reconnaissance of each site, and property owner interviews. As a result of the Phase I ESAs, 23 sites were recommended for Phase II ESAs. The findings of the Phase I ESA are presented the URS *Environmental Site Assessment Screening and Phase I Environmental Site Assessment Report for the Innerbelt Study*, dated December 2005.

2.2 WORK PLAN

Per the ODOT Inter-Office Communication (IOC) dated December 13, 2005, 24 sites required further investigation via a Phase II ESA; therefore, a Work Plan was developed, which was approved by ODOT in March 2006.

In general, the Phase II ESA sites were selected because of known current or historic operations; known current or historic petroleum product and/or hazardous substance consumption, storage or use; or, the site is proposed for acquisition. To that end, the chemical parameters proposed for analysis were based on the notion that the sites fall into two categories; known petroleum product storage sites and other sites. In addition, based on conversations with ODOT Office of

SECTIONTWO

Environmental Services personnel, monitoring wells were proposed for all potential acquisition sites. A master listing of Phase II sites is presented in Table 2-2 below.

Per the ODOT IOC dated February 23, 2006, the following sites were not investigated via a Phase II ESA; Site #2 - Former Bauer Auto and Site #15 – Leon Rudnick. Plan Notes will be developed for these sites. Site 59 was added per the IOC. The ODOT IOC is provided in **Appendix A**.

		Table 2-2 Phase II Master List	
Site Number	Site	Address	Rationale
2	Former Bauer Auto	3553 West 25 th Street	LUST Site.
13	Former Glove Cleaning Service/Scranton Averell	2132-2150 West 15 th Street	LUST Site and Suspected Dumping.
14	Bojacks Meats	2000 W. 14 th /1425 University	UST Site and Chemical Use
15	Leon Rudnick	1402-1408 Abbey Road	Historic UST Site
16	Wendell & Carroll Collins/1501 Companies	West 15 th Street	Property Take
17	Terminal Oil	308 Central Viaduct	LUST Site, ASTs and Drum Storage.
18	Cleveland Fire Station	310 Carnegie	LUST Site.
19	Gillota Fuel Products	206-300 Central Viaduct	LUST and UST Site.
20	Earl Lee	2394 Canal Road	Historic UST Site and Chemical Use
21	White Properties	1996 West 3 rd Street	Historic UST Site.
22	Nova Properties	West 4 th Street	Historic UST and OHSPILLS Site, Asphalt Plant.
23	NS Railroad Building	840 Minkon Lane	Active UST Site and Waste Storage.
24	James Vincent	2515 Canal Road	Historic Operations
27	Meridian Properties/ Independent Towel	1802 Central Avenue	Historic UST and LUST Site.
29	BP Gas Station	2701 Chester Avenue	UST Site.
33	State Industrial Products	3100 Hamilton Avenue	OHSPILLS, LUST and UST Site.
34	Former Teledyne Metal Finishing	1725 East 27th Street	Historic UST and AST Site, Chemical Use.

SECTIONTWO

		Table 2-2 Phase II Master List	
Site Number	Site	Address	Rationale
42	CB Realty	2975 Superior Avenue	Historic UST Site.
43	KNC Building	2635 Payne Avenue	Historic UST Site.
45	Harold Moss, Trustee	1748 East 27th Street	Historic UST and Dump Site.
51	Temp Craft Plastics	3960 South Marginal Road	Historic UST Site and Chemical Use.
53	Cleveland Fire Academy	3101 Lakeside Avenue	Historic UST and AST Site.
57	Charles Martin	3501 Croton Avenue	Property Take
59	Parking Lot	Central Viaduct	Historic UST Site (per ODOT)

Descriptions of the physical setting across the Project Area are presented in this section. Information is provided regarding topography, surface water drainage, regional geology and hydrogeology, and geologic and hydrogeologic conditions encountered during the Phase II ESA activities.

3.1 TOPOGRAPHY AND DRAINAGE

According to the 1994 Cleveland North and Cleveland South, Ohio, USGS 7.5 Minute Series Quadrangle Map, the Project Area elevations vary from approximately 680 feet above mean sea level (msl) for the majority of the Corridor to approximately 560 feet above msl in the Industrial Valley (USGS).

In heavily urbanized areas, the flow of surface water is predominantly controlled by the facility's and/or municipality's stormwater system. Since several catch basins were observed at the Project Area sites, surface water collected in sewer lines beneath the various sites likely flows into the public combined sanitary and storm water sewer system.

3.2 GENERAL LAND USE

The Cleveland Innerbelt Study is located in a highly urbanized area. Land usage ranges from high density residential to predominantly industrial and commercial.

3.3 REGIONAL GEOLOGY

The Project Area is located in the Erie Lake Plain Physiographic Region of the Interior Low Plateau Physiographic Province in Ohio (Brockman). The Erie Lake Plain is characterized by ground surface that slopes gently toward Lake Erie and is dissected by re-entrant valleys, such as the Cuyahoga River Valley, draining northward to Lake Erie (Ford, 1987).

The Erie Lake Plain in this portion of Cleveland is underlain by subsurface soils consisting primarily of a considerable thickness of interbedded fine sand, silt, and clay deposits. The unconsolidated sediments are underlain by the Devonian-aged Ohio Shale Formation (ODNR, 1996a).

According to the Soil Survey of Cuyahoga County (USDA), the project area is classified as Urban Land. The Urban Land designation indicates that 80 percent of the surface is covered by manmade materials (e.g., buildings, concrete, and asphalt). The Erie Lake Plain in this portion of Cleveland is underlain by subsurface soils consisting primarily of Pleistocene to recent-aged sand and gravel. Surficial materials beneath the Property and vicinity likely consist of "made land" (e.g., fill material). The unconsolidated sediments are underlain by the Devonian-aged Ohio Shale Formation.

According to ODNR's Groundwater Pollution Potential Map of Cuyahoga County, the Project Area is located within an area of buried valley deposits. This area is characterized by thick deposits of sand and gravel that have been deposited in a former topographic low (a pre-glacial or

inter-glacial river valley) by glacial melt waters. Glacial till or recent alluvium often overlies that buried valley (ODNR, 1994).

3.4 REGIONAL HYDROGEOLOGY

Potable water for the area surrounding the Project Area is obtained from Lake Erie and distributed by the City of Cleveland. Based on the availability of municipally supplied potable water, groundwater resources in the area are not likely to be developed for future potable use.

According to ODNR's Groundwater Resources Map of Cuyahoga County, the Project Area is located in an area characterized by buried valley which contains 200 to 300 feet of fine sand, silt, and clay. Drilled wells yield meager supplies unless encountering thin, isolated sand and gravel lenses (ODNR, 1979). Lake Erie is north of the Project Area. Based upon the local topography of the area, groundwater flow in the vicinity of the Project Area is assumed to be to the north, toward Lake Erie.

A groundwater well is located approximately 1½ mile southeast of the Project Area. This well was advanced approximately 179 feet into the sand and gravel aquifer. The production for this well is reported as approximately 250 gallon per minute.

SECTIONFOUR

The objective of the Phase II ESA was to evaluate subsurface conditions relative to the current and former uses of the sites in the Project Area.

4.1 SITE RECONNAISSANCE

A site reconnaissance visit was conducted prior to initiating field activities. Site reconnaissance tasks included an assessment of proposed boring locations relative to potential obstructions and aboveground utilities, as well as an evaluation of these locations relative to site features (i.e. UST cavities, staining, etc.).

The location of each proposed boring or monitoring well was evaluated relative to subsurface and aboveground utilities. A minimum of two days before the start of boring activities, the Ohio Utilities Protection Service (OUPS) was contacted, by calling 800-362-2764 so that OUPS member utilities had the opportunity to mark their respective utility lines. Property owners were also interviewed concerning the locations of underground utilities, if possible.

The selected drilling subcontractor obtained and paid for all permits, applications, and other documents required by state and local authorities.

Following the completion of field activities, each site was restored as nearly as possible to its pre-construction condition. Unused or surplus materials, supplies, and waste material were removed from each sample location as the work is completed at that area. Stakes or flagging of monitoring wells, which were not located on concrete, remained near the monitoring wells for ease of locating during each sampling event.

A summary of proposed field activities is presented in Table 4-1, Proposed Phase II ESA Sampling.

4.2 SURFACE SOIL SAMPLING

Surface soil samples were collected at one site, as indicated in **Table 4-1**. The samples were collected from 0 to 2 feet below ground surface (bgs). The samples were collected via a sampling shovel, which was decontaminated between sample locations to minimize the potential for cross-contamination.

4.3 BOREHOLE AND MONITORING WELL INSTALLATION

Monitoring wells were installed in soil borings that were advanced using 4¹/₄-inch inner diameter (I.D.) hollow stem augers. During advancement of the soil boring, subsurface samples were continuously collected with a 2-foot long, 2-inch diameter split-spoon sampler in accordance with ASTM-D-1586 *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils*. Once sampling was initiated, the number of blows was recorded per six inches. The borings were advanced 5 to 10 feet into the first water-bearing zone encountered.

The split-spoon sampler was brought to the surface and opened. Soil samples were described in accordance with ASTM D-2488-90 Standard Practice for Description and Identification of Soils.

١

USCS group symbols were also used to describe soil samples. Special attention was given to zones where there was a high potential for contaminant transport (i.e., discoloration, silt zones). Information recorded included the borehole location, drilling information, sample description and sampling information such as sample intervals, recovery, and blow counts.

Once the soil boring was advanced to the terminal depth, monitoring well installation commenced. The monitoring well were installed in accordance with the Ohio Environmental Protection Agency's (OEPA) *Technical Guidance Manual for Hydrogeologic Investigations and Groundwater Monitoring Programs* and the *Technical Guidelines for Well Construction and Ground Water Protection* prepared by the State Coordinating Committee on Groundwater. The monitoring well was installed such that the screen intersected the top of the water-bearing unit so that seasonal water table fluctuations would not cause water levels to rise above or fall below the screened interval. The monitoring well was not be screened across more than one water-bearing unit.

The monitoring well casings consisted of 2-inch ID, Schedule 40, polyvinyl chloride (PVC) pipe with flush mount, threaded joints. The well screen consisted of a 10-foot section of 0.010-inch hermetically sealed, factory slotted screen, which would prevent 90 percent of the filter pack from entering the well. A flush threaded bottom plug was installed at the base of the screen as well. The annular space around the screened interval was filled with a 100 percent silica sand filter pack. The filter pack consisted of clean, sorted, well-rounded, acid-resistant, 100 percent silica sand that contains less than two percent flat particles. The filter pack was certified free of contaminants by the vendor. The filter pack consisted of Global # 7 sand, and extended at least two feet above the screened section within the borehole. The top of the sand pack was sounded to verify its depth during placement. Additional filter pack was placed as required to return the level of the pack to the top of the screen. The well was sounded until two feet of sand was measured above the top of the screen.

Once the sandpack was emplaced, a bentonite seal was installed to a minimum depth of two feet above the top of the sandpack and consisted of 100% sodium bentonite chips with a minimum dry bulk density of 70 pounds per cubic foot. The top of the seal was measured with a weighted tape to verify seal thickness. The remainder of the annulus was filled to the surface using a 100% sodium bentonite chips with a minimum dry bulk density of 70 pounds per cubic foot.

The monitoring well was completed with flush-mounted surface casings in paved areas and standpipes in unpaved areas. For the flush-mounts, a steel well vault cover was cemented in place over the well riser with a concrete pad at least two feet in diameter. The standpipes were also cemented in place with a concrete pad at least two feet in diameter. The monitoring well was secured as soon as possible after installation. A corrosion-resistant lock was placed on each monitoring well.

4.4 SOIL SAMPLING

Upon retrieval of the sampling barrel from the borehole, the lithology of the soils was recorded as described in the preceding sections. Then, a portion of the soil was placed into a resealable bag and allowed to volatilize for approximately 15 minutes. The remaining portions of the soil were placed into laboratory-provided sampling jars.

After approximately 15 minutes, the tip of a Photo Ionization Detector (PID) pierced the bag and the headspace of the bag was taken. This headspace screening reading was recorded. This procedure was conducted on all the intervals of soils as the soil borings advance, with the exception of soils below the saturated zone.

One soil sample per soil boring and/or monitoring well was submitted for laboratory analyses. This sample was selected based on the headspace screening readings; the sample exhibiting the highest reading was submitted. If no readings are apparent, visual or olfactory indications of contamination were used as a secondary basis for sample selection. If these were absent, the sample was collected from the interval above the saturated zone. In the event groundwater was not encountered, the sample from the terminal depth of the boring was submitted.

4.5 WELL DEVELOPMENT

)

Following completion of drilling, and no sooner than 24 hours after well installation, the monitoring well was developed by purging or bailing until the discharged water was relatively sediment free and the indicator parameters (pH, temperature, and specific conductance) reached stabilization criteria or until at least 6 well volumes were removed. Developing the well not only removes any sediment but also improves the hydraulic properties of the sand pack. Development procedures utilized are presented below:

- 1) The well was developed using decontaminated bailers or pumps. Care was taken not to introduce the equipment to contaminants during installation.
- 2) Well development commences and continues until a minimum of three well volumes were removed and stabilization criteria were achieved. After each well volume was removed, stabilization criteria and turbidity were measured. Stabilization was achieved when variation in temperature was within ±1°C, pH was within ±0.1 units and electrical conductivity (EC) was within ±5 percent over at least three successive well volumes.
- 3) All measurements, the volume of water removed, and the discharge water color were recorded.

4.6 GROUNDWATER ELEVATION MEASUREMENT

Prior to sampling monitoring wells, the groundwater elevations were collected from all wells in the monitoring well network at each site within one calendar day. Measurements were taken after the well has been installed, developed, and the water level had recovered completely. After removal of the well cap, the well was allowed to equilibrate prior to groundwater level measurements.

The thickness of any phase-separated hydrocarbon in the monitoring well was measured with an electronic interface probe. Groundwater levels were measured from the notch located at the top of the well casing to the nearest 0.01-foot. The static water level was measured each time the

well was sampled, before any sampling equipment enters a well. The water levels were recorded for each well.

4.7 SURVEY

URS utilized an area-wide survey of the innerbelt project that was conducted by the URS-Akron office. The Phase II sites were referenced into the survey and no site-specific survey data was collected for the Phase II inspections.

All surveying locations were reported as the distance in feet. The elevation of monitoring wells was surveyed comparative to ground surface elevation.

4.8 GROUNDWATER SAMPLING

Groundwater samples were collected using a submersible pump with a modified low flow (500 ml). When numerous monitoring wells were to be sampled in succession, those wells expected to have low levels of contamination or no contamination were sampled prior to those wells expected to have higher levels of contamination. This practice helps reduce the potential for cross contamination between wells. All sampling data was recorded.

The temperature, pH, EC, and turbidity of the purged water was measured and recorded. The sample was collected after the above parameters had stabilized. Stabilization was defined as three consecutive measurements of the parameters measured within these ranges: temperature (\pm 2°C), pH (\pm 0.1 SU), electrical conductivity (\pm 3 percent), and turbidity within 10 percent. Although turbidity readings should be at 10 NTUs or lower at the completion of purging, a maximum of six well volumes was purged prior to collecting the sample.

4.9 SAMPLING HANDLING

Samples were not be numbered contiguously for the Project; but contiguously for each Site. For example, a soil sample was identified by the Site Number, whether it came from a surface sample (SS), soil boring (SB), or monitoring well (MW), the number of that location, and the depth. Sample 57-MW2-0002 indicates the sample was collected at Site 57, Monitoring Well #2, from 0 to 2 feet bgs. A groundwater sample was identified by the Site Number, the monitoring well number and the date collected. Sample 57-MW2-021506 indicates the sample was collected at Site 57, Monitoring Well #2, on February 15, 2006.

Samples collected for quality assurance/quality control purposes were labeled as such. Field duplicates/replicates were labeled as described in the previous paragraph; however, a D was added to the end of the sample identification. Sample 57-MW2-0002D indicates the sample was collected at Site 57, Monitoring Well #2, from 0 to 2 feet bgs and was a duplicate sample.

Matrix spikes/matrix spike duplicates were labeled as described in the previous paragraph; however, a MS/MSD was added to the end of the sample identification. Sample 57-MW2-021506MS/MSD indicates the sample was collected at Site 57, Monitoring Well #2, on February 15, 2006 and was a matrix spike/matrix spike duplicate sample.

Trip blanks and equipment blanks were labeled as such and also referenced the date collected. Field Blank 021306 indicates a field blank was collected on February 13, 2006.

Immediately after the samples were labeled for off-site laboratory analysis, each sample bottle was sealed in a plastic bag and wrapped with shock-absorbent materials, such as bubble wrap, to prevent movement of sample containers during transport. Then, the samples were placed in a sturdy ice chest (cooler). The cooler was packed with resealable double-bagged ice packs and sealed with packaging tape.

The chain-of-custody sample log sheet(s) were filled out in indelible ink, placed in a resealable plastic bag, and taped to the inside lid of the cooler. Each sample contained in the cooler was specified on the chain-of-custody records by the sampling identification number. Sample containers were packaged to minimize potential breakage and to comply with Department of Transportation (DOT) requirements.

4.10 SAMPLE ANALYSIS

The soils from sites with a history of petroleum product consumption, storage or use were analyzed for some and/or all of the following: volatile organic compounds (VOCs) via EPA Method SW-846 8260, semivolatile organic compounds (SVOCs) via EPA Method SW-846 8270, polyaromatic hydrocarbons (PAHs) via EPA Method SW-836 8310, total petroleum hydrocarbons (TPH) gasoline range organics (GRO) and diesel range organics (DRO) via EPA Method SW-846 8015, cyanide via EPA Method SW-846 9010/9012 and/or Resource Conservation and Recovery Act (RCRA) Metals via EPA Method SW-846 6010 and 7071.

The soils from sites without this history were analyzed for VOCs via EPA Method SW-846 8260, SVOCs via EPA Method SW-846 8270, PAHs via EPA Method SW-846 8310, cyanide via EPA Method SW-846 9010/9012 and/or RCRA Metals via EPA Methods SW-846 6010 and 7071.

The groundwater samples were analyzed for VOCs via EPA Method SW-846 8260, SVOCs via EPA Method SW-846 8270, PAHs via EPA Method SW-846 8310, and/or RCRA Metals via EPA Methods SW-846 6010 and 7071.

These analyses are further detailed in Table 4-1.

4.11 QUALITY ASSURANCE/QUALITY CONTROL

With the exception of the water level indicator and the interface probe, field instruments were calibrated at least once per day at the beginning of the day's activities.

Precision, accuracy, and potential contamination were measured in the field through the use of Equipment Blanks (drilling equipment only), Field Duplicates/Replicates, and Matrix Spike/Matrix Spike Duplicates. Equipment Blanks and Matrix Spike/Matrix Spike Duplicates were collected at the rate of one per 20 samples. Field Duplicates/Replicates were collected at the rate of one per 20 samples. Trip blanks were submitted daily; each cooler containing soil or groundwater samples for VOCs analysis had a trip blank.

4.12 FIELD LOGS

During the advancement of the borings and monitoring wells, observations regarding lithology, potential contamination, headspace screening readings, and other pertinent information were recorded using electronic logging software. The units were downloaded at the end of each field day at the URS office in Cleveland, Ohio.

4.13 DECONTAMINATION PROCEDURES

All equipment that directly or indirectly contacts samples was decontaminated before and after each use. Decontamination consisted of varying combinations of high-pressure hot water rinse, Liquinox[®] or Alconox[®] wash, and potable water rinse. Decontamination water was contained in 55-gallon drums and disposed properly, as discussed in Section 4.14.

Drilling, sampling, monitoring well installation and other equipment was decontaminated using the following procedures:

- Drill rig augers, drill rods, bits, etc. were steam cleaned before use and between borings.
- Soil and shallow groundwater sampling equipment was cleaned with an Alconox[®] or Liquinox[®] and potable water solution and rinsed with potable water.
- Electronic water level sounders and water quality probes were cleaned with an Alconox[®] or Liquinox[®] and potable water solution and rinsed with potable water.

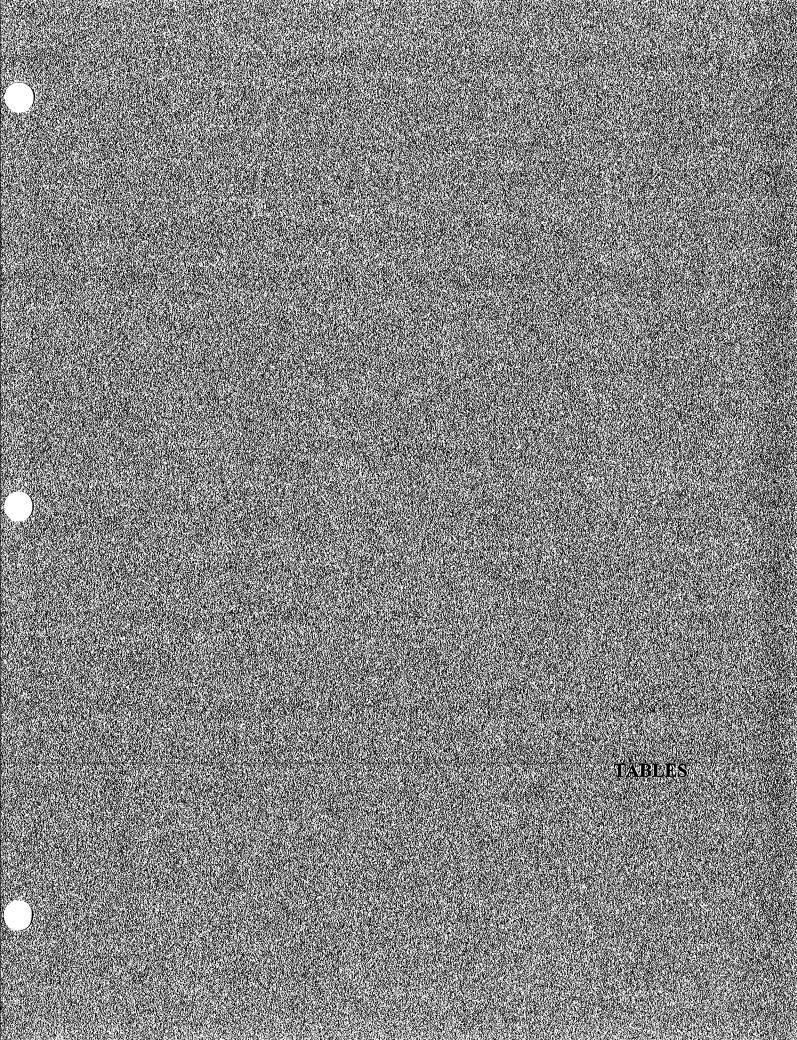
The following procedures were used to decontaminate large pieces of equipment, such as casings, auger flights, pipe and rods. The external surfaces of equipment were washed with high-pressure hot water and Liquinox[®], or equivalent laboratory-grade detergent, and if necessary, scrubbed until all visible dirt, grime, grease, oil, loose paint and/or rust flakes had been removed. The equipment was then be rinsed with potable water. The inside surfaces of casing, drill rod, and auger flights were also washed as described.

The following procedure was used to decontaminate sampling and drilling devices, such as split spoons, bailers, and augers, which could be hand-manipulated. For sampling and smaller drilling devices, the equipment was scrubbed with a solution of potable water and Liquinox[®], or equivalent laboratory-grade detergent, and rinsed with potable water.

4.14 WASTE HANDLING AND DISPOSAL

Soil cuttings generated from boring installation and water generated from well development and purging were contained separately in 55-gallon drums. Decontamination water also was containerized in 55-gallon drums. The drums were labeled using a paint pen with date, project, boring or well designation, and type of waste (i.e., soil cuttings, purge water). In addition, non-hazardous drum labels were completed and affixed to each drum. All drums were staged in a selected location on each site. Disposal options were presented to ODOT following receipt of laboratory results.

Based on the analytical data received and the results of this assessment, soil and groundwater required special management. On November 13 through November 15, 2006, Enviroserve, of Cleveland, Ohio, removed 145 55-gallon drums containing the materials for off-site disposal. Copies of the disposal documentation are provided in Appendix C.


4.15 GEOPHYSICAL SURVEY

In addition to subsurface investigations, a magnetometer survey was determined to be the most applicable geophysical survey technique for the Project. It is assumed that abandoned or orphaned USTs associated with these Sites likely were constructed of steel. The magnetometer survey relies on the ability of the equipment to detect a contrast in the magnetic properties of the target (in this case the steel USTs) and the surrounding soil. This contrast would be present if a UST constructed of ferrous (iron-containing) material were present. The magnetometer is insensitive to the fiberglass material used in present day petroleum USTs.

The survey was conducted using a Geometrics G-858 magnetometer operated with a two vertically oriented magnetometer sensors to collect gradient data. In this configuration, the magnetometer is capable of detecting small ferrous targets, such as a single drum to a depth of 18 feet or a UST at greater depths. Measurements were collected at 1.5-second intervals as the operator walks along parallel survey lines spaced 5-foot on center. Following completion of the survey, the data was transferred to a computer file for reduction.

Data reduction was conducted using software developed by Geometrics. The reduced data was plotted using color to denote areas of high and low magnetic gradients. Areas of high gradient would lie directly over ferrous objects. The color gradient plots then were compared to a site plan and field notes in an effort to correlate observed surface features to areas of high magnetic gradient.

The geophysical survey sites are identified on Table 4-1.

Table 4-1 ODOT – Cleveland Innerbelt Study Proposed Phase II ESA Sampling

)

Site	Site	Address	Geophysical Survey	Surface Soils	Monitoring Wells	Samples/Analyses
2	Former Bauer Auto	3553 West 25 th Street	N/A	0	0	PLAN NOTE
13	Former Glove Cleaning Service/Scranton Averell	2132-2150 West 15 th Street	Yes	0	Ľ	7 soil samples;1 per boring/VOCs, and SVOCs 7 groundwater samples/VOCs and SVOCs
14	Bojacks Meats	2000 W. 14 th /1425 University	Yes	0	6	6 soil samples;1 per boring/VOCs, SVOCs, TPH, and Cyanide 6 groundwater samples/VOCs, SVOCs and Cyanide
15	Leon Rudnick	1402-1408 Abbey Road	Yes	0	0	PLAN NOTE
16	Wendell & Carroll Collins/1501 Companies	West 15 th Street	N/A	0	4	4 soil samples; 1 per boring/VOCs, SVOCs and RCRA Metals 4 groundwater samples/VOCs, SVOCs and RCRA Metals
17	Terminal Oil	308 Central Viaduct	Yes	0	4	4 soil samples; 1 per boring/VOCs, PAHs and TPH 4 groundwater samples/VOCs and PAHs
18	Cleveland Fire Station	310 Carnegie	Yes	0	ω	3 soil samples;1 per boring/VOCs, PAHs and TPH 3 groundwater samples/VOCs and PAHs
19	Gillota Fuel Products	206-300 Central Viaduct	Yes	0	m	3 soil samples;1 per boring/VOCs, PAHs and TPH 3 groundwater samples/VOCs and PAHs
20	Earl Lee	2394 Canal Road	N/A	0	4	4 soil samples;1 per boring/VOCs, SVOCs, TPH, and RCRA Metals4 groundwater samples/VOCs, SVOCs and RCRA Metals

Tabie ← 1 ODOT – Cleveland Innerbelt Study Proposed Phase II ESA Sampling

)

Site	Sile	Address	Geophysical Survey	Surface Soils	Monitoring	Samples/Analyses
21	White Properties	1996 West 3 rd Street	Yes	0	4	4 soil samples;1 per boring/VOCs, SVOCs, TPH, and RCRA Metals4 groundwater samples/VOCs, SVOCs and RCRA Metals
22	Nova Properties	West 4 th Street	Yes	0	Ś	 5 soil samples;1 per boring/VOCs, SVOCs, TPH, and RCRA Metals 5 groundwater samples/VOCs, SVOCs and RCRA Metals
23	NS Railroad Building	840 Minkon Lane	Yes	9	4	 6 surface soil samples/VOCs, SVOCs, TPH, and RCRA Metals 4 soil samples; 1 per boring/VOCs, SVOCs, TPH, and RCRA Metals 4 groundwater samples/VOCs, SVOCs and RCRA Metals
24	James Vincent	2515 Canal Road	N/A	0	ĸ	3 soil samples;1 per boring/VOCs and SVOCs3 groundwater samples/VOCs and SVOCs
27	Meridian Properties/ Independent Towel	1802 Central Avenue	Yes	0	4	4 soil samples;1 per boring/VOCs, SVOCs, TPH, and RCRA Metals4 groundwater samples/VOCs, SVOCs and RCRA Metals
29	BP Gas Station	2701 Chester Avenue	N/A	0	4	4 soil samples;1 per boring/VOCs, PAHs and TPH 4 groundwater samples/VOCs and PAHs
33	State Industrial Products	3100 Hamilton Avenue	Yes	0	10	10 soil samples;1 per boring/VOCs, SVOCs, TPH, and RCRA Metals (TCL/TAL)10 groundwater samples/VOCs, SVOCs and RCRA Metals (TCL/TAL)

1

Table 4-1 ODOT – Cleveland Innerbelt Study Proposed Phase II ESA Sampling

)

Site	Site	Address	Geophysical Survey	Surface Soils	Surface Monitoring Soils Wells	Samples/Analyses
34	Former Teledyne Metal Finishing	1725 East 27th Street	No	0	ŝ	3 soil samples;1 per boring/VOCs, SVOCs, TPH, and RCRA Metals3 groundwater samples/VOCs, SVOCs and RCRA Metals
42	CB Realty	2975 Superior Avenue	N/A	0	c,	3 soil samples; 1 per boring/VOCs, SVOCs, TPH, and RCRA Metals3 groundwater samples/VOCs, SVOCs and RCRA Metals
43	KNC Building	2635 Payne Avenue	Yes	0	3	3 soil samples;1 per boring/VOCs, PAHs and TPH 3 groundwater samples/VOCs and PAHs
45	Harold Moss, Trustee	1748 East 27th Street	Yes	0	3	3 soil samples;1 per boring/VOCs, PAHs, TPH, and RCRA Metals 3 groundwater samples/VOCs, PAHs and RCRA Metals
51	Temp Craft Plastics	3960 South Marginal Road	N/A	0	4	4 soil samples; I per boring/VOCs and SVOCs4 groundwater samples/VOCs and SVOCs
53	Cleveland Fire Academy	3101 Lakeside Avenue	N/A	0	4	4 soil samples;1 per boring/VOCs, SVOCs, TPH, and RCRA Metals4 groundwater samples/VOCs, SVOCs and RCRA Metals
57	Charles Martin	3501 Croton Avenue	N/A	0	3	3 soil samples;1 per boring/VOCs and SVOCs 3 groundwater samples/VOCs and SVOCs
59	Parking Lot	Central Viaduct	Yes	0	3	3 soil samples;1 per boring/VOCs, SVOCs and TPH 3 groundwater samples/VOCs and SVOCs

SECTIONFIVE

5.1 DATA REVIEW AND LABORATORY CERTIFICATION DOCUMENTATION

All data generated by the analytical laboratory was reviewed by a URS chemist to evaluate and document data quality. A standard review includes assessment of supporting quality control (QC) parameters such as laboratory blank results, laboratory control sample recoveries, and other batch QC results, as well as detection limits, holding times, and information provided in the report narrative. A standard review does not include reconstruction of the analytical data.

The complete data assessment reports for each site, listing all data qualifications, are included in **Appendix B**. **Appendix B** also contains a compact disc (CD) of all the analytical data results, as reported by the laboratory and qualified by the data reviewer. All data was considered usable for decision making purposes.

SECTIONSIX

This section of the Phase II describes the analytical results of the sampling conducted during the previously-described field activities. These results are also interpreted and summarized to provide characterization of the Property for subsequent use in quantifying risk and, if needed, determining where remediation is required.

SECTIONSIX

6.2 SITE 13 – FORMER GLOVE CLEANING SERVICE/SCANTON AVERELL

According to the Cleveland City Directories, the site was listed as Glove Cleaning Service Company in the 1954 through 1984 Directories. The site was identified as a LUST site in the EDR Report.

According to the Cleveland Fire Prevention Bureau files, the site was occupied by the Glove Cleaning Service Company (2130), Eyre Glove Cleaners (2140) and Indu-Sol Products Inc. (2150) in 1941. An entry in 1947 indicates a 500 to 700-gallon AST of solvent was to be installed at the 2130 West 15th Street address. A Fire Inspection Report, dated August 1952, indicates there were four USTs located at the 2130 site; however, the contents and quantities were not provided. A 3,000-gallon UST, which contained #4 fuel oil, was installed at the 2150 site in May 1951. A complaint was received at the Bureau on October 20, 1970; the Glove Cleaning Service Company reportedly was dumping Stoddard solvent in a vacant lot next to 2149 West 15th Street.

An application for UST removal was submitted on April 22, 1994. A 500-gallon UST, which contained dry cleaning fluid, was to be removed under the supervision of the Bureau. The UST reportedly was located north of the building. An NFA letter, dated January 30, 1996, was received for the incident. An application for UST removal was submitted on April 29, 1998. Two 4,000-gallon USTs, which contained heating oil, were to be removed under the supervision of the Bureau. The USTs reportedly were located to the west of the building. The USTs were removed by Cuyahoga Landmark. There was no further information regarding this closure in the file. An application for UST removal was submitted; however, the date was not provided. One 500-gallon kerosene and two 1,000-gallon cleaning fluid USTs were slated to be removed. The associated permit was dated February 10, 1999. All three USTs reportedly were located north of the building.

According to the BUSTR files, in August 1998, two 1,000-gallon cleaning fluid USTs and one 550-gallon kerosene UST were removed from the property. In the most recent correspondence, BUSTR sent a letter dated November 2001 requesting a Closure Assessment Report. Reportedly, no action has been taken by Scranton Averell, Inc. regarding this request.

According to the BUSTR files, a Closure Assessment for the removal of four 5,000-gallon USTs was submitted in October 2005. A Deficiency Letter was issued by BUSTR for the Closure on October 21, 2005. Scranton Averell indicated the USTs were not owned or operated by the company.

At the time of the URS Phase I reconnaissance, the site was occupied by TIG Products. A large concrete block building was observed in the central portion of the site. A gravel-covered area is located between this site and the adjacent Stripmatic site. Surface staining was observed on the site. No stressed vegetation and/or the storage or handling of hazardous materials was observed on the site.

6.2.1 Field Activities

A total of seven monitoring wells were proposed for Site 13. Groundwater was encountered in only one soil boring (MW02) during field activities; therefore, only one well was installed. A total of six soil borings (SB01, SB03 through SB07) were installed at Site 13. At the time of groundwater sampling, MW02 was dry and no groundwater sample could be obtained. One soil sample per boring was collected and analyzed for VOCs and SVOCs. A duplicate sample was collected from 13-SB01-1820. A Sample Location Map is included as Figure 6-2A.

6.2.2 Site-Specific Geology/Hydrogeology

The soils at Site 13 consisted primarily of sand with minor amounts of silty clay. Bedrock was not encountered in any of the soil borings, which were advanced to 30 feet bgs.

Groundwater elevations were measured at Site 13 on September 24, 2006. The monitoring well (MW02) was dry. Localized groundwater flow across Site 13 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 13 is likely to the south-southwest.

6.2.3 Geophysical Survey

URS conducted a geophysical survey at Site 13 in July 2006. The purpose of the survey was to locate, if present, any abandoned underground storage tanks (USTs).

The geophysical survey of Site 13 included the area west of the building to edge of a ravine, the partially paved area between the building and West 15th Street to the east, and portions of the neighboring property to the north. The presence of debris and equipment to the west of the building hindered establishment of a consistent survey grid. In addition, the presence of metallic sludge (reported by the current property owner) within the soil limited the sensitivity of the gradiometer. The survey transects were spaced five feet apart to provide adequate precession for the purpose of locating a small steel UST.

The survey identified three areas with anomalously high magnetic gradients. These areas are shown on **Figure 6-2B** as anomalies A, B and C as described below:

- A. A linear magnetic anomaly was observed parallel to the front of the building along West 15 th Street. This anomaly is likely the result of utilities and not related to a UST.
- B. Several broad areas of high magnetic gradients were detected to the rear of the property. Based on conversations with the property owner, these high gradients are likely related to buried metal and/or buried metallic sludge related to a former machine shop at this location. The presence of such materials would reduce the effectiveness of the geophysical survey.
- C. A single magnetic anomaly was observed north of the property that may represent a buried metallic object. This location was beyond the study area.

SECTIONSIX

The results of this survey do not support the presence of a steel UST at Site 13. No further investigation is recommended to attempt to locate the UST.

6.2.4 Soil Analytical Results

No VOCs were detected in the soil samples submitted from Site 13.

A total of eleven SVOCs were detected in two (13-SB-1820D and 13-SB07-0608) of the eight soil samples submitted from Site 13. Concentration of anthracene (14 ug/kg), benzo(a)anthracene (15 ug/kg and 56 ug/kg), benzo(a)pyrene (16 ug/kg and 57 ug/kg), benzo(b)fluoranthene (21 ug/kg and 69 ug/kg), benzo(g,h,i)perylene (31 ug/kg), benzo(k)fluoranthene (29 ug/kg), chrysene (17 ug/kg and 64 ug/kg), fluoranthene (25 ug/kg and 120 ug/kg), indeno(1,2,3)pyrene (29 ug/kg), phenanthrene (67 ug/kg), and pyrene (22 ug/kg and 94 ug/kg) were detected in the soil samples submitted. All other SVOCs were below the detection limits.

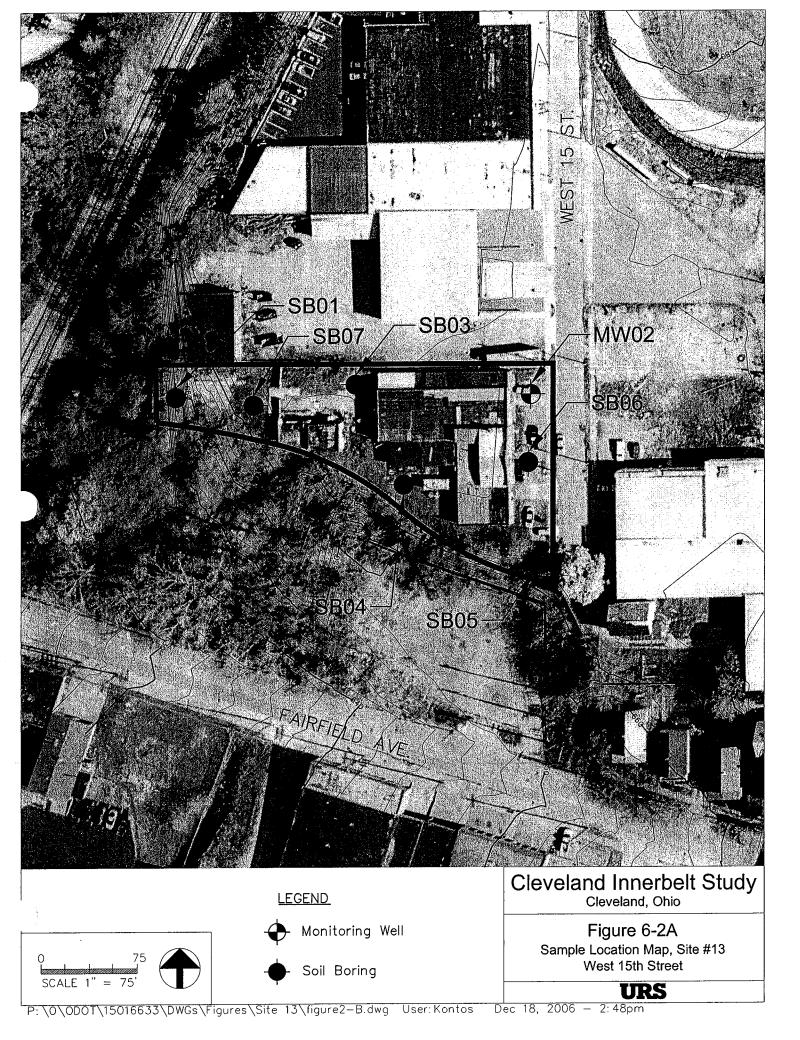
The analytical results are presented in Table 6-2A.

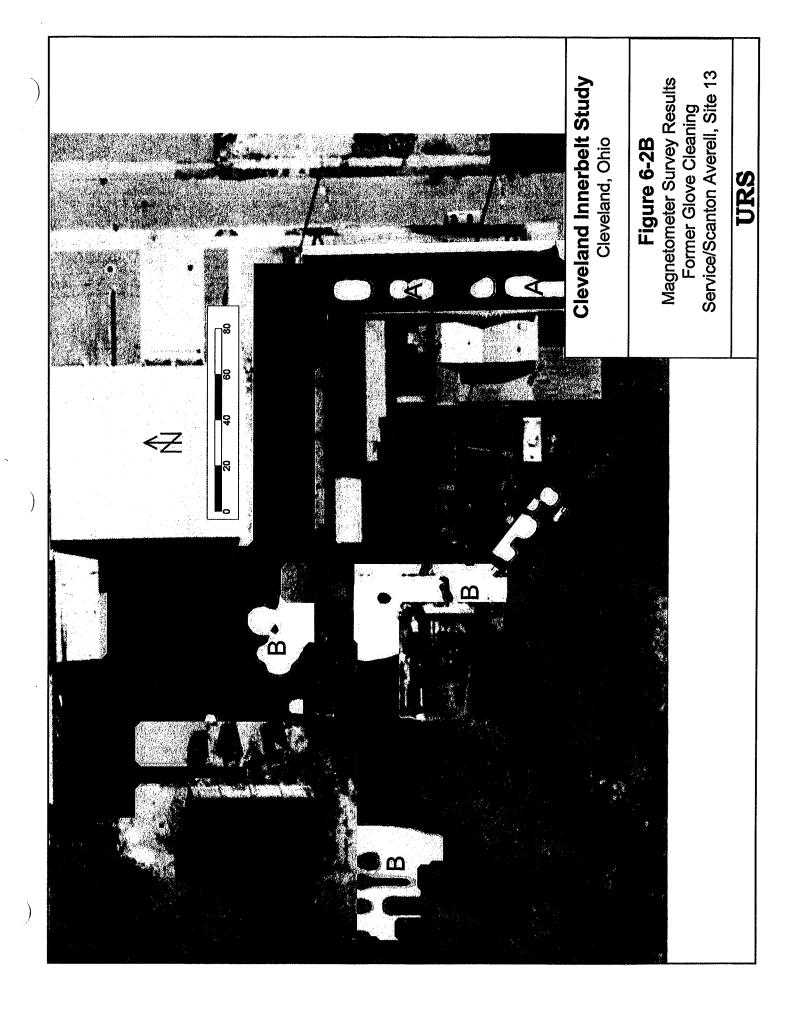
6.2.5 Groundwater Analytical Results

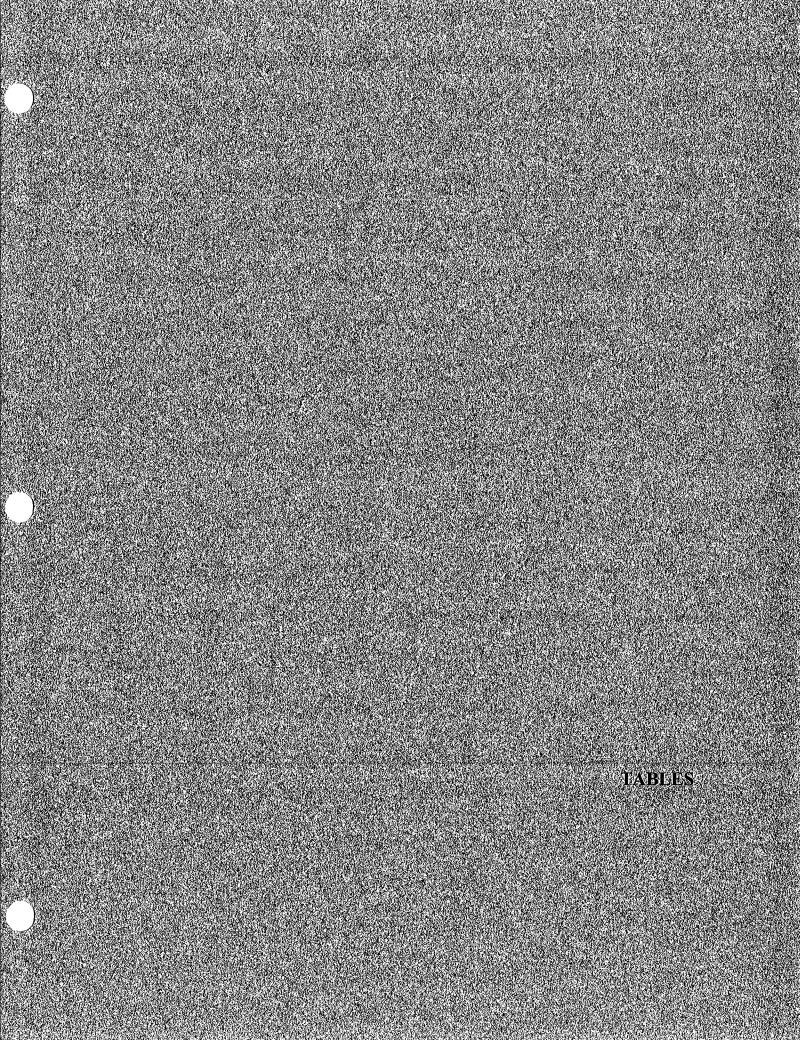
No groundwater was encountered in MW02.

6.2.6 Comparison Standards

The analytical results were compared to the Ohio Environmental Protection Agency's (OEPAs) VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), and the Bureau of Underground Storage Tank Regulations (BUSTR) Closure Action Levels for Class 1 soils. The VAP and BUSTR standards are included on Table 6-2A.


No VOCs were detected in the soil samples submitted from Site 13.


None of the eleven SVOCs detected in the soils at Site 13 exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, and/or BUSTR closure action levels.


6.2.7 Conclusions

Based on the analytical results, it is unlikely that the soils at Site 13 would require special management during construction.

FIGURES

)

)

	PARAMETER	UNITS	VAP Commercial/ Construction Productrial Standard ^O Standard ^O	VAP :	BUSTR Closure Action Level	13-MW02-1214 08/09/2006	13-SB01-1820 08/07/2006	13-SB01-1820D 08/07/2006	13-SB03-1416 08/09/2006	13-SB04-2022 08/08/2006	13-SB05-1416 08/08/2006	13-SB06-2628 08/09/2006	13-SB07-0608 08/08/2006
	Anthracene	ug/kg	880,000,000	1,000,000,000	1	350 U	360 U	380 U	350 U	350 U	360 U	340 U	14 J
	Benzo(a)anthracene	ng/kg	63,000	810,000	11,000	350 U	360 U	15 J	350 U	350 U	360 U	340 U	56 J
	Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	350 U	360 U	16 J	350 U	350 U	360 U	340 U	57 J
	Benzo(b)fluoranthene	ug/kg	63,000	810,000	11,000	350 U	360 U	21 J	350 U	350 U	360 U	340 U	Г 69
s O	Benzo(ghi)perylene	ug/kg		-	1	350 U	360 U	380 U	350 U	350 U	360 U	340 U	31 J
٥٨	Benzo(k)fluoranthene	ug/kg	630,000		110,000	350 U	360 U	380 U	350 U	350 U	360 U	340 U	29 J
S	Chrysene	ug/kg			1,100,000	350 U	360 U	17 J	350 U	350 U	360 U	340 U	64 J
	Fluoranthene	ug/kg	33,000,000	170,000,000	1	350 U	360 U	25 J	350 U	350 U	360 U	340 U	120 J
	Indeno(1,2,3-cd)pyrene	ug/kg	67,000	410,000	11,000	350 U	360 U	380 U	350 U	350 U	360 U	340 U	L 92
	Phenanthrene	ug/kg		1	1	350 U	360 U	380 U	350 U	350 U	360 U	340 U	67 J
	Pyrene	ug/kg	25,000,000	130,000,000	1	350 U	360 U	22 J	350 U	350 U	360 U	340 U	94 J
	= Standard not available												

-- = Standard not available U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit. J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were

VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use
 VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

Project: ODOT - Innerbelt Corridor Project Location: Site 13 Project Number: 15016633

)

Log of Boring 13-MW02

Date(s) 8/9/06	Logged J. Kaminski	Checked
Drilled 8/9/06	By	By M. Wolff
Drilling Method & Hollow Stem Auger	Hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data 140# auto hammer	of Borehole 24.0' bgs
Drill Rig LC-60	Drilling	Approximate
Type LC-60	Contractor HAD, Inc.	Ground Elevation 678'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well

	, o feet	Type Number	Sampling Resistance Blows/6"	ery,		Бо <mark>-</mark>		1	atic n	
	-		San Res Blov	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION		Installation Schematic	FIELD NOTES AND WELL DETAILS
		0002	4	19.0	0.5		Loose, dry, black, SAND with gravel, with coal refuse, with Slag Loose, dry, light brown, coarse SAND	4.4.4.4	0.0.0.0.Q	Begin Drilling on 8/9/06
-675	-	0204	1	12.0	0.1					
	5-	0406	1	10.0	0.8		←Trace fine to medium gravel	، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، 		
070	-	0608	WOH	18.0	0.3		r Moist, medium SAND			— 2" Schedule 40 PVC
-670	-	0810	1 2 2 2	10.0	0.6		← Trace coarse sand			⊫Bentonite Pellets
	10— -	1012	2	12.0	0.3		r-Dry, coarse SAND trace fine gravel			Sample submitted for lab
-665	-	1214	2	14.0	1.5					analysis 13-MW02-1214 ₩ Filter Sand #7
	- 15	1416	1	13.0	0.5		-			
	-	1618	1 2 3 5	13.0	0.5		Dense, moist, brown, fine silty SAND			
-660		1820	2 3 5 5	20.0	NA		← Saturated			— Slotted Pipe #10
2	20	2022	1	20.0	NA		Loose, moist, brown, coarse SAND			– Siolied Pipe #10 PVC (0.010)
-655	-						Augered down to 24' bgs			
2	- 25- -					-	End of Boring at 24' bgs Installed Monitoring Well			End Drilling on 8/9/06
-650	-							-		
;	30	·					URS	1		

Log of Boring 13-SB01

Date(s) Drilled 8/7/06 and Installed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0' bgs
Sampling 2" Split Spoon Method	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 650'
Drill Rig Type: LC-60	Groundwater Level(s) Not encountered	Hammer Data 140# auto hammer
Boring Location: See Site Map	Borehole Backfill bentonite	

			SAM	PLES				
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
-650	0		1 3 3	12.0	34.4		Dense, dry, black, fine and coarse SAND with gravel	Begin drilling on 8/7/06
	2-	0002	3 1 1	12.0			Loose, dry, light brown, fine to medium SAND with, gravel	
	4-	0204	1 2 1	8.0	41.8		-	
	-	0406	1 2 1 2	5.0	47.1		-	
	6	0608	1 5 6 3	16.0	47.3		Loose, moist, gray, coarse SAND with fine gravel	
	8	0810	6 9 10	24.0	50.4	-177	Stiff, moist, brown, silty CLAY	
640	10 <u>-</u> 	1012	5 3 7 8 8	16.0	50.9		-Dry	
	12	1214	8 4 7 9 8	20.0	45.2		- Medium SAND trace gravel -	
	14-	1416	0 3 4 3 2	22.0	275		r No gravel	
	16	1618	2 1 3 2 2	22.0	>99999		Soft, wet, brown, silty CLAY	
	18-	1820	2 3 7 6	20.0	>99999		- ←Coarse SAND	Sample submitted for la analysis 13-SB01-1820
630	20- -	2022	3 7 6	20.0	89		←Fine to medium SAND	
	22-	2224	6 3 5 8 8	22.0	29.3			
	24	2426	8 34 66	22.0	43.4		-	
	26- -	2628	6 4 4 6	20.0	41.1			
	28- 	2830	4 3 6 7	22.0	27		-	
620	30-		6		· · · · · · ·	<u> 85654</u>	End of Boring at 30' bgs	End drilling on 8/7/06
	32						-	0/7/00
	34-						-	
							URS	

)

Log of Boring 13-SB03

Date(s) Dr and Install		Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method	Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth of Borehole 30.0' bgs
Sampling Method	2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 678'
Drill Rig Type:	LC-60	Groundwater Level(s) Not encountered	Hammer 140# auto hammer Data
Boring Location:	See Site Map	Borehole Backfill bentonite	

			SAM	PLES		1		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
	0	0002	4 4 2 2	27.0	0.0		Dense, dry, black, fine silty SAND with gravel Medium dense, dry, brown, medium to coarse SAND trace fine gravel	Begin drilling on 8/9/06
	2	0204	1 1 1	12.0	1.0		-	
	4-	0406	2 1 2 2 3	13.0	1.2		-Loose	
	6	0608	2	20.0	0.3	-T <i>V</i> /	Stiff, moist, brown, silty CLAY	
670	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0810	3 1 3 4	12.0	0.4		Loose, dry, brown, fine SAND Coarse SAND	
	10	1012	5 3 3 3	19.0	1.3		r Moist	
	12- -	1214	4 3 8 8 13	19.0	1.3		- - Dry	
	14-	1416	13 5 7 3	22.0	2.3		-	Sample submitted for laboratory analysis 13-SB03-1416
	16- _	1618	1 1 3 4	18.0	0.7		-	19-5005-1410
660	18-	1820	7 1 4 6	19.0	1.6		- -	
	20	2022	10 2 5 4	18.0	1.0		-	
	22-	2224	8 1 4 6	20.0	1.0		-	
	24-	2426	7 5 4 7	24.0	0.6		r Moist, fine SAND -	
	26	2628	7 3 4 6	18.0	0.4		r Dry, fine to medium SAND	•
650	28- -	2830	7 2 5 6 5	20.0	0.0		-	
	30						End of Boring at 30' bgs	End drilling on 8/9/06
	32							
	34- _						URS	

Log of Boring 13-SB04

Date(s) Drilled 8/7/06 and Installed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling	Drilling	Total Depth
Method Hollow Stem Auger	Contractor HAD, Inc.	of Borehole 30.0' bgs
Sampling 2'' Split Spoon	Drill Bit	Approximete
Method	Size/Type: 4-1/4" ID HSA	Surface Elevation 679'
Drill Rig	Groundwater	Hammer
Type: LC-60	Level(s) Not encountered	Data 140# auto hammer
Boring Location: See Site Map	Borehole Backfill bentonite	

			SAMF	PLES				
Elevation feet	Depth, feet	l ype Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
	0-4 - -	0002	2 5 4 4	17.0	12.4		Dense, dry, black, SAND with gravel, with silt	Begin drilling on 8/7/06
	2 - -	0204	1 1 1 1	7.0	13.4		Loose, dry, brown, fine to coarse SAND with gravel	
	4	0406	1 2 2 2	12.0	13.0		rCoarse SAND	
	6 	0608	2 3 3 3	12.0	15.3		r-Moist, fine to medium SAND no gravel	-
-670	8 10	0810	1 2 1 1	10.0	15			-
	10	1012	1 2 1 1	8.0	15.7		←Medium to coarse SAND	-
	12 - - 14-	1214	w w w 1	4.0	18.3			
	14 - - 16-	1416	1 1 1	8.0	19.3		Fine to medium SAND	-
	- -	1618	1 5 8	22.0	20.9		Very stiff, moist, brown, SILT	-
-660	18	1820	18 2 8 8 8 8	22.0	19.7		Medium dense, dry, brown, fine SAND	-
	20- - -	2022	8 2 8 9 12	17.0	2723		rFine to medium SAND rBrown and gray, trace gravel	- Sample submitted for lab analysis 13-SB04-2022
	22 	2224	12 1 5 8 10	22.0	138		r-No gravel	-
	24	2426	8 8 8 8	20.0	762			-
5	26- - -	2628	1 2 3 3	20.0	106			-
	28-	2830	2 8 10 12	26.0	70.6			1
	30- - 32						End of Boring at 30' bgs	- End drilling on 8/7/06
-	34-							-
	٦ ــــــ]			I., ,,

)

1

Log of Boring 13-SB05

Sheet 1 of 1

Date(s) Dr and Install		Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method	Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0' bgs
Sampling Method	2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 676'
Drill Rig Type:	LC-60	Groundwater Level(s) Not encountered	Hammer 140# auto hammer Data
Boring Location:	See Site Map	Borehole Backfill bentonite	

.

			SAM	PLES				
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
-	0	0002	253	18.0	11.1		Dense, dry, dark brown and black, fine SAND with gravel, with Slag	Begin drilling on 8/7/06
	2-	0204	4 1 2 3 3	10.0	22.9		Loose, dry, light brown, medium SAND with gravel	
	4	0406	1 2 2 3	12.0	26		←Medium to coarse SAND	4
-670	6	0608		12.0	28.3		rMoist	
	8	0810	1 1 2 2	9.0	28.9			-
-	10	1012	2 1 1 1	11.0	26.4			-
	12 <u>-</u> _	1214	1 2 3 3	14.0	25.6			-
	14	1416	3 1 6 4	12.0	30.9		r Medium SAND no gravel	- Sample submitted for lab analysis 13-SB05-1416
660	16- -	1618	3 3 10 10	14.0	28.7		r Soft, moist, brown, CLAY 2-inch seam r Medium to coarse SAND	
	18- 	1820	8 2 6 9	13.0	24.7		rTrace gravel	-
	20	2022	9 9 2 11 10	21.0	23.4			-
	22-	2022	10 10 1 3 4	14.0	19.4		r Medium SAND	-
-650	24-		4 4 1 1					-
-650	26-	2426	4 7 1	16.0	14.4			-
	28-	2628	4 8 9 2	17.0	4.8			-
	 30	2830	2 9 11 13	14.0	7.1			-
-	32						End of Boring at 30' bgs	- End drilling on 8/7/06
	- - 34-							
	L_				I			

Project: ODOT - Innerbelt Corridor Project Location: Site 13 Project Number: 15016633

.

Log of Boring 13-SB06

Date(s) Dr and Install		Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method	Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0' bgs
Sampling Method	2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 678'
Drill Rig Type:	LC-60	Groundwater Level(s) Not encountered	Hammer 140# auto hammer Data
Boring Location:	See Site Map	Borehole Backfill bentonite	

	ſ			SAM	PLES				
	Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
			0002	1 3 5 12	12.0	1.2		Loose, dry, brown and black, SAND with gravel	Begin drilling on 8/9/06
	-	2	0204	3 2 1	14.0	1.2		Medium dense, dry, light brown, coarse SAND with fine gravel	
		4	0406	w w 1	5.0	1.2		rLoose	-
	670	6- - - -	0608	1 1 2 2	14.0	1.3		≁Moist, with coarse gravel	-
)	-070	8 - - 10	0810	1 2 2 3	14.0	0.6			-
,		10 12	1012	1 2 2 1	10.0	0.8		✓Very moist, with fine gravel	-
	-	'2 - 14	1214	1 2 2 3	20.0	0.5		Loose, dry to moist, brown, medium SAND	-
			1416	1 3 5 6	18.0	0.8			-
	660		1618	1 7 4 5	19.0	0.7			-
		 20	1820	3 5 5 7	15.0	1.1		←Medium to coarse SAND trace gravel	
		 22	2022	3 6 10 12 1	22.0	0.6		Fine to medium SAND no gravel	
13-SB06	-	 24	2224	10 7 7	24.0	0.7		r-With gravel	-
File: ODOT.GPJ; 12/14/2006		 26	2426	1 4 5 7	20.0	1.2			
DT.GPJ: 1	-650	 28	2628	7	24.0	5.6			Sample submitted for lab analysis 13-SB06-2628
		 30	2830	4 5 9 7	19.0	4.4		-	-
		- 32-		9 1 1				End of Boring at 30' bgs	End drilling on 8/9/06
Report: 1_ODOT_BORINGS;	-	 34						- -	
Report: 1		1			1]		URS	

)

Log of Boring 13-SB07

Date(s) Dri and Installe	illed 8/7/06 ed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method	Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0 ′ bgs
Sampling Method	2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 676'
Drill Rig Type:	LC-60	Groundwater Level(s) Not encountered	Hammer Data 140# auto hammer
Boring Location:	See Site Map	Borehole Backfill bentonite	

			SAM	PLES		_		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
<u> </u>	0	0002	3	12.0	10		ASPHALT Dense, dry, black, gravelly SAND trace clay, trace Slag	Begin drilling on 8/7/06
	2-		1				Loose, dry, brown, coarse SAND with gravel	-
	4	0204	2 1 1	10.0	11.5			-
-670	 	0406	2	12.0	12.5			-
	8	0608	1 2 2 2	17.0	14.1			Sample submitted for lab analysis 13-SB07-0608
	, - 	0810	1 3 6 7	16.0	11.9		Stiff, moist, brown, SILT with fine to medium sand, with gravel	-
_	10-	1012	3	12.0	12.4		Loose, dry, light brown, fine to medium SAND with gravel	-
	12- -	1214	2 1 6 6	18.0	11		r No gravel	-
	14	1416	6 1 6 8 6	20.0	11.8			-
-660	- 16		2				←Brown and gray	-
	 - 18	1618	6	19.0	11.3			-
	20-	1820	ő	14.0	10.1			-
-	-	2022	2 4 6 6	20.0	7.8			
1000-01	22	2224	2 6 5 5	19.0	5.2		r-Light brown, medium SAND	-
-650	24	2426	1 3 5 7	19.0	3.7			1
	26- - -	2628	2 5 5 5	16.0	0.7			
	28 - -	2830	1	16.0	0.6			-
20-	30 		0				End of Boring at 30' bgs	End drilling on 8/8/06
	32							
	34							-
- index	<u>ب</u> ــــ							

DATA ASSESSMENT REPORT

Data Assessment Report ODOT Innerbelt Study Site 13 - Former Glove Cleaning Service / Scranton Averell

Reviewer: P. Schuler Date: October 30, 2006

Eight soil samples were collected at the Former Glove Cleaning Service / Scranton Averell site in Cleveland, Ohio, on August 7 through 9, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample	· · · · · · · · · · · · · · · · · · ·	Requested	Analyses ⁽¹⁾
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC
A6H090255001	13-SB01-1820 ⁽²⁾	08/07/2006	Soil	X	X
A6H090255002	13-SB05-1416	08/08/2006	Soil	X	X
A6H090255003	13-SB04-2022	08/08/2006	Soil	X	X
A6H090255004	13-SB01-1820D ⁽²⁾	08/07/2006	Soil	X	X
A6H090255005	13-SB07-0608	08/08/2006	Soil	X	X
A6H090255006	13-SB06-2628	08/09/2006	Soil	X	X
A6H090255007	13-MW02-1214	08/09/2006	Soil	X	X
A6H120111001	13-SB03-1416	08/09/2006	Soil	X	Х

 Table 1

 Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

SVOC = Semivolatile Organic Compounds [SW-846 Method 8270C]

(2) Samples 13-SB01-1820 and 13-SB01-1820D are field duplicates.

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- Positive detections for acetone in samples 13-SB06-2628 and 13-MW02-1214 and for bis(2-ethylhexyl)phthalate in samples 13-SB01-1820, 13-SB05-1416, 13-SB04-2022, 13-SB01-1820D, 13-SB07-0608, and 13-SB06-2628 were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks at similar concentrations.
- The semivolatile compound, bis(2-ethylhexyl)phthalate, was detected at concentrations ranging from 0.9 to 1.8 ug/L in all equipment blanks associated with project samples.

Since this compound is considered a common laboratory contaminant, its presence in environmental samples at concentrations less than ten times the highest equipment blank concentration (converted to an equivalent soil concentration) is attributed to external contamination rather than actual site conditions. Therefore, the positive detection for bis(2-ethylhexyl)phthalate in sample 13-SB03-1416 was qualified as nondetect ("U") at the sample reporting limit, even though it was not detected in the associated method blank.

- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J"), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, the "J" qualifiers were retained with the numeric results.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 and 2-2.

			5	UDU I INNERDEIL DUUD	Study				
PARAMETER	STINU	A6H090255001 13-SB01-1820 08/07/2006	A6H090255002 13-SB05-1416 08/08/2006	A6H090255003 13-SB04-2022 08/08/2006	A6H090255004 13-SB01-1820D 08/07/2006	A6H090255005 13-SB07-0608 08/08/2006	A6H090255006 13-SB06-2628 08/09/2006	A6H090255007 13-MW02-1214 08/09/2006	A6H120111001 13-SB03-1416 08/09/2006
Percent Solids	%	92.9	92.8	95.1	88	92.6	97	94.6	94.5
1,1,1-Trichloroethane	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,1,2,2-Tetrachloroethane	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1, 1, 2-Trichloro-1, 2, 2-trifluoroethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,1,2-Trichloroethane	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,1-Dichloroethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,1-Dichloroethene	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,2,4-Trichlorobenzene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,2-Dibromo-3-chloropropane	ug/kg	11 U	1 C	11 U	11 U	11 U	10 U	11 U	11 U
1,2-Dibromoethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,2-Dichlorobenzene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,2-Dichloroethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,2-Dichloropropane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,3-Dichlorobenzene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
1,4-Dichlorobenzene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
2-Butanone	ug/kg	22 U	22 U	21 U	23 U	22 U	21 U	21 U	21 U
	ug/kg	22 U	22 U	21 U	23 U	22 U	21 U	21 U	21 U
4-Methyl-2-pentanone	ug/kg	22 U	22 U	21 U	23 U	22 U	21 U	21 U	21 U
Acetone	ug/kg	22 U	22 U	21 U	23 U	22 U	21 U	21 U	21 U
	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Bromodichloromethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Bromoform	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Bromomethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Carbon disulfide	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Carbon tetrachloride	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Chlorobenzene	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Chloroethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Chloroform	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Chloromethane	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
cis-1,2-Dichloroethene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
cis-1,3-Dichloropropene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Cyclohexane	ng/kg	11 U	11 U	11 U	11 U	11 U	10 U	11 N	11 U
Dibromochloromethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Dichlorodifluoromethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Ethylbenzene	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Isopropylbenzene	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Methyl acetate	ug/kg	11 U	11 U	11 U	11 U	11 U	10 U	11 U	11 N

Table 2-1 Analytical Data Summary Site 13 Soil Volatiles ODOT Innerbelt Study

)

)

P:\O\ODOT\15016633\DOCs\Data\Site 13\Site13 Table 2

URS

PARAMETER	STINU	A6H090255001 13-SB01-1820 08/07/2006	A6H090255001 A6H090255002 13-SB01-1820 13-SB05-1416 08/07/2006 08/08/2006	A6H090255003 13-SB04-2022 08/08/2006	A6H090255004 13-SB01-1820D 08/07/2006	A6H090255004 A6H090255005 13-SB01-1820D 13-SB07-0608 08/07/2006 08/08/2006	A6H090255006 13-SB06-2628 08/09/2006	A6H090255007 13-MW02-1214 08/09/2006	A6H120111001 13-SB03-1416 08/09/2006
Methyl tert-butyl ether	ng/kg	22 U	22 U	21 U	23 U	22 U	21 U	21 U	21 U
Methylcyclohexane	ng/kg	1 C	11 U	11 U	11 U	11 U	10 U	11 U	11 U
Methylene chloride	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Styrene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Tetrachloroethene	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Toluene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
trans-1,2-Dichloroethene	ng/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
trans-1,3-Dichloropropene	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Trichloroethene	ug/kg	5.4 U		5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Trichlorofluoromethane	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Vinyt chloride	ug/kg	5.4 U	5.4 U	5.3 U	5.7 U	5.4 U	5.2 U	5.3 U	5.3 U
Xylenes (total)	ug/kg	11 U	11 U	11 U	11 C	-1 C	10 U	11 N	11 N

)

Analytical Data Summary

Table-2-1

)

Site 13 Soil Volatiles ODOT Innerbelt Study

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

P:\O\ODOT\15016633\DOCs\Data\Site 13\Site13 Table 2

PARAMETER	UNITS	A6H090255001 13-SB01-1820 08/07/2006	A6H090255002 13-SB05-1416 08/08/2006	A6H090255003 13-SB04-2022 08/08/2006	A6H090255004 13-SB01-1820D 08/07/2006	A6H090255005 13-SB07-0608 08/08/2006	A6H090255006 13-SB06-2628 08/09/2006	A6H090255007 13-MW02-1214 08/09/2006	A6H120111001 13-SB03-1416 08/09/2006
1,1'-Biphenyl	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,2'-oxybis(1-Chloropropane)	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,4,5-Trichlorophenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,4,6-Trichlorophenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,4-Dichlorophenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,4-Dimethylphenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,4-Dinitrophenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,4-Dinitrotoiuene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2,6-Dinitrotoluene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2-Chloronaphthalene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2-Chlorophenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2-Methylnaphthalene	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2-Methylphenol	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2-Nitroaniline	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
2-Nitrophenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
3,3'-Dichlorobenzidine	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
3-Nitroaniline	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4,6-Dinitro-2-methylphenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4-Bromophenyi phenyl ether	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4-Chloro-3-methylphenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4-Chloroaniline	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4-Chlorophenyl phenyl ether	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4-Methylphenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4-Nitroaniline	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
4-Nitrophenol	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Acenaphthene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Acenaphthylene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Acetophenone	ug/kg	72 U	72 U	70 U	76 U	72 U	69 N	70 N	70 U
Anthracene	ng/kg	360 U	360 U	350 U	380 U	14 J	340 U	350 U	350 U
Atrazine	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Benzaldehyde	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Benzo(a)anthracene	ng/kg	360 U	360 U	350 U	15 J	56 J	340 U	350 U	350 U
Benzo(a)pyrene	ng/kg	360 U	360 U	350 U	16 J	57 J	340 U	350 U	350 U
Benzo(b)fluoranthene	ng/kg	360 U	360 U	350 U	21 J	Г 69 1	340 U	350 U	350 U
Benzo(ghi)perylene	ug/kg	360 U	360 U	350 U	380 U	31 J	340 U	350 U	350 U
Benzo(k)fluoranthene	ug/kg	360 U	360 U	350 U	380 U	29 J	340 U	350 U	350 U
bis(2-Chloroethoxy)methane	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U

Tabie 2.2 Analytical Data Summary Site 13 Soil Semivolatiles ODOT Innerbelt Study

)

)

ŝ

P:\O\ODOT\15016633\DOCs\Data\Site 13\Site13 Table 2

URS

Analytical Data Summary Site 13 Soil Semivolatiles Table 2-2

				ODOT Innerbelt Study	selt Study				
		A6H090255001	A6H090255002 13.5805-1416	A6H090255003	A6H090255004	A6H090255005	A6H090255006	A6H090255007	A6H120111001
PARAMETER	UNITS	08/07/2006	08/08/2006	08/08/2006	08/07/2006	08/08/2006	08/09/2006	13-1/1 W UZ-1214 08/09/2006	13-SB03-1416 08/09/2006
bis(2-Chloroethyl) ether	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
bis(2-Ethylhexyl) phthalate	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Butyl benzyl phthalate	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Caprolactam	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Carbazole	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Chrysene	ug/kg	360 U	360 U	350 U	17 J	64 J	340 U	350 U	350 U
Dibenz(a,h)anthracene	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Dibenzofuran	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Diethyl phthalate	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Dimethyl phthalate	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Di-n-butyl phthalate	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Di-n-octyl phthalate	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Fluoranthene	ug/kg	360 U	360 U	350 U	25 J	120 J	340 U	350 U	350 U
Fluorene	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Hexachlorobenzene	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Hexachlorobutadiene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Hexachlorocyclopentadiene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Hexachloroethane	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Indeno(1,2,3-cd)pyrene	ng/kg	360 U	360 U	350 U	380 U	29 J	340 U	350 U	350 U
Isophorone	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Naphthalene	ug/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Nitrobenzene	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
N-Nitrosodi-n-propylamine	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
N-Nitrosodiphenylamine	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Pentachlorophenol	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Phenanthrene	ng/kg	360 U	360 U	350 U	380 U	67 J	340 U	350 U	350 U
Phenol	ng/kg	360 U	360 U	350 U	380 U	360 U	340 U	350 U	350 U
Pyrene	ug/kg	360 U	360 U	350 U	22 J	94 J	340 U	. 350 U	350 U

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

P:\O\ODOT\15016633\DOCs\Data\Site 13\Site13 Table 2

6.3 SITE 14 – BOJACKS MEATS

According to the Cleveland City Directories, the site was listed as Paramount Fur Company from 1954 through 1974. Beginning in 1979 through 1999, the site was listed as Bojacks Meat and Poultry.

According to the Cleveland Fire Prevention Bureau files, the site was occupied by the J.R. Dyamond Terminal Warehouse in 1944. An entry in March 1952 indicates the site was occupied by the Paramount Fur Company, which utilized mixtures of carbon tetrachloride and apco thinner to clean furs. A Fire Inspection Report dated November 1967 indicates the Cuyahoga Chemical Company stored multiple drums of sodium cyanide, potassium cyanide, zinc cyanide, and copper cyanide in the warehouse.

A permit dated November 1951 indicates a gas station was located at 2000-2180 West 14th Street. There reportedly were three 3,000-gallon USTs associated with this operation.

At the time of the URS Phase I reconnaissance, this site was occupied by two large warehouse buildings. While surface staining was not observed, distressed vegetation was observed on the site.

6.3.1 Field Activities

A total of six monitoring wells were proposed for Site 14. During the Phase II site reconnaissance, it was determined that two of the proposed boring locations were inaccessible. One boring was proposed near the former loading docks, which were open beneath. The other proposed boring was located on a steep slope adjacent to a railroad siding.

Groundwater was encountered in three soil borings (MW01, MW02, and MW03) during field activities and monitoring wells were installed. One soil boring (SB04) was installed at Site 14. At the time of groundwater sampling, MW01 was dry and no groundwater sample could be obtained. Four soil and two groundwater samples were collected and analyzed for VOCs, SVOCs, TPH and/or Cyanide. A duplicate soil sample was collected from 14-SB04-2022 and a duplicate groundwater sample was collected from 14-MW02. A Sample Location Map is included as **Figure 6-3A**.

6.3.2 Site-Specific Geology/Hydrogeology

Soils at Site 14 consisted primarily of sand with minor amounts of silty clay and clay. Bedrock was not encountered in any of the soil borings, which were advanced to 30 feet bgs.

Groundwater elevations were measured at Site 14 on September 26, 2006. Monitoring well (MW01) was dry. Localized groundwater flow across Site 14 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 14 is to the north-northeast, towards the Cuyahoga River.

ť

)

)

6.3.3 Geophysical Survey

URS conducted a geophysical survey at Site 14 in July 2006. Figure 6-3B indicates the results of the survey.

The geophysical survey of Site 14 included the paved surface of the property, northwest of the highway bridge. The survey transects were conducted in a north – south direction to approximately align transects along the earth's total magnetic field which provides the greatest sensitivity to buried ferrous objects such as steel underground storage tanks. Transects were spaced five feet apart and were walked in alternating directions. The presence of tall structures prevented the use of a global positioning system (GPS) for the establishment of coordinates.

No evidence of USTs were discovered as a result of the geophysical survey of Site 14.

6.3.4 Soil Analytical Results

No VOCs were detected in the soil samples submitted from Site 14.

A total of nineteen SVOCs were detected in four (14-MW012426, 14-MW02-0406, 14-MW03-1012, and 14-SB04-2022) of the five soil samples submitted from Site 14. Concentrations of 2-methylnaphthanene (21 ug/kg), acenaphthene (ranging from 17 ug/kg to 190 ug/kg), anthracene (ranging from 36 ug/kg to 280 ug/kg), benzo(a)anthracene (ranging from 11 ug/kg to 1,100 ug/kg), benzo(a)pyrene (ranging from 11 ug/kg to 1,000 ug/kg), benzo(b)fluoranthene (ranging from 16 ug/kg to 1,300 ug/kg), benzo(g,h,i)perylene (ranging from 8.9 ug/kg to 560 ug/kg), benzo(k)fluoranthene (ranging from 69 ug/kg to 560 ug/kg), caprolactam (48 ug/kg), chrysene (ranging from 22 ug/kg to 200 ug/kg), dibenz(a,h)anthracene (ranging from 24 ug/kg to 160 ug/kg), dibenzofuran (76 ug/kg), fluoranthene (ranging from 29 ug/kg to 520 ug/kg), naphthalene (ranging from 8.0 ug/kg to 15 ug/kg), phenanthrene (ranging from 21 ug/kg to 1,400 ug/kg), and pyrene (ranging from 21 ug/kg to 1,900 ug/kg) were detected in the soil samples submitted. All other SVOCs were below the detection limits.

Diesel range total petroleum hydrocarbons were detected in all of the soil samples. The highest concentrations were found in the heaviest range, which is consistent with the concentrations of SVOCs detected across the Property. Concentrations of the heavy petroleum fraction ranged from 8.5 to 40 mg/kg. Concentrations of the middle petroleum fraction ranged from 2.2 mg/kg to 6.7 mg/kg.

The analytical results are presented in Table 6-3A.

6.3.5 Groundwater Analytical Results

Three VOCs were detected in groundwater samples collected from Site 14. Concentrations of 2butanone (ranging from 0.52 ug/L to 0.76 ug/L), bromodichloromethane (1.1 ug/L), and chloroform (ranging from 5.6 ug/L to 6.0 ug/L) were detected in the groundwater samples submitted. All other VOCs were below the detection limits. Nine SVOCs were detected in the groundwater samples submitted from Site 14. Concentrations of benzo(a)anthracene (0.79 ug/L and 0.46 ug/L), benzo(a)pyrene (0.63 ug/L and 0.43 ug/L), benzo(b)fluoranthene (1.1 ug/L and 0.56 ug/L), benzo(g,h,i)perylene (0.52 ug/L), chrysene (0.75 ug/L and 0.51 ug/L), fluoranthene (2.0 ug/L and 1.2 ug/L), indeno(1,2,3)pyrene (0.95 ug/L), phenanthrene (1.1 ug/L and 0.59 ug/L), and pyrene (1.8 ug/L and 1.2 ug/L) were detected in the groundwater sample submitted from 14-MW02 and 14-MW02D, respectively. All other SVOCs were below the detection limits.

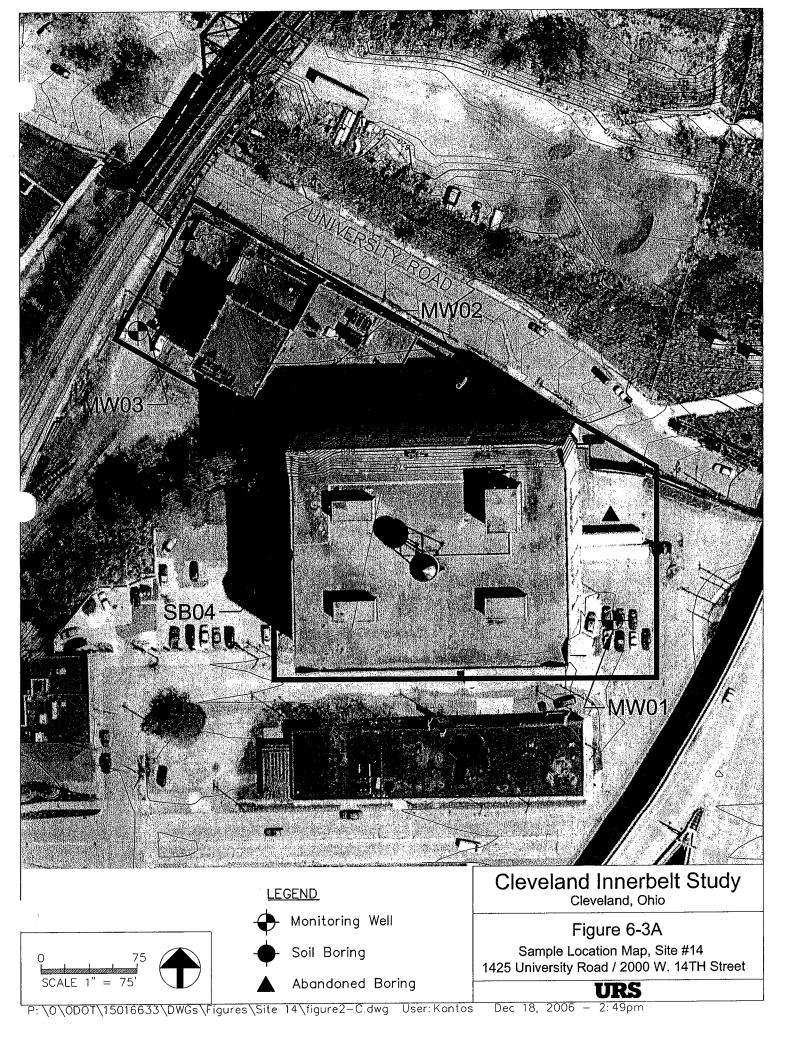
The analytical results are presented in Table 6-3B.

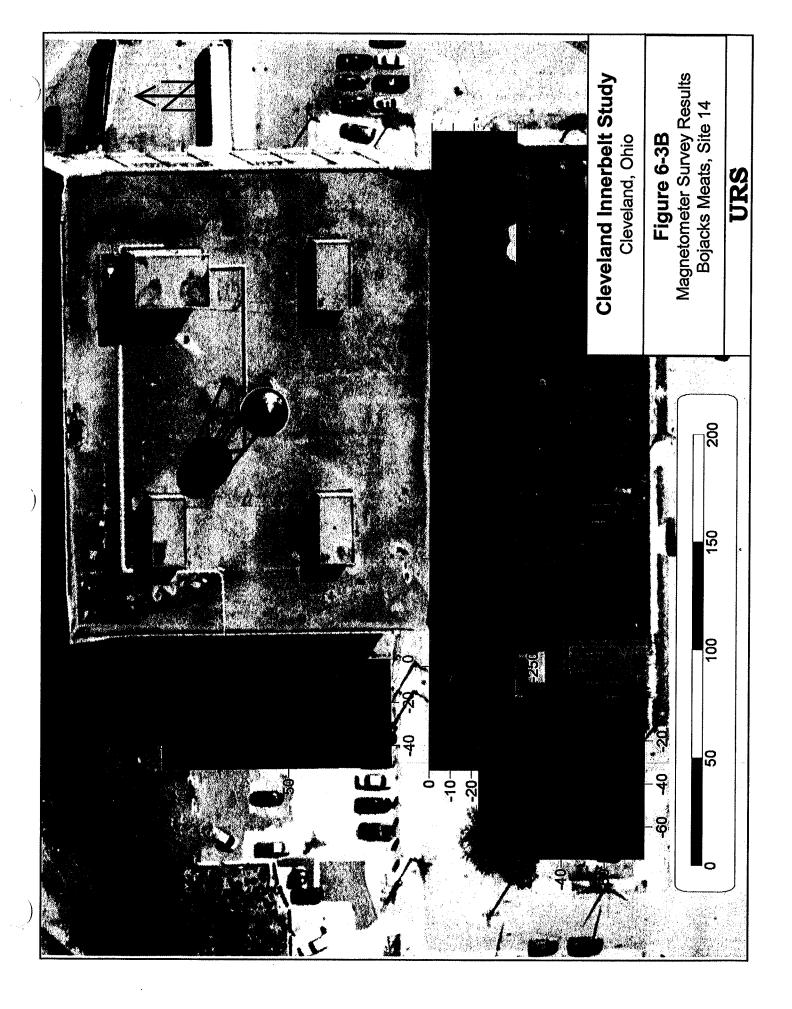
6.3.6 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on **Tables 6-3A** and **6-3B**.

There were no VOCs detected in any of the soil samples submitted from Site 14.

There were no SVOCs detected in any of the soil samples from Site 14, which exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, and/or the BUSTR closure action levels.


The concentration of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3)pyrene detected in the groundwater samples from 14-MW02 and/or 14-MW02D exceeded the OEPA VAP standard for generic unrestricted potable use standards and/or BUSTR closure action levels.


6.3.7 Conclusions

Ì

Based on the analytical results, the soils at Site 14 are not expected to require special management during construction. However, the groundwater concentrations may require special disposal and/or worker protection protocols (plan note).

TABLES

Tab.ASummary of Detected Chemicals in SoilSite 14 - Bojacks MeatsODOT Innerbelt Study

)

Cleveland, Ohio

CONTRACTOR OF THE OWNER OWNER

PAF	PARAMETER	UNITS	Commercial/ Tindustrial	VAP Construction Worker Standard ⁽²⁾	BUSTR Glosure Action Level	14-MW01-2426 07/12/2006	14-MW02-0406 07/13/2006	14-MW03-1012 07/12/2006	14-SB04-2022 08/10/2006	14-SB04-2022D 08/10/2006
istera	2-Methylnaphthalene	ug/kg				390 U	21 J	370 U	350 U	NA
	Acenaphthene	ug/kg	180,000,000	530,000,000	ł	36 J	190 J	370 U	17 J	NA
2	Anthracene	ug/kg	880,000,000	1,000,000,000	1	81 J	280 J	370 U	36 J	NA
÷	Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	190 J	1100	11 J	130 J	NA
1	Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	150 J	1000	10 J	140 J	NA
1	Benzo(b)fluoranthene	ug/kg	63,000	810,000	11,000	200 J	1300	16 J	180 J	NA
÷.	1	ug/kg	The state of the state of the state state of the state	en e	1	88 J	560 J	8.9 J	100 J	NA
ŝ	Benzo(k)fluoranthene	ug/kg	630,000	8,100,000	110,000	69 J	560 J	370 U	88 J	NA
	Caprolactam	ug/kg	-	1	1	390 U	710 U	48 J	350 U	NA
- 3	A shared in the sector of the sector of	ug/kg	10,000,000	31,000,000		23 J	200 J	370 U	22 J	NA
1	Chrysene	ug/kg	6,700,000	41,000,000	1,100,000	180 J	1000	15 J	160 J	M
1	Dibenz(a,h)anthracene	ug/kg	6,700	41,000	1,100	28 J	160 J	370 U	24 J	MA
- area	Dibenzofuran	ug/kg		 International states of a state state state state states and sta	1	390 U	76 J	370 U	350 U	NA
i	Fluoranthene	ug/kg	33,000,000	170,000,000	1	410	2300	29 J	290 J	MA
	Fluorene	ug/kg	120,000,000	340,000,000	I	24 J	150 J	370 U	13 J	NA
- 1	indeno(1,2,3-cd)pyrene	ng/kg	67,000	410,000	11,000	80 J	520 J	ר 7.7 ט	85 J	NA
÷	Naphthalene	ug/kg	530,000	1,900,000	39,800	8.0 J	15 J	370 U	9.6 J	NA
	Phenanthrene	ug/kg	•	1	1	г 00£	1400	21 J	150 J	NA
- 1	Pyrene	ug/kg	25,000,000	130,000,000	1	340 J	1900	21 J	250 J	NA
;	C10-C20	mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2,000	4.7	22 U	2.2	4.7	6.7
	C20-C34	mg/kg	ł	1	5,000	28	40	8.5	18	29

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

NA = Not analyzed

(1) VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use

(2) VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

)

Table 0-3B Summary of Detected Chemicals in Groundwater Site 14 - Bojacks Meats ODOT Innerbelt Study Cleveland, Ohio

)

)

2	PARAMETER	UNITS	VAP UPUS / RDUPUS ⁽¹⁾	BUSTR Closure Action Levei	14-MW-02 09/26/2006	14-MW-02D 09/26/2006	14-MW-03 09/26/2006
	2-Butanone	ng/L	6800	1	0.76 J	0.52 J	0.52 J
	Bromodichloromethane	ug/L	1	ł	1.0 U	1.0 U	1.1
	Chloroform	ug/L	50		5.6	5.9	6.0
	Benzo(a)anthracene	ng/L	I	0.26	0.79	0.46	0.20 U
	Benzo(a)pyrene	ug/L	0.2	0.2	0.63	0.43	0.20 U
soc	Benzo(b)fluoranthene	ng/L	•	0.17	1.1	0.56	0.20 U
AS	Benzo(ghi)perylene	ng/L	I	•1	0.52	0.20 U	0.20 U
3	Chrysene	ng/L	47	47	0.75	0.51	0.20 U
	Fluoranthene	ng/L	370	1	2.0	1.2	0.20 U
	Indeno(1,2,3-cd)pyrene	ng/L	I	0.22	0.95	0.20 U	0.20 U
	Phenanthrene	ng/L	I	ł	-	0.59	0.20 U
	Pyrene	ng/L	280		1.8	1.2	0.20 U

-- = Standard not available

 $\mathsf{U} \thickapprox \mathsf{The}$ analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

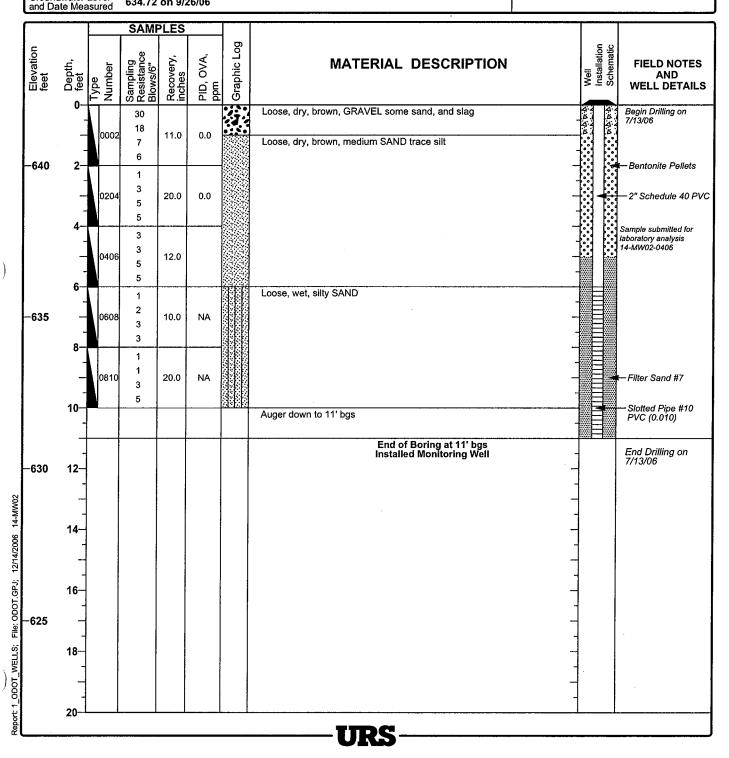
BORING LOGS

Project: ODOT - Innerbelt Corridor Project Location: Site 14 Project Number: 15016633

Log of Boring 14-MW01

Sheet 1 of 1

Date(s) 7/12/06	Logged	J. Kaminski	Checked M. Wolff
Drilled 7/12/06	By		By
Drilling Method & Hollow Stem Auger	Hammer	140# / 30" drop automatic	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data		of Borehole 30.0' bgs
Drill Rig CME-55	Drilling	HAD, Inc.	Approximate
Type	Contractor		Ground Elevation 672'
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level and Date Measured Well dry on 9/26/06			


			SAM	PLES				Т		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Well	Installation Schematic	
	-0						ASPHALT			Begin Drilling on 7/12/06
-670	-	0204	1 2	11.0	1.8		Loose, dry, brown, SAND and gravel			
	-		3	,			r Moist, increasing gravel, trace silt			- Bentonite Pellets
	5	0406	1 2 2 3	19.5	3.0					2" Schedule 40 PVC
	-	0608		21.0	3.0					
	- - 10 -	0810	1 1 2 3 4	10.0	0.8		r With, trace asphalt fragments r No asphalt fragments			
		1012	2	24.0	4.0					
-660	- - 15- -	1214	1	12.0	5.5					- Filter Sand #7
		1416	WOH WOH WOH	10.0	0.5		Sandstone (crushed) Loose, dry, brown, fine SAND hydrocarbon staining			
		1618	1 4 3 3	12.0	0.0					- - -
	- - 20-	4000	4 2 4		0.0		Stiff, moist, brown silty SAND	-		
		1820	4 5	0.0	0.0		Loose, dry, brown poorly graded, fine to medium SAND			
	_	2022	233	17.0	0.0			-	E	
-650	- 25- - - - - 30- - -	2224	2 8 7	24.0	0.0		Stiff, wet, brown SILT			
12/14/2006 14-MW01		\	<u>6</u> 1				Stiff, moist, brown silty CLAY	-		Sample submitted for laboratory analysis
4/2006		2426	9	24.0	106		Loose, moist, brown silty SAND	_	Ħ	14-MW01-2426
JUI.GPU; 12/1		2628	10	24.0	0.0		Loose, moist, brown medium SAND			Slotted Pipe #10
		2830	4 7 9	0.0	0.0					PVC (0.010)
			-				End of Boring at 30' bgs Installed Monitoring Well			End Drilling on 7/12/06 1100
-640	-									
	- -	•						-		
керон	35_									
VID										

Project: ODOT - Innerbelt Corridor Project Location: Site 14 Project Number: 15016633

Log of Boring 14-MW02

Sheet 1 of 1

Date(s) 7/13/06 Drilled 7/13/06	Logged J. Kamin By	nski Checked M. Wolff
Drilling Method & Hollow Stem Auger	Hammer 140# / 30	" drop automatic Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data	of Borehole 11.0' bgs
Drill Rig	Drilling	Approximate
Type CME-55	Contractor HAD, Inc	Ground Elevation 642'
Location See Site Map	Sampling Method(s) 2" Split \$	Darakala

Project: ODOT - Innerbelt Corridor Project Location: Site 14 Project Number: 15016633

Log of Boring 14-MW03

Sheet 1 of 1

Date(s)	Logged	J. Kaminski	Checked
Drilled 7/12/06	By		By M. Wolff
Drilling Method & Hollow Stem Auger	Hammer	140# auto hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data		of Borehole 18.0′ bgs
Drill Rig	Drilling	HAD, Inc.	Approximate
Type CME-55	Contractor		Ground Elevation 642'
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level 626.86 on 9/26/06			

.

			SAM	PLES				T		······································
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Weil	Schematic	FIELD NOTES AND WELL DETAILS
	-	0002	9 5	3.0	0.0		Soft, wet, dark brown, CLAY with wood, (Fill)			Begin Drilling on 7/12/06
640	2 -	0204	WOH WOH 1 2	6.0	0.0		Loose, moist, brown, medium SAND			
	4 - -	0406	WOH WOH 2 4	10.0	0.0		With clay, and gravel, and Slag			⊷ Bentonite Pellets 2" Schedule 40 PV
-635	6 - -	0608	1 2 4 6	11.0	0.0		_ເ Orange and red, No slag, iron oxide staining	-		
	8 	0810	13 8 6 5	14.0	0.0					
	10- - -	1012	2 3 3 2	20.0	0.0		Light brown to tan, no staining			Sample submitted for laboratory analysis 14-MW03-1012
-630	12- - -	1214	1 4 3 4	24.0	NA		ے Becomes Wet, with, iron oxide staining ۔ پالٹ Silt, no, iron oxide staining			Filter Sand #7
	14- - -	1416	WOH 1 2 2	24.0	NA		-			— Slotted Pipe #10 PVC (0.010)
-625	16- - -	1618	1 1 4 5	24.0	NA		-			
	18 - -					<u>~~1.912</u>	End of Boring at 18' bgs Installed Monitoring Well			End Drilling on 7/12/06
	20				I			<u> </u>		

)

Log of Boring 14-SB04

Sheet 1 of 1

Date(s) Drilled 8/10/06 and Installed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0' bgs
Sampling Method 2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 676'
Drill Rig Type: LC-60	Groundwater Level(s)	Hammer 140# auto hammer
Boring Location: See Site Map	Borehole Backfill bentonite	

.

1				SAM	PLES				
	Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
	_	0	0002	7 7 10 1	12.0	1.9		Loose, dry, black, gravelly SAND with Slag	Begin drilling on 8/10/06
		2	0204	2222	16.0	0.4		Loose to medium dense, dry, brown, fine SAND	
	070	4	0406	WOH 1 WOH 1	17.0	1.0		-	
ľ	-670	6-	0608	1 1 1 1	10.0	1.2		r Trace gravel	
		-8	0810	1 1 1	12.0	1.4			
	_	10-	1012	1 1 1	12.0	1.3		rNo gravel	
		12	1214	1 3 6 8	12.0	1.0		rTrace gravel	
		14	1416	1 8 7 7	18.0	1.1		r Coarse SAND r No gravel	
	-660	16	1618	1 5 6 7	20.0	2.1		-	
		18 <u>-</u> 	1820	1 5 8 8	11.0	1.6		-	
	-	20- - 22-	2022	2 5 7 7	14.0	2.4		· _	Sample submitted for laboratory analysis 14-SB04-2022
14-SB04		22	2224	1123	22.0	0.7		Stiff, moist, brown, SILT	
/14/2006	-650	-	2426	1334	15.0	0.9		Dense, moist, brown, fine SAND trace, iron oxide staining	
GPJ; 12	000	26- - - 28-	2628	1 2 3 4	16.0	0.6			
File: ODOT.GPJ; 12/14/2006 14-SB04		20- - - 30-	2830	2 3 5 6	16.0	0.6			
	-	30						End of Boring at 30' bgs	End drilling on 8/10/06
Report: 1_ODOT_BORINGS;		32							
keport: 1_(••						TIDO	

DATA ASSESSMENT REPORT

Data Assessment Report ODOT Innerbelt Study Site 14 – Bojacks Meats

Reviewer: P. Schuler Date: November 12, 2006

Five soil samples, three groundwater samples, two equipment blanks, and two trip blanks were collected at the Bojacks Meats site in Cleveland, Ohio, on July 12 through September 26, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Requested Analyses ⁽¹			es ⁽¹⁾
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC	TPH	CN
A6G140117001	14-MW01-2426	07/12/2006	Soil	X	X	X	X
A6G140117002	14-MW03-1012	07/12/2006	Soil	X	X	X	X
A6G140394001	14-MW02-0406	07/13/2006	Soil	X	X	X	X
A6H120114001	14-SB04-2022	08/10/2006	Soil	Х	X	X	X
A6H120114002	14-SB04-2022D	08/10/2006	Soil			Х	X
A6H120114003	14-SB04-EB	08/10/2006	Equip. Blank	Х	X	X	X
A6H120114004	TB-081006	08/10/2006	Trip Blank	Х			
A6I270118001	14-MW-02	09/26/2006	Groundwater	Х	Х		X
A6I270118002	TB-092606	09/26/2006	Trip Blank	Х			
A6I270118003	14-MW-03	09/26/2006	Groundwater	Х	Х		Х
A6I270118004	EB092506	09/25/2006	Equip. Blank	Х	X		Х
A6I270118005	14-MW-02D	09/26/2006	Groundwater	X	Х		X

Table 1Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

SVOC = Semivolatile Organic Compounds [SW-846 Method 8270C]

TPH = Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B]

CN = Total Cyanide [SW-846 Method 9012A]

(2) Samples 14-SB04-2022and 14-SB04-2022D are field duplicates (for selected analytes only).

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

Positive detections for methylene chloride in samples 14-MW01-2426, 14-MW03-1012,

and 14-MW02-0406, for acetone in sample 14-SB04-2022, for gasoline range organics in sample 14-MW02-0406, and for cyanide in samples 14-SB04-2022 and 14-SB04-2022D were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks at similar concentrations.

- Positive detections for methylene chloride in sample 14-SB04-2022 and for bis(2-ethylhexyl)phthalate in samples 14-MW-03 and 14-MW-02D were qualified as nondetect ("U") due to the presence of these analytes in the associated equipment blank or trip blank at a similar concentration.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J"), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, the "J" qualifiers were retained with the numeric results.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-5.

Table 2-1Analytical Data SummarySite 14 Soil VolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6G140117001 14-MW01-2426 07/12/2006	A6G140117002 14-MW03-1012 07/12/2006	A6G140394001 14-MW02-0406 07/13/2006	A6H120114001 14-SB04-2022 08/10/2006	A6H120114003 14-SB04-EB 08/10/2006 ug/L	A6H120114004 TB-081006 08/10/2006 ug/L
1,1,1-Trichloroethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,1,2-Trichloroethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,1-Dichloroethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,1-Dichloroethene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/kg	12 U	11 U	11 U	10 U	2.0 U	2.0 U
1,2-Dibromoethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,2-Dichloroethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,2-Dichloropropane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,3-Dichlorobenzene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
1,4-Dichlorobenzene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
2-Butanone	ug/kg	23 U	22 U	22 U	21 U	10 U	10 U
2-Hexanone	ug/kg	23 U	22 U	22 U	21 U	10 U	10 U
4-Methyl-2-pentanone	ug/kg	23 U	22 U	22 U	21 U	10 U	10 U
Acetone	ug/kg	23 U	22 U	22 U	21 U	10 U	10 U
Benzene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Bromodichloromethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Bromoform	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
romomethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
arbon disulfide	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Carbon tetrachloride	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Chlorobenzene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Chloroethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Chloroform	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Chloromethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/kg ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Cyclohexane	ug/kg	12 U	11 U	11 U	10 U	1.0 U	1.0 U
Dibromochloromethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Dichlorodifluoromethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Call Black and a subgradiant strategy of the second strategy of the	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Etnyidenzene isopropylbenzene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Methyl acetate	ug/kg	12 U	11 U	11 U	10 U	10 U	10 U
Methyl tert-butyl ether	ug/kg	23 U	22 U	22 U	21 U	5.0 U	5.0 U
Methylcyclohexane	ug/kg	12 U	11 U	11 U	10 U	1.0 U	1.0 U
Methylene chloride	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	2.5	0.39 J
 A second state and a second state of the second state	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Styrene		5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Tetrachloroethene	ug/kg	5.9 U 5.9 U	5.6 U	5.4 U 5.4 U	5.2 U	1.0 U	1.0 U
Toluene	ug/kg	5.9 U 5.9 U	5.6 U	5.4 U	5.2 U 5.2 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	ug/kg	and the second	we are a set of the se	a compared to a second s	the strength of the state of the state of the	and the second	AND A DESCRIPTION OF A
trans-1,3-Dichloropropene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Trichloroethene	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Trichlorofluoromethane	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
Vinyl chloride	ug/kg	5.9 U	5.6 U	5.4 U	5.2 U	1.0 U	1.0 U
vlenes (total)	ug/kg	12 U	11 U	11 U	10 U	2.0 U	2.0 U

ne analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

Table 2-2Analytical Data SummarySite 14 Soil SemivolatilesODOT Innerbelt Study

		A6G140117001 14-MW01-2426 07/12/2006	A6G140117002 14-MW03-1012 07/12/2006	A6G140394001 14-MW02-0406 07/13/2006	A6H120114001 14-SB04-2022 08/10/2006	A6H120114003 14-SB04-EB 08/10/2006 ug/L
PARAMETER	UNITS	WW.			272 11	
1,1'-Biphenyl	ug/kg	390 U	370 U	710 U	350 U	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/kg	390 U	370 U	710 U	350 U	1.0 U
2,4,5-Trichlorophenol	ug/kg	390 U	370 U	710 U	350 U	5.0 U
2,4,6-Trichlorophenol	ug/kg	390 U	370 U	710 U	350 U	5.0 U
2,4-Dichlorophenol	ug/kg	390 U	370 U	710 U	350 U	2.0 U
2,4-Dimethylphenol	ug/kg	390 U	370 U	710 U	350 U	2.0 U
2,4-Dinitrophenol	ug/kg	390 U	370 U	710 U	350 U	5.0 U
2,4-Dinitrotoluene	ug/kg	390 U	370 U	710 U	350 U	5.0 U
2,6-Dinitrotoluene	ug/kg	390 U	370 U	710 U	350 U	5.0 U
2-Chloronaphthalene	ug/kg	390 U	370 U	710 U	350 U	1.0 U
2-Chlorophenol	ug/kg	390 U	370 U	710 U	350 U	1.0 U
2-Methylnaphthalene	ug/kg	390 U	370 U	21 J	350 U	0.20 U
2-Methylphenol	ug/kg	390 U	370 U	710 U	350 U	1.0 U
2-Nitroaniline	ug/kg	390 U	370 U	710 U	350 U	2.0 U
2-Nitrophenol	ug/kg	390 U	370 U	710 U	350 U	2.0 U
3,3'-Dichlorobenzidine	ug/kg	390 U	370 U	710 U	350 U	5.0 U
3-Nitroaniline	ug/kg	390 U	370 U	710 U	350 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/kg	390 U	370 U	710 U	350 U	5.0 U
4-Bromophenyl phenyl ether	ug/kg	390 U	370 U	710 U	350 U	2.0 U
4-Chloro-3-methylphenol	ug/kg	390 U	370 U	710 U	350 U	2.0 U
4-Chloroaniline	ug/kg	390 U	370 U	710 U	350 U	2.0 U
· · · · · · · · · · · · · · · · · · ·	ug/kg	390 U	370 U	710 U	350 U	2.0 U
4-Chlorophenyl phenyl ether	and the second second	390 U	370 U	710 U	350 U	1.0 U
4-Methylphenol	ug/kg	390 U	370 U	710 U	350 U	2.0 U
4-Nitroaniline	ug/kg	390 U	370 U	710 U	350 U	5.0 U
4-Nitrophenol	ug/kg	390 U 36 J	370 U	190 J	17 J	0.20 U
Acenaphthene	ug/kg	and a subscription of the second s	and the second second	the second second second second second	350 U	0.20 U
Acenaphthylene	ug/kg	390 U	370 U	710 U		the second second second second second
Acetophenone	ug/kg	78 U	75 U	140 U	70 U	1.0 U
Anthracene	ug/kg	81 J	370 U	280 J	36 J	0.20 U
Atrazine	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Benzaldehyde	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Benzo(a)anthracene	ug/kg	190 J	11 J	1100	130 J	0.20 U
Benzo(a)pyrene	ug/kg	150 J	10 J	1000	140 J	0.20 U
Benzo(b)fluoranthene	ug/kg	200 J	16 J	1300	180 J	0.20 U
Benzo(ghi)perylene	ug/kg	88 J	8.9 J	560 J	100 J	0.20 U
Benzo(k)fluoranthene	ug/kg	69 J	370 U	560 J	88 J	0.20 U
bis(2-Chloroethoxy)methane	ug/kg	390 U	370 U	710 U	350 U	1.0 U
bis(2-Chloroethyl) ether	ug/kg	390 U	370 U	710 U	350 U	1.0 U
bis(2-Ethylhexyl) phthalate	ug/kg	390 U	370 U	710 U	350 U	1.4
Butyl benzyl phthalate	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Caprolactam	ug/kg	390 U	48 J	710 U	350 U	5.0 U
Carbazole	ug/kg	23 J	370 U	200 J	22 J	1.0 U
Chrysene	ug/kg	180 J	15 J	1000	160 J	0.36
Dibenz(a,h)anthracene	ug/kg	28 J	370 U	160 J	24 J	0.20 U
Dibenzofuran	ug/kg	390 U	370 U	76 J	350 U	1.0 U
Diethyl phthalate	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Dimethyl phthalate	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Di-n-butyl phthalate	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Di-n-octyl phthalate	1	390 U	370 U	710 U	350 U	1.0 U
	ug/kg	410	29 J	2300	290 J	0.88
Fluoranthene	ug/kg	4 IV	27 U		200 U	

)

Table 2-2Analytical Data SummarySite 14 Soil SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6G140117001 14-MW01-2426 07/12/2006	A6G140117002 14-MW03-1012 07/12/2006	A6G140394001 14-MW02-0406 07/13/2006	A6H120114001 14-SB04-2022 08/10/2006	A6H120114003 14-SB04-EB 08/10/2006 ug/L
Hexachlorobenzene	ug/kg	390 U	370 U	710 U	350 U	0.20 U
Hexachlorobutadiene	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Hexachlorocyclopentadiene	ug/kg	390 U	370 U	710 U	350 U	10 U
Hexachloroethane	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Indeno(1,2,3-cd)pyrene	ug/kg	80 J	7.7 J	520 J	85 J	0.20 U
Isophorone	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Naphthalene	ug/kg	8.0 J	370 U	15 J	9.6 J	0.20 U
Nitrobenzene	ug/kg	390 U	370 U	710 U	350 U	1.0 U
N-Nitrosodi-n-propylamine	ug/kg	390 U	370 U	710 U	350 U	1.0 U
N-Nitrosodiphenylamine	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Pentachlorophenol	ug/kg	390 U	370 U	710 U	350 U	5.0 U
Phenanthrene	ug/kg	300 J	21 J	1400	150 J	0.71
Phenol	ug/kg	390 U	370 U	710 U	350 U	1.0 U
Pyrene	ug/kg	340 J	21 J	1900	250 J	0.57

Table 2-3 Analytical Data Summary Site 14 Soil TPH and Cyanide ODOT Innerbelt Study

)			ODOI Innerbei	i Study			
PARAMETER	UNITS	A6G140117001 14-MW01-2426 07/12/2006	A6G140117002 14-MW03-1012 07/12/2006	A6G140394001 14-MW02-0406 07/13/2006	A6H120114001 14-SB04-2022 08/10/2006	A6H120114002 14-SB04-2022D (field dup) 08/10/2006	A6H120114003 14-SB04-EB 08/10/2006 mg/L
Gasoline Range Organics (C6-C12)	ug/kg	120 U	110 U	110 U	100 U	110 U	33 J
C10-C20	mg/kg	4.7	2.2	22 U	4.7	6.7	50 U
C20-C34	mg/kg	28	8.5	40	18	29	80 U
Cyanide, Total	mg/kg	0.59 U	0.56 U	0.54 U	0.52 U	0.53 U	0.010 U
Percent Solids	%	85.3	8 9	92.4	95.3	94.3	

i

Ì

.

Table 2-4 Analytical Data Summary Site 14 Water VOCs & Cyanide ODOT Innerbelt Study

		A6I270118001 14-MW-02	A6I270118002 TB-092606	A6I270118003 14-MW-03 09/26/2006	A6I270118004 EB092506 09/25/2006	A6I270118005 14-MW-02D 09/26/2006
PARAMETER	UNITS	09/26/2006	09/26/2006	09/26/2006	09/25/2006	
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dibromoethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone	ug/L	0.76 J	10 U	0.52 J	10 U	0.52 J
2-Hexanone	ug/L	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	ug/L	10 U	10 U	10 U	10 U	10 U
Acetone	ug/L	10 U	10 U	10 U	10 U	10 U
Benzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	ug/L	1.0 U	1.0 U	1.1	1.0 U	1.0 U
Bromoform	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon disulfide	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	ug/L	5.6	1.0 U	6	1.0 U	5.9
Chioromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene Methyl acetate	ug/L	10 U	10 U	10 U	10 U	10 U
Methyl tert-butyl ether	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
contract the second	ug/L	1.0 U	0.73 J	1.0 U	1.0 U	1.0 U
Toluene trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
 The second se Second second sec	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	and the second sec	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	ug/L	and the second sec	2.0 U	2.0 U	2.0 U	2.0 U
Xylenes (total)	ug/L mg/L	2.0 U 0.010 U		0.010 U	0.010 U	0.010 U

-- = Not analyzed.

J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

Table 2-5Analytical Data SummarySite 14 Water SemivolatilesODOT Innerbelt Study

		A6I270118001 14-MW-02	A6I270118003 14-MW-03	A6I270118004 EB092506	A6I270118005 14-MW-02D
PARAMETER	UNITS	09/26/2006	09/26/2006	09/25/2006	09/26/2006
1,1'-Biphenyl	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorophenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
2-Methylphenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
2-Nitrophenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitrophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Acenaphthylene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Acetophenone	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Anthracene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Atrazine	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Benzaldehyde	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Benzo(a)anthracene	ug/L	0.79	0.20 U	0.20 U	0.46
Benzo(a)pyrene	ug/L	0.63	0.20 U	0.20 U	0.43
Benzo(b)fluoranthene	ug/L	1.1	0.20 U	0.20 U	0.56
Benzo(ghi)perylene	ug/L	0.52	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
bis(2-Chloroethoxy)methane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	ug/L	1.0 U	1.3 U	0.90 J	1.1 U
Butyl benzyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Caprolactam	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Carbazole	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chrysene	ug/L	0.75	0.20 U	0.20 U	0.51
Dibenz(a,h)anthracene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Dibenzofuran	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Diethyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Fluoranthene	ug/L	2.0	0.20 U	0.20 U	1.0 0 1.2
Fluorene	ug/L ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobenzene	ug/L ug/L	0.20 U	0.20 U	0.20 U	0.20 U

P:\O\ODOT\15016633\DOCs\Data\Site 14\Site14 Table 2

(

Table 2-5Analytical Data SummarySite 14 Water SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6I270118001 14-MW-02 09/26/2006	A6I270118003 14-MW-03 09/26/2006	A6I270118004 EB092506 09/25/2006	A6I270118005 14-MW-02D 09/26/2006
Hexachlorobutadiene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	ug/L	10 U	10 U	10 U	10 U
Hexachloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	ug/L	0.95	0.20 U	0.20 U	0.20 U
Isophorone	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Nitrobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodi-n-propylamine	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	ug/L	1.1	0.20 U	0.20 U	0.59
Phenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene	ug/L	1.8	0.20 U	0.20 U	1.2

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

6.4 SITE 15 – LEON RUDNICK

According to the Cleveland City Directories, the site was listed as Baum Ice Cream from 1954 through 1979. According to the Cleveland Fire Prevention Bureau files, the site was occupied by Baum Ice Cream Company in 1944. An entry dated June 1950 indicates a fuel oil UST was to be installed in the tree lawn. A Fire Inspection Report dated December 1965 indicates a 1,000-gallon fuel oil UST was located on the site.

A Fire Inspection Report dated February 1987 indicates the 1,000-gallon UST was to be abandoned in place. On February 12, 1987, the UST reportedly was filled with a slurry mixture and abandoned in place, under the supervision of the Fire Department.

At the time of the URS Phase I reconnaissance, the site was occupied by one warehouse building, which was divided into three units. No surface staining, stressed vegetation and/or the storage and handling of hazardous substances were observed.

6.4.1 Field Activities

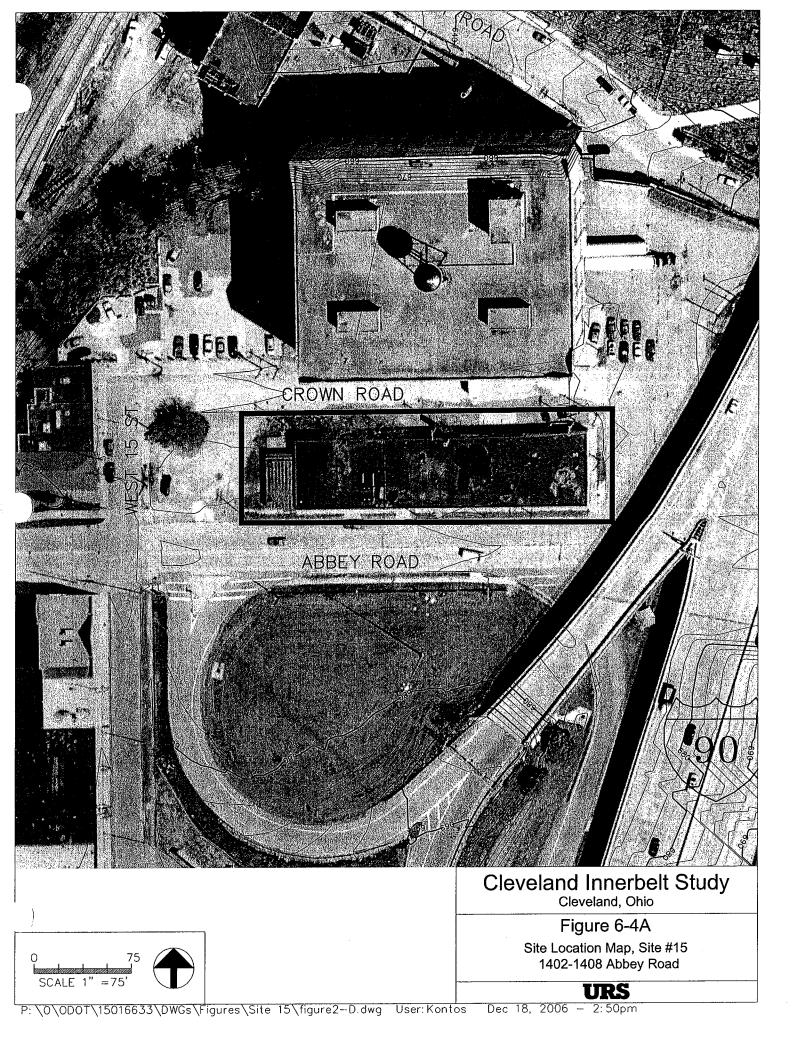
No intrusive Phase II activities were requested to be conducted at this site. No information is available regarding site specific geology. A Site Location Map is included as Figure 6-4A.

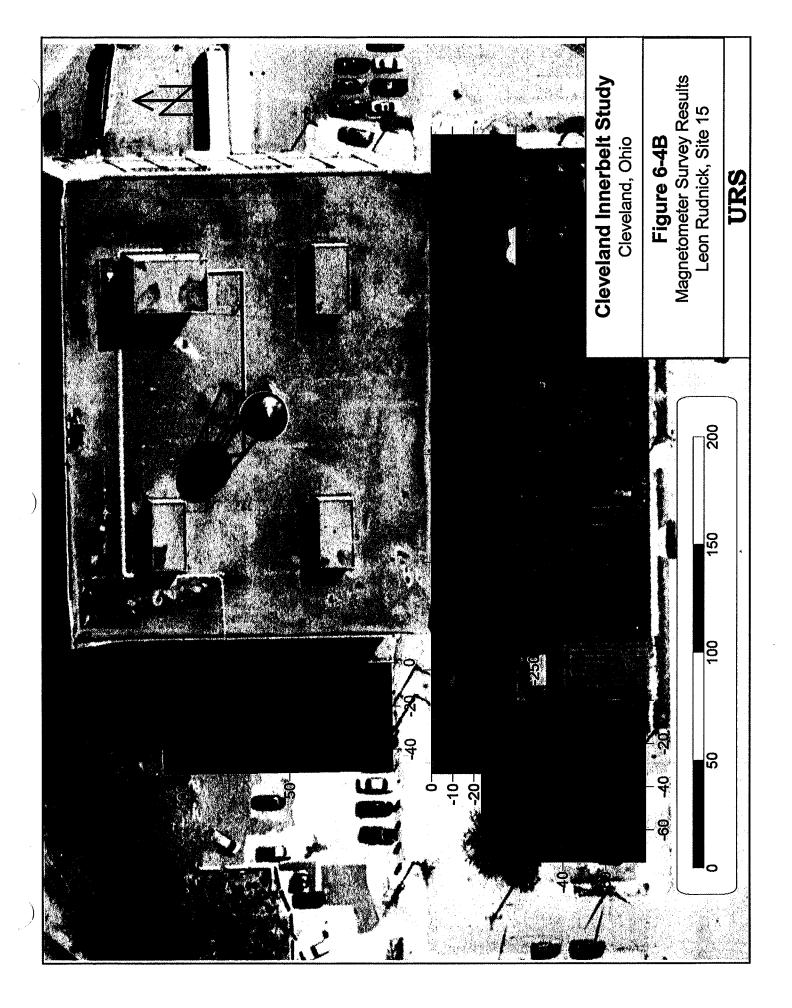
6.4.2 Geophysical Survey

URS conducted a geophysical survey at Site 15 in July 2006. The purpose of the survey was to locate, if present, abandoned underground storage tanks (USTs). Figure 6-4B indicates the results of the survey.

The geophysical survey at Site 15 included the paved and vegetated surfaces of the property and the pavement north of the property. The survey transects were conducted in a north – south direction, west of the building to align transects along the earth's total magnetic field which provides the greatest sensitivity to buried ferrous objects such as steel underground storage tanks. Due to the orientation of the roadway north of the property, transects in the roadway were conducted in an east-west direction. This orientation likely reduced the sensitivity of the survey. Transects were spaced five feet apart and were walked in alternating directions. The presence of tall structures prevented the use of a global positioning system (GPS) for the establishment of coordinates.

No evidence of a UST was discovered as a result of the geophysical survey at Site 15.


6.4.3 Conclusions


It is unlikely the soil and groundwater at Site 15 would impede the planned construction; however, the project specifications could be revised to include a plan note indicating the potential for impacted soil and groundwater to be encountered during the course of excavation. The contractor conducting the proposed improvement project should be advised to plan)

)

accordingly to protect the workers and to manage the exposure to soil and groundwater in the event such soil or groundwater is encountered.

6.5 SITE 16 – WENDELL & CARROLL COLLINS

According to the Cleveland Fire Prevention Bureau files, the site was occupied by Diamond Wheel Fabricating in 1999.

At the time of the URS Phase I reconnaissance, the site was occupied by a building and gravelcovered land. Surface staining was observed on the gravel-covered portion of the site.

6.5.1 Field Activities

A total of four monitoring wells were scoped for Site 16. Groundwater was encountered in only one soil boring (MW01) during field activities. A total of three soil borings (SB02 through SB04) were installed at Site 16. At the time of groundwater sampling, MW01 was dry and no groundwater sample could be obtained. One soil sample per boring was collected and analyzed for VOCs, SVOCs, and RCRA Metals. A Sample Location Map is included as Figure 6-5A.

6.5.2 Site-Specific Geology/Hydrogeology

Soils at Site 16 consisted primarily of sand with minor amounts of silty clay and clay interbedded. Bedrock was not encountered in any of the soil borings, which were advanced to 30 feet bgs.

Groundwater elevations were measured at Site 16 on September 26, 2006. Monitoring well (MW01) was dry. Localized groundwater flow across Site 16 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 16 is to the south-southwest.

6.5.3 Soil Analytical Results

No VOCs were detected in the samples submitted from Site 16.

A total of eleven SVOCs were detected in two (16-SB02-1820 and 16-SB04-0810) of the four samples submitted from Site 16. Concentrations of benzo(a)anthracene (34 ug/kg), benzo(a)pyrene (37 ug/kg), benzo(b)fluoranthene (49 ug/kg), benzo(g,h,i)perylene (28 ug/kg), benzo(k)fluoranthene (22 ug/kg), bis(2-ethylhexyl)phthalate (480 ug/kg), chrysene (ranging from 8.7 ug/kg to 39 ug/kg), fluoranthene (ranging from 8.0 ug/kg to 68 ug/kg), indeno(1,2,3)pyrene (24 ug/kg), phenanthrene (29 ug/kg), and pyrene (52 ug/kg) were detected in the soil samples submitted. All other SVOCs were below the detection limits.

Six of the eight RCRA Metals were detected in the samples submitted from Site 16. Arsenic, ranging from 5.9 mg/kg to 8.5 mg/kg, was detected in all samples submitted. Barium, ranging from 12.0 mg/kg to 30.2 mg/kg, was detected in the all samples submitted. Cadmium, 0.15 mg/kg to 0.33 mg/kg, was detected in all samples submitted. Chromium, ranging from 4.9 mg/kg to 7.4 mg/kg, was detected in the samples submitted. Lead, ranging from 5.4 mg/kg to 33 mg/kg, was detected in the samples submitted. Mercury, 0.043 mg/kg, was detected in the sample submitted from 16-SB04-0810.

URS

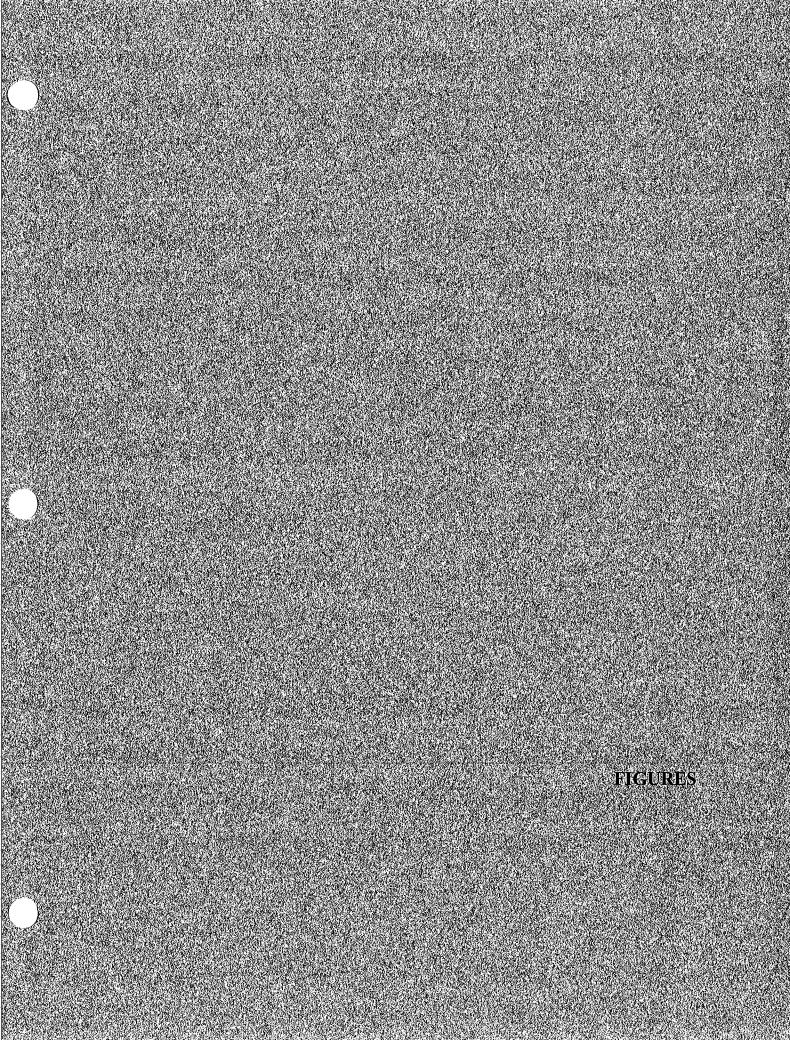
The analytical results are presented in Table 6-5A.

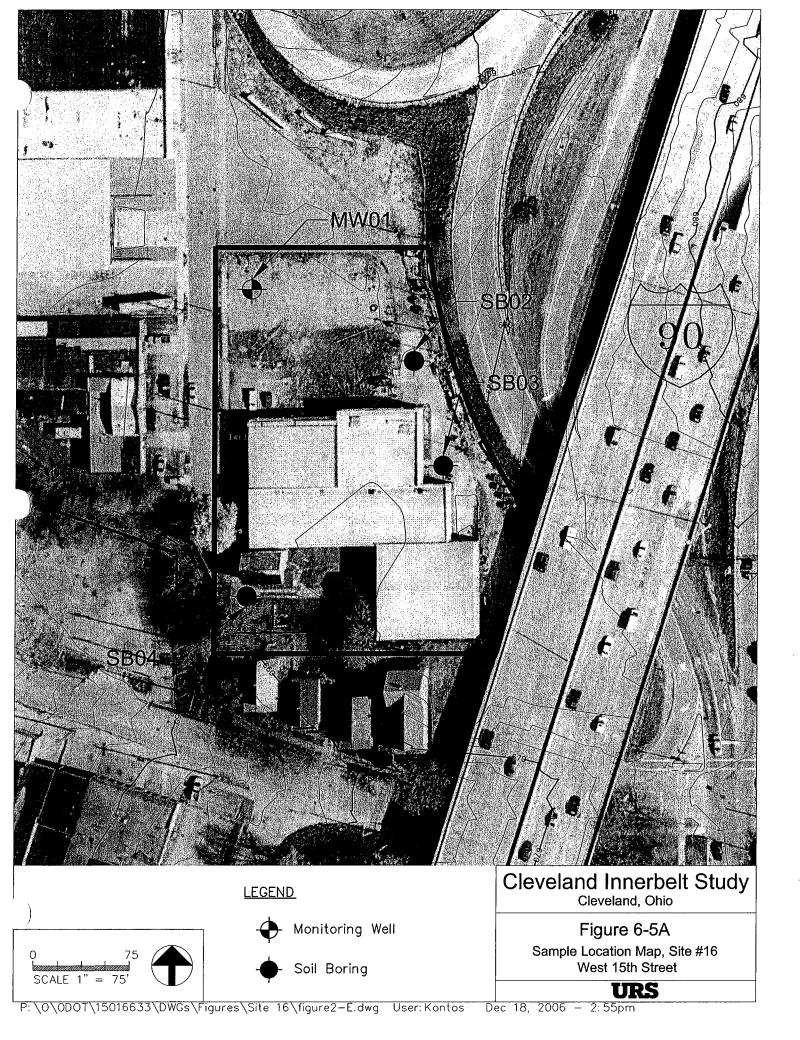
6.5.4 Groundwater Analytical Results

No groundwater was encountered in MW02.

6.5.5 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), and the BUSTR Closure Action Levels for Class 1 soils. The VAP and BUSTR standards are included on **Table 6-5A**.


No VOCs were detected in the samples submitted from Site 16.


None of the eleven SVOCs detected at Site 16 exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or BUSTR closure action levels.

There were no RCRA Metals detected at Site 16 which exceeded the OEPA VAP standards for commercial and industrial land use or the construction and excavation worker activities category.

6.5.6 Conclusions

Based on the analytical results, it is unlikely that the soils at Site 16 would require special management during construction.

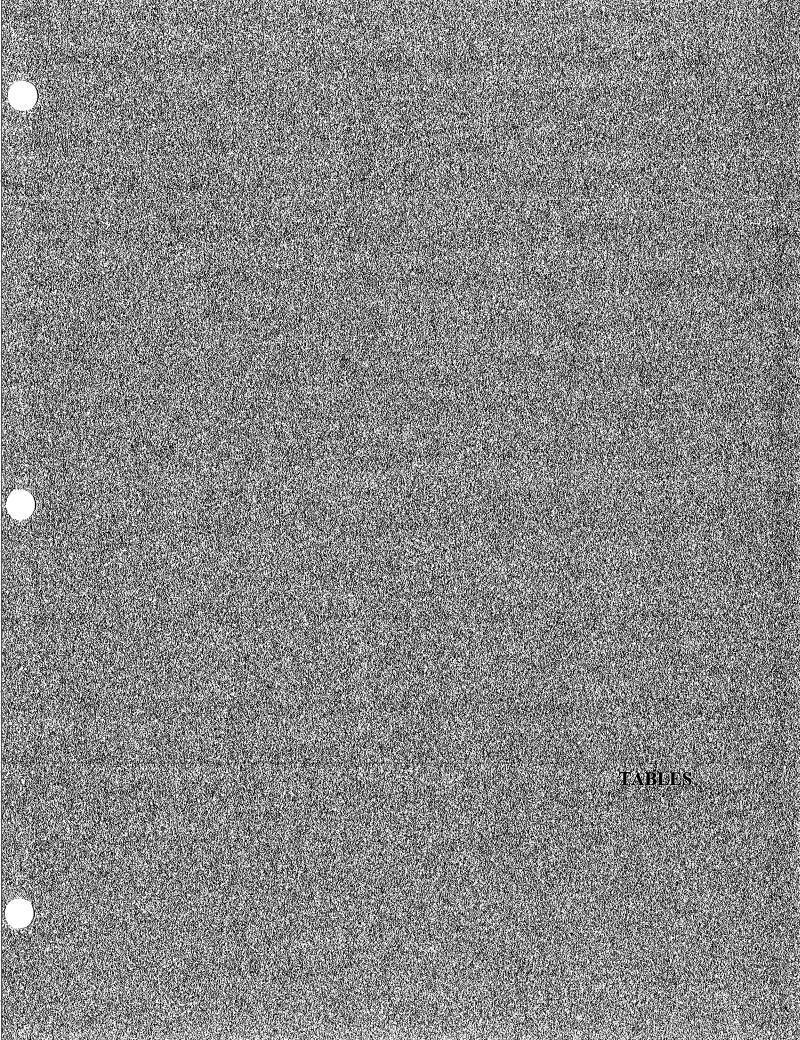


Table 0-5A Summary of Detected Chemicals in Soil Site 16 - Wendell & Carroll Collins / 1501 Companies ODOT Innerbelt Study Cleveland, Ohio

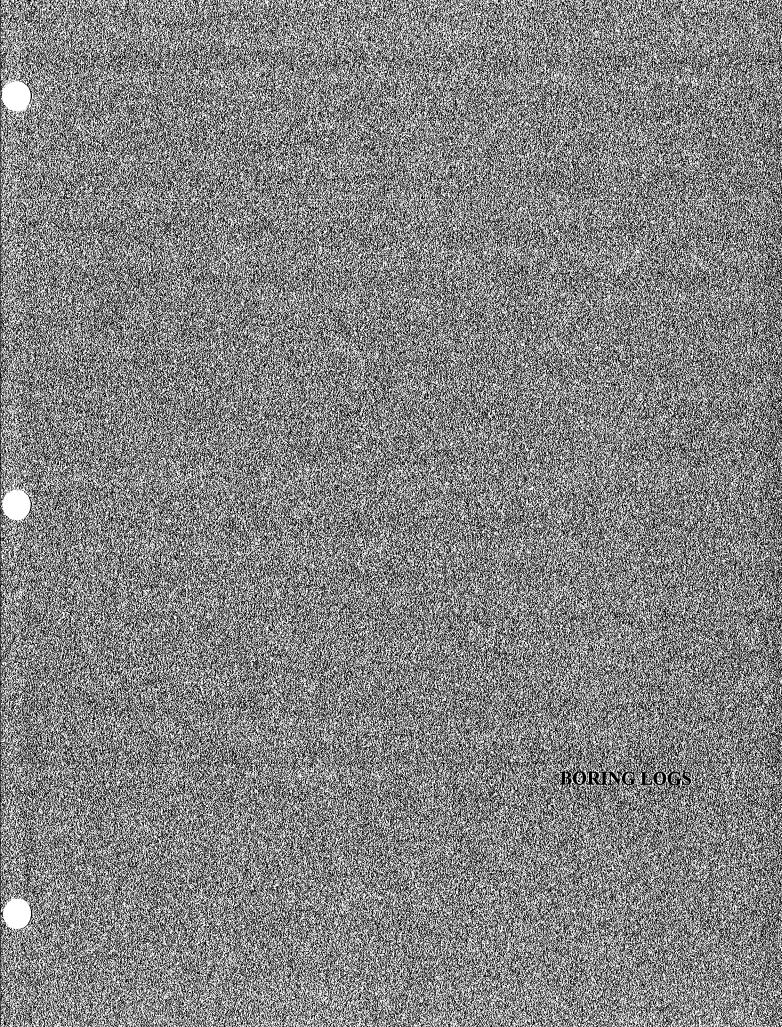
SCHOOL STORY

63,000 81 6,300 81 6,300 81 53,000 81 - 81 530,000 8,10 530,000 8,10 530,000 8,10 230,000 41 33,000,000 170, 67,000 170, 80 80 80 80 80 80 80 8,900 8,900 2 300 300	2	PARAMETER	UNITS	WAP Commercial Industrial Standard ⁽¹⁾	VAP Construction Worken Standard ⁰	BUSTR Closure Action Level	16-MW01-1416 07/11/2006	16-SB02-1820 07/11/2006	16-SB03-2224 07/11/2006	16-SB04-0810 08/07/2006
Berrzo(a)pyreneug/kg6,300Berrzo(b)fluorantheneug/kg63,0008Berrzo(c)hilperyleneug/kg630,0008Berrzo(c)hilperyleneug/kg630,00017Berrzo(c)hilperyleneug/kg6,700,00017Dis(2-Ethylhexyl) phthalateug/kg6,700,00017Indeno(1,2,3-cd)pyreneug/kg6,700,00013Pyreneug/kg67,000,00013Pyreneug/kg230,00013Arsenicmg/kg200,00013Arsenicmg/kg200,00013Arsenicmg/kg200,00013Arsenicmg/kg200,00013Arsenicmg/kg200,00013Marcurymg/kg300300Mercurymg/kgMercurymg/kg		Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	350 U	350 U	370 U	34 J
Berrzo(b)fluorantheneug/kg63,0008Berrzo(ghi)peryleneug/kg63,0008Berrzo(shi)peryleneug/kg6,700,00017Dis(2-Ethylhexyl) phthalateug/kg6,700,00011Indeno(1,2,3-cd)pyreneug/kg6,700,00017Phenanthreneug/kg6,700,00013Pyreneug/kg25,000,00013Arsenicmg/kg25,000,00013Arsenicmg/kg25,000,00013Arsenicmg/kg200,00013Marcurymg/kg200,00013Mercurymg/kg300300	τ	Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	350 U	350 U	370 U	37 J
Benzo(ghi)peryleneug/kg6:30,0008Benzo(k)fluorantherneug/kg6:700,00041Chryseneug/kg6:700,00017Fluorantheneug/kg6:700,00017Indeno(1,2,3-cd)pyreneug/kg6:700,00013Phenanthreneug/kg5:700,00013Pyreneug/kg25,000,00013Arsenicmg/kg25,000,00013Arsenicmg/kg200,00013Arsenicmg/kg8013Marcurymg/kg3,90013Mercurymg/kg8,90013		Benzo(b)fluoranthene	ug/kg	63,000	810,000	11,000	350 U	350 U	370 U	49 J
Bernzo(k)fituoranthene ug/kg 630,000 8 bis(2-Ethylhexyl) phthalate ug/kg 230,000 4 Chrysene ug/kg 6,700,000 41 Fluoranthene ug/kg 6,700,000 17 Indeno(1,2,3-cd)pyrene ug/kg 6,700,000 17 Phenanthrene ug/kg 6,700,000 13 Pyrene ug/kg 80 - Pyrene ug/kg 25,000,000 13 Arsenic mg/kg 80 - Cadmium mg/kg 80 13 Arsenic mg/kg 80 13 Arsenic mg/kg 80 13 Arsenic mg/kg 80 13 Arsenic mg/kg 30,000 13 Arsenic mg/kg 300,000 13 Arsenic mg/kg 13 13 Arsenic mg/kg 50,000 13 Arsenic mg/kg 13 13	č	Benzo(ghi)perylene	ug/kg	 A second sec second second sec			350 U	350 U	370 U	28 J
bis(2-Ethylhexyl) phthalate ug/kg 230,000 21 Chrysene ug/kg 6,700,000 17 Fluoranthene ug/kg 6,700,000 17 Indeno(1,2,3-cd)pyrene ug/kg 67,000 17 Phenanthrene ug/kg 67,000 13 Pyrene ug/kg 25,000,000 13 Arsenic mg/kg 200,000 13 Arsenic mg/kg 80 13 Cadmium mg/kg 200,000 13 Mareury mg/kg 300 700	sO	Benzo(k)fluoranthene	ug/kg	630,000	8,100,000	110,000	350 U	350 U	370 U	22 J
Chrysene ug/kg 6,700,000 41 Fluoranthene ug/kg 67,000 17 Indeno(1,2,3-col)pyrene ug/kg 67,000 17 Phenanthrene ug/kg 67,000 17 Pyrene ug/kg 67,000 13 Arsenic mg/kg 25,000,000 13 Arsenic mg/kg 200,000 13 Cadmium mg/kg 80 13 Chromium mg/kg 200,000 13 Mercury mg/kg 300 300	٥٨	bis(2-Ethylhexyl) phthalate	ug/kg	230,000	230,000		350 U	350 U	370 U	480
Fluoranthene ug/kg 33,000,000 17 Indeno(1,2,3-cd)pyrene ug/kg 67,000 4 Phenanthrene ug/kg 67,000 13 Pyrene ug/kg 25,000,000 13 Arsenic mg/kg 25,000,000 13 Arsenic mg/kg 200,000 13 Cadmium mg/kg 80 13 Cadmium mg/kg 200,000 13 Lead mg/kg 8,900 13 Mecury mg/kg 8,900 13	S	Chrysene	ug/kg	6,700,000	41,000,000	1,100,000	350 U	8.7 J	370 U	39 J
Indeno(1,2,3-cd)pyrene ug/kg 67,000 4 Phenanthrene ug/kg 25,000,000 13 Pyrene ug/kg 25,000,000 13 Arsenic mg/kg 200,000 13 Arsenic mg/kg 80 13 Cadmium mg/kg 80 13 Lead mg/kg 8,900 13 Mercury mg/kg 8,900 300		Fluoranthene	ug/kg	33,000,000	170,000,000		350 U	8.0 J	370 U	68 J
Phenanthrene ug/kg - Pyrene ug/kg 25,000,000 13 Arsenic mg/kg 80 Barium mg/kg 200,000 Cadmium mg/kg 8,900 Chromium mg/kg 8,900 Lead mg/kg 8,900 Mercury mg/kg 300		Indeno(1,2,3-cd)pyrene	ng/kg	67,000	410,000	11,000	350 U	350 U	370 U	24 J
Pyrene ug/kg 25,000,000 13 Arsenic mg/kg 80 80 Barium mg/kg 80 770 Cadmium mg/kg 8,900 770 Chromium mg/kg 8,900 8,900 Lead mg/kg 8,900 8,900		Phenanthrene	ug/kg	 International statements 	1	1	350 U	350 U	370 U	29 J
Arsenic mg/kg 80 Barlum mg/kg 200,000 Cadmium mg/kg 770 Chromium mg/kg 8,900 Lead mg/kg - Mercury mg/kg 300		Pyrene	ug/kg	25,000,000	130,000,000		350 U	350 U	370 U	52 J
Barium mg/kg 200,000 Cadmium mg/kg 770 Chromium mg/kg 8,900 Lead mg/kg - 100 Mercury mg/kg 300	<u>!</u> _	Arsenic	mg/kg	80	210		5.9	7.1	7.5	8.5
Cadmium Chromium Lead Mercury Mercury	5	Barium	mg/kg	200,000	45,000	and Descriptions of the second	20.9 J	12.0 J	13.2 J	30.2
Chromium mg/kg 8,900 Lead mg/kg Mercury mg/kg 300	ilate	Ander en en sens des antes antes en entre de la composition de	mg/kg	240	420	•	0.17 J	0.33	0.19 J	0.15 J
- mg/kg	W	Chromium	mg/kg	8,900	2,000		6.1	6.4	4.9	7.4
/ ma/ka 300	2	and and any straight strain and star	mg/kg	and the second	The second se	ł	5.4	6.7	6.3	33
			mg/kg	300	84	-	0.11 U	0.11 U	0.11 U	0.043 J

-- = Standard not available

 $\mathsf{U}=\mathsf{T}\mathsf{he}$ analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.


(1) VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use

(2) VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

P:\O\ODOT15016633\DOCs\Data\Hits Tables\Site 16 Hits Tables

ı,

URS

Log of Boring 16-MW01

Sheet 1 of 1

Date(s) 7/11/06	Logged	J. Kaminski	Checked M. Wolff
Drilled 7/11/06	By		By
Drilling Method & Hollow Stem Auger	Hammer	140# / 30" drop automatic	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data		of Borehole 30.0' bgs
Drill Rig	Drilling	HAD, Inc.	Approximate
Type CME-55	Contractor		Ground Elevation 682'
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level and Date Measured Well dry on 9/26/06			

			SAMF	LES				T		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Well	Installation Schematic	FIELD NOTES AND WELL DETAILS
	0 - -	0002	32 9 7 5	4.0	0.0		ASPHALT Brick, and Slag, (Fill)	0.0.0.0	0.0.0.0	Begin Drilling on 7/11/06
-680	-	0204	4 2 2 2	5.0	1.0		Loose, moist, brown, well graded, SAND trace medium to coarse gravel			
	5	0406	1 1 1 4	10.0	0.7		Loose, dry, brown, SAND and gravel, and Brick			. Dontonito Dollato
	-	0608	2 2 3 3	21.0	0.2		Loose, dry, brown, coarse SAND trace gravel, trace silt			t—Bentonite Pellets
	10-	0810	2 3 4 10	20.0	1.0		Soft, moist, brown, silty CLAY Stiff, moist, brown, clayey SILT To silt			2" Schedule 40 PVC
-670	-01	1012	13 12 12 10	24.0	0.9		Very loose, dry, light brown, coarse SAND trace silt			
0/0	-	1214	7 9 11 11	20.0	0.7		←With gravel			Sample submitted for
	15-	1416	5 5 10 10	16.0	2.0		← No gravel, increasing silt			laboratory analysis 16-MW01-1416
	-	1618	1 5 5 8	8.0	0.4		Trace shale fragments			
	- 20	1820	5 10 10 12	14.0	1.9		- Less silt, fine gravel			
-660		2022	1 2 2 3	24.0	1.1		Stiff, light brown and gray, fine SAND trace silt Soft, wet, dark brown, silty SAND Trace, iron oxide staining			
	-	2224	2 3 5 7	10.0	1.4		Dense, moist, gray, silty SAND			
	25-	2426	3 5 8 9	14.0	1.0		←Becomes brownish gray ←Trace, iron oxide staining			Filter Sand #7
	-	2628	3 7 7 7 4	24.0	1.2					- Slotted Pipe #10
	- 30	2830	4 6 8 8	12.0	1.0		End of Boying at 30' bas			PVC (0.010) End Drilling on
-650	4						End of Boring at 30' bgs Installed Monitoring Well			7/11/06
	-									
	35	I						I		

)

)

Report: 1_ODOT_WELLS; File: ODOT.GPJ; 12/14/2006 16-MW01

Log of Boring 16-SB02

Sheet 1 of 1

Date(s) Dr and Install		Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method	Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0' bgs
Sampling Method	2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 678'
Drill Rig Type:	CME-55	Groundwater Level(s) Not Encountered	Hammer Data 140# / 30" drop automatic
Boring Location:	See Site Map	Borehole Backfill bentonite	

			SAM	PLES]		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
	0-						CONCRETE and base	Begin drilling on 7/11/06
	2-	0204	8 7 5 3	24.0	0.1		Loose, dry, brown, silty SAND with gravel	
	4	0406	1 3 5 5	24.0	1.6			-
-670		0608	4 4 4 3	24.0	2.9		Loose, dry, brown, coarse SAND with gravel, and silt Medium stiff, dry, brown, silty CLAY	
010	10-	0810	2 4 10 12	24.0	2.6		Medium stiff, moist, brown, silty CLAY	-
	10 	1012	7 10 13 7	10.0	1.5		V-Trace sand / Loose, dry, light brown, SAND and gravel	-
	14-	1214	5 8 13 8	16.0	2.2		Loose, dry, gray, GRAVEL with sand	
	1- 	1416	4 10 8 6	24.0	3.5			
-660	18 - 18	1618	1 3 3 3	17.0	1.8		Loose, dry, brown, medium SAND iron oxide staining	
	20-	1820	2 2 3 3	12.0	4.3			Sample submitted for laboratory analysis 16-SB02-1820
	22-	2022	1 3 2	14.0	3.8		←No staining	-
·	 24	2224	3 3 3 3	14.0	1.5			-
	 26	2426	3 2 3 4 4	12.0	2.5			- -
-650	 28	2628	6 7 9	12.0	1.5			-
	 30	2830	6 7 7	0.0	0.9			-
	32-						End of Boring at 30' bgs	- End drilling on 7/11/06 1500 -
	<u>لــ</u>	., ., ., ., ., ., ., ., ., ., ., ., ., .					URS	

J

)

)

Log of Boring 16-SB03

Sheet 1 of 1

Date(s) Drille and Installed	^{ed} 7/11/06	Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method	Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0' bgs
Sampling Method	2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 676'
Drill Rig Type:	CME-55	Groundwater Level(s)	Hammer Data 140# / 30" drop automatic
Parina	See Site Map	Borehole Backfill Set monitoring well	•

			SAM	PLES				
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
╞	_						CONCRETE	Begin drilling on 7/11/06
	2- 	0204	2 7 7 10	8.0	0.4		CRUSHED STONE Hard, dry, brown and black, coarse clayey SAND and gravel, with Asphalt	-
		0406	2 4 10 13	24.0	0.3		Loose, dry, brown, coarse SAND with gravel	-
-670	6	0608	3 4 7 12	24.0	0.0		Hard, dry, brown, clayey SILT	-
	8	0810	1 2 7	19.0	1.8		Soft, wet, Seam Hard, dry, brown, SILT trace fine sand	-
L	10— 	1012	10 1 3 3	24.0	2.3		· · · · · · · · · · · · · · · · · · ·	-
	12	1214	3 4 4	17.0	2.1		Loose, moist, gray coarse SAND	
	14-	1416	4 3 3 4 5	20.0	1.8			
-660	16-	1618	5 3 2 3	13.0	2.9		Loose, dry, brown fine to medium SAND, trace silt	-
	 18	1018	3	13.0	2.9		-Becomes medium to coarse SAND, no silt	
	-	1820	3332	19.0	1.5		 Becomes fine to medium SAND, trace silt 	
_	20	2022	2 3 3 3	20.0	2.1			
	22-	2224	2 6 7 7	21.0	4.6			Sample submitted for laboratory analysis 16-SB03-2224
	24	2426	2 7 7 8	21.0	2.0			
650	26	2628	7 7 6	14.0	4.1		rBecomes fine SAND	
	28-	2830	6 2 6 7 11	12.0	3.4			
-	30- - -					<u></u>	End of Boring at 30' bgs	End drilling on 7/11/06 1230
	32- 							
		. I	l	I			URS	I

)

)

Log of Boring 16-SB04

Sheet 1 of 1

Date(s) Dr and Install	illed 8/7/06 ed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling	Hollow Stem Auger	Drilling	Total Depth
Method		Contractor HAD, Inc.	of Borehole 30.0' bgs
Sampling	2" Split Spoon	Drill Bit	Approximete
Method		Size/Type: 4-1/4" ID HSA	Surface Elevation 676'
Drill Rig	LC-60	Groundwater	Hammer
Type:		Level(s) Not Encountered	Data 140# auto hammer
Boring Location:	See Site Map	Borehole Backfill bentonite	

			SAM	PLES				
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
-	0	0002	1	10.0	9.1		TOPSOIL Loose, dry, light brown, SAND with gravel	Begin drilling on 8/7/06
	2	0204	1 1 1 2	20.0	18			-
-670	4- 	0406		11.0	26.4]
070		0608	1 2 4 5	12.0	32.4		r-With clay rNo clay	-
	-	0810	2 4 4 2	14.0	36.9			Sample submitted for - laboratory analysis 16-SB04-0810
	10- 42	1012	1 1 2 1	16.0	36.3		r Moist, with fine gravel]
	12 14	1214	1 4 7 8	14.0	35		rDry	
-660	14-	1416	3 3 3 2	13.0	32.6		Fine to medium SAND no gravel	
-000	10-	1618	1 1 1	16.0	34.9		r Moist	-
	20	1820	1 1 2 2	14.0	34			
	20- - 22-	2022	1 3 4 4	12.0	32.8			-
	22 24	2224	1 4 6 6	24.0	30.1			-
-650	24 26	2426	4 7 8 8	22.0	24.5			_
000	20	2628	3 7 7 7	24.0	17.5		←Dry, brown and gray	
	20 - - 30-	2830	3 5 5 5	24.0	14.3			-
_	30-						End of Boring at 30' bgs	- End drilling on 8/7/06
	34- 34-							-
L					[I

DATA ASSESSMENT REPORT

Data Assessment Report ODOT Innerbelt Study Site 16 – Wendell & Carroll Collins / 1501 Companies

Reviewer: P. Schuler Date: November 12, 2006

Four soil samples and one trip blank were collected at the Wendell & Carroll Collins / 1501 Companies site in Cleveland, Ohio, on July 11 and August 7, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample	·	Reque	ested Ana	lyses ⁽¹⁾
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC	CN
A6G140116001	16-MW01-1416	07/11/2006	Soil	X	X	X
A6G140116002	16-SB02-1820	07/11/2006	Soil	X	X	Х
A6G140116003	16-SB03-2224	07/11/2006	Soil	X	X	X
A6H090258001	16-SB04-0810	08/07/2006	Soil	X	X	X
A6H090258002	TB-080706	08/07/2006	Trip Blank	X		

Table 1Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

SVOC = Semivolatile Organic Compounds [SW-846 Method 8270C]

Met = RCRA Metals [SW-846 Methods 6010B/6020/7470A/7471A]

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- Positive detections for methylene chloride in samples 16-MW01-1416, 16-SB02-1820, and 16-SB03-2224 and for acetone in sample 16-SB04-0810 were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks and/or trip blanks at similar concentrations.
- The semivolatile compound, bis(2-ethylhexyl)phthalate, was detected at concentrations ranging from 0.9 to 1.8 ug/L in all equipment blanks associated with project samples. Since this compound is considered a common laboratory contaminant, its presence in environmental samples at concentrations less than ten times the highest equipment blank concentration (converted to an equivalent soil concentration) is attributed to external

contamination rather than actual site conditions. Therefore, the positive detections for bis(2-ethylhexyl)phthalate in samples 16-MW01-1416, 16-SB02-1820, and 16-SB03-2224 were qualified as nondetect ("U") at the sample reporting limit, even though it was not detected in the associated method blank.

- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J" for organics, and "B" for inorganics), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, organic "J" qualifiers were retained with the numeric results. The inorganic "B" qualifiers were changed to "J" qualifiers for the sake of consistency throughout the package.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-3.

Table 2-1Analytical Data SummarySite 16 Soil VolatilesODOT Innerbelt Study

ARAMETER	UNITS	A6G140116001 16-MW01-1416 07/11/2006	A6G140116002 16-SB02-1820 07/11/2006	A6G140116003 16-SB03-2224 07/11/2006	A6H090258001 16-SB04-0810 08/07/2006	UNITS	A6H090258002 TB-080706 08/07/2006
.1.1-Trichloroethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,1,2,2-Tetrachloroethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,1,2-Trichloroethane		5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,1-Dichloroethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,1-Dichloroethene	ug/kg	A	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,2,4-Trichlorobenzene	ug/kg	5.3 U		11 U	11 U	ug/L	2.0 U
,2-Dibromo-3-chloropropane	ug/kg	11 U		5.6 U	5.4 U	ug/L	1.0 U
,2-Dibromoethane	ug/kg	5.3 U	5.4 U		5.4 U	-	1.0 U
,2-Dichlorobenzene	ug/kg	5.3 U	5.4 U	5.6 U		ug/L	1.0 U
,2-Dichloroethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	
,2-Dichloropropane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,3-Dichlorobenzene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
,4-Dichlorobenzene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
-Butanone	ug/kg	21 U	21 U	23 U	22 U	ug/L	10 U
-Hexanone	ug/kg	21 U	21 U	23 U	22 U	ug/L	10 U
I-Methyl-2-pentanone	ug/kg	21 U	21 U	23 U	22 U	ug/L	10 U-
Acetone	ug/kg	21 U	21 U	23 U	22 U	ug/L	10 U
Benzene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Bromodichloromethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
romoform	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
romomethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
arbon disulfide	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Carbon tetrachloride	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Chiorobenzene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Chloroethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Chloroform	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Chloromethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
sis-1,2-Dichloroethene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
is-1,3-Dichloropropene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Cyclohexane	ug/kg	11 U	11 U	11 U	11 U	ug/L	1.0 U
Dibromochloromethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Dichlorodifluoromethane	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Ethylbenzene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
sopropylbenzene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Aethyl acetate	ug/kg	11 U	11 U	11 U	11 U	ug/L	10 U
Methyl tert-butyl ether	ug/kg	21 U	21 U	23 U	22 U	ug/L	5.0 U
Aethylcyclohexane	ug/kg	11 U	11 U	11 U	11 U	ug/L	1.0 U
Aethylene chloride	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Styrene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
etrachloroethene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
oluene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
rans-1,2-Dichloroethene	ug/kg ug/kg	5.3 U		5.6-U	5.4-U	ug/L	1.0 U
 A second s	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
rans-1,3-Dichloropropene		5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Frichloroethene	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
Frichlorofluoromethane /inyl chloride	ug/kg	5.3 U	5.4 U	5.6 U	5.4 U	ug/L	1.0 U
UDV/ COLOFIDE	ug/kg	1 0.3 0	0.4 U	0.0 0	5.40	լ պայտե	1.0 0

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

).

Table 2-2Analytical Data SummarySite 16 Soil SemivolatilesODOT Innerbelt Study

		A6G140116001 16-MW01-1416 07/11/2006	A6G140116002 16-SB02-1820 07/11/2006	A6G140116003 16-SB03-2224 07/11/2006	A6H090258001 16-SB04-0810 08/07/2006
PARAMETER	UNITS	and the second s			and the Physics of the Color
1,1'-Biphenyl	ug/kg	350 U	350 U	370 U	360 U
2,2'-oxybis(1-Chloropropane)	ug/kg	350 U	350 U	370 U	360 U
2,4,5-Trichlorophenol	ug/kg	350 U	350 U	370 U	360 U
2,4,6-Trichlorophenol	ug/kg	350 U	350 U	370 U	360 U
2,4-Dichlorophenol	ug/kg	350 U	350 U	370 U	360 U
2,4-Dimethylphenol	ug/kg	350 U	350 U	370 U	360 U
2,4-Dinitrophenol	ug/kg	350 U	350 U	370 U	360 U
2,4-Dinitrotoluene	ug/kg	350 U	350 U	370 U	360 U
2,6-Dinitrotoluene	ug/kg	350 U	350 U	370 U	360 U
2-Chloronaphthalene	ug/kg	350 U	350 U	370 U	360 U
2-Chlorophenol	ug/kg	350 U	350 U	370 U	360 U
2-Methylnaphthalene	ug/kg	350 U	350 U	370 U	360 U
2-Methylphenol	ug/kg	350 U	350 U	370 U	360 U
2-Nitroaniline	ug/kg	350 U	350 U	370 U	360 U
2-Nitrophenol	ug/kg	350 U	350 U	370 U	360 U
3,3'-Dichlorobenzidine	ug/kg	350 U	350 U	370 U	360 U
3-Nitroaniline	ug/kg	350 U	350 U	370 U	360 U
4,6-Dinitro-2-methylphenol	ug/kg	350 U	350 U	370 U	360 U
4-Bromophenyl phenyl ether	ug/kg	350 U	350 U	370 U	360 U
4-Chloro-3-methylphenol	ug/kg	350 U	350 U	370 U	360 U
4-Chloroaniline	ug/kg	350 U	350 U	370 U	360 U
4-Chlorophenyl phenyl ether	ug/kg	350 U	350 U	370 U	360 U
4-Methylphenol	ug/kg	350 U	350 U	370 U	360 U
4-Nitroaniline	ug/kg	350 U	350 U	370 U	360 U
4-Nitrophenol	ug/kg	350 U	350 U	370 U	360 U
Acenaphthene	ug/kg	350 U	350 U	370 U	360 U
Acenaphthylene	ug/kg	350 U	350 U	370 U	360 U
Acetophenone	ug/kg	70 U	71 U	75 U	72 U
Anthracene	ug/kg	350 U	350 U	370 U	360 U
Atrazine	ug/kg	350 U	350 U	370 U	360 U
Benzaldehyde	ug/kg	350 U	350 U	370 U	360 U
Benzo(a)anthracene	ug/kg	350 U	350 U	370 U	34 J
energy and the second		350 U	350 U	370 U	37 J
Benzo(a)pyrene	ug/kg	350 U	350 U	370 U	49 J
Benzo(b)fluoranthene	ug/kg		350 U		· · · · · · · · · ·
Benzo(ghi)perylene	ug/kg	350 U 350 U		370 U 370 U	28 J 22 J
Benzo(k)fluoranthene	ug/kg	350 U	350 U	· · · · · · · · · · · · · · · · · · ·	360 U
bis(2-Chloroethoxy)methane	ug/kg		350 U	370 U	
bis(2-Chloroethyl) ether	ug/kg	350 U	350 U 350 U	370 U 370 U	360 U
bis(2-Ethylhexyl) phthalate	ug/kg	350 U		and the second	480
Butyl benzyl phthalate	ug/kg	350 U	350 U	370 U	360 U
Caprolactam	ug/kg	350 U	350 U	370 U	360 U
Carbazole	ug/kg	350 U	350 U	370 U	360 U
Chrysene	ug/kg			370 U	
Dibenz(a,h)anthracene	ug/kg	350 U	350 U	370 U	360 U
Dibenzofuran	ug/kg	350 U	350 U	370 U	360 U
Diethyl phthalate	ug/kg	350 U	350 U	370 U	360 U
Dimethyl phthalate	ug/kg	350 U	350 U	370 U	360 U
Di-n-butyl phthalate	ug/kg	350 U	350 U	370 U	360 U
Di-n-octyl phthalate	ug/kg	350 U	350 U	370 U	360 U
Fluoranthene	ug/kg	350 U	8.0 J	370 U	68 J
Fluorene	ug/kg	350 U	350 U	370 U	360 U

Table 2-2Analytical Data SummarySite 16 Soil SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6G140116001 16-MW01-1416 07/11/2006	A6G140116002 16-SB02-1820 07/11/2006	A6G140116003 16-SB03-2224 07/11/2006	A6H090258001 16-SB04-0810 08/07/2006
Hexachlorobenzene	ug/kg	350 U	350 U	370 U	360 U
Hexachlorobutadiene	ug/kg	350 U	350 U	370 U	360 U
Hexachlorocyclopentadiene	ug/kg	350 U	350 U	370 U	360 U
Hexachloroethane	ug/kg	350 U	350 U	370 U	360 U
Indeno(1,2,3-cd)pyrene	ug/kg	350 U	350 U	370 U	24 J
Isophorone	ug/kg	350 U	350 U	370 U	360 U
Naphthalene	ug/kg	350 U	350 U	370 U	360 U
Nitrobenzene	ug/kg	350 U	350 U	370 U	360 U
N-Nitrosodi-n-propylamine	ug/kg	350 U	350 U	370 U	360 U
N-Nitrosodiphenylamine	ug/kg	350 U	350 U	370 U	360 U
Pentachlorophenol	ug/kg	350 U	350 U	370 U	360 U
Phenanthrene	ug/kg	350 U	350 U	370 U	29 J
Phenol	ug/kg	350 U	350 U	370 U	360 U
Pyrene	ug/kg	350 U	350 U	370 U	52 J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

Table 2-3 Analytical Data Summary Site 16 Soil Metals ODOT Innerbelt Study

PARAMETER	UNITS	A6G140116001 16-MW01-1416 07/11/2006	A6G140116002 16-SB02-1820 07/11/2006	A6G140116003 16-SB03-2224 07/11/2006	A6H090258001 16-SB04-0810 08/07/2006
Percent Solids	%	94.7	93.2	88.5	92.7
Arsenic	mg/kg	5.9	7.1	7.5	8.5
Barium	mg/kg	20.9 J	12.0 J	13.2 J	30.2
Cadmium	mg/kg	0.17 J	0.33	0.19 J	0.15 J
Chromium	mg/kg	6.1	6.4	4.9	7.4
Lead	mg/kg	5.4	6.7	6.3	33
Selenium	mg/kg	0.53 U	0.54 U	0.56 U	0.54 U
Silver	mg/kg	0.53 U	0.54 U	0.56 U	0.54 U
Mercury	mg/kg	0.11 U	0.11 U	0.11 U	0.043 J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

6.6 SITE 17 - TERMINAL OIL

According to the Cleveland City Directories, the site was listed as O'Brien Cartage from 1954 through 1989. The site was listed as Gillota Fuel Products in the 1994 and 1999 City Directories. The site was identified as a LUST site in the EDR Report.

According to the Cleveland Fire Prevention Bureau files, the site was occupied by O'Brien Cartage in 1940. According to a permit dated October 18, 1955, a 2,000-gallon gasoline UST was installed at the site by the Oil Equipment Service Company. The 2,000-gallon UST reportedly was installed to replace a 1,000-gallon UST, which had leaked. A permit dated March 7, 1957 indicates approximately 6,000-gallons of gasoline were stored at the site in USTs. In 1966, the site was occupied by O'Brien and Nye Cartage Company. A permit dated September 27, 1974 indicates a 6,000-gallon fuel oil UST was to be installed at the site.

A letter dated September 28, 1993 from Tank Tech Environmental to the Fire Prevention Bureau indicates BUSTR recognized Norfolk and Western Railway as the UST owner. The BUSTR registration form indicates there are two 6,000-gallon diesel USTs at the site. The operator of the steel USTs was listed as Gillota Fuel Products; however, the owner was listed Norfolk and Western Railway. A letter dated March 24, 1995 from BUSTR to Norfolk Southern indicates a UST Closure Report had been received and the extent of the release had been defined. The letter stipulates Norfolk Southern was required to submit a Remedial Action Plan to describe how the soil and/or groundwater at the site would be cleaned up.

At the time of the URS Phase I reconnaissance, the site was occupied by Terminal Oil. The site appeared to be utilized for the storage of tanker trucks. Several ASTs and multiple 55-gallon storage drums were observed on the site. Surface staining was observed.

6.6.1 Field Activities

A total of four monitoring wells were proposed for Site 17. Groundwater was encountered in three of the four soil borings during field activities, monitoring wells were installed and one soil boring (SB01) was advanced at Site 17. One soil sample per boring was collected and analyzed for VOCs, PAHs, and TPH. A duplicate soil sample was collected from 17-MW04-0204. A Sample Location Map is included as Figure 6-6A.

Groundwater samples were collected and analyzed for VOCs and PAHs, from MW02, MW03, and MW04.

6.6.2 Site-Specific Geology/Hydrogeology

Soils at Site 17 consisted primarily of sand with minor amounts of silty sand and clayey sand. Bedrock was not encountered in any of the soil borings, which were advanced to 30 feet bgs.

Groundwater elevations were measured at Site 17 on August 21, 2006. Localized groundwater flow across Site 17 is likely influenced by both natural features and urban development,

SECTIONSIX

including paved surfaces, buildings, and underground utilities. The general flow direction at Site 17 is to the west-southwest, towards the Cuyahoga River.

6.6.3 Geophysical Survey

The geophysical survey at Site 17 included the asphalt-paved parking and drive surfaces in three general areas surrounding the main building.

- The northern area included the parking spaces directly north of the main building.
- A parking lot east of the building, measuring approximately 50 by 60 feet.
- The parking area and drive south and southwest of the main building

The survey transects were conducted in a north – south direction to approximately align transects along the earth's total magnetic field, which provides the greatest sensitivity to buried ferrous objects such as steel underground storage tanks. Transects were spaced five feet apart. The presence of buildings adjacent to surveyed areas prevented the use of a global positioning system (GPS) to obtain corresponding latitude and longitude datum necessitating the need to paint survey points on the pavement.

The survey north of the main building identified four areas of anomalously high magnetic gradients. These areas are shown on Figure 6-6B as anomalies A and B as described below:

- A. A gradient anomaly was observed along the drive, west of the pump island. This anomaly is likely the result of metallic objects on the surface at this location and not related to a UST.
- B. An anomaly was detected immediately west of the gas station building that was attributed to a parked vehicle that was present at the time of the survey.

The survey east of the building indicated the presence of linear anomalies that appear to correspond to specific transects, possibly due to instrument error.

South of the building, a series of high gradient anomalies were detected along a paved surface that appeared to be designed for heavy traffic. The anomalies observed along the paved surface were assumed to be related to reinforcing steel.

The results of this survey do not support the presence of a steel UST at Site 17. No further investigation is recommended to attempt to locate the UST.

6.6.4 Soil Analytical Results

A total of thirteen VOCs were detected in the five soil samples submitted from Site 17. The chemicals detected in the samples submitted were 1,2-dichlorobenzene (0.60 ug/kg), 1,3-dichlorobenzene (0.50 ug/kg), 1,4-dichlorobenzene (0.66 ug/kg), 2-butanone (ranging from 5.0 ug/kg to 50 ug/kg), benzene (ranging from 1.2 ug/kg to 290 ug/kg), carbon disulfide (ranging

from 1.3 ug/kg to 3.2 ug/kg), cyclohexane (ranging from 0.73 ug/kg to 180 ug/kg), ethylbenzene (ranging from 1.2 ug/kg and 2,300 ug/kg), isopropylbenzene (ranging from 0.26 ug/kg to 380 ug/kg), methylcyclohexane (ranging from 0.88 ug/kg to 350 ug/kg), methylene chloride (7.1 ug/kg), toluene (ranging from 0.74 ug/kg to 3,000 ug/kg), and total xylenes (ranging from 1.5 ug/kg to 16,000 ug/kg). All other VOCs were below the detection limits.

A total of seventeen PAHs were detected in the five samples submitted from Site 17. Concentrations of 2-methylnaphthanene (ranging from 120 ug/kg to 1,700 ug/kg), acenaphthene (ranging from 100 ug/kg to 550 ug/kg), acenaphthylene (ranging from 59 ug/kg to 160 ug/kg), anthracene (ranging from 240 ug/kg to 2,400 ug/kg), benzo(a)anthracene (ranging from 41 ug/kg to 4,100 ug/kg), benzo(a)pyrene (ranging from 37 ug/kg to 3,500 ug/kg), benzo(b)fluoranthene (ranging from 52 ug/kg to 4,500 ug/kg), benzo(g,h,i)perylene (ranging from 25 ug/kg to 2,000 ug/kg), benzo(k)fluoranthene (ranging from 250 ug/kg to 1,500 ug/kg), chrysene (ranging from 41 ug/kg to 3,900 ug/kg), dibenz(a,h)anthracene (ranging from 66 ug/kg to 540 ug/kg), fluoranthene (ranging from 85 ug/kg to 11,000 ug/kg), fluorene (ranging from 140 ug/kg to 820 ug/kg), indeno(1,2,3)pyrene (ranging from 220 ug/kg to 1,900 ug/kg), naphthalene (ranging from 84 ug/kg to 2,600 ug/kg), phenanthrene (ranging from 42 ug/kg to 8,100 ug/kg), and pyrene (ranging from 68 ug/kg to 8,100 ug/kg) were detected in the soil samples submitted.

Gasoline and diesel range TPH were detected in the soil samples from Site 17. The highest concentrations were found in the gasoline range, which is consistent with the concentrations of VOCs detected across Site 17. Concentrations of the light petroleum fraction ranged from 330 ug/kg to 250,000 ug/kg. Concentrations of the middle petroleum fraction ranged from 17 mg/kg to 41 mg/kg. Concentrations of the heavy petroleum fraction ranged from 15 mg/kg to 260 mg/kg.

The analytical results are presented in Table 6-6A.

6.6.5 Groundwater Analytical Results

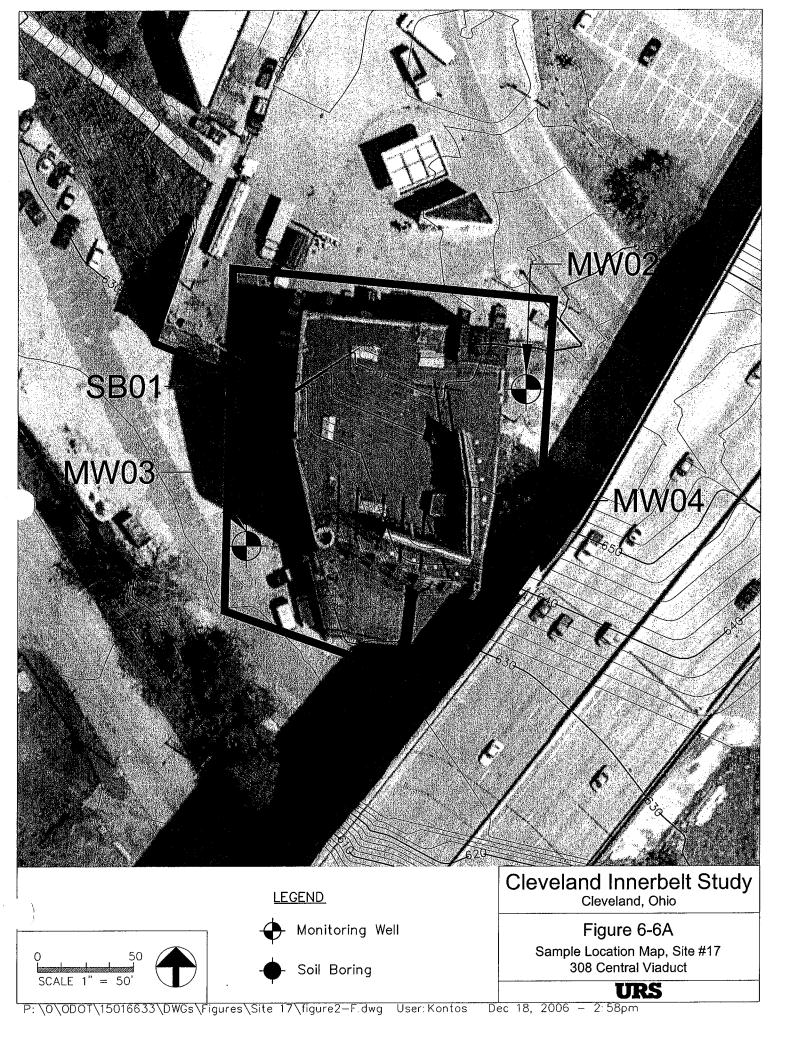
Nine VOCs were detected in the three groundwater samples collected from Site 17. Concentrations of 2-butanone (0.59 ug/L), acetone (1.0 ug/L), benzene (ranging from 14 ug/L to 3,700 ug/L), cyclohexane (72 ug/L), ethylbenzene (1,000 ug/L), isopropylbenzene (45 ug/L), methyl tert-butyl ether (ranging from 3.7 ug/L to 220 ug/L), toluene (ranging from 1.1 ug/L to 2,800 ug/L), and total xylenes (ranging from 0.95 ug/L to 6,500 ug/L) were detected in the groundwater samples submitted. All other VOCs were below the detection limits.

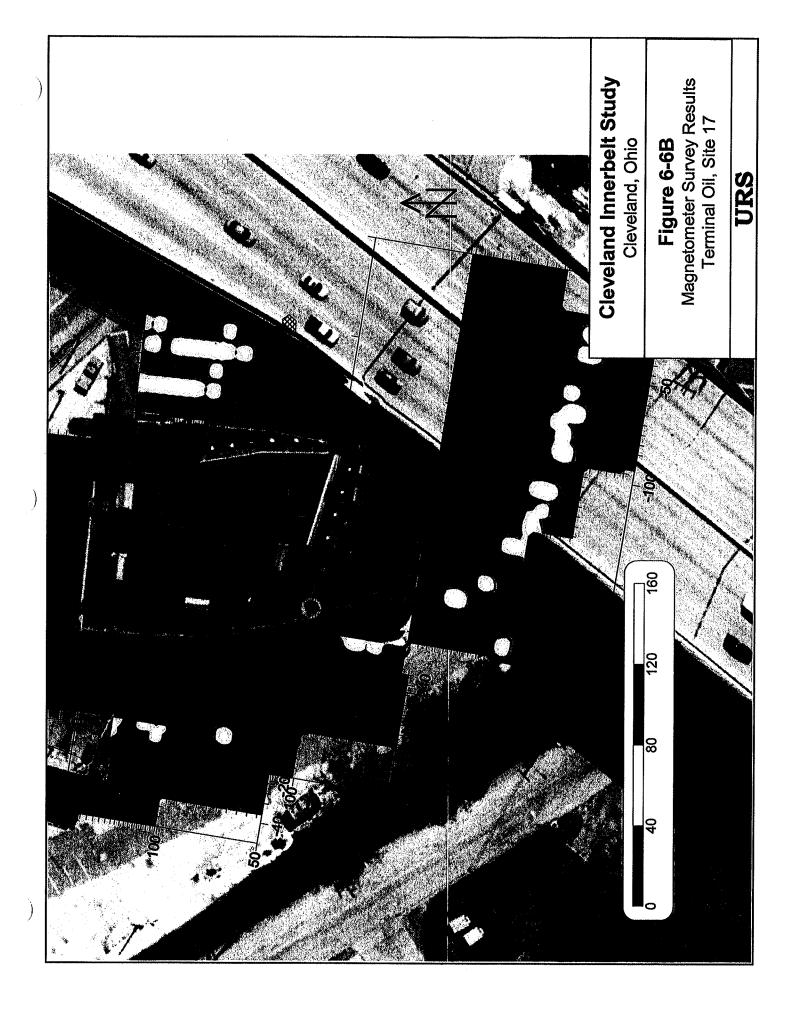
Thirteen PAHs were detected in the groundwater samples submitted from Site 17. Concentrations of 2-methylnaphthanene (0.22 - ug/L - and -25 - ug/L), anthracene (0.35 - ug/L), benzo(a)anthracene (0.42 ug/L and 0.77 ug/L), benzo(a)pyrene (0.58 ug/L), benzo(b)fluoranthene (0.7 ug/L), benzo(g,h,i)perylene (0.35 ug/L), benzo(k)fluoranthene (0.31 ug/L), chrysene (0.6 ug/L), fluoranthene (0.62 ug/L and 1.6 ug/L), indeno(1,2,3)pyrene (0.3 ug/L), naphthalene (0.22 ug/L and 43 ug/L), phenanthrene (0.72 ug/L and 1.2 ug/L), and pyrene (0.49 ug/L and 1.4 ug/L) were detected in the groundwater samples submitted from 17-MW02 and 17-MW03. All other PAHs were below the detection limits. The analytical results are presented in Table 6-6B.

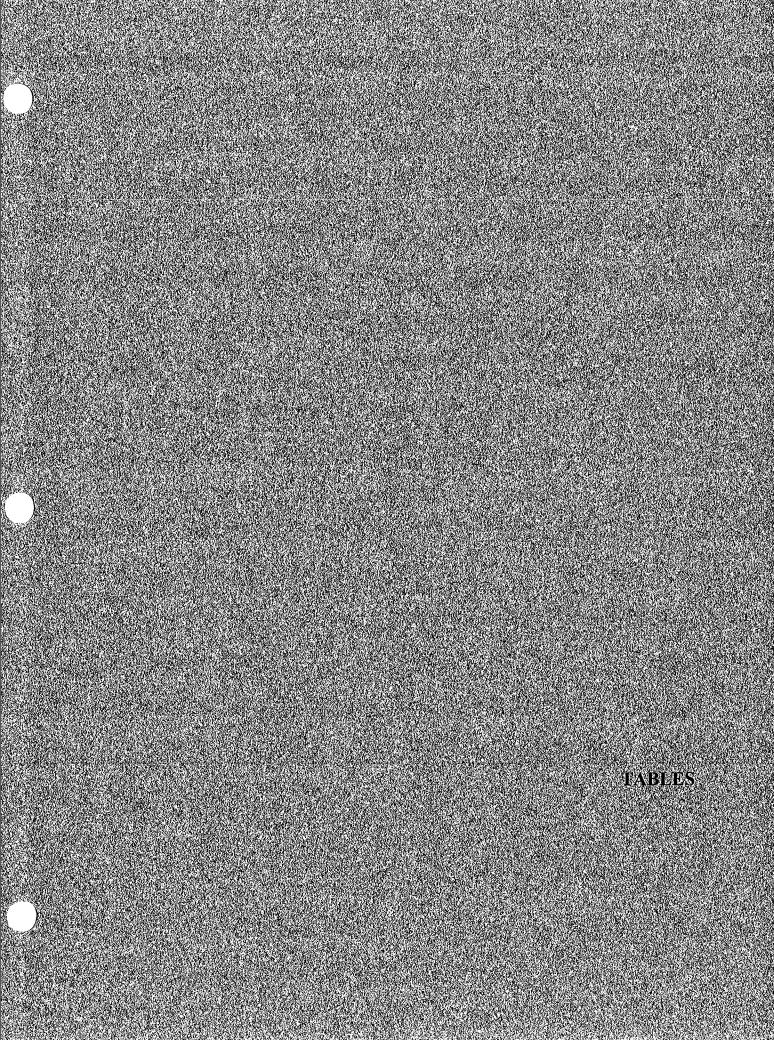
6.6.6 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on **Tables 6-6A** and **6-6B**.

The concentration of benzene (290 ug/kg) and total xylenes (16,000 ug/kg) detected in sample 17-SB01-2628 exceeded the BUSTR closure action levels. No other VOCs detected exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.


The concentrations of benzo(a)pyrene detected in samples 17-MW03-0406, 17-MW04-0204, and 17-MW04-0204D exceeded the BUSTR closure action levels. No other PAHs detected exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.


The concentrations of benzene, ethylbenzene, methyl tert-butyl ether, toluene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene detected in the groundwater samples 17-MW02, 17-MW03, and 17-MW04 exceeded the OEPA VAP standard for generic unrestricted potable use standards and BUSTR closure action levels.


6.6.7 Conclusions

Based on the analytical results, the soil and groundwater at Site 17 may require special disposal and/or worker protection protocols (plan note) during construction activities.

FIGURES

Table	Summary of Detected Chemicals in Soil	Site 17 - Terminal Oil	ODOT Innerbelt Study	Cleveland, Ohio
-------	---------------------------------------	------------------------	-----------------------------	-----------------

)

)

			VAP.Commercial/	VAP.Construction		CODE CONTRACTOR	17 MM02 0106	PUCU-PUMM 21	0-500-50WW	17-SB01-2628
DA	DARAMETER	UNTS	sindustrial	o Worker Standard ²⁾	BUSTR Closure Action Level	08/15/2006	08/15/2006	08/15/2006	08/15/2006	08/14/2006
and the second second	1.2-Dichlorobenzene	ug/kg	370,000	370,000	1	6.3 UJ	5.6 U	09.0	6.3 W	670 U
	1.3-Dichlorobenzene	ug/kg	240,000	240,000		6.3 UJ	5.6 U	0.50 J	6.3 UJ	670 U
	1,4-Dichlorobenzene	ng/kg	470,000	5,300,000		6.3 W	5.6 U	0.66 J	6.3 UJ	670 U
;	2-Butanone	ng/kg	71,600,000	80,000,000		20	13 J	5.0 J	6.1 J	2700 U
<u>.</u>	Benzene	ug/kg	100,000	310,000	149	1.2 J	1.6 J	1.3 J	4.1 J	290 J
ŝ		ng/kg	720,000	720,000		2.3 J	3.2 J	1.3 J	1.8 J	670 U
00	Cyclohexane	ug/kg	tal. Tu un an anno airte ann an ann an ann an ann an ann an ann an a	u deste defende de la resta de la factuaria de la contra contra de la contra de l		140	0.73 J	13 U	0.93 J	180 J
۱ ۸	Ethylbenzene	ng/kg	230,000	230,000	45,500	6.3 U	5.6 U	6.5 U	1.2 J	2300
ť		ug/kg	860,000	860,000		0.26 J	0.51 J	6.5 U	0.37 J	380 J
1		ug/kg		1		20	1.4 J	0.88 J	1.6 J	350 J
5	Methylene chloride	ug/kg	1,300,000	2,300,000		6.3 U	5.6 U	6.5 U	7.1	670 U
×		ug/kg	520,000	520,000	49,100	0.74 J	2.9 J	2.5 J	6.6	3000
<u>. </u>	Xylenes (total)	ug/kg	160,000	160,000	15,700	1.5 J	3.2 J	2.6 J	9.6 J	16000
	2-Methylnaphthalene	ng/kg	-	1		120 J	270 J	360 J	320 J	1700
`	Acenaphthene	ng/kg	180,000,000	530,000,000	1	100 J	450 J	550 J	260 J	1100 U
	Acenaphthylene	ug/kg	1		I	830 U	1900 U	160 J	59 J	1100 U
	Anthracene	ug/kg	880,000,000	1,000,000,000		240 J	۲ 026 ا	2400 J	r 069	1100 U
	Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	490 J	1900	4100 J	2300	41 J
	Benzo(a)pyrene	ng/kg	6,300	81,000	1,100	410 J	1600 J	3500 J	2000 J	37 J
	Benzo(b)fluoranthene	ng/kg	63,000	810,000	11,000	480 J	1900	4500	2500	52 J
S	Benzo(ghi)perylene	ug/kg	I	1	-	240 J	910 J	2000 J	1300 J	25 J
ΗA	Benzo(k)fluoranthene	ug/kg	630,000	.8,100,000	110,000	250 J	840 J	1500 J	1000 J	1100 U
9	Chrysene	ng/kg	6,700,000	41,000,000	1,100,000	460 J	1700 J	3900 J	2100	41 J
	Dibenz(a,h)anthracene	ng/kg	6,700	41,000	1,100	66 J	280 J	540 J	360 J	1100 U
	Fluoranthene	ng/kg	33,000,000	170,000,000	-	1200	4500	11000	4800	85 J
	Fluorene	ug/kg	120,000,000	340,000,000		140 J	480 J	820 J	270 J	1100 U
	Indeno(1,2,3-cd)pyrene	ng/kg	67,000	410,000	11,000	220 J	850 J	1900 J	1200 J	1100 U
	Naphthalene	ug/kg	530,000	1,900,000	39,800	84 J	270 J	260 J	280 J	2600
	Phenanthrene	ug/kg	and the state of the second se	and the second sec	and the state of t	710 J	3500	8100	2600	42 J
	Pyrene	ug/kg	25,000,000	130,000,000	1	870	3400	8100	3800	68 J
ł	Gasoline Range Organics (C6-C12)	ng/kg	1	1	1,000,000	1600	270	130 U	330	250000
-191	C10-C20	mg/kg	1 · · · · · · · · · · · · · · · · · · ·	1	2,000	17 J	36 J	38 J	36 J	41 J
L	C20-C34	mg/kg		•	5,000	80 J	120 J	260 J	15 J	130 J

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use
 VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

P:\O\ODOT\15016633\DOCs\Data\Hits Tables\Site 17 Hits Tables

Summary of Detected Chemicals in Water **ODOT Innerbelt Study** Site 17 - Terminal Oil Cleveland, Ohio Table~~6B

)

)

<u> </u>	PARAMETER	UNITS	VAP UPUS/	BUSTRCIOSUre BUSTRCIOSUre Action Level	17-MW-02 08/22/2006	17-MW-03 08/21/2006	17-MW-04 08/21/2006
· · ·	2-Butanone	ng/L	6800	1	1200 U	100 U	0.59 J
	Acetone	ng/L	1600		1200 U	100 U	1.0 J
	Benzene	ng/L	c)	Q	3700	10 U	14
s	Cyclohexane	ng/L	ł		72 J	10 U	1.0 U
00/	Ethylbenzene	ug/L	200	700	1100	10 U	1.0 U
۱	Isopropylbenzene	ug/L	1300	and a contract of the second se	45 J	10 U	1.0 U
	Methyl tert-butyl ether	ng/L	4	40	620 U	220	3.7 J
		ug/L	1000	1000	2800	10 U	1
	Xylenes (total)	ug/L	10000	10000	6500	20 U	0.95 J
	2-Methylnaphthalene	ng/L	-	1	25	0.22	0.20 U
		¶_L ug∕L	2600	And a second	0.40 U	0.35	0.20 U
	Benzo(a)anthracene	ng/L	1	0.264	0.42	0.77	0.20 U
	Benzo(a)pyrene	ng/L	0.2	0.2	0.40 U	0.58	0.20 U
	Benzo(b)fluoranthene	ng/L	1	0.179	0.40 U	0.7	0.20 U
sŀ	Benzo(ghi)perylene	ng/L			0.40 U	0.35	0.20 U
١٧d	Benzo(k)fluoranthene	ng/L		1.79	0.40 U	0.31	0.20 U
	Chrysene	ug/L	47	47	0.40 U	0.6	0.20 U
\$	Fluoranthene	ng/L	370		0.62	1.6	0.20 U
	Indeno(1,2,3-cd)pyrene	ug/L	nijar (ke nijedada - in gran sin gan dan si jawa) t	0.23	0.40 U	0.3	0.20 U
		ng/L	140	140	43	0.22	0.20 U
	Phenanthrene	ug/L	••	ł	0.72	1.2	0.20 U
	Pyrene	ng/L	280	ł	0.49	1.4	0.20 U

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

- seine

Project: ODOT - Innerbelt Corridor Project Location: Site 17 Project Number: 15016633

Log of Boring 17-MW02

Sheet 1 of 1

Date(s) 8/15/06	Logged J. Kaminski	Checked
Drilled 8/15/06	By	By M. Wolff
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer 140# auto hammer	Total Depth of Borehole 30.0´bgs
Drill Rig	Drilling	Approximate
Type CME-55	Contractor HAD, Inc.	Ground Elevation 658'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well

			SAMF	PLES			Τ		
Elevation feet		Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	MATERIAL DESCRIPTION	Wali	Installation	
	0-					CONCRETE	!:		Begin Drilling on 8/15/06
	-					Loose, dry, black and brown, SAND with gravel, with Slag			
	1	0204	8_	10.0	1.2				-2" Schedule 40 PVC
	5	0406	Š	12.0	0.9	←With brick fragments			
-650	_	0608	3	14.0	0.6				
-050	- 10—	0810	WOH 3 3 3	20.0	0.6	Medium dense, dry, dark brown, medium to coarse SAND trace fine gravel			
	-	1012	ĕ	11.0	0.3	←Trace gravel			
	-	1214	5	18.0	0.4	 Moist to wet, with rock fragments, with brick fragments, with gravel 			
:	15-	1416	5 7 8 5	7.0	0.4	r Moist			-Bentonite Pellets
	-	1618	1 2 2 2	22.0	2.9	Medium dense, moist, black, fine clayey SAND			
-640	-	1820	WOH	24.0	14.8		_		
	20	2022	1 3 5 3	24.0	15.1	←Loose, moist to wet, with gravel			Sample submitted for lab analysis 17-MW02-2022
	-	2224	1	24.0	15.1	←Saturated	-		
	25	2426	1	24.0	NA	r Dense, moist	-		
	-	2628	1 5 5 6	18.0	NA	Wood	-		- Filter Sand #7 - Slotted Pipe #10
-630	-	2830	1	11.0	NA	Loose, saturated, brown, medium SAND			PVC (0.010)
	30 -					End of Boring at 30' bgs Installed Monitoring Well			End Drilling on 8/15/06
	- - 35–								
						 URS			

)

)

Project: ODOT - Innerbelt Corridor Project Location: Site 17 Project Number: 15016633

Log of Boring 17-MW03

Date(s) 8/16/06 Drilled 8/16/06	Logged J. Kaminski	Checked M. Wolff By
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer 140# auto hammer	Total Depth of Borehole 16.0' bgs
Drill Rig LC-60 Type LC-60	Drilling Contractor HAD, Inc.	Approximate Ground Elevation 629'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well

1				SAMF	PLES						
	Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Welt	Installation Schematic	
		0- - -						CONCRETE Loose, dry, gray, SAND with gravel, with brick fragments		**************************************	Begin Drilling on 8/16/06
		2- - -	0204	10 11 17 21	2.0 ⁻	0.2		-		0.4	— 2" Schedule 40 PVC ₩ Bentonite Pellets
	-625	4	0406	3 20 33 24	24.0	43.2		, Moist, trace clay, trace brick fragments, trace gravel, Slag Very dense, dry, black, silty SAND			Sample submitted for lab analysis 17-MW03-0406
		6- - 	0608	4 6 5 5	24.0	1.9					– Filter Sand #7
	-620	8	0810	1 1 1 1	24.0	NA		← Very soft, wet			- Filler Sano #1
		10- - - 12-	1012	1 2 2 4	24.0	NA		Dense, moist, brown, fine SAND			
17-MW03	-615	12 	1214	3 7 7 7	20.0	NA		- Gray			— Slotted Pipe #10
12/14/2006	-015		1416	3 7 7 7	20.0	NA		- - -			PVC (0.010)
; File: ODOT.GPJ;		16						End of Boring at 16' bgs Installed Monitoring Well –			End Drilling on 8/16/06
Report: 1_ODOT_WELLS;	-610	18- - -						- - - -			
Report:		20	· · · · ·			I		URS			

Project: ODOT - Innerbelt Corridor Project Location: Site 17 Project Number: 15016633

)

Log of Boring 17-MW04

Date(s) 8/15/06	Logged J. Kaminski	Checked
Drilled 8/15/06	By	By M. Wolff
Drilling Method & Hollow Stem Auger	Hammer 140# auto hamr	mer Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data	of Borehole 18.0' bgs
Drill Rig CME-55	Drilling	Approximate
Type	Contractor HAD, Inc.	Ground Elevation 642'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well

<u> </u>			SAM	PLES						
Elevation feet	D epth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Weli Installation	Schematic	FIELD NOTES AND WELL DETAILS
-640	0						CONCRETE Dense, dry, black to brown, fine to coarse gravelly SAND with silt, with brick fragments, with Slag			Begin Drilling on 8/15/06 Sample submitted for lat
		0204	8 10 18 24	24.0	4.0					analysis 17-MW04-0204 — 2" Schedule 40 PV
		0406	2 5 7 10	24.0	1.0		FBrown to black			⊢Bentonite Pellets
-635	6— 	0608	3 4 4 3	26.0	0.8		Medium dense, moist, light brown, silty SAND trace, iron oxide staining			
	-8 - -	0810	1 2 2 3	21.0	0.1		←Moist to wet			
	10 	1012	2 2 2	12.0	NA		Brown and gray, with wood			
-630	12	1214	2 3 6 6	24.0	NA	4.1.1	Medium dense, saturated, brown, fine SAND			
	14- - -	1416	7 2 3 3	18.0	NA		Frace gray Stiff, wet, brown and gray, SILT			Filter Sand #7
-625	16 - 	1618	3 2 3 3	16.0	NA					— Slotted Pipe #10 PVC (0.010)
-625	18- - 		3				End of Boring at 18' bgs Installed Monitoring Well	-		End Drilling on 8/15/06
	20-						URS	1		

)

Log of Boring 17-SB01

Date(s) Drilled 8/14/06 and Installed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth 30.0 bgs
Sampling Method 2" Split Spoon	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 668'
Drill Rig Type: CME-55	Groundwater NA . Level(s)	Hammer Data 140# auto hammer
Boring Location: See Site Map	Borehole Backfill bentonite	

			SAM	PLES				
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
	,						ASPHALT	Begin drilling on 8/14/06
	2-		WOH				Loose, dry, brown and black, fine to coarse SAND with gravel, trace brick fragments, trace Slag	
-	_	0204	2 1 1	0.0	NA		-	
	4	0406	WON	3.0	1.0		r No brick fragments, no Slag	•
	6	0608	1 2 2 5	20.0	0.0		Stiff, moist, brown, sandy CLAY With sand seams	•
-660	8-	0810	5 3 6 7	24.0	0.0	9611	Loose to medium dense, dry, brown, fine to coarse SAND	
	10	1012	7 3 6 7	24.0	0.8		-Loose	
	12-		7				-	
-	 14	1214	3 5 6 2 4 8	24.0	1.4		r-Tan, fine SAND	
	 16	1416	8	20.0	2.0			
		1618	3868	24.0	188		Dense, wet, light brown, SILT trace fine sand Loose, dry, light brown, fine to medium SAND	
650	18	1820	2 5 5	16.0	186		r Moist, gray, trace, iron oxide staining	
	20-	2022	8 2 5 6	24.0	602		- ∽Medium to coarse SAND	
	22	2224	9 5 8 8	19.0	648		-	
	24-	2426	8 3 6 5 7	24.0	1542		-Dense, gray	
	26-		4				r Dense, moist, fine SAND r Dry	Sample submitted for lal
640	 28	2628	7 9 10 WOH	17.0	3073		-	Sample submitted for lab analysis 17-SB01-2628
	30-	2820	1 8 8	10.0	1061			· · · · · · · · · · · · · · · · · · ·
	 32						End of Boring at 30' bgs -	End drilling on 8/14/06
							-	
	Ľ.						URS	l

DATA ASSESSMENT REPORT

Data Assessment Report ODOT Innerbelt Study Site 17 – Terminal Oil

Reviewer: P. Schuler Date: November 16, 2006

Five soil samples, three groundwater samples, and two trip blanks were collected at the Terminal Oil site in Cleveland, Ohio, from July 14 through August 21, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Reques	sted Ana	lyses ⁽¹⁾
Laboratory ID	Sample ID	Date	Matrix	VOC	PAH	TPH
A6H160369001	17-SB01-2628	08/14/2006	Soil	X	X	X
A6H160369002	17-MW02-2022	08/15/2006	Soil	X	Х	X
A6H160369003	17-MW04-0204	08/15/2006	Soil	X	X	X
A6H160369004	17-MW04-0204-D	08/15/2006	Soil	X	X	X
A6H160369005	17-MW03-0406	08/15/2006	Soil	X	X	X
A6H160369006	TB-081406	08/15/2006	Trip Blank	Х		
A6H230305001	17-MW-04	08/21/2006	Groundwater	X	X	
A6H230305002	17-MW-03	08/21/2006	Groundwater	X	X	
A6H230305003	17-MW-02	08/22/2006	Groundwater	X	X	
A6H230305004	TRIP BLANK	08/21/2006	Trip Blank	X		

Table 1Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

PAH = Polynuclear Aromatic Hydrocarbons [SW-846 Method 8270C]

TPH = Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B]

(2) Samples 17-MW04-0204 and 17-MW04-0204-D are field duplicates.

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate (MS/MSD) recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

Positive detections for acetone in samples 17-MW04-0204, 17-MW04-0204-D, 17-MW03-0406, and 17-MW-03, for methylene chloride in samples 17-SB01-2628, 17-MW02-2022, 17-MW04-0204-D, and 17-MW-03, for 1,2,4-trichlorobenzene in sample 17-MW04-0204, and for gasoline range organics in sample 17-MW04-0204 were

qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks and/or trip blanksat similar concentrations.

- The laboratory "B" flags on the C₂₀-C₃₄ diesel range organics results for several samples, indicating that the analyte was detected in the method blank, were removed in the final data set because the sample results were greater than five times the blank concentration. The sample results are considered representative of site conditions and any contribution due to external contamination is negligible.
- One or more volatile internal standard responses were outside of the acceptance range in samples 17-MW02-2022, 17-MW04-0204, and 17-MW04-0204D. The results for all volatile analytes quantified from each of the noncompliant internal standards were qualified as estimated ("J" or "UJ").
- The C₁₀-C₂₀ and C₂₀-C₃₄ diesel range organics results for all soil samples were qualified as estimated ("J") due to a continuing calibration standard response above the upper QC limit. Results may be biased high.
- The C₁₀-C₂₀ and C₂₀-C₃₄ diesel range organics results for sample 17-MW02-2022 were qualified as estimated ("J") due to MS/MSD recoveries outside of the QC acceptance limits.
- The positive results for C₂₀-C₃₄ diesel range organics in field duplicate samples 17-MW04-0204 and 17-MW04-0204-D were qualified as estimated ("J") due to poor precision between the results.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J"), in accordance with USEPA Contract Laboratory Program (CLP) conventions. The "J" qualifiers were retained with the numeric results in the final data set.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-4.

Table 2-1Analytical Data SummarySite 17 Soil VolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6H160369001 17-SB01-2628 08/14/2006	A6H160369002 17-MW02-2022 08/15/2006	A6H160369003 17-MW04-0204 08/15/2006	A6H160369004 17-MW04-0204-D 08/15/2006	A6H160369005 17-MW03-0406 08/15/2006	A6H160369006 TB-081406 08/15/2007 ug/L
1,1,1-Trichloroethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/kg	670 U	6.3 UJ	6.5 UJ	6.3 UJ	5.6 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,1,2-Trichloroethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,1-Dichloroethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,1-Dichloroethene	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,2,4-Trichlorobenzene	ug/kg	670 U	6.3 UJ	6.5 UJ	6.3 UJ	5.6 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/kg	1300 U	13 UJ	13 UJ	13 UJ	11 U	2.0 U
1,2-Dibromoethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,2-Dichlorobenzene	ug/kg	670 U	6.3 UJ	0.60 J	6.3. UJ	5.6 U	1.0 U
1,2-Dichloroethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,2-Dichloropropane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
1,3-Dichlorobenzene	ug/kg	670 U	6.3 UJ	0.50 J	6.3 UJ	5.6 U	1.0 U
1,4-Dichlorobenzene	ug/kg	670 U	6.3 UJ	0.66 J	6.3 UJ	5.6 U	1.0 U
2-Butanone	ug/kg	2700 U	50	5.0 J	6.1 J	13 J	10 U
2-Hexanone	ug/kg	2700 U	25 U	26 U	25 U	23 U	10 U
4-Methyl-2-pentanone	ug/kg	2700 U	25 U	26 U	25 U	23 U	10 U
Acetone	ug/kg	2700 U	25 U	27 U	34 U	53 U	10 U
Benzene	ug/kg	290 J	1.2 J	1.3 J	4.1 J	1.6 J	1.0 U
Bromodichloromethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Bromoform	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
omomethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
and administration of the second s	ug/kg	670 U	2.3 J	1.3 J	1.8 J	3.2 J	1.0 U
Irbon disulfide	a desta de terre-	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Carbon tetrachloride	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Chlorobenzene	ug/kg ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Chloroethane	CONTRACTOR CONTRACTOR	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Chloroform	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Chloromethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
cis-1,2-Dichloroethene	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
cis-1,3-Dichloropropene	ug/kg	180 J	140	13 U	0.93 J	0.73 J	1.0 U
Cyclohexane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Dibromochloromethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Dichlorodifluoromethane	ug/kg ug/kg	2300	6.3 U	6.5 U	1.2 J	5.6 U	1.0 U
Ethylbenzene	e in a Granden v	380 J	0.26 J	6.5 U	0.37 J	0.51 J	1.0 U
Isopropylbenzene	ug/kg	1300 U	13 U	13 U	13 U	11 U	10 U
Methyl acetate	ug/kg	and the second	25 U	26 U	25 U	23 U	5.0 U
Methyl tert-butyl ether	ug/kg	2700 U	25°0 59	0.88 J	1.6 J	1.4 J	1.0 U
Methylcyclohexane	ug/kg	350 J	6.3 U	6.5 U	7.1 U	5.6 U	0.68 J
Methylene chloride	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Styrene	ug/kg	670 U	· · · · · · · · · · · · · · · · · · ·	 A second s	6.3 U	5.6 U	1.0 U
Tetrachloroethene	ug/kg	670 U	6.3 U	6.5 U	9.9	2.9 J	1.0 U
	ug/kg	3000 670 U	0.74 J	2.5 J	9.9 6.3 U	2.9 J 5.6 U	1.0 U
trans-1,2-Dichloroethene	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
trans-1,3-Dichloropropene	ug/kg	670 U	6.3 U	6.5 U	the second second second	5.6 U	1.0 U
Trichloroethene	ug/kg	670 U	6.3 U	6.5 U	6.3 U	ALL CONTRACTORS AND ADDRESS AND ADDRESS ADDRES	The second se
Trichlorofluoromethane	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
Vinyl chloride	ug/kg	670 U	6.3 U	6.5 U	6.3 U	5.6 U	1.0 U
enes (total) he analyte was analyzed for, but was not	ug/kg	16000	1.5 J	2.6 J	9.6 J	3.2 J	2.0 U

he analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Ì

Table 2-2 **Analytical Data Summary** Site 17 Soil PAHs and TPH **ODOT Innerbelt Study**

PARAMETER	UNITS	A6H160369001 17-SB01-2628 08/14/2006	A6H160369002 17-MW02-2022 08/15/2006	A6H160369003 17-MW04-0204 08/15/2006	A6H160369004 17-MW04-0204-D 08/15/2006	A6H160369005 17-MW03-0406 08/15/2006
2-Methylnaphthalene	ug/kg	1700	120 J	360 J	320 J	270 J
Acenaphthene	ug/kg	1100 U	100 J	550 J	260 J	450 J
Acenaphthylene	ug/kg	1100 U	830 U	160 J	59 J	1900 U
Anthracene	ug/kg	1100 U	240 J	2400 J	690 J	970 J
Benzo(a)anthracene	ug/kg	41 J	490 J	4100 J	2300	1900
Benzo(a)pyrene	ug/kg	37 J	410 J	3500 J	2000 J	1600 J
Benzo(b)fluoranthene	ug/kg	52 J	480 J	4500	2500	1900
Benzo(ghi)perylene	ug/kg	25 J	240 J	2000 J	1300 J	910 J
Benzo(k)fluoranthene	ug/kg	1100 U	250 J	1500 J	1000 J	840 J
Chrysene	ug/kg	41 J	460 J	3900 J	2100	1700 J
Dibenz(a,h)anthracene	ug/kg	1100 U	66 J	540 J	360 J	280 J
Fluoranthene	ug/kg	85 J	1200	11000	4800	4500
Fluorene	ug/kg	1100 U	140 J	820 J	270 J	480 J
Indeno(1,2,3-cd)pyrene	ug/kg	1100 U	220 J	1900 J	1200 J	850 J
Naphthalene	ug/kg	2600	84 J	260 J	280 J	270 J
Phenanthrene	ug/kg	42 J	710 J	8100	2600	3500
Pyrene	ug/kg	68 J	870	8100	3800	3400
Gasoline Range Organics (C6-C1	2) ug/kg	250000	1600	130 U	330	770
C10-C20	mg/kg	41 J	17 J	38 J	36 J	36 J
C20-C34	mg/kg	130 J	80 J	260 J	15 J	120 J
Percent Solids	%	74.2	79.7	76.7	78.8	88.8

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit. J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

Table 2-3Analytical Data SummarySite 17 Water VolatilesODOT Innerbelt Study

•

1,1,1-Trichloroethane ug/L 1.0 U 10 U 120 U 1,1,2-Trichloroethane ug/L 1.0 U 10 U 120 U 1,1,2-Trichloroethane ug/L 1.0 U 10 U 120 U 1,1,2-Trichloroethane ug/L 1.0 U 10 U 120 U 1,1-Dichloroethane ug/L 1.0 U 10 U 120 U 1,2-Dichloroethane ug/L 1.0 U 10 U 120 U 1,2-Dichloropcpane ug/L 1.0 U 10 U 120 U 1,2-Dichloropcpane ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 1.0 U 100 U 1200 U 2-Butanone ug/L 1.0 U 100 U 120 U	A6H230305004 TRIP BLANK 08/21/2006	A6H230305003 17-MW-02 08/22/2006	A6H230305002 17-MW-03 08/21/2006	A6H230305001 17-MW-04 08/21/2006	UNITS	PARAMETER
1,1,2-Tertachloroethane ug/L 1.0 U 10 U 120 U 1,1,2-Trichloro-1,2,2-trilluoroethane ug/L 1.0 U 10 U 120 U 1,1-Dichloroethane ug/L 1.0 U 10 U 120 U 1,1-Dichloroethane ug/L 1.0 U 10 U 120 U 1,2-Trichloroethane ug/L 1.0 U 10 U 120 U 1,2-Dichloroethane ug/L 1.0 U 10 U 120 U 1,2-Dichlorobenzne ug/L 1.0 U 10 U 120 U 2-Hexanone ug/L 1.0 U 10 U 120 U 2-Hexanone ug/L 1.0 U 10 U 120 U 2-Hexanone ug/L 1.0 U 10 U 120 U	1.0 U	120 U	10 J	10.11		
1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 1.0 10 120 120 1,1-Dichloroethane ug/L 1.0 10 120 120 1,1-Dichloroethane ug/L 1.0 10 120 120 1,1-Dichloroethane ug/L 1.0 10 120 120 1,2-Dibromo-S-chloropropane ug/L 1.0 10 120 120 1,2-Dibromo-S-chloropropane ug/L 1.0 10 120 120 1,2-Dichlorobenzene ug/L 1.0 10 120 120 120 1,2-Dichloropropane ug/L 1.0 10 120 120 120 1,2-Dichloropropane ug/L 1.0 10 120	1.0 U				-	
1,1,2-Trichloroethane ug/L 1.0 10 120 120 1,1-Dichloroethane ug/L 1.0 10 120 120 120 1,1-Dichloroethane ug/L 1.0 10 120 120 120 1,2-Dichloroethane ug/L 1.0 10 120	1.0 U			· · ·	•	
1,1-Dichloroethane ug/L 1.0 U 10 U 120 U 1,1-Dichloroethane ug/L 1.0 U 10 U 120 U 1,2-A-Trichlorobenzene ug/L 1.0 U 10 U 120 U 1,2-Dibromo-3-chloropropane ug/L 1.0 U 10 U 120 U 1,2-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1,2-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1,2-Dichloropropane ug/L 1.0 U 10 U 120 U 1,2-Dichloropropane ug/L 1.0 U 10 U 120 U 1,2-Dichloropropane ug/L 1.0 U 10 U 120 U 1,4-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 1.0 U 100 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U Acetone ug/L 1.0 U 10 U 120 U Bromoform ug/L 1.0 U 10 U 120 U Carbon	1.0 U	1 1			-	
1,1-Dickhoreethene ug/L 1.0 U 10 U 120 U 1,2-Dichoroberzene ug/L 2.0 U 260 U 250 U 1,2-Dichoroberzene ug/L 1.0 U 10 U 120 U 1,2-Dichoroberzene ug/L 1.0 U 10 U 120 U 1,2-Dichoroperane ug/L 1.0 U 10 U 120 U 1,2-Dichoropopane ug/L 1.0 U 10 U 120 U 1,2-Dichoropopane ug/L 1.0 U 10 U 120 U 1,3-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 1.0 U 10 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U Acetone ug/L 1.0 U 10 U 120 U Garbon disuffide ug/L 1.0 U 10 U 120 U Carbon disuffide ug/L 1.0 U 10 U 120 U Chiorobenzene <	1.0 U		•		•	
1.2.4-Trichlorobenzene ug/L 1.0 U 10 U 120 U 1.2-Dibromo-3-chloropopane ug/L 1.0 U 20 U 250 U 1.2-Dibromo-schlane ug/L 1.0 U 10 U 120 U 1.2-Dibromo-schlane ug/L 1.0 U 10 U 120 U 1.2-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1.3-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1.3-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 1.0 U 100 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U Acetone ug/L 1.0 U 100 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Chorotenzene </td <td>1.0 U</td> <td>[1</td> <td></td> <td></td> <td>-</td> <td>· ·</td>	1.0 U	[1			-	· ·
1.2-Dibromo-3-chloropropane ug/L 2.0 U 250 U 1.2-Dibromoethane ug/L 1.0 U 10 U 120 U 1.2-Dichorobenzene ug/L 1.0 U 10 U 120 U 1.2-Dichorobenzene ug/L 1.0 U 10 U 120 U 1.2-Dichorobenzene ug/L 1.0 U 10 U 120 U 1.4-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 1.0 U 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U 2-Hexanone ug/L 1.0 U 100 U 1200 U 2-etone ug/L 1.0 U 100 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chloroberzene ug/	1.0 U		and the second			
1.2-Dibromoethane ug/L 1.0 U 10 U 120 U 1.2-Diblorobenzene ug/L 1.0 U 10 U 120 U 1.2-Dibloropropane ug/L 1.0 U 10 U 120 U 1.2-Dibloropropane ug/L 1.0 U 10 U 120 U 1.3-Diblorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 1.0 U 10 U 120 U 2-Hexanone ug/L 10 U 100 U 1200 U Acetone ug/L 1.0 U 100 U 1200 U Berzene ug/L 1.0 U 100 U 120 U Bromodichromethane ug/L 1.0 U 10 U 120 U Carbon disulfde ug/L 1.0 U 10 U 120 U Charbon disulfde ug/L 1.0 U 10 U 120 U Chiorobenzene ug/L 1.	2.0 U				-	
1.2-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1.2-Dichloroptoane ug/L 1.0 U 10 U 120 U 1.2-Dichloroptoane ug/L 1.0 U 10 U 120 U 1.3-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1.4-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 10 U 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 4-Methyl-2-pentanone ug/L 1.0 U 100 U 1200 U Acetone ug/L 1.0 U 100 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Garbon disulfide ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene <td< td=""><td>1.0 U</td><td></td><td></td><td></td><td>-</td><td>HARD THE REPORT OF A DECEMBER OF A DECEMB OF A DECEMBER OF A DECEMBE</td></td<>	1.0 U				-	HARD THE REPORT OF A DECEMBER OF A DECEMB OF A DECEMBER OF A DECEMBE
1,2-Dichlorosthane ug/L 1.0 U 10 U 120 U 1,2-Dichlorosthane ug/L 1.0 U 10 U 120 U 1,3-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1,4-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 10 U 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 2-Hexanone ug/L 1.0 J 100 U 1200 U Acetone ug/L 1.0 J 100 U 1200 U Bernane ug/L 1.0 U 10 U 120 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Chlorosthane ug/L 1.0 U 10 U 120 U Chlorosthane ug/L	1.0 U	1 1			-	
1.2-Dichloropropane ug/L 1.0 U 10 U 120 U 1,3-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1,4-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 10 U 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 4-Methyl-2-pentanone ug/L 10 U 100 U 1200 U Acetone ug/L 10 U 100 U 1200 U Berzene ug/L 1.0 U 100 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorotethane	1.0 U					A REAL PROPERTY AND
1.3-Dichlorobenzene ug/L 1.0 U 10 U 120 U 1.4-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 0.59 J 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 4-Methyl-2-pentanone ug/L 10 U 100 U 1200 U Acetone ug/L 10 U 100 U 1200 U Benzene ug/L 10 U 100 U 1200 U Bromoform ug/L 1.0 U 10 U 120 U Bromoform ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chloroberzene ug/L					-	
1.4-Dichlorobenzene ug/L 1.0 U 10 U 120 U 2-Butanone ug/L 0.59 J 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 4-Methyl-2-pentanone ug/L 10 U 100 U 1200 U Acetone ug/L 1.0 J 100 U 1200 U Benzene ug/L 1.0 U 10 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chloroform ug/L	1.0 U					(a) A set of the se
2-Butanone ug/L 0.59 J 100 U 1200 U 2-Hexanone ug/L 10 U 100 U 1200 U 4-Methyl-2-pentanone ug/L 10 U 100 U 1200 U Acetone ug/L 10 U 100 U 1200 U Benzene ug/L 1.0 J 100 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Chloroberane ug/L 1.0 U 10 U 120 U Chloroberane ug/L 1.0 U 10 U 120 U Chloroform ug/L 1.0 U </td <td>1.0 U</td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td>	1.0 U	1 1				
2-Hexanone ug/L 10 U 100 U 1200 U 4-Methyl-2-pentanone ug/L 10 U 100 U 1200 U Acetone ug/L 1.0 J 100 U 1200 U Benzene ug/L 1.0 J 100 U 1200 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorotenzene ug/L 1.0 U 10 U 120 U Chlorotethane ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U Cyclohexane ug/L	1.0 U	a service a service of the service o	and the second second second second	and the second		en fore a second construction and a second construction of the
4-Methyl-2-pentanone ug/L 10 U 100 U 1200 U Acetone ug/L 1.0 J 100 U 1200 U Benzene ug/L 14 10 U 3700 Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodithloromethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Charbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U cis1,2-Dichlorophone ug/L 1.0 U 10 U 120 U Cyclobexane ug/L 1.0 U 10 U 120 U Dichlorodifluoromethane	10 U				-	 A second s
Acetone ug/L 1.0 J 100 U 1200 U Benzene ug/L 14 10 U 3700 Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromomethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Chorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloroftame ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U cis-1,3-Dichloroptopene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromothoromethane ug/L	10 U				-	a na sala sa
Benzene ug/L 14 10 U 3700 Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromodethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloroethane ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L	10 U					4-Methyl-2-pentanone
Bromodichloromethane ug/L 1.0 U 10 U 120 U Bromoform ug/L 1.0 U 10 U 120 U Bromomethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloroform ug/L 1.0 U 10 U 120 U Chloroform ug/L 1.0 U 10 U 120 U cis-1,2-Dichloroethane ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dioromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene u	10 U	the second s	and a second	and the second second	Ξ.	Acetone
Bromoform ug/L 1.0 U 10 U 120 U Bromomethane ug/L 1.0 U 10 U 120 U Carbon disulide ug/L 1.0 U 10 U 120 U Carbon disulide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U cis-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dichorodifluoromethane ug/L 1.0 U 10 U 120 U Ethylbenzene u	1.0 U	and the second	a na a san an ann ann ann ann			Benzene
Brommethane ug/L 1.0 U 10 U 120 U Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloroethane ug/L 1.0 U 10 U 120 U Chloroform ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U Cis-1,3-Dichloroptopene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 120 U Dichorodifluoromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene	1.0 U	· · · · · · · · · · · · · · · · · · ·		1.0 U	ug/L	Bromodichloromethane
Carbon disulfide ug/L 1.0 U 10 U 120 U Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloroberhane ug/L 1.0 U 10 U 120 U Chloroform ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 120 U Methyl acetate <	1.0 U			1.0 U	ug/L	Bromoform
Carbon tetrachloride ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chlorobenzene ug/L 1.0 U 10 U 120 U Chloroothane ug/L 1.0 U 10 U 120 U Chloroomethane ug/L 1.0 U 10 U 120 U cis-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloroppene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 120 U Methyl acetate ug/L 1.0 U 100 U 120 U Methylene chloride	1.0 U	120 U	10 U		ug/L	Bromomethane
Chlorobenzene ug/L 1.0 U 10 U 120 U Chloroethane ug/L 1.0 U 10 U 120 U Chloroform ug/L 1.0 U 10 U 120 U Chloroform ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U cis-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 120 U Methyl acetate ug/L 1.0 U 100 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L	1.0 U	120 U	10 U	1.0 U	ug/L	Carbon disulfide
Chioroethane ug/L 1.0 U 10 U 120 U Chioroethane ug/L 1.0 U 10 U 120 U Chioroform ug/L 1.0 U 10 U 120 U Chioroethane ug/L 1.0 U 10 U 120 U cis-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 120 U Dichlorodiffuoromethane ug/L 1.0 U 10 U 120 U Dichlorodiffuoromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 1200 U Methyl acetate ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene	1.0 U	120 U	10 U	1.0 U	ug/L	Carbon tetrachloride
Chloroform ug/L 1.0 U 10 U 120 U Chloromethane ug/L 1.0 U 10 U 120 U cis-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 72 J Dibromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 120 U Methyl acetate ug/L 1.0 U 10 U 120 U Methyl tert-butyl ether ug/L 3.7 J 220 620 U Methylcolohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene	1.0 U	120 U	10 U	1.0 U	ug/L	Chlorobenzene
Chloromethane ug/L 1.0 U 10 U 120 U cis-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 72 J Dibromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 120 U Methyl acetate ug/L 1.0 U 10 U 1200 U Methyl acetate ug/L 1.0 U 100 U 1200 U Methylene chloride ug/L 1.0 U 100 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene	1.0 U	120 U	10 U	1.0 U	ug/L	Chloroethane
cis-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 72 J Dibromochloromethane ug/L 1.0 U 10 U 72 J Dibromochloromethane ug/L 1.0 U 10 U 120 U Dichlorodifluoromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 120 U Methyl acetate ug/L 1.0 U 10 U 120 U Methyl ter-butyl ether ug/L 10 U 120 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichl	1.0 U	120 U	10 U	1.0 U	ug/L	Chloroform
cis-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Cyclohexane ug/L 1.0 U 10 U 72 J Dibromochloromethane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 120 U Dibromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Bibromochloromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 1200 U Methyl acetate ug/L 10 U 100 U 1200 U Methyl acetate ug/L 1.0 U 100 U 120 U Methylexclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Toluene	1.0 U	120 U	10 U	1.0 U	ug/L	Chloromethane
Cyclohexane ug/L 1.0 U 10 U 72 J Dibromochloromethane ug/L 1.0 U 10 U 120 U Dichlorodifluoromethane ug/L 1.0 U 10 U 120 U Dichlorodifluoromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 120 U Methyl acetate ug/L 1.0 U 10 U 45 J Methyl acetate ug/L 10 U 100 U 1200 U Methyl acetate ug/L 10 U 100 U 1200 U Methyl acetate ug/L 1.0 U 100 U 120 U Methyl colonexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloropropene	1.0 U	120 U	10 U	1.0 U	ug/L	cis-1,2-Dichloroethene
Dibromochloromethane ug/L 1.0 U 10 U 120 U Dichlorodifluoromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 120 U Isopropylbenzene ug/L 1.0 U 10 U 1100 Isopropylbenzene ug/L 1.0 U 10 U 45 J Methyl acetate ug/L 10 U 100 U 1200 U Methyl tert-butyl ether ug/L 3.7 J 220 620 U Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroptopene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroflu	1.0 U	120 U	10 U	1.0 U	ug/L	cis-1,3-Dichloropropene
Dichlorodifluoromethane ug/L 1.0 U 10 U 120 U Ethylbenzene ug/L 1.0 U 10 U 1100 1100 Isopropylbenzene ug/L 1.0 U 10 U 10 U 1100 Methyl acetate ug/L 1.0 U 10 U 1200 U 45 J Methyl acetate ug/L 10 U 100 U 1200 U Methyl tert-butyl ether ug/L 3.7 J 220 620 U Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U	1.0 U	72 J	10 U	1.0 U	ug/L	Cyclohexane
Ethylbenzene ug/L 1.0 U 10 U 1100 Isopropylbenzene ug/L 1.0 U 10 U 45 J Methyl acetate ug/L 10 U 100 U 1200 U Methyl acetate ug/L 10 U 100 U 1200 U Methyl acetate ug/L 3.7 J 220 620 U Methyl tert-butyl ether ug/L 1.0 U 10 U 120 U Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene	1.0 U	120 U	10 U	1.0 U	ug/L	Dibromochloromethane
Isopropylbenzene ug/L 1.0 U 10 U 45 J Methyl acetate ug/L 10 U 100 U 1200 U Methyl acetate ug/L 3.7 J 220 620 U Methyl tert-butyl ether ug/L 1.0 U 10 U 1200 U Methyl tert-butyl ether ug/L 3.7 J 220 620 U Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U	120 U	10 U	1.0 U	ug/L	Dichlorodifluoromethane
Methyl acetate ug/L 10 U 100 U 1200 U Methyl tert-butyl ether ug/L 3.7 J 220 620 U Methyl tert-butyl ether ug/L 1.0 U 10 U 120 U Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U	1.0 U	1100	10 U	1.0 U	ug/L	Ethylbenzene
Methyl tert-butyl ether ug/L 3.7 J 220 620 U Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U	1.0 U	45 J	10 U	1.0 U	ug/L	lsopropylbenzene
Methyl tert-butyl ether ug/L 3.7 J 220 620 U Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U	10 U	1200 U	100 U	10 U		and the set of the set
Methylcyclohexane ug/L 1.0 U 10 U 120 U Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U	5.0 U	620 U	220	3.7 J	ug/L	and the second
Methylene chloride ug/L 1.0 U 10 U 120 U Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U trans-1,2-Dichloroethene ug/L 1.1 10 U 2800 trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U		10 U	· · · · ·		
Styrene ug/L 1.0 U 10 U 120 U Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.1 10 U 120 U trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U	1.0 U	and the second	A AN ANALY AND AN ANALY AND A	and the second second second		and a second
Tetrachloroethene ug/L 1.0 U 10 U 120 U Toluene ug/L 1.1 10 U 2800 trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U		and the second			(a) A set a set of the set of
Toluene ug/L 1.1 10 U 2800 trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U	and the second	the second s	the second s		age Appendix a construction of the second
trans-1,2-Dichloroethene ug/L 1.0 U 10 U 120 U trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U	and the second			+	(c) set as a set of the set of
trans-1,3-Dichloropropene ug/L 1.0 U 10 U 120 U Trichloroethene ug/L 1.0 U 10 U 120 U Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U	(c) a second se second second sec	And the second s	encode de la seconda de la seconda de la		والمحاجج والمحاج والمتعالم والمحتر المحتر المراجع المراجع والمراجع والمراجع والمحتر
Trichloroethene ug/L 1.0 U 10 U 120 U Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U			the second se		and the second
Trichlorofluoromethane ug/L 1.0 U 10 U 120 U	1.0 U		and the second			Construction of the second
	1.0 U		e de la companya de l			CARLES AND
	1.0 U	120 U	10 U	1.0 U		in the second
Vinyl chloride ug/L 1.0 U 10 U 120 U Xylenes (total) ug/L 0.95 J 20 U 6500	2.0 U	and the second	· · · · ·	and the second		

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

Ì

Table 2-4Analytical Data SummarySite 17 Water PAHsODOT Innerbelt Study

PARAMETER	UNITS	A6H230305001 17-MW-04 08/21/2006	A6H230305002 17-MW-03 08/21/2006	A6H230305003 17-MW-02 08/22/2006
2-Methylnaphthalene	ug/L	0.20 U	0.22	25
Acenaphthene	ug/L	0.20 U	0.20 U	0.40 U
Acenaphthylene	ug/L	0.20 U	0.20 U	0.40 U
Anthracene	ug/L	0.20 U	0.35	0.40 U
Benzo(a)anthracene	ug/L	0.20 U	0.77	0.42
Benzo(a)pyrene	ug/L	0.20 U	0.58	0.40 U
Benzo(b)fluoranthene	ug/L	0.20 U	0.7	0.40 U
Benzo(ghi)perylene	ug/L	0.20 U	0.35	0.40 U
Benzo(k)fluoranthene	ug/L	0.20 U	0.31	0.40 U
Chrysene	ug/L	0.20 U	0.64	0.40 U
Dibenz(a,h)anthracene	ug/L	0.20 U	0.20 U	0.40 U
Fluoranthene	ug/L	0.20 U	1.6	0.62
Fluorene	ug/L	0.20 U	0.20 U	0.40 U
Indeno(1,2,3-cd)pyrene	ug/L	0.20 U	0.3	0.40 U
Naphthalene	ug/L	0.20 U	0.22	43
Phenanthrene	ug/L	0.20 U	1.2	0.72
Pyrene	ug/L	0.20 U	1.4	0.49

 $\ensuremath{\textbf{U}}$ = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

6.7 SITE 18 – CLEVELAND FIRE STATION

According to the Cleveland City Directories, the site was listed as City of Cleveland from 1964 through 1999. The site was identified as a LUST site in the EDR Report.

According to the Cleveland Fire Prevention Bureau files, the site was occupied by Fire Station #28 in 1963. According to a Fire Inspection Report dated June 13, 1963, a 1,500-gallon gasoline UST was located at the site. A Report dated March 28, 1984 indicates the Fire Department Hazardous Materials Unit responded to a call regarding gasoline odors in the basement of the building. Approximately 25 gallons of gasoline were noted in the UST. A Report dated July 12, 1985 indicates gasoline odors were noted in the basement again. At this time, it was determined the 1,500-gallon UST should be removed from the ground, as well as an abandoned 2,000-gallon UST.

On September 16, 1965, a 550-gallon gasoline UST was installed. This UST reportedly was to be utilized for the emergency generator. A Report dated December 8, 1998 indicates gasoline odors were reported in the basement of the building. The odors were traced to a public sewer catch basin west of the building. Approximately 14 gallons of product/water were removed and disposed of. A permit dated May 23, 2003 indicates a 250-gallon diesel UST was removed from the site. The UST reportedly was utilized in association with the emergency generator.

According to the BUSTR files, a diesel UST was removed from the site in May 2003. The UST Closure Report was received in July 2003. A NFA Letter was issued for the closure on July 28, 2003.

At the time of the URS Phase I reconnaissance, the site was observed to be a City of Cleveland Fire Department Fire Station. No surface staining, stressed vegetation and/or the storage and handling of hazardous substances were observed.

6.7.1 Field Activities

)

A total of three monitoring wells were proposed for Site 18. Groundwater was encountered in two soil borings (MW01 and MW02) during field activities and monitoring wells were installed. One soil borings (SB03) was installed at Site 18. Three soil and two groundwater samples were collected and analyzed for VOCs, PAHs, and/or TPH. A Sample Location Map is included as **Figure 6-3A**.

6.7.2 Site-Specific Geology/Hydrogeology

Soils at Site 18 consisted primarily of sand and silty sand with minor amounts of silt and silty clay. Bedrock was not encountered in any of the soil borings, which were advanced to 30 feet bgs.

Groundwater elevations were measured at Site 18 on August 22, 2006. Localized groundwater flow across Site 18 is likely influenced by both natural features and urban development,

SECTIONSIX

including paved surfaces, buildings, and underground utilities. The general flow direction at Site 18 is to the west, towards the Cuyahoga River.

6.7.3 Geophysical Survey

The geophysical survey at Site 18 included the asphalt and concrete-paved parking and drive surfaces southeast of the building.

• The southeastern area included the paved area approximately 200 feet east towards the bend in the Central Viaduct.

The survey transects were conducted in a north – south direction to approximately align transects along the earth's total magnetic field, which provides the greatest sensitivity to buried ferrous objects such as steel underground storage tanks. Transects were spaced five feet apart. The presence of buildings adjacent to surveyed areas prevented the use of a global positioning system (GPS) to obtain corresponding latitude and longitude datum necessitating the need to paint survey points on the pavement.

The survey southeast of the main building identified one area of anomalously high magnetic gradients. This area is shown on Figure 6-7B as anomaly B as described below:

B. An anomaly was detected immediately west of the gas station building that was attributed to a parked vehicle that was present at the time of the survey.

The results of this survey do not support the presence of a steel UST at Site 18. No further investigation is recommended to attempt to locate any USTs.

6.7.4 Soil Analytical Results

A total of six VOCs were detected in a soil sample (18-MW01-0406) submitted from Site 18. The chemicals detected in the sample submitted were 2-butanone (2.4 ug/kg), carbon disulfide (0.62 ug/kg), ethylbenzene (0.62 ug/kg), methyl tert-butyl ether (0.34 ug/kg), toluene (0.35 ug/kg), and total xylenes (4.0 ug/kg). All other VOCs were below the detection limits.

A total of seventeen PAHs were detected in a sample (18-MW01-0406) submitted from Site 18. Concentration of 2-methylnaphthanene (19 ug/kg), acenaphthene (17 ug/kg), acenaphthylene (12 ug/kg), anthracene (57 ug/kg), benzo(a)anthracene (200 ug/kg), benzo(a)pyrene (200 ug/kg), benzo(b)fluoranthene (270 ug/kg), benzo(g,h,i)perylene (140 ug/kg), benzo(k)fluoranthene (91 ug/kg), chrysene (210 ug/kg), dibenz(a,h)anthracene (36 ug/kg), fluoranthene (430 ug/kg), fluorene (17 ug/kg), indeno(1,2,3)pyrene (120 ug/kg), naphthalene (13 ug/kg), phenanthrene (200 ug/kg), and pyrene (350 ug/kg) were detected in the soil sample submitted.

Diesel range total petroleum hydrocarbons were detected in the soil samples from Site 18, which is consistent with the concentrations of PAHs detected across Site 18. Concentrations of the middle petroleum fraction ranged from 1.7 mg/kg to 15 mg/kg. Concentrations of the heavy petroleum fraction ranged from 6.0 mg/kg to 55 mg/kg.

The analytical results are presented in Table 6-7A.

6.7.5 Groundwater Analytical Results

Eight VOCs were detected in groundwater samples collected from Site 18. Concentrations of 2butanone (0.60 ug/L), acetone (2.7 ug/L), benzene (2.7 ug/L), cyclohexane (0.15 ug/L), ethylbenzene (0.43 ug/L), methyl tert-butyl ether (5 ug/L), toluene (0.51 ug/L and 0.58 ug/L), and total xylenes (1.4 ug/L) were detected in the groundwater samples submitted. All other VOCs were below the detection limits.

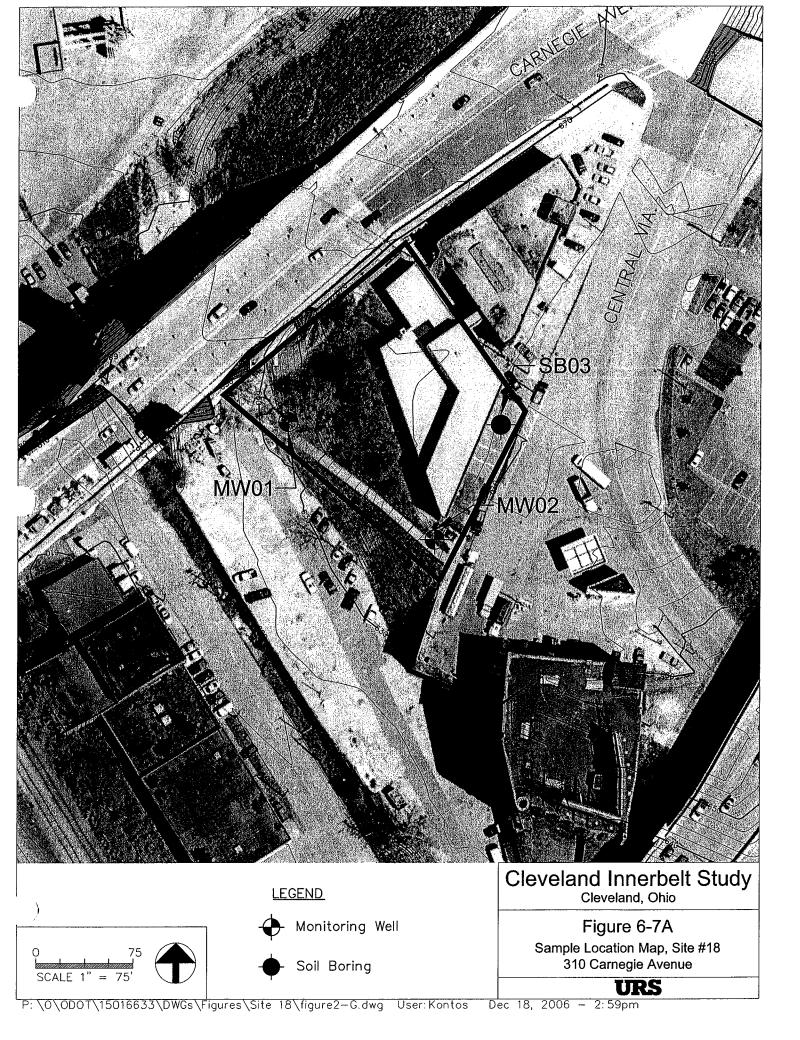
No PAHs were detected in the groundwater samples submitted from Site 18.

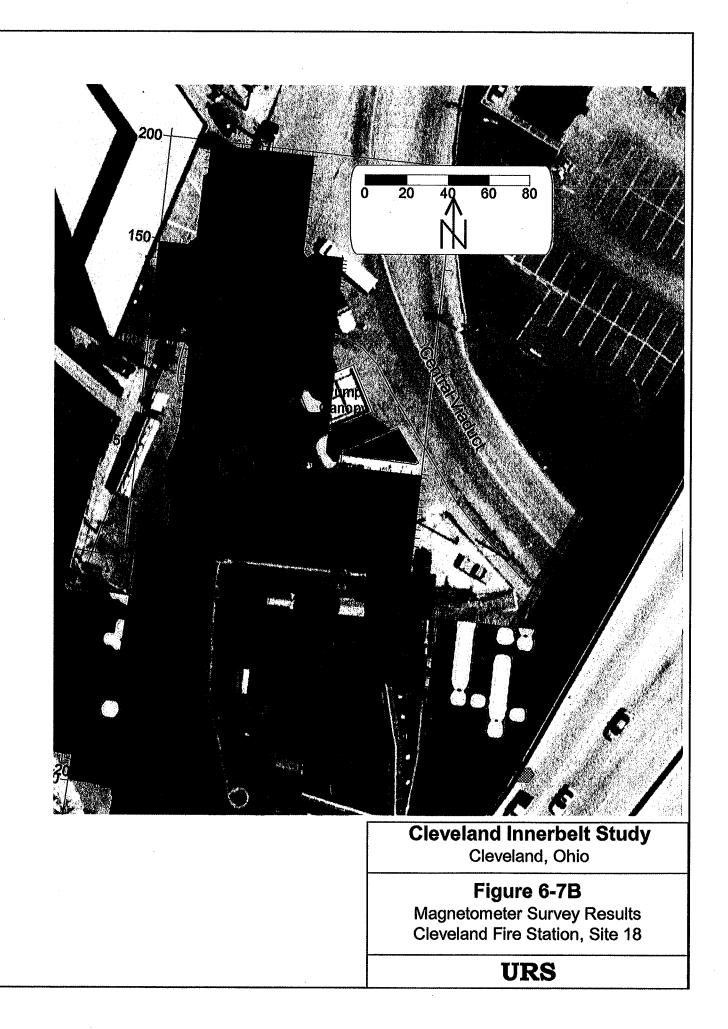
The analytical results are presented in Table 6-7B.

6.7.6 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on **Tables 6-7A** and **6-7B**.

None of the VOCs, PAHs or TPH concentrations detected in the soils at Site 18 exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or BUSTR closure action levels.


There were no PAHs detected in any of the groundwater samples submitted from Site 18.


None of the VOCs concentrations detected at Site 18 exceeded the OEPA VAP standard for generic unrestricted potable use standards and/or BUSTR closure action levels.

6.7.7 Conclusions

Based on the analytical results, it is unlikely that the soils and groundwater at Site 18 would require special management during construction.

}

)

TABLES

Table 0-7A Summary of Detected Chemicals in Soil Site 18 - Cleveland Fire Station ODOT Innerbelt Study Cleveland, Ohio

)

)

		1000 C						
			VAP Commercial/	VAP Construction		18-MW01-0406	18-MW02-1416	18-SB03-1618
٩d	PARAMETER	UNTS	litousirial Standaro ¹⁰ -	Candate ⁽³⁾	BUSTRICIOSURE Actional avoit	08/16/2006	08/17/2006	08/17/2006
	2-Butanone	ug/kg	71,600,000	80,000,000	:	2.4 J	22 U	21 U
?	Carbon disulfide	ng/kg	720,000	720,000		0.62 J	5.5 U	5.3 U
sO	Ethylbenzene	ug/kg	230,000	230,000	45,500	0.62 J	5.5 U	5.3 U
٦٨	Methyl tert-butyl ether	ng/kg	7,200,000	7,200,000	470	0.34 J	22 U	21 U
	Toluene	ug/kg	520,000	520,000	49,100	0.35 J	5.5 U	5.3 U
	Xylenes (total)	ug/kg	160,000	160,000	15,700	4.0 J	11 U	11 U
	2-Methylnaphthalene	ng/kg		:	1	L 91	360 U	350 U
	Acenaphthene	ug/kg	180,000,000	530,000,000	1	17 J	360 U	350 U
1	Acenaphthylene	ug/kg		ł		12 J	360 U	350 U
1	Anthracene	ug/kg	880,000,000	1,000,000,000		57 J	360 U	350 U
	Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	200 J	360 U	350 U
	Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	200 J	360 U	350 U
	Benzo(b)fluoranthene	ug/kg	63,000	810,000	11,000	270 J	360 U	350 U
S	Benzo(ghi)perylene	ug/kg				140 J	360 U	350 U
H∀d	Benzo(k)fluoranthene	ug/kg	630,000	8,100,000	110,000	91 J	360 U	350 U
J	Chrysene	ug/kg	6,700,000	41,000,000	1,100,000	210 J	360 U	350 U
'	Dibenz(a,h)anthracene	ug/kg	6,700	41,000	1,100	36 J	360 U	350 U
	Fluoranthene	ug/kg	33,000,000	170,000,000		430	360 U	350 U
	Fluorene	ug/kg	120,000,000	340,000,000	1	17 J	360 U	350 U
	Indeno(1,2,3-cd)pyrene	ug/kg	67,000	410,000	11,000	120 J	360 U	350 U
,	Naphthalene	ug/kg	530,000	1,900,000	39,800	13 J	360 U	350 U
```	Phenanthrene	ug/kg				200 J	360 U	350 U
	Pyrene	ug/kg	25,000,000	130,000,000	n an Marian San a sa bang ang ang ang ang ang ang ang ang ang	350 J	360 U	350 U
Hd	C10-C20	mg/kg			2,000	15	1.7 J	2.3 J
L	C20-C34	mg/kg	1	1	5,000	55	6.0	10 J

-- = Standard not available

 $\mathsf{U}=\mathsf{T}\mathsf{he}$  analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use

(2) VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

P:\O\ODOT\15016633\DOCs\Data\Hits Tables\Site 18 Hits Tables

----

## Table 6-7B Summary of Detected Chemicals in Water Site 18 - Cleveland Fire Station ODOT Innerbelt Study Cleveland, Ohio

)

)

PARAMETER         UNITS         NAP UPUS/ IS MW-01         IB-MW-01         IB-MM-01         IB-MM-01	18-MW-02 08/22/2006	л С	л с	.7	5 J	л Г С		0.58 J	1.4 J
NAP UPUS/ UNITS     BUSTR ADUPUS/ RDUPUS/ RDUPUS/ RDUPUS/ Eavel Level Level Closure Action       e     ug/L     6800        ug/L     1600        bug/L     5     5       ne     ug/L     700     700       -butyl ether     ug/L     40     40       ug/L     1000     1000     1000	18-W 08/22	9	10	· N	0.1	0.4	5.0	0.5	1.
NAPUPUSY       UNITS     NAPUPUSY       e     ug/L       BB00     ug/L       1001        ne     ug/L       -butyl ether     ug/L       001     ug/L       1000     ug/L	18-MW-01 08/22/2006	0.60 J	2.7 J	1.0 U	1.0 U	1.0 U	2	0.51 J	2.0 U
e UNITS RD e UNITS RD ug/L ug/L ug/L he ug/L butyl ether ug/L vg/L	E BUSTR Closure Action Level		: 1	ß	1	200	40	1000	10000
e ne -butyl ether tal)	VAPŪPUS/ RDUPUS ^{UD}	0089	1600		1	200	40	1000	10000
e ne -butyl ether tal)	UNITS	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ug/L	ug/L
	<b>VRAMETER</b>	2-Butanone	Acetone	Benzene	Cyclohexane	Ethylbenzene	Methyl tert-butyl ether	Control of	
N00°	A				sO(	, ک۸			

-- = Standard not available

 $\mathsf{U}=\mathsf{T}\mathsf{he}$  analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

**URS** 



#### Project: ODOT - Innerbelt Corridor Project Location: Site 18 Project Number: 15016633

#### Log of Boring 18-MW01

Sheet 1 of 1

Date(s) 8/16/06 /	Logged J. Kaminski By	Checked By M. Wolff
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer Data 140# auto hammer	Total Depth of Borehole 20.0' bgs
Drill Rig LC-60	Drilling Contractor HAD, Inc.	Approximate Ground Elevation 634'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level 623.10 on 8/22/06		

SAMPLES Well Installation Schematic Graphic Log Elevation feet Sampling Resistance Blows/6" PID, OVA, ppm Depth, feet Type Number Recovery, inches MATERIAL DESCRIPTION FIELD NOTES AND WELL DETAILS 0-Begin Drilling on 8/16/06 CONCRETE Loose, dry, brown, fine to medium SAND 2" Schedule 40 PVC 12 15 0204 13.0 0.0 Granite 50/5 ۰<u>۰</u>۰۰۰۰۰۰۰۰ -630 Sample submitted for lab 4 analysis 18-MW01-0406 6 24.0 1.6 5 0406 ₽Wood 6 Fine SAND Moist to wet Bentonite Pellets 1 27 Dense, moist to wet, gray, silty SAND 0608 19.0 0.0 8 - Moist 4 -625 0810 12.0 0.0 6 ğ 10 WOH 12.0 0.0 1012 4 8 1 7 18.0 0.0 Filter Sand #7 1214 11 15 Loose, saturated, gray, fine SAND trace silt -620 Dense, wet, gray, silty SAND 1 7 15-1416 20.0 NA 10 14 Auger down to 20' bgs Slotted 0.010" -Screen -615 18-MW01 20 End of Boring at 20' bgs Installed Monitoring Well End Drilling on 8/16/06 12/14/2006 : ODOT.GPJ; -610 25-File: VELLS; 000 -605 30

-URS

#### Project: ODOT - Innerbelt Corridor Project Location: Site 18 Project Number: 15016633

## Log of Boring 18-MW02

Sheet 1 of 1

Date(s) 8/17/06	Logged J. Kaminski	Checked
Drilled 8/17/06	By	By M. Wolff
Drilling Method & Hollow Stem Auger	Hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data 140# auto hammer	of Borehole 28.0' bgs
Drill Rig LC-60	Drilling	Approximate
Type	Contractor HAD, Inc.	Ground Elevation 666'
Location See Site Map	Sampling Method(s) <b>2" Split Spoon</b>	Borehole Completion Set monitoring well

SAMPLES Wełl Installation Schematic g Elevation feet Sampling Resistance Blows/6" PID, OVA, ppm Recovery, inches Depth, feet Type Number MATERIAL DESCRIPTION FIELD NOTES Graphic AND WELL DETAILS 0 Begin Drilling on 8/17/06 CONCRETE -665 Loose, dry, brown, fine SAND 2 4 4 0204 12.0 0.5 r Medium to coarse SAND trace fine gravel 1 2 3 313 5 0406 6.0 3 -660 1 2 5 16.0 224 0608 8 2" Schedule 40 PVC ڡؖ؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋ WOH 5 7.0 48.9 0810 With coarse gravel 3 10 WOH 223 Bentonite Pellets 17.0 -655 1012 58.6 Stiff, moist, brown, SILT Stiff, moist, brown, silty CLAY 1224 155 24.0 1214 Loose, dry to moist, brown, fine SAND Sample submitted for lab WOH r1-Inch layer of moist to wet, with silt analysis 18-MW02-1416 12.0 571 15-1416 2 -650 Loose, dry, brown, fine SAND WOH 47 10.0 1618 152 Fine to medium SAND WOH ž 14.0 227 1820 5 18-MW02 20-WOH 2 5 8.0 108 -645 2022 -Filter Sand #7 - Saturated WOH 2 3 2224 24.0 NA ā WOH 2 25-2426 24.0 NA 2 3 -640 Stiff, moist, brown, SILT Stiff, wet, brown, silty CLAY Slotted 0.010" Screen End of Boring at 28' bgs Installed Monitoring Well End Drilling on 8/17/06 30

File: ODOT.GPJ; 12/14/2006 Report: 1_ODOT_WELLS:

1

## Log of Boring 18-SB03

Date(s) Drilled 8/17/06 and Installed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth <b>30.0' bgs</b> of Borehole
Sampling <b>2" Split Spoon</b> Method	Drill Bit Size/Type: 4-1/4" ID HSA	Approximete Surface Elevation 666'
Drill Rig Type: LC-60	Groundwater NA Level(s)	Hammer 140# auto hammer Data
Boring Location: See Site Map	Borehole Backfill <b>bentonite</b>	

			SAM	PLES				
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
	0						CONCRETE	Begin drilling on 8/17/06
	2						Loose, dry, brown, medium to coarse SAND with medium to coarse gravel	
		0204	8 2 3 4	8.0	0.0			-
	• 	0406	6361 1	12.0	0.4			-
-660	6- - -	0608	11 10 8 9	13.0	0.2		✓Fine to medium SAND with fine gravel	
	8-	0810	2 6 7	20.0	3.1		r Medium to coarse SAND trace gravel	
	10-		6 2 5 7				Dense, dry, brown, silty SAND	
_	 12	1012	7	18.0	2.3		Dense, dry, brown, silty SAND	
	12	1214	2 6 7 13	20.0	1.0			_1
	14- -	1416	WOH 4 10	10.0	1.3		Loose, dry, brown and gray, fine to medium SAND Medium dense, brown, fine SAND r Medium dense, brown, fine SAND	-
-650	16-	1618	11 WOH 6 7	22.0	6.3			- Sample submitted for lab analysis 18-SB03-1618
	18	1820	11 WOH 5 9 11	18.0	0.2			-
-	20- - -	2022	WOH 3 7	12.0	2.7			
	22-	2224	7 WOH 3 7 7	12.0	2.7			-
	24 - -	2426	7 WOH 4 3 7	20.0	4.6			-
-640	26- - -	2628	1 5 7	12.0	2.5			-
:	28	2830	8 WOH 3 4	10.0	1.8			
-	30-					<u>7:97:97</u>	End of Boring at 30' bgs	- End drilling on 8/17/06
	32							-
	34-							1

DATA ASSESSMENT REPORT

#### **Data Assessment Report ODOT Innerbelt Study** Site 18 – Cleveland Fire Station

#### **Reviewer:** P. Schuler **Date: November 16, 2006**

Five soil samples, three groundwater samples, and two trip blanks were collected at the Cleveland Fire Station site at 310 Carnegie Avenue in Cleveland, Ohio, from July 16 through 22, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

	in an ann an a	Sample		Requested Analyses ⁽¹⁾					
Laboratory ID	Sample ID	Date	Matrix	VOC	PAH	TPH			
A6H160361001	18-MW01-0406	08/16/2006	Soil	X	X	X			
A6H170327001	18-SB03-1618	08/17/2006	Soil	X	X	X			
A6H170327002	18-MW02-1416	08/17/2006	Soil	X	X	X			
A6H230309001	18-MW-01	08/22/2006	Groundwater	X	X				
A6H230309002	18-MW-02	08/22/2006	Groundwater	X	X				

Table 1 Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

= Polynuclear Aromatic Hydrocarbons [SW-846 Method 8270C] PAH

TPH = Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B]

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (OC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate (MS/MSD) recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- Positive detections for acetone in samples 18-MW01-0406 and for methylene chloride in all soil samples were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks and/or trip blanks at similar concentrations (the trip blank associated with the soil samples was logged in with samples from another site).
- The laboratory "B" flag on the C₂₀-C₃₄ diesel range organics result for sample 18-MW01-0406, indicating that the analyte was detected in the method blank, was removed in the final data set because the sample result was greater than five times the blank concentration. The sample result is considered representative of site conditions and any contribution due to external contamination is negligible.



- One internal standard response was outside of the acceptance range in sample 18-MW01-0406. The results for all volatile analytes quantified from the noncompliant internal standard were qualified as estimated ("J" or "UJ").
- The C₁₀-C₂₀ and C₂₀-C₃₄ diesel range organics results for sample 18-MW01-0406 were qualified as estimated ("J") due to MS/MSD recoveries outside of the QC acceptance limits.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J"), in accordance with USEPA Contract Laboratory Program (CLP) conventions. The "J" qualifiers were retained with the numeric results in the final data set.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-4.



#### Table 2-1 Analytical Data Summary Site 18 Soil Volatiles ODOT Innerbelt Study

		A6H160361001 18-MW01-0406	A6H170327001 18-SB03-1618	A6H170327002 18-MW02-1416
PARAMETER	UNITS	08/16/2006	08/17/2006	08/17/2006
1,1,1-Trichloroethane	ug/kg	5.8 U	5.3 U	5.5 U
1,1,2,2-Tetrachloroethane	ug/kg	5.8 UJ	5.3 U	5.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	5.8 U	5.3 U	5.5 U
1,1,2-Trichloroethane	ug/kg	5.8 U	5.3 U	5.5 U
1,1-Dichloroethane	ug/kg	5.8 U	5.3 U	5.5 U
1,1-Dichloroethene	ug/kg	5.8 U	5.3 U	5.5 U
1,2,4-Trichlorobenzene	ug/kg	5.8 UJ	5.3 U	5.5 U
1,2-Dibromo-3-chloropropane	ug/kg	12 UJ	11 U	11 U
1,2-Dibromoethane	ug/kg	5.8 U	5.3 U	5.5 U
1,2-Dichlorobenzene	ug/kg	5.8 UJ	5.3 U	5.5 U
1,2-Dichloroethane	ug/kg	5.8 U	5.3 U	5.5 U
1,2-Dichloropropane	ug/kg	5.8 U	5.3 U	5.5 U
1,3-Dichlorobenzene	ug/kg	5.8 UJ	5.3 U	5.5 U
1,4-Dichlorobenzene	ug/kg	5.8 UJ	5.3 U	5.5 U
2-Butanone	ug/kg	2.4 J	21 U	22 U
2-Hexanone	ug/kg	23 U	21 U	22 U
4-Methyl-2-pentanone	ug/kg	23 U	21 U	22 U
Acetone	ug/kg	30 U	21 U	22 U
Benzene	ug/kg	5.8 U	5.3 U	5.5 U
Bromodichloromethane	ug/kg	5.8 U	5.3 U	5.5 U
Bromoform	ug/kg	5.8 U	5.3 U	5.5 U
Bromomethane	ug/kg ug/kg	5.8 U	5.3 U	5.5 U
Carbon disulfide	ug/kg	0.62 J	5.3 U	5.5 U
Carbon tetrachloride	ug/kg	5.8 U	5.3 U	5.5 U
Chlorobenzene	ug/kg	5.8 U	5.3 U	5.5 U
<ul> <li>Difference and the second se Second second se</li></ul>		5.8 U	5.3 U	5.5 U
Chloroethane Chloroform	ug/kg ug/kg	5.8 U	5.3 U	5.5 U
and the second	ug/kg ug/kg	5.8 U	5.3 U	5.5 U
Chloromethane		5.8 U	5.3 U	5.5 U
cis-1,2-Dichloroethene	ug/kg	5.8 U	5.3 U	5.5 U
cis-1,3-Dichloropropene	ug/kg		11 U	11 U
Cyclohexane	ug/kg	12 U	5.3 U	5.5 U
Dibromochloromethane	ug/kg	5.8 U	5.3 U	5.5 U
Dichlorodifluoromethane	ug/kg	5.8 U	5.3 U	5.5 U
Ethylbenzene	ug/kg	0.62 J		i su i i i su su su
isopropylbenzene	ug/kg	5.8 U	5.3 U	5.5 U
Methyl acetate	ug/kg	12 U	11 U	11 U
Methyl tert-butyl ether	ug/kg	0.34 J	21 U	22 U
Methylcyclohexane	ug/kg	12 U	11 U	11 U
Methylene chloride	ug/kg	5.8 U	7.6 U	8.9 U
Styrene	ug/kg	5.8 U	5.3 U	5.5 U
Tetrachloroethene	ug/kg	5.8 U	5.3 U	5.5 U
Toluene	ug/kg	0.35 J	5.3 U	5.5 U
trans-1,2-Dichloroethene	ug/kg	5.8 U	5.3 U	5.5 U
trans-1,3-Dichloropropene	ug/kg	5.8 U	5.3 U	5.5 U
Trichloroethene	ug/kg	5.8 U	5.3 U	5.5 U
Trichlorofluoromethane	ug/kg	5.8 U	5.3 U	5.5 U
Vinyl chloride	ug/kg	5.8 U	5.3 U	5.5 U
Xylenes (total) J =The analyte was analyzed for, but was not dete	ug/kg	4.0 J	11 U	11 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

# Table 2-2Analytical Data SummarySite 18 Soil PAHs and TPHODOT Innerbelt Study

PARAMETER	UNITS	A6H160361001 18-MW01-0406 08/16/2006	A6H170327001 18-SB03-1618 08/17/2006	A6H170327002 18-MW02-1416 08/17/2006
2-Methylnaphthalene	ug/kg	19 J	350 U	360 U
Acenaphthene	ug/kg	17 J	350 U	360 U
Acenaphthylene	ug/kg	12 J	350 U	360 U
Anthracene	ug/kg	57 J	350 U	360 U
Benzo(a)anthracene	ug/kg	200 J	350 U	360 U
Benzo(a)pyrene	ug/kg	200 J	350 U	360 U
Benzo(b)fluoranthene	ug/kg	270 J	350 U	360 U
Benzo(ghi)perylene	ug/kg	140 J	350 U	360 U
Benzo(k)fluoranthene	ug/kg	91 J	350 U	360 U
Chrysene	ug/kg	210 J	350 U	360 U
Dibenz(a,h)anthracene	ug/kg	36 J	350 U	360 U
Fluoranthene	ug/kg	430	350 U	360 U
Fluorene	ug/kg	17 J	350 U	360 U
Indeno(1,2,3-cd)pyrene	ug/kg	120 J	350 U	360 U
Naphthalene	ug/kg	13 J	350 U	360 U
Phenanthrene	ug/kg	200 J	350 U	360 U
Pyrene	ug/kg	350 J	350 U	360 U
Gasoline Range Organics (C6-C12)	ug/kg	120 U	110 U	110 U
C10-C20	mg/kg	15	2.3 J	1.7 J
C20-C34	mg/kg	55	10 J	6.0
Percent Solids	%	86.4	94.8	91

 $\ensuremath{\textbf{U}}$  =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

# Table 2-3Analytical Data SummarySite 18 Water VolatilesODOT Innerbelt Study

		A6H230309001 18-MW-01	A6H230309002 18-MW-02
PARAMETER	UNITS	08/22/2006	08/22/2006
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U
1.1-Dichloroethane	ug/L	1.0 U	1.0 U
1,1-Dichloroethene	ug/L	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L	2.0 U	2.0 U
1,2-Dibromoethane	ug/L	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	1.0 U	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U
2-Butanone	ug/L	0.60 J	10 U
2-Hexanone	ug/L	10 U	10 U
4-Methyl-2-pentanone	ug/L	10 U	10 U
Acetone	ug/L	2.7 J	10 U
a national sector and a sector of the sector	the second second	1.0 U	2.7
Benzene	ug/L	1.0 U	1.0 U
Bromodichloromethane	ug/L	· · · · · · · · · · · · · · · · · · ·	1.0 U
Bromoform	ug/L	1.0 U	100 T. A.A. 44
Bromomethane	ug/L	1.0 U	1.0 U
Carbon disulfide	ug/L	1.0 U	1.0 U
Carbon tetrachloride	ug/L	1.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U
Chloroform	ug/L	1.0 U	1.0 U
Chloromethane	ug/L	1.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	0.15 J
Dibromochloromethane	ug/L	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U
Ethylbenzene	ug/L	1.0 U	0.43 J
Isopropylbenzene	ug/L	1.0 U	1.0 U
Methyl acetate	ug/L	10 U	10 U
Methyl tert-butyl ether	ug/L	5.0	5.0 U
Methylcyclohexane	ug/L	1.0 U	1.0 U
Methylene chloride	ug/L	1.0 U	1.0 U
Styrene	ug/L	1.0 U	1.0 U
Tetrachloroethene	ug/L	1.0 U	1.0 U
Toluene	ug/L	0.51 J	0.58 J
trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U
trans-1,3-Dichloropropene	ug/L	1.0 U	1.0 U
Trichloroethene	ug/L	1.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U
Vinyl chloride	ug/L	1.0 U	1.0 U
Xylenes (total)	ug/L	2.0 U	1.4 J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

 ${\sf J}$  = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

# Table 2-4Analytical Data SummarySite 18 Water PAHsODOT Innerbelt Study

PARAMETER	UNITS	A6H230309001 18-MW-01 08/22/2006	A6H230309002 18-MW-02 08/22/2006
2-Methylnaphthalene	ug/L	0.20 U	0.20 U
Acenaphthene	ug/L	0.20 U	0.20 U
Acenaphthylene	ug/L	0.20 U	0.20 U
Anthracene	ug/L	0.20 U	0.20 U
Benzo(a)anthracene	ug/L	0.20 U	0.20 U
Benzo(a)pyrene	ug/L	0.20 U	0.20 U
Benzo(b)fluoranthene	ug/L	0.20 U	0.20 U
Benzo(ghi)perylene	ug/L	0.20 U	0.20 U
Benzo(k)fluoranthene	ug/L	0.20 U	0.20 U
Chrysene	ug/L	0.20 U	0.20 U
Dibenz(a,h)anthracene	ug/L	0.20 U	0.20 U
Fluoranthene	ug/L	0.20 U	0.20 U
Fluorene	ug/L	0.20 U	0.20 U
Indeno(1,2,3-cd)pyrene	ug/L	0.20 U	0.20 U
Naphthalene	ug/L	0.20 U	0.20 U
Phenanthrene	ug/L	0.20 U	0.20 U
Pyrene	ug/L	0.20 U	0.20 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

 ${\sf J}$  = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

)

#### 6.8 SITE 19 - GILLOTA FUEL PRODUCTS

According to the Cleveland City Directories, the site was listed as various warehouses and a gas station from 1954 through 1999. The site was identified as LUST, RCRIS-SQG and UST site in the EDR Report.

According to the Cleveland Fire Prevention Bureau files, the site was occupied by a furniture company (206) and a gas station (300) in 1950. A Permit dated February 1952 indicates a 1,000-gallon gasoline UST was located on the 206 property. A Permit dated August 1952 indicates there were approximately 13,600 gallons of gasoline stored on the 300 site in two USTs. A report dated October 2, 1964 indicates part of the site was a vacant service station. There reportedly were at least three USTs associated with the site, which had been vacant for approximately 1.5 years.

A Permit dated November 1984 indicates two 10,000-gallon USTs of #2 fuel oil and three 12,000-gallon USTs of #1 fuel oil were to be installed on the site. According to the Permit, the USTs are located east of the existing building. A Tank Inventory for the site, dated January 1, 1992, indicates there were 18 USTs containing various amounts of petroleum products.

A letter dated July 10, 1992 from Centerior Energy to Gillota Fuel indicates the adjacent CEI property had been impacted by petroleum products emanating from the site. The letter concludes that they expected Gillota to manage the regulatory implications. In September 1992, four USTs; two 1,500-gallon, one 12,000-gallon and one 20,000-gallon, were removed from the site. At this time four USTs were installed to replace the removed USTs. A Permit, dated September 16, 1992, was filed to remove six USTs from the adjacent CEI property. The USTs were four 6,000-gallon used oil and two 8,000-gallon used oil. The Bureau reports associated with this removal indicated petroleum product was observed throughout the excavations. According to the BUSTR files, over-excavation of the soils associated with the USTs was conducted; approximately 5,666 tons of soil were removed. This incident attained NFA status on October 25, 1993; however, it was noted in the file the site had the potential to be re-contaminated by seepage water. The seepage water reportedly was emanating from a bridge abutment; the contaminants were thought to be associated with USTs operated on the adjacent property.

A Permit dated October 5, 1993 was issued for the removal of two 6,000-gallon USTs from the site. A Permit dated May 11, 1995 was issued for the removal of three 12,000-gallon fuel oil USTs, two 10,000-gallon gasoline USTs, and one 1,000-gallon fuel oil UST from the 300 site. A Closure Report was written for the removal of the six USTs and submitted to BUSTR requesting No Further Action. NFA status was granted for the removal of the six USTs on October 3, 1995.

A Permit dated July 14, 2000 was issued for the installation of UST piping around two 8,000-gallon gasoline/diesel USTs, one 6,000-gallon gasoline UST and one 4,000-gallon kerosene UST. A Permit dated August 9, 2002 indicates there are two USTs located at the 300 site; one 8,000-gallon and one 6,000-gallon, which both contain gasoline. A Permit dated August 9, 2002 indicates there are four USTs; one 8,000-gallon and two 6,000-gallon, which contain diesel and one 4,000-gallon kerosene.

### SECTIONSIX

)

)

)

At the time of the URS Phase I reconnaissance, the site was a Marathon Gas Station and an empty warehouse. An underground storage tank cavity was observed on the gas station property. Surface staining and a petroleum odor were discerned on the gas station property, as well.

#### 6.8.1 Field Activities

A total of three monitoring wells were proposed for Site 19. During the Phase II field activities, obstructions were encountered at approximately four feet bgs. Attempts were made to relocate the borings, but due to underground utilities and obstructions, these borings were abandoned. One of the abandoned borings was located southwest of the retail building. The other abandoned boring was located north of the pump island along Central Viaduct. One boring was successfully advanced.

Groundwater was encountered in one soil boring (MW01) during field activities and monitoring wells were installed. One soil and one groundwater sample were collected and analyzed for VOCs, PAHs, and/or TPH. A Sample Location Map is included as **Figure 6-8A**.

#### 6.8.2 Site-Specific Geology/Hydrogeology

Soils at Site 19 consisted primarily of sand with interbedded silty sand and silty clay. Bedrock was not encountered in the soil borings, which were advanced to 35 feet bgs.

A groundwater elevation was measured at Site 19 on August 22, 2006. Localized groundwater flow across Site 19 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 19 is to the south-southeast, towards the Cuyahoga River.

#### 6.8.3 Geophysical Survey

The geophysical survey at Site 19 included the asphalt-paved surfaces around the pump island and building.

• The northern area included the parking spaces directly north of the main building, the dispenser island and extended 200 feet north into the intersection with Central Viaduct.

The survey transects were conducted in a north – south direction to approximately align transects along the earth's total magnetic field, which provides the greatest sensitivity to buried ferrous objects such as steel underground storage tanks. Transects were spaced five feet apart. The presence of buildings adjacent to surveyed areas prevented the use of a global positioning system (GPS) to obtain corresponding latitude and longitude datum necessitating the need to paint survey points on the pavement.

The survey north of the main building identified four areas of anomalously high magnetic gradients. These areas are shown on Figure 6-8B as anomalies C and D as described below:

C. An anomaly was detected immediately west of the pump island that was attributed to the pump island.

D. An elongated anomaly was detected along the street. It is assumed that this anomaly is related to a buried utility line.

The results of this survey do not support the presence of a steel UST at Site 19. No further investigation is recommended to attempt to locate any USTs.

#### 6.8.4 Soil Analytical Results

A total of seven VOCs were detected in the soil sample submitted from Site 19. The chemicals detected in the samples submitted were benzene (410 ug/kg), cyclohexane (1,100 ug/kg), ethylbenzene (26,000 ug/kg), isopropylbenzene (4,200 ug/kg), methylcyclohexane (2,600 ug/kg), toluene (16,000 ug/kg), and total xylenes (130,000 ug/kg). All other VOCs were below the detection limits.

A total of six PAHs were detected in the soil sample submitted from Site 19. Concentrations of 2-methylnaphthanene (9,500 ug/kg), benzo(a)anthracene (95 ug/kg), fluoranthene (160 ug/kg), naphthalene (7,000 ug/kg), phenanthrene (120 ug/kg), and pyrene (140 ug/kg) were detected in the soil sample submitted.

Gasoline and diesel range total petroleum hydrocarbons were detected in the soil samples from Site 19. The highest concentrations were found in the gasoline range, which is consistent with the concentrations of VOCs detected across Site 19. The concentration of the light petroleum fraction was 77,000 ug/kg. The concentration of the middle petroleum fraction was 200 mg/kg and the concentration of the heavy petroleum fraction was 33 mg/kg.

The analytical results are presented in Table 6-8A.

#### 6.8.5 Groundwater Analytical Results

Four VOCs were detected in the groundwater sample collected from Site 19. Concentrations of benzene (21,000 ug/L), methyl tert-butyl ether (1,100 ug/L), toluene (1,000 ug/L), and total xylenes (450 ug/L) were detected in the groundwater sample submitted. All other VOCs were below the detection limits.

Four PAHs were detected in the groundwater sample submitted from Site 19. Concentrations of 2-methylnaphthanene (2.6 ug/L), acenaphthene (0.28 ug/L), naphthalene (4.2 ug/L), and phenanthrene (0.48 ug/L) were detected in the groundwater sample submitted from Site 19. All other PAHs were below the detection limits.

The analytical results are presented in Table 6-8B.

#### 6.8.6 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic

)

)

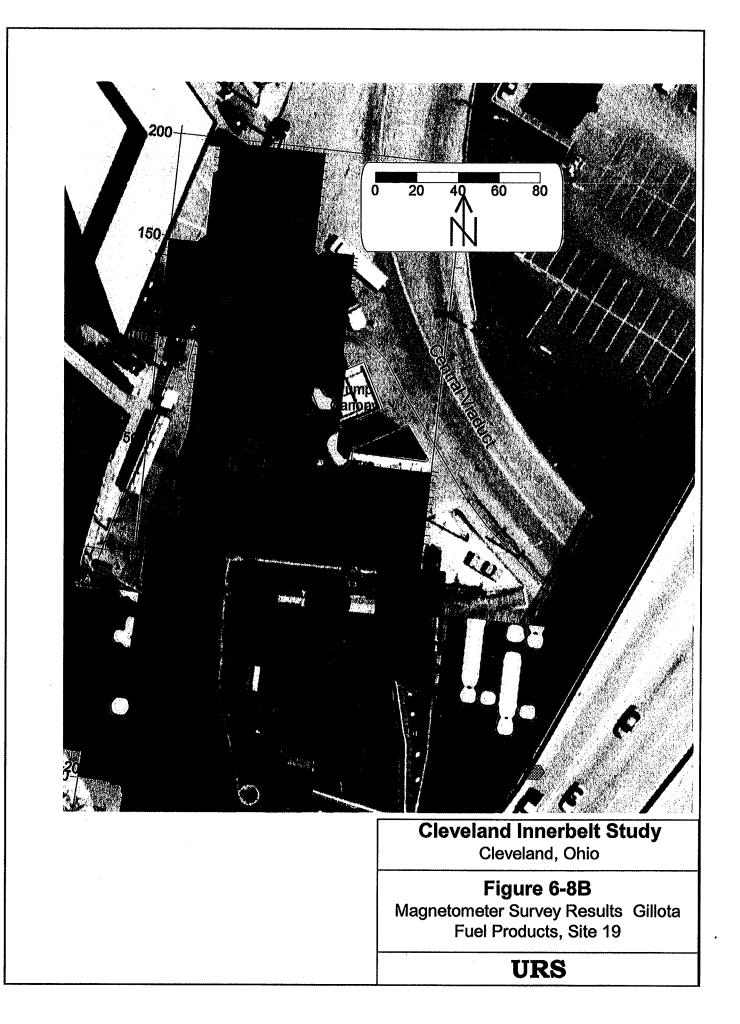
## SECTIONSIX

Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on **Tables 6-8A** and **6-8B**.

The concentration of benzene (410 ug/kg) and total xylenes (130,000 ug/kg) detected in soil sample 19-MW01-2628 exceeded the BUSTR closure action levels. No other VOCs detected exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.

No PAHs detected exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.

The concentrations of benzene, methyl tert-butyl ether, and toluene detected in groundwater sample 19-MW01 exceeded the OEPA VAP standard for generic unrestricted potable use standards and BUSTR closure action levels.


#### 6.8.7 Conclusions

)

Based on the analytical results, the soil and groundwater at Site 19 may require special disposal and/or worker protection protocols (plan note) during construction activities.

**FIGURES** 





)

)

)

### TABLES

# Summary of Detected Chemicals in Soil Site 19 - Gillota Fuel Products **ODOT Innerbelt Study** Cleveland, Ohio Table v-8A

)

)

			AP Commercially Lindustrial	VAP Constitution	BUSTR- Glosure Action	19-MW01-2628 08/16/2006
			A CIBINGERO CONTRACT	- Standard -	IBABT SALE	
î.		ug/kg	100,000	310,000	149	410 J
	Cyclohexane	ug/kg	ana - Alsa Y Kish anaroti bundhu di di sund di sa sa sa sa sa si si na sa	<ul> <li>Image: A second s</li></ul>	I	1100 J
s	Ethylbenzene	ug/kg	230,000	230,000	45,500	26000
00/		ug/kg	860,000	860,000	1	4200
	Methylcyclohexane	ug/kg	•	1	I	2600 J
·	Toluene	ug/kg	520,000	520,000	49,100	16000
	Xylenes (total)	ug/kg	160,000	160,000	15,700	130000
	2-Methyinaphthalene	ug/kg	4	1	1	9500
	Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	95 J
sH/	Fluoranthene	ug/kg	33,000,000	170,000,000	I	160 J
/d	Naphthalene	ug/kg	530,000	1,900,000	39,800	2000
	Phenanthrene	ug/kg	••••••••••••••••••••••••••••••••••••••	-	1	120 J
	Pyrene	ug/kg	25,000,000	130,000,000	1	140 J
	Gasoline Range Organics (C6-C12)	ug/kg			1,000,000	00022
ЧŢ	C10-C20	mg/kg			2,000	200
	C20-C34	mg/kg		-	5,000	33

-- = Standard not available

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use
 VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

# Summary of Detected Chemicals in Water Site 19 - Gillota Fuel Products ODOT Innerbelt Study Cleveland, Ohio æ Tabl

)

)

-butyl ether Dial) Dial) Piene ene ene	MITS REUDUS ¹ Closure Action 08/22/2006	ug/L 5 5 21000	40 40	1000	10000 10000	ug/L 2.6	680	ug/L 140 140 4.2	0.48
	PARAMETER		butyl ether	A CONTRACTOR OF					

-- = Standard not available J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

**URS** 



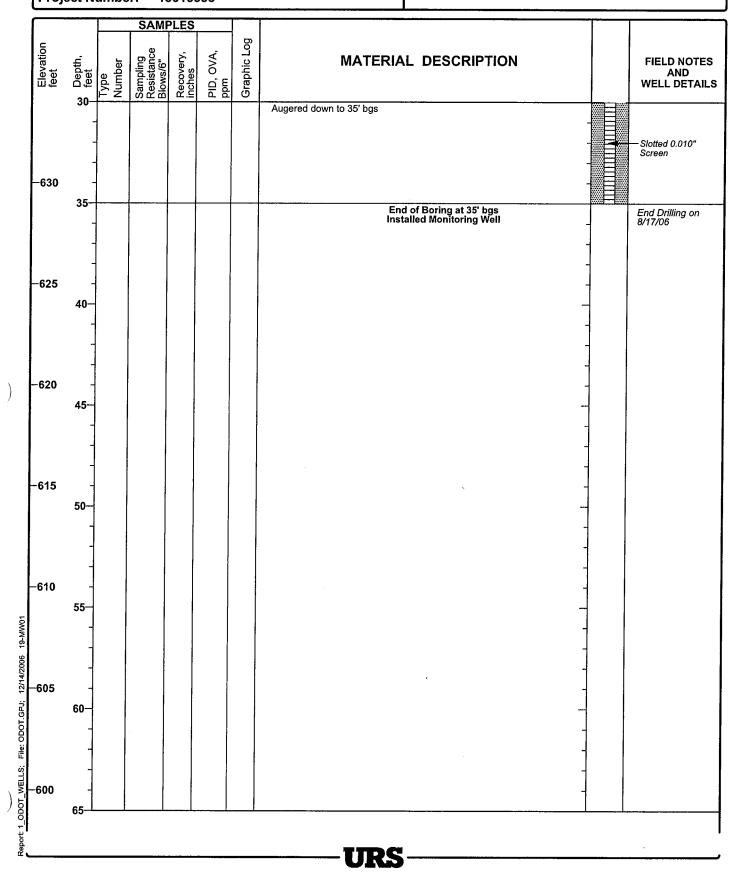
#### Project: ODOT - Innerbeit Corridor Project Location: Site 19 Project Number: 15016633

### Log of Boring 19-MW01

Sheet 1 of 2

.

Date(s) 8/17/06	Logged By	J. Kaminski	Checked By M. Wolff
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer Data	140# auto hammer	Total Depth of Borehole 35.0' bgs
Drill Rig Type LC-60	Drilling Contractor	HAD, Inc.	Approximate Ground Elevation 664'
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level and Date Measured 632.20 on 8/22/06			


1		<u> </u>		SAM	PLES	· · · ·			Γ		
	Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches		Graphic Log	MATERIAL DESCRIPTION		Installation Schematic	FIELD NOTES AND WELL DETAILS
		0		NA NA NA	NA	NA		CONCRETE	2 A A A	4.4.4. 4.4.4	Begin Drilling on 8/17/06
		-		NA 27				Loose, dry, brown, SAND with brick fragments, with rock fragments, with gravel	4.4.	4.4.4.4	
	660	-	0204	4 5 3	14.0	1.6		Loose, dry, brown, medium SAND			
		5—	0406	2 5 5 2	8.0	1.4		←With wood, no rock fragments			
		-	0608	WOH 1 2 2	11.0	0.0		Loose to medium dense, dry, brown, fine SAND			— 2" Schedule 40 PVC ⊢ Bentonite Pellets
)	-655	-	0810	WOH 1 2 3	6.0	0.4		← Fine to medium SAND			
		10 -	1012	WOH 2 2	20.0	1.1		+ Loose, medium SAND			
		-	1214	2 WOH 2 4	10.0	14.7		Loose, dry, dark gray, medium to coarse SAND trace, hydrocarbon odor			
	650	15-	1416	4 WOH 3 6 6	12.0	188		r Medium SAND			
		-	1618	1 3 5 7	8.0	211		Dense, moist to wet, brown, silty SAND			
01	-645	-	1820	WOH 6 6 9	24.0	412		Loose, dry, brown and gray, fine SAND			
006 19-MW01		20-	2022	WOH 7 8 10	11.0	322		Loose, dry, brown and gray, line SAND			
J; 12/14/2006		1	2224	1 6 7 9	14.0	673		Medium dense, dry, brown, silty SAND with, hydrocarbon odor			
File: ODOT.GPJ;	-640	25–	2426	1 7 10 11	14.0	1688		-			
VELLS; Fik		-	2628	1 8 14 16	16.0	>10000		-			Sample submitted for lab analysis 19-MW01-2628
Report: 1_ODOT_WELLS;	-635	30-	2830	1 4 10 12	10.0	>10000		Saturated			- Filter Sand #7
Repon								URS			

#### Project: ODOT - Innerbelt Corridor Project Location: Site 19 Project Number: 15016633

)

### Log of Boring 19-MW01

Sheet 2 of 2



DATA ASSESSMENT REPORT

#### Data Assessment Report ODOT Innerbelt Study Site 19 – Gillota Fuel Products

#### Reviewer: P. Schuler Date: November 16, 2006

One soil sample and one groundwater sample were collected at the Gillota Fuel Products site in Cleveland, Ohio, on July 16 and 22, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Requested Analyses ⁽¹⁾				
Laboratory ID	Sample ID	Date	Matrix	VOC	PAH	TPH		
A6H160402001	19-MW01-2628	08/16/2006	Soil	X	X	X		
A6H230315001	19-MW-01	08/22/2006	Groundwater	X	X			

Table 1Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

PAH = Polynuclear Aromatic Hydrocarbons [SW-846 Method 8270C]

TPH = Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B]

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate (MS/MSD) recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- The positive detection for methylene chloride in sample 19-MW01-2628 was qualified as nondetect ("U") due to the presence of methylene chloride in the associated method blank.
- The laboratory "B" flag on the C₂₀-C₃₄ diesel range organics result for sample 19-MW01-2628, indicating that the analyte was detected in the method blank, was removed in the final data set because the sample result was greater than five times the blank concentration. The sample result is considered representative of site conditions and any contribution due to external contamination is negligible.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J"), in accordance with USEPA Contract Laboratory Program (CLP) conventions. The "J" qualifiers were retained with the numeric results in the final data set.



• All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-4.

)



# Table 2-1Analytical Data SummarySite 19 Soil VolatilesODOT Innerbelt Study

		A6H160402001 19-MW01-2628
PARAMETER	UNITS	08/16/2006
1,1,1-Trichloroethane	ug/kg	3000 U
1,1,2,2-Tetrachloroethane	ug/kg	3000 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	3000 U
1,1,2-Trichloroethane	ug/kg	3000 U
1,1-Dichloroethane	ug/kg	3000 U
1,1-Dichloroethene	ug/kg	3000 U
1,2,4-Trichlorobenzene	ug/kg	3000 U
1,2-Dibromo-3-chloropropane	ug/kg	5900 U
1,2-Dibromoethane	ug/kg	3000 U
1,2-Dichlorobenzene	ug/kg	3000 U
1,2-Dichloroethane	ug/kg	3000 U
1,2-Dichloropropane	ug/kg	3000 U
1,3-Dichlorobenzene	ug/kg	3000 U
1,4-Dichlorobenzene	ug/kg	3000 U
2-Butanone	ug/kg	12000 U
2-Hexanone	ug/kg	12000 U
4-Methyl-2-pentanone	ug/kg	12000 U
Acetone	ug/kg	12000 U
Benzene	ug/kg	410 J
Bromodichloromethane	ug/kg	3000 U
Bromoform	ug/kg	3000 U
Bromomethane	ug/kg	3000 U
Carbon disulfide	ug/kg	3000 U
Carbon tetrachloride	ug/kg	3000 U
Chlorobenzene	ug/kg	3000 U
Chloroethane	ug/kg	3000 U
Chloroform	ug/kg	3000 U
Chloromethane	ug/kg	3000 U
cis-1,2-Dichloroethene	ug/kg	3000 U
cis-1,3-Dichloropropene	ug/kg	3000 U
Cyclohexane	ug/kg	1100 J
Dibromochloromethane	ug/kg	3000 U
Dichlorodifluoromethane	ug/kg	3000 U
Ethylbenzene	ug/kg	26000
Isopropylbenzene	ug/kg	4200
Methyl acetate	ug/kg	5900 U
Methyl tert-butyl ether	ug/kg	12000 U
Methylcyclohexane	ug/kg	2600 J
Methylene chloride	ug/kg	3000 U
Styrene	ug/kg	3000 U
Tetrachloroethene	ug/kg	3000 U
Toluene	ug/kg	16000
trans-1,2-Dichloroethene	ug/kg	3000 U
trans-1,3-Dichloropropene	ug/kg	3000 U
Trichloroethene	ug/kg	3000 U
Trichlorofluoromethane	ug/kg ug/kg	3000 U
Vinyl chloride	the state of the s	see the second
and the second	ug/kg	3000 U
Xylenes (total)	ug/kg	130000

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

# Table 2-2Analytical Data SummarySite 19 Soil PAHs and TPHODOT Innerbelt Study

PARAMETER		UNITS	A6H160402001 19-MW01-2628 08/16/2006
2-Methylnaphthalene		ug/kg	9500
Acenaphthene		ug/kg	4000 U
Acenaphthylene		ug/kg	4000 U
Anthracene	· · · ·	ug/kg	4000 U
Benzo(a)anthracene		ug/kg	95 J
Benzo(a)pyrene		ug/kg	4000 U
Benzo(b)fluoranthene		ug/kg	4000 U
Benzo(ghi)perylene		ug/kg	4000 U
Benzo(k)fluoranthene		ug/kg	4000 U
Chrysene		ug/kg	4000 U
Dibenz(a,h)anthracene		ug/kg	4000 U
Fluoranthene		ug/kg	160 J
Fluorene		ug/kg	4000 U
Indeno(1,2,3-cd)pyrene		ug/kg	4000 U
Naphthalene		ug/kg	7000
Phenanthrene		ug/kg	120 J
Pyrene		ug/kg	140 J
Gasoline Range Organics	s (C6-C12)	ug/kg	77000
C10-C20		mg/kg	200
C20-C34		mg/kg	33
Percent Solids		%	83.3

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

# Table 2-3Analytical Data SummarySite 19 Water VolatilesODOT Innerbelt Study

		A6H230315001 19-MW-01
PARAMETER	UNITS	08/22/2006
1,1,1-Trichloroethane	ug/L	710 U
1,1,2,2-Tetrachloroethane	ug/L	710 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	710 U
1,1,2-Trichloroethane	ug/L	710 U
1,1-Dichloroethane	ug/L	710 U
1.1-Dichloroethene	ug/L	710 U
1.2.4-Trichlorobenzene	ug/L	710 U
1,2-Dibromo-3-chloropropane	ug/L	1400 U
1,2-Dibromoethane	ug/L	710 U
1,2-Dichlorobenzene	ug/L	710 U
1,2-Dichloroethane	ug/L	710 U
		710 U
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/L	710 U
	ug/L	
1,4-Dichlorobenzene 2-Butanone	ug/L	710 U 7100 U
	ug/L	
2-Hexanone	ug/L	7100 U
4-Methyl-2-pentanone	ug/L	7100 U
Acetone	ug/L	7100 U
Benzene	ug/L	21000
Bromodichloromethane	ug/L	710 U
Bromoform	ug/L	710 U
Bromomethane	ug/L	710 U
Carbon disulfide	ug/L	710 U
Carbon tetrachloride	ug/L	710 U
Chlorobenzene	ug/L	710 U
Chloroethane	ug/L	710 U
Chloroform	ug/L	710 U
Chloromethane	ug/L	710 U
cis-1,2-Dichloroethene	ug/L	710 U
cis-1,3-Dichloropropene	ug/L	710 U
Cyclohexane	ug/L	710 U
Dibromochloromethane	ug/L	710 U
Dichlorodifluoromethane	ug/L	710 U
Ethylbenzene	ug/L	710 U
Isopropylbenzene	ug/L	710 U
Methyl acetate	ug/L	7100 U
Methyl tert-butyl ether	ug/L	1100 J
Methylcyclohexane	ug/L	710 U
Methylene chloride	ug/L	710 U
Styrene	ug/L	710 U
Tetrachloroethene	ug/L	710 U
Toluene	ug/L	1000
trans-1,2-Dichloroethene	ug/L	710 U
trans-1,3-Dichloropropene	ug/L	710 U
Trichloroethene	ug/L	710 U
Trichlorofluoromethane	ug/L	710 U
Vinyl chloride	ug/L	710 U
Xylenes (total)	ug/L	450 J
Ayienes (Iulai)	uy/L	400 0

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

)

# Table 2-4Analytical Data SummarySite 19 Water PAHsODOT Innerbelt Study

PARAMETER	UNITS	A6H230315001 19-MW-01 08/22/2006
2-Methylnaphthalene	ug/L	2.6
Acenaphthene	ug/L	0.28
Acenaphthylene	ug/L	0.20 U
Anthracene	ug/L	0.20 U
Benzo(a)anthracene	ug/L	0.20 U
Benzo(a)pyrene	ug/L	0.20 U
Benzo(b)fluoranthene	ug/L	0.20 U
Benzo(ghi)perylene	ug/L	0.20 U
Benzo(k)fluoranthene	ug/L	0.20 U
Chrysene	ug/L	0.20 U
Dibenz(a,h)anthracene	ug/L	0.20 U
Fluoranthene	ug/L	0.20 U
Fluorene	ug/L	0.20 U
Indeno(1,2,3-cd)pyrene	ug/L	0.20 U
Naphthalene	ug/L	4.2
Phenanthrene	ug/L	0.48
Pyrene	ug/L	0.20 U

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

#### 6.9 SITE 20 – EARL LEE

The Cleveland City Directories indicate the site was listed as Allis Chemical Company from 1954 through 1979. The site was listed as W & W Meats in the 1984 through 1999 Directories.

According to the Cleveland Fire Prevention Bureau files, a Permit dated October 10, 1951 indicates the site was occupied by Allis Chemical Inc., which stored flammable materials in an outside shed. In addition, there was a 1,000-gallon kerosene AST. A Permit dated July 17, 1957 indicates a 4,000-gallon gasoline UST was installed at the site, which was occupied by the Elnor Provision Company.

A BUSTR permit dated January 1989 indicates the 4,000-gallon UST was present. The site was occupied by W & W Meats Incorporated. A Permit dated March 16, 1990 was issued for the removal of the UST. According to the BUSTR files, a NFA Letter was issued for the closure on March 23, 1992.

At the time of the URS Phase I reconnaissance, the site was vacant. No surface staining, stressed vegetation and/or the handling and storage of hazardous materials were observed on the site.

#### 6.9.1 Field Activities

A total of four monitoring wells were proposed for Site 20. Groundwater was encountered in all four soil borings (MW01, MW02, MW03, and MW04) during field activities and monitoring wells were installed. Four soil and four groundwater samples were collected and analyzed for VOCs, SVOCs, TPH and RCRA Metals. A Sample Location Map is included as **Figure 6-9A**.

#### 6.9.2 Site-Specific Geology/Hydrogeology

Soils at Site 20 consisted primarily of sand and sandy clay with minor amounts of silty clay and clay. Brick fragments and hydrocarbon odors were observed in several of the borings. Bedrock was not encountered in any of the soil borings, which were advanced to 30 feet bgs.

Groundwater elevations were measured at Site 20 on September 25, 2006. Localized groundwater flow across Site 20 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 20 is to the west-southwest, towards the Cuyahoga River.

#### 6.9.3 Soil Analytical Results

A total of ten VOCs were detected in the four soil samples submitted from Site 20. The chemicals detected in the samples submitted were 2-butanone (ranging from 3.3 ug/kg to 50 ug/kg), acetone (81 ug/kg), benzene (0.59 ug/kg and 2.9 ug/kg), carbon disulfide (ranging from 0.33 ug/kg to 12 ug/kg), cyclohexane (200 ug/kg), ethylbenzene (0.68 ug/kg), isopropylbenzene (ranging from 0.33 ug/kg to 1,800 ug/kg), methylcyclohexane (ranging from 2.4 ug/kg to 890 ug/kg), toluene (0.63 ug/kg and 1.3 ug/kg), and total xylenes (ranging from 2.3 ug/kg to 43 ug/kg). All other VOCs were below the detection limits.

A total of nineteen SVOCs were detected in the five samples submitted from Site 20. Concentrations of 2-methylnaphthanene (ranging from 29 ug/kg to 4,300 ug/kg), acenaphthene (ranging from 88 ug/kg to 7,100 ug/kg), acenaphthylene (190 ug/kg), anthracene (ranging from 17 ug/kg to 12,000 ug/kg), benzo(a)anthracene (ranging from 48 ug/kg to 16,000 ug/kg), benzo(a)pyrene (ranging from 51 ug/kg to 13,000 ug/kg), benzo(b)fluoranthene (ranging from 68 ug/kg to 17,000 ug/kg), benzo(g,h,i)perylene (ranging from 36 ug/kg to 7,900 ug/kg), benzo(k)fluoranthene (ranging from 28 ug/kg to 5,500 ug/kg), carbazole (ranging from 95 ug/kg to 4,200 ug/kg), chrysene (ranging from 52 ug/kg to 14,000 ug/kg), dibenz(a,h)anthracene (ranging from 8.8 ug/kg to 2,000 ug/kg), dibenzofuran ( 510 ug/kg and 5,300 ug/kg), fluoranthene (ranging from 85 ug/kg to 40,000 ug/kg), fluorene (ranging from 11 ug/kg to 6,400 ug/kg), indeno(1,2,3)pyrene (ranging from 34 ug/kg to 6,600 ug/kg), naphthalene (ranging from 23 ug/kg to 7,200 ug/kg), phenanthrene (ranging from 48 ug/kg to 42,000 ug/kg), and pyrene (ranging from 82 ug/kg to 32,000 ug/kg) were detected in the soil samples submitted.

Gasoline and diesel range total petroleum hydrocarbons were detected in the soil samples from Site 20. The highest concentrations were found in the gasoline range, which is consistent with the concentrations of VOCs detected across Site 20. Concentrations of the light petroleum fraction ranged from 240 ug/kg to 280,000 ug/kg. Concentrations of the middle petroleum fraction ranged from 28 mg/kg to 800 mg/kg. Concentrations of the heavy petroleum fraction ranged from 8.4 mg/kg to 1,800 mg/kg.

Seven of the eight RCRA Metals were detected in the soil samples submitted from Site 20. Arsenic, ranging from 5.9 mg/kg to 12.8 mg/kg, was detected in all samples submitted. Barium, ranging from 24.3 mg/kg to 97.9 mg/kg, was detected in all samples submitted. Cadmium, 0.12 mg/kg to 0.59 mg/kg, was detected in all samples submitted. Chromium, ranging from 6.7 mg/kg to 12.2 mg/kg, was detected in the samples submitted. Lead, ranging from 22.9 mg/kg to 446 mg/kg, was detected in the samples submitted. Selenium, 0.72 mg/kg and 0.8 mg/kg, was detected in samples 20-MW02-1012 and 20-MW04-1416. Mercury, ranging from 0.17 mg/kg to 0.54 mg/kg, was detected in all samples submitted.

The analytical results are presented in Table 6-9A.

#### 6.9.4 Groundwater Analytical Results

Ten VOCs were detected in groundwater samples collected from Site 20. Concentrations of 1,1dichloroethene (0.27 ug/L), 2-butanone (ranging from 1.4 ug/L to 5.5 ug/L), acetone (3.2 ug/L), bromodichloromethane (3.1 ug/L), chloroform (15 ug/L), cyclohexane (7.7 ug/L and 150 ug/L), dibromochloromethane (0.42 ug/L), ethylbenzene (1.2 ug/L), isopropylbenzene (0.34 ug/L and 190 ug/L), and methylcyclohexane (19 ug/L and 36 ug/L) were detected in the groundwater samples submitted. All other VOCs were below the detection limits.

Five SVOCs were detected in the groundwater samples submitted from Site 20. Concentrations of acenaphthene (0.38 ug/L), anthracene (0.51 ug/L), benzo(a)anthracene (0.63 ug/L), benzo(b)fluoranthene (0.51 ug/L), and chrysene (0.55 ug/L) were detected in the groundwater samples submitted from 17-MW02 and 17-MW03. All other SVOCs were below the detection limits.

)

### SECTIONSIX

Seven of the eight RCRA Metals were detected in the samples submitted from Site 20. Arsenic, ranging from 23.1 ug/L to 94.8 ug/L, was detected in samples 20-MW03 and 20-MW04. Barium, ranging from 32.8 ug/L to 658 ug/L, was detected in all samples submitted. Cadmium, 0.85 ug/L, was detected in sample 20-MW03. Chromium, ranging from 3.1 ug/L to 32 ug/L, was detected in all the samples submitted. Lead, 4.4 ug/L and 522 ug/L, was detected in 20-MW01 and 20-MW03. Selenium, 2.6 ug/L, was detected in sample 20-MW01. Mercury, 0.54 ug/L, was detected in 20-MW03.

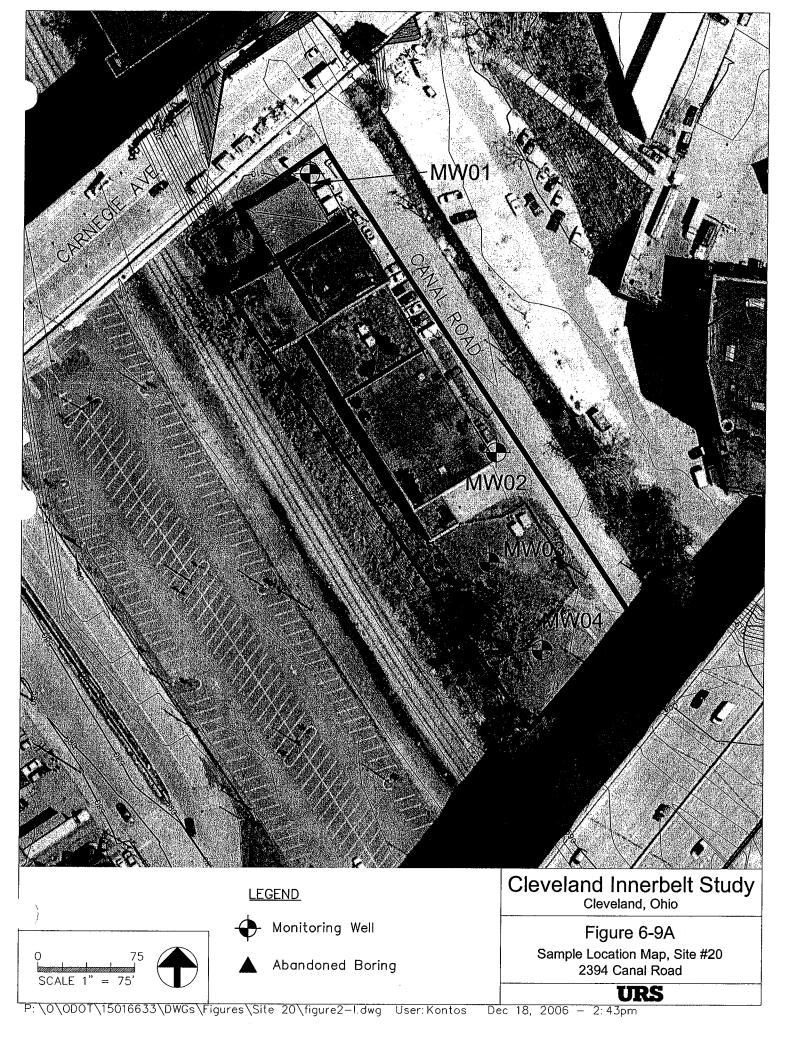
The analytical results are presented in Table 6-9B.

#### 6.9.5 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on **Tables 6-9A** and **6-9B**.

None of the VOCs or TPH detected in the soils at Site 20 exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or BUSTR closure action levels.

The concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene detected in soil sample 20-MW03-1012 exceeded the OEPA VAP standards for commercial and industrial land use and/or BUSTR closure action levels.


The concentration of lead detected in soil sample 20-MW03-1012 exceeded the OEPA VAP standards for commercial and industrial land use and the construction and excavation worker activities category action levels.

The concentrations of benzo(a)anthracene, benzo(b)fluoranthene, and lead detected in groundwater sample 20-MW03 exceeded the OEPA VAP standard for generic unrestricted potable use standards and/or BUSTR closure action levels.

#### 6.9.6 Conclusions

Based on the analytical results, the soil and groundwater at Site 20 may require special disposal and/or worker protection protocols (plan note) during construction activities.

FIGURES



### TABLES

**Summary of Detected Chemicals in Soil ODOT Innerbelt Study** Site 20 - Earl Lee Cleveland, Ohio Table

}

)

Z-Buttanone           Acetone           Acetone           Benzene           Cyclohexane           Cyclohexane           Ethylbenzene           Nethylcyclohexane           Toluene           Xylenes (total)           Z-Methylnaphthalene           Acenaphthylene           Adenaphthylene           Anthracene           Benzo(g)hyrene           Benzo(ghi)penylene           Benzo(ghi)penylene           Chrysene           Benzo(ghi)penylene           Chrysene           Benzo(ghi)penylene           Benzo(ghi)penylene	2-Butanone 2-Butanone Brozene Brozene Carbon disulitde Carbon disulitde Carbon disulitde Etrylbenezene Etrylbenezene Mettrylraphthalene Adentrylnaphthalene Adenaphthalene Adenaphthalene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene Benzo(a)byrene	Byjön           Byjön	71,600,000 100,000 100,000 720,000 230,000 860,000 860,000	80,000,000 80,000,000					and a state of the second s
	ulfide ulfide nzene hexane hexane hexane hexane hexane fene cranthene perviene cranthene	<ul> <li>Byjón</li> </ul>	71,600,000 100,000 720,000 230,000 860,000 860,000	80,000,000					0
	uffide Ine Ine Ine Ine Ital) phthalene phthalene Ital) phthalene Ital) phthalene Ital) phthalene Photomanthene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene perviene	<ul> <li>Baylon</li> </ul>	100,000,000 100,000 720,000 230,000 860,000			50 1	47 J	3.3 J	46 J
	lifide le nzene nzene hexane hexane hittalene ene ene rene perviene craanthene craanthene	<ul> <li>Baylon</li> </ul>	100,000 720,000 - 230,000 860,000	1,000,000,000		27 U	240 U	24 U	81 J
	lifide le nzene nzene hexare hexare hexare herare ene ene ene ene rene perviene craanthene craanthene	63/6n 63/6n 63/6n 63/6n 63/6n 63/6n 63/6n 63/6n 63/6n	720,000  860,000	310,000	149	0.59 J	60 U	6.1 U	2.9 J
	ie ne nzene nezene phthalene ane sine sine sine sine sine sine sine si	53/6n 53/6n 53/6n 53/6n 53/6n 53/6n 53/6n 53/6n	- 230,000 860,000	720,000		5.1 J	6.1 J	0.33 J	12 J
	ne nzene nezare phthalene ane ane nthracene nthracene nthracene perviene coranthene coranthene	Sylán Bylán Bylán Bylán Bylán Bylán Bylán Bylán	230,000 860,000	a da a da angelera angelera angelera nga nga nga nga nga nga nga nga nga ng	and a second contract of the second sec	14 U	120 U	12 U	200
	nzene hexane phthalene ane ane dene oranthene perviene coranthene coranthene	5 63/6n 63/6n 63/6n 63/6n 63/6n 63/6n 63/6n	860,000	230,000	45,500	6.8 U	∩ 09	0.68 J	60 U
	hexane tal) phthalene me ane fene oranthene perviene coranthene coranthene	5 53/6n 53/6n 53/6n 53/6n 53/6n 53/6n 53/6n		860,000		0.53 J	8.8 J	0.33 J	1800
	tal) phthalene ane Alene tthracene tranathene cranthene cranthene cranthene	By/Sn By/Sn By/Sn By/Sn By/Sn By/Sn			an and the second difference receiver of the factors	14 U	210	2.4 J	890
	tat) phthalene ane Alene rene oranthene perylene coranthene	Sy/6n Sy/6n Sy/6n Sy/6n Sy/6n	520,000	520,000	49,100	1.3 J	00	0.63 J	60 U
	Drithalene 3ne Mene Mene Ithracene Ithracene Cranthene Derviene Cranthene	Sy/Sn Sy/Sn Sy/Sn Sy/Sn Sy/Sn	160,000	160,000	15,700	2.4 J	120 U	2.3 J	43 J
	Ine dene ithracene reine oranitiene perviene oranitiene	ng/kg ug/kg ug/kg	1	1	1	860 J	29 J	4300 J	R J
	/ene uthracene rene oranthene perylene oranthene	by/6n n6/kg	180,000,000	530,000,000		410 J	400 U	7100 J	88 J
	thracene trene oranithene perylene oranithene	ng/kg	1			190 J	400 U	20000 U	1600 U
	thracene rene oranthene perviene oranthene	ng/kg	880,000,000	1,000,000,000		840 J	17 J	12000 J	۲ OZ
	rene loranthene perylene loranthene		63,000	810,000	11,000	2300	48 J	16000 J	130 J
	oranthene perylene oranthene	ug/kg	6,300	81,000	1,100	1800	51 J	13000 J	110 J
	pervises and the second se	ug/kg	63,000	810,000	11,000	2100	68 J	17000 J	130 J
		ng/kg	-	1	-	ل 890 J	36 J	C 0067	76 J
		ug/kg	630,000	8,100,000	110,000	F 066	28 J	5500 J	92 J
	All a second second with a first second second second second	ug/kg	10,000,000	31,000,000		430 J	400 U	4200 J	95 J
Dibenz(a,	A A A A A A A A A A A A A A A A A A A	ug/kg	6,700,000	41,000,000	1,100,000	2200	52 J	14000 J	130 J
	Dibenz(a,h)anthracene	ng/kg	6,700	41,000	1,100	230 J	8.8 J	2000 J	1600 U
Dibenzofuran	an	ug/kg	1	1	•	510 J	400 U	5300 J	1600 U
Fluoranthene		ng/kg	33,000,000	170,000,000	-	5100	85 J	4000	330 J
Fluorene	a de ser en verse en le son et loore andere ser en gebre ker en de trasses son an et son onde	ug/kg	120,000,000	340,000,000		620 J	<b>7 1</b>	6400 J	f 26
Indeno(1,2	Indeno(1,2,3-cd)pyrene	ug/kg	67,000	410,000	11,000	820 J	34 J	6600 J	99 J
Naphthalene		ug/kg	530,000	1,900,000	39,800	۲ D62	23 J	7200 J	1600 U
Phenanthrene		ng/kg	an an ann an Anna Anna Anna Anna Anna A		1	4200	48 J	42000	300 J
Pyrene		ug/kg	25,000,000	130,000,000	1	4000	82 J	32000	250 J
1	Gasoline Range Organics (C6-C12)	ug/kg			1,000,000	240	16000	120 U	280000
<b>1</b> C10-C20	<ul> <li>a second structure of the second s</li></ul>	mg/kg	and and an and and an and and and and an	<ul> <li>A second sec second second sec</li></ul>	2,000	300	28	100	800
C20-C34		mg/kg	1	;	5,000	1800	8.4	580	140
Arsenic	1. The property of the state	mg/kg	80	210	-	11.1	5.9	12.8	11.7
ļ	م ماریخ این ماریخ این ماریخ این	mg/kg	200,000	45,000	1	94.5	24.3	97.9	43
Cadmium	dji majinanya na kana angan kana mananananan kananya yen	mg/kg	470	420		0.51	0.12 J	0.59	0.29
2	and the second of the product of the second s	mg/kg	8,900	2,000	1	12.2	6.7	9.8	8.6
1	a de la companya de l	mg/kg	<b>.</b>		1	176	22.9	446	43.7
Selenium	A MARKAN AND AND A A A A A A A A A A A A A A A	mg/kg	15,000	4,300	1	0.68 U	0.72	0.61 U	0.8
Mercury		mg/kg	300	84	•	0.54	0.076 J	0.17	0.2

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.
J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(2) VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities (1) VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use

URS

P:\O\ODOT\15016633\DOCs\Data\Hits Tables\Site 20 Hits Tables

Tabie~6-9B Summary of Detected Chemicals in Water Site 20 - Earl Lee ODOT Innerbelt Study Cleveland, Ohio

)

11-Dicklorechene         ug/L         7         -         10         1.0         0.27.4         5.0         V           2-Butanone         ug/L         6800         -         10         1.4.1         5.5.4         4.9         5.0           Ancione         ug/L         6800         -         10         1.0.0         1.4.1         5.5.4         4.9           Ancione         ug/L         -         -         10         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 </th <th> <b>.</b></th> <th>PARAMETER</th> <th>UNITS</th> <th>VAP-UPUS//</th> <th>BUSTR Closure Action Leve</th> <th>20-MW-01 09/22/2006</th> <th>20-MW-02 09/25/2006</th> <th>20-MW-03 09/25/2006</th> <th>20-MW-04 09/25/2006</th>	<b>.</b>	PARAMETER	UNITS	VAP-UPUS//	BUSTR Closure Action Leve	20-MW-01 09/22/2006	20-MW-02 09/25/2006	20-MW-03 09/25/2006	20-MW-04 09/25/2006
2-Butanone         ug/L         6800          10 U         14 J         55 J           Acetone         ug/L         1600          31         10 U         10 U         32 J           Bromodichloromethane         ug/L          -         31         10 U         10 U         10 U           Dhoroform         ug/L          -         -         15         10 U         10 U         7.7           Dhoroformethane         ug/L          -         -         15         10 U         10 U         7.7           Dhoroformethane         ug/L         -         -         -         10 U         10 U         1.0 U         7.7           Dhoroformethane         ug/L         -         -         -         0.42 J         1.0 U         1.0 U         7.7           Dhoroformethane         ug/L         100 U         10.0 U         1.0 U         7.7           Dhoroformethane         ug/L         -         -         -         0.42 J         1.0 U         1.0 U         1.0 U           Export/solvexane         ug/L         -         -         -         0.0 U         0.0 U         0.0 U         0.0 U<		1,1-Dichloroethene	ng/L	۷	:	1.0 U	1.0 U	0.27 J	5.0 U
		2-Butanone	ng/L	6800	I	10 U	1.4 J	5.5 J	4.9 J
Bromodichloromethane         ug/L         -         -         3.1         1,0 U		Acetone	ug/L	1600		10 U	10 U	3.2 J	50 U
Chlorotorum         ugl.         50         -         15         10 U         10 U <th< th=""><th></th><th>÷,</th><th>ng/L</th><th>8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th></th><th>3.1</th><th>1.0 U</th><th>1.0 U</th><th>5.0 U</th></th<>		÷,	ng/L	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3.1	1.0 U	1.0 U	5.0 U
	soc	ģ	ng/L	50		15	1.0 U	1.0 U	5.0 U
	λ	-	ug/L			1.0 U	1.0 U	7.7	150
Ethylbenzene         ug/L         700         700         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10		Dibromochloromethane	ng/L	19	1	0.42 J	1.0 U	1.0 U	5.0 U
Isopropyberzene         ug/L         1300          1.0 U         0.20 U         0.20 U         0.20 U         0.20 U         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651         0.651		Ethylbenzene	ng/L	700	200	1.0 U	1.0 U	1.0 U	1.2 J
Methyloyclohexane         ug/L         -         -         1.0         1.0         1.0         19           Acenaphthene         ug/L         680         -         0.20         0.20         0.38         0.38           Activacione         ug/L         680         -         0.20         0.20         0.36         0.36           Benzo(a)anthracene         ug/L         -         0.264         0.20         0.20         0.51         0.51           Benzo(b)fluoranthene         ug/L         -         0.264         0.20         0.20         0.651         0.51           Benzo(b)fluoranthene         ug/L         -         0.264         0.20         0.20         0.55         0.51           Chrysene         ug/L         47         47         0.20         0.20         0.23         0.55           Arsenic         ug/L         50         -         10.0         10.0         0.55         287           Barium         ug/L         5         -         32.8         620         0.25         287           Cadmium         ug/L         5         -         2.0         0.20         0.20         0.55         287           Cadmium		Isopropylbenzene	ng/L	1300		1.0 U	1.0 U	0.34 J	190
Acenaphthene         ug/L         680          0.20         0         0.20         0         0.38           Anthracene         ug/L $-$ 0.20         0         0         0.51         0.38           Benzo(a)anthracene         ug/L $-$ 0.264         0.20         0         0.63           Benzo(b)fluoranthene         ug/L $-$ 0.179         0.20         0.20         0.63           Benzo(b)fluoranthene         ug/L $-$ 0.179         0.20         0.20         0.63           Chrysene         ug/L $-$ 0.179         0.20         0.20         0.63           Arsenic         ug/L $-$ 0.179         0.20         0.20         0.63           Arsenic         ug/L $-$ 0.179         0.20         0.20         0.53           Arsenic         ug/L $50$ $-$ 0.20         0.20         0.53           Barium         ug/L $50$ $ 2.0$ $0.20$ $0.20$ $0.55$ Cadmium         ug/L $5$ $ 2.0$ $0.20$ $0.20$ <		Methylcyclohexane	ug/L	1	ł	1.0 U	1.0 U	19	36
Arthracene         ug/L $2600$ $0.20$ $0$ $0.20$ $0$ $0.51$ Benzo(a)anthracene         ug/L $0.264$ $0.20$ $0.20$ $0.65$ Benzo(a)anthracene         ug/L $0.264$ $0.20$ $0.20$ $0.61$ Benzo(b)fluoranthene         ug/L $0.179$ $0.20$ $0.20$ $0.61$ Arsenic         ug/L         - $0.179$ $0.20$ $0.20$ $0.51$ Arsenic         ug/L $50$ - $0.179$ $0.20$ $0.20$ $0.51$ Arsenic         ug/L $50$ - $0.100$ $10.00$ $23.1$ Barium         ug/L $50$ - $32.8$ $50.0$ $23.7$ Cadmium         ug/L $5$ - $20.0$ $20.0$ $25.2$ Cadmium         ug/L $50$ - $26.4$ $30.0$ $50.0$ Chromium         ug/L $50$ - $26.4$		Acenaphthene	ng/L	680	1	0.20 U	0.20 U	0.38	0.80 U
Benzo(a)anthracene         ug/L          0.264         0.20         0         0.63         0.63           Benzo(b)fluoranthene         ug/L          0.179         0.20         0<20         0.651         0.651           Benzo(b)fluoranthene         ug/L          0.179         0.20         0<20         0.651         0.651           Chrysene         ug/L         50         -         10.0         10.0         10.0         0.55           Arsenic         ug/L         50         -         10.0         10.0         0.20         0.55           Arsenic         ug/L         50         -         32.8         622         287         287           Cadmium         ug/L         50         -         22.0         20.0         0.85         27           Chromium         ug/L         15         -         2.0         0.85         37         32           Lead         ug/L         50         -         2.6         3.1         32         32           Mercury         ug/L         50         -         2.6         5.0         5.0         0.54	sŊ	ş	ng/L	2600		0.20 U	0.20 U	0.51	0.80 U
Benzo(b)filuoranthene         ug/L          0.179         0.20 U         0.20 U         0.51           Chrysene         ug/L         47         47         0.20 U         0.20 U         0.55           Arsenic         ug/L         50          10.0 U         10.0 U         23.1           Arsenic         ug/L         50          10.0 U         10.0 U         23.1           Barium         ug/L         50          32.8 J         622         287           Cadmium         ug/L         5          2.0 U         2.0 U         0.85 J           Chromium         ug/L         15          11.8         3.1 J         32           Selenium         ug/L         50          2.6 J         5.0 U         5.0 U           Mercury         ug/L         2          0.20 U         0.20 U         5.0 U	٥٨s	1	ng/L	and a second	0.264	0.20 U	0.20 U	0.63	0.80 U
Chrysene         ug/L         47         0.20         0         0.20         0         0.55           Arsenic         ug/L         50         -         10.0         1         10.0         1         0.55           Barium         ug/L         50         -         32.8         522         287         287           Cadmium         ug/L         5         -         32.8         520         2.87         287           Cadmium         ug/L         100         -         32.8         3.1         5.0         0.65         32           Chromium         ug/L         100         -         2.0         2.0         0.65         32         32           Lead         ug/L         50         -         2.6         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         0.56         0.56         0.56         0.56         0.56         0.56         0.0         5.6         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.56         0.	S	- 1	ug/L	<ul> <li>Martine La Prima de Prima de La Casta de Casta de La Casta de Casta Nacional de Casta de C Casta de Casta de</li></ul>	0.179	0.20 U	0.20 U	0.51	0.80 U
Arsenic         ug/L         50         -         10.0 U         10.0 U         23.1           Barium         ug/L         2000         -         32.8 J         622         287           Cadmium         ug/L         5         -         2.0 U         2.0 U         0.85 J           Chromium         ug/L         100         -         11.8         3.1 J         32           Lead         ug/L         55         -         4.4         3.0 U         5.0 U           Selenium         ug/L         50         -         2.6 J         5.0 U         5.0 U           Mercury         ug/L         2         -         0.20 U         0.20 U         0.50 U		Chrysene	ng/L	47	47	0.20 U	0.20 U	0.55	0.80 U
Barium         ug/L         2000          32.8         622         287           Cadmium         ug/L         5          20.0         0.85         3           Cadmium         ug/L         100          11.8         3.1         32.3           Chromium         ug/L         15          11.8         3.1         32           Lead         ug/L         50          2.6         0         522           Selenium         ug/L         2          2.6         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0         0.5.0		Arsenic	ng/L	20	and a state of the	10.0 U	10.0 U	23.1	94.8
Cadmium         ug/L         5         -         2.0         0         2.0         0.85         J           Chromium         ug/L         100         -         11.8         3.1         3.2         3.2           Lead         ug/L         15         -         4.4         3.0         522         3.0         522           Selenium         ug/L         50         -         2.6         J         50         5.0         5.0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0         5.0         0			ng/L	2000	an and a second s	32.8 J	622	287	658
Chromium         ug/L         100         -         11.8         3.1         32           Lead         ug/L         15         -         4.4         3.0         0         522           Selenium         ug/L         50         -         2.6         J         5.0         5.0         5.0         0           Mercury         ug/L         2         -         0.20         0.20         0.54	S''IV	Cadmium	ng/L	S		2.0 U	2.0 U	0.85 J	2.0 U
Lead         ug/L         15         -         4.4         3.0 U         522           Selenium         ug/L         50         -         2.6 J         5.0 U         5.0 U           Mercury         ug/L         2         -         0.20 U         0.20 U         0.54	(T3	Chromium	ng/L	100		11.8	3.1 J	32	4.0 J
n ug/L 50 - 2.6 J 5.0 U 5.0 U 5.0 U 0.20 U 0.24	W	Lead	ng/L	15	<ul> <li>A second sec second second sec</li></ul>	4.4	3.0 U	522	3.0 U
ug/L 2 - 0.20 U 0.20 U 0.54		Selenium	ng/L	50		2.6 J	5.0 U	5.0 U	5.0 U
		Mercury	ng/L	2		0.20 U	0.20 U	0.54	0.20 U

# -- = Standard not available

 $\mathsf{U}=\mathsf{T}\mathsf{he}$  analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

## BORING LOGS

#### Project: ODOT - Innerbelt Corridor Project Location: Site 20 Project Number: 15016633

### Log of Boring 20-MW01

Sheet 1 of 1

Date(s) 7/18/06	Logged	J. Kaminski	Checked M. Wolff
Drilled 7/18/06	By		By
Drilling Method & Hollow Stem Auger	Hammer	140# / 30" drop automatic	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data		of Borehole 30.0' bgs
Drill Rig	Drilling	HAD, Inc.	Approximate
Type CME-55	Contractor		Ground Elevation 610'
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level 586.72 on 9/25/06			

1				SAM	PLES				Τ		
	Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Well	Installation Schematic	FIELD NOTES AND WELL DETAILS
	-610	0	0002	4 4 4 4	18.0	1.5		Loose, dry, brown, SAND trace brick fragments, trace silt, trace gravel	4.4.	<u>.4</u> .2	Begin Drilling on 7/18/06
		-	0204	2 3 3 4	20.0	2.7		Loose, dry, brown, coarse SAND trace medium to coarse gravel			4 4
		5	0406	8 30 5 3	6.0	0.3		r Concrete			
		-	0608	1 1 2 2	19.0	0.1		Stiff, moist, brown, silty SAND iron oxide staining			
		-	0810	WOH 1 1	5.0	0.1					- Bentonite Pellets
ľ	-600	10— -	1012	1 1 1 1	0.0	0.2		- Medium stiff to stiff, moist, gray, silty CLAY trace fine sand, with organics, trace brick fragments			
		-	1214	WOH 1 2 3	24.0	0.4		rTrace gravel			
		- 15	1416	1 2 3 3	16.0	3.9		Loose, black, coarse SAND trace clay, and silt			
		-	1618	2 3 4 3	13.0	4.7		r With brick fragments			Sample submitted for laboratory analysis 20-MW01-1618
		1	1820	2 3 7 50/2	14.0	1.0		←Becomes wet     Hard, dry brick and concrete			
	-590	2 <u>0</u>	2022	2 2 3 3	16.0	1.0		Stiff, moist, gray, silty CLAY Brick, dry	-		
10/01		-	2224	3 3 7	4.0	NA					
006 20-MW0-		_ 25	2426	50/1 50/2	2.0	NA		r Becomes wet	-		
; 12/14/2006		-	2628	4 2 1	20.0	NA		Loose, wet, brown, silty SAND			
DDOT.GP.		-	2830	WOH WOH	24.0	NA					← Filter Sand #7 Slotted 0.010" Screen
S; File: (	-580	30-		3			3-121-2	End of Boring at 30' bgs Installed Monitoring Well			End Drilling on 7/18/06
OT_WELL		-									
Report: 1_ODOT_WELLS; File: ODOT.GPJ;		35							1		
åL								URS			J

#### Project: ODOT - Innerbelt Corridor Project Location: Site 20 Project Number: 15016633

### Log of Boring 20-MW02

Sheet 1 of 1

140 lb Hammer 30 inches	Total Depth of Borehole 22.0' bgs
	Anneovimeto
iractor HAD, Inc.	Approximate Ground Elevation <b>608'</b>
pling od(s) 2" Split Spoon	Borehole Completion Set monitoring well
ļ	bling 2" Split Speep

SAMPLES Graphic Log Well Installation Schematic Elevation feet Sampling Resistance Blows/6" PID, OVA, ppm Recovery, inches Depth, feet Type Number MATERIAL DESCRIPTION **FIELD NOTES** AND WELL DETAILS Loose, brown, SAND and Slag, and gravel, 4 feet w brick Begin Drilling on 7/19/06 5 9.4.9.4.9.4 0.0.0.0 15 0002 13.0 0.6 8 2 1 1 -605 0204 12.0 1.0 2 2 1 1 5 0406 11.0 1.4 2" Schedule 40 PVC 2 2 Soft, moist, brown, silty CLAY with sand, with Slag 3 2 0608 22.0 1.0 2 2 Moist, light brown, fine SAND with -600 2 2 0810 24.0 1.2 . Bentonite Pellets 2 2 10-Sample submitted for lab WOH analysis 20-MW02-1012 Medium dense, moist, black, clayey SAND with, hydrocarbon odor 1 24.0 221 1012 1 Medium stiff, dark gray and black, silty CLAY trace, trace, hydrocarbon 2 odor 1 2 -595 1214 24.0 98.5 2 Stiff, moist, gray, SILT trace clay 2 Stiff to medium stiff, moist, brown, silty CLAY 1 1 15-24.0 1416 NA 2 3 20-MW02 WOH -Becomes wet 3 24.0 1618 56.6 5 Stiff, moist, brown, SILT trace sand 5 ODOT_WELLS: File: ODOT.GPJ; 12/14/2006 590 Stiff, moist, brown, SILT trace sand 5 Soft, saturated, brown, CLAY 3 24.0 18.6 1820 Filter Sand #7 7 Hard, moist, gray, silty CLAY 7 20-Augered down to 22' bgs Slotted 0.010" Screen End of Boring at 22' bgs Installed Monitoring Well End Drilling on 7/19/06 -585 Report: 1_ 25

#### Project: ODOT - Innerbelt Corridor Project Location: Site 20 Project Number: 15016633

### Log of Boring 20-MW03

Sheet 1 of 1

7/19/06	gged X. Sotelo Checked M. Wo	olff
hod & Hollow Stem Auger /type 4-1/4" ID HSA	ta 140 lb Hammer 30 inches Total Depth of Borehole 22.0'	bgs
CME-55	Iling HAD, Inc. Approximate Ground Elevation 60	)8'
See Site Map	npling 2" Split Spoon Borehole Set m	onitoring well
er Level 589.02 on 9/25/06	Inod(s) 2 opin option Completion Set II	omtorm

			SAMF	LES		]		T	
Depth, feet	Type	INUITIDEL	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Installation Schematic	FIELD NOTES AND WELL DETAILS
U	- 00		2 4 4 12	16.0	0.6		CRUSHED STONE Loose, moist, black, SAND trace construction debris, trace brick, no odor, hydrocarbon staining	444 444	Begin Drilling on 7/19/06
	- 02	204	4 7 15 9	12.0	0.9				
5-	- 04	106	2 2 2 3	9.0	1.1		Loose, brown, SAND trace brick, no odor, no staining		
	- 06	108	4 3 2 2	9.0	2.6		Loose, brown, SAND trace brick, no odor, no staining		a A Boutonite Dollate
10-	- 08	10	1 2 6 7	12.0	3.7		Medium stiff, moist, gray, silty CLAY trace brick, trace Shale, no odor, hydrocarbon staining, low plasticity		Bentonite Pellets
	- 10	12	1 2 9 16	12.0	2.8				Sample submitted for lab analysis 20-MW03-1012
	12	14	4 4 5 6	0.0	NA				
15-	- 14	16	1 2 3 2	24.0	3.0		Medium stiff, brown, silty SAND trace rock fragments, trace wood, no odor, no staining		
	16	18	1 1 2 3	20.0	3.5		Medium stiff, moist, brown, silty SAND trace brick, no odor, no staining Stiff, moist, brown, sandy CLAY trace brick, no odor, hydrocarbon staining, medium plasticity		
-	18:	20	1 2 2 2	24.0	3.5				- Filter Sand #7
20-	20:	22	3 5 6 5	24.0	1.5		Stiff, saturated, brown, sandy CLAY trace brick, hydrocarbon odor, hydrocarbon staining, medium plasticity		Slotted 0.010" Screen
-							End of Boring at 22' bgs Installed Monitoring Well		End Drilling on 7/19/06
- 25							TIDC		
	0- 5- 10- 15- - 20- - -	<b>0</b> - 02 <b>5</b> 04 - 06 - 08 <b>10</b> - 12 <b>15</b> - 14 - 16 - 18 <b>20</b> - 202 - 202	- 0204 - 0204 5- 0406 - 0608 - 0810 10 - 1012 - 1214 15- 1416 - 1618 - 1820 20 - 2022 - 2022	, 'unappendication of the second sec	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: Section of the sectio	Image: Section of the sectio

#### Project: ODOT - Innerbelt Corridor Project Location: Site 20 Project Number: 15016633

### Log of Boring 20-MW04

Sheet 1 of 1

Date(s) Drilled 8/11/06	Logged By	J. Kaminski	Checked M. Wolff
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer Data	140# auto hammer	Total Depth of Borehole 24.0' bgs
Drill Rig Type <b>LC-60</b>	Drilling Contractor	HAD, Inc.	Approximate Ground Elevation 604'
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level and Date Measured 588.57 on 9/25/06		· · · · · · · · · · · · · · · · · · ·	

	ſ			SAM	PLES		[		1	
	Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Welf Installation	FIELD NOTES AND WELL DETAILS
		0	0002	4	12.0	0.7		Loose, dry, dark brown, SAND with gravel, with brick fragments, and Slag	2000 C	Begin Drilling on B/11/06 B/
	-600	-	0204	5 20 20 20	19.0	1.5		Hard, dry, brown, silty CLAY with sand, with brick fragments, and gravel		
	-000	5-	0406	6 9 4 50/5	14.0	2.1	4 4 8 4	CONCRETE Loose, dry, brown, coarse SAND with gravel, with Slag		2" Schedule 40 PVC
		-	0608	3 7 5 6	22.0	2.0		← Fine to medium SAND		
)	-595	- 10	0810	WOH 1 2 5	20.0	1.6		Loose, dry, black and dark brown, SAND with gravel, with Slag		-Bentonite Pellets
		-	1012	3	4.0	1.2		BRICK		
	-590	-	1214	7 5 7 10	13.0	192		Dense, dry, brown, fine SAND Moist to wet, black, hydrocarbon odor		
		15—	1416	7	20.0	>10000		Dense, dry, brown, fine SAND Moist, gray, silty CLAY 3-Inch layer _r Trace clay, with gravel		Sample submitted for lab analysis 20-MW04-1416
		-	1618	WOH 1 2 3	12.0	NA		Stiff, wet, gray and brown, silty CLAY trace sand, trace, iron oxide staining		
W04	-585	- 20	1820	WOH 2 4 4	12.0	NA		-		Filter Sand #7
2006 20-MW04		-	2022	WOH 2 2 6	10.0	NA		r Hard, dry, no sand		Slotted 0.010" Screen
P.J; 12/14/2006	-580	-	2224	WOH 2 4 7	11.0	NA		Hard, dry, brown, clayey SILT -		
File: ODOT.GPJ;	-360	25-						End of Boring at 24' bgs Installed Monitoring Well		End Drilling on 8/11/06
								-		
Report: 1_ODOT_WELLS;	-575	30						-		
Report		50							· · · · ·	

DATA ASSESSMENT REPORT

#### **Data Assessment Report ODOT Innerbelt Study** Site 20 – Earl Lee

#### **Reviewer:** P. Schuler **Date:** November 12, 2006

Four soil samples and four groundwater samples were collected at the Earl Lee site at 2394 Canal Road in Cleveland, Ohio, from July 18 through September 25, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Re	equested Analyses ⁽¹⁾			
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC	TPH	Met	
A6G190357001	20-MW01-1618	07/18/2006	Soil	X	X	Х	X	
A6G190357002	20-MW02-1012	07/18/2006	Soil	X	X	Х	X	
A6G190357003	20-MW03-1012	07/18/2006	Soil	X	X	Х	X	
A6H120109001	20-MW04-1416	08/11/2006	Soil	X	X	Х	X	
A6I220386001	20-MW-01	09/22/2006	Groundwater	X	X		X	
A6I270124001	20-MW-02	09/25/2006	Groundwater	X	X		X	
A6I270124002	20-MW-04	09/25/2006	Groundwater	X	X		X	
A6I270124003	20-MW-03	09/25/2006	Groundwater	X	X		Х	

Table 1 Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

SVOC = Semivolatile Organic Compounds [SW-846 Method 8270C]

= Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B] TPH

= RCRA Metals [SW-846 Methods 6010B/6020/7470A/7471A] Met

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- Positive detections for methylene chloride in sample 20-MW01-1618, for acetone in samples 20-MW02-1012 and 20-MW03-1012, and for bis(2-ethylhexyl)phthalate in samples 20-MW02-1012 and 20-MW-01 were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks at similar concentrations.
- Trip blanks submitted with the 08/11/06 and 09/25/06 samples were logged in and



reported with samples from other sites. Trace amounts of methylene chloride and toluene were detected in one trip blank each. Therefore, the positive methylene chloride result for sample 20-MW04-1416 and the positive toluene results in samples 20-MW-04 and 20-MW-03 were qualified as nondetect ("U"), since the sample concentrations were not significantly higher than those in the blanks.

- The semivolatile compound, bis(2-ethylhexyl)phthalate, was detected at concentrations ranging from 0.9 to 1.8 ug/L in all equipment blanks associated with project samples. Since this compound is considered a common laboratory contaminant, its presence in environmental samples at concentrations less than ten times the highest equipment blank concentration is attributed to external contamination rather than actual site conditions. Therefore, the positive detection for bis(2-ethylhexyl)phthalate in sample 20-MW-02 was qualified as nondetect ("U") at the value reported, even though it was not detected in the associated method blank.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J" for organics, and "B" for inorganics), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, organic "J" qualifiers were retained with the numeric results. The inorganic "B" qualifiers were changed to "J" qualifiers for the sake of consistency throughout the package.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-7.



# Table 2-1Analytical Data SummarySite 20 Soil VolatilesODOT Innerbelt Study

		A6G190357001 20-MW01-1618	A6G190357002 20-MW02-1012	A6G190357003 20-MW03-1012	A6H120109001 20-MW04-1416
PARAMETER	UNITS	07/18/2006	07/18/2006	07/18/2006	08/11/2006
1,1,1-Trichloroethane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,1,2,2-Tetrachloroethane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,1,2-Trichloroethane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,1-Dichloroethane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,1-Dichloroethene	ug/kg	6.8 U	60 U	6.1 U	60 U
1,2,4-Trichlorobenzene	ug/kg	6.8 U	60 U	6.1 U	60 U
1,2-Dibromo-3-chloropropane	ug/kg	14 U	120 U	12 U	120 U
1,2-Dibromoethane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,2-Dichlorobenzene	ug/kg	6.8 U	60 U	6.1 U	60 U
1,2-Dichloroethane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,2-Dichloropropane	ug/kg	6.8 U	60 U	6.1 U	60 U
1,3-Dichlorobenzene	ug/kg	6.8 U	60 U	6.1 U	60 U
1,4-Dichlorobenzene	ug/kg	6.8 U	60 U	6.1 U	60 U
2-Butanone	ug/kg	50	47 J	3.3 J	46 J
2-Hexanone	ug/kg	27 U	240 U	24 U	240 U
4-Methyl-2-pentanone	ug/kg	27 U	240 U	24 U	240 U
Acetone	ug/kg	27 U	240 U	24 U	81 J
Benzene	ug/kg	0.59 J	60 U	6.1 U	2.9 J
Bromodichloromethane	ug/kg	6.8 U	60 U	6.1 U	60 U
Bromoform	ug/kg	6.8 U	60 U	6.1 U	60 U
Bromomethane	ug/kg	6.8 U	60 U	6.1 U	60 U
Carbon disulfide	ug/kg	5.1 J	6.1 J	0.33 J	12 J
Carbon tetrachloride	ug/kg	6.8 U	60 U	6.1 U	60 U
Chlorobenzene	ug/kg	6.8 U	60 U	6.1 U	60 U
Chloroethane	ug/kg	6.8 U	60 U		60 U
Chloroform	ug/kg	6.8 U	60 U	6.1 U	60 U
Chloromethane	ug/kg	6.8 U	60 U	6.1 U	60 U
cis-1,2-Dichloroethene	ug/kg	6.8 U	60 U	6.1 U	60 U
cis-1,3-Dichloropropene	ug/kg	6.8 U	60 U	6.1 U	60 U
Cyclohexane	ug/kg	14 U	120 U	12 U	200
Dibromochloromethane	ug/kg	6.8 U	60 U	6.1 U	60 U
Dichlorodifluoromethane	ug/kg	6.8 U	60 U	6.1 U	60 U
Ethylbenzene	ug/kg	6.8 U	60 U	0.68 J	60 U
Isopropylbenzene	ug/kg	0.53 J	8.8 J	0.33 J	1800
Methyl acetate	ug/kg	14 U	120 U	12 U	120 U
Methyl tert-butyl ether	ug/kg	27 U	240 U	24 U	240 U
Methylcyclohexane	ug/kg	14 U	210	2.4 J	890
Methylene chloride	ug/kg	9.3 U	60 U	6.1 U	60 U
Styrene	ug/kg	6.8 U	60 U	6.1 U	60 U
Tetrachloroethene	ug/kg	6.8 U	60 U	6.1 U	60 U
Toluene	ug/kg	1.3 J	60 U	0.63 J	60 U
trans-1,2-Dichloroethene	ug/kg	6.8 U	60 U	6.1 U	60 U
trans-1,3-Dichloropropene	ug/kg	6.8 U	60 U	6.1 U	60 U
Trichloroethene	ug/kg	6.8 U	60 U	6.1 U	60 U
Trichlorofluoromethane	ug/kg	6.8 U	60 U	6.1 U	60 U
Vinyl chloride	ug/kg	6.8 U	60 U	6.1 U	60 U
Xylenes (total)	ug/kg	2.4 J	120 U	2.3 J	43 J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

1

# Table 2-2Analytical Data SummarySite 20 Soil SemivolatilesODOT Innerbelt Study

		A6G190357001 20-MW01-1618	A6G190357002 20-MW02-1012	A6G190357003 20-MW03-1012	A6H120109001 20-MW04-1416
PARAMETER	UNITS	07/18/2006	07/18/2006	07/18/2006	08/11/2006
1,1'-Biphenyl	ug/kg	1800 U	400 U	20000 U	1600 U
2,2'-oxybis(1-Chloropropane)	ug/kg	1800 U	400 U	20000 U	1600 U
2,4,5-Trichlorophenol	ug/kg	1800 U	400 U	20000 U	1600 U
2,4,6-Trichlorophenol	ug/kg	1800 U	400 U	20000 U	1600 U
2,4-Dichlorophenol	ug/kg	1800 U	400 U	20000 U	1600 U
2,4-Dimethylphenol	ug/kg	1800 U	400 U	20000 U	1600 U
2,4-Dinitrophenol	ug/kg	1800 U	400 U	20000 U	1600 U
2,4-Dinitrotoluene	ug/kg	1800 U	400 U	20000 U	1600 U
2,6-Dinitrotoluene	ug/kg	1800 U	400 U	20000 U	1600 U
2-Chloronaphthalene	ug/kg	1800 U	400 U	20000 U	1600 U
2-Chlorophenol	ug/kg	1800 U	400 U	20000 U	1600 U
2-Methylnaphthalene	ug/kg	860 J	29 J	4300 J	87 J
2-Methylphenol	ug/kg	1800 U	400 U	20000 U	1600 U
2-Nitroaniline	ug/kg	1800 U	400 U	20000 U	1600 U
2-Nitrophenol	ug/kg	1800 U	400 U	20000 U	1600 U
3,3'-Dichlorobenzidine	ug/kg	1800 U	400 U	20000 U	1600 U
3-Nitroaniline	ug/kg	1800 U	400 U	20000 U	1600 U
4,6-Dinitro-2-methylphenol	ug/kg	1800 U	400 U	20000 U	1600 U
4-Bromophenyl phenyl ether	ug/kg	1800 U	400 U	20000 U	1600 U
4-Chloro-3-methylphenol	ug/kg	1800 U	400 U	20000 U	1600 U
4-Chloroaniline	ug/kg	1800 U	400 U	20000 U	1600 U
4-Chlorophenyl phenyl ether	ug/kg	1800 U	400 U	20000 U	1600 U
4-Methylphenol	ug/kg	1800 U	400 U	20000 U	1600 U
4-Nitroaniline	ug/kg	1800 U	400 U	20000 U	1600 U
4-Nitrophenol	ug/kg	1800 U	400 U	20000 U	1600 U
Acenaphthene	ug/kg	410 J	400 U	7100 J	88 J
Acenaphthylene	ug/kg	190 J	400 U	20000 U	1600 U
Acetophenone	ug/kg	360 U	80 U	4000 U	320 U
Anthracene	ug/kg	840 J	17 J	12000 J	70 J
Atrazine	ug/kg	1800 U	400 U	20000 U	1600 U
Benzaldehyde	ug/kg	1800 U	400 U	20000 U	1600 U
Benzo(a)anthracene	ug/kg	2300	48 J	16000 J	130 J
Benzo(a)pyrene	ug/kg	1800	51 J	13000 J	100 U
Benzo(b)fluoranthene	ug/kg	2100	68 J	17000 J	130 J
Benzo(ghi)perylene	ug/kg	890 J	36 J	7900 J	and the second sec
Benzo(k)fluoranthene	ug/kg	990 J	28 J	5500 J	76 J
bis(2-Chloroethoxy)methane	ug/kg	1800 U	400 U	20000 U	92 J
bis(2-Chloroethyl) ether				the second s	1600 U
an a	ug/kg	1800 U	400 U	20000 U	1600 U
bis(2-Ethylhexyl) phthalate	ug/kg	1800 U	400 U	20000 U	1600 U
Butyl benzyl phthalate	ug/kg	1800 U	400 U	20000 U	1600 U
Caprolactam	ug/kg	1800 U	400 U	20000 U	1600 U
Carbazole	ug/kg	430 J	400 U	4200 J	95 J
Chrysene	ug/kg	2200	52 J	14000 J	130 J
Dibenz(a,h)anthracene	ug/kg	230 J	· 8.8 J	2000 J	1600 U
Dibenzofuran Diathul a http://www.com	ug/kg	510 J	400 U	5300 J	1600 U
Diethyl phthalate	ug/kg	1800 U	400 U	20000 U	1600 U
Dimethyl phthalate	ug/kg	1800 U	400 U	20000 U	1600 U
Di-n-butyl phthalate	ug/kg	1800 U	400 U	20000 U	1600 U
Di-n-octyl phthalate	ug/kg	1800 U	400 U	20000 U	1600 U
Fluoranthene	ug/kg	5100	85 J	40000	330 J
Fluorene	ug/kg	620 J	<u>11 J</u>	6400 J	97 J

)

)

)

# Table 2-2Analytical Data SummarySite 20 Soil SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6G190357001 20-MW01-1618 07/18/2006	A6G190357002 20-MW02-1012 07/18/2006	A6G190357003 20-MW03-1012 07/18/2006	A6H120109001 20-MW04-1416 08/11/2006
Hexachlorobenzene	ug/kg	1800 U	400 U	20000 U	1600 U
Hexachlorobutadiene	ug/kg	1800 U	400 U	20000 U	1600 U
Hexachlorocyclopentadiene	ug/kg	1800 U	400 U	20000 U	1600 U
Hexachloroethane	ug/kg	1800 U	400 U	20000 U	1600 U
Indeno(1,2,3-cd)pyrene	ug/kg	820 J	34 J	6600 J	66 J
Isophorone	ug/kg	1800 U	400 U	20000 U	1600 U
Naphthalene	ug/kg	790 J	23 J	7200 J	1600 U
Nitrobenzene	ug/kg	1800 U	400 U	20000 U	1600 U
N-Nitrosodi-n-propylamine	ug/kg	1800 U	400 U	20000 U	1600 U
N-Nitrosodiphenylamine	ug/kg	1800 U	400 U	20000 U	1600 U
Pentachlorophenol	ug/kg	1800 U	400 U	20000 U	1600 U
Phenanthrene	ug/kg	4200	48 J	42000	300 J
Phenol	ug/kg	1800 U	400 U	20000 U	1600 U
Pyrene	ug/kg	4000	82 J	32000	250 J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

#### Table 2-3 Analytical Data Summary Site 20 Soil TPH ODOT Innerbelt Study

PARĂMETER	UNITS	A6G190357001 20-MW01-1618 07/18/2006	A6G190357002 20-MW02-1012 07/18/2006	A6G190357003 20-MW03-1012 07/18/2006	A6H120109001 20-MW04-1416 08/11/2006
Gasoline Range Organics (C6-C12)	ug/kg	240	160000	120 U	280000
C10-C20	mg/kg	300	28	100	800
C20-C34	mg/kg	1800	8.4	580	140

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

#### Table 2-4 Analytical Data Summary Site 20 Soil Metals ODOT Innerbelt Study

PARAMETER	UNITS	A6G190357001 20-MW01-1618 07/18/2006	A6G190357002 20-MW02-1012 07/18/2006	A6G190357003 20-MW03-1012 07/18/2006	A6H120109001 20-MW04-1416 08/11/2006
Percent Solids	%	73.3	83.4	82.5	83.8
Arsenic	mg/kg	11.1	5.9	12.8	11.7
Barium	mg/kg	94.5	24.3	97.9	43
Cadmium	mg/kg	0.51	0.12 J	0.59	0.29
Chromium	mg/kg	12.2	6.7	9.8	8.6
Lead	mg/kg	176	22.9	446	43.7
Selenium	mg/kg	0.68 U	0.72	0.61 U	0.8
Silver	mg/kg	0.68 U	0.60 U	0.61 U	0.60 U
Mercury	mg/kg	0.54	0.076 J	0.17	0.2

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

# Table 2-5Analytical Data SummarySite 20 Water VolatilesODOT Innerbelt Study

PARAMETER	UNITS	A61220386001 20-MW-01 09/22/2006	A6I270124001 20-MW-02 09/25/2006	A6l270124002 20-MW-04 09/25/2006	A6I270124003 20-MW-03 09/25/2006
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,1-Dichloroethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,1-Dichloroethene	ug/L	1.0 U	1.0 U	5.0 U	0.27 J
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L	2.0 U	2.0 U	10 U	2.0 U
1,2-Dibromoethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
2-Butanone	ug/L	10 U	1.4 J	4.9 J	5.5 J
2-Hexanone	ug/L	10 U	10 U	50 U	10 U
4-Methyl-2-pentanone	ug/L	10 U	10 U	50 U	10 U
Acetone	ug/L	10 U	10 U	50 U	3.2 J
Benzene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Bromodichloromethane	ug/L	3.1	1.0 U	5.0 U	1.0 U
Bromoform	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Bromomethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Carbon disulfide	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Carbon tetrachloride	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Chloroform	ug/L	15	1.0 U	5.0 U	1.0 U
Chloromethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	1.0 U	150	7.7
Dibromochloromethane	ug/L	0.42 J	1.0 U	5.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Ethylbenzene	ug/L	1.0 U	1.0 U	1.2 J	1.0 U
Isopropylbenzene	ug/L	1.0 U	1.0 U	190	0.34 J
Methyl acetate	ug/L	10 U	10 U	50 U	10 U
Methyl tert-butyl ether	ug/L ug/L	5.0 U	5.0 U	25 U	5.0 U
Methylcyclohexane	ug/L	1.0 U	1.0 U	36	19
Methylene chloride	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Styrene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Tetrachloroethene	,		The second se		and the second
Toluene	ug/L	1.0 U 1.0 U	1.0 U 1.0 U	5.0 U 5.0 U	1.0 U
concerns to a second concerns and the main states of the concerns the second second second second second second	ug/L	A CONTRACTOR AND A CONT	and the second second second second	the second se	1.0 U
trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
trans-1,3-Dichloropropene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Trichloroethene	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Vinyl chloride	ug/L	1.0 U	1.0 U	5.0 U	1.0 U
Xylenes (total)	ug/L	2.0 U	2.0 U	10 U	2.0 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

# Table 2-6Analytical Data SummarySite 20 Water SemivolatilesODOT Innerbelt Study

		A6I220386001 20-MW-01	A6I270124001 20-MW-02	A61270124002 20-MW-04	A61270124003 20-MW-03
PARAMETER	UNITS	09/22/2006	09/25/2006	09/25/2006	09/25/2006
1,1'-Biphenyl	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U	20 U	5.0 U
2,4,6-Trichlorophenol	ug/L	5.0 U	5.0 U	20 U	5.0 U
2,4-Dichlorophenol	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
2,4-Dimethylphenol	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
2,4-Dinitrophenol	ug/L	5.0 U	5.0 U	20 U	5.0 U
2,4-Dinitrotoluene	ug/L	5.0 U	5.0 U	20 U	5.0 U
2,6-Dinitrotoluene	ug/L	5.0 U	5.0 U	20 U	5.0 U
2-Chloronaphthalene	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
2-Chlorophenol	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
2-Methylnaphthalene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
2-Methylphenol	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
2-Nitroaniline	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
2-Nitrophenol	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
3,3'-Dichlorobenzidine	ug/L	5.0 U	5.0 U	20 U	5.0 U
3-Nitroaniline	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/L	5.0 U	5.0 U	20 U	5.0 U
4-Bromophenyl phenyl ether	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
4-Chloro-3-methylphenol	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
4-Chloroaniline	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
4-Chlorophenyl phenyl ether	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
4-Methylphenol	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
4-Nitroaniline	ug/L	2.0 U	2.0 U	8.0 U	2.0 U
4-Nitrophenol	ug/L	5.0 U	5.0 U	20 U	5.0 U
Acenaphthene	ug/L	0.20 U	0.20 U	0.80 U	0.38
Acenaphthylene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
Acetophenone	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Anthracene	ug/L	0.20 U	0.20 U	0.80 U	0.51
Atrazine	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Benzaldehyde	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Benzo(a)anthracene	ug/L	0.20 U	0.20 U	0.80 U	0.63
Benzo(a)pyrene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
Benzo(b)fluoranthene	ug/L	0.20 U	0.20 U	0.80 U	0.51
Benzo(ghi)perylene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
Benzo(k)fluoranthene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
bis(2-Chloroethoxy)methane	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
bis(2-Chloroethyl) ether	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	ug/L	1.8 U	1.3 U	4.0 U	1.0 U
Butyl benzyl phthalate	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Caprolactam	ug/L	5.0 U	5.0 U	20 U	5.0 U
Carbazole	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Chrysene	ug/L	0.20 U	0.20 U	0.80 U	0.55
Dibenz(a,h)anthracene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
Dibenzofuran	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Diethyl phthalate	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Dimethyl phthalate	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Di-n-butyl phthalate	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Di-n-octyl phthalate	ug/L	1.0 U	1.0 U	4.0 U	
Fluoranthene	ug/L	0.20 U	0.20 U	0.80 U	1.0 U 2.0
Fluorene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
Hexachlorobenzene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U

# Table 2-6Analytical Data SummarySite 20 Water SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A61220386001 20-MW-01 09/22/2006	A61270124001 20-MW-02 09/25/2006	A6I270124002 20-MW-04 09/25/2006	A6l270124003 20-MW-03 09/25/2006
Hexachlorobutadiene	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Hexachlorocyclopentadiene	ug/L	10 U	10 U	40 U	10 U
Hexachloroethane	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	ug/L	0.20 U	0.20 U	0.80 U	0.20 U
Isophorone	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Naphthalene	ug/L	0.20 U	0.20 U	0.80 U	0.39
Nitrobenzene	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
N-Nitrosodi-n-propylamine	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
N-Nitrosodiphenylamine	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Pentachlorophenol	ug/L	5.0 U	5.0 U	20 U	5.0 U
Phenanthrene	ug/L	0.20 U	0.20 U	0.80 U	1.7
Phenol	ug/L	1.0 U	1.0 U	4.0 U	1.0 U
Pyrene	ug/L	0.20 U	0.20 U	0.80 U	1.8

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

)

# Table 2-7Analytical Data SummarySite 20 Water MetalsODOT Innerbelt Study

PARAMETER	UNITS	A61220386001 20-MW-01 09/22/2006	A61270124001 20-MW-02 09/25/2006	A61270124002 20-MW-04 09/25/2006	A6I270124003 20-MW-03 09/25/2006
Arsenic	ug/L	10.0 U	10.0 U	94.8	23.1
Barium	ug/L	32.8 J	622	658	287
Cadmium	ug/L	2.0 U	2.0 U	2.0 U	0.85 J
Chromium	ug/L	11.8	3.1 J	4.0 J	32
Lead	ug/L	4.4	3.0 U	3.0 U	522
Selenium	ug/L	2.6 J	5.0 U	5.0 U	5.0 U
Silver	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.54

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

### 6.10 SITE 21 – WHITE PROPERTIES

According to the Cleveland City Directories, the site was listed as Whitman Jackson from 1954 through 1984. There were no further listings for the site.

According to the Cleveland Fire Prevention Bureau files, a Permit dated November 27, 1953 indicates a 500-gallon UST with unknown contents was installed at the site. In addition, there were dip tanks at the site, associated with the wood treatment operations. A Permit dated November 28, 1955, indicates a 1,000-gallon UST of gasoline was installed at the site. A Report dated August 10, 1965 indicates there is a 1,000-gallon gasoline UST, 900 1-gallon turpentine containers, 2,000 1-gallon liquid floor wax containers, and 250 gallons of spray paint in 8-ounce cans stored at the site. A Report dated March 25, 1983 indicates a 500-gallon steel UST was removed from the site. The UST was located near the northwest corner of the building. A letter was sent to the Mr. Andy Lakowitz of Global Reserve from the Bureau, indicating the USTs on the site had not been properly abandoned.

At the time of the Phase I reconnaissance, the site was a commercial warehouse. No surface staining, stressed vegetation and/or the handling and storage of hazardous materials were observed on the site. Multiple 55-gallon drums were observed on an adjacent property.

#### 6.10.1 Field Activities

A total of four monitoring wells were proposed for Site 21. During the Phase II site reconnaissance, it was determined that one of the proposed boring locations was inaccessible; therefore, only three monitoring wells were installed. The boring was to be located adjacent to the northeast corner of the building. The overhead and underground utilities located in the area of the site made this proposed well inaccessible.

Groundwater was encountered in three soil borings (MW01, MW02, and MW03) during field activities and monitoring wells were installed. At the time of groundwater sampling, MW01 was dry and no groundwater sample could be obtained. Three soil and two groundwater samples were collected and analyzed for VOCs, SVOCs, TPH and RCRA Metals. A Sample Location Map is included as **Figure 6-10A**.

### 6.10.2 Site-Specific Geology/Hydrogeology

Soils at Site 21 consisted primarily of sand underlain by silty clay and clay with minor amounts of organics. Bedrock was not encountered in any of the soil borings, which were advanced to 16 feet bgs.

Groundwater elevations were measured at Site 21 on September 21, 2006. Monitoring well (MW01) was dry. Localized groundwater flow across Site 21 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 21 is to the north-northwest, towards the Cuyahoga River.

)

)

#### 6.10.3 Geophysical Survey

The geophysical survey at Site 21 included the asphalt-paved parking and drive surfaces northeast, northwest, and west of the building. The survey transects were completed in four subsurveys that were aligned parallel or perpendicular to the building. The presence of buildings adjacent to surveyed areas prevented the use of a global positioning system (GPS) to obtain corresponding latitude and longitude datum necessitating the need to paint survey points on the pavement.

The survey identified five areas of anomalously high magnetic gradients. These areas are shown on **Figure 6-10B** as anomalies A through E as described below:

- A. A gradient anomaly was observed in the loading dock area. This anomaly is likely due to the presence of a steel dumpster being used to dispose of roofing material at the time of the survey.
- B. An anomaly was detected near the center of the survey conducted northeast of the building. Based on shape of the anomaly and the presence of pipes protruding from the asphalt, this anomaly likely represents a UST.
- C. Several localized magnetic anomalies were detected that were assumed to be related to surface objects and are unlikely related to a UST.
- D. Areas of high magnetic gradients were observed in the northwest corner of the Site that may relate to one or more USTs. Their detection was partially obscured by a high background gradient that was assumed to be related to recent paving.
- E. An elongated magnetic anomaly was observed in the loading doc area. This anomaly may be related to buried pipes.

Based on the results of the geophysical survey, several probable USTs were detected.

#### 6.10.4 Soil Analytical Results

A total of six VOCs were detected in the three soil samples submitted from Site 21. The chemicals detected in the samples submitted were 2-butanone (7.4 ug/kg), acetone (40 mg/kg), benzene (0.53 ug/kg), carbon disulfide (ranging from 0.38 ug/kg to 1.3 ug/kg), toluene (0.38 ug/kg), and trichlorofluoromethane (4.8 ug/kg). All other VOCs were below the detection limits.

A total of seventeen SVOCs were detected in the three samples submitted from Site 21. Concentrations of 2-methylnaphthanene (60 ug/kg and 61 ug/kg), acenaphthene (17 ug/kg and 98 ug/kg), acenaphthylene (ranging from 9.5 ug/kg to 36 ug/kg), anthracene (ranging from 15 ug/kg to 190 ug/kg), benzaldehyde (140 ug/kg), benzo(a)anthracene (ranging from 23 ug/kg to 600 ug/kg), benzo(a)pyrene (ranging from 17 ug/kg to 510 ug/kg), benzo(b)fluoranthene (ranging from 20 ug/kg to 690 ug/kg), benzo(g,h,i)perylene (ranging from 53 ug/kg to 330 ug/kg), benzo(k)fluoranthene (ranging from 48 ug/kg to 260 ug/kg), bis(2-ethylhexyl)phthalate (21 ug/kg and 51 ug/kg), butyl benzyl phthalate (24 ug/kg), carbazole (53 ug/kg), chrysene (ranging from 27

### SECTIONSIX

ug/kg to 570 ug/kg), dibenz(a,h)anthracene (17 ug/kg and 86 ug/kg), dibenzofuran (23 ug/kg and 44 ug/kg), and di-n-butyl phthalate (68 ug/kg) were detected in the soil samples submitted.

Diesel range total petroleum hydrocarbons were detected in the soil samples from Site 21. The highest concentrations were found in the diesel range, which is consistent with the concentrations of SVOCs detected across Site 21. Concentrations of the middle petroleum fraction ranged from 3.7 mg/kg to 14 mg/kg. Concentrations of the heavy petroleum fraction ranged from 16 mg/kg to 53 mg/kg.

Seven of the eight RCRA Metals were detected in the samples submitted from Site 21. Arsenic, ranging from 6.2 mg/kg to 9.5 mg/kg, was detected in all samples submitted. Barium, ranging from 25.2 mg/kg to 78.8 mg/kg, was detected in the all samples submitted. Cadmium, 0.095 mg/kg to 0.5 mg/kg, was detected in all samples submitted. Chromium, ranging from 5 mg/kg to 17.3 mg/kg, was detected in the samples submitted. Lead, ranging from 28.1 mg/kg to 156 mg/kg, was detected in the samples submitted. Selenium, 0.52 mg/kg and 2 mg/kg, was detected in samples submitted. Mercury, ranging from 0.091 mg/kg to 0.62 mg/kg, was detected in the samples submitted.

The analytical results are presented in Table 6-10A.

#### 6.10.5 Groundwater Analytical Results

Four VOCs were detected in groundwater samples collected from Site 21. Concentrations of 1,1dichloroethene (0.0.67 ug/L), acetone (1.1 ug/L), chloromethane (0.15 ug/L), and methyl tertbutyl ether (0.27 ug//L and 0.84 ug/L) were detected in the groundwater samples submitted. All other VOCs were below the detection limits.

Four SVOCs were detected in the groundwater samples submitted from Site 21. Concentrations of caprolactam (0.70 ug/L), diethyl phthalate (0.89 ug/L), dimethyl phthalate (0.95 ug/L), and di-n-octyl phthalate (1.3 ug/L) were detected in the groundwater sample submitted from 21-MW03. All other SVOCs were below the detection limits.

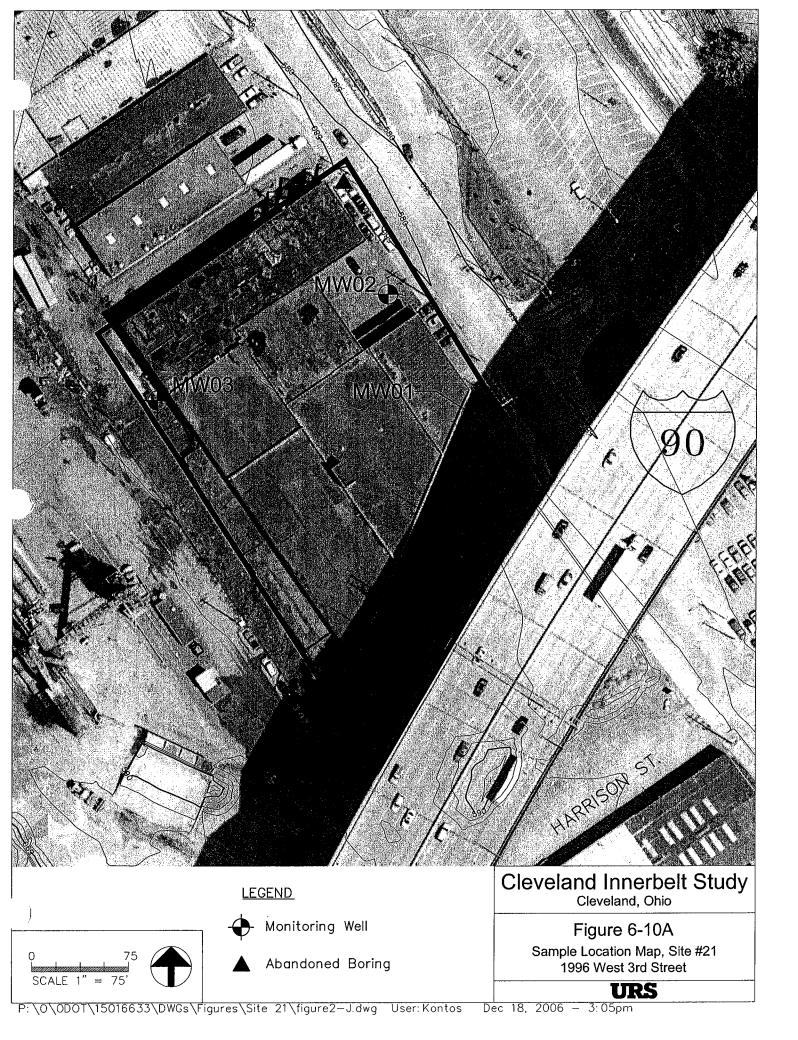
Three of the eight RCRA metals were detected in the samples submitted from Site 21. Barium, ranging from 119 ug/L to 135 ug/L, was detected in all samples submitted. Cadmium, 10.8 ug/L, was detected in sample 21-MW03. Selenium, 3.3 ug/L, was detected in sample 21-MW03.

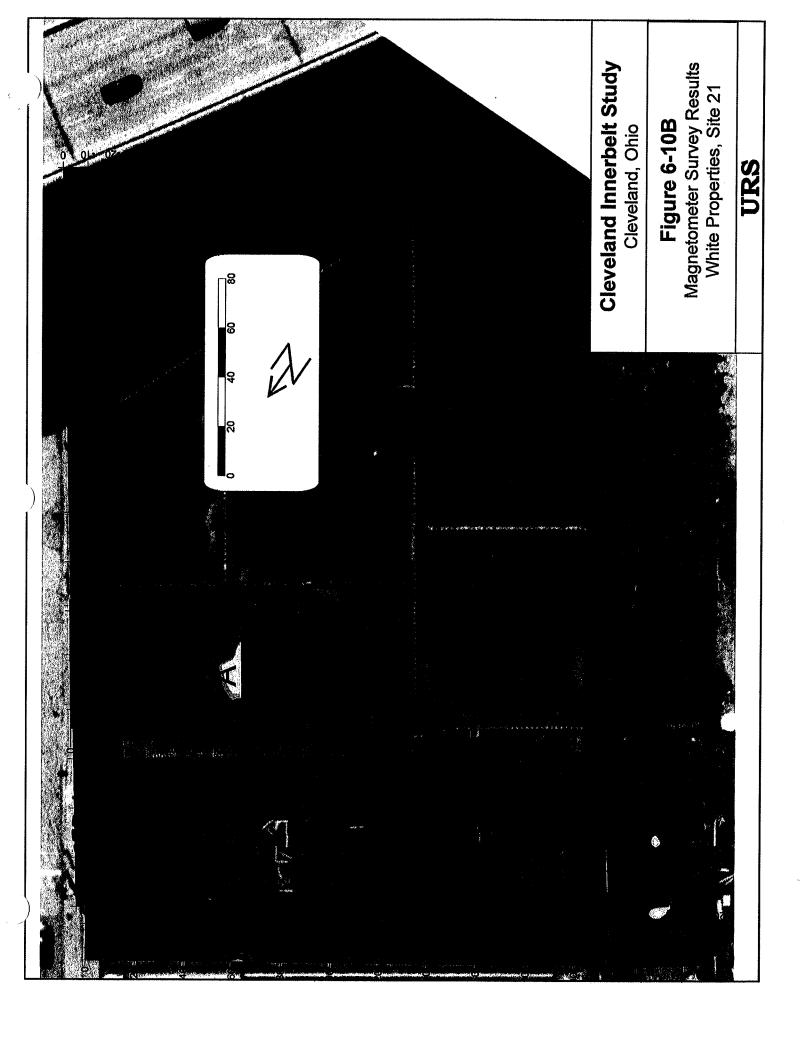
The analytical results are presented in Table 6-10B.

#### 6.10.6 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on Table 6-10A and 6-10B.

There were no VOCs, SVOCs, TPH, and RCRA metals detected in any of the soil samples from Site 21, which exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.


There were no VOCs, SVOCs, or RCRA metals detected in any of the groundwater samples from Site 21, which exceeded the OEPA VAP standard for generic unrestricted potable use standards or BUSTR closure action levels.


#### 6.10.7 Conclusions

Based on the results of the geophysical survey, several probable USTs were detected.

Based on the analytical results, it is unlikely that the soils and groundwater at Site 21 would require special management during construction.







TABLES

Summary of Detected Chemicals in Soil Site 21 - White Properties ODOT Innerbelt Study Cleveland, Ohio Table 510A

)

)

ARAMETER	UNITS	VAP Commercial Industrial	VAR: Construction Worker Standarid ¹²	E BUSTR Closure Action Level	21-MW01-0406 08/10/2006	21-MW02-0406 07/19/2006	21-MW03-0204 08/10/2006
2-Butanone	ng/kg	71,600,000	80'000'08	1	26 U	24 U	7.4 J
	ug/kg	100,000,000	100,000,000		26 U	24 U	40
	ug/kg	100,000	310,000	149	6.4 U	5.9 U	0.53 J
Carbon disulfide	ug/kg	720,000	720,000		0.38 J	0.95 J	1.3 J
	ug/kg	520,000	520,000	49,100	6.4 U	5.9 U	0.38 J
Trichlorofluoromethane	ug/kg	2,000,000	2,000,000		4.8 J	5.9 U	5.7 U
2-Methyinaphthalene	Bγ/ðn	and the second		-	F 09	390 U	61 J
	ug/kg	180,000,000	530,000,000		Р 86	17 J	380 U
Acenaphthylene	ug/kg		-		36 J	390 U	9.5 J
Anthracene	ug/kg	880,000,000	1,000,000,000		190 J	15 J	29 J
Benzaldehyde	ug/kg			-	430 U	140 J	380 U
Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	600	23 J	91 J
Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	510	17 J	72 J
Benzo(b)fluoranthene	ug/kg	63,000	810,000	11,000	069	20 J	100 J
Benzo(ghi)perylene	ug/kg				330 J	390 U	53 J
Benzo(k)fluoranthene	ng/kg	630,000	8,100,000	110,000	260 J	390 U	48 J
bis(2-Ethylhexyl) phthalate	ng/kg	230,000	230,000		51 J	21 J	380 U
Butyi benzyi phthalate	ug/kg	220,000	220,000		24 J	390 U	380 U
Carbazole	ug/kg	10,000,000	31,000,000	-	53 J	390 U	380 U
Chrysene	ug/kg	6,700,000	41,000,000	1,100,000	570	27 J	92 J
Dibenz(a,h)anthracene	ng/kg	6,700	41,000	1,100	86 J	390 U	17 3
Dibenzofuran	ng/kg		and a second sec	ł	44 J	390 U	23 J
Di-n-butyi phthalate	ug/kg	100,000	100,000	-	68 J	390 U	380 U
C10-C20	mg/kg	ter statement som term		2,000	26 U	3.7	L 14 J
C20-C34	mg/kg	1	1	5,000	53	16	38
Arsenic	mg/kg	80	210	an a	9.5	6.3	6.2
Barium	mg/kg	200,000	45,000		78.8	25.2	46.7
Cadmium	mg/kg	770	420	an a	0.5	0.095 J	0.31
	mg/kg	8,900	2,000		17.3	G	7.4
Lead	mg/kg	<b>and</b> State March - Annald Mark West (1997)	and Attraction of the state of		156	28.1	87.1
Selenium	mg/kg	15,000	4,300	-	8	0.59 U	0.52 J
	mg/kg	15,000	4,300		0.64 U	0.59 U	0.57 U
Mercury	mg/kg	300	84	a de la companya de l Este de la companya d	0.62	0.091 J	0.44

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit. J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use
 VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

### Table v=10B Summary of Detected Chemicals in Water Site 21 - White Properties ODOT Innerbelt Study Cleveland, Ohio

)

)

	PARAMETER '	UNITS	VAP UPUS/	BUSTR Closure Action Level	21-MW-02 09/21/2006	21-MW-03 09/21/2006
	1,1-Dichloroethane	ng/L	1400	1	0.67 J	1.0 U
soc		ug/L	1600		1.1 J	10 U
٥٨	Chloromethane	ug/L			0.15 J	1.0 U
	Methyl tert-butyl ether	ug/L	40	40	0.27 J	0.84 J
\$	Caprolactam	ng/L		1	5.0 U	0.70 J
00	Diethyl phthalate	ng/L	13000		1.0 U	
٨S	Dimethyl phthalate	ng/L	and a first of the first of the second first second first second second first second s		1.0 U	0.95 J
	Di-n-octyl phthalate	ng/L	41	•	1.0 U	1.3
ירs	Barium	ng/L	2000	-	119	135
4T3	Lead	ng/L	15		3.0 U	10.8
Μ	Selenium	ng/L	50	:	5.0 U	3.3 J

-- = Standard not available

 ${\sf U}={\sf T}{\sf h}{\sf e}$  analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards



#### Project: ODOT - Innerbelt Corridor Project Location: Site 21 Project Number: 15016633

)

### Log of Boring 21-MW01

Sheet 1 of 1

140# auto hammer HAD. Inc.	Total Depth of Borehole 16.0' bgs Approximate 5921
HAD Inc	Approximate 592
1140, 110	Ground Elevation 582'
2" Split Spoon	Borehole Completion Set monitoring well
	2" Split Spoon

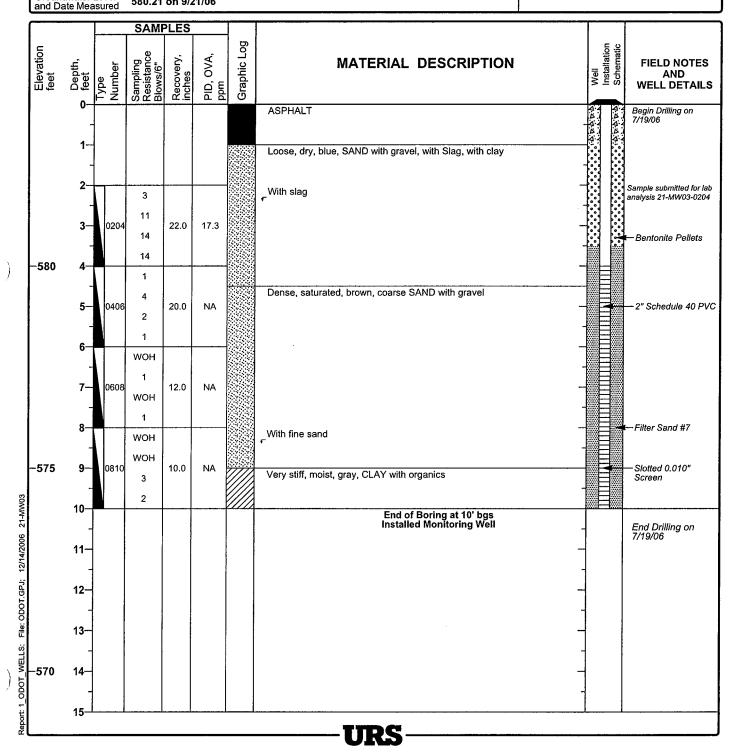
			SAM	PLES	•			T		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Weil	Installation Schematic	
	 	0002	1	20.0	0.0		Dense, dry, black, fine SAND with gravel, with Slag		<b></b>	Begin Drilling on 7/19/06
-580	2 - -	0204	2	19.0	0.0		,-Moist, trace clay			- Bentonite Pellets — 2″ Schedule 40 PVC Riser
	4 - -	0406	1 WOH 1 WOH	16.0	0.3		- Medium dense, very moist to wet			Sample submitted for lab analysis 21-MW01-0406
-575	6 - -	0608	WOH 1 1	24.0	NA		- Saturated			
	8 - -	0810	1 Woh Woh Woh	24.0	NA		Soft, very moist to wet, grayish brown, silty CLAY trace organics			
	_10_ 	1012	WOH WOH WOH WOH	16.0	NA					
-570	12 - -	1214	WOH WOH 1 1	17.0	NA					— Filter Sand #7
	-14 						Augered down to 16' bgs			- Slotted 0.010" Screen
File: ODOT.GPJ; 12/14/2006	16- - -						End of Boring at 16' bgs Installed Monitoring Well			End Drilling on 8/10/06
Report: 1_0D01_WELLS; 1	18 - -									
Report: 1_0	20						URS			

#### **Project: ODOT - Innerbelt Corridor Project Location: Site 21 Project Number:** 15016633

### Log of Boring 21-MW02

Sheet 1 of 1

The set of	
Hammer 140# auto hammer	Total Depth of Borehole <b>16.0' bgs</b>
Drilling Contractor HAD, Inc.	Approximate Ground Elevation 582'
Sampling 2" Split Spoon	Borehole Completion Set monitoring well
	Data     140# auto nammer       Drilling Contractor     HAD, Inc.       Sampling     2" Split Speep


SAMPLES Graphic Log Well Installation Schematic Elevation feet Sampling Resistance Blows/6" PID, OVA, ppm Recovery, inches Depth, feet Type Number MATERIAL DESCRIPTION FIELD NOTES AND WELL DETAILS 0 ASPHALT Begin Drilling on 7/19/06 200 Loose, dry, brown, SAND trace rock fragments -580 2-4 15 18.0 0.8 0204 Bentonite Pellets 10 9 л Loose, moist, brown, SAND no, no odor, no staining WOH WOH 0406 18.0 60 Sample submitted for lab analysis 21-MW02-0406 1 1 6 Stiff, wet, gray, CLAY high plasticity 1 1 -575 0608 6.0 20 1 2 8-2" Schedule 40 PVC 1 2 0810 14.0 NA 4 4 10-3 3 1012 12.0 NA 5 7 "Becomes saturated -570 12-Auger down to 16 feet Report: 1_ODOT_WELLS; File: ODOT.GPJ; 12/14/2006 21-MW02 -Filter Sand #7 14-Slotted 0.010" Screen 16 End of Boring at 16' bgs Installed Monitoring Well End Drilling on 7/19/06 1221 -565 18-20 11:25

#### Project: ODOT - Innerbelt Corridor Project Location: Site 21 Project Number: 15016633

### Log of Boring 21-MW03

Sheet 1 of 1

Date(s) 7/19/06	Logged J. Kaminski	Checked M. Wolff
Drilled 7/19/06	By	By
Drilling Method & Hollow Stem Auger	Hammer 140# auto hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data	of Borehole 10.0' bgs
Drill Rig LC-60	Drilling	Approximate
Type LC-60	Contractor HAD, Inc.	Ground Elevation 584'
Location See Site Map	Sampling 2" Split Spoon Method(s)	Borehole Completion Set monitoring well



DATA ASSESSMENT REPORT

#### Data Assessment Report ODOT Innerbelt Study Site 21 – White Properties

#### Reviewer: P. Schuler Date: November 13, 2006

Three soil samples and two groundwater samples were collected at the White Properties site at 1996 W. 3rd Street in Cleveland, Ohio, from July 19 through September 21, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Re	Requested Analyses ⁽¹⁾					
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC	TPH	Met			
A6G210344001	21-MW02-0406	07/19/2006	Soil	X	X	Х	X			
A6H120110001	21-MW01-0406	08/10/2006	Soil	X	X	X	X			
A6H120110002	21-MW03-0204	08/10/2006	Soil	X	X	Х	X			
A6I220383001	21-MW-03	09/21/2006	Groundwater	X	X		X			
A6I220383002	21-MW-02	09/21/2006	Groundwater	X	X		X			

Table 1Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

SVOC = Semivolatile Organic Compounds [SW-846 Method 8270C]

TPH = Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B]

Met = RCRA Metals [SW-846 Methods 6010B/6020/7470A/7471A]

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- Positive detections for 2-butanone in sample 21-MW02-0406 and for gasoline range organics in sample 21-MW03-0204 were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks at similar concentrations.
- Trip blanks submitted with the Site 21 samples were logged in and reported with samples from other sites. Trace amounts of methylene chloride and acetone were detected in one or more trip blank each. Therefore, the positive methylene chloride results for samples 21-MW03-0204 and 21-MW-03 and the positive acetone result in sample 21-MW-03



were qualified as nondetect ("U"), since the sample concentrations were not significantly higher than those in the associated blanks.

- The semivolatile compound, bis(2-ethylhexyl)phthalate, was detected at concentrations ranging from 0.9 to 1.8 ug/L in all equipment blanks associated with project samples. Since this compound is considered a common laboratory contaminant, its presence in environmental samples at concentrations less than ten times the highest equipment blank concentration is attributed to external contamination rather than actual site conditions. Therefore, the positive detections for bis(2-ethylhexyl)phthalate in samples 21-MW02-0406 and 21-MW01-0406 were qualified as nondetect ("U") at the value reported, even though it was not detected in the associated method blanks.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J" for organics, and "B" for inorganics), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, organic "J" qualifiers were retained with the numeric results. The inorganic "B" qualifiers were changed to "J" qualifiers for the sake of consistency throughout the package.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-7.



# Table 2-1Analytical Data SummarySite 21 Soil VolatilesODOT Innerbelt Study

		A6G210344001 21-MW02-0406	A6H120110001 21-MW01-0406	A6H120110002 21-MW03-0204
PARAMETER	UNITS	07/19/2006	08/10/2006	08/10/2006
1,1,1-Trichloroethane	ug/kg	5.9 U	6.4 U	5.7 U
1,1,2,2-Tetrachloroethane	ug/kg	5.9 U	6.4 U	5.7 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	5.9 U	6.4 U	5.7 U
1,1,2-Trichloroethane	ug/kg	5.9 U	6.4 U	5.7 U
1,1-Dichloroethane	ug/kg	5.9 U	6.4 U	5.7 U
1,1-Dichloroethene	ug/kg	5.9 U	6.4 U	5.7 U
1,2,4-Trichlorobenzene	ug/kg	5.9 U	6.4 U	5.7 U
1,2-Dibromo-3-chloropropane	ug/kg	12 U	13 U	11 U
1,2-Dibromoethane	ug/kg	5.9 U	6.4 U	5.7 U
1,2-Dichlorobenzene	ug/kg	5.9 U	6.4 U	5.7 U
1,2-Dichloroethane	ug/kg	5.9 U	6.4 U	5.7 U
1,2-Dichloropropane	ug/kg	5.9 U	6.4 U	5.7 U
1,3-Dichlorobenzene	ug/kg	5.9 U	6.4 U	5.7 U
1,4-Dichlorobenzene	ug/kg	5.9 U	6.4 U	5.7 U
2-Butanone	ug/kg	24 U	26 U	7.4 J
2-Hexanone	ug/kg	24 U	26 U	23 U
4-Methyl-2-pentanone	ug/kg	24 U	26 U	23 U
Acetone	ug/kg	24 U	26 U	40
Benzene	ug/kg	5.9 U	6.4 U	0.53 J
Bromodichloromethane	ug/kg	5.9 U	6.4 U	5.7 U
Bromoform	ug/kg	5.9 U	6.4 U	5.7 U
Bromomethane	ug/kg	5.9 U	6.4 U	5.7 U
Carbon disulfide	ug/kg	0.95 J	0.38 J	1.3 J
Carbon tetrachloride	ug/kg	5.9 U	6.4 U	5.7 U
A CALL MATERIAL AND A MARK AND A CALL AND A C	a service a second second second second	5.9 U	6.4 U	5.7 U
Chlorobenzene	ug/kg	· · · · · · ·	and the second second	and the second
Chloroethane	ug/kg	5.9 U	6.4 U	5.7 U
Chloroform	ug/kg	5.9 U	6.4 U	5.7 U
Chloromethane	ug/kg	5.9 U	6.4 U	5.7 U
cis-1,2-Dichloroethene	ug/kg	5.9 U	6.4 U	5.7 U
cis-1,3-Dichloropropene	ug/kg	5.9 U	6.4 U	5.7 U
Cyclohexane	ug/kg	12 U	13 U	11 U
Dibromochloromethane	ug/kg	5.9 U	6.4 U	5.7 U
Dichlorodifluoromethane	ug/kg	5.9 U	6.4 U	5.7 U
Ethylbenzene	ug/kg	5.9 U	6.4 U	5.7 U
Isopropylbenzene	ug/kg	5.9 U	6.4 U	5.7 U
Methyl acetate	ug/kg	12 U	13 U	11 U
Methyl tert-butyl ether	ug/kg	24 U	26 U	23 U
Methylcyclohexane	ug/kg	12 U	13 U	11 U
Methylene chloride	ug/kg	5.9 U	6.4 U	5.7 U
Styrene	ug/kg	5.9 U	6.4 U	5.7 U
Tetrachloroethene	ug/kg	5.9 U	6.4 U	5.7 U
Toluene	ug/kg	5.9 U	6.4 U	0.38 J
trans-1,2-Dichloroethene	ug/kg	5.9 U	6.4 U	5.7 U
trans-1,3-Dichloropropene	ug/kg	5.9 U	6.4 U	5.7 U
Trichloroethene	ug/kg	5.9 U	6.4 U	5.7 U
Trichlorofluoromethane	ug/kg	5.9 U	4.8 J	5.7 U
Vinyl chloride	ug/kg	5.9 U	6.4 U	5.7 U
Xylenes (total)	ug/kg	12 U	13 U	11 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.



# Table 2-2Analytical Data SummarySite 21 Soil SemivolatilesODOT Innerbelt Study

		A6G210344001 21-MW02-0406	A6H120110001 21-MW01-0406	A6H120110002 21-MW03-0204
PARAMETER	UNITS	07/19/2006	08/10/2006	08/10/2006
1,1'-Biphenyl	ug/kg	390 U	430 U	380 U
2,2'-oxybis(1-Chloropropane)	ug/kg	390 U	430 U	380 U
2,4,5-Trichlorophenol	ug/kg	390 U	430 U	380 U
2,4,6-Trichlorophenol	ug/kg	390 U	430 U	380 U
2,4-Dichlorophenol	ug/kg	390 U	430 U	380 U
2,4-Dimethylphenol	ug/kg	390 U	430 U	380 U
2,4-Dinitrophenol	ug/kg	390 U	430 U	380 U
2,4-Dinitrotoluene	ug/kg	390 U	430 U	380 U
2,6-Dinitrotoluene	ug/kg	390 U	430 U	380 U
2-Chloronaphthalene	ug/kg	390 U	430 U	380 U
2-Chlorophenol	ug/kg	390 U	430 U	380 U
2-Methylnaphthalene	ug/kg	390 U	60 J	61 J
2-Methylphenol	ug/kg	390 U	430 U	380 U
2-Nitroaniline	ug/kg	390 U	430 U	380 U
2-Nitrophenol	ug/kg	390 U	430 U	380 U
3,3'-Dichlorobenzidine	ug/kg	390 U	430 U	380 U
3-Nitroaniline	ug/kg	390 U	430 U	380 U
4,6-Dinitro-2-methylphenol	ug/kg	390 U	430 U	380 U
4-Bromophenyl phenyl ether	ug/kg	390 U	430 U	380 U
4-Chloro-3-methylphenol	ug/kg	390 U	430 U	380 U
4-Chloroaniline	ug/kg	390 U	430 U	380 U
4-Chlorophenyl phenyl ether	ug/kg	390 U	430 U	380 U
4-Methylphenol	ug/kg	390 U	430 U	380 U
4-Nitroaniline	ug/kg	390 U	430 U	380 U
4-Nitrophenol	ug/kg	390 U	430 U	380 U
Acenaphthene	ug/kg	17 J	98 J	380 U
Acenaphthylene	ug/kg	390 U	36 J	9.5 J
Acetophenone	ug/kg	79 U	86 U	76 U
Anthracene	ug/kg	15 J	190 J	29 J
Atrazine	ug/kg	390 U	430 U	380 U
Benzaldehyde	ug/kg	140 J	430 U	380 U
Benzo(a)anthracene	ug/kg	23 J	600	91 J
Benzo(a)pyrene	ug/kg	17 J	510	72 J
Benzo(b)fluoranthene	ug/kg	20 J	690	100 J
Benzo(ghi)perylene	ug/kg	390 U	330 J	53 J
Benzo(k)fluoranthene	ug/kg	390 U	260 J	48 J
bis(2-Chloroethoxy)methane	ug/kg	390 U	430 U	380 U
bis(2-Chloroethyl) ether	ug/kg	390 U	430 U	380 U
bis(2-Ethylhexyl) phthalate	ug/kg	21 J	51 J	380 U
Butyl benzyl phthalate	ug/kg	390 U	24 J	380 U
Caprolactam	ug/kg	390 U	430 U	380 U
Carbazole	ug/kg	390 U	53 J	380 U
Chrysene	ug/kg	27 J	570	92 J
Dibenz(a,h)anthracene	ug/kg	390 U	86 J	17 J
Dibenzofuran	ug/kg	390 U	44 J	23 J
Diethyl phthalate	ug/kg	390 U	430 U	380 U
Dimethyl phthalate	ug/kg	390 U	430 U	380 U
Di-n-butyl phthalate	ug/kg	390 U	68 J	380 U
Di-n-octyl phthalate	ug/kg	390 U	430 U	380 U
Fluoranthene	ug/kg	61 J	1100	150 J
Fluorene	ug/kg	15 J	66 J	12 J

# Table 2-2Analytical Data SummarySite 21 Soil SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6G210344001 21-MW02-0406 07/19/2006	A6H120110001 21-MW01-0406 08/10/2006	A6H120110002 21-MW03-0204 08/10/2006
Hexachlorobenzene	ug/kg	390 U	· 430 U	380 U
Hexachlorobutadiene	ug/kg	390 U	430 U	380 U
Hexachlorocyclopentadiene	ug/kg	390 U	430 U	380 U
Hexachloroethane	ug/kg	390 U	430 U	380 U
Indeno(1,2,3-cd)pyrene	ug/kg	390 U	290 J	44 J
Isophorone	ug/kg	390 U	430 U	380 U
Naphthalene	ug/kg	390 U	60 J	28 J
Nitrobenzene	ug/kg	390 U	430 U	380 U
N-Nitrosodi-n-propylamine	ug/kg	390 U	430 U	380 U
N-Nitrosodiphenylamine	ug/kg	390 U	430 U	380 U
Pentachlorophenol	ug/kg	390 U	430 U	380 U
Phenanthrene	ug/kg	99 J	570	120 J
Phenol	ug/kg	390 U	430 U	380 U
Pyrene	ug/kg	58 J	950	130 J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

)

Ì

#### Table 2-3 Analytical Data Summary Site 21 Soil TPH ODOT Innerbelt Study

PARAMETER		UNITS	A6G210344001 21-MW02-0406 07/19/2006	A6H120110001 21-MW01-0406 08/10/2006	A6H120110002 21-MW03-0204 08/10/2006
Gasoline Range	Organics (C6-C12)	ug/kg	120 U	130 U	110 U
C10-C20		mg/kg	3.7	26 U	14 J
C20-C34		mg/kg	16	53	38

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

#### Table 2-4 Analytical Data Summary Site 21 Soil Metals ODOT Innerbelt Study

PARAMETER	UNITS	A6G210344001 21-MW02-0406 07/19/2006	A6H120110001 21-MW01-0406 08/10/2006	A6H120110002 21-MW03-0204 08/10/2006
Percent Solids	%	84.4	77.6	87.4
Arsenic	mg/kg	6.3	9.5	6.2
Barium	mg/kg	25.2	78.8	46.7
Cadmium	mg/kg	0.095 J	0.5	0.31
Chromium	mg/kg	5.0	17.3	7.4
Lead	mg/kg	28.1	156	87.1
Selenium	mg/kg	0.59 U	2.0	0.52 J
Silver	mg/kg	0.59 U	0.64 U	0.57 U
Mercury	mg/kg	0.091 J	0.62	0.44

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

 $\mathsf{J}=\mathsf{Estimated}$  concentration because the result was below the sample reporting limit or quality control criteria were not met.

PARAMETER	UNITS	A6I220383001 21-MW-03 09/21/2006	A61220383002 21-MW-02 09/21/2006
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U
and the second	ug/L	1.0 U	1.0 U
1,1,2-Trichloroethane	-	1.0 U	0.67 J
1,1-Dichloroethane	ug/L ug/L	1.0 U	1.0 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	ug/L ug/L	1.0 U	1.0 U
		2.0 U	1.0 U 2.0 U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ug/L	2.0 U	1.0 U
	ug/L	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	the second second second second second	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U 10 U
2-Butanone	ug/L	10 U	
2-Hexanone	ug/L	10 U	10 U
4-Methyl-2-pentanone	ug/L	10 U	10 U
Acetone	ug/L	10 U	1.1 J
Benzene	ug/L	1.0 U	1.0 U
Bromodichloromethane	ug/L	1.0 U	1.0 U
Bromoform	ug/L	1.0 U	1.0 U
Bromomethane	ug/L	1.0 U	1.0 U
Carbon disulfide	ug/L	1.0 U	1.0 U
Carbon tetrachloride	ug/L	1.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U
Chloroform	ug/L	1.0 U	1.0 U
Chloromethane	ug/L	1.0 U	0.15 J
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	1.0 U
Dibromochloromethane	ug/L	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U
Ethylbenzene	ug/L	1.0 U	1.0 U
lsopropylbenzene	ug/L	1.0 U	1.0 U
Methyl acetate	ug/L	10 U	10 U
Methyl tert-butyl ether	ug/L	0.84 J	0.27 J
Methylcyclohexane	ug/L	1.0 U	1.0 U
Methylene chloride	ug/L	1.0 U	1.0 U
Styrene	ug/L	1.0 U	1.0 U
Tetrachloroethene	ug/L	1.0 U	1.0 U
Toluene	ug/L	1.0 U	1.0 U
trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U
trans-1,3-Dichloropropene	ug/L	1.0 U	1.0 U
Trichloroethene	ug/L	1.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U
Vinyl chloride	ug/L	1.0 U	1.0 U
Xylenes (total)	ug/L	2.0 U	2.0 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

 ${\sf J}$  = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

)

		A61220383001 21-MW-03	A6I220383002 21-MW-02
PARAMETER	UNITS	09/21/2006	09/21/2006
1,1'-Biphenyl	ug/L	1.0 U	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/L	1.0 U	1.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/L	5.0 U	5.0 U
2,4-Dichlorophenol	ug/L	2.0 U	2.0 U
2,4-Dimethylphenol	ug/L	2.0 U	2.0 U
2,4-Dinitrophenol	ug/L	5.0 U	5.0 U
2,4-Dinitrotoluene	ug/L	5.0 U	5.0 U
2,6-Dinitrotoluene	ug/L	5.0 U	5.0 U
2-Chloronaphthalene	ug/L	1.0 U	1.0 U
2-Chlorophenol	ug/L	1.0 U	1.0 U
2-Methylnaphthalene	ug/L	0.20 U	0.20 U
2-Methylphenol	ug/L	1.0 U	1.0 U
2-Nitroaniline	ug/L	2.0 U	2.0 U
2-Nitrophenol	ug/L	2.0 U	2.0 U
3,3'-Dichlorobenzidine	ug/L	5.0 U	5.0 U
3-Nitroaniline	ug/L	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/L	5.0 U	5.0 U
4-Bromophenyl phenyl ether	ug/L	2.0 U	2.0 U
4-Chloro-3-methylphenol	ug/L	2.0 U	2.0 U
4-Chloroaniline	ug/L	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	ug/L	2.0 U	2.0 U
4-Methylphenol	ug/L	1.0 U	1.0 U
4-Nitroaniline	ug/L	2.0 U	2.0 U
4-Nitrophenol	ug/L	5.0 U	5.0 U
Acenaphthene	ug/L	0.20 U	0.20 U
Acenaphthylene	ug/L	0.20 U	0.20 U
Acetophenone	ug/L	1.0 U	1.0 U
Anthracene	ug/L	0.20 U	0.20 U
Atrazine	ug/L	1.0 U	1.0 U
Benzaldehyde	ug/L	1.0 U	1.0 U
Benzo(a)anthracene	ug/L	0.20 U	0.20 U
Benzo(a)pyrene	ug/L	0.20 U	0.20 U
Benzo(b)fluoranthene	ug/L	0.20 U	0.20 U
Benzo(ghi)perylene	ug/L	0.20 U	0.20 U
Benzo(k)fluoranthene	ug/L	0.20 U	0.20 U
bis(2-Chloroethoxy)methane	ug/L	1.0 U	1.0 U
bis(2-Chloroethyl) ether	ug/L	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	ug/L	1.7 U	2.6 U
Butyl benzyl phthalate	ug/L	1.0 U	1.0 U
Caprolactam	ug/L	0.70 J	5.0 U
Carbazole	ug/L	1.0 U	1.0 U
Chrysene	ug/L	0.20 U	0.20 U
Dibenz(a,h)anthracene	ug/L	0.20 U	0.20 U
Dibenzofuran	ug/L	1.0 U	1.0 U
Diethyl phthalate	ug/L	0.89 J	1.0 U
Dimethyl phthalate	ug/L	0.95 J	1.0 U
Di-n-butyl phthalate	ug/L	1.0 U	1.0 U
Di-n-octyl phthalate	ug/L ug/L	1.3	1.0 U
Fluoranthene	ug/L	0.20 U	0.20 U
Fluorene	ug/L	0.20 U	0.20 U

1

PARAMETER	UNITS	A6I220383001 21-MW-03 09/21/2006	A61220383002 21-MW-02 09/21/2006
Hexachlorobenzene	ug/L	0.20 U	0.20 U
Hexachlorobutadiene	ug/L	1.0 U	1.0 U
Hexachlorocyclopentadiene	ug/L	10 U	10 U
Hexachloroethane	ug/L	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	ug/L	0.20 U	0.20 U
Isophorone	ug/L	1.0 U	1.0 U
Naphthalene	ug/L	0.20 U	0.20 U
Nitrobenzene	ug/L	1.0 U	1.0 U
N-Nitrosodi-n-propylamine	ug/L	1.0 U	1.0 U
N-Nitrosodiphenylamine	ug/L	1.0 U	1.0 U
Pentachlorophenol	ug/L	5.0 U	5.0 U
Phenanthrene	ug/L	0.20 U	0.20 U
Phenol	ug/L	1.0 U	1.0 U
Pyrene	ug/L	0.20 U	0.20 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

 ${\sf J}$  = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

PARAMETER	UNITS	A6I220383001 21-MW-03 09/21/2006	A61220383002 21-MW-02 09/21/2006
Arsenic	ug/L	10.0 U	10.0 U
Barium	ug/L	135	119
Cadmium	ug/L	2.0 U	2.0 U
Chromium	ug/L	5.0 U	5.0 U
Lead	ug/L	10.8	3.0 U
Selenium	ug/L	3.3 J	5.0 U
Silver	ug/L	5.0 U	5.0 U
Mercury	ug/L	0.20 U	0.20 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit. J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

### 6.11 SITE 22 - NOVA PROPERTIES

According to the Cleveland City Directories, the site was listed as the National Engineering Company from 1954 through 1964. There were no further listings for the site. This site was identified as an OHSPILLS site in the EDR Report.

According to the Cleveland Fire Prevention Bureau files, in October 1953, two 1,000-gallon USTs; gasoline and diesel, were installed at the site. In 1965, the site was owned by the New York Central Rail Road and the ANCO Corporation. The last entry in the file indicates the on-site building was razed in 1974; however, the USTs did not appear to have been properly abandoned.

At the time of the URS Phase I reconnaissance, the site was occupied by an asphalt plant, which is operated by Kenmore Construction. Large chunks of asphalt were observed in piles on the site. Surface staining was observed in multiple locations on the site.

### 6.11.1 Field Activities

)

A total of five monitoring wells were scoped for Site 22. Groundwater was encountered in all soil borings; however, one property owner (Kenmore Construction Company, Inc.) would not allow the installation of one monitoring well. Therefore, four monitoring wells (MW02 through MW05) and one soil boring (SB01) were installed. A groundwater sample was collected from SB01 with a bailer inside the augers. Five soil and groundwater samples were collected and analyzed for VOCs, SVOCs, TPH and RCRA Metals. A duplicate groundwater sample was collected from 14-MW05. A Sample Location Map is included as Figure 6-11A.

### 6.11.2 Site-Specific Geology/Hydrogeology

Soils at Site 22 consisted primarily of sand and silty sand with minor amounts of clay, slag, and gravel. Bedrock was not encountered in any of the soil borings, which were advanced to 12 feet bgs.

Groundwater elevations were measured at Site 22 on September 20, 2006. Localized groundwater flow across Site 22 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 22 is to the west-southwest, towards the Cuyahoga River.

### 6.11.3 Geophysical Survey

During the Phase II reconnaissance, the northeastern portion of the site was occupied by an asphalt plant, which was operated by Kenmore Construction. The eastern portion of the site was occupied by Lafarge North America aggregate operations. Large chunks of asphalt and aggregate were observed in piles across the site. Based on the variability in facility operations and the nature of the material and equipment utilized, a geophysical survey of Site 22 was not possible.

)

### 6.11.4 Soil Analytical Results

A total of seven VOCs were detected in the soil samples submitted from Site 22. The chemicals detected in the samples submitted were 1,3-dichlorobenzene (1.0 ug/kg), 2-butanone (ranging from 15 ug/kg to 35 ug/kg), acetone (ranging from 28 ug/kg to 190 ug/kg), carbon disulfide (ranging from 0.70 ug/kg to 8.2 ug/kg), methylene chloride (2.3 ug/kg), 2,4-dinitrophenol (130 ug/kg), and 2,6-dinitrotoluene (140 ug/kg). All other VOCs were below the detection limits.

A total of 20 SVOCs were detected in the samples submitted from Site 22. Concentrations of 2methylnaphthalene (ranging from 400 ug/kg to 760 ug/kg), acenaphthylene (210 ug/kg), anthracene (42 ug/kg and 550 ug/kg), benzaldahyde (27 ug/kg), benzo(a)anthracene (150 ug/kg and 1,600 ug/kg), benzo(a)pyrene (ranging from 19 ug/kg to 1,600 ug/kg), benzo(b)fluoranthene (ranging from 230 ug/kg to 2,200 ug/kg), benzo(g,h,i)perylene (190 ug/kg and 830 ug/kg), benzo(k)fluoranthene (ranging from 18 ug/kg to 790 ug/kg), caprolactam (51 ug/kg), carbazole (220 ug/kg), chrysene (ranging from 180 ug/kg to 1,800 ug/kg), dibenzofuran (85 ug/kg), fluoranthene (ranging from 240 ug/kg to 3,900 ug/kg), fluorene (260 ug/kg), indeno(1,2,3)pyrene (110 ug/kg and 850 ug/kg), isophorone (200 ug/kg), naphthalene (260 ug/kg and 460 ug/kg), phenanthrene (ranging from 240 ug/kg to 1,800 ug/kg), and pyrene (ranging from 240 ug/kg to 3,100 ug/kg) were detected in the soil samples submitted.

Gasoline and diesel range total petroleum hydrocarbons were detected in the soil samples from Site 22. The highest concentrations were found in the diesel range, which is consistent with the concentrations of SVOCs detected across Site 22. A concentration of the light petroleum fraction from 22-MW02-0204 was 12,000 ug/kg. Concentrations of the middle petroleum fraction ranged from 2.3 mg/kg to 1,800 mg/kg. Concentrations of the heavy petroleum fraction ranged from 10 mg/kg to 3,000 mg/kg.

Seven of the eight RCRA Metals were detected in the samples submitted from Site 22. Arsenic, ranging from 2.3 mg/kg to 8.5 mg/kg, was detected in all samples submitted. Barium, ranging from 8.9 mg/kg to 96.4 mg/kg, was detected in the all samples submitted. Cadmium, 0.042 mg/kg to 0.18 mg/kg, was detected in all samples submitted. Chromium, ranging from 3.5 mg/kg to 10.5 mg/kg, was detected in the samples submitted. Lead, ranging from 7.1 mg/kg to 48 mg/kg, was detected in the samples submitted. Selenium, 0.40 mg/kg, was detected in sample 22-SB01-0204. Mercury, ranging from 0.017 mg/kg to 0.32 mg/kg, was detected in the samples submitted.

The analytical results are presented in Table 6-11A.

### 6.11.5 Groundwater Analytical Results

A total of three VOCs were detected in four of the six groundwater samples submitted from Site 22. The chemicals detected in the samples submitted were 1,1-dichloroethane (0.42 ug/L), 2-butanone (ranging from 0.64 ug/L to 0.97 ug/L), and acetone (ranging from 1.2 ug/L to 3.1 ug/L). All other VOCs were below the detection limits.

}

A total of eighteen SVOCs were detected in the six samples submitted from Site 22. Concentration of 4-methylphenol (1.0 ug/L), acenaphthene (ranging from 0.23 ug/L to 0.85 ug/L), anthracene (0.23 ug/L and 0.28 ug/L), atrazine (0.71 ug/L), benzo(a)anthracene (0.24 ug/L and 0.63 ug/L), benzo(a)pyrene (ranging from 0.65 ug/L to 1.0 ug/L), benzo(b)fluoranthene (ranging from 0.84 ug/L to 1.0 ug/L), benzo(g,h,i)perylene (0.49 ug/L), benzo(k)fluoranthene (ranging from 0.37 ug/L to 0.94 ug/L), caprolactam (ranging from 0.65 ug/L to 0.77 ug/L), chrysene (0.23 ug/L and 0.74 ug/L), diethyl phthalate (0.86 ug/L), di-n-butyl phthalate (0.79 ug/L), fluoranthene (ranging from 0.25 ug/L to 1.6 ug/L), indeno(1,2,3)pyrene (0.43 ug/L), naphthalene (0.31 ug/L), phenanthrene (0.26 ug/L and 0.68 ug/L), and pyrene (ranging from 0.17 ug/L) were detected in the groundwater samples submitted.

All eight RCRA Metals were detected in the samples submitted from Site 22. Arsenic, ranging from 4.5 ug/L to 193 ug/L, was detected in all samples submitted. Barium, ranging from 57.1 ug/L to 1,410 ug/L, was detected in all samples submitted. Cadmium, ranging from 3.1 ug/L to 28.2 ug/L, was detected in all samples submitted. Chromium, ranging from 5.3 ug/L to 117 ug/L, was detected in all samples submitted. Lead, ranging from 1.7 ug/L to 6,970 ug/L, was detected in the samples submitted. Selenium, 2.8 ug/L and 9.4 ug/L, was detected in sample 22-MW03 and 22-MW04. Silver was detected in 22-SB01 at 2.2 ug/L. Mercury, 0.11 ug/L and 14.7 ug/L, was detected in 22-SB01 and 22-MW02.

The analytical results are presented in Table 6-11B.

### 6.11.6 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on Table 6-11A and 6-11B.

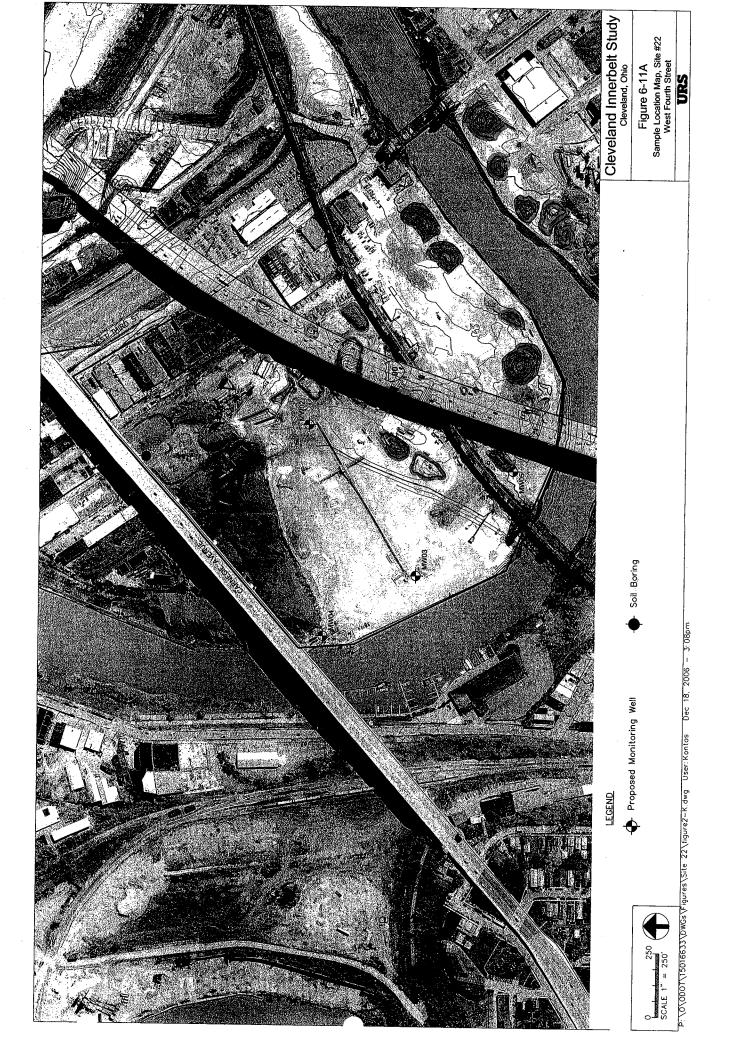
There were no VOCs, TPH, or RCRA metals detected in any of the soil samples from Site 22, which exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.

The concentrations of benzo(a)pyrene (1,600 mg/kg) detected in sample 22-SB01-0204 exceeded the BUSTR closure action levels. No other SVOCs detected exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.

There were no VOCs detected in any of the groundwater samples from Site 22, which exceeded the OEPA VAP standard for generic unrestricted potable use standards or BUSTR closure action levels.

## SECTIONSIX

)


The concentrations of benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene detected in samples 22-MW02, 22-MW04, and 22-SB01 exceeded the OEPA VAP standard for generic unrestricted potable use standards and BUSTR closure action levels.

Eight metals were detected in the groundwater samples (**Table 6-11B**). Lead was the only metal detected above UPUS. Lead was detected at 6,970 ug/L in a sample collected from 22-SB01 (UPUS is 15 ug/L). The groundwater sample from 22-SB01 was collected from an open boring.

### 6.11.7 Conclusions

Based on the analytical results, the soil and groundwater at Site 22 may require special disposal and/or worker protection protocols (plan note) during construction activities.





## TABLES

Summary of Detected Chemicals in Soil Site 22 - Nova Properties **ODOT Innerbelt Study** Cleveland, Ohio Table wild

)

.

)

MUNTS         Statuto is a statuto is a statuto is a statuto i a statu	235.85			VAP.Commercial/ Industrial	Construction Worker &	R BUSTR Closure Action	22-MW02-0204	22-MW03-0406 08/31/2006	22-MW04-0608	22-MW05-0204	22-SB01-0204
Elebinomente         gylig         26,0000         26,0000         5,000         5,10         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         5,1         1,1         5,1 <th><b>H</b></th> <th>PARAMETER</th> <th>UNITS</th> <th>Standard⁰⁰</th> <th>Standard⁽²⁾</th> <th>A CONCURSION OF A CONCURSION OF</th> <th></th> <th></th> <th>9002/020</th> <th>9002/10/60</th> <th>08/31/2006</th>	<b>H</b>	PARAMETER	UNITS	Standard ⁰⁰	Standard ⁽²⁾	A CONCURSION OF			9002/020	9002/10/60	08/31/2006
Abilitytes         Under stand		1,3-Dichlorobenzene	ug/kg	240,000	240,000	1	1.0 J	5.8 UJ	6.1 W	5.7 U	5.7 W
Americanic         Under Section         Under Section <thunder sectio<="" th=""><th></th><th>2-Butanone</th><td>ug/kg</td><td>71,600,000</td><td>80,000,000</td><td></td><td></td><td>15 J</td><td>25 J</td><td>ameters and 25</td><td>23 U</td></thunder>		2-Butanone	ug/kg	71,600,000	80,000,000			15 J	25 J	ameters and 25	23 U
Gatholie         Up/0         720,000         720,000         720,000         700         112         62.1         27.1           6. Athylene cholosi         UP/0         1.000         2.40000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000 <th>s</th> <th>Acetone</th> <td>ug/kg</td> <td>100,000,000</td> <td>100,000,000</td> <td></td> <td>29 J</td> <td>80</td> <td>190 J</td> <td>190</td> <td>28</td>	s	Acetone	ug/kg	100,000,000	100,000,000		29 J	80	190 J	190	28
Affinition         ugg         130.000         230.000         230.000         23.1         57.1           2.4.Difficientiation         ugg         2.300.00         2.300.00         1.000.00         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         1.001         <	00/	Carbon disulfide	ug/kg	720,000	720,000	•	2.0 J	1.2 J	8.2 J	0.71 J	0.70 J
2.4-Difficiencia         Ugg           Teo         U         Teo         Teo         U         Teo         Teo         U         Teo         Teo <thteo< th="">         Teo         Teo</thteo<>	١	Methylene chloride	ug/kg	1,300,000	2,300,000		19 U	5.8 U	2.3 J	5.7 U	5.7 U
Ale-Difficultane         up/dis         2.600.000         6.800.000         1.400         1.400         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.401         1.		2,4-Dinitrophenol	ug/kg		1		7600 UU	770 U	1600 U	130 J	3800 U
AvenityIntentiene         Upd		2,6-Dinitrotoluene	ug/kg	2,900,000	8,800,000		7600 UJ	U 077	1600 U	140 J	3800 U
Ameniphilylene         Opi         Too         Too <thtoo< th="">         &lt;</thtoo<>		2-Methylnaphthalene	ug/kg	1	1	1	7600 UJ	400 J	1600 U	370 U	760 J
Antiliaciene         ugrag         Be0.000.00000         1.000000000000000000000000000000000000		Acenaphthylene	ug/kg	T	1		7600 UJ	U 077	1600 U	370 U	210 J
Berradelyties         up/ds         5:300         8:10,000         1,1000         7:70         U         16:00         1         7:7         U         16:00         1         7:7         U         16:00         1         7:7         U         16:00         1         7:7         U         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00         1         15:00		Anthracene	ug/kg	880,000,000	1,000,000,000		7600 UJ	42 J	1600 U	370 U	550 J
Benzo(a)amthraeane         up/ds         63,000         11,000         360 J         170 J         1600 U         370 J           Benzo(a)amthraeane         up/ds         6,300         810,000         11,000         430 J         770 J         770 J         770 J           Benzo(a)benzome         up/ds         6,300         810,000         11,000         430 J         770 J <th></th> <th>Benzaldehyde</th> <th>ug/kg</th> <th></th> <th></th> <th></th> <th>7600 UJ</th> <th>770 U</th> <th>1600 U</th> <th>27 J</th> <th>3800 U</th>		Benzaldehyde	ug/kg				7600 UJ	770 U	1600 U	27 J	3800 U
Benco(a)byrene         up/d         6,000         11,000         11,000         360 J         170 J         1660 U         19 J           Benco(a)byrene         up/d         c.000         81,00,000         11,000         230 J         1600 U         370 U           Benco(a)byrene         up/d         c.000         81,00,000         11,000         190 J         1600 U         370 U           Benco(b)burcenthene         up/d         c.0000         81,00,000         11,000         190 J         770 U         1600 U         370 U           Denco(b)burcenthene         up/d         67,00,000         11,00,000         10,00000         31,00,000         370 U         770 U         1600 U         370 U           Chrysene         up/d         67,00,000         11,00,000         10,0000         370 U         370 U         370 U           Chrysene         up/d         12,000,000         11,000,000         7600 U         170 U         1600 U         370 U           Dreambrene         up/d         12,000,000         11,000,000         7600 U         770 U         1600 U         370 U           Dreambrene         up/d         12,000,000         11,000,000         19,000         370 U         370 U		Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	7600 U	150 J	1600 U	370 U	1600 J
Bencio(b)fluoreatthene         upld         630.000         610.000         630.01         630.1         630.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         730.0         7		Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	360 J	170 J	1600 U	19 J	1600 J
Berrocignificantierie         Ug/g         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th></th> <th>Benzo(b)fluoranthene</th> <th>ug/kg</th> <th>63,000</th> <th>810,000</th> <th>11,000</th> <th>430 J</th> <th>230 J</th> <th>1600 U</th> <th>370 U</th> <th>2200 J</th>		Benzo(b)fluoranthene	ug/kg	63,000	810,000	11,000	430 J	230 J	1600 U	370 U	2200 J
Benzol(k)llucranthene         upkg         630,000         8,100,000         11,00,000         11,00,000         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00         11,00,00 </th <th></th> <th>Benzo(ghi)perylene</th> <td>ug/kg</td> <td>1</td> <td>1</td> <td></td> <td>7600 U</td> <td>190 J</td> <td>1600 U</td> <td>370 U</td> <td>830 J</td>		Benzo(ghi)perylene	ug/kg	1	1		7600 U	190 J	1600 U	370 U	830 J
Caprolactam         Ug/tg	S	Ż	ug/kg	630,000	8,100,000	110,000	7600 U	67 J	1600 U	18 J	L 067
Carbazole         ug/kg         17,0000         31,000,000         11,0000         11,0000         11,0000         11,0000         11,000         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1         370         1	00	-	ug/kg	1	1	-	7600 UJ	770 U	1600 U	51 J	3800 U
Chrysene         Ug/kg         6,700,000         1,000,000         1,000,000         1,000,000         370 U         370	٨S	ş	ug/kg	10,000,000	31,000,000	a statut of a Martineson more and a statut of a factor of a statut of a statuto of a statut of a statuto of a statut of a statut of a stat	7600 UJ	770 U	1600 U	370 U	220 J
Diberacturant         ug/g         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		Chrysene	ug/kg	6,700,000	41,000,000	1,100,000	1300 J	180 J	1600 U	370 U	1800 J
Fluoranteneug/kg33.000,000170,000,000 $ 640,J$ $240,J$ $1600,U$ $370,U$ Fluoreneug/kg $e7,000,000$ $340,000,000$ $ 7600,U$ $770,U$ $1600,U$ $370,U$ Rinor(1,2,3-cd)pyreneug/kg $e7,000$ $410,000$ $11,000$ $7600,U$ $770,U$ $1600,U$ $370,U$ Naphthaleneug/kg $e7,000,000$ $340,000,000$ $ 760,U$ $770,U$ $1600,U$ $370,U$ Naphthaleneug/kg $530,000$ $130,00,000$ $ 830,J$ $240,J$ $1600,U$ $370,U$ Prenamtheneug/kg $   830,J$ $240,J$ $1600,U$ $370,U$ Prenamtheneug/kg $   830,J$ $240,J$ $1600,U$ $370,U$ Prenamtheneug/kg $   830,J$ $240,J$ $1600,U$ $370,U$ Prenamtheneug/kg $   830,J$ $240,J$ $1600,U$ $370,U$ Prenamtheneug/kg $   240,J$ $1600,U$ $370,U$ Prena $   200,U$ $100,U$ $370,U$ $370,U$ Prena $    240,J$ $1600,U$ $370,U$ Prena $    240,J$ $1600,U$ $200,J$ Dio-C20 $      -$ C30-C34 $ -$		Dibenzofuran	ug/kg	1	I	and a second sec	7600 UJ	85 J	1600 U	370 U	3800 U
Fluorene         ugkg         120.000.000         340,000         11000         770 U         1600 U         370 U		Fluoranthene	ug/kg	33,000,000	170,000,000		640 J	240 J	1600 U	370 U	3900
Indeno(1,2,3-cd)pyrene         ugkg         67,000         410,000         7500 U         110 J         1600 U         370 U         3		Fluorene	ug/kg	120,000,000	340,000,000	· · · · · · · · · · · · · · · · · · ·	7600 UJ	U 077	1600 U	370 U	260 J
Isophorone         ugkg         4,600,000         4,600,000         4,600,000         4,600,000         560,0         170,0         1600,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         370,0         3		Indeno(1,2,3-cd)pyrene	ng/kg	67,000	410,000	11,000	7600 U	110 J	1600 U	370 U	850 J
Naprithalene         ug/kg         530,000         1,900,000         39,800         7600 UJ         260 J         1600 U         370 U		Isophorone	ng/kg	4,600,000	4,600,000	ł	7600 W	U 077	1600 U	200 J	3800 U
Phenanthrene         ug/kg			ug/kg	530,000	1,900,000	39,800	7600 UJ	260 J	1600 U	370 U	460 J
Pyrene         ug/kg         25,000,000         130,000,000         -         830 J         240 J         1600 U         370 U         370 U           Gasoline Range Organics (C6-C         ug/kg         -         -         1,000,000         1200 U         120 U         110 U         110 U           C10-C20         mg/kg         -         -         -         2,000         1800         9,7 J         2,3 J         2,4           C10-C20         mg/kg         -         -         -         2,000         1800         9,7 J         2,3 J         2,4           C10-C20         mg/kg         -         -         -         2,000         1800         8,5         4,9         2,4           C20-C34         mg/kg         2000         45,000         8,0         210         10         10         10           Arsenic         mg/kg         770         420         -         8,4         5,7         2,3         2,4         9,9         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6         16,6		Phenanthrene	ng/kg	-	-	-	350 J	240 J	1600 U	370 U	1800 J
Gasoline Range Organics (C6-C         ug/kg          -         1,000,000         120 U         120 U         110 U         110 U           C10-C20         mg/kg          -         2,000         1800         9.7 J         2.3 J         2.4           C10-C20         mg/kg          -         -         5,000         3000         86         20         10         10         1           C20-C34         mg/kg          -         -         5,000         3000         86         20         10         10         1         2.4           Arsenic         mg/kg         200         0.0         210         0.17         0.18         0.074         0.18         0.18         0         16         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		Pyrene	ug/kg	25,000,000	130,000,000		830 J	240 J	1600 U	370 U	3100 J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Н	Gasoline Range Organics (C6-C	ug/kg		en selene felte fon for same men folgen for spin felter for selene for selene felter felter felter for selene felter for selene felter for selene felter felte	1,000,000	12000	120 U	120 U	110 U	110 U
C20-C34         mg/kg          -         5,000         3600         86         20         10           Arsenic         mg/kg         80         210          8.4.9         8.5         4.9         10           Arsenic         mg/kg         80         210          8.4         5.7         8.5         4.9         8.9         1           Barium         mg/kg         700         45,000          96.4         40         28.9         8.9         1         0.18         0.074         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.18         0.057         U         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	ЧT	C10-C20	mg/kg			2,000	1800	9.7 J	2.3 J	2.4	110 U
Arsenic         mg/kg         80         210         -         8.4         5.7         8.5         4.9         4.9           Barium         mg/kg         200,000         45,000         -         96.4         40         28.9         8.9 J           Cadmium         mg/kg         770         420         -         0.17 J         0.18 J         0.074 J         0.18 J           Chromium         mg/kg         8,900         2,000         -         0.00         10.5         5.7         7.2         4.3           Lead         mg/kg         -         -         0.58 U         0.61 U         0.57 U           Selenium         mg/kg         300         84         -         0.32         0.018 J         0.030 J		C20-C34	mg/kg	1	-	5,000	3000	86	20	10	710
Barium         mg/kg         200,000         45,000         -         96,4         40         28,9         8,9 J           Cadmium         mg/kg         770         420         -         0,17 J         0,18 J         0,074 J         0,18 J         0,51 U         0,57 U         4,3         2         5,7         7,1         9,2         2         5,7         7,1         9,2         5,7         7,1         9,2         5,7         0,57 U         0,50 U<			mg/kg	80	210	•	8.4	5.7	8.5	4.9	2.3
Cadmium         mg/kg         770         420         -         0.17         J         0.18         J         0.018         J         0.18         J         0.27         U         0.27         U <th>ę</th> <th>Barium</th> <td>mg/kg</td> <td>200,000</td> <td>45,000</td> <td></td> <td>96.4</td> <td>40</td> <td>28.9</td> <td>L 8.9</td> <td>49.1</td>	ę	Barium	mg/kg	200,000	45,000		96.4	40	28.9	L 8.9	49.1
Chromium         mg/kg         8,900         2,000         -         10.5         5.7         7.2         4.3           Lead         mg/kg         -         -         48         17.5         7.1         9.2           Selenium         mg/kg         15,000         4,300         -         0.58 U         0.61 U         0.57 U           Mercury         mg/kg         300         84         -         0.32         0.018 J         0.030 J	571	Cadmium	mg/kg	40	420	1	0.17 J	0.18 J	0.074 J	0.18 J	0.042 J
Lead         mg/kg         -         -         48         17.5         7.1         9.2           Selenium         mg/kg         15,000         4,300         -         0.58 U         0.61 U         0.57 U           Mercury         mg/kg         300         84         -         0.32         0.018 J         0.030 J	LΞ	Chromium	mg/kg	8,900	2,000	1	10.5	5.7	7.2	4.3	3.5
n mg/kg 15,000 4,300 - 0.58 U 0.58 U 0.61 U 0.57 U 0.57 U 0.30 J 0.32 0.073 J 0.018 J 0.030 J	W	Lead	mg/kg	•	1	1	48	17.5	1.7	9.2	ດ
mg/kg 300 84 - 0.32 0.073 J 0.018 J 0.030 J		Selenium	mg/kg	15,000	4,300	1	0.58 U	0.58 U	0.61 U	0.57 U	0.40 J
		Mercury	mg/kg	300	84	•	0.32	0.073 J	0.018 J	0:030 J	0.017 J

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit. J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use
 VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

P:\O\ODOT\15016633\DOCs\Data\Hits Tables\Site 22 Hits Tables

URS

-

Summary of Detected Chemicals in Water Site 22 - Nova Properties **ODOT Innerbelt Study** Cleveland, Ohio Table o-11B

)

Ċ,	PARAMETER	STINU	₀ Snanoa /Snan dvn	BUSTR Closure Action	22-MW-02 09/20/2006	22-MW-03 09/20/2006	22-MW-04 09/20/2006	22-MW-05 09/20/2006	22-MW-05D 09/20/2006	22-SB01-083106 08/31/2006
S	1,1-Dichloroethane	ug/L	1400	Manana Maria San Angina	1.0 U	0.42 J				
00/		ng/L	6800		10 U	10 U	0.73 J	0.97 J	0.64 J	10 N
	Acetone	ng/L	1600	1	10 U	10 U	1.2 J	2.3 J	3.1 J	10 U
	4-Methyiphenol	ug/L	78	and And and a rest of the second	1.0 U	1.0 U	1.0	1.0 U	1.0 U	1.0 U
	Acenaphthene	ug/L	680	and a second respectively of the second s	0.85	0.20 U	0.84	0.20 U	0.20 U	0.23
	Anthracene	ng/L	2600	1	0.20 U	0.20 U	0.23	0.20 U	0.20 U	0.28
	Atrazine	ng/L	3	-	1.0 U	1.0 U	1.0 U	1.0 U	0.71 J	1.0 U
	Benzo(a)anthracene	ug/L	the state of the	0.264	0.24	0.20 U	0.20 U	0.20 U	0.20 U	0.63
	Benzo(a)pyrene	ng/L	0.2	0.2	1.0	0.20 U	0.97	0.20 U	0.20 U	0.65
	Benzo(b)fluoranthene	ng/L	and a second second second as the second sec	0.179	1.0	0.20 U	0.95	0.20 U	0.20 U	0.84
S	14114	ug/L	and a statement of the		0.20 U	0.49				
00		ng/L	nga anoo dha baranda ina ana an an anna an an an an an anna anna an an	1.79	0.94	0.20 U	0.88	0.20 U	0.20 U	0.37
٨S		ug/L	San dadi si na sa sa sa ganga na sa sa sa sa san san sa san sa san sa		5.0 U	0.67 J	5.0 U	0.77 J	0.65 J	0.65 J
	Chrysene	ug/L	47	47	0.23	0.20 U	0.20 U	0.20 U	0.20 U	0.74
	Diethyl phthalate	ng/L	13000	a bonnying ing ing ing ing ing ing ing ing ing	1.0 U	1.0 U	1.0 U	0.86 J	0.86 J	1.0 U
	Di-n-butyl phthalate	ng/L	1400	and the second se	1.0 U	1.0 U	0.79 J	1.0 U	1.0 U	1.0 U
	Fluoranthene	ng/L	370	and the second se	0.4	0.20 U	0.25	0.20 U	0.20 U	1.6
	Indeno(1,2,3-cd)pyrene	ng/L	• • • • • • • • • • • • • • • • • • •	0.23	0.20 U	0.43				
	Naphthalene	ng/L	140	140	0.20 U	0.31				
	Phenanthrene	ng/L			0.26	0.20 U	0.20 U	0.20 U	0.20 U	0.68
	Pyrene	ng/L	280	:	0.46	0.20 U	0.17 J	0.20 U	0.20 U	1:1
	Arsenic	ng/L	50	a tribut a tradit was a second a second	7.5 J	4.5 J	6.8 J	50.0 U	20.0 U	193
	Barium	ng/L	2000		214	57.1 J	337	855	688	1410
S.	Cadmium	ng/L	5		2.0 U	2.0 U	2.0 U	28.2 J	6.7 J	3.1
TAL	Chromium	ng/L	100	<ul> <li>A second sec second second sec</li></ul>	5.5	4.9 J	5.3	25.0 U	10.0 U	117
NE.	Lead	ug/L	15	***	20.4	3.0 U	1.7 J	53.1 J	18.8 J	6970
1	Selenium	ng/L	50	The second se	5.0 U	9.4	2.8 J	25.0 U	10.0 U	5.0 U
	Silver Mathematical Control C	ng/L	78	<ul> <li>Second control of the state of</li></ul>	5.0 U	5.0 U	5.0 U	25.0 U	10.0 U	2.2 J
	Mercury	ng/L	2	1	0.11 J	0.20 U	0.20 U	0.20 U	0.20 U	14.7

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit. J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

P:\O\ODOT\15016633\DOCs\Data\Hits Tables\Site 22 Hits Tables



)

### Log of Boring 22-MW02

By J. Kaminski	By M. Wolff
Hammer 140# auto hamme	er Total Depth of Borehole 10.0' bgs
Drilling Contractor HAD, Inc.	Approximate Ground Elevation 580'
Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well
-	By       Hammer       Data       Drilling       Contractor       Sampling       2" Split Speen

			SAMF	PLES				E is	
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Installation Schematic	WELL DETAILS
-580		0002	3 13	22.0	0.0		Dense, dry, brown and black, gravelly SAND with silt, with Slag, with Ironite, iron oxide staining		Begin Drilling on 8/31/06
	2 	0204	1 4 3	19.0	0.0		FBrown, no gravel, no Slag or ironite Medium dense, very moist, dark gray, medium to coarse SAND trace		Sample submitted for lab analysis 22-MW02-0204 — Bentonite Pellets
-575	4  	0406	WOH	16.0	NA		clay, trace silt Loose, saturated, grayish brown, coarse SAND with silt, trace Sheen		2" Schedule 40 PVC
	6  	0608	1 1 4 5	24.0	NA		Stiff, very moist, dark gray, SILT trace fine sand		
	8  						San, foly molo, dan gray, cler date mit care		➡ Filter Sand #7 ■ Slotted 0.010" Screen
-570	10  						End of Boring at 10' bgs Installed Monitoring Well		End Drilling on 8/31/06
AW02	12— - 							-	
-565 -565	14- -							-	
File: 0D0T.GPJ; 12/14/2006 22-MW02 9999 9999	- 16 -						-	-	
DT_WELLS; File	- 18– -								
Report: 1_0001_WELLS:	20						URS	<u> </u>	

### Log of Boring 22-MW03

Date(s) 8/31/06	Logged J.	Kaminski	Checked M. Wolff By
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer 14 Data 14	0# auto hammer	Total Depth of Borehole <b>12.0' bgs</b>
Drill Rig Type LC-60	Drilling Contractor HA	AD, Inc.	Approximate Ground Elevation 582'
Location See Site Map	Sampling Method(s) 2"	Split Spoon	Borehole Completion Set monitoring well
Groundwater Level and Date Measured 595.80 on 9/20/06			

				SAMF	PLES				Τ	5	çi	
Elevation feet	<b>D</b> epth, feet	Type	Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Woll		ןי	FIELD NOTES AND WELL DETAILS
50	-		0002	5 17 22 11	15.0	0.0						Begin Drilling on 8/31/06
-58	-		)204	5 12 22 12	12.0	716		Dense, dry, yellow, fine SAND				— Bentonite Pellets — 2" Schedule 40 PVC
	4- -	-	0406	2 7 10 10	20.0	823		_ਦ With fine gravel				Sample submitted for lab analysis 22-MW03-0406
-57	6- 5 -		0608	1 3 5 6	24.0	NA		Loose, dry, greenish gray, fine SAND r Saturated Stiff, dry to moist, greenish gray, silty CLAY trace gravel, trace organics				
	8-		)810	1 1 2 3	20.0	NA		Stiff, wet, grayish brown, clayey SAND				— Filter Sand #7 — Slotted 0.010" Screen
	-10		1012	WOH 2 2 3	24.0	NA		Stiff, moist, brown, SAND trace clay, trace, iron oxide staining				
-570	0 12-						*****	Wet End of Boring at 12' bgs Installed Monitoring Well	-	<u>2</u> [3		End Drilling on 8/31/06
12/14/2006 22-0	-14		-				-					
OT.GPJ;	16 5 -	-	1									
Report: 1_0D0T_WELLS; File: 0D	18- -											
Report: 1_OD	20-							URS	-			

)

### Log of Boring 22-MW04

Date(s) 9/1/06	Logged J. Kaminski	Checked M. Wolff
Drilled 9/1/06	By	By
Drilling Method & Hollow Stem Auger	Hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data 140# auto hammer	of Borehole <b>12.0′ bgs</b>
Drill Rig LC-60	Drilling	Approximate
Type	Contractor HAD, Inc.	Ground Elevation 582'
Location See Site Map	Sampling Method(s) <b>2" Split Spoon</b>	Borehole Completion Set monitoring well

			SAMF	PLES		[		Τ	tion atic	
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Mell	Schematic	FIELD NOTES AND WELL DETAILS
	, , , , , , , , , , , , , , , , , , ,	0002	13 22	19.0	0.0		CRUSHED STONE		<u></u>	Begin Drilling on 9/1/06
580	2	0204	6	12.0	0.0		Dense, dry, brown with black, SAND with rock fragments			— 2" Schedule 40 PVC I—Bentonite Pellets
	4-	0406	4 1 2 4	18.0	0.0		Loose, moist, black, SAND trace gravel Loose, moist, brown, medium SAND trace gravel Medium dense, moist, grayish brown, fine SAND trace clay	-		
575	- 6- -	0608	4 1 1	20.0	0.0		∖ Very stiff, moist, dark gray, silty CLAY			Sample submitted for lab analysis 22-MW04-0608
	- 8	0840	2 2 WOH WOH	24.0	NA		Dense, saturated, dark gray and black, silty SAND Loose, saturated, black, fine SAND			← Filter Sand #7
	- - 10-	0810	WOH WOH WOH WOH	24.0			Very dense, moist to wet, grayish brown, silty SAND with Black staining	-		- Slotted 0.010" Screen
-570	_ 12-	1012	WOH WOH WOH	24.0	NA		End of Boring at 12' bgs Installed Monitoring Well			End Drilling on
	 14									9/1/06
	-  16							-		
565	-		-					-		
	18 - -							-		
	20			1						

)

1

### Log of Boring 22-MW05

Date(s) 9/1/06	Logged By	J. Kaminski	Checked By M. Wolff
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer Data	140# auto hammer	Total Depth of Borehole <b>10.0' bgs</b>
Drill Rig Type LC-60	Drilling Contractor	HAD, Inc.	Approximate Ground Elevation 582
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level and Date Measured 599.55 on 9/20/06	[ Method(s)		

			SAMP	PLES				5	tic	
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Well	7	FIELD NOTES AND WELL DETAILS
	- - -	0002	2 5	22.0	0.0	•	CRUSHED STONE Dense, dry, black brown, fine SAND trace silt	<u> </u>		Begin Drilling on 9/1/06
-580	2 - -	0204	1	22.0	0.0		, Moist, brown gray			Sample submitted for lab analysis 22-MW05-0204 — 2" Schedule 40 PVC └─ Bentonite Pellets
	4- - -	0406	WOH WOH	12.0	NA		, Medium to coarse SAND , Saturated, greenish gray, fine SAND trace clay			
-575	6- - -	0608	woн woн	24.0	NA		FBrown, fine to medium SAND			
	8		WOR			<u> </u>	Augered down to 10' bgs			⊢ Filter Sand #7
	 - 10						-			— Slotted 0.010" Screen
	-						End of Boring at 10' bgs Installed Monitoring Well			End Drilling on 9/1/06
-570	12-							-		
		1					-			
	- 14									
	-									
	_ 16—									
	-01							-		
-565	-						-	-		
	18-						-			
565	_									
	20							J		
L							URS			

)

l

## Log of Boring 22-SB01

Date(s) Drilled 8/31/06 and Installed	Logged By J. Kaminski	Reviewer M. Wolff
Drilling Method Hollow Stem Auger	Drilling Contractor HAD, Inc.	Total Depth of Borehole 10.0' bgs
Sampling 2" Split Spoon Method	Drill Bit Size/Type: <b>4-1/4" ID HSA</b>	Approximete Surface Elevation 582'
Drill Rig Type: LC-60	Groundwater NA Level(s)	Hammer 140# auto hammer Data
Boring Location: See Site Map	Borehole Backfill bentonite	

			SAM	PLES		]		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	FIELD NOTES
	-	000	6	22.0	0.0		Loose to medium dense, dry, black, fine to coarse silty SAND with Crushed asphalt	Begin drilling on 8/31/06
-580	2_ _ _	020	3 5 4 7 5	20.0	7.5		Dense, dry to moist, brown, fine SAND trace gravel - - -	Sample submitted for lab analysis 22-SB01-0204
	4 - -	040	1 6 1 3	12.0	NA		r ^{Wet} Loose, saturated, brown, coarse SAND trace fine gravel	
-575	6	060	1 2 8 1 1	6.0	NA		rWith silt, layers	
	8 - -	081	1 2 1 1	1.0	NA		-	
	10— - - -						End of Boring at 10' bgs	End drilling on 8/31/06
- <b>570</b>	12  						-	
sPJ; 12/14/2006	14 							
58: File: ODOT.GPJ: -565	16- - -						-	
Report 1_0001_BORINGS:	18 - -						-	
Report:	20		<u>.</u>	·			URS	

DATA ASSESSMENT REPORT

#### Data Assessment Report ODOT Innerbelt Study Site 22 – Nova Properties

#### Reviewer: P. Schuler Date: November 13, 2006

Five soil samples, six groundwater samples, and one trip blank were collected at the Nova Properties site on W. 4th Street in Cleveland, Ohio, from August 31 through September 20, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Re	quested .	Analyse	es ⁽¹⁾
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC	TPH	Met
A6I010325001	22-SB01-0204	08/31/2006	Soil	X	X	Х	X
A6I010325002	22-MW02-0204	08/31/2006	Soil	X	X	Х	X
A6I010325003	22-MW03-0406	08/31/2006	Soil	X	X	Х	X
A6I010325004	22-MW04-0608	09/01/2006	Soil	X	X	X	X
A6I010325005	22-MW05-0204	09/01/2006	Soil	X	X	X	X
A6I010325006	22-SB01-083106	08/31/2006	Groundwater	X	X		Х
A6I220382001	22-MW-02	09/20/2006	Groundwater	X	X		Х
A6I220382002	22-MW-05	09/20/2006	Groundwater	X	X		X
A6I220382003	22-MW-05D	09/20/2006	Groundwater	X	X		X
A6I220382004	22-MW-03	09/20/2006	Groundwater	X	X		Х
A6I220382005	22-MW-04	09/20/2006	Groundwater	X	X		Х
A6I220382006	TB-092006	09/20/2006	Trip Blank	X			

Table 1 Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

SVOC = Semivolatile Organic Compounds [SW-846 Method 8270C]

TPH = Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B]

Met = RCRA Metals [SW-846 Methods 6010B/6020/7470A/7471A]

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

Positive detections for bis(2-ethylhexyl)phthalate in soil sample 22-SB01-0204 and in all six groundwater samples, as well as gasoline range organics in samples 22-SB01-0204, 22-MW03-0406, 22-MW04-0608, and 22-MW05-0204, were qualified as nondetect ("U") due to the presence of the analytes in the method blanks at similar concentrations.



- Positive detections for toluene in water samples 22-MW-02 and 22-MW-04 were qualified as nondetect ("U") due to the presence of toluene in the associated method trip blank at a similar concentration.
- The trip blank submitted with the 08/31/06 and 09/01/06 samples were logged in and reported with samples from other sites. A trace amount of toluene was detected in the trip blank. Therefore, the positive toluene result for sample 22-MW04-0608 was qualified as nondetect ("U"), since the sample concentrations were not significantly higher than those in the associated blanks.
- The laboratory "J" flags on selected chromium and barium soil sample results, indicating that the analytes were detected in the method blank, were removed in the final data set, since the sample results were greater than five times the blank concentrations. The sample results are considered representative of site conditions and any contribution due to external contamination is negligible.
- One or more volatile internal standard responses were outside of the acceptance range in samples 22-SB01-0204, 22-MW03-0406, and 22-MW04-0608. The results for all volatile analytes quantified from each of the noncompliant internal standards were qualified as estimated ("J" or "UJ").
- The responses for four semivolatile internal standards were outside of the acceptance range in sample 22-MW02-0204. The results for all semivolatile analytes quantified from each of the noncompliant internal standards were qualified as estimated ("J" or "UJ").
- The results for cadmium and lead in field duplicate samples 22-MW-05 and 22-MW-05D were qualified as estimated ("J") due to poor precision between the results.
- The lab reported some metals results with a "G" qualifier, indicating that a dilution was required due to matix interferences. The "G" qualifiers were removed in the final data set, but the sample reporting limits are elevated accordingly.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J" for organics, and "B" for inorganics), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, organic "J" qualifiers were retained with the numeric results. The inorganic "B" qualifiers were changed to "J" qualifiers for the sake of consistency throughout the package.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-7.



PARAMETER	UNITS	A6I010325001 22-SB01-0204 08/31/2006	A6I010325002 22-MW02-0204 08/31/2006	A6I010325003 22-MW03-0406 08/31/2006	A6I010325004 22-MW04-0608 09/01/2006	A61010325005 22-MW05-0204 09/01/2006
1,1,1-Trichloroethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1,1,2,2-Tetrachloroethane	ug/kg	5.7 UJ	19 U	5.8 UJ	6.1 UJ	5.7 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1,1,2-Trichloroethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1,1-Dichloroethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1.1-Dichloroethene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1.2.4-Trichlorobenzene	ug/kg	5.7 UJ	19 U	5.8 UJ	6.1 UJ	5.7 U
1,2-Dibromo-3-chloropropane	ug/kg	11 UJ	38 U	12 UJ	12 UJ	11 U
1,2-Dibromoethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1,2-Dichlorobenzene	ug/kg	5.7 UJ	19 U	5.8 UJ	6.1 UJ	5.7 U
1,2-Dichloroethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1,2-Dichloropropane	ug/kg ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
1,3-Dichlorobenzene	ug/kg	5.7 UJ	1.0 J	5.8 UJ	6.1 UJ	5.7 U
	ug/kg ug/kg	5.7 UJ	19 U		6.1 UJ	
1,4-Dichlorobenzene		23 U	77 U	5.8 UJ 15 J	6.1 UJ 25 J	5.7 U <b>35</b>
2-Butanone 2-Hexanone	ug/kg ug/kg	23 U 23 U	77 U	15 J 23 U	25 J 25 UJ	
THE PERSON AND A REPORT OF A		and the second	77 U	···· ·· ·· · · · · · · · · · · · · · ·		23 U
4-Methyl-2-pentanone	ug/kg	23 UJ	and the second	23 UJ	25 UJ	23 U
Acetone	ug/kg	28	29 J	80	190 J	190
Benzene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Bromodichloromethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Bromoform	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Bromomethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Carbon disulfide	ug/kg	0.70 J	2.0 J	1.2 J	8.2 J	0.71 J
Carbon tetrachloride	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Chlorobenzene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Chloroethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Chloroform	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Chloromethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
cis-1,2-Dichloroethene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
cis-1,3-Dichloropropene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Cyclohexane	ug/kg	11 U	38 U	12 U	12 UJ	11 U
Dibromochloromethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Dichlorodifluoromethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Ethylbenzene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
isopropylbenzene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Methyl acetate	ug/kg	11 U	38 U	12 U	12 UJ	11 U
Methyl tert-butyl ether	ug/kg	23 U	77 U	23 U	25 UJ	23 U
Methylcyclohexane	ug/kg	11 U	38 U	12 U	12 UJ	11 U
Methylene chloride	ug/kg	5.7 U	19 U	5.8 U	2.3 J	5.7 U
Styrene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Tetrachioroethene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Toluene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
rans-1,2-Dichloroethene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
rans-1,3-Dichloropropene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Trichloroethene	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Trichlorofluoromethane	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Vinyl chloride	ug/kg	5.7 U	19 U	5.8 U	6.1 UJ	5.7 U
Xylenes (total)	ug/kg	11 U	38 U	12 U	12 UJ	11 U

 $^{\prime}$ U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.



		A6I010325001 22-SB01-0204 08/31/2006	A6I010325002 22-MW02-0204 08/31/2006	A6I010325003 22-MW03-0406 08/31/2006	A6I010325004 22-MW04-0608 09/01/2006	A6I01032500 22-MW05-020 09/01/2006
PARAMETER	UNITS		<u>in di la Kafa</u> rana a		i meters in cardinal in pr	09/01/2006
1,1'-Biphenyl	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2,2'-oxybis(1-Chloropropane)	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2,4,5-Trichlorophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2,4,6-Trichlorophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2,4-Dichlorophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2,4-Dimethylphenol	ug/kg	3800 U	7600 UJ	770 U.	1600 U	370 U
2,4-Dinitrophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	130 J
2,4-Dinitrotoluene	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2,6-Dinitrotoluene	ug/kg	3800 U	7600 UJ	770 U	1600 U	140 J
2-Chloronaphthalene	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2-Chlorophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2-Methylnaphthalene	ug/kg	760 J	7600 UJ	400 J	1600 U	370 U
2-Methylphenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2-Nitroaniline	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
2-Nitrophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
3,3'-Dichlorobenzidine	ug/kg	3800 U	7600 U	770 U	1600 U	370 U
3-Nitroaniline	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
4,6-Dinitro-2-methylphenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
4-Bromophenyl phenyl ether	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
4-Chloro-3-methylphenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
4-Chloroaniline	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
4-Chlorophenyl phenyl ether	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
4-Methylphenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
4-Nitroaniline	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
1-Nitrophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Acenaphthene	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Acenaphthylene	ug/kg	210 J	7600 UJ	770 U	1600 U	370 U
Acetophenone	ug/kg	760 U	1500 UJ	150 U	330 U	76 U
Anthracene	ug/kg	550 J	7600 UJ	42 J	1600 U	370 U
Atrazine	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Benzaldehyde	ug/kg	3800 U	7600 UJ	770 U	1600 U	27 J
Benzo(a)anthracene	ug/kg	1600 J	7600 U	150 J	1600 U	370 U
Benzo(a)pyrene	ug/kg	1600 J	360 J	170 J	1600 U	19 J
Benzo(b)fluoranthene	ug/kg	2200 J	430 J	230 J	1600 U	370 U
Benzo(ghi)perylene	ug/kg	830 J	7600 U	190 J	1600 U	370 U
Benzo(k)fluoranthene	ug/kg	790 J	7600 U	67 J	1600 U	18 J
ois(2-Chloroethoxy)methane	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
bis(2-Chloroethyl) ether	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
is(2-Ethylhexyl) phthalate	ug/kg	3800 U	7600 U	770 U	1600 U	370 U
Butyi benzyl phthaiate	ug/kg	3800 U	7600 U	770 U	1600 U	370 U
Caprolactam	ug/kg	3800 U	7600 UJ	770 U	1600 U	51 J
Carbazole	ug/kg	220 J	7600 UJ	770 U	1600 U	370 U
Chrysene	ug/kg	1800 J	1300 J	180 J	1600 U	370 U
Dibenz(a,h)anthracene	ug/kg	3800 U	7600 U	770 U	1600 U	370 U
Dibenzofuran	ug/kg	3800 U	7600 UJ	85 J	1600 U	370 U
Diethyl phthalate	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Dimethyl phthalate	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Di-n-butyl phthalate	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Di-n-octyl phthalate	ug/kg	3800 U	7600 U	770 U	1600 U	370 U
luoranthene	ug/kg	3900	640 J	240 J	1600 U	370 U
Fluorene	ug/kg	260 J	7600 UJ	770 U	1600 U	370 U
lexachlorobenzene	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U

1

)

P:\O\ODOT\15016633\DOCs\Data\Site 22\Site22 Table 2



PARAMETER	UNITS	A6I010325001 22-SB01-0204 08/31/2006	A6I010325002 22-MW02-0204 08/31/2006	A6I010325003 22-MW03-0406 08/31/2006	A61010325004 22-MW04-0608 09/01/2006	A61010325005 22-MW05-0204 09/01/2006
Hexachlorobutadiene	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Hexachlorocyclopentadiene	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Hexachloroethane	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Indeno(1,2,3-cd)pyrene	ug/kg	850 J	7600 U	110 J	1600 U	370 U
Isophorone	ug/kg	3800 U	7600 UJ	770 U	1600 U	200 J
Naphthalene	ug/kg	460 J	7600 UJ	260 J	1600 U	370 U
Nitrobenzene	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
N-Nitrosodi-n-propylamine	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
N-Nitrosodiphenylamine	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Pentachlorophenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Phenanthrene	ug/kg	1800 J	350 J	240 J	1600 U	370 U
Phenol	ug/kg	3800 U	7600 UJ	770 U	1600 U	370 U
Pyrene	ug/kg	3100 J	830 J	240 J	1600 U	370 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

## Table 2-3Analytical Data SummarySite 22 Soil TPHODOT Innerbelt Study

PARAMETER	UNITS	A6I010325001 22-SB01-0204 08/31/2006	A61010325002 22-MW02-0204 08/31/2006	A61010325003 22-MW03-0406 08/31/2006	A61010325004 22-MW04-0608 09/01/2006	A61010325005 22-MW05-0204 09/01/2006
Gasoline Range Organics (C6-C12)	ug/kg	110 U	12000	120 U	120 U	110 U
C10-C20	mg/kg	110 U	1800	9.7 J	2.3 J	2.4
C20-C34	mg/kg	710	3000	86	20	10

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

## Table 2-4Analytical Data SummarySite 22 Soil MetalsODOT Innerbelt Study

PARAMETER	UNITS	A6I010325001 22-SB01-0204 08/31/2006	A6I010325002 22-MW02-0204 08/31/2006	A6I010325003 22-MW03-0406 08/31/2006	A61010325004 22-MW04-0608 09/01/2006	A6I010325005 22-MW05-0204 09/01/2006
Percent Solids	%	88	86.8	86.2	81.5	88.2
Arsenic	mg/kg	2.3	8.4	5.7	8.5	4.9
Barium	mg/kg	49.1	96.4	40	28.9	8.9 J
Cadmium	mg/kg	0.042 J	0.17 J	0.18 J	0.074 J	0.18 J
Chromium	mg/kg	3.5	10.5	5.7	7.2	4.3
Lead	mg/kg	9.0	48	17.5	7.1	9.2
Selenium	mg/kg	0.40 J	0.58 U	0.58 U	0.61 U	0.57 U
Silver	mg/kg	0.57 U	0.58 U	0.58 U	0.61 U	0.57 U
Mercury	mg/kg	0.017 J	0.32	0.073 J	0.018 J	0.030 J

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UNITS ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 U 1.0 U 1.0 U 1.0 U <b>0.42 J</b> 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
ug/L ug/L ug/L ug/L ug/L ug/L	1.0 U 1.0 U 1.0 U <b>0.42 J</b> 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	
ug/L ug/L ug/L ug/L ug/L	1.0 U 1.0 U <b>0.42 J</b> 1.0 U	1.0 U 1.0 U	1.0 U		
ug/L ug/L ug/L ug/L	1.0 U <b>0.42 J</b> 1.0 U	1.0 U		1.0 U	1.0 U
ug/L ug/L ug/L	<b>0.42 J</b> 1.0 U		1.0 U	1.0 U	1.0 U
ug/L ug/L	1.0 U		1.0 U	1.0 U	1.0 U
ug/L		1.0 U	1.0 U	1.0 U	
	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	- · · ·			[	1.0 U
	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
-			1		1.0 U
	and an and the second sec		the second se		1.0 U
				•	1.0 U
	a second a s			and the second	1.0 U
	· · · ·		and the second		1.0 U
an se sy se se se s	enders and the second second second		a sea a su	and the second	1.0 U
<del>.</del>	· · · ·	· · ·		· · · · · · · · · · · · · · · · · · ·	10 U
···. ·. ··· ···	and the second s		and the second		10 U
	A REAL PROPERTY AND A REAL		· · · ·	·	10 U
1.2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	And the second second second second	the second second second second	concerns and concerns an other second concerns.	the state of the state of the state of the	10 U
a a sina an	The second se				1.0 U
100 C 107 102 100	strend in the control short way to be			· · · · · · · · · · · · · · · · · · ·	1.0 U
ug/L				1.0 U	1.0 U
ug/L	Autoreters a Viene and States to the second			1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ug/L	10 U				10 U
ug/L	5.0 U		contraction of the second s	the second s	5.0 U
_			and the second		1.0 U
and the second second	e to star set a set a tra		the second se	the structure of the st	1.0 U
			and the second		1.0 U
	and the second	the second se	a. A second sec second second sec	week of the second second	1.0 U
	· · · · · · · · · · · · · · · · · · ·		the second se	the second se	1.0 U
and the second of the second second	Construction of the construction of the second	and the second	industry and the strategy of the strategy of the strategy of		1.0 U
	A CONTRACT OF		e en en de la company en		1.0 U
	and the second	and the second			and the second sec
					1.0 U
	the second se		A CONTRACTOR CONTRACTOR OF A MARKET A	<ul> <li>Material and the second se</li></ul>	1.0 U
	· · · · · · ·		· · · · · · · · · · · · · · · · ·		1.0 U 2.0 U
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L         1.0 U           ug/L         10 U           ug/L         1.0 U	ug/L         1.0 U         1.0 U           ug/L         10 U         10 U           ug/L         10 U         10 U           ug/L         10 U         10 U           ug/L         1.0 U         1.0 U           ug/L         1.0 U<	ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         10 U         10 U         0.97 J         ug/L           ug/L         10 U         10 U         10 U         10 U           ug/L         10 U         10 U         10 U         10 U           ug/L         10 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U	ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         10 U         10 U         1.0 U         1.0 U         1.0 U           ug/L         10 U         10 U         10 U         10 U         10 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug/L         1.0 U         1.0 U         1.0 U         1.0 U         1.0 U           ug

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

		A6I220382005 22-MW-04	A61220382006 TB-092006 09/20/2006		
PARAMETER	UNITS	09/20/2006	dalah wasan ing p		
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U		
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U		
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U		
1,1-Dichloroethane	ug/L	1.0 U	1.0 U		
1,1-Dichloroethene	ug/L	1.0 U	1.0 U		
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U		
1,2-Dibromo-3-chloropropane	ug/L	2.0 U	2.0 U		
1,2-Dibromoethane	ug/L	1.0 U	1.0 U		
1,2-Dichlorobenzene	ug/L	1.0 U	1.0 U		
1,2-Dichloroethane	ug/L	1.0 U	1.0 U		
1,2-Dichloropropane	ug/L	1.0 U	1.0 U		
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U		
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U		
2-Butanone	ug/L	0.73 J	10 U		
2-Hexanone	ug/L	10 U	10 U		
4-Methyl-2-pentanone	ug/L	10 U	10 U		
Acetone	ug/L	1.2 J	10 U		
Benzene	ug/L	1.0 U	1.0 U		
Bromodichloromethane	ug/L	1.0 U	1.0 U		
Bromoform	ug/L	1.0 U	1.0 U		
Bromomethane	ug/L	1.0 U	1.0 U		
Carbon disulfide	ug/L	1.0 U	1.0 U		
Carbon tetrachloride	ug/L	1.0 U	1.0 U		
Chlorobenzene	ug/L	1.0 U	1.0 U		
Chloroethane	ug/L	1.0 U	1.0 U		
Chloroform	ug/L	1.0 U	1.0 U		
Chloromethane	ug/L	1.0 U	1.0 U		
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U		
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U		
Cyclohexane	ug/L	1.0 U	1.0 U		
Dibromochloromethane	ug/L	1.0 U	1.0 U		
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U		
Ethylbenzene	ug/L	1.0 U	1.0 U		
Isopropylbenzene	ug/L	1.0 U	1.0 U		
Methyl acetate	ug/L	10 U	10 U		
Methyl tert-butyl ether	ug/L	5.0 U	5.0 U		
Methylcyclohexane	ug/L	1.0 U	1.0 U		
Methylene chloride	ug/L	1.0 U	1.0 U		
Styrene	ug/L	1.0 U	1.0 U		
Tetrachloroethene	ug/L	1.0 U	1.0 U		
Toluene	-	1.0 U	1.2		
trans-1,2-Dichloroethene	ug/L	1.0 U	1.2 1.0 U		
e an se a far ar le anna a se se	ug/L				
trans-1,3-Dichloropropene	ug/L	1.0 U	1.0 U		
Trichloroethene	ug/L	1.0 U	1.0 U		
Trichlorofluoromethane	ug/L	1.0 U	1.0 U		
Vinyl chloride	ug/L	1.0 U	1.0 U		
Xylenes (total)	ug/L	2.0 U	0.57 J		

U =The analyte was analyzed for, but was not detected. Valu

J = Estimated concentration because the result was below th

)

		A6I010325006 22-SB01-083106 08/31/2006	A6I220382001 22-MW-02 09/20/2006	A61220382002 22-MW-05 09/20/2006	A61220382003 22-MW-05D 09/20/2006	A61220382004 22-MW-03 09/20/2006
PARAMETER	UNITS					
1,1'-Biphenyl	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorophenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
2-Methylphenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2-Nitrophenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitrophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	ug/L	0.23	0.85	0.20 U	0.20 U	0.20 U
Acenaphthylene	ug/L	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Acetophenone	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Anthracene	ug/L	0.28	0.20 U	0.20 U	0.20 U	0.20 U
Atrazine	ug/L	1.0 U	1.0 U	1.0 U	0.71 J	1.0 U
Benzaldehyde	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzo(a)anthracene	ug/L	0.63	0.24	0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	ug/L	0.65	1	0.20 U	0.20 U	0.20 U
Benzo(b)fluoranthene	ug/L	0.84	1	0.20 U	0.20 U	0.20 U
Benzo(ghi)perylene	ug/L	0.49	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	ug/L	0.37	0.94	0.20 U	0.20 U	0.20 U
bis(2-Chloroethoxy)methane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	ug/L	1.8 U	3.9 U	3.1 U	1.6 U	1.2 U
Butyl benzyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Caprolactam	ug/L	0.65 J	5.0 U	0.77 J	0.65 J	0.67 J
Carbazole	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbazole	ug/L	0.74	0.23	0.20 U	0.20 U	0.20 U
A. An example of the second s second second se second second sec second second sec	ug/L	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Dibenz(a,h)anthracene Dibenzofuran	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
a construction and the second	ug/L	1.0 U	1.0 U	0.86 J	0.86 J	1.0 U
Diethyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate	ug/L		0.4	0.20 U	0.20 U	0.20 U
Fluoranthene	ug/L	1.6	0.4 0.20 U	0.20 U	0.20 U	0.20 U
Fluorene	ug/L	0.20 U	0.20 U 0.20 U	0.20 U	0.20 U	0.20 0

)

PARAMETER	UNITS	A6I010325006 22-SB01-083106 08/31/2006	A61220382001 22-MW-02 09/20/2006	A61220382002 22-MW-05 09/20/2006	A61220382003 22-MW-05D 09/20/2006	A61220382004 22-MW-03 09/20/2006
Hexachlorobutadiene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	ug/L	10 U	10 U	10 U	10 U	10 U
Hexachloroethane	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	ug/L	0.43	0.20 U	0.20 U	0.20 U	0.20 U
Isophorone	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	ug/L	0.31	0.20 U	0.20 U	0.20 U	0.20 U
Nitrobenzene	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodi-n-propylamine	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol	ug/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	ug/L	0.68	0.26	0.20 U	0.20 U	0.20 U
Phenol	ug/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene	ug/L	1.1	0.46	0.20 U	0.20 U	0.20 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

		A61220382005 22-MW-04
PARAMETER	UNITS	09/20/2006
1,1'-Biphenyl	ug/L	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/L	1.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U
2,4,6-Trichlorophenol	ug/L	5.0 U
2,4-Dichlorophenol	ug/L	2.0 U
2,4-Dimethylphenol	ug/L	2.0 U
2,4-Dinitrophenol	ug/L	5.0 U
2,4-Dinitrotoluene	ug/L	5.0 U
2,6-Dinitrotoluene	ug/L	5.0 U
2-Chloronaphthalene	ug/L	1.0 U
2-Chlorophenol	ug/L	1.0 U
2-Methylnaphthalene	ug/L	0.20 U
2-Methylphenol	ug/L	1.0 U
2-Nitroaniline	ug/L	2.0 U
2-Nitrophenol	ug/L	2.0 U
3,3'-Dichlorobenzidine	ug/L	5.0 U
3-Nitroaniline	ug/L	2.0 U
4,6-Dinitro-2-methylphenol	ug/L	5.0 U
4-Bromophenyl phenyl ether	ug/L	2.0 U
4-Chioro-3-methylphenol	ug/L	2.0 U
4-Chloroaniline	ug/L	2.0 U
4-Chlorophenyl phenyl ether	ug/L	2.0 U
4-Methylphenol	ug/L	2.0 0
4-Nitroaniline		2.0 U
4-Nitrophenol	ug/L ug/L	5.0 U
Acenaphthene	ug/L	0.84
Acenaphthylene		0.20 U
a anathermal a	ug/L	1.0 U
Acetophenone	ug/L	0.23
Anthracene	ug/L	and a second second
a and the second s	ug/L	1.0 U
Benzaldehyde	ug/L	1.0 U
Benzo(a)anthracene	ug/L	0.20 U
Benzo(a)pyrene	ug/L	0.97
Benzo(b)fluoranthene	ug/L	0.95
Benzo(gni)perviene	ug/L	0.20 0
Benzo(k)fluoranthene	ug/L	0.88
bis(2-Chloroethoxy)methane	ug/L	1.0 U
bis(2-Chloroethyl) ether	ug/L	1.0 U
bis(2-Ethylhexyl) phthalate	ug/L	2.4 U
Butyl benzyl phthalate	ug/L	1.0 U
Caprolactam	ug/L	5.0 U
Carbazole	ug/L	1.0 U
Chrysene	ug/L	0.20 U
Dibenz(a,h)anthracene	ug/L	0.20 U
Dibenzofuran	ug/L	1.0 U
Diethyl phthalate	ug/L	1.0 U
Dimethyl phthalate	ug/L	1.0 U
Di-n-butyl phthalate	ug/L	0.79 J
Di-n-octyl phthalate	ug/L	1.0 U
Fluoranthene	ug/L	0.25
Fluorene	ug/L	0.20 U
Hexachlorobenzene	ug/L	0.20 U

PARAMETER	UNITS	A61220382005 22-MW-04 09/20/2006
Hexachlorobutadiene	ug/L	1.0 U
Hexachlorocyclopentadiene	ug/L	10 U
Hexachloroethane	ug/L	1.0 U
Indeno(1,2,3-cd)pyrene	ug/L	0.20 U
Isophorone	ug/L	1.0 U
Naphthaiene	ug/L	0.20 U
Nitrobenzene	ug/L	1.0 U
N-Nitrosodi-n-propylamine	ug/L	1.0 U
N-Nitrosodiphenylamine	ug/L	1.0 U
Pentachlorophenol	ug/L	5.0 U
Phenanthrene	ug/L	0.20 U
Phenol	ug/L	1.0 U
Pyrene	ug/L	0.17 J

U =The analyte was analyzed for, but was not detected

 ${\sf J}={\sf Estimated}$  concentration because the result was be

.

PARAMETER	UNITS	A6I010325006 22-SB01-083106 08/31/2006	A6I220382001 22-MW-02 09/20/2006	A61220382002 22-MW-05 09/20/2006	A61220382003 22-MW-05D 09/20/2006	A61220382004 22-MW-03 09/20/2006	A61220382005 22-MW-04 09/20/2006
Arsenic	ug/L	193	7.5 J	50.0 U	20.0 U	4.5 J	6.8 J
Barium	ug/L	1410	214	855	688	57.1 J	337
Cadmium	ug/L	3.1	2.0 U	28.2 J	6.7 J	2.0 U	2.0 U
Chromium	ug/L	117	5.5	25.0 G U	10.0 G U	4.9 J	5.3
Lead	ug/L	6970	20.4	53.1 J	18.8 J	3.0 U	1.7 J
Selenium	ug/L	5.0 U	5.0 U	25.0 U	10.0 U	9.4	2.8 J
Silver	ug/L	2.2 J	5.0 U	25.0 U	10.0 U	5.0 U	5.0 U
Mercury	ug/L	14.7	0.11 J	0.20 U	0.20 U	0.20 U	0.20 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

ì

### 6.12 SITE 23 – NS RAILROAD BUILDING

The Cleveland City Directories for 1954 through 1999, in five-year intervals, were reviewed for information regarding the site. There were no listings for the site.

According to the Cleveland Fire Prevention Bureau files, the site is currently occupied by a storage building for the Rail Road. There reportedly is a 500-gallon gasoline UST on the site.

At the time of the URS Phase I reconnaissance, the site was occupied by a railroad storage building. Multiple piles of tires, roofing materials, lumber, and construction debris were observed on the site. Surface staining and oily sheens were observed on the ground. Drums, which were labeled to contain soil cuttings, were located on the site.

### 6.12.1 Field Activities

A total of four monitoring wells and six surface samples were proposed for Site 23. Groundwater was encountered in all soil borings during field activities and monitoring wells were installed. A total of eleven soil samples (surface and subsurface) and four groundwater samples were collected and analyzed for VOCs, SVOCs, TPH and RCRA Metals. A duplicate soil sample was collected from 23-MW01-2224. A Sample Location Map is included as **Figure 6-12A**.

### 6.12.2 Site-Specific Geology/Hydrogeology

Soils at Site 23 consisted primarily of sand, silty sand, and silty clay with minor amounts of slag and gravel. Bedrock was not encountered in any of the soil borings, which were advanced to 30 feet bgs.

Groundwater elevations were measured at Site 23 on August 10, 2006. Localized groundwater flow across Site 23 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 23 is to the south-southwest, towards the Cuyahoga River.

### 6.12.3 Geophysical Survey

The geophysical survey at Site 23 included the asphalt-paved parking and drive surfaces northeast and northwest of the building. The remaining property was fenced and inaccessible. The investigation was completed in a single set of transects aligned parallel or perpendicular to the building in a northeast-southwest orientation. Paint marks were plotted on the pavement to align the transects.

The survey identified four areas of anomalously high magnetic gradients. These areas are shown on **Figure 6-12B** as anomalies A through D as described below:

A. The anomaly labeled "A" is related to a manhole.

j

- B. Several anomalies were detected along the northwest edge of the building and the fence to the rear of the building. These anomalies are assumed to be related to utility connections at the building and the steel, chain-linked fence.
- C. An anomaly was noted at the footer for of a former AST and is likely related to the presence of reinforcing steel.
- D. An anomaly was observed at the southeastern portion of the Site that is assumed to be related to a water line and water connections.

No evidence of a UST was discovered as a result of the geophysical survey at Site 23.

### 6.12.4 Soil Analytical Results

A total of eighteen VOCs were detected in five soil samples submitted from Site 23. The chemicals detected in the samples submitted were 1,1,1-trichlorothane (25 ug/kg), 1,1-dichloroethene (1.8 ug/kg), 1,2,4-trichlorobenzene (6.0 ug/kg), 1,2-dichlorobenzene (1.6 ug/kg), 1,3-dichlorobenzene (1.6 ug/kg), 1,4-dichlorobenzene (1.9 ug/kg), 2-butanone (ranging from 1.5 ug/kg to 8.8 ug/kg), acetone (ranging from 4.5 ug/kg to 45 ug/kg), benzene (ranging from 0.37 ug/kg to 1.5 ug/kg), carbon disulfide (ranging from 0.57 ug/kg to 11 ug/kg), cyclohexane (0.86 ug/kg and 1.5 ug/kg), ethylbenzene (ranging from 1.6 ug/kg and 11 ug/kg), isopropylbenzene (ranging from 0.80 ug/kg to 15 ug/kg), methylcyclohexane (2.7 ug/kg and 4.5 ug/kg), methylene chloride (5.5 ug/kg and 7.9 ug/kg), styrene (1.6 ug/kg), toluene (ranging from 0.45 ug/kg to 6.5 ug/kg), and total xylenes (ranging from 4.5 ug/kg to 25 ug/kg). All other VOCs were below the detection limits.

A total of 27 SVOCs were detected in the samples submitted from Site 23. Concentrations of 1,1'-biphenyl (ranging from 40 ug/kg to 2,800 ug/kg), 2-methylnaphthalene (ranging from 41 ug/kg to 11,000 ug/kg), 4-methylphenol / 3-methylphenol (72 ug/kg), acenaphthene (ranging from 12 ug/kg to 21,000 ug/kg), acenaphthylene (ranging from 24 ug/kg to 140 ug/kg), acetophenone (380 ug/kg), anthracene (ranging from 18 ug/kg to 16,000 ug/kg), benzaldahyde (2,900 ug/kg), benzo(a)anthracene (ranging from 59 ug/kg to 11,000 ug/kg), benzo(a)pyrene (ranging from 57 ug/kg to 5,300 ug/kg), benzo(b)fluoranthene (ranging from 84 ug/kg to 8,000 ug/kg), benzo(g,h,i)perylene (ranging from 49 ug/kg to 1,900 ug/kg), benzo(k)fluoranthene (ranging from 30 ug/kg to 3,200 ug/kg), bis(2-ethylhexyl)phthalate (ranging from 31 ug/kg to 5,600 ug/kg), caprolactam (45 ug/kg), carbazole (ranging from 33 ug/kg to 10,000 ug/kg), chrysene (ranging from 69 ug/kg to 9,500 ug/kg), dibenz(a,h)anthracene (ranging from 13 ug/kg to 320 ug/kg), dibenzofuran (ranging from 130 ug/kg to 13,000 ug/kg), di-n-butyl phthalate (120 ug/kg), fluoranthene (ranging from 110 ug/kg to 46,000 ug/kg), fluorene (ranging from 28 ug/kg to 22,000 ug/kg), indeno(1,2,3)pyrene (ranging from 38 ug/kg to 1,800 ug/kg), naphthalene (ranging from 16 ug/kg to 31,000 ug/kg), phenanthrene (ranging from 76 ug/kg to 74,000 ug/kg), phenol (220 ug/kg), and pyrene (ranging from 100 ug/kg to 34,000 ug/kg) were detected in the soil samples submitted.

Gasoline and diesel range total petroleum hydrocarbons were detected in the soil samples from Site 23. The highest concentrations were found in the diesel range, which is consistent with the

)

)

## SECTIONSIX

)

)

concentrations of SVOCs detected across Site 23. A concentration of the light petroleum fraction from 23-MW01-2224 was 88 ug/kg and from 23-MW02-1416 was 5,600 ug/kg. Concentrations of the middle petroleum fraction ranged from 7.2 mg/kg to 100 mg/kg. Concentrations of the heavy petroleum fraction ranged from 16 mg/kg to 2,000 mg/kg.

Seven of the eight RCRA Metals were detected in the samples submitted from Site 23. Arsenic, ranging from 2.6 mg/kg to 18.6 mg/kg, was detected in all the samples submitted. Barium, ranging from 47 mg/kg to 311 mg/kg, was detected in all the samples submitted. Cadmium, 0.20 mg/kg to 2.5 mg/kg, was detected in all the samples submitted. Chromium, ranging from 5.5 mg/kg to 364 mg/kg, was detected in all the samples submitted. Lead, ranging from 6.6 mg/kg to 761 mg/kg, was detected in all the samples submitted. Silver, 0.50 mg/kg, was detected in sample 23-SS01. Mercury, ranging from 0.020 mg/kg to 0.16 mg/kg, was detected in all the samples submitted.

The analytical results are presented in Table 6-12A.

### 6.12.5 Groundwater Analytical Results

A total of four VOCs were detected in three of the four groundwater samples submitted from Site 23. The chemicals detected in the samples submitted were 1,1,1-trichloroethane (62 ug/L), 1,1-dichloroethane (1.1 ug/L and 4.9 ug/L), 1,1-dichloroethene (0.47 ug/L), and toluene (0.25 ug/L). All other VOCs were below the detection limits.

A total of two SVOCs were detected in 23-MW02 from Site 23. Concentrations of 2methylnaphthalene (0.35 ug/L) and acenaphthene (0.62 ug/L) were detected in the groundwater sample.

Five of the eight RCRA metals were detected in the samples submitted from Site 23. Arsenic, ranging from 5.7 ug/L to 6.1 ug/L, was detected in the samples submitted. Barium, ranging from 47.4 ug/L to 59.5 ug/L, was detected in the samples submitted. Chromium, ranging from 3.5 ug/L to 4.0 ug/L, was detected in the samples submitted. Lead, ranging from 2.0 ug/L to 3 ug/L, was detected in the samples submitted. Selenium, 5.3 ug/L, was detected in sample 23-MW04.

The analytical results are presented in Table 6-12B.

### 6.12.6 Comparison Standards

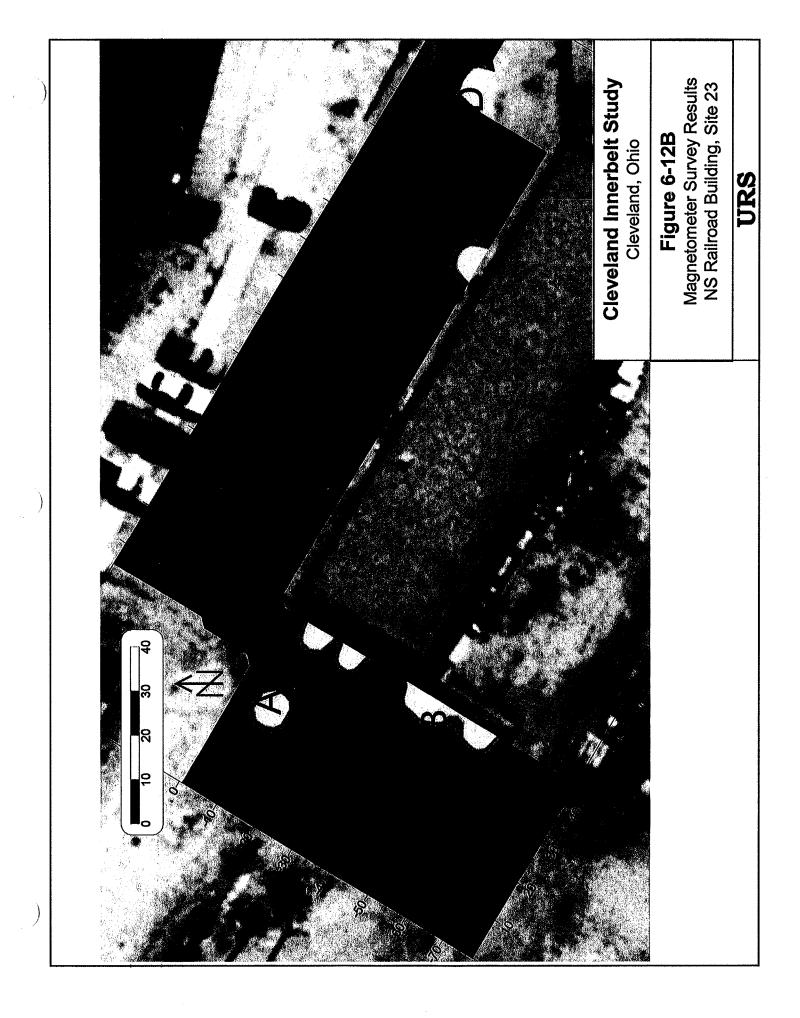
The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on Table 6-12A and 6-12B.

There were no VOCs, TPH, or RCRA metals detected in any of the soil samples from Site 23, which exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.

## SECTIONSIX

)

The concentrations of benzo(a)anthracene, benzo(a)pyrene, and dibenz(a,h)anthracene deteced from samples 23-MW02-1416, 23-SS01, and 23-SS06 exceeded the BUSTR closure action levels. No other SVOCs detected exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.


There were no VOCs, SVOCs, or RCRA metals detected in any of the groundwater samples from Site 23, which exceeded the OEPA VAP standard for generic unrestricted potable use standards or BUSTR closure action levels.

#### 6.12.7 Conclusions

Based on the analytical results, the soil at Site 23 may require special disposal and/or worker protection protocols (plan note) during construction activities.

## FIGURES





## TABLES

Table 0-12A	Summary of Detected Chemicals in Soi	Site 23 - NS Railroad Building	<b>ODOT Innerbelt Study</b>	Cleveland, Ohio
-------------	--------------------------------------	--------------------------------	-----------------------------	-----------------

23-MW04-1012 07/14/2006 380 U 380 U 380 U 380 U 1.8 J 5.8 U 5.8 U 5.8 U 0.45 J 380 U 380 U 77 U 18 J 59 J 38 J 5.8 U 5.8 U 1.5 J 4.5 J 5.8 U 5.8 U 5.8 U 5.8 U 12 U 5.5 J 12 J 57 J 84 J 49 J 30 J 12 U 12 U 41 J 69 J 52 23-MW03-1012 07/14/2006 1500 U 1500 U 1500 U 1500 U 1500 U 5.9 UJ 310 U 190 J 230 J 150 J 5.9 UJ 5.9 UJ 5.9 UJ 0.86 J 0.86 J 290 J 680 J 310 J 1500 U 5.9 UJ 3.6 J 7 7 5.9 U 8.8 J 4.5 J 5200 2.4 J 7.5 J 2.7 J ⊃ 1.6 J 7.9 480 560 55 640 5.9 23-MW02-1416 07/13/2006 18000 U 11000 J 3700 U 18000 U 16000 J 1900 J 18000 U 10000 J 2800 J 11000 J 18000 U 21000 5300 J 8000 J 3200 J 18000 U 28 U 6.5 J 6.0 J 7.1 J 110 U 55 U 55 U 1.6 J 25 J 28 U 7 1.9 J 15 J 11 J ⊃ 11 J 9500 9.1 1.6 1.4 8 23-MW01-2224-D 07/13/2006 6.3 UJ 410 U 6.3 U 6.3 UJ 6.3 UJ 6.3 UJ 6.3 UJ 25 U 13 J 7.0 J 84 U 120 J 410 U 1.7 J 1.5 J 4.5 J 6.3 U 40 J 72 J 43 J 35 J 280 J 38 J 2.5 J 210 J 61 J ∍ 7 0.80 J 7 560 460 420 680 460 2 1.5 6.3 23-MW01-2224 07/13/2006 810 U 810 U 6.1 U 810 U 810 U 160 U 260 J 810 U 810 U 120 J 12 U 6.1 U 6.1 U 810 U 25 U 6.1 U 6.1 U 6.1 U 6.1 U 12 U 12 U 460 J 440 J ⊃ ⊃  $\supset$  $\supset$  $\supset$ Þ 7 1000 810 820 890 006 6.1 6.1 6.1 6.1 1.9 6.1 6.1 BUSTR Closure Action 1,100,000 110,000 15,700 11,000 11,000 45,500 49,100 1,100 149 1 ł ł ; ; 17 ł ł t 1 I : ł 1 1 ł ł ł 14 1 ł ł ł 1 1,000,000,000 Istruction 530,000,000 870,000,000 100,000,000 41,000,000 31,000,000 80,000,000 8,100,000 230,000 1,400,000 240,000 5,300,000 2,300,000 1,700,000 810,000 Worker 2,300,000 720,000 860,000 520,000 810,000 370,000 310,000 81,000 230,000 160,000 ł 1 ł 1 180,000,000 290,000,000 880,000,000 100,000,001 10,000,000 2,300,000 71,600,000 6,700,000 1,400,000 ,300,000 1,700,000 240,000 720,000 520,000 630,000 230,000 ndustrial 100,000 860,000 230,000 63,000 63,000 370,000 470,000 160,000 6,300 Standar ł ł ł : ł ug/kg ng/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg UNITS ug/kg ng/kg ug/kg ug/kg 4-Methylphenol / 3-Methylphenol bis(2-Ethylhexyl) phthalate 1,2,4-Trichlorobenzene Benzo(b)fluoranthene Benzo(k)fluoranthene 2-Methylnaphthalene 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene Benzo(a)anthracene 1,4-Dichlorobenzene Benzo(ghi)perylene 1,1-Dichloroethane Methylcyclohexane Methylene chloride Isopropylbenzene Benzo(a)pyrene Acenaphthylene Carbon disulfide Xylenes (total) Acenaphthene Acetophenone Benzaldehyde Ethylbenzene Cyclohexane 1,1'-Biphenyl Caprolactam Anthracene 2-Butanone Carbazole Chrysene PARAMETER Benzene Styrene Acetone Toluene SVOCS SOOV

URS

P:IOIODOT/15016633/DOCs\Data\Hits Tables\Site 23 Hits Tables

-

Summary of Detected Chemicals in Soil Site 23 - NS Railroad Building **ODOT Innerbelt Study** Cleveland, Ohio Table v=12A

)

Image: 1         Image: 2			認定が思えてい	CALCENTRY OF A	ななが、日本文学校の				and the second second second second second		
AMMETER         Models intelligential         Worlds         Industrial         Wirds         Standart         Standart <th></th> <th></th> <th></th> <th>Commercial/</th> <th>Construction</th> <th>. BUSTR</th> <th>23-MW01-2224</th> <th>23-MW01-2224-D</th> <th>23-MW02-1416</th> <th>23-MW03-1012</th> <th>23-MW04-1012</th>				Commercial/	Construction	. BUSTR	23-MW01-2224	23-MW01-2224-D	23-MW02-1416	23-MW03-1012	23-MW04-1012
ARMETER         UNTS         Standards         Lote         Lote <thlote< thr="">         Lote         Lote</thlote<>				- Industrial	Worker	Closure Action	07/13/2006	07/13/2006	07/13/2006	07/14/2006	07/14/2006
Dibercacturan         ug/s         6,700         41,000         1,100         150 J         150 J         1500 J         150 J		PARAMETER	UNITS	Standard	Standard ⁽²⁾	Level					
Dibenzofuran         ug/g         -         -         -         -         -         -         160 J         1300 J         950 J         950 J           Dri-butyl pithalate         ug/g         100,000         100,000         -         100         100 J         1500 U         1500 U         1500 U         1500 J         1500 J         1500 J         120 J <td< th=""><th></th><th>Dibenz(a,h)anthracene</th><th>ug/kg</th><th></th><th>41,000</th><th>1,100</th><th>150 J</th><th>76 J</th><th>18000 U</th><th>1500 U</th><th>13 J</th></td<>		Dibenz(a,h)anthracene	ug/kg		41,000	1,100	150 J	76 J	18000 U	1500 U	13 J
Drin-burly prithatate         ug/g         100,000         100,000         -         810 U         410 U         1500 U         1500 U           Florente         ug/g         33,000,000         170,000,000         -         1800         860         840 J           Florente         ug/g         33,000,000         170,000,000         17,000         340,01         3600         120 J           Florente         ug/g         53,000,000         11,000         440 J         52 J         22000         120 J           Nathrit/12-sch)prene         ug/g         53,000,000         11,000         440 J         260 J         1300 J         3000           Prena         ug/g         50,00         10,00,000,00         11,000         590 J         1400 J         1500 J           Prena         ug/g         50,00         10,00,000 O         11,000         590 J         1600 J         100 J           Prena         ug/g         1,000,000         11,000         10 J         1300 J         1500 J           Prena         ug/g         1,000,000         130,000 J         120 J         100 J         100 J           Gasoline Fange Organics (C6-C12)         ug/g         -         120 J         188 J		Dibenzofuran	ug/kg	. 1			180 J	130 J	13000 J	950 J	380 U
Huoranthene         ug/g         33,000,000         170,0000          1800         32,1         22000         840 J           Fluorene         ug/g         170,0000         340,0000          99 J         52,1         22000         120 J           Indeno(1,2,3-cd)pyrene         ug/g         67,000         410,000         1,000         440 J         260 J         1800 J         260 J         200         7000         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         <		Di-n-butyl phthalate	ug/kg	100,000	100,000		810 U	410 U	18000 U	1500 U	380 U
Function $ug/kg$ 120,000,000 $340,000$ $340,000$ $19, J$ $52, J$ $22000$ $120, J$ Indeno(1,2,3-cd)pyrene $ug/kg$ $67,000$ $410,000$ $11,000$ $400, J$ $260, J$ $3000$ $1500$ Naphthalene $ug/kg$ $530,000$ $130,000$ $33,800$ $550, J$ $400, J$ $31000$ $3000$ Phenal $ug/kg$ $7,000$ $130,000$ $510,0000$ $130,00000$ $510,00000$ $130,000$ $1500, J$ Phenal $ug/kg$ $7,000$ $130,000,000$ $$ $1100$ $590$ $74000$ $1500, J$ Phenal $ug/kg$ $$ $$ $1000,000$ $$ $1100$ $180, U$ $410, U$ Phenal $ug/kg$ $25,000,000$ $130,000,000$ $$ $100,000$ $120, U$ $410, U$ $1500$ Phenal $ug/kg$ $$ $$ $$ $1000,000$ $120, U$ $410, U$ $13000, U$ $1300$ Phenal $ug/kg$ $$ $$ $$ $1000,000$ $120, U$ $88, J$ $5600, U$ $140, U$ Phenal $mg/kg$ $$ $$ $$ $12,0U$ $88, J$ $550, U$ $140, U$ C0-C220 $ug/kg$ $$ $$ $$ $$	s		ug/kg	33,000,000	170,000,000	-	1800	880	46000	840 J	110 J
	00		ug/kg	120,000,000	340,000,000	-	P 66	52 J	22000	120 J	380 U
Naprithalene         ug/tg         530,000         1,900,000         39,000         550,1         400,1         31000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         3000         370         3100         3000         370         3100         3000         370         3100         3000         370         3100         3000         370         310         3100         3100         3100         3100         3100         3100         3100         3100         3100         3100         3100         3100         3100         3100         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310         310	٨S		ug/kg	67,000	410,000	11,000	440 J	260 J	1800 J	260 J	38 J
Phenathreneug/kg100590740001500Phenolug/kg1,000,0000510,000,000510,000,000510,000,000150015001500Pyreneug/kg25,000,000130,000,00012018340008701401Casoline Range Organics (C6-C12)ug/kg1,000,0001201208856001401C10-C20mg/kg2,00025128849310C20-C341,000,00013055130310Vasenicmg/kg8021013013345,7311C20-C3413613312,4310310Arsenicmg/kg802100136,115,455,4144Barlummg/kg200,000136,112,4311144User10,112,01305,5130310Arsenic10,120,00013,51,71,4Barlummg/kg20002,0001,71,21,21,6Unomiummg/kg1704,501,71,20,271,4Unomiummg/kg12,0001302,0001,70,51,61,6Unomium10,kg11,20,51,70,51,61,61,6 <td< th=""><th></th><th>Naphthalene</th><th>ug/kg</th><th>530,000</th><th>1,900,000</th><th>39,800</th><th>550 J</th><th>400 J</th><th>31000</th><th>3000</th><th>16 J</th></td<>		Naphthalene	ug/kg	530,000	1,900,000	39,800	550 J	400 J	31000	3000	16 J
Phenol         ug/kg         1,000,000,000         510,000         510,000         750         34000         1500 U         1500 U           Pyrene         ug/kg         25,000,000         130,000,000         -         1500         750         34000         870 J           Pyrene         ug/kg          -         -         1,000,000         120 U         88 J         5600         140 U         1500 U           Gasoline Fange Organics (G5-C12)         ug/kg          -         -         2,000,000         120 U         88 J         5600         140 U           C10-C20         mg/kg          -         -         1,000,000         25         12 J         88 J         49           C20-C34         mg/kg          -         -         1,000         130         55 J         14,4           Barium         mg/kg         800         2,100         -         18,6 J         15,6 J         5,5 J         14,4           Barium         mg/kg         770         420         -         11,7 J         12,J         0,27 J         14,4           Cadmium         mg/kg         -         -         160         133         45,		Phenanthrene	ug/kg		1	1	1100	590	74000	1500	L 97
Pyreneug/kg $25,000,000$ $130,000,000$ $ 1500$ $750$ $34000$ $870$ $370$ Gasoline Range Organics (C6-C12)ug/kg $   1,000,000$ $120$ $88$ $3600$ $870$ $140$ C10-C20mg/kg $    1,000,000$ $25$ $12$ $88$ $49$ C10-C20mg/kg $    1,000,000$ $25$ $12$ $88$ $49$ C10-C20mg/kg $    1300$ $870$ $310$ Arsenicmg/kg $800$ $2100$ $ 130$ $52$ $130$ $310$ Arsenicmg/kg $770$ $420$ $ 17.3$ $15.6$ $5.5$ $311$ Cadmiummg/kg $770$ $420$ $  17.3$ $5.5$ $45.7$ $311$ Cadmiummg/kg $8.900$ $2.000$ $  17.3$ $5.5$ $45.7$ $311$ Leadmg/kg $    0.61$ $0.63$ $0.55$ $0.59$ Koruymg/kg $15.000$ $8.4$ $    0.61$ $0.73$ $0.031$ $0.031$ $0.031$		Phenol	ug/kg	1,000,000,000	510,000,000		810 U	410 U	18000 U	1500 U	380 U
Gasoline Range Organics (C6-C12)ug/kg1000,000120 U88 J5600140 UC10-C20mg/kg2,0002512 J8849C10-C204mg/kg5,00013055 J144 JC10-C204mg/kg8021013055 J144 JArsenicmg/kg80210130310310Arsenicmg/kg800200,00045,00013013345,7311Cadmiummg/kg7704201,7 J1,2 J0,27 J1,61,6Cadmiummg/kg8,9002,0001,7 J1,2 J0,27 J1,61,6Leadmg/kg15,0004,30020,81,7,35,5 J1,6,21,6Silvermg/kg8,9002,0001,7 J1,2 J0,27 J1,61,6Mercurymg/kg15,0004,3002212121,62 U0,059 UMercurymg/kg300840,01 U0,03 J0,031 J0,031 J0,039 J		Pyrene	ug/kg	25,000,000	130,000,000	1	1500	750	34000	870 J	100 J
C10-C20         mg/kg          -         2,000         25         12         88         49           C20-C34         mg/kg          -         -         5,000         25         130         310           Arsenic         mg/kg          -         -         -         5         130         5.5         1         14.4           Arsenic         mg/kg         200,000         45,000         -         18.6         15.6         5.5         1         14.4           Bantum         mg/kg         200,000         45,000         -         18.6         133         45.7         311           Cadmium         mg/kg         770         420         -         1.7         1         1.2         0.27         1.6           Chromium         mg/kg         8,900         2,000         -         20.8         17.3         5.5         45.7         311           Lead         mg/kg         15,000         4,300         -         20.8         17.3         5.5         45.7           Silver         mg/kg         15,000         4,300         -         20.8         0.55         0.59         0.009 J      <	Н	× 1141-1	ug/kg			1,000,000	120 U	L 88	5600	140 U	120 U
C20-C34         mg/kg          -         -         5,000         130         55         1         14.4           Arsenic         mg/kg         80         210         -         18.6         15.6         5.5         1         14.4           Arsenic         mg/kg         200,000         45,000         -         18.6         15.6         5.5         1         14.4           Bartium         mg/kg         200,000         45,000         -         18.6         133         45.7         311           Cadmium         mg/kg         770         420         -         1.7         1.2         0.27         1.6         1.6           Lead         mg/kg         -         -         20.8         17.3         5.5         45.7         311           Lead         mg/kg         -         -         20.8         17.3         5.5         45.7         311           Lead         mg/kg         -         -         -         20.8         17.3         5.5         45.7           Silver         mg/kg         -         -         -         20.1         0.55         0.59         0.009 J           Mercury         <	IЧТ	Ĩ	mg/kg			2,000	25 25	12 J	88	49	7.2
Arsenic         mg/kg         80         210         -         18.6 J         15.6 J         5.5 J         14.4           Bartum         mg/kg         200,000         45,000         -         160         133         45.7         311           Cadmium         mg/kg         770         420         -         1.7 J         1.2 J         0.27 J         1.6           Chromium         mg/kg         770         420         -         20.8         17.3         5.5         45.7           Lead         mg/kg         -         -         20.8         17.3         5.5         45.7           Silver         mg/kg         15,000         4,300         -         20.8         17.3         5.5         45.7           Kecury         mg/kg         15,000         4,300         -         0.61 U         0.63 U         0.59 U		C20-C34	mg/kg	1	1	5,000	130	52	130	310	16
Bartum         mg/kg         200,000         45,000         -         160         133         45.7         311           Cadmium         mg/kg         770         420         -         17.J         12.J         0.27 J         1.6           Chomium         mg/kg         770         420         -         1.7 J         12.J         0.27 J         1.6           Chromium         mg/kg         8,900         2,000         -         20.8         17.3         5.5         45.7           Lead         mg/kg         15,000         4,300         -         20.8         17.3         5.5         16.2         128           Silver         mg/kg         15,000         4,300         -         0.61 U         0.63 U         0.55 U         0.59 U           Mercury         mg/kg         300         84         -         0.16         0.073 J         0.031 J         0.039 J		Arsenic	mg/kg	e de las provientes	210	I	18.6 J	15.6 J	5.5 J	14.4	4.6
Cadmium         mg/kg         770         420         -         1.7         J         1.2         J         0.27         J         1.6           Chromium         mg/kg         8.900         2.000         -         20.8         17.3         5.5         45.7         45.7           Lead         mg/kg         -         -         20.8         17.3         5.5         45.7           Silver         mg/kg         15.000         4,300         -         0.61         0.63         0.55         0.59         0.59         0.69         0.695         0.033         0.031         0.031         0.039         0.039         0	1		mg/kg	· · · · · · · · · ·	45,000	1	160	133	45.7	311	13.8 J
Chromium         mg/kg         8,900         2,000         -         20.8         17.3         5.5         45.7           Lead         mg/kg         -         -         -         221         212         16.2         128           Silver         mg/kg         15,000         4,300         -         0.61 U         0.63 U         0.55 U         0.59 U           Mercury         mg/kg         300         84         -         0.16         0.073 J         0.031 J         0.089 J	SIL		mg/kg	news me	420	ł	1.7 J	1.2 J	0.27 J	1.6	0.20 J
Lead         mg/kg         -         -         -         221         212         16.2         128           Sitver         mg/kg         15,000         4,300         -         0.61 U         0.63 U         0.55 U         0.59 U           Mercury         mg/kg         300         84         -         0.16         0.031 J         0.039 J	13		mg/kg	STORED ALCORD	2,000	1	20.8	17.3	5.5	45.7	6.7
mg/kg         15,000         4,300         -         0.61 U         0.63 U         0.55 U         0.59 U           mg/kg         300         84         -         0.16         0.031 J         0.089 J	W	ļ	mg/kg	a yerre i weren i i yerre i yerre yerre	•	ł	221	212	16.2	128	6.6
mg/kg 300 84 - 0.16 0.073 J 0.031 J 0.089 J		Silver	mg/kg	;	4,300	ł	0.61 U	0.63 U	0.55 U	0.59 U	0.58 U
		Mercury	mg/kg	300	84		0.16	0.073 J	0.031 J	L 0.089	0.12 U

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not

met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

(1) VAP Generic Direct Contact Soil Standard, Commercial Industrial Land Use

(2) VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

Table     A       Summary of Detected Chemicals in Soil       Site 23 - NS Railroad Building	ODOT Innerbelt Study Cleveland, Ohio
----------------------------------------------------------------------------------------------	-----------------------------------------

)

)

٥	PARAMETER	STIN	VAP Commercial Commercial	VAP Construction Worker Standard ²¹	BUSTR BUSTR Closure Action	23-SS01 07/14/2006	23-SS02 07/14/2006	23-SS03 07/14/2006	23-SS04 07/14/2006	23-SS05 07/14/2006	23-SS06 07/14/2006
	1,1,1-Trichloroethane	ug/kg	1,400,000	1,400,000	;	7.6 U	5.8 U	5.3 U	5.3 U	6.0 U	6.4 U
	1,1-Dichloroethane	ug/kg	2,300,000	2,300,000		7.6 U	5.8 U	5.3 U	5.3 U	6.0 U	6.4 U
	1,2,4-Trichlorobenzene	ng/kg	-			7.6 W	5.8 W	5.3 U	5.3 U	6.0 U	6.4 UJ
	1,2-Dichlorobenzene	ng/kg	370,000	370,000	I	7.6 UJ	5.8 W	5.3 U	5.3 U	6.0 U	6.4 UJ
	1,3-Dichlorobenzene	ug/kg	240,000	240,000		7.6 UJ	5.8 W	5.3 U	5.3 U	6.0 U	6.4 UJ
	1,4-Dichlorobenzene	ug/kg	470,000	5,300,000	ł	7.6 UJ	5.8 UJ	5.3 U	5.3 U	6.0 U	6.4 UJ
	2-Butanone	ug/kg	71,600,000	80,000,000		31 U	23 ∪	21 U	21 U	24 U	1.7 J
	Acetone	ng/kg	100,000,000	100,000,000		31 U	23 U	21 U	21 U	24 U	26 U
sO	Benzene	ug/kg	100,000	310,000	149	7.6 U	0.37 J	5.3 U	5.3 U	6.0 U	6.4 U
οΛ	Carbon disulfide	ug/kg	720,000	720,000		7.6 U	5.8 U	5.3 U	5.3 U	6.0 U	0.57 J
	Cyclohexane	ug/kg	a sealar a barren a transformation de la sea a companya de la			15 U	12 U	11 U	11 U	12 U	13 U
	Ethylbenzene	ug/kg	230,000	230,000	45,500	7.6 U	5.8 W	5.3 U	5.3 U	6.0 U	6.4 U
	lsopropylbenzene	ug/kg	860,000	860,000	and a second sec	7.6 U	5.8 W	5.3 U	5.3 U	6.0 U	1.0 J
	Methylcyclohexane	ug/kg			and a second	15 U	12 U	11 U	⊐ F	12 U	13 U
	Methylene chloride	ug/kg	1,300,000	2,300,000		7.6 U	6.7	5.3 U	5.3 U	6.0 U	6.4 U
	Styrene	ug/kg	1,700,000	1,700,000		7.6 U	5.8 UJ	5.3 U	5.3 U	6.0 U	6.4 U
	Toluene	ug/kg	520,000	520,000	49,100	7.6 U	1.3 J	5.3 U	5.3 U	6.0 U	6.4 U
	Xylenes (total)	ug/kg	160,000	160,000	15,700	15 U	12 UJ	11 U	11 U	12 U	13 U
	1,1'-Biphenyl	ug/kg	<b>I</b> .	1	1 	2000 U	19000 U	350 UJ	1400° U	400 N	1 100 N
	2-Methylnaphthalene	ug/kg	1	1	1	480 J	6800 J	350 UJ	68 J	67 J	100 J
	4-Methylphenol / 3-Methylphenol	ug/kg			■ • • • • • • • • • • • • • • • • • • •	2000 U	19000 UJ	350 UJ	1400 U	400 U	1100 U
	Acenaphthene	ug/kg	180,000,000	530,000,000		120 J	19000 U	27 J	28 J	14 J	57 J
	Acenaphthylene	ug/kg		and a second	<ul> <li>Annotation (Annotation (Annotation))</li> </ul>	140 J	19000 U	24 J	37 J	400 U	54 J
	Acetophenone	ug/kg	290,000,000	870,000,000	<ul> <li>A for a number of the second se</li></ul>	380 J	3900 UJ	70 N	280 U	80 U	210 U
	Anthracene	ug/kg	880,000,000	1,000,000,000	1	350 J	19000 UJ	Э6 J	130 J	51 J	260 J
sŋ	1	ug/kg	non yang danyahan interational dan sebesah yang dan sebesah dan sebesah sebesah sebesah sebesah sebesah sebesah	-	Management of the second of the second of the second se	2900	19000 UJ	350 UJ	1400 U	400 U	1100 U
٥٨	Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	1600 J	F 009	370 J	560 J	330 J	1300
S	Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	1500 J	520 J	380 J	L 017	540	1400
	Benzo(b)ftuoranthene	ug/kg	63,000	810,000	11,000	2800	1100 J	620 J	980 J	680	2100
	Benzo(ghi)perylene	ug/kg		1	••••••••••••••••••••••••••••••••••••••	1200 J	830 J	300 J	570 J	450	1000 J
	Benzo(k)fluoranthene	ug/kg	630,000	8,100,000	110,000	۶70 J	19000 U	230 J	340 J	330 J	760 J
	bis(2-Ethylhexyl) phthalate	ug/kg	230,000	230,000		2700	5600 J	55 J	1400 U	31 J	92 J
	Caprolactam	ug/kg	1	:	1	2000 U	19000 UJ	350 UJ	1400 U	45 J	1100 U
	Carbazole	ug/kg	10,000,000	31,000,000	and the state of the	310 J	19000 UJ	۲ P	1400 U	33 J	230 J
	Chrysene	ug/kg	6,700,000	41,000,000	1,100,000	1900 J	730 J	460 J	680 J	400	1300

P:IOIODOT/15016633\DOCs\Data\Hits Tables\Site 23 Hits Tables

URS

ŝ

Table w-12A Summary of Detected Chemicals in Soil	Site 25 - NS Kaliroad Building ODOT Innerbelt Study	Cleveland, Ohio
------------------------------------------------------	--------------------------------------------------------	-----------------

1

)

d	PARAMETER	INITS	VAP Commercial/2 Didustrial Standard ⁽¹⁾	Construction Worker Standard®	BUSTR BUSTR Closure Action	23-SS01 07/14/2006	23-SS02 07/14/2006	23-SS03 07/14/2006	23-SS04 07/14/2006	23-SS05 07/14/2006	23-SS06 07/14/2006
	Dibenz(a,h)anthracene	ug/kg	6,700	41,000	1,100	210 J	19000 U	350 UJ	1400 U	۲ 06	320 J
	Dibenzofuran	ng/kg	and the second			200 J	19000 U	350 UJ	1400 U	400 U	1100 U
	Di-n-butyl phthalate	ug/kg	100,000	100,000		120 J	19000 UJ	350 UJ	1400 U	400 U	1100 U
!	Fluoranthene	ug/kg	33,000,000	170,000,000	:	3600	690 J	820 J	1100 J	490	2700
soc	Fluorene	ng/kg	120,000,000	340,000,000		120 J	19000 U	28 J	34 J	400 U	28 J
٥٨s	Indeno(1,2,3-cd)pyrene	ug/kg	67,000	410,000	11,000	1100 J	19000 U	220 J	490 J	370 J	950 J
	Naphthalene	ug/kg	530,000	1,900,000	39,800	370 J	3700 J	350 UJ	51 J	81 J	73 J
	Phenanthrene	ug/kg	I	1	;	1800 J	1800 J	390 J	490 J	180 J	1200
	Phenol	ug/kg	1,000,000,000	510,000,000		220 J	19000 U	350 UJ	1400 U	400 U	1100 U
	Pyrene	ug/kg	25,000,000	130,000,000	1	3000	1200 J	640 J	1000 J	450	2200
ł	Gasoline Range Organics (C6-C12)	ug/kg	•	1	1,000,000	150 U	120 U	110 U	110 U	120 U	130 U
191		mg/kg	1		2,000	61 U	100 J	110 U	42 U	12 U	51 U
	C20-C34	mg/kg	•	-	5,000	220	2000	300	96	48	93
	Arsenic	mg/kg	80	210	1	9.8	7.5	2.6	4.8	6.1	5.1
	Barium	mg/kg	200,000	45,000		423	186	92.7	47	85.4	57.9
ST	Cadmium	mg/kg	770	420	I	2.5	1.4	0.3	0.24	1.8	0.38
AT3	Chromium	mg/kg	8,900	2,000		37.6	30.4	12.2	11.2	364	12.2
IW	Lead	mg/kg	1,	:	ł	761	125	19.6	14	18.9	33
	Silver	mg/kg	15,000	4,300	1	0.50 J	0.58 U	0.53 U	0.53 U	3.0 U	0.64 U
	Mercury	mg/kg	300	84	1	0.13 J	0.057 J	0.021 J	0.020 J	0.12 U	0.051 J

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not

met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

(1) VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use

(2) VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

Table 0=12B Summary of Detected Chemicals in Water Site 23 - NS Railroad Building ODOT Innerbelt Study Cleveland, Ohio

)

PA	PARAMETER	UNITS	VAP UPUS	Closure Action	23-MW01 08/10/2006	23-MW02 08/10/2006	23-MW03 08/10/2006	23-MW04 08/10/2006
2	1,1,1-Trichloroethane	4	200	. The state of the	1.0 U	1.0 U	1.0 U	62
so	2 1,1-Dichloroethane	ng/L	1400		1.0 U	:	1.0 U	4.9
٥٨	1,1-Dichloroethene		7		1.0 U	1.0 U	1.0 U	0.47 J
	Toluene	ng/L	1000	1000	0.25 J	1.0 U	1.0 U	2.0 U
\$0Cs	S 2-Methyinaphthalene	ng/L		معد محمد المراجع من المراجع محمد المراجع من المحمد المراجع المحمد	0.20 U	0.35	0.20 U	0.20 U
٨S	Acenaphthene	ug/L	680	•	0.20 U	0.62	0.20 U	0.20 U
3	Arsenic	ng/L	50		10.0 U	6.1 J	5.7 J	10.0 U
	Barium	ng/L		_	57.7 J	47.4 J	51.8 J	59.5 J
AT3	Chromium	ng/L			3.5 J	4.0 J	5.0 U	5.0 U
iM.	Lead	ng/L	15		3.0 U	e	2.0 J	3.0 U
	Selenium	ug/L		:	5.0 U	5.0 U	5.0 U	5.3

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

**URS** 



#### Project: ODOT - Innerbelt Corridor Project Location: Site 23 15016633 Project Number:

## Log of Boring 23-MW01

Sheet 1 of 1

Date(s) 7/13/06 Drilled 7/13/06	Logged J. Kaminski By	Checked M. Wolff By
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer 140# auto hammer	Total Depth of Borehole <b>30.0' bgs</b>
Drill Rig Type CME-55	Drilling Contractor HAD, Inc.	Approximate Ground Elevation 624'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well
Groundwater Level and Date Measured 600.68 on 8/10/06		

			SAM	LES				Τ	tion	
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Mell	Installation	WELL DETAILS
	0 -	0002	11 28 50/4	19.0	0.0		Stiff, dry, brown, silty CLAY with slag, and brick fragments	<u>44</u> 44	<u> </u>	Begin Drilling on 7/13/06
-620	-	0204	13 32 43 13	24.0	0.0				<b></b>	8   8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
-020	5	0406	11 50/4	6.0	0.0		Concrete	-		9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4
	-	0608	24	17.0	0.0		Gravel, slag and sand, trace silt, trace clay, (Fill)			Bentonite Pellets
	- - 10-	0810	11	24.0	0.0		Medium dense, dry, dark brown and black, silty SAND with slag, with gravel			2" Schedule 40 PV
	-01	1012	7 22 24 26	24.0	0.0		FBecomes black		• • • • •	
-610	-	1214	50/4	15.0	0.0					° 4 ° 4 ° 4 ° 4 ° 4
-010	15	1416	37	24.0	0.0					
	-	1618	2 3 17 23	12.0	0.0					۵ ۵ ۵ ۵ ۹
	- 20-	1820	50/3	20.0	0.0					u Filter Sand #7
	-	2022	11	17.0	0.0		Stiff, dry, brown, clayey SILT	-		Sample submitted for
-600	-	2224	7	24.0	0.0		Stiff, moist, brown, silty CLAY trace gravel, trace black sand FWithout black sand Fecomes wet	-		laboratory analysis 23-MW01-2224
-000	25-	2426	6	0.0	NA					
	-	2628	4 7 5	24.0	NA		←1" fine sand layer, soft ∽With sand stringers Stiff, moist, gray, clayey SILT	-		Slotted Pipe #10 PVC (0.010)
	-							•		
	30 -						End of Boring at 30' bgs Installed Monitoring Well			End Drilling on 7/13/06 1020
-590	- 	•								
	35-						URS			

### Project: ODOT - Innerbelt Corridor Project Location: Site 23 Project Number: 15016633

## Log of Boring 23-MW02

Sheet 1 of 1

Date(s) 7/13/06	Logged J. Kaminski	Checked M. Wolff
Drilled 7/13/06	By	By
Drilling Method & Hollow Stem Auger	Hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data 140# auto hammer	of Borehole 28.0' bgs
Drill Rig CME-55	Drilling	Approximate
Type	Contractor HAD, Inc.	Ground Elevation 630'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well

			SAM	PLES					Τ		E i	
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Granhic Lod		MATERIAL DESCRIPTION		ſ	Schematic	WELL DETAILS
-630	0 -	0002	5 8 6 10	18.0	0.0	$\bigotimes$	$\bigotimes$	Loose, dry to moist, brown, sandy GRAVEL with slag, trace brick fragments, (Fill)			<u> </u>	Steel 8" Pro Covel Begin Drilling on 7/13/06
	-	0204	8 12 12 10	10.0	0.0		×		רייין ייייייייייייייייייייייייייייייייי			e . e
625	5	0406	4 6 7 15	23.0	2.4		×		ليوني المحالية المحال			9 9 9 9
	-	0608	14 50/2	8.0	0.0	$\bigotimes$	8					- 
-620	- - 10-	0810	9	22.0	0.0			Stiff, dry to moist, brownish gray, SILT with slag, trace gravel	الميالية المرادية ال محمد المرادية			
020		1012	4 16 18 22	24.0	7.0			r With sand	تەمەمەت بەرمەتمەت			Bentonite Pellets
	_	1214	50/2	2.0	NA				و م د م			saffpilsadikniftedirks
-615	15—	1416	21 32 35 40	24.0	92.5			Solvent odor     Wood fragments				Sampia subnitteo for laboratory analysis 23-MW02-1416
	-	1618	14 50/4	24.0	21.2			Very stiff, dry, dark gray, SILT with gravel, and slag				
640	20	1820	11 15 16 10	19.0	8.8			r Not as stiff	-			Filter Sand #7
-610	20	2022	20 4 4 5	11.0	5.5			Loose, dry, yellow, SAND trace coal, with slag				Tinor Ganu mr
	-	2224	4 4 6 7	12.0	NA			Loose, wet, brown, medium SAND trace fine gravel				Filter Sand #7
-605	25–	2426	6 6 6 4	7.0	NA							- Slotted Pipe #10
	-	2628	4 10 10 11	16.0	NA							PVC (0.010)
600	-							End of Boring at 28' bgs Installed Monitoring Well	-			End Drilling on 7/13/06 1415
-600	30–											

### Project: ODOT - Innerbelt Corridor Project Location: Site 23 Project Number: 15016633

## Log of Boring 23-MW03

Sheet 1 of 1

Date(s) 7/14/06	Logged J. Kaminski	Checked M. Wolff
Drilled	By	By
Drilling Method & Hollow Stem Auger	Hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data 140# auto hammer	of Borehole 25.0' bgs
Drill Rig CME-55	Drilling	Approximate
Type	Contractor HAD, Inc.	Ground Elevation 622'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well

			SAMF	LES				Τ	ion ti	
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Meli	Installation Schematic	WELL DETAILS
	0 -	0002	11	12.0	0.0		Loose, dry, brown, silty SAND with slag, with brick fragments	<u> </u>	<u> </u>	Begin Drilling on 7/14/06
-620	-	0204	5 13 19 27	12.0	0.0		Stiff, wet, black, silty SAND trace slag, trace grass			
	5	0406	6 14 27 40	24.0	0.0					9 6 9 9 9 9 9 9 9 9 9 9 9
-615	-	0608	5 12 12 10	13.0	0.0		←Becomes brownish gray		••••••	- Bentonite Pellets
	- 10	0810	4	12.0	0.0		Loose, dry, dark gray, silty SAND trace fine gravel	یاری کار		- 2" Schedule 40 PV Sample submitted for
610	-	1012	10	17.0	0.0		← With coal, and slag, and brick fragments		,	laboratory analysis 23-MW03-1012
010	-	1214	WOH 1 1 1	4.0	0.0					• 4 • 4
	15-	1416	1 1 1 1	3.0	0.0		←White paste material at 15'	-		
-605	-	1618	3	0.0	0.0		← With wood fragments	-		
	- 20-	1820	12	24.0	0.0		Soft, wet, black, silty SAND Loose, wet, brown, medium SAND	-		
-600	-	2022	2 6 6 9	24.0	0.0					Filter Sand #7
000	-						Augered down to 25' bgs			Slotted Pipe #10 PVC (0.010)
	25						End of Boring at 25' bgs Installed Monitoring Well	-		End Drilling on 7/14/06 1230
595	-									
	- 30—									
							URS			

)

)

### Project: ODOT - Innerbelt Corridor Project Location: Site 23 Project Number: 15016633

## Log of Boring 23-MW04

Sheet 1 of 1

Date(s) 7/14/06 Drilled 7/14/06	Logged By J. Kaminski	Checked M. Wolff
Drilling Method & Hollow Stem Auger Drill Bit size/type 4-1/4" ID HSA	Hammer Data 140# auto ha	ammer Total Depth of Borehole 18.0' bgs
Drill Rig Type CME-55	Drilling Contractor HAD, Inc.	Approximate Ground Elevation 622'
Location See Site Map	Sampling Method(s) 2" Split Spo	
Groundwater Level and Date Measured 611.32 on 8/10/06		

	<u> </u>		[	SAM	PLES				Т	c (	
	Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Meil	Installation	FIELD NOTES AND WELL DETAILS Steel 8" Pro Cover
	-620	-0	000	8	13.0	0.0		Loose, brown and gray, SAND clay, gravel, with slag, (Fill)	444444	<u> </u>	Begin Drilling on 7/14/06
	-620	-	020	14 18 24 35	22.0	0.0		←Without clay			2" Schedule 40 PVC
		5	040	13 23 25 28	24.0	0.0		-			Bentonite Pellets
)	-615	-	0608	8 12 13 13	24.0	NA			-		
		-	0810	4 4 6 10	22.0	0.0		Medium dense, moist, light brown, fine SAND trace silt			
	-610	-	1012	5 6 7	22.0	0.0		<ul> <li>For oxide staining</li> <li>FBecomes moist to wet</li> </ul>			Sample submitted for laboratory analysis 23-MW04-1012
	010	1	1214	7 5 2 4	24.0	NA		Loose, wet, brown, silty SAND			Filter Sand #7
		15-	1416	3 3 3 5	24.0	NA		-			
06 23-MW04	-605	-	1618	3 2 4 5	24.0	NA					Slotted Pipe #10 PVC (0.010)
PJ; 12/14/2006		20-						End of Boring at 18' bgs Installed Monitoring Well			End Drilling on 7/14/06 1032
File: ODOT.GPJ;	-600	20						-			
Report: 1_ODOT_WELLS; File: OL		-						-			
Report: 1_OC		25			[	[					

DATA ASSESSMENT REPORT

#### **Data Assessment Report ODOT Innerbelt Study** Site 23 - NS Railroad Building

#### **Reviewer:** P. Schuler **Date: November 14, 2006**

Eleven soil samples, four groundwater samples, and three trip blanks were collected at the NS Railroad Building site in Cleveland, Ohio, from July 13 through August 10, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Re	quested .	Analyse	es ⁽¹⁾
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC	TPH	Met
A6G140115001	23-MW01-2224 ⁽²⁾	07/13/2006	Soil	X	X	Х	X
A6G140115002	23-MW01-2224-D ⁽²⁾	07/13/2006	Soil	X	X	Х	X
A6G140115003	23-MW02-1416	07/13/2006	Soil	X	X	Х	X
A6G140115004	TB-071306	07/13/2006	Trip Blank	X			
A6G140397001	23-MW04-1012	07/14/2006	Soil	X	X	Х	X
A6G140397002	23-SS01	07/14/2006	Soil	X	X	Х	X
A6G140397003	23-SS02	07/14/2006	Soil	X	X	Х	X
A6G140397004	23-SS03	07/14/2006	Soil	X	X	Х	Х
A6G140397005	23-SS04	07/14/2006	Soil	X	X	Х	X
A6G140397006	23-SS05	07/14/2006	Soil	X	X	Х	X
A6G140397007	23-SS06	07/14/2006	Soil	X	X	Х	Х
A6G140397008	23-MW03-1012	07/14/2006	Soil	X	X	Х	X
A6G140397009	TB-071406	07/14/2006	Trip Blank	X			
A6H120107001	23-MW01	08/10/2006	Groundwater	Х	X		Х
A6H120107002	23-MW02	08/10/2006	Groundwater	Х	X		Х
A6H120107003	23-MW03	08/10/2006	Groundwater	X	X		Х
A6H120107004	23-MW04	08/10/2006	Groundwater	X	X		Х
A6H120107005	TB-081006	08/10/2006	Trip Blank	·X			

Table 1 **Sample and Analysis Summary** 

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

= Semivolatile Organic Compounds [SW-846 Method 8270C] SVOC

= Total Petroleum Hydrocarbons (Gasoline and Diesel Range Organics) [SW-846 Method 8015A/B] TPH

= RCRA Metals [SW-846 Methods 6010B/6020/7470A/7471A] Met

(2) Samples 23-MW01-2224 and 23-MW01-2224-D are field duplicates.

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not



include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- Samples 23-MW04-1012 and 23-MW01-2224-D were analyzed for gasoline range organics four days after the 14-day holding time had expired. The nondetect results for both samples were qualified as estimated ("UJ") and may be biased low.
- Positive detections for acetone in sample 23-MW02-1416, for methylene chloride in samples 23-MW01-2224, 23-SS03, 23-SS05, 23-SS06, and 23-MW04, for bis(2-ethylhexyl)phthalate in samples 23-MW01, 23-MW02, and 23-MW03, and for gasoline range organics in samples 23-SS03, 23-SS04, 23-SS05, and 23-MW03-1012 were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks and/or trip blanks at similar concentrations.
- The semivolatile compound, bis(2-ethylhexyl)phthalate, was detected at concentrations ranging from 0.9 to 1.8 ug/L in all equipment blanks associated with project samples. Since this compound is considered a common laboratory contaminant, its presence in environmental samples at concentrations less than ten times the highest equipment blank concentration is attributed to external contamination rather than actual site conditions. Therefore, the positive detections for bis(2-ethylhexyl)phthalate in samples 23-MW01-2224-D, 23-MW04-1012, 23-SS03, 23-SS05 and 23-SS06 were qualified as nondetect ("U") at the value reported, even though it was not detected in the associated method blanks.
- One or more volatile internal standard responses were outside of the acceptance range in samples 23-MW01-2224-D, 23-SS01, 23-SS02, 23-SS06, and 23-MW03-1012. The results for all volatile analytes quantified from each of the noncompliant internal standards were qualified as estimated ("J" or "UJ").
- One or more semivolatile internal standard responses were outside of the acceptance range in samples 23-SS02 and 23-SS03. The results for all semivolatile analytes quantified from each of the noncompliant internal standards were qualified as estimated ("J" or "UJ").
- The arsenic and cadmium results for the soil samples collected 07/14/06 were qualified as estimated ("J") due to low matrix spike recoveries in sample 23-SS02.
- The lab reported some metals results with a "G" qualifier, indicating that a dilution was required due to matix interferences. The "G" qualifiers were removed in the final data set, but the sample reporting limits are elevated accordingly.
- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J" for organics, and "B" for inorganics), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, organic "J" qualifiers were retained with the numeric results. The inorganic "B"



)

qualifiers were changed to "J" qualifiers for the sake of consistency throughout the package.

All soil analytical results were reported on a dry weight (moisture-corrected) basis. =

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-7.



)

)

	111176	A6G140115001 23-MW01-2224 07/13/2006	A6G140115002 23-MW01-2224-D 07/13/2006	A6G140115003 23-MW02-1416 07/13/2006	A6G140397001 23-MW04-1012 07/14/2006	A6G140397002 23-SS01 07/14/2006	A6G140397003 23-SS02 07/14/2006
PARAMETER	UNITS	6.1 U	6.3 U	28 U	25	7.6 U	5.8 U
1,1,1-Trichloroethane	ug/kg		6.3 UJ	28 U	5.8 U	7.6 UJ	5.8 UJ
1,1,2,2-Tetrachloroethane	ug/kg	6.1 U		28 U 28 U	5.8 U	7.6 U	5.8 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	6.1 U	6.3 U 6.3 UJ	28 U 28 U	5.8 U	7.6 U	5.8 UJ
1,1,2-Trichloroethane	ug/kg	6.1 U 6.1 U	6.3 U	28 U 28 U	5.8 U	7.6 U	5.8 U
1,1-Dichloroethane	ug/kg		6.3 U	28 U	5.8 U	7.6 U	5.8 U
1,1-Dichloroethene	ug/kg	6.1 U	and the second second second second second	6.0 J	(ii) (iii) (iii	7.6 UJ	5.8 UJ
1,2,4-Trichlorobenzene	ug/kg	6.1 U	6.3 UJ		5.8 U	15 UJ	12 UJ
1,2-Dibromo-3-chloropropane	ug/kg	12 U	13 UJ	55 U	12 U	7.6 U	5.8 UJ
1,2-Dibromoethane	ug/kg	6.1 U	6.3 UJ	28 U	5.8 U		5.8 UJ
1,2-Dichlorobenzene	ug/kg	6.1 U	6.3 UJ	1.6 J	5.8 U	7.6 UJ	
1,2-Dichloroethane	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U 7.6 U	5.8 U 5.8 U
1,2-Dichloropropane	ug/kg	6.1 U	6.3 U	28 U	5.8 U		
1,3-Dichlorobenzene	ug/kg	6.1 U	6.3 UJ	1.6 J	5.8 U	7.6 UJ	5.8 UJ
1,4-Dichlorobenzene	ug/kg	6.1 U	6.3 UJ	1.9 J	5.8 U	7.6 UJ	5.8 UJ
2-Butanone	ug/kg	1.9 J	25 U	7.1 J	1.5 J	31 U	23 U
2-Hexanone	ug/kg	25 U	25 UJ	110 U	23 U	31 U	23 UJ
4-Methyl-2-pentanone	ug/kg	25 U	25 UJ	110 U	23 U	31 UJ	23 UJ
Acetone	ug/kg	25 U	12 J	110 U	4.5 J	31 U	23 U
Benzene	ug/kg	6.1 U	1.5 J	1.4 J	5.8 U	7.6 U	0.37 J
Bromodichloromethane	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Bromoform	ug/kg	6.1 U	6.3 UJ	28 U	5.8 U	7.6 U	5.8 UJ
Promomethane	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
rbon disulfide	ug/kg	6.1 U	1.7 J		5.8 U	7.6 U	5.8 U
Carbon tetrachloride	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Chlorobenzene	ug/kg	6.1 U	6.3 UJ	28 U	5.8 U	7.6 U	5.8 U
Chloroethane	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Chloroform	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Chloromethane	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
cis-1,2-Dichloroethene	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
cis-1,3-Dichloropropene	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Cyclohexane	ug/kg	12 U	1.5 J	55 U	12 U	15 U	12 U
Dibromochloromethane	ug/kg	6.1 U	6.3 UJ	28 U	5.8 U	7.6 U	5.8 UJ
Dichlorodifluoromethane	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Ethylbenzene	ug/kg	6.1 U	2.5 J	11 J	5.8 U	7.6 U	5.8 UJ
Isopropylbenzene	ug/kg	6.1 U	0.80 J	15 J	5.8 U	7.6 U	5.8 UJ
Methyl acetate	ug/kg	12 U	13 U	55 U	12 U	15 U	12 U
Methyl tert-butyl ether	ug/kg	25 U	25 U	110 U	23 U	31 U	23 U
Methylcyclohexane	ug/kg	12 U	4.5 J	55 U	12 U	15 U	12 U
Methylene chloride	ug/kg	6.1 U	6.3 U	28 U	5.5 J	7.6 U	6.7
Styrene	ug/kg	6.1 U	6.3 UJ	1.6 J	5.8 U	7.6 U	5.8 UJ
Tetrachloroethene	ug/kg	6.1 U	6.3 UJ	28 U	5.8 U	7.6 U	5.8 UJ
Toluene	ug/kg	6.1 U	13 J	6.5 J	0.45 J	7.6 U	1.3 J
trans-1,2-Dichloroethene	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
trans-1,3-Dichloropropene	ug/kg	6.1 U	6.3 UJ	28 U	5.8 U	7.6 U	5.8 UJ
Trichloroethene	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Trichlorofluoromethane	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Vinyl chloride	ug/kg	6.1 U	6.3 U	28 U	5.8 U	7.6 U	5.8 U
Vienes (total)	ug/kg	12 U	7.0 J	25 J	12 U	15 U	12 UJ

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Ì

PARAMETER	UNITS	A6G140397004 23-SS03 07/14/2006	A6G140397005 23-SS04 07/14/2006	A6G140397006 23-SS05 07/14/2006	A6G140397007 23-SS06 07/14/2006	A6G140397008 23-MW03-1012 07/14/2006
1,1,1-Trichloroethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
		5.3 U	5.3 U	6.0 U	6.4 UJ	5.9 UJ
1,1,2,2-Tetrachloroethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
1,1,2-Trichloroethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U 5.9 U
1,1-Dichloroethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U 5.9 U
1,1-Dichloroethene	ug/kg		5.3 U		6.4 UJ	
1,2,4-Trichlorobenzene	ug/kg	5.3 U		6.0 U	1	5.9 UJ
1,2-Dibromo-3-chloropropane	ug/kg	11 U	11 U	12 U	13 UJ	12 UJ
1,2-Dibromoethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
1,2-Dichlorobenzene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 UJ	5.9 UJ
1,2-Dichloroethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
1,2-Dichloropropane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
1,3-Dichlorobenzene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 UJ	5.9 UJ
1,4-Dichlorobenzene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 UJ	5.9 UJ
2-Butanone	ug/kg	21 U	21 U	24 U	1.7 J	8.8 J
2-Hexanone	ug/kg	21 U	21 U	24 U	26 U	23 UJ
4-Methyl-2-pentanone	ug/kg	21 U	21 U	24 U	26 UJ	23 UJ
Acetone	ug/kg	21 U	21 U	24 U	26 U	45
Benzene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	0.86 J
Bromodichloromethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Bromoform	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
Bromomethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Carbon disulfide	ug/kg	5.3 U	5.3 U	6.0 U	0.57 J	2.4 J
Carbon tetrachloride	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Chlorobenzene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
Chloroethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Chloroform	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Chloromethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
cis-1,2-Dichloroethene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
cis-1,3-Dichloropropene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Cyclohexane	ug/kg	11 U	11 U	12 U	13 U	0.86 J
Dibromochloromethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
Dichlorodifluoromethane	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Ethylbenzene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	1.6 J
Isopropylbenzene	ug/kg	5.3 U	5.3 U	6.0 U	1.0 J	7.5 J
Methyl acetate	ug/kg	11 U	11 U	12 U	13 U	12 U
Methyl tert-butyl ether	ug/kg	21 U	21 U	24 U	26 U	23 U
Methylcyclohexane	ug/kg	11 U	11 U	12 U	13 U	2.7 J
Methylene chloride	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	7.9
Styrene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
Tetrachloroethene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
Toluene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	3.6 J
trans-1,2-Dichloroethene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
trans-1,3-Dichloropropene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 UJ
Trichloroethene	ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U
Trichlorofluoromethane	ug/kg ug/kg	5.3 U	5.3 U	6.0 U	6.4 U	5.9 U 5.9 U
and the second		and a service service service of the	5.3 U	6.0 U	6.4 U	and the second
Vinyl chloride	ug/kg	5.3 U	· 1	· · · · · · ·	and the second	5.9 U
Xylenes (total)	ug/kg	11 U The analyte was anal	11 U	12 U	13 U	4.5 J

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

		A6G140115004 TB-071306 07/13/2006	A6G140397009 TB-071406 07/14/2006
PARAMETER	UNITS		1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 19
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U
1,1-Dichloroethane	ug/L	1.0 U	1.0 U
1,1-Dichloroethene	ug/L	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L	2.0 U	2.0 U
1,2-Dibromoethane	ug/L	1.0 U	1.0 U
1,2-Dichlorobenzene	_ug/L	1.0 U	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U
2-Butanone	ug/L	10 U	10 U
2-Hexanone	ug/L	10 U	10 U
4-Methyl-2-pentanone	ug/L	10 U	10 U
Acetone	ug/L	10 U	10 U
Benzene	ug/L	1.0 U	1.0 U
Bromodichloromethane	ug/L	1.0 U	1.0 U
Bromoform	ug/L	1.0 U	1.0 U
Bromomethane	ug/L	1.0 U	1.0 U
Carbon disulfide	ug/L	1.0 U	1.0 U
Carbon tetrachloride	ug/L	1.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U
Chloroform	ug/L	1.0 U	1.0 U
Chloromethane	ug/L	1.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	1.0 U
Dibromochloromethane	ug/L	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U
Ethylbenzene	ug/L	1.0 U	1.0 U
Isopropylbenzene	ug/L	1.0 U	1.0 U
Methyl acetate	ug/L	10 U	10 U
Methyl tert-butyl ether	ug/L	5.0 U	5.0 U
Methylcyclohexane	ug/L	1.0 U	1.0 U
Methylene chloride	ug/L	0.52 J	0.39 J
Styrene	ug/L	1.0 U	1.0 U
Tetrachloroethene	ug/L	1.0 U	1.0 U
Toluene	ug/L	1.0 U	1.0 U
trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U
trans-1,3-Dichloropropene	ug/L	1.0 U	1.0 U
Trichloroethene	ug/L	1.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U
Vinyl chloride	ug/L	1.0 U	1.0 U
Xylenes (total)	ug/L	2.0 U	2.0 U
		Z.U U The analyte was anal	

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

		A6G140115001 23-MW01-2224	A6G140115002 23-MW01-2224-D	A6G140115003 23-MW02-1416	A6G140397001 23-MW04-1012	A6G140397002 23-SS01	A6G140397003 23-SS02
PARAMETER	UNITS	07/13/2006	07/13/2006	07/13/2006	07/14/2006	07/14/2006	07/14/2006
1,1'-Biphenyl	ug/kg	810 U	40 J	2800 J	380 U	2000 U	19000 U
2,2'-oxybis(1-Chloropropane)	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
2,4,5-Trichlorophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
2,4,6-Trichlorophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
2,4-Dichlorophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
2,4-Dimethylphenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
2,4-Dinitrophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
2,4-Dinitrotoluene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
2,6-Dinitrotoluene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
2-Chloronaphthalene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
2-Chlorophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
2-Methylnaphthalene	ug/kg	820	560	11000 J	41 J	480 J	6800 J
2-Methylphenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
2-Nitroaniline	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
2-Nitrophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
3,3'-Dichlorobenzidine	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
3-Nitroaniline	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
4,6-Dinitro-2-methylphenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
4-Bromophenyl phenyl ether	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
4-Chloro-3-methylphenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
4-Chloroaniline	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Chlorophenyl phenyl ether	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
ethyiphenol / 3-Methyiphenol	ug/kg	810 U	72 J	18000 U	380 U	2000 U	19000 UJ
4-Nitroaniline	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
4-Nitrophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
Acenaphthene	ug/kg	810 U	43 J	21000	12 J	120 J	19000 U
Acenaphthylene	ug/kg	810 U	35 J	18000 U	380 U	140 J	19000 U
Acetophenone	ug/kg	160 U	84 U	3700 U	77 U	380 J	3900 UJ
Anthracene	ug/kg	260 J	120 J	16000 J	18 J	350 J	19000 UJ
Atrazine	ug/kg ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Benzaldehyde	ug/kg	810 U	410 U	18000 U	380 U	2900	19000 UJ
Benzo(a)anthracene	ug/kg	890	460	11000 J	59 J	1600 J	600 J
Benzo(a)pyrene	ug/kg	810	400	5300 J	57 J	1500 J	520 J
	ug/kg	1000	680	8000 J	84 J	2800	1100 J
Benzo(b)fluoranthene Benzo(ghi)perylene	ug/kg	460 J	280 J	1900 J	49 J	1200 J	830 J
the second se		400 U 440 J	210 J	3200 J	43 0 30 J	970 J	19000 U
Benzo(k)fluoranthene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
bis(2-Chloroethoxy)methane	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
bis(2-Chloroethyl) ether	ug/kg	810 U	410 U	18000 U	380 U	2700	5600 J
bis(2-Ethylhexyl) phthalate	ug/kg	the second se		18000 U	380 U		
Butyl benzyl phthalate	ug/kg	810 U	410 U	5.5 F. F. F. F. P. F.		2000 U	19000 U
Caprolactam	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Carbazole	ug/kg	120 J	61 J	10000 J	380 U	310 J	19000 UJ
Chrysene	ug/kg	900	460	9500 J	69 J	1900 J	730 J
Dibenz(a,h)anthracene	ug/kg	150 J	76 J	18000 U	13 J	210 J	19000 U
Dibenzofuran	ug/kg	180 J	130 J	13000 J	380 U	200 J	19000 U
Diethyl phthalate	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
Dimethyl phthalate	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
n-butyl phthalate	ug/kg	810 U	410 U	18000 U	380 U	120 J	19000 UJ
h-octyl phthalate	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
Fluoranthene	ug/kg	1800	880	46000	110 J	3600	690 J
Fluorene	ug/kg	99 J	52 J	22000	380 U	120 J	19000 U

L

PARAMETER	UNITS	A6G140115001 23-MW01-2224 07/13/2006	A6G140115002 23-MW01-2224-D 07/13/2006	A6G140115003 23-MW02-1416 07/13/2006	A6G140397001 23-MW04-1012 07/14/2006	A6G140397002 23-SS01 07/14/2006	A6G140397003 23-SS02 07/14/2006
Hexachlorobenzene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Hexachlorobutadiene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Hexachlorocyclopentadiene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 U
Hexachloroethane	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Indeno(1,2,3-cd)pyrene	ug/kg	440 J	260 J	1800 J	38 J	1100 J	19000 U
Isophorone	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Naphthalene	ug/kg	550 J	400 J	31000	16 J	370 J	3700 J
Nitrobenzene	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
N-Nitrosodi-n-propylamine	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
N-Nitrosodiphenylamine	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Pentachlorophenol	ug/kg	810 U	410 U	18000 U	380 U	2000 U	19000 UJ
Phenanthrene	ug/kg	1100	590	74000	76 J	1800 J	1800 J
Phenol	ug/kg	810 U	410 U	18000 U	380 U	220 J	19000 U
Pyrene	ug/kg	1500	750	34000	100 J	3000	1200 J

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

		A6G140397004 23-SS03	A6G140397005 23-SS04	A6G140397006 23-SS05	A6G140397007 23-SS06	A6G140397008 23-MW03-1012
PARAMETER	UNITS	07/14/2006	07/14/2006	07/14/2006	07/14/2006	07/14/2006
1,1'-Biphenyl	ug/kg	350 UJ	1400 U	400 U	1100 U	290 J
2,2'-oxybis(1-Chloropropane)	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2,4,5-Trichlorophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2,4,6-Trichlorophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2,4-Dichlorophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2,4-Dimethylphenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2,4-Dinitrophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2,4-Dinitrotoluene	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2,6-Dinitrotoluene	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2-Chloronaphthalene	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2-Chlorophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2-Methylnaphthalene	ug/kg	350 UJ	68 J	67 J	100 J	5200
2-Methylphenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2-Nitroaniline	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
2-Nitrophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
3,3'-Dichlorobenzidine	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
3-Nitroaniline	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4,6-Dinitro-2-methylphenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4-Bromophenyl phenyl ether	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4-Chloro-3-methylphenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4-Chloroaniline	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4-Chlorophenyl phenyl ether	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4-Methylphenol / 3-Methylphenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4-Nitroaniline	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
4-Nitrophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Acenaphthene	ug/kg	27 J	28 J	14 J	57 J	1500 U
Acenaphthylene	ug/kg	24 J	37 J	400 U	54 J	1500 U
Acetophenone	ug/kg	70 UJ	280 U	80 U	210 U	310 U
Anthracene	ug/kg	96 J	130 J	51 J	260 J	190 J
Attrazine	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Benzaldehyde	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
and a second fraction of the second second	ug/kg	370 J	560 J	330 J	1300	560 J
Benzo(a)anthracene	ug/kg	370 J	710 J	540	1400	480 J
Benzo(a)pyrene		620 J	980 J	680	2100	680 J
Benzo(b)fluoranthene	ug/kg	300 J	570 J	450	1000 J	310 J
Benzo(ghi)perylene	ug/kg	230 J	340 J	330 J	760 J	230 J
Benzo(k)fluoranthene	ug/kg	contraction and the second	1400 U	400 U	1100 U	1500 U
bis(2-Chloroethoxy)methane	ug/kg	350 UJ		400 U	1100 U	1500 U
bis(2-Chloroethyl) ether	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
bis(2-Ethylhexyl) phthalate	ug/kg	350 UJ	1400 U		· · · · · ·	
Butyl benzyl phthalate	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Caprolactam	ug/kg	350 UJ	1400 U	45 J	1100 U	1500 U
Carbazole	ug/kg	70 J	1400 U	33 J	230 J	150 J
Chrysene	ug/kg	460 J	680 J	400	1300	640 J
Dibenz(a,h)anthracene	ug/kg	350 UJ	1400 U	90 J	320 J	1500 U
Dibenzofuran	ug/kg	350 UJ	1400 U	400 U	1100 U	950 J
Diethyl phthalate	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Dimethyl phthalate	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Di-n-butyl phthalate	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Di-n-octyl phthalate	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Fluoranthene	ug/kg	820 J	1100 J	490	2700	840 J
Fluorene	ug/kg	28 J	34 J	400 U	28 J	120 J

)

)

)

PARAMETER	UNITS	A6G140397004 23-SS03 07/14/2006	A6G140397005 23-SS04 07/14/2006	A6G140397006 23-SS05 07/14/2006	A6G140397007 23-SS06 07/14/2006	A6G140397008 23-MW03-1012 07/14/2006
Hexachlorobenzene	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Hexachlorobutadiene	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Hexachlorocyclopentadiene	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Hexachloroethane	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Indeno(1,2,3-cd)pyrene	ug/kg	220 J	490 J	370 J	950 J	260 J
Isophorone	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Naphthalene	ug/kg	350 UJ	51 J	81 J	73 J	3000
Nitrobenzene	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
N-Nitrosodi-n-propylamine	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
N-Nitrosodiphenylamine	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Pentachlorophenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Phenanthrene	ug/kg	390 J	490 J	180 J	1200	1500
Phenol	ug/kg	350 UJ	1400 U	400 U	1100 U	1500 U
Pyrene	ug/kg	640 J	1000 J	450	2200	870 J

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

## Table 2-3Analytical Data SummarySite 23 Soil TPHODOT Innerbelt Study

PARAMETER	UNITS	A6G140115001 23-MW01-2224 07/13/2006	A6G140115002 23-MW01-2224-D 07/13/2006	A6G140115003 23-MW02-1416 07/13/2006	A6G140397001 23-MW04-1012 07/14/2006	A6G140397002 23-SS01 07/14/2006
Gasoline Range Organics (C6-C12)	ug/kg	120 U	88 J	5600	120 U	150 U
C10-C20	mg/kg	25	12 J	88	7.2	61 U
C20-C34	mg/kg	130	52	130	16	220

PARAMETER	UNITS	A6G140397003 23-SS02 07/14/2006	A6G140397004 23-SS03 07/14/2006	A6G140397005 23-SS04 07/14/2006	A6G140397006 23-SS05 07/14/2006	A6G140397007 23-SS06 07/14/2006
Gasoline Range Organics (C6-C12)	ug/kg	120 U	110 U	110 U	120 U	130 U
C10-C20	mg/kg	100 J	110 U	42 U	12 U	51 U
C20-C34	mg/kg	2000	300	96	48	93

PARAMETER	UNITS	A6G140397008 23-MW03-1012 07/14/2006
Gasoline Range Organics (C6-C12)	ug/kg	140 U
C10-C20	mg/kg	49
C20-C34	mg/kg	310

1

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

PARAMETER	UNITS	A6G140115001 23-MW01-2224 07/13/2006	A6G140115002 23-MW01-2224-D 07/13/2006	A6G140115003 23-MW02-1416 07/13/2006	A6G140397001 23-MW04-1012 07/14/2006	A6G140397002 23-SS01 07/14/2006	A6G140397003 23-SS02 07/14/2006
Percent Solids	%	81.5	79.6	90.4	86.1	65.6	86.1
Arsenic	mg/kg	18.6 J	15.6 J	5.5 J	4.6	9.8	7.5
Barium	mg/kg	160	133	45.7	13.8 J	423	186
Cadmium	mg/kg	1.7 J	1.2 J	0.27 J	0.20 J	2.5	1.4
Chromium	mg/kg	20.8	17.3	5.5	6.7	37.6	30.4
Lead	mg/kg	221	212	16.2	6.6	761	125
Selenium	mg/kg	0.61 U	0.63 U	0.55 U	0.58 U	0.76 U	0.58 U
Silver	mg/kg	0.61 U	0.63 U	0.55 U	0.58 U	0.50 J	0.58 U
Mercury	mg/kg	0.16	0.073 J	0.031 J	0.12 U	0.13 J	0.057 J

PARAMETER	UNITS	A6G140397004 23-SS03 07/14/2006	A6G140397005 23-SS04 07/14/2006	A6G140397006 23-SS05 07/14/2006	A6G140397007 23-SS06 07/14/2006	A6G140397008 23-MW03-1012 07/14/2006
Percent Solids	%	94.5	94.2	83.5	77.9	85.3
Arsenic	mg/kg	2.6	4.8	6.1	5.1	14.4
Barium	mg/kg	92.7	47	85.4	57.9	311
Cadmium	mg/kg	0.3	0.24	1.8	0.38	1.6
Chromium	mg/kg	12.2	11.2	364	12.2	45.7
Lead	mg/kg	19.6	14	18.9	33	128
Selenium	mg/kg	0.53 U	0.53 U	3.0 U	0.64 U	2.9 U
Silver	mg/kg	0.53 U	0.53 U	3.0 U	0.64 U	0.59 U
Mercury	mg/kg	0.021 J	0.020 J	0.12 U	0.051 J	0.089 J

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

)

# Table 2-5Analytical Data SummarySite 23 Water VolatilesODOT Innerbelt Study

		A6H120107001 23-MW01 08/10/2006	A6H120107002 23-MW02 08/10/2006	A6H120107003 23-MW03 08/10/2006	A6H120107004 23-MW04 08/10/2006	A6H120107005 TB-081006 08/10/2006
PARAMETER	UNITS		<ul> <li>And Management Access</li> </ul>			<u>an de processes</u>
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U	62	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,1-Dichloroethane	ug/L	1.0 U	1.1	1.0 U	4.9	1.0 U
1,1-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	0.47 J	1.0 U
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U
1,2-Dibromoethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
2-Butanone	ug/L	10 U	10 U	10 U	20 U	10 U
2-Hexanone	ug/L	10 U	10 U	10 U	20 U	10 U
4-Methyl-2-pentanone	ug/L	10 U	10 U	10 U	20 U	10 U
Acetone	ug/L	10 U	10 U	10 U	20 U	10 U
Benzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Bromodichloromethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Bromoform	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Bromomethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Carbon disulfide	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Carbon tetrachloride	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Chloroform	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Chloromethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Dibromochloromethane	ug/L	1.0 U	1.0 U	1.0 U	· 2.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Ethylbenzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
sopropylbenzene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Methyl acetate	ug/L	10 U	10 U	10 U	20 U	10 U
Methyl tert-butyl ether	ug/L	5.0 U	5.0 U	5.0 U	10 U	5.0 U
Methylcyclohexane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Methylene chloride	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
an affar a can a construction of the second s		1.0 U	1.0 U	1.0 U		
Styrene	ug/L	1.0 U	1.0 U	· · · · · · · · · · · · · · · · · · ·	2.0 U	1.0 U
etrachloroethene	ug/L	the second se	· · · ·	1.0 U	2.0 U	1.0 U
Foluene	ug/L	0.25 J	1.0 U	1.0 U	2.0 U	1.0 U
rans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
rans-1,3-Dichloropropene	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
<b>Frichloroethene</b>	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
/inyl chloride	ug/L	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U
Xylenes (total)	ug/L	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.



		A6H120107001 23-MW01	23-MW02	A6H120107003 23-MW03	A6H120107004 23-MW04
PARAMETER	UNIT	S 08/10/2006	08/10/2006	08/10/2006	08/10/2006
1,1'-Biphenyl	ug/l	L 1.0 U	1.0 U	1.0 U	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/l	L 1.0 U	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	ug/l	L 5.0 U	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/l	L 5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	ug/l	L 2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
2,4-Dinitrophenol	ug/l	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	ug/l	5.0 U	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	ug/l	L 5.0 U	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	ug/l	L 1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorophenol	ug/l	L 1.0 U	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	ug/l	0.20 U	0.35	0.20 U	0.20 U
2-Methylphenol	ug/l	1.0 U	1.0 U	1.0 U	1.0 U
2-Nitroaniline	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
2-Nitrophenol	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	ug/l	5.0 U	5.0 U	5.0 U	5.0 U
3-Nitroaniline	ug/I	_ 2.0 U	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/l	5.0 U	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
4-Chloroaniline	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
4-Methylphenol	ug/l	1.0 U	1.0 U	1.0 U	1.0 U
4-Nitroaniline	ug/l	2.0 U	2.0 U	2.0 U	2.0 U
4-Nitrophenol	ug/l	5.0 U	5.0 U	5.0 U	5.0 U
Acenaphthene	ug/l	- 0.20 U	0.62	0.20 U	0.20 U
Acenaphthylene	ug/l	0.20 U	0.20 U	0.20 U	0.20 U
Acetophenone	ug/l	1.0_U	1.0 U	1.0 U	1.0 U
Anthracene	ug/l	. 0.20 U	0.20 U	0.20 U	0.20 U
Atrazine	ug/l		1.0 U	1.0 U	1.0 U
Benzaldehyde	ug/l		1.0 U	1.0 U	1.0 U
Benzo(a)anthracene	ug/l		0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	ug/l		0.20 U	0.20 U	0.20 U
Benzo(b)fluoranthene	ug/l	0.20 U	0.20 U	0.20 U	0.20 U
Benzo(ghi)perylene	ug/l	energy and the second	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	ug/L	and the second	0.20 U	0.20 U	0.20 U
bis(2-Chloroethoxy)methane	ug/l		1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	ug/l		1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	ug/L		1.5 JU	1.1 U	1.0 U
Butyl benzyl phthalate	ug/L		1.0 U	1.0 U	1.0 U
Caprolactam	ug/L		5.0 U	5.0 U	5.0 U
Carbazole	ug/L	and the second states of the second	1.0 U	1.0 U	1.0 U
Chrysene	ug/L		0.20 U	0.20 U	0.20 U
Dibenz(a,h)anthracene	ug/L		0.20 U	0.20 U	0.20 U
Dibenzofuran	ug/L		1.0 U	1.0 U	1.0 U
Diethyl phthalate	ug/L	and the second se	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	ug/L		1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0 U	1.0 U	1.0 U
) Di-n-octyl phthalate	ug/L		1.0 U	1.0 U	1.0 U
Fluoranthene	ug/L	A CONTRACT OF A	0.48	0.20 U	0.20 U
Fluorene	ug/L	0.20 U	0.43	0.20 U	0.20 U

PARAMETER		UNITS	A6H120107001 23-MW01 08/10/2006	A6H120107002 23-MW02 08/10/2006	A6H120107003 23-MW03 08/10/2006	A6H120107004 23-MW04 08/10/2006
Hexachiorobenzene		ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Hexachlorobutadiene		ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene		ug/L	10 U	10 U	10 U	10 U
Hexachloroethane		ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene		ug/L	0.20 U	0.20 U	0.20 U	0.20 U
Isophorone		ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene		ug/L	0.20 U	1.8	0.20 U	0.20 U
Nitrobenzene		ug/L	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodi-n-propylamine		ug/L	1.0 U	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine		ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Pentachlorophenol		ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Phenanthrene	•	ug/L	0.20 U	1.1	0.20 U	0.20 U
Phenol	•	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Pyrene		ug/L	0.20 U	0.20 U	0.20 U	0.20 U

 ${\rm U}$  = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

1

)

)

## Table 2-7Analytical Data SummarySite 23 Water MetalsODOT Innerbelt Study

PARAMETER	UNITS	A6H120107001 23-MW01 08/10/2006	A6H120107002 23-MW02 08/10/2006	A6H120107003 23-MW03 08/10/2006	A6H120107004 23-MW04 08/10/2006
Arsenic	ug/L	10.0 U	6.1 J	5.7 J	10.0 U
Barium	ug/L	57.7 J	47.4 J	51.8 J	59.5 J
Cadmium	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Chromium	ug/L	3.5 J	4.0 J	5.0 U	5.0 U
Lead	ug/L	3.0 U	3.0	2.0 J	3.0 U
Selenium	ug/L	5.0 U	5.0 U	5.0 U	5.3
Silver	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.20 U

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

### 6.13 SITE 24 – JAMES VINCENT

According to the Cleveland City Directories, the site was listed as the Pump and Ice Company from 1954 through 1999.

According to the Cleveland Fire Prevention Bureau files, the site was occupied by the American Vinegar Company in 1941. In 1964, the site was occupied by the Pump & Ice Machine Company Inc.

At the time of the URS Phase I reconnaissance, the site was occupied by the Pump Ice Machine Company. No surface staining, stressed vegetation and/or the handling and storage of hazardous materials were observed on the site.

#### 6.13.1 Field Activities

A total of three monitoring wells were proposed for Site 24. Groundwater was encountered in three soil borings (MW01, MW02, and MW03) during field activities and monitoring wells were installed. Three soil and groundwater samples were collected and analyzed for VOCs and SVOCs. A Sample Location Map is included as Figure 6-13A.

### 6.13.2 Site-Specific Geology/Hydrogeology

Soils at Site 24 consisted primarily of sand, silty sand, and silty clay with minor amounts of slag and gravel. Bedrock was not encountered in any of the soil borings, which were advanced to 16 feet bgs.

Groundwater elevations were measured at Site 24 on August 11, 2006. Localized groundwater flow across Site 24 is likely influenced by both natural features and urban development, including paved surfaces, buildings, and underground utilities. The general flow direction at Site 24 is to the south-southwest, towards the Cuyahoga River.

### 6.13.3 Soil Analytical Results

A total of three VOCs were detected in two soil samples submitted from Site 24. The chemicals detected in the samples submitted were 2-butanone (2.4 ug/kg to 23 ug/kg), acetone (66 ug/kg), and carbon disulfide (3.3 ug/kg). All other VOCs were below the detection limits.

A total of 20 SVOCs were detected in two samples submitted from Site 24. Concentrations of 2methylnaphthalene (1,200 ug/kg and 7,900 ug/kg), 4-methylphenol / 3-methylphenol (220 ug/kg), acenaphthene (6,000 ug/kg), anthracene (120 ug/kg and 19,000 ug/kg), benzaldahyde (210 ug/kg), benzo(a)anthracene (320 ug/kg and 36,000 ug/kg), benzo(a)pyrene (220 ug/kg and 30,000 ug/kg), benzo(b)fluoranthene (260 ug/kg and 36,000 ug/kg), benzo(g,h,i)perylene (190 ug/kg and 18,000 ug/kg), benzo(k)fluoranthene (130 ug/kg and 15,000 ug/kg), carbazole (6,100 ug/kg), chrysene (300 ug/kg and 32,000 ug/kg), dibenz(a,h)anthracene (4,100 ug/kg), dibenzofuran (240 ug/kg and 6,400 ug/kg), fluoranthene (460 ug/kg and 85,000 ug/kg), fluorene (8,500 ug/kg), indeno(1,2,3)pyrene (120 ug/kg and 15,000 ug/kg), naphthalene (660 ug/kg and

## SECTIONSIX

6,900 ug/kg), phenanthrene (630 ug/kg and 68,000 ug/kg), and pyrene (490 ug/kg and 70,000 ug/kg) were detected in the soil samples submitted.

The analytical results are presented in Table 6-13A.

### 6.13.4 Groundwater Analytical Results

Toluene (0.20 ug/L) was detected in a groundwater sample collected from Site 24. All other VOCs were below the detection limits.

No SVOCs were detected in the groundwater samples submitted from Site 24.

The analytical results are presented in Table 6-13B.

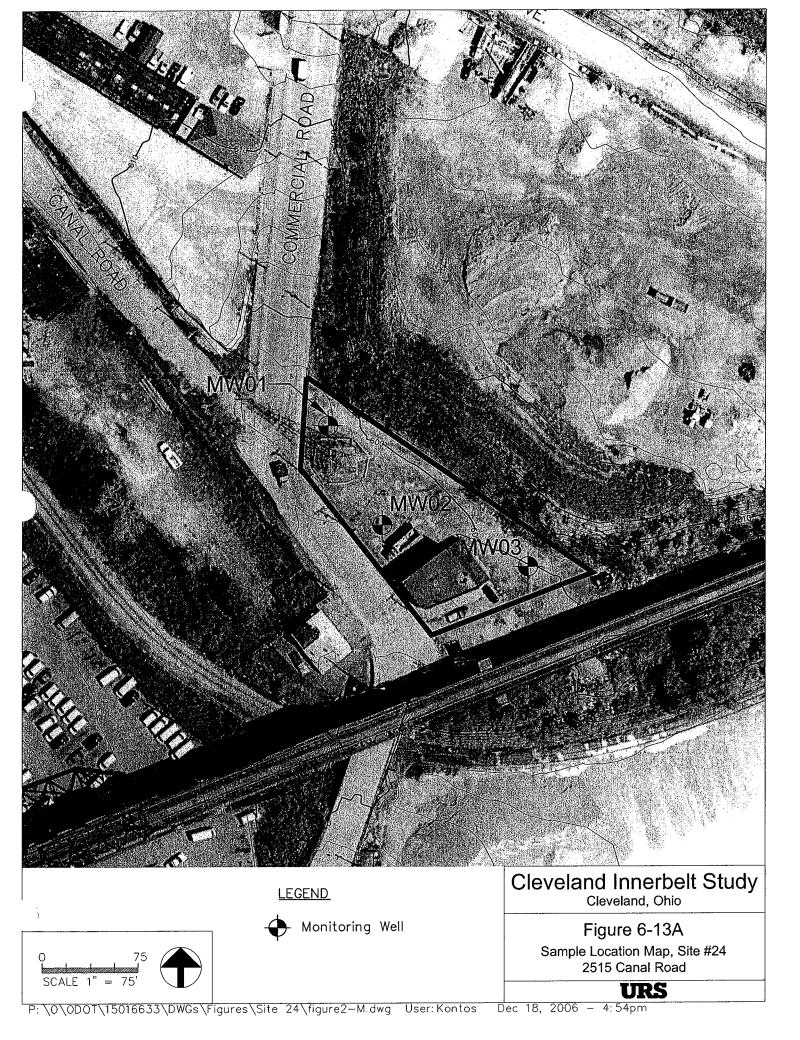
### 6.13.5 Comparison Standards

The analytical results were compared to the OEPAs VAP Generic Direct-Contact Standards for Commercial and Industrial Land Use (VAP, 2002a), the Construction and Excavation Worker Activities Category (VAP, 2002b), the Generic Unrestricted Potable Use Standards Based on MCLs or Other Regulatory Established Criteria (VAP, 2002c), the Risk-Derived Generic Unrestricted Potable Use Standards (VAP, 2002d), and the BUSTR Closure Action Levels. The VAP and BUSTR standards are included on **Tables 6-13A** and **6-13B**.

There were no VOCs detected in any of the soil samples from Site 24, which exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.

The concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene detected in sample 24-MW030204 exceeded the OEPA VAP standards for commercial and industrial land use, the construction and excavation worker activities category, or the BUSTR closure action levels.

No VOCs detected in the groundwater samples from Site 24 exceeded the OEPA VAP standard for generic unrestricted potable use standards or BUSTR closure action levels.


### 6.13.6 Conclusions

)

}

Based on the analytical results, the soil at Site 24 may require special disposal and/or worker protection protocols (plan note) during construction activities.

### FIGURES



TABLES

Table 0=13A Summary of Detected Chemicals in Soil Site 24 - James Vincent ODOT Innerbelt Study Cleveland, Ohio

)

)

			VAP	VAP -				
			Commercial/ 2	Construction Worker	BUSTR Closure Action	24-MW01-0608 07/18/2006	24-MW02-1416 07/19/2006	24-MW03-0204 07/19/2006
Ċ	PARAMETER	UNITS	Standard ⁽¹⁾	Standard ⁽²⁾	Level			
S	2-Butanone	ng/kg	71,600,000	80,000,000		23 J	2.4 J	24 U
00		ug/kg	100,000,000	100,000,000	1	99	25 U	24 U
٨		ug/kg	720,000	720,000	1	3.3 J	6.2 U	6.0 U
	<u><u> </u></u>	ug/kg	1		1	1200 J	410 U	L 0067
	4-Methylphenol / 3-Methylphenol	ug/kg		teres de la companya		220 J	410 U	40000 U
	Acenaphthene	ng/kg	180,000,000	530,000,000	1	2000 U	410 U	6000 J
	Anthracene	ng/kg	880,000,000	1,000,000,000	n ann an - n connormatio trainine institue ann an naoiste	120 J	410 U	19000 J
	Benzaldehyde	ng/kg			1	210 J	410 U	40000 U
	Benzo(a)anthracene	ug/kg	63,000	810,000	11,000	320 J	410 U	36000 J
	Benzo(a)pyrene	ug/kg	6,300	81,000	1,100	220 J	410 U	30000 J
	Benzo(b)ftuoranthene	ug/kg	63,000	810,000	11,000	260 J	410 U	36000 J
1		ug/kg		1	1	190 J	410 U	18000 J
soc		ug/kg	630,000	8,100,000	110,000	130 J	410 U	15000 J
٥٨s	Carbazole	ug/kg	10,000,000	31,000,000		2000 U	410 U	6100 J
	Chrysene	ug/kg	6,700,000	41,000,000	1,100,000	300 J	410 U	32000 J
	Dibenz(a,h)anthracene	ug/kg	6,700	41,000	1,100	2000 U	410 U	4100 J
	Dibenzofuran	ug/kg		and any second se	and a start of start start start start of start start starts	240 J	410 U	6400 J
	Fluoranthene	ug/kg	33,000,000	170,000,000		460 J	410 U	85000
	Fluorene	ug/kg	120,000,000	340,000,000		2000 U	410 U	8500 J
	Indeno(1,2,3-cd)pyrene	ug/kg	67,000	410,000	11,000	120 J	410 U	15000 J
	Naphthalene	ug/kg	530,000	1,900,000	39,800	660 J	410 U	۲ 0069
	Phenanthrene	ug/kg				630 J	410 U	68000
	Pyrene	ug/kg	25,000,000	130,000,000	1	490 J	410 U	20000

-- = Standard not available

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Generic Direct Contact Soil Standard, Commercial/ Industrial Land Use

(2) VAP Generic Direct Contact Soil Standard, Construction and Excavation Activities

P:\O\ODOT\15016633\DOCs\Data\Hits Tables\Site 24 Hits Tables

----

## Summary of Detected Chemicals in Water Site 24 - James Vincent **ODOT Innerbelt Study** Cleveland, Ohio Table -13B

•

j

gridade la te	
24-MW03 08/11/2006	1.0 U
24-MW02 08/11/2006	0.20 J
24-MW01 08/10/2006	1.0 U
BUSTR Closure Action F Level	1000
VAP UPUS / RDUPUS ⁽¹⁾	1000
UNITS	ug/L
ARAMETER	Toluene
- Sec. 2	NOCS

-- = Standard not available

U = The analyte was analyzed for, but was not detected. Value shown is the reporting limit. J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

(1) VAP Unrestricted Potable Use and Risk-Derived Unrestricted Potable Use Standards

### **BORING LOGS**

#### Project: ODOT - Innerbelt Corridor Project Location: Site 24 Project Number: 15016633

)

)

### Log of Boring 24-MW01

Sheet 1 of 1

Date(s) 7/19/06	Logged J. Kaminski	Checked M. Wolff
Drilled 7/19/06	By	By
Drilling Method & Hollow Stem Auger	Hammer	r 30 inches Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data 140 lb Hamme	of Borehole 15.0' bgs
Drill Rig	Drilling	Approximate
Type CME-55	Contractor HAD, Inc.	Ground Elevation 598'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Barabala

			SAMF	LES				Т		
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION		Schematic	FIELD NOTES AND WELL DETAILS
	0 - -	0002	9 17	0.0	NA		ASPHALT And base Loose, black, silty SAND with coal, trace Slag, no odor, no staining			Begin Drilling on 7/19/06
595	2	0204	2 2 4 3	20.0	5.4		Loose, black, silty SAND with coal, no, no odor, no staining			⊢Bentonite Pellets
	4— 	0406	2 2 4 3	24.0	3.8					— 2" Schedule 40 PV
	6— - 	0608	4 7 9 8	24.0	5.4		Dense, gray and black, silty SAND trace wood, no odor, no staining			Sample submitted for lab analysis 24-MW01-0608
-590	8 - -	0810	1 2 2 4	14.0	NA		Dense, gray and black, silty SAND trace wood, with gravel, no odor, no staining			
	10 	1012	3 3 5 7	0.0	NA					
-585	12 - -						Augered down to 15' bgs			Filter Sand #7
-585	14- - -						End of Boring at 15' bgs Installed Monitoring Well			- Slotted Pipe #10 PVC (0.010) End Drilling on 7/19/06
	16 									7/19/06
-580	  									
1 C	- 20-						URS	1		

#### Project: ODOT - Innerbelt Corridor Project Location: Site 24 Project Number: 15016633

### Log of Boring 24-MW02

Sheet 1 of 1

Date(s) 7/19/06	Logged	J. Kaminski	Checked M. Wolff
Drilled 7/19/06	By		By
Drilling Method & Hollow Stem Auger	Hammer	140 lb Hammer 30 inches	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data		of Borehole <b>30.0' bgs</b>
Drill Rig CME-55	Drilling	HAD, Inc.	Approximate
Type	Contractor		Ground Elevation 599'
Location See Site Map	Sampling Method(s)	2" Split Spoon	Borehole Completion Set monitoring well

.

SAMPLES			
Type Number Sampling Resistance Blows/6" Recovery, inches	PID, OVA, ppm Crashio Log	MATERIAL DESCRIPTION	FIELD NOTES FIELD NOTES AND WELL DETAILS
- 0002 15 10002 11 10	1.5	Loose, dry, dark brown and black, medium to coarse SAND with gravel, with Slag, trace coal refuse	A. Begin Drilling on A. J. J. J. 7/19/06
$-0204$ $\frac{3}{4}$ 24.0	2.4	Loose, dry, dark brown and black, medium to coarse SAND with gravel, with Slag, trace Brick	2" Schedule 40 PV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7	Dense, moist, gray and black, fine clayey SAND	•         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1	Dense, moist, greenish gray, fine to medium SAND	
$- 0810 \begin{array}{c} 3 \\ 5 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0.0	Hard, dry, gray and black sandy CLAY, with brick	
- 1012 2 20.0 6 7	0.0	Medium stiff, moist, greennish gray clayey SILT	
- 1214 11 24.0 10 5	3.1	Stiff, moist, brown SILT, trace sand	Sample submitted for lai
$- 1416 \frac{5}{6} 24.0$ $- 7$ $- 1618 \frac{2}{4} 24.0$	4.0	With clay	
- 1618 ³ / ₄ 24.0 7	3.2	Hard, dry, reddish brown silty CLAY	
- 1820 5 24.0 9	0.9	r-Becomes gray	-
$-2022$ $\frac{5}{5}$ 0.0 $\frac{3}{3}$	NA		
$-2224$ $\frac{1}{9}$ 0.0 10	1.8	Dense, moist, gray silty SAND, trace clay r No clay	
$2426$ $\begin{pmatrix} 4\\5\\6\\11\\11\\2 \end{pmatrix}$ 24.0	1.1		- Filter Sand #7
$-2628$ $\frac{2}{4}$ 24.0 8 2	0.9		- Slotted Pipe #10 PVC (0.010)
- 2830 ² 5 24.0	0.9	End of Boring at 30' bgs	End Drilling on
		End of Boring at 30' bgs Installed Monitoring Well	7/19/06
			URS

1

T WFILLS: File: ODOT.GPJ; 12/14

#### Project: ODOT - Innerbelt Corridor Project Location: Site 24 Project Number: 15016633

)

}

)

### Log of Boring 24-MW03

Sheet 1 of 1

Date(s) 7/19/06	Logged J. Kaminski	Checked
Drilled 7/19/06	By	By M. Wolff
Drilling Method & Hollow Stem Auger	Hammer	Total Depth
Drill Bit size/type 4-1/4" ID HSA	Data 140 lb Hammer 30 inches	of Borehole <b>16.0' bgs</b>
Drill Rig CME-55	Drilling	Approximate
Type	Contractor HAD, Inc.	Ground Elevation 600'
Location See Site Map	Sampling Method(s) 2" Split Spoon	Borehole Completion Set monitoring well

<del></del>			SAMF	PLES					
Elevation feet	Depth, feet	Type Number	Sampling Resistance Blows/6"	Recovery, inches	PID, OVA, ppm	Graphic Log	MATERIAL DESCRIPTION	Well Installation	FIELD NOTES AND WELL DETAILS
-600	0- - -	0002	10 25	24.0	2.1	:23:	CRUSHED STONE Slag and stone Loose, dry, black, fine to medium silty SAND with gravel, with, slag and coal		Begin Drilling on 7/19/06
	2— - -	0204	10 7 6 6	24.0	3.8		-		Sample submitted for la analysis 24-MW03-020 — 2" Schedule 40 P\
-595	4 - -	0406	2	24.0	1.5		Loose, dry, black, fine to medium silty SAND with gravel, with, slag and		- Bentonite Pellets
	6- - -	0608:	4 3 4 3	12.0	1.5		Dense, moist, light brown, silty SAND Stiff, moist, light brown, silty CLAY trace fine sand Loose, dry, brown, fine SAND		
	8 - -	0810	1 1 1 4	15.0	1.6		Stiff, moist, brown, SILT		
-590	- 10- -	1012	8 2 5	16.0	NA				
	- 12	1214	5 5 2 2	24.0	NA		Very soft, wet, brownish green, silty CLAY with sand, with gravel		-Filter Sand #7
	 - 14	1214	3 4	24.0			Augered down to 16' bgs		
-585	 						End of Boring at 16' bgs Installed Monitoring Well		- Slotted Pipe #10 PVC (0.010) End Drilling on
	  18							-	7/19/06 0828
-580	- - 20-						-	-	 

DATA ASSESSMENT REPORT

#### Data Assessment Report ODOT Innerbelt Study Site 24 – James Vincent

#### Reviewer: P. Schuler Date: November 14, 2006

Three soil samples and three groundwater samples were collected at the James Vincent site at 2515 Canal Road in Cleveland, Ohio, from July 18 through August 11, 2006. The samples were submitted to Severn Trent Laboratories, Inc. in North Canton, Ohio, for analysis of the parameters listed in Table 1.

		Sample		Requ Anal	vses ⁽¹⁾
Laboratory ID	Sample ID	Date	Matrix	VOC	SVOC
A6G190360001	24-MW01-0608	07/18/2006	Soil	X	X
A6G190360002	24-MW03-0204	07/19/2006	Soil	X	X
A6G190360003	24-MW02-1416	07/19/2006	Soil	Х	X
A6H120112001	24-MW01	08/10/2006	Groundwater	Х	X
A6H120112002	24-MW02	08/11/2006	Groundwater	Х	X
A6H120112003	24-MW03	08/11/2006	Groundwater	Х	X

Table 1Sample and Analysis Summary

(1) VOC = Volatile Organic Compounds [SW-846 Method 8260B]

SVOC = Semivolatile Organic Compounds [SW-846 Method 8270C]

A standard review for analytical data quality was performed by URS Corporation (URS) for the above referenced samples. A standard review includes assessment of supporting quality control (QC) parameters such as associated laboratory control sample (LCS) recoveries, laboratory and field blank results, surrogate recoveries, internal standard responses, matrix spike/matrix spike duplicate recoveries, field duplicate results, detection limits, and holding times. A standard review does not include examination of the raw data or reconstruction of the analytical results. The significant findings (findings that resulted in qualification of data or otherwise affected data quality) were as follows:

- Positive detections for acetone in samples 24-MW03-0204 and 24-MW02-1416, for bis(2-ethylhexyl)phthalate in samples 24-MW02-1416, 24-MW01, and 24-MW03, and for caprolactam in sample 24-MW02 were qualified as nondetect ("U") due to the presence of these analytes in the associated method blanks and/or trip blanks at similar concentrations.
- One volatile internal standard response was outside of the acceptance range in sample 24-MW03-0204. The results for all volatile analytes quantified from each of the noncompliant internal standards were qualified as estimated ("J" or "UJ").

- The lab reported results below their reporting limit but above the method detection limit (MDL) with a qualifier ("J"), in accordance with USEPA Contract Laboratory Program (CLP) conventions. During the data assessment, the "J" qualifiers were retained with the numeric results.
- All soil analytical results were reported on a dry weight (moisture-corrected) basis.

No other significant findings were identified and all data are considered usable. The analytical results, with qualifiers, are summarized in Tables 2-1 through 2-4.



#### Table 2-1 Analytical Data Summary Site 24 Soil Volatiles ODOT Innerbelt Study

		A6G190360001 24-MW01-0608	A6G190360002 24-MW03-0204	A6G190360003 24-MW02-1416
PARAMETER	UNITS	07/18/2006	07/19/2006	07/19/2006
Percent Solids	%	81.5	82.7	80.9
1,1,1-Trichloroethane	ug/kg	6.1 U	6.0 U	6.2 U
1,1,2,2-Tetrachloroethane	ug/kg	6.1 U	6.0 UJ	6.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	6.1 U	6.0 U	6.2 U
1,1,2-Trichloroethane	ug/kg	6.1 U	6.0 U	6.2 U
1,1-Dichloroethane	ug/kg	6.1 U	6.0 U	6.2 U
1,1-Dichloroethene	ug/kg	6.1 U	6.0 U	6.2 U
1,2,4-Trichlorobenzene	ug/kg	6.1 U	6.0 UJ	6.2 U
1,2-Dibromo-3-chloropropane	ug/kg	12 U	12 UJ	12 U
1,2-Dibromoethane	ug/kg	6.1 U	6.0 U	6.2 U
1,2-Dichlorobenzene	ug/kg	6.1 U	6.0 UJ	6.2 U
1,2-Dichloroethane	ug/kg	6.1 U	6.0 U	6.2 U
1,2-Dichloropropane	ug/kg	6.1 U	6.0 U	6.2 U
1,3-Dichlorobenzene	ug/kg	6.1 U	6.0 UJ	6.2 U
1,4-Dichlorobenzene	ug/kg	6.1 U	6.0 UJ	6.2 U
2-Butanone	ug/kg	23 J	24 U	2.4 J
2-Hexanone	ug/kg	25 U	24 U	25 U
4-Methyl-2-pentanone	ug/kg	25 U	24 UJ	25 U
Acetone	ug/kg	66	24 U	25 U
Benzene	ug/kg	6.1 U	6.0 U	6.2 U
Bromodichloromethane	ug/kg	6.1 U	6.0 U	6.2 U
Bromoform	ug/kg	6.1 U	6.0 U	6.2 U
Bromomethane	ug/kg	6.1 U	6.0 U	6.2 U
Carbon disulfide	ug/kg	3.3 J	6.0 U	6.2 U
Carbon tetrachloride	ug/kg	6.1 U	6.0 U	6.2 U
Chiorobenzene	ug/kg	6.1 U	6.0 U	6.2 U
Chloroethane	ug/kg	6.1 U	6.0 U	6.2 U
Chloroform	ug/kg	6.1 U	6.0 U	6.2 U
Chloromethane	ug/kg	6.1 U	6.0 U	6.2 U
cis-1,2-Dichloroethene	ug/kg	6.1 U	6.0 U	6.2 U
cis-1,3-Dichloropropene	ug/kg	6.1 U	6.0 U	6.2 U
Cyclohexane	ug/kg	12 U	12 U	12 U
Dibromochloromethane	ug/kg	6.1 U	6.0 U	6.2 U
Dichlorodifluoromethane	ug/kg	6.1 U	6.0 U	6.2 U
Ethylbenzene	ug/kg	6.1 U		
Isopropylbenzene	ug/kg	6.1 U	6.0 U 6.0 U	6.2 U
Methyl acetate	ug/kg	12 U	12 U	6.2 U 12 U
Methyl tert-butyl ether	ug/kg	25 U	12 U	
Methylcyclohexane	ug/kg	12 U	24 U 12 U	25 U
Methylene chloride	ug/kg	6.1 U	6.0 U	12 U
Styrene	ug/kg	6.1 U	the second second second second	6.2 U
Tetrachloroethene	ug/kg	6.1 U	6.0 U 6.0 U	6.2 U
Toluene	ug/kg	6.1 U	6.0 U	6.2 U
trans-1,2-Dichloroethene		· · · · · ·		6.2 U
trans-1,3-Dichloropropene	ug/kg	6.1 U	6.0 U	6.2 U
	ug/kg	6.1 U	6.0 U	6.2 U
Trichloroethene	ug/kg	6.1 U	6.0 U	6.2 U
Trichlorofluoromethane	ug/kg	6.1 U	6.0 U	6.2 U
Vinyl chloride	ug/kg	6.1 U	6.0 U	6.2 U
Xylenes (total) =The analyte was analyzed for, but was not deter	ug/kg	12 U	12 U	12 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

UJ = The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.



# Table 2-2Analytical Data SummarySite 24 Soil SemivolatilesODOT Innerbelt Study

		A6G190360001 24-MW01-0608	A6G190360002 24-MW03-0204	A6G190360003 24-MW02-1416
PARAMETER	UNITS	07/18/2006	07/19/2006	07/19/2006
1,1'-Biphenyl	ug/kg	2000 U	40000 U	410 U
2,2'-oxybis(1-Chloropropane)	ug/kg	2000 U	40000 U	410 U
2,4,5-Trichlorophenol	ug/kg	2000 U	40000 U	410 U
2,4,6-Trichlorophenol	ug/kg	2000 U	40000 U	410 U
2,4-Dichlorophenol	ug/kg	2000 U	40000 U	410 U
2,4-Dimethylphenol	ug/kg	2000 U	40000 U	410 U
2,4-Dinitrophenol	ug/kg	2000 U	40000 U	410 U
2,4-Dinitrotoluene	ug/kg	2000 U	40000 U	410 U
2,6-Dinitrotoluene	ug/kg	2000 U	40000 U	410 U
2-Chioronaphthalene	ug/kg	2000 U	40000 U	410 U
2-Chlorophenol	ug/kg	2000 U	40000 U	410 U
2-Methylnaphthalene	ug/kg	1200 J	7900 J	410 U
2-Methylphenol	ug/kg	2000 U	40000 U	410 U
2-Nitroaniline	ug/kg	2000 U	40000 U	410 U
2-Nitrophenol	ug/kg	2000 U	40000 U	410 U
3,3'-Dichlorobenzidine	ug/kg	2000 U	40000 U	410 U
3-Nitroaniline	ug/kg	2000 U	40000 U	410 U
4,6-Dinitro-2-methylphenol	ug/kg	2000 U	40000 U	410 U
4-Bromophenyl phenyl ether	ug/kg	2000 U	40000 U	410 U
4-Chloro-3-methylphenol	ug/kg	2000 U	40000 U	410 U
4-Chloroaniline	ug/kg	2000 U	40000 U	410 U
4-Chiorophenyl phenyl ether	ug/kg	2000 U	40000 U	410 U
4-Methylphenol / 3-Methylphenol	ug/kg	220 J	40000 U	410 U
4-Nitroaniline	ug/kg	2000 U	40000 U	410 U
4-Nitrophenol	ug/kg	2000 U	40000 U	410 U
Acenaphthene	ug/kg	2000 U	6000 J	410 U
Acenaphthylene	ug/kg	2000 U	40000 U	410 U
Acetophenone	ug/kg	410 U	8100 U	82 U
Anthracene	ug/kg	120 J	19000 J	410 U
Atrazine	ug/kg	2000 U	40000 U	410 U
Benzaldehyde	ug/kg	210 J	40000 U	410 U
Benzo(a)anthracene	ug/kg	320 J	36000 J	410 U
Benzo(a)pyrene	ug/kg	220 J	30000 J	410 U
Benzo(b)fluoranthene	ug/kg	260 J	36000 J	410 U
Benzo(ghi)perylene	ug/kg	190 J	18000 J	410 U
Benzo(k)fluoranthene	ug/kg	130 J	15000 J	410 U
bis(2-Chloroethoxy)methane	ug/kg	2000 U	40000 U	410 U
bis(2-Chloroethyl) ether	ug/kg	2000 U	40000 U	410 U
bis(2-Ethylhexyl) phthalate	ug/kg	2000 U	40000 U	410 U
Butyl benzyl phthalate	ug/kg	2000 U	40000 U	410 U
Caprolactam	ug/kg	2000 U	40000 U	410 U
Carbazole	ug/kg	2000 U	6100 J	410 U
Chrysene	ug/kg	300 J	32000 J	410 U
Dibenz(a,h)anthracene	ug/kg	2000 U	4100 J	410 U
Dibenzofuran	ug/kg	240 J	6400 J	410 U
Diethyl phthalate	ug/kg	2000 U	40000 U	410 U
Dimethyl phthalate	ug/kg	2000 U	40000 U	410 U
Di-n-butyl phthalate	ug/kg	2000 U	40000 U	410 U
Di-n-octyl phthalate	ug/kg	2000 U	40000 U	410 U
Fluoranthene	ug/kg	460 J	85000	410 U
Fluorene	ug/kg	2000 U	8500 J	410 U
Hexachlorobenzene	ug/kg	2000 U	40000 U	410 U

)

## Table 2-2Analytical Data SummarySite 24 Soil SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6G190360001 24-MW01-0608 07/18/2006	A6G190360002 24-MW03-0204 07/19/2006	A6G190360003 24-MW02-1416 07/19/2006
Hexachlorobutadiene	ug/kg	2000 U	40000 U	410 U
Hexachlorocyclopentadiene	ug/kg	2000 U	40000 U	410 U
Hexachloroethane	ug/kg	2000 U	40000 U	410 U
Indeno(1,2,3-cd)pyrene	ug/kg	120 J	15000 J	410 U
Isophorone	ug/kg	2000 U	40000 U	410 U
Naphthalene	ug/kg	660 J	6900 J	410 U
Nitrobenzene	ug/kg	2000 U	40000 U	410 U
N-Nitrosodi-n-propylamine	ug/kg	2000 U	40000 U	410 U
N-Nitrosodiphenylamine	ug/kg	2000 U	40000 U	410 U
Pentachlorophenol	ug/kg	2000 U	40000 U	410 U
Phenanthrene	ug/kg	630 J	68000	410 U
Phenol	ug/kg	2000 U	40000 U	410 U
Pyrene	ug/kg	490 J	70000	410 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

.

## Table 2-3Analytical Data SummarySite 24 Water VolatilesODOT Innerbelt Study

		A6H120112001 24-MW01	A6H120112002 24-MW02	A6H120112003 24-MW03
PARAMETER	UNITS	08/10/2006	08/11/2006	08/11/2006
1,1,1-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	ug/L	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	ug/L	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	ug/L	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	ug/L	2.0 U	2.0 U	2.0 U
1,2-Dibromoethane	ug/L	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	ug/L	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	ug/L	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	ug/L	1.0 U	1.0 U	1.0 U
2-Butanone	ug/L	10 U	10 U	10 U
2-Hexanone	ug/L	10 U	10 U	10 U
4-Methyl-2-pentanone	ug/L	10 U	10 U	10 U
Acetone	ug/L	10 U	10 U	10 U
Benzene	ug/L	1.0 U	1.0 U	1.0 U
Bromodichloromethane	ug/L	1.0 U	1.0 U	1.0 U
Bromoform	ug/L	1.0 U	1.0 U	1.0 U
Bromomethane	ug/L	1.0 U	1.0 U	1.0 U
Carbon disulfide	ug/L	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	ug/L	1.0 U	1.0 U	1.0 U
Chlorobenzene	ug/L	1.0 U	1.0 U	1.0 U
Chloroethane	ug/L	1.0 U	1.0 U	1.0 U
Chloroform	ug/L	1.0 U	1.0 U	1.0 U
Chloromethane	ug/L	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	ug/L	1.0 U	1.0 U	1.0 U
Cyclohexane	ug/L	1.0 U	1.0 U	1.0 U
Dibromochloromethane	ug/L	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	ug/L	1.0 U	1.0 U	1.0 U
Ethylbenzene	ug/L	1.0 U	1.0 U	1.0 U
Isopropylbenzene	ug/L	1.0 U	1.0 U	1.0 U
Methyl acetate	ug/L	10 U	10 U	10 U
Methyl tert-butyl ether	ug/L	5.0 U	5.0 U	5.0 U
Methylcyclohexane	ug/L	1.0 U	1.0 U	1.0 U
Methylene chloride	ug/L	1.0 U	1.0 U	1.0 U
Styrene	ug/L	1.0 U	1.0 U	1.0 U
Tetrachloroethene	ug/L	1.0 U	1.0 U	1.0 U
Toluene	ug/L	1.0 U	0.20 J	1.0 U
trans-1,2-Dichloroethene	ug/L	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	ug/L	1.0 U	1.0 U	1.0 U
Trichloroethene	ug/L	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	ug/L	1.0 U	1.0 U	1.0 U
Vinyl chloride	ug/∟ ug/L	1.0 U	1.0 U	1.0 U
		• • • •		
Xylenes (total)	ug/L	2.0 U	2.0 U	2.0 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

J = Estimated concentration because the result was below the sample reporting limit or quality control criteria were not met.

# Table 2-4Analytical Data SummarySite 24 Water SemivolatilesODOT Innerbelt Study

		A6H120112001 24-MW01 08/10/2006	A6H120112002 24-MW02 08/11/2006	A6H120112003 24-MW03 08/11/2006
PARAMETER	UNITS	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
1,1'-Biphenyl	ug/L	1.0 U	1.0 U	1.0 U
2,2'-oxybis(1-Chloropropane)	ug/L	1.0 U	1.0 U	1.0 U
2,4,5-Trichlorophenol	ug/L	5.0 U	5.0 U	5.0 U
2,4,6-Trichlorophenol	ug/L	5.0 U	5.0 U	5.0 U
2,4-Dichlorophenol	ug/L	2.0 U	2.0 U	2.0 U
2,4-Dimethylphenol	ug/L	2.0 U	2.0 U	2.0 U
2,4-Dinitrophenol	ug/L	5.0 U	5.0 U	5.0 U
2,4-Dinitrotoluene	ug/L	5.0 U	5.0 U	5.0 U
2,6-Dinitrotoluene	ug/L	5.0 U	5.0 U	5.0 U
2-Chloronaphthalene	ug/L	1.0 U	1.0 U	1.0 U
2-Chlorophenol	ug/L	1.0 U	1.0 U	1.0 U
2-Methylnaphthalene	ug/L	0.20 U	0.20 U	0.20 U
2-Methylphenol	ug/L	1.0 U	1.0 U	1.0 U
2-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U
2-Nitrophenol	ug/L	2.0 U	2.0 U	2.0 U
3,3'-Dichlorobenzidine	ug/L	5.0 U	5.0 U	5.0 U
3-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U
4,6-Dinitro-2-methylphenol	ug/L	5.0 U	5.0 U	5.0 U
4-Bromophenyl phenyl ether	ug/L	2.0 U	2.0 U	2.0 U
4-Chloro-3-methylphenol	ug/L	2.0 U	2.0 U	2.0 U
4-Chloroaniline	ug/L	2.0 U	2.0 U	2.0 U
4-Chlorophenyl phenyl ether	ug/L	2.0 U	2.0 U	2.0 U
4-Methylphenol	ug/L	1.0 U	1.0 U	1.0 U
4-Nitroaniline	ug/L	2.0 U	2.0 U	2.0 U
4-Nitrophenol	ug/L	5.0 U	5.0 U	5.0 U
Acenaphthene	ug/L	0.20 U	0.20 U	0.20 U
Acenaphthylene	ug/L	0.20 U	0.20 U	0.20 U
Acetophenone	ug/L	1.0 U	1.0 U	1.0 U
Anthracene	ug/L	0.20 U	0.20 U	0.20 U
Atrazine	ug/L	1.0 U	1.0 U	1.0 U
Benzaldehyde	ug/L	1.0 U	1.0 U	1.0 U
Benzo(a)anthracene	ug/L	0.20 U	0.20 U	0.20 U
Benzo(a)pyrene	ug/L	0.20 U	0.20 U	0.20 U
Benzo(b)fluoranthene	ug/L	0.20 U	0.20 U	0.20 U
Benzo(ghi)perylene	ug/L	0.20 U	0.20 U	0.20 U
Benzo(k)fluoranthene	ug/L	0.20 U	0.20 U	0.20 U
bis(2-Chloroethoxy)methane	ug/L	1.0 U	1.0 U	1.0 U
bis(2-Chloroethyl) ether	ug/L	1.0 U	1.0 U	1.0 U
bis(2-Ethylhexyl) phthalate	ug/L	1.0 U	1.0 U	2.4 U
Butyl benzyl phthalate	ug/L	1.0 U	1.0 U	1.0 U
Caprolactam	ug/L	5.0 U	5.0 U	5.0 U
Carbazole	ug/L	1.0 U	1.0 U	1.0 U
Chrysene	ug/L	0.20 U	0.20 U	0.20 U
Dibenz(a,h)anthracene	ug/L	0.20 U	0.20 U	0.20 U
Dibenzofuran	ug/L	1.0 U	1.0 U	1.0 U
Diethyl phthalate	ug/L	1.0 U	1.0 U	1.0 U
Dimethyl phthalate	ug/L	1.0 U	1.0 U	1.0 U
Di-n-butyl phthalate	ug/L	1.0 U	1.0 U	1.0 U
Di-n-octyl phthalate	ug/L	1.0 U	1.0 U	1.0 U
Fluoranthene	ug/L	0.20 U	0.20 U	0.20 U
Fluorene	ug/L	0.20 U	0.20 U	0.20 U
Hexachlorobenzene	ug/L	0.20 U	0.20 U	0.20 U

)

## Table 2-4Analytical Data SummarySite 24 Water SemivolatilesODOT Innerbelt Study

PARAMETER	UNITS	A6H120112001 24-MW01 08/10/2006	A6H120112002 24-MW02 08/11/2006	A6H120112003 24-MW03 08/11/2006
Hexachlorobutadiene	ug/L	1.0 U	1.0 U	1.0 U
Hexachlorocyclopentadiene	ug/L	10 U	10 U	10 U
Hexachloroethane	ug/L	1.0 U	1.0 U	1.0 U
Indeno(1,2,3-cd)pyrene	ug/L	0.20 U	0:20 U	0.20 U
Isophorone	ug/L	1.0 U	1.0 U	1.0 U
Naphthalene	ug/L	0.20 U	0.20 U	0.20 U
Nitrobenzene	ug/L	1.0 U	1.0 U	1.0 U
N-Nitrosodi-n-propylamine	ug/L	1.0 U	1.0 U	1.0 U
N-Nitrosodiphenylamine	ug/L	1.0 U	1.0 U	1.0 U
Pentachlorophenol	ug/L	5.0 U	5.0 U	5.0 U
Phenanthrene	ug/L	0.20 U	0.20 U	0.20 U
Phenol	ug/L	1.0 U	1.0 U	1.0 U
Pyrene	ug/L	0.20 U	0.20 U	0.20 U

U =The analyte was analyzed for, but was not detected. Value shown is the reporting limit.

)

)

)