DRAFT REPORT ROADWAY EXPLORATION REPORT SUM-76-6.15 SUMMIT COUNTY, OHIO PID#: 100713

Prepared For:

GPD GROUP

520 South Main Street, Suite 2531 Akron, Ohio 44311

Prepared by:

NATIONAL ENGINEERING AND ARCHITECTURAL SERVICES INC.

2800 Corporate Exchange Drive, Suite 240 Columbus, Ohio 43231

NEAS PROJECT 19-0002

July 31, 2019

EXECUTIVE SUMMARY

The Ohio Department of Transportation (ODOT) has proposed an interstate improvement project (SUM-76-6.15, PID 100713) along portions of Interstate Route 76 (IR-76), IR-77, and IR-277 part of the Akron Beltway in Akron, Summit County, Ohio. This portion of the Akron Beltway planned for improvement is designated as the Kenmore Leg and includes the IR-77 and IR-76 Interchange (NW Interchange), the IR-76 and IR-277 Interchange (SW Interchange), as well as portions of connecting mainline interstates and associated ramps. The overall project limits extend west to east along IR-76/IR-277 from approximately 30th Street (St) SW to Maryland Avenue (Ave) and south to north along IR-76/IR-77 from approximately IR-277 to Lawton St. It is our understanding that the proposed project improvements consist of: 1) the reconstruction/widening of IR-76 Eastbound (EB), IR-76 Northbound (NB) and IR-77 NB in the vicinity of the NW Interchange; 2) the reconstruction/widening of IR-277 EB and IR-76 Westbound (WB) in the vicinity of the SW Interchange; 3) the realignment and reconstruction of 3 connecting ramps (Ramp T, Ramp V, and Ramp W); 4) the widening/reconstruction of 7 connecting ramps/roadways (Ramp N, Ramp M, Ramp U, Ramp J, Ramp L, Ramp A2 and Ramp B); and, 5) the construction of approximately 13 noise barriers along the referenced interstates within the project limits.

National Engineering & Architectural Services, Inc. (NEAS) has been contracted to perform geotechnical engineering services for the project. The purpose of the geotechnical engineering services was to perform geotechnical explorations within the project limits to obtain information concerning the subsurface soil and groundwater conditions relevant to the design and construction of the project. Between January 14, 2019 and May 10, 2019, NEAS performed the site reconnaissance and exploration program for the project. The subsequent document presents the results of the roadway exploration for IR-76, IR-77 and IR-277 mainline freeway segments and the associated connecting ramps noted above. As part of the interchange improvement project, NEAS advanced a total of 86 borings which were utilized for roadway and subgrade characterization purposes.

The existing pavement sections encountered varied throughout the project limits, and consisted of asphalt pavement, concrete pavement or a combination of the two, overlying granular base material. Project asphalt pavement only thickness ranged from 5 to 15.5 inches while concrete pavement only thicknesses ranged from 9 to 16 inches. In general, the overall thickness of the project pavements ranged from 5 to 18 inches. Below the existing pavement section, the subgrade conditions in the project area are relatively consistent and are generally comprised of either fill soils (i.e., embankment fill, historical/urban fill, etc.) or natural soils consisting of non-cohesive sand, silt and gravel combinations or low to moderately plastic sandy silt, silt, and silt/clay combinations. About fifty percent of the subgrade soils encountered at the site were classified as either Coarse and Fine Sand (A-3a) or cohesive/non-cohesive Sandy Silt (A-4a). The remainder of the subgrade soils were generally classified as A-1-a, A-1-b, A-2-4, A-3, A-4b or A-6a. The exception to this is the southeast portion of the project where natural organic silts (A-8a) were encountered. With respect to sulfate within the subgrade soil, based on the project laboratory testing program, each subgrade soil sample tested was determined to have a sulfate content of less than 5,000 parts per million (i.e., lower than the level which ODOT considers high and may prevent the use of chemical stabilization).

Based on our evaluation of the subsurface conditions and our geotechnical engineering analyses of the proposed improvement project, it is our opinion that subgrade conditions are generally satisfactory and pavement can be designed without the need for extreme levels of remediation. In general, it is recommended that the subgrade soil of project interstates and connecting ramps be globally (chemically) stabilized to a depth of 14 inches utilizing cement as the stabilization chemical. In addition to subgrade stabilization, bedrock was encountered at various locations within two feet of the bottom of the proposed asphalt or concrete pavement and therefore is recommended for remediation. Estimated limits of rock removal are presented within Section 5.4.2. of this report. NEAS's opinion that the subgrade soils will provide adequate pavement support assuming it is designed and constructed in accordance with the recommendations provided within this report, as well as all applicable ODOT standards and specifications.

TABLE OF CONTENTS

1.	INTROI	DUCTION	4
	1.1. GEN	NERAL	4
2.	GEOLO	GY AND OBSERVATIONS OF THE PROJECT	4
	2.1. GEO	DLOGY AND PHYSIOGRAPHY	4
	2.2. HYI	DROLOGY/HYDROGEOLOGY	5
	2.3. MIN	NING AND OIL/GAS PRODUCTION	6
		TORICAL RECORDS AND PREVIOUS PHASES OF PROJECT EXPLORATION	
		LD RECONNAISSANCE	
	2.5.1.	Land Use and Cover	7
	2.5.2.	Interstate Routes	
	2.5.3.	Connecting Ramps	
3.		CHNICAL EXPLORATION	9
		ADWAY EXPLORATION PROGRAM	
		BORATORY TESTING PROGRAM	
	3.2.1.	Classification Testing	
	3.2.2.	Standard Penetration Test Results	
	3.2.3.	Sulfate Testing	
	3.2.4.	Direct Shear Testing	
	3.2.5.	Loss on Ignition Testing	
	3.2.6.	Unconfined Compressive Strength of Cohesive Soil Testing	
4.		GS	
		STING PAVEMENT	
	4.1.1.	Pavement Thickness/Buildup Measurements	
		SSURFACE CONDITIONS	
	4.2.1.	IR-77/IR-76	
	4.2.2.	IR-277/IR-76	
	4.2.3.	Ramp B & A2	
	4.2.4.	Ramp J	
	4.2.5.	Ramp L	
	4.2.6.	Ramps N & M	
	4.2.7.	Ramp P	
	4.2.8.	Ramp T	
	4.2.9.	Ramp U	
	<i>4.2.10.</i>	Ramp V	
	4.2.11.	Ramp W	
		Groundwater	
5.		SES AND RECOMMENDATIONS	
٠.		BGRADE ANALYSIS	
	5.1.1.	Pavement Design Recommendations	
	5.1.2.	Unsuitable Subgrade	
	5.1.2.1	<u>e</u>	
	5.1.2.2		
	5.1.2.3		
	5.1.2.4		
		BANKMENT STABILITY ANALYSIS	
		BANKMENT CONSTRUCTION RECOMMENDATIONS	
		ABILIZATION RECOMMENDATIONS	
	5.4.1.	Subgrade Stabilization	
	5.4.2.	Shallow Bedrock	
6.		TICATIONS	

LIST OF TABLES

TABLE 1:	DIRECT SHEAR TESTING SUMMARY	11
TABLE 2:	UNCONFINED COMPRESSIVE STRENGTH TESTING SUMMARY	11
TABLE 3:	MEASURED PAVEMENT THICKNESS AT BORING LOCATIONS	12
TABLE 4:	PAVEMENT DESIGN VALUES	
TABLE 5:	SHALLOW ROCK LOCATION SUMMARY	18
TABLE 6:	PROHIBITED SOILS LOCATION SUMMARY	
TABLE 7:	WEAK SOIL LOCATIONS SUMMARY	20
TABLE 8:	HIGH MOISTURE CONTENT SOILS LOCATION SUMMARY	20
TABLE 9:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES – IR-76 EB - STA. 98+00	21
TABLE 10:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES – IR-77 SB/IR-76 EB – STA. 242+00	22
TABLE 11:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES – IR-76 WB – STA. 50+00	22
TABLE 12:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES – IR-76 WB – STA. 50+00	22
TABLE 13:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES – RAMP A2 – STA. 15+00	22
TABLE 14:	SOIL PROFILE AND ESTIMATED ENGINEERING PROPERTIES – RAMP A2 – STA. 17+00	22
TABLE 15:	ESTIMATED LIMITS OF REQUIRED ROCK EXCAVATION	25

LIST OF APPENDICES

- APPENDIX A: SOIL PROFILE SHEETS
- APPENDIX B: BORING LOGS AND LABORATORY TESTING RESULTS
- APPENDIX C: SULFATE CONTENT DATA
- APPENDIX D: GEOTECHNICAL BULLETIN 1 (GB1) ANALYSIS SPREADSHEETS
- APPENDIX E: EMBANKMENT STABILITY OUTPUTS
- APPENDIX F: ODNR OIL WELL REPORTS

1. INTRODUCTION

1.1. General

National Engineering & Architectural Services, Inc. (NEAS) presents our Roadway Exploration Report for the Ohio Department of Transportation (ODOT) project SUM-76-6.15 (PID 100713) along portions of Interstate Route 76 (IR-76), IR-77, and IR-277 part of the Akron Beltway in Akron, Summit County, Ohio. The project portion of the Akron Beltway planned for improvement is designated as the Kenmore Leg and includes the IR-77 and IR-76 Interchange (NW Interchange), the IR-76 and IR-277 Interchange (SW Interchange), as well as portions of connecting mainline interstates and associated ramps. This report presents a summary of the project encountered surficial and subsurface conditions and our recommendations for subgrade stabilization, embankment construction and pavement design parameters for: 1) the reconstruction/widening of IR-76 Eastbound (EB), IR-76 Northbound (NB) and IR-77 NB in the vicinity of the NW Interchange; 2) the reconstruction/widening of IR-277 EB and IR-76 Westbound (WB) in the vicinity of the SW Interchange; 3) the realignment and reconstruction of ramps (Ramp T, Ramp V, and Ramp W); and, 4) the widening/reconstruction of 7 connecting ramps/roadways (Ramp N, Ramp M, Ramp U, Ramp J, Ramp L, Ramp A2 and Ramp B). The analysis performed as part of this report has been performed in accordance with ODOT's *Geotechnical Bulletin 1* (GB1) (ODOT [1], 2019) and *Pavement Design Manual* (PDM) (ODOT PDM, 2019).

The exploration was conducted in general accordance with NEAS's proposal to GPD Group (GPD), dated May 22, 2018 and with the provisions of ODOT's *Specifications for Geotechnical Explorations* (SGE) (ODOT SGE, 2019).

The scope of work performed by NEAS as part of the referenced project included: a review of published geotechnical information; performing 86 total test borings as part of the roadway exploration; laboratory testing of soil samples in accordance with the SGE; performing geotechnical engineering analysis to assess subgrade stabilization requirements, embankment and pavement design parameters; and development of this summary report.

2. GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1. Geology and Physiography

The topography at the project site is relatively flat in the northern and southern portions of the site with sloping grades present in the central portion. In the northern portion of the site the topography gradually slopes upwards from west to east with the peak elevation within this part of the site at an approximate elevation of 1076 ft above mean sea level (amsl) near Ramp J. The central portion of the project site between the NW and SW interchanges generally slopes upward from west to east with a peak elevation of 1033 ft amsl near the East Ave/IR-76 overpass. The south end of the project site slopes very gradually upward from west to east with the peak elevation being approximately 1000 ft amsl at the eastern end of IR-277.

The project site is located within the Akron-Canton Interlobate Plateau physiographic region, part of the Glaciated Allegheny Plateaus (ODGS, 1998). This is a moderate relief, hummocky area between two converging glacial lobes dominated by kames, kame terraces, eskers, kettles, kettle lakes, and bogs/fens. Soils in this region are characteristically Wisconsinan-age sand and older drift over Devonian to Pennsylvanian age sandstones, conglomerates and shales.

The northern portion of the project site (IR-77, IR-76) is mapped as 30 ft of Wisconsinan-age sand and gravel, underlain by 150 feet of complexly interbedded deposits of clay, silt, sand, gravel and till. The area which includes the NW Interchange as well as the eastern portions of IR-76 is mapped as 160 ft of Wisconsinan-age till above bedrock. The portion of the project between the NW and SW Interchanges is mapped as 80 ft of Wisconsinan-age till near the SW interchange thinning out to 20 ft towards the NW interchange. The southern portion of the of project site (IR-277 and IR-76, SW interchange) is mapped as 160 ft of Wisconsinan-age Ice-contact deposits, underlain by 90 feet of Wisconsinan-age sand and gravel. Small areas of organic deposits were noted on the surficial geology maps southeast of the SW Interchange (ODGS, 2005).

Based on the Bedrock Geologic Units Map of Ohio (USGS & ODGS, 2006), bedrock within the project area consists of shale and siltstone of the Allegheny and Pottsville Groups, Undivided. This unit is comprised of Pennsylvanian-age shale and siltstone locally containing marine fossils, with minor lithologic constituents of limestone and sandstone. The shale in this formation is described as black, gray and olive in color, clayey to silty, and calcareous in part, while the siltstone is described as gray, greenish and olive in color, clayey to sandy, and thin to medium bedded. Bedrock is anticipated to be sloping upward from west to east at the project site. Based on the ODNR bedrock topography map of Ohio, bedrock elevations at the project site can be expected to be between elevations of 1050 and 800 ft amsl (ODGS, 2003), putting bedrock at a depth ranging from about 225 ft below ground surface (bgs) to outcropping (above the ground surface) in locations. Bedrock was observed to be relatively shallow in the northeast portion of the site as outcropped rock was observed on the eastern side of IR-76 near the East Ave/IR-76 crossing as well as along the northern portion of Ramp V.

The soils at the project site are generally mapped (Web Soil Survey) by the Natural Resources Conservation Service (USDA, 2015) as Udorthents. These soils can be described as soils that have been disturbed by cutting and filling. These soils are not classified according to the AASHTO method of soil classification, but it can be expected that these soils will largely consist of fill soils and often vary in composition. A significant portion of the soils surrounding the project site have been mapped as Canfield-Urban land complex, Chili-Urban land complex, Bogart loam and Carlisle Muck. Soils in the Canfield series are characterized as very deep, moderately well drained soils formed in Wisconsinan age till on plains. Soils in the Chili series are characterized as very deep, well drained soils on outwash plains, terraces, kames, and beach ridges while Bogart series soils are characterized a very deep, moderately well drained soils that formed in stratified outwash deposits on terraces, beach ridges, and outwash plains. Soil mapped as Carlisle Muck were encountered near the SW Interchange as well as southeast of the interchange. The Carlisle Muck series are characterized as very deep, very poorly drained soils formed in woody and herbaceous organic materials in depressions within lake plains, outwash plains, flood plains, and moraines. Based on the Web Soil Survey these surrounding soils are comprised of a mix of both coarse-grained and fine-grained soils, classifying as A-4, A-2, A-6 or A-2-6 type soils according to the AASHTO method of soil classification. The soils mapped as Carlisle Muck and are classified primarily as A-8 according to the AASHTO method of soil classification.

2.2. Hydrology/Hydrogeology

Groundwater at the project site can be expected at an elevation consistent with that of the Tuscarawas River (or tributaries to the Tuscarawas River) as it is the most dominant hydraulic influence in the vicinity of the project's boundaries. The water level of the Tuscarawas River may be generally representative of the local groundwater table. However, as there are relatively thin overburden soils at the site and the topography of the site gradually slopes downward to the river's elevation, it is not anticipated that a static groundwater table will be present within the overburden soil. Rather it is anticipated that if encountered, groundwater is

likely to be present at the bedrock surface or within the upper few feet of bedrock where the stratum is highly weathered. Furthermore, it should be noted that perched groundwater systems may be existent in areas due to the presence of fine-grained soils making it difficult for groundwater to permeate to the bedrock surface. According to historic boring logs and associated groundwater observations, groundwater elevations range from approximately 953 to 997 ft amsl across the project site.

The project site is not located within a special flood hazard area based on available mapping by the Federal Emergency Management Agency's (FEMA) National Flood Hazard mapping program (FEMA, 2019).

2.3. Mining and Oil/Gas Production

No abandoned mines are noted on ODNR's Abandoned Underground Mine Locator in the vicinity of the bridge site (ODNR [1], 2016).

Four (4) active oil or gas wells were mapped on ODNR's Ohio Oil & Gas Locator in the vicinity of the project site (ODNR [2], 2016). Three are located near the NW Interchange while one is located at the southeast end of the project near IR-277. One active well was located 230 ft east of S Hawkins Ave and 330 ft north of Morse St. while a second active well was located 522 ft east of S Hawkins Ave and 615 ft north of Jason St. The third active well was located 490 ft west of Anfield St. and 315 ft north of Morse St. and the fourth active well was located 730 ft east of Gaugler Ave. and 400 ft north of W Waterloo Rd. Each of the identified wells were drilled to depths greater than 3900 ft bgs and are currently producing. More information on the identified wells can be found on the ODNR Oil Well reports included in Appendix F.

2.4. Historical Records and Previous Phases of Project Exploration

The following report/plans were available for review and evaluation for this report:

- Soil Profile Sheets as part of ODOT project SUM-18-6.88, Sheets 1-17, prepared by the State Highway Testing and Research Laboratory dated Nov. 10, 1960;
- Soil Profile Sheets as part of ODOT project SUM-5-10.62, Sheets 1-9, prepared by the State Highway Testing and Research Laboratory dated Sept. 25, 1961;
- Soil Profile Sheets as part of ODOT project SUM-224-5.85 Sheets 1-12, prepared by the State Highway Testing and Research Laboratory dated May 9, 1960;
- Soil Profile Sheets as part of ODOT project SUM-5-9.33 Sheets 1-27, prepared by the State Highway Testing and Research Laboratory dated Oct. 30, 1963; and,
- Soil Profile Sheets as part of ODOT project SUM-18-9.23 Sheets 1-16, prepared by the State Highway Testing and Research Laboratory dated Jan. 6, 1961.

Historical soil borings associated with the above plans were reviewed, however, were not utilized for our analysis, and therefore, are not referenced or presented within this report.

2.5. Field Reconnaissance

Field reconnaissance visits for the overall project area were conducted between January 14, 2019 and January 17, 2019, along IR-76, IR-77, IR-277 and connecting ramps. Site conditions, including the existing pavement conditions, were noted and photographed during the visit. A summary of the land use and pavement conditions by roadway segment including photographs of notable pavement distress are provided and is provided below.

2.5.1. Land Use and Cover

The land use of most of the project area along IR-76 and IR-77 consists of residential property generally comprised of family homes and apartment buildings. Near the SW Interchange and along the project portion of IR-277 the land use is generally open property and wetlands. More minor land uses within the area surrounding the project include: 1) educational/institutional facilities (i.e., high school, middle school, churches, public works, etc.); 2) commercial property including various small shops and restaurants; and 3) industrial structures.

2.5.2. Interstate Routes

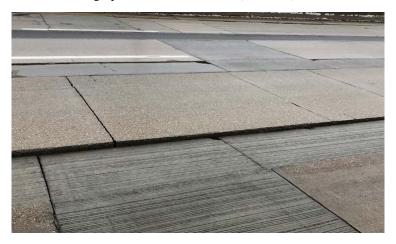
In general, the pavement condition along IR-76 and IR-277 was observed to be fair to good with marginal signs of weathering and surface wear. Low to moderate severity longitudinal and transverse cracking was common along these sections, as well as a few low severity potholes and low severity crack sealing deficiencies (Photograph 1).

The condition of the pavement along IR-77 can be divided into two sections. The pavement condition of the asphalt portion of IR-77 located at the northern end of the project was observed to be fair with minor signs of weathering and surface wear. Low severity longitudinal and lateral joint spalling and patching was observed in this section (Photograph 2). The pavement condition of the concrete portion of IR-77 located just north of the NW interchange was observed to be poor with various signs of distress and surface wear. Low severity settlement as well as high severity longitudinal and transverse cracking as well as spalling was common in this section. Extensive high severity faulting was also apparent (Photograph 3).

The project portion of each interstate appeared to be well drained to storm drains, drainage swales, and/or grassy/vegetated embankment slopes. Ponding water or obvious drainage deficiencies were not observed.

2.5.3. Connecting Ramps

The pavement condition for the connecting ramps was generally observed to be good with few low severity transverse cracks along the ramps. The exceptions to this was Ramp J and Ramp L which were observed to be in fair condition with moderate severity longitudinal and transverse cracking as well as moderate severity rutting and edge cracking (Photograph 4). The concrete portion of Ramp P was also observed to be in poor condition with extensive medium to high severity longitudinal and transverse cracks (Photograph 5).


Photograph 1: IR-76 and IR-277 Pavement Wear

Photograph 2: IR-77 Pavement (Asphalt)

Photograph 3: IR-77 Pavement (Concrete)

Photograph 4: Ramp L Pavement

Photograph 5: Ramp P Concrete Pavement

3. GEOTECHNICAL EXPLORATION

3.1. Roadway Exploration Program

The subsurface exploration was conducted by NEAS between February 25, 2019 and May 10, 2019 and included 86 borings drilled to depths between 2.8 and 42.6 ft below ground surface (bgs). The boring locations were selected by NEAS in general accordance with the guidelines contained in the SGE with the intent to evaluate subsurface soil and groundwater conditions. Borings were typically located within the planned roadway/subgrade improvement areas that were not restricted by underground utilities or dictated by terrain (i.e. steep embankment slopes). Target boring locations were located in the field by NEAS prior to drilling utilizing handheld GPS equipment. Each as-drilled project boring location and corresponding ground surface elevation was surveyed in the field by Northwest Consultants, Inc. (project surveyor) following drilling. Each individual project boring log (included within Appendix B) includes the recorded boring latitude and longitude location (based on the surveyed Ohio State Plane North, NAD83, location) and the corresponding ground surface elevation. The boring locations are depicted in the Soil Profile Sheets provided in Appendix A.

Borings were drilled using either a CME 45B, CME 55T or CME 55X, truck-mounted or track-mounted drilling rigs utilizing 3.25-inch (inner diameter) hollow stem augers. Soil samples for subgrade borings were typically recovered continuously to a depth of 7.5 ft bgs, while samples for embankment/roadway borings were typically recovered at 2.5-ft intervals to varying termination depths, each using an 18-inch split spoon sampler (AASHTO T-206 "Standard Method for Penetration Test and Split Barrel Sampling of Soils."). It should be noted that some embankment/roadway borings are planned to be utilized as noise wall borings for future phases of the project. The soil samples obtained from the exploration program were visually observed in the field by the NEAS field representative and preserved for review by a Geologist for possible laboratory testing. Standard penetration tests (SPT) were conducted using CME auto hammers that have been calibrated to be between 78.0% and 85.0% efficient (depending on the specific rig used and the calibration date of the hammer) as indicated on the boring logs (Appendix B).

Field boring logs were prepared by drilling personnel and included pavement description (where present), lithological description, SPT results recorded as blows per 6-inch increment of penetration, and estimated unconfined shear strength values on specimens exhibiting cohesion (using a hand-penetrometer). After completing the borings, the boreholes were backfilled with either auger cuttings, bentonite chips, or a

combination of these materials and patched accordingly with the cold patch asphalt and/or cement when drilling through the roadway.

3.2. Laboratory Testing Program

The laboratory testing program consisted of classification testing, moisture content determinations, sulfate content testing, direct shear testing and loss on ignition testing. The individual laboratory data sheets and results are included in Appendix B while a summary of the sulfate content testing results can be found in Appendix C. Additionally, data from the laboratory testing program was incorporated onto the final borings logs (when possible). Soil samples are retained at the laboratory for 60 days following report submittal, after which time they will be discarded.

3.2.1. Classification Testing

Representative soil samples were selected for index property (Atterberg Limits) and gradation testing for classification purposes on approximately 42% of the samples. At each boring location, the upper two samples obtained below the proposed top of subgrade elevation were generally tested while additional samples were selected for testing with the intent of properly classifying the subsurface soil and groundwater conditions within the planned project limits. Soils not selected for testing were compared to laboratory tested samples/strata and classified visually. Moisture content testing was conducted on all samples. The laboratory testing was performed in general accordance with applicable AASHTO specifications and ODOT Supplements.

Final classification of soil strata in accordance with AASHTO M-145 "Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes," as modified by ODOT "Classification of Soils" was made once laboratory test results became available. The results of the soil classification are presented on the boring logs in Appendix B.

3.2.2. Standard Penetration Test Results

Standard Penetration Tests (SPT) and split-barrel (commonly known as split-spoon) sampling of soils were performed at varying intervals (i.e., continuous, 2.5, or 5.0-ft intervals) in the project borings performed. To account for the high efficiency (automatic) hammers used during SPT sampling, field SPT N-values were converted based on the calibrated efficiency (energy ratio) of the specific drill rig's hammer. Field N-values were converted to an equivalent rod energy of 60% (N_{60}) for use in analysis or for correlation purposes. The resulting N_{60} values are shown on the boring logs provided in Appendix B.

3.2.3. Sulfate Testing

Sulfate testing was generally performed on one sample for each roadway boring performed for pavement/subgrade design purposes for the subgrade analyses. The selected samples were tested in accordance with ODOT Supplement 1122, "Determining Sulfate Content in Soils" dated July 17, 2015. In general, the upper most sample (within 3 ft of the proposed subgrade elevation) from each boring was tested. Based on the testing results, each subgrade soil sample tested was determined to have a sulfate content of less than 5,000 parts per million (i.e., lower than the level which ODOT considers high and may prevent the use of chemical stabilization). Testing results are summarized in Appendix C.

3.2.4. Direct Shear Testing

Direct Shear testing was conducted in accordance with ASTM D 3080, "Direct Shear Test of Soils Under Consolidated Drained Conditions" on one Shelby Tube sample (ST-1) obtained from boring B-017-0-18. The soil tested was classified as hard, brown mottled with orangish brown and gray, Sandy Silt. The results of the Direct Shear test are summarized in Table 1 below and in Appendix B.

Table 1: Direct Shear Testing Summary

Boring Number	Depth of Sample (ft)	Classification	Average Wet Density (1) (pcf)	Average Void Ratio ⁽¹⁾	Cohesion - Effective (psf)	Angle of Friction - Effective (°)				
B-017-0-18	2.0 - 4.0	Sandy Silt (A-4a)	129.0	0.521	173	29.5				
Notes: 1. Indicated a	Notes: 1. Indicated average values were collected prior to Direct Shear testing (i.e., initial readings).									

3.2.5. Loss on Ignition Testing

Loss on Ignition testing (LOI) was performed on one Shelby tube sample (ST-2) from boring B-034-0-18 which was performed for embankment/roadway design purposes. The selected sample was tested in accordance with AASHTO T267 "Standard Method of Test for Determination of Organic Content in Soils by Loss on Ignition". The sample was found to have an organic content of 28.4%. Per the SGE, an organic content greater than 10% is considered highly organic. The lab test report of the LOI test is presented in Appendix B.

3.2.6. Unconfined Compressive Strength of Cohesive Soil Testing

An Unconfined Compressive Strength of Cohesive Soils Test was conducted in accordance with ASTM D 2166 "Standard Test Method for Unconfined Compressive Strength of Cohesive Soil" on ST-2 from boring B-034-0-18. In general, the soil was classified as very soft, black with brown, organic silt, highly organic. The Unconfined Compressive Strength of Cohesive Soil Test results are summarized in Table 2 below and provided in Appendix B.

Table 2: Unconfined Compressive Strength Testing Summary

Boring Number	Depth of Sample (ft)	Classification	Wet Density (pcf)	Moisture Content (%)	Unconfined Compressive Strength (psf)	Strain (%)
B-034-0-18	5.0 - 5.5	Organic Silt (A-8a)	73.7	26.2	257	10.0

4. FINDINGS

The subsurface conditions encountered during NEAS's explorations are described in the following subsections and/or on each boring log presented in Appendix B. The boring logs represent NEAS's interpretation of the subsurface conditions encountered at each boring location based on our site observations, field logs, visual review of the soil samples by NEAS's geologist, and laboratory test results. The lines designating the interfaces between various soil strata on the boring logs represent the approximate interface location; the actual transition between strata may be gradual and indistinct. The subsurface soil and groundwater characterizations included herein, including summary test data, are based on the subsurface findings from the geotechnical explorations performed by NEAS as part of the referenced project. At the time of the composition of this report, pavement grade information has been assumed to be

PID: 100713

consistent with project Plan and Profile sheets provided by GPD dated June 25, 2019 and labeled as Option 4. It should be noted that for the purposes of this report and our analysis the term 'subgrade' has been assumed to represent soils and/or soil conditions from 1.5 ft below proposed final pavement grades to a depth of 7.5 ft below the proposed pavement grades

4.1. Existing Pavement

4.1.1. Pavement Thickness/Buildup Measurements

The pavement section thicknesses in terms of asphalt and/or concrete were measured at subgrade borings where existing pavement was present. Pavement section thicknesses were measured during the subsurface exploration and are recorded on the test boring logs provided in Appendix B. A summary of these measurements are provided in Table 3 below.

Table 3: Measured Pavement Thickness at Boring Lo	ocations
---	----------

Boring ID	Existing Alignment	Depth (ft)	Asphalt thickness (in)	Concrete thickness (in)	Total Thickness (in)
B-001-0-18	IR-77/IR-76	7.5	-	16.0	16.0
B-002-0-18	IR-77/IR-76	7.5	-	11.0	11.0
B-003-0-18	IR-77/IR-76	7.5	-	14.0	14.0
B-004-0-18	IR-77/IR-76	7.5	1	13.0	13.0
B-005-0-18	IR-77/IR-76	7.5	-	13.0	13.0
B-006-0-18	IR-77/IR-76	7.5	-	14.0	14.0
B-020-0-18	IR-277	36.5	3.0	10.0	13.0
B-023-0-18	IR-277	11.5	4.0	9.0	13.0
B-025-0-18	IR-277	7.5	10.0	7.0	17.0
B-026-0-18	IR-277	7.5	13.0	-	13.0
B-039-0-18	IR-77/IR-76	7.5	-	9.0	9.0
B-040-0-18	IR-77/IR-76	7.5	1	13.0	13.0
B-041-0-18	IR-77/IR-76	6.1	14.0	1	14.0
B-042-0-18	IR-77/IR-76	6.5	5.0	1	5.0
B-043-0-18	IR-77/IR-76/Ramp V	7.5	5.0	13.0	18.0
B-044-0-18	IR-77/IR-76	7.5	13.0	-	13.0
B-045-0-18	IR-77/IR-76	11.5	10.0	-	10.0
B-045-1-18	Ramp J	6.7	2.0	13.0	15.0
B-046-0-18	IR-77/IR-76	7.5	5.0	-	5.0

Boring ID	Existing Alignment	Depth (ft)	Asphalt thickness (in)	Concrete thickness (in)	Total Thickness (in)
B-047-0-18	IR-77/IR-76/Ramp L	10.4	6.0	-	6.0
B-049-0-18	IR-77/IR-76	7.5	14.0	-	14.0
B-050-0-18	IR-77/IR-76	20.1	6.0	-	6.0
B-051-0-18	Ramp T	7.5	8.0	1	8.0
B-053-0-18	Ramp T	7.5	3.0	10.0	13.0
B-054-0-18	Ramp V	7.5	14.0	-	14.0
B-056-0-18	Ramp W	7.5	15.5	-	
B-061-0-18	IR-77/IR-76	7.5	14.0	-	14.0
B-066-0-18	Ramp B	26.5	15.5	•	15.5
B-067-0-18	Ramp U	36.5	4.0	8.0	12.0
B-072-0-18	Ramp V	42.6	11.0	1	11.0
B-073-0-18	Ramp V	6.9	13.0	-	13.0
B-074-0-18	Ramp V	10.1	2.5	10.5	13.0
B-077-0-18	Ramp L	7.5	12.0	-	12.0
B-077-1-18	Ramp J	7.5	12.0	-	12.0
B-077-2-18	Ramp J	7.5	2.0	10.0	12.0
B-077-3-18	Ramp J	7.5	13.0		13.0
B-077-4-18	Ramp J	7.5	12.0	-	12.0

4.2. Subsurface Conditions

The subsurface conditions in the project area are relatively consistent and are generally comprised of either fill soils (i.e., embankment fill, historical/urban fill, etc.) or natural soils consisting of non-cohesive sand, silt and gravel combinations or low to moderately plastic sandy silt, silt, and silt/clay combinations. About fifty percent of the subgrade soils encountered at the site were classified as either Coarse and Fine Sand (A-3a) or cohesive/non-cohesive Sandy Silt (A-4a). The remainder of the subgrade soils were generally classified as A-1-a, A-1-b, A-2-4, A-3, A-4b or A-6a. The exception to this is the southeast portion of the project where natural organic silts (A-8a) were encountered. With respect to sulfate within the subgrade soil, based on the project laboratory testing program, each subgrade soil sample tested was determined to have a sulfate content of less than 5,000 parts per million (i.e., lower than the level which ODOT considers high and may prevent the use of chemical stabilization).

The following subsections present a brief summary of the subsurface conditions by ramp/roadway segment with problem areas highlighted where present.

4.2.1. IR-77/IR-76

The project portions of IR-76 EB and IR-77 NB near the NW Interchange are planned to be widened to the east and to the north, respectively.

Along IR-76 EB and IR-77 NB, thirty-eight percent (38%) of the samples taken along the interstate were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Coarse and Fine Sand (A-3a, 12% of samples), 2) Gravel with Sand and Silt (A-2-4, 12% of samples); 3) Gravel with Sand (A-1-b, 8% of samples); 4) Gravel and/or Stone Fragments (A-1-a, 5% of samples); and, 5) Sandy Silt (A-4a, 1% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to very dense correlating to converted SPT-N values (N_{60}) values between 6 and 105 blows per foot (bpf). Natural moisture contents ranged from 4 to 21 percent.

Fifty-two (52%) of the soil samples were identified as fine-grained soils and were comprised of: 1) cohesive Sandy Silt (A-4a, 42% of samples); 2) Silt (A-4b, 1% of samples); and, 3) Silt and Clay (A-6a, 9% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from medium stiff to hard correlating to N_{60} values between 7 and 95 bpf. Natural moisture contents ranged from 8 to 18 percent.

The remaining ten percent (10%) of the samples were identified as Rock generally classified as shale.

4.2.2. IR-277/IR-76

The project portions of IR-277 EB and IR-76 WB near the SW Interchange are planned to be widened to the east and west, respectively.

Sixty-eight percent (68%) of the samples taken along the interstate(s) were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Coarse and Fine Sand (A-3a, 34% of samples); 2) Fine Sand (A-3, 23% of samples); 3) Gravel with Sand (A-1-b, 8% of samples); and, Sandy Silt (A-4a, 3% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from very loose to dense correlating to N_{60} values between 0 (weight of hammer) and 31 bpf. Natural moisture contents ranged from 5 to 35 percent.

Thirty-two percent (32%) of the soil samples were identified as fine-grained soils and were comprised of 1) Cohesive Sandy Silt (A-4a, 18% of samples); 2) Silt (A-4b, 11% of samples); and 3) Silt and Clay (A-6a, 3% of samples) With respect to the consistency of the fine-grained soils, the descriptions varied from medium stiff to hard correlating to N_{60} values between 6 and 35 bpf. Natural moisture contents ranged from 12 to 24 percent.

It should also be noted that within the project portion of IR-277 EB (near the SW Interchange and extending east), Organic Silt (A-8a) as well as very loose Sandy Silts (A-4a) and Coarse and Fine Sands (A-3a) were encountered. Organic Silt was encountered in boring B-034-0-18 which was located south of the existing IR-277 EB pavement. The Organic Silt encountered at the site had an organic content of 28.4% (highly organic) and was encountered from 0 to 8 ft bgs. The referenced portion of IR-277 EB also encountered very loose soil (A-3a and A-4a) in five of the borings performed in the area. The very loose and 0 bpf material was encountered below the subgrade at depths between 5 and 27 ft bgs.

4.2.3. Ramp B & A2

Ramps B and A2 are the IR-76 SB ramp to IR-277 EB. These ramps are planned for full depth pavement replacement and widening.

Ninety-five percent (95%) of the samples taken along the ramps were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Coarse and Fine Sand (A-3a, 39% of samples); 2) Fine Sand (A-3, 48% of samples); 3) Sandy Silt (A-4a, 4% of samples); and, 4) Gravel with Sand (A-1-b, 4% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from very loose to medium dense correlating to N_{60} values between 0 and 27 bpf. Natural moisture contents ranged from 6 to 35 percent.

Five percent (5%) of the samples taken along the proposed ramps was classified as fine-grained soils and were comprised of Silt (A-4b, 5% of samples). With respect to the relative density of the fine-grained soils, the description loose correlating to an N_{60} value of 7 bpf. Natural moisture content of the soil was 30 percent.

4.2.4. Ramp J

Ramp J is the IR-77 NB/IR-76 WB ramp to Superior Ave and East Ave. which is planned for full depth pavement replacement.

Twenty percent (20%) of the samples taken along Ramp J were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Coarse and Fine Sand (A-3a, 10% of samples); 2) Gravel with Sand and Silt (A-2-4, 5% of samples); and 3) Gravel with Sand (A-1-b, 5% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to very dense correlating to N_{60} values between 9 and 51 bpf. Natural moisture contents ranged from 6 to 10 percent.

Sixty percent (60%) of the samples taken along the ramp were classified as fine-grained soils and were comprised of cohesive Sandy Silt (A-4a, 25% of samples) and Silt (A-4b, 35% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from medium stiff to hard correlating to N_{60} values between 10 and 22 bpf. Natural moisture contents ranged from 16 to 27 percent.

The remaining twenty percent (20%) of the samples were identified as Rock generally classified as gray, severely weathered and weak to very weak shale.

4.2.5. Ramp L

Ramp L is the East Ave. on ramp to IR-77 NB/IR-76 EB which is planned for full depth pavement replacement and widening.

Ten percent (10%) of the samples taken along Ramp L were classified as coarse-grained, non-cohesive soils and were comprised of Gravel with Sand (A-1-b, 1 sample). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to dense correlating to N_{60} values between 10 and 39 bpf. Natural moisture content of the sample was 5 percent.

Forty-five percent (45%) of the samples taken along the ramp were classified as fine-grained soils and were comprised of cohesive Sandy Silt (A-4a, 5 samples). With respect to the consistency of the fine-grained soils, the descriptions varied from stiff to very stiff correlating to N_{60} values between 10 and 22 bpf. Natural moisture contents ranged from 9 to 16 percent.

The remaining forty-five percent (45%) of the samples were identified as Rock classified as gray, highly weathered, very weak shale.

4.2.6. Ramps N & M

Ramp N and Ramp M are the IR-77 NB on and off ramps to/from Frederick Blvd/Diagonal Rd. It is planned for full depth replacement.

Fifty-four percent (54%) of the samples taken along the ramps were classified as coarse-grained, non-cohesive soils and were comprised of Coarse and Fine Sand (A-3a, 7 samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to dense correlating to N₆₀ values between 6 and 44 bpf. Natural moisture contents ranged from 5 to 26 percent.

Forty-six percent (46%) of the soil samples were identified as fine-grained soils, comprised of cohesive Sandy Silt (A-4a, 31% of samples) and Silty Clay (A-6b, 15% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from stiff to very stiff correlating to N_{60} values between 10 and 24 bpf. Natural moisture contents ranged from 11 to 21 percent.

4.2.7. Ramp P

Ramp P is the Vernon Odom Blvd. on ramp to IR-77 SB/IR-76 EB in which a portion is planned for full depth pavement replacement.

Fifty percent (50%) of the samples taken along the ramp were classified as coarse-grained, non-cohesive soils and were comprised of Gravel and/or Stone Fragments (A-1-a, 6 samples). The relative density of the coarse grained soils encountered was medium dense correlating to N_{60} values between 15 and 29 bpf. Natural moisture contents ranged from 7 to 11 percent.

Fifty percent (50%) of the soil samples were identified as fine-grained soils that were comprised of cohesive Sandy Silt (A-4a, 25% of samples) and Silt and Clay (A-6a, 25% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from stiff to hard correlating to N_{60} values between 15 and 36 bpf. Natural moisture contents ranged from 14 to 21 percent.

4.2.8. Ramp T

Ramp T is the IR-77 SB ramp to IR-76 WB which is planned for full depth pavement replacement and realignment. Minimal cut and fill is anticipated at this ramp.

Thirty-six percent (36%) of the samples taken along the ramp were classified as coarse-grained, non-cohesive soils that were comprised of Gravel with Sand and Silt (A-2-4, 27% of samples) and 2) Gravel with Sand (A-1-b, 9% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from dense to very dense correlating to N_{60} values between 36 and 85 bpf. Natural moisture contents ranged from 6 to 7 percent.

Sixty-four percent (64%) of the soil samples were identified as fine-grained soils that were comprised of cohesive Sandy Silt (A-4a, 7 samples). With respect to the consistency of the fine-grained soils, the descriptions varied from stiff to very stiff correlating to N_{60} values between 11 and 21 bpf. Natural moisture contents ranged from 10 to 16 percent.

4.2.9. Ramp U

Ramp U is the IR-76 EB ramp to IR-77/IR-76 EB which is planned for full depth pavement replacement.

Thirty-five percent (35%) of the samples taken along the ramp were classified as coarse-grained, non-cohesive soils and were comprised of Gravel with Sand and Silt (A-2-4, 14% of samples) and Gravel with Sand (A-1-b, 21% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from medium dense to very dense correlating to N_{60} values between 29 and 77 bpf. Natural moisture contents ranged from 5 to 17 percent.

Thirty-six percent (36%) of the soil samples were identified as fine-grained soils that were comprised of cohesive Sandy Silt (A-4a, 29% of samples) and Clay (A-7-6, 7% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from stiff to hard correlating to N_{60} values between 12 and 40 bpf. Natural moisture contents ranged from 6 to 16 percent.

The remaining twenty-nine percent (29%) of the samples were identified as Rock classified as light tan, highly weathered, slightly strong sandstone.

4.2.10. Ramp V

Ramp V is the IR-77 NB/IR-76 WB ramp to IR-76 WB which is planned for full depth pavement replacement and realignment. Minimal cut and fill is anticipated at this ramp.

Thirty-seven percent (37%) of the samples taken along the ramp were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Gravel with Sand (A-1-b, 16% of samples); 2) Gravel with Sand and Silt (A-2-4, 13% of samples); and, 3) Coarse and Fine Sand (A-3a, 9% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to very dense correlating to N_{60} values between 6 and 60 bpf. Natural moisture contents ranged from 2 to 11 percent.

Forty-four percent (44%) of the soil samples were identified as fine-grained soils and were comprised of: 1) Cohesive Sandy Silt (A-4a, 38% of samples); 2) Silt (A-4b, 3% of samples); and, 3) Silt and Clay (A-6a, 3% of samples). With respect to the consistency of the fine-grained soils, the descriptions varied from soft to hard correlating to N_{60} values between 4 and 95 bpf. Natural moisture contents ranged from 5 to 16 percent.

The remaining Nineteen percent (19%) of the samples were identified as Rock classified as light brown, highly weathered, slightly strong sandstone.

4.2.11. Ramp W

Ramp W is the IR-76 EB ramp to IR-77 NB which is planned for full depth pavement replacement and realignment. Cut and fills are anticipated to be needed over the length of the proposed new alignment.

Forty-seven percent (47%) of the samples taken along Ramp W were classified as coarse-grained, non-cohesive soils and were comprised of: 1) Coarse and Fine Sand (A-3a, 20% of samples); 2) Gravel with Sand and Silt (A-2-4, 10% of samples); 3) Gravel with Sand (A-1-b, 10% of samples); and, 4) Sandy Silt (A-4a, 7% of samples). With respect to the relative density of the coarse-grained soils, the descriptions varied from loose to very dense correlating to N_{60} values between 6 and 105 bpf. Natural moisture contents ranged from 2 to 11 percent.

Thirty-nine percent (39%) of the soil samples were identified as fine-grained soils that were comprised of cohesive Sandy Silt (A-4a, 36% of samples) and Silt and Clay (A-6a, 3% of samples). With respect to the relative density of the fine-grained soils, the descriptions varied from soft to hard correlating to N_{60} values between 4 and 48 bpf. Natural moisture contents ranged from 9 to 16 percent.

The remaining thirteen percent (13%) of the samples were identified as Rock classified as light gray, severely weathered, weak to moderately strong sandstone.

4.2.12. Groundwater

Groundwater measurements were taken during the boring drilling procedures and/or immediately following the completion of each borehole. Groundwater was encountered in 14 of the 86 project borings. Across the

project site groundwater was encountered at depths ranging from 0 to 28 ft bgs or from elevations ranging from 964.8 to 1011.8 ft amsl. Groundwater was encountered within 7.5 ft (within subgrade portion) of the ground surface in 10 borings.

It should be noted that groundwater is affected by many hydrologic characteristics in the area and may vary.

5. ANALYSES AND RECOMMENDATIONS

We understand that the reconstruction/widening of the Akron Beltway portions of IR-76, IR-77 and IR-277 known as the Kenmore Leg is planned as part of ODOT project SUM-76-6.15 (PID 100713). In addition to the mainline interstates, reconstruction and realignment of various connecting ramps/roadways are also planned. Ramp T, Ramp W, and Ramp V are planned for realignment and reconstruction while full or partial full depth pavement replacement is planned for Ramp B, Ramp A2, Ramp J, Ramp L, Ramp N, Ramp M, Ramp P, and Ramp U. For this purpose, a roadway exploration and subsequent analysis was completed for the referenced project. The subgrade analysis was performed in accordance with ODOT's **ODOT** provided *GB1*: GB1 criteria utilizing the Subgrade Analysis Spreadsheet (GB1_SubgradeAnalysis.xls, Version 14.5 dated July 19, 2019). Input information for the spreadsheet was based on the soil characteristics gathered during NEAS's exploration (i.e., SPT results, laboratory test results, etc.). A GB1 analysis was performed for each of the referenced mainline and ramp segments. Embankment Stability analysis was performed in accordance Load and Resistance Factor Design (LRFD) method as set forth in AASHTO's Publication LRFD Bridge Design Specifications, 8th Edition (BDS) (AASHTO, 2017), ODOT's 2019 LRFD Bridge Design Manual (BDM) (ODOT, 2019), and ODOT's Geotechnical Bulletin 2 (GB2) (ODOT [2], 2017).

Based on our evaluation of the subsurface conditions and our geotechnical engineering analyses of the proposed improvement project, it is our opinion that the subgrade conditions encountered are generally satisfactory and pavement can be designed without the need for extreme levels of remediation, especially with the use of global stabilization on interstate projects per the GB1. In general, the subgrade soils throughout the project will be stabilized by global (chemical) stabilization. The following sections provide further detail about the analysis performed and the recommended remediation.

5.1. Subgrade Analysis

A GB1 analysis was performed to identify the method, location, and dimensions (including depth) of required subgrade stabilization for the project. In addition to identifying stabilization recommendations, pavement design parameters are also determined to aid in pavement section design. The subsections below present the results of our GB1 analysis including pavement design parameters and unsuitable subgrade conditions identified within the project limits. GB1 analysis spreadsheets are provided in Appendix D.

Again, it should be noted that for the purposes of this report and our analysis, the term 'proposed subgrade' has been assumed to represent soils and/or soil conditions from 1.5 ft below proposed final pavement grades to a depth of 7.5 ft below the proposed pavement grades.

5.1.1. Pavement Design Recommendations

It is our understanding that pavement analysis and design is to be performed to determine the proposed pavement sections for the segments within the project limits to undergo full depth replacement. A GB1 analysis was performed using the subgrade soil data obtained during our field exploration program to evaluate the soil characteristics to develop pavement parameters for use in pavement design. The subgrade

PID: 100713

analysis parameters recommended for use in pavement design are presented in Table 4 below. Provided in the table are ranges of maximum, minimum and average N_{60L} values for the indicated segments as well as the design CBR value recommended for use in pavement design.

Maximum | Minimum Average Average P Design Segment N_{60L} N₆₀₁ Values CBR IR-76/IR-77 (NW Interchange) 30 18 9 6 8 IR-277/IR-76 (SW Interchange) 27 0 9 7 8 NP Ramp B & A2 9 0 5 13 Ramp J 30 9 17 8 7 Ramp L 30 17 26 8 9 Ramp N & M 23 6 14 10 9 25 10 Ramp P 15 18 9 30 11 18 8 Ramp T 8 Ramp U 30 O 17 12 9 Ramp V 30 4 21 7 9 Ramp W 30 17 6 10 **Entire Project** 30 0 16 8 9

Table 4: Pavement Design Values

5.1.2. Unsuitable Subgrade

Per ODOT's GB1, the presence of select subgrade conditions are prohibited within the subgrade zone for new pavement construction. These prohibited subgrade conditions generally include the presence of rock, specific soil types, weak soil conditions, and overly moist soil conditions. With respect to the referenced interstate improvement project these subgrade conditions are further discussed in the following subsections.

5.1.2.1. Rock

Rock was encountered within the subgrade in twelve (12) borings performed within the project roadway limits. In these borings, bedrock was encountered at depths ranging from 0 ft to 6.5 ft below the top of the assumed subgrade elevation. Per ODOT's GB1, if rock is encountered within 24 inches of the bottom of the proposed asphalt or concrete pavement it is to be removed in accordance with 204.05 of the ODOT CMS and replaced with Item 204 Embankment. Of the twelve borings in which rock was encountered, remediation is required in seven borings (B-041-0-18, B-045-0-18, B-045-1-18, B-048-0-18, B-057-0-18, B-058-0-18, and B-070-0-18). A summary of the boring locations where rock was encountered within the proposed subgrade are shown in Table 5 below, per the roadway segment for which they were encountered.

Depth Below Proposed Top of Rock **Boring ID Roadway Segment** Subgrade (ft) Elevation (ft) 1019.7 B-041-0-18 IR-77/IR-76 1.5 B-045-0-18 IR-77/IR-76 1064.4 1.0 B-045-1-18 Ramp J 0.0 1065.6 B-047-0-18 IR-77/IR-76, Ramp L 1056.6 5.5 B-048-0-18 IR-77/IR-76, Ramp L 1.0 1048.1 B-057-0-18 Ramp W 1009.4 1.0 B-058-0-18 Ramp W 1.4 1005.1 B-059-0-18 Ramp W 2.5 1000.8 B-070-0-18 Ramp U 0.5 1034.8 B-073-0-18 Ramp V 3.0 1011.8 B-074-0-18 Ramp V 2.5 1011.2 B-076-0-18 Ramp V 4.2 1030.5

Table 5: Shallow Rock Location Summary

5.1.2.2. Prohibited Soils

Prohibited soil types per the GB1, which include A-4b, A-2-5, A-5, A-7-5, A-8a, A-8b, and soils with liquid limits greater than 65, were encountered within the subgrade of the referenced project roadway segments. Soil Type A-4b (Silt) was encountered: 1) at depths ranging from 0 to 5.5 ft below subgrade along IR-277 EB in borings B-035-0-18, B-036-0-18 and B-037-0-18; 2) at depths ranging from 0 to 6 ft below subgrade along portions of Ramp J in borings B-077-3-18 and B-077-4-18; and, 3) between depths of 0 to 3 ft below subgrade in boring B-075-0-18 performed along Ramp V. A summary of the boring locations where prohibited soils were encountered and the associated GB1 recommended remediation depths are shown in Tables 6 below, per the roadway segment for which they were encountered.

	Prohibited	Depth Below		Remediation Depth (inches)					
Boring ID	Soil Type	Subgrade (ft)	Excavate and Replace (Item 204 w/ Geotextile)	Excavate and Replace (Item 204 w/ Geogrid - SS 861)	Chemical Stabilization (Item 206)				
	Roadway Segment: IR-277 EB								
B-035-0-18	A-4b	0.0 - 3.0	36	-	14				
B-036-0-18	A-4b	0.0 - 5.5	36	•	14				
B-037-0-18	A-4b	0.0 - 3.0	36	-	14				
			Roadway segment: I	Ramp V					
B-075-0-18	A-4b	0.0 - 3.0	36	-	14				
	Roadway segment: Ramp J								
B-077-3-18	A-4b	2.0 - 6.0	12	-	14				
B-077-4-18	A-4b	0.0 - 6.0	36	-	14				

Table 6: Prohibited Soils Location Summary

5.1.2.3. Weak Soils

The GB1 recommends subgrade stabilization for soils in which the N_{60} value of a particular soil sample (SS) at a referenced boring location is less than 12 bpf and in some cases less than 15 bpf (i.e., where moisture content is greater than optimum plus 3 percent). Based on the specific N_{60} value at the subject boring, *Figure B - Subgrade Stabilization* within the GB1 recommends a depth of subgrade stabilization for ODOT standard stabilization methods. For the purposes of this report the term 'weak soils' has been assumed to represent subgrade soils of these conditions. It should be noted that although a soil sample's N_{60} value may meet the criteria to be considered a weak soil, the depth in which the weak soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed. For example, if the GB1 recommends an excavate and replace of 12 inches within a weak soil underlying 18 inches of stable material, it would be unreasonable to recommend the removal of both the stable and unstable material for a total of 30 inches of excavate and replace.

Based on N₆₀ values encountered within the project borings, our GB1 analysis suggests the need for 12 to 14 inches of either chemical treatment or excavate and replace at select locations. A summary of the boring locations where weak soils were encountered and determined to have a potential impact on subgrade performance are shown in Table 7 below, per the roadway segment for which they were encountered. Also included is the associated GB1 recommended remediation depth at that location.

PID: 100713

Table 7: Weak Soil Locations Summary

			Moisture			Remediation Depth (inches)					
Boring ID	Sample ID	N ₆₀	Above Optimum (%)	Depth Below Subgrade (ft)	Excavate and Replace (Item 204 w/ Geotextile)	Excavate and Replace (Item 204 w/ Geogrid - SS 861)	Chemical Stabilization (Item 206)				
	Roadway Segment: IR-77/IR-76										
B-002-0-18	SS-1	7	3	0.0 - 1.5	18	-	14				
B-053-0-18	SS-1	11	1	0.0 - 1.5	12	12 -					
				Road	dway Segment: IR-277						
B-020-0-18	SS-1	8	3	0.5 - 6.5	12	-	14				
B-027-0-18	SS-1A	13	19	0.0 - 1.3	12	-	12				
B-035-0-18	SS-1	11	13	0.0 - 3.0	To be re	emediated due to prohibited soi	I (A-4b)				
B-036-0-18	SS-1	14	18	0.0 - 5.5	To be re	emediated due to prohibited soi	I (A-4b)				
B-037-0-18	B-037-0-18 SS-1 10 4 0.0 - 0.4 To be remediated due to prohibited soil (A-4b)										
	Roadway Segment: Ramp T										
B-053-0-18	SS-1	11	1	0.0 - 3.0	12	-	12				

It should be noted that *Figure B - Subgrade Stabilization* does not apply to soil types A-1-a, A-1-b, A-3, or A-3a, nor to soils with N_{60L} values of 15 or more. Per GB1 guidance, *these soils should be reworked to stabilize the subgrade*.

5.1.2.4. High Moisture Content Soils

High moisture content soils are defined by the GB1 as soils that exceed the estimated optimum moisture content (per *Figure A - Optimum Moisture Content* within the GB1) for a given classification by 3 percent or more. Per the GB1, soils determined to be above the identified moisture content levels are a likely indication of the presence of an unstable subgrade and may require some form of subgrade stabilization. Similar to our analysis of weak soils, although a soil sample's moisture content may meet the criteria to be considered high, the depth in which the high moisture soil is encountered in relation to the proposed subgrade is considered when each individual subgrade boring is analyzed for stabilization recommendations. Summaries of the boring locations where high moisture content conditions were encountered within the limits of each alignment are shown in Table 8 below.

Table 8: High Moisture Content Soils Location Summary

Boring ID	Moisture Content (%)	Optimum Moisture Content (%)	Moisture Above Optimum (%)	Depth Below Subgrade (ft)	Boring ID	Moisture Content (%)	Optimum Moisture Content (%)	Moisture Above Optimum (%)	Depth Below Subgrade (ft)
	Roadwa	ay Segment: IR	-77/IR-76			Ran	np Segment: Ra	amp J	
B-002-0-18	17	14	3	0.0 - 1.5	B-077-2-18	17	13	4	1.5 - 3.0
B-010-0-18	15	11	4	1.0 - 2.5	B-077-3-18	18	10	8	2.0 - 3.0
B-015-0-18	13	10	3	1.0 - 2.5	B-077-4-18	22	10	12	2.0 - 3.0
B-053-0-18	16	10	6	1.5 - 3.0		Road	way Segment:	Ramp L	
	Road	lway Segment:	IR-277		B-070-0-18	16	10	6	1.5 - 3.0
B-020-0-18	17	14	3	1.0 - 2.5	Ramp Segment: Ramp N & M				
B-027-0-18	29	10	19	0.0 - 1.3	B-081-0-18	21	16	5	1.5 - 3.0
B-028-0-18	16	11	5	1.0 - 2.5		Road	way Segment:	Ramp T	
B-035-0-18	24	11	13	1.0 - 2.5	B-053-0-18	16	10	6	2.0-2.3
B-036-0-18	29	11	18	1.0 - 2.5	Roadway Segment: Ramp U				
B-037-0-18	19	11	8	1.0 - 2.5	B-069-0-18	17	10	7	1.0 - 2.5
	Roadwa	y Segment: Rar	np B & A2						
B-028-0-18	16	11	5	1.0 - 2.5					

5.2. Embankment Stability Analysis

For purposes of evaluating stability of the planned roadway embankments and embankment widening proposed as part of the project, NEAS reviewed cross-sections along the length of the project roadway segments to identify sections that were interpreted to represent conditions that posed the greatest potential for slope instability as a result of the planned construction. In general, cross-sections along each of the proposed roadway alignments were reviewed to identify planned alterations that may present a combination of existing subsurface conditions and planned site grading (i.e., cutting and/or filling) that would potentially be critical to the stability of the existing and/or proposed slopes at the site. Based on our review of the available information along the referenced alignments and the associated soil properties, five cross-sections estimated to be most "critical" along the proposed roadways and were analyzed for global stability. The five cross-sections selected to be evaluated include: 1) the cross-section along IR-76 EB at approximate STA. 98+00; 2) the cross-section along IR-77 SB/IR-76 EB at approximate STA. 242+00; 3) the cross-section along IR-76 WB at STA. 50+00; and, 4) the cross-sections along Ramp A2 at STA. 15+00 and STA. 17+00.

For these cross-sections, NEAS developed a representative cross-sectional model to use as the basis for global stability analyses. The model was developed from NEAS's interpretation of the available information which included: 1) the referenced project's proposed Option 4 roadway plans dated June 25, 2019 provided by GPD Group; 2) a live load surcharge of 240 pounds per square foot (psf), accounting for traffic induced loads; and, 3) test borings and laboratory data developed as part of this report.

For analysis purposes, borings performed along or nearby the indicated embankment sections were reviewed and a generalized material profile was developed for analysis to represent worse case conditions at each cross-section location. Utilizing the generalized soil profile, engineering properties for each soil strata were estimated based on the field (i.e., SPT N₆₀ Values, hand penetrometer values, etc.) and laboratory (i.e., Atterberg Limits, grain size, etc.) test results using correlations provided in published engineering manuals, research reports and guidance documents. The developed soil profile and estimated engineering soil properties for use in analysis (with sited correlation/reference material) is summarized within Tables 9 through 14 below. Each table presents the effective and total stress analysis soil parameters for each of the referenced cross-sections as well as the project borings utilized to estimate the indicated parameters.

Table 9: Soil Profile and Estimated Engineering Properties – IR-76 EB - STA. 98+00

Embankment Stability Analysis, B-055-0-18, B-056-0-18 & B-072-0-18									
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)					
Coarse and Fine Sand Elevation (1079.6 ft - 1010.8 ft)	125	-	-	34					
Coarse and Fine Sand Elevation (1010.8 ft - 1007.8 ft)	120	-	-	34					
Silty Clay Elevation (1007.8 ft - 1003.1 ft)	112	500	50	20					
Silty Clay Elevation (1003.1 ft - 987.3 ft)	122	2400	200	25					
Notes:									

Values interpreted from Geotechnical Bulletin 7 Table 1.

3. Values interpreted from Geotechnical Bulletin 7 Table 2.

^{2.} Values calculated from Terzaghi and Peck (1967) if N1 60<52, else Stroud and Butler (1975) was used.

PID: 100713

Table 10: Soil Profile and Estimated Engineering Properties – IR-77 SB/IR-76 EB – STA. 242+00

Embankment Stability Analysis, B-044-0-18									
Soil Description Unit Weight ⁽¹⁾ Undrained Shear (pcf) Effective Cohesion ⁽³⁾ Effective Friction (psf) Angle ⁽³⁾ (degrees									
Silt and Clay Elevation (1079.6 ft - 1052.4 ft)	, 1 115 1 2700 1 250 1 26								
Notes: 1. Values interpreted from Geotechnical Bulletin 7 Table 1.									

Table 11: Soil Profile and Estimated Engineering Properties – IR-76 WB – STA. 50+00

Embankment Stability Analysis, B-022-0-18 & B-023-0-18 Soil Description Unit Weight ⁽¹⁾ Undrained Shear (psf) Strength ⁽²⁾ (psf) Effective Cohesion ⁽³⁾ Effective Friction (psf) (degrees)													
Soil Description	_												
Fine Sand Elevation (1079.6 ft - 977 ft)	122	-	-	36									
Fine Sand Elevation (977 ft - 965.8 ft)	110	-	-	30									
Notes: 1. Values interpreted from Geote 2. Values calculated from Terza 3. Values interpreted from Geote	ghi and Peck (1967) is	f N1 ₆₀ <52, else Stroud and	Butler (1975) was used.										

Table 12: Soil Profile and Estimated Engineering Properties – IR-76 WB – STA. 50+00

	Embankment	Stability Analysis	, B-024-0-18	
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)
Fine Sand Elevation (1079.6 ft - 991.3 ft)	122	-	-	36
Fine Sand Elevation (991.3 ft - 971.8 ft)	120	-	-	31
Notes: 1. Values interpreted from Geot 2. Values calculated from Terza 3. Values interpreted from Geot	aghi and Peck (1967) i	f N1 ₆₀ <52, else Stroud and	Butler (1975) was used.	

Table 13: Soil Profile and Estimated Engineering Properties – Ramp A2 – STA. 15+00

Embai	nkment Stabilit	ty Analysis, B-064	-0-18 & B-066-0-18	
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)
Fine Sand Elevation (1079.6 ft - 984.4 ft)	120	-	-	33
Fine Sand Elevation (984.4 ft - 963.8 ft)	110	•	-	30
Silt Elevation (963.8 ft - 961.8 ft)	120	-	-	28
Notes: 1. Values interpreted from Geote	echnical Bulletin 7 Tal	ble 1.		

Table 14: Soil Profile and Estimated Engineering Properties – Ramp A2 – STA. 17+00

Embankment Stability Analysis, B-065-0-18 & B-066-0-18													
Soil Description	Unit Weight ⁽¹⁾ (pcf)	Undrained Shear Strength ⁽²⁾ (psf)	Effective Cohesion ⁽³⁾ (psf)	Effective Friction Angle ⁽³⁾ (degrees)									
Fine Sand Elevation (1079.6 ft - 984.4 ft)	120	-	-	33									
Fine Sand Elevation (984.4 ft - 963.8 ft)	110	-	-	30									
Notes:	technical Bulletin 7 To	hlo 1											

- Values interpreted from Geotechnical Bulletin 7 Table 1. Values calculated from Terzaghi and Peck (1967) if N1 $_{60}$ <52, else Stroud and Butler (1975) was used. Values interpreted from Geotechnical Bulletin 7 Table 2.

Values calculated from Terzaghi and Peck (1967) if N1 60 <52, else Stroud and Butler (1975) was used.
 Values interpreted from Geotechnical Bulletin 7 Table 2.

Values calculated from Terzaghi and Peck (1967) if N1 60 <52, else Stroud and Butler (1975) was used.

The above referenced slope stability models were analyzed for long-term (Effective Stress) and short-term (Total Stress) slope stability utilizing the software entitled *Slide 7.0* by Rocscience, Inc. Specifically, the Modified Bishop and Spencer analysis methods were used to calculate a factor of safety (FOS) for circular and block type slope failures, respectively. The FOS is the ratio of the resisting forces and the driving forces, with the desired safety factor being more than about 1.33 which equates to an AASHTO resistance factor less than 0.75 (per AASHTO's LRFD BDS the specified resistance factors are essentially the inverse of the FOS that should be targeted in slope stability programs). For this analysis, a resistance factor of 0.75 or lower is targeted as the slope does not contain or support a structural element.

Based on our slope stability analyses for the above referenced roadway embankment sections, the minimum slope stability safety factor is about 1.34 (0.75 resistance factor) for the section analyzed along IR-76 WB at STA. 50+00. The graphical output of the slope stability program (cross-sectional model, calculated safety factor, and critical failure plane) for each analyzed section is presented in Appendix E. It should be noted, for the above referenced analysis which yielded the minimum slope stability safety factor (section STA. 50+00 along IR-76 WB), a cohesion value of 20 psf was assigned to the non-cohesive soil layer along the slope in order to prevent impractical failure plane generation e.g. the generation of small surficial failure planes.

5.3. Embankment Construction Recommendations

As indicated above, each of the embankment cross-sections analyzed for slope stability were determined to be stable (i.e., FOS greater than about 1.33) as proposed in the SUM-76-6.15 project's Option 4 roadway plans dated June 25, 2019 provided by GPD Group. Therefore, the proposed embankment slopes can be constructed in accordance with Item 203 "Roadway Excavation and Embankment" of the ODOT CMS.

In areas where additional embankment material is proposed along existing slopes that are steeper than 8 Horizontal to 1 Vertical (8H:1V) but flatter than 4H:1V, it is recommended that the proposed embankment be benched into the existing slopes in accordance with Item 203.05 "Embankment Construction Methods" of the ODOT CMS. For areas where additional embankment material is proposed along existing slopes that are steeper than 4H:1V, it is recommended that the proposed embankment be designed and constructed in accordance with GB2. For sidehill fills planned on existing slopes steeper than 4H:1V, ODOT's GB2 recommends that the embankment slopes be constructed utilizing special benching in order to blend the new embankment with the existing slope to prevent the development of a weak shear plane at the interface between the proposed fill and existing slope material (ODOT [2], 2017). As the project embankment fill slopes were determined to be stable as-proposed based on our embankment stability analysis, a special benching scheme similar to that shown in Figure 1 of the ODOT GB2 can be used in areas where special benching is recommended. The height and width dimensions of the special benching scheme shown in Figure 1 should be arranged to minimize the required cut and fill quantities, though the height of a single bench shall not exceed 20 ft without a stability analysis and design per OSHA requirements. Additionally, it may be appropriate to adjust the bench slope shown from a 1H:1V to a 1.75H:1V slope if the existing slope is made up of primarily granular materials. The benched material should be replaced with compacted engineered fill per Item 203 of the ODOT CMS, while proper lift thicknesses and material density should be maintained in the proposed fill per Item 203.06 of the ODOT CMS. In situations where it is not practical to extend the final bench through the existing roadway due to maintenance of traffic concerns, a benching scheme similar to that shown in Figure 1a of the ODOT GB2 can be used in order to avoid impacting the existing roadway, guardrail or shoulder. This scheme results in the placement of a temporary oversteepened fill that can later be "shaved-off" to bring the slope to the final proposed grade.

PID: 100713

Due to the organic silt and very loose granular material encountered along the project portion of IR-277 EB (near the SW Interchange and extending east), it is recommended that an additional geotechnical exploration be performed to determine if special considerations will be required for widened embankment construction. The organic silt was encountered from 0 to 8 ft bgs while the very loose soil (A-3a and A-4a) was encountered at depths between 5 and 27 ft bgs. These materials may impact design and construction of the proposed improvements and therefore, are recommend to be further delineated to aid in the evaluation of the proposed design.

5.4. Stabilization Recommendations

5.4.1. Subgrade Stabilization

Guidance from ODOT's GB1 states that "For all Interstates and other divided highways with four or more lanes more than 1-mile in project length, the subgrade of the entire project shall be chemically stabilized (global stabilization), except where it is determined that soil is present where a majority of sulfate content values are found to be greater than 3,000 parts per million (ppm), or individual soil samples with sulfate contents greater than 5,000 ppm are present" and therefore global chemical stabilization is recommended for the proposed improvement project except where otherwise indicated in this report.

The global chemical stabilization of the referenced mainline and ramp subgrade soils included within this project, should be performed to a minimum depth of 14 inches utilizing cement as the stabilizing chemical. The stabilization efforts should extend a minimum of 18-inches beyond the edge of the paved roadway, shoulder or median. The mix design should be conducted in accordance with ODOT's CMS Supplement 1120 (Mixture Design for Chemically Stabilized Soils). For design purposes it may be assumed that the cement addition will be 5% using the following formula.

Cement: $C = 0.75 \times T \times 115 \times 0.05$

Where:

C = amount of chemical in pounds / square yard and

T = thickness of the treatment zone in inches

A dry density of 115-pounds per cubic foot (pcf) is assumed.

The unsuitable subgrade conditions encountered along the proposed mainline and roadway/ramp segments include areas of identified "prohibited soils" and "weak soils". It is NEAS's opinion based on: 1) samples obtained from borings performed; 2) the depth and composition of the "prohibited soils" and "weak soils" encountered; and, 3) the relative density (compactness) of overlying soils, that the recommended 14 inches of global chemical stabilization would be sufficient in stabilizing the subgrade at each location.

It should be noted that per ODOT's GB1, typical chemical stabilization equipment cannot stabilize areas less than 8 ft in width. If it is anticipated that the project will require multiple maintenance of traffic phases, it is recommended that the roadway work is coordinated with the maintenance of traffic schemes in such a way that an 8-ft minimum width for chemical stabilization exists. If areas of less than 8 ft in width are anticipated, subgrade soils may be excavated out, mixed with stabilization chemical, and compacted in place, though this method is not practical for large areas

5.4.2. Shallow Bedrock

Guidance from ODOT's GB1 states that, if rock is encountered within 24 inches of the bottom of the asphalt or concrete pavement it is to be removed. Based on the borings performed, at the locations where bedrock

PID: 100713

is encountered within two feet of the bottom of the proposed asphalt or concrete pavement, it is recommended that the rock encountered be excavated in accordance with Item 204.05 "Rock, Shale, or Coal Subgrade" of ODOT's CMS and replaced with Item 204 Embankment. The estimated limits of required rock excavation can be found in Table 15 below.

Table 15: Estimated Limits of Required Rock Excavation

Start Station	End Station	Excavate and Replace (inches)	Unsuitable Subgrade Conditions	Borings Considered							
			IR-77/IR-76								
222+00	258+00	24	Bedrock	B-059-0-18, B-041-0-18, B-070-0-18, B-045-0-18, B-045-1-18, B-048-0-18							
			IR-76 EB								
99+50	27 5601600										
			Ramp J								
0+00 ⁽¹⁾	6+00 ⁽¹⁾	B-045-1-18									
			Ramp L								
5+00 (Begin Work)	12+30 (End Work)	24	Bedrock	B-047-0-18, B-048-0-18							
			Ramp V								
0+00 (Begin Work)	20+28 (End Work)	24	Bedrock	B-045-1-18, B-074-0-18, B-057-0-18,							
			Ramp W								
104+18 (Begin Work)	24 Bedrock B-057-0-18, B-058-0-18, B-059-0-18										
Notes: 1. Stationing for F	Ramp J not available at t	ime of the report. Init	ial 600 ft of Ramp J is estimated to require 24	inches of Excavate and Replace.							

6. QUALIFICATIONS

This investigation was performed in accordance with accepted geotechnical engineering practice for the purpose of characterizing the subgrade conditions along the referenced portions of roadways. This report has been prepared for GPD Group, ODOT and their design consultants to be used solely in evaluating the roadway subgrade soils within the project limits and presenting geotechnical engineering recommendations specific to this project. The assessment of general site environmental conditions or the presence of pollutants in the soil, rock and groundwater of the site was beyond the scope of this geotechnical exploration. Our recommendations are based on the results of our field explorations, laboratory tests results from representative soil samples, and geotechnical engineering analyses. The results of the field explorations and laboratory tests, which form the basis of our recommendations, are presented in the appendices as noted. This report does not reflect any variations that may occur between the borings or elsewhere on the site, or variations whose nature and extent may not become evident until a later stage of construction. In the event that any changes occur in the nature, design or location of the proposed pavement rehabilitation work, the conclusions and recommendations contained in this report should not be considered valid until they are reviewed and have been modified or verified in writing by a geotechnical engineer.

It has been a pleasure to be of service to GPD Group in performing this geotechnical exploration for the SUM-76-6.15 project. Please call if there are any questions, or if we can be of further service.

Respectfully Submitted,

Brendan P. Andrews, P.E. *Geotechnical Engineer*

Erich R.G. Beyer, E.I. Staff Engineer

REFERENCES

- AASHTO. (2017). *LRFD Bridge Design Specifications*. Washington, D.C.: American Association of State Highway and Transportation Officials.
- FEMA. (2019). National Flood Hazard Layer kmz v3.2. Federal Emergency Management Agency.
- ODGS. (2003). Bedrock-topography data for Ohio: Ohio Department of Natural Resources, Division of Geological Survey Map BG-3, 1 CD-ROM, GIS file formats. Revised January 9, 2004.
- ODGS. (2005). Surficial geology of the western portion of the Lancaster 30 x 60-minute quadrangle: Ohio Division of Geological Survey Map SG-2 Lancaster. scale 1:100,000.
- ODNR [1]. (2016). Ohio Abandoned Mine Locator Interactive Map. *Mines of Ohio*. Ohio Department of Natural Resources, Division of Geological Survey & Division of Mineral Resources. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= OhioMines
- ODNR [2]. (2016). Ohio Oil & Gas Locator Interactive Map. *Ohio Oil & Gas Wells*. Ohio Department of Natural Resources, Division of Oil and Gas. Retrieved from https://gis.ohiodnr.gov/MapViewer/?config= oilgaswells
- ODOT [1]. (2019). *Geotechnical Bulletin 1*. Columbus, Ohio: Ohio Department of Transportation: Office of Geotechnical Engineering. Retrieved from https://www.dot.state.oh.us/Divisions/Engineering/Geotechnical/Geotechnical_Documents/GB1_Plan_Subgrades.pdf
- ODOT [2]. (2017). *Geotechnical Bulletin 2: Special Benching and Sidehill Embankment Fills*. Columbus, Ohio: Ohio Department of Transportation: Office of Geotechnical Engineering. Retrieved from http://www.dot.state.oh.us/Divisions/Engineering/Geotechnical/Pages/Manuals.aspx
- ODOT. (2019). 2019 Bridge Design Manual. Columbus, OH: Ohio Department of Transportation: Office of Structural Engineering.
- ODOT PDM. (2019). Pavement Design Manual. Columbus, Ohio: Ohio Department of Transportation: Office of Pavement Engineering. Retrieved from http://www.dot.state.oh.us/Divisions/Engineering/
 Pavement/Pavement%20Design%20%20Rehabilitation%20Manual/Complete_PDM_2015-07-17 version.pdf
- ODOT SGE. (2019). *Specifications for Geotechnical Explorations*. Ohio Department of Transportation: Office of Geotechnical Engineering.
- USDA. (2015, September). Web Soil Survey. Retrieved from http://websoilsurvey.nrcs.usda.gov
- USGS & ODGS. (2006, June). Geologic Units of Ohio. ohgeol.kmz. United States Geologic Survey.

APPENDIX A SOIL PROFILE SHEETS

TO BE PROVIDED

APPENDIX B BORING LOGS

<u> </u>	ING FIRM / OPERAT		EAS / ASHB			L RIG:		CME 45		_			OFFS	SET:			7, 52'	LT.	EXPLOR	ATION ID -0-18
PID: 100713 SFN: DRILLIN	PLING FIRM / LOGGE LING METHOD: PLING METHOD:		EAS / E. ROI 25" HSA SPT	LLEK	CALII		ON DA ATIO (//21/17 84		aligi Elev Lat /	ATIO	N: _9		(MSL		OB:	.57012	5 ft.	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV. 995.6	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	I - F			ATIO FS	N (%) sı	CL	ATTI	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
16" CONCRETE (DRILLERS DESCRIPTION)		994.3	-	 - 1 -																₩ 5 L ^V 5 L
MEDIUM DENSE, BROWN, COARSE AND FINE SAN SOME GRAVEL, LITTLE SILT, TRACE CLAY, DAMP (FILL)			-	2	11 8 9	24	0	SS-1	-	24	21	38	11	6	NP	NP	NP	10	A-3a (0)	1> \ 1 \ 1
		991.1	W 991.1	- 3 - - 4 -	5 4 4	11	6	SS-2	-	-	-	-	-	-	-	-	-	10	A-3a (V)	1>\\ 1\\\ 1\\\\ 1\\\\\\\\\\\\\\\\\\\\\\
VERY STIFF TO HARD, BROWN MOTTLED WITH GF SANDY SILT, SOME CLAY, LITTLE GRAVEL, CONTA BRICK FRAGMENTS, DAMP			-	- 5 -	2 4 6	14	56	SS-3	2.25	19	7	13	38	23	28	18	10	15	A-4a (5)	<17 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
(FILL)		988.1	EOP.	- 6 - - 7 -	3 6 9	21	50	SS-4	4.25	-	1	-	-	-	-	-	-	17	A-4a (V)	17 17 17

PROJECT: SUM-76-06.15 TYPE: SUBGRADE PID: 100713 SFN: START: 4/10/19 END: 4/10/19	DRILLING FIRM / OF SAMPLING FIRM / LO DRILLING METHOD: SAMPLING METHOD	OGGER: _		DRILL F HAMME CALIBR ENERG	R: C	CME 45 CME AUTON DATE: 11 D (%):	//ATIC		STAT ALIGI ELEV LAT /	NMEN ATIO	NT: _ N: <u>1</u>	002.1	IR-7 1 (MS	7 & IF SL)E	R-76 EOB:		7.5 ft.	ATION II 2-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION	ION	ELEV	I DEPTHS I	SPT/	REC	SAMPLE			GRAD					ERBE			ODOT CLASS (GI)	BACK
AND NOTES 11.0" CONCRETE (DRILLERS DESCRIPTION	N)	1002. 1001.		RQD '	(%)) ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	OLAGO (GI)	FILL
MEDIUM STIFF, BROWN MOTTLED ORANG SILT AND CLAY, SOME SAND, TRACE GRA IRON STAINING, DAMP	AVEL, CONTAINS	999.1	- 1 - - 2 -	3 2 3	7 17	SS-1	0.75	-	-	-	-	-	-	-	-	17	A-6a (V)	****** 1
DENSE, LIGHT BROWN MOTTLED WITH OF BROWN, GRAVEL WITH SAND AND SILT , LICONTAINS IRON STAINING, DAMP	RANGISH LITTLE CLAY,		- 4 -	4 10 14	89	SS-2	-	27	9	38	14	12	NP	NP	NP	6	A-2-4 (0)	1> N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TS/SUM-7			- 5 - - 6 -	15 3	5 78		-	24	9	36		14	19	13	6	8	A-2-4 (0)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
PROJEC		994.6	5 - 7 + FOB	11 4 24	9 89	SS-4	-	-	-	-	-	-	-	-	-	5	A-2-4 (V)	1> \ 1 \{ \ \ \ \ \
INDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:10 - X:ACTIVE PROJECTSACTIV																		

2.GP	PROJECT: <u>SUM-76-06.15</u>	DRILLING FIRM / OPERA		EAS / ASHBAI			L RIG		CME 45		_			OFF	SET:		04+23	,	LT.	EXPLOR/ B-003	ATION ID 3-0-18
. 61.0-07-10	TYPE: SUBGRADE PID: 100713 SFN: START: 4/10/19 END: 4/10/19	SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:		EAS / E. ROLL 25" HSA SPT	LEK	CALII		ON DA ATIO (/21/17 84		ALIGI ELEV LAT /	/ATIO	N: _9		(MSI		OB:	.57174	.5 ft.	PAGE 1 OF 1
E3/30	MATERIAL DESCRIPT AND NOTES	TION	ELEV. 999.8	DEPTHS	3	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		_	ATIO FS	N (%)) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
	14.0" CONCRETE (DRILLERS DESCRIPTIO	<i>'</i>	998.6	-	- 1 -																<.v<.
NINORE	MEDIUM DENSE TO DENSE, BROWN AND BROWN, GRAVEL AND/OR STONE FRAGI SAND AND SILT , TRACE TO LITTLE CLAY,	ΛΙENTS WITH ∰∰			2	8 8 19	38	100	SS-1	-	30	11	28	18	13	17	13	4	7	A-2-4 (0)	7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 ×
-0. ID NE	STAINING, DAMP TO DRY	64 L-1 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		E	4 -	5 13 15	39	100	SS-2	-	35	11	31	13	10	NP	NP	NP	5	A-2-4 (0)	1>/ 1> 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
o /-INIOC	@4.5' TO 7.5'; BECOMES LIGHT BROWN A BROWN	ND ORANGISH		<u>-</u>	5 -	8 12 12	34	100	SS-3	-	-	-	ı	-	-	ı	-	-	5	A-2-4 (V)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
JEC IS			992.3		7 -	12 9 10	27	100	SS-4	-	-	-	-	-	-	-	-	-	4	A-2-4 (V)	1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L

PROJECT			DRILLING FIRM / OPERA		EAS / ASHBAUGH	-	L RIG		CME 45			STAT ALIGI		OFFS			00+64	, -	_T	_	ATION ID 1-0-18
—— اف	SUBGRA 00713 SFN: 4/11/19 END:	4/11/19	DRILLING METHOD: SAMPLING METHOD:	DRILLING METHOD: 3.25" HSA C				HAMMER: CME AUTOMATIC CALIBRATION DATE: 11/21/17 ENERGY RATIO (%): 84							000.8	IR-77 3 (MSL 41.06	_)_E(DB:	5 ft.	PAGE 1 OF 1	
START	MATEI	ELEV. 1000.8	DEPTHS	SPT/ RQD	N ₆₀	_	SAMPLE ID	HP (tsf)	$=$ \bot	SRAD cs		S N (%) Sı		ATTE		_	WC	ODOT CLASS (GI)	BACK FILL		
2	ONCRETE (DRILLEI BROWN, SANDY SII		, XX	999.7	 - 1 -																1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
	NS NO INTACT SOI			997.8	2 -	6 5 6	15	78	SS-1	-	37	8	16	24	15	29	19	10	14	A-4a (1)	12
P TRACE 1	TIFF, BROWN, SIL1 TO LITTLE GRAVEL READINGS, DAMP	., CONTAINS NO			_ 4 -	12 12 14	36	67	SS-2	-	-	-	-	-	-	-	-	-	16	A-6a (V)	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
	READINGS, DAWF				<u> </u>	9 11 13	34	78	SS-3	-	11	7	18	38	26	29	18	11	16	A-6a (6)	1>V 1>
				993.3	EOB 7	7 9 10	27	78	SS-4	-	-	-	-	-	-	-	-	-	16	A-6a (V)	12 12 12 12 12 12 12 12 12 12 12 12 12 1

PROJECT: SUM-76-06.15 TYPE: SUBGRADE PID: 100713 SFN: START: 4/11/19 END: 4/11/19	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER: N		HAMI	L RIG: MER: BRATI	CN ON DA	CME 45 ME AUTON ATE:11 (%):	//ATIC	7	STAT ALIG ELEV	NME /ATIC	NT: _ DN: _	994.7	IR-7 7 (MS	77 & II L) E	R-76 EOB:		B-00:	ATION ID 5-0-18 PAGE 1 OF 1
MATERIAL DESCRIPT	TION	ELEV. 994.7	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_	GRAE cs			CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
13.0" CONCRETE (DRILLERS DESCRIPTION MEDIUM DENSE, BROWN, GRAVEL, SOM	IE SAND TRACE	993.6	- 1 -			(70)	שו	(131)	GIX	00	10	OI .	OL.	LL			we		1.22
SILT, TRACE CLAY, DAMP	L SAND, TRACE		- 2 - - 3 -	13 9 10	27	100	SS-1	-	70	11	11	6	2	NP	NP	NP	9	A-1-a (0)	1> \ 1 \ \ 1
76-6.15 K	000		- 4 -	′8 10 8	25	100	SS-2	-	-	-	-	-	-	-	-	-	7	A-1-a (V)	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
VERY STIFF, BROWN, SANDY SILT, "AND"	GRAVEL, LITTLE	988.7	- 5 - - 6 -	10 11 10	29	100	SS-3	-	-	-	-	-	-	-	-	-	7	A-1-a (V)	1> \ 1> \ 1>
CLAY, NO INTACT SOIL FOR HP READING	SS, DAMP	987.2	EOB - 7 -	10 9	27	100	SS-4	-	42	9	11	24	14	25	18	7	12	A-4a (1)	1> \ 1>
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:10 - X:ACTIVE PROJECTS/ACTIVE																			

Z.GP.J	PROJECT: SUM-76-06.15 TYPE: SUBGRADE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		EAS / ASHBAUGH EAS / E. ROLLER	- 1	L RIG MER:		CME 45		_	STAT ALIGI			SET:		93+62 7 & IF		LT.		ATION ID 3-0-18
M-/ 0-0.13	PID: 100713 SFN: START: 4/11/19 END: 4/11/19	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT	CALI	BRAT	ION DA	ATE:11	/21/17 84		ELEV	/ATIC	N: _9		(MS	L)_ E	OB:	7. .57361	.5 ft.	PAGE 1 OF 1
E3/30	MATERIAL DESCRIPT AND NOTES	ION	ELEV. 987.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	N (%)) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
	14.0" CONCRETE AND 4.0" BASE (DRILLE DESCRIPTION)	RS	986.4	- - 1 -					, ,											\$ 1 V \$ 1
NMORE	MEDIUM DENSE, BROWN AND GRAY, GR . SAND, TRACE SILT, TRACE CLAY, DAMP	AVEL, SOME		- 2 - - 3 -	10 7 8	21	100	SS-1	-	62	18	13	5	2	NP	NP	NP	11	A-1-a (0)	1>V 1>
-0.15 KE		00		_ 4 -	7 9 11	28	100	SS-2	-	-	-	-	-	-	-	-	-	8	A-1-a (V)	1>V1> 1>V1> 1>V1>
9/-MOS		000	981.9	- 5 - - - 6 -	6 5 6	15	100	SS-3	-	-	-	-	-	-	-	-	-	8	A-1-a (V)	12V 12 12V 12 12V 12
ACJEC IS	STIFF, BROWN, SANDY SILT , SOME GRAV CLAY, CONTAINS NO INTACT SOIL FOR H MOIST		980.4	EOB 7	5 8 8	22	100	SS-4	-	22	17	20	21	20	24	17	7	21	A-4a (1)	1>V1>

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

Ų.	PROJEC [*] TYPE:	T:	SUM-76-		DRILLING FIRM / OPER/ SAMPLING FIRM / LOGO		IEAS / J. HO			L RIG MER:		CME 55			STAT ALIG			SET:		89+75 7 & IF		LT.		ATION ID 7-0-18
6-6.1		00713 4/30/19	SFN:	4/30/19	DRILLING METHOD: SAMPLING METHOD:	3	.25" HSA SPT				ON DA	ATE: <u>11</u>	/21/17 85		ELEV				_		-	10 .5737).5 ft.	PAGE 1 OF 1
S\SUM-	OTAINI.	4/30/13	MATER	RIAL DESCRIPT		ELEV.	DEPT	'HS	SPT/	N ₆₀	REC	SAMPLE	HP	(GRAD	ATIC	N (%)		ERBE	RG		ODOT CLASS (GI)	BACK
MORE/GINT FILE		CLAY, TR	COARSE		D, LITTLE SILT, FAINS TRACE IRON	976.4		- 1 -	RQD	00	(%)	מו	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	OLAGO (di)	FILL 7 LV 7 L 1 > N 1 > 7 LV 7 L
15 KENI								- 2 - - 3 - - 4	2 3 3	9	56	SS-1	-	-	-	-	-	-	-	-	-	14	A-3a (V)	7 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
PROJECTS\SUM-76-6.								5 6	1 2 3	7	100	SS-2	-	8	31	33	17	11	NP	NP	NP	16	A-3a (0)	1 > \ 1 > \
SOIL PROJEC						967.4		- 7 - - 8 -	2 3 4	10	56	SS-3	-	-	-	-	-	-	-	-	-	17	A-3a (V)	1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
ACTIVE SO	LOOSE, GRAVEI		ILT, SOME	SAND, TRACE	CLAY, TRACE	+	EOB—	- 9 - - 10	4 4 3	10	56	SS-4	-	3	4	24	61	8	NP	NP	NP	21	A-4b (7)	1>\ 1>\ 1>\ 1>\ 1>\ 1>\ 1>\ 1>\ 1>\ 1>\

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

YPE: ROADWAY SAMPLING FIRM / LO		EAS / ASHBAUGH EAS / E. ROLLER	-	L RIG: MER:	-	CME 55 ME AUTON			STAT			SET:		81+94 7 & IF		LT.		ATION ID 3-0-18
PID:	 3.	25" HSA SPT	-		ON DA	ATE: <u>11</u> (%):	/21/17 78		ELEV LAT /		_		_			1′ .57382	1.5 ft. 29	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 983.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs	ATIO FS	N (%)) CL	ATT LL	ERBE PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
MEDIUM DENSE, DARK BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE TO LITTLE CLAY, CONTAINS TRACE ROOTS, ASPHALT, AND STONE		- 1 -	4 6 8	18	100	SS-1	-	-	-	-	1	-	ı	-	-	9	A-2-4 (V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
FRAGMENTS >1", DAMP VERY STIFF, BROWN MOTTLED WITH GRAY, SILT AND	981.4	- 2 -	4															1
CLAY, "AND" SAND, TRACE GRAVEL, CONTAINS TRACE IRON STAINING, DAMP	978.9	3 + 4	. 4 6	13	100	SS-2	2.25	7	10	44	22	17	25	14	11	13	A-6a (1)	1>V 1>
HARD, GRAY MOTTLED WITH BROWN AND ORANGISH BROWN, SANDY SILT , LITTLE CLAY, TRACE GRAVEL, CONTAINS TRACE IRON STAINING, DAMP TO MOIST		5 - 6 -	2 4 12	21	100	SS-3	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	7
		- 7 - - 8 - - 9	3 3 6	12	100	SS-4	4.50	3	19	38	24	16	23	15	8	16	A-4a (1)	7
MEDIUM DENSE, GRAYISH BROWN, COARSE AND FINE SAND , LITTLE SILT, TRACE CLAY, TRACE GRAVEL, MOIST	973.9 971.9	- 9 - - 10 - - 11 -	2 5 0	17	100	SS-5	-	-	-	-	-	-	-	-	-	13	A-3a (V)	7

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

PROJECT: SUM-76-06.15 DRILLING FIRM / OPERATYPE: ROADWAY SAMPLING FIRM / LOGG	_	EAS / ASHBAUGH EAS / E. ROLLER	DRILL I HAMME		CME 55		_	STAT ALIGN					77+99 7 & IF	,	LT.	EXPLOR B-009	ATION ID 9-0-18
PID: 100713 SFN: DRILLING METHOD: START: 2/26/19 END: 2/26/19 SAMPLING METHOD:	3.	25" HSA SPT	CALIBR		DATE:1 ^o D (%):	/21/17 78	_	ELEV. LAT /				_			.57385	.5 ft. 4	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 984.9	DEPTHS	SPT/ RQD	N ₆₀ RE	SAMPLE ID	_	GR	GRAD.	ATIO FS	N (%)) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
VERY DENSE, DARK BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY, CONTAINS PLASTIC FRAGMENTS, DAMP (FILL)	982.9	- 1 - - 2 -	50/3"	10) SS-1	Λ <u>-</u> Λ	- /	-							_7_)	A-2-4 (V)	1> \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
MEDIUM DENSE, LIGHT BROWN AND GRAY, COARSE AND FINE SAND, SOME GRAVEL AND STONE FRAGMENTS, LITTLE SILT, LITTLE CLAY, DAMP VERY STIFF TO HARD, BROWN AND GRAY, SANDY SILT,		- 3 - 4	5 5 7	16 10) SS-2	-	21	11	38	18	12	20	17	3	12	A-3a (0)	V V V V V V V V V V V V V V V V V V V
UITTLE CLAY, TRACE GRAVEL, DAMP TO MOIST @5.0' TO 6.5'; SS-3 CONTAINS LIGHT BROWN AND ORANGISH BROWN MOTTLES, TRACE IRON STAINING		- 5 - 6 - 7 - 7	7 6	17 10	SS-3	4.50	6	16	30	29	19	21	14	7	13	A-4a (3)	× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
		- 8 - - 9 - -	3 5 6	14 10) SS-4	2.75	-	-	-	-	-	-	-	-	15	A-4a (V)	× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
	973.4	- 10 - - 11 -	4 6 5	14 10) SS-5	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

PROJECT: SUM-76-06.15 TYPE: ROADWAY PID: 100713 SFN: DRILLING FIRM / OPEI START: 2/26/19 END: 2/26/19 SAMPLING METHOD: SAMPLING METHOD:	GER: N	IEAS / ASHBAUGH EAS / E. ROLLER .25" HSA SPT	DRILL HAMN CALIB ENER	MER: BRATIC	CN ON DA	CME 55 ME AUTOM ATE: 11 (%):	MATIC	_	ALIG	NME /ATIC)N: _		IR-7 (MS		R-76 EOB:		1.5 ft.	ATION ID 0-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 985.0	DEPTHS	SPT/			SAMPLE ID	HP	-	GRAD	PATIC	N (%) CL	_	ERBE		wc	ODOT CLASS (GI)	BACK FILL
DENSE, BROWN, GRAVEL WITH SAND AND SILT , TRACE CLAY, CONTAINS TRACE IRON STAINING, DAMP	Va Va	- 1 -	7 11 13	31	100	SS-1	-	-	-	-	-	-	-	-	-	12	A-2-4 (V)	V V V V V V V V V V V V V V V V V V V
STIFF TO VERY STIFF, BROWN MOTTLED WITH ORANGISH BROWN AND GRAY, SANDY SILT , LITTLE CLAY, LITTLE GRAVEL, CONTAINS TRACE IRON STAINING,	983.0	- 2 - - 3 -	5 7 7	18	100	SS-2	2.00	11	17	29	26	17	23	16	7	15	A-4a (2)	1>\\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\
DAMP MEDIUM DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, DAMP	980.5	_ 4 - 5 _	5															12 × 12 12 × 12 12 12 × 12 12 12 × 12 12 12 12 12 12 12 12 12 12 12 12 12 1
	978.0	_ 6 - 7 -	6 8	18	100	SS-3	-	23	17	28	21	11	22	17	5	14	A-2-4 (0)	7 × × × × × × × × × × × × × × × × × × ×
STIFF TO VERY STIFF, GRAY MOTTLED WITH ORANGISH BROWN, SANDY SILT , LITTLE CLAY, TRACE GRAVEL, CONTAINS TRACE IRON STAINING, DAMP		- 8 - - 9 -	4 5 7	16	100	SS-4	3.00	-	-	-	-	-	-	-	-	16	A-4a (V)	× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
		10	5															1>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\$20 100 100 100 100 100 100 100 100 100 1	973.5	EOB - 11 -	5 6	14	100	SS-5	2.00	-	-	-	-	-	-	-	-	15	A-4a (V)	1 LV 1 L

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

0713 SFN: DRILLING METHOD:	OGG	ER: NE	EAS / ASHBAUGH EAS / E. ROLLER 25" HSA	HAMI	L RIG: MER: BRATI	CI	CME 55 ME AUTON ATE:11	//ATIC		ALIGI ELEV	NME	_		IR-7	70+00 7 & IF L) E	R-76		EXPLOR B-011	-0-18 PAGE
2/26/19 END: 2/26/19 SAMPLING METHOD	D:		SPT		RGY R			78		LAT /		_		•			.57384	16	1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV. 984.0	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	GRAD cs	ATIO FS) CL	ATT LL	ERBE PL	RG PI	WC	ODOT CLASS (GI)	BACK FILL
FF TO HARD, BROWN BECOMING BROWN WITH GRAY AND ORANGISH BROWN, SANDY ILE CLAY, LITTLE GRAVEL, CONTAINS TRACE			- 1 -	8 12 14	34	100	SS-1	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1
INING, DAMP			- 2 -																1>11>
			3 -	5 8 10	23	100	SS-2	3.00	12	16	28	29	15	25	19	6	16	A-4a (2)	1
			_ 4 _																1>11>
			5 T 6 T	2 3 4	9	100	SS-3	4.00	15	20	27	22	16	25	16	9	14	A-4a (1)	1 L V 1 L V
			- 7 -																1>1 1>
			- 8 -	4 4 5	12	100	SS-4	3.25	-	-	-	1	-	1	-	-	16	A-4a (V)	1>11>
																			1> \ 1>
		972.5	- 10 - - 11 -	5 6 5	14	100	SS-5	4.00	-	-	-	-	-	-	-	-	16	A-4a (V)	7

5 2.	PROJECT: SUM-76-06.15 TYPE: ROADWAY PID: 100713 SFN: START: 2/26/19 END: 2/26/19	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	BER: N	EAS / ASHBAUGH EAS / E. ROLLER 25" HSA SPT	DRILL HAMN CALIE ENER	MER: BRATI	CI ON D	CME 55 ME AUTON ATE:11 (%):	MATIC		STAT ALIG ELEV LAT /	NMEI ATIO	NT: _ N: _9	982.9	IR-7	7 & IF L) E	OB:		B-012	ATION ID 2-0-18 PAGE 1 OF 1
ES\SU	MATERIAL DESCRIPT AND NOTES	TON	ELEV. 982.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	N (% sı) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
GINT FIL	HARD, DARK BROWN AND LIGHT BROWN SOME GRAVEL, LITTLE CLAY, CONTAINS STAINING, DAMP	, ,	002.0	- - 1 -	8 11 12	30	100	SS-1	4.25	-	-	-	-	-	-	-	-	11	A-4a (V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
MORE	STAINING, DAWI			- 2 -	6															1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
.15 KEN			978.4	3 +	9	23	100	SS-2	4.25	24	9	29	23	15	21	14	7	10	A-4a (1)	7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 ×
A-76-6	STIFF TO VERY STIFF, BROWN MOTTLED		970.4	- 5 -	5															1>1 1>
ECTS\SUN	ORANGISH BROWN AND GRAY, SANDY S CLAY, TRACE GRAVEL, CONTAINS TRACE DAMP			6	6 7	17	100	SS-3	1.25	8	23	28	27	14	26	20	6	18	A-4a (1)	1>1 1>
OJEC	D, wiii			7 -	E															1>1 1>
OIL PR				- 8 + - - 9 -	6	16	100	SS-4	2.00	-	-	-	-	-	-	-	-	17	A-4a (V)	1> \ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
TIVES					6															1>N 1>
CTS/AC			971.4	EOB - 11 -	6 6 7	17	100	SS-5	1.50	-	-	-	-	-	-	-	-	17	A-4a (V)	1>\ 1 \ \ 1 \ \ \ 1 \ \ \ \ \ \ \ \ \ \

6-6.15 2. L	ROJECT: /PE: D:100713 FART:2/20		DRILLING FIRM / OPER. SAMPLING FIRM / LOGO DRILLING METHOD: SAMPLING METHOD:	GER: N	NEAS / ASHBAUG NEAS / E. ROLLE NEAS / B. ROLLE SPT	R		MER: BRATI	ON D	CME 55 ME AUTON ATE: 11	MATIC	_	STAT ALIG ELE\ LAT	NME /ATIC	NT: _)N: _	981.8	IR-7 3 (MS	7 & II L) E	R-76 EOB:	LT. 1° .5738°	B-01	ATION ID 3-0-18 PAGE 1 OF 1
ES\SUM	<u> </u>	MATERIAL DESCI AND NOTE	RIPTION	ELEV. 981.8	DEPTHS		SPT/ RQD	N ₆₀		SAMPLE ID			GRAD	ATIC			_	ERBI		wc	ODOT CLASS (GI)	BACK FILL
ΞL	IGHT TAN A	SE TO DENSE, DARK BR ND ORANGISH BROWN, WITH SAND AND SILT, T	SRAVEL AND STONE 🔠 Џ	e D	- - 1	1	3 10 9	25	100	SS-1	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)	~ 1
.15 KENMOR		RACE ROOTS, SS-3 CON			- 2 - 3 - 4	7	9 9	23	89	SS-2	-	38	11	37	9	5	NP	NP	NP	7	A-2-4 (0)	1>N1>
TS/SUM-76-6				6 0 0 974.8	- 5 - 5 - 6	6	12 16	36	89	SS-3	-	-	-	_	-	-	-	-	-	8	A-2-4 (V)	1 LV 1 L
[F	INE SAND, T	WN AND ORANGISH BRO RACE SILT, TRACE CLAY NS IRON STAINING, WET		974.0	— 7 — 8 ₩ 972.8	3 4	3 4	9	100	SS-4	-	0	21	65	8	6	NP	NP	NP	17	A-3a (0)	1
CISMCIIVE:				970.3	- 1 - 1 - 1	0 - 1 -	3 5	10	100	SS-5	-	-	-	-	-	-	-	-	-	27	A-3a (V)	1 × × × × × × × × × × × × × × × × × × ×

NOTES: GROUNDWATER ENCOUNTERED AT 9.0' DURING DRILLING. HOLE DID NOT CAVE.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

5 2.	PROJECT: SUM-76-06.15 TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	_	EAS / ASHB EAS / E. ROL		DRILI HAMI			CME 55			STAT ALIG				15 IR-77		,	LT.	EXPLOR B-014	I-0-18
6-6.1	PID: 100713 SFN:	DRILLING METHOD: SAMPLING METHOD:	3	.25" HSA SPT		CALIE			ATE: <u>11</u> (%):	/21/17 78	_	ELEV						_	11 .57380	.5 ft. 6	PAGE 1 OF 1
ES\SU	MATERIAL DESCRIPT AND NOTES	TON	ELEV. 982.7	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIO FS	N (%)) CL	ATTE	PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
REGINT FIL	STIFF, BROWN, SANDY SILT , LITTLE CLA' GRAVEL, MOIST	Y, TRACE			- - 1 -	5 5 7	16	100	SS-1	1.25	4	19	28	30	19	25	15	10	16	A-4a (3)	V V V V V V V V V V V V V V V V V V V
ENMORE	LOOSE TO MEDIUM DENSE, BROWN, CO.	ARSE AND FINE	980.7		- 2 -	2															1> \ 1> \ 1> \ 1 \ 1
3.15 KEN	SAND, LITTLE SILT, LITTLE CLAY, TRACE CONTAINS TRACE ROOT HAIRS, MOIST T				- 3 - - 4 -	3 4 4	10	100	SS-2	-	-	-	-	-	-	-	-	-	12	A-3a (V)	1>1 1>
TS\SUM-76-6				-	5 - 6 -	3 4 5	12	100	SS-3	-	7	39	25	18	11	23	18	5	15	A-3a (0)	1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
SOIL PROJEC				w 973.7	- 7 - - 8 - - 9 -	4 4 5	12	100	SS-4	-	-	-	-	-	-	-	-	-	18	A-3a (V)	1 > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CTS/ACTIVE (971.2	EOB	- 10 - - 11 -	3 4 4	10	100	SS-5	-	-	-	-	-	-	-	-	-	29	A-3a (V)	1

6-6.15 2.		00713	SUM-76- ROADWA SFN:	λΥ	DRILLING FIRM / OPE SAMPLING FIRM / LOO DRILLING METHOD: _	GG	ER: NEA	AS / CHIPU 25" HSA		HAMI		ON D	CME 55 ME AUTON ATE: 11	1ATIC /21/17		ALIG ELEV	NMEI 'ATIC	N: _9	984.3	IR-7	7 & IF _)_ E	R-76 OB:	10).5 ft.	ATION ID 5-0-18 PAGE 1 OF 1
ES\SUM-7	START: _	5/1/19	MATER	5/1/19 RIAL DESCRIPTION AND NOTES	SAMPLING METHOD:		ELEV. 984.3	SPT DEPT	HS	SPT/ RQD	RGY R	_	(%): SAMPLE ID					N (%)		41.07 ATTI		_	.57374 wc	ODOT CLASS (GI)	BACK
15 KENMORE\GINT FILI			OWN, SAN I		E CLAY, LITTLE IP		304.0		- 1 - - 2 - - 3 - - 4	4 6 10	23	100	SS-1	3.00			27	24	16	25	15	10	13	A-4a (1)	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ROJECTS\SUM-76-6.				AND FINE SANI	D, SOME SILT,		977.3	w 976.8	╆ . ▮	2 3	7	56	SS-2	2.50	11	17	26	28	18	27	17	10	15	A-4a (2)	1
ACTIVE SOIL PRO	66 4 00			VEL, CONTAINS ASTIC DEBRIS,	IRON STAINING, WET		973.8	—ЕОВ—	- 8 - - 9 - - 10 -	2 2 2 2 3	7	56 56	SS-3 SS-4	-	-	-	-	-	-	-	-	-	21	A-3a (V) A-3a (V)	1 > N > N > N > N > N > N > N > N > N >

NOTES: GROUNDWATER ENCOUNTERED AT 7.5' DURING DRILLING. HOLE DID NOT CAVE.

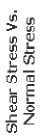
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

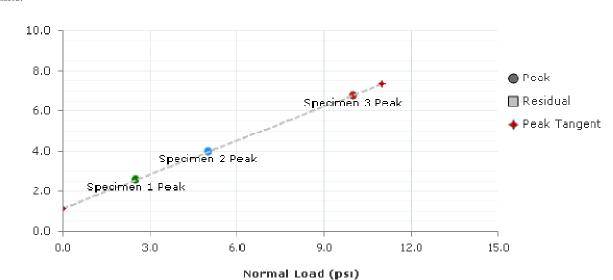
PROJECT: SUM-76-06.15 DRILLING FIRM / OPERA TYPE: ROADWAY SAMPLING FIRM / LOGG PID: 100713 SFN: DRILLING METHOD: START: 2/27/19 END: 2/27/19 SAMPLING METHOD:		DRILL RIG: HAMMER:CN CALIBRATION DA ENERGY RATIO (STATION / OFFSET: ALIGNMENT: ELEVATION: 987.4 LAT / LONG:	IR-77 & IR-76	EXPLORATION ID B-016-0-18 1.5 ft. PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. DEPTHS 987.4	SPT/ RQD N ₆₀ REC (%)	SAMPLE HP ID (tsf) GR	GRADATION (%) CS FS SI CL	ATTERBERG UCC	ODOT BACK CLASS (GI) FILL
MEDIUM DENSE, BROWN, GRAVEL WITH SAND AND SILT , LITTLE CLAY, DAMP	- 1 -	3 9 22 100	SS-1		11	A-2-4 (V)
DENSE TO VERY DENSE, LIGHT TAN, STONE FRAGMENTS	985.4	2				7
WITH SAND, LITTLE SILT, TRACE CLAY, STONE FRAGMENTS ARE SANDSTONE, DAMP	3 - 4	19 51 89 20	SS-2 - 47	7 28 12 6	NP NP NP 8	A-1-b (0)
@5.0' TO 6.5'; SS-3 BECOMES BROWN MOTTLED WITH ORANGISH BROWN AND BLACK, CONTAINS IRON STAINING, WET	5 - 6 -	19 22 10 42 89	SS-3 - 48	11 16 16 9	NP NP NP 15	A-1-b (0)
	977.9	21 23 23 60 56	SS-4		7	A-1-b (V)
LOOSE, BROWN, COARSE AND FINE SAND , SOME SILT, TRACE GRAVEL, TRACE CLAY, CONTAINS TRACE IRON STAINING, MOIST	975.9 _{EOB} - 11 -	4 4 9 100	SS-5		14	A-3a (V) 7 L ^V 7 L 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

긱		DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	_					CN	CME 55 ME AUTON		_	STAT ALIGI				14 IR-7		,	LT.	EXPLORA B-017	'-0-18
Ó		DRILLING METHOD: SAMPLING METHOD:	3.	25" HSA SPT				ON DA	ATE: <u>11</u> (%):	/21/17 85		ELEV LAT /				•			10 57377.	0.5 ft. 70	PAGE 1 OF 1
-ES\SU	MATERIAL DESCRIPTION AND NOTES	ON	ELEV. 980.2	DEPTH	IS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	GRAD CS	ATIO FS	N (%)) CL	ATT	ERBE PL	_	WC	ODOT CLASS (GI)	BACK FILL
E/GIN FII	HARD, BROWN, SANDY SILT , LITTLE TO SO TRACE GRAVEL, CONTAINS TRACE IRON S			-	 - 1 -																1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KENMOR					- 2 - 3 -			96	ST-1	4.25	5	13	29	31	22	24	17	7	16	A-4a (4)	1> \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
JM-76-6.15	@4.0' TO 8.0'; BECOMES VERY SOFT, WET	-			- 4 - - 5 -	2 3 2	7	56	SS-2	0.25	-	-	-	-	-	-	-	-	18	A-4a (V)	×11×11 ×11×11 ×11×11
CIS/SI				-	- 6 - -	1															1 > \ 1 > \
KOJE			074.7		- 7 - 8	2 2	6	56	SS-3	0.25	3	15	42	27	13	17	14	3	20	A-4a (1)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
SOILF	LOOSE, BROWN, COARSE AND FINE SAND	D, SOME SILT,	971.7	-	-	2														<u> </u>	1>1 1>
ACIIVE.	TRACE CLAY, TRACE GRAVEL, WET		969.7	EOB-	- 10	1 3	6	100	SS-4	-	-	-	-	-	-	-	-	-	26	A-3a (V)	12 / 12 12 / 12

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.


ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS


D3080

Project: SUM-76-6.15
Project Number: 100713
Location: B-017-0-18

Client Name:

Shear Stress (psi)

C (psi): 1.2 Phi (°): 29.5 Residual C (psi): NA Residual Phi (°): NA

()						() .		
				Specimen	Number			
Initial	1	2	3	4	5	6	7	8
Moisture (%):	20.2	17.3	15.6					
Dry Density (pcf):	106.9	110.3	111.6					
Void Ratio:	0.560	0.511	0.493					
Saturation (%):	96.3	90.5	84.5					
Diameter (in):	2.4973	2.4973	2.4973					
Height (in):	1.0033	0.9998	1.0000					
Final	1	2	3	4	5	6	7	8
Moisture (%):	21.9	20.0	17.6					
Dry Density (pcf):	108.9	111.0	113.6					
Void Ratio:	0.531	0.502	0.467					
Saturation (%):	110.2	106.3	100.7					
Height (in):	1.0003	0.9998	0.9901					
Normal Stress (psi):	2.5	5.0	10.0					
Peak Shear Stress (psi):	2.6	4.0	6.8					
Residual Stress (psi):	NA	NA	NA					
Horizontal Deformation (%):	3.3	3.7	4.1					
Rate (in/min):	0.003535	0.003707	0.005000					

D3080

Project: SUM-76-6.15
Project Number: 100713
Sampling Date: 6/19/2019
Sample Number: ST-1
Sample Depth: 2.0-4.0 ft
Location: B-017-0-18

Client Name: Remarks:

		_		Specimer	n Number		_	
Information Parameters	1	2	3	4	5	6	7	8
Liquid Limit:	24	24	24					
Plastic Limit:	17	17	17					
Specific Gravity:	2.67	2.67	2.67					
Specific Gravity Method:	ASSUMED	ASSUMED	ASSUMED					
Initial Parameters	1	2	3	4	5	6	7	8
Test Temperature (°C):	21.1	21.1	21.1					
Sample Shape:	ROUND	ROUND	ROUND					
Height (in):	1.0033	0.9998	1.0000					
Diameter (in):	2.4973	2.4973	2.4973					
Area (in²):	4.898	4.898	4.898					
Volume (in³):	4.9146	4.8975	4.8983					
Moisture (%):	20.2	17.3	15.6					
Dry Density (pcf):	106.9	110.3	111.6					
Wet Density (pcf):	128.4	129.4	129.1					
Saturation (%):	96.3	90.5	84.5					
Void Ratio:	0.560	0.511	0.493					
Porosity (%):	35.9	33.8	33.0					
Consolidation Parameters	1	2	3	4	5	6	7	8
Initial Reference Height (in):	1.0033	0.9998	1.0000					
Final Reference Height (in):	1.0003	0.9998	0.9901					
Height (in):	1.0003	0.9998	0.9901					
Final Parameters	1	2	3	4	5	6	7	8
Moisture Content (%)	21.9	20.0	17.6					
Dry Density (pcf):	108.9	111.0	113.6					
Wet Density (pcf):	132.7	133.2	133.6					
Saturation (%):	110.2	106.3	100.7					
Void Ratio:	0.531	0.502	0.467					
Porosity (%):	34.7	33.4	31.8					

D3080

Project: SUM-76-6.15

Project Number: 100713 Sampling Date: 6/19/2019 Sample Number: ST-1

Sample Depth: 2.0-4.0 ft

Location: B-017-0-18

Client Name: Remarks:

Specific Gravity: 2.67 Plastic Limit: 17 Liquid Limit: 24

Type: ST Soil Classification: A-4a

Specimen Description: Hard, brown mottled with orangish brown and gray, SANDY SILT, some clay, trace gravel, damp.

Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5	Specimen 6	Specimen 7	Specimen 8
Failure Sketch							
	الره الم						

D3080

Specimen 1

Test Description: D3080

Other Associated Tests:

Device Details: HM-5760

Test Specification:

Test Time: 6/20/2019

Technician: L. Rosenbeck Sampling Method: ST Specimen Code: 3.4' - 3.5' Specimen Lab #: 1

Specimen Description: Hard, brown mottled with orangish brown and gray, SANDY SILT, some clay, trace gravel,

damp.

Specific Gravity: 2.67

Plastic Limit: 17 Liquid Limit: 24

Test Remarks:

Specimen 2

Test Description: D3080

Other Associated Tests:

Device Details: HM-5760

Test Specification:

Test Time: 6/20/2019

Technician: L. Rosenbeck Sampling Method: ST Specimen Code: 3.6' - 3.7' Specimen Lab #: 2

Specimen Description: Hard, brown mottled with orangish brown and gray, SANDY SILT, some clay, trace gravel,

damp.

Specific Gravity: 2.67

Plastic Limit: 17 Liquid Limit: 24

Test Remarks:

D3080

Specimen 3

Test Description: D3080

Other Associated Tests:

Device Details: HM-5760

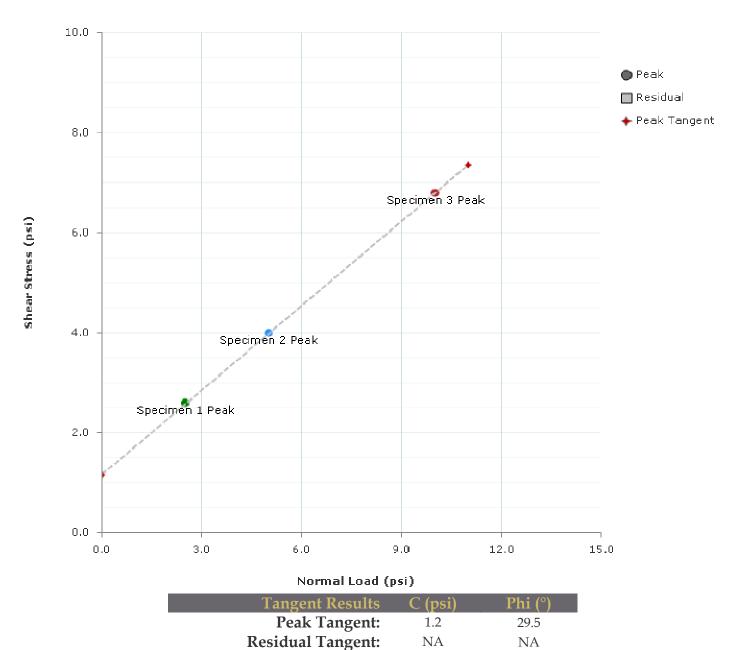
Test Specification:

Test Time: 6/21/2019

Technician: L. Rosenbeck Sampling Method: ST Specimen Code: 3.8' - 3.9' Specimen Lab #: 3

Specimen Description: Hard, brown mottled with orangish brown and gray, SANDY SILT, some clay, trace gravel,

damp.

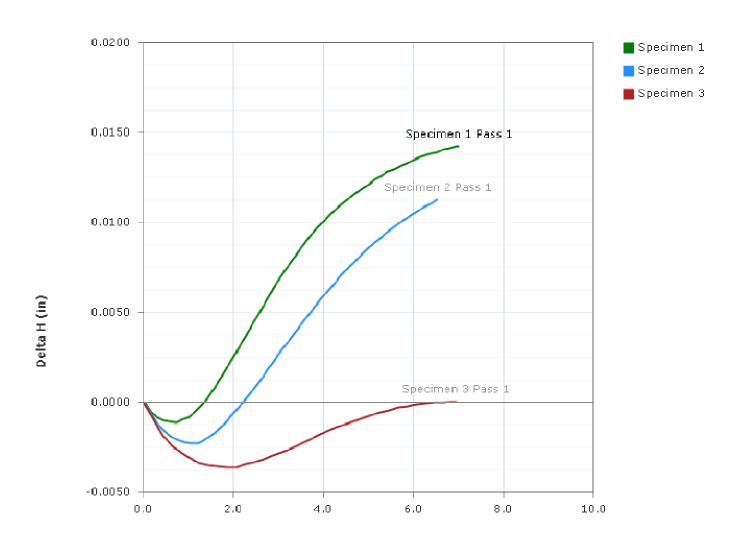

Specific Gravity: 2.67

Plastic Limit: 17 Liquid Limit: 24

Test Remarks:


Direct Shear Test - Shear Stress Vs. Normal Stress

D3080


Graph - Stress Deformation

D3080

Horizontal Deformation (in)

Graph - Delta H

Axial Strain (%)

Direct Shear Test - Specimen 1 - Consolidation Summary

D3080

Sample Description: Hard, brown mottled with orangish brown and gray, SANDY SILT, some clay, trace gravel, damp.

Project Number: 100713 Depth: Remarks

Sample Number: ST-1 Boring Number: B-017-0-18

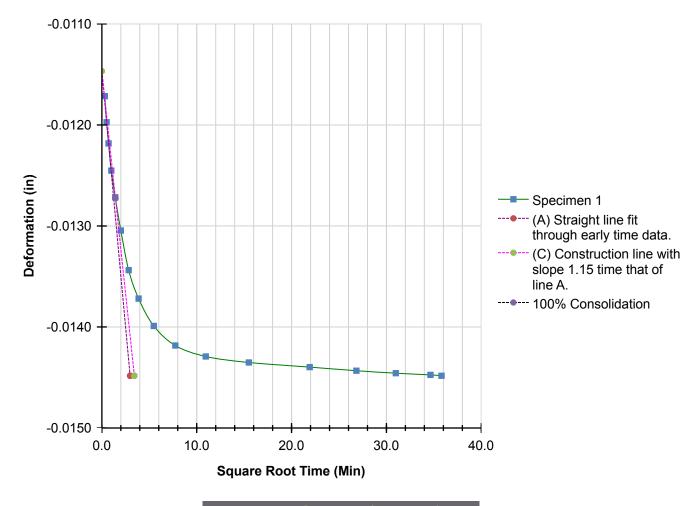
Project: SUM-76-6.15

Client:

Location: B-017-0-18

Index	Loading Sequence (psi)	Cummulative Change in Height (ft)	Specimen Height (ft)	Height of Voids (ft)	Vertical Strain (%)	Void Ratio	T90 Fitting Time (Hr)	T50 Fitting Time (Hr)	T90 Cv (in²/Min)	T50 Cv (in²/Min)
0	0.0	0.000	0.084	0.000	0.0	0.56	0.000	0.000	0.00000	0.00000
1	2.5	0.000	0.083	0.030	0.3	0.55	0.034	1.430	0.10442	0.00058

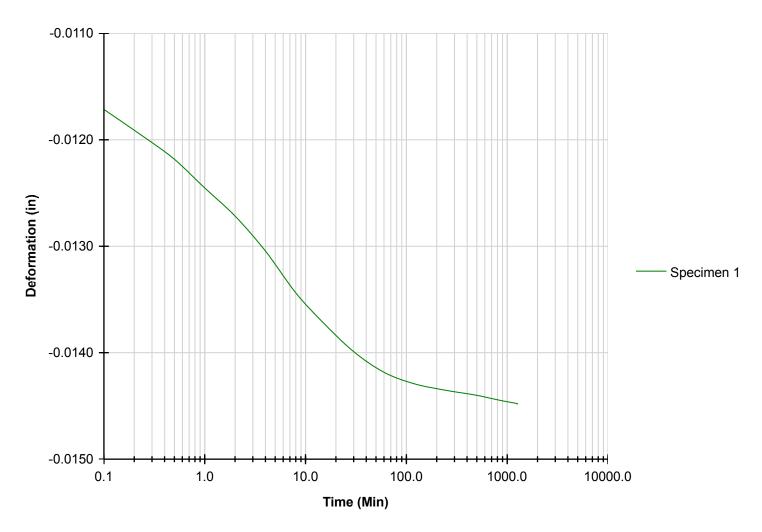
Consol Test - Specimen 1 - Sequence 1 - 2.5 (psi)


D3080

LIMS Code: [TO COME FROM LIMS] LIMS Specimen Code: [TO COME FROM LIMS]

	Elapsed Time	Load	Load	Settlement	Axial Strain	Void
Index	(hh:mm:ss)	(Lbf)	(Lbf)	(in)	(%)	Ratio
0	00:00:00	11.6	-0.0114	0.0000	0.0	0.56
1	00:00:06	11.9	-0.0117	0.0003	0.0	0.56
2	00:00:15	12.2	-0.0120	0.0005	0.1	0.56
3	00:00:30	12.2	-0.0122	0.0007	0.1	0.56
4	00:01:00	12.3	-0.0125	0.0010	0.1	0.56
5	00:02:00	12.2	-0.0127	0.0013	0.1	0.56
6	00:04:00	12.2	-0.0130	0.0016	0.2	0.55
7	00:08:00	12.3	-0.0134	0.0020	0.2	0.55
8	00:15:00	12.2	-0.0137	0.0023	0.2	0.55
9	00:30:00	12.3	-0.0140	0.0025	0.3	0.55
10	01:00:00	12.2	-0.0142	0.0027	0.3	0.55
11	02:00:00	12.2	-0.0143	0.0028	0.3	0.55
12	04:00:00	12.2	-0.0144	0.0029	0.3	0.55
13	08:00:00	12.2	-0.0144	0.0030	0.3	0.55
14	12:00:00	12.3	-0.0144	0.0030	0.3	0.55
15	16:00:00	12.2	-0.0145	0.0030	0.3	0.55
16	20:00:00	12.2	-0.0145	0.0030	0.3	0.55
17	21:21:57	12.2	-0.0145	0.0030	0.3	0.55

Square Root Time - Specimen 1 - Sequence 1 - 2.5 (psi)



Tangent Construction Results

T90 (Min): 2.044 T50 (Min): 1.135 Cv (in²/Min): 0.104

Logarithmic Time - Specimen 1 - Sequence 1 - 2.5 (psi) LIMS Code: [TO COME FROM LIMS] LIMS Specimen Code:

LIMS Specimen Code: [TO COME FROM LIMS]

Tangent Construction Results

T90 (Min): NA T50 (Min): NA Cv (in²/Min): NA

Direct Shear Test - Specimen 2 - Consolidation Summary

D3080

Sample Description: Hard, brown mottled with orangish brown and gray, SANDY SILT, some clay, trace gravel, damp.

Project Number: 100713 Depth: Remarks

Sample Number: ST-1 Boring Number: B-017-0-18

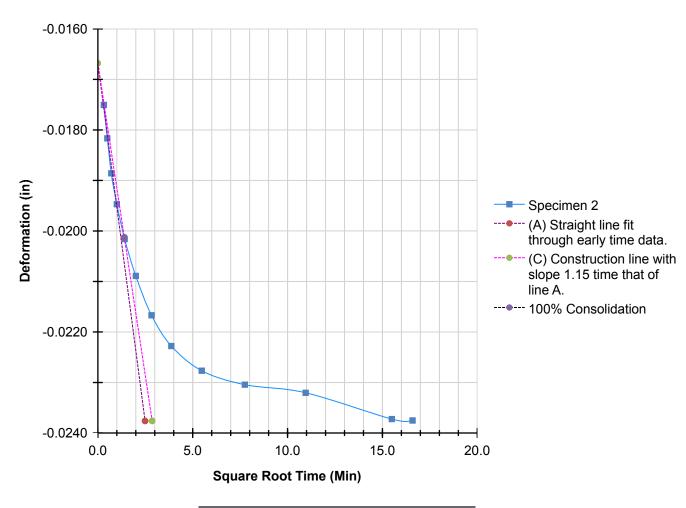
Project: SUM-76-6.15

Client:

Location: B-017-0-18

Index	Loading Sequence (psi)	Cummulative Change in Height (ft)	Specimen Height (ft)	Height of Voids (ft)	Vertical Strain (%)	Void Ratio	T90 Fitting Time (Hr)	T50 Fitting Time (Hr)	T90 Cv (in²/Min)	T50 Cv (in²/Min)
0	0.0	0.000	0.083	0.000	0.0	0.51	0.000	0.000	0.00000	0.00000
1	5.0	0.001	0.083	0.027	0.7	0.50	0.032	1.394	0.10913	0.00059

Consol Test - Specimen 2 - Sequence 1 - 5.0 (psi)

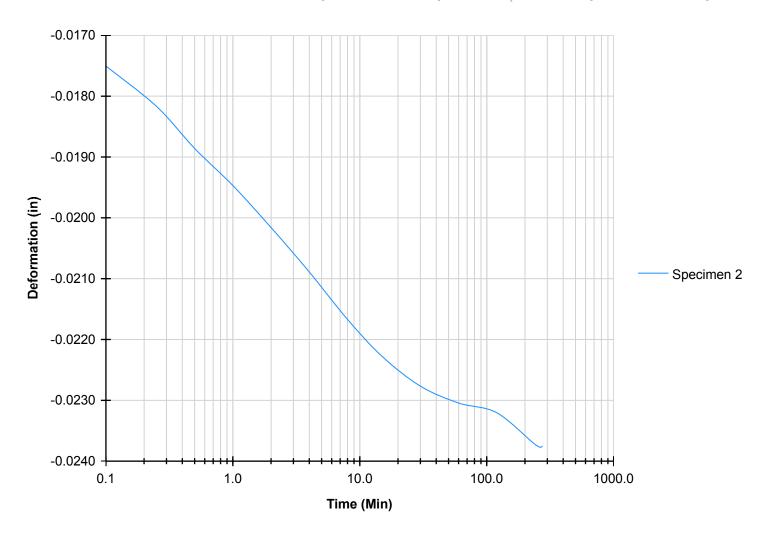

D3080

LIMS Code: [TO COME FROM LIMS] LIMS Specimen Code: [TO COME FROM LIMS]

	Elapsed Time	Load	Load	Settlement	Axial Strain	Void
Index	(hh:mm:ss)	(Lbf)	(Lbf)	(in)	(%)	Ratio
0	00:00:00	23.3	-0.0168	0.0000	0.0	0.51
1	00:00:06	23.9	-0.0175	0.0007	0.1	0.51
2	00:00:15	24.5	-0.0182	0.0014	0.1	0.51
3	00:00:30	24.5	-0.0189	0.0021	0.2	0.50
4	00:01:00	24.5	-0.0195	0.0027	0.3	0.50
5	00:02:00	24.6	-0.0202	0.0034	0.3	0.50
6	00:04:00	24.5	-0.0209	0.0041	0.4	0.50
7	00:08:00	24.4	-0.0217	0.0049	0.5	0.50
8	00:15:00	24.4	-0.0223	0.0055	0.6	0.50
9	00:30:00	24.5	-0.0228	0.0060	0.6	0.50
10	01:00:00	24.4	-0.0230	0.0063	0.6	0.50
11	02:00:00	24.3	-0.0232	0.0064	0.6	0.50
12	04:00:00	24.5	-0.0237	0.0070	0.7	0.50
13	04:35:07	24.5	-0.0238	0.0070	0.7	0.50

Square Root Time - Specimen 2 - Sequence 1 - 5.0 (psi)

D3080



Tangent Construction Results

T90 (Min): 1.942 T50 (Min): 1.079 Cv (in²/Min): 0.109

Logarithmic Time - Specimen 2 - Sequence 1 - 5.0 (psi)

D3080 LIMS Code: [TO COME FROM LIMS] LIMS Specimen Code: [TO COME FROM LIMS]

Tangent Construction Results

T90 (Min): NA
T50 (Min): NA
Cv (in²/Min): NA

Direct Shear Test - Specimen 3 - Consolidation Summary

D3080

Sample Description: Hard, brown mottled with orangish brown and gray, SANDY SILT, some clay, trace gravel, damp.

Project Number: 100713 Depth: Remarks

Sample Number: ST-1 Boring Number: B-017-0-18

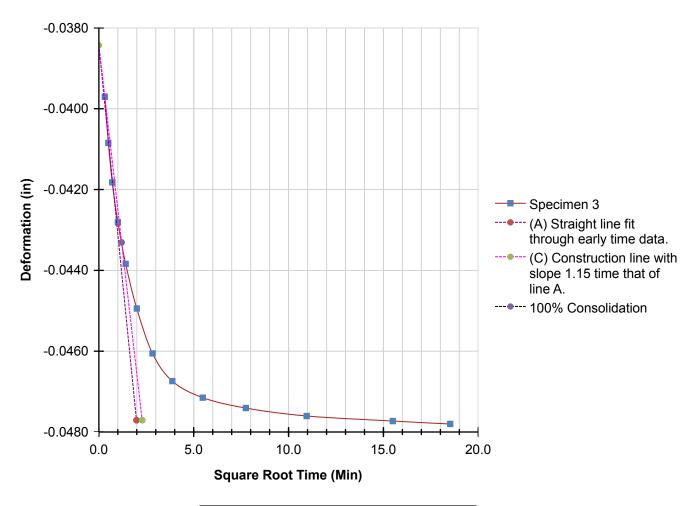
Project: SUM-76-6.15

Client:

Location: B-017-0-18

Index	Loading Sequence (psi)	Cummulative Change in Height (ft)	Specimen Height (ft)	Height of Voids (ft)	Vertical Strain (%)	Void Ratio	T90 Fitting Time (Hr)	T50 Fitting Time (Hr)	T90 Cv (in²/Min)	T50 Cv (in²/Min)
0	0.0	0.000	0.083	0.000	0.0	0.49	0.000	0.000	0.00000	0.00000
1	10.0	0.001	0.083	0.027	1.0	0.48	0.024	1.200	0.14722	0.00068

Consol Test - Specimen 3 - Sequence 1 - 10.0 (psi)


D3080

LIMS Code: [TO COME FROM LIMS] LIMS Specimen Code: [TO COME FROM LIMS]

Index	Elapsed Time (hh:mm:ss)	Load (Lbf)	Load (Lbf)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	46.7	-0.0379	0.0000	0.0	0.49
1	00:00:06	48.4	-0.0397	0.0018	0.2	0.49
2	00:00:15	48.8	-0.0408	0.0030	0.3	0.49
3	00:00:30	49.1	-0.0418	0.0040	0.4	0.48
4	00:01:00	49.3	-0.0428	0.0050	0.5	0.48
5	00:02:00	49.1	-0.0438	0.0060	0.6	0.48
6	00:04:00	48.9	-0.0449	0.0071	0.7	0.48
7	00:08:00	49.0	-0.0461	0.0082	0.8	0.48
8	00:15:00	49.1	-0.0467	0.0089	0.9	0.48
9	00:30:00	48.9	-0.0472	0.0093	0.9	0.48
10	01:00:00	49.0	-0.0474	0.0095	1.0	0.48
11	02:00:00	49.0	-0.0476	0.0097	1.0	0.48
12	04:00:00	48.9	-0.0477	0.0099	1.0	0.48
13	05:42:57	49.0	-0.0478	0.0099	1.0	0.48

Square Root Time - Specimen 3 - Sequence 1 - 10.0 (psi)

D3080

Tangent Construction Results

T90 (Min): 1.440 T50 (Min): 0.800 Cv (in²/Min): 0.144

Logarithmic Time - Specimen 3 - Sequence 1 - 10.0 (psi) LIMS Code: [TO COME FROM LIMS] LIMS Specimen Code: [TO COME FROM LIMS]

Tangent Construction Results

T90 (Min): NA T50 (Min): NA Cv (in²/Min): NA

PROJECT: SUM-76-06.15 TYPE: ROADWAY PID: 100713 SFN: START: 2/28/19 END: 2/28/19		ER: NE	EAS / E. ROLLER	HAMM CALIB	MER: BRATI	CN ON DA	ME AUTON ATE: 11	1ATIC	_	ALIGN ELEV	NMEN OITA'	NT: _ N: _!		IR-7 (MS	7 & IF L) E	R-76 OB:	11	B-018 1.5 ft.	
61	ION	ELEV.	DEPTHS	SPT/		REC	SAMPLE			GRAD.	ATIO	N (%		ATT	ERBE	RG	wc	ODOT CLASS (GI)	BACK FILL
MEDIUM DENSE BROWN GRAVEL WITH S	SAND AND SILT,		- - 1 -	12 8 9	22	100	SS-1	-	22		31	18	12	20	17	3	9	A-2-4 (0)	1 LV 1 L
TYPE: ROADWAY SAMPLING FIRM / LOGGER: NEAS / E. ROLLER HAMMER: CME AUTOMATIC ALIGNMENT: IR-77 & IR-76 B-018-0-18 PID: 100713 SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 11/21/17 ELEVATION: 987.9 (MSL) EOB: 11.5 ft. PAGE START: 2/28/19 END: 2/28/19 SAMPLING METHOD: SPT ELEV. No. REC SAMPLE HP GRADATION (%) ATTERBERG ODOT CLASS (GI) BACK FILL FILL PART (%) PROD (%) ID (tsf) GR CS FS SI CL LL PL PL CLASS (GI) FILL																			
VERY STIFF, BROWN AND DARK BROWN, SOME CLAY, LITTLE GRAVEL, SS-2 CONTA STAINING, DAMP DENSE, LIGHT BROWN AND ORANGISH BF FRAGMENTS WITH SAND AND SILT, LITTLE	PAN let	980.9	6	8	23	100	SS-3	3.50	-	-	-	-	-	-	-	-	13	A-4a (V)	1>\\ 1\\\ 1\\\ 1\\\\ 1\\\\ 1\\\\\ 1\\\\\\\
FRAGMENTS ARE SANDSTONE, CONTAINS DAMP	E CLAY, STONE SIRON STAINING,	978.4	8 -	14	38	100	SS-4	-	-	-	-	-	-	-	-	-	9	A-2-4 (V)	1>\\ 1\\\ 1\\\ 1\\\\ 1\\\\ 1\\\\\ 1\\\\\\\
MEDIUM DENSE, BROWN, COARSE AND F		976.4	- 11 -	5	13	100	SS-5	-	-	-	-	-	-	-	-	-	12	A-3a (V)	1>11>
MEDIDAM DENSE, BROWN, COARSE AND FLITTLE SILT, TRACE CLAY, TRACE GRAVEI																			

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

5-6.15 Z.GPJ	PROJECT: SUM-76-06.15 TYPE: ROADWAY PID: 100713 SFN:	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD:	ER: N	EAS / ASHE EAS / E. RO .25" HSA		HAMI	BRATI	CN ON DA	CME 55 ME AUTOM ATE:11	1ATIC		STAT ALIG ELEV	NME	NT: _		IR-7	7 & 11				ATION ID 9-0-18 PAGE
`-	START: <u>2/28/19</u> END: <u>2/28/19</u>	SAMPLING METHOD:		SPT		ENEF		ATIO		78		LAT /							.57444	19	1 OF 1
-E3/31	MATERIAL DESCRIPT AND NOTES	TION	ELEV. 988.2	DEPTH	lS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	N (% sı) CL	ATT LL	ERBI PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
יפוואו דון	MEDIUM DENSE, BROWN, GRAVEL WITH LITTLE CLAY, CONTAINS TRACE IRON ST				- - 1 -	5 7 9	21	100	SS-1	-	23	15	31	19	12	21	16	5	11	A-2-4 (0)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
NENWORE	MEDIUM DENSE TO VERY DENSE, LIGHT GRAVEL AND STONE FRAGMENTS WITH SILT, TRACE CLAY, CONTAINS 1.5" SANDS	SAND, TRACE	986.2		- 2 - - 3 -	4 13 22	46	100	SS-2	-	_	-	-	-	-	-	-	-	8	A-1-b (V)	1>\\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\
S/SUM-76-6.1	FRAGMENTS, DAMP				- 4 - - 5 - - 6 -	9 18 24	55	100	SS-3	-	-	-	-	-	-		-	-	6	A-1-b (V)	V V V V V V V V V V V V V V V V V V V
OUL PROJEC	@7.5' TO 9.0'; SS-4 CONTAINS LITTLE SIL	T, LITTLE CLAY	978.7		- 7 - - 8 - - 9 -	4 6 9	20	100	SS-4	-	-	-	-	-	-	-	-	-	12	A-1-b (V)	1 > \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CISMCIIVE	LOOSE, BROWN, GRAVEL AND STONE FF SAND AND SILT , TRACE CLAY, DAMP	RAGMENTS WITH	976.7	EOB-	- 0 - - 10 - - 11 -	5 4 4	10	100	SS-5	-	-	-	-	-	-	-	-	-	13	A-2-4 (V)	1> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG			- 1	L RIG:		CME 45			STAT			SET:		43+79 IR-27		LT.	EXPLOR B-020	ATION IE)-0-18
PID: 100713 SFN:	DRILLING METHOD:		25" HSA				ATE:11			ELEV		_		4 (MS	SL) E	EOB:		6.5 ft.	PAGE
	SAMPLING METHOD:	ı	SPT	_	RGY R	ATIO (84	_	LAT /							.5743	53	1 OF 2
MATERIAL DESCRIPTI AND NOTES	ON	ELEV. 1002.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID			GRAD cs					ERBI PL	_	wc	ODOT CLASS (GI)	BACK
3.0" ASPHALT OVER 10.0" CONCRETE AND (DRILLERS DESCRIPTION)		1000.4	 - 1 - - 2 -			(70)	i.b	(101)											
VERY STIFF, GRAYISH BROWN AND LIGHT AND CLAY, TRACE TO SOME SAND, TRACE CONTAINS TRACE IRON STAINING, MOIST	E GRAVEL,		3 - 4 -	5 3 3	8	89	SS-1	3.25	4	7	21	34	34	27	16	11	17	A-6a (7)	<pre></pre> <pre><</pre>
			- 5 - - 6 -	4 3 3	8	56	SS-2	3.00	0	2	4	53	41	35	21	14	20	A-6a (10)	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		994.4	- 7 - - 0 I	3			SS-3A	2.25	-	-	_	-	-	-	-	-	20	A-6a (V)	12V 5
LOOSE, BROWN, COARSE AND FINE SAND GRAVEL AND STONE FRAGMENTS, TRACE CLAY, DAMP			8 - 9 -	4 3	10	100	SS-3B	-	-	-	-	-	-	-	-	-	11	A-3a (V)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
32 (1, B) will		991.7	_ 10 _	1			SS-4A	-	-	_	-	-	-	-	-	-	9	A-3a (V)	1>11
VERY STIFF TO HARD, BROWN AND GRAY SANDY SILT, LITTLE TO SOME GRAVEL, LI CLAY, DAMP	ISH BROWN,		- 11 - - 12 -	2 3	7	100	SS-4B	4.00	-	-	-	-	-	-	-	-	16	A-4a (V)	V V V V V V V V V V V V V V V V V V V
			- 13 - - 14 -	3 3 3	8	89	SS-5	2.50	21	21	20	27	11	22	17	5	13	A-4a (1)	1
		985.4	16	3 4 4	11	56	SS-6	2.25	-	-	-	-	-	-	-	-	10	A-4a (V)	1
MEDIUM DENSE, BROWN, COARSE AND F I TRACE GRAVEL, TRACE SILT, TRACE CLAY			- 17 - - 18 - - 19 -	8 10 6	22	100	SS-7	-	-	-	-	-	-	-	-	-	9	A-3a (V)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
MEDIUM DENSE, BROWN, FINE SAND , LITT SAND, TRACE TO LITTLE SILT, TRACE CLA GRAVEL, DAMP		982.9	- 20 -	6 7 7	20	100	SS-8	-	-	-	-	-	-	-	-	-	10	A-3 (V)	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1
	FS		- 22 - - 23 -	3 6 8	20	89	SS-9	-	-	-	-	-	-	-	-	_	7	A-3 (V)	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1
				6 7	18	100	SS-10	_	_	_	_	_	_	_	_	_	8	A-3 (V)	17777777777777777777777777777777777777
HARD, GRAYISH BROWN AND DARK GRAY	(, SANDY SILT,	975.4	- 26 - - 27 -	6														, ,	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
LITTLE GRAVEL, LITTLE CLAY, DAMP	,,		W 974.4 28 29 29	11 10 10	28	89	SS-11	4.5+	19	18	24	23	16	24	16	8	14	A-4a (1)	7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 ×
			29 -																1 × 1 × 1

GPJ	PID:	PID: _100713 SFN: PROJECT: MATERIAL DESCRIPTION				T:S	SUM-7	6-06.15	S ⁻	TATION /	OFFSET:		43+79, 49' LT.		START: 4/16/19				_ E	ND: _	4/10	4/16/19		G 2 OI	2 B-02	20-0-18
5 2.								ELEV.		DEDTILO			REC	SAMPLE	HP	(GRADATIC			N (%)		ATTERBE		T	ODOT	BACK
6.1		AND NOTES				972.4		DEP1	DEPTHS		N ₆₀	(%)	ID	(tsf)	GR			SI	CL	LL		PI	wc	ODOT CLASS (GI)	FILL	
ES\SUM-76-6.15 2.GP.	HAR LITT	D, GRAYI LE GRAV	SH BROV EL, LITTLI	VN AND DA	ARK GRAY, SANDY AMP (continued)	/ SILT,		012.4		- - 31 -	RQD 8 9 8	24	50	SS-12	4.25	-	-	FS -	-	-	-	-	-	14	A-4a (V)	1>V 1>
								970.4		32 —																1 LV 1 L
゠	MED	IUM DEN	SE, BROV	VN, COARS	SE AND FINE SAN	D,				- I	4															1>N 1>
RE/GINT	TRAC DAM	CE TO LIT P	TLE SILT	, TRACE CI	LAY, TRACE GRA	VEL,				- 33 - - 34	5 5	14	100	SS-13	-	-	-	-	-	-	-	-	-	9	A-3a (V)	1 / V / V / V / V / V / V / V / V / V /
ENMOF										35 -	6															1>V 1>
-6.15 KI								965.9	EOB-	_ _ 36 _	7 7	20	100	SS-14	-	-	-	-	-	-	-	-	-	10	A-3a (V)	2 L N 2 L
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:10 - X:ACTIVE PROJECTS'ACTIVE SOIL PROJECTS'SUM-76-6.15 KENMORE\GINT																										

PROJECT: SUM-76-06.15 TYPE: EMBANKMENT PID: 100713 SFN: DRILLING FIRM SAMPLING FIRM DRILLING MET START: 3/19/19 END: 3/19/19 SAMPLING MET	/ LOGGER: NEAS /	ISA	DRILL RIG HAMMER: CALIBRAT ENERGY F	CM ION DA	TE:11	ATIC	ALIC	SNME	N: _9	76.5 (IR-2 MSL)	68, 110 277 EOB:	1	B-021	ATION ID I-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	FLEV	DEDTHS	SPT/ RQD N ₆₀	- `	SAMPLE ID	HP	_	DATIC	N (%)			BERG	wc	ODOT CLASS (GI)	BACK FILL
MEDIUM STIFF, BROWN, SILT AND CLAY , "AND" SAND, TRACE GRAVEL, MOIST	570.0	- 1 - - 2 -													V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1
LOOSE, BROWN, COARSE AND FINE SAND , SOME SILT,	972.0	- 3 - 1 - 4 - 1	1 3	33	SS-1	0.75	5 16	27	28	24	29 1	7 12	19	A-6a (4)	1> \ 1 \ \ 1
TRACE GRAVEL, TRACE CLAY, DAMP	969.5	6 - 7 - 7	3 9	100	SS-2	-		-	-	-		-	11	A-3a (V)	V
MEDIUM DENSE, BROWN AND GRAY, GRAVEL WITH SANI AND SILT, LITTLE CLAY, CONTAINS IRON STAINING, MOIST	967.0	8 - 3	3 4 13 5	100	SS-3	- (3 23	39	17	15	24 1	5 9	17	A-2-4 (0)	~ 1
MEDIUM DENSE, BROWN, GRAVEL WITH SAND , TRACE SILT, TRACE CLAY, CONTAINS IRON STAINING, DAMP	965.0 EC	- 10 - 4 - 11 - 0B	9 23	89	SS-4	-	- -	-	-	-			11	A-1-b (V)	12V 12

TYPE: ROADWAY 5	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER: N		HAMI CALII	BRATI	CN	CME 55 ME AUTOM TE:11 %):	1ATIC	_	STAT ALIG ELEV LAT /	NMEI /ATIC	NT: _)N: _9	987.7	II (MSL	R-277 _)_ E	7 :OB: _	_T. 11	B-022	ATION ID 2-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES		ELEV.	DEPTHS	SPT/		DEC	SAMPLE			GRAD				ATT				ODOT	BACK
	r	987.7	DEFINS	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	
			- 1 - - 2 - - 3 - - 4	3 4 5	13	100	SS-1	-	12	36	42	7	3	NP	NP	NP	9	A-3 (0)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-9-9		<u> </u>																	17>17>
@5.0' TO 11.5'; BECOMES LITTLE COARSE S GRAVEL	SAND, TRACE		- 5 - - 6 -	3 3 2	7	100	SS-2	-	3	18	72	4	3	NP	NP	NP	10	A-3 (0)	12 V
PAC		}	- 7 -																1> \ 1>
∰ @7.5' TO 11.5'; BECOMES LIGHT BROWN			- 8 - - 9 -	3 3 3	9	100	SS-3	-	-	-	-	-	-	-	-	-	8	A-3 (V)	1>\\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\
ISACIIVE		976.2	- 10 - - 11 -	2 3 3	9	100	SS-4	-	-	-	-	-	-	-	-	-	7	A-3 (V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SAND, "AND" COARSE SAND, LITTLE GRAVE SILT, TRACE CLAY, DAMP @5.0' TO 11.5'; BECOMES LITTLE COARSE SGRAVEL @7.5' TO 11.5'; BECOMES LIGHT BROWN																			

TYPE: SIDEHILL CUT SECTION SAI PID: 100713 SFN: DR	RILLING FIRM / OPERATO AMPLING FIRM / LOGGE RILLING METHOD: AMPLING METHOD:	R: NE			MER: BRATI	CN ON DA	CME 45 ME AUTON ATE:11 (%):	1ATIC	_	STAT ALIGI ELEV LAT /	NMEI 'ATIC	NT: _)N: _	977.3	I (MSI	R-277 L) E	OB:		B-023	ATION ID 3-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	v	ELEV. 977.3	DEPTHS	SPT/ RQD			SAMPLE ID	HP		GRAD				_	ERBE		WC	ODOT CLASS (GI)	BACK FILL
4.0" ASPHALT AND 9.0" CONCRETE MEDIUM DENSE, BROWN, GRAVEL WITH SAN SILT, TRACE CLAY, DRY TO DAMP @7.5' TO 11.5'; BECOMES VERY LOOSE TO LO	ND, TRACE	977.3 976.2	- 1 2 3 4 5 6 7 8 9	6 10 10 9 4	28 18	89	SS-1 SS-2 SS-3		10	40	38	7	5	NP NP	NP	NP NP	3 3	A-1-b (0) A-1-b (V)	V 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
		965.8	- 10 - - 11 -	2 2 2	6	100	SS-4	-	-	-	-	-	-	-	-	-	8	A-1-b (V)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE CAVED AT 6.0 FT.

Type: SIDEHILL CUT SECTION SAMPLING FIRM / LOGGER: NEAS / CHIPUKALZER HAMMER: CME AUTOMATIC CALIBRATION DATE: 1121/17 ELEVATION: 998.3 MSL). EOB. SAMPLING METHOD: 3.25" HSA. CALIBRATION DATE: 1121/17 ELEVATION: 998.3 MSL). EOB. SAMPLING METHOD: SPT CALIBRATION DATE: 1121/17 ELEVATION: 998.3 MSL). EOB. SAMPLING METHOD: SPT CALIBRATION DATE: 1121/17 ELEVATION: 998.3 MSL). EOB. SAMPLING METHOD: SPT CALIBRATION DATE: 1121/17 ELEVATION: 998.3 MSL). EOB. SAMPLING METHOD: SPT SPT MSL MSL SAMPLING METHOD: SPT SPT SPT MSL MSL SAMPLING METHOD: SPT SPT MSL MSL STAMPLING METHOD: SPT MSL MSL STAMPLING METHOD: SPT MSL	EXPLORATION I
START: 3/26/19 END: 3/26/19 SAMPLING METHOD: SPT ENERGY RATIO (%): 85 LAT / LONG: 41,035902. 81.57	B-024-0-18
MATERIAL DESCRIPTION	26.5 ft. PAGE
SEPTING SAND NOTES SAND N	418 1 OF 1
VERY DENSE, BROWN, COARSE AND FINE SAND, LITTLE SILT, LITTLE GRAVEL, TRACE CLAY, DAMP DENSE, BROWN AND DARK BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY. CONTAINS STONE FRAGMENTS >1.0", CONTAINS IRON STAINING, DAMP VERY STIFF, BROWN, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, DAMP LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND FRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP M 983.3 M 983.3 M 983.3 M 983.4 M 983.3 M 983.5 M 983.5 M 983.6 M 983.6 M 990.1 LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND FRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP M 983.3 M 983.6 M 983.7 M 983.7 M 983.8 M 990.1 LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND M 983.8 M 983.8 M 983.8 M 990.1 LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FRACE TO LITTLE SILT, TRACE M 990.1 LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND M 983.8 M 983.8 M 983.8 M 990.1 LOOSE TO MEDIUM DENSE, BROWN, GRAVEL AND STONE	ODOT BACK
SILT, LITTLE GRAVEL, TRACE CLAY, DAMP 993.8 DENSE, BROWN AND DARK BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY, CONTAINS STONE FRAGMENTS >1.0°, CONTAINS IRON STAINING, DAMP VERY STIFF, BROWN, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, DAMP LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND, TRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP M 983.3 M 983.8 M 983.8 PR NP NP NP 1	
DENSE, BROWN AND DARK BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, TRACE CLAY, CONTAINS STONE FRAGMENTS >1.0", CONTAINS IRON STAINING, DAMP VERY STIFF, BROWN, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, DAMP LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND, TRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP MW 983.3 MW 983.3 MEDIUM DENSE, BROWN, GRAVEL AND STONE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
FRAGMENTS WITH SAND AND SILT, TRACE CLAY, CONTAINS IRON STAINING, DAMP VERY STIFF, BROWN, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, DAMP UOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND, TRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP M 983.3 M 983.3 M 983.3 M 983.5 M 983.8	A-3a (0)
VERY STIFF, BROWN, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, DAMP LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND, TRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP MW 983.3 MW 983.3 MEDIUM DENSE, BROWN, GRAVEL AND STONE 990.1	A-2-4 (V)
LOOSE TO MEDIUM DENSE, BROWN AND LIGHT BROWN, COARSE AND FINE SAND, TRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP 100 ST-4	! A-4a (V)
COARSE AND FINE SAND, TRACE TO LITTLE SILT, TRACE GRAVEL, TRACE CLAY, SS-7 CONTAINS IRON STAINING, DAMP 100 ST-4	1 7 4 7 4
W 983.3 15 4 78 SS-6	1>11
W 983.3 15 14 78 SS-6	A-3a (V)
978.8 MEDIUM DENSE, BROWN, GRAVEL AND STONE - 15	1>11
978.8 — 18 — 2	A-3a (V)
	1>11
DAMP = 21 = 3 11 39 SS-9 - - - - - - - - -	A-1-b (V)
-22	1> \ 1
LOOSE, BROWN, COARSE AND FINE SAND, TRACE SILT, TRACE GRAVEL, TRACE CLAY, DAMP 971.8 971.8 EOB 988 971.8	1 LV 1

NOTES: GROUNDWATER ENCOUNTERED AT 15.0' DURING DRILLING. HOLE DID NOT CAVE.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

? !	OJECT	:		6-06.15	DRILLING FIRM / OPER			EAS / ASH		.	L RIG		CME 45			STAT			SET:			', 60' I	LT.	EXPLOR	ATION ID 5-0-18
TYF		0713	SUBGRA SFN:	ADE	SAMPLING FIRM / LOG DRILLING METHOD:	GER		EAS / E. RO 25" HSA	DLLER		MER: BRATI	ON DA	ME AUTON ATE: 11	//ATIC 1/21/17	_	ALIG		_	973.1	(MSI	R-277 _) E		7	.5 ft.	PAGE
STA	ART: _	4/16/19	END:	4/16/19	SAMPLING METHOD:			SPT		ENE	RGY F	ATIO	(%):	84		LAT	LON	IG:		41.03	35672	2, -81	.57004	15	1 OF 1
2			MATE	RIAL DESCRIPT	TON	E	ELEV.	DEPT	HS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAD	ATIC	N (%))	ATT	ERBE	ERG		ODOT	BACK
<u>.</u>				AND NOTES		9	973.1	DLII	110	RQD	1 160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
10	" ASPI	HALT AN	ID 7" COI	NCRETE		8 9	971.7		- 1 -																****
S/	and, li	ITTLE G	RAVEL, L	SE, BROWN, CO ITTLE SILT, TRAI RAGMENTS, DR	CE CLAY, SS-2				2 -	13 10 12	31	0	SS-1	-	-	-	-	-	-	-	-	-	-	A-3a (V)	7 × × × × × × × × × × × × × × × × × × ×
	ILL)					Ç	968.6		_ 4 _	11 8 11	27	89	SS-2	-	15	26	42	13	4	NP	NP	NP	5	A-3a (0)	1 > \ 1 > \
					Y, TRACE SAND, STAINING, WET	+ + + + + +			5 -	4 9 12	29	100	SS-3	-	1	1	1	89	8	NP	NP	NP	22	A-4b (8)	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					+ + + + + + + +	+ + + + + + •	965.6	—-FOB	- ⁶ - 7 -	3 8 11	27	89	SS-4	-	-	-	-	-	-	-	-	-	22	A-4b (V)	1 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

TYPE: SUBGRADE SAMPL SAMPL SAMPL SAMPL SAMPL START: 4/16/19 END: 4/16/19 SAMPL S	ING FIRM / OPERAT LING FIRM / LOGGE ING METHOD: LING METHOD:	R: N			MER: BRATI	CN ON DA	CME 45 ME AUTON ATE:11 (%):	//ATIC	,	STAT ALIG ELEV LAT /	NME /ATIC	NT: _ DN: _	971.4	I (MS	IR-27 L) E	7 EOB:		B-02 7.5 ft.	PAGE 1 OF 1
MATERIAL DESCRIPTION		ELEV.	DEPTHS	SPT/	Nas		SAMPLE			GRAD				_	ERBI			ODOT	BACK
AND NOTES 13.0" ASPHALT AND 5.0" BASE (DRILLERS DESC!		971.4		RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
\$ 0174(1: 4710/10 END: 4710/10 O/40/11	RIPTION) ND FINE	969.9 963.9	DEPTHS - 1	CDT/	18 11 17 13						ATIC	DN (% SI - 14	CL - 7	_			- 14 13 15		BACK FILL V1 V V V V V V V V V V V V V V V V V V
TOGI COLL																			
STANDARD ODOT SOIL																			

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

PROJECT: SUM-76-06.15 DRILLING FIRM / OPERATOR SAMPLING FIRM / LOGGI	_	IEAS / J. HODGES EAS / E. ROLLER	DRILI HAMI			CME 55			STAT ALIGN			SET:		3+44 R-277	<u>, 55' l</u> 7	LT.	EXPLOR B-027	ATION ID 7-0-18
PID:100713SFN:	3	.25" HSA SPT			ON DA	ATE: <u>11</u> (%):	/21/17 85	_	ELEV		_				-	1′ .56723	1.5 ft. 31	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 969.8	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs	ATIO FS		CL	ATT LL	ERBE PL	ERG PI	WC	ODOT CLASS (GI)	BACK FILL
STIFF, BROWN WITH ORANGISH BROWN MOTTLES, SILT AND CLAY , SOME SAND, TRACE GRAVEL, CONTAINS ROOTS, MOIST	967.0	1 - 2 -																\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
LOOSE TO MEDIUM DENSE, GRAY, COARSE AND FINE SAND , TRACE TO SOME GRAVEL, LITTLE SILT, TRACE CLAY, WET	007.0	▼ 966.8 3	4 5 4	13	89	SS-1A SS-1B	-	2	8	68	15	7	NP	NP	NP	<u>29</u> 16	A-4a (V) A-3a (0)	V
	962.8	- 6 - - 7 -	3 3 3	9	67	SS-2	-	26	18	37	13	6	NP	NP	NP	14	A-3a (0)	V V V V V V V V V V V V V V V V V V V
VERY LOOSE TO MEDIUM DENSE, BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND , TRACE TO LITTLE SILT, TRACE CLAY, CONTAINS TRACE ROOTS, STONE FRAGMENTS > 1.0", WET		8 - 9 -	1 1	3	44	SS-3	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	V V V V V V V V V V V V V V V V V V V
	958.3	- 10 - - 11 -	5 5 3	11	100	SS-4	-	-	-	-	-	-	-	-	-	18	A-1-b (V)	V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1

EXPLORATION ID PROJECT: SUM-76-06.15 DRILLING FIRM / OPERATOR: NEAS / J. HODGES DRILL RIG: CME 55X STATION / OFFSET: 65+78, 65' RT. B-028-0-18 TYPE: **ROADWAY** SAMPLING FIRM / LOGGER: NEAS / E. ROLLER HAMMER: CME AUTOMATIC ALIGNMENT: IR-277 **PAGE** ELEVATION: 972.9 (MSL) EOB: PID: <u>100713</u> SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 11/21/17 16.5 ft. 1 OF 1 SAMPLING METHOD: SPT 41.035283, -81.566391 START: 3/19/19 END: 3/19/19 **ENERGY RATIO (%):** LAT / LONG: ELEV. REC SAMPLE HP **GRADATION (%)** ATTERBERG **MATERIAL DESCRIPTION** SPT/ **BACK** ODOT **DEPTHS** N_{60} CLASS (GI) RQD (%) GR CS FS SI CL LL PL ы WC FILL AND NOTES ID (tsf) 972.9 MEDIUM DENSE. BROWN WITH ORANGISH BROWN TLV T MOTTLES, SANDY SILT, TRACE CLAY, TRACE GRAVEL, 1>11> CONTAINS IRON STAINING, MOIST JLV J 2 1 LV 1 L 3 27 100 SS-1 2 3 53 7 NP NP NP 10 35 16 A-4a (1) 1>11> 968.4 1>11> STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT GDT - 7/29/19 09:10 - X:ACTIVE PROJECTS/ACTIVE SOIL PROJECTS/SUM-76-6 VERY LOOSE TO LOOSE, BROWN, FINE SAND, TRACE SILT, TRACE COARSE SAND, TRACE CLAY, TRACE GRAVEL, 1>11> **w** 966.9 3 9 SS-2 100 26 A-3 (V) CONTAINS IRON STAINING, WET 6 1>11> 8 1>11> 3 78 SS-3 4 86 6 NP NP NP 27 3 A-3 (0) 9 1>11> SS-4 29 A-3 (V) 78 12 1>11> 13 3 100 SS-5 23 A-3 (V) 1>11> 2 6 100 SS-6 23 A-3 (V) 16 956.4 -EOB-

NOTES: GROUNDWATER ENCOUNTERED AT 6.0' DURING DRILLING. HOLE DID NOT CAVE.

6-6.15 2.0	PROJECT: <u>SUM-76-06.15</u> TYPE: <u>ROADWAY</u> PID: <u>100713</u> SFN:	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD:	ER: N	EAS / ASHBAUG EAS / E. ROLLER 25" HSA	_ _ н _ с		CI ION D	CME 55 ME AUTOM ATE: 11	1ATIC /21/17		STAT ALIG ELEV	NMEN ATIO	NT: _ N: _9	973.9	IF (MSL	R-27 .) E	OB:	11	.5 ft.	ATION ID 9-0-18 PAGE 1 OF 1
S\SUM-7	START: 2/27/19 END: 2/27/19 MATERIAL DESCRIPT	SAMPLING METHOD:	ELEV.	SPT DEPTHS	SF RO		REC	SAMPLE			GRAD	ATIO	N (%)	ATT	ERBE	RG	.56496 wc	ODOT CLASS (GI)	BACK
GINT FILE	AND NOTES LOOSE TO MEDIUM DENSE, BROWN, COA SAND, LITTLE SILT, TRACE TO LITTLE GR. CLAY, CONTAINS TRACE ROOT HAIRS, MO	AVEL, TRACE	973.9	- 1	2		100	SS-1	(tsf)	11	15	56	12	CL 6	NP	NP	NP	11	A-3a (0)	Y
ENMORE/GINT	(FILL)	JIST TO DAIVIF		- 2 - 3	4	3 16	67	SS-2										8	A-3a (V)	17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
76-6.15 KI	LOOSE, BROWN AND ORANGISH BROWN	FINE SAND	969.4	- 4	-	6	07	33-2	-		-	-	-	-	-	_	-	0	A-3a (V)	1>1 1>
CTS\SUM-	TRACE CLAY, TRACE SILT, TRACE COARS GRAVEL, CONTAINS TRACE IRON STAININ (FILL)	E SAND, TRACE	1	- 5 - 6	3 4	1 10	100	SS-3	1	0	0	93	3	4	NP	NP	NP	25	A-3 (0)	V V V V V V V V V V V V V V V V V V V
OIL PROJE	` ·	es es		- 7 - 8 - 0	4 2	2 7	89	SS-4	-	-	-	-	-	-	-	-	-	35	A-3 (V)	1> 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
S'ACTIVE S			962.4	- 9 - 10 - 11	2 3	3 8	100	SS-5	-	-	-	-	-	-	-	-	-	32	A-3 (V)	1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
ECT		[10.000]	302.4	EOB——	_	3														1: \ :

JIA 66.152.	OJECT: PE: 0:100713 ART:2/27/		DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER: N	IEAS / ASHE EAS / E. RO .25" HSA SPT		HAMI CALII		CI	CME 55 ME AUTOM ATE:11 (%):	MATIC	_	STAT ALIG ELEV LAT /	NMEN ATIO	NT: _ N: _9	975.7	(MS	R-27 L) E	OB:		.5 ft.	ATION ID)-0-18 PAGE 1 OF 1
ES\SU		MATERIAL DESCRIPT AND NOTES		ELEV. 975.7	DEPTH	lS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	GRAD cs	ATIO FS	N (%)) CL	ATT LL	ERBI PL	FI PI	WC	ODOT CLASS (GI)	BACK FILL
፷ s≠	AND, TRACE	BROWN AND BROWN, COA TO LITTLE GRAVEL, LITTLE				- 1 -	3 3 5	10	100	SS-1	-	14	17	50	13	6	NP	NP	NP	18	A-3a (0)	1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
	LAY, CONTAII ILL)	NS TRACE ROOTS, WET				_ 2 _	0															12
15 KEN				074.0		- 3 - - 4 -	2 2 3	7	100	SS-2	-	-	-	-	-	-	-	-	-	19	A-3a (V)	12 12 12 12 12 12 12 12 12 12 12 12 12 1
		O LOOSE, BROWN, FINE S		971.2	-	- · - - 5 -	1															1> N 1>
Sigil W	JARSE SAND ET ILL)	, TRACE SILT, TRACE CLAY	r, TRACE GRAVEL,			6	['] 2	7	100	SS-3	-	1	5	85	5	4	NP	NP	NP	21	A-3 (0)	1> \ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SOJEC	·/		1995 1995 1995		w 967.7	— 7 — - ■	1															1> \ 1> \ 1 \ 1 \ 1
SOIL PE			(* (* (* (* (* (* (* (* (* (* (* (* (* (30	- 8 - - 9 -	2 2	5	100	SS-4	-	-	-	-	-	-	-	-	-	25	A-3 (V)	1>\ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
TIVE						-	WOH															1>\ 1 \ 1 \ 1
CTS/AC				964.2	EOB	_ 11	1 1	3	100	SS-5	-	-	-	-	-	-	-	-	-	25	A-3 (V)	1 L 1 L

<u>~</u> ا	OJECT: SUM-76-06.15 PE: EMBANKMENT	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		NEAS / ASHBA		DRILL			CME 55			STAT			SET:		75+72 IR-277	2, 61' F 7	RT.		ATION ID 1-0-18
g PII	D: 100713 SFN: ART: 2/26/19 END: 2/26/19	DRILLING METHOD: SAMPLING METHOD:		3.25" HSA SPT			BRATI	ON DA	ATE:11			ELEV	ATIO	N: _9		l (MSI	L)_E	EOB:	16 .56278	6.5 ft. 36	PAGE 1 OF 1
LES/SON	MATERIAL DESCRIF AND NOTES	TION	ELEV. 976.1	DEPTH	S	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIO FS	(/	CL	ATT LL	ERBE	ERG PI	WC	ODOT CLASS (GI)	1 122
A A	ERY STIFF, BROWN MOTTLED WITH OI ND GRAY, SILT , SOME SAND, LITTLE C RAVEL, CONTAINS TRACE ROOTS AND	LAY, TRACE	1	-	- 1 -	3 4 4	10	100	SS-1	3.75	0	2	29	57	12	22	19	3	18	A-4b (7)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	AMP (ILL)		<u> </u>		- 2 - - 3 -	4		400				_		_							1>N1>
₽ Т	DOSE, BROWN, COARSE AND FINE SA I RACE CLAY, TRACE GRAVEL, CONTAIN TAINING, WET	, , , , , , , , , , , , , , , , , , , ,	971.6	 - -	4	3 3	8	100	SS-2	-	5	7	76	7	5	NP	NP	NP	19	A-3a (0)	1>\ 1>\ 1>\ 1>
NO V	ILL) ERY LOOSE, ORANGISH BROWN, FINE TTLE SILT, TRACE COARSE SAND, TRA			₩ 970.1	- 5 - 6	1 1	3	100	SS-3	-	-	-	-	-	-	-	-	-	24	A-3 (V)	1
ਹੁ ਹੁ	RAVEL, CONTAINS TRACE IRON STAIN ILL)				- 7 -	WOH															17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 ×
SOLP		[1] [1] [2] [3] [4]			- 8 - - 9 -	WOH WOH	0	100	SS-4	-	3	5	82	7	3	NP	NP	NP	26	A-3 (0)	1>N 1>
SACIIVE		(f.S.		-		WOH WOH WOH	0	67	SS-5	-	-	-	-	-	-	-	-	-	27	A-3 (V)	~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1
Z KOJEC						WOH															1 > \ 1 > \
AC I≅		637 1999 1993		-	- 14 -	WOH WOH	0	100	SS-6	-	-	-	-	-	-	-	-	-	25	A-3 (V)	7 LV 7 L 7 LV 7 L 7 LV 7 L
			959.6	EOB-	- 15 - - 16 -	WOH WOH WOH	0	100	SS-7	-	,	-	-	-	-	-	-	-	30	A-3 (V)	17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 ×
- 1/29/19				EOB																	

PROJECT: SUM-76-06.15 TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	ER: N	EAS / E. ROLLER	HAM	L RIG MER:	CN	CME 55	//ATIC		STAT ALIG	NME	NT: _			IR-27			EXPLORA B-032	-0-18
PID: <u>100713</u> SFN: START: 2/27/19 END: 2/27/19	DRILLING METHOD: SAMPLING METHOD:	3	25" HSA SPT			ion d <i>a</i> Ratio (NTE:11	78 //21/17		ELEV							.5620	1.5 ft.	PAGE 1 OF 2
MATERIAL DESCRIPT	_	ELEV.		SPT/		DEC	SAMPLE		_	GRAD					ERBI		.3020	ODOT	BACK
AND NOTES		976.8	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)		cs	FS	$\overline{}$	CL	LL	PL	PI	wc	CLASS (GI)	FILL
VERY LOOSE TO LOOSE, DARK BROWN A CHANGING TO BROWN, COARSE AND FIN TO LITTLE GRAVEL, TRACE TO LITTLE SIL	IE SAND, TRACE T, TRACE CLAY,		- 1 -	2 3 4	9	100	SS-1	-	16	17	53	10	4	NP	NP	NP	10	A-3a (0)	V
SS-1 CONTAINS ROOT HAIRS, DAMP TO V	VET		- 2 - - 3 -	2 3 3	8	100	SS-2	-	-	-	-	-	-	-	-	-	15	A-3a (V)	7 × 7 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7
				2 2	5	100	SS-3	_	_	_		_		_	_	_	17	A-3a (V)	V 1 7 V 1 7
			₩ 969.8 7 -	_ 2		100											.,	7100(1)	V 1 7 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V
			- 8 - - - 9 -	1 WOH WOH	0	67	SS-4	-	-	-	-	-	-	-	-	-	19	A-3a (V)	77 V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
			- 10 - - 11 -	WOH WOH WOH	0	100	SS-5	-	9	17	59	9	6	NP	NP	NP	21	A-3a (0)	V
@12.5' TO 14.0'; CONTAINS TRACE ROOT	HAIRS		- 12 - - 13 - - 14 -	WOR WOR WOR	0	33	SS-6	-	-	-	-	-	-	-	-	-	19	A-3a (V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				WOH 1	3	100	SS-7	-	-	-	-	-	-	-	-	-	20	A-3a (V)	V 1 1 V 1 1 N V 1 1 N V 1 1 N V 1 1 N V 1
			- 17 - - 18 -	1 WOH	0	100	SS-8	-	-	-	-	-	1	_	-	-	19	A-3a (V)	V
			- 19 - - 20 -	WOR	0	100	00.0										17	A 26 (A)	7
			21 22	WOR WOR	U	100	SS-9	-	-	-	-	-	-	-	-	-	17	A-3a (V)	7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 ×
@22.5' TO 27.0'; CHANGES TO BROWNISH	I GRAY		23 24	WOH WOH WOH	0	100	SS-10	-	-	-	-	-	-	-	-	-	20	A-3a (V)	V 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
			- - 25 - - - 26 -	WOR WOR WOR	0	100	SS-11	-	-	-	-	-	-	-	-	-	20	A-3a (V)	7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 ×
	CLAY TRACE #+++	949.8	27 -	WOR															1 × × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
VERY SOFT TO SOFT, GRAY, SILT , SOME SAND, TRACE GRAVEL, SLIGHTLY ORGAN	IIC, WET		- 28 -	WOH 2 2	5	100	SS-12	0.25	0	0	10	59	31	27	19	8	26	A-4b (8)	V 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
	++++	947.3	- 29 -																7 × × × × × × × × × × × × × × × × × × ×

PID: 100713	SFN:	PROJECT:	SUM-7	6-06.15		STATION	N/OFFS	ET:	77+7	4, 58' RT.	S	TART	: 2/2	27/19	le	ND:	2/2	7/19	ΙP	G 2 O	2 B-03	32-0-18
	MATERIAL DESCRI			ELEV.			SPT/	,		SAMPLE			GRAD						ERG	T		
	AND NOTES			946.8	DEF	PTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR		FS	sı		LL			wc	ODOT CLASS (GI)	FILL
VERY LOOSE, SILT. TRACE C	GRAY, COARSE AND FIN CLAY, TRACE GRAVEL, W	IE SAND, TRACE	•			- 31	1 1	3	100	SS-13	-	-	-	-	-	-	-	-	-	25	A-3a (V)	1 × 1 1
SILT, TRACE C	CLAY, TRACE GRAVEL, W	ET (continued)		945.3	EOB-	<u>- 31</u>	<u> </u>	1 3	100	55-13										25	A-Sa (V)	
			G DRILLIN																			

15 2.GPJ	PROJECT: SUM-76-06.15 TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	ER: N	EAS / J.HODGES	HAM	L RIG: MER:	CN	CME 55	MATIC		STATI ALIGN	MEN	IT: _		IR	R-277				3-0-18
1-76-6.	PID: <u>100713</u> SFN: START: <u>3/12/19</u> END: <u>3/12/19</u>	DRILLING METHOD: SAMPLING METHOD:	3	.25" HSA SPT	-		ON DA ATIO (NTE:11 %):	85 85		ELEV/					_		16 56061.	3.5 ft. 3	PAGE 1 OF 1
ES/SUN	MATERIAL DESCRIP	TION	ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE			GRAD	_	(,		ATTE			wc	ODOT CLASS (GI)	BACK FILL
9 09:10 - X:\ACTIVE PROJECTS\ACTIVE SOIL PROJECTS\SUM-76-6.15 KENMORE\GINT FILES	AND NOTES LOOSE, BROWN, COARSE AND FINE SAN LITTLE GRAVEL, TRACE CLAY, CONTAINS MOIST VERY SOFT TO SOFT, DARK BROWN, SA CLAY, TRACE GRAVEL, MODERATELY OF ROOTS, WET VERY LOOSE, BROWN, COARSE AND FIN SILT, TRACE CLAY, TRACE GRAVEL, WET	NDY SILT, TRACE RGANIC, CONTAINS	972.3 967.3	- 1 - 2 - 3 - 4 - 3 - 4 - 5 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 14	2 2 4 1 2 1 WOH WOH WOH WOH WOH WOH	9 4 0 0	56 67 22 50 3	SS-1 SS-2 SS-3 SS-4 SS-5	- 0.50 0.00	3 - -	8	-	- 35 - 9	9 -	- NP	-	- NP NP	19 40 40 18 14	A-3a (V) A-4a (2) A-4a (V) A-3a (V) A-3a (V)	\(\frac{1}{\lambda}\)
JT - 7/29/19																				

PROJECT: SUM-76-06.15 DRILLING FIRM / OPER TYPE: EMBANKMENT SAMPLING FIRM / LOG		IEAS / J. HODGES EAS / J.HODGES	DRILL			CME 55		_	STAT ALIGI		OFF:	SET:		3+65 R-27	,	RT.	EXPLOR B-034	ATION ID 1-0-18
PID: 100713 SFN: DRILLING METHOD: START: 3/12/19 END: 3/12/19 SAMPLING METHOD:		.25" HSA SPT / ST	CALIE ENER			ATE: <u>11</u> (%):	/21/17 85		ELEV LAT /		_		•			1′ .5599′		PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 972.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		_	N (%)	CL	ATT LL	ERBE PL	PI	wc	ODOT CLASS (GI)	BACK FILL
VERY SOFT, BLACK WITH BROWN, ORGANIC SILT , SOME TO "AND" SAND, LITTLE CLAY, TRACE GRAVEL, HIGHLY ORGANIC, CONTAINS ROOTS, WET		972.3 1 —																× 1 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
+ + + + + + + + +	-	- 3 - 4 - 5 - 5	1 1	3	33	SS-1	0.00	2	5	38	41	14	NΡ	NP	NP	41	A-8a (4)	V
@5.0' TO 5.5'; Qu = 257 PSF		- 6 - - 7 -			40	ST-2	0.25	1	4	26	53	16	NP	NP	NP	26	A-8a (7)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
MEDIUM DENSE, GRAY, COARSE AND FINE SAND, LITTLE SILT, TRACE CLAY, TRACE GRAVEL, PETROLIFEROUS ODOR, WET	964.3	- 8 - 9 -	WOH 4 7	16	50	SS-3A SS-3B	0.00 -	-	-	-	-	-	-	-	-	<u>28</u> 34	A-8a (V) A-3a (V)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
**************************************	960.8	EOB - 11 -	2 5 3	11	100	SS-4	-	2	6	77	11	4	NP	NP	NP	30	A-3a (0)	7

Organic Content in Soils by Loss on Ignition (AASHTO T267)

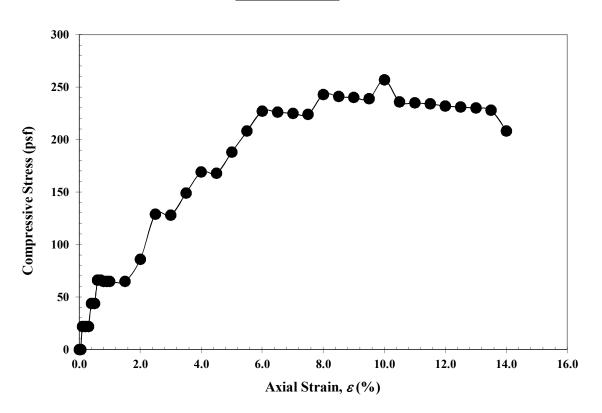
Date of Test:	4/9/2019		Technician:	L. Rosenbec	k
Project Name:	SUM-76-6.15 Kenmo	re			
					1
Boring Number:	B-034-0-18				
Sample Number:	ST-2				
Depth:	5.0-7.0'				
Initial -#10 sample weight:	104.5g				
Moisture Content (if assig	ned):				
					_
Container ID:	HP-9				
Container Empty:	117.48				
Container with Wet Soil:	221.98				
Container with Dry Soil:	200.28				
MC%:	26				
or					•
MC from Hydro sheet:					
Organic Content 455+-10°	C:				
					-
Crucible ID:	Α				
Crucible Wt:	62.30				
Crucible and Soil before:	92.23				
Crucible and Soil After:	83.73				
% Organic Content:	28.4%				

Unconfined Compressive Strength of Cohesive Soil (ASTM D2166)

(Project: SUM-76-6.15 Kenmore, Boring Location: B-034-0-18, ST-2, Depth: 5.0 - 5.5ft)

Tested Date: 4/8/2019

Specimen Properties


Average Dia., D avg (in):	2.89
Average Height, H_{avg} (in):	5.74
Area, A (in ²):	6.55
Volume, V (in ³):	37.58
Wet Mass of Specimen (lb):_	1.6
Moisture Content (%):	26.2
Dry Mass of Specimen (lb):	1.3
Wet Unit Weight, γ (lb/ft ³):	73.7
Dry Unit Weight, γ_d (lb/ft ³):	58.4

Final Specimen Figure

Results

Unconfined Compressive Strength (psf): 257
Strain (%): 10.0

Notes: Very soft, black with brown, ORGANIC SILT, some sand, little clay, trace gravel, wet. Contains 28.4% organic content.

	PROJECT:	SUM-76-06.15	DRILLING FIRM / OPERA	TOR: _1	NEAS / J. HODGES	DRIL	L RIG	:	CME 55	X		STAT	ION /	OFF:	SET:	8	5+67	, 68' I	RT.		ATION ID
5 2.	TYPE:	ROADWAY	SAMPLING FIRM / LOGG	ER:N	IEAS / J.HODGES	_ HAM	MER:	CI	ME AUTON	1ATIC		ALIG	NME	NT: _		I	R-27	7		B-03	5-0-18
-6.1	PID: 100713	SFN:	DRILLING METHOD:	3	.25" HSA	CALI	BRAT	ION DA	ATE: 11	/21/17		ELEV	/ATIO	N: 9	978.6	(MSI	L) E	OB:	11	.5 ft.	PAGE
۷-76	START: 3/11/19		SAMPLING METHOD:		SPT	ENE	RGY F	RATIO	(%):	85		LAT /	LON	G:		41.0	35183	3, -81	.55918	32	1 OF 1
SU		MATERIAL DESCRIPT	TON	ELEV.	DEPTHS	SPT/	N.	REC	SAMPLE	HP	-	GRAD	OITA	N (%))	ATT	ERBE	RG		ODOT	BACK
LES		AND NOTES		978.6	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
DRE/GINT FI	BROWN, SILT, L	, GRAY MOTTLED WITH C ITTLE SAND, LITTLE CLAY NINS TRACE ROOT HAIRS	', TRACE ; ; ; ;		- 1 - - 1 - - 2 -	-															X
6.15 KENM			+++ +++ +++ +++	974.1	3 - 4 -	3 4 4	11	100	SS-1	-	1	3	14	71	11	NP	NP	NP	24	A-4b (8)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
CTS\SUM-76-	BROWN AND OR	STIFF, GRAY MOTTLED W RANGISH BROWN, SANDY RAVEL, CONTAINS TRACE	SILT, LITTLE		- 5 - - 6 -	2 2 2	6	44	SS-2	2.00	3	5	36	44	12	25	21	4	20	A-4a (4)	1
SOIL PROJE				969.1	8 -	1 1 2	4	56	SS-3	1.25	-	-	-	-	-	-	-	-	24	A-4a (V)	1
CTS/ACTIVE	MEDIUM DENSE SILT, TRACE CLA	, GRAY, COARSE AND FIN AY, WET	IE SAND, LITTLE		- 10 - - 11 -	2 5 7	17	100	SS-4	-	0	0	75	15	10	NP	NP	NP	16	A-3a (0)	7 L V 7 L V

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

EXPLORATION ID PROJECT: SUM-76-06.15 DRILLING FIRM / OPERATOR: NEAS / J. HODGES DRILL RIG: CME 55X STATION / OFFSET: 89+69, 67' RT. B-036-0-18 TYPE: **ROADWAY** SAMPLING FIRM / LOGGER: NEAS / J.HODGES HAMMER: CME AUTOMATIC ALIGNMENT: IR-277 **PAGE** ELEVATION: 981.5 (MSL) EOB: PID: <u>100713</u> SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 11/21/17 11.5 ft. 1 OF 1 SPT START: 3/11/19 END: 3/11/19 SAMPLING METHOD: **ENERGY RATIO (%):** LAT / LONG: 41.035165, -81.557726 ELEV. REC SAMPLE HP **GRADATION (%)** ATTERBERG **MATERIAL DESCRIPTION** SPT/ **BACK** ODOT **DEPTHS** N_{60} CLASS (GI) RQD (%) GR CS FS SI CL LL PL PΙ WC FILL AND NOTES ID (tsf) 981.5 LOOSE TO MEDIUM DENSE. LIGHT BROWN BECOMING TLV T ORANGISH BROWN MOTTLED WITH GRAY, SILT, LITTLE 1>11> CLAY, TRACE SAND, TRACE GRAVEL, CONTAINS TRACE JLV J 2 IRON STAINING, WET 1 LV 1 L 3 SS-1 0 13 NP NP NP 5 14 67 1 5 81 29 A-4b (8) 1>11> 1>11> 5 1>11> 9 SS-2 0 79 12 NP NP 27 100 1 8 NP A-4b (8) 6 974.5 1>11> MEDIUM DENSE. BROWN. COARSE AND FINE SAND. TRACE TO LITTLE SILT, TRACE CLAY, TRACE GRAVEL, 8 5 14 100 SS-3 11 A-3a (V) DAMP 9 1>11> SS-4A 7 A-3a (V) 14 100 970.3 ر 97<u>0.0</u> بالثلثاث SS-4B 3.00 VERY STIFF, BROWN MOTTLED WITH ORANGISH BROWN, **\SANDY SILT**, SOME CLAY, TRACE GRAVEL, MOIST

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE

PROJECT: SUM-76-06.15 DRILLING FIRM / OF SAMPLING FIRM / LE PID: 100713 SFN: DRILLING METHOD: START: 3/12/19 END: 3/12/19 SAMPLING METHOD	OGGER: _	NEAS / J. HODGES NEAS / J.HODGES 3.25" HSA SPT	HAMM CALIB		CME 55 CME AUTON DATE:1^ D (%):	MATIC	_ _	STATIC ALIGNI ELEVA LAT / L	MENT: TION:	983.	ا 3 (MS		7 EOB:		B-03	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV 983.3	I DEPTHS	SPT/ RQD	N ₆₀ REC	SAMPLE ID	HP (tsf)		CS I	TION (`	ATT LL	ERBE PL	FRG PI	wc	ODOT CLASS (GI)	BACK FILL
DENSE, GRAY, SILT , LITTLE CLAY, TRACE SAND, TRACE GRAVEL, CONTAINS TRACE IRON STAINING, WET	- + + + - + + +	- 1 - - 1 - - 2 -														V 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7
P P P P P P P P P P P P P P P P P P P	978.8	3 - 4 -	6 12 13	35 100	SS-1	-	0	0	4 79	9 17	NP	NP	NP	19	A-4b (8)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
MEDIUM DENSE, BROWN, COARSE AND FINE SAND, LITTLE GRAVEL, LITTLE SILT, TRACE CLAY, CONTAINS TRACE IRON STAINING, DAMP MEDIUM DENSE, BROWN, SANDY SILT, TRACE CLAY, TRACE GRAVEL, CONTAINS TRACE IRON STAINING, MOIST	977.3		3 5 5	14 100	SS-2A SS-2B	-	-	-		-	-	-	-	8 20	A-3a (V) A-4a (V)	_ ~_ ~_
TRACE GRAVEL, CONTAINS TRACE IRON STAINING, MOIST		8 - 8 - 9	4 6 8	20 100	SS-3	-	4	6 3	31 49	9 10	NP	NP	NP	17	A-4a (5)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	971.8	- 10 - - 11 -	3 8 13	30 100	SS-4	-	-	-		-	-	-	-	18	A-4a (V)	12V 12 12V 12

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

PROJ		SUM-76-06.15 ROADWAY	DRILLING FIRM / OPER	-	NEAS / J. H		1	L RIG:	-	CME 55		_	STAT			SET:	-	6+70 R-27	, 66' I 7	RT.		ATION ID 3-0-18
PID: _		FN: _ END:3/12/19	DRILLING METHOD: _ SAMPLING METHOD: _	_	3.25" HSA SPT		CALI	BRATI RGY R	ON D	ATE:11	/21/17 85	_	ELE\	/ATIC	N: _		(MS	L)_ E	OB:	11 .55519	.5 ft.	PAGE 1 OF 1
		MATERIAL DESCRIPT AND NOTES	TON	ELEV 985.	I DEP	ГНЅ	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE cs	PATIC FS	$\overline{}$) CL	ATT LL	ERBE PL	FI PI	wc	ODOT CLASS (GI)	BACK FILL
SAN	DY SILT, LITTL	ARD, BROWN WITH GR. LE CLAY, TRACE GRAVI AMP TO MOIST				 - 1 - - 2 -																V 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
						- 3 - - 4 -	3 9 11	28	100	SS-1	4.5+	4	7	46	29	14	19	15	4	12	A-4a (2)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
						5 - 6	2 8 7	21	100	SS-2	3.00	-	-	-	-	-	-	-	-	14	A-4a (V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
@7.5	5' TO 9.0'; SS-3	3 CONTAINS TRACE RO	OTS	975.6	3	- 7 - - 8 - - 9 -	2 3 3	9	100	SS-3	3.75	-	-	-	-	-	-	-	-	19	A-4a (V)	1
BRO TRA	WN MOTTLES	Y WITH BROWN AND O S, SILT , SOME CLAY, TR CONTAINS IRON STAINII	ACE SAND, ##	- - - 	EOB-	- 10 - - 11 -	2 2 3	7	100	SS-4	2.75	0	0	1	75	24	35	26	9	29	A-4b (8)	12 12 12 12 12 12 12 12 12 12 12 12 12 1

PROJECT: SUM-76-06.15 TYPE: SUBGRADE PID: 100713 SFN: START: 2/21/19 END: 2/21/19	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER: NE		CALIE	MER: BRATI	CN	CME 55 ME AUTON ATE:11 (%):	//ATIC	_	STAT ALIGI ELEV LAT /	NMEI ATIO	NT: _ N: _!	997.5	IR-7 (MS	7 & II L) E	R-76 EOB:		B-039	ATION ID 9-0-18 PAGE 1 OF 1
MATERIAL DESCRIPT AND NOTES	ION	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE	l		GRAD			_		ERBI			ODOT CLASS (CI)	BACK
AND NOTES 9.0" CONCRETE (DRILLERS DESCRIPTION	n XX	997.5		RQD	60	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
VERY STIFF TO HARD, BROWN, SANDY SI SOME CLAY, TRACE TO SOME GRAVEL, C IRON STAINING, DAMP	LT, LITTLE TO	996.7	- 1 - - 2 -	4 7	22	67	SS-1	4.5+	26	12	25	21	16	23	15	8	9	A-4a (0)	~ 1 L N 1 L 1 L N 1 L 1 L N 1 L
-6.15 KENN			- 3 - - 4 -	5 7 8	20	56	SS-2	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	1>\ 1> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
%SUM-76			- 5 - - 6 -	4 7 9	21	67	SS-3	4.00	7	12	25	32	24	27	17	10	14	A-4a (4)	12 12 12 12 12 12 12 12 12 12 12 12 12 1
OJECTS		990.0	- 7 -	3 4 9	17	89	SS-4	3.50	-	-	-	-	-	-	-	-	13	A-4a (V)	1>1 1>
STANDARD ODD TSOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:VACTIVE PROJECTS/ACTIVE PROJECTS/ACT																			

βPI	ROJEC	T:	SUM-7	6-06.15	DRILLING FIRM / OPERA	ATOR: N	EAS / ASHBAU	GH_ I	DRILL	. RIG:		CME 45	5B		STAT	ION	OFF	SET:	2	23+8	8, 37'	LT.	EXPLOR	
ďΓ	YPE: _		SUBGR	ADE	SAMPLING FIRM / LOGO	3ER: <u>N</u>	EAS / E. ROLLE	R_ I	HAMN	/IER:	CN	JE AUTON	/ATIC		ALIG	NME	NT: _		IR-7	7 & II	₹-76		B-040	
įΡ	ID: <u>1</u>	00713	SFN:		DRILLING METHOD:	3	.25" HSA		CALIE	BRATI	ON DA	ATE:11	1/21/17		ELE\	ATIC	N: <u>1</u>	007.9	9 (MS	<u>SL)</u> E	OB:	7	.5 ft.	PAGE
S	TART:	4/9/19	END	4/9/19	SAMPLING METHOD: _		SPT		ENER	GY R	ATIO ((%):	84		LAT /	LON	G: _		41.0	60208	3, -81	.56594	1 0	1 OF 1
000			MATI	ERIAL DESCRIPT	TON	ELEV.	DEPTHS	S	SPT/	NI	REC	SAMPLE	HP		GRAD	ATIC	N (%))	ATT	ERBE	ERG		ODOT	BACK
]				AND NOTES		1007.9	DEFINS	R	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
- 1	13.0" C	ONCRET	E (DRILLE	ERS DESCRIPTIO	N)	1006.8																		
	MEDIUN	И DENSE	, LIGHT E	ROWN AND BRO	f71111		1	1 10														$\vdash \vdash$		1 LV 1 L
	SILT, LI	TTLE CL	AY, TRAC	E GRAVEL, DAM		1004.9		2 10	9	28	6	SS-1	-	-	-	-	-	-	-	-	-	9	A-4a (V)	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u>?</u> F	FINE SA	AND, LIT	TLE SILT,	LIGHT BROWN, LITTLE CLAY, TF	ACE GRAVEL,			9	14 16	42	100	SS-2	-	5	4	58	19	14	NP	NP	NP	8	A-3a (0)	1 > \ 1 > \
-0/-1/100	CONTA	INS TRA	CE IRON S	Staining, Damp		•	_ <u>-</u> ;	5 - 11	1 31 44	105	100	SS-3	-	-	-	-	-	-	-	-	-	8	A-3a (V)	1
		ENSE, G L, DAMP	RAY, SAN	NDY SILT, LITTLE		1000.4	FOR - 7	T	3 29 41	98	100	SS-4	-	4	4	48	26	18	NP	NP	NP	7	A-4a (2)	1 > N > N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

¬г						_														
GP,	PROJECT: <u>SUM-76-06.15</u>	_ DRILLING FIRM / OPERA	_				L RIG		CME 45									10' LT.	EXPLOR	ation Id I-0-18
.152	TYPE: SUBGRADE	_ SAMPLING FIRM / LOGG			OLLER				ME AUTON			ALIG					7 & IR-			PAGE
ဖ	PID: 100713 SFN:	_ DRILLING METHOD:	3.	.25" HSA					ATE:11								<u>SL)</u> EC		6.1 ft.	1 OF 1
Š.	START: 4/11/19 END: 4/11/19	_ SAMPLING METHOD:	T	SPT		_	KGY F	ATIO (84		LAT /						-81.564	569	1
ES\SUM-7	MATERIAL DESCRIP	PTION	ELEV.	DEP1	THS	SPT/ RQD	N ₆₀		SAMPLE			GRAD					ERBER		ODOT CLASS (GI)	BACK
	AND NOTES	DO DECODIDEIONI)	1022.7			KQD	- 00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI W	; OLAGO (GI)	FILL
GINT FIL	14.0" ASPHALT AND 4.0" BASE (DRILLEI		}		- 1 -															
	MEDIUM DENOE DECIMALAND ORAY OF	ONE FRAGMENTS DAMP LY WEATHERED,	1021.2	-	_ · _	0														JLV JL
OR	MEDIUM DENSE, BROWN AND GRAY, ST WITH SAND, TRACE SILT, TRACE CLAY, I	DAMP			2	8 10	29	22	SS-1	_	_	_	-	_	_	_	_	- 5	A-1-b (V)	1>11>
Ž	<u> </u>	DAIVII	1019.7	TR-	Д з Д	11				D 6									A Rock (V)	17 - 7 -
5 KE	SANDSTONE, BROWN AND GRAY, HIGHI	LY WEATHERED,	1		h -	\$0/1"	\ <u> </u>	(100/	SS-2	ᠰ᠊᠊ᢇ		<u> </u>	1	<u> </u>	\	-1	<u> </u>	- -	N_ROCK (V)_	JLV JL
-6.1	STRONG, FRIABLE.		1		_ 4 _			100.5	00.0											1>11>
V-76		[• *• *	+		- 5 -	`\$ <u>0/1"</u>	\ <u>-</u> -/	\100/	SS-3	┞╌╌		<u> </u>		1	<u> </u>	/	<u> </u>		Rock (V)	17 - 7 -
SU		<u> :::</u>	1016.6	FOR	_ 6 _															1>11>
STS	\ @6.0' TO 6.1'; SS-4 NO RECOVERY		•	EOB—	0	5 0/1" /	∕ـــــ\	__\	SS-4	⁄ـــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	۸۸	^	<u> </u>	<u> </u>	/	┖╌┸	\	Rock (V)	
OJE																				
PR																				
Ö																				
Ą																				
CŢ																				
SV																				
JEC																				
RO																				
ÆΡ																				
Ę																				
Ϋ́																				
-																				
99:1																				
9/19																				
7/29																				
Ä																				
Ţ.																				
8																				
Н																				
=																				
×																				
8)																				
9																				
β																				
SRII.																				
L B																				
SOI																				
ΤÖ																				
000																				
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS'ACTIVE SOIL PROJECTS'SUM-76-6.15 KENMORE																				
AND																				
ST,																				

PROJECT: SUM-76-06.15 DRILLING FIRM / OPER	ATOR: N	IEAS / ASHBAUGH	DRILL R	G:	CME 45	B	_ ST/	ATION	/ OFFS	SET:	231+	81, 41	LT.	EXPLOR	-
TYPE:SUBGRADE SAMPLING FIRM / LOG	GER: N	EAS / E. ROLLER	HAMME	R:C	ME AUTON	MATIC	ALI	GNME	NT:		IR-77 &	IR-76		B-042	
PID: 100713 SFN: DRILLING METHOD:	3	.25" HSA	CALIBRA	TION D	ATE: 11	/21/17	ELE	VATIO	ON: 10	036.4	(MSL)	EOB:	6	5 ft.	PAGE
START: <u>4/9/19</u> END: <u>4/9/19</u> SAMPLING METHOD:		SPT	ENERGY	'RATIO	(%):	84	_ LAT	/ LON	IG:	4	11.0600	28, -81	.56311	1	1 OF 1
MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/ N	REC	SAMPLE	HP	GRA	DATIC	ON (%)		ATTER	BERG		ODOT	BACK
AND NOTES	1036.4		RQD IN	ⁱ⁰ (%)	ID	(tsf)	GR CS	FS	SI	CL	LL PI	. PI	WC	CLASS (GI)	FILL
5.0" ASPHALT AND 13.0" BASE (DRILLERS DESCRIPTION)	1034.9	 - 1 -													<.v<.
HARD, BROWN MOTTLED WITH GRAY, SANDY SILT , SOME GRAVEL AND STONE FRAGMENTS, LITTLE CLAY, DAMP	1033.4	_ 2 _	25 30 8: 31	5 89	SS-1	4.5+ 2	28 18	15	23	16	23 16	7	9	A-4a (1)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
VERY DENSE, LIGHT TAN, STONE FRAGMENTS WITH SAND , TRACE SILT, TRACE CLAY, DAMP	1031.9		5 44 8 19	3 33	SS-2	-	- -	-	-	-		-	4	A-1-b (V)	1>\\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\
HARD, GRAY, SANDY SILT , SOME CLAY, LITTLE GRAVEL AND STONE FRAGMENTS, DAMP		- 5 -	20 18 19	2 100	SS-3	4.5+	13 9	17	36	25	23 1	8	10	A-4a (5)	1>V 1> 1 V 1>
	1029.9	EOB 6	50 -	100	SS-4	4.5+		-	-	-			7	A-4a (V)	1276

	PROJECT: SUM-76-06.15	DRILLING FIRM / OPER	ATOR: N	IEAS / ASHBAUGH	DRIL	L RIG	:	CME 45	5B		STAT	TION .	/ OFF	SET:	2	34+79	9, 43'	LT.	EXPLOR	-
0	TYPE: SUBGRADE	SAMPLING FIRM / LOG	GER: N	EAS / E. ROLLER	HAM	MER:	CN	JE AUTON	MATIC		ALIG	NME	NT: _		IR-7	7 & II	R-76		B-043	3-0-18
P	PID:100713SFN:	DRILLING METHOD:	3	.25" HSA	CALI	BRAT	ON DA	ATE:11	1/21/17		ELE\	/ATIC)N: _1	047.	6 (MS	SL) E	OB:	7	.5 ft.	PAGE
0/-I	START: 4/9/19 END: 4/9/19	SAMPLING METHOD:		SPT	ENE	RGY F	ATIO ((%):	84		LAT /	LON	IG: _		41.0	60030), -81	.56203	31	1 OF 1
5	MATERIAL DESC	IPTION	ELEV.	DEPTHS	SPT/	NI	REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERBE	ERG		ODOT	BACK
	AND NOTE	1	1047.6		RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
=[5.0" ASPHALT AND 13.0" CONCRETE	DRILLERS	3																	
	DESCRIPTION)		1046.1																	1 LV 1 L
A LANGER	VERY DENSE, BROWN, GRAVEL WIT LITTLE CLAY, CONTAINS TRACE IRO		1044.6	_ 2 _	31 31 37	95	67	SS-1	-	40	16	15	17	12	23	17	6	10	A-2-4 (0)	1>V 1>
0.13 NE	HARD, BROWN MOTTLED WITH ORA BECOMING GRAY, SANDY SILT , SOM GRAVEL, CONTAINS TRACE IRON ST	CLAY, LITTLE		- 4	2 2 14	22	100	SS-2	4.5+	14	14	19	31	22	25	18	7	11	A-4a (4)	1 > \ 1 > \
- O IVI-I	GRAVEL, CONTAINS TRACE IRON ST	NING, DAWF		5 -	18 29 39	95	100	SS-3	4.5+	-	-	-	-	1	-	-	1	12	A-4a (V)	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1
2250			1040.1	FOR 7	13 20 23	60	100	SS-4	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	1

٠,	PROJECT: SUM-76-06.15 TYPE: SUBGRADE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		EAS / ASHBAUGH EAS / E. ROLLER	-	L RIG MER:		CME 45			STAT		/ OFF	SET:		39+5 7 & IF	5, 9' F R-76	RT.		ATION ID 1-0-18
6-6.15	PID: 100713 SFN: START: 4/11/19 END: 4/11/19	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT	CALI	BRAT	ION DA	ATE: 11	/21/17 84			/ATIC)N: <u>1</u>		9 (MS	L) E	OB:	.56030	.5 ft.	PAGE 1 OF 1
ESISU	MATERIAL DESCRIP' AND NOTES	TION	ELEV. 1061.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		ATIC FS	N (% sı) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
IN F	13.0" ASPHALT (DRILLERS DESCRIPTION	<i>'</i>	1000.0	- - 1 -					` /											₩ 5 L ^V 5 L
NMORE/(HARD, BROWN AND GRAY, SILT AND CL A TRACE GRAVEL, SS-3 AND SS-4 CONTAIN DAMP			_ 2 -	3 4 5	13	56	SS-1	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	1>1 1>
-6.15 KEI				3 - 4 -	5 8 9	24	89	SS-2	4.50	5	7	5	43	40	35	21	14	16	A-6a (10)	1>/1> 12/12 12/12
9/-MOS				5 -	2 5 10	21	56	SS-3	4.5+	7	7	6	45	35	34	23	11	10	A-6a (8)	<pre></pre> <pre><</pre>
) EC IS			1054.4	- 7 -	5 9 12	29	78	SS-4	4.5+		-	-	-	-	-	-	-	16	A-6a (V)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PROJECT: _ TYPE:		UM-76-0 DADWA		DRILLING FIRM / OPER		NEAS / ASH IEAS / E. R		-	L RIG: MER:		CME 55			STAT ALIGN				-	43+80 7 & IF		RT.	EXPLOR B-04	ATION 1 5-0-18
PID: 1007	713 SFN	1 :		DRILLING METHOD:		3.25" HSA		CALI	BRATI		ATE: 11			ELEV	ATIO	N: 1					11	1.5 ft.	PAGE
START:	4/8/19	END:	4/8/19	SAMPLING METHOD:		SPT		ENE	RGY F	ATIO	(%):	78		LAT/	LON	G: _		41.0	5972°	1, -81	.55876	88	1 OF 1
		MATERI	AL DESCRIPT	TION	ELEV.	DEP.	TLIC	SPT/	N ₆₀	REC	SAMPLE	HP	(GRAD.	ATIO	N (%)	ATT	ERBE	RG		ODOT	BAC
			ND NOTES		1066.9	DLF	1113	RQD	1460	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	I ILL
			·	RS DESCRIPTION) SAND, TRACE	1064.9 1064.4		- 1 - - 2 -																V
			DESCRIPTION	N) /		TIK	T- 3 -	23 50/5"	-	82	SS-1	-	-	-	-	-	-	-	-	-	-	Rock (V)	7/2
SHALE, GF WEAK, FIS		ILY WEA	THERED, VEF	RY WEAK TO			4 -	00/0															1 / N
					클		5 7	23 50/3" ₂	-	100	SS-2	-	-	-	-	-	-	-	-	-	-	Rock (V)	12V
							- 6 - - 7 -	0070															V V V V V V V V V V V V V V V V V V V
							- 8 - - - 9 -	21 22 27	64	100	SS-3	-	-	-	-	-	-	-	-	-	-	Rock (V)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				<u></u>	≣ 1		- 10																1 LV -
					1055.4	EOB-	- 10 - - 11 -	7 10 36	60	100	SS-4	-	-	-	-	-	-	-	-	-	-	Rock (V)	121.

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE CAVED AT 7.0'.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

ب	PROJECT		SUM-76		DRILLING FIR		_	EAS / ASH		-	L RIG		CME 55		_	STAT			SET:		44+88	-, -	LT.		ATION ID 5-1-18
21	TYPE:		ROADWA	<u>4Y</u>	SAMPLING FI			EAS / E. RO	JLLER	-	MER:		ME AUTON			ALIG		_			7 & IF				PAGE
٥I.			FN:		DRILLING ME		3.	25" HSA		. CALI	BRATI	ON DA	ATE:1	1/21/17		ELE/		_	067.	1 (MS	<u>SL)</u> E	OB:	6	.7 ft	
<u> </u>	START: _	4/17/19	_ END: _.	4/17/19	SAMPLING MI	ethod: _		SPT		ENE	RGY F	ATIO ((%):	78		LAT /	/ LON	IG: _		41.0	60049	9, -81	.55837	'3	1 OF 1
٥			MATER	RIAL DESCRIPT	TON		ELEV.	DEPT	HC	SPT/	N ₆₀	REC	SAMPLE	HP	Ú	GRAD	DATIC	N (%)	ATT	ERBE	₽RG		ODOT	BACK
<u> </u>				AND NOTES			1067.1	DLII	110	RQD	1160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
		PHALT ANI RS DESCR		ONCRETE AND	3.0" BASE		1065.6	TR	- 1 -	-															\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
NON N		DARK GRA O WEAK, S		RELY WEATHE SSILE.	RED, VERY			- IK	2 -	2 10 21	40	100	SS-1	-	-	-	-	-	-	-	-	-	1	Rock (V)	1 2 7 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-0.13 RE									- 4 -	5 22 24	60	89	SS-2	-	-	-	-	-	-	-	-	-	-	Rock (V)	1> \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
-IAI									_ 5 -	5 50	-	100	SS-3	-	-	-	-	-	-	-	-	-	-	Rock (V)	12V 12
300							1060.4	FOR	6 7	15	-	100	SS-4	-	-	-	-	-	-	-	-	-	-	Rock (V)	1 LV 1 L

PROJECT: SUM-76-06.15 DRILLING FIRM / OPER	_	EAS / ASHBAUGH		L RIG		CME 5			STAT			SET:			5, 52'	RT.	_	ATION ID 6-0-18
TYPE: SUBGRADE SAMPLING FIRM / LOG		EAS / E. ROLLER		MER:		/IE AUTO		_	ALIG		_			7 & IF				PAGE
PID: 100713 SFN: DRILLING METHOD:	3.	.25" HSA			ON DA		1/21/17		ELEV		_		9 (MS				.5 ft	
START: <u>4/8/19</u> END: <u>4/8/19</u> SAMPLING METHOD: _		SPT	ENEF	RGY F	ATIO ((%):	78		LAT /	LON	G: _		41.0	59780), -81	.55732	23	1 OF 1
MATERIAL DESCRIPTION	ELEV.	DEPTHS	SPT/	NI	REC	SAMPLE	HP		GRAD	ATIC	N (%))	ATT	ERBE	₽RG		ODOT	BACK
AND NOTES	1068.9		RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
5.0" ASPHALT AND 13.0" BASE (DRILLERS DESCRIPTION)	\langle																	1 LV 1 L
	1067.4	<u></u> 1 −																1>11>
HARD, DARK GRAY, SANDY SILT , LITTLE CLAY, TRACE GRAVEL, DAMP	1065.9	- 2 -	4 5 9	18	100	SS-1	4.5+	10	12	11	47	20	24	18	6	8	A-4a (6)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DENSE, GRAY, COARSE AND FINE SAND , LITTLE GRAVEL, LITTLE SILT, TRACE CLAY, DAMP	1064.4	- 4	16 18 15	43	89	SS-2	-	-	-	-	-	-	-	-	-	7	A-3a (V)	, , , , , , , , , , , , , , , , , , ,
HARD, GRAY, SILT AND CLAY , LITTLE SAND, LITTLE STONE FRAGMENTS (SHALE), RELIC ROCK STRUCTURE, DAMP		5 -	8 9 10	25	100	SS-3	4.5+	16	12	6	43	23	29	18	11	8	A-6a (7)	1>1 1>
DAIVII	1061.4	EOB 7	7 12 10	29	100	SS-4	4.5+	-	-	-	-	-	-	-	-	10	A-6a (V)	1

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE CAVED AT 5.0'.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

TYPE: ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	_	NEAS / ASHI IEAS / E. RO		- 1	L RIG: MER:		CME 55			STAT ALIG			SET:		51+65 7 & IF		RT.	EXPLOR B-047	ATION IC '-0-18
	DRILLING METHOD:	, LLLI				ATE: 11			ELE			1063.6				1	D.4 ft.	PAGE		
START: <u>4/8/19</u> END: <u>4/8/19</u>	SAMPLING METHOD:		SPT			RGY R	RATIO ((%):	78		LAT /	LON	IG: _		41.0	59884	4, -81	.5559	00	1 OF 1
MATERIAL DESCRIPTI	ON	ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE	1		GRAD					ERBE			ODOT CLASS (GI)	BACK
AND NOTES 6.0" ASPHALT AND 12.0" BASE (DRILLERS	DECODIDEIONI) XX	1063.6		T	RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
6.0 ASPHALT AND 12.0 BASE (DRILLERS	DESCRIPTION)	4000 4		1 -	1															1 × 1 × 1 × 1 × 1
	MECLAY LITTLE	1062.1		⊦	1															1 LY 1
GRAVEL AND STONE FRAGMENTS, CONTA				- 2 -	12															1> \ 1 \ 1 \ 1
STAINING, DAMP				_ 3 +	12 15	39	100	SS-1	4.5+	11	11	23	33	22	21	15	6	9	A-4a (4)	1>11>
5				<u></u> 4	15															1 LV 1
HARD, GRAY, SANDY SILT, LITTLE TO SOM GRAVEL AND STONE FRAGMENTS, CONTA STAINING, DAMP VERY DENSE, LIGHT GRAY, STONE FRAGM SAND, TRACE SILT, TRACE CLAY, DAMP		1058.2		F 5 -	8			SS-2A	15+	12	11	23	28	20	20	15	5	8	A-4a (3)	1> \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
VERY DENSE, LIGHT GRAY, STONE FRAGI	MENTS WITH			- - 6 -	27	57	100	SS-2B	-	-	 			-				5	A-1-b (V)	17>175
SAND, TRACE SILT, TRACE CLAY, DAMP		1056.6	TD		17													Ļ	71.5(1)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
SHALE, GRAY, HIGHLY WEATHERED, VER	Y WEAK TO		+TR	— 7 — ⊢	13		100	00.0											D 1 00	1 LV 1
SHALE, GRAY, HIGHLY WEATHERED, VER' WEAK.		-		<u> </u>	13 50/3",	-	100	SS-3	-	-	-	-	-	-	-	-	-	-	Rock (V)	1> \ 1 \ 1 \ 1 \ 1
	三			<u> </u>	1															1>115
		1053.2	FOB-	10 -	50/5"	-	100	SS-4	<u> </u>	<u> </u>	-	_	_	_		_	_		Rock (V)	1 LV 1

PROJECT:	SUM-76- ROADWA		DRILLING FI SAMPLING F			EAS / ASH EAS / E. R		-	L RIG: MER:		CME 55			STAT		/ OFF NT:	SET:	-	56+17 7 & IF	, -	RT.	EXPLORA B-048	ATION IE 8-0-18
TYPE:			DRILLING M		3.	.25" HSA		-			ATE:11		_			N: <u>1</u>						0.8 ft.	PAGE 1 OF 1
START:4/8	8/19 END: _	4/8/19	SAMPLING N	METHOD: _	T = 1 = 1	SPT			RGY R	ATIO	`	78	_	LAT /							.55425		
		IAL DESCRIPTI AND NOTES	ION		1050.6	DEP ⁻	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		FS FS	N (%)) CL	LL	ERBE PL	RG PI	WC	ODOT CLASS (GI)	BACK FILL
	VN, SANDY SIL O STONE FRAG						_ 1 -	2 4 4	10	67	SS-1	4.5+	14	21	17	31	17	23	17	6	11	A-4a (3)	V 1 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V
SHALE CDA	Y, HIGHLY WEA	THEREN VER	DV \\/EAK		1048.1	TR-	_ 2 _	12															1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
FISSILE.	II, HIGHET WE	THERED, VEN	VI VVLAR,		-		3 +	12 36 48	109	100	SS-2	-	-	-	-	-	-	-	-	-	-	Rock (V)	1>1 1 1 L V 1
							5 7	22 50/4"	_	100	SS-3	-	_	_	-	-	_	-	-	_	_	Rock (V)	1>\ 1 \ \ \ \ 1 \ \ \ \ 1
							- 6 - - 7 -	50/4															12V 1
							8 -	22 25 31	73	100	SS-4	-	-	-	-	-	-	-	-	-	-	Rock (V)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
					1039.8	505	10	29 50/4"	-	100	SS-5	-	_	-	-	_	_	-	_	_	-	Rock (V)	1> \ 1 \ 1 \ 1 \ 1

PROJECT: SUM-76-06.15 TYPE: SUBGRADE PID: 100713 SFN: START: 4/11/19 END: 4/11/19	DRILLING FIRM / OPERATO SAMPLING FIRM / LOGGER DRILLING METHOD: SAMPLING METHOD:	R: NE			MER: BRATI	CN ON DA	ME AUTON ATE:11	//ATIC	_	STAT ALIGI ELEV LAT /	NMEI 'ATIC	NT: _)N: _1	1035.	IR-7 1 (MS	7 & IF (L)E	R-76 :OB:		B-049	ATION ID 9-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ION E	ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE			GRAD	ATIC	N (%)	ATT	ERBE	RG		ODOT CLASS (GI)	BACK
		035.1		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
O	1	033.6	_ 1 _																- 1 LV 1 L
VERY STIFF TO HARD, GRAY, SANDY SILT SOME CLAY, LITTLE GRAVEL, DAMP	; LITTLE TO		- 2 - - 3 -	4 7 8	21	67	SS-1	4.5+	18	11	15	35	21	23	16	7	10	A-4a (4)	1> N 1>
6.15 KE			- 4 -	4 12 6	25	100	SS-2	4.5+	19	10	13	38	20	24	17	7	10	A-4a (5)	1> \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \
SUM-76.			5 -	3 5 6	15	89	SS-3	4.00	-	-	ı	ı	ı	ı	ı	-	15	A-4a (V)	12V 12 12V 12
JECTS/		027.6	- 6 - - 7 -	3 6 4	14	100	SS-4	3.75	-	-	1	1	1	1	-	-	13	A-4a (V)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS/ACTIVE PROJE																			

.GPJ	PROJECT: SUM-76-06.15	DRILLING FIRM / OPERA				L RIG:		CME 55			STAT			SET:				RT.	EXPLOR/	
15 2	TYPE: NOISE WALL	SAMPLING FIRM / LOGG				MER:		ME AUTON			ALIG					77 & II			B-050	PAGE
.6-6.	PID:100713 SFN:	DRILLING METHOD:	3.	25" HSA				TE:11			ELEV								.1 ft.	1 OF 1
Š	START: 4/8/19 END: 4/8/19	SAMPLING METHOD:	· - ·	SPT		RGY R	ATIO (78	_	LAT /				_			.55166		
SIS	MATERIAL DESCRIPT	ION	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE			GRAD cs) CL	LL	ERBI	=RG PI	wc	ODOT CLASS (GI)	BACK FILL
븳	AND NOTES 6.0" ASPHALT AND 18.0" BASE (DRILLER:	S DESCRIPTION)	1022.1		NQD		(%)	ID	(tsf)	GR	CS	FS	51	CL	LL	PL	PI	WC		1 LV 1 L
ZE/GINT	U.U ASPIIALI AND 10.0 DASE (DINELLIN	S DESCRIPTION)	1020.1	1 - 1 - 2 -																1>V 1>
KENMO	HARD, BROWN AND GRAY, SANDY SILT , I CLAY, TRACE TO SOME GRAVEL, SS-1 CO PLASTIC FRAGMENTS, DAMP			3	7	26	100	SS-1	4.5+	21	12	15	35	17	22	15	7	8	A-4a (3)	7
M-76-6.15	(FILL)			- 4 - 5 -	10 5															V V V V V V V V V V V V V V V V V V V
CISSU				6 -	6 7	17	100	SS-2	4.5+	6	11	15	44	24	27	18	9	14	A-4a (7)	1 > V 1 > V
SOIL PROJE	@7.5' TO 9.0'; SS-3 CONTAINS NO RECOV	ERY		- 8 - - 8 - - 9 -	14 13 15	36	0	SS-3	-	-	-	-	-	-	-	-	-	-		<11><11><11><11><11><11><11><11><11><11
SACTIVE	@10.0' TO 11.5'; SS-4 CONTAINS BRICK FEINTACT SOIL FOR HP READINGS	RAGMENTS, NO		- 10 - - 11 -	14 16 16	42	39	SS-4	-	-	-	-	-	-	-	-	-	9	A-4a (V)	1
ROJECI	VERY STIFF TO HARD, BROWN MOTTLED	WITH	1010.1	- 12 -	12															7
CIIVE P	ORANGISH BROWN, SANDY SILT , SOME OSOME GRAVEL, CONTAINS IRON STAININ	G, DAMP		- 13 - 14	14 16	39	100	SS-5	4.25	-	-	-	-	-	-	-	-	15	A-4a (V)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 09:11 - X:V				- 15 - - 16 -	5 6 6	16	89	SS-6	2.75	-	-	-	-	-	-	-	-	15	A-4a (V)	1
29/1			1004.6	TR																12N12
// -	SANDSTONE, ORANGISH BROWN BECOM	IING GRAY,		18 	50/5"	-	_20	SS-7	<u> </u>	<u> </u>			-		<u> </u> -	 -	-	-	Rock (V)	JLV JL
JOI.GD	HIGHLY WEATHERED, WEAK.		1002.0	- 19 -																1>V 1> 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V
H D H		● ●	1002.0	—EOB——20—	5 0/1" /	╌╌	\100/	SS-8	\	<u> </u>	۸۸	لـــا	\\	لــا	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	\\	Rock (V)	77. 77
× 11) -																				
OG (8.5																				
JRING L																				
ARD ODOT SOIL BO																				
0000 (1)																				
I ANDAR																				
S	NOTES: GROUNDWATER NOT ENCOUNT	FRED DURING DRILLING	HOLE D	ID NOT CAVE																
İ	ABANDONMENT METHODS, MATERIALS, (

PROJECT: SUM-76-06.15 TYPE: SUBGRADE PID: 100713 SFN: START: 4/10/19 END: 4/10/19	DRILLING FIRM / OPERATO SAMPLING FIRM / LOGGER DRILLING METHOD: SAMPLING METHOD:	R: NE			MER: BRATI	CN ON DA	CME 45 ME AUTON ATE: 11 (%):	MATIC	_	STAT ALIGI ELEV LAT /	NMEI 'ATIC	NT: _ DN: _1	1017.0	R 6 (MS	AMP SL) E	T OB:		B-05 .5 ft.	ATION ID I-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTI		ELEV.	DEPTHS	SPT/	N ₆₀	REC	SAMPLE			GRAD	ATIC	N (%)	ATT	ERBE	RG		ODOT	BACK
2 0" ASDHALT AND 7 0" BASE (DDILLEDS		1017.6	521 1116	RQD	1 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
or you had the page (placely	ED WITH GRAY	1016.3	- 1 - - 2 -	5 _	4.4	00	00.4	4.5.	40	4.4	- 10	00			40		-10	A 4 (5)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
AND TRACE ORANGISH BROWN, SANDY S SOME CLAY, TRACE TO LITTLE GRAVEL, C IRON STAINING, DAMP			_ 3	5 5 8	21	89 78	SS-1 SS-2	4.5+		11	12 29		23	26	18	7	13	A-4a (5)	12 12 12 12 12 12 12 12 12 12 12 12 12 1
UM-76-6.1			- 4 - - 5 -	7 3 5	14	89	SS-3	3.75	-	-	-	-	-	-	-	-	11	A-4a (V)	1>\ 1>\ 1>
DECTSIS		1010.1	- 6 - - 7 -	2 5 10	21	89	SS-4	1.00	-	-	-	-	-	-	-	-	14	A-4a (V)	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MEDIUM STIFF TO HARD, BROWN, SANDY S SOME CLAY, TRACE TO LITTLE GRAVEL, CIRON STAINING, DAMP																			

6-6.15 2.0 Id J	ROJECT: 'PE: D:100713 TART:3/25/	SUM-76-06.15 ROADWAY _ SFN:	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER: N	IEAS / J. HODO EAS / E. ROLL 25" HSA SPT		DRILL HAMI CALIE	MER: BRATI	CN ON DA			_	ALIGI	NMEN ATIO	N: <u>10</u>	003.7 (8+0 RAM MSL) 1.0602	EOB:	6	i.9 ft.	ATION ID 2-0-18 PAGE 1 OF 1
ES\SUM		MATERIAL DESCRIPT	TION	ELEV. 1003.7	DEPTHS		SPT/ RQD			SAMPLE ID	HP (tsf)	_			N (%)	P	TTERI	BERG		ODOT CLASS (GI)	BACK FILL
E/GIN	RAGMENTS,	BROWN AND GRAY, GRAV SOME SAND, TRACE SILT, NCRETE FRAGMENTS, DAN	TRACE CLAY, 🙀 🕓	1000.7	-	1 - 2 - 3 4 - 5 6	7 24 20 4 37	62	100	SS-1 SS-2	-	- 57	- 20	- 13	7	-	 IP NF	- NP	7	A-1-a (V)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ROJECTS	06.5' TO 6.9'; S	SS-3 STONE FRAGMENTS A	ARE CONCRETE	996.8	EOB -		23 50/5"	-	100	SS-3						-	_	<u> </u>	7_	A-1-a (V)	1271

5	PROJECT: SUM-76-06.15	DRILLING FIRM / OPERA		EAS / ASHBAUGH	DRIL	L RIG		CME 45			STAT	TION .	OFF	SET:		4+17,	30' L	.T.	EXPLOR	-
0	TYPE: SUBGRADE	SAMPLING FIRM / LOGG	ER: N	EAS / E. ROLLER	HAM	MER:	CN	<i>I</i> E AUTON	/IATIC		ALIG	NME	NT: _		R	AMP	Т		B-053	3-0-18
- P	PID: 100713 SFN:	DRILLING METHOD:	3.	25" HSA	CALI	BRAT	ON DA	ATE: <u>11</u>	/21/17		ELE\	/ATIC	N: _	997.3	(MS	L)_ E	OB:	7	.5 ft.	PAGE
	START: <u>4/10/19</u> END: <u>4/10/19</u>	SAMPLING METHOD:		SPT	ENE	RGY F	OITAS	(%):	84		LAT /	LON	IG: _		41.0	61084	4, -81	.56947	7	1 OF 1
δĎ	MATERIAL DESCRIPT	ION	ELEV.	DEPTHS	SPT/	NI	REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERBE	ERG		ODOT	BACK
3	AND NOTES		997.3	DEFINS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
	3" ASPHALT AND 10" CONCRETE (DRILLE DESCRIPTION)	RS	996.2	- 1 -																
NINORE	HARD, LIGHT BROWN BECOMING GRAYIS SANDY SILT, SOME CLAY, LITTLE GRAVEL			- - 2 -	1 4 4	11	78	SS-1	4.5+	12	7	16	41	24	23	17	6	13	A-4a (6)	× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
-0. ID NEI				3	4 6 6	17	89	SS-2	4.5+	-	-	-	-	-	-	-	-	16	A-4a (V)	1>\\ 1\\\ 1\\\\ 1\\\\\\\\\\\\\\\\\\\\\\
O /-IMICS			991.3	5 -	4 7	15	78	SS-3	4.5+	11	5	9	43	32	28	19	9	15	A-4a (8)	12V 12 12V 12
STORY OF THE	DENSE, LIGHT TAN AND BROWN, GRAVEL FRAGMENTS WITH SAND AND SILT , TRAC		989.8	- 7 -	4 15 11	36	78	SS-4	-	- 1	-	-	-	ı	-	-	1	6	A-2-4 (V)	1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L

_																				
3	PROJECT: SUM-76-06.15	DRILLING FIRM / OPERA	ATOR: N	EAS / ASHBAUGH	DRIL	L RIG		CME 45	В		STAT	ION	/ OFF	SET:	6	4+72	, 25' F	RT.	EXPLOR	-
7	TYPE:SUBGRADE	SAMPLING FIRM / LOGG	BER: NE	EAS / E. ROLLER	HAM	IMER:	CN	ME AUTON	MATIC		ALIG	NME	NT:		I	R - 76	3		B-054	1-0-18
٥	PID: 100713 SFN:	DRILLING METHOD:	3.	25" HSA	CALI	BRATI	ON DA	ATE: 11	1/21/17	_	ELEV	'ATIC	N: 1	016.2	2 (MS	SL) E	OB:	7	.5 ft.	PAGE
9/-1/	START: 4/10/19 END: 4/10/19	SAMPLING METHOD:		SPT	ENE	RGY R	ATIO ((%):	84		LAT /	LON	IG:		41.0	60211	1, -81	.56803	35	1 OF 1
2	MATERIAL DESCRIPT	ION	ELEV.	DEDTUG	SPT/		REC	SAMPLE	HP		GRAD	ATIC	N (%))	ATT	ERBE	RG		ODOT	BACK
ű	AND NOTES		1016.2	DEPTHS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
١	14.0" ASPHALT (DRILLERS DESCRIPTION)																			
[1015.0	<u></u> 1 −															I	- 5 LV 5 L
Į	HARD, BROWN MOTTLED WITH GRAY AN				24															12/12
$\frac{1}{2}$	BROWN, SANDY SILT , SOME GRAVEL, LIT CONTAINS IRON STAINING, DAMP	TLE CLAY,	1013.2		10 10	28	89	SS-1	4.5+	32	11	11	29	17	25	18	7	9	A-4a (2)	JLV JL
計	DENSE, LIGHT BROWN, GRAVEL AND STO	ONE	1010.2	_ 3 _	12															1>11>
0	FRAGMENTS WITH SAND AND SILT, LITTL		d 1011.7	<u> </u>	13	38	78	SS-2	-	39	18	12	19	12	23	17	6	7	A-2-4 (0)	
9	MEDIUM DENSE. LIGHT BROWN. GRAVEL	10.7. I	1011.7		14 5										-					1>N1>
į	FRAGMENTS WITH SAND, TRACE SILT, TR	- / E	9	5 7	7	22	0	SS-3	-	-	-	-	-	-	-	-	-	-	I	12/12
آڏ	DAMP		k	<u> </u>	9															15 LV 5 L
<u>"</u> [@4.5' TO 6.0'; SS-3 NO RECOVERY	å.O.	1009.3	<u> </u>	16	48	78	SS-4A	-	-	-	-	-	-	-	-	-	2	A-1-b (V)	7>1/2
╣.	HARD, BROWN AND GRAY, SANDY SILT, S	, ,	1008.7	EOB	18			SS-4B	4.5+	-	-	-	-	-	-	-	-	12	A-4a (V)	15LV 5L
Ĭ	LITTLE GRAVEL AND STONE FRAGMENTS	,		_00																
┙	TRACE WOOD FRAGMENTS AND IRON ST	aining. Damp <i>i</i>																		

EXPLORATION ID PROJECT: SUM-76-06.15 DRILLING FIRM / OPERATOR: NEAS / J. HODGES DRILL RIG: CME 55X STATION / OFFSET: 98+03, 78' RT. B-055-0-18 TYPE: **EMBANKMENT** SAMPLING FIRM / LOGGER: NEAS / E. ROLLER HAMMER: CME AUTOMATIC ALIGNMENT: IR - 76 **PAGE** PID: <u>100713</u> SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 11/21/17 ELEVATION: 993.8 (MSL) EOB: 6.6 ft. 1 OF 1 START: 3/22/19 END: SAMPLING METHOD: SPT **ENERGY RATIO (%):** LAT / LONG: 41.060960, -81.567593 3/22/19 **MATERIAL DESCRIPTION** ELEV. REC SAMPLE HP **GRADATION (%)** ATTERBERG SPT/ **BACK** ODOT **DEPTHS** N_{60} CLASS (GI) RQD (%) GR CS FS SI CL LL PL ы WC FILL AND NOTES ID (tsf) 993.8 1 LV 1 MEDIUM STIFF TO VERY STIFF, BROWN, SILT AND CLAY. LITTLE SAND, LITTLE GRAVEL, CONTAINS IRON STAINING, 1>11> MOIST 2 3 5 14 78 SS-1 1.00 5 12 42 26 32 20 15 12 21 A-6a (7) 1>11 21 SS-2 6 100 3.50 21 A-6a (V) 6 987.3 987.2 SANDSTONE, GRAY, SLIGHTLY WEATHERED, VERY STRONG. STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS\ACTIVE SOIL PROJ

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

9	PROJECT:	SUM-76-06.15 ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG				L RIG: MER:		CME 55				ION / O			102+3 IR - 7		RT.		ATION ID 7-0-18
9.1 19.0 F	PID: 100713 START: 3/22/19	SFN:	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT	CALI		ON DA	ATE:11			ELEV	ATION: LONG:	101	1.9 (M	SL) I			2.8 ft. 66	PAGE 1 OF 1
ES\SU\		MATERIAL DESCRIPTI AND NOTES	ON	ELEV. 1011.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		ATION FS S	(%)		TERB PL	ERG	wc	ODOT CLASS (GI)	BACK FILL
40RE\GIN	SOME STONE FE CONTAINS ROO	ARK BROWN, COARSE AN RAGMENTS, LITTLE SILT, T TS AND TRACE IRON STAI	FRACE CLAY, NING, DAMP		- 1 - - 2 - 		-	44	SS-1A SS-1B		22		38 1			NP		9	A-3a (0) Rock (V)	V 1 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V
(8.5 X 11) - OH DOT.GDT - 7/29/19 09:11 - X:ACTIVE PROJECTS'ACTIVE SOIL PROJECTS'SUM-76-6.15 I	MODERATELYS	TRONG.																		

						_															
<u> </u>	PROJECT: SUM-76-06.15	DRILLING FIRM / OPE	RATOR: N	EAS / J. H	ODGES	DRIL	L RIG	:	CME 55	Χ	{	STAT	ION /	OFF	SET:	1	06+5	50, 1'	RT.		ATION ID
5 7.	TYPE: ROADWAY	SAMPLING FIRM / LO	GGER: NE	EAS / E. R	OLLER	HAMI	MER:	CN	IE AUTON	1ATIC	_ /	ALIGN	NMEN	NT: _		R	AMP	W		B-058	3-0-18
o	PID:100713 SFN:	DRILLING METHOD:	3.	25" HSA		CALI	BRATI	ION DA	ATE:11	/21/17	[ELEV	ATIO	N: <u>1</u>	008.0	0 (MS	<u>SL)</u> E	EOB:	4	.2 ft.	PAGE
-\-	START: 3/21/19 END: 3/21/1	9 SAMPLING METHOD:		SPT		ENEF	RGY F	RATIO ((%):	85	ı	_AT /	LON	G: _		41.0	6125	8, -81	.56529	90	1 OF 1
Σ̈́	MATERIAL DES	CRIPTION	ELEV.	DEP1	THE	SPT/	N.I.	REC	SAMPLE	HP	G	RAD	ATIO	N (%))	ATT	ERBI	ERG		ODOT	BACK
Ę	AND NOT		1008.0	DEPT	пъ	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	FILL
Ī	VERY DENSE, BROWN, GRAVEL AN	D STONE FRAGMENTS	\sim		-																1 LV 1 L
<u>Z</u>	WITH SAND, TRACE SILT, TRACE CL	AY, STONE ₽	Σ		_ 1 _																1>11>
Ä	FRAGMENTS ARE SANDSTONE, DAI	VIF	OH I		_ 2 _																1>1 1>
		.8	(`∖⊴ 1005.1	TR	ᅪ╶╻	50/5"	_	100_	SS-1	- 1	39	17	31	9	4	NP	NP	NP	6	A-1-b (0)	
Ä	SANDSTONE , LIGHT TAN, SEVEREL	Y WEATHERED, VERY		111	_ 3 _																1>11>
2.12	WEAK, FRIABLE.		1003.8	—ЕОВ—	4_=	5 0/2" /	\ - /	\ 50 C	SS-2		- 1	- 1	- 1		/	۱ - ۱			4	Rock (V)	1 LV 1 L
0										—`						_				<u> </u>	•
Ż																					
20																					
נ																					
31																					
7																					
S																					
△																					
ڄ																					
á																					

PROJECT: SUM-76-06.15 TYPE: ROADWAY PID: 100713 SFN: START: 3/21/19 END: 3/21/19	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER: NE	EAS / J. HO EAS / E. RO 25" HSA SPT		CALII	MER: BRATI				_	ALIGI	NMEN OITA	N: 1	004.8	R/3 (MS	AMP (L)_E	OB:		.6 ft.	ATION ID 9-0-18 PAGE 1 OF 1
MATERIAL DESCRIPT AND NOTES	ION	ELEV. 1004.8	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR		ATIO FS	N (%)	CL	ATTI LL	ERBE PL	RG PI	WC	ODOT CLASS (GI)	BACK FILL
VERY DENSE, BROWN, SANDY SILT , LITTI STONE FRAGMENTS, DAMP	E CLAY, TRACE	1000.8	TR	_ 1	3 10 50	85	100	SS-1	-	0	1	62	23	14	NP	NP	NP	11	A-4a (0)	1
SANDSTONE, LIGHT GRAY, SEVERELY WI WEAK TO MODERATELY STRONG, FRIABI AND CLAY LENSES.		998.2	—EОВ—	- 5 - 5 - 6	4 20 50/3"	- \/	93 \100/	SS-2 SS-3	- \\	-	- L/	-	- LA	-	- \	- /	-	6	Rock (V)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

TYPE: ROAD		RILLING FIRM / OPERA AMPLING FIRM / LOGG		IEAS / J. HODGES EAS / E. ROLLER	DRILL HAMN		-	CME 55 ME AUTON		_	STATI ALIGN		OFFSE IT:		219+3 -77 & I		LT.	EXPLORA B-060)-0-18
PID: <u>100713</u> SFN: START: <u>3/22/19</u> END		RILLING METHOD: MPLING METHOD:	3.	.25" HSA SPT	CALIE ENER			ATE: <u>11</u> (%):	/21/17 85		ELEVA LAT / I		N: <u>99</u> 3:				11 .5674	1.5 ft. 56	PAGE 1 OF 1
	ERIAL DESCRIPTION AND NOTES	1	ELEV. 992.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS CS	ATIOI FS	N (%)		TERB PL	_	WC	ODOT CLASS (GI)	BACK FILL
VERY STIFF, BROWN, GI LITTLE CLAY, CONTAINS				- 1 - - 1 - - 2 -															× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
pi	DAY CANDYOUT LI		987.8	3 - 4 -	3 11 10	30	100	SS-1	2.50	32	11	27	18 1	2 23	3 17	6	11	A-2-4 (0)	12V 12
VERY STIFF TO HARD, G TRACE TO LITTLE GRAV DAMP				- 5 - - 6 - - 7 -	3 6 6	17	100	SS-2	2.50	-	-	-	-		-	-	11	A-4a (V)	× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
1				- 8 - - 9 -	3 6	13	78	SS-3	2.50	15	12	25	29 1	9 22	2 15	7	12	A-4a (3)	V V V V V V V V V V V V V V V V V V V
			980.8	- 10 - - 11 -	5 8 10	26	100	SS-4	4.5+	-	-	-			-	-	9	A-4a (V)	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.
ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

?	PROJECT: SUM-76-06.15 YPE: SUBGRADE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	_	EAS / ASHBAUGH EAS / E. ROLLER		L RIG		CME 45			STAT		/ OFF	SET:		15+87 7 & IF	7, 54' 2-76	LT.	_	ATION ID 1-0-18
e F	PID: 100713 SFN:	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT	CALI	BRATI	ON DA	ATE:11	//21/17 84	_	ELEV LAT	/ATIC)N: _9		(MS	L)_ E	OB:	.56859	5 ft.	PAGE 1 OF 1
1000	MATERIAL DESCRIPT AND NOTES	TION	ELEV. 992.3	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		 	FS FS	N (%)) CL	ATT LL	ERBE PL	FI PI	wc	ODOT CLASS (GI)	BACK FILL
	14.0" CONCRETE (DRILLERS DESCRIPTIO	,	991.1	 - 1 -																***
	DENSE, LIGHT TAN AND DARK GRAY, GR STONE FRAGMENTS WITH SAND AND SIL DAMP		989.3	_ 2 _	18 25 10	49	100	SS-1	-	27	12	33	16	12	NP	NP	NP	6	A-2-4 (0)	17 1 1 1
	HARD, BROWN AND LIGHT BROWN MOT GRAY, SANDY SILT , LITTLE CLAY, LITTLE			_ 4 _	8 11 12	32	100	SS-2	4.5+	12	14	37	22	15	21	15	6	8	A-4a (0)	1 > \ 1 > \
-iv-lv-lv-lv-lv-lv-lv-lv-lv-lv-lv-lv-lv-lv				- 5 -	5 12 13	35	100	SS-3	4.5+	-	-	-	-	-	-	-	-	9	A-4a (V)	\(\frac{1}{1} \) \(\frac{1} \) \(\frac{1}{1} \) \(\frac{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1}{1} \) \(\frac{1} \) \(1
250			984.8	FOR - 7 -	8 7 8	21	100	SS-4	4.5+	-	-	-	-	-	-	-	-	13	A-4a (V)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

EXPLORATION ID PROJECT: SUM-76-06.15 DRILLING FIRM / OPERATOR: NEAS / J. HODGES DRILL RIG: CME 55X STATION / OFFSET: 2+43, 28' LT. B-062-0-18 TYPE: **ROADWAY** SAMPLING FIRM / LOGGER: NEAS / E. ROLLER HAMMER: CME AUTOMATIC ALIGNMENT: RAMP B **PAGE** CALIBRATION DATE: 11/21/17 PID: <u>100713</u> SFN: DRILLING METHOD: 3.25" HSA ELEVATION: 973.0 (MSL) EOB: 16.5 ft. 1 OF 1 SAMPLING METHOD: SPT START: 3/20/19 END: 3/20/19 **ENERGY RATIO (%):** LAT / LONG: 41.034690, -81.567609 ELEV. REC SAMPLE HP **GRADATION (%)** ATTERBERG **MATERIAL DESCRIPTION** SPT/ **BACK** ODOT **DEPTHS** N_{60} CLASS (GI) RQD (%) GR CS FS SI CL LL PL PΙ WC FILL AND NOTES ID (tsf) 973.0 LOOSE TO MEDIUM DENSE, BROWN, COARSE AND FINE TLV T SAND, LITTLE TO SOME SILT, TRACE TO LITTLE GRAVEL, 1>11> TRACE CLAY, MOIST TO WET JLV J 2 3 2 7 100 SS-1 17 43 8 NP NP NP 14 18 13 A-3a (0) 1>11> 1>11> 5 1>11 14 78 SS-2 12 A-3a (V) 6 1>11> WOH @7.5' TO 16.5'; BECOMES VERY LOOSE 0 33 SS-3 WOH 14 A-3a (V) STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:12 - X:ACTIVE PROJECTS/ACTIVE SOIL WOH 9 WOH WOH 0 100 SS-4 10 20 35 25 10 NP NP NP A-3a (0) 14 WOH 12 1>11> WOH 13 0 WOH 100 SS-5 15 A-3a (V) WOH 1>11> WOH WOH 0 100 SS-6 16 A-3a (V) 16 956.5 WOH -EOB-

NOTES: GROOUNDWATER NOT ENCOUNTERED DURING DRILLING. HOLE DID NOT CAVE.

EXPLORATION ID PROJECT: SUM-76-06.15 DRILLING FIRM / OPERATOR: NEAS / J. HODGES DRILL RIG: CME 55X STATION / OFFSET: 10+02, 57' LT. B-063-0-18 TYPE: **ROADWAY** SAMPLING FIRM / LOGGER: NEAS / E. ROLLER HAMMER: CME AUTOMATIC ALIGNMENT: RAMP B **PAGE** PID: <u>100713</u> SFN: DRILLING METHOD: 3.25" HSA CALIBRATION DATE: 11/21/17 ELEVATION: 970.7 (MSL) EOB: 16.5 ft. 1 OF 1 SPT START: 3/20/19 END: 3/20/19 SAMPLING METHOD: **ENERGY RATIO (%):** LAT / LONG: 41.034019, -81.566973 ELEV. REC SAMPLE HP **GRADATION (%)** ATTERBERG **MATERIAL DESCRIPTION** SPT/ **BACK** ODOT **DEPTHS** N_{60} CLASS (GI) RQD (%) GR CS FS SI CL LL PL ы WC FILL AND NOTES ID (tsf) 970.7 MEDIUM DENSE. BROWN. COARSE AND FINE SAND. TLV T STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT GDT - 7/29/19 09:12 - X:ACTIVE PROJECTS/ACTIVE SOIL PROJECTS/SUM-76-6.15 KENMORE/GINT LITTLE TO SOME SILT, LITTLE GRAVEL, TRACE CLAY, 1>11> CONTAINS STONE FRAGMENTS >1.0", MOIST TO WET JLV J 2 3 SS-1 33 9 NP NP NP 5 14 56 20 21 17 13 A-3a (0) 1>11> 1>11> 5 @5.0' TO 16.5'; BECOMES VERY LOOSE 1>11> 17 SS-2 13 A-3a (V) 6 1>11> **W** 962.7 WOH 0 83 SS-3 WOH 18 A-3a (V) WOH 9 WOH SS-4 13 17 36 24 10 NP NP NP A-3a (0) WOH 28 15 12 1>11> WOH 13 3 78 SS-5 14 A-3a (V) 14 1>11> WOH 3 78 SS-6 16 A-3a (V) 1 16 954.2 -EOB-

PROJECT: SUM-76-06.15 DRILLING FIRM / OPE TYPE: ROADWAY SAMPLING FIRM / LOC PID: 100713 SFN: DRILLING METHOD: START: 3/20/19 END: 3/20/19 SAMPLING METHOD:	RATOR: NEAS / J. HODGE GGER: NEAS / E. ROLLER 3.25" HSA SPT	HA		ON D	CME 55 ME AUTOM ATE: 11 (%):	MATIC	_	STAT ALIG ELEV LAT /	NMEI ATIC	NT: _ NN: _!		R/ B (MSI	AMP /	OB:		B-064	ATION ID 4-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. DEPTHS	SP1 RQI	· N	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	N (% SI) CL	ATT LL	ERBE PL	FI PI	WC	ODOT CLASS (GI)	BACK FILL
LOOSE TO MEDIUM DENSE, BROWN, FINE SAND, SOME COARSE SAND, TRACE SILT, TRACE CLAY, TRACE GRAVEL, DAMP @5.0' TO 9.0'; BECOMES TRACE COARSE SAND, WET	W 968.3 5 6 6 7 7 8	6 5 - 4 3	5 14 5 9 3 13	100	SS-1 SS-2 SS-3		1 -	26	64	7 - 6	2 - 3	NP - NP	NP - NP	NP - NP	9 24 26	A-3 (0) A-3 (V) A-3 (0)	7
LOOSE, BROWN, SILT , SOME SAND, TRACE CLAY, TRACE GRAVEL, WET	<u>:</u> ‡‡	2 3	7	100	SS-4	-	1	1	28	65	5	NP	NP	NP	30	A-4b (7)	1 > N > N > N > N > N > N > N > N > N >

NOTES: GROUNDWATER ENCOUNTERED AT 5.0' DURING DRILLING. HOLE DID NOT CAVE.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: SHOVELED SOIL CUTTINGS

TYPE: EMBANKMENT S PID: 100713 SFN: I	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD: SAMPLING METHOD:	ER: N		HAMI		CI ON D	CME 55 ME AUTON ATE: 11 (%):	MATIC	_	STAT ALIG ELE\ LAT	NME /ATIC	NT: _)N: _	973.9	R. (MS	AMP	EOB:		B-065	ATION ID 5-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ON	ELEV. 973.9	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE cs	FS FS	N (%	CL	ATT	ERBI PL		wc	ODOT CLASS (GI)	BACK FILL
VERY LOOSE TO MEDIUM DENSE, BROWN, LITTLE COARSE SAND, TRACE SILT, TRACE TRACE CLAY, SS-4 CONTAINS TRACE IRON DAMP @5.0' TO 11.5'; BECOMES WET	GRAVEL,	973.9	- 1 - 1 - 2 - 2 - 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	5 4 6 2 3 3	14 9 3	100	SS-1 SS-2 SS-3	-	5 - 3	12	74	6 -	3	NP -	NP	NP		A-3 (0) A-3 (V) A-3 (V)	1

	DRILLING FIRM / OF					- 1	L RIG:		CME 45						SET:			9, 30' I	LT.		ATION ID 3-0-18
	SAMPLING FIRM / L				DLLER	-	MER:		ME AUTON			ALIG					AMP				PAGE
	DRILLING METHOD		3.	25" HSA					ATE:11			ELEV		_						3.5 ft	1 OF 1
	SAMPLING METHOL):		SPT			RGY R	ATIO (84		LAT /							.56564	17	
MATERIAL DESCRIPTION	ON		ELEV.	DEPT	HS	SPT/	N ₆₀		SAMPLE	1		GRAD			_		ERBE			ODOT CLASS (GI)	BACK
AND NOTES		\sim	991.4			RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
15.5" ASPHALT AND 14.5" BASE (DRILLER	S DESCRIPTION)	\bowtie			├ , -	1															
		\bowtie			- 1 -	1															JLV JL
		\bowtie	988.9		<u> </u>	1															1>11>
MEDIUM DENSE, BROWN, GRAVEL WITH S	SAND, TRACE		i		L 3 4	7 _			20.4					_							717
SILT, TRACE CLAY, DAMP		$ ^{\circ}$ \cup			- H	5 5	14	67	SS-1	-	29	37	23	7	4	NP	NP	NP	9	A-1-b (0)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
			986.9		_ 4 _	Ĭ															1>11>
VERY LOOSE TO MEDIUM DENSE, BROWN	I, FINE SAND,				<u></u> 5 ¬	3															- 1 LY 1 L
LITTLE TO SOME COARSE SAND, TRACE S TRACE GRAVEL, CONTAINS IRON STAININ					L 6 -	4	13	100	SS-2	-	1	13	78	4	4	NP	NP	NP	14	A-3 (0)	1 > 1 > 1 >
TOOL GIVEL, GONTAING INON GIAININ	O, WEI TO DAW				<u> </u>	5															12/12
			1		- 7 -																JYLV JL
					- 8 -	2	8	100	SS-3			_				_			6	A 2 (\)	1>11>
			,		<u>_</u> 9 _	3 3	0	100	33-3	-	-	-	-	-	-	-	-	-	0	A-3 (V)	1 L 1 L
					_ 9 _																< , v < , ·
			ı		- 10 -	2															12/12
					F 11 -	3	10	100	SS-4	-	-	-	-	-	-	-	-	-	12	A-3 (V)	JLV JL
			i e			4															1>11>
					12 -																11111
@12.5' TO 14.0'; BECOMES BROWN AND O	RANGISH		1		13	3 2	6	100	SS-5	_	_	_	_			_	_		6	A-3 (V)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
BROWN, CONTAINS IRON STAINING					L ₁₄ L	2		100	00-0										Ŭ	A-3 (V)	7>1/2
		[]	n		├ ' -	-															1 LV 1 L
		- C			¹⁵ ¹	1															-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
					<u> </u>	2 1	4	100	SS-6	-	-	-	-	-	-	-	-	-	6	A-3 (V)	12/12
					- 17 -	-															JLV JL
					F '/ -	2															1>11>
					18	1 1	4	100	SS-7	_	1	24	70	3	2	NP	NP	NP	5	A-3 (0)	1276
			•		L ₁₉ ⊥	2													_	- (-)	- < , v < , ·
						1															1>11>
			,		²⁰ T	2															7 LY 7 L
					- 21	2 3	7	100	SS-8	-	-	-	-	-	-	-	-	-	8	A-3 (V)	1 > 1 > 1 >
			•	0000	_ 22 _																12/12
@22.5' TO 26.5'; BECOMES WET				₩ 968.9	+ 1	3															JLV JL
(22.5 TO 26.5, BECONIES WET			ı		23	2	6	100	SS-9	-	-	-	_	-	-	-	-	-	23	A-3 (V)	1>11>
		[::::]			<u> </u>	2														. ,	17 17 7 1
					25.																
		:::::			25 7	2	7	89	SS-10			_	_			_	_		21	A-3 (V)	12/12
			964.9	EOB	_ 26 -	3 2		09	33-10			_	_		_	Ŀ			I	A-3 (V)	JLV JL
				EUB																	

PROJECT: SUM-76-06.15 TYPE: NOISE WALL PID: 100713 SFN:	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG DRILLING METHOD:	SER: N		HAMI	L RIG: MER: BRATI	CN	CME 55 ME AUTON	MATIC		STAT ALIGI ELEV	NME	NT: _		R	AMP			EXPLOR B-067	7-0-18 PAGE
START: <u>2/19/19</u> END: <u>2/19/19</u>	SAMPLING METHOD: _		SPT	ENEF	RGY R	ATIO ((%):	78		LAT /	LON	G:		41.0	5893	6, -81	.5672	09	1 OF 2
MATERIAL DESCRIPT AND NOTES	ION	ELEV. 1019.4	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs		N (%)	,	ATT LL	ERBI PL		wc	ODOT CLASS (GI)	BACK FILL
4.0" ASPHALT OVER 8.0" CONCRETE (DR DESCRIPTION) VERY STIFF, BROWN, SANDY SILT, LITTLI	E CLAY, LITTLE	1018.4	 - 1 -																
GRAVEL, SS-2 CONTAINS NO INTACT SOI READINGS, SS-3 CONTAINS IRON STAINII			- 2 - - 3 - - 4	7 4 9	17	67	SS-1	3.25	15	10	29	28	18	20	13	7	10	A-4a (2)	1 × 1 × 1 × 1 × 1
			- 5 - - 6 -	4 4 5	12	22	SS-2	-	-	-	-	-	-	-	-	-	6	A-4a (V)	1 × 1 1 × 1 × 1 × 1 × 1
		1000 5	- 7 - - 8 - - 9	5 5 10	20	100	SS-3	3.00	-	-	-	-	-	-	-	-	9	A-4a (V)	1
MEDIUM DENSE, BROWN AND GRAY, GR. AND SILT , LITTLE CLAY, CONTAINS IRON			- 10 - - 11 -	3 9 13	29	78	SS-4	-	19	16	33	19	13	18	13	5	8	A-2-4 (0)	7
HARD, BROWN MOTTLED WITH GRAY AN BROWN, SANDY SILT , SOME GRAVEL, LIT CONTAINS IRON STAINING, MOIST TO DA	D ORANGISH TLE CLAY,	1007.4	- 12 - - 13 - - 14 -	2 4 8	16	100	SS-5	4.5+	-	-	-	-	-	-	-	-	16	A-4a (V)	V V V V V V V V V V V V V V V V V V V
			- 15 - - 16 -	3 8 10	23	78	SS-6	4.25	24	11	27	22	16	23	15	8	9	A-4a (1)	177
@17.5' TO 19.0'; SS-7 BECOMES STIFF, DA CLAY, TRACE GRAVEL, SLIGHTLY ORGAN		999.9	- 17 - - 18 - - 19	3 5 5	13	100	SS-7	1.50	-	-	-	-	-	-	-	-	22	A-4a (V)	77
MEDIUM STIFF TO STIFF, GRAYISH BROW CLAY, LITTLE TO SOME SAND, TRACE GR IRON STAINING, MOIST		333.3	- 20 - - 21 -	2 3 4	9	100	SS-8	1.25	4	6	20	45	25	30	19	11	22	A-6a (7)	, , , , , , , , , , , , , , , , , , ,
			- 22 - - 23 - - 24 -	3 4 6	13	100	SS-9	0.75	0	1	14	54	31	35	23	12	29	A-6a (9)	1
MEDIUM DENSE, BROWN AND GRAY, CO. SAND , TRACE TO SOME GRAVEL, TRACE CLAY, CONTAINS IRON STAINING, WET	ARSE AND FINE SILT, TRACE	994.9	w 994.4	2 4 6	13	78	SS-10	-	-	-	-	-	-	-	-	-	23	A-3a (V)	1
		1	27 28	3 5 5	13	89	SS-11	-	-	-	-	-	-	-	-	-	24	A-3a (V)	1 × 1 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
		989.9	29 - -	5															12V 4

STONE FI	MATERIAL DESCI AND NOTE: DENSE TO DENSE, LIGHT BR RAGMENTS WITH SAND, TRA LAY, CONTAINS IRON STAINI	S ROWN, GRAVEL AND ACE TO LITTLE SILT,	9	ELEV. 989.4	DEP.	THS	SPT/ RQD	N ₆₀	REC	SAMPLE	HP		GRAD	ATION	(%)	I AT	TERB	ERG		ODOT	BACK
STONE FI	DENSE TO DENSE, LIGHT BR RAGMENTS WITH SAND, TRA	ROWN, GRAVEL AND ACE TO LITTLE SILT,	0 0 g	989.4	DLI	1110									(,				-	ODOI	
STONE FI	RAGMENTS WITH SAND, TRA	ACE TO LITTLE SILT,	$\stackrel{\circ}{\sim}\stackrel{\circ}{\sim}\stackrel{\circ}{\sim}$				RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI C	L LL	PL	PI	WC	CLASS (GI)	FILL
TRACE CI	LAT, CONTAINS INON STAIN	NC MET (continued)				- - 31 -	3 5 33	49	67	SS-12	-	-	-	-		. -	-	-	15	A-1-b (V)	1 2 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1
		INO, WET (COMMITTEE)				_ 32 _															1>11
						- 33 - 34	5 7 12	25	67	SS-13	-	-	-	-	- .	. -	-	-	14	A-1-b (V)	JLV J
				982.9	—ЕОВ—	35 - 36 -	ο Ι	29	78	SS-14	-	-	-	-			-	-	13	A-1-b (V)	1

PROJECT: SUM-76-06.15 DRILLING FIRM / TYPE: ROADWAY SAMPLING FIRM PID: 100713 SFN: DRILLING METHO START: 2/19/19 END: 2/19/19 SAMPLING METHO	/ LOGG DD:	ER: N	EAS / ASHBAU EAS / E. ROLLE 25" HSA SPT		CALIE	MER: BRATI	CN	CME 55 ME AUTON ATE: 11	MATIC		STAT ALIG ELEV LAT /	NMEI ATIO	NT: _ NN: <u>1</u>	012.1	R 1 (MS	AMP SL) E	U EOB:		B-06	ATION ID 8-0-18 PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	<u> </u>	ELEV. 1012.1	DEPTHS		SPT/ RQD	N ₆₀		SAMPLE ID	HP	(GRAD					ERBE		wc	ODOT CLASS (GI)	BACK FILL
HARD, BROWN AND DARK BROWN BECOMING GRAY, SANDY SILT, SOME GRAVEL, LITTLE CLAY, CONTAINS IRON STAINING, DAMP			-	1 -	8 10 11	27	89	SS-1	4.5+	24	16	24	23	13	23	16	7	10	A-4a (0)	\$ LV 5 L
DENSE TO VERY DENSE, GRAY, GRAVEL AND STONE FRAGMENTS WITH SAND, LITTLE SILT, TRACE CLAY, CONTAINS IRON STAINING, DAMP		1009.3	▼ 1008.6	2 - 3 - 4 -	5 15 18	43	78	SS-2A SS-2B	-4.5+ _/ -	<u>-</u>	-	-	-	-	-	-	-	<u>2</u> 5	A-4a (V) A-1-b (V)	1
, , , , , , , , , , , , , , , , , , ,			<u> </u>	5 6 7	13 30 29	77	89	SS-3	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	12/12
		1002.6		8 9	23 17 22	51	33	SS-4	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	12/12
VERY DENSE, BROWN AND ORANGISH BROWN, GRAVEL WITH SAND AND SILT , TRACE CLAY, CONTAINS IRON STAINING, DAMP		1000.6	₩ 1002.1 - - EOB-	10 T	13 21 44	85	67	SS-5	-	-	-	-	-	-	-	-	-	11	A-2-4 (V)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×

NOTES: GROUNDWATER ENCOUNTERED AT 10.0' DURING DRILLING, 3.5' AFTER COMPLETION. HOLE CAVED AT 6.0'.

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

START: 2/19/19 SAMPLING METHOD: SPT ENERGY RATIO (%): 78 LAT / LONG: 41.059717, 81.564576 10F1 MATERIAL DESCRIPTION AND ORNAIGH BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, CONTAINS STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, CONTAINS STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, CONTAINS STONE FRAGMENTS WITH SAND AND GRAVEL AND STONE FRAGMENTS WITH SAND AND STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, CONTAINS STONE FRAGMENTS WITH SAND AND STO	5 Z.GPJ	PROJECT: SUM-76-06.15 TYPE: NOISE WALL	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		IEAS / ASHBAUG EAS / E. ROLLEF		DRILL HAMN			CME 55			STAT ALIGI					6+94 AMP	<i>'</i>	RT.		ATION ID 9-0-18
AND NOTES 1024.3 DEPTHS RQD Not (18f) GR CS FS SI CL LL PL PL WC CLASS (GI) FILL	1-/6-6.1			3													_ `					PAGE 1 OF 1
DENSE, LIGHT BROWN AND ORANGISH BROWN, GRAVEL AND STONE FRAGMENTS WITH SAND AND SILT, LITTLE CLAY, CONTAINS STONE FRAGMENTS >1.0°, TRACE IRON STAINING, MOIST 1019.8	ES/SU		TION		DEPTHS			N ₆₀							$\overline{}$	_			_	wc		
	7/29/19 09:12 - X:WCTIVE PROJECTS/WCTIVE SOIL PROJECTS/SOMF/6-6.19 REINMORE/GINT FILE	DENSE, LIGHT BROWN AND ORANGISH AND STONE FRAGMENTS WITH SAND AI CLAY, CONTAINS STONE FRAGMENTS > STAINING, MOIST VERY STIFF TO HARD, BROWN MOTTLE! ORANGISH BROWN AND GRAY, CLAY, S TRACE SILT, TRACE GRAVEL, CONTAINS DAMP SANDSTONE, LIGHT BROWN AND WHITE	D WITH OME SAND, SIRON STAINING,	1019.8	- 3 - 4 - 5 - 6 - 7 - 7 - 10 - 11 - 12 - 13 - 14	88	6 25 13 18 50/1"/	40 40 -	100	SS-1 SS-3A SS-3B SS-4 SS-5	4.25	5	8	- 14	7	- 66	- 49	- 22	-	17 16 20 0	A-2-4 (V) A-7-6 (16) A-7-6 (V) Rock (V) Rock (V)	V 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

	PROJEC	T:	SUM-76-		DRILLING FIRM /					_	LL RIG		CME 5				ION / (RT.	EXPLORA B-070	
15 2	' ' ' <u>-</u>		ROADWA	AY	SAMPLING FIRM						/MER:		ME AUTO				NMEN				7 & IF			$\overline{}$	PAGE
76-6	PID:1		· -	0/04/40	DRILLING METHO		3.	25" HSA					ATE:1				ATION					_		3 ft.	1 OF 1
JM-	START:	2/21/1		2/21/19	SAMPLING METH			SPT			RGY R			78	_		LONG	_					56312	1	
ES\SUM-7				RIAL DESCRIPT	ΤΙΟΝ		ELEV.	DEF	THS	SPT/ RQD	N ₆₀		SAMPLE				ATION	_			ERBE			ODOT CLASS (GI)	BACK
FILE				AND NOTES			1036.8			RQD	- 00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	OLAGO (GI)	FILL
N	5.0" 10			ESCRIPTION)	AND FINE CAND		1036.4		 	8	29	56	SS-1	_	20	16	34	22	8	NP	NP	NP	17	A-3a (0)	******
=\G	SOME S			L, TRACE CLA	E AND FINE SAND,	1	1034.8		F' 7	14	1													. ,	XXXXX
ORE	ROOTS		ILL OIVIVL	L, TIVIOL OB (1, 001171110	/	1034.6	——TR—	2 -																1>11>
N	SANDS	TONE, LI	GHT TAN, F	HIGHLY WEATH	HERED, SLIGHTLY	´ :•:•			_ 3 -	50/4"	- -	50	SS-2	↓ -	-	-	-	-	-			-	12	Rock (V)	12/12
5 KE	STRON	g, friae	BLE.						-	1															1 LV 5 L
-6.1						::::			_ 4 -																1>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<i>J</i> -76						1•:•; 1	1031.5	FOR_	5	50/3"	ئيا	67 4	SS-3	A - 4	-	_	- +	_	-	_		- 1	8	Rock (V)	1 LV 1
SUN								LOB_		0.0		س_		~	$\overline{}$			_^	~	^				TOOK (V)	
CTS																									
)JE(
PRC																									
OIL																									
ΈS																									
CTI																									
-SVA																									
ECT																									
ROJ																									
Æ P																									
CTI																									
X:Y																									
12 -																									
.60																									
9/19																									
. 7/2																									
DT.																									
JT.G																									
H DC																									
-0																									
11)																									
3.5 X																									
3) 9																									
3 LO																									
SING																									
BOF																									
\exists																									
T S																									
STANDARD ODOT SOIL BORING LOG (8.5 X 11) - OH DOT.GDT - 7/29/19 09:12 - X:ACTIVE PROJECTSVACTIVE SOIL PROJECTSISUM-76-6.15 KENMORE\GINT																									
RD (
NDA																									
STA																									

3.15 2.GPJ	PROJECT: SUM-76-06.15 TYPE: ROADWAY PID: 100713 SFN:	DRILLING FIRM / OPER, SAMPLING FIRM / LOGO DRILLING METHOD:	GER: NE	EAS / ASHBAUGH EAS / ASHBAUGH 25" HSA	DRILL HAMM	IER:	CN	CME 55 ME AUTON ATE: 11	1ATIC		STAT ALIG ELEV	NME	NT: _		IR-7	35+80 7 & IF	R-76			ATION ID 1-0-18 PAGE
J-76-6	START: <u>2/21/19</u> END: <u>2/21/19</u>	SAMPLING METHOD:	J.	SPT	ENER				78	_	LAT /		_					.56166		1 OF 1
S\SUN	MATERIAL DESCRIPT	TON	ELEV.	DEPTHS	SPT/	N ₆₀		SAMPLE	_ H		GRAD			,		ERBE			ODOT CLASS (GI)	BACK
ĽĚ	AND NOTES		1048.8		RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
IMORE\GINT FI	O.O. TOPSOIL (DRILLERS DESCRIPTION) VERY STIFF TO HARD, BROWN AND ORAL		1048.3	- 1 -	1 4 5	12	67	SS-1	2.75	-	-	-	-	-	-	-	-	11	A-4a (V)	- 1 LV 1 L
IORE	SANDY SILT, SOME CLAY, TRACE TO LITT CONTAINS IRON STAINING, DAMP	ILE GRAVEL,		— 2 —																1>11>
15 KENN			10110	- 3 - - 4	10 10 16	34	100	SS-2	4.5+	10	9	18	39	24	25	17	8	11	A-4a (6)	V V V V V V V V V V V V V V V V V V V
-76-6.	DENSE TO VERY DENSE, BROWN AND OF	RANGISH	1044.3	 - 5 -																1>1 1>
rs/sum-76	BROWN BECOMING GRAY AND BROWN, SAND AND SILT, TRACE CLAY, DAMP	GRAVEL WITH		_ 6 _	6 19 24	56	89	SS-3	-	38	14	19	20	9	21	17	4	10	A-2-4 (0)	1> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
JECT			À	- 7 -																1> N 1
SOIL PRO			d 4030.3	- 8 - - - 9 -	8 14 18	42	100	SS-4	-	-	-	-	-	-	-	-	-	8	A-2-4 (V)	1>11>
CTIVE S	SANDSTONE, LIGHT BROWN, HIGHLY WE	ATHERED,	1039.3	TR																1 LV 1 L
TS\ACT	SLIGHTLY STRONG, FINE TO COARSE GR	RAINED, FRIABLE.	●	- - 11 -	10 14 22	47	67	SS-5	-	-	-	-	-	-	-	-	-	2	Rock (V)	1>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
EC		12 2	•	EOB							•									*** ** **

PROJECT: SUM-76-06.15 TYPE: NOISE WALL PID: 100713 SFN:	DRILLING FIRM / OF SAMPLING FIRM / L DRILLING METHOD	OGGER: N	EAS / E. ROLLER .25" HSA	HAMI	BRATI	CN ON DA	CME 55 ME AUTON	//ATIC 1/21/17	_	STAT ALIG	NMEN ATIO	NT: _ N: <u>1</u>	017.6	1 6 (MS		6 EOB:	42	2.6 ft.	ATION I 2-0-18 PAGE 1 OF 2
START: <u>5/1/19</u> END: <u>5/1/19</u>	SAMPLING METHOR		SPT	_		ATIO		78		LAT /							.56747	71	_
MATERIAL DESCRIPT AND NOTES	ION	ELEV. 1017.6	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	_	GRAD cs) CL	LL	ERBE PL	_	wc	ODOT CLASS (GI)	BACK
11.0" ASPHALT AND 7.0" BASE (DRILLER:	S DESCRIPTION)	1017.6	1 -			(70)	10	(101)	J. C.		. 0	<u> </u>	01						1 L V 1
HARD, BROWN AND GRAY, SANDY SILT , I AND STONE FRAGMENTS, LITTLE CLAY, I (FILL)	.ITTLE GRAVEL DAMP	1013.1	- 2 - - 3 - - 4 -	3 7 11	23	89	SS-1	4.5+	18	9	27	29	17	21	15	6	10	A-4a (2)	V
MEDIUM DENSE, BROWN MOTTLED WITH AND STONE FRAGMENTS WITH SAND AN TO LITTLE CLAY, SS-3 CONTAINS TRACE FRAGMENTS, DAMP	D SILT , TRACE		- 5 - - 6 -	6 7 9	21	0	SS-2	-	-	-	-	-	-	-	-	-	-		V 1 V V V V V V V V V V V V V V V V V V
(FILL) @5.0' TO 6.5'; SS-2 CONTAINS NO RECOV	ERY		- 7 - - 8 - - 9 -	6 3 8	14	67	SS-3	-	-	-	-	-	-	-	-	-	9	A-2-4 (V)	V
MEDIUM DENSE TO DENSE, LIGHT BROW STONE FRAGMENTS WITH SAND, TRACE CLAY, DAMP		1007.3 0 0	- 10 - - 11 - - 12 -	3 10 14	31	56	SS-4A SS-4B	-	-	-	-	-	-	-	-	-		A-2-4 (V) A-1-b (V)	
MEDIUM STIFF, LIGHT BROWN MOTTLED		1004.1	13 -	4 10 12	29	89	SS-5A SS-5B	- 0.75	-	-	-	-	-	-	-	-	5 17	A-1-b (V) A-6b (V)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
ORANGISH BROWN, SILTY CLAY , SOME (SAND, CONTAINS TRACE IRON STAINING, VERY STIFF TO HARD, DARK GRAY AND C SANDY SILT , LITTLE TO SOME CLAY, TRA GRAVEL, CONTAINS TRACE ROOT HAIRS.	DAMP DLIVE BROWN, CE TO LITTLE	1003.1	16	3 4 4	10	100	SS-6	2.75	9	9	39	26	17	21	15	6	15	A-4a (2)	V
GIVVEL, GONTAINO II VIOLINGO I PAINO,	57 WI	998.1	- 17 - - 18 - - 19 -	3 5 9	18	100	SS-7	4.5+	-	-	-	-	-	-	-	-	14	A-4a (V)	77 77 77 77 77 77 77 77 77 77 77 77 77
HARD, BROWN MOTTLED WITH ORANGIS GRAY, SILTY CLAY , TRACE TO LITTLE SAI GRAVEL, CONTAINS TRACE ROOT HAIRS,	ND, TRACE	995.6	20	4 6 11	22	100	SS-8	4.5+	-	-	-	-	-	-	-	-	24	A-6b (V)	77 77 77 77 77 77 77 77 77 77 77 77 77
HARD, BROWN MOTTLED WITH ORANGIS GRAY, SANDY SILT , SOME CLAY, LITTLE (CONTAINS TRACE IRON STAINING, DAMP	GRAVEL,	993.1	- 22 - - 23 - - 24	5 11 12	30	100	SS-9	4.5+	12	6	20	37	25	26	18	8	15	A-4a (5)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
DENSE, BROWN MOTTLED WITH ORANGI GRAY, GRAVEL AND STONE FRAGMENTS AND SILT , LITTLE CLAY, DAMP	SH BROWN AND WITH SAND		- 25 - - 26 -	8 15 17	42	89	SS-10	-	-	-	-	-	-	-	-	-	11	A-2-4 (V)	,
VERY STIFF TO HARD, GRAY, SILT AND C SOME SAND, TRACE TO LITTLE GRAVEL,		990.6	w 989.6 28	11 9 6	20	100	SS-11	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	7
			- 29 -																7>1

PID: 100713 SFN: PROJECT:	SUM-	76-06.15	s	TATION /	OFFSE	T:		5, 38' LT.	_ S	TART	: _5/	1/19	_ EN	1D: _	5/1	/19	_ P	G 2 OF	2 B-07	2-0-18
MATERIAL DESCRIPTION AND NOTES		987.6	DEP	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR		ATIC FS	N (%)) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
VERY STIFF TO HARD, GRAY, SILT AND CLAY , LITTLE T SOME SAND, TRACE TO LITTLE GRAVEL, DAMP (continu				- 31 -	12 11 8	25	56	SS-12	4.5+	-	-	-	-	-	-	-	-	14	A-6a (V)	<17 × 17 × 17 × 17 × 17 × 17 × 17 × 17 ×
				32																12V 1
				- 33 - - 34 -	8 5 6	14	89	SS-13	4.25	-	-	-	-	-	-	-	-	14	A-6a (V)	V V V V V V V V V V V V V V V V V V V
				- 35 - - 36 -	18 24 10	44	100	SS-14	3.25	-	-	-	-	-	-	-	-	14	A-6a (V)	, , , , , , , , , , , , , , , , , , ,
SANDSTONE , GRAY, MODERATELY WEATHERED, MODERATELY STRONG, FINE GRAINED, MODERATELY ARGILLACEOUS.			TR-	37 - 38 - 39 - 39 -	18 50/3"	-	11	SS-15	-	-	-	-	-	-	-	-	-	7	Rock (V)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
				- 40	50/2"	\	∖_50_/	SS-16	\			/						_7_/	Rock (V)	ZLV.
\ @42.5' TO 42.6'; SS-17 CONTAINS NO RECOVERY		975.0	EOB-	- 42 -	5 0/1" /	\/	\	\ SS-17 J	\		/	/		\		\				1>1.

PROJECT		SUM-76-		DRILLING FIRM / OPER	_	IEAS / ASH		-	L RIG		CME 55			STAT			SET:			4, 39'	LT.		ATION ID 3-0-18
TYPE:		SUBGRAD	DE	SAMPLING FIRM / LOG	GER: <u>N</u>	EAS / E. R	OLLER	_ HAM	MER:	CI	ME AUTON	//ATIC		ALIG	NME	NT: _			R - 7	6		B-073	
PID: 10	00713 S	FN:		DRILLING METHOD:	3	.25" HSA		CALI	BRAT	ON D	ATE:11	/21/17	_	ELE\	/ATIC	N: 1	016.3	3 (MS	<u>SL)</u> E	EOB:	6	.9 ft.	PAGE
START: _	5/1/19	_ END: _	5/1/19	SAMPLING METHOD: _		SPT		ENE	RGY F	OITAS	(%):	78		LAT	LON	IG: _		41.0	6184	3, -81	.56628	34	1 OF 1
		MATER	RIAL DESCRIPT	TON	ELEV.	DEP.	тые	SPT/	N ₆₀	REC	SAMPLE	HP		GRAD	ATIC	N (%)	ATT	ERBI	ERG		ODOT	BACK
			AND NOTES		1016.3		по	RQD	11160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	`		DESCRIPTION) LIGHT BROWN.	1015.2		- 1 -																1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GRAVEL LITTLE S	AND STO	ONE FRAC CE CLAY,	GMENTS WITH	SAND, TRACE TO IS 1.25" STONE	Q 2		2	14 15 11	34	78	SS-1	-	49	14	25	7	5	NP	NP	NP	6	A-1-b (0)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
FRAGME	ENTS, DAN	1P 		å. ○	1011.8	TR	_ 4 -	4 10 10	26	56	SS-2	-	40	21	21	11	7	NP	NP	NP	5	A-1-b (0)	1 > N
MODERA	- , -	RONG, FII	SEVERELY WEA NE TO COARSI	, i e			<u> </u>	6 7 33	52	78	SS-3	-	-	-	-	-	-	-	-	-	5	Rock (V)	1>V 1>
			NS A 1.75" SIL	T AND CLAY SEAM	1009.4	FOR-	- 6	7 50/5"	-	91	SS-4	-	-	-	-	-	-	-	-	-	12	Rock (V)	1 L 1 L

_ 1						T															
5	PROJECT: <u>SUM-76-06.15</u>	DRILLING FIRM / OPERA				DRILL			CME 45			STAT							RT.		ATION ID 1-0-18
0	TYPE: ROADWAY	SAMPLING FIRM / LOGG		EAS / E. F	OLLER				ME AUTON			ALIG		_			AMP		- 4	. —	PAGE
0-0	PID: 100713 SFN:	DRILLING METHOD: SAMPLING METHOD:	3.	25" HSA					ATE: <u>11</u>			ELEV		_		_				0.1 ft	1 OF 1
Ė	START: <u>5/1/19</u> END: <u>5/1/19</u>		T EL EL (SPT		ENER	GYK		` /	84	_	LAT /	-			_			.5650°		_
E3/3	MATERIAL DESCRIP AND NOTES	ION	ELEV. 1015.2	DEP	THS	SPT/ RQD	N ₆₀	(%)	SAMPLE ID	HP (tsf)		GRAD cs		-	_	LL	ERBI PL	PI	wc	ODOT CLASS (GI)	BACK FILL
0.10 NEINIVIOREIGIIVI I IL	2.5" ASPHALT AND 10.5" CONCRETE (DR DESCRIPTION) VERY DENSE, LIGHT BROWN, STONE FR SAND, TRACE SILT, TRACE CLAY, CONTA FRAGMENTS, DAMP SANDSTONE, LIGHT BROWN, HIGHLY WE	AGMENTS WITH AINS 1.5" STONE	1014.1	TR-	- 1 - - 2 - - 3 -	10 17 26	60	56	SS-1	-	48		24	5	3	NP	NP	NP	6	A-1-b (0)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
UJEC ISISOINITI V-	MODERATELÝ STRONG, FINÉ TO COARS CONGLOMERITIC.	E GRAINED,			- 6 - - 7 -	50/5"	-	40	SS-2 SS-3	/		-		-	-		-	-	7_	Rock (V)	212
IIVE SOIL FR	@7.5' TO 9.0'; SS-3 CONTAINS NO RECOV		1005.1	EOB-	9 -	50/1" (7)			\ SS-4 /												1
12 - X: MOIIVE PROJECTOMO	@10.0' TO 10.1'; SS-4 CONTAINS NO REC	JVERY /				<i>¥</i> 2 <i>01</i> 1	·/		<u> </u>		<u> </u>	/ <u> </u>					/ <u> </u>	(<u> </u>			

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

96.15.2 JAD:		SUM-76-06 ROADWAY SFN:		DRILLING FIRM / OF SAMPLING FIRM / LO DRILLING METHOD: SAMPLING METHOD	OGGE	ER: NE		HODGES ROLLER	-	MER: BRATI				_	STAT ALIG ELEV	NMEI ATIO	NT: _ NN: _1	021.2	R/ 2 (MS		V OB:		B-075	ATION ID 5-0-18 PAGE 1 OF 1
ES\SU			AL DESCRIPT ID NOTES	ION		ELEV. 1021.2	DEF	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE cs		N (%)) CL	ATT	ERBE PL	RG PI	WC	ODOT CLASS (GI)	BACK FILL
SA		GRAVEĹ, NO IÑ		OD UĎ	+ + + + + + + + + + + + + + + + + + + +	1016.7		- 1 - - 2 - - 3 - - 4	5 7 9	23	100	SS-1	-	1	1	15	57	26	25	16	9	5	A-4b (8)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Š GR	AVEL AND S ARTZITE PE	AN, SANDY SII TONE FRAGM BBLE, NO INTA	ENTS, CONT.			1015.3	EOB-	5 -	4 50/5"	-	73	SS-2	-	10	9	21	37	23	24	15	9	5	A-4a (5)	1>V 1>

PROJE		SUM-76-06.15 ROADWAY	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	_	EAS / J. F		DRIL HAMI			CME 55			STAT ALIG		OFFS	_	10+8 RAMF	85, 59' P V	LT.		ATION ID 6-0-18
PID: _ STAR	100713 S T: <u>3/21/19</u>	FN: END:3/21/19	DRILLING METHOD: SAMPLING METHOD:	3.	25" HSA SPT				ON DA	ATE: <u>11</u> (%):	/21/17 85		ELEV		N: <u>10</u> G:				6 1.56306	6.0 ft. 65	PAGE 1 OF 1
LES/SU		MATERIAL DESCRIPT AND NOTES		ELEV. 1036.2	DEP.	THS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIO FS	N (%)	A7 CL LL	TTERB		wc	ODOT CLASS (GI)	I ILL
BRO\ WITH	WN MOTTLES	HT TAN WITH ORANGIS S, GRAVEL AND STONE BILT, TRACE CLAY, CON ", DAMP	FRAGMENTS 🕌 🖺	1031.7		- 1 - - 2 - - 3 - - 4	11 15 21	51	78	SS-1	-	20	12	37	21	0 NI	P NP	NP	7	A-2-4 (0)	1 LV 1 L
MOT DAME	TLES, SÁNDY P DSTONE , LIGI	DWN WITH TRACE ORAI SILT, LITTLE CLAY, LIT HT GRAY AND REDDISH RED, SLIGHTLY STRONG	TLE GRAVEL,	1030.5	TR—EUB—	5 6	5 50	-	100	SS-2A SS-2B	<u>-</u>	13	14	35	24	4 19	9 15	4	9	A-4a (1) A Rock (V)	1> \ 1 \ \ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \

PROJECT: SUM-76-06.15 DRILLING FIRM / OPERA		/ ASHBAUGH	DRILL RIC		CME 55		- I -		OFFS	ET: _	4+70	,	_T		ATION ID 7-0-18
TYPE: SUBGRADE SAMPLING FIRM / LOGO		'E. ROLLER	HAMMER		ME AUTOM		- 1	NME	_	70.5./	RAME				PAGE
PID:100713_ SFN: DRILLING METHOD: START:4/17/19	3.25" H SP1		CALIBRATENERGY		-	21/17 78	- I	/ LON			MSL) .05946			.5 ft. 5	1 OF 1
MATERIAL DESCRIPTION	ELEV.		SPT/ N ₆₀	REC	SAMPLE	HP			N (%)	-	TTERB	_		ODOT CLASS (CI)	BACK
AND NOTES	1079.5		RQD 1160	(%)	ID	(tsf) G	R CS	FS	SI	CL L	L PL	PI	WC	CLASS (GI)	FILL
12.0" ASPHALT AND 3.0" BASE (DRILLERS DESCRIPTION)	1078.3	 - 1 -													
VERY STIFF TO HARD, BROWN BECOMING BROWN MOTTLED WITH ORANGISH BROWN AND GRAY, SANDY SILT, SOME CLAY, LITTLE TO SOME GRAVEL, CONTAINS		2	7 12 25	100	SS-1	4.25 2	23 10	13	33	21 2	5 17	8	13	A-4a (4)	1
IRON STAINING, DAMP		_ 4 _	9 12 27	100	SS-2	4.25	- -	-	-	-		-	16	A-4a (V)	1>V1>
		- 5 - ⁵	11 30 12	100	SS-3	4.5+ 1	18 12	13	35	22 2	7 18	9	13	A-4a (4)	12×12
	1072.0	- 7 -	7 6 17	100	SS-4	3.25		-	-	-		-	16	A-4a (V)	1

PROJECT:		SUM-76-0	06.15	DRILLING FIRM / OP	ERA ⁻	TOR: N	EAS / ASH	HBAUGH	DRIL	L RIG		CME 55	5T		STAT	ION	OFF	SET:					EXPLOR	-
TYPE:	SI	JBGRAD	E	SAMPLING FIRM / LO	OGGE	ER: NI	EAS / E. R	OLLER	HAM	MER:	CN	ME AUTON	JATIC		ALIG	NMEI	NT:		R	RAMP	J		B-077	7-1-18
PID: 100	0713 SF	N:		DRILLING METHOD:		3.	25" HSA		CALI	BRAT	ON DA	ATE: 11	1/21/17	, 	ELE\	ATIC	N: 1	071.4	4 (MS	SL) E	OB:	7	.5 ft.	PAGE
START:	4/17/19	END: _	4/17/19	SAMPLING METHOD	:		SPT		ENE	RGY F	ATIO	(%):	78		LAT /	LON	G:		41.0	60756	6, -81	.5589	59	1 OF 1
		MATERI	IAL DESCRIPT	ION		ELEV.	DEP.	TLIC	SPT/	N.	REC	SAMPLE	HP		GRAD	ATIC	N (%))	ATT	ERBE	ERG		ODOT	BACK
1		A	AND NOTES			1071.4	DEP	1115	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
12.0" ASP	PHALT (DR	ILLERS	DESCRIPTION		\boxtimes	1070.4																		
MEDIUM I	DENSE. BF	ROWN M	OTTLED WITH	ORANGISH	MY	1070.4		_ 1 -																
,		_	ND AND SILT,	LITTLE CLAY,	l W			<u> </u>	8 6	21	78	SS-1		26	20	20	23	11	19	15	4	9	A-2-4 (0)	1>11>
CONTAINS	S IRON ST	AINING,	DAMP			1068.4			10	- '	70	30-1		20	20	20	23		13	13	7	9	A-2-4 (0)	7 1 7 1
			ROWN MOTTLI					'	4 20	51	56	SS-2		21	32	17	21	9	NP	NP	NP	7	A-3a (0)	72V 52
				AND FINE SAND,				_ 4 +	19		30	33-2	_	21	32	17	21	Э	INF	INF	INF	′	A-3a (0)	72/12
STAINING		JIVAVLL,	, TRACE CLAT	CONTAINS IRON				<u> </u>	3	34	56	SS-3										6	A-3a (V)	1 LV 1 L
	•					1065.4			14	34	30	33-3	_	_	-	-	-	-	_	_	_	٥	A-3a (V)	1>11>
				NDY SILT, SOME				F°7	4	44	70	00.4	4.5.									40	A 4= () ()	17 × 17
CLAY, LIT	TLE GRAV	EL, CON	ITAINS IRON S	TAINING, DAMP		1063.9	EOR-	- 7 -	13 21	44	78	SS-4	4.5+	-	-	-	-	-	-	-	-	10	A-4a (V)	SLV SL

2.GPJ	PROJECT: SUM-76-06.15 TYPE: SUBGRADE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		EAS / ASHBAUGH EAS / E. ROLLER	-	L RIG: MER:		CME 55		_	STAT		OFF	SET:		AMP	.1		EXPLORA B-077	
-/0-0.15	PID: 100713 SFN: START: 4/17/19 END: 4/17/19	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT	CALI	BRATI	ON DA	ATE:11	/21/17 78		ELEV	/ATIC	N: <u>1</u>		8 (MS	SL) E	OB:	.55857	.5 ft.	PAGE 1 OF 1
ES\SUM	MATERIAL DESCRIPT AND NOTES	_	ELEV. 1082.8	DEPTHS	SPT/ RQD	_		SAMPLE ID		$=$ \perp	GRAD		N (%)		=	ERBE		WC	ODOT CLASS (GI)	BACK FILL
GINIFIL	2.0" ASPHALT AND 10.0" CONCRETE (DRI DESCRIPTION)		1081.8	_ _ 1 -																
NIMORE!	VERY STIFF TO HARD, GRAY MOTTLED W BROWN BECOMING BROWN, SANDY SILT TRACE TO SOME GRAVEL. CONTAINS IRC	, SOME CLAY,		_ 2 -	7 5 6	14	100	SS-1	4.25	9	4	11	47	29	27	17	10	14	A-4a (8)	1>1 1>
0.13 NE	DAMP	·		- 3 - - - 4 -	3 7 7	18	89	SS-2	4.25	29	4	8	38	21	26	18	8	17	A-4a (5)	1>L1>
-01-MOS				5 -	4 6 6	16	100	SS-3	4.25	-	-	-	-	1	-	-	-	16	A-4a (V)	12 12 12 12 12 12 12 12 12 12 12 12 12 1
JEC IS,			1075 3	- 7 -	2 5 5	13	100	SS-4	4.00	-	-	-	-		-	-	-	17	A-4a (V)	12

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; SHOVELED SOIL CUTTINGS

G F	PROJECT: _	SUI	M-76-06.15	DRILLING FIRM / OPER	ATOR: N	IEAS / ASHI	BAUGH	DRIL	L RIG	:	CME 5	5T		STAT	ION	OFF	SET:					EXPLOR	-
T	YPE:	SUB	GRADE	SAMPLING FIRM / LOG	GER: N	EAS / E. RO	LLER	HAM	MER:	CN	ME AUTON	MATIC		ALIG	NME	NT: _		R	AMP	J		B-077	7-3-18
F	PID: 10071	13 SFN:		DRILLING METHOD:	3	.25" HSA		CALI	BRAT	ON DA	TE: 1	1/21/17		ELEV	'ATIC	N: 1	080.4	4 (MS	L) E	OB:	7	5 ft.	PAGE
<u> </u>	START: 4/	<u>'17/1</u> 9 E	ND: <u>4/17/19</u>	SAMPLING METHOD: _		SPT		ENE	RGY F	RATIO (%):	78		LAT /	LON	G:		41.0	31127	7, -81	.55815	51	1 OF 1
		M	ATERIAL DESCRIP	TION	ELEV.	DEPT	LIC	SPT/	NI.	REC	SAMPLE	HP	(GRAD	ATIC	N (%))	ATT	ERBE	RG		ODOT	BACK
}			AND NOTES		1080.4		по	RQD	N ₆₀	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	13" ASPHAL	LT (DRILLE	RS DESCRIPTION)	\bigotimes	1079.3		- 1 -																
	LOOSE, BRO	OWN, GRA	VEL WITH SAND, T	RACE SILT,	ξ.		⊦ ' ∎	_															1 LV 1 L
	TRACE CLA	Y, DAMP			7		_ 2 -	3 4	9	89	SS-1	-	10	55	27	4	4	NP	NP	NP	6	A-1-b (0)	1>1 1>
įL				<u>aQ</u>	1076.9		<u></u> 3 ↑	2			SS-2A	-	-	-	-	-	-	-	-	-	7	A-1-b (V)	1>11>
			, BROWN, SILT , SC ., CONTAINS IRON	CTAINING DAMD +++	+		_ 4 +	4 4	10	78	SS-2B	4.25	-	-	-	-	-	1	-	-	18	A-4b (V)	1>1 1>
	TO MOIST	JE OIV WEE	., 001117411101111011	31AINING, DAIVIP +++ +++ +++ +++			5 -	3 5 5	13	89	SS-3	4.25	6	4	17	58	15	22	18	4	19	A-4b (8)	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
2250				+ + + + + + + + + + + +		FOB-	- 6 - - 7 -	2 5 12	22	100	SS-4	3.25	-	-	-	-	-	-	-	-	19	A-4b (V)	1

્.	ROJECT: YPE:	SUM-76- SUBGRAI		DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		EAS / ASHI		-	L RIG MER:		CME 55			STAT ALIG			SET:		AMP	1		EXPLORA B-077	ATION ID 7-4-18
F	PID: 100713 TART: 4/17/	SFN:	4/17/19	DRILLING METHOD: SAMPLING METHOD:		.25" HSA SPT	JLLLK	CALI	BRAT	ON DA	ATE: 11	/21/17 78	_	ELEV LAT	/ATIC	N: <u>1</u>		2 (MS	L) E	OB:	.55734	.5 ft.	PAGE 1 OF 1
-ES/SU			RIAL DESCRIPT AND NOTES	TON	ELEV. 1087.2	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE cs	ATIC FS	N (%)) CL	ATTI	ERBE PL	RG PI	WC	ODOT CLASS (GI)	BACK FILL
롣닏			DESCRIPTION OWN MOTTLED	' XX	1086.2		 - 1 -																₩ 1 L ^V 1 L
NO N	SILT , SOME CL GRAVEL, CON	AY, TRÁCE	TO LITTLE SAN E IRON STAINII	D, TRACE	+ + + + +		2	3 5 6	14	100	SS-1	4.25	2	3	9	53	33	29	19	10	16	A-4b (8)	1>V 1>
0.15 KEI	MOIST			+ + + + + + + + + + + + + + + + + + +	+ + + + +		- 3 - - 4 -	5 7 9	21	100	SS-2	4.25	-	-	-	-	-	-	-	-	22	A-4b (V)	1 > \ 1 > \
-0.7-IMID 6				+ + + + + + + + + + + + + + + + + + +	+ + + + +		5 -	3 4 6	13	100	SS-3	4.00	0	1	2	69	28	30	23	7	22	A-4b (8)	12V 12
NEC IS				+ + + + + + + + + + + + + + + + + + +	1079.7	FOR-	- 6 - 7	4 4 6	13	100	SS-4	3.75	-	-	-	-	-	-	-	-	27	A-4b (V)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

TYPE: ROADWAY SAMPLING FI		IEAS / J. HODGES AS / CHIPUKAIZER	DRILI HAMI			CME 55			STAT ALIGI			SET:		4+35, AMP		т.		ATION ID 8-0-18
ól — — — — — — — — — — — — — — — — — — —	 3	25" HSA SPT			ON DA	ATE: <u>11</u> (%):	/21/17 85		ELEV LAT /		_		_			10 .57340).5 ft.)7	PAGE 1 OF 1
MATERIAL DESCRIPTION AND NOTES	ELEV. 985.6	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	GRAD cs	ATIC FS	N (%)) CL	ATT LL	ERBE PL	PI	wc	ODOT CLASS (GI)	BACK FILL
VERY STIFF TO HARD, BROWN BECOMING BROWN MOTTLED WITH REDDISH BROWN AND GRAY, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, DAMP		- 1 - - 2 -																1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
START: 4/30/19 END: 4/30/19 SAMPLING M MATERIAL DESCRIPTION AND NOTES VERY STIFF TO HARD, BROWN BECOMING BROWN MOTTLED WITH REDDISH BROWN AND GRAY, SANDY SILT, LITTLE CLAY, LITTLE GRAVEL, DAMP		3 - 4 -	5 5 6	16	56	SS-1	4.5+	12	12	25	32	19	23	16	7	12	A-4a (3)	1>V 1>
		- 5 - - 6 - - 7 -	2 6 9	21	78	SS-2	4.5+	12	14	25	31	18	23	15	8	12	A-4a (3)	- 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
SOIL PROJECT		- 8 - - 9 -	4 10 7	24	100	SS-3	4.5+	-	-	-	-	-	-	-	-	11	A-4a (V)	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
	975.1	EOB - 10 -	3 2 4	9	100	SS-4	2.00	-	-	-	-	-	-	-	-	15	A-4a (V)	1>V1> 1 V 1 V 1 V 1 V

	OJECT PE:	:	SUM-76		DRILLING FIRM / OPER SAMPLING FIRM / LOGO		IEAS / J. HODG AS / CHIPUKAIZ		DRILL HAMM			CME 55			STA1 ALIG			SET:		7+31, AMP		.T.		ATION ID 9-0-18
% 15.2 JId 52.2	D: <u>10</u>	0713	SFN:		DRILLING METHOD:	3	.25" HSA		CALIB	RATI	ON D	ATE:11	/21/17		ELE\	/ATIC)N: _	976.9) (MS	L)_ E	OB:	1().5 ft	PAGE
Ş ST	ART: _	4/30/19	END:	4/30/19	SAMPLING METHOD: _		SPT		ENER	GY R	OITA	(%):	85		LAT /	/ LON	IG: _		41.0	66348	3, -81	.5733	79	1 OF 1
\S\			MATE	RIAL DESCRIPT	TION	ELEV.	DEPTHS		SPT/	N ₆₀	REC	SAMPLE	HP	Ĭ	GRAE	DATIC	N (%)	ATT	ERBE	ERG		ODOT	BACK
				AND NOTES		976.9	DEI IIIO	R	RQD	1 160	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	I ILL
					ROWN, COARSE		-																	1 LV 1 L
			CLAY, WE		RACE TO LITTLE			1																1> \ 1> \ 1>
		,	0			:		2																1>11>
Ž								1	_	7		00.4										-00	A 0 - (1.0)	1 LV 1 L
					00 000 0 0 0 0 0 0 0 0 0				2 3	1	56	SS-1	-	-	-	-	-	-	-	-	-	20	A-3a (V)	1>N 1>
9-6.1						:		1																1>11
M-76							- !	2																1 LV 1 L
NS/S								; -	2	7	100	SS-2	-	11	25	37	17	10	NP	NP	NP	17	A-3a (0)	1>\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\
010					****		l Ł.	, 💾																1>11>
O							I F '	1																1 LV 1 L
H.						:	-	3 🚪 '	2	6	50	SS-3	-	8	23	34	25	10	22	18	4	21	A-3a (0)	1>11>
CTIVE SOIL PROJECTS\SUM-76-6.15							_ 9) 🕌	2															1 × 1 × 1 ×
ĕ								۱ 🗐	2	6	100	SS-4	-	-	-	-	-	-	-	-	-	26	A-3a (V)	
ACT					0.00	966.4	EOB '	·	2															حداحدا

٦	PROJECT: SUM-76-06.15 TYPE: SUBGRADE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG	_	IEAS / J. HODO			L RIG: MER:		CME 55			STAT			SET:		9+06, AMP	, 27' L N	.T	EXPLOR/ B-080	
e F	PID: 100713 SFN:	DRILLING METHOD: SAMPLING METHOD:		25" HSA SPT		CALI	BRATI	ON DA ATIO (TE:11	/21/17 85	_	ELEV LAT /	ATIC	N: _9		(MS	L)_ E	OB:	7. .57291	.5 ft.	PAGE 1 OF 1
E3/30	MATERIAL DESCRIPT AND NOTES	ION	ELEV. 979.3	DEPTHS	;	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs	ATIC FS	N (%)) CL	ATT LL	ERBE PL	RG PI	wc	ODOT CLASS (GI)	BACK FILL
	MEDIUM DENSE, DARK GRAY AND BROW STONE FRAGMENTS WITH SAND, LITTLE	SILT, TRACE	977.8	-	1 -	3 8 12	28	56	SS-1	-	26	27	26	13	8	NP	NP	NP	9	A-1-b (0)	1 L V 1 L 1 > V 1 >
2)	CLAY, DAMP MEDIUM DENSE TO DENSE, BROWN, COA SAND, LITTLE SILT, LITTLE CLAY, TRACE				2 -	5 14 17	44	100	SS-2	-	10	26	34	18	12	NP	NP	NP	9	A-3a (0)	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
-0. IS					4	3 9 14	33	67	SS-3	-	-	-	ı	-	1	-	-	1	9	A-3a (V)	1>\\ 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
O INC		• • • • • • • • • • • • • • • • • • •		_	5 -	5 7 9	23	100	SS-4	-	-	-	-	-	-	-	-	-	11	A-3a (V)	1>1 1>
JUEN IS			971.8	FOR	7 -	3 5 4	13	100	SS-5	-	-	-	1	-	-	-	-	-	13	A-3a (V)	1 × × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1

2	PROJECT: <u>SUM-76-06.15</u>	DRILLING FIRM / OPERA	TOR: N	IEAS / J. HODGE	S_ DRI	LL RIG	:	CME 55	X		STAT	ION	OFF	SET:		5+43	, 7' R	T	EXPLOR	-
2 4	TYPE: SUBGRADE	SAMPLING FIRM / LOGG	ER: NE	AS / CHIPUKAIZ	R HA	MMER:	CN	ME AUTON	1ATIC		ALIG	NME	NT: _		R	AMP	M		B-08	-0-18
ė.	PID: 100713 SFN:	DRILLING METHOD:	3.	25" HSA	CAI	IBRAT	ION DA	NTE: 11	/21/17		ELEV	'ATIC	N: 9	979.6	(MS	L) E	OB:	7.	5 ft.	PAGE
0/-I	START: <u>5/1/19</u> END: <u>5/1/19</u>	SAMPLING METHOD:		SPT	EN	ERGY F	RATIO (%):	85		LAT /	LON	G:		41.0	6752°	1, -81	.57374	6	1 OF 1
50/	MATERIAL DESCRIPT	ION	ELEV.	DEPTHS	SPT	/ N ₆₀	REC	SAMPLE	HP	(GRAD	ATIC	N (%))	ATT	ERBE	ERG		ODOT	BACK
	AND NOTES		979.6	DEFINS	RQE) 1460	(%)	ID	(tsf)	GR	cs	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
	MEDIUM DENSE, BROWN, COARSE AND F		978.8	-	5 1	13	50	SS-1A	-	-	-	-	-	-	-	-	1	5	A-3a (V)	1 LV 1 L
5	SOME GRAVEL AND STONE FRAGMENTS, DAMP	TRACE CLAY,	978.1] 1	1 -	5	30	SS-1B	4.5+	15	17	28	21	19	28	16	12	12	A-6a (2)	1>\ 1>
NINIORE	HARD, DARK GRAY AND BROWN, SILT AN SAND, LITTLE GRAVEL, DAMP	D CLAY, "AND"		- 2 - 2	1 ⁴ 5	14	56	SS-2	3.25	4	14	22	30	30	36	17	19	18	A-6b (9)	1 > \ 1 > \ 1 \ \
0.13 NE	STIFF TO VERY STIFF, BROWN MOTTLED ORANGISH BROWN AND GRAY, SILTY CLA	AY, SOME TO		_ 4	3 3	10	100	SS-3	2.75	-	-	-	-	-	-	-	-	21	A-6b (V)	7 > \ 7 \ 7
- NON-	"AND" SAND, TRACE GRAVEL, CONTAINS MOIST		973.6	<u> </u>	4 2	7	100	SS-4	1.75	-	-	-	-	-	-	-	1	20	A-6b (V)	1
SUPECTOR	MEDIUM DENSE, BROWN, COARSE AND F LITTLE SILT, TRACE GRAVEL, TRACE CLA		972.1	FOB - 7	3 3	11	56	SS-5	-	-	-	-	-	-	-	-	-	19	A-3a (V)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

APPENDIX C SULFATE CONTENT DATA

OHIO DEPARTMENT OF TRANSPORTATION DETERMINING SULFATE CONTENT IN SOILS SUPPLEMENT 1122

 Project C-R-S:
 SUM-76-6.15

 PID No:
 100713

 Report Date:
 7/15/2019

Consultant: NEAS Inc.

Technician: L. Rosenbeck

								Rej	olicate Sar	nple Readi	ngs		Sulfate
Boring ID & Sample	Station	Offset	Latitude & Long	•	Elevation	Soaking		1		2		3	Content
#			Plane Coo	ordinates		Time (hr)	Dilution	Reading	Dilution	Reading	Dilution	Reading	(ppm)
B-001-0-18 SS-1	210+67	52 L	41.061777	-81.570129	995.6	18.20	20	25	20	28	20	25	520
B-002-0-18 SS-1	207+22	50 R	41.062207	-81.571304	1002.1	19.80	20	20	20	19	20	19	387
B-003-0-18 SS-1	204+23	50 L	41.063006	-81.571741	999.8	18.22	20	7	20	7	20	7	140
B-004-0-18 SS-1	200+64	8 L	41.063742	-81.572600	1000.8	21.35	20	9	20	7	20	9	167
B-005-0-18 SS-1	196+37	7 L	41.064784	-81.573297	994.7	21.35	40	29	40	30	40	36	1267
B-006-0-18 SS-1	196+62	13 L	41.065496	-81.573614	987.9	21.37	40	71	40	65	40	63	2653
B-007-0-18 SS-1	189+75	74 L	41.066552	-81.573713	976.4	19.83	20	1	20	0	20	0	7
B-008-0-18 SS-1	181+94	76 L	41.068655	-81.573829	983.4	19.18	20	12	20	12	20	11	233
B-010-0-18 SS-1	173+98	60 L	41.070840	-81.573860	985.0	19.10	20	5	20	4	20	5	93
B-011-0-18 SS-1	170+00	60 L	41.071934	-81.573846	984.0	19.05	20	8	20	11	20	8	180
B-012-0-18 SS-1	165+85	59 L	41.073072	-81.573836	982.9	19.05	20	1	20	1	20	2	27
B-013-0-18 SS-1	161+79	60 L	41.074185	-81.573819	981.8	19.03	20	5	20	4	20	8	113
B-014-0-18 SS-2	157+96	60 L	41.075237	-81.573806	982.7	19.08	20	4	20	2	20	3	60
B-015-0-18 SS-1	154+04	73 L	41.076317	-81.573749	984.3	18.20	20	4	20	4	20	4	80
B-016-0-18 SS-1	150+15	60 L	41.077400	-81.573883	987.4	23.80	20	1	20	2	20	2	33
B-017-0-18 ST-1	149+98	94 L	41.077460	-81.573770	980.2	20.95	20	1	20	1	20	1	20
B-018-0-18 SS-2	146+83	59 L	41.078313	-81.574111	987.9	23.80	20	64	20	70	20	64	1320
B-019-0-18 SS-2	143+71	60 L	41.079148	-81.574449	988.2	19.17	20	0	20	0	20	0	0

B-020-0-18 SS-1	43+79	49 L	41.035695	-81.574353	1002.4	21.02	20	25	20	25	20	25	500
B-022-0-18 SS-1	47+81	68 L	41.035730	-81.572893	987.7	21.43	20	1	20	2	20	0	20
B-023-0-18 SS-1	51+80	49 L	41.035659	-81.571451	977.3	18.82	20	3	20	3	20	3	60
B-025-0-18 SS-2	55+67	60 L	41.035672	-81.570045	973.1	18.88	20	9	20	9	20	9	180
B-026-0-18 SS-2	58+92	72 L	41.035690	-81.568868	971.4	18.78	20	4	20	4	20	4	80
B-027-018 SS-1B	63+44	55 L	41.035623	-81.567231	969.8	21.38	20	3	20	0	20	1	27
B-028-0-18 SS-2	65+78	65 R	41.035283	-81.566391	972.9	19.20	20	0	20	0	20	0	0
B-029-0-18 SS-2	67+70	66 R	41.035262	-81.564969	973.9	18.90	20	0	20	0	20	1	7
B-030-0-18 SS-2	73+70	61 R	41.035256	-81.563520	975.7	18.83	20	0	20	0	20	0	0
B-032-0-18 SS-2	77+74	58 R	41.035245	-81.562054	976.8	18.97	20	1	20	1	20	0	13
B-033-0-18 SS-1	81+72	68 R	41.035201	-81.560613	976.8	23.82	20	0	20	0	20	0	0
B-035-0-18 SS-2	85+67	68 R	41.035183	-81.559182	978.6	17.92	40	28	40	31	40	28	1160
B-037-0-18 SS-2B	93+64	62 R	41.035162	-81.556293	983.3	19.17	20	1	20	1	20	1	20
B-038-0-18 SS-2	96+70	66 R	41.035125	-81.555196	985.1	18.00	20	17	20	14	20	18	327
B-039-0-18 SS-2	219+40	45 R	41.060352	-81.567580	997.5	23.78	20	15	20	13	20	14	280
B-040-0-18 SS-2	223+88	37 L	41.060208	-81.565940	1007.9	17.87	20	4	20	4	20	4	80
B-041-0-18 SS-1	227+78	10 L	41.059975	-81.564569	1022.7	21.35	20	14	20	19	20	17	333
B-042-0-18 SS-1	231+81	41 L	41.060028	-81.563111	1036.4	17.87	20	44	20	43	20	48	900
B-043-0-18 SS-2	234+79	43 L	41.060030	-81.562031	1047.6	17.87	20	22	20	18	20	20	400
B-044-0-18 SS-2			41.059881	-81.560305	1061.9	21.20	20	6	20	7	20	7	133
B-046-0-18 SS-1	247+75	52 R	41.059780	-81.557323	1068.9	17.87	20	57	20	60	20	59	1173
B-047-0-18 SS-1	251+65	53 R	41.059884	-81.555900	1063.6	17.87	20	66	20	70	20	73	1393
B-048-0-18 SS-1	256+17	70 R	41.060077	-81.554258	1050.6	21.35	20	2	20	3	20	1	40
B-049-0-18 SS-2	260+50	10 R	41.060544	-81.552909	1035.1	21.45	40	41	40	35	40	43	1587
B-050-0-18 SS-1	263+62	63 R	41.060686	-81.551665	1022.1	18.80	40	41	40	38	40	35	1520
B-051-0-18 SS-1	10+73	15 R	41.059555	-81.568264	1017.6	18.24	20	51	20	51	20	46	987
B-053-0-18 SS-1	4+17	30 L	41.061084	-81.569477	997.3	19.82	20	14	20	15	20	12	273
B-054-0-18 SS-1	94+72	25 R	41.060211	-81.568035	1016.2	17.87	20	21	20	20	20	18	393
B-056-0-18 SS-3	97+76	30 R	41.060971	-81.567787	1013.8	21.30	20	12	20	15	20	14	273
B-058-0-18 SS-1	106+50	1 R	41.061258	-81.565290	1008.0	18.93	20	1	20	2	20	2	33
B-059-0-18 SS-1	110+72	15 R	41.060386	-81.565883	1004.8	18.90	20	2	20	3	20	3	53
B-061-0-18 SS-1	215+87	54 L	41.060996	-81.568596	992.3	19.82	20	5	20	3	20	7	100
B-062-0-18 SS-1	2+43	28 L	41.034690	-81.567609	973.0	21.45	20	2	20	0	20	1	20

B-063-0-18 SS-1	10+02	57 L	41.034019	-81.566973	970.7	21.57	20	4	20	1	20	3	53
B-064-0-18 SS-1	14+79	63 L	41.034416	-81.565886	973.3	21.48	20	0	20	0	20	0	0
B-066-0-18 SS-2	17+39	30 L	41.035062	-81.565647	991.4	20.97	20	2	20	2	20	2	40
B-067-0-18 SS-2	8+40	5 R	41.058936	-81.567209	1019.4	17.42	20	26	20	22	20	23	473
B-068-0-18 SS-2B	12+37	19 R	41.059630	-81.566188	1012.1	17.95	40	39	40	39	40	35	1507
B-069-0-18 SS-1	16+94	19 R	41.059717	-81.564576	1024.3	17.95	20	0	20	2	20	0	13
B-071-0-18 SS-2	235+80	74 R	41.059709	-81.561666	1048.8	21.38	20	17	20	16	20	18	340
B-072-0-18 SS-1	99+85	38 L	41.061524	-81.567471	1017.6	21.00	20	4	20	3	20	4	73
B-073-0-18 SS-1	103+14	39 L	41.061843	-81.566284	1016.3	17.62	20	0	20	1	20	1	13
B-074-0-18 SS-1	18+11	7 R	41.061545	-81.565017	1015.2	17.32	20	0	20	1	20	1	13
B-075-0-18 SS-1	14+42	77 L	41.060670	-81.564256	1021.2	21.53	20	1	20	1	20	1	20
B-076-0-18 SS-1	10+85	59 L	41.060150	-81.563065	1036.2	21.52	20	56	20	61	20	53	1133
B-077-0-18 SS-1	4+70	22 L	41.059466	-81.557415	1079.5	18.80	20	11	20	11	20	11	220
B-077-1-18 SS-1			41.060756	-81.558959	1071.4	18.75	20	5	20	5	20	5	100
B-077-2-18 SS-1			41.061393	-81.558576	1082.8	18.72	20	11	20	12	20	12	233
B-077-3-18 SS-1			41.061127	-81.558151	1080.4	18.75	20	1	20	0	20	1	13
B-077-4-18 SS-1			41.060741	-81.557344	1087.2	18.78	20	11	20	9	20	10	200
B-078-0-18 SS-1	4+35	23 L	41.065507	-81.573407	985.6	18.23	20	32	20	29	20	33	627
B-079-0-18 SS-1	7+31	36 L	41.066348	-81.573379	976.9	19.82	20	3	20	1	20	2	40
B-080-0-18 SS-2	9+06	27 L	41.066752	-81.572913	979.3	17.72	20	1	20	2	20	2	33
B-081-0-18 SS-1A	5+43	7 R	41.067521	-81.573746	979.6	17.65	20	2	20	2	20	2	40

APPENDIX D

GEOTECHNICAL BULLETIN 1 (GB1) ANALYSIS SPREADSHEETS

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

Akron Beltway (Kenmore Leg) - Subgrade Exploration IR-77/IR-76

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared:

Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-050-0-18	IR-77/IR-76	263+62	63	Rt	CME 55T	LIK	0.0	-1.5	1.5 C
2	B-049-0-18	IR-77/IR-76	260+50	10	Rt	CME 45B		0.0	-1.5	1.5 C
3	B-048-0-18	IR-77/IR-76	256+17	70	Rt	CME 55T		0.0	-1.5	1.5 C
4	B-047-0-18	IR-77/IR-76	251+65	53	Rt	CME 55T		0.0	-1.5	1.5 C
5	B-046-0-18	IR-77/IR-76	247+75	52	Rt	CME 55T		0.0	-1.5	1.5 C
6	B-045-0-18	IR-77/IR-76	243+80	66	Rt	CME 55T		0.0	-1.5	1.5 C
7	B-044-0-18	IR-77/IR-76	239+55	9	Rt	CME 45B		0.0	-1.5	1.5 C
8	B-043-0-18	IR-77/IR-76	234+79	43	Lt	CME 45B		0.0	-1.5	1.5 C
9	B-042-0-18	IR-77/IR-76	231+81	41	Lt	CME 45B		0.0	-1.5	1.5 C
10	B-041-0-18	IR-77/IR-76	227+78	10	Lt	CME 45B		0.0	-1.5	1.5 C
11	B-040-0-18	IR-77/IR-76	223+88	37	Lt	CME 45B		0.0	-1.5	1.5 C
12	B-039-0-18	IR-77/IR-76	219+40	45	Rt	CME 55T		0.0	-1.5	1.5 C
13	B-060-0-18	IR-77/IR-76	219+30	76	Lt	CME 55X		0.0	-1.5	1.5 C
14	B-061-0-18	IR-77/IR-76	215+87	54	Lt	CME 45B		0.0	-1.5	1.5 C
15	B-053-0-18	IR-77/IR-76	4+17	30	Lt	CME 45B		0.0	-1.5	1.5 C
16	B-001-0-18	IR-77/IR-76	210+67	52	Lt	CME 45B		0.0	-1.5	1.5 C
17	B-002-0-18	IR-77/IR-76	207+22	51	Rt	CME 45B		0.0	-1.5	1.5 C
18	B-003-0-18	IR-77/IR-76	204+23	50	Lt	CME 45B		0.0	-1.5	1.5 C
19	B-004-0-18	IR-77/IR-76	200+64	8	Lt	CME 45B		0.0	-1.5	1.5 C
20	B-005-0-18	IR-77/IR-76	196+37	7	Lt	CME 45B		0.0	-1.5	1.5 C
21	B-006-0-18	IR-77/IR-76	196+62	13	Lt	CME 45B		0.0	-1.5	1.5 C
22	B-007-0-18	IR-77/IR-76	189+75	74	Lt	CME 55X		0.0	-1.5	1.5 C
23	B-008-0-18	IR-77/IR-76	181+94	76	Lt	CME 55T		0.0	-1.5	1.5 C
24	B-009-0-18	IR-77/IR-76	177+99	66	Lt	CME 55T		0.0	-1.5	1.5 C
25	B-010-0-18	IR-77/IR-76	173+98	60	Lt	CME 55T		0.0	-1.5	1.5 C
26	B-011-0-18	IR-77/IR-76	170+00	60	Lt	CME 55T		0.0	-1.5	1.5 C
27	B-012-0-18	IR-77/IR-76	165+85	59	Lt	CME 55T		0.0	-1.5	1.5 C
28	B-013-0-18	IR-77/IR-76	161+79	60	Lt	CME 55T		0.0	-1.5	1.5 C
29	B-014-0-18	IR-77/IR-76	157+96	60	Lt	CME 55T		0.0	-1.5	1.5 C
30	B-015-0-18	IR-77/IR-76	154+04	73	Lt	CME 55X		0.0	-1.5	1.5 C
31	B-016-0-18	IR-77/IR-76	150+15	60	Lt	CME 55T		0.0	-1.5	1.5 C
32	B-018-0-18	IR-77/IR-76	146+83	59	Lt	CME 55T		0.0	-1.5	1.5 C
33	B-019-0-18	IR-77/IR-76	143+71	60	Lt	CME 55T		0.0	-1.5	1.5 C

и	Boring	Sample		nple pth		rade pth		dard tration	НР		Pl	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate	Proble	m	Excavate ar	-	Recommendation
#			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	Content (ppm)	Unsuitable	Unstable	Unsuitable	Unstable	(Enter depth in inches)
1	В	SS-1	2.5	4.0	1.0	2.5	26			22	15	7	35	17	52	8	10	A-4a	3	1520					
	050-0 18	SS-2	5.0 7.5	6.5 9.0	3.5 6.0	5.0	17 36			27	18	9	44	24	68	14	13	A-4a	7						
	10	SS-3				7.5																			
2		SS-4	10.0	11.5	8.5	10.0	42	17	4.5	22	1.0	7	25	24	5.0	9	10	A-4a							
2	В	SS-1	1.5	3.0	0.0	1.5	21		4.5	23	16	7	35	21	56	10	11	A-4a	4						
	049-0	SS-2	3.0	4.5	1.5	3.0	25		4.5	24	17	7	38	20	58	10	12	A-4a	5	1587					
	18	SS-3	4.5	6.0	3.0	4.5	15		4							15	10	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	14	14	3.75							13	10	A-4a	8						
3	В	SS-1	0.0	1.5	-1.5	0.0	10		4.5							11	10	A-4a	8	40			2011		
	048-0	SS-2	2.5	4.0	1.0	2.5	109										0	Rock	0		Rock		30"		
	18	SS-3	5.0	5.9	3.5	4.4											0	Rock	0						
		SS-4	7.5	9.0	6.0	7.5	73	30									0	Rock							
4	В	SS-1	2.5	5.4	1.0	3.9	39		4.5	21	15	6	33	22	55	9	10	A-4a	4	1393					
	047-0	SS-2B	5.4	6.5	3.9	5.0	57									5	6	A-1-b	0						
	18	SS-3	7.5	8.0	6.0	6.5											0	Rock							
		SS-4	10.0	10.4	8.5	8.9		30									0	Rock							
5	В	SS-1	1.5	3.0	0.0	1.5	18		4.5	24	18	6	47	20	67	8	13	A-4a	6	1173					
	046-0	SS-2	3.0	4.5	1.5	3.0	43									7	8	A-3a	0						
	18	SS-3	4.5	6.0	3.0	4.5	25		4.5	29	18	11	43	23	66	8	14	A-6a	7						
		SS-4	6.0	7.5	4.5	6.0	29	18	4.5							10	14	A-6a	10						
6	В	SS-1	2.5	3.0	1.0	1.5											0	Rock	0		Rock	N ₆₀	18"	0''	
	045-0	SS-2	5.0	5.5	3.5	4.0											0	Rock	0						
	18	SS-3	7.5	9.0	6.0	7.5	64										0	Rock							
		SS-4	10.0	11.5	8.5	10.0	60	30									0	Rock							
7	В	SS-1	1.5	3.0	0.0	1.5	13		4.5							14	14	A-6a	10						
	044-0	SS-2	3.0	4.5	1.5	3.0	24		4.5	35	21	14	43	40	83	16	16	A-6a	10	133					
	18	SS-3	4.5	6.0	3.0	4.5	21	1	4.5	34	23	11	45	35	80	10	18	A-6a	8						
		SS-4	6.0	7.5	4.5	6.0	29	13	4.5							16	14	A-6a	10						
8	В	SS-1	1.5	3.0	0.0	1.5	95			23	17	6	17	12	29	10	10	A-2-4	0						
	043-0	SS-2	3.0	4.5	1.5	3.0	22	1	4.5	25	18	7	31	22	53	11	13	A-4a	4	400					
	18	SS-3	4.5			4.5	95		4.5							12	10	A-4a	8						
		SS-4	6.0			6.0	60	22	4.5						-	11	10	A-4a	8			 			
9	В	SS-1	1.5		0.0	1.5	85		4.5	23	16	7	23	16	39	9	11	A-4a	1	900					
	042-0	SS-2	3.0	4.5	1.5	3.0	88	1								4	6	A-1-b	0			1			
	18	SS-3	4.5	6.0	3.0	4.5	52	1	4.5	22	15	8	36	25	61	10	10	A-4a	5			 			
	19	33-3	4.5	0.0	5.0	4.5	32	J	4.3	23	12	٥	30	25	91	10	10	A-4d	Э			<u> </u>			

#	Boring	Sample	Sam De	ple oth	_	rade pth		dard	НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar	'='	Recommendation (Enter depth in
#			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
		SS-4	6.0	6.5	4.5	5.0		30	4.5							7	10	A-4a	8						
10	В	SS-1	1.5	3.0	0.0	1.5	29									5	6	A-1-b	0	333					
	041-0	SS-2	3.0	3.1	1.5	1.6											0	Rock	0		Rock	N ₆₀			
	18	SS-3	4.5	4.6	3.0	3.1											0	Rock	0			N ₆₀			
		SS-4	6.0	6.1	4.5	4.6		29									0	Rock	0						
11	В	SS-1	1.5	3.0	0.0	1.5	28									9	10	A-4a	8						
	040-0	SS-2	3.0	4.5	1.5	3.0	42			NP	NP	NP	19	14	33	8	8	A-3a	0	80					
	18	SS-3	4.5	6.0	3.0	4.5	105									8	8	A-3a	0						
		SS-4	6.0	7.5	4.5	6.0	98	28		NP	NP	NP	26	18	44	7	11	A-4a	2						
12	В	SS-1	1.5	3.0	0.0	1.5	22		4.5	23	15	8	21	16	37	9	10	A-4a	0						
	039-0	SS-2	3.0	4.5	1.5	3.0	20		4.5							11	10	A-4a	8	280					
	18	SS-3	4.5	6.0	3.0	4.5	21		4	27	17	10	32	24	56	14	12	A-4a	4						
		SS-4	6.0	7.5	4.5	6.0	17	17	3.5							13	10	A-4a	8						
13	В	SS-1	2.5	4.0	1.0	2.5	30		2.5	23	17	6	18	12	30	11	10	A-2-4	0						
	060-0	SS-2	5.0	6.5	3.5	5.0	17		2.5							11	10	A-4a	8						
	18	SS-3	7.5	9.0	6.0	7.5	13		2.5	22	15	7	29	19	48	12	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	26	13	4.5							9	10	A-4a							
14	В	SS-1	1.5	3.0	0.0	1.5	49			NP	NP	NP	16	12	28	6	10	A-2-4	0	100					
	061-0	SS-2	3.0	4.5	1.5	3.0	32		4.5	21	15	6	22	15	37	8	10	A-4a	0						
	18	SS-3	4.5	6.0	3.0	4.5	35		4.5							9	10	A-4a	8						
	10	SS-4	6.0	7.5	4.5	6.0	21	21	4.5							13	10	A-4a	8						
15	В	SS-1	1.5	3.0	0.0	1.5	11		4.5	23	17	6	41	24	65	13	12	A-4a	6	273		N ₆₀		12"	
	053-0	SS-2	3.0	4.5	1.5	3.0	17	1	4.5							16	10	A-4a	8			Мс			
	18	SS-3	4.5	6.0	3.0	4.5	15	1	4.5	28	19	9	43	32	75	15	14	A-4a	8						
	10	SS-4	6.0	7.5	4.5	6.0	36	11	5		13		,5	32	 	6	10	A-2-4	0						
16	В	SS-1	1.5	3.0	0.0	1.5	24			NP	NP	NP	11	6	17	10	8	A-3a	0	520					
	001-0	SS-2	3.0	4.5	1.5	3.0	11	1								10	8	A-3a	0						
	18	SS-3	4.5	6.0	3.0	4.5	14	1	2.25	28	18	10	38	23	61	15	13	A-4a	5						
	10	SS-4	6.0	7.5	4.5	6.0	21	11	4.25	20	10	10	36	23	01	17	10	A-4a A-4a	8						
17	В	SS-1	1.5	3.0	0.0	1.5	7		0.75							17	14	A-6a	10	387		HP & Mc		18''	
	002-0	SS-2	3.0	4.5	1.5	3.0	34	1		NP	NP	NP	14	12	26	6	10	A-2-4	0			31.11.6			
							35			19							10		0						
	18	SS-3 SS-4	4.5 6.0	7.5	3.0	4.5	35 49	7		19	13	6	17	14	31	8 5		A-2-4 A-2-4							
18	В	SS-4 SS-1	1.5	3.0	4.5 0.0	6.0 1.5	38	/								7	10 10	A-2-4 A-2-4	0	140					
10				4.5				1		17	13	1	18	10	21	5		A-2-4	0	140					
	003-0	SS-2	3.0	4.5	1.5	3.0	39]		1/	13	4	18	13	31	5	10	A-2-4	U						

#	Boring	Sample		nple pth	1	grade pth	Stan Penet	dard ration	НР		F	hysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar	-	Recommendation (Enter depth in
"			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
	18	SS-3	4.5	6.0	3.0	4.5	34			NP	NP	NP	13	10	23	5	10	A-2-4	0						
		SS-4	6.0	7.5	4.5	6.0	27	27								4	10	A-2-4	0						
19	В	SS-1	1.5	3.0	0.0	1.5	15			29	19	10	24	15	39	14	14	A-4a	1	167					
	004-0	SS-2	3.0	4.5	1.5	3.0	36									16	14	A-6a	10						
	18	SS-3	4.5	6.0	3.0	4.5	34			29	18	11	38	26	64	16	14	A-6a	6						
		SS-4	6.0	7.5	4.5	6.0	27	15								16	14	A-6a	10						
20	В	SS-1	1.5	3.0	0.0	1.5	27			NP	NP	NP	6	2	8	9	6	A-1-a	0	1267					
	005-0	SS-2	3.0	4.5	1.5	3.0	25									7	6	A-1-a	0						
	18	SS-3	4.5	6.0	3.0	4.5	29	1								7	6	A-1-a	0						
		SS-4	6.0	7.5	4.5	6.0	27	25		25	18	7	24	14	38	12	13	A-4a	1						
21	В	SS-1	1.5	3.0	0.0	1.5	21			NP	NP	NP	5	2	7	11	6	A-1-a	0	2653					
	006-0	SS-2	3.0	4.5	1.5	3.0	28									8	6	A-1-a	0						
	18	SS-3	4.5	6.0	3.0	4.5	15									8	6	A-1-a	0						
		SS-4	6.0	7.5	4.5	6.0	22	15		24	17	7	21	20	41	21	12	A-4a	1						
22	В	SS-1	2.5	4.0	1.0	2.5	9									14	8	A-3a	0	7					
	007-0	SS-2	5.0	6.5	3.5	5.0	7			NP	NP	NP	17	11	28	16	8	A-3a	0						
	18	SS-3	7.5	9.0	6.0	7.5	10									17	8	A-3a							
	10	SS-4	9.0	10.5	7.5	9.0	10	7		NP	NP	NP	61	8	69	21	11	A-4b							
23	В	SS-1	0.0	1.5	-1.5	0.0	18									9	10	A-2-4	0	233					
	008-0	SS-2	2.5	4.0	1.0	2.5	13		2.25	25	14	11	22	17	39	13	14	A-6a	1						
	18	SS-3	5.0	6.5	3.5	5.0	21		4.5							11	10	A-4a	8						
	10	SS-4	7.5	9.0	6.0	7.5	12	12	4.5	23	15	8	24	16	40	16	10	A-4a							
24	В	SS-1	0.0	0.3	-1.5	-1.2			5			Ť		10		7	10	A-2-4	0						
	009-0	SS-2	2.5	4.0	1.0	2.5	16	1	4.5	20	17	3	18	12	30	12	8	A-3a	0						
	18	SS-3	5.0	6.5	3.5	5.0	17	1	2.75		14	7	29	19	48	13	10	A-4a	3						
	10	SS-4	7.5	9.0	6.0	7.5	14	14	2.73	21	14	 	23	13	+0	15	10	A-4a				1			
25	В	SS-1	0.0	1.5	-1.5	0.0	31									12	10	A-2-4	0	93					
	010-0	SS-2	2.5	4.0	1.0	2.5	18	1	2	23	16	7	26	17	43	15	11	A-4a	2			Мс			
	18	SS-3	5.0	6.5	3.5	5.0	18	1		22		1	21	11	32	14	10	A-2-4	0			1710			
	19	SS-3 SS-4	7.5	9.0	6.0	7.5	16	16	3	22	1/)	21	11	32	16	10	A-2-4 A-4a	U						
26	В	SS-4 SS-1	0.0	1.5	-1.5	0.0	34	10	4.5			-				9	10	A-4a A-4a	8	180					
	011-0	SS-2	2.5	4.0	1.0	2.5	23			25	10	6	29	15	44	16	14	A-4a	2	100		<u> </u>			
			1					ł			1											1			
	18	SS-3	5.0	6.5	3.5	5.0	9		4	25	16	9	22	16	38	14	11	A-4a	1			1			
27	D	SS-4	7.5	9.0	6.0	7.5	12	9	3.25							16 11	10	A-4a	0	27					
21	В	SS-1	0.0	1.5	-1.5	0.0	30	j	4.25							11	10	A-4a	8	21					

#	Boring	Sample	Sam De	•	Subg De			dard ration	НР		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
	012-0	SS-2	2.5	4.0	1.0	2.5	23		4.25	21	14	7	23	15	38	10	10	A-4a	1						
	18	SS-3	5.0	6.5	3.5	5.0	17		1.25	26	20	6	27	14	41	18	15	A-4a	1						
		SS-4	7.5	9.0	6.0	7.5	16	16	2							17	10	A-4a							
28	В	SS-1	0.0	1.5	-1.5	0.0	25									13	10	A-2-4	0	113					
	013-0	SS-2	2.5	4.0	1.0	2.5	23			NP	NP	NP	9	5	14	7	10	A-2-4	0						
	18	SS-3	5.0	6.5	3.5	5.0	36			NP	NP	NP	8	6	14	8	10	A-2-4	0						
		SS-4	7.5	9.0	6.0	7.5	9	9								17	8	A-3a							
29	В	SS-1	0.0	1.5	-1.5	0.0	16		1.25	25	15	10	30	19	49	16	10	A-4a	3						
	014-0	SS-2	2.5	4.0	1.0	2.5	10									12	8	A-3a	0	60					
	18	SS-3	5.0	6.5	3.5	5.0	12			23	18	5	18	11	29	15	8	A-3a	0						
		SS-4	7.5	9.0	6.0	7.5	12	10								18	8	A-3a							
30	В	SS-1	2.5	4.0	1.0	2.5	23		3	25	15	10	24	16	40	13	10	A-4a	1	80		Mc			
	015-0	SS-2	5.0	6.5	3.5	5.0	7		2.5	27	17	10	28	18	46	15	12	A-4a	2						
	18	SS-3	7.5	9.0	6.0	7.5	6									21	8	A-3a							
		SS-4	9.0	10.5	7.5	9.0	7	6								20	8	A-3a							
31	В	SS-1	0.0	1.5	-1.5	0.0	22			NP			12	6	18	11	10	A-2-4	0	33					
	016-0	SS-2	2.5	4.0	1.0	2.5	51			NP	NP	NP	16	9	25	8	6	A-1-b	0						
	18	SS-3	5.0	6.5	3.5	5.0	42									15	6	A-1-b	0						
22		SS-4	7.5	9.0	6.0	7.5	60	30		20	17	2	10	12	20	7	6	A-1-b							
32	B	SS-1	0.0	1.5	-1.5	0.0	22	-	2.5	20	17	3	18	12	30	9	10	A-2-4	0	1220					
	018-0	SS-2	2.5	4.0	1.0	2.5	25	-	2.5							12	10	A-4a	8	1320					
	18	SS-3	5.0	6.5	3.5	5.0	23		3.5							13	10	A-4a	8						
33	В	SS-4 SS-1	7.5	9.0	6.0 -1.5	7.5 0.0	38 21	23		21	16	5	19	12	31	9	10 10	A-2-4 A-2-4	0						
33	019-0	SS-2	2.5	4.0	1.0	2.5	46	1		21	10	,	13	12	31	8	6	A-1-b	0	0					
								-											1	Ü					
	18	SS-3 SS-4	5.0 7.5	6.5 9.0	3.5 6.0	5.0 7.5	55 20	20								6 12	6	A-1-b A-1-b	0						
		33-4	7.5	9.0	0.0	7.5	20	20								12	б	A-1-D							

PID: 100713

County-Route-Section: SUM-76-6.15

No. of Borings: 33

Geotechnical Consultant: NEAS inc

Prepared By: Erich R.G. Beyer **Date prepared:** 6/25/2019

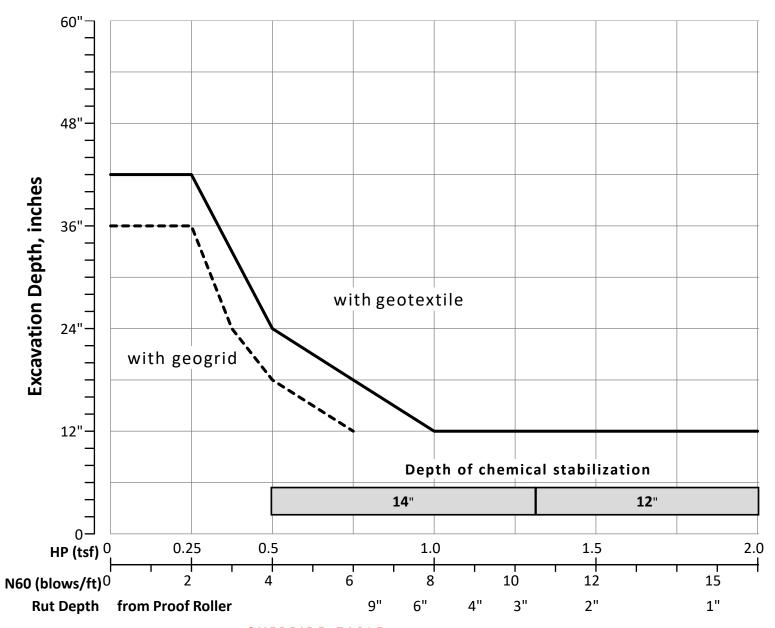
(Chemical Stabilization Option	IS
320	Rubblize & Roll	Option
206	Cement Stabilization	Option
	Lime Stabilization	No
206	Depth	NA

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	0"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0"
Average(HP):	0''

Design CBR	9
---------------	---

% Sampl	es within	6 feet of subgi	rade
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%
N ₆₀ < 12	10%	0.5 < HP ≤ 1	1%
12 ≤ N ₆₀ < 15	9%	1 < HP ≤ 2	3%
N ₆₀ ≥ 20	61%	HP > 2	41%
M+	3%		
Rock	5%		
Unsuitable	11%		

Excavate and Replace at Surface								
Average	0''							
Maximum	0"							
Minimum	0"							


% Proposed Subgrade Surface							
Unstable & Unsuitable	18%						
Unstable	13%						
Unsuitable	5%						

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	30	18	3.75	24	17	8	26	17	43	12	9	3
Maximum	109	30	4.50	35	23	14	61	40	83	21	18	10
Minimum	6	6	0.75	17	13	3	5	2	7	4	0	0

	Classification Counts by Sample																		
ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b												Totals							
Count	12	6	9	15	0	0	0	0	15	51	1	0	11	0	0	0	0	0	120
Percent	10%	5%	8%	13%	0%	0%	0%	0%	13%	43%	1%	0%	9%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	10%					80%								10	0%				100%
Surface Class Count	3	4	4	14	0	0	0	0	7	23	0	0	5	0	0	0	0	0	60
Surface Class Percent	5%	7%	7%	23%	0%	0%	0%	0%	12%	38%	0%	0%	8%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.75		HP
18.03		N60L

Average HP Average N_{60L}

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

Akron Beltway (Kenmore Leg) - Subgrade Exploration IR-277

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared: Tu

Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-020-0-18	IR-277	43+79	49	Lt	CME 45B		0.0	-1.5	1.5 C
2	B-022-0-18	IR-277	47+81	68	Lt	CME 55X		0.0	-1.5	1.5 C
3	B-023-0-18	IR-277	51+80	49	Lt	CME 45B		0.0	-1.5	1.5 C
4	B-025-0-18	IR-277	55+67	60	Lt	CME 45B		0.0	-1.5	1.5 C
5	B-026-0-18	IR-277	58+92	72	Lt	CME 45B		0.0	-1.5	1.5 C
6	B-027-0-18	IR-277	63+44	55	Lt	CME 55X		0.0	-1.5	1.5 C
7	B-028-0-18	IR-277	65+78	65	Rt	CME 55X		0.0	-1.5	1.5 C
8	B-029-0-18	IR-277	69+70	66	Rt	CME 55T		0.0	-1.5	1.5 C
9	B-030-0-18	IR-277	73+70	61	Rt	CME 55T		0.0	-1.5	1.5 C
10	B-031-0-18	IR-277	75+72	61	Rt	CME 55T		0.0	-1.5	1.5 C
11	B-032-0-18	IR-277	77+74	58	Rt	CME 55T		0.0	-1.5	1.5 C
12	B-033-0-18	IR-277	81+72	68	Rt	CME 55X		0.0	-1.5	1.5 C
13	B-035-0-18	IR-277	85+67	68	Rt	CME 55X		0.0	-1.5	1.5 C
14	B-036-0-18	IR-277	89+69	67	Rt	CME 55X		0.0	-1.5	1.5 C
15	B-037-0-18	IR-277	93+64	62	Rt	CME 55X		0.0	-1.5	1.5 C
16	B-038-0-18	IR-277	96+70	66	Rt	CME 55X		0.0	-1.5	1.5 C

																							_		
	Boring	Sample	San De	nple nth	Subg	rade pth	Stan	dard	НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate	Proble	m	Excavate an (Item	-	Recommendation
#			From		From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	Mc	M _{OPT}	Class	GI	Content (ppm)	Unsuitable	Unstable	Unsuitable		(Enter depth in inches)
1	В	SS-1	2.5	4.0	1.0	2.5	8		3.25	27	16	11	34	34	68	17	14	A-6a	7	500		N ₆₀ & Mc		12''	
	020-0	SS-2	5.0	8.0	3.5	6.5	8		3	35	21	14	53	41	94	20	16	A-6a	10						
	18	SS-3B	8.0	10.7	6.5	9.2	10									11	8	A-3a							
		SS-4B	10.7	11.5	9.2	10.0	7	8	4							16	10	A-4a							
2	В	SS-1	2.5	4.0	1.0	2.5	13			NP	NP	NP	7	3	10	9	8	A-3	0	20					
	022-0	SS-2	5.0	6.5	3.5	5.0	7			NP	NP	NP	4	3	7	10	8	A-3	0						
	18	SS-3	7.5	9.0	6.0	7.5	9									8	8	A-3							
		SS-4	10.0	11.5	8.5	10.0	9	7								7	8	A-3							
3	В	SS-1	2.5	4.0	1.0	2.5	28			NP	NP	NP	7	5	12	3	6	A-1-b	0	60					
	023-0	SS-2	5.0	6.5	3.5	5.0	18			NP	NP	NP	7	3	10	3	6	A-1-b	0						
	18	SS-3	7.5	9.0	6.0	7.5	4									3	6	A-1-b							
		SS-4	10.0	11.5	8.5	10.0	6	4								8	6	A-1-b							
4	В	SS-1	1.5	3.0	0.0	1.5	31										8	A-3a	0	180					
	025-0	SS-2	3.0	4.5	1.5	3.0	27			NP	NP	NP	13	4	17	5	8	A-3a	0						
	18	SS-3	4.5	6.0	3.0	4.5	29			NP	NP	NP	89	8	97	22	11	A-4b	8						
		SS-4	6.0	7.5	4.5	6.0	27	27								22	10	A-4b	8						
5	В	SS-1	1.5	3.0	0.0	1.5	18										8	A-3a	0						
	026-0	SS-2	3.0	4.5	1.5	3.0	11			NP	NP	NP	14	7	21	14	8	A-3a	0	80					
	18	SS-3	4.5	6.0	3.0	4.5	17			NP	NP	NP	12	6	18	13	8	A-3a	0						
		SS-4	6.0	7.5	4.5	6.0	13	11								15	8	A-3a	0						
6	В	SS-1A	2.5	2.8	1.0	1.3	13									29	10	A-4a	8			N ₆₀ & Mc		12"	
	027-0	SS-1B	2.8	4.0	1.3	2.5	13			NP	NP	NP	15	7	22	16	8	A-3a	0	27					
	18	SS-2	5.0	6.5	3.5	5.0	9	1		NP	NP	NP	13	6	19	14	8	A-3	0						
		SS-3	7.5	9.0	6.0	7.5	3	3								18	6	A-1-b							
7	В	SS-1	2.5	4.0	1.0	2.5	27			NP	NP	NP	35	7	42	16	11	A-4a	1			Мс			
	028-0	SS-2	5.0	6.5	3.5	5.0	9									26	8	A-3	0	0			·		
	18	SS-3	7.5	9.0	6.0	7.5	3			NP	NP	NP	6	3	9	27	8	A-3							
		SS-4	10.0	11.5	8.5	10.0	4	3								29	8	A-3							
8	В	SS-1	2.5	4.0	1.0	2.5	10			NP	NP	NP	12	6	18	11	8	A-3a	0						
	029-0	SS-2	5.0	6.5	3.5	5.0	16									8	8	A-3a	0	7					
	18	SS-3	7.5		6.0	7.5	10			NP	NP	NP	3	4	7	25	8	A-3							
		SS-4		11.5	8.5	10.0	7	10								35	8	A-3							
9	В	SS-1	2.5	4.0	1.0	2.5	10			NP	NP	NP	13	6	19	18	8	A-3a	0						
	030-0	SS-2	5.0	6.5	3.5	5.0	7									19	8	A-3a	0	0					
	18	SS-3	7.5	9.0	6.0	7.5	7			NP	NP	NP	5	4	9	21	8	A-3							
	10	33-3	7.5	5.0	0.0	7.5	,			IVI	IVI	141.	,	7	,	21	Ü	Λ-3							

#	Boring	Sample	Sam De _l	-	_	rade pth	Stan Penet	dard	НР		Pl	nysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
		SS-4	10.0	11.5	8.5	10.0	5	7								25	8	A-3							
10	В	SS-1	0.0	1.5	-1.5	0.0	10			22	19	3	57	12	69	18	14	A-4b	7						
	031-0	SS-2	2.5	4.0	1.0	2.5	8			NP	NP	NP	7	5	12	19	8	A-3a	0						
	18	SS-3	5.0	6.5	3.5	5.0	3									24	8	A-3	0						
		SS-4	7.5	9.0	6.0	7.5	0	0		NP	NP	NP	7	3	10	26	8	A-3							
11	В	SS-1	0.0	1.5	-1.5	0.0	9			NP	NP	NP	10	4	14	10	8	A-3a	0						
	032-0	SS-2	2.5	4.0	1.0	2.5	8									15	8	A-3a	0	13					
	18	SS-3	5.0	6.5	3.5	5.0	5									17	8	A-3a	0						
		SS-4	7.5	9.0	6.0	7.5	0	0								19	8	A-3a							
12	В	SS-1	2.5	4.0	1.0	2.5	9									19	8	A-3a	0	0					
	033-0	SS-2	5.0	6.5	3.5	5.0	4		0.5	NP	NP	NP	35	9	44	40	11	A-4a	2						
	18	SS-3	7.5	9.0	6.0	7.5	0		0							40	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	0	0		NP	NP	NP	9	6	15	18	8	A-3a							
13	В	SS-1	2.5	4.0	1.0	2.5	11			NP	NP	NP	71	11	82	24	11	A-4b	8		A-4b	N ₆₀ & Mc	30"	12"	
	035-0	SS-2	5.0	6.5	3.5	5.0	6		2	25	21	4	44	12	56	20	16	A-4a	4	1160					
	18	SS-3	7.5	9.0	6.0	7.5	4		1.25							24	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	17	4		NP	NP	NP	15	10	25	16	8	A-3a							
14	В	SS-1	2.5	4.0	1.0	2.5	14			NP	NP	NP	81	13	94	29	11	A-4b	8		A-4b	N ₆₀ & Mc	30"	12"	
	036-0	SS-2	5.0	6.5	3.5	5.0	9			NP	NP	NP	79	12	91	27	11	A-4b	8						
	18	SS-3	7.5	11.2	6.0	9.7	14									11	8	A-3a							
		SS-4B	11.2	11.5	9.7	10.0	14	9	3							21	10	A-4a							
15	В	SS-1	2.5	4.0	1.0	2.5	35			NP	NP	NP	79	17	96	19	11	A-4b	8		A-4b	Mc	30"		
	037-0	SS-2A	5.0	6.0	3.5	4.5	14									8	8	A-3a	0						
	18	SS-2B	6.0	6.5	4.5	5.0	14									20	10	A-4a	8	20					
		SS-3	7.5	9.0	6.0	7.5	20	14		NP	NP	NP	49	10	59	17	11	A-4a							
16	В	SS-1	2.5	4.0	1.0	2.5	28		4.5	19	15	4	29	14	43	12	10	A-4a	2						
	038-0	SS-2	5.0	6.5	3.5	5.0	21		3							14	10	A-4a	8	327					
	18	SS-3	7.5	9.0	6.0	7.5	9		3.75							19	10	A-4a							
		SS-4	10.0	11.5	8.5	10.0	7	9	2.75	35	26	9	75	24	99	29	21	A-4b							

PID: 100713

County-Route-Section: SUM-76-6.15

No. of Borings: 16

Geotechnical Consultant: NEAS inc

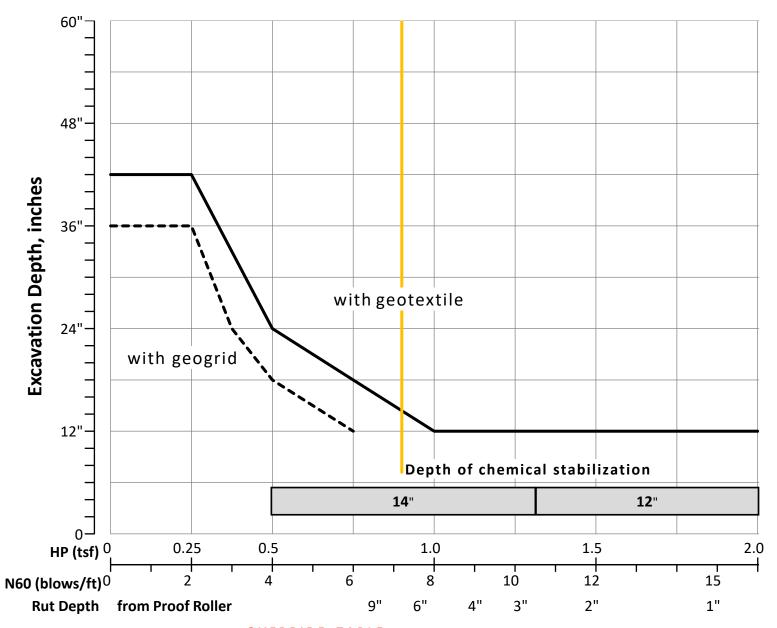
Prepared By: Erich R.G. Beyer **Date prepared:** 6/25/2019

(Chemical Stabilization Options									
320	Rubblize & Roll	No								
206	Cement Stabilization	Option								
	Lime Stabilization	No								
206	Depth	14"								

Excavate and Replace								
Stabilization Options								
Global Geotextile								
Average(N60L):	15"							
Average(HP):	0''							
Global Geogrid								
Average(N60L):	0''							
Average(HP):	0''							

Design CBR	9
---------------	---

% Samples within 6 feet of subgrade										
N ₆₀ ≤ 5	20%	HP ≤ 0.5	4%							
N ₆₀ < 12	57%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	16%	1 < HP ≤ 2	4%							
N ₆₀ ≥ 20	20%	HP > 2	10%							
M+	12%									
Rock	0%									
Unsuitable	11%									


Excavate and Replace at Surface							
Average	0''						
Maximum	0"						
Minimum	0"						

% Proposed Subgrade Surface							
Unstable & Unsuitable	43%						
Unstable	29%						
Unsuitable	14%						

	N ₆₀	N _{60L}	HP	LL	PL	PI	Silt	Clay	P 200	M_{c}	M _{OPT}	GI
Average	12	7	2.58	28	20	8	30	10	40	18	9	3
Maximum	35	27	4.50	35	26	14	89	41	99	40	21	10
Minimum	0	0	0.00	19	15	3	3	3	7	3	6	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	5	0	0	0	0	14	21	13	7	0	2	0	0	0	0	0	62
Percent	0%	0%	8%	0%	0%	0%	0%	23%	34%	21%	11%	0%	3%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%		85% 15%													100%			
Surface Class Count	0	0	1	0	0	0	0	1	11	3	4	0	1	0	0	0	0	0	21
Surface Class Percent	0%	0%	5%	0%	0%	0%	0%	5%	52%	14%	19%	0%	5%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
2.58		HP
7.25		N60L

Average HP Average N_{60L}

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

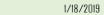
Akron Beltway (Kenmore Leg) - Subgrade Exploration Ramp B and Ramp A2

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared:


Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-029-0-18	Ramp B	10+53	12	Rt	CME 55T		0.0	-1.5	1.5 C
2	B-028-0-18	Ramp B	6+60	3	Rt	CME 55X		0.0	-1.5	1.5 C
3	B-062-0-18	Ramp B	2+43	28	Lt	CME 55X		0.0	-1.5	1.5 C
4	B-063-0-18	Ramp A2	10+02	57	Lt	CME 55X		0.0	-1.5	1.5 C
5	B-064-0-18	Ramp A2	14+79	63	Lt	CME 55X		0.0	-1.5	1.5 C
6	B-066-0-18	Ramp A2	17+39	30	Lt	CME 45B		0.0	-1.5	1.5 C

V. 14.5

#	Boring	Sample		nple pth	Subg De		Stan Penet	dard ration	НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M_{c}	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	0.0	1.5	-1.5	0.0	10			NP	NP	NP	12	6	18	11	8	A-3a	0						
	029-0	SS-2	2.5	4.0	1.0	2.5	16						-		_	8	8	A-3a	0	7					
	18	SS-3	5.0	6.5	3.5	5.0	10	ļ		NP	NP	NP	3	4	7	25	8	A-3	0						
		SS-4	7.5	9.0	6.0	7.5	7	7								35	8	A-3							
2	В	SS-1	2.5	4.0	1.0	2.5	27	ļ		NP	NP	NP	35	7	42	16	11	A-4a	1			Mc			
	028-0	SS-2	5.0	6.5	3.5	5.0	9									26	8	A-3	0	0					
	18	SS-3	7.5	9.0	6.0	7.5	3			NP	NP	NP	6	3	9	27	8	A-3							
_		SS-4		11.5	8.5	10.0	4	3			*10	***	10		26	29	8	A-3		20					
3	В	SS-1	2.5	4.0	1.0	2.5	7			NP	NP	NP	18	8	26	13	8	A-3a	0	20					
	062-0	SS-2	5.0	6.5	3.5	5.0	14	ļ								12	8	A-3a	0						
	18	SS-3	7.5	9.0	6.0	7.5	0									14	8	A-3a							
		SS-4		11.5	8.5	10.0	0	0		NP	NP	NP	25	10	35	14	8	A-3a							
4	В	SS-1	2.5	4.0	1.0	2.5	14			NP	NP	NP	17	9	26	13	8	A-3a	0	53					
	063-0	SS-2	5.0	6.5	3.5	5.0	4									13	8	A-3a	0						
	18	SS-3	7.5	9.0	6.0	7.5	0									18	8	A-3a							
		SS-4	10.0	11.5	8.5	10.0	1	0		NP	NP	NP	24	10	34	15	8	A-3a							
5	В	SS-1	2.5	4.0	1.0	2.5	14	ļ		NP	NP	NP	7	2	9	9	8	A-3	0	0					
	064-0	SS-2	5.0	6.5	3.5	5.0	9									24	8	A-3	0						
	18	SS-3	7.5	9.0	6.0	7.5	13			NP	PN	NP	6	3	9	26	8	A-3							
		SS-4	10.0	11.5	8.5	10.0	7	9		NP	NP	NP	65	5	70	30	11	A-4b							
6	В	SS-1	2.5	4.0	1.0	2.5	14			NP	NP	NP	7	4	11	9	6	A-1-b	0						
	066-0	SS-2	5.0	6.5	3.5	5.0	13			NP	NP	NP	4	4	8	14	8	A-3	0	40					
	18	SS-3	7.5	9.0	6.0	7.5	8									6	8	A-3							
		SS-4	10.0	11.5	8.5	10.0	10	8								12	8	A-3							

PID: 100713

County-Route-Section: SUM-76-6.15

No. of Borings: 6

Geotechnical Consultant: NEAS inc

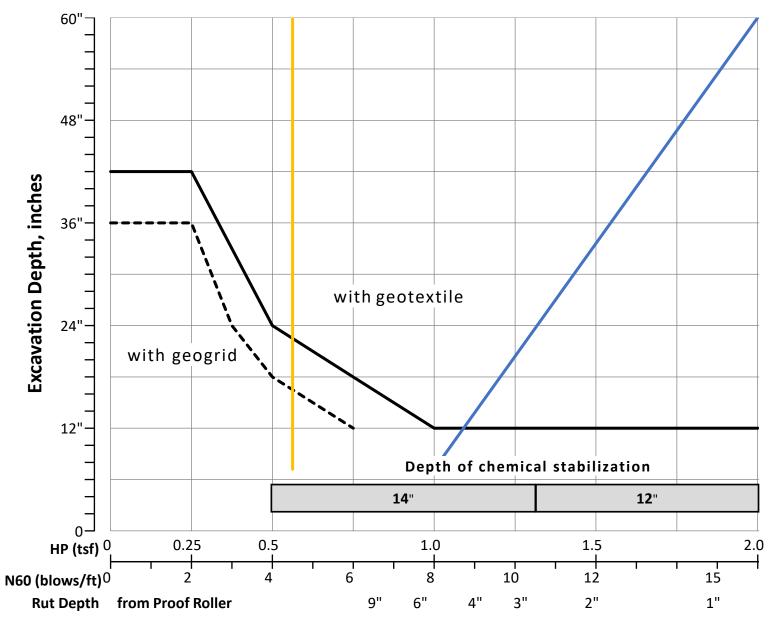
Prepared By: Erich R.G. Beyer **Date prepared:** 6/25/2019

(Chemical Stabilization Options									
320	Rubblize & Roll	No								
206	Cement Stabilization	No								
	Lime Stabilization	Option								
206	Depth	14"								

Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	#N/A						
Average(HP):							
Global Geogrid							
Average(N60L):	#N/A						
Average(HP):							

Design CBR	13
---------------	----

% Sample	% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	22%	22% HP ≤ 0.5								
N ₆₀ < 12	56%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	33%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	6%	HP > 2	0%							
M+	6%									
Rock	0%									
Unsuitable	4%									


Excavate and Replace at Surface								
Average	0''							
Maximum	0"							
Minimum	0"							

% Proposed Subgrade Surface							
Unstable & Unsuitable	14%						
Unstable	14%						
Unsuitable	0%						

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	9	5					18	6	24	18	8	0
Maximum	27	9	0.00	0	0	0	65	10	70	35	11	1
Minimum	0	0	0.00	0	0	0	3	2	7	6	6	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	0	1	0	0	0	0	11	9	1	1	0	0	0	0	0	0	0	23
Percent	0%	0%	4%	0%	0%	0%	0%	48%	39%	4%	4%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					96%					4%								100%
Surface Class Count	0	0	1	0	0	0	0	1	4	1	0	0	0	0	0	0	0	0	7
Surface Class Percent	0%	0%	14%	0%	0%	0%	0%	14%	57%	14%	0%	0%	0%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
		HP
4.50		N60L

Average HP Average N_{60L}

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

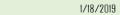
Akron Beltway (Kenmore Leg) - Subgrade Exploration Ramp J

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared:


Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-045-1-18	Ramp J				CME 55T	1.5	0.0	1.5 C
2	B-077-1-18	Ramp J				CME 55T	1.5	0.0	1.5 C
3	B-077-2-18	Ramp J				CME 55T	1.5	0.0	1.5 C
4	B-077-3-18	Ramp J				CME 55T	1.5	0.0	1.5 C
5	B-077-4-18	Ramp J				CME 55T	1.5	0.0	1.5 C

#	Boring	Sample	Sam De	nple pth	Subg De	rade oth	Stan Penet		НР		Pl	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate an	•	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	40										0	Rock	0		Rock				
	045-1	SS-2	3.0	4.5	1.5	3.0	60										0	Rock	0		Rock		36"		
	18	SS-3	4.5	5.5	3.0	4.0											0	Rock	0						
		SS-4	6.0	6.7	4.5	5.2		30									0	Rock	0						
2	В	SS-1	1.5	3.0	0.0	1.5	21			19	15	4	23	11	34	9	10	A-2-4	0	100					
	077-1	SS-2	3.0	4.5	1.5	3.0	51			NP	NP	NP	21	9	30	7	8	A-3a	0						
	18	SS-3	4.5	6.0	3.0	4.5	34									6	8	A-3a	0						
		SS-4	6.0	7.5	4.5	6.0	44	21	4.5							10	10	A-4a	8						
3	В	SS-1	1.5	3.0	0.0	1.5	14		4.25	27	17	10	47	29	76	14	12	A-4a	8	233					
	077-2	SS-2	3.0	4.5	1.5	3.0	18		4.25	26	18	8	38	21	59	17	13	A-4a	5			Mc			
	18	SS-3	4.5	6.0	3.0	4.5	16		4.25							16	10	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	13	13	4							17	10	A-4a	8						
4	В	SS-1	1.5	3.5	0.0	2.0	9			NP	NP	NP	4	4	8	6	6	A-1-b	0	13					
	077-3	SS-2B	3.5	4.5	2.0	3.0	10		4.25							18	10	A-4b	8		A-4b	N ₆₀ & Mc			
	18	SS-3	4.5	6.0	3.0	4.5	13		4.25	22	18	4	58	15	73	19	13	A-4b	8						
		SS-4	6.0	7.5	4.5	6.0	22	9	3.25							19	10	A-4b	8						
5	В	SS-1	1.5	3.5	0.0	2.0	14		4.25	29	19	10	53	33	86	16	14	A-4b	8	200	A-4b				
	077-4	SS-2	3.5	4.5	2.0	3.0	21		4.25							22	10	A-4b	8		A-4b	Mc	36"		
	18	SS-3	4.5	6.0	3.0	4.5	13		4	30	23	7	69	28	97	22	18	A-4b	8						
		SS-4	6.0	7.5	4.5	6.0	13	13	3.75							27	10	A-4b	8						

PID: 100713

County-Route-Section: SUM-76-6.15

No. of Borings: 5

Geotechnical Consultant: NEAS inc

Prepared By: Erich R.G. Beyer **Date prepared:** 6/25/2019

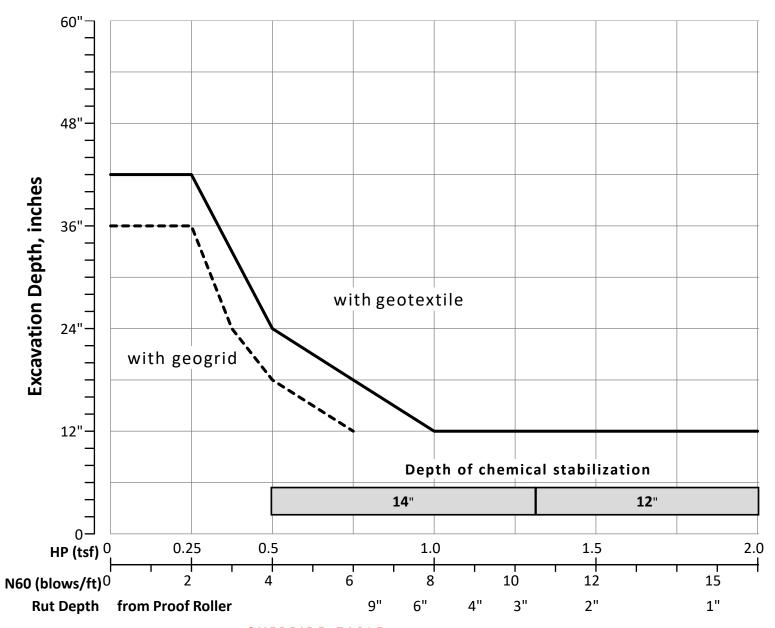
Chemical Stabilization Options								
320	320 Rubblize & Roll							
206	Cement Stabilization	Option						
	Lime Stabilization	No						
206	Depth	NA						

Evenuete and David							
Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	0''						
Average(HP):	0"						
Global Geogrid							
Average(N60L):	0''						
Average(HP): 0"							

Design CBR	8
---------------	---

% Samples within 6 feet of subgrade										
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%							
N ₆₀ < 12	10%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	30%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	40%	HP > 2	60%							
M+	15%									
Rock	20%									
Unsuitable	55%		-							

Excavate and Replace at Surface								
Average	0"							
Maximum	0"							
Minimum	0"							


% Proposed Subgrade Surface							
Unstable & Unsuitable	80%						
Unstable	30%						
Unsuitable	50%						

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	24	17	4.10	26	18	7	39	19	58	15	9	5
Maximum	60	30	4.50	30	23	10	69	33	97	27	18	8
Minimum	9	9	3.25	19	15	4	4	4	8	6	0	0

					Class	ificat	ion C	ount	s by	Sam	ple								
ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b										Totals									
Count	4	0	1	1	0	0	0	0	2	5	7	0	0	0	0	0	0	0	20
Percent	20%	0%	5%	5%	0%	0%	0%	0%	10%	25%	35%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	20%					45%								35	5%				100%
Surface Class Count	2	0	1	1	0	0	0	0	1	2	3	0	0	0	0	0	0	0	10
Surface Class Percent	20%	0%	10%	10%	0%	0%	0%	0%	10%	20%	30%	0%	0%	0%	0%	0%	0%	0%	100%

V. 14.5

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
4.10		НР
17.20		N60L

Average HP Average N_{60L}

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

Akron Beltway (Kenmore Leg) - Subgrade Exploration Ramp L

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared: Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring	Proposed Subgrade EL	Cut Fill
1	B-077-0-18	Ramp L	4+70	22	Lt	CME 55T		0.0	-1.5	1.5 C
2	B-047-0-18	Ramp L	9+10	35	Lt	CME 55T		0.0	-1.5	1.5 C
3	B-048-0-18	IR-77/76	256+17	70	Rt	CME 55T		0.0	-1.5	1.5 C

#	Boring	Sample	Sam De _l	-	Subg De	rade pth		dard ration	НР		Pl	nysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M_{c}	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	25		4.25	25	17	8	33	21	54	13	12	A-4a	4	220					
	077-0	SS-2	3.0	4.5	1.5	3.0	27		4.25							16	10	A-4a	8			Mc			
	18	SS-3	4.5	6.0	3.0	4.5	30		4.5	27	18	9	35	22	57	13	13	A-4a	4						
		SS-4	6.0	7.5	4.5	6.0	17	17	3.25							16	10	A-4a	8						
2	В	SS-1	2.5	5.4	1.0	3.9	39		4.5	21	15	6	33	22	55	9	10	A-4a	4	1393					
	047-0	SS-2B	5.4	6.5	3.9	5.0	57									5	6	A-1-b	0						
	18	SS-3	7.5	8.2	6.0	6.7											0	Rock							
		SS-4	10.0	10.4	8.5	8.9		30									0	Rock							
3	В	SS-1	0.0	1.5	-1.5	0.0	10		4.5	23	17	6	31	17	48	11	12	A-4a	3	40					
	048-0	SS-2	2.5	4.0	1.0	2.5	109										0	Rock	0		Rock		30"		
	18	SS-3	5.0	5.4	3.5	3.9											0	Rock	0						
		SS-4	7.5	9.0	6.0	7.5	73	30									0	Rock							

PID: 100713

County-Route-Section: SUM-76-6.15

No. of Borings: 3

Geotechnical Consultant: NEAS inc

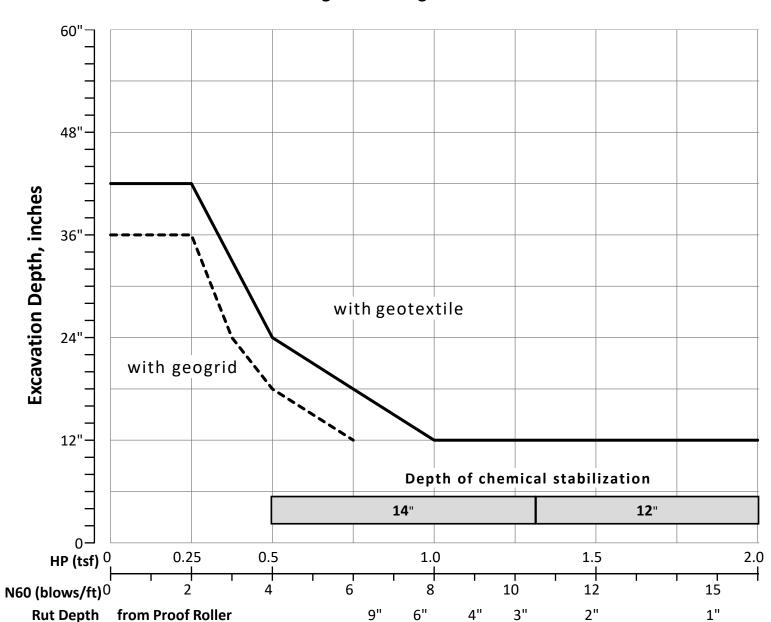
Prepared By: Erich R.G. Beyer **Date prepared:** 6/25/2019

(Chemical Stabilization Option	ıs
320	Rubblize & Roll	Option
206	Cement Stabilization	Option
	Lime Stabilization	No
206	Depth	NA

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	0''
Average(HP):	0''
Global Geogrid	
Average(N60L):	0''
Average(HP):	0''

Design CBR	9
---------------	---

% Sampl	es within	6 feet of subgr	ade
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%
N ₆₀ < 12	0%	0.5 < HP ≤ 1	0%
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%
N ₆₀ ≥ 20	70%	HP > 2	50%
M+	10%		
Rock	20%		
Unsuitable	45%		·


Excavate and Repl at Surface	ace
Average	0''
Maximum	0"
Minimum	0"

% Proposed Subgrade Su	ırface
Unstable & Unsuitable	40%
Unstable	20%
Unsuitable	20%

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	47	26	4.15	24	17	8	34	22	55	12	6	4
Maximum	109	30	4.50	27	18	9	35	22	57	16	13	8
Minimum	10	17	3.25	21	15	6	31	17	48	5	0	0

Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	5	0	1	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	11
Percent	45%	0%	9%	0%	0%	0%	0%	0%	0%	45%	0%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	45%	55% 0%											100%						
Surface Class Count	1	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	5
Surface Class Percent	20%	0%	0%	0%	0%	0%	0%	0%	0%	80%	0%	0%	0%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
4.15		HP
25.67		N60L

Average HP Average N_{60L}

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

Akron Beltway (Kenmore Leg)- Subgrade Exploration Ramp N & M

NEAS inc

Prepared By: Date prepared:

Erich R.G. Beyer

Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

V. 14.5

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER		Proposed Subgrade EL	Cut Fill
1	B-078-0-18	Ramp N	4+35	23	Lt	CME 55X		0.0	-1.5	1.5 C
2	B-079-0-18	Ramp N	7+31	36	Lt	CME 55X		0.0	-1.5	1.5 C
3	B-080-0-18	Ramp N	9+06	27	Lt	CME 55X		0.0	-1.5	1.5 C
4	B-081-0-18	Ramp M	5+43	7	Rt	CME 55X		0.0	-1.5	1.5 C

V. 14.5

#	Boring	oring Sample		ple oth	Subgrade Depth		•		НР	Physical Characteristics						Мо	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	Ц	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	2.5	4.0	1.0	2.5	16		4.5	23	16	7	32	19	51	12	11	A-4a	3	627					
	078-0	SS-2	5.0	6.5	3.5	5.0	21		4.5	23	15	8	31	18	49	12	10	A-4a	3						
	18	SS-3	7.5	9.0	6.0	7.5	24		4.5							11	10	A-4a							
		SS-4	9.0	10.5	7.5	9.0	9	16	2							15	10	A-4a							
2	В	SS-1	2.5	4.0	1.0	2.5	7									20	8	A-3a	0	40					
	079-0	SS-2	5.0	6.5	3.5	5.0	7			NP	NP	NP	17	10	27	17	8	A-3a	0						
	18	SS-3	7.5	9.0	6.0	7.5	6			22	18	4	25	10	35	21	8	A-3a							
		SS-4	9.0	10.5	7.5	9.0	6	6								26	8	A-3a							
3	В	SS-1	0.0	1.5	-1.5	0.0	28			NP	NP	NP	13	8	21	9	6	A-1-b	0						
	080-0	SS-2	1.5	3.0	0.0	1.5	44			NP	NP	NP	18	12	30	9	8	A-3a	0	33					
	18	SS-3	3.0	4.5	1.5	3.0	33									9	8	A-3a	0						
		SS-4	4.5	6.0	3.0	4.5	23	23								11	8	A-3a	0						
4	В	SS-1A	0.0	0.8	-1.5	-0.7	13									5	8	A-3a	0	40					
	081-0	SS-1B	0.8	1.5	-0.7	0.0	13		4.5	28	16	12	21	19	40	12	14	A-6a	2						
	18	SS-2	1.5	3.0	0.0	1.5	14		3.25	36	17	19	30	30	60	18	16	A-6b	9						
		SS-3	3.0	4.5	1.5	3.0	10	10	2.75							21	16	A-6b	16			N ₆₀ & Mc			

County-Route-Section: SUM-76-6.15

No. of Borings: 4

Geotechnical Consultant: NEAS inc

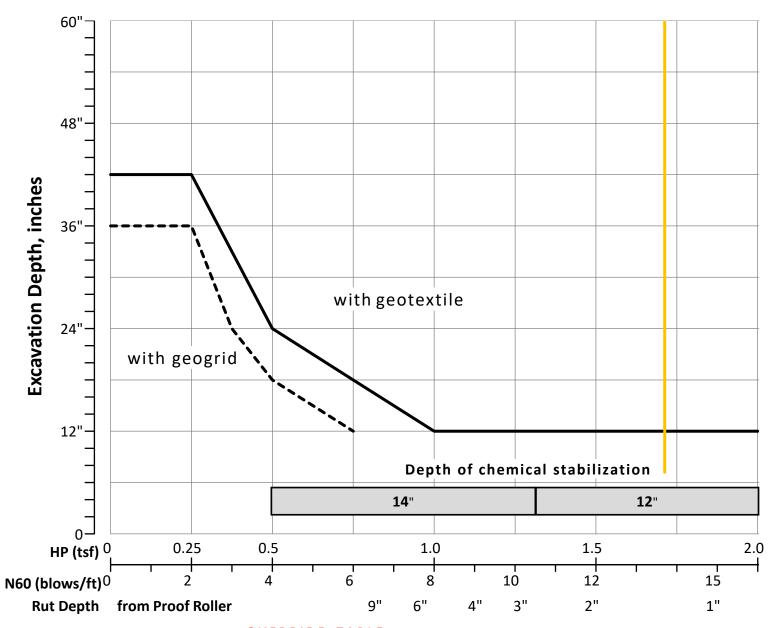
C	Chemical Stabilization Options								
320	320 Rubblize & Roll								
206	Cement Stabilization	Option							
	Lime Stabilization	No							
206	Depth	12"							

Excavate and Replace Stabilization Options							
Global Geotextile Average(N60L): Average(HP):	12" 0"						
Global Geogrid Average(N60L): Average(HP):	0" 0"						

Design CBR	9
---------------	---

% Sampl	% Samples within 6 feet of subgrade									
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%							
N ₆₀ < 12	36%	0.5 < HP ≤ 1	0%							
12 ≤ N ₆₀ < 15	9%	1 < HP ≤ 2	0%							
N ₆₀ ≥ 20	46%	HP > 2	45%							
M+	9%									
Rock	0%									
Unsuitable	0%									

Excavate and Replace at Surface							
Average	0''						
Maximum	0"						
Minimum	0"						


% Proposed Subgrade Surface							
Unstable & Unsuitable	11%						
Unstable	11%						
Unsuitable	0%						

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M_{c}	M _{OPT}	GI
Average	17	14	3.58	26	17	10	26	17	42	16	10	3
Maximum	44	23	4.50	36	18	19	32	30	60	26	16	16
Minimum	6	6	2.00	22	15	4	13	8	21	5	6	0

	Classification Counts by Sample																		
ODOT Class	ODOT Class Rock A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-3a A-4a A-4b A-5 A-6a A-6b A-7-5 A-7-6 A-8a A-8b										Totals								
Count	0	0	0	0	0	0	0	0	7	4	0	0	0	2	0	0	0	0	13
Percent	0%	0%	0%	0%	0%	0%	0%	0%	54%	31%	0%	0%	0%	15%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%					15%								100%					
Surface Class Count	0	0	1	0	0	0	0	0	4	1	0	0	1	2	0	0	0	0	9
Surface Class Percent	0%	0%	11%	0%	0%	0%	0%	0%	44%	11%	0%	0%	11%	22%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.58		HР
13.75		N60L

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

Akron Beltway (Kenmore Leg) - Subgrade Exploration Ramp P

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared: Tue

Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring	Proposed Subgrade EL	Cut Fill
1	B-004-0-18	IR-77/IR-76	200+64	8	Lt	CME 45B		0.0	-1.5	1.5 C
2	B-005-0-18	Ramp P	14+34	78	Lt	CME 45B		0.0	-1.5	1.5 C
3	B-006-0-18	Ramp P	12+42	131	Lt	CME 45B		0.0	-1.5	1.5 C

#	Boring	Sample	Sam De _l	-	Subg De	rade pth	Stan Penet	dard ration	НР		Pl	hysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Problem		Excavate ar (Item	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inchas)
1	В	SS-1	1.5	3.0	0.0	1.5	15			29	19	10	24	15	39	14	14	A-4a	1	140					
	004-0	SS-2	3.0	4.5	1.5	3.0	36									16	14	A-6a	10						
	18	SS-3	4.5	6.0	3.0	4.5	34			29	18	11	38	26	64	16	14	A-6a	6						
		SS-4	6.0	7.5	4.5	6.0	27	15								16	14	A-6a	10						
2	В	SS-1	1.5	3.0	0.0	1.5	27			NP	NP	NP	6	2	8	9	6	A-1-a	0	1267					
	005-0	SS-2	3.0	4.5	1.5	3.0	25									7	6	A-1-a	0						
	18	SS-3	4.5	6.0	3.0	4.5	29									7	6	A-1-a	0						
		SS-4	6.0	7.5	4.5	6.0	27	25		25	18	7	24	14	38	12	13	A-4a	1						
3	В	SS-1	1.5	3.0	0.0	1.5	21			NP	NP	NP	5	2	7	11	6	A-1-a	0	2653					
	006-0	SS-2	3.0	4.5	1.5	3.0	28									8	6	A-1-a	0						
	18	SS-3	4.5	6.0	3.0	4.5	15									8	6	A-1-a	0						
		SS-4	6.0	7.5	4.5	6.0	22	15		24	17	7	21	20	41	21	12	A-4a	1						

County-Route-Section: SUM-76-6.15

No. of Borings: 3

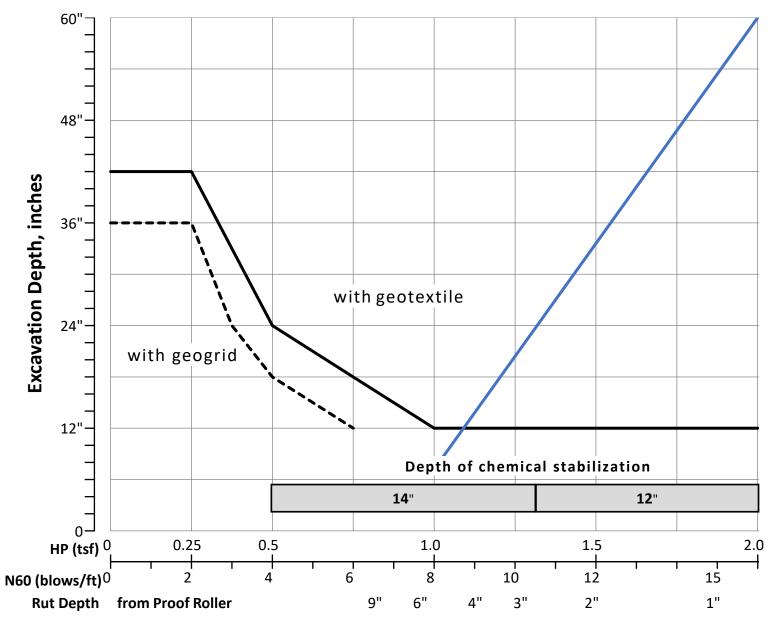
Geotechnical Consultant: NEAS inc

(Chemical Stabilization Options									
320	320 Rubblize & Roll									
206	Cement Stabilization	Option								
	Lime Stabilization	No								
206	Depth	NA								

Excavate and Replace								
Stabilization Options								
Global Geotextile								
Average(N60L):	#N/A							
Average(HP):								
Global Geogrid								
Average(N60L):	#N/A							
Average(HP):								

Design CBR	10
---------------	----

% Sampl	% Samples within 6 feet of subgrade								
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%						
N ₆₀ < 12	0%	0.5 < HP ≤ 1	0%						
12 ≤ N ₆₀ < 15	0%	1 < HP ≤ 2	0%						
N ₆₀ ≥ 20	83%	HP > 2	0%						
M+	0%								
Rock	0%								
Unsuitable	0%								


Excavate and Replace at Surface						
Average	0"					
Maximum	0"					
Minimum	0"					

% Proposed Subgrade Surface							
Unstable & Unsuitable	0%						
Unstable	0%						
Unsuitable	0%						

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	26	18		27	18	9	20	13	33	12	10	2
Maximum	36	25	0.00	29	19	11	38	26	64	21	14	10
Minimum	15	15	0.00	24	17	7	5	2	7	7	6	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	6	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	12
Percent	0%	50%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	25%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%		75% 25%											100%					
Surface Class Count	0	4	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	6
Surface Class Percent	0%	67%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%	17%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
		HP
18.33		N60L

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

Akron Beltway (Kenmore Leg)- Subgrade Exploration Ramp T

NEAS inc

Prepared By: Date prepared:

Erich R.G. Beyer

Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig		Proposed Subgrade EL	Cut Fill
1	B-051-0-18	Ramp T	10+73	15	Rt	CME 45B	0.0	-1.5	1.5 C
2	B-052-0-18	Ramp T	8+07	32	Lt	CME 55X	0.0	-1.5	1.5 C
3	B-053-0-18	Ramp T	4+17	30	Lt	CME 45B	0.0	-1.5	1.5 C

#	Boring	Sample	Sam De	-	Subg De	rade pth		dard ration	НР		Pl	hysic	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate Content	Problem		Excavate ar (Item	•	Recommendation (Enter depth in
"			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	14		4.5	26	18	8	36	23	59	13	13	A-4a	5	987					
	051-0	SS-2	3.0	4.5	1.5	3.0	21		4.5	21	14	7	30	20	50	10	10	A-4a	3						
	18	SS-3	4.5	6.0	3.0	4.5	14		3.75							11	10	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	21	14	1							14	10	A-4a	8						
2	В	SS-1	2.5	4.0	1.0	2.5	62									7	6	A-1-a	0						
	052-0	SS-2	5.0	6.5	3.5	5.0	85			NP	NP	NP	7	3	10	7	6	A-1-a	0						
	18	SS-3	6.5	6.9	5.0	5.4										7	6	A-1-a	0						
								30																	
3	В	SS-1	1.5	3.0	0.0	1.5	11		4.5	23	17	6	41	24	65	13	12	A-4a	6	273		N ₆₀		12"	
	053-0	SS-2	3.0	4.5	1.5	3.0	17		4.5							16	10	A-4a	8			Mc			
	18	SS-3	4.5	6.0	3.0	4.5	15		4.5	28	19	9	43	32	75	15	14	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	36	11								6	10	A-2-4	0						

County-Route-Section: SUM-76-6.15

No. of Borings: 3

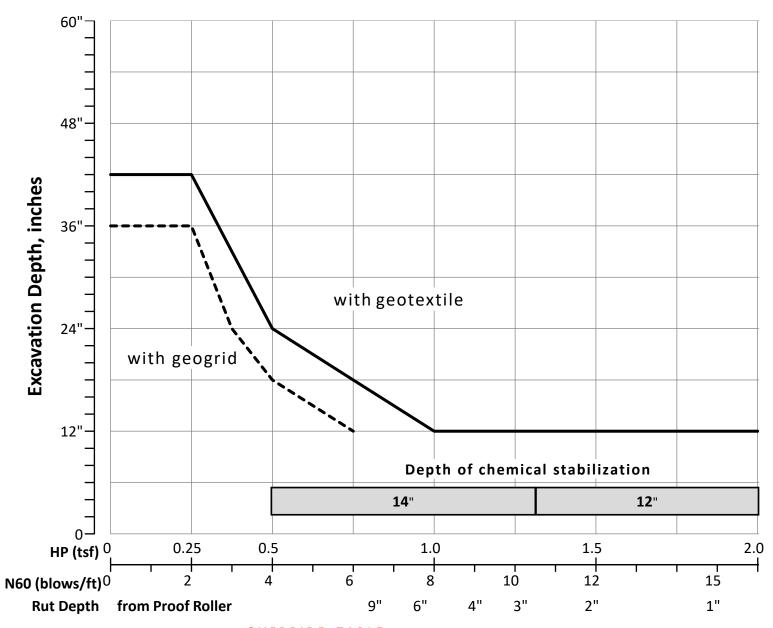
Geotechnical Consultant: NEAS inc

C	Chemical Stabilization Options								
320	320 Rubblize & Roll								
206	Cement Stabilization	Option							
	Lime Stabilization	No							
206	Depth	NA							

Excavate and Replace							
Stabilization Options							
Global Geotextile							
Average(N60L):	0''						
Average(HP):	0"						
Global Geogrid							
Average(N60L):	0''						
Average(HP):	0"						

Design CBR	8
---------------	---

% Sample	es within	6 feet of subgr	ade
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%
N ₆₀ < 12	9%	0.5 < HP ≤ 1	9%
12 ≤ N ₆₀ < 15	18%	1 < HP ≤ 2	0%
N ₆₀ ≥ 20	46%	HP > 2	55%
M+	9%		
Rock	0%		
Unsuitable	0%		


Excavate and Replace at Surface					
Average	0"				
Maximum	0"				
Minimum	0"				

% Proposed Subgrade Surface					
Unstable & Unsuitable	40%				
Unstable	40%				
Unsuitable	0%				

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	30	18	3.89	25	17	8	31	20	52	11	10	4
Maximum	85	30	4.50	28	19	9	43	32	75	16	14	8
Minimum	11	11	1.00	21	14	6	7	3	10	6	6	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	0	3	0	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0	11
Percent	0%	27%	0%	9%	0%	0%	0%	0%	0%	64%	0%	0%	0%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	0%		100% 0%													100%			
Surface Class Count	0	1	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	5
Surface Class Percent	0%	20%	0%	0%	0%	0%	0%	0%	0%	80%	0%	0%	0%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.89		HР
18.33		N60L

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

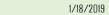
Akron Beltway (Kenmore Leg) - Subgrade Exploration Ramp U

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared: Tuesd


Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	Boring	Proposed Subgrade EL	Cut Fill
1	B-067-0-18	Ramp U	8+40	5	Rt	CME 55T	0.0	-1.5	1.5 C
2	B-068-0-18	Ramp U	12+37	19	Rt	CME 55T	0.0	-1.5	1.5 C
3	B-069-0-18	Ramp U	16+94	19	Rt	CME 55T	0.0	-1.5	1.5 C
4	B-070-0-18	IR-77/IR-76	231+79	79	Rt	CME 55T	0.0	-1.5	1.5 C

#	Boring	Sample	Sam De _l	-		rade pth	Standard Penetration				НР		Pl	nysica	al Chara	cteristics		Moi	isture	Ohio	DOT	Sulfate Content	Proble	m	Excavate ar	-	Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)		
1	В	SS-1	2.5	4.0	1.0	2.5	17		3.25	20	13	7	28	18	46	10	10	A-4a	2								
	067-0	SS-2	5.0	6.5	3.5	5.0	12									6	10	A-4a	8	473							
	18	SS-3	7.5	9.0	6.0	7.5	20		3							9	10	A-4a									
		SS-4	10.0	11.5	8.5	10.0	29	12		18	13	5	19	13	32	8	10	A-2-4									
2	В	SS-1	0.0	2.8	-1.5	1.3	27		4.5	23	16	7	23	13	36	10	11	A-4a	0								
	068-0	SS-2B	2.8	4.0	1.3	2.5	43									5	6	A-1-b	0	1507							
	18	SS-3	5.0	6.5	3.5	5.0	77									7	6	A-1-b	0								
		SS-4	7.5	9.0	6.0	7.5	51	27								7	6	A-1-b									
3	В	SS-1	2.5	4.0	1.0	2.5	40									17	10	A-2-4	0	13		Mc					
	069-0	SS-2	5.0	8.0	3.5	6.5	40		4.25	49	22	27	7	66	73	16	19	A-7-6	16								
	18	SS-3B	8.0	8.1	6.5	6.6										0	0	Rock									
		SS-4	10.0	10.1	8.5	8.6		30								7	0	Rock									
4	В	SS-1	0.0	1.5	-1.5	0.0	29			NP	NP	NP	22	8	30	17	8	A-3a	0								
	070-0	SS-2	2.5	2.8	1.0	1.3										12	0	Rock	0		Rock	N ₆₀ & Mc	16''	0''			
	18	SS-3	5.0	5.3	3.5	3.8										8	0	Rock	0								
								0																			

County-Route-Section: SUM-76-6.15

No. of Borings: 4

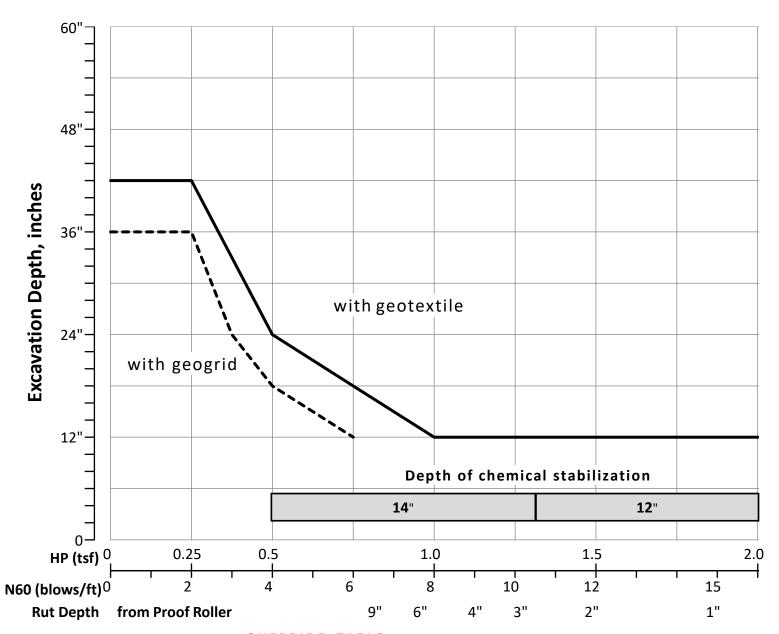
Geotechnical Consultant: NEAS inc

C	Chemical Stabilization Options						
320	Rubblize & Roll	Option					
206	Cement Stabilization	Option					
	Lime Stabilization	No					
206	Depth	NA					

Excavate and Repl	Excavate and Replace						
Stabilization Options							
Global Geotextile							
Average(N60L):	0"						
Average(HP):	0"						
Global Geogrid							
Average(N60L):	0''						
Average(HP):	0"						

Design CBR	9
---------------	---

% Sample	% Samples within 6 feet of subgrade											
N ₆₀ ≤ 5	0%	HP ≤ 0.5	0%									
N ₆₀ < 12	0%	0.5 < HP ≤ 1	0%									
12 ≤ N ₆₀ < 15	9%	1 < HP ≤ 2	0%									
N ₆₀ ≥ 20	64%	HP > 2	36%									
M+	18%											
Rock	17%											
Unsuitable	29%											


Excavate and Replace at Surface							
Average	0"						
Maximum	0"						
Minimum	0"						

% Proposed Subgrade Surface								
Unstable & Unsuitable	50%							
Unstable	33%							
Unsuitable	17%							

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	36	17	3.75	28	16	12	19	28	47	9	7	3
Maximum	77	30	4.50	49	22	27	28	66	73	17	19	16
Minimum	12	0	3.00	18	13	5	7	8	30	0	0	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	4	0	3	2	0	0	0	0	0	4	0	0	0	0	0	1	0	0	14
Percent	29%	0%	21%	14%	0%	0%	0%	0%	0%	29%	0%	0%	0%	0%	0%	7%	0%	0%	100%
% Rock Granular Cohesive	29%		64% 7%												100%				
Surface Class Count	1	0	1	1	0	0	0	0	1	2	0	0	0	0	0	0	0	0	6
Surface Class Percent	17%	0%	17%	17%	0%	0%	0%	0%	17%	33%	0%	0%	0%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.75		HР
17.25		N60L

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

Akron Beltway (Kenmore Leg) - Subgrade Exploration Ramp V

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared: Tu

Tuesday, June 25, 2019

Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-051-0-18	IR-76	92+46	73	Lt	CME 45B		0.0	-1.5	1.5 C
2	B-054-0-18	IR-76	94+72	25	Rt	CME 45B		0.0	-1.5	1.5 C
3	B-056-0-18	IR-76	97+76	30	Rt	CME 45B		0.0	-1.5	1.5 C
4	B-072-0-18	IR-76	99+85	38	Lt	CME 55T		0.0	-1.5	1.5 C
5	B-073-0-18	IR-76	103+14	39	Lt	CME 55T		0.0	-1.5	1.5 C
6	B-074-0-18	Ramp V	18+11	7	Rt	CME 45B		0.0	-1.5	1.5 C
7	B-075-0-18	Ramp V	14+42	77	Lt	CME 55X		0.0	-1.5	1.5 C
8	B-076-0-18	Ramp V	10+85	59	Lt	CME 55X		0.0	-1.5	1.5 C
9	B-043-0-18	Ramp V	8+09	37	Lt	CME 45B		0.0	-1.5	1.5 C

#	Boring	Sample	Sam De	nple pth	1	grade pth		dard	НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate	Proble	m	Excavate and Replace (Item 204)		Recommendation
#			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	Content (ppm)	Unsuitable	Unstable	Unsuitable	Unstable	(Enter depth in inches)
1	В	SS-1	1.5	3.0	0.0	1.5	14		4.5	26	18	8	36	23	59	13	13	A-4a	5	987					
	051-0	SS-2	3.0	4.5	1.5	3.0	21		4.5	21	14	7	30	20	50	10	10	A-4a	3						
	18	SS-3	4.5	6.0	3.0	4.5	14		3.75							11	10	A-4a	8						
		SS-4	6.0	7.5	4.5	6.0	21	14	1							14	10	A-4a	8						
2	В	SS-1	1.5	3.0	0.0	1.5	28		4.5	25	18	7	29	17	46	9	13	A-4a	2	393					
	054-0	SS-2	3.0	4.5	1.5	3.0	38			23	17	6	19	12	31	7	10	A-2-4	0						
	18	SS-3	4.5	6.9	3.0	5.4	22									2	6	A-1-b	0						
	_	SS-4B	6.9	7.5	5.4	6.0	48	22	4.5							12	10	A-4a							
3	В	SS-1	1.5	3.0	0.0	1.5	20	l								8	8	A-3a	0						
	056-0	SS-2	3.0	4.5	1.5	3.0	11			17	12	5	18	14	32	11	8	A-3a	0						
	18	SS-3	4.5	6.0	3.0	4.5	6			18	12	6	17	14	31	10	8	A-3a	0	273					
		SS-4	6.0	7.5	4.5	6.0	4	4	1.75							16	14	A-6a	10						
4	В	SS-1	2.5	4.0	1.0	2.5	23		4.5	21	15	6	29	17	46	10	10	A-4a	2	73					
	072-0	SS-2	5.0	6.5	3.5	5.0	21																		
	18	SS-3	7.5	10.3	6.0	8.8	14									9	10	A-2-4							
		SS-4	10.3	11.5	8.8	10.0	31	14								5	6	A-1-b							
5	В	SS-1	1.5	3.0	0.0	1.5	34			NP	NP	NP	7	5	12	6	6	A-1-b	0	13					
	073-0	SS-2	3.0	4.5	1.5	3.0	26			NP	NP	NP	11	7	18	5	6	A-1-b	0						
	18	SS-3	4.5	6.0	3.0	4.5	52									5	0	Rock	0						
		SS-4	6.0	6.9	4.5	5.4		26								12	0	Rock	0						
6	В	SS-1	2.5	4.0	1.0	2.5	60			NP	NP	NP	5	3	8	6	6	A-1-b	0	13					
	074-0	SS-2	5.0	5.5	3.5	4.0										7	0	Rock	0						
	18	SS-3	7.5	7.6	6.0	6.1											0	Rock							
		SS-4	10.0	10.1	8.5	8.6		30									0	Rock							
7	В	SS-1	2.5	4.0	1.0	2.5	23			25	16	9	57	26	83	5	11	A-4b	8	20	A-4b		30"		
	075-0	SS-2	5.0	5.9	3.5	4.4				24	15	9	37	23	60	5	10	A-4a	5						
	18																								
								23																	
8	В	SS-1	2.5	4.0	1.0	2.5	51			NP	NP	NP	21	10	31	7	10	A-2-4	0	1133					
	076-0	SS-2A	5.0	5.7	3.5	4.2				19	15	4	24	14	38	9	10	A-4a	1						
	18	SS-2B	5.7	6.0	4.2	4.5										0	0	Rock	0						
								30																	
9	В	SS-1	1.5	3.0	0.0	1.5	95			23	17	6	17	12	29	10	10	A-2-4	0						
	043-0	SS-2	3.0	4.5	1.5	3.0	22		4.5	25	18	7	31	22	53	11	13	A-4a	4	400					
	18	SS-3	4.5	6.0	3.0	4.5	95		4.5							12	10	A-4a	8						

V. 14.5

1/18/2019

#	Boring	Sample	Sam De		_	rade pth		dard ration	НР	Physical Characteristics						Mo	Moisture Ohio DO		DOT	Sulfate Content	Problem		Excavate and Replace (Item 204)		Recommendation (Enter depth in
			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	(ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
		SS-4	6.0	7.5	4.5	6.0	60	22	4.5							11	10	A-4a	8						

County-Route-Section: SUM-76-6.15

No. of Borings: 9

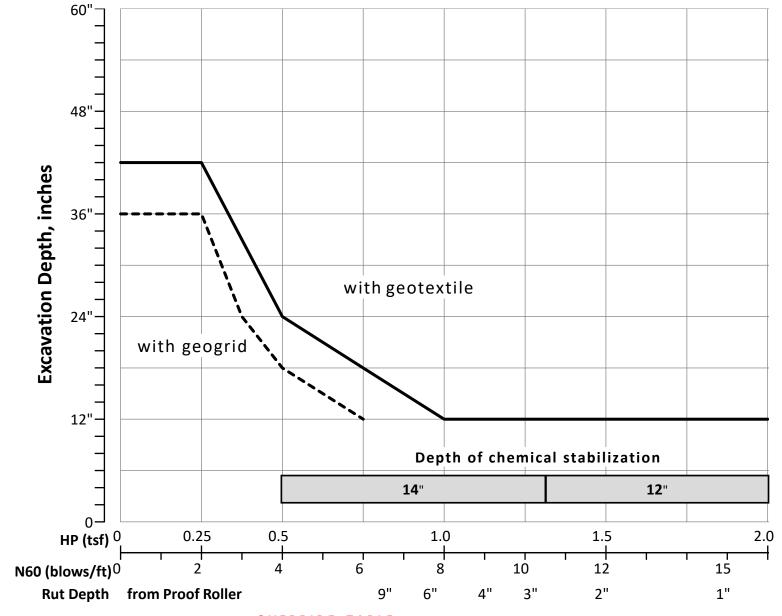
Geotechnical Consultant: NEAS inc

(Chemical Stabilization Option	ıs							
320	320 Rubblize & Roll Opti								
206	Cement Stabilization	Option							
	Lime Stabilization	No							
206	Depth	NA							

Excavate and Replain Stabilization Option	
Global Geotextile Average(N60L): Average(HP):	0" 0"
Global Geogrid Average(N60L): Average(HP):	0" 0"

Design CBR	9
---------------	---

% Sampl	% Samples within 6 feet of subgrade											
N ₆₀ ≤ 5	3%	HP ≤ 0.5	0%									
N ₆₀ < 12	10%	0.5 < HP ≤ 1	3%									
12 ≤ N ₆₀ < 15	10%	1 < HP ≤ 2	3%									
N ₆₀ ≥ 20	61%	HP > 2	29%									
M+	0%											
Rock	0%											
Unsuitable	22%											


Excavate and Replace at Surface							
Average	0"						
Maximum	0"						
Minimum	0"						

% Proposed Subgrade Surface						
Unstable & Unsuitable	7%					
Unstable	0%					
Unsuitable	7 %					

	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	33	21	3.86	22	16	7	24	15	39	9	8	3
Maximum	95	30	4.50	26	18	9	57	26	83	16	14	10
Minimum	4	4	1.00	17	12	4	5	3	8	0	0	0

	Classification Counts by Sample																		
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	6	0	5	4	0	0	0	0	3	12	1	0	1	0	0	0	0	0	32
Percent	19%	0%	16%	13%	0%	0%	0%	0%	9%	38%	3%	0%	3%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	19%					75%								6	%				100%
Surface Class Count	0	0	3	3	0	0	0	0	2	5	1	0	0	0	0	0	0	0	14
Surface Class Percent	0%	0%	21%	21%	0%	0%	0%	0%	14%	36%	7%	0%	0%	0%	0%	0%	0%	0%	100%

OVERRIDE TABLE

Calculated Average	New Values	Check to Override
3.86		HР
20.56		N60L

OFFICE OF GEOTECHNICAL ENGINEERING

PLAN SUBGRADES Geotechnical Bulletin GB1

SUM-76-6.15 100713

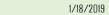
Akron Beltway (Kenmore Leg) - Subgrade Exploration Ramp W

NEAS inc

Prepared By:

Erich R.G. Beyer

Date prepared: To


Tuesday, June 25, 2019

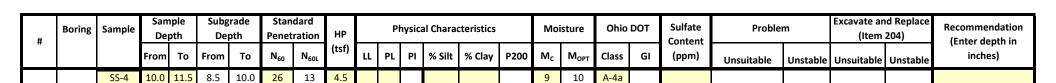
Brendan P. Andrews 2868 East Kemper Road Cincinnati, OH 45241

(920) 427-0671

brendan.andrews@neasinc.com

NO. OF BORINGS:

#	Boring ID	Alignment	Station	Offset	Dir	Drill Rig	ER	Boring EL.	Proposed Subgrade EL	Cut Fill
1	B-051-0-18	IR-76	92+46	73	Lt	CME 45B		0.0	-1.5	1.5 C
2	B-054-0-18	IR-76	94+72	25	Rt	CME 45B		0.0	-1.5	1.5 C
3	B-056-0-18	IR-76	97+76	30	Rt	CME 45B		0.0	-1.5	1.5 C
4	B-072-0-18	IR-76	99+85	38	Lt	CME 55T		0.0	-1.5	1.5 C
5	B-057-0-18	IR-76	102+30	28	Rt	CME 55X		0.0	-1.5	1.5 C
6	B-058-0-18	Ramp W	106+50	1	Rt	CME 55X		0.0	-1.5	1.5 C
7	B-059-0-18	Ramp W	110+72	15	Rt	CME 55X		0.0	-1.5	1.5 C
8	B-040-0-18	Ramp W	110+98	46	Lt	CME 45B		0.0	-1.5	1.5 C
9	B-060-0-18	IR-76/IR-77	219+30	76	Lt	CME 55X		0.0	-1.5	1.5 C



#	Boring	Sample		nple pth	1	grade pth		dard	НР		P	hysica	al Chara	cteristics		Мо	isture	Ohio	DOT	Sulfate	Proble	m	Excavate ar	-	Recommendation (Enter depth in
#			From	То	From	То	N ₆₀	N _{60L}	(tsf)	LL	PL	PI	% Silt	% Clay	P200	M _c	M _{OPT}	Class	GI	Content (ppm)	Unsuitable	Unstable	Unsuitable	Unstable	inches)
1	В	SS-1	1.5	3.0	0.0	1.5	14		4.5	26	18	8	36	23	59	13	13	A-4a	5	987					
İ	051-0	SS-2	3.0	4.5	1.5	3.0	21		4.5	21	14	7	30	20	50	10	10	A-4a	3						
İ	18	SS-3	4.5	6.0	3.0	4.5	14		3.75							11	10	A-4a	8						
2		SS-4	6.0	7.5	4.5	6.0	21	14	1	25	40	_	20	47	4.5	14	10	A-4a	8	202					
2	В	SS-1	1.5	3.0	0.0	1.5	28		4.5	25	18	7	29	17	46	9	13	A-4a	2	393					
	054-0	SS-2	3.0	4.5	1.5	3.0	38			23	17	6	19	12	31	7	10	A-2-4	0						
	18	SS-3	4.5	6.9	3.0	5.4	22									2	6	A-1-b	0						
2		SS-4B	6.9	7.5	5.4	6.0	48	22	4.5							12	10	A-4a							
3	В	SS-1	1.5	3.0	0.0	1.5	20	ł							<u> </u>	8	8	A-3a	0						
	056-0	SS-2	3.0	4.5	1.5	3.0	11			17	12	5	18	14	32	11	8	A-3a	0						
	18	SS-3	4.5	6.0	3.0	4.5	6			18	12	6	17	14	31	10	8	A-3a	0	273					
		SS-4	6.0	7.5	4.5	6.0	4	4	1.75							16	14	A-6a	10						
4	В	SS-1	2.5	4.0	1.0	2.5	23		4.5	21	15	6	29	17	46	10	10	A-4a	2	73					
	072-0	SS-2	5.0	6.5	3.5	5.0	21																		
	18	SS-3	7.5	10.3	6.0	8.8	14									9	10	A-2-4							
		SS-4B	10.3	11.5	8.8	10.0	31	14								5	6	A-1-b							
5	В	SS-1A	2.0	2.5	0.5	1.0			3.75	NP	NP	NP	13	8	21	9	8	A-3a	0				••		
İ	057-0	SS-1B	2.5	2.5	1.0	1.0											0	Rock	0		Rock	N ₆₀	12"	0''	
İ	18																								
								0																	
6	В	SS-1	2.5	2.9	1.0	1.4				NP	NP	NP	9	4	13	6	6	A-1-b	0	33					
	058-0	SS-2	4.0	4.2	2.5	2.7	50									4	0	Rock	0			Mc			
	18																								
								30																	
7	В	SS-1	2.7	4.0	1.2	2.5	85			NP	NP	NP	23	14	37	11	11	A-4a	0	53					
	059-0	SS-2	5.0	6.5	3.5	5.0										6	0	Rock	0						
	18	SS-3	6.5	6.6	5.0	5.1										8	0	Rock	0						
								30																	
8	В	SS-1	1.5	3.0	0.0	1.5	28									9	10	A-4a	8						
	040-0	SS-2	3.0	4.5	1.5	3.0	42			NP	NP	NP	19	14	33	8	8	A-3a	0	80					
	18	SS-3	4.5	6.0	3.0	4.5	105									8	8	A-3a	0						
		SS-4	4	7.5	4.5	6.0	98	28		NP	NP	NP	26	18	44	7	11	A-4a	2						
9	В	SS-1	2.5		1.0	2.5	30		2.5				18	12	30	11	10	A-2-4	0						
	060-0	SS-2	5.0	6.5	3.5	5.0	17		2.5							11	10	A-4a	8						
	18	SS-3	7.5	9.0	6.0	7.5	13	1	2.5	22	15	7	29	19	48	12	10	A-4a							
	18	SS-3	7.5	9.0	6.0	7.5	13		2.5	22	15	7	29	19	48	12	10	A-4a							

V. 14.5

1/18/2019

OHIO DEPARTMENT OF **TRANSPORTATION**

County-Route-Section: SUM-76-6.15

No. of Borings: 9

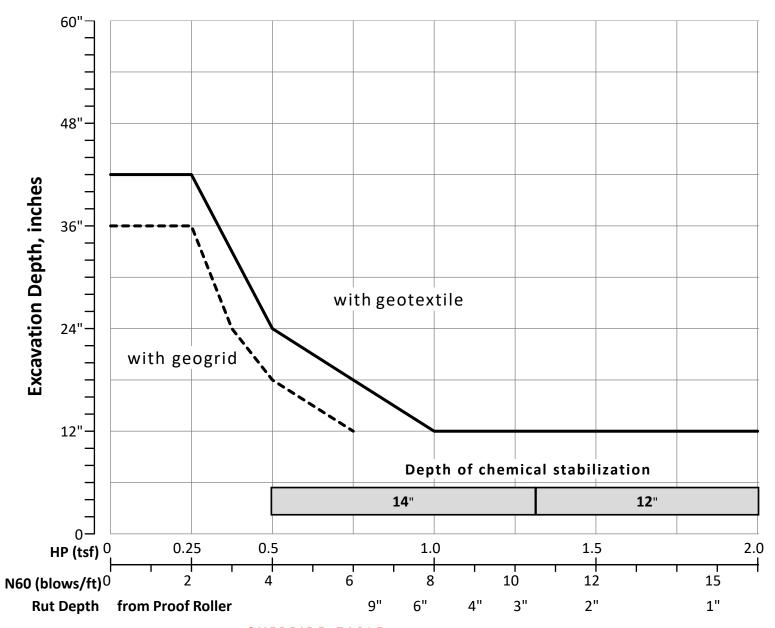
Geotechnical Consultant: NEAS inc

(Chemical Stabilization Options								
320	Rubblize & Roll	Option							
206	Cement Stabilization	Option							
	Lime Stabilization	No							
206	Depth	NA							

Excavate and Repl	ace
Stabilization Option	ons
Global Geotextile	
Average(N60L):	0"
Average(HP):	0''
Global Geogrid	
Average(N60L):	0''
Average(HP):	0''

Design CBR	10
---------------	----

% Sampl	% Samples within 6 feet of subgrade											
N ₆₀ ≤ 5	3%	HP ≤ 0.5	0%									
N ₆₀ < 12	10%	0.5 < HP ≤ 1	3%									
12 ≤ N ₆₀ < 15	14%	1 < HP ≤ 2	3%									
N ₆₀ ≥ 20	55%	HP > 2	34%									
M+	3%											
Rock	13%											
Unsuitable	13%											

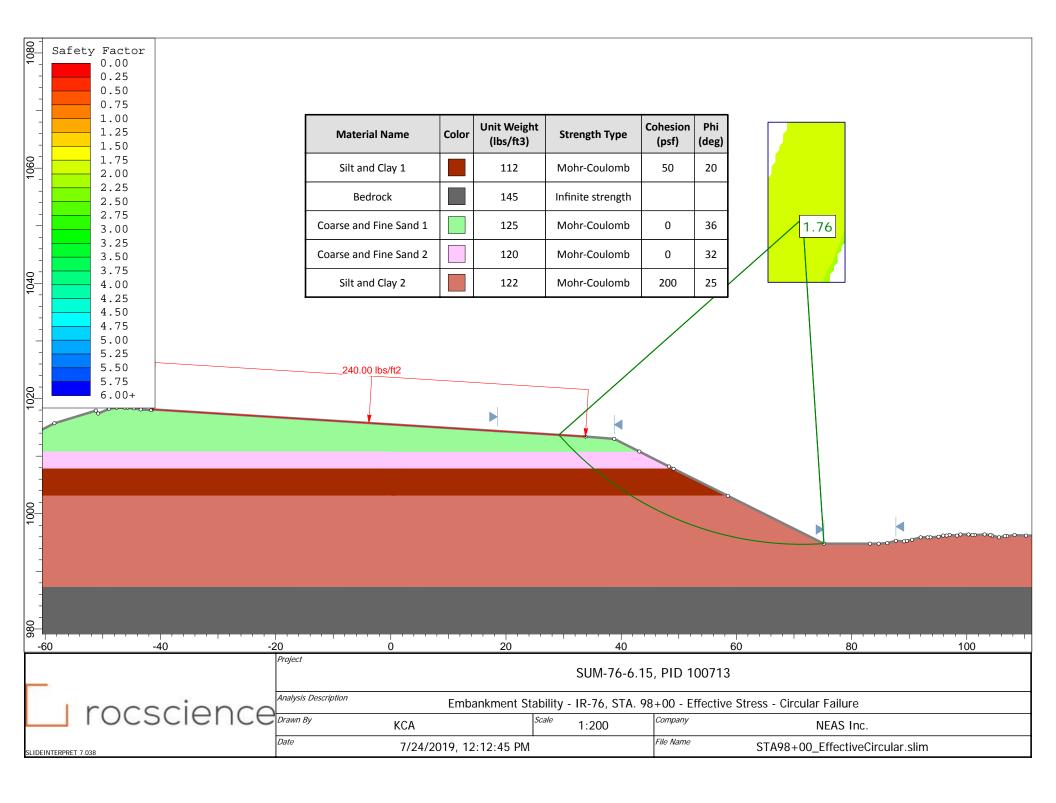

Excavate and Replace at Surface						
Average	0"					
Maximum 0" Minimum 0"						

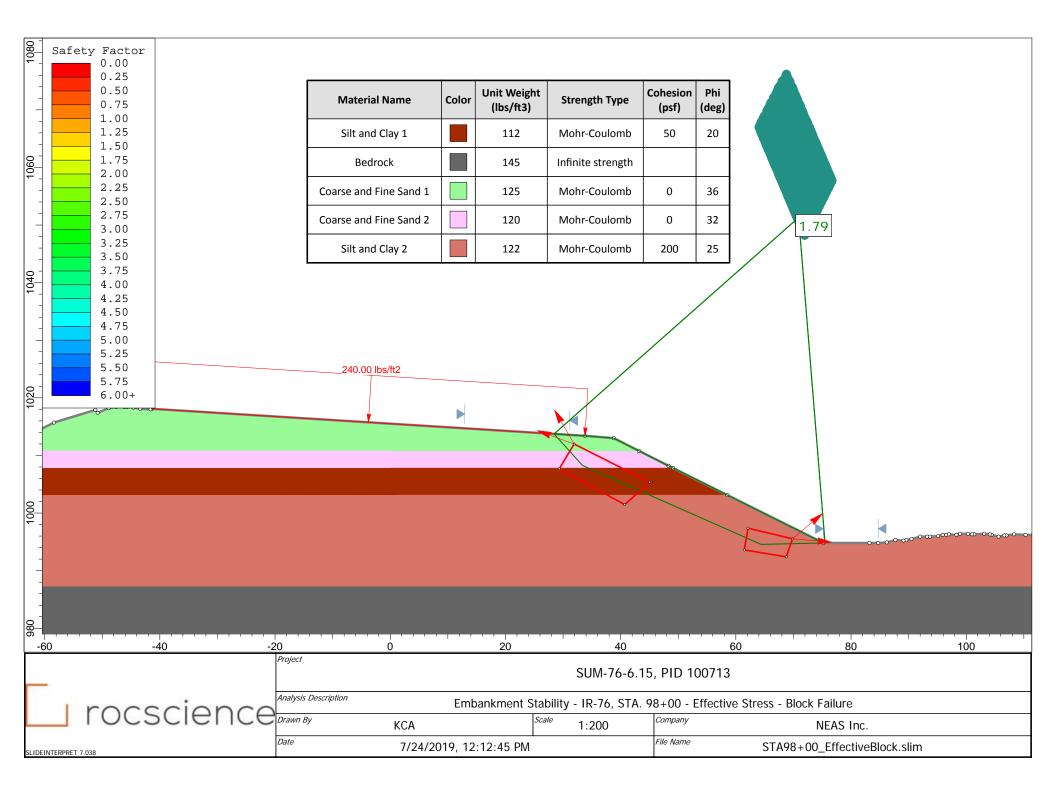
% Proposed Subgrade Surface						
Unstable & Unsuitable	20%					
Unstable	13%					
Unsuitable	7%					

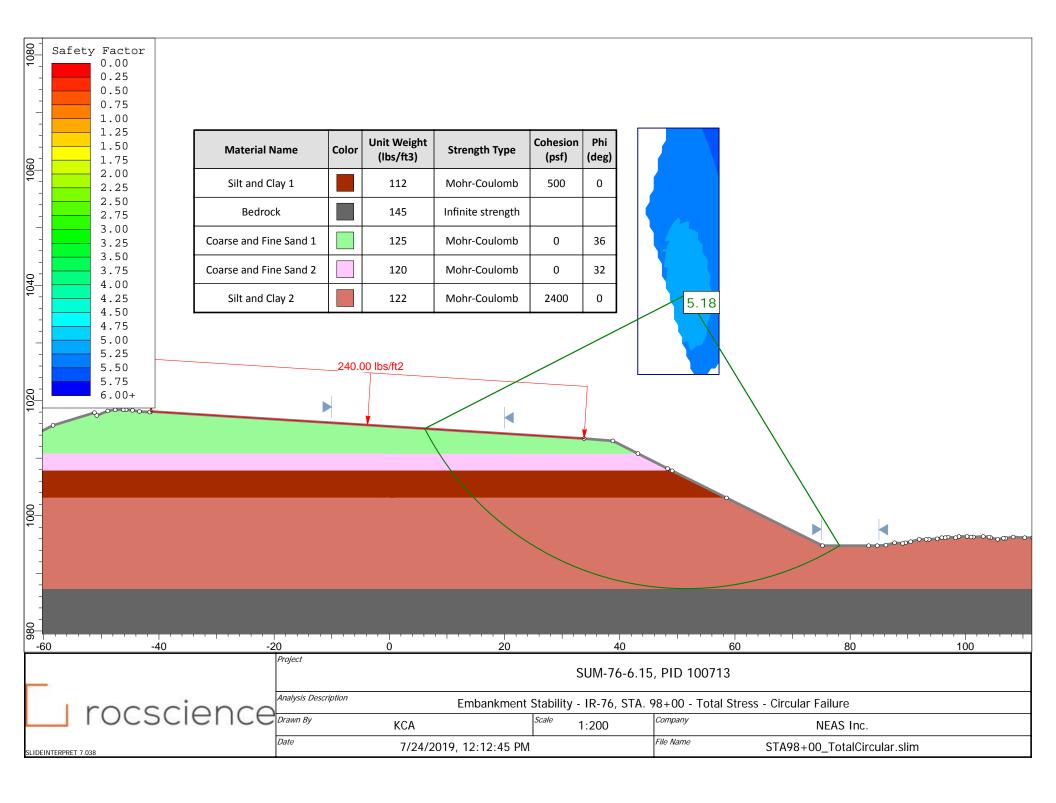
	N ₆₀	N _{60L}	НР	LL	PL	PI	Silt	Clay	P 200	M _c	M _{OPT}	GI
Average	32	17	3.44	22	15	6	23	15	37	9	8	2
Maximum	105	30	4.50	26	18	8	36	23	59	16	14	10
Minimum	4	0	1.00	17	12	5	9	4	13	2	0	0

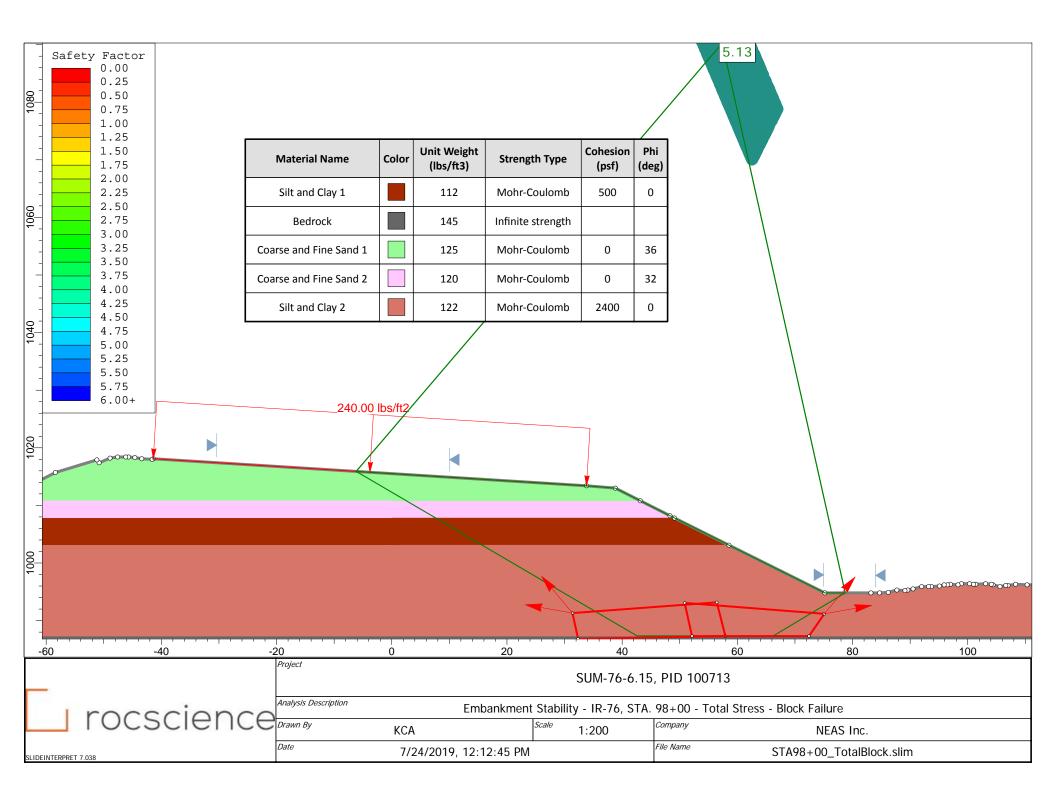
Classification Counts by Sample																			
ODOT Class	Rock	A-1-a	A-1-b	A-2-4	A-2-5	A-2-6	A-2-7	A-3	A-3a	A-4a	A-4b	A-5	A-6a	A-6b	A-7-5	A-7-6	A-8a	A-8b	Totals
Count	4	0	3	3	0	0	0	0	6	13	0	0	1	0	0	0	0	0	30
Percent	13%	0%	10%	10%	0%	0%	0%	0%	20%	43%	0%	0%	3%	0%	0%	0%	0%	0%	100%
% Rock Granular Cohesive	13%		83% 3%									100%							
Surface Class Count	2	0	1	2	0	0	0	0	4	6	0	0	0	0	0	0	0	0	15
Surface Class Percent	13%	0%	7%	13%	0%	0%	0%	0%	27%	40%	0%	0%	0%	0%	0%	0%	0%	0%	100%

GB1 Figure B – Subgrade Stabilization

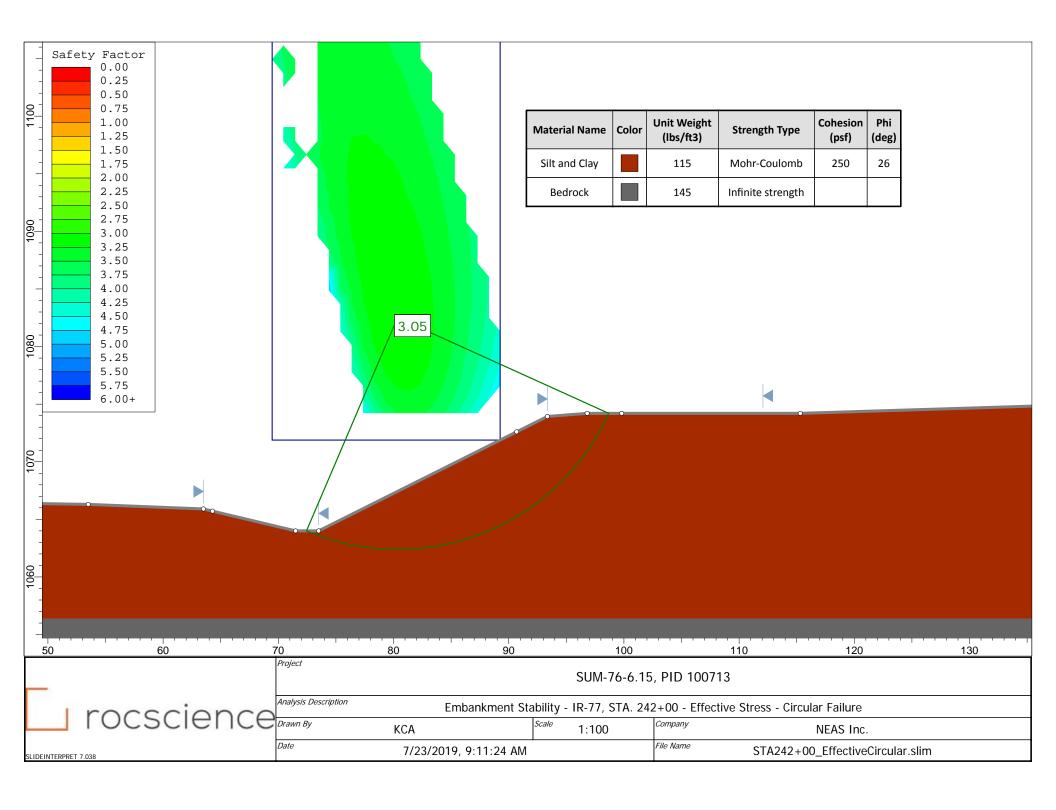


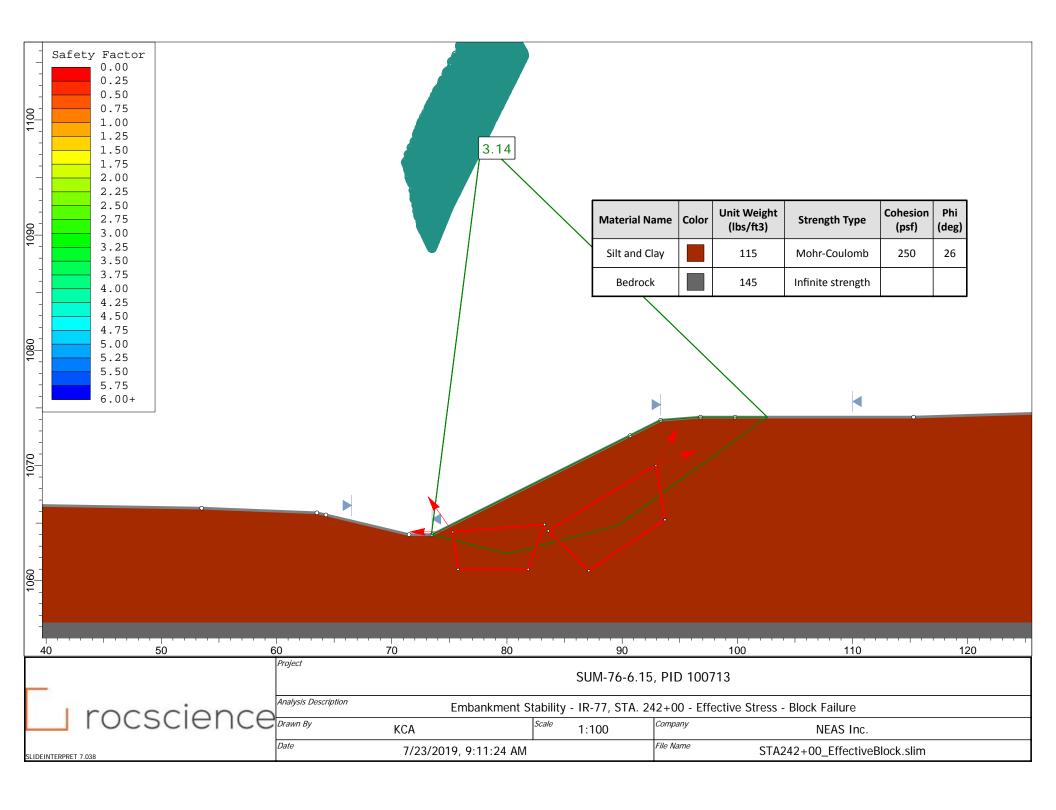

OVERRIDE TABLE

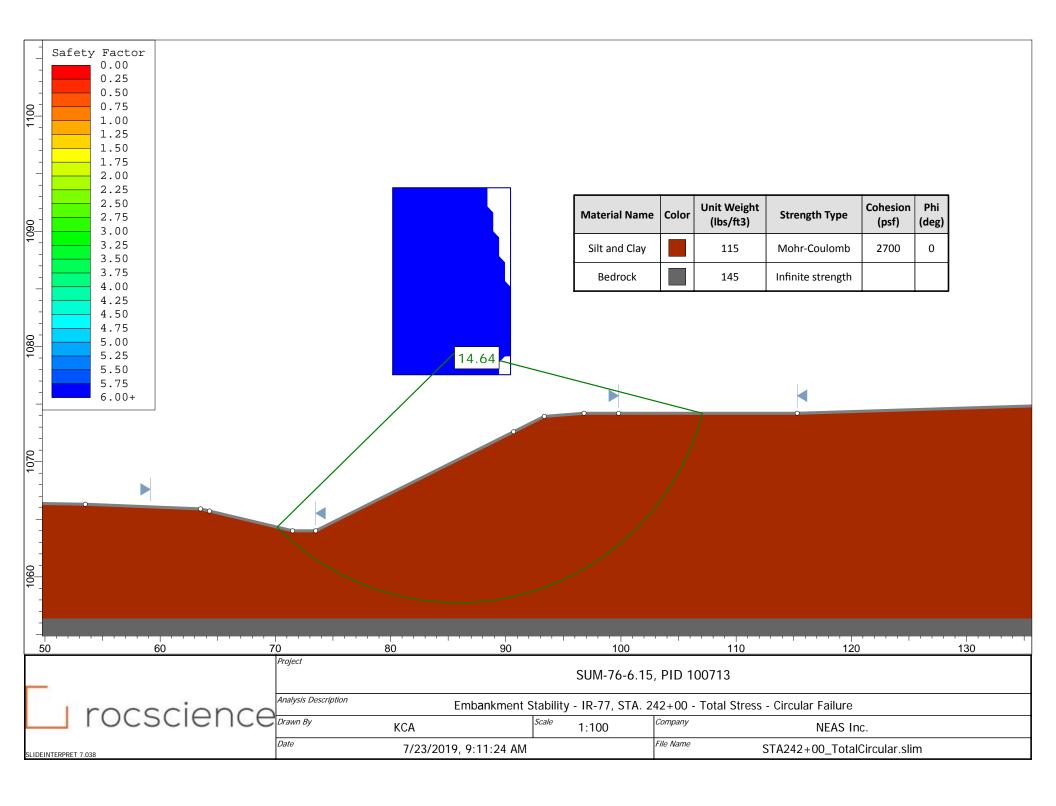

Calculated Average	New Values	Check to Override
3.44		HР
17.22		N60L

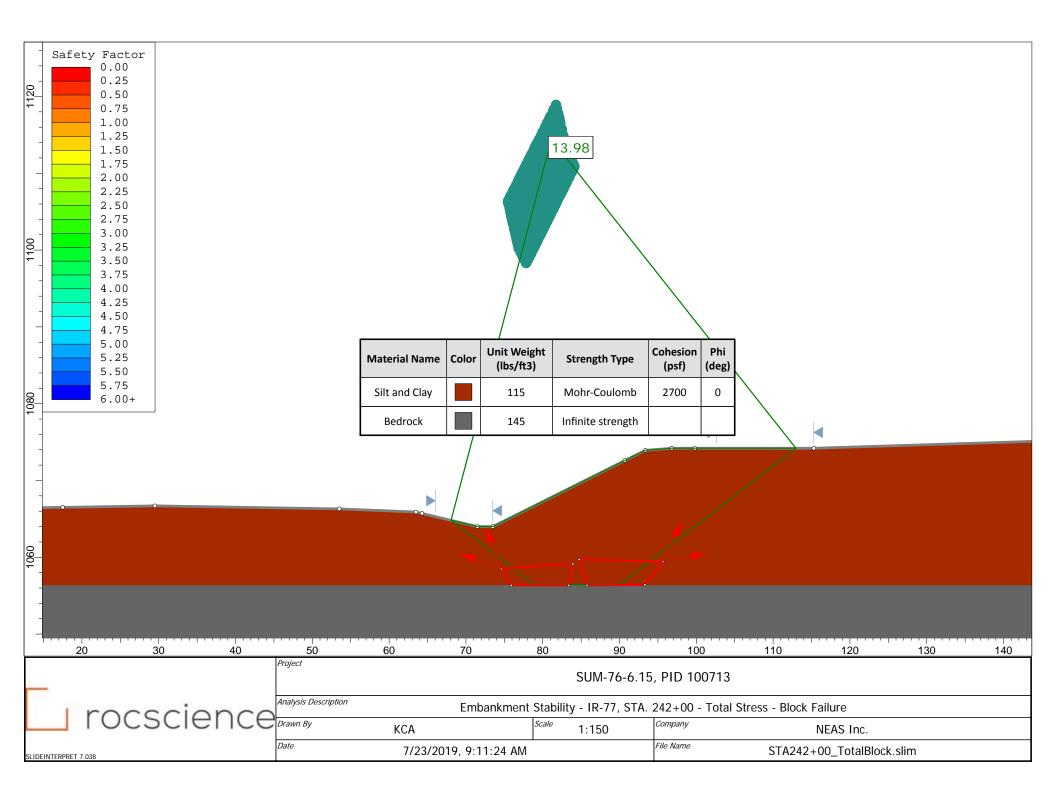

APPENDIX E EMBANKMENT STABILITY ANALYSIS

IR-76 EB – STA. 98+00

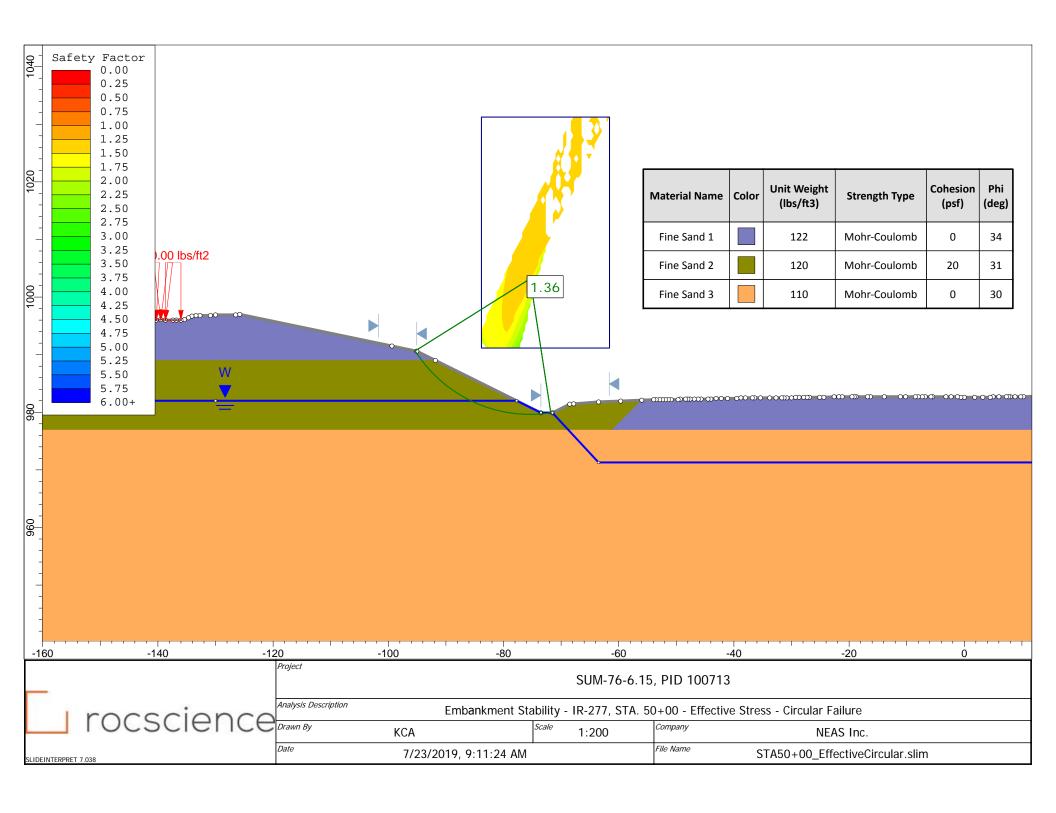


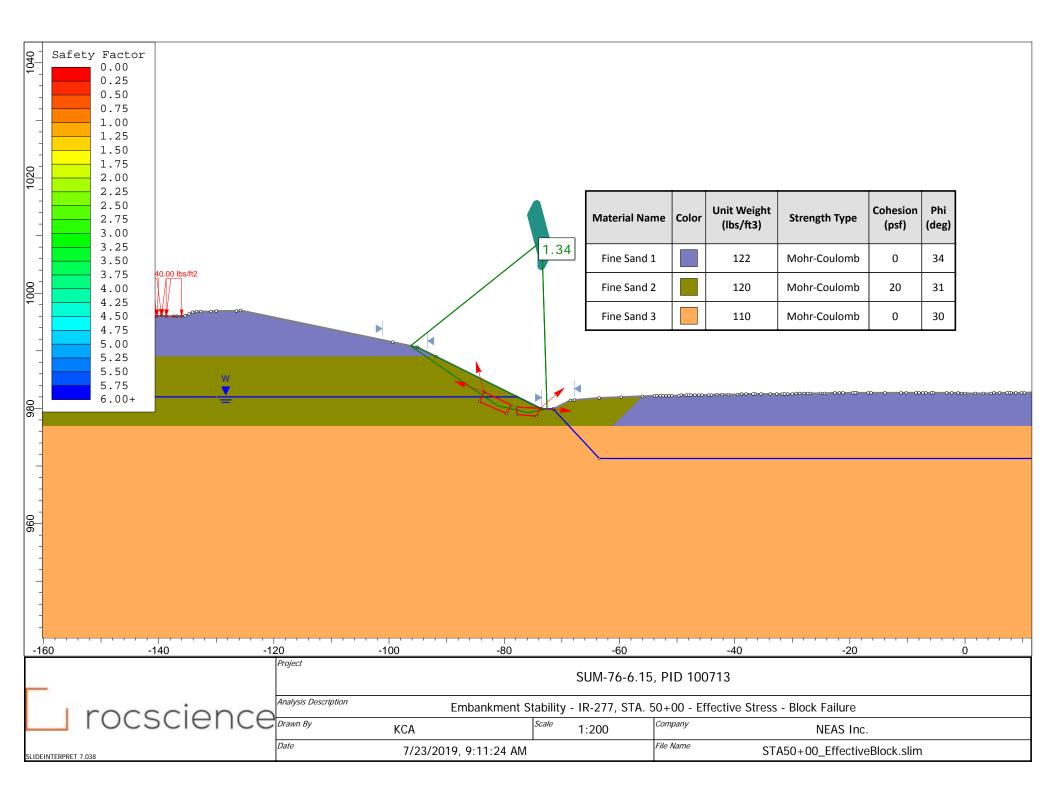


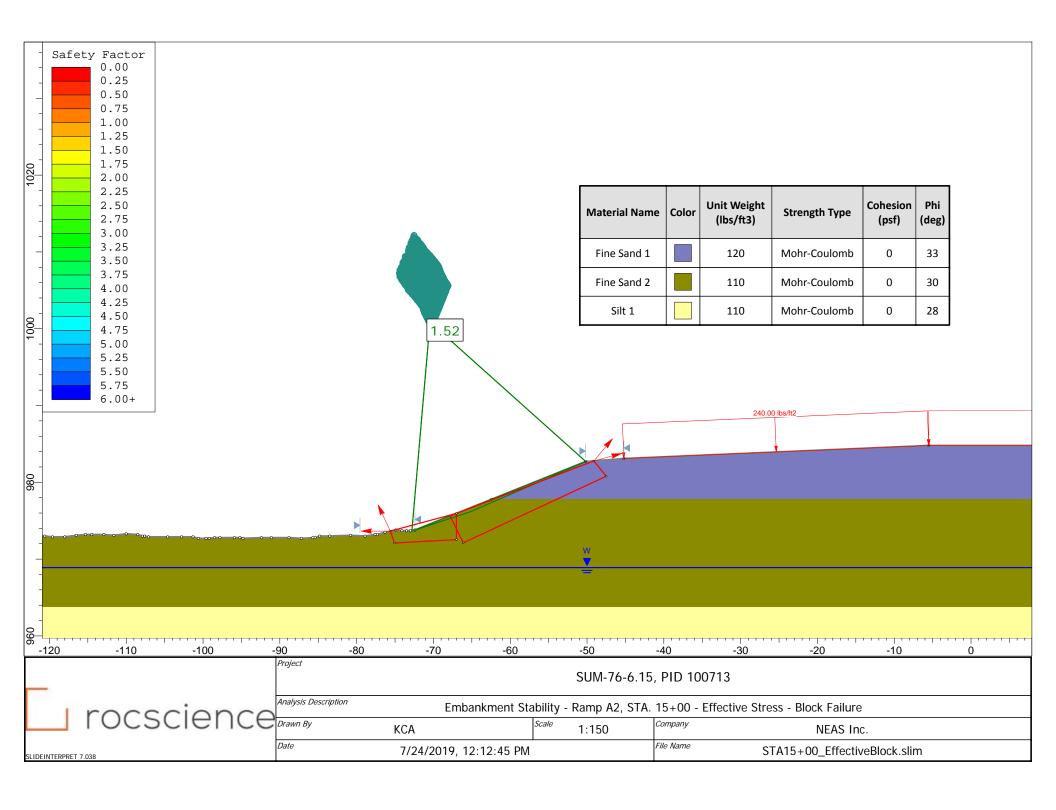


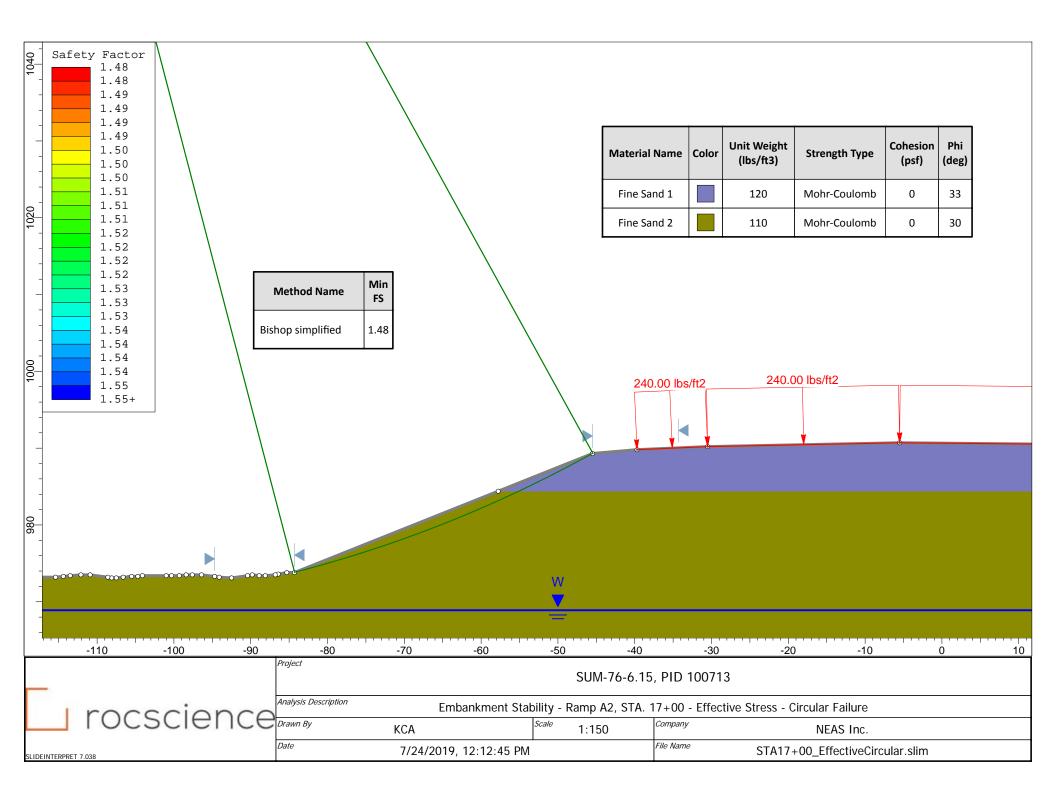


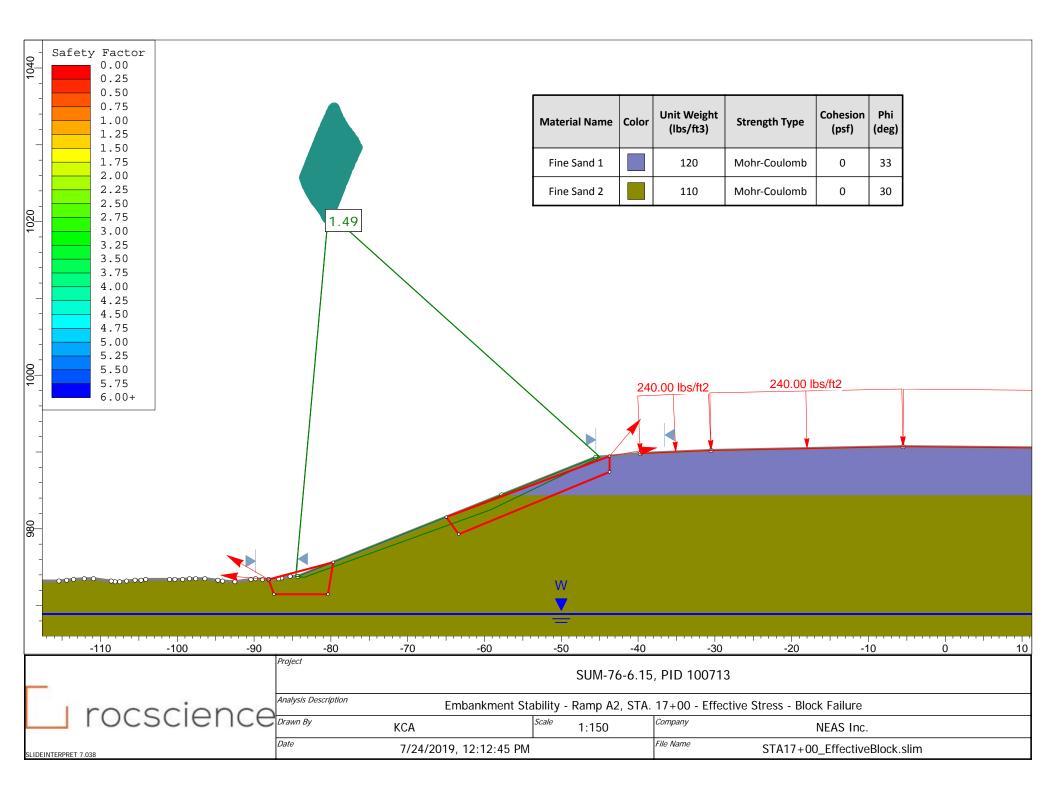
IR-77 SB/IR-76 EB – STA. 242+00






IR-277 WB/IR-76 WB - STA. 50+00




RAMP A2 – STA. 15+00

RAMP A2 – STA. 17+00

APPENDIX F ODNR OIL WELL REPORTS

WELL COMPLETION RECORD (Form 8)

Ohio Department of Natural Resources Division of Mineral Resources Management 2045 Morse Road, Bldg. H-3, Columbus, OH 43229-6693 Telephone: 614-265-6633 Fax: 614-265-7998

This report is due in duplicate 60 days after completion of the well. If the permit has expired and the well was not drilled, check the box below, sign on reverse side (Back), and return to our office within 30 days after expiration.

1. Owner #:	1639		3. API #:		2	4 152 2 2145 00	00
Owner name, address ar			4. Type of P	ermit:		4-153-2-3145-00-	
2. Owner name, address ar	id telephone hambers.		5. County:	Citiiit.	Driii	New Well Urban	002
Bass Energy, Inc.	RECEIVED	la ^f	6. Civil Towr	ehin:		Summit	
130 Merz Blvd., Akron, OH 44333			7. Footage:		U 0 5405W	Conventry	
330-869-0870	WAY 1 - 2013	steel the steel st	7. Footage.	1351	NL & 5185V	VL of Lot 13, Trac	12
8. Type of Well:	Division of All & Gas Columbus						3 Table 1
9. X: 2259865	Y. 499315		21. Date drilli	ing commenced:		2/8/20	012
10. Quad: AKRO	N WEST		22. Date drilli	ing completed:		3/20/2	012
11. Section:	12. Lot: 13		23. Date put	into production:		6/7/20	012
13. Fraction:	14. Qtr.Twp:		24. Date plug	ged if dry:			
15. Tract:	2		25. Producing	g formation:		Clinton Sandstone	9
16. Allot:			26. Deepest	formation:		Queenston Shale	
17. Well #:	1		27. Driller's to	otal depth:		400	8'
18. Lease Name:	ABINGTON PROPI	ERTIES	28. Logger's	total depth:		400	0'
19. PTD: 3999'	20. Drilling Unit:	25.33	29. Lost hole	at		feet.	
30. Type of tools:			31. Type of c	completion:	32: E	Elevation:	
Cable	Air Rotary			n Hole		Ground Level	973
Fluid Rotary	✓ Air/Fluid Rotary		✓ Thro	ugh Casing		Derrick Floor	
Cable/Air Rotary	Service Rig		Slotte	ed Liner		Kelly Bushing	979
Cable/Fluid Rotary	Cable/Air Rotary/Fluid Rota	ry			alternation		73. 3
33. Perforated intervals and				3' - 3812' with 53 s	shots		
34. Name of Frac Company			Superior \	Well Service			
35. Method of shot, acid, or	fracture treatments, production	on tests, pressu	res, etc.:		A STATE OF		
SHOT:		FRAC FLUIDS:		SAND:		PRESSURES (psi):
Lbs.		_ Water (gals)		_	40,000	Breakdown _	1475
Qts.	Type HCL			_ Sks			1375
Type	Percent 15%			_		ISIP_ 5 min. SIP	1400 1294
METHOD OF FLUID C FLUIDS: PIT: Swab Flowback	CONTAINMENT FRAC TANK:			DATI	E TREATEI	Avg. Rate _ D:3/20/2	26
36. Amount of initial product	ion per day:	(MCF.)		(Bbls.)		(Bbls.)	
Natural:	Gas	0	Oil	0	Brine	0	
After Treatment:	Gas	15 MCF	Oil	10 BO	Brine	1	
SERC Data:	Number of Tanks	3:2	_ M	aximum Storage	Capacity of	all Tanks (bbls.) _	440 BBLS
37. Casing and tubing recor	d: Please indicate which	is used (cement	t or mudding)				
Туре	Size	Feet Used in Drilli	ng Am	ount of Cement or N	Лud	Feet Left in Well	
Conductor/Drive Pipe:	11"	120'		315 sks		120'	
	8 5/8"	451'		240 sks		451'	
Surface:	0 3/0	431		240 585		431	
Intermediate:	4 1/2" 11.6#	3984'	-	175 sks		3984'	
Production:	1 1/2"	3788'		175 SKS		3788'	
Tubing:	11/2	3788	-			3/88	
Comments:					A March		
38. Name of drilling contract	tor:			Poulson Driling			
39. Type of electrical and/or (all logs must be submitted)	radioactivity logs run:	Gamma Ray,	Neutron, Den	sity, Resistivity &	Gamma Ra	ay CCL, VDL Bond	I, Perforating
40. Name of logging compa	ny:		Appa	alachian Well Sur	veys	News -	
DIVISION USE ONLY							4 4 4
Log Submitted: Y / N Confidential: Y / N			SUBMITTED Rate Graph Record Invoice	RECEIN		S:	

FORMATION	ТОР	BASE	Shows of oil, gas, fresh water, or brine; indicate depth or interval	REMARKS
reshwater Strata				
Glacial Deposits	0'	20'		
Coal Seams				
st Cow Run				
Buell Run				
2nd Cow Run			CAMPOREL	
Salt Sand		200	RECEIVED	
Maxton Sand			Cius et visi	
Keener Sand	1 P			
Big Injun Sand			200 S to Joing	
Squaw Sand				
Mississippian Shale	50'	396'		
Weir Sand				
Berea Sand	396'	450'		
Bedford Shale 2nd Berea	450'	520'		
Ohio Shale	520'	2168'		
Santz	520	2100		
Thirty Foot		de la la la la la la la la la la la la la		
Gordon		Tiple- G		
Cinnamon				
Marcellus				
Big Lime	2168'	3638'		
2.4				
Sylvania Oriskany	2400'	2540'		
Bass Island	2540'	2554'		
Salina	2040	2004		
Salt Section	2790'	3162'		
Newburg				E SE SE SE SE SE SE SE SE SE SE SE SE SE
_ockport	3360'	3638'		
Little Lime	07001	0750		
Packer Shell	3702'	3758'		
Stray Clinton Red Clinton	3794'	3820'		
White Clinton	3869'	3880'		
Medina	3938'	3948'		
Queenston	3948'	T.D.		
Utica				
Trenton Black River				-
Gull River				
Glenwood Shale				
Knox Unconformity	COLUMN TO			
Beekmantown				
Rose Run				
Frempealeau/Copper Ridge				
'B" Zone				
Krysik Kerbel	-			-
Conasauga				
Rome				
Mt. Simon				
Granite Wash				
Middle Run				
Granite				
certify that the above inform		and correct	t, to the best of my knowledge:	
(SIGNATU			(DATE)	
William J.			Geologist (TITLE)	
(NAME typed o	printed)			
The state of the s	March Sand and	Bass	Energy, Inc.	

PSI:GRN, Ca1, D County SUMMIT Section Lot 550 Measured 872'NL & 550 Acres 20 TRAI		Township C	COVENTRY	OHIO DIVISION OF GEOLO 22792 Quad. AKK Twp. Qtr XC		Permit Issued _	No. 2792 08/23/94 Coord. 508830 Tool RTAF
Measured Acres 672 KL 400 TRAID Landowner Operator FORD-BAKER NORTH AMERICAL 990 DF 994	CAN PE	TROLEUM	1 3052 DTD	Well No	Date PB	Date Complete	d <u>11-27-94</u>
TD Formation	Queens 63; (7)	t on 3769-75 # sand	; (4) 3796-99 500 gal acid;	Prod. Formation P Natural Initial	Rock Pressur		MCFG & 5BO
FORMATION	TOP	воттом	REMARKS	FORMATION	109	BOTTOM	() LIB II II I
COMPLETION 5-24-95 Date put into produ Big lime	ction 1 .2107	2/8/94 3594			The state of the s		
Packer shell Clinton stray Clinton red Clinton white Queenston	3674	3711 3734 3776 3802	OTD; 3952'LTD				

REMARKS FORMATION TOP BOTTOM REMARKS		FO	RMATION	 		TOP)	В	OTTO	М	F	EMAR	(S		 FO	RMATI	ION			TOP	DOT	TOM			
				-			-							+						101	ROI	IOM	RE	MARKS	-
							1																		
																		1 1			1	:			
																		3							
																			1						
		Š.			1.													į							
							1															,			
	4.5						9 :											1							
							1					1		1										·	
								1																	
			ł																1						
	1																								
									,									t				ĺ			,
							1																		
		a.								ŀ															
				-																					
																			ľ		•				
				- 1																					
							-																		
																				3					
							1																		
				- 1																					
	ŕ			. 1			1			1				1											

EAST: GRN, Cal, D, CCL	-			OHIO DIVISION OF GEOLG 22803		1 0111	nit No. 2803 12722794
County SUMMIT		Township (PORTAGE) COV	22803 <u>ENTRY </u>	ON WES	1	
Section Lot		Tract	2	Twp. Qtr X (Coord 223	8150) Class	Goord. 508800
Measured (800 'NL. & 59							
Acres	CT 23)	800	NL & 7055'	WL of twp. Clinton	<u>n - Pool</u>	- Flui	d RT
Landowner LANGLEY UN		<u> </u>		Well No	<u> </u>	Date Commend	ced <u>9-22-95</u>
Operator VIKING RESO				980 ' Well No		Date Comple	ted <u>9-28-95</u>
GL (1040) DF		986 L	т <u>р 3985</u> дтр		Date PB		
TD Formation	Queens		2.00. (4) 204		<u>Clinton</u>		MACO 0 000
Perforations (4) 37	792-95;	(7) 3802	2-08; (4) 381	1-14;* IP Natural		. IP AT 50	MCFG & 2BO
0 5/01	77/2 TUL,	75.cks /	4½" 3908' 150	30M gal water; Initial			
Casing Record O 3/O	400 1	/35K5, 4	+2 3900 130	SKS		Date Abandone	ed
FORMATION	TOP	воттом	REMARKS	FORMATION	ТОР	воттом	REMARKS
COMPLETION 3-21-96	l	воттом	REMARKS	FORMATION X= 2,258,300	ТОР	воттом	REMARKS
COMPLETION 3-21-96 *(5) 3817-21;	l		REMARKS	X= 2,258,300	ė.	воттом	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale		2116	REMARKS		ė.	воттом	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime	2134	2116 3628	REMARKS	X= 2,258,300	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell	2134 3716	2116 3628 3750	REMARKS	X= 2,258,300	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell Clinton stray	2134 3716 3772	2116 3628 3750 3778	REMARKS	X= 2,258,300	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell Clinton stray Clinton red	2134 3716 3772 3786	2116 3628 3750 3778 3850	REMARKS	X= 2,258,300	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell Clinton stray	2134 3716 3772	2116 3628 3750 3778 3850 3944		X= 2,258,300 *Whidbey Resources I	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell Clinton stray Clinton red	2134 3716 3772 3786	2116 3628 3750 3778 3850 3944	REMARKS	X= 2,258,300 *Whidbey Resources I	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell Clinton stray Clinton red	2134 3716 3772 3786	2116 3628 3750 3778 3850 3944		X= 2,258,300 *Whidbey Resources I	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell Clinton stray Clinton red	2134 3716 3772 3786	2116 3628 3750 3778 3850 3944		X= 2,258,300 *Whidbey Resources I	ė.	ВОТТОМ	REMARKS
COMPLETION 3-21-96 *(5) 3817-21; Ohio shale Big lime Packer shell Clinton stray Clinton red	2134 3716 3772 3786	2116 3628 3750 3778 3850 3944		X= 2,258,300 *Whidbey Resources I	ė.	ВОТТОМ	REMARKS

FORMATION	TOP	BOTTOM	REMARKS	FORMATION	1	TOP	воттом	REMARKS
	1							
		;						
				,				
	14 M			: /				
				1				
*		-						
				·				
		1						
				1				
				i i				
								à
				1				
•	:			* 1				
		1		1				
	1	1 1	*,	<u>;</u>		ŀ		
	. 4							

	SHEWSHALL			OHIO DIVISION OF GE	OLOGICAL SU		
EAST:GRN,Cal,D				22843			No. 2843
A COLLMAN TOT			COTTENTED		ARDON HEC		03/25/98
County SUPPLL		lownship	CUVERIKI O	Quad.	MINOR WES	57000 v.	. 507640
Section Lot _	0 8:7007111	Tract	A TWILDT A	Twp. Qtr # Proposed	スCoord. <u>本本い</u> スワミハ	07 PNN	oord. GOTOT
Acres 20					11D <u> </u>	Class 1 C. C.	<u></u> 1001 17 1 1 1 1
Landowner MARR	INHUI AF			Well No. 1		Data Cammanas	7-13-96
	FOTCAN PE	TRALEH		Well No			
TD Formation				Prod. Formation			
Perforations (9)	3745-53: (12) 375	7-68· (9) 377	73-81; IP Natural		IPAT 50	MCFG & 5BO
Stimulation 72M	gal wtr. 5	OM# 20/4	40 Ottawa san	id;	Initial Rock Pressur		
Casing Record 8 5/	/8" 314' 20	Osks. 4	½" 3914' 125s	ks		Date Abandoned	
FORMATION	TOP	BOTTOM	REMARKS	FORMATION	TOP	воттом	REMARKS
COMPLETION 11-21							
Big lime		3596					
Packer shell	3675	3707				la de la constante de la const	
Clinton red	1 27/15					1	
	3745	3768					
Clinton white	3773	3768 3782					
Clinton white Queenston	4 4 5	3782					
	3773	3782	DTD; 3924'LTD				
	3773	3782	DTD; 3924'LTD				
	3773	3782	DTD; 3924'LTD				
	3773	3782	DTD; 3924'LTD				
	3773	3782	DTD; 3924'LTD				
	3773	3782	DTD; 3924'LTD				

FORMATION	TOP	воттом	REMARKS	FORMATION	TOP	воттом	REMARKS
							i
				·			
				·			
		į.					
				·			·
				,			-
9							
				*			
:							
					i .		
\$							
# T					1 1	l	

and the second of the second of