

PID 121811, FRA/FAI-33-22.99/0.00 US 33 Widening Feasibility Study (As developed under PID 119387, FRA-33-24.76 Feasibility Study)

ODOT District 6 June 10, 2025

Prepared by:

Cindy Yerkey, PE, RSP2I CYerkey@LJBinc.com (216) 586-3752

Table of Contents

Executive Summary	1
Project Overview	1
Purpose and Need	1
Alternatives Considered	1
Key Findings	1
Cost Comparison	2
Recommendation	2
Next Steps	2
Conclusion	2
Introduction	1
Project Background	1
FRA/FAI-33-22.99/0.00, PID 121811	2
Study Area	2
Evaluation Methodology	4
Logical Termini	4
Purpose and Need Summary	5
Purpose Statement	5
Need Elements	5
Congestion	5
Safety	5
Summary Statement	6
Alternatives	7
No Build Alternative - Considered and Dismissed	7

Feasible Build Alternatives	7
Key Issues	8
Congestion and Safety	9
Congestion/Capacity	9
Study Area and Analysis Scenarios	10
Operational Goals of Mainline Freeway Analysis	11
Scenario 1: Design Year (2050) No Build Capacity Analysis	12
Eastbound US 33	12
Westbound US 33	13
Scenario 2: Design Year (2050) Build Capacity Analysis – US 33 Widening	14
Eastbound US 33	15
Westbound US 33	16
Scenario 3: Design Year (2050) Build Improved Capacity Analysis – US 33 with HSR	
Eastbound US 33	18
Westbound US 33	19
Design Year (2050) Build Analysis Summary	20
Conclusions and Recommendations	21
Recommendations	22
Safety	22
Highway Safety Manual Analysis	22
Comparison of Alternatives	22
Inside Widening HSM Analysis	23
Roadway Design	25
Typical Section	25

	Horizontal Alignment	25
	Cross Sections	26
	Pavement Design	26
	Drainage	26
	Traffic Control/ Signing/ Lighting	26
ΙT	S/Mobility	27
S۱	ructures Assessment	28
	Design Criteria and Assumptions	28
	FRA-33-25.03 L/R over Big Walnut Creek Overflow	29
	FRA-33-25.09 L/R over Big Walnut Creek	29
	FRA-33-26.32 (or FRA-317-9.14) SR 317/Hamilton Road over US-33	29
	FRA-33-26.49 L/R over Blacklick Creek	29
	FRA-33-26.60 Blacklick Trail Bike Path over US-33	29
	FRA-CR118-5.71 Ebright Road over US-33	30
	FRA-33-27.51 L/R over Cable Bowman Ditch	30
	FRA-33-29.00 L/R over George Creek	30
	FRA-CR222-0.00 Gender Road over US-33	30
	FRA-33-02.92 over Tussing-Bachman Ditch	31
	Alternative 1 – Widening to the Inside	31
	Alternative 2 – Widening to the Outside	31
	Summary	31
Μ	aintenance of Traffic	32
	MOT Scheme Selection – Part-Width vs. Crossover	32
	Contraflow Construction (Not Considered)	33
R	ight-of-Way Impacts	34

Environmental Analysis	36
Cultural Resources	36
Section 4(f)	36
Section 6(f)	36
Ecological Resources	36
Regulated Materials	37
Noise	37
Air Quality	37
Public Involvement	38
Cost Estimates and Comparison of Alternatives	39
Comparison Matrix	40
Conclusion	44
Next Steps	44

Appendices

Appendix A: Build Alternative 1 Plans

Appendix B: Build Alternative 2 Plans

Appendix C: Traffic Volume Plates

Appendix D: Capacity Analysis

Appendix E: Safety Analysis

Appendix F: Design Criteria

Appendix G: ITS Evaluation

Appendix H: Bridge Condition Summary

Appendix I: Culvert Inspection Summary

Appendix J: MOT Analysis Summary

Appendix K: Environmental Studies

Appendix L: Draft Noise Wall Preliminary Placement Plan

Appendix M: Cost Estimates

Executive Summary

Project Overview

The Ohio Department of Transportation (ODOT) District 6 initiated the US 33 Widening Feasibility Study (PID 121811) to address growing congestion and safety concerns along the US 33 corridor from SR 104 (Refugee Road) in Franklin County to Diley Road in Fairfield County. This corridor is a critical transportation link in Central Ohio, experiencing increasing traffic volumes and crash rates. This feasibility study evaluates two primary build alternatives: widening to the inside (Alternative 1) and widening to the outside (Alternative 2)—to determine a preferred approach for improving capacity and safety.

This document presents the final summary documentation of the alternative evaluation for the US 33 corridor including the evaluation of the design elements determined to influence selection of a preferred alternative. While the evaluation of capacity and safety along the corridor has been provided based on updated traffic volumes prepared for this study to support development and updates to the purpose and need, these elements were not determined to influence selection of a preferred alternative.

Purpose and Need

The project aims to:

- Reduce congestion and improve traffic flow.
- Enhance safety by addressing high crash rates.
- Accommodate future traffic growth and regional mobility needs.

Traffic analyses show that without improvements, the corridor will experience severe congestion and unacceptable levels of service (LOS F) by 2050. Safety data from 2021–2023 revealed 516 crashes, including 5 fatalities and 12 serious injuries, with several segments listed on ODOT's 2024 HSIP Priority List.

Alternatives Considered

No Build – Retains current conditions; fails to meet project goals.

Alternative 1: Widening to the Inside – Adds a third lane in each direction within the existing median. Requires minimal right-of-way (ROW) acquisition and supports future hard shoulder running (HSR).

Alternative 2: Widening to the Outside – Adds lanes on the outside shoulders. Requires significant ROW acquisition, bridge replacements, and has higher environmental and construction impacts.

Key Findings

- Both build alternatives improve LOS and reduce crash potential compared to the No Build scenario.
- Alternative 1 offers better safety outcomes and lower environmental and structural impacts.
- Alternative 2 is more costly due to bridge replacements, ROW needs, and greater stream/wetland impacts.

Cost Comparison

CATEGORY	ALTERNATIVE 1	ALTERNATIVE 2
Total Construction Cost	\$154.6M	\$167.0M
Total Project Cost	\$203.3M	\$221.4M
ROW Required	None	5 acres perm, 20 acres temp
Benefit-Cost Ratio (Safety)	0.16	Not calculated

Total Project Cost includes preliminary engineering/detailed design, ROW, CE, and inflation.

Recommendation

Alternative 1 (Widening to the Inside) is recommended as the preferred alternative. It meets the project's purpose and need, minimizes environmental and ROW impacts, supports future Hard Shoulder Lane implementation, and is more cost-effective.

Next Steps

Finalization of Stage 1 design is expected by late Summer 2025, with construction targeted for Fall 2026.

Conclusion

The US 33 Widening Feasibility Study (PID 121811) presents a comprehensive evaluation of alternatives to address critical congestion and safety issues along a key corridor in Central Ohio. Both build alternatives—widening to the inside and widening to the outside—offer operational improvements over the No Build scenario. However, Alternative 1 (widening to the inside) emerges as the preferred solution due to its lower cost, minimal right-of-way and environmental impacts, and compatibility with future capacity enhancements such as hard shoulder running.

Alternative 1 not only meets the project's purpose and need but also provides a more efficient path forward in terms of design, construction, and long-term flexibility. With this recommendation, the project is positioned to move into environmental clearance and detailed design, keeping it on track for construction in Fall 2026.

Introduction

ODOT District 6 pursued Transportation Review Advisory Council (TRAC) funding to improve safety and reduce congestion on US 33, from the I-270 interchange to the Franklin/Fairfield County line, based on multiple studies highlighting these issues. The FRA-US33-24.76 Feasibility Study (PID 119387) was launched to explore corridor improvements including widening US 33 to increase capacity, upgrading the I-270/US 33 interchange, and evaluating a new interchange at Bixby Road.

Due to delays in adding the project to regional and state plans, ODOT split the project into two parts to meet the May 2024 TRAC funding deadline for the US 33 corridor widening. Despite setbacks from survey data processing and regional travel model updates, the evaluation of alternatives and determination of a preferred alternative for the TRAC application was completed. The preferred alternative, widening US 33 by adding an additional lane to the inside in both directions, was submitted to TRAC in May 2024.

Further delays in authorizing the second part of the contract put the US 33 widening project at risk of not having an approved environmental document before TRAC funding decisions in October 2024. To address this, ODOT split the feasibility study into two phases: (1) an alternative determination memo to select a preferred option using available data, and (2) a final Feasibility Study report (i.e. this report), including updated traffic and safety analysis once the second part of the contract is authorized.

The FRA/FAI-33-22.99/0.00 (US 33 Widening) Preferred Alternative Determination Memo was submitted in September 2024, documenting the evaluation of the two widening alternatives—widening to the inside and widening to the outside—and presenting the recommended preferred alternative for review and approval. At the time of the submittal, updated traffic volumes were not available therefore the memo was submitted without updated capacity and safety analysis. Submission of the preferred alternative recommendation without the analysis was determined to be acceptable. Capacity and safety analysis were not expected to influence the selection of the preferred alternative. In November 2024, the preferred alternative recommendation was approved, allowing the environmental document to be prepared and submitted. Approval of the Environmental Document and Environmental Clearance was received for the project on April 24, 2025.

This feasibility study presents the final summary of the alternative evaluation presented in the Preferred Alternative Determination including the updated capacity and safety analysis that was unavailable at the time of the preferred alternative determination for PID 121811. As noted in the preferred alternative determination memo and demonstrated herein, the capacity and safety analysis are comparable between the two alternatives, confirming the prior conclusion. No new findings have been presented in this document.

Project Background

Central Ohio is among the fastest growing areas in the country and the US 33/Southeast Expressway is a key corridor in the Central Ohio regional transportation network. The FRA-US33-24.76 Feasibility Study (PID 119387) began as part of the 2017 Southeast Corridor study. This study considered several improvements to US 33 southeast of Columbus, including widening of US 33, interchange improvements at I-270, and conversion of at-grade intersections with grade-separated interchanges at Bixby Road and Pickerington Road.

Several elements of the 2017 Southeast Corridor study are in various stages of development. Recently completed improvements include the addition of auxiliary lanes between IR 270 and

Hamilton Road and the restriction of turn movements at Bixby Road. District 5 is in the final stages of design for an interchange at Pickerington Road with construction expected to begin in 2026.

The purpose of the FRA-33-24.76 Feasibility Study, PID 119387, is to identify and recommend preferred alternatives for the US 33 corridor, I-270 interchange, and Bixby Road intersection, with NEPA clearance, to support the leveraging of available funding for future construction.

In consultation with OES, it was determined that the proposed improvements at each of the study components could be designed such that they have independent utility. Each was assigned a unique PID to be utilized as the projects progress through the project development process, environmental clearance, and into detailed design.

- FRA/FAI-33-22.99/0.00, PID 121811- Widen US 33 from 2 to 3 lanes in each direction from SR-104 (Refugee Road) in Franklin County to Diley Road (TR-207) in Fairfield County
- 2. FRA-270/33-45.808/24.375, PID 121812- Upgrade the interchange of IR 270 and US 33 in southeastern Franklin County to increase mobility and improve safety at the interchange between I-270 and US 33.
- 3. FRA-33-27.831, PID 121814- Construct a new interchange at the intersection of US 33 and TR 229 (Bixby Road) in southeast Franklin County.

The feasibility study and evaluation of alternatives for these projects are being completed under the FRA-33-24.76 Feasibility Study (PID 119387) contract. However, each of the projects has independent utility and will be carried forward as separate projects, identified by PID as noted above, during environmental clearance and detailed design phases.

Given US 33 is a critical link within the transportation network in central Ohio the need to meet existing and future travel demands on US 33 via widening (PID 121811) was identified as the priority and programmed to be the first of the three projects to go to construction, presently targeted for the Fall of 2026. The intent is for PID 121812 and 121814 to progress to construction within 2-3 years after PID 121811.

FRA/FAI-33-22.99/0.00, PID 121811

The FRA/FAI-33-22.99/0.00 project (PID 121811) aims to reduce congestion, improve safety, and enhance regional mobility on US 33 from SR 104 to Hill-Diley Rd in southeastern Franklin County. The project's key goals are to optimize traffic flow, improve safety within the corridor, and integrate local access.

This section of US 33 has been identified by ODOT as having congestion and safety issues, with two locations ranking on the HSIP priority list. Recent studies, including the 2021 FRA-FAI-33 TSMO Study, explored improvement options, comparing "No Build," hard shoulder running, and traditional widening alternatives. Both build options addressed congestion, but the hard shoulder running option was more costly and had greater construction impacts due to the required ITS infrastructure.

Study Area

The study area extends along US 33 from north of the SR 104 interchange to east of the Hill Road/Diley Road interchange, encompassing areas that contribute to the transportation problem and a range of potential solutions. A project area map is shown in Figure 1.

Within project limits, US 33 typical section includes two through lanes in each direction with

FIGURE 1. FRA/FAI-33-22.99/0.00, PID 121811 (ALSO FRA-33-24.76 FEASIBILITY STUDY, PID119387) PROJECT AREA MAP

a grass median and a 60-mph speed limit between SR 104 and Pickerington Road. In 2019, an auxiliary lane project was completed for US 33 that added a third lane from I-270 interchange to Hamilton Road interchange in both directions. The existing median is approximately 60 feet wide from SR 104 to Gender Road, where it narrows to 40 feet wide for the remainder of the study area.

It is functionally classified as an "Other Freeway and Expressway". The AADT on US 33 ranges from approximately 50,000 north west of I-270 to 80,000 between I-270 and Hamilton Road to 55,000 in the vicinity of Hill Diley interchange, and the daily truck percentage varies between 5% and 8% along the corridor (based on 2023 TIMS data). The approximately ninemile US 33 corridor includes 4 interchanges and 3 at-grade intersections.

The surrounding land uses are primarily rural/undeveloped land, however, land uses along the existing surface streets with an interchange access to US 33 are urban in nature.

Evaluation Methodology

This US 33 Widening Feasibility Study documents the additional investigation into alternatives for the US 33 corridor widening (PID 121811 completed as part of the FRA-33-24.76 Feasibility Study PID 119387) and identifies the preferred alternative for the US 33 corridor between Refugee Road (SR 104) through the Hill-Diley Interchange.

Logical Termini

The US 33 Widening project has logical termini that were evaluated individually for eastbound and westbound traffic based on volumes and interchange configurations. Widening for an additional eastbound lane begins just in advance of the entrance ramp from Refugee Rd, creating additional through capacity through the I-270 interchange. The additional lane in the eastbound direction ends at the Hill-Diley interchange, either as a drop lane or by reducing the number of lanes downstream from the eastbound exit ramp. East of this interchange, volumes were observed to be lower than to the west of the corridor.

Westbound, the additional lane begins just prior to the westbound entrance from the Hill-Diley interchange. This allows motorists to shift left prior to the entrance ramp while preventing right-of-way needs for a ramp realignment.

This project has independent utility in that while other projects at US 33 interchanges may be considered to address access and safety, US 33 needs additional capacity through this area. If no other actions are taken, the project could be constructed and address this need by providing additional lanes.

Purpose and Need Summary

Purpose Statement

The purpose of the US 33 Widening project, PID 121811, is to reduce congestion and improve safety on the US 33 corridor southeast of Columbus.

Need Elements

The US 33 corridor is a prominent corridor in Central Ohio, moving people and goods across the region. In the current condition, US 33 corridor experiences severe congestion during peak hours that has resulted in safety concerns and reduced reliability for drivers to use this corridor. During peak hours in the existing conditions, sections throughout the corridor between SR 104/Refugee Rd and Hill-Diley are over capacity. Traffic projections in future years show volumes are expected to rise, worsening conditions. Higher volumes and oversaturated conditions also contribute to increased crash risk on a corridor with sections listed on ODOT's 2024 HSIP Priority List, including:

- US 33/I-270 Interchange Area (MP 24.50-25.00): #46 Urban Non-Freeway segment
- US 33/Hamilton Rd Interchange Area (MP 25.50-26.00): #319 Urban Non-Freeway segment
- US 33 near Ebright Rd (MP 27.00-27.50): #333
- US 33/Hill-Diley Rd Interchange Area (MP 0.9-1.40): #348 Suburban Non-Freeway segment

Congestion

Analysis in the TSMO study found that in the 2025 No Build Scenario, this section of eastbound US 33 operates at an acceptable LOS, with the exception of the section from Hamilton Rd to Gender Rd, which experiences congestion resulting in an unacceptable LOS in the PM peak. Between Gender Rd and Pickerington Rd, the LOS is acceptable, but volumes reach 75% of the capacity or higher.

Westbound US 33 experiences the highest volumes in the AM peak. In the 2025 No Build Scenario, demand in some sections exceeds capacity. The freeway operates at LOS F from Gender Rd to Hamilton Rd and at LOS E between ramps in the I-270 interchange.

Volumes in the 2045 Design Year are higher due to anticipated development. These higher volumes result in LOS F in most sections and ramp entrances and exits on US 33 in both directions during either the AM or PM peak. Several other sections experience LOS E. Demand exceeds capacity by as much as 57% in some sections and is greater than capacity along much of the corridor.

More recent model forecasts for Opening Year 2030 and Design Year 2050 show volumes that are higher than the 2025/2045 volumes analyzed previously, suggesting that congestion will continue to worsen if no improvements are constructed.

Safety

Sections of this study area were ranked on ODOT's 2024 HSIP Priority List. In the three-year period from 2021-2023, 516 crashes were observed on US 33 from east of Refugee Rd/SR 104 interchange and through the Hill/Diley Road interchange. The crash data includes crashes at any grade separated interchanges and at-grade intersections. Key observations include:

- The most common crash types were rear end (191 crashes), sideswipe-passing (110 crashes), and fixed object/out of control (84 crashes).
- Fatal & Injury crashes: During this 3-year period, 5 fatal crashes were recorded that resulted in 6 fatalities and 12 crashes resulted in serious injuries. An additional 104 crashes resulted in minor injuries.
- The area with the most crashes was the US 33 & I-270 interchange (131 crashes), and the intersection of US 33 with Bixby Road experienced 58 crashes. The US 33 between Hamilton and Bixby Rd experienced the third highest (42 crashes).

With volumes continuing to rise, crash trends are likely to continue or worsen without improvements.

Summary Statement

The purpose of this project is to improve congestion and safety on the US 33 corridor southeast of Columbus. During peak hours in the existing conditions, sections throughout the corridor between SR 104/Refugee Rd and Hill-Diley are over capacity. Traffic projections in future years show volumes are expected to rise, worsening conditions. Higher volumes and oversaturated conditions would also contribute to increased crash risk on a corridor with sections listed on ODOT's 2024 HSIP Priority List.

Alternatives

Three alternatives were evaluated for the US 33 corridor widening improvement project:

- No-Build Alternative No change to existing conditions
- Build Alternative 1 Widening to the inside
- Build Alternative 2 Widening to the outside

No Build Alternative - Considered and Dismissed

The No-Build alternative maintains the existing configuration of the US 33 corridor, does not impact adjacent parcels, and does not include any new construction or improvements to accommodate increasing traffic demand or safety concerns along the US 33 corridor. As such, the No Build alternative does not meet the critical Purpose and Need elements to be considered a feasible alternative.

While analysis and evaluation of the No Build alternative with updated traffic volumes will be documented within this feasibility study it will be carried forward only to be used as the baseline to compare the alternatives. Only limited reference and comparison to No Build has been made within this document as it does not meet the purpose and need of the project and is not considered a feasible alternative.

Feasible Build Alternatives

The two alternatives considered in this evaluation were based upon the same basic concept: to add a third lane in both directions beginning in the west at approximately the SR 104 (Refugee Road) interchange and extending to the east to end at the Hill-Diley interchange. The primary difference between alternatives is how the lane is added, whether to the inside in the median, or to the outside in the outside shoulder.

Build Alternative 1 will widen US 33 to add a third eastbound and westbound lane in both directions to the inside within the median, paving the median, and constructing a center barrier. **Appendix A** includes drawings and typical sections for Build Alternative 1.

Build Alternative 2 will widen US 33 to add a third eastbound and westbound lane in both directions to the outside in the shoulder. This alternative also requires widening of the inside shoulder. **Appendix B** includes drawings and typical sections for Build Alternative 2.

The scope of the contract called for electronic file deliverables for the alignments and did not plan for hard copy. However, for ease of review, plan sheets were created with this document. To minimize lost work, plans for Alternative 2 have been developed only for critical areas. Additional locations can be reviewed with ODOT during the over-the-shoulder review meetings.

Both alternatives include improvements to ramp merge and diverge areas to accommodate a future posted speed of 65 mph and mainline design speed of 70 mph, will provide for maintenance or repair of existing drainage structures and bridges within the study area limits, include the repair and/or complete replacement of deficient pavements, and be constructed under permissible lane closure hours for the ramps and freeway segments in the project area.

Widening to the inside median within the median is only feasible within the portion of the study area that has the existing 60-foot median. Both alternatives will require inside and outside widening beginning from the vicinity of the High/Bowen intersection through the

eastern termini due to a constrained median width in the existing condition. The typical sections of the proposed alternatives are generally the same from Gender Road to the southern/eastern terminus of the study area.

Key Issues

The key issues for determining the recommended preferred alternative have been determined in consultation with ODOT. The key issues include the primary purpose and need elements of safety and congestion, roadway and drainage design, ITS, structures, maintenance of traffic, right of way, environmental considerations, and cost.

The following sections provide additional explanation of the basis of comparison for each of the key issues identified for the US 33 Corridor widening.

Congestion and Safety

Safety and congestion have been identified as the key purpose and need elements for the projects that will originate out of the US 33 feasibility study. Specifically, the projects that will be developed from this study should consider the following with respect to the primary needs, congestion and safety:

- The recommended alternative should not result in a significant adverse impact in either operations or safety from No Build/existing conditions; the proposed should be no worse than No Build/existing.
- While portions of this project area may see traffic operations worsen from No Build, in aggregate, the alternative should generally reduce congestion and safety as compared to No Build.
- In areas where impacts differ negatively from the No Build condition, other mitigating strategies should be considered to minimize/mitigate for the impact.

Certified traffic for 2030/2050 is pending, therefore this study is using 2025/2045 data which is acceptable because the geometric configuration of the alternatives will provide the same capacity improvements and the capacity and safety evaluations of Alternatives 1 and 2 build conditions are expected to be very similar. Both Alternatives are expected to improve capacity along the corridor.

Congestion/Capacity

LJB has been contracted by ODOT to conduct capacity analysis for the US 33 corridor as part of the FRA-33-24.76 feasibility study contract. **Table 1** summarizes the three subareas and associated projects being studied under FRA-33-24.76.

TABLE 1: FRA-33-24.76 STUDY AREA PROJECTS

PID	Project Name	Description
121811	FRA/FAI-33-22.99/0.00	Widen US 33 to six lanes from SR 104 to Hill Rd./Diley Rd.
121812	FRA-270/33-45.808/24.375	Mobility/safety upgrade of the I-270/US 33 interchange
121814	FRA-33-27.831	Construct new interchange at US 33 and TR 229, Bixby Rd.

While there are three distinct projects being studied as part of the FRA-33-24.76, the focus of this study is the capacity analysis for the US 33 Widening project, PID121811. It is anticipated that the US 33 widening project will occur prior to the construction of either the I-270 / US 33 interchange expansion and the Bixby Road interchange projects. As such, all improvements recommended in this report are independent of any future impacts or influence of these subsequent projects.

This document evaluates the current and future traffic conditions along the US 33 corridor, focusing on the impact of widening the road from four lanes to six lanes between the SR 104 interchange and Hill Rd. / Diley Rd Interchange. The analysis includes various design scenarios for the FRA- US 33 Widening project, such as No Build, Build, and Build with Hard Shoulder Running, and assesses their effectiveness in improving traffic flow and reducing congestion. The document concludes with recommendations for operational improvements and additional capacity enhancements to address bottlenecks and ensure smoother traffic operations. The proposed design for the US 33 widening is included in Appendices A (Build Alternative 1) and Appendix B (Build Alternative 2).

Study Area and Analysis Scenarios

The study area for the US 33 Widening extends along US 33 from SR 104 in Franklin County to east of Hill Road / Diley Road in Fairfield County.

The scope of this analysis is to evaluate the US 33 corridor with the addition of a third lane in both directions (Build) condition between the SR 104 and Hill Road/Diley Road interchanges and compare the Build analysis to the existing (No-Build) conditions. This analysis assumes a "no build" condition at both the I-270/US 33 and Bixby Road interchanges. As the report will show that while the Build condition under the projected 2050 Design Year AM and PM peak hour traffic volumes is expected to result in significant improvement over the No-Build, operations would not be the typically preferred levels of service during the peak hours. Therefore, a third option, Scenario 3, which includes opening the hard shoulder lane to traffic, was evaluated.

Table 2 shows a summary and description of the design scenarios that were studied for US 33 Widening project (PID 121811)

TABLE 2: CAPACITY ANALYSIS SCENARIOS

Scenario #	Corridor Design	I-270 / US 33 Interchange	Bixby Rd Interchange				
1	No Build	No Build	No Build				
2	Build	No Build	No Build				
3	Build w/ Hard Shoulder Running*	No Build	No Build				
*Hard Shoulder Running modeled with an additional inside lane from west of I-270 to Hill / Diley interchange							

Appendix C includes a copy of the traffic volumes used in the analysis of the No-Build and Build conditions.

Background Improvement Considerations:

The following project is expected to be completed prior to the opening year of the proposed project (2030), and has been applied for all scenarios, including the No Build (Scenario 1):

- FRA-33-21.71 at Petzinger Rd improvements (PID 113744)

For Build scenarios (Scenarios 2 & 3), it is assumed that the north leg of Rager Road will be converted to a cul-de-sac at US 33 and will not have direct access to Westbound US 33.

The capacity analyses for the mainline US 33 corridor, ramp merge/diverge elements and weave locations were conducted using Highway Capacity Software (HCS version 2025) per ODOT's OATS Manual guidelines. The HCS Freeway Facilities module was utilized for all freeway segment analyses.

Freeway, ramp merge/diverge elements and weave segments are graded using a level of service (LOS) designation expressed in terms of letter grades. Level of service is a quality measure describing operational conditions with a traffic stream with LOS A representing the highest quality traffic flow (free flow conditions) and minimal delay, and LOS F representing poor traffic/unstable operations, significant delays, and substantial queuing. Level of service is defined in terms of density, as published in the Highway Capacity Manual, Chapters 12, 13, and 14 (HCM 7th Edition). For the capacity analysis, the US 33 corridor was analyzed as a freeway segment. Level of service thresholds for basic freeway segments, merge/diverge sections and weave sections have been summarized in Table 3.

TABLE 3: LEVELS OF SERVICE THRESHOLDS FOR FREEWAY ELEMENTS

LEVEL OF	DENSITY (PC/MI/LN)						
SERVICE	BASIC FREEWAY	MERGE/DIVERGE	WEAVING				
А	≤ 11	≤ 10	≤ 10				
В	> 11 and ≤ 18	> 10 and ≤ 20	> 10 and ≤ 20				
С	> 18 and ≤ 26	> 20 and ≤ 28	> 20 and ≤ 28				
D	> 26 and ≤ 35	> 28 and ≤ 35	> 28 and ≤ 35				
E	> 35 and ≤ 45	> 35	> 35 and ≤ 43				
F	D/C* > 1 OR density > 45	D/C* > 1	D/C* > 1 OR density > 43				

^{*} D/C = Demand to capacity ratio

For the US 33 corridor analysis, level of service (LOS), demand-to-capacity (D/C) and volume-to-capacity (V/C) ratios have been summarized for each freeway and ramp segment.

The demand-to-capacity (D/C) ratio is calculated by comparing the true demand (the volume of vehicles requesting access to the segment) to the segment's capacity (the maximum number of vehicles the segment can handle). When the D/C ratio exceeds 1.0, it typically indicates oversaturated conditions, meaning demand exceeds capacity, which can lead to congestion.

The volume-to-capacity (V/C) ratio is similar but differs in that it is based on the actual volume of traffic that successfully enters or travels through the segment and can be influenced by system constraints and limitations such as downstream bottlenecks, traffic signal constraints, etc. Like the D/C ratio, a V/C ratio greater than 0.93 indicates over-capacity conditions. The V/C ratio is not always an accurate reflection of the severity of congestion in oversaturated conditions as it doesn't fully capture the extent to which the segment is overwhelmed. In oversaturated conditions, the V/C ratio focuses on the volume that is able to travel through the segment rather than the total demand. To provide the most reliable determination of severity, this report focuses primarily on D/C ratios and level of service to evaluate operational performance.

Additionally, the HCS software bases freeway segment LOS on both the individual segment capacity and downstream segment capacity. When downstream segments are nearing or over capacity it may influence upstream segments and result in upstream segments operating at lower levels of service than would be expected if considering the upstream segment alone. For example, this is why there are some segments shown in our analysis summaries with D/C and V/C ratios of less than 1.0, but LOS F conditions.

It should be noted that "gap" segments were utilized in the freeway facilities files at the existing at-grade intersections: Bixby Road, Rager Road, and High Street / Bowen Road. This was done based on coordination with ODOT staff to account for the distance in between ramps and for the ramp connections to address entering and exiting volumes to and from the surface streets. However, these results are not included in the LOS summary tables.

Operational Goals of Mainline Freeway Analysis

Analysis of the US 33 corridor was prepared in accordance with the ODOT OATS manual and in coordination with the Office of Roadway Engineering/Division of Engineering. **Table 4** summarizes the operational goals for mainline analysis per the OATS manual.

TABLE 4: OPERATIONAL GOALS OF MAINLINE ANALYSIS

METRIC	VALUE
LOS	D or Better
d/c (Demand-to-Capacity Ratio)	< 0.93

The study area falls entirely within the limits of the Mid-Ohio Regional Planning Commission Metropolitan Planning Organization, therefore only goals applicable inside an MPO have been included in Table 4.

Scenario 1: Design Year (2050) No Build Capacity Analysis

HCS was used to analyze the No Build condition for the US 33 mainline, ramp merge/diverge and weave segments, accounting for any bottlenecks/queue spillbacks along the network. As noted previously, the No Build scenario assumes the Petzinger Road project (PID 113744) has been completed. The results of the No Build analysis for the design year (2050) from the HCS software are summarized in **Tables 5 and 6** for eastbound US 33 and westbound US 33, respectively. The HCS output reports are included in **Appendix D**.

Eastbound US 33

During the AM peak, eastbound US 33 operates at an acceptable LOS D or better on all segments. During the PM peak, eastbound US 33 experiences severe congestion, particularly in the segments east of I-270, where all segments are expected to operate at LOS F. Demand-to-capacity ratios (D/C) begin to approach one (1.0) at the SR 104 On-Ramp. As traffic approaches I-270, the LOS F conditions become more widespread, with backups forming near the I-270 SB Off-Ramp and extending through the I-270 NB On-Ramp. The congestion worsens beyond Hamilton Road, where demand exceeds capacity, resulting in gridlock conditions. Segments between Hamilton and Gender Road experience some of the worst conditions, with D/C ratios reaching as high as 1.54, further exacerbating travel delays and increasing queue lengths. These issues continue eastward through the High Street / Bowen Road and Hill Road / Diley Road interchanges, where the over-saturated conditions impact overall corridor performance. The results indicate a need for capacity improvements to US 33.

TABLE 5: 2050 NO-BUILD - EASTBOUND US 33 LOS

	AM Peak Hour					PM Peak Hour			
Seg #	Segment Description	D/C		V/C	LOS	D/C		V/C	1.00
		Fwy	Ramp	Fwy	LOS	Fwy	Ramp	Fwy	LOS
1	West of SR 104	0.52		0.52	С	0.60		0.60	С
2	SR 104 Off-Ramp	0.52	0.10	0.52	С	0.60	0.09	0.60	С
3	Winchester Off-Ramp	0.48	0.37	0.48	С	0.56	0.48	0.56	С
4	Btwn Winchester & James Rd Ramps	0.31		0.31	В	0.35		0.35	В
5	James Rd On-Ramp	0.40	0.21	0.40	В	0.45	0.22	0.44	В
6	SR 104 On-Ramp	0.60	0.44	0.60	С	0.89	1.00	0.89	D
7	Btwn SR 104 & I-270	0.60		0.60	С	0.90		0.89	Е
8	I-270 SB Off-Ramp	0.60	0.20	0.60	С	0.90	0.15	0.90	Е
9	Btwn I-270 SB Ramps (2 lanes)	0.51		0.51	С	0.84		0.82	D
10	Btwn I-270 SB Ramps (3 lanes)	0.34		0.34	В	0.56		0.54	F

			AM Peak Hour				PM Peal	(Hour	
Seg #	Segment Description	n D		V/C	100	D/C		V/C	LOS
		Fwy	Ramp	Fwy	LOS	Fwy	Ramp	Fwy	LOS
11	Btwn I-270 SB & NB Loops	0.78		0.78	С	1.04		0.81	F
12	Btwn I-270 NB Ramps	0.52		0.52	С	0.81		0.57	F
13	I-270 NB On-Ramp	0.66	0.46	0.66	С	1.06	0.84	0.72	F
14	Btwn I-270 & Hamilton	0.66		0.66	С	1.06		0.70	F
15	Hamilton Off-Ramp	0.66		0.66	С	1.06	0.52	0.68	F
16	Btwn Hamilton Ramps	0.68		0.68	С	1.37		0.77	F
17	Hamilton SB On-Ramp	0.70	0.04	0.70	С	1.43	0.13	0.82	F
18	Hamilton NB On-Ramp	0.75	0.12	0.75	D	1.54	0.25	0.93	F
19	Btwn Hamilton & Bixby	0.74		0.74	D	1.51		0.93	F
23	Btwn Bixby & Rager	0.73		0.73	D	1.45		0.86	F
27	Btwn Rager & Gender	0.74		0.74	D	1.48		0.88	F
28	Gender Off-Ramp	0.74	0.48	0.74	D	1.48	0.79	*	F
29	Btwn Gender Ramps	0.56		0.56	С	1.14		0.53	F
30	Gender On-Ramp	0.68	0.27	0.68	С	1.39	0.57	0.78	F
31	Btwn Gender & High/Bowen	0.70		0.70	С	1.40		0.78	F
35	Btwn High/Bowen & Diley	0.68		0.68	С	1.34		0.72	F
36	Diley Off-Ramp	0.68	0.34	0.68	D	1.34	0.54	*	F
37	Btwn Diley Ramps	0.52		0.52	С	1.09		0.48	F
38	Diley On-Ramp	0.64	0.28	0.64	С	1.23	0.31	0.62	F
39	East of Diley	0.62		0.62	С	1.21		0.62	F

^{*} Value reported in HCS was > 1.0 which is not possible for V/C ratio

Note: Segments 20 through 26 and 32 through 34 are "gap" segments created to account for at-grade intersections at Bixby Rd, Rager Rd, and High St/Bowen Rd. Values are therefore not reported for those segments.

0.93 <= Ratio < 1.0 LOS F or Ratio > 1.0

Westbound US 33

In the AM peak, westbound US 33 experiences severe congestion, with all segments from Hill Road / Diley Road to Hamilton Road expected to operate at LOS F. The sections from Hill Road / Diley Road to Gender Road generally see D/C ratios ranging from 1.03 to 1.28. The Gender Road SB on-ramp begins the increase in D/C ratios, which range from 1.20 to 1.43 through the I-270 northbound off-ramp. The congestion begins to ease west of the I-270 northbound off-ramp, where segments are expected to improve to LOS B, indicating a smoother traffic flow.

During the PM peak, westbound US 33 is expected to experience slightly better conditions than the AM peak, but congestion is expected. The worst-performing segments are concentrated between Gender Road and the I-270 northbound off-ramp, where LOS D and E conditions persist, with D/C ratios very close to 1.0. While LOS E conditions are expected, there are no segments which experience a D/C ratio greater than one (1.0) in the PM peak. Segments west of the I-270 northbound off-ramp are expected to improve, with all segments reporting LOS C or better.

Overall, the No-Build scenario is expected to experience significant congestion along westbound US 33, particularly in the AM peak. The worst delays occur between Diley Road

and I-270, where traffic demand far exceeds available capacity. The severe congestion at major interchanges such as Gender Road and Hamilton Road leads to excessive queuing, long delays, and poor travel conditions. The corridor performs better west of I-270, where traffic levels decrease, allowing for improved operations.

TABLE 6: 2050 NO-BUILD - WESTBOUND US 33 LOS

		AM Peak Hour					PM Peak Hour			
Seg #	Segment Description	D,	/C	V/C		D	/C	V/C		
		Fwy	Ramp	Fwy	LOS	Fwy	Ramp	Fwy	LOS	
1	East of Diley	1.03		0.91	F	0.74		0.74	D	
2	Diley Off-Ramp	1.03	0.44	0.90	F	0.74	0.23	0.74	С	
3	Btwn Diley Ramps	0.90		0.65	F	0.65		0.65	С	
4	Diley On-Ramp	1.17	0.61	0.86	F	0.87	0.51	0.87	D	
5	Btwn Diley & High/Bowen	1.20		0.84	F	0.87		0.87	D	
9	Btwn High/Bowen & Gender	1.20		0.76	F	0.87		0.87	D	
10	Gender Off-Ramp	1.20	0.36	0.74	F	0.87	0.37	0.87	Е	
11	Btwn Gender Ramps	1.03		0.55	F	0.70		0.70	С	
12	Gender NB On-Ramp	1.28	0.59	0.79	F	0.86	0.37	0.86	D	
13	Gender SB On-Ramp	1.43	0.32	0.93	F	0.94	0.18	0.94	D	
14	Btwn Gender & Rager	1.40		0.93	F	0.94		0.94	Е	
18	Btwn Bixby & Rager	1.41		0.93	F	0.94		0.94	Е	
22	Btwn Bixby & Hamilton	1.43		0.93	F	0.99		0.99	Е	
23	Hamilton Off-Ramp	1.43	0.29	0.93	F	0.99	0.27	0.99	Е	
24	Btwn Hamilton Ramps	1.31		0.80	F	0.87		0.87	D	
25	Btwn Hamilton & I-270 NB Off- Ramp	1.20		0.82	F	0.95		0.95	Е	
26	Btwn I-270 NB & SB Ramps	0.92		0.50	В	0.65		0.65	С	
27	Btwn I-270 SB Ramps	0.84		0.33	В	0.53		0.53	С	
28	I-270 SB On-Ramp	0.92	0.18	0.41	В	0.58	0.13	0.58	С	
29	Btwn I-270 SB Ramp & SR 104	0.93		0.41	В	0.58		0.58	С	
30	SR 104 EB Off-Ramp	0.93	0.07	0.41	В	0.58	0.13	0.58	С	
31	Btwn SR 104 Ramps	0.90		0.37	В	0.52		0.52	С	
32	Btwn SR 104 EB & WB Loop Ramps	0.88		0.44	В	0.67		0.67	С	
33	James Rd Off-Ramp	0.76	0.60	0.27	Α	0.58	0.48	0.58	С	
34	Btwn James Rd & Winchester Ramps	0.51		0.00	Α	0.36		0.36	В	
35	Winchester On-Ramp	0.69	0.39	0.18	Α	0.53	0.35	0.53	В	
36	West of Winchester	0.70		0.18	Α	0.53		0.53	С	

Note: Segments 6 through 8 and 15 through 21 are "gap" segments created to account for at-grade intersections at Bixby Rd, Rager Rd, and High St/Bowen Rd. Values are therefore not reported for those segments.

LOS E or 0.93 <= Ratio < 1.0 LOS F or Ratio > 1.0

Scenario 2: Design Year (2050) Build Capacity Analysis – US 33 Widening

HCS was used to evaluate the Build scenario for the US 33 widening. This scenario assumes

an additional lane in both directions of US 33 from west of SR 104 to the Hill Road / Diley Road interchange. Two build scenarios were evaluated for the Feasibility Study: an additional lane added to the inside shoulder versus an additional lane added to the outside shoulder. For the purposes of the capacity analysis, the differences in geometry between inside versus outside widening were considered negligible; therefore, only one Build scenario based on the inside widening is presented. These results should be very similar for the outside widening scenario.

The design year (2050) results for the Build scenario are included **in Tables 7 and 8** for eastbound and westbound US 33, respectively. The HCS files and output reports are included in **Appendix D**.

Eastbound US 33

The 2050 Build scenario for eastbound US 33 shows improved levels of service (LOS) compared to the No Build scenario.

The AM peak period sees improvement from generally LOS C and D in the No Build to mostly LOS B and C in the Build. All segments in the Build operate acceptably with LOS C or better conditions.

During the PM peak period, the congestion is reduced along eastbound US 33 with the additional through lane when compared to the No Build; however, some sections are still expected to experience congestion, particularly east of I-270. Segments between Hamilton Road and Diley Road show most D/C ratios near or exceeding 1.0, indicating demand is expected to surpass available capacity. The most constrained areas within the widened section include the weave section between the I-270 loop ramps and the segments between Hamilton Road and Gender Road. These locations experience some congestion, with D/C ratios reaching up to 1.06, highlighting potential operational challenges closer to the design year and the need for additional capacity improvements. While many segments east of I-270 are still expected to fail, the congestion is reduced compared to the No Build. The peak D/C ratio in the No Build scenario was 1.54 at the Hamilton northbound on-ramp and is reduced to 1.06. Within the unwidened section, the peak D/C ratio will be 1.31, which occurs after the additional lane is dropped east of Diley Road.

TABLE 7: 2050 BUILD - EASTBOUND US 33 LOS

			AM Pea	ak Hour			PM Peal	(Hour	
Seg #	Segment Description	D	D/C		LOS	D/C		V/C	LOS
		Fwy	Ramp	Fwy	LOS	Fwy	Ramp	Fwy	LOS
1	West of SR 104 (nominal length)	0.53		0.53	С	0.62		0.62	С
2	SR 104 Off-Ramp	0.53	0.10	0.53	С	0.62	0.10	0.62	С
3	Winchester Off-Ramp	0.49	0.36	0.49	С	0.58	0.47	0.58	С
4	Btwn Winchester & James Rd Ramps	0.32		0.32	В	0.37		0.37	В
5	James Rd On-Ramp	0.42	0.22	0.42	В	0.48	0.23	0.47	С
6	Btwn James Rd & SR 104	0.28		0.28	Α	0.32		0.32	В
7	SR 104 On-Ramp	0.41	0.45	0.41	В	0.62	1.02	0.61	С
8	Btwn SR 104 & I-270	0.42		0.42	В	0.62		0.61	С
9	I-270 SB Off-Ramp	0.42	0.20	0.42	В	0.62	0.15	0.62	С
10	Btwn I-270 SB Ramps	0.35		0.35	В	0.58		0.57	С

			AM Pea	ak Hour			PM Peal	(Hour	
Seg #	Segment Description	D	/C	V/C	1.00	D	/C	V/C	LOS
		Fwy	Ramp	Fwy	LOS	Fwy	Ramp	Fwy	LOS
11	Btwn I-270 SB & NB Loops	0.79		0.79	С	1.03		1.00	F
12	Btwn I-270 NB Ramps	0.54		0.54	С	0.83		0.76	D
13	I-270 NB On-Ramp	0.52	0.49	0.52	С	0.82	0.87	0.77	D
14	Btwn I-270 & Hamilton	0.51		0.51	С	0.82		0.77	D
15	Hamilton Off-Ramp	0.51	0.76	0.51	С	0.82	0.52	0.82	D
16	Btwn Hamilton Ramps	0.48		0.48	В	0.94		0.85	F
17	Hamilton SB On-Ramp	0.50	0.05	0.50	В	0.98	0.14	0.88	F
18	Hamilton NB On-Ramp	0.54	0.12	0.54	В	1.06	0.26	0.95	F
19	Btwn Hamilton & Bixby	0.52		0.52	С	1.04		0.94	F
23	Btwn Bixby & Rager	0.52		0.52	С	1.05		0.92	F
27	Btwn Rager & Gender	0.54		0.54	С	1.06		0.93	F
28	Gender Off-Ramp	0.54	0.54	0.54	С	1.06	0.84	*	F
29	Btwn Gender Ramps	0.40		0.40	В	0.82		0.68	С
30	Gender On-Ramp	0.48	0.27	0.48	В	0.99	0.54	0.84	D
31	Btwn Gender & High/Bowen	0.49		0.49	В	1.00		0.84	D
35	Btwn High/Bowen & Diley	0.48		0.48	В	0.95		0.79	F
36	Diley Off-Ramp	0.48	0.36	0.48	С	0.95	0.59	0.77	F
37	Btwn Diley Ramps (3 lanes)	0.37		0.37	В	0.78		0.54	F
38	Btwn Diley Ramps (2 lanes)	0.55		0.55	С	1.16		0.79	F
39	Diley On-Ramp (2 lanes)	0.68	0.28	0.68	С	1.31	0.32	0.93	F
40	East of Diley (2 lanes)	0.66		0.66	С	1.28		0.93	F

^{*} Value reported in HCS is >1.0 which is not possible for V/C ratio

Note: Segments 20 through 26 and 32 through 34 are "gap" segments created to account for at-grade intersections at Bixby Rd, Rager Rd, and High St/Bowen Rd. Values are therefore not reported for those segments.

0.93 <= Ratio < 1.00 LOS F or Ratio > 1.00

Westbound US 33

The 2050 Build scenario for westbound US 33 shows significant improvement compared to the No Build scenario. Some segments are still expected to experience congestion, particularly in the AM peak period, but the frequency and intensity of congestion is expected to be greatly reduced.

During the AM peak, segments east of Diley Road, where the number of lanes is expected to remain at two (2) in each direction, will continue to experience LOS F conditions with D/C ratios ranging from 0.91 to 1.05. Among sections with the additional through lane, demand hovers around capacity between Gender Road and I-270 with the highest D/C ratios expected near I-270; the segment between Hamilton Road and the I-270 NB off-ramp is expected to reach a D/C ratio of 1.17 and a V/C ratio of 0.93, indicating a likely bottleneck.

During the PM peak, westbound US 33 operates at an acceptable LOS D or better, with most segments expected to operate at LOS B or C. The only segment which approaches capacity is the section between Hamilton Road and the I-270 northbound off-ramp, which reaches a D/C of 0.96 during the AM peak hour.

Overall, the 2050 Build scenario improves westbound flow considerably in both peak hours, but congestion remains in the AM peak, particularly in the un-widened sections and areas between Gender Road and I-270. Addressing these bottlenecks may require additional capacity, ramp modifications, or other operational improvements to enhance performance.

TABLE 8: 2050 BUILD – WESTBOUND US 33 LOS

			AM Peal	(Hour			PM Peal	k Hour	
Seg #	Segment Description	D	/C	V/C	100	D,	/C	V/C	1.00
		Fwy	Ramp	Fwy	LOS	Fwy	Ramp	Fwy	LOS
1	East of Diley (2 lanes)	1.05		1.00	F	0.78		0.78	D
2	Diley Off-Ramp (2 lanes)	1.05	0.48	*	F	0.78	0.23	0.78	С
3	Btwn Diley Ramps (2 lanes)	0.91		0.79	D	0.69		0.69	С
4	Btwn Diley Ramps (3 lanes)	0.60		0.53	С	0.46		0.46	В
5	Diley On-Ramp	0.79	0.63	0.72	С	0.62	0.52	0.62	С
6	Btwn Diley & High/Bowen	0.81		0.72	D	0.61		0.61	С
10	Btwn High/Bowen & Gender	0.81		0.73	D	0.62		0.62	С
11	Gender Off-Ramp	0.81	0.35	0.81	D	0.62	0.37	0.62	С
12	Btwn Gender Ramps	0.70		0.62	С	0.50		0.50	С
13	Gender NB On-Ramp	0.88	0.64	0.80	D	0.61	0.38	0.61	С
14	Gender SB On-Ramp	0.99	0.35	0.91	D	0.66	0.17	0.66	С
15	Btwn Gender & Bixby	0.97		0.91	Е	0.65		0.65	С
19	Btwn Bixby & Hamilton	1.00		0.91	F	0.69		0.69	С
20	Hamilton Off-Ramp	1.00	0.29	0.90	F	0.69	0.28	0.69	С
21	Btwn Hamilton Ramps	0.92		0.79	F	0.61		0.61	С
22	Btwn Hamilton & I-270 NB Off- Ramp	1.17		0.93	F	0.96		0.96	D
23	Btwn I-270 NB & SB Ramps	0.74		0.52	В	0.64		0.64	В
24	Btwn I-270 SB Ramps	0.59		0.35	В	0.37		0.37	В
25	I-270 SB On-Ramp	0.64	0.18	0.41	В	0.41	0.12	0.41	В
26	Btwn I-270 SB Ramp & SR 104	0.65		0.41	В	0.41		0.41	В
27	SR 104 EB Off-Ramp	0.65	0.07	0.65	В	0.41	0.13	0.41	В
28	Btwn SR 104 Ramps	0.63		0.39	В	0.37		0.37	В
29	Btwn SR 104 EB & WB Loop Ramps	0.86		0.57	В	0.68		0.68	В
30	James Rd Off-Ramp	0.53	0.60	0.53	В	0.40	0.48	0.40	В
31	Btwn James Rd & Winchester Ramps	0.54		0.19	А	0.39		0.39	В
32	Winchester On-Ramp	0.74	0.43	0.39	В	0.57	0.39	0.57	С
33	West of Winchester (nominal length)	0.75		0.39	В	0.58		0.58	С

^{*} Value reported in HCS is >1.0 which is not possible for V/C ratio

Note: Segments 7 through 9 and 16 through 18 are "gap" segments created to account for at-grade intersections at Bixby Rd, Rager Rd, and High St/Bowen Rd. Values are therefore not reported for those segments.

0.93 <= Ratio < 1.00 LOS F or Ratio > 1.00

Scenario 3: Design Year (2050) Build Improved Capacity Analysis – US 33 with HSR

The initial scope for the US 33 widening project included evaluation of Scenarios 1 and 2 listed above: No Build and Build conditions for the design year of 2050 only. However, as noted previously, as the analysis progressed, additional alternatives became necessary to evaluate due to failing traffic conditions on US 33 even with a 6-lane section.

An additional Build scenario was evaluated which included the addition of a hard shoulder running (HSR) lane to the inside shoulder in both directions of US 33 from just west of the I-270 interchange to Diley Road. The design year (2050) results for the Build Improved scenario are included in Tables 9 and 10 for eastbound and westbound US 33, respectively. The HCS output reports are included in Appendix D.

Eastbound US 33

The 2050 Build Improved scenario for eastbound US 33 shows continued acceptable operations in the AM peak hour and improved conditions within the HSR portion of the corridor in the PM peak hour. Four (4) segments between I-270 and Diley Road which include the HSR are expected to operate at LOS F compared to 11 segments in the Build scenario. Of those, three (3) segments will experience LOS F due to queue spillback from the unwidened section. Only one (1) segment in the HSR section is expected to operate with a D/C greater than one (1.0) compared to six (6) in the Build scenario. The design for the remainder of the corridor is unchanged and thus is expected to operate similar to the Build scenario.

TABLE 9: 2050 BUILD W/ HARD SHOULDER RUNNING - EASTBOUND US 33 LOS

			AM Peal	k Hour			PM Peal	k Hour	
Seg #	Segment Description	C	/C	V/C	LOS	D	/C	V/C	LOS
		Fwy	Ramp	Fwy	LUS	Fwy	Ramp	Fwy	LUS
1	West of SR 104 (nominal length)	0.53		0.53	С	0.62		0.62	С
2	SR 104 Off-Ramp	0.53	0.10	0.53	С	0.62	0.10	0.62	С
3	Winchester Off-Ramp	0.49	0.36	0.49	С	0.58	0.47	0.58	С
4	Btwn Winchester & James Rd Ramps	0.32		0.32	В	0.37		0.37	В
5	James Rd On-Ramp	0.42	0.22	0.42	В	0.48	0.23	0.47	С
6	Btwn James Rd & SR 104	0.28		0.28	Α	0.32		0.32	В
7	SR 104 On-Ramp	0.41	0.45	0.41	В	0.62	1.02	0.61	С
8	Btwn SR 104 & I-270 (3-lane)	0.42		0.42	В	0.58		0.61	С
9	Btwn SR 104 & I-270 (4-lane)	0.31		0.31	В	0.47		0.46	В
10	I-270 SB Off-Ramp	0.31	0.20	0.31	В	0.47	0.15	0.47	В
11	Btwn I-270 SB Ramps	0.26		0.26	Α	0.43		0.43	В
12	Btwn I-270 SB & NB Loops	0.79		0.79	В	1.03		1.00	F
13	Btwn I-270 NB Ramps	0.41		0.41	В	0.63		0.57	С
14	I-270 NB On-Ramp	0.41	0.49	0.41	В	0.66	0.87	0.61	С
15	Btwn I-270 & Hamilton	0.41		0.41	В	0.65		0.61	С
16	Hamilton Off-Ramp	0.41	0.76	0.41	С	0.65	0.52	0.65	С
17	Btwn Hamilton Ramps	0.36		0.36	В	0.71		0.65	С

			AM Peal	k Hour			PM Peal	k Hour	
Seg #	Segment Description	D	/C	V/C	LOS	C	/C	V/C	LOS
		Fwy	Ramp	Fwy	LUS	Fwy	Ramp	Fwy	LUS
18	Hamilton SB On-Ramp	0.37	0.05	0.37	В	0.74	0.14	0.68	С
19	Hamilton NB On-Ramp	0.40	0.12	0.40	В	0.80	0.26	0.74	С
20	Btwn Hamilton & Bixby	0.39		0.39	В	0.78		0.74	D
24	Btwn Bixby & Rager	0.39		0.39	В	0.78		0.74	D
28	Btwn Rager & Gender	0.40		0.40	В	0.80		0.75	D
29	Gender Off-Ramp	0.40	0.54	0.40	В	0.80	0.84	0.80	D
30	Btwn Gender Ramps	0.30		0.30	Α	0.62		0.57	С
31	Gender On-Ramp	0.36	0.27	0.36	В	0.74	0.54	0.69	С
32	Btwn Gender & High/Bowen	0.37		0.37	В	0.75		0.69	С
36	Btwn High/Bowen & Diley	0.36		0.36	В	0.71		0.62	F
37	Diley Off-Ramp	0.36	0.36	0.36	В	0.71	0.59	0.57	F
38	Btwn Diley Ramps (3 lanes)	0.37		0.37	В	0.78		0.54	F
39	Btwn Diley Ramps (2 lanes)	0.55		0.55	С	1.16		0.79	F
40	Diley On-Ramp (2 lanes)	0.68	0.28	0.68	С	1.31	0.32	0.93	F
41	East of Diley (2 lanes)	0.66		0.66	С	1.28		0.93	F

Note: Segments 21 through 27 and 33 through 35 are "gap" segments created to account for at-grade intersections at Bixby Rd, Rager Rd, and High St/Bowen Rd. Values are therefore not reported for those segments.

Segments with HSRL 0.93 <= Ratio < 1.00 LOS F or Ratio > 1.00

Westbound US 33

The 2050 Build Improved scenario for westbound US 33 continues to show acceptable (LOS D or better) operations in the PM peak hour, as was the case for the 2050 Build scenario. Operations in the AM peak hour are expected to improve, with only four (4) segments expected to operate at LOS F; two of those are in the section where the freeway will remain two lanes. The addition of the HSR eliminates LOS F conditions on all but two segments within the section where it would be applied. It should be noted that the D/C ratio remains 1.17, as it was in the Build scenario, in the segment between Hamilton Road and I-270, despite a fifth lane on the freeway in the Build Improved scenario.

TABLE 10: 2050 BUILD W/ HARD SHOULDER RUNNING - WESTBOUND US 33 LOS

			AM Peal	(Hour			PM Peal	(Hour	
Seg #	Segment Description	D/C		V/C	LOS	D/C		V/C	LOS
		Fwy	Ramp	Fwy	23	Fwy	Ramp	Fwy	LOS
1	East of Diley (2 lanes)	1.05		1.00	F	0.78		0.78	D
2	Diley Off-Ramp (2 lanes)	1.05	0.48	*	F	0.78	0.23	0.78	С
3	Btwn Diley Ramps (2 lanes)	0.91		0.79	D	0.69		0.69	С
4	Btwn Diley Ramps (3 lanes)	0.60		0.53	С	0.46		0.46	В
5	Diley On-Ramp	0.59	0.63	0.54	С	0.46	0.52	0.46	В
6	Btwn Diley & High/Bowen	0.61		0.54	С	0.46		0.46	В
10	Btwn High/Bowen & Gender	0.61		0.54	С	0.46		0.46	В
11	Gender Off-Ramp	0.61	0.35	0.61	С	0.46	0.37	0.46	В

			AM Peal	k Hour			PM Peal	k Hour	
Seg #	Segment Description	D	/C	V/C	LOS	D	/C	V/C	LOS
		Fwy	Ramp	Fwy	LUS	Fwy	Ramp	Fwy	LUS
12	Btwn Gender Ramps	0.53		0.47	В	0.38		0.38	В
13	Gender NB On-Ramp	0.66	0.64	0.60	С	0.46	0.38	0.46	В
14	Gender SB On-Ramp	0.74	0.35	0.68	С	0.50	0.17	0.50	В
15	Btwn Gender & Bixby	0.73		0.68	С	0.49		0.49	В
19	Btwn Bixby & Hamilton	0.75		0.70	С	0.52		0.52	С
20	Hamilton Off-Ramp	0.75	0.29	0.75	С	0.52	0.28	0.52	С
21	Btwn Hamilton Ramps	0.69		0.61	F	0.46		0.46	В
22	Btwn Hamilton & I-270 NB Off- Ramp	1.17		0.93	F	0.96		0.96	С
23	Btwn I-270 NB & SB Ramps	0.74		0.52	В	0.64		0.64	В
24	Btwn I-270 SB Ramps	0.44		0.27	Α	0.28		0.28	Α
25	I-270 SB On-Ramp	0.48	0.18	0.31	В	0.31	0.12	0.31	В
26	Btwn I-270 SB Ramp & SR 104	0.49		0.31	В	0.30		0.30	Α
27	SR 104 EB Off-Ramp	0.65	0.07	0.65	Α	0.41	0.13	0.41	Α
28	Btwn SR 104 Ramps	0.63		0.39	В	0.37		0.37	В
29	Btwn SR 104 EB & WB Loop Ramps	0.86		0.57	В	0.68		0.68	В
30	James Rd Off-Ramp	0.53	0.60	0.53	В	0.40	0.48	0.40	В
31	Btwn James Rd & Winchester Ramps	0.54		0.19	А	0.39		0.39	В
32	Winchester On-Ramp	0.74	0.43	0.39	В	0.57	0.39	0.57	С
33	West of Winchester (nominal length)	0.75		0.39	В	0.58		0.58	С

^{*} Value reported in HCS is >1.0 which is not possible for V/C ratio

Note: Segments 7 through 9 and 16 through 18 are "gap" segments created to account for at-grade intersections at Bixby Rd, Rager Rd, and High St/Bowen Rd. Values are therefore not reported for those segments.

Segments with HSRL 0.93 <= Ratio < 1.00 LOS F or Ratio > 1.00

Design Year (2050) Build Analysis Summary

Table 11 below shows a comparison of the operations between the No Build, Build, and Build Improved scenarios. It includes the number and percentage of segments that experience LOS F conditions and the number and percentage of segments which experience D/C ratios of greater than one (1).

TABLE 11: 2050 BUILD CAPACITY ANALYSIS COMPARISON

			AM Pea	k Hour	PM Peak Hour		
HCS Results Summary US 33 Widening		Total # Segments	# (%) Segments LOS F	# (%) Segments d/c > 1	# (%) Segments LOS F	# (%) Segments d/c > 1	
	No Build	30	0 (0%)	0 (0%)	21 (70%)	19 (63%)	
US 33	Build US 33 Widening	31	0 (0%)	0 (0%)	14 (45%)	9 (29%)	
Eastbound	Build US 33 Widening w/ HSR	32	0 (0%)	0 (0%)	7 (22%)	4 (13%)	

	No Build	27	16 (59%)	15 (56%)	0 (0%)	0 (0%)
US 33	Build US 33 Widening	27	6 (22%)	3 (11%)	0 (0%)	0 (0%)
Westbound	Build US 33 Widening w/ HSR	27	4 (15%)	3 (11%)	0 (0%)	0 (0%)

Note: Segment # and % values include "gap" segments

In the No Build condition without improvements in place, 70% of eastbound segments fail in the PM peak with 63% experiencing a d/c of greater than 1.0. Of the westbound segments, 59% are expected to operate at LOS F in the AM peak, with 56% experiencing a d/c greater than 1.0.

The addition of a through lane in the Build US 33 Widening scenario provides some improvements to traffic flow along US 33 but does not fully resolve all congestion issues. Forty-five percent of eastbound segments are expected to fail, with 29% experiencing a d/c of greater than 1.0. The westbound direction sees greater improvement with the additional lane in place, with only 22 percent of segments expected to fail. Still, there are clearly areas of the network that will continue to see congestion even with the proposed improvement in place.

The last scenario, which assumes a hard shoulder running lane in both directions of US 33 shows the most improvement, with only four (4) westbound segments expected to fail and three with a D/C greater than one. The eastbound direction shows seven (7) segments with LOS F, but it should be noted that six (6) of those are a result of the lane reduction from four to two lanes in the area near Hill Road / Diley Road. Only one segment in the widened area, the weave between the I-270 northbound and southbound loops, is expected to see demand exceed capacity.

Overall, in both Build scenarios, with or without the HSR, conditions in both directions of US 33 are expected to improve considerably compared to the No Build condition.

The analysis for Scenario 3 assumes that a HSR lane will be provided for the majority of US 33 corridor from Hill Road/Diley Road interchange to west of I-270 in both directions. These additional lanes are not necessary for the opening year traffic conditions. Based on the design year (2050) LOS results in Tables 6 and 8, a fourth lane is likely necessary in the westbound direction from Gender Road interchange through I-270 interchange. It is recommended that the opening year configuration include a six-lane section, and as traffic demand approaches capacity, then traffic forecasts and capacity analysis should be updated to determine the limits for HSR lane implementation by direction.

Further enhancements such as interchange modifications or alternative traffic management strategies may be needed to fully address long-term capacity challenges.

Conclusions and Recommendations

The capacity analysis for the US 33 corridor indicates significant congestion issues in the No Build scenario. The analysis shows that during peak hours, several segments of US 33, especially east of I-270, operate at LOS F, indicating severe congestion and poor traffic flow. The demand-to-capacity ratios in these segments often exceed 1.0, highlighting the need for capacity improvements.

Recommendations

- 1. **US 33 Widening**: The Build scenario, which includes adding a lane in both directions of US 33, shows improved levels of service compared to the No Build scenario. However, some segments still experience congestion, particularly east of I-270. It is recommended to proceed with the widening project to alleviate congestion.
- 2. Hard Shoulder Running (HSR): An additional Build scenario with Hard Shoulder Running (HSR) was evaluated. This scenario shows further improvements in traffic flow, reducing the number of segments operating at LOS F. It is recommended to consider implementing HSR as an alternative to further enhance capacity and reduce congestion.
- 3. Operational Improvements: Addressing bottlenecks, particularly at major interchanges such as I-270, Hamilton Road, and Gender Road, may require additional capacity, ramp modifications, or other operational improvements to enhance performance.

In summary, adding through lanes significantly enhances corridor operations. As congestion increases, additional improvements—such as interchange modifications or hard shoulder running—may be necessary to meet capacity demands. However, given the substantial operational benefits, it is recommended that ODOT proceed with the widening project while monitoring corridor performance to determine the need for future enhancements.

Safety

Highway Safety Manual Analysis

The predictive method described in Part C of the Highway Safety Manual (HSM) provides steps to estimate the expected average crash frequency of a site for a given time period, geometric design, traffic control features, and traffic volumes. The expected average crash frequency (N_{expected}) is estimated using a predictive model estimate of crash frequency for a specific site type (N_{predicted}) together with observed crash frequency.

The difference between the predicted and expected average crash frequencies is termed the "Expected Excess Crashes" for the site. If the expected average crash frequency is greater than the predicted average crash frequency, then the site has potential for safety improvement. If expected frequency is less than predicted frequency, then the site is expected to experience fewer crashes per year on average than its peers. HSM analysis was conducted using ODOT's Economic Crash Analysis Tool (ECAT). Injury severity is described using the KABCO scale, where:

- K = Fatal crash
- A = Serious injury
- B = Minor Injury
- C = Possible injury
- O = Property damage only

Comparison of Alternatives

To assess the difference in safety performance between widening inside or outside, ECAT analysis was performed for a typical 2000' freeway segment for no-build and both alternatives. No access points were included in this representative section. Full-length median barrier was assumed to require full-length median barrier, while the no build and

outside widening did not use any barrier. Volumes from the Travel Demand Model between Bixby and Gender were used to complete this analysis, representing the highest volumes within the proposed new three lane section. The results of the analysis are shown in **Table 12**.

TABLE 12: EXISTING CONDITIONS PROJECT ELEMENT PREDICTED CRASH SUMMARY

SCENARIO		CRASH SEVERITY LEVEL							
SCENARIO	KA	В	С	0	Total				
No Build	0.15	0.45	0.62	3.15	4.38				
Alternative 1: Inside Widening	0.08	0.38	0.48	2.85	3.80				
Alternative 2: Outside Widening	0.10	0.40	0.55	2.78	3.83				

Based on these results, both alternatives are predicted to improve safety along the corridor, with Alternative 1 expected to produce a slightly higher safety improvement when compared to Alternative 2.

Inside Widening HSM Analysis

Following the comparison analysis, a detailed analysis was conducted for inside widening. The HSM predictive method for Freeway Segments was applied to mainline US 33 in each direction. The methodology for Rural Intersections was applied to each at-grade intersection. Ramps at interchanges were not included in the analysis due to minimal changes to ramp geometry outside merge/diverge areas, which are included in the Freeway Segment methodology. Results are presented in **Table 13**.

TABLE 13: SUMMARY OF HSM ANALYSIS BY SEGMENTS AND INTERSECTIONS

CRITERIA	US 33 NORTH BOUND	US 33 SOUTH BOUND	US 33 & BIXBY RD	US 33 & RAGER RD	US 33 & HIGH- BOWEN	OVERALL
Predicted Average Crash Frequency (N _{predicted})	121.5	90.0	3.1	2.2	4.6	221.3
Expected Average Crash Frequency – Existing Conditions (N _{expected} , existing)	101.3	80.6	11.8	7.0	4.0	204.7
Potential for Safety Improvement	-20.2	-9.4	8.7	4.8	-0.6	-16.6
Proposed Condition Expected Crashes(N _{expected} , proposed)	106.1	79.5	5.1	2.2	6.2	199.1

Crash data from 2021-2023 was used in the HSM analysis. The results show there is a potential for safety improvement at the US 33 intersections with Bixby Rd and Rager Rd. The primary changes in safety function between Existing and Proposed were number of lanes (which fundamentally changes the base safety performance function), shoulder width, median width, and presence of median barrier. The Proposed condition showed a lower number of expected crashes for US 33 northbound and southbound, as well as at two atgrade intersections, as well as for all injury severities, as shown in **Table 14**.

TABLE 14: SUMMARY OF HSM ANALYSIS BY INJURY SEVERITY

CRITERIA	КА	В	С	0	OVERALL
Predicted Average Crash Frequency (N _{predicted})	6.9	24.3	30.2	159.9	221.3
Expected Average Crash Frequency – Existing Conditions (N _{expected} , existing)	7.2	24.4	29.4	143.6	204.7
Potential for Safety Improvement	0.32	0.13	-0.78	-16.30	-16.63
Proposed Condition Expected Crashes(N _{expected} , proposed)	5.0	20.1	24.3	149.8	199.1
Expected Annual Crash Reduction	1.9	4.2	5.9	10.1	22.2

A Benefit-Cost analysis was conducted by considering the economic cost of crashes and comparing the anticipated project cost, including design, construction engineering, and inflation. Detailed reports are provided in **Appendix E**. This comparison is shown in **Table 15**. A positive value indicates that the project will improve safety. A value of 1 or more indicates that the safety benefits alone are expected to return the cost of implementing the project over the course of the infrastructure's lifespan. The resulting ratio of 0.16 reflects that widening US 33 to the inside would improve safety and provide a return of about 16% of the project cost.

TABLE 15: BENEFIT-COST ANALYSIS

CRITERIA	VALUE	
Net Present Cost of Project	\$200,933,000	
Net Present Value of Safety Benefits	\$32,621,678	
Annual Crash Reduction	22.2	
Benefit-Cost Ratio	0.16	

Roadway Design

The alignments for both alternatives were developed per the ODOT L&D Manual. A tabulation of design criteria consistent with the ODOT Location and Design Manual Volume 1 is shown in **Appendix F**. The following provides a summary of key design criteria. Where applicable a summary of the difference in impact due to the criteria for the two alternatives has been included.

Typical Section

<u>US 33 Mainline</u> - The typical section for the mainline facility meets the requirements of L&D Manual Section 300. While the typical section varies throughout the length of the corridor, it generally consists of three through lanes in each direction. Within the study area, the median width is 60 feet from the western terminus to just east of the N. High St. / Bowen Road intersections, where it transitions to 40 feet which continues to and beyond the eastern terminus.

Alternative 1 – Add a 12' through lane in each direction within the 60' median area and 11' lane in each direction within the existing 40' median.

Alternative 2 – Add a 12' through lane along the outside in each direction and increase median shoulder to 10' in each direction.

Typical section details for each alternative have been included in Appendices A and B with each respective alternative's horizontal alignment.

<u>Ramps</u> - No changes to the typical sections for the ramps have been proposed for either alternative as part of this evaluation. Ramp operation and capacity and connections to and from the mainline corridor will be reevaluated with the updated certified traffic when available. However, the volumes will be the same for both alternatives as would any required modifications to alignment or number of lanes; therefore, the capacity at the connections would not influence determination of a preferred alternative. Ramp cross section and design will be addressed with Stage 1 detailed design should the need for modifications be identified.

Horizontal Alignment

<u>Mainline</u> - All mainline segment and ramp improvements have been designed to the design speed of 70 mph except for two locations:

- The westbound exit to Hamilton Road, both alternatives. Existing right of way limits constrain the ability to improve the alignment without acquiring additional right of way. This constraint would necessitate a design variance and would apply to both alternatives. Therefore, it is not an influencing factor in the determination of a preferred alternative. The condition will be further evaluated with Stage 1 design to determine the means necessary to address the deficiency and the appropriate project with which to associate the improvement should ODOT desire to address the condition. either with the US 33 widening project or when/if future improvements were to be constructed at the Hamilton Road interchange.
- Inside shoulder at FRA-33-26.60 Bike Path Overpass, inside widening Alt 1. The overhead bridge pier infringes upon the required vertical clearance of 16'. A design exception would be required for shoulder width to permit this design deficiency. A minor shift to the alignment through this overpass will be evaluated with detailed design to determine if the deficiency can be resolved without additional impacts.

Roadway Design

<u>Ramps</u> - the extent of impact and reconstruction to the ramps is greater for Alternative 2. Widening to the outside pushes the tie in points further up the ramps increasing the length of reconstruction required to accommodate the outside widening alternative.

Cross Sections

Cross sections were created at 1000-foot intervals and are provided in the plans in **Appendix A** for Build Alternative 1 and **Appendix B** for Build Alternative 2. Safety grading is used where feasible, and guardrail is used where not feasible. Construction limits were set a minimum of 10 feet beyond the points where proposed grading meets existing. The estimated proposed right-of-way was established using these limits.

Pavement Design

The proposed design includes full depth pavement replacement for the US 33 corridor. A Pavement design was provided by ODOT. This build-up includes 1.5" asphalt surface course, 2.25" intermediate course, 8.5" asphalt base, 6"/8" aggregate base, and 14" of subgrade stabilization. A portion of the project requires full-depth pavement due to new horizontal and vertical alignments. However, the potential to preserve additional existing pavement and/or alternative methods of executing the major rehab will be investigated further for cost savings opportunities via separate documentation. Sawcut, milling and resurfacing may be considered and evaluated for existing pavement and areas along U.S. 33 where only pavement markings are being modified. If subgrade conditions are adequate, crack and seat and/or rubblize and roll options may be considered. All pavement preservation options will consider long term maintenance implications as part of their evaluation.

Drainage

Approximately 52 known drainage structures/conduit exist along the corridor. The proposed drainage will be both open and close systems, depending on the selected alternative. ODOT is in the process of completing the inspection of these structures to determine the conditions of these structures. It is assumed that both alternatives would include the replacement and/or repair of deficient structures with the extent of repairs confirmed with inspection data/reports from ODOT.

- Alt 1 Culverts will require minimal extension with the inside widening. Impact to culverts/conduit will be limited with work limited to needed repairs as noted in the conditions data. The extent of repairs will be confirmed with inspection data/reports.
- Alternative 2 Impacts to culverts would require extension due to widening on the outside in addition to needed repairs as noted in the conditions data.

BMP requirements will be met by BMPs will primarily be filter strips with vegetative bioswales. There may be locations where detention may be used near the interchanges. Underdrains will be provided, as shown in the typical sections in **Appendix A** and **Appendix B**. In general, BMP requirements/costs are similar between alternatives.

Traffic Control/ Signing/ Lighting

The existing lighting system will be modified as necessary to meet the requirements of the Traffic Engineering Manual. The removal and replacement of lighting will be required for both alternatives to different degrees related to the widening approach.

ITS/Mobility

FRA-33 ITS project work will include various ODOT Freeway Management System (FMS) proposed and existing device sites and communications infrastructure for both the ODOT FMS and Columbus Traffic Signal System (CTSS) networks along the FRA-33 project corridor. Proposed improvements to the ODOT FMS include the replacement of an existing dynamic message sign, several new traffic surveillance cameras and ramp metering signals, and conduit systems for future fiber optic interconnect. Proposed improvements to the Columbus Traffic Signal System include conduit and fiber optic interconnect to replace the temporary aerial fiber optic interconnect installed previously by the City of Columbus to bypass the US-33 widening project construction work. Existing ITS devices and the temporary CTSS fiber network are to remain in service throughout the duration of project construction.

ODOT FMS Proposed/Existing Sites - Widening of the US-33 mainline towards the inside median vs. the outside shoulder will not impact the proposed design of ODOT ITS sites or the maintenance of existing sites during construction. The estimated cost for this work, for both mainline widening alternatives selected for construction, is the same.

ODOT FMS/Columbus CTSS - The design and installation of the proposed communications infrastructure and fiber optic cable will vary considerably between the two build alternatives. If the US-33 mainline widening occurs towards the inside median and a concrete center median barrier wall is constructed, communications infrastructure for both ODOT and CTSS networks will be constructed within the proposed median barrier wall, along with lateral crossings to ITS devices for fiber optic cable access and slack cable storage. Conversely, if the US-33 mainline widening occurs towards the outside shoulder and the grassy center median will remain then communications infrastructure for both ODOT and CTSS networks will primarily be trenched within the LA/RW and attached to bridge structures.

The total estimated cost for ODOT FMS and CTSS communications network infrastructure work for the inside median widening alternative is estimated at \$3,301,692. The estimated cost for ODOT and CTSS communications network infrastructure work for the outside shoulder widening alternative is estimated at \$3,754,664.

Refer to Appendix G for details on proposed ITS/CTSS work and cost breakdown.

Structures Assessment

Design Criteria and Assumptions

All structures will be designed in accordance with the latest editions of the AASHTO LRFD Bridge Design Specifications (currently 9th edition), the ODOT Bridge Design Manual, and relevant ODOT standard drawings and specifications. Unless otherwise noted, all bridge widening schematics and costs assume that each structure will use the same superstructure type, beam spacing (where applicable), substructure sections, and foundation types as the existing bridges. This information is based on the existing plans for structures located in the project area. Soil borings and geotechnical analysis have not been performed for this assessment.

Rehabilitation or improvements to the existing structures are included in the cost estimates as outlined in **Appendix H** – FRA-33 Widening Bridge Condition Summary. Additional inspection information for the bridges over the Cable Bowman Ditch and the Tussing-Bachman Ditch is included in **Appendix I** – Culvert Inspection Summary.

Looking at the latest inspection reports and field notes, most of the structures are in good to excellent condition and will require little to no rehabilitation. The exceptions to this are the SR 317/Hamilton Road overpass (fair condition, controlled by substructure) and the structures over George Creek (poor condition westbound and fair condition eastbound, both controlled by substructure), and the Gender Road overpass (serious condition superstructure rating due to impact damage on 5/20/2024).

TABLE 16: BRIDGE CONDITION RATING SUMMARY

Bridge Condition Rating Summary		
Bridge Name	Structure File Number	General Appraisal Condition Rating
FRA-33-25.03 L over Walnut Creek Overflow	2501929	7
FRA-33-25.03 R over Walnut Creek Overflow	2501953	7
FRA-33-25.09 R over Big Walnut Creek	2502011	8
FRA-33-25.09 L over Big Walnut Creek	2501988	8
FRA-317-9.14 (or FRA-33-26.32) Hamilton Road Overpass	2516381	5
FRA-33-26.49 L over Blacklick Creek	2502046	7
FRA-33-26.49 R over Blacklick Creek	2502070	7
FRA-33-26.60 Bike Path Overpass	2502038	9
FRA-CR118-5.71 Ebright Road Overpass	2502089	7
FRA-33-27.51 L over Cable Bowman Ditch	2502100	7
FRA-33-27.51 R over Cable Bowman Ditch	2502135	7
FRA-33-29.00 L over George Creek	2502194	4
FRA-33-29.00 R over George Creek	2502224	5
FRA-222-2.25 Gender Road Overpass	2517361	3*
FRA-33-30.30 over Tussing-Bachman Ditch	2502267	8

Note: * low condition rating due to impact damage on 5/20/2024.

Condition rating definitions: 9 = excellent; 8 = very good; 7 = good; 6 = satisfactory; 5 = fair; 4 = poor; 3 = serious.

For the purposes of this assessment the spread of flow for drainage on the bridge decks has not been investigated. Depending on the length and grade of each structure there is potential that scuppers could be required in some locations. During detailed design, scupper locations will be determined and adjustments to the structures made as needed.

The following subsections provide a summary and any notable assumptions for each structure within the assessment area that will be impacted by one or both of the widening alternatives:

FRA-33-25.03 L/R over Big Walnut Creek Overflow

Structure File Numbers: 2501929 (Left/WB), 2501953 (Right/EB)

The bridges over the Big Walnut Creek Overflow are three-span continuous concrete slabs on capped pile piers and abutments. The structures were originally built in 1963 and widened in 2018. The overall bridge lengths are 93.5 ft (left) and 92.5 ft (right).

FRA-33-25.09 L/R over Big Walnut Creek

Structure File Numbers: 2501988 (Left/WB), 2502011 (Right/EB)

The bridges over Big Walnut Creek are four-span prestressed concrete I-beams on reinforced concrete piers and abutments, supported by pile foundations. The structures were originally built in 1963 and widened in 2018. The overall bridge length is 303.2 ft for both the left and right bridges. The Big Walnut Trail, which connects to nearby Elk Run Park and is being developed by the Columbus Recreation and Parks Department, runs under the southeastern spans of the bridges. Trail overhead protection will be provided in the design to allow the trail to remain open during construction.

FRA-33-26.32 (or FRA-317-9.14) SR 317/Hamilton Road over US-33

Structure File Number: 2516381

The Hamilton Road overpass is a four-span continuous welded steel plate girder on reinforced concrete piers and abutments, supported by pile foundations. The bridge was originally built in 1962 and rehabilitated with a deck overlay in 2003. The overall bridge length is 338.1 ft. The bridge's general appraisal condition rating of 5 (satisfactory) is controlled by the substructure. Pier patching and composite fiber wrap is included in the cost estimates to improve the structural integrity and durability of the piers. Improving the substructure condition can raise the general appraisal to the limiting deck condition of 7 (good). The vertical under-clearance of the bridge is listed as 14.8 ft according to the bridge inventory (BM-191) and the measurements from LJB's bridge survey scans. At this stage, the roadway profile has been adjusted down to increase the vertical clearance to a minimum of 16.0 ft. The impact of the profile adjustments on the drainage and pier footing cover will be further evaluated before Stage 1.

FRA-33-26.49 L/R over Blacklick Creek

Structure File Numbers: 2502046 (Left/WB), 2502070 (Right/EB)

The bridges over Blacklick Creek are three-span continuous rolled steel beams on pile-supported reinforced concrete stub abutments and capped pile piers. The structures were originally built in 1963 and rehabilitated in 2017. The overall bridge length is 147.8 ft for both the left and right bridges.

FRA-33-26.60 Blacklick Trail Bike Path over US-33

Structure File Number: 2502038

The Blacklick Trail Bike Path overpass is an eight-span prefabricated truss superstructure on

reinforced concrete piers and abutments, supported by pile foundations. The bridge was originally built in 2011. The overall bridge length is 878.5 ft. The bridge is in excellent condition (condition rating 9) and has a vertical under-clearance of 17.2 ft per the bridge inventory (BM-191) and 17.7 ft per LJB's bridge survey scans. Therefore, no modifications are proposed for this structure. However, pier protection will be required for the widening alternatives and the location of the barriers must account for the horizontal clearances to the skewed piers.

FRA-CR118-5.71 Ebright Road over US-33

Structure File Number: 2502089

The Ebright Road overpass is a two-span continuous welded steel plate girder on pile-supported reinforced concrete abutments behind MSE walls and a reinforced concrete pile-supported pier. The bridge was originally built in 2007. The overall bridge length is 254.3 ft. The bridge is in good condition (condition rating 7) and has a vertical under-clearance of 17.1 ft per the bridge inventory (BM-191) and LJB's bridge survey scans. Therefore, no modifications are proposed for this structure. However, pier protection may be required for the widening alternatives.

FRA-33-27.51 L/R over Cable Bowman Ditch

Structure File Numbers: 2502100 (Left/WB), 2502135 (Right/EB)

The bridges over Cable Bowman Ditch are single-span slabs on reinforced concrete abutments with spread footings. The structures were originally built in 1963 and rehabilitated in 2017. The overall bridge length is 17.8 ft for both the left and right bridges. A complete replacement is planned for these bridges. The structure/culvert type is to be determined by hydraulic analyses and Structure Type Study after the preferred alignment and MOT alternatives have been determined. Structure types to be studied include a 3-sided box culvert, 4-sided box culvert, and a corrugated metal arch.

FRA-33-29.00 L/R over George Creek

Structure File Numbers: 2502194 (Left/WB), 2502224 (Right/EB)

The bridges over George Creek are three-span continuous concrete slabs on capped pile piers and abutments. The structures were originally built in 1963 and rehabilitated in 2017. The overall bridge length is 79.5 ft for both the left and right bridges. The general appraisal bridge conditions are controlled by the substructure for both bridges with the left bridge rated as a 4 (poor condition) and the right bridge rated as a 5 (fair condition). Additional substructure patching and rehabilitation costs have been included in the cost estimates for this bridge. A more thorough inspection of the bridge condition will be performed during Stage 1 to document and quantify the rehabilitation work.

FRA-CR222-0.00 Gender Road over US-33

Structure File Number: 2517361

The Gender Road overpass is a four-span continuous steel beam superstructure on pile-supported reinforced concrete abutments and reinforced concrete piers supported by spread footings. The bridge was originally built in 1971 and rehabilitated with a deck overlay in 2003. A project to add a sidewalk to the east side of the bridge is currently underway in coordination with the City of Canal Winchester. The overall bridge length is 285.4 ft. The bridge has a general appraisal condition rating of 3 (serious). This condition rating reflects the effects of impact damage to the bridge beams caused by a truck hauling an excavator on 5/20/2024. The bridge was inspected on the date of impact. Previously, the bridge condition was rated as 7 (good). The vertical under-clearance of the bridge is listed as 15.0 ft according

to the bridge inventory (BM-191) and measured to be 14.9 ft from LJB's bridge survey scans. The bridge has a history of over-height vehicle impacts to the girders that have been repaired. At this stage, the roadway profile has been adjusted down to increase the vertical clearance to a minimum of 16.0 ft. The impact of the profile adjustments on the drainage and pier footing cover will be further evaluated before Stage 1. No bridge work is anticipated.

FRA-33-02.92 over Tussing-Bachman Ditch

Structure File Number: 2502267

The bridge over Tussing-Bachman Ditch is a single-span, four-sided precast concrete culvert. The bridge was originally built in 2011. The overall bridge length is 11.8 ft (span) and the total longitudinal culvert length is 148.1 ft. The bridge has a general appraisal condition rating of 8 (very good) and is already wide enough to accommodate additional lanes. No modifications are anticipated. However, Alternative 2 – Widening to the Outside includes the cost of adding bridge railing/barrier at the bridge/culvert ends.

Alternative 1 – Widening to the Inside

For Alternative 1, all bridges are assumed to be widened through the entire median with a 2-inch gap between the median bridge railings. This assumption will allow for the option to implement hard shoulder running and is the more conservative choice for the cost estimates.

Alternative 1 includes widening of eight mainline structures, pier protection at two overpass structures, and minor substructure rehabilitation on the Hamilton Road overpass. The total estimated cost for the structures work (without contingency or inflation) is \$8,997,223. While cost is the main difference between the alternatives in relation to the structures, there is also a difference in the stream impacts between the alternatives. Alternative 1 has an estimated sum of stream impacts (added for all structures) of 1080 ft.

Alternative 2 - Widening to the Outside

The largest structures-related impact for Alternative 2 relates to the available space for outside widening at the Hamilton Road and Gender Road overpasses. There is not enough space to accommodate outside widening at these structures. Therefore, Alternative 2 costs assume that these two structures will be replaced. In addition to the higher construction costs for bridge replacements, there would also be considerable user costs on both US-33 and local networks due to maintenance of traffic on Hamilton and Gender Roads. The user costs have not been quantified in this assessment.

Alternative 2 includes widening of eight mainline structures, complete bridge replacements at Hamilton and Gender Roads, pier protection at two overpass structures, and barrier added at the Tussing-Bachman Ditch. The total estimated cost for this structures work (without contingency or inflation) is \$22,201,862. While cost is the main difference between the alternatives in relation to the structures, there is also a difference in the stream impacts between the alternatives. Alternative 2 has an estimated sum of stream impacts (added for all structures) of 1665 ft.

Summary

In terms of the structural assessment, Alternative 1 has significant advantages over Alternative 2. Alternative 2 costs more than 2.5 times more than Alternative 1. In addition, the bridge replacements required for Alternative 2 (outside widening) would have significant user costs that have not been quantified in this assessment. The total stream impacts for Alternative 1 are approximately 64% of the impacts for Alternative 2, based on preliminary assessment of the temporary access fill needed for construction.

Maintenance of Traffic

Conceptual Maintenance of Traffic (MOT) schemes were analysed for FRA-33-24.76 to identify key MOT cost drivers, impacts on existing structures, and the pros and cons of the anticipated MOT approach for each alternative. While typically the MOTAA would address this evaluation after a preferred alternative has been selected, it was critical to understand and compare the worst-case impacts, cost and schedule implications of the likely MOT scheme for each alternative. See **Appendix J** for a copy of the complete MOT Analysis.

For this evaluation, the project area was divided into two sections based on the existing median width: the western section, featuring a 60-foot edge-to-edge median, extends along US 33 from SR 104 to Gender Road in Franklin and Fairfield County, while the eastern section, with a 40-foot median, runs along US 33 from Gender Road to Diley Road in Fairfield County.

While the conclusions noted herein were based on a combination of data and engineering judgement, they are not intended to be a replacement for the MOTAA for the preferred alternative. The MOTAA will be completed for the preferred alternative and provide a more comprehensive evaluation of MOTAA schemes for the projects. The conclusions included herein may be confirmed and/or modified through the MOTAA analysis and report.

MOT Scheme Selection - Part-Width vs. Crossover

Per ODOTs Traffic Engineering Manual (TEM)Section 630-5.2 - MOTAA:

"For Interstate and Interstate Look-alike Work Zones (Projects on PDP Paths 3, 4, or 5): Analyse the maintenance of traffic (MOT) for both part-width construction and crossover construction. Should the part-width and crossover alternatives prove to have significant MOT constraints, or prove impractical or otherwise not possible to construct, the analysis should then include a contraflow and a hybrid construction technique as additional alternatives. Although individual project needs vary, the additional alternatives are more likely to be necessary due to constraints or practicality in replacement-type projects rather than widening-type projects."

Based on this guidance, both part-width and crossover schemes were screened for applicability and to determine the most likely MOT configuration for each alternative.

The screening considered big picture items such as potential ROW impacts, cost, construction sequencing and schedule. This screening concluded the following:

Alternative 1 - Inside Widening - Part-width construction was identified as the likely MOT scheme to be selected for Alternative 1. Part-width construction can be completed within the existing ROW, would require less temporary pavement and PCB and fewer construction stages.

Alternative 2 – Outside Widening – Crossover construction was identified as the likely MOT scheme to be selected for Alternative 2, Outside widening. Part-Width construction with outside construction was eliminated as a potential MOT scheme given the larger impacts created by that alternative compared to the two alternatives shown above. In the western section, part-width construction with outside widening would require an MOT cross section approximately 6 ft wider than the proposed final cross section, after accounting for two separate pre-phases for outside and inside shoulder reconstruction to minimize the MOT widening. It is expected that the additional width of this alternative will require roadside grading that extends beyond the existing right of way limits, thereby requiring right of way acquisition, which would not be required by the MOT schemes carried forward.

Contraflow Construction (Not Considered)

Contraflow construction was eliminated from consideration because of impacts that fall beyond that of the part-width and crossover MOT schemes. Contraflow is a MOT scheme typically deployed in dense urban areas when part-width or crossover alternatives have been determined impractical due to physical impacts or the need to maintain lanes to meet the permitted lane closure schedule. Additionally, it is challenging to analyse from a safety perspective and would present an unconventional arrangement of vehicle movements for the at grade intersections along the corridor during construction. Finally, a contra-flow arrangement would require widening for the contra-flow lanes, potentially requiring additional temporary pavement and additional phases that would extend the construction schedule.

Right-of-Way Impacts

Figure 2, shown below, illustrates a comparison of the typical section for both alternatives and includes a comparison of the anticipated ROW impacts associated with each alternative.

- Alternative 1 can be designed to fit within existing right-of-way limits.
- Alternative 2 will require new right of way in strip takes equating to approximately 5 acres of permanent and 20 acres of temporary right-of-way.

FIGURE 2: US 33 TYPICAL SECTIONS, WIDENING TO THE INSIDE AND OUTSIDE

Environmental Analysis

This section summarizes the environmental analysis and investigations conducted to date. A Level D1 Categorical Exclusion was approved on April 24, 2025.

Cultural Resources

The US 33 widening project will not impact any historic structures, known archaeological resources, or pass through historic districts. While some bridge work will be necessary in both alternatives, there are no historic bridges along the US 33 corridor. No Section 106 impacts are anticipated.

Section 4(f)

Two Section 4(f) resources are present in the project area:

- The Blacklick Trail bridge, maintained by Franklin County Metroparks, crosses over US 33 about 2000' east of the Hamilton Rd interchange. No modifications or closures are anticipated to the structure in either alternative.
- A recreational trail passes under the bridge that carries US 33 over Big Walnut Creek.
 The trail is maintained by the City of Columbus Department of Parks and provides the
 only connection over US 33 between Watkins Rd and Hamilton Rd, although neither
 of these routes have pedestrian infrastructure. To reduce the amount of trail closures,
 a protective walkway cover will be placed over affected portions of the walkway to
 protect from overhead debris. Up to four overnight closures will be needed to set
 girders on the widened bridge for either alternative. The Section 4(f) finding for this
 facility was Temporary No Use.

Section 6(f)

No Section 6(f) resources are present in the project area.

Ecological Resources

Field surveys were conducted from June 4 to June 10, 2024. A Level 1 Ecological Survey Report (ESR) was submitted and is currently awaiting agency responses. At the time, plans had not been fully developed for the two alternatives, so the worst-case area was studied: the anticipated construction limits of Alternative 2, including the full existing US 33 right-of-way and proposed right-of-way needed for Alternative 2. No right-of-way would be needed for Alternative 1. Impacts are likely to be less than reported as the design is refined and known resources can be avoided. **Appendix K** includes maps documenting the extent of the ecological field study area for this project.

Several streams were identified in the project area. Those that pass under US 33 in an existing culvert would not be impacted by Alternative 1 because widening would occur in the median above the culvert. Alternative 2 would require some impacts to these streams to extend or replace culverts. Five additional waterways are crossed by pairs existing bridges, one for US 33 EB and another for US 33 WB:

- Big Walnut Creek Overflow
- Big Walnut Creek
- Blacklick Creek
- Cable-Bowman Ditch

- Tussing Ditch
- Georges Creek
- Wild Violet Run

The ESR showed all portions of these streams inside the project area to be impacted, but further design will refine these impacts prior to the Waterway Permit Determination Request. Impacts will be greater for Alternative 2 than Alternative 1. Both alternatives are expected to require waterway permits for multiple streams, although the impacts in each case will be greater for Alternative 2, and Alternative 1 is unlikely to require work in Tussing Ditch or Wild Violet Run.

Similarly, 13 wetlands were identified in the project area. None are isolated. The total wetland area inside the project area was 0.912 acres. The ESR assumed impacts for all wetlands, but detailed design will likely be able to reduce or avoid impacts to some. Because no wetlands were found in the median outside of those at stream crossings, Alternative 2 has the potential to impact more wetlands than Alternative 1.

Mussel surveys were conducted at Blacklick Creek and Georges Creek, each finding mussels or fresh remains. A survey for a separate project in 2017 found mussels at Big Walnut Creek. Both alternatives will require mussel relocations prior to in-stream work at each waterway.

Regulated Materials

An RMR screening was submitted to ODOT OES. Due to limited plan information, it was assumed that deep excavation could occur near all adjacent properties. Alternative 2 has a higher potential to require further RMR activities due to work closer to the ROW boundaries and ROW acquisition. An environmental commitment was made to reevaluate high risk sites prior to construction as detailed design becomes available.

Noise

A noise analysis was completed and submitted to ODOT for approval, shown in **Appendix L**, the Noise Wall Preliminary Placement Plan. The analysis evaluated the need for noise walls on US 33 within the project limits. Noise analysis was conducted for Alternative 1 with the understanding that if Alternative 2 were selected, further analysis would be necessary due to the lanes of travel being closer to receptors in an outside widening scenario than in an inside widening scenario. However, Alternative 1 also adds capacity and therefore required quantitative noise analysis.

Based on the analysis of Alternative 1, there are four locations where noise walls are feasible and reasonable. All could be constructed inside the existing ROW. For comparing alternatives, Alternative 2 would have at least the same four locations and potentially more. In addition, there would be ROW impacts and likely utility impacts. If Alternative 2 is selected, further analysis would be necessary to quantify the potential additional noise impacts.

A public commitment was included in the NEPA document to carry out noise public involvement for the feasible and reasonable noise walls, incorporating them into the design project if desired.

Air Quality

Air quality analysis is currently in progress. The results are expected to be equal for both alternatives since each adds the same amount of capacity to US 33.

Public Involvement

A Public Engagement Plan was developed for this project. Project owner notification letters were sent to owners of properties adjacent to the US 33 right-of-way or where Alternative 2 proposed right-of-way at the property and tax mailing addresses. A virtual public open house (https://www.transportation.ohio.gov/projects/projects/121811) was held from September 2 to October 2, 2024. Invitations were sent on August 16, 2024 to residents, commercial properties, and a church near the Bixby Rd and Rager Rd intersections where access would be modified by either alternative. Invitations were also advertised via social media and sent to stakeholders, including counties, cities, emergency responders, school districts, and elected officials. The website provided information on these access changes, the scope of the US 33 widening project, and methods to comment.

Comments were generally in support of the project, with specific safety concerns regarding at-grade intersections. The most frequent comments included:

- Support for widening US 33: 212
- Support for Alternative 1 (inside widening): 80
- Support for Alternative 2 (outside widening): 31
- Opposed to widening US 33: 19
- Expressed safety concerns with existing at-grade intersections: 101
- Prefer to spend money on transit, bike, or passenger rail: 10
- Prefer to extend the project limits: 19
- Expressed concerns about noise or requested noise barriers: 16
- Expressed support for other projects:
 - Grade separated interchange at Bixby & US 33: 19
 - Grade separated interchange at Pickerington Rd: 16
 - Improvements to SR 104/James Rd interchange: 9
 - Improvements to US 33 interchange with I-270: 4

Cost Estimates and Comparison of Alternatives

Table 17 summarizes the comparative analysis that was completed for the key issue evaluation documented herein and highlights key determining factors used to inform the recommendation of a preferred alternative for US 33 Widening.

Table 17 also summarizes the evaluation in terms of project costs, rounded. Refer to **Appendix M** to view the detailed project alternatives cost estimates.

Comparison Matrix

TABLE 17: ALTERNATIVES COMPARISON MATRIX

ANALYSIS CATEGORY	ALTERNATIVE 1	COST	IMPACT	ALTERNATIVE 2	COST	IMPACT
		Purpose & Nee	d Elements			
Congestion	Congestion improvement to acceptable LOS Accommodates future HSR without substantial additional roadway improvements	N/A	•	Congestion improvement to acceptable Levels of Service Requires future widening of inside lane, shoulder and bridges in eastbound direction for HSR lane/ shoulder per TSMO analysis (not included in cost)		•
Safety	Improves safety compared to no-build	N/A	•	Improves safety compared to no- build	N/A	•
		Key Issi	ues			
Roadway & Drainage	Widening to the inside No new ROW required Design exception for shoulder width or mainline alignment shift required due to bridge pier encroachment at Bike Path Overpass Accommodates future HSR without substantial additional roadway improvements (included in cost)	\$ 90,612,900		Widening to the outside New ROW required Extended project development for ROW acquisition Extension of existing conduit/culverts required Horizontal alignment shift required to avoid impact to bridges at I-270 and Wilkens (not included in cost) More earthwork to address side slopes Requires future widening of inside lane, shoulder and bridges in eastbound direction for HSR lane/ shoulder per TSMO analysis (not	\$ 79,332,000	
ITS	Communications infrastructure constructed in median barrier wall with lateral crossings	\$ 3,301,700	•	included in cost) Communications infrastructure trenched and/or attached to structures	\$ 3,754,700	•

ANALYSIS CATEGORY	ALTERNATIVE 1	COST	IMPACT	ALTERNATIVE 2	COST	IMPACT
Structures	Rehab/repaired structures modified to fill in median	\$ 9,872,500	•	Replacement of Hamilton Road and Gender Road overpasses	\$ 24,302,100	•
				Requires more retaining wall to minimize ROW impacts and at steep side slopes		
				Impacts to I-270 bridges without shift at interchange		
				Additional temp access fills needed for substructure construction		
MOT	Part-width construction	\$ 10,483,300	•	Crossover construction	\$ 13,478,600	•
	Shorter construction duration	(pavement, PCB)	MOT	Pre-phases required to widen	(pavement, PCB)	
	Pavements est. = 101,500 SY	5% addnl. MOT added below		structures	7% addnl. MOT added below	
	PCB est. = 194,300 LF			Longer construction duration by up to 0.5 seasons		
	Additional pavement width required (beyond proposed final) in southern			Pavements est. = 177,500 SY		
				PCB est. = 97,000 LF		
	section			·		
	May require dedicated construction ingress/egress points			Access at at-grade intersections may be difficult to maintain, detours likely		
	More options for at-grade intersections					
				Impacts to ramp access		
	No ROW impacts, fewer impacts to			Likely impacts to noise walls		
	schedule/ duration, and MOT cost			Detours and MOT for Hamilton		
	Existing structures can maintain two lanes of travel during construction			Rd. and Gender Rd. with bridge replacements		
				Temp lighting at crossovers		
				Potential ROW impacts		

ANALYSIS CATEGORY	ALTERNATIVE 1	COST	IMPACT	ALTERNATIVE 2	COST	IMPACT
Environmental Resource Impacts	Increased capacity/through traffic near sensitive receptors	\$ 4,801,000 (noise barrier)	•	Increased capacity/through traffic near sensitive receptors	\$4,801,000 (noise barrier)	•
Resource Impacts	Four noise walls found to be reasonable and feasible (no ROW or utility impacts required) Stream Impact = 1,080 Ft, includes 990 Ft. mussel streams Waterway permits required for multiple streams, lesser impact and no work anticipated in Tussing Ditch or Wild Violet Run The Blacklick Trail bridge, no modifications or closures are anticipated to the structure in either alternative. Recreational trail passes under US 33 over Big Walnut Creek bridge - no differences in either alternative.	Conservative estimate. Will be revised and reduced with detailed design.		At least four noise walls found to be reasonable and feasible (ROW impacts and likely utility impacts required) Stream Impact = 1,665 ft, includes 1,365 Ft. mussel streams Waterway permits required for multiple streams including Tussing Ditch and Wild Violet Run The Blacklick Trail bridge, No modifications/closures in either alternative. Recreational trail under the US 33 over Big Walnut Creek bridge - no differences in either alternative. Due to work outside of existing	Conservative estimate. Expected to be higher than Inside Widening.	
				ROW, greater impact/potential for impacts for noise, RMR, streams, wetlands		
				Potential for higher level waterway permits		

CONSTRUCTION	ALTERNATIVE 1	COST	IMPACT	ALTERNATIVE 2		COST	IMPACT
	5% addnl. MOT Factor	\$ 5,953,600		7% addnl. MOT Factor	\$	8,796,800	
30% Contingency		\$ 35,721,400			\$	37,700,400	
Total Construction Cost		\$ 160,746,400			\$	172,165,100	
Preliminary Engineering (15%)		\$ 24,112,000			\$	25,824,800	
Right of Way	No new ROW		•	New ROW			•
Permanent		\$ -		5 Acres	\$	920,000	
Temporary		\$ -		20 Acres	\$	800,000	
Construction Engineering (10%)		\$ 16,074,600			\$	17,216,506	
Inflation (5.2%)		\$ 10,448,400			\$ 11,	280,200	
Total Cost (1)		\$ 211,381,400			\$	228,206,500	(2)

^{(1) -} Construction costs were estimated using 2024 unit prices and inflated to 2026 estimates using ODOT's inflation calc.

Legend

- Low Impact
 -Medium Impact

High Impact

^{(2) -} Cost for outside widening does not include additional construction cost to accommodate fourth eastbound lane between Hamilton and Gender for HSR on outside widening alternative or improvements to bridges at the I-270 interchange.

Conclusion

This document serves as the draft feasibility study for the US 33 Widening Project (PID 121811). In late 2024, a Preferred Alternative recommendation was submitted and accepted by ODOT for submittal with the Environmental Document. In April 2025 the Environmental Document was approved, and environmental clearance was received for the project. This final Feasibility Study has been submitted with the addition of refined traffic volumes, safety and capacity analysis to complete the documentation of the evaluation of alternatives.

Previous studies identified two viable options for addressing congestion and safety through the addition of through lanes in both the eastbound and westbound directions:

- Alternative 1: Widening to the Inside
- Alternative 2: Widening to the Outside

Both alternatives are expected to meet the primary purpose and need of the project, namely reducing congestion and improving safety. However, they are expected to have significantly different impacts in key areas that will influence the selection of the preferred alternative.

This analysis compares the two alternatives based on several factors:

- Primary purpose and need elements (safety and congestion)
- Roadway and drainage design
- Intelligent Transportation Systems (ITS)
- Structures
- Maintenance of traffic
- Right-of-way impacts
- Environmental considerations

Additionally, the study provides project cost estimates for the construction of each of these elements, offering a comprehensive evaluation to guide the decision-making process for the preferred alternative.

The evaluation of two alternatives shows that both meet the project's primary goals but differ in key areas like drainage, bridges, ITS, and traffic maintenance. Alternative 2 (widening to the outside) has greater impacts, higher costs, and a longer timeline compared to Alternative 1, which requires no new right-of-way acquisition and offers flexibility for future hard shoulder running (HSR). A 2021 study identified the need for a fourth lane in the future, and Alternative 1 accommodates this better. Though both alternatives are feasible, Alternative 1 is recommended due to its advantages in cost, timeline, and flexibility.

Next Steps

Given prior approval of the preferred alternative, widening to the inside, this document is being submitted as a reference document in conjunction with the Stage 1 design submittal. Review and approval of the Stage 1 design including this document is expected to be completed by late Summer 2025, keeping the project on track for final design and construction.

<u>LEGEND</u>

ITEM 442 - 1.5" ASPHALT CONCRETE SURFACE COURSE, 12.5 MM, TYPE A (447)

ITEM 407 - NON-TRACKING TACK COAT (APPLIED AT 0.055 GAL/SY)

ITEM 442 - 2.25" ASPHALT CONCRETE INTERMEDIATE COURSE, 19mm, TYPE A (446)

ITEM 407 - NON-TRACKING TACK COAT (APPLIED AT 0.085 GAL/SY)

ITEM 302 - 8.5" ASPHALT CONCRETE BASE COURSE

 $\binom{6}{}$ ITEM 304 - 6" AGGREGATE BASE COURSE (FOR WIDENING AREAS)

ITEM 206, CEMENT STABILIZED SUBGRADE, 14 INCHES DEEP

ITEM 304 - 8" AGGREGATE BASE COURSE (FOR EXISTING PAVEMENT AREAS)

INSIDE WIDENING, 60' MEDIAN (STA. 1205+00)

EXISTING FULL DEPTH PAVEMENT

PAVEMENT STEP DETAIL

INSIDE WIDENING, 60' MEDIAN, 6-LANES (STA. 1245+00)

ESIGNE	R
	XXX
RE	VIEWER
(XX)	MM-DD-Y
ROJECT	ID
UBSET	TOTAL

INSIDE WIDENING, 60' MEDIAN, 8 LANES (STA. 1325+00)

INSIDE WIDENING, 40' MEDIAN, 6-LANES (STA. 1400+00)

DESIGNER	×		
H	IBK		
REV	IEWER		
JRE	5-16-24		
ROJECT I	D		
111460			
UBSET	TOTAL		
HEET	TOTAL		
2	26		

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1211+00 TO STA. 1224+00

XXX REVIEWER
XXX MM-DD-121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1263+00 TO STA. 1276+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1276+00 TO STA. 1289+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER

XXX MM-DD-Y 121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1289+00 TO STA. 1302+00

XXX REVIEWER

XXX MM-DD-Y 121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1302+00 TO STA. 1315+00

XXX REVIEWER

XXX MM-DD-Y 121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1315+00 TO STA. 1328+00

HORIZONTAL SCALE IN FEET

DESIGN AGENCY

DESIGNER
XXX

REVIEWER
XXX MM-DD-Y
PROJECT ID
121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1328+00 TO STA. 1341+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1341+00 TO STA. 1354+00

HORIZONTAL SCALE IN FEET

DESIGN AGENCY

DESIGNER
XXX

REVIEWER
XXX MM-DD-Y
PROJECT ID
121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1354+00 TO STA. 1367+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1367+00 TO STA. 1380+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER

XXX MM-DD-Y

121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1393+00 TO STA. 1406+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER

XXX MM-DD-Y

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1406+00 TO STA. 1419+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1419+00 TO STA. 1432+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

HORIZONTAL SCALE IN FEET PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1432+00 TO STA. 1445+00

XXX REVIEWER

XXX MM-DD-Y

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1445+00 TO STA. 1458+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1458+00 TO STA. 1471+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1471+00 TO STA. 1484+00

XXX REVIEWER
XXX MM-DD-121811 P.0 TOTAL

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1484+00 TO STA. 1497+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1497+00 TO STA. 1510+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1510+00 TO STA. 1523+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1523+00 TO STA. 1536+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1536+00 TO STA. 1549+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1549+00 TO STA. 1562+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER

XXX MM-DD-Y 121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1562+00 TO STA. 1575+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1575+00 TO STA. 1588+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1588+00 TO STA. 1601+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER

XXX MM-DD-Y

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1601+00 TO STA. 1614+00

HORIZONTAL SCALE IN FEET

DESIGN AGENCY

DESIGNER
XXX

REVIEWER
XXX MM-DD-Y
PROJECT ID
121811
SHEET TOTAL
P.0 0

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1614+00 TO STA. 1627+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1627+00 TO STA. 1640+00

Page 36

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1640+00 TO STA. 1653+00

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1653+00 TO STA. 1666+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER
XXX MM-DD-121811

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1679+00 TO STA. 1692+00

XXX REVIEWER
XXX MM-DD-

PLAN & PROFILE - U.S. 33, ALTERNATIVE 1 STA. 1692+00 TO STA. 1705+00

HORIZONTAL SCALE IN FEET

XXX REVIEWER

XXX MM-DD-Y 121811

OUTSIDE WIDENING, 60' MEDIAN (STA 1205+00)

OUTSIDE WIDENING, 60' MEDIAN, 6-LANES (STA. 1245+00)

DESIGN AGENCY

DESIGNER
XXX

REVIEWER
XXX MM-DD-YY
PROJECT ID
121811
SUBSET TOTAL
0 0
SHEET TOTAL
P.0 0

OUTSIDE WIDENING, 60' MEDIAN, 8-LANES (STA. 1325+00)

OUTSIDE WIDENING, 40' MEDIAN, 6-LANES (STA. 1400+00)

DESIGN AGENCY

DESIGNER
XXX

REVIEWER
XXX MM-DD-YY
PROJECT ID
121811

SUBSET TOTAL
0 0
SHEET TOTAL
P.0 0

U.S. 33 CONCEPT PLAN - OUTSIDE WIDENING ALTERNATIVE STA. 300+00 TO STA. 350+00

33 CONCEPT PLAN - ALTERNATIVE PRELIMINARY

111460

HORIZONTAL SCALE IN FEET

33 CONCEPT PLAN - ALTERNATIVE PRELIMINARY U.S.

U.S. 33 CONCEPT PLAN - ALTERNATIVE 2 PRELIMINARY

HORIZONTAL SCALE IN FEET 0 100 50 200

> U.S. 33 CONCEPT PLAN - ALTERNATIVE 2 PRELIMINARY

DESIGN AGENCY

SIGNER

REVIEWER

 \bigcirc

 \bigcirc

 \bigcirc

NOT TO SCALE

ADT

 \bigcirc

 \bigcirc

 \bigcirc

NOT TO SCALE

VOLUMES Α

FRA-33-24.76 FEASIE 2030/2050 NO-BUILD

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

NOT TO SCALE

VOLUMES

 \bigcirc

 \bigcirc

 \bigcirc

VOLUMES

ADT FEASIBILITY BUILD 33 ၑ FRA-33-24.7 2030/2050 US

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

		HCS	Freeway F	acilities Report			
Project	t Information						
Analyst		LJB (KLR)		Date		3/21/20	24
Agency		LJB Inc		Analysis Year		2050 No	Build
Jurisdict	ion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		AM Peak	(
Facility N	lame	US 33 EB		Units		U.S. Cus	tomary
Project [Description	FRA-33 Widenir	ng				
Facilit	y Global Input	·					
Jam Den	sity, pc/mi/ln	190.0		Density at Capacity, pc/r	mi/ln	45	
Queue D	Discharge Capacity Drop	, % 7		Total Segments		39	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	ength, mi	11.71					
Facility	Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 EB - w	est of SR 104 (nominal length)	500		2
2	Diverge	Diverge	US 33 EB	- SR 104 Off-Ramp	575		2
3	Diverge	Diverge	US 33 EB - 1	Winchester Off-Ramp	300		2
4	Basic	Basic		wn Winchester & James Rd Ramps	1900)	2
5	Merge	Merge	US 33 EB -	James Rd On-Ramp	1500)	2
6	Merge	Merge	US 33 EB	- SR 104 On-Ramp	1500)	2
7	Basic	Basic	US 33 EB -	Btwn SR 104 & I-270	3640)	2
8	Diverge	Diverge	US 33 EB -	- I-270 SB Off-Ramp	1500)	2
9	Basic	Basic	US 33 EB - B	twn I-270 SB Ramps (2 lanes)	580		2
10	Basic	Basic	US 33 EB - B	twn I-270 SB Ramps (3 lanes)	330		3
11	Weaving	Weaving	US 33 EB - Btv	vn I-270 SB & NB Loops	1480)	4
12	Basic	Basic	US 33 EB - I	Btwn I-270 NB Ramps	390		3
13	Merge	Merge	US 33 EB -	· I-270 NB On-Ramp	1500)	3
14	Basic	Basic	US 33 EB - B	twn I-270 & Hamilton	1030)	3
15	Diverge	Basic	US 33 EB -	Hamilton Off-Ramp	1500)	3
16	Basic	Basic	US 33 EB - E	Btwn Hamilton Ramps	1350)	2
17	Merge	Merge	US 33 EB - F	Hamilton SB On-Ramp	1370)	2
18	Merge	Merge	US 33 EB - F	lamilton NB On-Ramp	1500)	2
19	Basic	Basic	US 33 EB - B	twn Hamilton & Bixby	2390)	2
20	Diverge	Diverge	(dummy) US 3	33 EB - Bixby "off-ramp"	1500)	2
21	Basic	Basic	(dummy) U	S 33 EB - Btwn Bixby "ramps"	1000		2
22	Merge	Merge	(dummy) US 3	33 EB - Bixby "on-ramp"	1500		2
23	Basic	Basic	(dummy) US	33 EB - Btwn Bixby & Rager	1000)	2

25													Dullu Cap	———		
2	24		Dive	rge		Diverge		(dummy) US	33 EB - R	ager "o	f-ramp'	'	1500		2	
27	25		Bas	ic		Basic		(dummy)			Rager		1000		2	
28	26		Mer	ge		Merge		(dummy) US	33 EB - R	ager "o	n-ramp'	'	1500		2	
	27		Bas	ic		Basic		US 33 EB	- Btwn Rag	ger & G	ender		2390		2	
100	28		Dive	rge		Diverge		US 33 E	B - Gende	r Off-Ra	mp		1500		2	
31	29		Bas	ic		Basic		US 33 EB	- Btwn Ge	ender Ra	amps		2350		2	
32	30		Mer	ge		Merge		US 33 E	B - Gende	r On-Ra	mp		1500		2	
33	31		Bas	ic		Basic		US 33 EB			High/		1950		2	
	32		Dive	rge		Diverge		(dummy) US		igh/Bov	ven "off	-	1500		2	
S	33		Bas	ic		Basic		(dummy) US			n/Bowe	n	1000		2	
36	34		Mer	ge		Merge		(dummy) US		igh/Bov	ven "on	-	1500		2	
37	35		Bas	ic		Basic		US 33 EB - E	Btwn High,	/Bowen	& Diley		1950		2	
38	36		Dive	rge		Diverge		US 33	EB - Diley	Off-Rar	np		1500		2	
Pasic Basic Basic Basic Segment S	37		Bas	ic		Basic		US 33 E	B - Btwn C	iley Rar	nps		4100		2	
Parish Facility Segment Data Segment	38		Mer	ge		Merge		US 33	EB - Diley	On-Ran	np		1500		2	
AP	39		Bas	ic		Basic		US 33	B EB - east	of Dile	у		5280		2	
AP PHF FHV Volume Segment Capating (pc/h) Ratio Capating (pc/m)/h Capating (pc/h) Ratio Capating (pc/m)/h Capating (pc/m)/	Facili	ty Seg	ment	Data												
								Segme	nt 1: Ba	asic						
AP	АР	Pi	⊣ F	fŀ	łV											LOS
$ \begin{array}{ c c c c c c c c c } \hline AP & PHF & FHV & Volume Served & Capaty & gramp & Freeway $	1	0.9	94	0.9)26	24	47				52	65	5.0	1	8.8	С
1	AP	Pi	4F	fŀ	IV			Сара	city	d						LOS
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.94	0.94	0.926	0.926	2447	207	4700	2100	0.52	0.10	59.2	59.2	20.7	20.3	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Segmen	t 3: Div	erge						
1 0.94 0.94 0.926 0.952 2240 771 4700 2100 0.48 0.37 58.1 58.1 19.3 20.8 C Segment 4: Basic AP FINAL Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) B Segment 5: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R Infl. F R Infl. F R Infl. F R Infl.	AP	PI	HF.	fŀ	IV											LOS
Segment 4: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.926 1448 4700 0.31 63.8 11.1 B Segment 5: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. F R Infl.		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.926 1448 4700 0.31 63.8 11.1 B Segment 5: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. F R Infl. F	1	0.94	0.94	0.926	0.952	2240	771	4700	2100	0.48	0.37	58.1	58.1	19.3	20.8	С
Capacity (pc/h) Capacity (pc/h) Capacity (pc/h) Ratio Capacity (pc/h) Ratio Capacity (pc/h) Capacity (pc/mi/h)								Segme	nt 4: Ba	sic						
Segment 5: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) F R F R Freeway Ramp F R F R Infl. F R Infl.	AP	Pi	HF.	fŀ	IV											LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. F R Infl.	1	0.9	94	0.9	26	14	48	470	00	0.	31	63	3.8	1	1.1	В
(pc/h) (pc/h) Ratio (mi/h) (pc/mi/ln) F R F R Freeway Ramp Freeway Ramp F R F R Infl. F R Infl.								Segmen	nt 5: Me	erge						
	AP	PI	HF.	fŀ	IV										•	LOS
1 0.94 0.94 0.926 0.935 1892 444 4700 2100 0.40 0.21 59.3 59.3 16.0 13.8 B		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
	1	0.94	0.94	0.926	0.935	1892	444	4700	2100	0.40	0.21	59.3	59.3	16.0	13.8	В

AP PHF fHV Volume Served Capacity d/c Speed (pc/h) (pc/h) Ratio (mi/h)		•-												
			1											
PHF														
1 0.94 0.94 0.926 0.833 2828 932 4700 2100 0.60 0.44 58.4 58.4	24.2	20.9	С											
Segment 7: Basic														
PHF														
1 0.94 0.893 2835 4700 0.60 64.9	2	1.8	С											
Segment 8: Diverge														
PHF														
F R F R Freeway Ramp Freeway Ramp F R F R Infl.	F	R Infl.												
1 0.94 0.94 0.893 0.943 2835 417 4700 2100 0.60 0.20 58.8 58.8	24.1	24.0	С											
Segment 9: Basic														
PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 0.94 0.893 2395 4700 0.51 63.9 18.4 C Segment 10: Basic PHF fHV Volume Served Capacity d/c Speed Density LOS														
1 0.94 0.893 2395 4700 0.51 63.9	1	8.4	С											
Segment 10: Basic PHF fHV Volume Served Capacity d/c Speed Density LOS														
Capacity (pc/h) Capacity (pc/mi/ln) Capacity (pc/h) Capaci														
0.94 0.893 2395 7050 0.34 64.4 12.3														
Segment 11: Weaving	0.94 0.893 2395 7050 0.34 64.4 12.3 B													
PHF														
1 0.94 0.893 3981 5107 0.78 45.3	2	22.0	С											
Segment 12: Basic														
			LOS											
1 0.94 0.893 3681 7050 0.52 60.7	1	8.9	С											
Segment 13: Merge														
			LOS											
F R F R Freeway Ramp Freeway Ramp F R F R Infl.	F	R Infl.												
1 0.94 0.893 0.870 4647 966 7050 2100 0.66 0.46 59.7 58.8	25.9	21.0	С											
Segment 14: Basic														
			LOS											
1 0.94 0.893 4622 7050 0.66 64.3	2	23.8	С											
Segment 15: Diverge														
AP PHF fHV Volume Served Capacity d/c Speed (pc/h) (pc/h) Ratio (mi/h)		nsity mi/ln)	LOS											
F R F R Freeway Ramp Freeway Ramp F R F R Infl.	F	R Infl.												
1 0.94 0.80 0.893 0.926 4622 1593 7050 2100 0.66 0.76 64.7 64.7	23.8	23.8	С											
Segment 16: Basic														

											110-	Build Cap	acity Aria	aiysis	
AP	PI	HF.	f⊦	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	94	0.8	93	32	17	470	00	0.0	68	64	1.4	25	5.0	С
							Segmen	t 17: M	erge						
AP	PI	-IF	fŀ	IV	Volume (pc,		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.88	0.893	0.885	3307	90	4700	2000	0.70	0.04	56.4	56.4	29.3	27.0	С
							Segmen	t 18: M	erge						
AP	PI	4F	fŀ	١V	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.893	0.862	3547	247	4700	2100	0.75	0.12	56.3	56.3	31.5	28.1	D
							Segmer	nt 19: B	asic						
AP	PI	НF	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	94	0.9	009	347	76	470	00	0.	74	63	3.4	27	7.4	D
Segment 20: Diverge AB PHE 6HV Volume Served Capacity d/c Speed Density LOS															
AP	AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Speed (mi/h) Density (pc/mi/ln) F R F R Freeway Ramp Freeway Ramp F R F R Infl. F R Infl.														
							R Infl.	F	R Infl.						
1	0.94	0.89	0.909	0.952	3476	153	4700	2000	0.74	0.08	54.8	54.8	31.7	30.5	D
							Segmer	nt 21: B	asic						
AP	Segment 21: Basic														
1	0.	94	0.9	009	332	24	470	00	0.	71	63	3.7	26	5.0	С
							Segmen	t 22: M	erge						
AP	PI	4F	fŀ	١٧	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.909	3429	105	4700	2000	0.73	0.05	56.1	56.1	30.6	27.2	С
							Segmer	nt 23: B	asic						
AP	PI	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	94	0.9	009	342	29	470	00	0.	73	63	3.6	26	5.9	D
						9	Segment	24: Div	erge/						
AP	PI	-IF	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.980	3429	54	4700	2000	0.73	0.03	55.0	55.0	31.2	30.1	D
							Segmer	nt 25: B	asic						
AP	PI	НF	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	94	0.9	009	337	71	470	00	0.	72	63	3.7	26	5.4	D
							Segmen	t 26: M	erge						

					ı							Bulla Cap			
AP	PI	1F	fŀ	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.980	3480	109	4700	2000	0.74	0.05	56.0	56.0	31.1	27.6	С
							Segmer	nt 27: B	asic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	909	348	38	470	00	0.	74	63	3.3	27	7.6	D
						9	Segment	28: Div	erge						<u> </u>
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.81	0.909	0.909	3488	1005	4700	2100	0.74	0.48	57.6	57.6	30.3	28.9	D
							Segmer	nt 29: B	asic						
AP	Pł	4F	fl	łV	Volume (pc)		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	909	262	22	470	00	0.	56	64	1.7	20	0.2	С
Segment 30: Merge AP PHF fHV Volume Served Capacity d/c Speed Density LOS															
AP	AP PHF fHV Volume Served Capacity d/c Speed Density (pc/h) Ratio (mi/h) (pc/mi/ln) F R F R Freeway Ramp Freeway Ramp F R F R Infl. F R Infl.													LOS	
	F R F R Freeway Ramp Freeway Ramp F R F R Infl					R Infl.	F	R Infl.							
1	0.94	0.89	0.909	0.962	3194	572	4700	2100	0.68	0.27	57.4	57.4	27.8	24.9	С
							Segmer	nt 31: B	asic						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	3.0	885	328	32	470	00	0.	70	64	1.2	2!	5.6	С
						9	Segment	32: Div	/erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.885	0.935	3282	137	4700	2000	0.70	0.07	54.9	54.9	29.9	28.9	D
							Segmer	nt 33: B	asic						
AP	Pi	4F	fŀ	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	3.0	885	313	37	470	00	0.	67	63	3.7	24	4.3	С
							Segmen	t 34: M	erge						
AP	Pi	4F	fŀ	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1				0.935	3181	44	4700	2000	0.68	0.02	56.7	56.7	28.1	25.3	С
							Segmer	nt 35: B	asic						
AP	Pi	4F	fŀ	łV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.8	885	317	73	470	00	0.	68	64	1.5	24	4.6	С
						9	Segment	36: Div	/erge						
_															

AP	PI	HF	fŀ	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		ensity /mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.885	0.935	3173	717	4700	2100	0.68	0.34	58.1	58.1	27.3	28.2	D
							Segmer	nt 37: B	asic						
AP	PI	HF	fŀ	IV	Volume (pc,		Capa (pc/		1	/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	3.0	85	244	10	470	00	0.	52	64	1.9		18.8	С
AP														ensity /mi/ln)	LOS
				R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1				0.943	3022	582	4700	2100	0.64	0.28	58.4	58.4	25.9	21.6	С
							Segmer	it 39: B	asic						
AP	PI	HF	fŀ	IV	Volume (pc,		Capa (pc)		1 1	/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	01	292	28	470	00	0.	62	64	1.9		22.6	С
Facili	ity Ana	alysis	Result	S											
AP	VM ⁻ veh-mi			Deman ·mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln	Den veh/	sity mi/ln	TT min	LOS
1	775	0	7	750	9.	76	243.89		56.7		24.4	2	1.9	12.40	С
Facili	ty Ove	erall R	esults												
Space	Mean S	Speed, i	mi/h		56.7			Averag	e Densi	ty, veh,	/mi/ln	21.	9		
Avera	ge Trave	el Time,	min		12.40			Averag	e Densi	ty, pc/r	mi/ln	24.	4		
Total \	/MT, ve	h-mi/A	P		7750			Total V	HD, veh	-h		9.7	6		
Vehicl	e Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		243	3.89		
opyrigl	nt © 202	5 Univers	ity of Flo	rida. All R	ights Reserve	d.	HCSTM Freev	vays Version	2025				Generat	ed: 06/05/202	5 11:43:26

Design Year No Build AM - US 33 EB.xuf

					NO-Bulla	Сарасп	y Analysis
		HCS	Freeway F	acilities Report			
Project	Information						
Analyst		LJB (KLR)		Date		3/21/20	24
Agency		LJB Inc		Analysis Year		2050 No	Build
Jurisdict	ion	FRA-FAI, ODOT	District 6 & 5	Time Analyzed		AM Peal	K
Facility N	lame	US 33 WB		Units		U.S. Cus	tomary
Project [Description	US 33 Widenin	g				
Facilit	y Global Input						
Jam Den	sity, pc/mi/ln	190.0		Density at Capacity, pc/r	ni/ln	45	
Queue D	Discharge Capacity Drop	, % 7		Total Segments		36	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	ength, mi	11.34					
Facility	Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 \	WB - east of Diley	5280		2
2	Diverge	Diverge	US 33 W	B - Diley Off-Ramp	1500)	2
3	Basic	Basic	US 33 WB	- Btwn Diley Ramps	2040		2
4	Merge	Merge	US 33 W	B - Diley On-Ramp	1500)	2
5	Basic	Basic	US 33 WB - Bt	wn Diley & High/Bowen	1810)	2
6	Diverge	Diverge		33 WB - High/Bowen "off-ramp"	1500)	2
7	Basic	Basic		S 33 WB - Btwn High/ wen "ramps"	1000	1	2
8	Merge	Merge	(dummy) US 3	3 WB - High/Bowen "on- ramp"	1500)	2
9	Basic	Basic	US 33 WB -	Btwn High/Bowen & Gender	1810)	2
10	Diverge	Diverge	US 33 WB	- Gender Off-Ramp	1500)	2
11	Basic	Basic	US 33 WB -	- Btwn Gender Ramps	1460		2
12	Merge	Merge	US 33 WB -	Gender NB On-Ramp	1210		2
13	Merge	Merge	US 33 WB -	Gender SB On-Ramp	1500		2
14	Basic	Basic	US 33 WB -	Btwn Gender & Rager	2610)	2
15	Diverge	Diverge	(dummy) US 3	3 WB - Rager "off-ramp"	1500)	2
16	Basic	Basic	(dummy) U	S 33 WB - Btwn Rager "ramps"	1000)	2
17	Merge	Merge	(dummy) US 3	3 WB - Rager "on-ramp"	1500)	2
18	Basic	Basic	(dummy) US	33 WB - Btwn Bixby & Rager	1000		2
19	Diverge	Diverge	(dummy) US 3	3 WB - Bixby "off-ramp"	1500)	2
20	Basic	Basic	(dummy) U	S 33 WB - Btwn Bixby "ramps"	1000)	2
21	Merge	Merge	(dummy) US 3	3 WB - Bixby "on-ramp"	1500)	2
22	Basic	Basic	US 33 WB -	Btwn Bixby & Hamilton	2610)	2
23	Diverge	Diverge	US 33 WB	- Hamilton Off-Ramp	1500	ppendix	C Page 7 ²

											110-	Build Cap	acity Aire	aiyəiə	
24		Bas	sic		Basic		US 33 WB	- Btwn Ha	milton l	Ramps		1790		2	
25		Weav	/ing		Weaving		US 33 WB - E	Btwn Hami Off-Ram		I-270 N	В	4550		3	
26		Weav	/ing		Weaving)	US 33 WE	3 - Btwn I- Ramps		& SB		1510		3	
27		Bas	sic		Basic		US 33 WB	- Btwn I-2	270 SB F	Ramps		860		2	
28		Mer	ge		Merge		US 33 W	B - I-270 S	SB On-R	amp		1500		2	
29		Bas	sic		Basic		US 33 WB -	Btwn I-270 104) SB Rar	np & SI	R	2930		2	
30		Dive	rge		Diverge		US 33 WE	3 - SR 104	EB Off-I	Ramp		1500		2	
31		Bas	sic		Basic		US 33 WE	3 - Btwn SI	R 104 R	amps		940		2	
32		Weav	/ing		Weaving	3	US 33 WB	- Btwn SR Loop Ram		& WB		1410		3	
33		Dive	rge		Diverge		US 33 WE	3 - James F	Rd Off-F	Ramp		750		2	
34		Bas	sic		Basic			/B - Btwn . nchester F		d &		1510		2	
35		Mer	ge		Merge		US 33 WB	- Winches	ster On-	Ramp		820		2	
36		Bas	sic		Basic			B - west of nominal ler		ester		500		2	
Facili	ty Seg	ment	Data												
						Segment 1: Basic									
АР	PI	4F	fl	łV	Volume Served (pc/h) Capacity (pc/h) d/c Ratio 4268 4700 1.03				eed i/h)		nsity ni/ln)	LOS			
1	0.	94	0.9	952	420	68	· ·		36	5.6	58	3.3	F		
					4268 4700 Segment 2: Dive			erge							
АР	PI	НF	fl	IV	Volume (pc		Capa (pc			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.66	0.952	0.943	4220	884	4700	2000	1.03	0.44	39.1	54.8	54.0	33.9	F
							Segme	nt 3: Ba	asic						
AP	PI	4F	fl	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	94	0.9	952	300	66	470	00	0.	90	18	3.5	82	2.7	F
							Segmer	nt 4: Me	erge						
AP	PI	4F	fl	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.952	0.926	4055	1282	4700	2100	1.17	0.61	35.9	51.1	56.4	41.4	F
							Segme	nt 5: Ba	sic						
AP	PI	PHF fHV Volume Ser (pc/h)					Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.94 0.917 3930						Segmen			20	32	2.4	60).6	F
AP	PI	4F	fl	IV	Volume (pc		Capa (pc)	city	d	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
													<u> </u>		

												<u>'</u>			
1	0.94	0.91	0.917	0.962	3826	80	4700	2000	1.20	0.04	29.2	55.0	65.4	49.1	F
	1				<u> </u>			nt 7: Ba	T						
AP	Pł	1F	fŀ	łV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	917	36	74	470	00	1.	18	25	5.2	7.	3.0	F
							Segmer	nt 8: Me	erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.77	0.917	0.962	3709	135	4700	2000	1.21	0.07	26.3	50.0	70.5	44.9	F
							Segme	nt 9: Ba	sic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra			eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	358	88	470	00	1.7	20	24	l.1	7.	4.6	F
							Segment	10: Div	/erge						
AP	PI	4F	fŀ	łV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	3489	760	4700	2100	1.20	0.36	22.1	58.1	79.0	48.2	F
							Segmer	nt 11: B	asic						
AP	Pł	PHF fHV 0.94 0.926			Volume (pc,		Capa (pc,		d, Ra			eed i/h)		nsity ni/ln)	LOS
1	0.9	.94 0.926		26	258	80	470	00	1.0	03	12	2.3	10	5.0	F
							Segmen	t 12: M	erge						
AP	PI	4F	fŀ	łV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.962	3694	1172	4700	2000	1.28	0.59	24.5	49.9	75.4	47.8	F
							Segmen	t 13: M	erge						
AP	Pi	4F	f⊦	łV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	4376	682	4700	2100	1.43	0.32	52.6	52.6	41.6	33.5	F
							Segmer	nt 14: B	asic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra			eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	952	43	76	470	00	1.4	40	56	5.2	38	8.9	F
			Segment 15: Diverge												
AP	Pł	4F	fŀ	IV	Volume (pc		Capa (pc)		d, Ra			eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	· · · · · · · · · · · · · · · · · · ·				F	R Infl.		
1	0.94	0.94	0.952	0.980	4355	119	4700	2000	1.40	0.06	46.1	54.9	47.3	57.2	F
							Segmer	nt 16: B	asic						
AP	Pł	4F	fŀ	IV	Volume (pc		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
													ndiv C P		

										~-					
1	0.9	94	0.9	152	42		470			37	37	7.4	56	5.3	F
					ı		Segmen								
AP	Pł	₫F	fF	1V	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.980	4376	163	4700	2000	1.41	0.08	51.8	51.8	42.2	34.6	F
							Segmer	nt 18: B	asic						
AP	PH	4F	f⊦	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	952	43	76	470	00	1.	41	56	5.2	38	3.9	F
						9	Segment	19: Div	/erge						
AP	Pł	4F	fŀ	١V	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.68	0.952	0.980	4376	180	4700	2000	1.41	0.09	54.8	54.8	39.9	38.3	F
							Segmer	nt 20: B	asic						
AP	Pł	łF	fŀ	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	952	418	31	470	00	1	38	41	1.8	50	0.0	F
				Segment 21: Merge											
AP	Pł	4F	f⊦	łV	Volume (pc		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.952	0.980	4376	195	4700	2000	1.42	0.10	51.8	51.8	42.2	34.6	F
							Segmer	nt 22: B	asic						
AP	Pł	4F	f⊦	IV	Volume (pc		Capa (pc,		_	/c tio	Spo (mi	eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	943	43	76	470	00	1.	43	56	5.2	38	3.9	F
						9	Segment	23: Div	/erge						
AP	Pł	4F	f⊦	łV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.943	0.935	4376	601	4700	2100	1.43	0.29	58.4	58.4	37.5	35.9	F
							Segmer	nt 24: B	asic						
AP	Pł	4F	fŀ	١٧	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	943	37	75	470	00	1	31	61	1.6	30	0.6	F
						S	egment	25: We	aving						
AP	Pł	4F	fŀ	łV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	943	53	15	645	53	1.	20	45	5.7	38	3.8	F
						S	egment	26: We	aving						
AP	Pł	4F	fŀ	łV	Volume (pc		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	943	29:	31	582	23	0.	92	51	1.1	19	9.1	В
												^	div C Pac		

							Segmer	nt 27: B	asic				-		
АР	Pŀ	łF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	153	38	470	00	0.8	34	63	3.0	11	1.8	В
							Segmen	t 28: M	erge						
AP	PH	łF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.943	0.917	1909	371	4700	2100	0.92	0.18	58.5	58.5	16.3	16.3	В
							Segmer	nt 29: B	asic						
AP	PH	łF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	35	190)9	470	00	0.9	93	64	1.8	14	1.7	В
						9	Segment	30: Div	/erge						
AP	PH	łF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.935	1909	148	4700	2100	0.93	0.07	59.3	59.3	16.1	15.5	В
Segment 31: Basic AP PHF fHV Volume Served Capacity d/c Speed Density LOS															
AP	Pŀ	łF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
1	0.9	0.94 0.935 1761 4700 0.90 64.2 13.5 B Segment 32: Weaving													В
	Segment 32: Weaving														
АР	Pŀ	łF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	35	246		560		0.8	38	49).4	16	5.6	В
							Segment								
AP	Pŀ	łF	fl	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.980	1263	1259	4700	2100	0.76	0.60	57.0	57.0	11.1	9.8	Α
	ı						Segmer		T						ı
AP	Pŀ	łF	fl	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	26	4		450	00	0.	51	55	5.0	0	.0	А
							Segmen	t 35: M	erge						
АР	Pŀ	łF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio	Spo (mi	eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.962	822	818	4500	2100	0.69	0.39	51.8	51.8	7.9	6.4	А
							Segmer	nt 36: B	asic						
АР	Pŀ	łF	fŀ	IV	Volume (pc)		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	26	82	2	450	00	0.	70	53	3.9	7	.5	А
Facili	ty Ana	lysis I	Result	s									div C Do		

No-Build Capacity Analysis

АР	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay C	ost	Speed mi/h	Density pc/mi/ln	Density veh/mi/ln	TT min	LOS
1	10300	13971	105.59	2639.83		39.0	43.7	41.0	17.50	F
Faci	ility Overall I	Results								
Spac	e Mean Speed,	mi/h	39.0		Avei	rage Density, ve	h/mi/ln	41.0		
Aver	age Travel Time	e, min	17.50		Avei	rage Density, po	:/mi/ln	43.7		
Tota	l VMT, veh-mi/	Λ P	10300		Tota	l VHD, veh-h		105.59		
Vehi	cle Value of Tim	ne (VOT), \$/h	25.00		Tota	l Delay Cost, \$		2639.83		

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM Freeways Version 2025

Design Year No Build AM - US 33 WB.xuf

Generated: 06/05/2025 12:00:12

		HCS	Freeway F	acilities Report			
Desired	la Carractica a		- Treevvay r				
	t Information	LID (KLD)		I D. L.		2 /21 /20	24
Analyst		LJB (KLR)		Date		3/21/20	
Agency		LJB Inc		Analysis Year		2050 No	
Jurisdict		FRA-FAI (ODOT	D6/D5)	Time Analyzed		PM Peak	
Facility N		US 33 EB		Units		U.S. Cus	tomary
	Description	FRA-33 Widenii	ng				
	y Global Input						
	sity, pc/mi/ln	190.0		Density at Capacity, pc/r	mi/ln	45	
	Discharge Capacity Drop,	% 7		Total Segments		39	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	ength, mi	11.71					
	Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 EB - w	rest of SR 104 (nominal length)	500		2
2	Diverge	Diverge	US 33 EB	- SR 104 Off-Ramp	575		2
3	Diverge	Diverge	US 33 EB - 1	Winchester Off-Ramp	300		2
4	Basic	Basic		wn Winchester & James Rd Ramps	1900)	2
5	Merge	Merge	US 33 EB -	James Rd On-Ramp	1500)	2
6	Merge	Merge	US 33 EB	- SR 104 On-Ramp	1500)	2
7	Basic	Basic	US 33 EB -	Btwn SR 104 & I-270	3640)	2
8	Diverge	Diverge	US 33 EB -	- I-270 SB Off-Ramp	1500)	2
9	Basic	Basic	US 33 EB - B	twn I-270 SB Ramps (2 lanes)	580		2
10	Basic	Basic	US 33 EB - B	twn I-270 SB Ramps (3 lanes)	330		3
11	Weaving	Weaving	US 33 EB - Btv	wn I-270 SB & NB Loops	1480)	4
12	Basic	Basic	US 33 EB - I	Btwn I-270 NB Ramps	390		3
13	Merge	Merge	US 33 EB -	- I-270 NB On-Ramp	1500)	3
14	Basic	Basic	US 33 EB - B	Stwn I-270 & Hamilton	1030)	3
15	Diverge	Basic	US 33 EB -	Hamilton Off-Ramp	1500)	3
16	Basic	Basic	US 33 EB - E	Stwn Hamilton Ramps	1350)	2
17	Merge	Merge	US 33 EB - F	Hamilton SB On-Ramp	1370)	2
18	Merge	Merge	US 33 EB - F	lamilton NB On-Ramp	1500)	2
19	Basic	Basic	US 33 EB - B	twn Hamilton & Bixby	2390)	2
20	Diverge	Diverge	(dummy) US 3	33 EB - Bixby "off-ramp"	1500)	2
21	Basic	Basic	(dummy) U	IS 33 EB - Btwn Bixby "ramps"	1000)	2
22	Merge	Merge	(dummy) US 3	33 EB - Bixby "on-ramp"	1500)	2
23	Basic	Basic	(dummy) US	5 33 EB - Btwn Bixby & Rager	1000)	2

2																
	24		Dive	rge		Diverge		(dummy) US	33 EB - R	ager "o	f-ramp	"	1500		2	
27	25		Bas	sic		Basic		(dummy)			Rager		1000		2	
28	26		Mer	ge		Merge		(dummy) US	33 EB - R	ager "o	n-ramp'	1	1500		2	
29	27		Bas	sic		Basic		US 33 EB	- Btwn Rag	ger & G	ender		2390		2	
30	28		Dive	rge		Diverge		US 33 E	B - Gende	r Off-Ra	mp		1500		2	
31	29		Bas	sic		Basic		US 33 EB	- Btwn Ge	ender Ra	amps		2350		2	
	30		Mer	ge		Merge		US 33 E	B - Gende	r On-Ra	mp		1500		2	
33	31		Bas	sic		Basic		US 33 EB			High/		1950		2	
	32		Dive	rge		Diverge		(dummy) US		igh/Bov	ven "off	-	1500		2	
Series	33		Bas	sic		Basic		(dummy) US			n/Bowe	n	1000		2	
36	34		Mer	ge		Merge		(dummy) US		igh/Bov	ven "on	-	1500		2	
37	35		Bas	sic		Basic		US 33 EB - E	Stwn High,	/Bowen	& Diley	,	1500 2390 1500 2350 1500 1500 1950 1500 1500 1500 1500 15		2	
38	36		Dive	rge		Diverge		US 33	EB - Diley	Off-Rar	np		1500		2	
Sality	37		Bas	sic		Basic		US 33 E	B - Btwn C	iley Rar	nps		4100		2	
Parish Facility Segment Data Segment 1: Basic Segment	38		Mer	ge		Merge		US 33	EB - Diley	On-Ran	np		1500		2	
AP	39		Bas	sic		Basic		US 33	3 EB - east	of Dile	У		5280		2	
AP PHF S PHV Volume S S S S S S S S S	Facili	ty Seg	ment	Data												
								Segme	nt 1: Ba	asic						
AP	AP	Pi	НF	fŀ	IV											LOS
$ \begin{array}{ c c c c c c c c c } \hline AP & PHF & FHV & Volume Served & Capatly & gloch &$	1	0.9	94	0.9)52	28	27				60	65	5.0	2	1.7	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ДР	PI	-1F	fl	IV	Volume	Served				/c	Spe	eed	De	nsity	LOS
1																
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0.94	0.94	0.952	0.909	2827	199	4700	2100	0.60	0.09	59.2	59.2	23.9	23.6	С
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								Segmen	t 3: Div	erge						
1 0.94 0.94 0.952 0.943 2628 1004 4700 2100 0.56 0.48 57.6 57.6 22.8 24.2 C AP	AP	Pi	НF	fŀ	IV											LOS
Segment 4: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.952 1624 4700 0.35 63.8 12.5 B Segment 5: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. F R Infl.		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.952 1624 4700 0.35 63.8 12.5 B Segment 5: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. F R Infl. F	1	0.94	0.94	0.952	0.943	2628	1004	4700	2100	0.56	0.48	57.6	57.6	22.8	24.2	С
Cop								Segme	nt 4: Ba	sic						
Segment 5: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) F R F R Freeway Ramp F R F R Infl. F R Infl.	AP	PI	4F	fŀ	IV											LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. F R Infl.	1	0.9	94	0.9)52	16	24	470	00	0.	35	63	3.8	1	2.5	В
(pc/h) (pc/h) Ratio (mi/h) (pc/mi/ln) F R F R Freeway Ramp Freeway Ramp F R F R Infl. F R Infl.								Segmen	nt 5: Me	erge						
	AP	PI	HF	fŀ	IV									•	LOS	
1 0.94 0.94 0.952 0.935 2090 466 4700 2100 0.45 0.22 59.2 59.2 17.7 15.4 B		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
	1	0.94	0.94	0.952	0.935	2090	466	4700	2100	0.45	0.22	59.2	59.2	17.7	15.4	В

							Seamer	nt 6: Me	erae			<u>'</u>		,	
AP	PI	HF	fŀ	łV			Сара	city	d,						LOS
1	0.94	0.94	0.952	0.935	4190	2105	4700	2100	0.89	1.00	54.0	54.0	38.8	31.0	D
							Segme	nt 7: Ba	sic						
AP	PI	HF	fŀ	łV	1										LOS
1	0.	94	0.9	935	419	90	470	00	0.9	90	58	3.2	30	5.0	E
							Segmen	t 8: Div	erge						
AP	AP														
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.909	4190	316	4700	2100	0.90	0.15	59.0	59.0	35.5	35.7	E
							Segme	nt 9: Ba	sic						
AP	PI	HF	fŀ	łV	l										LOS
AP															
							Segmer	nt 10: B	asic						
AP	PI	HF	fŀ	łV	I										LOS
1	0.	94	0.9	935	382	22	705	50	0.	56	63	3.0	19	9.6	F
						S	egment	11: We	aving						
AP	PI	HF	fŀ	łV	1										LOS
1	0.	94	0.9	935	46	15	57	15	1.0	04	20	0.0	5	7.6	F
							Segmer	nt 12: B	asic						
AP	PI	HF	fŀ	łV	1										LOS
1	0.	94	0.9	935	404	48	705	50	0.8	31	15	5.8	8	5.3	F
							Segmen	t 13: M	erge						
AP	PI	HF	fŀ	١٧	I										LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.926	5074	1758	7050	2100	1.06	0.84	21.1	52.1	80.0	36.8	F
							Segmer	nt 14: B	asic						
AP	PI	HF	fŀ	łV	l										LOS
1	0.	94	0.9	935	49	59	705	50	1.0	06	19	9.5	8	5.0	F
						9	Segment	15: Div	/erge						
AP	PI	HF	fŀ	łV	Volume (pc,		Capa (pc)		d, Ra			eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.88	0.935	0.943	4792	1085	7050	2100	1.06	0.52	17.8	17.8	89.9	89.9	F
							Segmer	nt 16: B	asic						
												Λ	div C Pa	4 =	

											110-	Build Cap	acity Aria	aiysis	
AP	PI	HF.	f⊦	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	94	0.9	35	363	36	470	00	1.3	37	23	3.6	77	7.1	F
							Segmen	t 17: M	erge						
AP	PI	-IF	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.962	3845	265	4700	2000	1.43	0.13	27.2	49.9	70.7	53.5	F
							Segmen	t 18: M	erge						
AP	PI	4F	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.935	0.952	4376	531	4700	2100	1.54	0.25	52.3	52.3	41.8	34.5	F
							Segmer	nt 19: B	asic						
AP	PI	НF	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	0.94 0.952 4376 4700 1.51 56.2 Seament 20: Diverge						5.2	38	3.9	F				
	Segment 20: Diverge PHE Sheet Density Density LOS														
AP	Segment 20: Diverge AP PHF fHV Volume Served (pc/h) Capacity d/c Speed Density (pc/mi/ln) LOS (pc/mi/ln)														
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.75	0.952	0.971	4376	453	4700	2000	1.51	0.23	54.2	54.2	40.4	38.3	F
							Segmer	nt 21: B	asic						
AP	AP														
1	0.	94	0.9	52	392	23	470	00	1.4	44	60).5	32	2.4	F
							Segmen	t 22: M	erge						
AP	PI	4F	fŀ	١٧	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.952	0.877	4022	99	4700	2000	1.46	0.05	53.9	53.9	37.3	31.9	F
							Segmer	nt 23: B	asic						
AP	PI	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.	94	0.9	52	402	22	470	00	1.4	45	59	9.7	33	3.7	F
						9	Segment	24: Div	verge						
AP	PI	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		sity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.980	4022	54	4700	2000	1.45	0.03	55.0	55.0	36.6	35.2	F
							Segmer	nt 25: B	asic						
AP	PI	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		sity ni/ln)	LOS
1	0.	94	0.9	52	396	58	470	00	1.4	44	60).2	33	3.0	F
							Segmen	t 26: M	erge						

АР	DI	-HF	£L	IV	Volume	Convod	Сара	aita.	ــــــــــــــــــــــــــــــــــــــ	/c		eed		sity	LOS
AF	Pi	11		1 V	(pc)		(pc)		Ra			i/h)		ni/ln)	103
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.980	4131	163	4700	2000	1.48	0.08	53.3	53.3	38.8	32.7	F
							Segmer	nt 27: B	asic						
AP	Pi	НF	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	52	413	31	470	00	1.4	48	58	3.7	35	5.2	F
						9	Segment	28: Div	/erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.952	0.952	4131	1662	4700	2100	1.48	0.79	56.2	56.2	36.8	34.5	F
							Segmer	nt 29: B	asic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	52	246	69	470	00	1.14 64.6 Merge				19	9.0	F
			Segment 30: Merge												
AP	Pi													LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.952	0.980	3656	1187	4700	2100	1.39	0.57	56.1	56.1	32.6	28.3	F
							Segmer	nt 31: B	asic						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	36!	56	470	00	1.4	40	62	2.4	29	9.3	F
							Segment	32: Div	/erge						
АР	Pi	HF.	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.99	0.943	0.952	3656	350	4700	2000	1.40	0.18	54.4	54.4	33.6	32.1	F
							Segmer	nt 33: B							
AP	Pi	HF.	f⊦	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	330	06	470	00	1.3	32	63	3.6	25	5.8	F
							Segmen	t 34: M	erge						
AP	Pł	НF	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.53	0.943	0.952	3405	99	4700	2000	1.34	0.05	56.2	56.2	30.3	27.0	F
							Segmer	nt 35: B	asic						
AP	Pł	-IF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	340	05	470	00	1.3	34	63	3.7	26	5.7	F
						9	Segment	36: Div	/erge						

AP	PI	HF	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.943	0.962	3405	1141	4700	2100	1.34	0.54	57.3	57.3	29.7	30.2	F
							Segmer	nt 37: B	asic						
AP	PI	HF	fŀ	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		ensity :/mi/ln)	LOS
1	0.	94	0.9)43	226	54	470	00	1.	09	64	1.9		17.4	F
							Segmen	t 38: M	erge						
AP	PI	HF	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
	(pc/h) (pc/h) Ratio F R F R Freeway Ramp Freeway Ramp F R F								F	R Infl.	F	R Infl.			
1	0.94	0.92	0.943	0.962	2908	644	4700	2100	1.23	0.31	58.6	58.6	24.8	20.7	F
							Segmer	nt 39: B	asic						
AP	PI	HF	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
1	0.	94	0.9	62	290	08	470	00	1.	21	65	5.0		22.4	F
Facili	ty Ana	alysis	Result	s											
AP	VM1 veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		nsity mi/ln	TT min	LOS
1	997	5	1	5162	70).64	1765.98	3	44.5		38.2	3	6.0	15.80	F
Facili	ty Ove	erall R	esults												
Space	Mean S	Speed, 1	mi/h		44.5			Averag	e Densi	ty, veh,	/mi/ln	36.	0		
Avera	ge Trave	el Time,	min		15.80			Averag	e Densi	ty, pc/r	mi/ln	38.	2		
Total \	/MT, ve	h-mi/A	P		9975			Total V	HD, veh	-h		70.	64		
Vehicl	e Value	of Time	e (VOT),	\$/h	25.00			Total D	elay Co	st, \$		17	65.98		
opyrigl	nt © 2025	5 Univers	ity of Flo	rida. All R	ights Reserve	d.	HCSTM Freev	vays Version	2025				Generat	ed: 06/05/202	5 11:44:33

Design Year No Build PM - US 33 EB.xuf

					110 Balla	Оараоп	y Analysis
		HCS	Freeway F	acilities Report			
Project	t Information						
Analyst		LJB (KLR)		Date		3/21/20	24
Agency		LJB Inc		Analysis Year		2050 No	Build
Jurisdict	ion	FRA-FAI, ODOT	District 6 & 5	Time Analyzed		PM Peak	(
Facility N	lame	US 33 WB		Units		U.S. Cus	tomary
Project [Description	US 33 Widening	g				
Facilit	y Global Input						
Jam Der	sity, pc/mi/ln	190.0		Density at Capacity, pc/r	ni/ln	45	
Queue D	Discharge Capacity Drop,	% 7		Total Segments		36	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	ength, mi	11.34					
Facility	Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 \	WB - east of Diley	5280)	2
2	Diverge	Diverge	US 33 W	B - Diley Off-Ramp	1500)	2
3	Basic	Basic	US 33 WB	- Btwn Diley Ramps	2040		2
4	Merge	Merge	US 33 W	B - Diley On-Ramp	1500)	2
5	Basic	Basic	US 33 WB - Bt	wn Diley & High/Bowen	1810		2
6	Diverge	Diverge		33 WB - High/Bowen "off-ramp"	1500)	2
7	Basic	Basic		S 33 WB - Btwn High/ wen "ramps"	1000		2
8	Merge	Merge	(dummy) US 3	3 WB - High/Bowen "on- ramp"	1500)	2
9	Basic	Basic	US 33 WB -	Btwn High/Bowen & Gender	1810		2
10	Diverge	Diverge	US 33 WB	- Gender Off-Ramp	1500)	2
11	Basic	Basic	US 33 WB -	- Btwn Gender Ramps	1460		2
12	Merge	Merge	US 33 WB -	Gender NB On-Ramp	1210)	2
13	Merge	Merge	US 33 WB -	Gender SB On-Ramp	1500)	2
14	Basic	Basic	US 33 WB -	Btwn Gender & Rager	2610)	2
15	Diverge	Diverge	(dummy) US 3	3 WB - Rager "off-ramp"	1500)	2
16	Basic	Basic	(dummy) U	S 33 WB - Btwn Rager "ramps"	1000)	2
17	Merge	Merge	(dummy) US 3	3 WB - Rager "on-ramp"	1500)	2
18	Basic	Basic	(dummy) US	33 WB - Btwn Bixby & Rager	1000		2
19	Diverge	Diverge	(dummy) US 3	3 WB - Bixby "off-ramp"	1500)	2
20	Basic	Basic	(dummy) U	S 33 WB - Btwn Bixby "ramps"	1000		2
21	Merge	Merge	(dummy) US 3	3 WB - Bixby "on-ramp"	1500)	2
22	Basic	Basic	US 33 WB - I	Btwn Bixby & Hamilton	2610)	2
23	Diverge	Diverge	US 33 WB	- Hamilton Off-Ramp	1500 Ap	pendix (Page 19 ²

24		Bas	sic		Basic		US 33 WB	- Btwn Ha	milton I	Ramps		1790		2	
25		Weav	/ing		Weaving)	US 33 WB - E	Sagment 1: Basic Capacity (pc/h) Ratio Capacity (pc/h) Capacity (pc/h)				3			
26		Weav	/ing		Weaving)	US 33 WE		1790 2 2 3 3 3 3 3 3 3 3						
27		Bas	sic		Basic		US 33 WB	- Btwn I-2	70 SB F	Ramps		860 2 1500 2 2930 2 1500 2 1500 2 940 2 1410 3 750 2 1510 2 820 2 500 2 Speed (mi/h) (pc/mi/ln) 63.4 27.4 Speed (mi/h) Pensity (pc/mi/ln) R Infl. F R Infl. 55.7 31.1 22.2			
28		Mer	ge		Merge		US 33 W	B - I-270 S	SB On-R	amp		1500		2	
29		Bas	sic		Basic		US 33 WB - I) SB Rar	np & SF	R	2930		2	
30		Dive	rge		Diverge		US 33 WB	- SR 104	EB Off-I	Ramp		1500		2	
31		Bas	sic		Basic		US 33 WE	B - Btwn SI	R 104 R	amps		940		2	
32		Weav	/ing		Weaving)	US 33 WB			& WB		1410		3	
33		Dive	rge		Diverge		US 33 WE	3 - James I	Rd Off-F	Ramp		750		2	
34		Bas	sic		Basic					d &		1510		2	
35		Mer	ge		Merge		US 33 WB	- Winches	ter On-	Ramp		820		2	
36		Bas	sic		Basic					ester		500	00		
Facili	ty Seg	ment	Data												
		Segment Data Segment 1: Basic													
AP	PI	4F	fŀ	łV	Volume (pc,										LOS
1	0.	94	0.9	35	34	70	470	00	0.	74	63	3.4	2	7.4	D
							Segmen	t 2: Div	erge						
AP	PI	4F	fŀ	łV	Volume (pc,										LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.88	0.935	0.952	3470	454	4700	2000	0.74	0.23	55.7	55.7	31.1	22.2	С
							Segme	nt 3: Ba	sic						
АР	PI	₫F	fŀ	łV	Volume (pc,										LOS
1	0.	94	0.9	35	303	38	470	00	0.	65	64	4.5	2	3.4	С
							Segmen	nt 4: Me	erge						
AP	PI	4F	fŀ	łV	Volume (pc,										LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.87	0.935	0.952	4100	1062	4700	2100	0.87	0.51	54.6	54.6	37.5	30.5	D
							Segme	nt 5: Ba	sic						
АР	PI	⊣F	fl	łV	Volume (pc										LOS
1	0.	94	0.9	926	40	78				87	59	9.2	3	4.4	D
AP	PI	-IF	fl	łV	Volume (pc									LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
							US 33 WB - Btwn I-270 SB Ramps 1500 2								

							.=00								
1	0.94	0.95	0.926	0.971	4078	119	4700	2000	0.87	0.06	54.9	54.9	37.1	35.7	E
	ı				ı		Segme		T						
AP	PI	1F	fŀ	iV	Volume (pc,		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	39	52	470	00	0.8	84	60).3	3	2.8	D
							Segmer	nt 8: Me	erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra	/c tio	Spo (m	eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.72	0.926	0.971	4138	186	4700	2000	0.88	0.09	53.3	53.3	38.8	32.7	D
							Segme	nt 9: Ba	sic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,		d, Ra		Spe (mi	eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	410	01	470	00	0.8	87	59	9.0	3.	4.7	D
							Segment	10: Div	/erge						
AP	PI	4F	fŀ	łV	Volume (pc,		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	4101	782	4700	2100	0.87	0.37	58.0	58.0	35.4	35.1	Е
							Segmer	nt 11: B	asic						
AP	Pł	4F	fŀ	łV	Volume (pc,		Capa (pc)		d, Ra			eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	26	329	97	470	00	0.	70	64	l.1	2	5.7	С
							Segmen	t 12: M	erge						
AP	PI	4F	fŀ	łV	Volume (pc,		Capa (pc)		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	4035	738	4700	2000	0.86	0.37	53.7	53.7	37.6	32.6	D
							Segmen	t 13: M	erge						
AP	Pi	4F	fŀ	łV	Volume (pc,		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.926	4423	368	4700	2100	0.94	0.18	52.3	52.3	42.3	34.0	D
							Segmer	nt 14: B	asic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc)		d, Ra			eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	442	23	470	00	0.9	94	55	5.7	3	9.7	E
						9	Segment	15: Div	verge						
AP	Pł	4F	fl	IV	Volume (pc		Capa (pc,		d, Ra			eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.980	4423	163	4700	2000	0.94	0.08	54.8	54.8	40.4	38.7	Е
							Segmer	nt 16: B	asic						
AP	Pł	4F	fl	IV	Volume (pc		Capa (pc,		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
													div C Pa		

AP	1	0.0	24	0.0	26	42	-1	47/	20		00	F-	7 -	2-	7.0	l _F
AP		0.:	94	F R 4 0.926 0.98 6		42					90	37	7.5	3,	7.0	
	ΔD	Di	JE	£ı	J\/	Values					No			D	acita:	100
1	AP	_ PH	1F		1 V											102
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP	1	0.94	0.94	0.926	0.980	4468	217	4700	2000	0.95	0.11	51.1	51.1	43.7	35.3	E
								Segmer	nt 18: B	asic						
AP	AP	Pł	łF	f⊦	łV											LOS
AP	1	0.9	94	0.9	943	440	00	470	00	0.	94	55	5.9	39	9.4	Е
							9	Segment	19: Div	verge						
1	AP	Pł	łF	fŀ	١٧										•	LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP	1	0.94	0.64	0.943	0.980	4400	80	4700	2000	0.94	0.04	55.0	55.0	40.0	38.5	Е
								Segmer	nt 20: B	asic						
AP	AP	Pł	4F	fŀ	łV											LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) F R F R Freeway Ramp F R F R Infl. LOS (pc/mi/ln) Density (pc/mi/ln) LOS (pc/mi/ln) LOS (pc/mi/ln) LOS (pc/mi/ln) LOS (pc/mi/ln) LOS (pc/mi/ln) R Infl. F R Infl. LOS (pc/mi/ln) R Infl. F R Infl. F R Infl. LOS (pc/mi/ln) <t< td=""><td>1</td><td>0.9</td><td>94</td><td>0.9</td><td>943</td><td>434</td><td>43</td><td>470</td><td>00</td><td>0.</td><td>92</td><td>56</td><td>5.6</td><td>38</td><td>3.4</td><td>Е</td></t<>	1	0.9	94	0.9	943	434	43	470	00	0.	92	56	5.6	38	3.4	Е
F R F R F R Freeway Ramp Freeway Ramp F R F R R Infl.								Segmen	t 21: M	erge						
1 0.94 0.97 0.943 0.980 4543 200 4700 2000 0.97 0.10 50.5 50.5 45.0 35.9 E	AP	Pł	łF	f⊦	łV											LOS
Segment 22: Basic AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (mi/h) LOS	1	0.94	0.97	0.943	0.980	4543	200	4700	2000	0.97	0.10	50.5	50.5	45.0	35.9	Е
1								Segmer	nt 22: B	asic						
AP	AP	Pł	łF	fŀ	١V			I		I _		l , • ,				LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) I F R F R Freeway Ramp Freeway Ramp F R F R Infl. E Segeed (mi/h) Density (mi/h) LOS (mi/h) Density (mi/h) P P P<	1	0.9	94	0.9	926	464	41	470	00	0.	99	53	3.0	43	3.8	Е
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F Infl.							9	Segment	23: Div	verge						
1 0.94 0.92 0.926 0.909 4641 562 4700 2100 0.99 0.27 58.5 58.5 39.7 38.1 E Segment 24: Basic AP PHF fHV Volume Served (pc/h) 4700 0.87 59.0 34.7 D Segment 25: Weaving AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Ratio (mi/h) (pc/mi/ln) LOS (pc/mi/ln) LOS (pc/h) Ratio (mi/h) (pc/mi/ln) E Segment 25: Weaving AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Ratio (mi/h) (pc/mi/ln) E Segment 25: Weaving LOS (pc/h) Ratio (mi/h) (pc/mi/ln) E Segment 26: Weaving	AP	Pł	łF	f⊦	IV											LOS
Segment 24: Basic AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) 1 0.94 0.926 4101 4700 0.87 59.0 34.7 D Segment 25: Weaving AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) 1 0.94 0.926 5459 5769 0.95 44.6 40.8 E Segment 26: Weaving	1	0.94	0.92	0.926	0.909	4641	562	4700	2100	0.99	0.27	58.5	58.5	39.7	38.1	Е
Company Comp								Segmen	nt 24: B	asic						
Segment 25: Weaving AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) 1 0.94 0.926 5459 5769 0.95 44.6 40.8 E Segment 26: Weaving	AP	Pł	łF	f⊦	IV											LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) 1 0.94 0.926 5459 5769 0.95 44.6 40.8 E Segment 26: Weaving	1	0.9	94	0.9	926	410	01	470	00	0.	87	59	9.0	34	4.7	D
(pc/h) (pc/h) Ratio (mi/h) (pc/mi/ln) 1 0.94 0.926 5459 5769 0.95 44.6 40.8 E Segment 26: Weaving							S	egment	25: We	aving						
Segment 26: Weaving	AP	Pł	4F	fŀ	łV											LOS
	1	0.9	94	0.9	926	54	59	576	59	0.	95	44	1.6	40	0.8	Е
AD DUE 60V Volume Served Constitut d/s Second Days							S	egment	26: We	aving						
	AP	Pł	4F	fŀ	łV											LOS
1 0.94 0.926 3592 5567 0.65 46.7 25.6 C	1	0.9	94	0.9	926	359	92	556	67	0.	65	46	5.7	2!	5.6	С

AP															
							Segmen	nt 27: B	asic						
AP	Pi	НF	fŀ	IV										•	LOS
1	0.9	94	0.9	26	24	70	470	00	0.	53	62	2.3	19	9.0	С
							Segmen	t 28: M	erge						
AP	Pi	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.909	2739	269	4700	2100	0.58	0.13	57.7	57.7	23.7	22.8	С
							Segmer	nt 29: B	asic						
AP	Pi	-IF	fŀ	IV											LOS
1	0.9	94	0.9	35	270	08	470	00	0.	58	64	l.8	20).8	С
						9	Segment	30: Div	/erge						
AP	Pi	Force Figure First Fir													
	F	PHF													
1	0.94	R F R Freeway Ramp Freeway Ramp F R							59.1	22.9	22.4	С			
AP	Pi	4F	FHV											LOS	
1	0.9	94	Segment 31: Basic fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) 0.935 2435 4700 0.52 64.2						1.2	18	3.7	С			
						S	egment	32: We	aving	l					
AP	Pi	4F	Segment 30: Diverge Capacity (pc/h) Capacity (pc/mi/h) Capacity (pc/mi/h) Capacity (pc/mi/h) Capacity (pc/h) Capacity (pc/h										LOS		
1	0.9	94	0.9	35	340	01	509	96	0.	67	46	5.3	24	4.5	С
							Segment	33: Div	/erge						
AP	Pi	4F	f⊦	IV											LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.980	2708	1010	4700	2100	0.58	0.48	57.5	57.5	23.5	22.2	С
							Segmer	nt 34: B	asic						
AP	Pi	4F	f⊦	łV											LOS
1	0.9	94	0.9	943	163	36	450	00	0	36	55	5.0	14	4.9	В
							Segmen	t 35: M	erge						
AP	Pi		fŀ		(pc	/h)	(pc)	/h)		tio		/h)			LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.943	0.971	2370	734	4500	2100	0.53	0.35	51.3	51.3	23.1	18.6	В
							Segmer	nt 36: B	asic						
AP	Pł	4F	R											LOS	
1	0.9	94	0.9	943	239	92	450	00	0.	53	53	3.7	2	1.7	С
Facili	ty Ana	lysis	Result	s											

No-Build Capacity Analysis

АР	VMT veh-mi/AP	VMT-Demand veh-mi/AP	VHD veh-h/AP	Total Delay C \$/AP	ost	Speed mi/h	Density pc/mi/ln	Density veh/mi/ln	TT min	LOS
1	9534	9534	28.13	703.21		51.6	33.0	30.3	13.20	D
Faci	lity Overall F	Results								
Spac	e Mean Speed,	mi/h	51.6		Avei	age Density, ve	h/mi/ln	30.3		
Aver	age Travel Time	, min	13.20		Avei	age Density, po	:/mi/ln	33.0		
Tota	VMT, veh-mi/A	Λ P	9534		Tota	l VHD, veh-h		28.13		
Vehi	cle Value of Tim	ie (VOT), \$/h	25.00		Tota	l Delay Cost, \$		703.21		

Copyright © 2025 University of Florida. All Rights Reserved.

HCSTM Freeways Version 2025

Design Year No Build PM - US 33 WB.xuf

Generated: 06/05/2025 12:03:59

100 pendix C Page 253

					No-Build	Capacit	y Analysis	
		HCS	Freeway F	acilities Report				
Project	t Information							
Analyst		LJB (KLR)		Date		6/21/2024		
Agency		LJB Inc		Analysis Year		Design Year Build		
Jurisdict	ion	FRA-FAI (ODO	Γ D6/D5)	Time Analyzed		AM Peak		
Facility N	Name	US 33 EB		Units		U.S. Customary		
Project [Description	FRA-33 Widen	ing					
Facilit	y Global Input	•						
Jam Der	nsity, pc/mi/ln	190.0		mi/ln	45			
Queue D	Discharge Capacity Drop,	% 7		Total Segments		40		
Total An	alysis Periods	1		Analysis Period Duration	ı, min	15		
Facility L	ength, mi	11.70						
Facility	Segment Data							
No.	Coded	Analyzed		Name	Length, ft		Lanes	
1	Basic	Basic	US 33 EB - w	rest of SR 104 (nominal length)	500		2	
2	Diverge	Diverge	US 33 EB	575		2		
3	Diverge	Diverge	US 33 EB - 1	300		2		
4	Basic	Basic	US 33 EB - Bt	1900		2		
5	Merge	Basic	US 33 EB -	900		2		
6	Basic	Basic	US 33 EB - Bt	600		3		
7	Merge	Merge	US 33 EB	1500		3		
8	Basic	Basic	US 33 EB -	3640		3		
9	Diverge	Diverge	US 33 EB	1500		3		
10	Basic	Basic	US 33 EB -	770		3		
11	Weaving	Weaving	US 33 EB - Btv	1630		4		
12	Basic	Basic	US 33 EB -	Btwn I-270 NB Ramps	270		3	
13	Merge	Basic	US 33 EB -	- I-270 NB On-Ramp	1500		4	
14	Basic	Basic	US 33 EB - E	Btwn I-270 & Hamilton	900		4	
15	Diverge	Basic	US 33 EB -	Hamilton Off-Ramp	1500)	4	
16	Basic	Basic	US 33 EB - I	Btwn Hamilton Ramps	ilton Ramps 157		3	
17	Merge	Merge	US 33 EB - F	Hamilton SB On-Ramp	1410)	3	
18	Merge	Merge	US 33 EB - H	Hamilton NB On-Ramp	· ·		3	
19	Basic	Basic	US 33 EB - B	twn Hamilton & Bixby)	3	
20	Diverge	Diverge	· ·	3 EB - Bixby "off-ramp" 15)	3	
21	Basic	Basic	(dummy) L	JS 33 EB - Btwn Bixby "ramps"	1000)	3	
22	Merge	Merge	(dummy) US 3	3 EB - Bixby "on-ramp" 150)	3	
23	Basic	Basic	(dummy) US	S 33 EB - Btwn Bixby & Rager	1000)	3	
24	Diverge	Diverge	(dummy) US 3	33 EB - Rager "off-ramp"	1500)	3	

(dummy) US 33 EB - Btwn Rager

25

Basic

Basic

"ramps"															
							"ramps"				1500				
26		Mer		_	Merge		(dummy) US 33 EB - Rager "on-ramp"					1500		3	
27		Bas		_	Basic		US 33 EB - Btwn Rager & Gender					2290		3	
28		Dive			Diverge	_	US 33 EB - Gender Off-Ramp				1500		3		
29		Bas		_	Basic		US 33 EB - Btwn Gender Ramps				2390		3		
30		Merge			Merge		US 33 EB - Gender On-Ramp				1500		3		
31		Basic			Basic		US 33 EB - Btwn Gender & High/ Bowen			High/		1930		3	
32		Diverge			Diverge		(dummy) US 33 EB - High/Bowen ramp"			en "off	-	1500		3	
33		Bas	Basic		Basic		(dummy) US	wn Higł	n/Bowei	ו	1000	3			
34		Merge			Merge		(dummy) US 33 EB - High/Bowen "on- ramp"				1500		3		
35		Basic			Basic		US 33 EB - Btwn High/Bowen & Diley				1920		3		
36		Diverge			Diverge		US 33 EB - Diley Off-Ramp				1500		3		
37		Bas	ic		Basic		US 33 EB - Btwn Diley Ramps (3 lanes)				1830		3		
38		Bas	ic		Basic		US 33 EB - Btwn Diley Ramps (2 lanes)				2400		2		
39		Mer	ge		Merge		US 33 EB - Diley On-Ramp				1500		2		
40		Basic			Basic		US 33 EB - east of Diley				5280		2		
Facili	ty Seg	ment	Data												
							Segme	nt 1: Ba	sic						
АР	PI	PHF fHV		IV	Volume Served (pc/h)		Capacity (pc/h)		d/c Ratio			Speed (mi/h)		Density (pc/mi/ln)	
1	0.	0.94 0.926		926	2504		4700 0.53		6	65.0		19.3			
							Segmen	t 2: Div	erge						
АР	PI	PHF fHV		IV	Volume Served (pc/h)		Capacity (pc/h)		d/c Ratio			Speed (mi/h)		Density (pc/mi/ln)	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.926	2504	218	4700	2100	0.53	0.10	59.2	59.2	21.1	20.8	С
Segment 3: Diverge															
АР	PHF		fŀ	IV	Volume Served (pc/h)		Capacity (pc/h)		d/c Ratio		Speed (mi/h)		Density (pc/mi/ln)		LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	2286	760	4700	2100	0.49	0.36	58.1	58.1	19.7	21.2	С
							Segme	nt 4: Ba	sic						
АР	PI	PHF fHV		Volume Served (pc/h)		Capacity (pc/h)		d/c Ratio			Speed (mi/h)		Density (pc/mi/ln)		
1	0.	94	0.9	926	150	05	4700		0.3	32	63.8		11.6		В
							Segmer	nt 5: Me	erge						
AP	PI	PHF		łV	Volume Served (pc/h)		Capacity (pc/h)		d/c Ratio			Speed (mi/h)		Density (pc/mi/ln)	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.935	1971	466	4700	2100	0.42	0.22	64.9	65.0	15.2	15.2	В
			_				Segme	nt 6: Ba	asic						
												Annen	dix C Pa	ge 26	

Appendix C Page 26

										INO-	Build Cap	acity Ana	aiysis	
Pł	4F	f⊦	IV											LOS
0.9	94	0.9	26	197	76	705	50	0.2	28	65	5.0	10).1	А
						Segmen	t 7: M€	erge						
Pŀ	4F	f⊦	IV											LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.94	0.926	0.833	2921	945	7050	2100	0.41	0.45	60.4	59.2	16.1	15.6	В
						Segme	nt 8: Ba	sic						
PH	łF	f⊦	IV											LOS
0.9	94	0.8	93	293	31	705	50	0.4	42	64	1.9	15	5.0	В
						Segmen	t 9: Div	erge						
Pŀ	łF	f⊦	IV										•	LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.94	0.893	0.943	2931	417	7050	2100	0.42	0.20	61.7	58.8	15.8	18.1	В
						Segmer	nt 10: B	asic						
Pŀ	4F	f⊦	IV											LOS
0.9	94	0.8	93	249	90	705	50	0.3	35	64	1.5	12	2.8	В
					S	egment	11: We	aving						
PH	łF	f⊦	IV											LOS
0.9	94	0.8	93	410)9	520)7	0.7	79	46	5.3	22	2.2	С
						Segmer	nt 12: B	asic						
Pŀ	łF	f⊦	IV											LOS
0.9	94	8.0	93	382	24	705	50	0.5	54	61	1.0	19	9.6	С
						Segmen	t 13: M	erge						
Pŀ	łF	f⊦	IV										•	LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.94	0.893	0.870	4851	1027	9400	2100	0.52	0.49	64.0	65.0	18.7	18.7	С
						Segmer	nt 14: B	asic						
PH	4F	fŀ	IV											LOS
0.9	94	0.8	193	482	25	940	00	0.!	51	64	1.9	18	3.6	С
					9	Segment	15: Div	erge/						
PH	łF	f⊦	IV											LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.80	0.893	0.926	4825	1593	9400	2100	0.51	0.76	65.0	65.0	18.6	18.6	С
						Segmer	nt 16: B	asic						
Pł	4F	fŀ	IV											LOS
	0.94 Ph 6.94 Ph 0.94 Ph 0.94 Ph 0.94 Ph 0.94 Ph 0.94	0.94 PHF 1 0.94 1 0.94 PHF 1 0.94	O.94 O.92 F R F O.94 O.94 O.92 P H	N	PHF	PH	P	No Ho Ho Ho Ho Ho Ho Ho	Ra	P	P	P	PHF FHV Volume Served (pc/h) Capacity (pc/h) Ratio Capacity (pc/h) Capacity (pc/h) Ratio Capacity (pc/h) Capacity Capacity (pc/h) Capacit	Ph

1	0.:	9 <i>1</i>		 193	34	10	705	50	0.	48	61	5.0	1	7.5	В
	0.		0.0	,,,,	34		Segmen			40	0.	J.0	<u>'</u>	1.5	
AP	Pi	4F	fŀ	IV	Volume (pc	Served	Capa (pc/	city	d	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.88	0.893	0.885	3522	103	7050	2000	0.50	0.05	60.0	58.8	19.6	15.8	В
							Segmen	t 18: M	erge						
AP	PI	-IF	fl	łV	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.893	0.862	3773	259	7050	2100	0.54	0.12	60.1	59.1	20.9	17.4	В
							Segmer		T						
AP	Pł	4F	fŀ	iV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	909	369		705			52	64	4.8	1:	9.0	С
							Segment								
AP	PI	4F	fŀ	···	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.909	0.952	3698	83	7050	2000	0.52	0.04	59.3	55.0	20.8	22.0	С
							Segmer	nt 21: B	1						
AP	PI	4F	fŀ	iV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	909	36	16	705	50	0.	51	64	1.2	1	8.5	С
							Segmen	t 22: M	erge						
AP	PI	-IF	fŀ	···	Volume (pc,		Capa (pc/		_	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.909	3698	82	7050	2000	0.52	0.04	59.4	58.1	20.8	18.1	В
					.		Segmer	nt 23: B	T						
AP	Pi	4F	fŀ	iV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	909	369		705			52	64	4.3	1:	9.0	С
							Segment								
AP	PI	4F	fŀ	iV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.980	3698	54	7050	2000	0.52	0.03	59.3	55.0	20.8	22.0	С
							Segmer		T						
AP	PI	Ⅎ F	fŀ	łV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	909	364		705			52	64	1.2	1	8.7	С
							Segmen								
AP	Pi	4F	f⊦	łV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS

				1							110-	Build Cap		1	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.980	3781	141	7050	2000	0.54	0.07	59.3	58.0	21.3	18.7	В
							Segmen	nt 27: B	asic						
АР	Pł	4F	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	909	379	92	705	50	0.	54	64	1.7	19	9.4	С
						9	Segment	28: Div	/erge						
AP	Pł	4F	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.81	0.909	0.909	3792	1127	7050	2100	0.54	0.54	60.5	57.3	20.9	23.0	С
							Segmer	nt 29: B	asic						
AP	Pł	4F	fŀ	IV	Volume (pc)		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	909	282	20	705	50	0.4	40	64	1.8	14	4.5	В
							Segmen	t 30: M	erge						
AP	Pł	НF	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.909	0.962	3392	572	7050	2100	0.48	0.27	60.6	59.5	18.7	15.7	В
							Segmer	nt 31: B	asic						
AP	Pł	-IF	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.8	885	348	36	705	50	0.4	49	64	1.7	17	7.9	В
						9	Segment	32: Div	/erge						
AP	Pł	4F	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.885	0.935	3486	137	7050	2000	0.49	0.07	59.2	54.9	19.6	21.0	С
							Segmer	nt 33: B	asic						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.8	885	334	42	705	50	0.4	47	64	1.2	17	7.1	В
							Segmen	t 34: M	erge						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.73	0.885	0.935	3386	44	7050	2000	0.48	0.02	59.6	58.2	18.9	16.5	В
							Segmer	nt 35: B	asic						
AP	Pł	PHF fHV		IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94 0.885			337	78	705	50	0.4	48	64	1.7	1	7.3	В
						9	Segment	36: Div	/erge						
AP	Pł	4F	fŀ	łV	Volume (pc)	Served	Capa (pc/	city		/c tio		eed i/h)		nsity ni/ln)	LOS
	I						<u> </u>						div C Day		1

No-Build Capacity Analysis

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	Т
1	0.94	0.91	0.885	0.935	3378	764	7050	2100	0.48	0.36	61.3	58.1	18.4	23.4	С
	0.0	0.0	0.000	0.000	33.3		Segmer		1	0.50	75	30			
AP	PI	HF	fl	ΗV	Volume (pc)		Capa (pc,	city	d	/c tio		eed i/h)		ensity c/mi/ln)	LOS
1	0.	94	0.0	385	259	96	70!	50	0.	37	64	4.8		13.3	В
							Segmer	nt 38: E	Basic						
AP	PI	HF	fl	·IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		ensity c/mi/ln)	LOS
1	0.	94	0.0	385	259	96	470	00	0.	55	6!	5.0		20.0	С
		Segment 39: Merge													
AP	PI	HF	fl	·V	Volume (pc,			/c tio		eed i/h)		ensity c/mi/ln)	LOS		
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.82	0.885	0.943	3191	595	4700	2100	0.68	0.28	58.1	58.1	27.5	22.8	С
							Segmer	nt 40: E	Basic						
AP	PI	HF	fl	·V	Volume (pc,		Capa (pc)			/c tio		eed i/h)		ensity c/mi/ln)	LOS
1	0.	94	0.9	901	309	93	470	00	0.	66	64	4.7		23.9	С
Facil	ity Ana	alysis	Result	s											
AP	VM veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		sity mi/ln	TT min	LOS
1	819	8	8	3198	6.	.43	160.69		58.2		18.6	10	6.7	12.10	С
Facil	ity Ove	erall R	esults												
Space	Mean S	Speed,	mi/h		58.2			Avera	ge Densi	ty, veh,	/mi/ln	16.	7		
Avera	ge Trave	el Time,	min		12.10			Avera	ge Densi	ty, pc/r	mi/ln	18.	6		
Total	VMT, ve	h-mi/A	Р		8198			Total \	/HD, veh	ı-h		6.4	3		
Vehic	le Value	of Time	e (VOT),	\$/h	25.00				Delay Co	st, \$		160	0.69		
Copyrig	ht © 202	5 Univers	sity of Flo	rida. All R	ights Reserve	d.	HCSTM Freev	vays Versio					Genera	ted: 06/05/202	25 12:05:14

Design Year Build AM - US 33 EB.xuf

					110 Balla	Gapaon	y Analysis
		HCS	Freeway F	acilities Report			
Project	Information						
Analyst		LJB (KLR)		Date		6/21/20	24
Agency		LJB Inc		Analysis Year		Design \	/ear Build
Jurisdicti	ion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		AM Peal	<
Facility N	lame	US 33 WB		Units		U.S. Cus	tomary
Project D	Description	US 33 Widening	9				
Facilit	y Global Input						
Jam Den	sity, pc/mi/ln	190.0		Density at Capacity, pc/n	ni/ln	45	
Queue D	Discharge Capacity Drop,	, % 7		Total Segments		33	
Total Ana	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	ength, mi	11.35					
Facility	Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 \	WB - east of Diley	5280)	2
2	Diverge	Diverge	US 33 W	B - Diley Off-Ramp	1500)	2
3	Basic	Basic	US 33 WB - Btv	wn Diley Ramps (2 lanes)	750		2
4	Basic	Basic	US 33 WB - Btv	wn Diley Ramps (3 lanes)	1230)	3
5	Merge	Merge	US 33 W	B - Diley On-Ramp	1500)	3
6	Basic	Basic	US 33 WB - Bt	wn Diley & High/Bowen	1800)	3
7	Diverge	Diverge		33 WB - High/Bowen 'off-ramp"	1500)	3
8	Basic	Basic		S 33 WB - Btwn High/ wen "ramps"	1000)	3
9	Merge	Merge	(dummy) US 33	3 WB - High/Bowen "on- ramp"	1500)	3
10	Basic	Basic	US 33 WB -	Btwn High/Bowen & Gender	1800)	3
11	Diverge	Diverge	US 33 WB	- Gender Off-Ramp	1500)	3
12	Basic	Basic	US 33 WB -	Btwn Gender Ramps	1400)	3
13	Merge	Merge	US 33 WB -	Gender NB On-Ramp	1500)	3
14	Merge	Merge	US 33 WB -	Gender SB On-Ramp	1500)	3
15	Basic	Basic	US 33 WB -	Btwn Gender & Bixby	7420)	3
16	Diverge	Diverge	(dummy) US 3	3 WB - Bixby "off-ramp"	1500)	3
17	Basic	Basic	(dummy) U	S 33 WB - Btwn Bixby "ramps"	1000)	3
18	Merge	Merge	(dummy) US 3	3 WB - Bixby "on-ramp"	1500)	3
19	Basic	Basic	US 33 WB - E	Btwn Bixby & Hamilton	2420)	3
20	Diverge	Diverge	US 33 WB	- Hamilton Off-Ramp	1500)	3
21	Basic	Basic	US 33 WB -	Btwn Hamilton Ramps	1750)	3
22	Weaving	Weaving		wn Hamilton & I-270 NB Off-Ramp	4790)	4
23	Weaving	Weaving	US 33 WB -	Btwn I-270 NB & SB	1570)	4
				Ramps	Ap	pendix (Page 31

											110-	Build Cap	acity Aria	aiysis	
24		Bas	ic		Basic		US 33 WB	- Btwn I-2	70 SB R	amps		860		3	
25		Mer	ge		Merge		US 33 W	B - I-270 S	SB On-R	amp		1500		3	
26		Bas	ic		Basic		US 33 WB - I	3twn I-270 104) SB Rar	np & SI	₹	2930		3	
27		Dive	rge		Diverge		US 33 WB	- SR 104	EB Off-F	Ramp		1500		3	
28		Bas	ic		Basic		US 33 WE	B - Btwn SI	R 104 Ra	amps		940		3	
29		Weav	ving		Weaving	3	US 33 WB	- Btwn SR Loop Ram		& WB		1410		4	
30		Dive	rge		Diverge		US 33 WE	B - James F	Rd Off-F	lamp		750		3	
31		Bas	ic		Basic			/B - Btwn . nchester F		d &		1510		2	
32		Mer	ge		Merge		US 33 WB	- Winches	ter On-	Ramp		820		2	
33		Bas	ic		Basic			3 - west of ominal ler		ester		500		2	
Facili	ty Seg	ment	Data												
							Segme	nt 1: Ba	sic						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	52	470	00	470	00	1.0	05	52	2.2	4.	5.0	F
							Segmen	t 2: Div	erge						
AP	Pł	4F	f⊦	IV	Volume (pc		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.66	0.952	0.943	4700	964	4700	2000	1.05	0.48	54.6	54.6	43.0	32.8	F
							Segme	nt 3: Ba	sic						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	52	37:	36	470	00	0.9	91	61	1.9	30	0.2	D
							Segme	nt 4: Ba	sic						
AP	Pł	4F	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	52	373	36	705	50	0.0	50	64	1.4	19	9.2	С
							Segmen	nt 5: Me	erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.952	0.926	5065	1329	7050	2100	0.79	0.63	58.3	57.0	29.0	25.9	С
							Segme	nt 6: Ba	sic						
AP	Pł	łF	f⊦	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	17	500	65	705	50	0.8	31	63	3.8	20	6.5	D
							Segmen	t 7: Div	erge						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.917	0.962	5065	80	7050	2000	0.81	0.04	59.1	55.0 Appen	28.6 dix C Pa	28.4 ge 32	D

							Segme	nt 8: Ba	asic			·	-		
AP	Pi	4F	fŀ	4V	Volume	Sarvad	Capa			/c	Sne	eed	Der	nsity	LOS
Ar					(pc/		(pc/			tio		i/h)		ni/ln)	103
1	0.9	94	0.9	917	498	35	705	50	0.8	80	64	4.0	26	5.0	С
							Segmer	nt 9: Me	erge						
AP	Pi	4F	f⊦	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.77	0.917	0.962	5120	135	7050	2000	0.82	0.07	57.9	56.9	29.5	24.9	С
							Segmer	nt 10: B	asic						
AP	Pi	НF	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	926	512	20	705	50	0.8	81	63	3.7	26	5.8	D
						9	Segment	11: Div	verge						
AP	Pi	4F	fŀ	IV	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	5120	726	7050	2100	0.81	0.35	61.2	58.1	27.9	28.3	D
							Segmer	nt 12: B	asic						
AP	Pi	-IF	fŀ	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	926	439	94	705	50	0.	70	64	4.6	22	2.6	С
							Segmen	t 13: M	erge						
AP	Pi	-IF	fŀ	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.962	5666	1272	7050	2000	0.88	0.64	56.2	54.4	33.6	31.3	D
							Segmen	t 14: M	erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	6392	726	7050	2100	0.99	0.35	56.0	54.6	38.0	30.0	D
							Segmer	nt 15: B	asic						
AP	PI	4F	f⊦	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	952	639	92	705	50	0.9	97	57	7.4	37	7.1	E
						9	Segment	16: Div	verge						
AP	Pi	4F	fŀ	łV	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.68	0.952	0.980	6392	30	7050	2000	0.97	0.02	58.8	55.1	36.2	33.7	D
							Segmer	nt 17: B	asic						
AP	Pi	4F	fŀ	łV	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	952	636	52	705	50	0.9	97	57	7.6	36	5.8	Е
													div C Pac		

							Saaman	+ 12· M	orgo		110	Build Cap	aoity 7 tile		
AP	DI	Segment 18: Merge PHF fHV Volume Served (pc/h) Capacity (pc/h) Ratio Capacity (pc/h) Ratio Capacity (pc/mi/ln) Preeway Ramp Freeway R													
Α'		<u>"</u>			I										LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.952	0.980	6516	172	7050	2000	0.99	0.09	55.2	54.1	39.3	31.5	F
							Segmer	nt 19: B	asic						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	641	19	705	50	1.0	00	44	4.1	48	3.5	F
						9	Segment	20: Div	/erge						
AP	Pł	4F	fŀ	IV	Volume (pc)		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.943	0.935	6337	613	7050	2100	1.00	0.29	42.4	58.4	49.9	37.0	F
							Segmer	nt 21: B	asic						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	557	5576 7050 0.92 27.4							67	7.9	F
						S	egment								
AP	Pł	4F	fŀ	IV	1	Segment 22: Weaving lume Served Capacity d/c Speed (pc/h) Ratio (mi/h)								nsity ni/ln)	LOS
1	0.9	94	0.9)43	638	35	685	57	1.	17	46	5.6	34	4.3	F
						S	egment	23: We	aving	l					
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	397	78	761	19	0.	74	49	9.8	20	0.0	В
							Segmer	nt 24: B	asic						
AP	Pł	łF	f⊦	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	250)2	705	50	0.	59	62	2.9	12	2.8	В
							Segmen	t 25: M	erge						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.943	0.917	2873	371	7050	2100	0.64	0.18	60.1	58.5	15.9	15.8	В
							Segmer	nt 26: B	asic						
АР	Pł	4F	f⊦	IV	Volume (pc)		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	35	287	73	705	50	0.0	65	64	1.9	14	4.7	В
						9	Segment	27: Div	/erge						
АР	Pł		fŀ	IV	Volume (pc)		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.935	2873	148	7050	2100	0.65	0.07	62.5	59.3	15.3	16.3	В
							Segmer	nt 28: B	asic						

												Build Cap	uoity 71		
AP	PI	HF.	fF	IV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			ensity /mi/ln)	LOS
1	0.	94	0.9	35	27	25	705	50	0.0	63	64	.7		14.0	В
	<u> </u>						Segment	29: W	eaving						
AP	PI	-IF	fŀ	IV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			ensity /mi/ln)	LOS
1	0.	94	0.9	935	34	41	603	30	0.8	86	47	.3		18.2	В
							Segment	30: D	iverge						
AP	PI	НF	fŀ	łV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			ensity /mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.980	2107	1270	7050	2100	0.53	0.60	58.6	57.0	12.0	14.5	В
							Segmer	nt 31:	Basic						
AP	PI	НF	fŀ	łV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			ensity /mi/ln)	LOS
1	0.	94	0.9	926	83	37	450	00	0.	54	55	.0		7.6	А
							Segmen	t 32: N	Merge						
AP	PI	НF	fŀ	łV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			ensity /mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.962	1733	896	4500	2100	0.74	0.43	51.6	51.6	16.8	13.5	В
							Segmer	nt 33:	Basic						
AP	PI	-IF	fŀ	IV	Volume (pc		Capa (pc/		d, Ra		Spo (mi			ensity /mi/ln)	LOS
1	0.	94	0.9	926	17.	33	450	00	0.	75	53	.8		15.8	В
Facil	lity Ana	alysis	Result	S											
AP	VM veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln	Den veh/		TT min	LOS
1	1364	4	1	4466	48	3.82	1220.41	1	52.7		31.3	29	9.5	12.90	F
Facil	lity Ove	erall R	esults												
Space	e Mean S	Speed, i	mi/h		52.7			Avera	ige Densi	ty, veh,	/mi/ln	29.	5		
Avera	age Trave	el Time,	min		12.90			Avera	ige Densi	ty, pc/r	mi/ln	31.	3		
Total	VMT, ve	h-mi/A	Р		13644			Total	VHD, veh	-h		48.	82		
Vehic	le Value	of Time	e (VOT),	\$/h	25.00	_		Total	Delay Cos	st, \$		122	20.41		

HCS[™] Freeways Version 2025 Design Year Build AM - US 33 WB.xuf

Generated: 06/02/2025 16:52:25

10Appendix ¢ Page 363

					No-Build	Capacit	y Analysis
		HCS	Freeway F	acilities Report			
Project	t Information						
Analyst		LJB (KLR)		Date		6/21/20	24
Agency		LJB Inc		Analysis Year		Design \	Year Build
Jurisdict	ion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		PM Peak	(
Facility N	Name	US 33 EB		Units		U.S. Cus	tomary
Project I	Description	FRA-33 Wideni	ng				
Facilit	y Global Input	<u> </u>					
Jam Der	nsity, pc/mi/ln	190.0		Density at Capacity, pc/r	mi/ln	45	
Queue [Discharge Capacity Drop,	% 7		Total Segments		40	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	₋ength, mi	11.70					
Facility	/ Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 EB - w	rest of SR 104 (nominal length)	500		2
2	Diverge	Diverge	US 33 EB	- SR 104 Off-Ramp	575		2
3	Diverge	Diverge	US 33 EB - '	Winchester Off-Ramp	300		2
4	Basic	Basic		wn Winchester & James Rd Ramps	1900)	2
5	Merge	Basic	US 33 EB -	James Rd On-Ramp	900		2
6	Basic	Basic	US 33 EB - Bt	twn James Rd & SR 104	600		3
7	Merge	Merge	US 33 EB	- SR 104 On-Ramp	1500)	3
8	Basic	Basic	US 33 EB -	Btwn SR 104 & I-270	3640)	3
9	Diverge	Diverge	US 33 EB	- I-270 SB Off-Ramp	1500)	3
10	Basic	Basic	US 33 EB -	Btwn I-270 SB Ramps	770		3
11	Weaving	Weaving	US 33 EB - Btv	wn I-270 SB & NB Loops	1630)	4
12	Basic	Basic	US 33 EB -	Btwn I-270 NB Ramps	270		3
13	Merge	Basic	US 33 EB -	- I-270 NB On-Ramp	1500)	4
14	Basic	Basic	US 33 EB - E	8twn I-270 & Hamilton	900		4
15	Diverge	Diverge		Hamilton Off-Ramp	1500		4
16	Basic	Basic		Btwn Hamilton Ramps	1570		3
17	Merge	Merge		Hamilton SB On-Ramp	1410		3
18	Merge	Merge		Hamilton NB On-Ramp	1500		3
19	Basic	Basic		Btwn Hamilton & Bixby	2290		3
20	Diverge	Diverge	,	33 EB - Bixby "off-ramp"	1500		3
21	Basic	Basic	(dummy) U	JS 33 EB - Btwn Bixby "ramps"	1000)	3
22	Merge	Merge	(dummy) US 3	33 EB - Bixby "on-ramp"	1500)	3
23	Basic	Basic	(dummy) US	33 EB - Btwn Bixby & Rager	1000)	3
24	Diverge	Diverge	(dummy) US 3	33 EB - Rager "off-ramp"	1500)	3

(dummy) US 33 EB - Btwn Rager

25

Basic

Basic

											140	Build Cap	acity Air	arysis	
								"ramps	"						
26		Mer	ge		Merge		(dummy) US	33 EB - R	ager "or	n-ramp"		1500		3	
27		Bas	sic		Basic		US 33 EB -	- Btwn Rag	ger & G	ender		2290		3	
28		Dive	rge		Diverge		US 33 E	B - Gende	r Off-Ra	mp		1500		3	
29		Bas	sic		Basic		US 33 EB	- Btwn Ge	ender Ra	imps		2390		3	
30		Mer	ge		Merge		US 33 E	B - Gende	r On-Ra	mp		1500		3	
31		Bas	sic		Basic		US 33 EB	- Btwn Ge Bowen		High/		1930		3	
32		Dive	rge		Diverge		(dummy) US	33 EB - H ramp"	igh/Bow	en "off		1500		3	
33		Bas	sic		Basic		(dummy) US	33 EB - Bt "ramps"		n/Bower	ı	1000		3	
34		Mer	ge		Merge		(dummy) US	33 EB - H ramp"	igh/Bov	en "on-		1500		3	
35		Bas	sic		Basic		US 33 EB - B	twn High	/Bowen	& Diley		1920		3	
36		Dive	rge		Diverge		US 33	EB - Diley	Off-Ran	np		1500		3	
37		Bas	sic		Basic		US 33 EB - B	twn Diley	Ramps ((3 lanes)		1830		3	
38		Bas	sic		Basic		US 33 EB - B	twn Diley	Ramps ((2 lanes)		2400		2	
39		Mer	ge		Merge		US 33	EB - Diley	On-Ran	np		1500		2	
40		Bas	sic		Basic		US 33	B EB - east	of Diley	/		5280		2	
Facili	ty Seg	ment	Data												
							Segme	nt 1: Ba	asic						
АР	PI	НF	fl	ΗV	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9	952	297	28	470	00	0.0	52	64	1.9	2	2.6	С
							Segmen	t 2: Div	erge						
АР	PI	-IF	fl	·V	Volume (pc		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.909	2928	211	4700	2100	0.62	0.10	59.2	59.2	24.7	24.5	С
							Segmen	t 3: Div	erge						
АР	PI	-IF	fl	·V	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.943	2717	981	4700	2100	0.58	0.47	57.6	57.6	23.6	24.9	С
							Segme	nt 4: Ba	sic						
АР	PI	4F	fl	łV	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9	952	17:	36	470	00	37	63	3.8	1	3.4	В	
							Segmen	nt 5: Me	erge						
АР	PI	4F	fl	·IV	Volume (pc,		Capa (pc/		/c tio		eed i/h)		nsity mi/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.935	2225	489	4700	2100	0.48	0.23	58.9	58.9	18.9	18.9	С
			_				Segme	nt 6: Ba	asic						

Appendix C Page 37

										INO-	bulla Cap	acity Ana	aiysis	
Pi	łF	f⊦	IV											LOS
0.9	94	0.9	52	222	25	705	50	0.3	32	63	3.2	11	1.4	В
						Segmen	nt 7: Me	erge						
Pi	łF	f⊦	IV	I										LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.94	0.952	0.935	4325	2139	7050	2100	0.62	1.02	58.2	57.0	25.0	25.5	С
Pł	4F	f⊦	IV	1										LOS
0.9	94	0.9	35	432	25	705	50	0.6	52	64	1.9	22	2.2	С
						Segmen	t 9: Div	erge						
Pł	łF	f⊦	IV	1										LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.94	0.935	0.909	4325	316	7050	2100	0.62	0.15	62.2	59.0	23.2	24.3	С
						Segmer	nt 10: B	asic						
Pł	4F	f⊦	IV	1										LOS
0.9	94	0.9	35	400)9	705	50	0.5	58	64	4.6	20	0.6	С
					S	egment	11: We	aving						
Pł	łF	f⊦	IV	1										LOS
0.9	94	0.9	35	586	51	586	58	1.0	03	42	2.1	34	4.8	F
						Segmer	nt 12: B	asic						
Pł	4F	f⊦	IV											LOS
0.9	94	0.9	35	537	79	705	50	0.8	33	60).1	28	3.6	D
						Segmen	t 13: M	erge						
Pł	4F	f⊦	IV	I									•	LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.94	0.935	0.926	7206	1827	9400	2100	0.82	0.87	58.3	58.3	30.9	30.9	D
						Segmer	nt 14: B	asic						
Pŀ	łF	f⊦	IV	I										LOS
0.9	94	0.9	35	720	06	940	00	0.0	32	62	2.7	28	3.7	D
					9	Segment	15: Div	verge						
PI	łF	fŀ	IV											LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
0.94	0.88	0.935	0.943	7206	1097	9400	2100	0.82	0.52	62.2	57.4	29.0	31.7	D
						Segmer	nt 16: B	asic						
Pł	łF	fŀ	IV	I										LOS
	0.94 Ph 6.94 Ph 0.94 Ph 0.94 Ph 0.94 Ph 0.94 Ph 0.94	0.94 PHF 1 0.94 1 0.94 PHF 1 0.94	O.94 O.95 F R F O.94 O.95 P F F O.94 O.93 O.93 O.93 O.93 O.94 O.94 O.94 O.94 O.95 O.95 O.95	Note	PHF	PH	P	No Ho Ho Ho Ho Ho Ho Ho	Rai	P	P	P	PHF	

1		94	1 00	935	60	10	705	-0	0	94	Г	9.8	2	3.5	F
	0.	94	0.5	755	00					94	5:	9.0	3.	5.5	r
							Segmen							• .	
AP	PI	-IF	11	····	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.962	6214	288	7050	2000	0.98	0.14	41.5	53.0	49.9	32.2	F
							Segmen	t 18: M	erge						
АР	Pi	⊣F	fŀ	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.935	0.952	6712	543	7050	2100	1.06	0.26	44.6	51.2	50.1	36.0	F
							Segmer	nt 19: B	asic						
AP	PI	НF	fŀ	łV	Volume (pc		Capa (pc)			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	952	66	14	705	50	1.	04	43	3.0	5	1.5	F
						9	Segment	20: Div	/erge						
AP	Pi	НF	fŀ	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.75	0.952	0.971	6599	82	7050	2000	1.04	0.04	41.6	55.0	52.9	40.6	F
							Segmer	nt 21: B	asic						
AP	Pi	НF	fl	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	952	64	33	705	50	1.	03	39	9.3	5	5.0	F
							Segmen	t 22: M	erge						
AP	Pi	-IF	fŀ	IV	Volume (pc		Capa (pc,		_	/c tio	, ·	eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.952	0.877	6538	99	7050	2000	1.05	0.05	39.9	50.0	54.6	37.0	F
							Segmer	nt 23: B	asic						
АР	Pi	4F	fŀ	łV	Volume (pc		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	952	65	09	705	50	1.	05	39	9.1	5	5.4	F
						9	Segment	24: Div	/erge						
AP	Pi	4F	fŀ	łV	Volume (pc		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.980	6465	33	7050	2000	1.05	0.02	38.3	55.1	56.3	40.8	F
							Segmer	nt 25: B	asic						
AP	Pi	-IF	fŀ	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	952	64	02	705	50	1.	04	36	5.9	5	7.9	F
							Segmen	t 26: M	erge						
AP	Pi	НF	fŀ	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
													div C Pa		-

											INO-	Build Cap	acity Aria	1	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.980	6565	163	7050	2000	1.06	0.08	54.6	52.7	40.1	33.5	F
							Segmen	nt 27: B	asic						
AP	Pł	łF	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	952	656	55	705	50	1.0	06	56	5.2	38	3.9	F
						9	Segment	28: Div	/erge						
AP	Pł	łF	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.952	0.952	6565	1755	7050	2100	1.06	0.84	59.2	56.0	37.0	35.7	F
							Segmer	nt 29: B	asic						
AP	Pł	łF	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	952	48	10	705	50	0.8	82	64	1.4	24	4.9	С
							Segmen	t 30: M	erge						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.952	0.980	5952	1142	7050	2100	0.99	0.54	56.5	55.0	35.1	29.4	D
		4 0.92 0.952 0.96					Segmer	nt 31: B	asic						
AP	Pł	4F	fŀ	IV	Volume (pc		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	943	59!	52	705	50	1.0	00	60).2	33	3.0	D
						9	Segment	32: Div	erge						
AP	Pł	łF	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.99	0.943	0.952	5952	361	7050	2000	1.00	0.18	58.4	54.4	34.0	32.4	D
							Segmer	nt 33: B	asic						
AP	Pł	łF	fŀ	łV	Volume (pc)		Capa (pc/			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	943	559	91	705	50	0.9	94	62	2.0	30	0.1	D
							Segmen	t 34: M	erge						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.53	0.943	0.952	5690	99	7050	2000	0.96	0.05	57.0	55.8	33.3	28.1	D
		0.55 0.5 15 0.5					Segmer	nt 35: B	asic						
AP	PHF fHV			IV	Volume (pc,		Capa (pc/	city		/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	0.94 0.943			558	30	705	50	0.9	95	62	2.0	30	0.0	F
						9	Segment	36: Div	erge						
AP	Pł	4F	fl	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
													disc C Day		1

No-Build Capacity Analysis

	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	\top
1	0.94	0.92	0.943	0.962	5405	1232	7050	2100	0.95	0.59	35.2	57.1	51.2	38.2	F
							Segmer	nt 37: E	Basic						
AP	PI	HF	fl	IV	Volume (pc/		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	943	382	21	705	50	0.	78	1.	5.5		82.2	F
							Segmer	nt 38: E	Basic						
AP	PI	HF	fl	IV	Volume (pc/		Capa (pc,			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	943	370)9	470	00	1.	16	2.	5.1		73.8	F
							Segmen	t 39: N	lerge						
AP	PI	HF	fl	IV	Volume (pc/		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.943	0.962	4376	667	4700	2100	1.31	0.32	53.2	53.2	41.1	32.0	F
							Segmer	nt 40: E	Basic						
AP	PI	HF	fl	IV	Volume (pc/		Capa (pc/			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	962	437	76	470	00	1.	28	5	6.2		38.9	F
Facil	ity Ana	alysis	Result	S											
AP	VM1 veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		nsity mi/ln	TT min	LOS
1	1469	93	1	5996	81	.40	2035.05	5	47.8		38.6	3	6.6	14.70	F
Facil	ity Ove	erall R	esults												
Space	Mean S	Speed, ı	mi/h		47.8			Averag	ge Densi	ty, veh,	/mi/ln	36.	6		
Avera	ge Trave	el Time,	min		14.70			Averag	ge Densi	ty, pc/r	ni/ln	38.	6		
Total '	VMT, ve	h-mi/A	Р		14693			Total \	/HD, veh	ı-h		81.	40		
Vehicl	e Value	of Time	e (VOT),	\$/h	25.00			Total D	Delay Co	st, \$		20	35.05		
opyrig	ht © 202!	5 Univers	ity of Flo	rida. All R	ights Reserve	d.	HCSTM Freev	vays Versio	n 2025				Generat	ed: 06/05/202	25 12:04:4

Design Year Build PM - US 33 EB.xuf

			_		110 Balla	Сараск	y Analysis
		HCS	Freeway F	acilities Report			
Project	t Information						
Analyst		LJB (KLR)		Date		6/21/20	24
Agency		LJB Inc		Analysis Year		Design \	Year Build
Jurisdicti	ion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		PM Peak	(
Facility N	lame	US 33 WB		Units		U.S. Cus	tomary
Project D	Description	US 33 Widening)				
Facilit	y Global Input	·					
Jam Den	sity, pc/mi/ln	190.0		Density at Capacity, pc/n	ni/ln	45	
Queue D	Discharge Capacity Drop	, % 7		Total Segments		33	
Total Ana	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	ength, mi	11.35					
Facility	Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 V	VB - east of Diley	5280)	2
2	Diverge	Diverge	US 33 W	B - Diley Off-Ramp	1500)	2
3	Basic	Basic	US 33 WB - Btv	wn Diley Ramps (2 lanes)	750		2
4	Basic	Basic	US 33 WB - Btv	wn Diley Ramps (3 lanes)	1230)	3
5	Merge	Merge	US 33 W	B - Diley On-Ramp	1500)	3
6	Basic	Basic	US 33 WB - Bt	wn Diley & High/Bowen	1800)	3
7	Diverge	Diverge		33 WB - High/Bowen 'off-ramp"	1500)	3
8	Basic	Basic		S 33 WB - Btwn High/ wen "ramps"	1000)	3
9	Merge	Merge	(dummy) US 33	3 WB - High/Bowen "on- ramp"	1500)	3
10	Basic	Basic	US 33 WB -	Btwn High/Bowen & Gender	1800)	3
11	Diverge	Diverge	US 33 WB	- Gender Off-Ramp	1500)	3
12	Basic	Basic	US 33 WB -	Btwn Gender Ramps	1400)	3
13	Merge	Merge	US 33 WB -	Gender NB On-Ramp	1500)	3
14	Merge	Merge	US 33 WB -	Gender SB On-Ramp	1500)	3
15	Basic	Basic	US 33 WB -	Btwn Gender & Bixby	7420)	3
16	Diverge	Diverge	(dummy) US 3	3 WB - Bixby "off-ramp"	1500)	3
17	Basic	Basic	(dummy) U	S 33 WB - Btwn Bixby "ramps"	1000)	3
18	Merge	Merge	(dummy) US 3	3 WB - Bixby "on-ramp"	1500)	3
19	Basic	Basic	US 33 WB - E	Btwn Bixby & Hamilton	2420)	3
20	Diverge	Diverge	US 33 WB -	- Hamilton Off-Ramp	1500)	3
21	Basic	Basic	US 33 WB -	Btwn Hamilton Ramps	1750)	3
22	Weaving	Weaving		wn Hamilton & I-270 NB Off-Ramp	4790)	4
23	Weaving	Weaving	US 33 WB -	Btwn I-270 NB & SB	1570)	4
				Ramps	Ap	pendix (Page 42

											110-	Build Cap	acity And	aiysis	
24		Bas	ic		Basic		US 33 WB	- Btwn I-2	70 SB R	amps		860		3	
25		Mer	ge		Merge		US 33 W	B - I-270 S	SB On-R	amp		1500		3	
26		Bas	ic		Basic		US 33 WB - I	Btwn I-270 104) SB Rar	np & SI	₹	2930		3	
27		Dive	rge		Diverge		US 33 WB	- SR 104	EB Off-F	Ramp		1500		3	
28		Bas	ic		Basic		US 33 WE	B - Btwn SI	R 104 Ra	amps		940		3	
29		Weav	ring		Weaving		US 33 WB	- Btwn SR Loop Ram		& WB		1410		4	
30		Dive	rge		Diverge		US 33 WE	B - James F	Rd Off-F	lamp		750		3	
31		Bas	ic		Basic			/B - Btwn . nchester F		d &		1510		2	
32		Mer	ge		Merge		US 33 WB	- Winches	ter On-	Ramp		820		2	
33		Bas	ic		Basic			B - west of iominal lei		ester		500		2	
Facili	ty Seg	ment	Data												
							Segme	nt 1: Ba	sic						
AP	Pł	₫F	f⊦	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	35	368	86	470	00	0.	78	62	2.2	2	9.6	D
							Segmen	t 2: Div	erge						
AP	Pł	4F	f⊦	IV	Volume (pc		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.88	0.935	0.952	3686	466	4700	2000	0.78	0.23	55.7	55.7	33.1	24.1	С
							Segme	nt 3: Ba	sic						
AP	Pi	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	35	324	43	470	00	0.0	59	63	3.5	2	5.2	С
							Segme	nt 4: Ba	sic						
AP	Pŀ	4F	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	35	324	43	705	50	0.4	46	64	1.7	1	6.6	В
							Segmen	nt 5: Me	erge						
AP	Pł	łF	fl	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.87	0.935	0.952	4342	1099	7050	2100	0.62	0.52	59.4	58.3	24.4	21.8	С
							Segme	nt 6: Ba	asic						
AP	Pŀ	łF	f⊦	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	26	437	20	705	50	0.0	51	64	1.6	2.	2.2	С
							Segmen	t 7: Div	erge						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.95	0.926	0.971	4320	119	7050	2000	0.61	0.06	59.1	54.9 Appen	24.4 dix C Pa	25.1 ge 43	С

							Segme	nt 8: Ba	asic			•			
AP	DI		fŀ	IV	Volume	Sarvad	Capa			/c	Sne	eed	Der	nsity	LOS
					(pc/		(pc/			tio		i/h)		ni/ln)	
1	0.9	94	0.9	26	419	93	705	50	0.	59	64	4.2	21	1.5	С
							Segmer	nt 9: Me	erge						
AP	Pi	4F	f⊦	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.72	0.926	0.971	4393	200	7050	2000	0.62	0.10	58.7	57.5	24.9	21.6	С
							Segmer	nt 10: B	asic						
AP	Pi	4F	f⊦	IV	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	26	435	54	705	50	0.0	62	64	4.6	22	2.3	С
						9	Segment	11: Div	verge						
AP	Pi	4F	fŀ	IV	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	4354	782	7050	2100	0.62	0.37	61.3	58.0	23.7	25.0	С
							Segmer	nt 12: B	asic						
AP	Pi	4F	fŀ	IV	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	0.94 0.926			355	50	705	50	0.	50	64	1.6	18	3.2	С
							Segmen	t 13: M	erge						
AP	Pi	-IF	fŀ	١٧	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	4310	760	7050	2000	0.61	0.38	58.6	57.2	24.5	23.6	С
							Segmen	t 14: M	erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.926	4687	356	7050	2100	0.66	0.17	59.4	58.7	26.3	20.9	С
							Segmer	nt 15: B	asic						
AP	PI	-IF	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	460)3	705	50	0.0	65	64	4.7	23	3.7	С
						9	Segment	16: Div	verge						
AP	Pi	4F	fŀ	IV	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.64	F R 0.943 0.98		4603	64	7050	2000	0.65	0.03	59.2	55.0	25.9	26.3	С
							Segmer	nt 17: B	asic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc)	city	d	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	455	58	705	50	0.0	65	64	1.2	23	3.4	С
													div C Pac		

							Segmen	t 18: M	erge							
AP	Pł	НF	f⊦	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
1	0.94	0.97	0.943	0.980	4758	200	7050	2000	0.67	0.10	58.3	57.2	27.2	23.3	С	
							Segmer	nt 19: B	asic							
АР	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS	
1	0.9	94	0.9	926	480	60	705	50	0.0	69	64	1.3	2!	5.2	С	
							Segment	20: Div	/erge							
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
1	0.94	0.92	0.926	0.909	4860	586	7050	2100	0.69	0.28	61.5	58.4	26.3	27.2	С	
							Segmer	nt 21: B	asic							
АР	Pł	4F	f⊦	iV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS	
1	0.9	94	0.9	926	429	1.7	22	2.0	С							
			Segment 22: Weaving fHV Volume Served Capacity d/c Speed Density													
АР	Pł	4F	f⊦	iV	Volume (pc,	eed i/h)		nsity mi/ln)	LOS							
1	0.9	94	0.9	926	56	5.7	3.	1.1	D							
АР	Pł	4F	fŀ	IV	Volume (pc,		nsity ni/ln)	LOS								
1	0.9	94	0.9	26	380	00	589		0.0	64	48	3.5	19	9.6	В	
							Segmer	nt 24: B	asic							
АР	Pł	4F	f⊦	łV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS	
1	0.9	94	0.9	26	263	31	705	50	0.3	37	62	2.7	13	3.5	В	
							Segmen	t 25: M	erge							
AP	Pł	⊣ F	f⊦	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
1	0.94	0.94	0.926	0.909	2888	257	7050	2100	0.41	0.12	60.1	58.6	16.0	15.6	В	
							Segmer	nt 26: B	asic							
АР	Pł	4F	fŀ	łV	Volume (pc		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS	
1	0.9	94	0.9	35	28	56	705	50	0.4	41	64	1.9	14	4.6	В	
						9	Segment	27: Div	/erge							
АР	Pł	∃F	f⊦	iV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS	
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
1	0.94	0.94	0.935	0.952	2856	268	7050	2100	0.41	0.13	62.2	59.1	15.3	16.4	В	
							Segmer	nt 28: B	asic				div C Do			

												Dullu Ca	-	. I al y olo	
AP	PI	4F	fF	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
1	0.	94	0.9	35	25	83	705	50	0	37	64	1.6		13.2	В
							Segment	29: W	eaving						
AP	PI	4F	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
1	0.	94	0.9	35	35	62	52	18	0.	68	46	5.6		19.1	В
							Segment	30: D	iverge						
AP	PI	4F	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.980	2844	1010	7050	2100	0.40	0.48	60.2	57.5	15.7	17.8	В
	•						Segmer	nt 31:	Basic					·	
AP	PI	4F	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
1	0.	94	0.9)43	17	71	450	00	0.	39	55	5.0		16.1	В
	•						Segmen	t 32: N	Merge						
AP	PI	4F	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity :/mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.943	0.971	2582	811	4500	2100	0.57	0.39	51.2	51.2	25.2	20.2	С
							Segmer	ıt 33:	Basic						
AP	PI	НF	fŀ	IV	Volume (pc		Capa (pc/			/c tio		eed i/h)		ensity :/mi/ln)	LOS
1	0.	94	0.9)43	26	06	450	00	0.	58	53	3.7		23.7	С
Facil	ity Ana	alysis	Result	S											
AP	VM veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln	Den veh/	sity mi/ln	TT min	LOS
1	1008	37	1	0087	16	5.67	416.66		55.2		23.3	21	1.5	12.30	С
Facil	ity Ove	erall R	esults												
Space	e Mean S	Speed, i	mi/h		55.2			Avera	ige Densi	ty, veh,	/mi/ln	21.	5		
Avera	ige Trave	l Time,	min		12.30			Avera	ige Densi	ty, pc/r	mi/ln	23.	3		
Total	VMT, ve	h-mi/A	Р		10087			Total	VHD, veh	-h		16.	67		
Vehic	le Value	of Time	e (VOT),	\$/h	25.00		<u> </u>	Total	Delay Co	st, \$		416	5.66		

HCS[™] Freeways Version 2025 Design Year Build PM - US 33 WB.xuf

Generated: 06/03/2025 09:37:45

						_	
		HCS	Freeway F	acilities Report			
Project	t Information						
Analyst		LJB (KLR)		Date		6/21/20	24
Agency		LJB Inc		Analysis Year		Design \	/ear Build
Jurisdict	ion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		AM Peal	<
Facility N	Name	US 33 EB		Units		U.S. Cus	tomary
Project [Description	FRA-33 Wideni	ng				
Facilit	ty Global Input						
Jam Der	nsity, pc/mi/ln	190.0		Density at Capacity, pc/r	mi/ln	45	
Queue D	Discharge Capacity Drop,	% 7		Total Segments		41	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	Length, mi	11.70					
Facility	y Segment Data	·					
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 EB - w	rest of SR 104 (nominal length)	500		2
2	Diverge	Diverge	US 33 EB	- SR 104 Off-Ramp	575		2
3	Diverge	Diverge	US 33 EB -	Winchester Off-Ramp	300		2
4	Basic	Basic		wn Winchester & James Rd Ramps	1900)	2
5	Merge	Basic	US 33 EB -	James Rd On-Ramp	900		2
6	Basic	Basic	US 33 EB - Bt	twn James Rd & SR 104	600		3
7	Merge	Merge	US 33 EB	- SR 104 On-Ramp	1500)	3
8	Basic	Basic	US 33 EB - B	twn SR 104 & I-270 (3- lane)	310		3
9	Basic	Basic	US 33 EB - B	twn SR 104 & I-270 (4- lane)	3330)	4
10	Diverge	Diverge	US 33 EB	- I-270 SB Off-Ramp	1500)	4
11	Basic	Basic	US 33 EB -	Btwn I-270 SB Ramps	770		4
12	Weaving	Weaving	US 33 EB - Btv	wn I-270 SB & NB Loops	1630)	5
13	Basic	Basic	US 33 EB -	Btwn I-270 NB Ramps	270		4
14	Merge	Basic	US 33 EB -	- I-270 NB On-Ramp	1500)	5
15	Basic	Basic	US 33 EB - E	Btwn I-270 & Hamilton	900		5
16	Diverge	Diverge	US 33 EB -	Hamilton Off-Ramp	1500)	5
17	Basic	Basic	US 33 EB - I	Btwn Hamilton Ramps	1570)	4
18	Merge	Merge	US 33 EB - I	Hamilton SB On-Ramp	1410)	4
19	Merge	Merge	US 33 EB - H	Hamilton NB On-Ramp	1500)	4
20	Basic	Basic	US 33 EB - E	Btwn Hamilton & Bixby	2290)	4
21	Diverge	Diverge	(dummy) US 3	33 EB - Bixby "off-ramp"	1500)	4
22	Basic	Basic	(dummy) L	JS 33 EB - Btwn Bixby "ramps"	1000)	4
23	Merge	Merge	(dummy) US 3	33 EB - Bixby "on-ramp"	1500)	4

											NO-	Build Cap	Dacity Ana	aiysis	
24		Bas	ic		Basic		(dummy) l	JS 33 EB - Rager	Btwn B	ixby &		1000		4	
25		Dive	ge		Diverge		(dummy) US	33 EB - R	ager "o	ff-ramp'	•	1500		4	
26		Bas	ic		Basic		(dummy)	US 33 EB "ramps		Rager		1000		4	
27		Mer	ge		Merge		(dummy) US	33 EB - R	ager "o	n-ramp"	'	1500		4	
28		Bas	ic		Basic		US 33 EB	- Btwn Rag	ger & G	ender		2290		4	
29		Dive	ge		Diverge		US 33 E	B - Gende	r Off-Ra	ımp		1500		4	
30		Bas	ic		Basic		US 33 EB	- Btwn Ge	ender Ra	amps		2390		4	
31		Mer	ge		Merge		US 33 E	B - Gende	r On-Ra	ımp		1500		4	
32		Bas	ic		Basic		US 33 EB	- Btwn Ge Bowen		High/		1930		4	
33		Dive	ge		Diverge		(dummy) US	33 EB - H ramp"	igh/Bov	ven "off	-	1500		4	
34		Bas	ic		Basic		(dummy) US	33 EB - Bt "ramps"		n/Bower	n	1000		4	
35		Mer	ge		Merge		(dummy) US	33 EB - H ramp"	igh/Bov	ven "on-		1500		4	
36		Bas	ic		Basic		US 33 EB - E	Btwn High	/Bowen	& Diley		1920		4	
37		Diverge Diverge Basic Basic					US 33	EB - Diley	Off-Rar	np		1500		4	
38		Basic Basic					US 33 EB - B	twn Diley	Ramps	(3 lanes))	1830		3	
39		Basic Basic Basic					US 33 EB - B	twn Diley	Ramps	(2 lanes))	2400		2	
40		Basic Basic Merge Merge					US 33	EB - Diley	On-Ran	np		1500		2	
41		Basic Basic					US 33	B EB - east	of Dile	у		5280		2	
Facili	ty Seg	Basic Basic Basic													
							Segme	nt 1: Ba	asic						
АР	Pł	łF	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	250	04	470	00	0.	53	65	5.0	1:	9.3	С
							Segmen	t 2: Div	erge						
АР	Pł	łF	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.926	2504	218	4700	2100	0.53	0.10	59.2	59.2	21.1	20.8	С
							Segmen	t 3: Div	erge						
АР	Pł	łF	fl	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	2286	760	4700	2100	0.49	0.36	58.1	58.1	19.7	21.2	С
							Segme	nt 4: Ba	asic						
АР	Pł	4F	fl	١٧	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	26	150	05	470	00	0.	32	63	3.8	1	1.6	В
							Segmer	nt 5: Me	erge						
AP	PI	PHF fHV Volume Se (pc/h)					Capa (pc)			/c tio		eed i/h) Appen		nsity ni/ln) ge 48	LOS

												110-	Build Cap	Lacity And	1	
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP	1	0.94	0.94	0.926	0.935	1971	466	4700	2100	0.42	0.22	64.9	65.0	15.2	15.2	В
								Segme	nt 6: Ba	asic						
	AP	Pi	4F	f⊦	łV	I										LOS
AP	1	0.9	94	0.9	926	197	76	70!	50	0.7	28	65	5.0	10).1	А
								Segmer	nt 7: Me	erge						
	AP	Pi	4F	fŀ	IV	I										LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Sped (mi/h) Desity (pc/m/ln) LOS 1 0.94 ⋅ 0.893 ⋅ 2931 ⋅ 7050 ⋅ 0.42 ⋅ 63.9 ⋅ 15.0 ⋅ 68 6 7 0.42 ⋅ 63.9 ⋅ 15.0 ⋅ 69 6 7 0.42 ⋅ 63.9 ⋅ 15.0 ⋅ 69 0.893 ⋅ 15.0 ⋅ 69 6 0 0.42 ⋅ 63.9 ⋅ 15.0 ⋅ 69 0.893 ⋅ 15.0 ⋅ 69 0.893 ⋅ 15.0 ⋅ 69 0.893 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅ 0.94 ⋅ 0.94 ⋅ 0.989 ⋅ 0.94 ⋅	1	0.94	0.94	0.926	0.833	2921	945	7050	2100	0.41	0.45	60.4	59.2	16.1	15.6	В
								Segme	nt 8: Ba	asic						
AP	AP	Pi	4F	fŀ	łV											LOS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.9	94	0.8	393	293	31	70!	50	0.4	42	63	3.9	15	5.0	В
AP	AP	Pi	-IF	fŀ	łV	1										LOS
AP	1	0.9	94	0.893		293	31	940	00	0.3	31	64	1.9	11	1.3	В
F R		any					9	Segment	10: Div	erge						
1	AP	Pi	-IF	fŀ	łV	I										LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.893 2490 9400 0.26 64.9 9.6 A Segment 12: Weaving Segment 12: Weaving AP PHF fHV Volume Served (pc/h) Capacity (pc/h) M/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS Segment 13: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Al Speed (mi/h) Density (pc/mi/ln) LOS Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) A/c (pc/h) Speed (mi/h) Density (pc/mi/ln) LOS Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) A/c (pc/h) Speed (mi/h) Density (pc/mi/ln) LOS Segment 15: Basic AP PHF <td>1</td> <td>0.94</td> <td>0.94</td> <td>0.893</td> <td>0.943</td> <td>2931</td> <td>417</td> <td>9400</td> <td>2100</td> <td>0.31</td> <td>0.20</td> <td>64.2</td> <td>58.8</td> <td>11.4</td> <td>12.6</td> <td>В</td>	1	0.94	0.94	0.893	0.943	2931	417	9400	2100	0.31	0.20	64.2	58.8	11.4	12.6	В
								Segmer	nt 11: B	asic						
1 0.94 0.893 2490 9400 0.26 64.9 9.6 A Segment 12: Weaving	AP	Pi	-IF	fŀ	łV										,	LOS
AP	1	0.1	0.4	0.0	202	-										Δ.
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c (pc/h) Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.893 4109 5207 0.79 46.6 17.6 B Segment 13: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) I 9HF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln)		0.1	94	0.8	93	245						62	1.9	9	.6	A
1 0.94 0.893 4109 5207 0.79 46.6 17.6 B						Ι .						l .				I
AP	AP	Pi	1F	fF	łV	1										LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.893 3824 9400 0.41 61.1 14.7 B Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS I 0.94 0.893 0.870 4851 1027 11750 2100 0.41 0.49 64.1 65.0 14.9 14.9 B Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS	1	0.9	94	0.8	893	410	09	520	07	0.	79	46	5.6	17	7.6	В
								Segmer	nt 13: B	asic						
Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. R Infl. F R Infl. R Infl. F R Infl. R Infl. R Infl. R Infl. R Infl. R Infl.	AP	PI	4F	f⊦	iV											LOS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.9	94	0.8	393	382	24	940	00	0.4	41	61	1.1	14	1.7	В
F R F R Freeway Ramp Freeway Ramp F R F R Infl.								Segmen	t 14: M	erge						
1 0.94 0.94 0.893 0.870 4851 1027 11750 2100 0.41 0.49 64.1 65.0 14.9 14.9 B Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Cmi/h) Density (pc/mi/ln) LOS	AP	Pi	4F	fŀ	łV		Served Capacity d/c Speed									LOS
Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Ratio (mi/h) Density (pc/mi/ln) LOS		F	R	F	R	Freeway	Ramp	Freeway	Ramp	p F R F RInfl				F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Speed (pc/mi/ln) LOS	1	0.94	0.94	0.893	0.870	4851	1027	11750	2100	0.41	0.49 64.1 65.0			14.9	14.9	В
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Speed (pc/mi/ln) LOS								Segmer	nt 15: B	asic						
1 0.94 0.893 4825 11750 0.41 64.9 14.8 B	AP	Pi	4F	fŀ	IV	I		Сара	city	d						LOS
	1	0.9	94	0.8	393	482	25	117	50	0.4	41	64	1.9	14	1.8	В

						9	Segment	16: Div	/erge						
AP	PI	4F	fŀ	١٧	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.80	0.893	0.926	4825	1593	11750	2100	0.41	0.76	60.9	56.4	14.3	23.4	С
							Segmer	nt 17: B	asic						
AP	Pi	⊣ F	fŀ	łV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.8	393	34	19	940	00	0	36	64	1.7	1.	3.2	В
							Segmen	t 18: M	erge						
AP	Pł	4F	f⊦	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.88	0.893	0.885	3522	103	9400	2000	0.37	0.05	61.4	59.2	14.3	10.3	В
							Segmen	t 19: M	erge						
AP	Pi	4F	fŀ	ΗV	Volume (pc,		(pc/h) Ratio (mi/h)							nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.893	0.862	3773	259	9400	2100	0.40	0.12	61.5	59.6	15.3	12.4	В
							Segment 20: Basic								
AP	Pi	4F	fŀ	ΗV	Volume (pc,		Capacity d/c Speed (pc/h) Ratio (mi/h)							nsity ni/ln)	LOS
1	0.9	94	0.9	909	369	98	940	00	0	39	64	1.8	14	4.2	В
						9	Segment	21: Div	/erge						
AP	PI	4F	f⊦	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.909	0.952	3698	83	9400	2000	0.39	0.04	62.9	55.0	14.7	14.9	В
							Segmer	nt 22: B	asic						
АР	Pi	4F	fŀ	łV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	909	36	16	940	00	0	38	64	1.7	1.	3.9	В
							Segmen	t 23: M	erge						
AP	Pi	4F	f⊦	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.909	3698	82	9400	2000	0.39	0.04	61.0	58.5	15.2	12.4	В
							Segmer	nt 24: B	asic						
AP	Pi	-IF	fŀ	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	909	369	00	0.	39	64	1.5	14	4.2	В		
						9	Segment	25: Div	/erge						
AP	Pł	4F	fŀ	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F div C Do	R Infl.	

1	004	0.04	10000	0.000	2600	F.4	0.400	2000	0.20	0.02	62.0		147	140	
1	0.94	0.94	0.909	0.980	3698	54	9400	2000	0.39	0.03	63.0	55.0	14.7	14.8	В
							Segmer							• .	
AP	PI	-IF	fF	łV	Volume (pc,		Capa (pc/			/c tio		eed (/h)		nsity mi/ln)	LOS
1	0.	94	0.9	909	364	40	940	00	0	39	64	l.7	1.	4.0	В
							Segmen	t 27: M	erge						
AP	PI	НF	fŀ	łV	Volume (pc,		Capa (pc/			/c tio	Spe (mi	eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.909	0.980	3781	141	9400	2000	0.40	0.07	61.0	58.5	15.5	12.9	В
							Segmer	nt 28: B	asic						
AP	PI	НF	fŀ	łV	Volume (pc		Capa (pc/			/c tio	Spe (mi	eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9	909	379	92	940	00	0.	40	64	1.8	1.	4.6	В
						9	Segment	29: Div	verge						
AP	PI	НF	fŀ	IV	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.81	0.909	0.909	3792	1127	9400	2100	0.40	0.54	62.1	57.3	15.3	19.0	В
							Segmer	nt 30: B	asic						
AP	PI	PHF fHV 0.94 0.909			Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9	909	282	20	940	00	0.	30	64	1.9	1	0.8	А
							Segmen	t 31: M	erge						
AP	PI	НF	fŀ	iV	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.89	0.909	0.962	3392	572	9400	2100	0.36	0.27	61.7	59.8	13.7	11.3	В
							Segmer	nt 32: B	asic						
AP	PI	НF	fŀ	IV	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.8	885	348	86	940	00	0.	37	64	1.8	1	3.4	В
							Segment	33: Div	verge						
AP	PI	4F	fŀ	IV	Volume (pc		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.885	0.935	3486	137	9400	2000	0.37	0.07	62.7	54.9	13.9	14.4	В
							Segmer	nt 34: B	asic						
AP	PI	-IF	fŀ	łV	Volume (pc		Capa (pc/		1	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.94 0.885		885	334	42	940	00	0.	36	64	l.7	1	2.9	В	
							Segmen	t 35: M	erge						
AP	PI	PHF fHV			Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
				L		· ·		· ·	1				div C Pa		

												Dana Oc	1 7	,	
1	0.94	0.73	0.885	0.935	3386	44	9400	2000	0.36	0.02	61.2	58.5	13.8	11.3	В
							Segmer	nt 36: E	Basic						
AP	PI	HF	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.8	85	33	78	940	00	0.	36	64	1.8		13.0	В
							Segment	37: Di	verge						
AP	PI	HF	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.885	0.935	3378	764	9400	2100	0.36	0.36	63.2	58.1	13.4	18.8	В
							Segmer	nt 38: E	Basic						
AP	PI	HF	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.8	85	25	96	705	50	0.	37	64	1.9		13.3	В
							Segmer	nt 39: E	Basic						
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.885 2596 4700 0.55 65.0 20.0 C															
1 0.94 0.885 2596 4700 0.55 65.0 20.0 C Segment 40: Merge															
							Segmen	t 40: N	lerge						
AP	PI	HF	fŀ	IV											LOS
1															
							Segmer	nt 41: E	Basic						
AP	PI	HF	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	01	30	93	470	00	0.	66	64	1.7		23.9	С
Facil	ity Ana	alysis	Result	5											
AP	VM1 veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		nsity /mi/ln	TT min	LOS
1	819	8	8	198	5	.08	126.95		58.8		14.7	1	3.2	11.90	В
Facil	ity Ove	erall R	esults												
Space	Mean S	Speed, 1	mi/h		58.8			Avera	ge Densi	ty, veh,	/mi/ln	13	.2		
Avera	ge Trave	el Time,	min		11.90			Avera	ge Densi	ty, pc/r	mi/ln	14	.7		
Total	VMT, ve	h-mi/A	Р		8198			Total \	/HD, veh	-h		5.0)8		
	le Value				25.00				Delay Co	st, \$		12	6.95		
Copyrig	ht © 2025	5 Univers	sity of Flor	rida. All R	ights Reserve		HCS [™] Freev In Year Build AM	•		—– R vuf			Generat	ed: 06/03/202	5 09:45:59

HCS[™] Freeways Version 2025 Design Year Build AM Improved - US 33 EB.xuf

					NO-Bullu	Сарасп	y Analysis
		HCS	Freeway F	acilities Report			
Project	Information						
Analyst		LJB (KLR)		Date		6/21/20	24
Agency		LJB Inc		Analysis Year		Design \	/ear Build
Jurisdict	ion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		AM Peal	<
Facility N	lame	US 33 WB		Units		U.S. Cus	tomary
Project [Description	US 33 Widening	9				
Facilit	y Global Input						
Jam Den	sity, pc/mi/ln	190.0		Density at Capacity, pc/n	ni/ln	45	
Queue D	Discharge Capacity Drop,	% 7		Total Segments		33	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	ength, mi	11.35					
Facility	Segment Data						
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 V	WB - east of Diley	5280)	2
2	Diverge	Diverge	US 33 W	B - Diley Off-Ramp	1500)	2
3	Basic	Basic	US 33 WB - Btv	wn Diley Ramps (2 lanes)	750		2
4	Basic	Basic	US 33 WB - Btv	wn Diley Ramps (3 lanes)	1230)	3
5	Merge	Basic	US 33 W	B - Diley On-Ramp	1500)	4
6	Basic	Basic	US 33 WB - Bt	wn Diley & High/Bowen	1800)	4
7	Diverge	Diverge		33 WB - High/Bowen 'off-ramp"	1500)	4
8	Basic	Basic		S 33 WB - Btwn High/ wen "ramps"	1000)	4
9	Merge	Merge	(dummy) US 33	3 WB - High/Bowen "on- ramp"	1500)	4
10	Basic	Basic	US 33 WB -	Btwn High/Bowen & Gender	1800)	4
11	Diverge	Diverge	US 33 WB	- Gender Off-Ramp	1500)	4
12	Basic	Basic	US 33 WB -	Btwn Gender Ramps	1400)	4
13	Merge	Merge	US 33 WB -	Gender NB On-Ramp	1500)	4
14	Merge	Merge	US 33 WB -	Gender SB On-Ramp	1500)	4
15	Basic	Basic	US 33 WB -	Btwn Gender & Bixby	7420)	4
16	Diverge	Diverge	(dummy) US 3	3 WB - Bixby "off-ramp"	1500)	4
17	Basic	Basic	(dummy) U	S 33 WB - Btwn Bixby "ramps"	1000)	4
18	Merge	Merge	(dummy) US 3	3 WB - Bixby "on-ramp"	1500)	4
19	Basic	Basic	US 33 WB - E	Btwn Bixby & Hamilton	2420)	4
20	Diverge	Diverge	US 33 WB -	- Hamilton Off-Ramp	1500)	4
21	Basic	Basic	US 33 WB -	Btwn Hamilton Ramps	1750)	4
22	Weaving	Weaving		wn Hamilton & I-270 NB Off-Ramp	4790)	5
23	Weaving	Weaving	US 33 WB -	Btwn I-270 NB & SB	1570)	5
				Ramps	Ap	pendix (Page 53

												Build Cap	acity Ana	aiysis	
24		Bas	ic		Basic		US 33 WB	- Btwn I-2	70 SB R	amps		860		4	
25		Mer	ge		Merge		US 33 W	B - I-270 S	SB On-R	amp		1500		4	
26		Bas	ic		Basic		US 33 WB - I	3twn I-270 104) SB Rar	np & SI	₹	2930		4	
27		Dive	rge		Diverge		US 33 WB	- SR 104	EB Off-F	Ramp		1500		3	
28		Bas	ic	\perp	Basic		US 33 WE	B - Btwn SI	R 104 Ra	amps		940		3	
29		Weav	ring		Weaving	1	US 33 WB	- Btwn SR Loop Ram		& WB		1410		4	
30		Dive	rge	\perp	Diverge		US 33 WE	B - James F	Rd Off-F	lamp		750		3	
31		Bas	ic		Basic			/B - Btwn . nchester F		d &		1510		2	
32		Mer	ge	\perp	Merge		US 33 WB	- Winches	ter On-	Ramp		820		2	
33		Bas	ic		Basic			3 - west of ominal le		ester		500		2	
Facili	ty Seg	ment	Data												
							Segme	nt 1: Ba	sic						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	52	470	00	470	00	1.0	05	52	2.2	4.	5.0	F
							Segmen	t 2: Div	erge						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.66	0.952	0.943	4700	964	4700	2000	1.05	0.48	54.6	54.6	43.0	32.8	F
			_				Segme	nt 3: Ba	sic						
AP	Pł	₫F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	52	373	36	470	00	0.9	91	61	1.9	30	0.2	D
							Segme	nt 4: Ba	asic						
AP	Pŀ	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	52	373	36	705	50	0.0	50	64	1.4	19	9.2	С
							Segmen	nt 5: Me	erge						
AP	Pł	4F	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.952	0.926	5065	1329	9400	2100	0.59	0.63	60.4	60.4	21.0	21.0	С
							Segme	nt 6: Ba	asic						
AP	Pł	4F	fl	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	17	500	65	940	00	0.0	51	64	1.7	19	9.5	С
							Segmen	t 7: Div	erge						
AP	Pł													nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.917	0.962	5065	80	9400	2000	0.61	0.04	62.3	55.0 Appen	20.3 dix C Pa	20.0 ge 54	В

1	0.9	94	0.9)52	636	52	940	00	0.7	72	64	1.5	24	1.7	С
AP	PH	4F	fl	IV	Volume (pc,		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
							Segmer	nt 17: B	asic						
1	0.94	0.68	0.952	0.980	6392	30	9400	2000	0.73	0.02	61.8	55.1	25.9	24.8	С
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP	Pŀ	4F	fl	IV	Volume (pc)		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
						9	Segment	16: Div	erge						
1	0.9	94	0.9)52	639		940		0.7			1.4		1.8	С
AP	PH	4F	fŀ	IV	Volume (pc/		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
							Segmer	nt 15: B	asic						
1	0.94	0.94		0.952	6392	726	9400	2100	0.74	0.35	59.7	58.7	26.8	20.6	С
	F	R	F	R	(pc)	/h) Ramp	(pc/ Freeway	h) Ramp	Ra ⁻ F	tio R	(mi	i/h) R Infl.	(pc/n F	ni/ln) R Infl.	
AP	PH	łF	fŀ	IV	Volume	Served	Capa	city	d,			eed		nsity	LOS
1	0.94	0.94	0.926	0.962	0000	1272	9400 Segmen	2000 + 1.4 • M		0.04	59.2	56.9	23.9	24.6	С
1	F 0.04	R 0.04	F 0.926	R	Freeway 5666	Ramp	Freeway	Ramp	F 0.66	R 0.64	F	R Infl.	F	R Infl.	
AP					Volume (pc,	/h)	Capa (pc/	/h) ¯		tio	(mi	eed i/h)	(pc/n	nsity ni/ln)	LOS
AP	Pŀ	15	fŀ	137	Val		Segmen			1-		d	D .		100
1	0.9	94	0.9	26	439		940		0.!	53	64	1.9	16	5.9	В
AP	Pł	4F	fŀ	IV	Volume (pc/		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
							Segmer	nt 12: B	asic						
1	0.94	0.94	0.926		5120	726	9400	2100	0.61	0.35	63.5	58.1	20.2	22.1	С
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F (pc/ii	R Infl.	
AP	Pŀ	łF	fŀ	IV	Volume (pc/		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
						9	Segment	11: Div	erge/						
1	0.9	94	0.9)26	512		940		0.6	61		1.7		9.7	С
AP	PH	4F	fŀ	IV	Volume (pc/		Capa (pc/		d, Ra			eed i/h)		nsity ni/ln)	LOS
							Segmer	nt 10: B	asic						
1	0.94	0.77	0.917	0.962	5120	135	9400	2000	0.61	0.07	60.0	58.1	21.3	17.1	В
	F	R	F	R	(pc)	/h) Ramp	(pc/ Freeway	(h) Ramp	Ra ⁻	tio R	(mi	i/h) R Infl.	(pc/n F	ni/ln) R Infl.	
AP	PH	łF	fŀ	IV	Volume		Сара	city	d,			eed		nsity	LOS
	0) -	0.5	/17	430		Segmen				0-	1 .0	1.	J.L	
1	0.9	94	0.0)17	(pc)		(pc)		Ra 0.6			i/h) 1.6		ni/ln) 9.2	С
AP	PH	4F	fŀ	IV	Volume		Сара	city	d,			eed		nsity	LOS
							Segme	nt 8: Ba	sic						

(pc/h) (pc/h) Ratio (mi/h) (p	Density oc/mi/ln)	LOS												
(pc/h) (pc/h) Ratio (mi/h) (p		Inc												
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F	R Infl.													
1 0.94 0.89 0.952 0.980 6534 172 9400 2000 0.74 0.09 58.9 57.5 27.3	7 21.6	С												
Segment 19: Basic														
	Density oc/mi/ln)	LOS												
1 0.94 0.943 6534 9400 0.75 64.2	25.4	С												
Segment 20: Diverge														
	Density oc/mi/ln)	LOS												
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F	R Infl.													
1 0.94 0.89 0.943 0.935 6534 613 9400 2100 0.75 0.29 63.2 58.4 25.4	8 27.1	С												
Segment 21: Basic														
	Density oc/mi/ln)	LOS												
1 0.94 0.943 5732 9400 0.69 64.9	22.0	F												
Segment 22: Weaving														
PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 0.94 0.943 6385 6857 1.17 47.9 26.7 F														
1 0.94 0.943 6385 6857 1.17 47.9	26.7	F												
Segment 23: Weaving														
	Density oc/mi/ln)	LOS												
1 0.94 0.943 3978 7619 0.74 50.3 15.8 B														
Segment 24: Basic														
	Density oc/mi/ln)	LOS												
1 0.94 0.943 2502 9400 0.44 62.9	9.6	А												
Segment 25: Merge														
	Density oc/mi/ln)	LOS												
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F	R Infl.													
1 0.94 0.94 0.943 0.917 2873 371 9400 2100 0.48 0.18 61.5 58.8 11.3	7 12.0	В												
Segment 26: Basic														
	Density oc/mi/ln)	LOS												
1 0.94 0.935 2873 9400 0.49 64.9 G	11.1	В												
Segment 27: Diverge														
	Density oc/mi/ln)	LOS												
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F	R Infl.													
1 0.94 0.94 0.935 0.935 2873 148 7050 2100 0.65 0.07 62.5 59.3 15	9.4	Α												
Segment 28: Basic														

												<u> </u>		
PH	łF	fH	IV											LOS
0.9	94	0.9	35	272	25	705	50	0.0	53	64	l.7		14.0	В
					9	Segment	29: We	aving						
PH	łF	fH	IV											LOS
0.9	94	0.9	35	344	1 1	603	30	0.8	36	47	7.3		18.2	В
						Segment	30: Di	verge						
PH	łF	fH	IV											LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R In	fl. F	R Infl.	
0.94	0.94	0.935	0.980	2107	1270	7050	2100	0.53	0.60	58.6	57.0	0 12.0	14.5	В
						Segmer	nt 31: B	Basic						
Pŀ	łF	fH	IV											LOS
0.9	94	0.9	26	83	7	450	00	0.	54	55	5.0		7.6	А
						Segmen	t 32: M	lerge						
Pŀ	łF	fH	IV											LOS
F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R In	fl. F	R Infl.	
0.94	0.94	0.926	0.962	1733	896	4500	2100	0.74	0.43	51.6	51.6	6 16.8	3 13.5	В
						Segmer	nt 33: E	Basic						
PH	łF	fH	IV											LOS
0.9	94	0.9	26	173	33	450	00	0.	75	53	3.8		15.8	В
ty Ana	lysis I	Results	5											
						Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln			TT min	LOS
1368	3	14	1466	22	90	572.51		58.5		22.6		21.2	11.60	F
	II. D	14												
ty Ove	rali K	esuits					_							
ty Ove Mean S				58.5			Averag	ge Densi	ty, veh,	/mi/ln		21.2		
	peed, r	mi/h		58.5 11.60			_	ge Densit ge Densit				21.2 22.6		
Mean S	peed, r I Time,	mi/h min					Averag		ty, pc/r					
	0.94 PH 0.94 PH 0.94 PH 0.94 PH 0.94 PH 0.94	0.94 PHF 6.94 PHF 0.94 PHF 0.94 VMT Veh-mi/AP 13683	0.94 0.9 PHF	O.94	O.94 O.935 272 PHF	O.94 O.935 2725		Composition Composition Composition	Copt Copt Copt Copt Copt Copt	No			Composition Composition	

HCS™ Freeways Version 2025
Design Year Build AM Improved - US 33 WB.xuf

						_	•
		HCS	Freeway F	acilities Report			
Project	t Information						
Analyst		LJB (KLR)		Date		6/21/20	24
Agency		LJB Inc		Analysis Year		Design `	/ear Build
Jurisdict	tion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		PM Peal	(
Facility N	Name	US 33 EB		Units		U.S. Cus	tomary
Project [Description	FRA-33 Wideni	ng	•			
Facilit	ty Global Input	·					
Jam Der	nsity, pc/mi/ln	190.0		Density at Capacity, pc/r	mi/ln	45	
Queue D	Discharge Capacity Drop,	% 7		Total Segments		41	
Total An	alysis Periods	1		Analysis Period Duration	, min	15	
Facility L	Length, mi	11.70					
Facility	y Segment Data	·					
No.	Coded	Analyzed		Name	Length	, ft	Lanes
1	Basic	Basic	US 33 EB - w	vest of SR 104 (nominal length)	500		2
2	Diverge	Diverge	US 33 EB	- SR 104 Off-Ramp	575		2
3	Diverge	Diverge	US 33 EB -	Winchester Off-Ramp	300		2
4	Basic	Basic		wn Winchester & James Rd Ramps	1900)	2
5	Merge	Basic	US 33 EB -	James Rd On-Ramp	900		2
6	Basic	Basic	US 33 EB - Bt	twn James Rd & SR 104	600		3
7	Merge	Merge	US 33 EB	- SR 104 On-Ramp	1500)	3
8	Basic	Basic	US 33 EB - B	twn SR 104 & I-270 (3- lane)	310		3
9	Basic	Basic	US 33 EB - B	twn SR 104 & I-270 (4- lane)	3330)	4
10	Diverge	Diverge	US 33 EB	- I-270 SB Off-Ramp	1500)	4
11	Basic	Basic	US 33 EB -	Btwn I-270 SB Ramps	770		4
12	Weaving	Weaving	US 33 EB - Btv	wn I-270 SB & NB Loops	1630)	5
13	Basic	Basic	US 33 EB -	Btwn I-270 NB Ramps	270		4
14	Merge	Basic	US 33 EB -	- I-270 NB On-Ramp	1500)	5
15	Basic	Basic	US 33 EB - E	Btwn I-270 & Hamilton	900		5
16	Diverge	Basic	US 33 EB -	Hamilton Off-Ramp	1500)	5
17	Basic	Basic	US 33 EB - I	Btwn Hamilton Ramps	1570)	4
18	Merge	Merge	US 33 EB - F	Hamilton SB On-Ramp	1410)	4
19	Merge	Merge	US 33 EB - H	Hamilton NB On-Ramp	1500)	4
20	Basic	Basic	US 33 EB - E	Btwn Hamilton & Bixby	2290)	4
21	Diverge	Diverge	(dummy) US 3	33 EB - Bixby "off-ramp"	1500)	4
22	Basic	Basic	(dummy) L	JS 33 EB - Btwn Bixby "ramps"	1000)	4
23	Merge	Merge	(dummy) US 3	33 EB - Bixby "on-ramp"	1500)	4

F R F R Freeway Ramp Freeway Ramp F R F R Infl.												INO-	Build Cap	Dacity An	aiysis	
26	24		Bas	ic		Basic		(dummy) l		Btwn B	ixby &		1000		4	
	25		Dive	rge		Diverge		(dummy) US	33 EB - R	ager "o	ff-ramp'	'	1500		4	
28	26		Bas	ic		Basic		(dummy)			Rager		1000		4	
29	27		Mer	ge		Merge		(dummy) US	33 EB - R	ager "o	n-ramp'	·	1500		4	
30	28		Bas	ic		Basic		US 33 EB -	- Btwn Rag	ger & G	ender		2290		4	
31	29		Dive	rge		Diverge		US 33 E	B - Gende	r Off-Ra	ımp		1500		4	
32 Basic Basic Diverge (dummy) US 33 EB - Bitwn High/Bowen "off- 1500 4	30		Bas	ic		Basic		US 33 EB	- Btwn Ge	nder Ra	amps		2390		4	
33	31		Mer	ge		Merge		US 33 E	B - Gende	r On-Ra	ımp		1500		4	
Basic	32		Bas	ic		Basic		US 33 EB -			High/		1930		4	
Merge Mer	33		Dive	rge		Diverge		(dummy) US		igh/Bov	ven "off	-	1500		4	
Second	34		Bas	ic		Basic		(dummy) US			n/Bowei	n	1000		4	
37	35		Mer	ge		Merge		(dummy) US		igh/Bov	ven "on-		1500		4	
38	36		Bas	ic		Basic		US 33 EB - B	twn High	/Bowen	& Diley		1920		4	
39	37		Dive	rge		Diverge		US 33	EB - Diley	Off-Rar	np		1500		4	
Merge	38		Bas	ic		Basic		US 33 EB - B	twn Diley	Ramps	(3 lanes)	1830		3	
A1	39		Bas	ic		Basic		US 33 EB - B	twn Diley	Ramps	(2 lanes)	2400		2	
Segment Data	40		Mer	ge		Merge		US 33	EB - Diley	On-Rar	np		1500		2	
AP	41		Bas	ic		Basic		US 33	B EB - east	of Dile	у		5280		2	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) 1 0.94 0.952 2928 4700 0.62 64.9 22.6 C Segment 2: Diverge AP FIR FIR FIR Reserved (pc/h) Capacity (pc/h) Capacity (mi/h) Capacity (pc/mi/ln) Capacity (pc/mi/ln) Capacity (mi/h) Capacity (pc/mi/h) Capacity (mi/h) Capacity (pc/mi/h) Capacity (mi/h) Capacity (pc/mi/h) Capacity (pc/mi/h) Capacity (mi/h) Capacity (mi/h) <td>Facili</td> <td>ty Seg</td> <td>ment</td> <td>Data</td> <td></td>	Facili	ty Seg	ment	Data												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Segme	nt 1: Ba	sic						
AP	АР	PHF fHV Volume Served Capacity d/c Speed Density LOS														
AP	1	0.9	94	0.9	52	29	28	470	00	0.	62	64	4.9	2	2.6	С
								Segmen	t 2: Div	erge						
1 0.94 0.94 0.952 0.909 2928 211 4700 2100 0.62 0.10 59.2 59.2 24.7 24.5 C Segment 3: Diverge Speed (pc/h) Capacity (pc/h) Ratio Capacity (mi/h) Capacity (pc/mi/ln) Capacity (pc/h) Capacity (p	АР	Pi	4F	fŀ	lV			Capa (pc/	city /h)							LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) I F R F R Freeway Ramp F R F R Infl. F R Infl	1	0.94	0.94	0.952	0.909	2928	211	4700	2100	0.62	0.10	59.2	59.2	24.7	24.5	С
F R F R Freeway Ramp Freeway Ramp F R F R Infl.								Segmen	t 3: Div	erge						
1 0.94 0.94 0.952 0.943 2717 981 4700 2100 0.58 0.47 57.6 57.6 23.6 24.9 C Segment 4: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.952 1736 4700 0.37 63.8 13.4 B Segment 5: Merge AP PHF fHV Volume Served Capacity d/c Speed Density LOS	АР	Pi	4F	fŀ	IV											LOS
Segment 4: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) 1 0.94 0.952 1736 4700 0.37 63.8 13.4 B Segment 5: Merge AP PHF fHV Volume Served Capacity d/c Speed Density LOS		F R F		R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.		
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.952 1736 4700 0.37 63.8 13.4 B Segment 5: Merge AP PHF fHV Volume Served Capacity d/c Speed Density LOS	1	0.94	0.94	0.952	0.943	2717	981	4700	2100	0.58	0.47	57.6	57.6	23.6	24.9	С
								Segme	nt 4: Ba	sic						
Segment 5: Merge AP PHF fHV Volume Served Capacity d/c Speed Density LOS	AP	PI	4F	fŀ	IV											LOS
AP PHF fHV Volume Served Capacity d/c Speed Density LOS	1	0.9	94	0.9)52	17:	36	470	00	0.	37	63	3.8	1	3.4	В
								Segmen	nt 5: Me	erge						
	AP	PI	-IF	fŀ	IV								eed i/h) Appen			LOS

												110-	Build Cap	Lacity And	1	
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP	1	0.94	0.94	0.952	0.935	2225	489	4700	2100	0.48	0.23	58.9	58.9	18.9	18.9	С
								Segme	nt 6: Ba	asic						
AP	AP	Pi	4F	f⊦	łV	I										LOS
P	1	0.9	94	0.9	952	222	25	705	50	0.3	32	63	3.2	11	1.4	В
								Segmer	nt 7: Me	erge						
	AP	Pi	4F	fŀ	IV	I										LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP	1	0.94	0.94	0.952	0.935	4325	2139	7050	2100	0.62	1.02	58.2	57.0	25.0	25.5	С
								Segme	nt 8: Ba	asic						
AP	AP	PI	-IF	f⊦	łV											LOS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.9	94	1.0	000	432	25	705	50	0.	58	63	3.4	22	2.2	С
								Segme	nt 9: Ba	asic						
AP	AP	Pł	4F	fŀ	IV	1										LOS
AP	1	0.9	94	0.9	935	432	25	940	00	0.4	47	64	1.9	16	5.6	В
F R		Segment 10: Diverge														
1	AP				łV	I										LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.935 4009 9400 0.43 64.9 15.4 B Segment 12: Weaving Segment 12: Weaving AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c (pc/h) Speed (mi/h) Density (pc/mi/ln) LOS Segment 13: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Alzo (mi/h) Density (pc/mi/ln) LOS Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Alzo (mi/h) Density (pc/mi/ln) LOS Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Alzo (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.935 0.926 7206 1827 11750 2100 0.66	1	0.94	0.94	0.935	0.909	4325	316	9400	2100	0.47	0.15	64.6	59.0	16.7	17.3	В
								Segmer	nt 11: B	asic						
1	AP	Pi	4F	fŀ	łV			Сара	city	d					,	LOS
AP	1	0.1	0.4	0.0	יכר	-										D
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c (pc/h) Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.935 5861 5868 1.03 43.0 27.3 F Segment 13: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) I 0.94 0.94 0.935 7206 1827 11750 2100 0.66 0.87 59.8 59.8 20.1 20.1 C Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) A/c Ratio Speed (mi/h) Density (pc/mi/ln) Capacity (pc/h) A/c Ratio Speed (mi/h) Density (pc/mi/ln) Capacity (pc/h) A/c Ratio Speed (mi/h) Dens	-	0.1	94	0.9	733	400						02	+.9	1.3	0.4	Ь
1 0.94 0.935 5861 5868 1.03 43.0 27.3 F		l										_			•.	
AP	АР	PI	1F	#	1V	1										LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.935 5379 9400 0.63 60.3 20.7 C Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.94 0.935 0.926 7206 1827 11750 2100 0.66 0.87 59.8 59.8 20.1 20.1 C Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS	1	0.9	94	0.9	35	586	51	586	58	1.0	03	43	3.0	27	7.3	F
								Segmer	nt 13: B	asic						
Segment 14: Merge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS F R F R Freeway Ramp F R F R Infl. C C Speed 20.1 20.1 C Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS	AP	Pi	4F	f⊦	IV	I										LOS
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS I F R F R Freeway Ramp F R F R Infl. F R Infl. F R Infl. C Image: Compact of the compact	1	0.9	94	0.9	935	537	79	940	00	0.0	63	60).3	20	0.7	С
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F R Infl.								Segmen	t 14: M	erge						
1 0.94 0.94 0.935 0.926 7206 1827 11750 2100 0.66 0.87 59.8 59.8 20.1 20.1 C Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS	AP	Pi	4F	f⊦	łV											LOS
Segment 15: Basic AP PHF fHV Volume Served (pc/h) Capacity (pc/h) Ratio (mi/h) Density (pc/mi/ln) LOS		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served Capacity d/c Speed Density (pc/h) (pc/h) Ratio (mi/h) (pc/mi/ln)	1	0.94	0.94	0.935	0.926	7206	1827	11750	2100	0.66	0.87	59.8	59.8	20.1	20.1	С
(pc/h) (pc/h) Ratio (mi/h) (pc/mi/ln)								Segmer	nt 15: B	asic						
1 0.94 0.935 7206 11750 0.65 64.3 22.2 C	AP	PI	4F	fŀ	IV	I		Сара	city	d						LOS
	1	0.9	94	0.9	935	720	06	117	50	0.0	65	64	1.3	22	2.2	С

A							9	Segment	: 16: Div	/erae			<u> </u>	•		
	AP	PI	HF	fl	IV		Served	Capa	city	d						LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV (pc/h) (pc/h) Capa-(pc/h) (pc/h) Capa-(pc/h) (pc/h) Ag/c (pc/h) Speed (mi/h) Density (pc/mi/ln) LOS (pc/mi/ln) <td>1</td> <td>0.94</td> <td>0.88</td> <td>0.935</td> <td>0.943</td> <td>7206</td> <td>1097</td> <td>11750</td> <td>2100</td> <td>0.65</td> <td>0.52</td> <td>62.6</td> <td>62.6</td> <td>18.4</td> <td>18.4</td> <td>С</td>	1	0.94	0.88	0.935	0.943	7206	1097	11750	2100	0.65	0.52	62.6	62.6	18.4	18.4	С
								Segmer	nt 17: B	asic						
AP	AP	PI	HF	fŀ	IV	1										LOS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0.	94	0.9	935	610	09	940	00	0.	71	64	1.8	2:	3.6	С
								Segmen	t 18: M	erge						
	AP	PI	HF	fŀ	IV	1										LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
$ \begin{array}{ c c c c c c c c } \hline AP & PHF & FHV & Volume Served & Capacity & g/c/h) & g/c & Sped & (pc/mi/h) & (pc/mi/ln) & (pc/m$	1	0.94	0.94	0.935	0.962	6397	288	9400	2000	0.74	0.14	59.3	58.2	27.0	20.1	С
								Segmen	t 19: M	erge						
	АР	PI	HF	fŀ	łV	1										LOS
AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.94	0.91	0.935	0.952	6940	543	9400	2100	0.80	0.26	59.1	58.1	29.4	22.8	С
AP PHF FHV Volume Served (pc/h) Capacity (pc/h) Ratio Capacity (pc/mi/ln) Capacity (pc/h) Ratio Capacity (pc/mi/ln) Capacity (pc/m	AP	PI	HF	fŀ	IV	1										LOS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0.	94	0.9	952	694	40	940	00	0.	78	63	3.4	2	7.4	D
F R							9	Segment	21: Div	verge						
1	АР	PI	HF	fŀ	łV	1										LOS
AP		F				Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0.94	0.75	0.952	0.971	6940	82	9400	2000	0.78	0.04	61.4	55.0	28.3	27.1	С
1 0.94 0.952 6858 9400 0.77 63.6 27.0 D								Segmer	nt 22: B	asic						
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	AP	PI	HF	fŀ	IV	1										LOS
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	0.	94	0.9	952	68!	58	940	00	0.	77	63	3.6	2.	7.0	D
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F R Infl.								Segmen	t 23: M	erge						
1 0.94 0.92 0.952 0.877 6957 99 9400 2000 0.79 0.05 58.6 57.4 29.7 22.7 C Segment 24: Basic	АР	PI	HF	f⊦	łV											LOS
Segment 24: Basic AP		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS 1 0.94 0.952 6957 9400 0.78 63.4 27.4 D Segment 25: Diverge AP PHF fHV Volume Served (pc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) Density (pc/mi/ln) LOS	1	0.94	0.92	0.952	0.877	6957	99	9400	2000	0.79	0.05	58.6	57.4	29.7	22.7	С
Company Comp								Segmer	nt 24: B	asic						
Segment 25: Diverge AP PHF fHV Volume Served (pc/h) Capacity d/c Ratio (mi/h) Density (pc/mi/ln) LOS	AP	PI	HF	fŀ	łV	1										LOS
AP PHF fHV Volume Served Capacity d/c Speed Density (pc/h) (pc/h) Ratio (mi/h) (pc/mi/ln)	1	0.	94 0.952			69!	57	940	00	0.	78	63	3.4	2	7.4	D
(pc/h) (pc/h) Ratio (mi/h) (pc/mi/ln)							9	Segment	25: Div	verge						
F R F R Freeway Ramp Freeway Ramp F R F R Infl. F R Infl.	AP	PI	PHF fHV			1										LOS
		F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	

								2222					,	,	
1	0.94	0.94	0.952	0.980	6957	33	9400	2000	0.78	0.02	61.5	55.1	28.3	26.9	С
							Segmer								
AP	PI	HF	fŀ	łV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9	952	692	24	940	00	0.	78	63	3.4	2	7.3	D
							Segmen	t 27: M	erge						
AP	PI	⊣ F	f⊦	١٧	Volume (pc,		Capa (pc,			/c tio	Spo (mi	eed (h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.952	0.980	7087	163	9400	2000	0.80	0.08	58.4	57.2	30.3	23.3	С
							Segmer	nt 28: B	asic						
AP	PI	HF.	fŀ	łV	Volume (pc,		Capa (pc)			/c tio	Spe (mi	eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9)52	708	87	940	00	0.	80	63	3.0	2	8.1	D
							Segment	29: Div	verge						
AP	PI	-IF	fŀ	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.91	0.952	0.952	7087	1755	9400	2100	0.80	0.84	61.0	56.0	29.0	34.4	D
					-		Segmer	nt 30: B	asic						
AP	PI	PHF fHV 0.94 0.952			Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9	952	533	32	940	00	0.	62	64	1.8	2	0.5	С
							Segmen	t 31: M	erge						
AP	PI	НF	fŀ	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.952	0.980	6474	1142	9400	2100	0.74	0.54	59.4	58.0	27.2	23.1	С
							Segmer	nt 32: B	asic						
AP	PI	4F	fŀ	łV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.	94	0.9	943	64 ⁻	74	940	00	0.	75	64	l.3	2	5.2	С
							Segment	33: Div	verge						
AP	PI	НF	fŀ	IV	Volume (pc		Capa (pc,			/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.99	0.943	0.952	6474	361	9400	2000	0.75	0.18	61.1	54.4	26.5	26.7	С
							Segmer	nt 34: B	asic						
AP	PI	НF	fl	IV	Volume (pc		Capa (pc,		1	/c tio		eed (/h)		nsity mi/ln)	LOS
1	0.94 0.943		943	61	13	940	00	0.	71	64	1.5	2.	3.6	С	
							Segmen	t 35: M	erge						
AP	PI	PHF fHV			Volume (pc		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
													div C Pa		

											_	Dana Ca	1 7	,	
1	0.94	0.53	0.943	0.952	6212	99	9400	2000	0.72	0.05	59.2	57.8	26.2	20.3	С
							Segmer	nt 36: I	Basic						
AP	PI	НF	fl	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	43	58	00	940	00	0.	71	64	1.6		22.3	F
							Segment	37: Di	verge						
AP	PI	НF	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.943	0.962	5405	1232	9400	2100	0.71	0.59	19.6	57.1	69.0	33.5	F
							Segmer	nt 38: I	Basic						
AP	PI	HF.	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	43	38	21	705	50	0.	78	13	3.4		95.0	F
							Segmer	nt 39: I	Basic						
AP	PI	HF.	fŀ	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	43	37	09	470	00	1.	16	25	5.0		74.1	F
							Segmen	t 40: N	lerge						
AP	PI	4F	fŀ	IV	Volume (pc		Capa (pc/			/c tio		eed i/h)		ensity /mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.943	0.962	4376	667	4700	2100	1.31	0.32	53.2	53.2	41.1	32.0	F
							Segmer	nt 41: I	Basic						
AP	PI	HF.	fl	IV	Volume (pc		Capa (pc)			/c tio		eed i/h)		ensity /mi/ln)	LOS
1	0.	94	0.9	62	43	76	470	00	1.	28	56	5.2		38.9	F
Facil	ity Ana	alysis	Result	s											
AP	VM veh-mi			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		nsity /mi/ln	TT min	LOS
1	1527	'9	1	5996	57	7.26	1431.54	1	52.3		29.1	2	7.5	13.40	F
Facil	ity Ove	erall R	esults												
Space	Mean S	Speed, r	mi/h		52.3			Avera	ge Densi	ty, veh,	/mi/ln	27	.5		
Avera	ge Trave	el Time,	min		13.40			Avera	ge Densi	ty, pc/r	mi/ln	29	.1		
Total	VMT, ve	h-mi/A	Р		15279			Total	/HD, veh	-h		57	.26		
	le Value				25.00				Delay Co	st, \$		14	31.54		
Copyrig	ht © 202!	Univers	ity of Flor	rida. All R	ights Reserve		HCS [™] Freev In Year Build PM	•		- 3 xuf			Generate	ed: 06/03/202	5 10:09:25

HCS™ Freeways Version 2025
Design Year Build PM Improved - US 33 EB.xuf

					NO-Dulla	Сарасп	y Analysis	
		HCS	Freeway F	acilities Report				
Project	t Information							
Analyst		LJB (KLR)		Date		6/21/20	24	
Agency		LJB Inc		Analysis Year		Design \	/ear Build	
Jurisdict	ion	FRA-FAI (ODOT	D6/D5)	Time Analyzed		PM Peak		
Facility N	Name	US 33 WB		Units		U.S. Cus	tomary	
Project [Description	US 33 Widening	g					
Facilit	y Global Input	<u> </u>						
Jam Der	nsity, pc/mi/ln	190.0		Density at Capacity, pc/n	ni/ln	45		
Queue D	Discharge Capacity Drop,	, % 7		Total Segments		33		
Total An	alysis Periods	1		Analysis Period Duration	, min	15		
Facility L	ength, mi	11.35						
Facility	Segment Data							
No.	Coded	Analyzed		Name	Length	, ft	Lanes	
1	Basic	Basic	US 33 \	5280		2		
2	Diverge	Diverge	US 33 W	1500)	2		
3	Basic	Basic	US 33 WB - Btv	750		2		
4	Basic	Basic	US 33 WB - Btv	1230		3		
5	Merge	Basic	US 33 W	1500	1	4		
6	Basic	Basic	US 33 WB - Bt	1800)	4		
7	Diverge	Diverge		33 WB - High/Bowen 'off-ramp"	1500		4	
8	Basic	Basic		S 33 WB - Btwn High/ wen "ramps"	1000)	4	
9	Merge	Merge	(dummy) US 3:	3 WB - High/Bowen "on- ramp"	1500		4	
10	Basic	Basic	US 33 WB -	Btwn High/Bowen & Gender	1800		4	
11	Diverge	Diverge	US 33 WB	- Gender Off-Ramp	1500		4	
12	Basic	Basic	US 33 WB -	Btwn Gender Ramps	1400		4	
13	Merge	Merge	US 33 WB -	Gender NB On-Ramp	1500		4	
14	Merge	Merge	US 33 WB -	Gender SB On-Ramp	1500		4	
15	Basic	Basic	US 33 WB -	Btwn Gender & Bixby	7420)	4	
16	Diverge	Diverge	(dummy) US 3	3 WB - Bixby "off-ramp"	1500)	4	
17	Basic	Basic	(dummy) U	S 33 WB - Btwn Bixby "ramps"	1000		4	
18	Merge	Merge	(dummy) US 3	3 WB - Bixby "on-ramp"	1500)	4	
19	Basic	Basic	US 33 WB - E	Btwn Bixby & Hamilton	2420)	4	
20	Diverge	Diverge	US 33 WB	- Hamilton Off-Ramp	1500)	4	
21	Basic	Basic	US 33 WB -	Btwn Hamilton Ramps	1750)	4	
22	Weaving	Weaving		3 WB - Btwn Hamilton & I-270 NB 4790 Off-Ramp				
23	Weaving	Weaving	US 33 WB -	- Btwn I-270 NB & SB Ramps	1570		5	
				Manipa	Ap	pendix (Page 64	

												Build Cap	acity Ari	aiysis	
24		Bas	ic		Basic		US 33 WB	- Btwn I-2	70 SB R	amps		860		4	
25		Mer	ge		Merge		US 33 W	B - I-270 S	SB On-R	amp		1500		4	
26		Bas	ic		Basic		US 33 WB - I	3twn I-270 104) SB Rar	np & SF	₹	2930		4	
27		Dive	rge		Diverge		US 33 WB	- SR 104	EB Off-F	Ramp		1500		3	
28		Bas	ic		Basic		US 33 WE	B - Btwn SI	R 104 Ra	amps		940		3	
29		Weav	ring		Weaving		US 33 WB	- Btwn SR Loop Ram		& WB		1410		4	
30		Dive	rge		Diverge		US 33 WE	B - James F	Rd Off-F	lamp		750		3	
31		Bas	ic		Basic			/B - Btwn . nchester F		d &		1510		2	
32		Mer	ge		Merge		US 33 WB	- Winches	ter On-	Ramp		820		2	
33		Bas	ic		Basic			3 - west of ominal le		ester		500		2	
Facili	ty Seg	ment	Data												
							Segme	nt 1: Ba	sic						
АР	Pł	₫F	f⊦	łV	Volume (pc		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	35	368	86	470	00	0.	78	62	2.2	25	9.6	D
							Segmen	t 2: Div	erge						
АР	Pł	4F	f⊦	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
Ш	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.88	0.935	0.952	3686	466	4700	2000	0.78	0.23	55.7	55.7	33.1	24.1	С
			_				Segme	nt 3: Ba	sic						
AP	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	35	324	43	470	00	0.0	59 ———	63	3.5	2.	5.2	С
							Segme	nt 4: Ba	sic						
AP	Pŀ	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	35	324	43	705	50	0.4	46	64	1.7	10	5.6	В
							Segmen	nt 5: Me	erge						
АР	Pł	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.87	0.935	0.952	4342	1099	9400	2100	0.46	0.52	65.0	65.0	16.7	16.7	В
							Segme	nt 6: Ba	asic						
AP	Pł	4F	fl	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	26	432	20	940	00	0.4	46	65	5.0	10	5.6	В
							Segmen	t 7: Div	erge						
AP	Pł		fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.95	0.926	0.971	4320	119	9400	2000	0.46	0.06	62.5	54.9 Appen	17.3 dix C Pa	17.4 ge 65	В

							Segme	nt 8: Ba	asic			<u> </u>		•	
AP	PI	-IF	fŀ	łV	Volume	Served	Capa			/c	Spe	eed	Der	nsity	LOS
					(pc/		(pc/			tio		i/h)		ni/ln)	
1	0.9	94	0.9	26	419	93	940	00	0.4	45	64	4.7	16	5.1	В
							Segmer	nt 9: Me	erge						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.72	0.926	0.971	4393	200	9400	2000	0.47	0.10	60.5	58.3	18.2	15.1	В
							Segmer	nt 10: B	asic						
AP	PI	4F	f⊦	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	26	435	54	940	00	0.4	46	64	1.7	16	5.7	В
						9	Segment	11: Div	verge						
AP	Pi	4F	f⊦	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	4354	782	9400	2100	0.46	0.37	63.5	58.0	17.1	19.5	В
							Segmer	nt 12: B	asic						
AP	Pi	НF	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	26	355	50	940	00	0.3	38	64	1.9	13	3.7	В
							Segmen	t 13: M	erge						
AP	Pi	НF	fŀ	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.952	4310	760	9400	2000	0.46	0.38	60.4	58.0	17.8	18.3	В
							Segmen	t 14: M	erge						
AP	Pi	4F	f⊦	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.926	4687	356	9400	2100	0.50	0.17	61.1	59.8	19.2	13.7	В
							Segmer	nt 15: B	asic						
AP	Pi	4F	f⊦	IV	Volume (pc,		Capa (pc,			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	460)3	940	00	0.4	49	65	5.0	17	7.7	В
						9	Segment	16: Div	verge						
AP	Pi	-IF	fŀ	IV	Volume (pc,		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.64	0.943	0.980	4603	64	9400	2000	0.49	0.03	62.5	55.0	18.4	18.2	В
							Segmer	nt 17: B	asic						
AP	Pi	-IF	fŀ	١٧	Volume (pc)		Capa (pc)			/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9)43	455	58	940	00	0.4	48	64	1.7	17	7.5	В
													div C Pac		

							Segmen	t 18: M	erge						
AP	Pi	4F	fŀ	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.97	0.943	0.980	4758	200	9400	2000	0.51	0.10	60.3	58.2	19.7	16.2	В
							Segmer	nt 19: B	asic						
AP	Pi	ΗF	f⊦	łV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	486	50	940	00	0.	52	64	1.8	18	3.7	С
							Segment	20: Div	/erge						
AP	Pł	4F	f⊦	iV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.92	0.926	0.909	4860	586	9400	2100	0.52	0.28	63.8	58.4	19.0	20.7	С
							Segmer	nt 21: B	asic						
AP	Pi	łF	f⊦	iV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	429	97	940	00	0.4	46	64	1.9	10	6.5	В
						S	egment	22: We	aving						
AP	Pi	łF	f⊦	iV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	567	77	594	10	0.9	96	46	5.4	24	4.5	С
						S	egment	23: We	aving						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity ni/ln)	LOS
1	0.9	94	0.9	926	380	00	589		0.0	64	48	3.7	1.	5.6	В
							Segmer	nt 24: B	asic						
AP	PI	4F	f⊦	łV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	926	263	31	940	00	0.2	28	62	2.7	10	0.1	А
							Segmen	t 25: M	erge						
AP	Pi	4F	f⊦	IV	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.926	0.909	2888	257	9400	2100	0.31	0.12	61.5	58.8	11.7	11.6	В
							Segmer	nt 26: B	asic						
AP	Pi	4F	fŀ	IV	Volume (pc,		Capa (pc/			/c tio		eed i/h)		nsity mi/ln)	LOS
1	0.9	94	0.9	935	28!	56	940	00	0.3	30	64	1.9	1	1.0	А
						9	Segment	27: Div	/erge						
AP	Pi	4F	f⊦	١٧	Volume (pc,		Capa (pc/		d, Ra	/c tio		eed i/h)		nsity mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Infl.	F	R Infl.	
1	0.94	0.94	0.935	0.952	2856	268	7050	2100	0.41	0.13	62.2	59.1	15.3	9.5	А
							Segmer	nt 28: B	asic				div C Do		

AP	PH 0.94 PH)4 IF	0.9 f H	35 IV 35 IV	Volume (pc, 256 Volume (pc, 350 Volume (pc,	% Served /h) 62	Capa (pc/705) Cegment Capa (pc/522) Segment	(h) 50 29: W écity (h)	d, Ra	37 /c	Spe (mi 64 Spe (mi	/h) .6	(p	Density c/mi/ln) 13.2 Density	LOS B
AP 1 AP 1 AP	PH 0.9	IF 04 IF	f- 0.9	1V 135 1V	Volume (pc) 350	Served /h)	Capa (pc/	29: W écity (h)	eaving d, Ra	/c	Spe	ed		Density	
1 1 1 AP	0.S PF F 0.94	IF R	0.9	935 IV	(pc, 35)	Served /h)	Capa (pc/	city 'h)	d, Ra	/c					LOS
1 1 1 AP	0.S PF F 0.94	IF R	0.9	935 IV	(pc, 35)	/h) 62	(pc /	h) ¯	Ra						LOS
1 AP	F 0.94	IF R	fl-	IV	Volume			18	0.4		1	,,	(p	c/mi/ln)	
1 AP	F 0.94	R	F				Segment		0.0	68	46	.6		19.1	В
1 AP	F 0.94	R	F			Sarvad		30: Di	verge						
AP	0.94		_	R			Capa (pc/		d, Ra		Spe (mi			Density c/mi/ln)	LOS
AP		0.94	0.935		Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	l. F	R Infl.	
	₽Ŀ			0.980	2844	1010	7050	2100	0.40	0.48	60.2	57.5	15.7	17.8	В
	₽⊦						Segmer	nt 31: E	Basic						
	• • •	IF	fŀ	IV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			Density c/mi/ln)	LOS
1	0.9	94	0.9	943	17	71	450	00	0.3	39	55	.0		16.1	В
							Segmen	t 32: N	lerge						
AP	PF	IF	fŀ	IV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			Density c/mi/ln)	LOS
	F	R	F	R	Freeway	Ramp	Freeway	Ramp	F	R	F	R Inf	l. F	R Infl.	
1	0.94	0.94	0.943	0.971	2582	811	4500	2100	0.57	0.39	51.2	51.2	25.2	20.2	С
							Segmer	nt 33: E	Basic						
AP	Pŀ	lF	fŀ	IV	Volume (pc		Capa (pc/		d, Ra		Spe (mi			Density c/mi/ln)	LOS
1	0.9	94	0.9)43	260	06	450	00	0.5	58	53	.7		23.7	С
acility	y Ana	lysis I	Result	S											
AP ve	VMT eh-mi,			Deman -mi/AP		HD -h/AP	Total Delay \$/AP	Cost	Speed mi/h		Density pc/mi/ln		ensity h/mi/ln	TT min	LOS
1	1008	7	1(0087	13	3.98	349.46		56.1		18.4		17.0	12.10	С
acility	y Ove	rall R	esults												
pace M	Mean S	peed, r	mi/h		56.1			Averag	ge Densit	ty, veh,	/mi/ln		17.0		
Average	e Trave	l Time,	min		12.10			Averag	ge Densit	ty, pc/r	mi/ln		18.4		
otal VM	MT, veł	n-mi/Al	Р		10087			Total \	'HD, veh	-h			13.98		
			e (VOT),		25.00			Total D	Pelay Cos	st, \$			349.46		
/ehicle \	Value (of Time	e (VOT),						· ·						

HCS™ Freeways Version 2025 Design Year Build PM Improved - US 33 WB.xuf

EGAT	Project Safe	ety Performance Repo	rt
Economic Crash Analysis Tool	G	General Information	
Project Name	US 33 Widening	Contact Email	tflask@ljbinc.com
Project Description	US 33 Feasibility Study	Contact Phone	216-303-6055
Reference Number	121811	Date Performed	6/2/2025
Analyst	TVF	Analysis Year	2021-2023
Agency/Company	LJB Engineering		

Project	Project Summary Results (Without Animal Crashes)										
	KA	В	С	0	Total						
N _{predicted} - Existing Conditions	6.8944	24.3151	30.2147	159.8658	221.2900						
N _{expected} - Existing Conditions	7.2187	24.4453	29.4305	143.5634	204.6579						
N _{potential for improvement} - Existing Conditions	0.3243	0.1302	-0.7842	-16.3024	-16.6321						
N _{expected} - Proposed Conditions	4.9741	20.0962	24.2733	149.7574	199.1010						

ECAT	Project Safety Performance Report								
Economic Crash Analysis Tool	G	General Information							
Project Name	US 33 Widening	Contact Email	tflask@ljbinc.com						
Project Description	US 33 Feasibility Study	Contact Phone	216-303-6055						
Reference Number	121811	Date Performed	6/2/2025						
Analyst	TVF	Analysis Year	2021-2023						
Agency/Company	LJB Engineering								

	Existing Conditions Project E	lement Predicte	d Crash Summa		imal Crashes)	
Project Element ID	Common Name			Crash Severity Level		
•		KA	В	С	0	Total
	US 33 EB (FRA/FAI County Line to Hill/Diley E		0.4796			5.2673
	US 33 EB (Hill/Diley Exit Ramp to Project End		0.1307	0.196	1.224	1.5825
	US 33 EB (E of US 33/High-Bowen Intersection	0.0208	0.0912	0.1089	0.7648	0.9857
<u>US33N; 0-0.46</u>	US 33 WB (FRA/FAI County Line to W of Hill/I	0.0839	0.3991	0.4747	3.113	4.0707
	US 33 WB (Between Hill/Diley Ramps (Project	0.1702	0.7365	0.9274	3.3378	5.1719
	US 33 EB (Project start to E of SR104 NB ram	0.2448	0.9782	1.2878	3.3609	5.8717
	US 33 EB (SR104 entrance to I-270 SB exit)	0.2395	0.8233	1.0056	5.5948	7.6632
US33; 24.39-24.48	US 33 EB (I-270 SB off-ramp to Watkins Rd B	0.0165	0.0696	0.0954	0.54	0.7215
US33; 24.48-24.62	US 33 EB (Watkins Rd Bridge to I-270 SB on-I	0.0276	0.0987	0.1313		1.0017
US33; 24.62-24.75	US 33 EB (Between I-270 Ramps-Weave)	0.1419	0.4352	0.5688	2.227	3.3729
US33; 24.75-25.06	US 33 EB (E of I-270 loop ramps)	0.1986	0.7494	1.1316	4.5172	6.5968
	US 33 EB (E of I-270 loop ramps)	0.0417	0.1969	0.2478	1.4408	1.9272
US33; 25.22-25.65	US 33 EB (W of Hamilton Exit Ramp to SB Ha	0.1622	0.6152	0.819	4.4067	6.0031
US33; 25.65-25.91	US 33 EB (W of Hamilton Exit Ramp to SB Ha	0.0969	0.3485	0.4751	2.5378	3.4583
US33; 25.91-26.2	US 33 EB (E of SB Hamilton Entrance Ramp t	0.1709	0.7751	0.9686	2.7418	4.6564
US33; 26.2-27.06	US 33 EB (NB Hamilton Entrance Ramp to W	0.3295	1.2892	1.616	7.1644	10.3991
US33; 27.06-27.17	US 33 EB (W of Ebright Rd)	0.0357	0.1037	0.124	0.7131	0.9765
US33; 27.17-27.7	US 33 EB (W of US 33/Bixby Rd Intersection)	0.1644	0.495	0.6456	3.5103	4.8153
US33; 27.96-28.54	US 33 EB (E of US 33/Bixby Rd Intersection)	0.186	0.5626	0.7112	3.9718	5.4316
US33; 28.72-29.37	US 33 EB (E of US 33/Rager Rd Intersection)	0.211	0.6843	0.95	4.9869	6.8322
US33; 29.37-29.96	US 33 EB (W of Gender off-ramp to E of Gene	0.1629	0.6611	0.9125	3.6159	5.3524
US33; 29.96-30.79	US 33 EB (W of US 33/High-Bowen Intersection	0.2364	0.865	1.0496	4.9085	7.0595
	US 33 WB (W of SR 104 SB off-ramp)	0.0152	0.085	0.1181	0.7487	0.967
US33N; 22.88-23.24	US 33 WB (SR 104 NB off-ramp to SR 104 SB	0.119	0.4985	0.658	2.7218	3.9973
US33N; 23.24-24.26	US 33 WB (I-270 SB on-ramp to SR 104 off-ra	0.2837	0.9984	1.3243	7.4319	10.0383
US33N; 24.26-24.62	US 33 WB (I-270 SB off-ramp to W of I-270 SI	0.1206	0.5307	0.6965	2.6281	3.9759
US33N; 24.62-24.9	US 33 WB (I-270 NB off-ramp to I-270 SB off-r	0.2301	0.7259	0.6725	2.8582	4.4867
US33N; 24.9-25.63	US 33 WB (SB Hamilton Entrance Ramp to I-2	0.5832	2.1737	2.2745	27.4838	32.5152
US33N; 25.63-26.02	US 33 WB (Hamilton NB off-ramp to SB Hamil	0.2401	0.889	1.2268	4.5285	6.8844
US33N; 26.02-27.7	US 33 WB (US 33/Bixby Rd Intersection to Ha	0.5869	1.8684	2.4441	13.1693	18.0687
US33N; 27.96-28.54	US 33 WB (Rager Rd to Bixby Rd)	0.223	0.6224	0.8315	4.2766	5.9535
US33N; 28.72-29.3	US 33 WB (Gender SB on-ramp to E of US 33	0.2607	1.0297	1.3853	4.9414	7.6171
US33N; 29.3-29.39	US 33 WB (E of Gender SB on-ramp)	0.0958	0.4179	0.5532	1.0693	2.1362
	US 33 WB (Between Gender Ramps)	0.1857	0.7362	1.009		
	US 33 WB (E of Gender off-ramp)	0.1191	0.4054	0.5194	2.9847	4.0286
US33N; 30.2-30.24	US 33 WB (E of Cemetery Rd)	0.0129	0.0344	0.0415	0.2465	0.3353
US33N; 30.24-30.79	US 33 WB (W of US 33/High/Bowen Intersecti	0.1724	0.4815	0.6561	3.2683	4.5783
US33N; 31.01-31.156	US 33 WB (E of US 33/High/Bowen Intersection	0.0256	0.1192	0.1447	0.9139	1.2034
US33; 27.83	US 33/Bixby Rd Intersection	0.1617	0.3319	0.1959	2.4037	3.0932
US33; 28.63	US 33/Rager Rd Intersection	0.1114	0.2287	0.1352	1.7107	2.186
US33; 30.9	US 33/High-Bowen Intersection	0.268	0.5501	0.3247	3.4188	

ECAT	Project Safe	ety Performance Repo	rt
Economic Crash Analysis Tool	G	General Information	
Project Name	US 33 Widening	Contact Email	tflask@ljbinc.com
Project Description	US 33 Feasibility Study	Contact Phone	216-303-6055
Reference Number	121811	Date Performed	6/2/2025
Analyst	TVF	Analysis Year	2021-2023
Agency/Company	LJB Engineering		

	Existing Conditions Project E	lement Expecte	d Crash Summa		imal Crashes)	
Project Element ID	Common Name			Crash Severity Level		
		KA	В	С	0	Total
<u>US33; 0-0.65</u>	US 33 EB (FRA/FAI County Line to Hill/Diley E	0.106	0.476	0.5517	3.6107	4.7444
<u>US33; 0.65-0.91</u>	US 33 EB (Hill/Diley Exit Ramp to Project End	0.0318	0.1291	0.1924	1.1198	
US33; 31.01-31.145	US 33 EB (E of US 33/High-Bowen Intersectio	0.0207	0.0905	0.1078	0.7022	0.9212
<u>US33N; 0-0.46</u>	US 33 WB (FRA/FAI County Line to W of Hill/I	0.0837	0.3955	0.4696	2.7349	3.6837
US33N; 0.46-0.91	US 33 WB (Between Hill/Diley Ramps (Project	0.1669	0.6821	0.8457	2.7248	
US33; 22.95-23.31	US 33 EB (Project start to E of SR104 NB ram	0.2372	0.8718	1.1099	2.5209	4.7398
US33; 23.31-24.39	US 33 EB (SR104 entrance to I-270 SB exit)	0.239	0.8199	0.9959		
US33; 24.39-24.48	US 33 EB (I-270 SB off-ramp to Watkins Rd B	0.0164	0.076	0.0992	0.5226	0.7142
US33; 24.48-24.62	US 33 EB (Watkins Rd Bridge to I-270 SB on-I	0.0275	0.1048	0.1299	0.7737	1.0359
US33; 24.62-24.75	US 33 EB (Between I-270 Ramps-Weave)	0.1402	0.4211	0.5415	1.9191	3.0219
US33; 24.75-25.06	US 33 EB (E of I-270 loop ramps)	0.1953	0.7108	1.0374	3.5194	5.4629
US33; 25.06-25.22	US 33 EB (E of I-270 loop ramps)	0.0416	0.1941	0.2433	1.2519	1.7309
US33; 25.22-25.65	US 33 EB (W of Hamilton Exit Ramp to SB Ha	0.1615	0.6049	0.8009	3.7094	5.2767
US33; 25.65-25.91	US 33 EB (W of Hamilton Exit Ramp to SB Ha	0.0965	0.3435	0.4658	2.2022	3.108
US33; 25.91-26.2	US 33 EB (E of SB Hamilton Entrance Ramp to	0.167	0.7039	0.8561	2.1105	3.8375
US33; 26.2-27.06	US 33 EB (NB Hamilton Entrance Ramp to W	0.3261	1.2213	1.5151	6.1232	9.1857
US33; 27.06-27.17	US 33 EB (W of Ebright Rd)	0.0355	0.1025	0.1223	0.6867	0.947
US33; 27.17-27.7	US 33 EB (W of US 33/Bixby Rd Intersection)	0.1646	0.4936	0.6377	3.213	4.5089
US33; 27.96-28.54	US 33 EB (E of US 33/Bixby Rd Intersection)	0.1854	0.557	0.7023	3.509	4.9537
US33; 28.72-29.37	US 33 EB (E of US 33/Rager Rd Intersection)	0.2101	0.6743	0.9441	4.4043	6.2328
US33; 29.37-29.96	US 33 EB (W of Gender off-ramp to E of Gene	0.1617	0.6391	0.8758	3.3198	4.9964
US33; 29.96-30.79	US 33 EB (W of US 33/High-Bowen Intersection	0.2356	0.852	1.0257	4.3704	6.4837
US33N; 22.71-22.88	US 33 WB (W of SR 104 SB off-ramp)	0.0152	0.0867	0.1172	0.7204	0.9395
US33N; 22.88-23.24	US 33 WB (SR 104 NB off-ramp to SR 104 SB	0.118	0.4895	0.6303	2.4182	3.656
US33N; 23.24-24.26	US 33 WB (I-270 SB on-ramp to SR 104 off-ra	0.2823	0.9869	1.2964	6.4081	8.9737
US33N; 24.26-24.62	US 33 WB (I-270 SB off-ramp to W of I-270 SI	0.1203	0.5093	0.6549	2.2215	3.506
US33N; 24.62-24.9	US 33 WB (I-270 NB off-ramp to I-270 SB off-r	0.2262	0.6937	0.6426	2.4756	4.0381
US33N; 24.9-25.63	US 33 WB (SB Hamilton Entrance Ramp to I-2	0.5781	2.1882	2.1996	15.2423	20.2082
US33N; 25.63-26.02	US 33 WB (Hamilton NB off-ramp to SB Hamil	0.238	0.8544	1.1742	4.0255	6.2921
US33N; 26.02-27.7	US 33 WB (US 33/Bixby Rd Intersection to Ha	0.5848	1.8625	2.4058	11.9287	16.7818
US33N; 27.96-28.54	US 33 WB (Rager Rd to Bixby Rd)	0.2221	0.621	0.8262	3.8477	5.517
US33N; 28.72-29.3	US 33 WB (Gender SB on-ramp to E of US 33	0.258	0.9822	1.3079	4.4724	7.0205
US33N; 29.3-29.39	US 33 WB (E of Gender SB on-ramp)	0.0946	0.3955	0.5148	0.9424	1.9473
US33N; 29.39-29.79	US 33 WB (Between Gender Ramps)	0.1831	0.6924	0.9293	3.1859	4.9907
US33N; 29.79-30.2	US 33 WB (E of Gender off-ramp)	0.1187	0.4033	0.5149	2.6282	3.6651
US33N; 30.2-30.24	US 33 WB (E of Cemetery Rd)	0.0128	0.034	0.041	0.2277	0.3155
US33N; 30.24-30.79	US 33 WB (W of US 33/High/Bowen Intersecti	0.1719	0.4772	0.6481	2.9447	4.2419
	US 33 WB (E of US 33/High/Bowen Intersection	0.0255	0.118	0.1431	0.8298	1.1164
US33; 27.83	US 33/Bixby Rd Intersection	0.4478	0.9196	0.543	9.8901	11.8005
US33; 28.63	US 33/Rager Rd Intersection	0.2657	0.5459	0.3225	5.8484	6.9825
US33; 30.9	US 33/High-Bowen Intersection	0.2053	0.4212	0.2486		

ECAT	Project Safe	ety Performance Repo	rt						
Economic Crash Analysis Tool	General Information								
Project Name	US 33 Widening	Contact Email	tflask@ljbinc.com						
Project Description	US 33 Feasibility Study	Contact Phone	216-303-6055						
Reference Number	121811	Date Performed	6/2/2025						
Analyst	TVF	Analysis Year	2021-2023						
Agency/Company	LJB Engineering								

EXIS	sting Conditions Project Elemer	nt Potential for Safety Improvement Summary (Without Animal Crashes) Crash Severity Level							
Project Element ID	Common Name								
-		KA	В	С	0	Total			
	US 33 EB (FRA/FAI County Line to Hill/Diley E	-0.0001	-0.0036	-0.0048	-0.5144	-0.5229			
	US 33 EB (Hill/Diley Exit Ramp to Project End	6.93889E-18	-0.0016	-0.0036	-0.1042	-0.1094			
	US 33 EB (E of US 33/High-Bowen Intersectio	-1E-04	-0.0007	-0.0011	-0.0626	-0.0645			
	US 33 WB (FRA/FAI County Line to W of Hill/I	-0.0002	-0.0036	-0.0051	-0.3781	-0.387			
	US 33 WB (Between Hill/Diley Ramps (Project	-0.0033	-0.0544	-0.0817	-0.613	-0.7524			
	US 33 EB (Project start to E of SR104 NB ram	-0.0076	-0.1064	-0.1779	-0.84	-1.1319			
	US 33 EB (SR104 entrance to I-270 SB exit)	-0.0005	-0.0034	-0.0097	-0.441	-0.4546			
	US 33 EB (I-270 SB off-ramp to Watkins Rd B	-1E-04	0.0064	0.0038	-0.0174	-0.0073			
	US 33 EB (Watkins Rd Bridge to I-270 SB on-	-1E-04	0.0061	-0.0014	0.0296	0.0342			
US33; 24.62-24.75	US 33 EB (Between I-270 Ramps-Weave)	-0.0017	-0.0141	-0.0273	-0.3079	-0.351			
US33; 24.75-25.06	US 33 EB (E of I-270 loop ramps)	-0.0033	-0.0386	-0.0942	-0.9978	-1.1339			
US33; 25.06-25.22	US 33 EB (E of I-270 loop ramps)	-0.0001	-0.0028	-0.0045	-0.1889	-0.1963			
US33; 25.22-25.65	US 33 EB (W of Hamilton Exit Ramp to SB Ha	-0.0007	-0.0103	-0.0181	-0.6973	-0.7264			
US33; 25.65-25.91	US 33 EB (W of Hamilton Exit Ramp to SB Ha	-0.0004	-0.005	-0.0093	-0.3356	-0.3503			
US33; 25.91-26.2	US 33 EB (E of SB Hamilton Entrance Ramp t	-0.0039	-0.0712	-0.1125	-0.6313	-0.8189			
US33; 26.2-27.06	US 33 EB (NB Hamilton Entrance Ramp to W	-0.0034	-0.0679	-0.1009	-1.0412	-1.2134			
US33; 27.06-27.17	US 33 EB (W of Ebright Rd)	-0.0002	-0.0012	-0.0017	-0.0264	-0.0295			
US33; 27.17-27.7	US 33 EB (W of US 33/Bixby Rd Intersection)	0.0002	-0.0014	-0.0079	-0.2973	-0.3064			
US33; 27.96-28.54	US 33 EB (E of US 33/Bixby Rd Intersection)	-0.0006	-0.0056	-0.0089	-0.4628	-0.4779			
US33; 28.72-29.37	US 33 EB (E of US 33/Rager Rd Intersection)	-0.0009	-0.01	-0.0059	-0.5826	-0.5994			
US33; 29.37-29.96	US 33 EB (W of Gender off-ramp to E of Gene	-0.0012	-0.022	-0.0367	-0.2961	-0.356			
US33; 29.96-30.79	US 33 EB (W of US 33/High-Bowen Intersection	-0.0008	-0.013	-0.0239	-0.5381	-0.5758			
US33N; 22.71-22.88	US 33 WB (W of SR 104 SB off-ramp)	0	0.0017	-0.0009	-0.0283	-0.0275			
US33N; 22.88-23.24	US 33 WB (SR 104 NB off-ramp to SR 104 SB	-0.001	-0.009	-0.0277	-0.3036	-0.3413			
US33N; 23.24-24.26	US 33 WB (I-270 SB on-ramp to SR 104 off-ra	-0.0014	-0.0115	-0.0279	-1.0238	-1.0646			
US33N; 24.26-24.62	US 33 WB (I-270 SB off-ramp to W of I-270 SI	-0.0003	-0.0214	-0.0416	-0.4066	-0.4699			
	US 33 WB (I-270 NB off-ramp to I-270 SB off-r	-0.0039	-0.0322	-0.0299	-0.3826	-0.4486			
US33N; 24.9-25.63	US 33 WB (SB Hamilton Entrance Ramp to I-2	-0.0051	0.0145	-0.0749	-12.2415	-12.307			
US33N; 25.63-26.02	US 33 WB (Hamilton NB off-ramp to SB Hamil	-0.0021	-0.0346	-0.0526	-0.503	-0.5923			
US33N; 26.02-27.7	US 33 WB (US 33/Bixby Rd Intersection to Ha	-0.0021	-0.0059	-0.0383	-1.2406	-1.2869			
	US 33 WB (Rager Rd to Bixby Rd)	-0.0009	-0.0014	-0.0053	-0.4289	-0.4365			
	US 33 WB (Gender SB on-ramp to E of US 33	-0.0027	-0.0475	-0.0774	-0.469	-0.5966			
<u> </u>	US 33 WB (E of Gender SB on-ramp)	-0.0012	-0.0224		-0.1269	-0.1889			
	US 33 WB (Between Gender Ramps)	-0.0026	-0.0438		-0.329	-0.4551			
	US 33 WB (E of Gender off-ramp)	-0.0004	-0.0021	-0.0045	-0.3565	-0.3635			
	US 33 WB (E of Cemetery Rd)	-1E-04	-0.0004	-0.0005	-0.0188	-0.0198			
	US 33 WB (W of US 33/High/Bowen Intersecti	-0.0005	-0.0043	-0.008	-0.3236	-0.3364			
	US 33 WB (E of US 33/High/Bowen Intersection	-0.0001	-0.0012	-0.0016	-0.0841	-0.087			
	US 33/Bixby Rd Intersection	0.2861	0.5877	0.3471	7.4864	8.7073			
	US 33/Rager Rd Intersection	0.1543	0.3172	0.1873	4.1377	4.7965			
	US 33/High-Bowen Intersection	-0.0627	-0.1289		-0.3153	-0.583			

ECAT	Project Safe	ety Performance Repo	rt						
Economic Crash Analysis Tool	General Information								
Project Name	US 33 Widening	Contact Email	tflask@ljbinc.com						
Project Description	US 33 Feasibility Study	Contact Phone	216-303-6055						
Reference Number	121811	Date Performed	6/2/2025						
Analyst	TVF	Analysis Year	2021-2023						
Agency/Company	LJB Engineering								

Proposed Conditions Project Element Predicted Crash Summary (Without Animal Crashes)									
Project Element ID	Common Name	Crash Severity Level							
Project Liement ib	Common Name	KA	В	С	0	Total			
JS33; 0-0.6 <u>5</u>	US 33 EB (FRA/FAI County Line to Hill/Diley E	0.1127	0.4859	0.5836	3.9429	5.125			
JS33; 0.65-0.91	US 33 EB (Hill/Diley Exit Ramp to Project End	0.0347	0.1318	0.1955	1.2782	1.640			
JS33; 31.01-31.145	US 33 EB (E of US 33/High-Bowen Intersectio	0.0221	0.0922	0.1143	0.7314	0.90			
JS33N; 0-0.46	US 33 WB (FRA/FAI County Line to W of Hill/I	0.0839	0.3991	0.4747	3.113	4.070			
JS33N; 0.46-0.91	US 33 WB (Between Hill/Diley Ramps (Project	0.1292	0.572	0.716	3.1983	4.615			
JS33; 22.95-23.31	US 33 EB (Project start to E of SR104 NB ram	0.1726	0.678	0.8933	3.0367	4.780			
JS33; 23.31-24.39	US 33 EB (SR104 entrance to I-270 SB exit)	0.1307	0.668	0.9082	5.032	6.738			
JS33; 24.39-24.48	US 33 EB (I-270 SB off-ramp to Watkins Rd B	0.0116	0.0522	0.0678	0.4507	0.582			
JS33; 24.48-24.62	US 33 EB (Watkins Rd Bridge to I-270 SB on-	0.0145	0.0788	0.1046	0.6967	0.894			
US33; 24.62-24.75	US 33 EB (Between I-270 Ramps-Weave)	0.1173	0.3469	0.4359	1.9591	2.859			
US33; 24.75-25.06	US 33 EB (E of I-270 loop ramps)	0.1641	0.6248	0.937	4.1821	5.90			
US33; 25.06-25.22	US 33 EB (E of I-270 loop ramps)	0.0265	0.168	0.2321	1.3535	1.780			
US33; 25.22-25.65	US 33 EB (W of Hamilton Exit Ramp to SB Ha	0.1054	0.5269	0.7242	4.0929	5.449			
JS33; 25.65-25.91	US 33 EB (W of Hamilton Exit Ramp to SB Ha	0.0636	0.2992	0.4193	2.3489	3.13			
US33; 25.91-26.2	US 33 EB (E of SB Hamilton Entrance Ramp t	0.1168	0.5227	0.611	2.5008	3.751			
US33; 26.2-27.06	US 33 EB (NB Hamilton Entrance Ramp to W	0.2173	0.9906	1.2102	6.6137	9.031			
JS33; 27.06-27.17	US 33 EB (W of Ebright Rd)	0.019	0.0839	0.1078	0.6505	0.861			
JS33; 27.17-27.7	US 33 EB (W of US 33/Bixby Rd Intersection)	0.0889	0.4125	0.5261	3.2101	4.237			
US33; 27.96-28.54	US 33 EB (E of US 33/Bixby Rd Intersection)	0.1021	0.4683	0.5855	3.6891	4.84			
US33; 28.72-29.37	US 33 EB (E of US 33/Rager Rd Intersection)	0.1241	0.5645	0.7101	4.3865	5.785			
JS33; 29.37-29.96	US 33 EB (W of Gender off-ramp to E of Gene	0.1102	0.5426	0.6819	3.8579	5.192			
US33; 29.96-30.79	US 33 EB (W of US 33/High-Bowen Intersection	0.1483	0.636	0.7787	4.4319	5.994			
US33N; 22.71-22.88	US 33 WB (W of SR 104 SB off-ramp)	0.0331	0.1086	0.1546	0.7763	1.072			
US33N; 22.88-23.24	US 33 WB (SR 104 NB off-ramp to SR 104 SB	0.119	0.4984	0.6579	2.7219	3.997			
US33N; 23.24-24.26	US 33 WB (I-270 SB on-ramp to SR 104 off-ra	0.1632	0.8044	1.0059	6.4577	8.431			
US33N; 24.26-24.62	US 33 WB (I-270 SB off-ramp to W of I-270 SE	0.0695	0.2821	0.4116	2.2407	3.003			
JS33N; 24.62-24.9	US 33 WB (I-270 NB off-ramp to I-270 SB off-r	0.1645	0.4793	0.4291	2.4353	3.508			
JS33N; 24.9-25.63	US 33 WB (SB Hamilton Entrance Ramp to I-2	0.3045	1.7499	1.702	25.3294	29.085			
JS33N; 25.63-26.02	US 33 WB (Hamilton NB off-ramp to SB Hamil	0.1382	0.6646	0.843	4.019	5.664			
US33N; 26.02-27.7	US 33 WB (US 33/Bixby Rd Intersection to Ha	0.3327	1.5444	1.9464	11.7962	15.619			
US33N; 27.96-28.54	US 33 WB (Rager Rd to Bixby Rd)	0.1129	0.5043	0.6465	3.8663	5.13			
US33N; 28.72-29.3	US 33 WB (Gender SB on-ramp to E of US 33	0.2135	0.8768	1.286	4.9666	7.342			
US33N; 29.3-29.39	US 33 WB (E of Gender SB on-ramp)	0.0478	0.1784	0.2714	0.8521	1.349			
US33N; 29.39-29.79	US 33 WB (Between Gender Ramps)	0.1128	0.4525	0.6657	3.1275	4.358			
<u>US33N; 29.79-30.2</u>	US 33 WB (E of Gender off-ramp)	0.0813	0.3306			3.43			
US33N; 30.2-30.24	US 33 WB (E of Cemetery Rd)	0.007	0.0284	0.0367	0.2156				
US33N; 30.24-30.79	US 33 WB (W of US 33/High/Bowen Intersecti	0.0973	0.3913		2.9659	3.958			
JS33N; 31.01-31.156	US 33 WB (E of US 33/High/Bowen Intersection	0.0265	0.1191	0.1541	0.8657	1.165			
<u>JS33; 27.83</u>	US 33/Bixby Rd Intersection	0.2949	0.6054	0.3575					
<u>US33; 28.63</u>	US 33/Rager Rd Intersection	0.086	0.2008						
US33; 30.9	US 33/High-Bowen Intersection	0.4538	0.932	0.5504	4.2275	6.1637			

ECAT	Project Safe	ety Performance Repo	rt					
General Information								
Project Name	US 33 Widening	Contact Email	tflask@ljbinc.com					
Project Description	US 33 Feasibility Study	Contact Phone	216-303-6055					
Reference Number	121811	Date Performed	6/2/2025					
Analyst	TVF	Analysis Year	2021-2023					
Agency/Company	LJB Engineering							

	Summary by Crash Type								
		Existing							
Crash Type	Predicted Crash	Expected Crash	PSI	Predicted Crash					
	Frequency	Frequency		Frequency					
Unknown	0.4782	0.4874	0.0092	0.4697					
Head On	1.4801	1.5986	0.1186	1.2963					
Rear End	73.2827	65.7850	-7.4977	62.3314					
Backing	8.2747	8.6042	0.3295	7.3092					
Sideswipe - Meeting	2.0503	2.0368	-0.0135	1.7291					
Sideswipe - Passing	68.4178	54.9720	-13.4459	59.1455					
Angle	4.4929	8.3678	3.8749	5.3155					
Parked Vehicle	0.3883	0.8518	0.4635	0.4889					
Pedestrian	0.2717	0.2901	0.0183	0.2346					
Animal	11.6989	11.0667	-0.6322	12.0307					
Train	0.0000	0.0000	0.0000	0.0000					
Pedalcycles	0.0603	0.0711	0.0108	0.0535					
Other Non-Vehicle	0.0000	0.0000	0.0000	0.0000					
Fixed Object	47.3597	45.5498	-1.8098	45.4343					
Other Object	6.5731	6.4244	-0.1487	6.8415					
Overturning	1.5868	1.6737	0.0869	1.4099					
Other Non-Collision	5.2252	5.4134	0.1882	5.3082					
Left Turn	1.0157	1.7329	0.7172	1.1497					
Right Turn	0.3320	0.7991	0.4671	0.4432					

FRA-33-24.76 Feasibility Study **US 33 Widening**

PID 119387 PID 121811

9/20/2024

Completed by: HBK Checked: JRE

LJB Inc.

Roadway Design Criteria

	Mainline US-33	Mainline US-33	Mainline US-33	Ramps	Г
Geometric Elements	Threshold	Threshold	Threshold	Criteria Threshold	Reference/Comments
2					
General Secretaria de la configuração de la configu	Links a Francisco	Links Tues	Links - Francisco	Links a Francisco	ODOT For the selection of the first beginning
Functional classification	Urban Freeway	Urban Freeway	Urban Freeway	Urban Freeway	ODOT Funtional Classification Listings
Design speed	60	65	70	70/50/45/30	Design Designation & Scope of Service
Design year	>6000	>6000	. 0000		Certified Traffic
Design year ADT	>6000	>6000	>6000		Certified Traffic
Sight Distance					L&D Section 201
Stopping	570'	645'	730'	730'/425'/360'/200'	L&D Figure 201-1
Intersection (left turn)	N/A	N/A	N/A	N/A	L&D Figure 201-5
Intersection (right turn)	N/A	N/A	N/A	N/A	L&D Figure 201-5
Decision	1280'	1365'	1445'	1445'/1030'/930'/620'	L&D Section 201.5 & Figure 201-6
Horizontal Alignment					L&D Section 202
Max. deflection with no curve	0^55'	0^50'	0^45'	0^45'/1^05'/1^40'/3^45'	L&D Figure 202-1
Max. degree of curvature	4^15'	3^30'	2^45'	N/A/N/A/9^00'/24^45'	L&D Figure 202-2
Spiral curve required	1910' MIN.	2292' MIN	2546' MIN	1273' MIN. (50 MPH)	L&D Section 202.5 & Figure 202-11
Lane drop taper	60':1	65':1	70':1	L=WS^2/60, S:Speed	L&D Section 202.3 & Figure 202-11
Lane add taper	100'	100'	100'	100'	L&D Section 301.1.4
Minimum lateral clearance	10'RT/ 4'LT	10'RT/ 4'LT	10'RT/ 4'LT	10'RT/ 4'LT	L&D Section 301.1.4
Willimitum lateral clearance	10 K 1/ 4 L 1	10 K1/4 L1	10 K1/4 L1	10 K 1/4 L 1	L&D Figure 302-1
Superelevation					L&D Section 202.4
Max. curvature without superelevation	0^33'	0^29'	0^26'	0^26'/0^47'/5^40'/17^30'	L&D Section 202.4.3 & Figure 202-3
Maximum rate	8.0%	8.0%	8.0%	8%/6%/6%/4%	L&D Figure 202-7 - 10
Transition (G Rate)	222	233	250	250/200/185/152	L&D Figure 202-4
Position	Baseline	Baseline	Baseline	Baseline	L&D Figure 202-5(4)
Vertical Alignment					L&D Section 203
Maximum continuous grade	4%	4%	4%	4%/5%/N/A/N/A	L&D Figure 203-1
Minimum continuous grade	0.00%	0.00%	0.00%	0.00%	L&D Section 203.2.2
Max. grade breaks w/o vertical curve	0.30%	0.30%	0.25%	%	L&D Figure 203-2
Min. rate of vertical curvature (crest)	151	193	247	84/61/19	L&D Figure 203-3
Min. rate of vertical curvature (sag)	136	157	181	96/79/37	L&D Figure 203-6
Minimum vertical clearance	16.5'	16.5'	16.5'	16.5'	L&D Figure 302-1
Cross Section					L&D Section 300
Cross slope (normal crown)	0.016	0.016	0.016	0.016	L&D Section 301.1.5
Lane width	12'	12'	12'	12'	L&D Figure 301-2 & 301-4 & 303-1
Treated shoulder width (with curb)	10'Rt/4'Med	10'Rt/4'Med	10'Rt/4'Med	N/A	L&D Figure 301-4 & 303-1
Treated shoulder width (without curb)	10'RT/4'Med	10'RT/4'Med	10'RT/4'Med	3'LT/6'RT	L&D Figure 303-1& 301-3 & 301-4
Graded shoulder width (without curb)	15'RT/9'MED	15'Rt./9'Med	15'Rt./9'Med	6'LT8'RT	L&D Figure 303-1& 301-3 & 301-4
Curb type	N/A	N/A	N/A	N/A	L&D Section 305.2
Sidewalk width (to f/c if no tree lawn)	N/A	N/A	N/A	N/A	L&D Figure 306-2
Sidewalk buffer width (from traveled way)	N/A	N/A	N/A	N/A	L&D Figure 306-2
Intersection approach radii	N/A	N/A	N/A	N/A	L&D Section 401.5.2 & 401.8.1
Roadside grading	Safety Grading	Safety Grading	Safety Grading	Safety Grading	L&D Section 401.3.2 & 401.8.1
rtoduside grading	Jaiety Grauling	Salety Glauling	Jaiety Grauling	Jaiety Grauling	LAD SECTION SULLS. I
Clear Zone Width		1			L&D Section 600.2 & Figure 600-1

ODOT Permitted Lane Closures

http://plcm.dot.state.oh.us//Default.aspx

September 18, 2024

Cindy Yerkey, PE
Transportation Operations Leader
LJB Engineering
6480 Rockside Woods South
Suite 290
Independence, OH 43131

Re: FRA-33-24.76 Proposed ITS alternatives for Feasibility Study

Dear Cindy

The following includes a preliminary summary outline of improvements and high-level construction cost estimate for two proposed alternatives of ITS infrastructure deployments based on potential US-33 widening alternatives currently being evaluated by ODOT. ITS alternative #1 assumes that the existing grassy/earthen berm center median of US-33 will be replaced by a concrete center median wall and an additional travel lane in both directions of the mainline. ITS alternative #2 assumes that the existing center median will remain intact and an additional travel lane in both directions of the mainline will be constructed along the right shoulder within the LA/RW.

ITS improvements evaluated consist of new and upgraded CCTV, Dynamic Message Sign(DMS), and Ramp Meter Signal(RMS) sites, power service upgrades, and communications infrastructure for both the ODOT Freeway Management System(FMS) and Columbus Traffic Signal System(CTSS)

Best regards,

Matt Graf
Project Manager
HNTB Corporation
65 East State Street - Suite 2100
Columbus, OH 43215
mgraf@hntb.com (614) 745-9484

ITS Alternative Summary Outline

Alternative 1 - Widen Pavement Towards Center Median

- 1. Dynamic Message Sign (DMS)
 - 1.1. Remove existing pedestal mounted DMS and equipment cabinet near Sta 1339+00.
 - 1.2. Install new truss mounted DMS (westbound)
 - 1.2.1. DMS will be Daktronics VF-2020, walk-in full color display (RGB), 96 x 336 pixel matrix
 - 1.2.2. Install DMS on truss centered over left three lanes. Co-locate N I-270 exit only sign on DMS truss centered over right exit lane.
 - 1.2.3. Install ground mounted DMS equipment cabinet.
 - 1.2.4. Maintain existing power service (approx. Sta 1341+19, 129 RT), extend to new location and upgrade conductor size if needed.
 - 1.2.5. Install FOC drop (replace wireless until ODOT can install and activate fiber)
 - 1.2.6. Installing at Sta 1343+00 (preferred location) will result in a viewing angle of 1°27′ from Sta 1355+00
 - 1.2.7. Installing at Sta 1339+00 will result in a viewing angle of 3°16' from Sta 1352+00
 - 1.3. Maintain existing DMS operation until proposed DMS is ready to be put in service.
 - 1.4. Truss mounted DMS replacement estimated cost \$155,550.

2. CCTV

- 2.1. Proposed ODOT CCTV at Sta 1435+50 (Ebright Rd)
 - 2.1.1. Install 70' concrete pole with PTZ CCTV and lowering device.
 - 2.1.2. Install new power service.
 - 2.1.3. Connect conduit to interconnect duct bank system (install wireless until ODOT can install and activate fiber).
- 2.2. Proposed ODOT CCTV as Sta 1702+00, LT (Diley Rd)
 - 2.2.1. Install 70' concrete pole with PTZ CCTV and lowering device.
 - 2.2.2. Install new power service.
 - 2.2.3. Connect conduit to interconnect duct bank system (install wireless until ODOT can install and activate fiber).
- 2.3. Proposed ODOT CCTV at Sta 1470+00 (Bixby Rd)
 - 2.3.1. Install 70' concrete pole with PTZ CCTV and lowering device.

- 2.3.2. Will be incorporated into Bixby Rd interchange design and built by that project (PID 76687)
- 2.4. Maintain existing ODOT CCTV sites during construction
 - 2.4.1. CCTV (I-270/US-33) FRA-270-28.247; FOC
 - 2.4.2. CCTV (US-33/Hamilton Rd); FRA-317-9.189; Ethernet Radio
 - 2.4.3. CCTV (US-33/Gender Rd); FRA-33-29.576; Ethernet Radio
- 2.5. 70' pole w/CCTV installation estimated cost \$73,500 per site. Total \$147,000 for Ebright Rd and Diley Rd installations
- 3. Road Weather Information Sensor (RWIS)
 - 3.1. Do not disturb existing RWIS (US-33/Hamilton Rd); FRA-33-25.934; Ethernet Radio
 - 3.2. Negligible cost anticipated to maintain existing RWIS.
- 4. Ramp Meter Signal (RMS)
 - 4.1. Proposed RMS at Sta 1358+42, 105' LT (Hamilton Rd onramp to WB US-33)
 - 4.1.1. Approx 1300' single lane storage capacity.
 - 4.1.2. Length of acceleration lane is sufficient past stop bar location.
 - 4.2. Proposed RMS at Sta 1358+42, LT (Bixby Rd to WB US-33)
 - 4.2.1. May be incorporated into Bixby Rd interchange design project. (PID 76687)
 - 4.3. Proposed RMS at Sta 1550+75, 115' LT (SB Gender Rd onramp to WB US-33)
 - 4.3.1. Length of acceleration lane is sufficient past stop bar location.
 - 4.4. Proposed RMS at Sta 1563+32, 100' LT (NB Gender Rd onramp to WB US-33)
 - 4.4.1. RMS at this location is not advisable because of SSD constraints due to geometrics of loop ramp.
 - 4.5. Proposed RMS at Sta 1686+00, 105' LT (Diley Rd onramp to WB US-33)
 - 4.5.1. Approx 1750' single lane storage capacity.
 - 4.5.2. Length of acceleration lane is sufficient past stop bar location.
 - 4.6. RMS installation estimated cost \$79,050 per site. Total \$237,150 for Hamilton Rd to WB, Gender Rd to WB, and Diley Rd to WB ramps.
- 5. Communications interconnect along project extents from Sta 1213+00 to 1693+00

- 5.1. Median Barrier Wall
 - 5.1.1. Install 2" conduit with 10mm innerducts for ODOT ITS for future fiber optic interconnect.
 - 5.1.2. Install 2" conduit and 288 strand fiber optic cable for City of Columbus CTSS interconnect.
 - 5.1.3. Install poly concrete junction boxes in median wall, spaced approximately 750-1000ft apart along each ODOT and CTSS conduit. Alternate access between ODOT and CTSS conduits, maintain separation of conduit/ducts between ODOT and CTSS networks except for where ODOT/CTSS devices are collocated at shared access/device locations (CCTV, DMS, communications node)
 - 5.1.4. Bore or trench 2-2" conduits under roadway to existing and planned equipment or fiber access sites. Tie into proposed and/or existing 32in/48in concrete pull boxes.
- 5.2. Communications interconnect estimated cost \$1,367,916 for ODOT infrastructure and \$1,394,076 for CTSS infrastructure.
- 5.3. Do not disturb existing CTSS interconnect and network equipment:
 - 5.3.1. Communications node (I-270/US-33)
 - 5.3.2. Communications node (US-33/Hamilton Rd)
 - 5.3.3. Communications node (US-33/Gender Rd)
 - 5.3.4. Temporary aerial fiber backbone cable (EB US-33 from I-270 to Gender Rd)
 - 5.3.5. Underground fiber backbone cable (US-33 north of SR-104)
- 6. ITS Total estimated cost for Alternative 1 \$3,301,692

Alternative 2 - Widen Towards Outside Shoulders

- 7. Dynamic Message Sign (DMS)
 - 7.1. Remove existing pedestal mounted DMS and equipment cabinet near Sta 1339+00.
 - 7.2. Install new truss mounted DMS (westbound)
 - 7.2.1. DMS will be Daktronics VF-2020, walk-in full color display (RGB), 96 x 336 pixel matrix
 - 7.2.2. Install DMS on truss centered over left three lanes. Co-locate N I-270 exit only sign on DMS truss centered over right exit lane.
 - 7.2.3. Install ground mounted DMS equipment cabinet.
 - 7.2.4. Maintain existing power service (approx. Sta 1341+19, 129 RT), extend to new location and upgrade conductor size if needed.
 - 7.2.5. Install FOC drop (replace wireless until ODOT can install and activate fiber)
 - 7.2.6. Installing at Sta 1343+00 (preferred location) will result in a viewing angle of 1°27′ from Sta 1355+00

- 7.2.7. Installing at Sta 1339+00 will result in a viewing angle of 3°16' from Sta 1352+00
- 7.3. Maintain existing DMS operation until proposed DMS is ready to be put in service.
- 7.4. Truss mounted DMS replacement estimated cost \$155,550.

8. CCTV

- 8.1. Proposed ODOT CCTV at Sta 1435+50 (Ebright Rd)
 - 8.1.1. Install 70' concrete pole with PTZ CCTV and lowering device.
 - 8.1.2. Install new power service.
 - 8.1.3. Connect conduit to interconnect duct bank system (install wireless until ODOT can install and activate fiber).
- 8.2. Proposed ODOT CCTV as Sta 1702+00, LT (Diley Rd)
 - 8.2.1. Install 70' concrete pole with PTZ CCTV and lowering device.
 - 8.2.2. Install new power service.
 - 8.2.3. Connect conduit to interconnect duct bank system (install wireless until ODOT can install and activate fiber).
- 8.3. Proposed ODOT CCTV at Sta 1470+00 (Bixby Rd)
 - 8.3.1. Install 70' concrete pole with PTZ CCTV and lowering device.
 - 8.3.2. Will be incorporated into Bixby Rd interchange design and built by that project (PID 76687)
- 8.4. Maintain existing ODOT CCTV sites during construction
 - 8.4.1. CCTV (I-270/US-33) FRA-270-28.247; FOC
 - 8.4.2. CCTV (US-33/Hamilton Rd); FRA-317-9.189; Ethernet Radio
 - 8.4.3. CCTV (US-33/Gender Rd); FRA-33-29.576; Ethernet Radio
- 8.5. 70' pole w/CCTV installation estimated cost \$73,500 per site. Total \$147,000 for Ebright Rd and Diley Rd installations
- 9. RWIS
 - 9.1. Do not disturb existing RWIS (US-33/Hamilton Rd); FRA-33-25.934; Ethernet Radio
 - 9.2. Negligible cost anticipated to maintain existing RWIS.
- 10. Ramp Meter

- 10.1. Proposed RMS at Sta 1358+42, 105' LT (Hamilton Rd onramp to WB US-33)
 - 10.1.1. Approx 1300' single lane storage capacity.
 - 10.1.2. Length of acceleration lane is sufficient past stop bar location.
- 10.2. Proposed RMS at Sta 1358+42, LT (Bixby Rd to WB US-33)
 10.2.1. May be incorporated into Bixby Rd interchange design project. (PID 76687)
- 10.3. Proposed RMS at Sta 1550+75, 115' LT (SB Gender Rd onramp to WB US-33) 10.3.1.Length of acceleration lane is sufficient past stop bar location.
- 10.4. Proposed RMS at Sta 1563+32, 100' LT (NB Gender Rd onramp to WB US-33) 10.4.1.RMS at this location is not advisable because of SSD constraints due to geometrics of loop ramp.
- 10.5. Proposed RMS at Sta 1686+00, 105' LT (Diley Rd onramp to WB US-33) 10.5.1. Approx 1750' single lane storage capacity.
 - 10.5.2. Length of acceleration lane is sufficient past stop bar location.
- 10.6. RMS installation estimated cost \$79,050 per site. Total \$237,150 for Hamilton Rd to WB, Gender Rd to WB, and Diley Rd to WB ramps.
- 11. Communications Interconnect along project extents from Sta 1213+00 to 1693+00
 - 11.1. Trench in center median
 - 11.1.1. Install 2" conduit with 10mm innerducts for ODOT ITS for future fiber optic interconnect.
 - 11.1.2. Install 2" conduit and 288 strand fiber optic cable for City of Columbus CTSS interconnect.
 - 11.1.3. Install 32in/48in concrete pull boxes, spaced approximately 750-1000ft apart along each ODOT and CTSS conduit. Alternate access between ODOT and CTSS conduits, maintain separation of conduit/ducts between ODOT and CTSS networks except for where ODOT/CTSS devices are collocated at shared access/device locations (CCTV, DMS, communications node)

- 11.1.4. Bore or trench 2-2" conduits under roadway to existing and planned equipment or fiber access sites. Tie into proposed and/or existing 32in/48in concrete pull boxes.
- 11.2. Communications interconnect estimated cost \$1,833,416 for ODOT infrastructure and \$1,381,548 for CTSS infrastructure.
- 11.3. Do not disturb existing CTSS interconnect and network equipment:
 - 11.3.1. Communications node (I-270/US-33)
 - 11.3.2. Communications node (US-33/Hamilton Rd)
 - 11.3.3. Communications node (US-33/Gender Rd)
 - 11.3.4. Temporary aerial fiber backbone cable (EB US-33 from I-270 to Gender Rd)
 - 11.3.5. Underground fiber backbone cable (US-33 north of SR-104)
- 12. ITS Total estimated cost for Alternative 2 \$3,754,664
- 13. Construction Alternative 1 vs. Construction Alternative 2
 - 13.1. Both construction alternatives will result in the same overall functional improvements for both the ODOT FMS and Columbus CTSS systems.
 - 13.2. Construction Alternative 1 will install the majority of communications interconnect infrastructure within the concrete median barrier wall as opposed to Construction Alternative 2 which will install communications interconnect infrastructure underground within the LA/RW. Both installation methods are acceptable and there are unique costs/benefits associated with both, although utilizing the concrete barrier wall (Construction Alternative 1) is typically preferred by both clients when given a choice.
 - 13.3. Construction Alternative 1 is estimated to be \$452,972 less than Construction Alternative 2.

Alternative 1 vs Alternative 2 Estimated ITS Construction Costs

Ü	INIT PRICE	\$12.00	\$18.00	\$10.15	\$45.00	\$52.00	\$3,200.00	\$2,500.00	\$7,500.00	\$12,000.00	\$6,650.00	\$5.50	\$45,800.00	\$10,250.00	\$4,500.00	\$40,000.00	\$80,000.00	\$2,000.00	\$60,000.00	\$13.00	
u	INIT	FT	FT	FT	FT	FT	EA	EA	EA	EA	EA	FT	EA	EA	EA	EA	EA	EA	EA	SF	
17	TEM	625E25411	625E25411	625E29010	625E25900	625E25909	625E29940	625E30710	625E34000	630E89710	809E60000	804E15050	809E61000	809E65000	809E81002	630E70080	809E63000	809E99100	809E67000	633E67202	
D	DESCRIPTION	CONDUIT, 2", 725.052, AS PER PLAM	CONDUIT, 2", 725.052, AS PER PLAN, WITH 4-10/8MM MICRODUCTS	TRENCH, 30" DEEP	CONDUIT, 2", ATTACHED TO STRUCTURE	CONDUIT, JACKED OR DRILLED, 725.052, AS PER PLAN, 2* WITH 4-10/8MM MICRODUCTS	SARRIER JUNCTION BOX	PULL BOX, 725.08, 32"	POWER SERVICE	REMOVAL OF OVERHEAD DMS MITH SUPPORT AND DELIVERY	CCTV	FIBER OPTIC CABLE, 288 FIBER	CCTV CONCRETE POLE WITH LOWERING UNIT, 70 FEET	TS CABINET - GROUND MOUNTED	REMOVAL OF DMS TRUSS AND DISPOSAL	DVERHEAD SIGN SUPPORT FOUNDATION, DMS TRUSS	DYNAMIC MESSAGE SIGN (DMS), FULL-SIZE WALK-IN	SPECIAL - CCTV INTEGRATION	RAMP METER SIGNAL	CONTROLLER WORK PAD, AS PER PLAN	temized Subtotal
A	It 1 -Widen towards	center media	an																		
О	DOT Interconnect		48,000			5,520	48	24												252	
O	DOT DMS								1	1				1	1	1	1			100	
О	DOT CCTV								2		2		2	2				2		200	
0	DOT RMS								3					3					3	300	
C	TSS Interconnect	48,000				5,520	48	24				57,120								252	
Ī	OTAL QUANTITY	48,000	48,000	·		11,040	96	48	6	1	2	57,120	2	6	1	1	1	2	3	1,104	
_																					
-	ODOT Interconnect		\$864,000			\$287,040	\$153,600	\$60,000												\$3,276	\$1,367
_	DDOT DMS								\$7,500	\$12,000	*** ***		40	\$10,250	\$4,500	\$40,000	\$80,000	41.000		\$1,300	\$155
_	DOT CCTV								\$15,000		\$13,300		\$91,600	\$20,500				\$4,000	****	\$2,600	\$14
_	ODOT RMS	6536,000				\$287,040	6112.600	\$60,000	\$22,500			6314.160		\$30,750	—				\$180,000	\$3,900 \$3,276	\$23
_	TSS Interconnect	\$576,000	£004.000				\$153,600		£15.000	*** ***	642.200	\$314,160	604 500	664.500	64.500	640.000	600.000	64.000	C400 000		\$1,394
_	OTAL COST	\$576,000	\$864,000	\$0	\$0	\$574,080	\$307,200	\$120,000	\$45,000	\$12,000	\$13,300	\$314,160	\$91,600	\$61,500	\$4,500	\$40,000	\$80,000	\$4,000	\$180,000	\$14,352	\$5,50
	Alt 2 -Widen towards	outeldo chos	Idor																		_
_	DOT Interconnect	outside silos	47,520	47,250	480	5,520		72							-					756.0	\vdash
_	DOT DMS		47,320	47,230	400	3,320		7.2	1	1				1	1	1	1			100.0	\vdash
-	DOT CCTV								2		2		2	2	_			2		200.0	-
_	DOT RMS								3		_		_	3					3	300.0	Н—
C	TSS Interconnect	47,520			480	5,520		72				56,880								756.0	-
Т	OTAL QUANTITY	47,520	47,520	47,250	960	11,040	-	144	6	1	2	56,880	2	6	1	1	1	2	3	2,112	
													•			•					
О	DOT Interconnect		\$855,360	\$479,588	\$21,600	\$287,040		\$180,000							I					\$9,828	\$1,83
0	DDOT DMS								\$7,500	\$12,000				\$10,250	\$4,500	\$40,000	\$80,000			\$1,300	\$15
О	DDOT CCTV								\$15,000		\$13,300		\$91,600	\$20,500				\$4,000		\$2,600	\$14
Ç	DDOT RMS								\$22,500					\$30,750					\$180,000	\$3,900	\$23
C	TSS Interconnect	\$570,240			\$21,600	\$287,040		\$180,000				\$312,840								\$9,828	\$1,38
	OTAL COST	\$570,240	\$855,360	\$479,588	\$43,200	\$574,080	\$0	\$360,000	\$45,000	\$12,000	\$13,300	\$312,840	\$91,600	\$61,500	\$4,500	\$40,000	\$80,000	\$4,000	\$180,000	\$27,456	\$3.79

PID 121811 ODOT District 6 September 20, 2024

Prepared by: Angela Tremblay, PE atremblay@ljbinc.com 937-259-5798

Table of Contents

Big Walnut Creek Overflow	1
Big Walnut Creek	3
Hamilton Road Overpass	4
Blacklick Creek	5
Bikepath Overpass	7
Ebright Road Overpass	8
Cable Bowman Ditch	9
George Creek	10
Gender Road Overpass	11

Big Walnut Creek Overflow

SFNs 2501929 and 2501953

SFN 2501929 (WB) SFN 2501953 (EB) INSPECTION SUMMARY INSPECTION SUMMARY (58) Deck: 7 (58) Deck: 8 (59) Superstructure: 8 (59) Superstructure: 7 (60) Substructure: 7 (60) Substructure: 7 (62) Culvert: N (62) Culvert: N (61) Channel: 9 (61) Channel: 8 (C6) Approaches: (C6) Approaches: General Appraisal: 7 General Appraisal: 7 (41) Operational Status: A (41) Operational Status: A (90) Inspection date: 4/17/2023 (90) Inspection date: 4/17/2023 (91) Desig Insp Freq: 24 Mos (91) Desig Insp Freq: 24 Mos

Some deterioration of protective coating system (PCS) on piles (both bridges) – no work assumed for cost estimate.

SFN 2501929 (WB)	SFN 2501953 (EB)
	Investigate the cause of the crack at the slab seat/interface of abutment during
	design. Widening will remove and replace a portion of the fascia and this is included
	in the cost estimate.

Big Walnut Creek

SFNs 2501988 and 2502011

SFN 2501988 (WB)	SFN 2502011 (EB)
INSPECTION SUMMARY	INSPECTION SUMMARY
(58) Deck: 8	(58) Deck: 8
(59) Superstructure: 8	(59) Superstructure: 8
(60) Substructure: 8	(60) Substructure: 8
(62) Culvert: N	(62) Culvert: N
(61) Channel: 7	(61) Channel: 9
(C6) Approaches:	(C6) Approaches:
General Appraisal: 8	General Appraisal: 8
(41) Operational Status: A	(41) Operational Status: A
(90) Inspection date: 4/17/2023	(90) Inspection date: 4/17/2023
(91) Desig Insp Freq: 24 Mos	(91) Desig Insp Freq: 24 Mos

Both structures are in good condition. Repair or rehabilitation is not anticipated. Resealing of parapets is included in the cost estimates. Representative photos below.

Big Walnut Creek

Hamilton Road Overpass

SFN 2516381

INSPECTION SUMMARY

(58) Deck: 7

(59) Superstructure: 8

(60) Substructure: 5

(62) Culvert: N

(61) Channel: N (C6) Approaches: General Appraisal: 5

(41) Operational Status: A

(90) Inspection date: 10/12/2023

(91) Desig Insp Freq: 12 Mos

Rehabilitation considered to improve the bridge condition rating is included in the cost estimate, assuming the following improvements:

- Pier concrete patching and composite fiber wrap
- Substructure concrete patching with galvanic anodes

Approach pavement/joint rehabilitation or replacement could also be considered to improve the bridge condition and durability, although this would require work zones and maintenance of traffic on Hamilton Road.

Worst case pier deterioration is likely controlling the substructure condition rating

Blacklick Creek

SFNs 2502046 and 2502070

SFN 2502046 (WB)	SFN 2502070 (EB)
INSPECTION SUMMARY	INSPECTION SUMMARY
(58) Deck: 9	(58) Deck: 9
(59) Superstructure: 7	(59) Superstructure: 8
(60) Substructure: 7	(60) Substructure: 7
(62) Culvert: N	(62) Culvert: N
(61) Channel: 8	(61) Channel: 8
(C6) Approaches:	(C6) Approaches:
General Appraisal: 7	General Appraisal: 7
(41) Operational Status: A	(41) Operational Status: A
(90) Inspection date: 4/18/2023	(90) Inspection date: 4/18/2023
(91) Desig Insp Freq: 24 Mos	(91) Desig Insp Freq: 24 Mos

Some deterioration of the protective coating system (PCS) on piles (both bridges) – no work assumed for cost estimate.

5

Blacklick Creek

SFN 2502070 (EB)

Concrete patching included in the cost estimate.

Painting costs included in estimate for fascia beams in their entirety and all bottom flanges for both bridges. This adds approximately \$150,000 per bridge.

Blacklick Creek 6

Bikepath Overpass

SFN 2502038

INSPECTION SUMMARY

(58) Deck: 9

(59) Superstructure: 9

(60) Substructure: 9

(62) Culvert: N

(61) Channel: 9

(C6) Approaches:

General Appraisal: 9

(41) Operational Status: A

(90) Inspection date: 4/18/2023

(91) Desig Insp Freq: 24 Mos

Built in 2011. No rehabilitation work anticipated.

Ebright Road Overpass

SFN 2502089

INSPECTION SUMMARY

(58) Deck: 7

(59) Superstructure: 9

(60) Substructure: 7

(62) Culvert: N

(61) Channel: N (C6) Approaches: General Appraisal: 7

(41) Operational Status: A

(90) Inspection date: 4/18/2023

(91) Desig Insp Freq: 24 Mos

Abutment seats could use some patching. However, no other bridge work is anticipated with the FRA-33 widening; therefore, costs for patching are not included in the cost estimate.

Cable Bowman Ditch

SFNs 2502100 and 2502135

SFN 2502100 (WB)	SFN 2502135 (EB)
INSPECTION SUMMARY	INSPECTION SUMMARY
(58) Deck: 7	(58) Deck: 7
(59) Superstructure: 7	(59) Superstructure: 7
(60) Substructure: 7	(60) Substructure: 7
(62) Culvert: N	(62) Culvert: N
(61) Channel: 6	(61) Channel: 6
(C6) Approaches:	(C6) Approaches:
General Appraisal: 7	General Appraisal: 7
(41) Operational Status: A	(41) Operational Status: A
(90) Inspection date: 5/22/2024	(90) Inspection date: 5/22/2024
(91) Desig Insp Freq: 24 Mos	(91) Desig Insp Freq: 24 Mos

Detailed inspection was not performed at this stage. Minor patching and crack repair assumed for the cost estimate. A full Structure Type Study is planned for this structure and will be performed after the preferred alternative is determined.

George Creek

SFNs 2502194 and 2502224

SFN 2502194 (WB)	SFN 2502224 (EB)		
INSPECTION SUMMARY	INSPECTION SUMMARY		
(58) Deck: 7	(58) Deck: 8		
(59) Superstructure: 7	(59) Superstructure: 8		
(60) Substructure: 4	(60) Substructure: 5		
(62) Culvert: N	(62) Culvert: N		
(61) Channel: 9	(61) Channel: 9		
(C6) Approaches:	(C6) Approaches:		
General Appraisal: 4	General Appraisal: 5		
(41) Operational Status: A	(41) Operational Status: A		
(90) Inspection date: 3/29/2024	(90) Inspection date: 3/29/2024		
(91) Desig Insp Freq: 12 Mos	(91) Desig Insp Freq: 12 Mos		

Substructure patching included in the cost estimate. Our survey pictures do not show why the substructure would be rated a 4. Will need a more thorough inspection during Stage 1 design to quantify. For the cost estimate, a larger amount of patching was assumed.

George Creek 10

Gender Road Overpass

SFN 2517361

INSPECTION SUMMARY	INSPECTION SUMMARY			
(58) Deck: 8	(58) Deck: 8			
(59) Superstructure: 7	(59) Superstructure: 3			
(60) Substructure: 7	(60) Substructure: 7			
(62) Culvert: N	(62) Culvert: N			
(61) Channel: N	(61) Channel: N			
(C6) Approaches:	(C6) Approaches:			
General Appraisal: 7	General Appraisal: 3			
(41) Operational Status: A	(41) Operational Status: A			
(90) Inspection date: 4/18/2023	(90) Inspection date: 5/20/2024			
(91) Desig Insp Freq: 24 Mos	(91) Desig Insp Freq: 12 Mos			

No rehabilitation was originally anticipated with this project. The serious (3) superstructure condition rating shown on the inspection date of 5/20/2024 is a result of impact damage to the bridge beams caused by a truck hauling an excavator. The bridge was inspected on the date of impact. The vertical clearance is being increased with this project by lowering the profile of US-33.

Existing Conditions

Existing Site Description

The project sites are located on US-33, over Cable Boweman Ditch and Tussing-Bachman Ditch, in Franklin County, Ohio. The structures over Cable Boweman Ditch are located 2.76 miles east of I270. Structure over Tussing Bachman Ditch is located 0.67 miles east of Gender Rd. The structures are on a tangent alignment and the profile is on a tangent grade. The approach roadway is 44' wide for all four structures. Each structure consists of two 11' lanes, grass median plus shoulders on each side.

Existing Structure File Number: 2502100 (L) & 2502135 (R)

Existing Structure Information

Bridge Number: FRA-33-27510 L & R

Year Built: 1963

Existing O/A Length: 17.8 Ft.; Span: 14'-0"

Structure Type: Single span reinforced concrete slab bridge

Number of Spans: 1 Skew: 26 degrees

Built in 1963, both the structures are single span reinforced concrete slab bridge on cantilevered abutments on spread footings. The alignment is on a tangent and there is a 26 degree skew. Both the structures share a common wingwall in the middle at both abutments.

Condition Summary

Roadway has longitudinal cracks as well as spalling of the wearing surface in which some areas were repaired. A pothole was observed at the edge of the outside northbound travel lane. Roadway Parapets are in good condition. The bridge had lots of cracking and efflorescence under the roadway sections for both walls and ceiling. Evidence of leakage was observed at both abutment slab seats. Heavy efflorescence, delaminations and spalling was identified at the forward abutment and minimum deteriorations at the rear abutment. During concrete sounding, the southeast headwall has a 1-foot by 2-foot area of unsound concrete. Certain areas of the channel had ground buildup and southside water seemed to be undermining the southeast headwall.

The general appraisal based on the most recent BR-86 bridge inspection performed on 04/18/2023 is **7** (good) for both the bridges. Channel under the bridge is appraised at 6.

Existing Conditions

Existing Structure File Number: 2502267

Existing Structure Information

Bridge Number: FRA-33-30300

Year Built: 2011

Length of Culvert: 148.17 Ft.; Span: 10 Ft

Bridge Type: Concrete Culvert

Skew: 9 degrees

Condition Summary

Roadway is in good condition. Both of the culvert headwalls have small areas of delamination and spalling concrete. The North headwall is not in alignment of the adjacent wingwalls at both sides, the joints are off by 3/4" to 1". No joint material was observed in any of the joints between the headwalls and wingwalls. Erosion of the roadway surface was observed at the south headwall east corner. The culvert sections and joints inside the culvert are in good condition. Rest of culvert is in good condition

The general appraisal based on the most recent culvert inspection performed on 03/29/2024 is **8** (very good). Channel is appraised at 9.

Structure Number: Inspector: 2502100 Shah, Meet 05/22/2024 **US 33 Inspection Date: Facility Carried:**

Ohio Bridge Inspection Summary Report

FRA-00033-2751L (2502100)

One Bridge inspection cumulary report				1 KA 000	OO ZIOIL (ZOOZ	_
2: DistrictDistr 46410 - Nict 06	MADISON TWP (FRA county)		5A: Inventory R	oute 1	00033	
21: Major Maint A/B	01 - State Highway Agency	/	7: Facility On	US 33		
225 Routine Main A/B	01 - State Highway Agency	/	6: Feature Ints	CABLE BOWM	IAN DITCH	
221 Inspection A/B	01 - State Highway Agency	/	9: Location	2.76 MI E OF S	SR270	
220: Inv. Location DIS	STRICT 06		Lat, Lon	39.875214	,-82.860947	
	Condition			Struct	ure Type	
58: Deck	7 - Good Condition		43: Bridge T	ype 1 - Concre	ete	
58.01 Wearing Surface 8 - Very Good (isolated or minor probl			lems)	01 - Slab		
58.02 Joint N- Not Applicable				N- Not Ap	plicable	

59: Superstructure 7 - Good Condition 59.01 Paint & PCS N - Not Applicable 60: Substructure 7 - Good Condition

61: Channel 6

61.01 Scour 8 - Very Good 62: Culverts N - Not Applicable

67.01 GA 7

Appraisal					
Sufficiency Rating 97.1 SD/FO 0 - ND					
36: Rail, Tr, Gd, Term Std	1	1	1	N	
72: Approach Alignment 8 - Equal to present desirable criteria					
113: Scour Critical	8 - Stable for scour conditions				
71: Waterway Adequacy	Waterway Adequacy 8 - Bridge Above Approaches				

Geometric	
48: Max Span Length (ft)	14.0
49: Structure Length (ft)	17.8
52: Deck Width, Out-To-Out (ft)	42.0
424: Deck Area (sf)	747.6
32: Appr Roadway Width (ft)	44.0
51: Road Width, Curb-Curb (ft)	42.0
50A: Curb/SW Width: Left (ft)	0
50A: Curb/SW Width: Right (ft)	0
34: Skew (deg)	26
33: Bridge Median	0 - No median
54B: Min Vert Underclearance (ft)	0
336A: Min Vert Clrnce IR Cardinal (ft)	99
336B: Min V Clr IR Non-Cardinal (ft)	0
578: Culvert Length (ft)	0

41: Op/Post/Closed	A - Open
70: Posting 5 - Equal to	or above legal loads
70.01: Date	
70.02: Sign Type	
734: Percent Legal (%)	150
704: Analysis Date	07/01/2007
63: Analysis Method	6 - Load Factor (LF) rating reported by

Load Posting

rating factor (RF) method using MS18

loading.

43: Briage Type	1 - Concrete
s)	01 - Slab
	N- Not Applicable

45: Spans Main / Approach / 0 107: Deck Type 1 - Concrete Cast-in-Place 408: Composite Deck N - Non-composite Construction

414A Joint Type 1 N - None 414B: Joint Type 2 N - None 108A: Wearing Surface 6 - Bituminous N- Not Applicable

422: WS Date 10/18/2000

423: WS Thick (in) 3.0

482: Protective Coating N - None or Not Applicable

483: PCS Date

528: Foundn: Abut Fwd

453: Bearing Type 1 N - None 455: Bearing Type 2 N - None

4 - Spread Footing (on soil) 533: Foundn: Abut Rear 4 - Spread Footing (on Soil) 536: Foundn: Pier 1 N - None (Such as most Culverts) 539: Foundn: Pier 2 N - None (Such as most Culverts)

Age and Service

27: Year Built/ 106 Rehab 1963 / 0000 42A: Service On 1 - Highway 42B: Service Under 5 - Waterway 28A: Lanes on 02 28B: Lanes Under 00 19: Bypass Length 29: ADT 31397 109: % Trucks (%)

Inspections

90: Routine Insp.		24	05/22/2024
92A: FCM Insp.	N	0	
92B: Dive Insp.	N	0	
92C: Special Insp.	N	0	
92D: UBIT Insp.	N	0	
92E: Drone Insp.	N	0	
Inspector Shah,M	leet		

Structure Number: 2502100 Inspector: Shah, Meet 05/22/2024 US 33 **Facility Carried: Inspection Date:**

ODOT District: District 06

FRA-00033-2751L_(2502100)

Major Maint: 01 - State Highway Agency

Facility Carried: US 33

Feature Inters: CABLE BOWMAN DITCH

Traffic On: 1 - Highway Traffic Under: 5 - Waterway

Insp. 01 - State Highway Agency Resp A:

07/01/1963

Insp Resp B:

Date Built:

Rehab Date:

Routine Maint: 01 - State Highway Agency

FIPS Code: 46410 - MADISON TWP (FRA county)

Shah,Meet

Location: DISTRICT 06

2.76 MI E OF SR270 Reviewer Eudaily,Jim Inspection Date 05/22/2024

<u>Inspector Comments - Deck and Approach</u>

Deck

Floor/Slab (SF)

LG.CRACK CENTER W/SPALL., DECK ENDS SATURATED.

Edge of Floor/Slab (LF)

EDGES CRACKED, SPALLED.

Inspector

Bridge Wearing Surface (SF)

2 POT HOLES REAR.

Approach

Approach Wearing Surface (EA)

2020 BREAKING UP WITH POTHOLES FORMING REAR, CAUSING A BUMP

Inspector Comments - General Appraisal

<u>Superstructure</u>

Slab (SF)

LG CRACK CENTER W/SPALL., ENDS SATURATED.

Substructure

Abutment Walls (LF)

SEEPING W/EFFLOR. REAR AND FWD.AT TOP.

Wingwalls (EA)

SPALLED AT TOP CORNERS NEAR ABUTMENT.

CRACK OBSERVED AT SW WINGWALL (2024).

Culvert

Inspector Comments - Waterway

Waterway Adequacy

Channel Hydraulic Opening (EA)

,LG. MUD BAR,GROWTH.FLOW REAR/FWD.

Channel

Channel Alignment (LF)

WAVEY, NARROW

Scour Critical

Bridge Inspection Report

PHOTO 16 Condition

Description South Parapet

PHOTO 17 Condition

Description Crack at SW Wingwall

Bridge Inspection Report

PHOTO 18 Condition

Description Forward Approach

PHOTO 19 Condition

Description Wearing Surface

Inspector: Meet Shah Structure Number: 2502100

Inspection Date: 05/22/2024 Facility Carried: US 33

Bridge Inspection Report

PHOTO 20 Condition

Description NE Wingwall

PHOTO 21 Condition

Description North Parapet

Bridge Inspection Report

Pictures

PHOTO 22 Condition

Description Channel / Rear Abutment

PHOTO 23 Condition

Description Underside Slab near edge of roadway

Bridge Inspection Report

Pictures

PHOTO 24 Condition

Description Cacking and delamination at underside of deck at C/L

PHOTO 25 Condition

Description Isolated Cracking

Ohio Bridge Inspection Summary Report

FRA-00033-2751R (2502135)

Onio Bridge inspe	ection Summary Report		FRA-U	<u>0033-21</u>	31K_(2302133)
2: DistrictDistr 46410 - MAD ict 06	DISON TWP (FRA county)	5A: Inventory Ro	oute 1	00033	3
	- State Highway Agency /	7: Facility On	US 33		
=	- State Highway Agency /	6: Feature Ints		WMAN DIT	∩ ⊔
	- State Highway Agency /	9: Location	2.76 MI E		511
220: Inv. Location DISTR		Lat, Lon	39.874942		,-82.861028
ZZO. IIIV. Eddallori - Bio IIV	Condition				·
50.0				ucture Typ	pe
58: Deck	7 - Good Condition	43: Bridge T	• •	oncrete	
58.01 Wearing Surface	7 - Good (1% distress)		01 - S		
58.02 Joint	N- Not Applicable	45.0		t Applicable	
59: Superstructure	7 - Good Condition	45: Spans M			/ 0
59.01 Paint & PCS	N - Not Applicable	107: Deck T			te Cast-in-Place
60: Substructure	7 - Good Condition	408: Compo			mposite Construction
61: Channel	6	414A Joint T		N - None	
61.01 Scour	7 - Good	414B: Joint		N - None	
62: Culverts	N - Not Applicable	108A: Weari	ng Surface	6 - Bitumin	
67.01 GA	7			N- Not App	
	Appraisal	422: WS Dat		10/18/2000)
Sufficiency Rating	97.1 SD/FO 0 - ND	423: WS Thi	` '	3.0	
36: Rail, Tr, Gd, Term Std	1 1 1 1	482: Protect	J	N - None o	r Not Applicable
72: Approach Alignment	8 - Equal to present desirable criteria	483: PCS D			
113: Scour Critical	8 - Stable for scour conditions	453: Bearing		N - None	
71: Waterway Adequacy	8 - Bridge Above Approaches	455: Bearing		N - None	
, , ,	Geometric	528: Foundr			Footing (on soil)
10.11 0 1 1 (6)		533: Foundr		•	Footing (on Soil)
48: Max Span Length (ft)	14.0	536: Foundr			Such as most Culverts)
49: Structure Length (ft)	17.8	539: Foundr	n: Pier 2	N - None (S	Such as most Culverts)
52: Deck Width, Out-To-Ou			Age	and Serv	ice
424: Deck Area (sf)	747.6	27: Year Bui			/ 0000
32: Appr Roadway Width (ft		42A: Service		1 - Highw	
51: Road Width, Curb-Curb		42B: Service			
50A: Curb/SW Width: Left (,			5 - Water	way
50A: Curb/SW Width: Right		28A: Lanes		02	
34: Skew (deg)	26	28B: Lanes		00	
33: Bridge Median	0 - No median	19: Bypass I	_engin	1	
54B: Min Vert Underclearan		29: ADT	La (0/)	31397	
336A: Min Vert Clrnce IR Ca	• •	109: % Truc	KS (%)	8	
336B: Min V Clr IR Non-Car	• •		Ins	ections	
578: Culvert Length (ft)	0			Months	
	Load Posting	90: Routine	-	24	05/22/2024
41: Op/Post/Closed	A - Open	92A: FCM In	•	0	
70: Posting 5 - Equal to	or above legal loads	92B: Dive In	•	0	
70.01: Date	-	92C: Specia	=	0	
70.02: Sign Type		92D: UBIT Ir	-	0	
734: Percent Legal (%)	150	92E: Drone I	nsp. N	0	
704: Analysis Date	07/01/2007	Inspector	Shah,Meet		
	C. Lood Footor (LE) roting reported by	•	•		

6 - Load Factor (LF) rating reported by rating factor (RF) method using MS18

loading.

63: Analysis Method

Structure Number: 2502135 Inspector: Shah, Meet 05/22/2024 US 33 **Facility Carried: Inspection Date:**

FRA-00033-2751R (2502135) ODOT District: District 06 Date Built:

Facility Carried: US 33 Major Maint: 01 - State Highway Agency Traffic On: 1 - Highway

Insp. 01 - State Highway Agency Resp A: Routine Maint: 01 - State Highway Agency Feature Inters: CABLE BOWMAN DITCH Traffic Under: 5 - Waterway FIPS Code: 46410 - MADISON TWP (FRA county) Insp Resp B:

07/01/1963

Rehab Date:

Location: DISTRICT 06 2.76 MI E OF SR270

Reviewer Eudaily,Jim Inspector Shah,Meet Inspection Date 05/22/2024

<u>Inspector Comments - Deck and Approach</u>

Deck

Floor/Slab (SF)

SMALL SPALL CENTER, EXPOSED REBAR

Edge of Floor/Slab (LF)

SPALLED RT. 2020 SATURATED AREA RT SEEPING EFFLOR

Bridge Wearing Surface (SF)

POTHOLES REAR. 25 SF

Bridge Railing (LF)

Approach

Approach Wearing Surface (EA)

BREAKING UP @ SLAB END FWD

Inspector Comments - General Appraisal

<u>Superstructure</u>

Slab (SF)

SPALLED C/L 4SF

ISOLATED SPOTS OF LEAKAGE AND EFFLORESCENCE (2024)

<u>Substructure</u>

Abutment Walls (LF)

LG.SEEPING CRACK FWD.W/EFFLOR.SPALLED AT CORNERS AND C/L 2020 SPALLED FWD @ JOINT FWD 15 SF

Wingwalls (EA)

SPALLED AT TOPS NEAR ABUTMENT.CRACKS

Culvert

Inspector Comments - Waterway

Waterway Adequacy

Channel Hydraulic Opening (EA)

GROWTH AND SILT AT INLET AND OUTLET ,FWD.FLOW. 2020 MUD BAR THROUGH REAR

Channel

Scour Critical

Bridge Inspection Report

PHOTO 16 Condition

Description Wearing Surface

PHOTO 17 Condition

Description Wearing Surface

Bridge Inspection Report

PHOTO 18 Condition

Description Forward Abutment

PHOTO 19 Condition

Description Underside Deck

Bridge Inspection Report

Pictures

PHOTO 20 Condition

Description

PHOTO 21 Condition

Description SW Wingwall

Bridge Inspection Report

PHOTO 22 Condition

Description Forward Abutment Delaminated Area

PHOTO 23 Condition

Description Forward Abutment

Bridge Inspection Report

PHOTO 24 Condition

Description Rear Abutment

PHOTO 25 Condition

Description Outlet

Bridge Inspection Report

PHOTO 26 Condition

Description Leakage & Efflorescence underside of the deck

PHOTO 27 Condition

Description Cracking at NE Wingwall

Bridge Inspection Report

Pictures

PHOTO 28 Condition

Description Leakage & Efflorescence underside of the deck

PHOTO 29 Condition

Description Leakage at Forward Abutment

Inspector: Shah,Meet Structure Number: 2502267 05/22/2024 US-33 Inspection Date: **Facility Carried:**

Ohio Bridge Inspection Summary Report

FRA-00033-3030 (2502267)

Ohio Bridge Insp	<u>ection Summary</u>	<u>Report</u>		FRA-0	<u>00033-3030</u>	<u>(2502267)</u>
2: DistrictDistr 11332 - CAI ict 06	NAL WINCHESTER (FAI &	FRA county)	5A: Inventory Ro	oute 1	00033	
	1 - State Highway Agency	/	7: Facility On	US-33		
225 Routine Main A/B 04	4 - City or Municipal Highwa gency	ay /	6: Feature Ints		BACHMAN DITCH	1
	1 - State Highway Agency	/	9: Location	0.93 W OF	FAIRFIELD CO.	
220: Inv. Location DISTR	RICT 06		Lat, Lon	39.854708	,-82.8	316311
	Condition			Str	ucture Type	
58: Deck	N - Not Applicable		43: Bridge T			
58.01 Wearing Surface	N - Not Applicable		io. Briago i		ulvert (includes fr	ame culverts)
58.02 Joint	N- Not Applicable				t Applicable	
59: Superstructure	N - Not Applicable		45: Spans M	lain / Approa		/ 0
59.01 Paint & PCS	N - Not Applicable		107: Deck T		N - Not Applicab	le
60: Substructure	N - Not Applicable		408: Compo	site Deck	N - Non-compos	ite Construction
61: Channel	9		414A Joint	Гуре 1	N - None	
61.01 Scour	8 - Very Good		414B: Joint	Type 2	N - None	
62: Culverts	8 - No noticeable or no deficiencies	oteworthy	108A: Wear	ing Surface	6 - Bituminous	
67.01 GA	8				N- Not Applicable	e
	Appraisal		422: WS Da		12/08/2011	
Sufficiency Rating	79.1 SD/FO () - ND	423: WS Th	` '	7.5	
36: Rail, Tr, Gd, Term Std	N N N	N	482: Protect	•	N - None or Not	Applicable
72: Approach Alignment	8 - Equal to present des	irable criteria	483: PCS D			
113: Scour Critical	U - Unknown foundation		453: Bearing		N - None	
71: Waterway Adequacy	8 - Bridge Above Approa	aches	455: Bearing		N - None	Clata\
	Geometric		528: Foundr		N - None (Such a	as most Culverts)
48: Max Span Length (ft)	10.0		536: Foundr		·	as most Culverts)
49: Structure Length (ft)	11.8		539: Foundr		<u>-</u>	as most Culverts)
52: Deck Width, Out-To-Ou			COO. 1 Canal			
424: Deck Area (sf)	1250.8			Age	and Service	
32: Appr Roadway Width (1	ft) 106.0		27: Year Bu	ilt/ 106 Reha	b 2011 / 0	0000
51: Road Width, Curb-Curk			42A: Service	e On	1 - Highway	
50A: Curb/SW Width: Left	(ft) 0		42B: Service	e Under	5 - Waterway	
50A: Curb/SW Width: Righ	t (ft) 0		28A: Lanes	on	04	
34: Skew (deg)	9		28B: Lanes		00	
33: Bridge Median	0 - No me	edian	19: Bypass	Length	1	
54B: Min Vert Undercleara			29: ADT	1 (0/)	51718	
336A: Min Vert Clrnce IR C	` '		109: % Truc	KS (%)	10	
336B: Min V Clr IR Non-Ca	` '			Insp	ections	
578: Culvert Length (ft)	148.167				Months	
	Load Posting		90: Routine	·=		22/2024
41: Op/Post/Closed	A - Open		92A: FCM Ir	•	0	
70: Posting 5 - Equal to	or above legal loads		92B: Dive In	•	0	
70.01: Date			92C: Specia		0	
70.02: Sign Type			92D: UBIT I	•	0	
734: Percent Legal (%)	150		92E: Drone	Insp. N	0	
704: Analysis Date	07/01/2011		Inspector	Shah,Meet		
63: Analysis Method	8 - Load and Resistance (LRFR) rating report by ramethod using HL-93 load	ating factor (RF	=)			

Structure Number: 2502267 Inspector: Shah, Meet 05/22/2024 US-33 **Facility Carried: Inspection Date:**

FRA-00033-3030 _(2502267) ODOT District: District 06

Major Maint: 01 - State Highway Agency Facility Carried: US-33 Traffic On: 1 - Highway

Insp. 01 - State Highway Agency Resp A: Routine Maint: 04 - City or Municipal Highway Feature Inters: TUSSING-BACHMAN DITCH Traffic Under: 5 - Waterway Agency 11332 - CANAL WINCHESTER (FAI & FRA county)

12/08/2011

Date Built:

Rehab Date:

Insp Resp B:

FIPS Code: Location: DISTRICT 06 0.93 W OF FAIRFIELD CO.

Inspector Reviewer Eudaily,Jim Shah, Meet Inspection Date 05/22/2024

<u>Inspector Comments - Deck and Approach</u>

Deck

Approach

Approach Embankment (EA)

WASHING RT.FWD.AT END OF WING, STONE HAS BEEN ADDED. 2020 WASHING RT FWD AND REAR, BOTH NEED STONE ADDED.

SIGNS OF SCOUR NEAR OUTLET SE WINGWALL (2024).

Approach Guardrail (EA)

LT REAR COLLISION DMG

Inspector Comments - General Appraisal

<u>Superstructure</u>

<u>Substructure</u>

Culvert

Wingwalls (EA)

Misaligned Wingwall-Headwall joints. No PEJF (2024)

Inspector Comments - Waterway

Waterway Adequacy

Channel Hydraulic Opening (EA)

1 FT OF MUCK IN THE CULVERT.

Channel

Scour Critical

Inspector: Meet Shah Structure Number: 2502267 US-33

Facility Carried: 05/22/2024 Inspection Date:

Bridge Inspection Report

Pictures

PHOTO 1

Description 2024 outlet

PHOTO 2

Description 2024 inlet

Bridge Inspection Report

Pictures

PHOTO 3 Condition

Description Insided Structure Looking from Inlet

PHOTO 4 Condition

Description Wearing Surface near Outlet

Bridge Inspection Report

Pictures

PHOTO 5 Condition

Description SE Wingwall embankment scour

PHOTO 6 Condition

Description SE Wingwall embankment scour

Bridge Inspection Report

PHOTO 7 Condition

Description Overview Outlet

PHOTO 8 Condition

Description Outlet Channel

Bridge Inspection Report

Pictures

PHOTO 9 Condition

Description Wearing Surface

PHOTO 10 Condition

Description Wearing Surface

Bridge Inspection Report

PHOTO 11 Condition

Description Wearing Surface

PHOTO 12 Condition

Description NE Wingwall

Bridge Inspection Report

PHOTO 13 Condition

Description Inside Structure

PHOTO 14 Condition

Description Inside Structure

Bridge Inspection Report

PHOTO 15 Condition

Description NW Wingwall

PHOTO 16 Condition

Description Inlet Overview

Bridge Inspection Report

PHOTO 17 Condition

Description Inlet NW Wingwall-Headwall Damage

PHOTO 18 Condition

Description Inlet Channel

Bridge Inspection Report

Pictures

PHOTO 19 Condition

Description Misaligned Wingwall/Headwall (Typical)

Memo

To: LJB, Inc.

From: Woolpert, Inc.

Date: September 19, 2024

Subject: FRA-33-24.76 MOT Analysis Summary

Woolpert evaluated conceptual Maintenance of Traffic (MOT) schemes for FRA-33-24.76 to identify high-level MOT cost drivers, MOT impacts to existing structures, and pros/cons for both evaluated MOT schemes. For the analysis, Woolpert divided the project section into two parts based on existing median width. The northern section, with a 60 ft edge line to edge line median extends along US 33 from SR 104 to Gender Rd in Franklin and Fairfield County, and the southern section, with a 40 ft edge line to edge line median extends along US 33 from Gender Rd to Diley Rd in Fairfield County. This memo provides a high-level summary of the MOT Analysis Table dated May 10, 2024. This memo is not intended to replace a Maintenance of Traffic Alternatives Analysis (MOTAA), which will be prepared upon confirmation of the preferred alternative. The conclusions and considerations presented in this memo will be further evaluated during the MOTAA development process and do not consider all aspects of an MOTAA evaluation, such as local detours, local street impacts, and major impacts to structures.

Maintenance of Traffic (MOT) Schemes

The FRA-33-24.76 (ODOT PID 119378) project will widen US 33 from SR 104 to Diley Rd from two lanes to three lanes, along with widening of existing structures to accommodate the proposed cross section. Woolpert evaluated the following MOT schemes for both the northern and southern MOT analysis sections:

- Part-Width Construction with Inside Widening
- Crossover Construction with Outside Widening

All MOT schemes assume 11.5 ft MOT travel lane widths with 2 ft offsets to barrier/shoulder.

Part-Width Construction with **Outside Widening** (Not Considered)

Part-Width construction with outside construction was eliminated from this analysis as a potential MOT scheme given the significant impacts created by that alternative compared to the two alternatives shown above. In the northern section, part-width construction with outside widening would require an MOT cross section approximately 6 ft wider than the proposed final cross section, after accounting for two separate pre-phases for outside and inside shoulder reconstruction to minimize the MOT widening. It is expected that the additional width of this alternative will require roadside grading that extends beyond the existing right of way limits, thereby requiring right of way acquisition, which would not be required by the MOT schemes carried forward.

In the southern section, the difference in impacts between the alternatives carried forward and part-width construction for outside widening is negligible as both alternatives carried forward will require both inside and outside widening due to a constrained median width in the existing condition. Outside of the physical and temporary cost impacts of part width construction with outside widening, the additional overnight pre-phases for shoulder reconstruction may add to overall construction duration.

Contraflow Construction for Inside or Outside Widening (Not Considered)

Contraflow construction for either inside or outside widening was eliminated from this analysis as a potential MOT scheme because of impacts that fall beyond that of part-width and crossover MOT schemes. Contraflow is an MOT scheme typically deployed in dense urban areas where all part-width and crossover alternatives have already been exhausted either due to physical impacts, or the need to maintain a certain number of lanes to meet the requirements of the permitted lane closure schedule (PLCS). Contraflow construction is also challenging to analyze from a safety perspective and presents an unconventional arrangement of vehicle movements for at-grade intersections, likely requiring several movement restrictions or complete side-street intersection closures and additional local detours. Some additional disadvantages of contraflow construction for this project include:

- Extended construction schedule to accommodate additional phases necessary to widen for contraflow lanes
- While contraflow could maintain some access to local roadways, additional temporary pavement may be necessary for acceleration lanes for permitted turning movements
- Contraflow is typically a "last resort" MOT option when all other options have been exhausted, analysis indicates that impacts from part-width construction, inside widening would be less than contraflow.

Construction Sequencing

At a high-level, in both the northern and southern sections, Part-Width construction can be accomplished in three phases with one pre-phase:

- Pre-Phase: Outside shoulder widening using overnight lane closures and drums
- Phase 1: Construct EB/WB inside final pavement and inside structures
- Phase 2A: Construct EB outside final pavement and EB outside structures
- Phase 2B: Construct WB outside final pavement and WB outside structures

In the southern section, part width construction requires 16 ft of additional pavement (8 ft on both sides) for a maximum cross section of 128 ft in Phase 1 vs the currently proposed final cross section of 112 ft. This additional pavement may be removed if desired after Phase 1.

Crossover construction can be accomplished in two phases with three pre-phases:

- Pre-Phase A: Part-Width construction of all project structures to final proposed pavement width
- Pre-Phase B: WB Inside shoulder reconstruction using overnight lane closures and drums
- Pre-Phase C: WB Outside shoulder reconstruction and install crossovers per MT-100.00
- Phase 1: EB full construction with two lanes maintained (both directions) on WB temp. and existing pavement
- · Phase 2: WB full construction with two lanes maintained (both directions) on EB final pavement

In the southern section, crossover construction requires 3 ft of additional pavement (1.5 ft on both sides) for a maximum MOT cross section of 115 ft in Phase 1 vs the currently proposed final cross section of 112 ft. Crossover construction would require the additional 3 ft to be carried through the end of construction for MOT purposes. This additional pavement may be removed if desired after Phase 1.

Woolpert prepared conceptual MOT typical sections dated May 10, 2024, to go along with the MOT Analysis Table of the same date.

Temporary Pavement

Based on the high-level MOT typical sections produced for both MOT schemes evaluated, Woolpert calculated anticipated temporary pavement totals for each scheme, in each section, as shown below and as detailed in the MOT Analysis Table:

Table 1 - Temporary Pavement Calculations

Section	Part Width	Crossover
Northern SR 104 to Gender Rd	38,134 SY	122,028 SY
Southern Gender Rd to Diley Rd	63,360 SY	55,440 SY
Total (SY)	101,494 SY	177,468 SY

Temporary pavement calculations assume a continuous section along the entire length of the project segment, and does not account for minor variations at structures, interchanges, or at-grade intersections. Importantly, for crossover construction, temporary pavement values do not include crossovers. Multiple additional full or partial crossovers may be required to maintain ramp movements in a crossover construction MOT scheme.

Portable Concrete Barrier

Woolpert utilized the proposed construction sequencing and high-level typical sections to evaluate lengths of portable concrete barrier (PCB) required for MOT during construction. As with temporary pavement, the calculations assume a continuous section, and do not account for variations at structures, interchanges, or at-grade intersections. Additionally, per direction from ODOT District 6, certain shoulder reconstruction operations are permitted to occur during overnight hours with single lane closures protected by drums.

Table 2 - PCB Calculations

Section	Part Width	Crossover
Northern SR 104 to Gender Rd	137,280 LF	68,640 LF
Southern Gender Rd to Diley Rd	57,024 LF	28,512 LF
Total (LF)	194,304 LF	97,152 LF

MOT Impact on Existing Structures

A high-level evaluation of existing structures on the northern section of the project suggest that sufficient toe/toe width exists to maintain at least two lanes of traffic while constructing the inside of proposed structures during part width construction, this includes maintaining at least three lanes at the Big Walnut structures immediately south and east of I-270. The absolute minimum width required to maintain 11 ft lanes and 2 ft shoulders is 26 ft. Including the 2 ft barrier and a 2 ft offset from barrier to work zone increases the absolute minimum width to 30 ft. The minimum width of the existing two-lane bridges is approximately 40 ft, with an overall range from 40 ft to 45 ft, therefore, the existing bridges do not require widening for the purposes of part-width construction MOT.

For crossover construction, it is assumed all structures will be widened to their final proposed cross section in a pre-phase prior to construction. The existing bridges are not wide enough for crossover MOT in their current form, and partial widenings for MOT would likely create inefficiencies in construction. A minimum of 56 ft toe/toe is required to maintain two 11.5 ft lanes in both directions during MOT.

Figure 1 - Blacklick Trail over US 33

The Blacklick Trail overpass runs diagonal to the alignment of US 33 in the northern section (Figure 1). While no piers intersect with proposed inside or outside pavement widening, the central pier cap may create a vertical clearance interaction during maintenance of traffic with the inner most lanes of Phase 2 in the part-width, inside widening scheme. Further evaluation of this vertical clearance interaction is warranted during detailed MOT design. Lane width reductions or temporary widening to the outside may be necessary to limit the impact of the pier cap overhang on proposed MOT.

An ODOT ITS changeable message sign is in the median of in the northern section, south and east of the Big Walnut Creek structures and I-270. In part-width, inside construction, this sign will be impacted and will require reconstruction either as an outside structure, or as a new truss mounted overhead structure.

In the southern section, the culvert at SLM 30.22 may need to be widening or reconstructed in a pre-phase to accommodate the proposed cross section regardless of which MOT scheme is selected. The part-width, inside widening scheme would require additional widening of the culvert structure vs. the crossover construction scheme.

Advantages and Disadvantages

Both evaluated MOT schemes provide advantages and disadvantages as it relates to the construction of the project, and anticipated MOT costs. At a high-level, major advantages and disadvantages are presented below:

Part-Width Construction, Inside Widening

Advantages:

- Minimal MOT related impacts to existing structures
- No temporary lighting required
- Limited impact to existing noise walls (northern section)
- Better access options at interchanges and at-grade intersections, especially at Bowen Rd (southern section)
- Shorter construction duration vs. Crossover, potentially as much as half a construction season

Disadvantages:

- Non-concurrent outside construction phases may increase construction duration vs. crossover
- Inside construction may require dedicated construction vehicles ingress/egress points
- Part-Width MOT would place traffic immediately adjacent to active work-zones
- Additional pavement width (beyond proposed final width) required for MOT (southern section)
- Direct impact to existing ODOT ITS equipment
- Optimizing MOT plan for longitudinal phase joint locations may increase temporary pavement needs or require MOT lane width reductions.

Crossover Construction, Outside Widening

Advantages:

- Efficiencies in construction, can optimize location of crown and joints as necessary
- Possibility of reusing temporary pavement as permanent pavement
- Less temporary pavement required for MOT compared to part-width (southern section only)

Disadvantages:

- A pre-phase is likely for structure widening to accommodate MOT and final proposed cross-section
- Impacts to ramp access at interchanges without additional intermediate crossovers
- Each crossover requires a temporary lighting system, access to power may present additional challenges
- Likely impacts to existing noise walls (northern section)
- Access at at-grade interchanges may be difficult to maintain, detours likely
- Maintaining ramp access at US-33/I-270 interchange may be challenging given existing interchange geometry

Conclusions

At a high-level, part width construction with inside widening is the less impactful and less disruptive MOT alternative. There are minimal impacts to existing ROW with the part width/inside widening alternative, and fewer impacts to construction scheduling, duration, and MOT cost compared to the crossover. As noted previously, these conclusions do not replace the analysis of an MOTAA, but provide a high-level overview of potential impacts, advantages, and disadvantages to identify ideal MOT schemes at an early stage of project development.

CTY-RTE-SECTION MODEL: Sheet_SurvFt PAPERSIZE: 17x11 (in.) DATE: 5/10/2024 TIME: 12:13:49 AM USER: Chock G:\DE\Clients\LJB\10017857_FRA-33-24-76\119387\400-Engineering\MOT\Sheets\119387_MY996.dgn NORTHERN SECTION PART WIDTH 60.0' 40.0' 40.0' 4.0' 12.0' 12.0' 12.0' ¥ Ť 12.0' 12.0' 12.0' 12.0' 12.0' 12.0' 11.5' 11.5' 6.0' 68.0' 11.5' 11.5' 3.0' Д 32.0' 11.5' 10.0' 32.0' 6.0' 6.0' Ť Ť 12.0' 18.5' 12.0' 12.0' 12.0' 10.0' 1 1 ¥ ¥ ¥ NER XXX REVIEWER XXX MIM-DD-Y PROJECT ID 0 SHEET TITLE

CTY-RTE-SECTION MODEL: Sheet_SurvFt PAPERSIZE: 17x11 (in.) DATE: 5/10/2024 TIME: 12:13:50 AM USER: Chock G:\DE\Clients\LJB\10017857_FRA-33-24-76\119387\400-Engineering\MOT\Sheets\119387_MY998.dgn SOUTHERN SECTION PART WIDTH 40.0' 40.0' 20.0' 20.0' 12.0' 12.0' 8.0' 8.0' 66.0' 2.0' 11.5' 6.0' 6.0' 11.5' 2.0' Ť Ť Д 8.0' 8.0' 11.5' 23.0' 11.5' 11.5' 11.5' 6.0' 23.0' 6.0' Ť 3.0' 112.0' XXX REVIEWER XXX MIM-DD-Y PROJECT ID 0 SHEET TITLE

CTY-RTE-SECTION MODEL: Sheet_SurvFt PAPERSIZE: 17x11 (in.) DATE: 5/10/2024 TIME: 12:13:52 AM USER: Chock G:\DE\Clients\LJB\10017857_FRA-33-24-76\119387\400-Engineering\MOT\Sheets\119387_MY999.dgn SOUTHERN SECTION CROSSOVER 40.0' 40.0' 12.0' 12.0' 12.0' Ť 1 12.0' 12.0' 11.5' 11.5' 11.5' *57.5'* 6.0' 11.5' 2.0' 115.0' XXX REVIEWER XXX MM-DD-Y SHEET TITLE

	Northern Section (SR 104 to Gender Rd)								
Analysis Area			Assumed MC	OT: 11.5 ft Travel Lanes, 2 ft	Outside Shoulders, 2 ft Inside Shoulders				
	Inside Widening, Part-Width				Outside Widening, Crossover				
Construction Sequencing	Phase 1 Construct Inside EB/WB Likely Phase 0 - Outside Shoulder		Phase 2A Construct Outside EB	Phase 2B Construct Outside WB	Pre-Phase 0B WB Inside Shoulder Reconstruction	Pre-Phase 0C WB Outside Shoulder Reconstruction	Phase 1 Construct EB	Phase 2 Construct WB	
MOT Cross Section Impacts	None, maintain 2+11.5+11.5+2 = 27 ft on existing and Phase 0 pavement. Phase 0 to be during off-peak single lane closure (see below).		None, utilize Phase 1 New Pavement	None, utilize Phase 1 New Pavement	Maintain single lane during off peak construction with drums	Maintain 2+11.5+11.5+2 on existing and Phase 0B pavement	None, utilize WB pavement constructed in Pre-Phase 0B/C at 2+11.5+11.5+6+11.5+11.5+2 = Final Cross Section = 56 ft	None, utilize EB pavement constructed in Phase 0B/C and Phase 1	
Temporary Pavement	Assume reconstruct outside shoulder in Phase 0 = ~10 ft shoulder x 6.5 mi = 38,134 SY District suggestion to complete work during off peak periods with drums (no PCB). Maintain single lane during shoulder reconstruction.		None	None	~10 ft shoulder x 6.5 mi =	~22 ft shoulder x 6.5 mi = ~83,894 SY District suggestion to complete work during off peak periods with drums (no PCB). Maintain single lane during shoulder reconstruction.	None	None	
PCB Estimated Impacts	Drums (Phase 0) 6.5 mi total length x 2 = 68,640 LF (Phase 1)		6.5 mi = 34,320 LF	6.5 mi = 34,320 LF	400 LF * 4 Structures * 2 Phases * 2 sides = 6,400 LF (Phase 0Aa/b) Otherwise Drums	Drums	6.5 mi = 34,320 LF	6.5 mi = 34,320 LF	
Structures Widths (Approximate)	Big Walnut (x2) Ex Width: 62 ft EB/50ft WB MOT Width: 38.5 ft (3 lanes) Final Width: 150 ft (one unit) Blacklick Creek Ex Width: 45 ft EB/WB Ex Width: 40 ft (EB/WB) MOT Width: 27 ft (2 lanes) Final Width: 150 ft (one unit) Culvert (SLM 27.43) Ex Width: 40 ft (EB/WB) MOT Width: 42 ft (EB/WB) MOT Width: 27 ft (2 lanes) Final Width: 150 ft (one unit) Final Width: N/A*** George Creek Ex Width: 42 ft (EB/WB) MOT Width: 27 ft (2 lanes) Final Width: N/A***			Crossover requires significantly more temporary pavement than part-width construction. Structure work likely needs to precede pavement construction for ease of construction and timing. Crossover may necessitate t+G10emporary or phase-length closures of ramps and intersections if additional crossovers for ramps are infeasible. Each crossover requires its own temporary lighting system per MT-100.00					
Structures Impacts	EB bridges can maintain 3 lanes during MOT with inside part width widening of structure. WB bridges can maintain 3 lanes during MOT if necessary. MOT does not exceed final bridge width.	Existing structures can carry 2 lanes MOT for part width construction without exceeding proposed cross section.	Existing structures can carry 2 lanes MOT for part width construction without exceeding proposed cross section.	Existing structures can carry 2 lanes MOT for part width construction without exceeding proposed cross section.	Widen WB Structure in Phase 0Aa/b using part Width Construction to meet final cross section. EB Structure constructed in Phase 1.	Widen WB Structure in Phase 0Aa/b using part Width Construction to meet final cross section. EB Structure constructed in Phase 1.	Widen WB Structure in Phase 0Aa/b using part Width Construction to meet final cross section. EB Structure constructed in Phase 1.	Widen WB Structure in Phase 0Aa/b using part Width Construction to meet final cross section. EB Structure constructed in Phase 1.	
Clearance Obstructions Pinch Points	Existing pier cap on Blacklick Trail overpass central pier may create vertical obstruction on shoulder of proposed final cross section. This may be an impediment to future 4 lane section, or any inside HSR. Inside widening will require openings in the construction zone for entry/exit of construction vehicles and machines, this may produce pinch points, or areas that may need to be constructed in a subphase. Existing ITS devices in median.				Evisting structures create pinch points for MOT phasing purposes ontions include strip widening of bridges or complete				
Ramps Interchanges Intersections	All ramp movements at interchanges (including US-33/l-270 systems interchange can be maintained during inside construction. During outside construction, ramps can be maintained with crossovers through the outside work zone. A subphase may be necessary with a temporary ramp closure to complete work in ramp areas.				Ramps in the normal direction of travel relative to the crossover side can be maintained on existing pavement but would likely have reduced acceleration lengths or would require accelerations lanes on temporary pavement. Ramps opposite the crossover would need additional crossovers to rejoin the MOT section, which would significantly increase MOT pavement/MOT lighting impacts. Access to at-grade intersections likely needs to be significantly restricted or detoured.				
Environmental	Limited to no impact to existing noise walls.				Proposed final cross section may impact existing noise walls.				
General Advantages	Part width construction optimizes impacts to existing structures, and minimizes temporary pavements needs vs. crossover construction. Part-width construction does not require additional temporary lighting (for crossovers). Existing structures can maintain two lanes of travel during construction. Access at interchanges and at-grade intersections can be maintained more easily.								
General Disadvantages	While the single inside work zone for both directions may be advantageous, outside work zones likely need to occur separately, which may add time/complexity to construction. Inside construction will need construction vehicle access points. Part-width construction requires work zones to be immediately adjacent to moving traffic. Requires full depth inside shoulders at minimum for MOT purposes.				Crossover requires significantly more temporary pavement than part-width construction. Structure work likely needs to s. precede pavement construction for ease of construction and timing. Crossover may necessitate temporary or phase-length closures of ramps and intersections if additional crossovers for ramps are infeasible. Each crossover requires its own temporary lighting system per MT-100.00				

	Northern Section (SR 104 to Gender Rd)				
Analysis Area	Inside Widening, Part-Width	Outside Widening, Crossover			
Construction Sequencing	Some Constraints	Less Advantageous			
MOT Cross Section Impacts	Limited Constraints	Limited Constraints			
Temporary Pavement	Some Constraints	Less Advantageous			
PCB Estimated Impacts	Some Constraints	Limited Constraints			
Structures Widths (Approximate)	Limited Constraints	Less Advantageous			
Structures Impacts	Limited Constraints	Limited Constraints			
Clearance Obstructions Pinch Points	Some Constraints	Limited Constraints			
Ramps Interchanges Intersections	Limited Constraints	Less Advantageous			
Environmental	Limited Constraints	Limited Constraints			
General Advantages	Limited Constraints	Limited Constraints			
General Disadvantages	Some Constraints	Less Advantageous			

	Southern Section (Gender Rd to Diley Rd)							
Analysis Area	Assumed MOT: 11.5 ft Travel Lanes, 2 ft Outside Shoulders, ~1.5-2 ft Inside Shoulders							
	Inside Widening, Part-Width			Outside Widening, Crossover				
Construction Sequencing	Phase 0 Temporary Pavement for Outside Shoulder	Phase 1 Construct Inside	Phase 2A Construct Outside EB	Phase 2B Construct Outside WB	Pre-Phase 0B WB Inside Shoulder Reconstruction (Phase 0B assumes a Phase 0Aa/b in Northern Section)	Pre-Phase 0C WB Outside Shoulder Reconstruction	Phase 1 Construct EB	Phase 2 Construct WB
MOT Cross Section Impacts	Maintain 2+11.5+11.5+2 on existing inside pavement (partial MOT travel lane on existing shoulder).	None, utilize existing pavement and Phase 0 pavement.	None, utilize Phase 1 pavement	None, utilize Phase 1 pavement	Maintain 2+11.5+11.5+2 on existing inside pavement (partial MOT travel lane on existing shoulder).	Maintain 2+11.5+11.5+2 on Phase 0B and existing pavement. Phase 0C widening will result in MOT cross section that exceeds final cross section by 1.5 ft.	None, utilize WB pavement constructed in Pre-Phase 0B/C at 2+11.5+11.5+6+11.5+12.5+2 = 56 ft > 54.5 ft proposed.	Approximately 1.5 ft of additional pavement width required in WB section to maintain proposed MOT section of 2+11.5+11.5+6+11.5+11.5+2 = 56 ft > 54.5 ft proposed.
Temporary Pavement	Part-width construction requires approximately 8 ft of additional widening for temporary pavement, this pavement can ultimately be removed for the final section if desired, but additional widening may cause slope/drainage issues not currently anticipated. 8 additional ft + 12 ft = 20 ft 20 ft x 2.7 mi x 2 sides = 63,360 SY Maintain single lane during shoulder reconstruction.	None	None	None	Construct full depth shoulder on WB inside and final median barrier. ~20 ft x 2.7 mi = 31,680 SY Maintain single lane during shoulder reconstruction.	Construct full depth shoulder on WB outside pavement. 13.5 ft x 2.7 = 21,384 SY Maintain single lane during shoulder reconstruction.	Additional EB pavement for EB crossover during phase 2 = 1.5 ft x 2.7 mi = 2,376 SY	None
PCB Estimated Impacts	Drums (See Northern Section Discussion on District Preference)	2.7 mi x 2 sides = 28,512 LF	2.7 mi x 1 side = 14,256 LF	2.7 mi x 1 side = 14,256 LF	Drums (See Northern Section Discussion on District Preference)	Drums (See Northern Section Discussion on District Preference)	2.7 mi x 1 side = 14,256 LF	2.7 mi x 1 side = 14,256 LF
Structures Widths (Approximate)	None, See Below			None, See Below				
Structures Impacts	Culvert (SLM 30.22) requires further exploration as to potential widening or reconstruction necessary to accommodate future condition EOP and loading.			Culvert (SLM 30.22) requires further exploration as to potential widening or reconstruction necessary to accommodate future condition EOP and loading.				
Clearance Obstructions Pinch Points	Existing culvert at SLM 30.22			Existing culvert at SLM 30.22				
Ramps Interchanges Intersections	No interchange impacts. Access to Bowen Rd intersection may need to be restricted or detoured during outside construction.				No interchange impacts. Partial closure of Bowen Rd intersection likely based on which phase of construction is active.			
Environmental	No noise walls present, impacts to Culvert at SLM 30.22 should be investigated further.			No noise walls present, impacts to Culvert at SLM 30.22 should be investigated further.				
General Advantages	Better access options for Bowen Rd intersection.			Rural section decreases complexity for crossover (eg ramps/intersections). Requires less temporary pavement than part width construction due to existing and proposed cross sections. Crossover construction allows for more flexibility in joint locations and flexibility with the placement of the final crown.				
General Disadvantages	Inside construction will require access points for construction vehicles and machines. Requires more temporary pavement than crossover construction, and requires 8 ft beyond proposed EOP. Phase 0 may add some time to construction duration. Modification of the crown vs. existing may add complexity to a part-width operation.							

	Southern Section (Gender Rd to Diley Rd)					
Analysis Area	Inside Widening, Part-Width	Outside Widening, Crossover				
Construction Sequencing	Limited Constraints	Less Advantageous				
MOT Cross Section Impacts	Limited Constraints	Less Advantageous				
Temporary Pavement	Less Advantageous	Some Constraints				
PCB Estimated Impacts	Some Constraints	Some Constraints				
Structures Widths (Approximate)	Some Constraints	Some Constraints				
Structures Impacts	Less Advantageous	Less Advantageous				
Clearance Obstructions Pinch Points	Some Constraints	Some Constraints				
Ramps Interchanges Intersections	Limited Constraints	Limited Constraints				
Environmental	Limited Constraints	Limited Constraints				
General Advantages	Limited Constraints	Limited Constraints				
General Disadvantages	Some Constraints	Less Advantageous				

FRA/FAI-33-22.99/0.00 (PID 121811) Noise Wall Preliminary Placement Plan (NWPPP)

Executive Summary

ODOT has proposed the widening of United States Route 33 (US 33) from the Refugee Road/US 33 interchange, an approximate distance of 9.25 miles to the Diley Road/US 33 interchange. The project proposes the construction of new travel lanes in each direction on the inside of the existing US 33 roadway. Major interchanges with US 33 along the project corridor are at I-270, SR 317 (Hamilton Road), and Gender Road. No modification or reconstruction is proposed at any of the interchanges. The study area and project location are shown on Figure 1.

A noise analysis was prepared for all noise sensitive receivers (NSA) located within 500 feet of the existing driving lanes along US 33 from approximately one-half mile west of the US 33/Refugee Road interchange to approximately one-half mile east of the US 33/Diley Road interchange.

As shown on Figure 2,twelve NSAs were identified as being located within the project limits. Four of the twelve NSAs currently have noise barrier walls constructed as part of previous projects. The noise analysis included the evaluation of the existing noise barrier walls to determine if they would continue to provide a high level of noise abatement with the increase in traffic volume as a result of the proposed project. The noise analysis determined that noise sensitive receptors located within all eight of the NSAs without existing noise barriers would experience traffic noise levels above the applicable FHWA Noise Abatement Criteria (NAC) in the design year with construction of the proposed project. All four of the existing noise barriers would continue to provide a similar level of noise abatement in the design year with construction of the proposed project

Noise abatement, in the form of noise barrier walls, was considered at eight NSAs. In general, two noise barrier wall location scenarios were evaluated for each of the NSAs with identified noise impact. A noise barrier wall located along the edge of shoulder (EOS) and a noise barrier wall located along the right of way line (ROW) were evaluated for most NSAs. ODOT recommended preliminary barrier locations and lengths for four NSAs where only one barrier location was evaluated.

- <u>NSA 1</u> Two noise barrier wall location scenarios were evaluated for NSA 1. Both scenarios could provide a substantial reduction in noise level for receptors in NSA 1; however, no scenario could meet the cost reasonable criterion of \$56,000 per benefited receptor. The noise receptors within the NSA are spread too far apart resulting in the need for a long noise barrier wall pushing the cost above the reasonable criterion. No noise barrier wall is recommended for construction at NSA 1.
- NSA 2 There is a group of eight homes and a church near the east side of NSA 2. Two homes located on the north end of Swartz Road near the west side of NSA 2 are too isolated (600' to 1,300') from the main group of receptors and were not included in the abatement analysis. Two noise barrier wall locations were analyzed for NSA 2 and both were able to provide a substantial noise reduction; however, neither scenario could meet the cost reasonable criterion of \$56,000 per benefited receptor. There are too few receptors in this NSA to be cost reasonable. A noise barrier wall at NSA 2 would not be

- considered a feasible and reasonable noise abatement measure. No noise barrier wall is recommended for construction at NSA 2.
- NSA 3 NSA 3 is a large multi-family residential community on the north side of US 33 located approximately one-half mile east of I-270. Almost all of the noise sensitive receptors in NSA 3 have areas for frequent outdoor use that face away from US-33. The receptors are shielded from traffic noise from US 33 by the building location itself and/or by garages that are located along the right of way line. The US 33 roadway and the noise receptors in NSA 3 are situated at about the same elevation. For drainage purposes, there is a low area that runs along the right of way line directing drainage to the west. Due to this low area, the right of way line is six to eight feet lower than both the roadway and the receptors. Locating a noise barrier wall along the EOS takes advantage of higher elevation compared to the ROW. Positioning a noise barrier wall along the ROW would require a much higher noise barrier wall to break the line of sight between the traffic on US 33 and the receptors. For this reason, a noise barrier wall was not modeled along the ROW. A noise barrier wall along the EOS can provide a substantial reduction in noise level but it cannot meet the \$56,000 cost reasonable criterion. No noise barrier wall is recommended for construction at NSA 3.
- NSA 4 NSA 4 is a large residential development on the south side of US 33 located approximately one-half mile east of I-270. A noise barrier wall, constructed as part of a previous project is situated along the south EOS of US 33. According to the ODOT Transportation Information Mapping System (TIMS) the noise barrier is 1,884 feet in length and a height of 14 feet. The existing noise barrier wall was re-evaluated using the updated traffic volumes for this project. The results showed that the existing noise barrier wall would continue to provide a similar level of noise abatement that it currently provides to the receivers within the development. The existing noise barrier wall at NSA 4 will continue to provide a high level of noise abatement for receivers in the NSA and no additional modifications or additions to the noise barrier wall would be required.
- NSA 5 NSA 5 is a multi-family residential community located to the east of NSA 3 and about 1,000 feet west of SR 317. A noise barrier wall along the edge of clear zone (EOCZ) at a length of 1,426 feet at a height of 14 feet was found to be both a reasonable and feasible noise abatement measure for the receivers in NSA 5. A noise barrier wall is recommended for construction at NSA 5 as part of the project.
- NSA 6 NSA 6 is a multi-family residential development on the north side of US 33 located approximately 0.3 mile east of SR 317. A noise barrier wall, constructed as part of a previous project is situated along the south EOS of US 33. According to the ODOT TIMS, the noise barrier is 580 feet in length and a height of 16 feet. The existing noise barrier wall was re-evaluated using the updated traffic volumes for this project. The results showed that the existing noise barrier wall would continue to provide a similar level of noise abatement that it currently provides to the receivers within the development. The existing noise barrier wall at NSA 6 will continue to provide a high level of noise abatement for receivers in the NSA and no additional modifications or additions to the noise barrier wall would be required.

- NSA 7 NSA 7 is a newer multi-family residential development on the north side of US 33 situated about 1,200 feet west of the Ebright Road overpass. A noise barrier wall along the ROW at a length of 964 feet at a height of 17 feet was found to be both a reasonable and feasible noise abatement measure for the receivers in NSA 7. A noise barrier wall is recommended for construction at NSA 7 as part of the project.
- NSA 8 NSA 8 is a large residential development on the south side of US 33 located just west of the Ebright Road overpass of US33. A noise barrier wall, constructed as part of a previous project is situated along the south ROW of US 33. According to the ODOT Transportation Information Mapping System (TIMS) the noise barrier is 2,174 feet in length and a height of 15 feet. The existing noise barrier wall was re-evaluated using the updated traffic volumes for this project. The results showed that the existing noise barrier wall would continue to provide a similar level of noise abatement that it currently provides to the receivers within the development. All of the impacted receptors will continue to be benefited by the barrier wall. The existing noise barrier wall at NSA 8 will continue to provide a high level of noise abatement for receivers in the NSA and no additional modifications or additions to the noise barrier wall would be required.
- NSA 9- NSA 9 is a small residential community located on the north side of US33 just east of the Gender Road interchange. Seven residential receivers are located on the north and south sides of Winchester Pike. Part of this NSA includes the Union Grove cemetery that has an area of frequent outdoor use on the north side of Winchester Road that runs through the cemetery. A Noise barrier wall running along the US 33 ROW and continuing along the US 33 WB exit ramp to Gender Road was evaluated at a length of 950 feet at a height of 17' would be feasible in benefiting five of the receptor sites. However, the configuration of this noise barrier wall would exceed the \$56,000 cost criterion. A noise barrier wall at NSA 7 would not be cost reasonable and is not recommended for construction as part of the project.
- NSA 10 NSA 10 is a large residential development located on the south side of US 33 and situated just west of the North High Street intersection at US 33. A noise barrier wall along the ROW at a length of 3,500 feet at a height of 16 feet was found to be both a reasonable and feasible noise abatement measure for the receivers in NSA 10. All of the impacted receiver sites, except for the western-most receiver will be benefited by the noise barrier wall. The western-most receiver cannot be benefited due to a drainageway that limits the noise barrier extent to the west. A noise barrier wall is recommended for construction at NSA 10 as part of the project.
- NSA 11 NSA 11 is a large residential development located on the south side of US 33 beginning just east of the North High Street intersection at US 33. The NSA extends east a distance of approximately 1,700 to a point just north of Jennings Drive. Dwelling units located within NSA 11 are shielded from traffic noise on US 33 by an existing noise barrier wall located along the US 33 ROW. The noise barrier wall extends the full length of NSA 11. According to the ODOT TIMS, the existing noise barrier is 1,676 feet in length and a height of 18 feet. Residential dwelling units located south of Jennings Drive are left unshielded from traffic noise. The existing noise barrier wall was reevaluated using the updated traffic volumes for this project. The results showed that

the existing noise barrier wall would continue to provide a similar level of noise abatement that it currently provides to the receivers within the development. All of the impacted receptors, except for two receivers located on the far west end where the noise barrier cannot be extended further west due to the location of North Main Street, were found to be benefited by the noise barrier. A total of 11 dwelling units are benefited by the existing noise barrier. The existing noise barrier wall at NSA 11 will continue to provide a high level of noise abatement for receivers in the NSA and no additional modifications or additions to the noise barrier wall would be required.

• NSA 12 – NSA 12 is, essentially, the same residential development described in NSA 11. It is proposed that the existing noise barrier wall be extended further south, from the point where the noise barrier currently ends. NSA 12 includes the residential dwelling units that were not shielded from traffic by the existing noise barrier wall. Noise barrier NSA 12 was evaluated at a length of 1,900 feet at a height similar to noise barrier NSA 11. With the additional length at a height of 16 feet, the noise barrier will be nefit 43 additional receivers. Adding 1,900 feet to the existing noise barrier will be a reasonable and feasible noise abatement measure and is recommended for construction as part of the project.

Noise barrier walls evaluated at four NSAs: NSA 5, NSA 7, NSA 10 and NSA 12 were found to be both reasonable and feasible noise abatement measures. The four noise barrier walls are recommended for construction as part of the project and are summarized in the following table.

Recommended Noise Barrier Walls Barrier Barrier Barrier Square Maximum Benefitted **Barrier** Cost per Effectiveness Barrier Barrier Properties b Length Height Footage of Insertion Cost c benefited Feasible d Reasonable e Location f Recommended g (feet) Barrier Lossa (dB) receptor (feet) NSA 5 7.7 \$798,000 EOS 1,426 14 18,200 42 \$19,000 Yes Yes Yes NSA 7 964 16 15,424 7.2 30 ROW \$616,800 \$20,500 Yes Yes Yes NSA 10 3,500 16 56,000 8.5 53 \$2,240,000 \$42,300 ROW Yes Yes Yes NSA12 1,900 16 30,400 12.3 43 \$1,216,000 \$28,000 Yes Yes ROW Yes

^a Insertion Loss (IL) is the maximum noise reduction provided by the noise barrier.

^b A receptor is considered benefited by the noise barrier if the IL is 5dB or greater.

^c Cost is based on \$25 per square foot of noise barrier constructed on ground and \$100 per square foot constructed on structure.

^d A noise barrier is considered feasible if it can provide a substantial noise reduction of at least 7dB at one receptor location.

^e A noise barrier is considered cost reasonable if the cost per benefited receptor is less than \$35,000.

f The location of the noise barrier wall: ROW=noise barrier is located along the right of way line; EOS=noise barrier is located along the edge of shoulder.

⁹ Noise barrier recommendation is based on the number of benefited receptors and the relative cost per benefited receptor.

Introduction

The project limits and study area for this noise analysis are shown on Figure 1 and includes all noise sensitive receivers located within 500 feet of the existing driving lanes and ramps along US 33 from the US 33/Refugee Road interchange to the US 33/Diley Road interchange. The project is located in Groveport and Canal Winchester, Franklin County, Ohio and will consist of widening US 33 by adding a third lane in each direction within the median of US33 and adding auxiliary lanes to the inside of the westbound and eastbound lanes between the entrance/exit ramps on the east side of the US 33/I-270 interchange and the exit/entrance ramps on the west side of the US 33/Hamilton Road interchange.

Noise Sensitive Areas

Twelve noise sensitive areas (NSA) were identified within the project limits and the locations are shown on Figure 2. Four of the NSAs have existing noise barrier walls built during previous roadway construction projects. The NSAs are shown on Figure 2 and are described as follows:

NSA 1 is located on the east side of US 33 approximately one-half mile west of the US 33/I-270 interchange. NSA 1 consists of around 30 single family residential dwelling units and one church property located within 500 feet of the westbound US 33 travel lanes. The NSA includes noise receptors located on Schwartz Road, Westwick Road, Cross Keys Road, and Eastwick Road.

NSA 2 is located on the west side of US 33 approximately one-half mile west of the US 33/I-270 interchange. NSA 2 consists of 10 single family residential dwelling units and one church property located within 500 feet of the eastbound US 33 travel lanes. NSA 2 is in the vicinity of Three Creeks Park, however, there are no developed park facilities located within 500 feet of the eastbound US 33 travel lanes. NSA 2 includes noise receptors located on Schwartz Road and Wilkins Road.

NSA 3 is located on the east side of US 33 approximately 2,100 feet (0.4 mile) west of the Hamilton Road/US 33 interchange. NSA 3 is comprised of two apartment complexes known as Winchester Park and Winchester Crossing. Winchester Park has nine (9) multi-family residential buildings located within 500 feet of the proposed travel lane on US 33. Winchester Crossing has two multi-family residential buildings located within 500 feet of the proposed travel lane on US 33. Of the nine multi-family buildings located within NSA 3, five buildings have patios and balconies that face away from US 33 and three of the buildings have no patios or balconies. One building does have patios and balconies facing US 33 however the areas for outdoor use are screened from noise by garages situated between the receivers and traffic on US 33. The three buildings having no areas for frequent outdoor use were not evaluated as part of this analysis. The apartment complex has a swimming pool, but the pool is located about 900 feet from US 33 and was not analyzed for noise.

NSA 4 is located on the west side of US 33 approximately 2,500 feet (0.5 mile) west of the US33/Hamilton Road interchange. NSA 4 is comprised of single-family and multifamily residential dwelling units that are situated at an elevation of about 5 to 10 feet lower than US 33. There is an apartment complex known as Elk Park Villas located in the northwest portion of NSA 4. Elk Park Villas is comprised of ten (10) four-unit buildings with each unit having a ground floor patio. About forty (40) single-family residential dwelling units are also located within 500 feet of US 33. Elk Run Park is located west of NSA 4. Developed recreational areas

within the park include a playground, basketball courts and pavilion. All of the developed park facilities are located about 800 feet from US 33 and were not analyzed for potential noise impact as part of this project. Dwelling units located in NSA 4 are shielded from traffic noise by a noise barrier wall located along the US 33 EOS and is 1,884 feet in length and a height of 14 feet.

- NSA 5 NSA 5 is located on the east side of US 33 west of SR 317 and is known as The Baylor multi-family development. The Baylor consists of 12, three-story buildings with six dwelling units per floor. The Baylor has an outdoor pool area which is located more than 500 feet from US 33.
- NSA 6 is located on the east side of US33 east of the Hamilton Road/US 33 interchange. NSA 6 is comprised of two hotels and five building units of the Bennington Pond Apartment complex located within 500 feet of the westbound US 33 travel lanes. Each ground floor apartment unit in the Bennington Pond complex has a patio for outdoor use. The upper floor units each have a balcony for outdoor use. A noise barrier wall, constructed as part of a previous project is situated along the south EOS of US 33. The noise barrier is 580 feet in length at a height of 16 feet.
- NSA 7 is located on the east side of US 33 north of Ebright Road. NSA 7 is a newly constructed multi-family residential development consisting of 10, three-story buildings with 10 dwelling units per story. All units appear to have balconies for outside use.
- NSA 8 is a large residential development located on the west side of US 33 north of Ebright Road. NSA 8 consists of 24 single and multi-family dwelling units located within 500 feet of US 33. The dwelling units in NSA 8 are shielded from traffic noise on US 33 by a 2,174-foot-long noise barrier wall at a height of 15 feet.
- NSA 9 NSA 9 is located on the east side of US 33 south of the Gender Road interchange. NSA 9 consists of eight single-family residential dwelling units and a cemetery situated along Winchester Pike.
- NSA 10- NSA 10 is a large residential neighborhood located on the west side of US 33 north of North High Street. The residential neighborhood is comprised of 54 single and multi-family dwelling units situated within 500 feet of US 33.
- NSA 11- NSA 11 is a large residential neighborhood located on the west side of US 33 south of North High Street. The residential neighborhood is comprised of 33 single and multi-family dwelling units situated within 500 feet of US 33. The dwelling units within NSA 11 are shielded by a noise barrier wall that is 1,676 feet in length at a height of 18 feet. The noise barrier ends just north of Jennings Drive.
- NSA 12 NSA 12 is the large residential neighborhood east of NSA 11. The NSA begins south of Jennings Drive and is comprised of xx dwelling units situated within 500 feet of US 33. Different from NSA 11, the dwelling units located in NSA 12 are not shielded from traffic noise on US 33 by a noise barrier.

Noise Analysis and Noise Abatement

A noise analysis was prepared using traffic data for the Opening Year 2030 and the Design Year 2050. The traffic data was provided by ODOT in an email dated August 29, 2024.

NSA 1 - The noise analysis determined that seven residential dwelling units and one church facility would experience design year noise levels that would exceed the respective Category B (residential) NAC and Category C (exterior) NAC.

The noise receptors located at the west side of NSA 1 on Swartz Road are situated six to eight feet lower than the eastbound travel lanes of US 33. The receptors along Cross Key Road are situated about eight feet higher than US 33 and the receptors near the east end of the NSA along Eastwick Road are situated at a similar elevation to US 33. The difference in elevations between US 33 and the noise receptors makes it difficult to locate a noise barrier solely along the right of way line or along the edge of shoulder and obtain adequate levels of noise abatement. Three noise barrier location scenarios were evaluated for NSA 1.

NSA 1 Scenario 1 - noise barrier wall located along the EOS

Scenario 1 places the noise barrier wall along the EOS of westbound US 33 and extending a distance of 1,850 feet. NSA 1 Scenario 1 is shown on Figure 9. The efficiency of noise barrier wall NSA 1 Scenario 1 at various heights and lengths is shown in Table 1.

		Table 1.									
		Barrier Wall NSA 1 S	cenario 1								
Barrier Wall Located along the US 33 Westbound Edge of Shoulder											
Height (ft) Length (ft) Total cost Benefited Cost per											
neight (it)	Length (it)	TOTALCOST	receptors	benefited receptor							
16	2,240	\$1,436,000	6	\$239,360							
15	2,240	\$1,346,500	5	\$269,300							
14	2,240	\$1,257,000	5	\$251,500							
13	2,240	\$1,167,000	9	\$292,000							

As shown in Table 1 the most efficient noise barrier wall for NSA 1 Scenario 1 would be at an average height of 16 feet with a length of approximately 1,850 feet (shaded green). In this configuration, NSA 1 Scenario would cost about \$239,360 per benefited receptor which exceeds the \$56,000 cost reasonable criterion. NSA 1 Scenario 1 is not a feasible and reasonable noise abatement measure. NSA 1 Scenario1 is shown is shown on Figure 3.

NSA 1 Scenario 2 - noise barrier wall along the ROW

As shown on Figure 3, the east end of noise barrier wall NSA 1 Scenario 2 would begin along the US 33 EOS where the roadway elevation is similar to the adjacent homes. At a point just east of Eastwick Road the noise barrier wall begins to transition to the ROW where the ground elevation is higher than US 33. The noise barrier wall transitions back to the edge of shoulder near Swartz Road where the ground elevation is higher along the EOS. The location of Scenario 2 takes advantage of the highest elevations where possible. The efficiency of noise barrier wall NSA 1 Scenario 2 at various heights is shown in Table 2.

		Table 2.									
		Barrier Wall NSA 1 S	cenario 2								
Barrier Wall Located along the US 33 north right of way line											
Hoight (ft)	Height (ft) Length (ft) Total cost Benefited Cost per										
neight (it)	Length (It)	TOTALCOST	receptors	benefited receptor							
20	1,482	\$1,186,000	7	\$169,500							
19	1,482	\$1,126,500	7	\$160,900							
18	1,482	\$1,067,000	7	\$152,500							
17	1,482	\$1,008,000	7	\$144,000							
16	1,482	\$948,500	6	\$158,000							
15	1,482	\$889,500	5	\$178,000							

As shown in Table 2 the most efficient noise barrier wall for NSA 1 Scenario 2 would be at an average height of 17 feet with a length of approximately 2,280 feet. Even though it is the most efficient configuration, at a cost of \$144,000 per benefited receiver, it is higher than the \$56,000 cost reasonable criterion. NSA 1 Scenario 2 is not a feasible and reasonable noise abatement measure. None of noise barrier wall scenarios at NSA 1 could provide both a feasible and reasonable noise abatement measure. **No noise barrier wall is recommended for construction at NSA 1.**

			dBA	dBA	dBA	dB		dB		dBA	dB	dB	dB	
NSA1-28	66	1	58.9	60.1		66	1.2	10	322	60.0		0.1	4	-4.4
NSA1-25	63	1	58.1	59.4		66	1.3	10		56.9		2.5	4	-2.0
NSA1-26	64	1	59.1	60.2		66	1.1	10	-	57.6		2.6	4	-1.9
NSA1-27	65	1	61.8	62.7		66	0.9	10	-	59.4		3.3	4	-1.2
NSA1-21	59	1	65.9	66.7		66	0.8	10	Snd Lyl	60.8	!	5.9	4	1.4
NSA1-19	57	1	69.0	69.3		66	0.3	10	Snd Lvl	61.2		3.1	4	3.6
NSA1-20	58	1	69.7	69.9		66	0.2	10	Snd Lvl	61.1		8.8	4	4.3
NSA1-24	62	1	63.5	64.2		66	0.7	10	-	59.4		4.8	4	0.3
NSA1-23	61	- 1	61.3	62.0		66	0.7	10	_	58.4	1	3.6	4	-0.9
NSA1-22	60	1	59.8	60.7		66	0.9	10	_	57.5		3.2	4	-1.3
NSA1-18	56	1	56.8	57.9		66	1.1	10	_	56.3	1	1.6	4	-2.9
NSA1-16	54	1	58.0	59.1		66	1.1	10	_	57.5		1.6	4	-2.9
NSA1-17	55	1	58.9	59.9		66	1.0	10		58.5	i .	1.4	4	-3.1
NSA1-14	52	1	57.7	58.9		66	1.2	10	-	57.9	1	1.0	4	-3.5
NSA1-15	53	1	60.0	60.9		66	0.9	10	-	59.6		1.3	4	-3.2
NSA1-13	51	1	63.3	64.0		66	0.7	10	_	59.9		4.1	4	-0.4
NSA1-12	50	1	64.4	65.2		66	0.8	10	_	61.0	1	4.2	4	-0.3
NSA1-11	49	1	67.3	67.8		66	0.5	10	Snd Lyl	63.6		4.2	4	-0.3
NSA1-10	48	- 1	68.3	68.8		66	0.5	10	Snd Lyl	64.9	1	3.9	4	-0.6
NSA1-9	47	1	69.7	70.5		66	0.8	10	Snd Lvl	67.1		3.4	4	-1.1
NSA1-2	40	1	68.6	68.9		66	0.3	10	Snd Lvl	62.0	1	6.9	4	2.4
NSA1-8	46	1	66.4	67.2		66	0.8	10	Snd Lvl	65.2	:	2.0	4	-2.5
NSA1-7	45	1	63.8	64.7		66	0.9	10	_	63.6		1.1	4	-3.4
NSA1-6	44	1	61.9	62.7		66	0.8	10	_	62.0	1	0.7	4	-3.8
NSA1-5	43	1	60.2	61.1		66	0.9	10	-	60.6		0.5	4	-4.0
NSA1-3	41	1	60.7	61.7		66	1.0	10	-	61.0	1	0.7	4	-3.8
NSA1-4	42	1	58.6	59.6		66	1.0	10	52.5	59.2	! !	0.4	4	-4.1
NSA1-1 Church	39	1	69.0	71.0		66	2.0	10	Snd Lvl	65.1		5.9	4	1.4
Dwelling Units		# DUs	Noise Re	duction										
			Min	Avg	Max									
			dB	dB	dB									
All Selected		28	0.1	3.1		8.8								
All Impacted		9	2.0	5.5		8.8								
All that meet NR Goal		6	4.8	6.7		8.8								

NSA 2 - The noise analysis determined that two residential dwelling units would experience noise levels that would exceed the Category B (residential) NAC. The church facility has a small playground located to the east of the structure. The noise analysis determined that the play area would experience design year noise levels above the Category C (exterior) NAC. The existing and design year noise levels at NSA 2 are shown on Figure 4.

The receptors located in NSA 2 are generally situated at a similar elevation than US 33. Two noise barrier wall scenarios were evaluated for NSA 2. Scenario 1 was evaluated with a noise barrier wall located along the EOS of US 33. Scenario 2 was evaluated with a noise barrier wall located along the ROW line of US 33.

NSA 2 Scenario 1 - noise barrier wall located along the EOS

Noise barrier wall NSA 4 Scenario 1 would begin along the US 33 edge of shoulder about 1,200 feet west of the I-270/US 33 interchange. From this point, noise barrier NSA 2 Scenario 1 would extend west along the edge of shoulder for an approximate distance of 1,466 feet. The efficiency of noise barrier wall NSA 2 Scenario 1 at various heights is shown in Table 9.

		Table 3.				
		Barrier Wall NSA 2 Sc	enario 1			
	Noise Barrier Wa	all Located along the US 33	B eastbound Edge of	f Shoulder		
Hoight (ft)	Longth (ft)	Total cost	Benefited	Cost per		
Height (ft)	Length (ft)	TOLATCOSE	receptors	benefited receptor		
19	1,563	\$1,188,000	8	\$148,500		
18	1,563	\$1,125,500	8	\$140,500		
17	1,660	\$1,129,000	8	\$141,000		
16	1,466	\$938,000	7	\$134,000		
15	1,466	\$879,500	7	\$125,500		
14	1,466	\$821,000	5	\$164,000		

As shown in Table 3 the most efficient noise barrier wall for NSA 2 Scenario 1 would be at an average height of 15 feet with a distance of approximately 1,466 feet. Even though it is the most efficient configuration, at a cost of \$125,000 per benefited receptor, it is higher than the \$56,000 cost reasonable criterion. NSA 2 Scenario 1 is not a cost reasonable noise abatement measure and is not recommended for construction. Noise barrier wall NSA 2 Scenario 1 is shown on Figure 4.

NSA 2 Scenario 2 - noise barrier wall along the ROW

Noise barrier wall NSA 2 Scenario 2 would begin along the US 33 ROW about 1,350 feet west of the I-270/US 33 interchange. From this point, noise barrier NSA 2 Scenario 2 would extend west along the US 33 south ROW line for an approximate distance of 1,089 feet. The efficiency of noise barrier wall NSA 2 Scenario 2 at various heights is shown in Table 4.

		Table 4. Barrier Wall NSA 2.5	Scenario 2								
Noise Barrier Wall Located along the US 33 eastbound Right of Way											
Height (ft) Length (ft) Total cost Benefited Cost											
neight (it)	Length (it)	TOTALCOST	receptors	benefited receptor							
19	1,089	\$827,500	6	\$138,000							
18	1,191	\$857,500	6	\$128,500							
17	1,089	\$740,500	5	\$148,000							
16	1,089	\$697,000	4	\$174,240							

As shown in Table 4, the most efficient noise barrier wall for NSA 2 Scenario 2 would be at an average height of 18 feet with a distance of approximately 1,191 feet. Even though it is the most efficient configuration, at a cost of \$128,500 per benefited receptor, the cost is higher than the \$56,000 cost reasonable criterion. NSA 2 Scenario 2 is not a feasible and reasonable noise abatement measure and is not recommended for construction. No configuration of noise barrier wall at NSA 2 proved to be both feasible and reasonable; therefore, **no noise barrier wall is recommended for construction at NSA 2.**

CMCox

22 October 2024

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

FRA-US33-24.76 [121811]

Design Year 2050 NSA 1

BARRIER DESIGN:

NSA2 19' Not Reas

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA

ATMOSPHERICS:

68 dea F. 50% RH

ATMOSPHERICS:		68 deg	F, 50% RI	H				ot a ditter	ent type with	approval of	FHWA.	
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrier	•		
			LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
NSA2-10	220	1	67.9	68.8	66	0.9	10	Snd Lvl	61.4	7.4		4 2.9
NSA2-9	219	1	62.6	63.2	66	0.6	10		57.8	5.4		4 0.9
NSA2-8	218	1	62.7	63.2	66	0.5	10		57.5	5.7		4 1.2
NSA2-11	221	1	56.6	57.3	66	0.7	10	_	55.5	1.8		4 -2.7
NSA2-7	217	1	68.4	69.0	66	0.6	10	Snd Lvl	59.1	9.9		4 5.4
NSA2-6	216	1	66.8	67.2	66	0.4	10	Snd Lvl	59.0	8.2		4 3.7
NSA2-5	215	1	65.2	65.6	66	0.4	10	_	58.7	6.9		4 2.4
NSA2-4	214	1	63.0	63.1	66	0.1	10	_	58.2	4.9		4 0.4
NSA2-3	213	1	62.1	62.2	66	0.1	10	_	58.3	3.9		4 -0.6
NSA2-2	212	1	63.2	63.5	66	0.3	10	_	63.4	0.1		4 -4.4
NSA2-1	211	1	71.1	71.0	66	-0.1	10	Snd Lvl	71.0	0.0		4 -4.5
Dwelling Units		# DUs	Noise Re	duction								
			Min	A∨g	Max							
			dB	dB	dB							
All Selected		11	0.0	4.9	9.9							
All Impacted		4	0.0	6.4	9.9							
All that meet NR Goal		7	4.9	6.9	9.9							

NSA 3 is comprised of the Winchester Park and Winchester Crossing apartment complexes. There are several different configurations for the apartment buildings with some buildings having no areas of frequent outdoor use, buildings where areas for outdoor use face away from US 33 and a building that has areas for outdoor use facing US 33. The noise analysis determined that three noise receptors, representing six dwelling units in the Winchester Park Apartments complex, would experience design year noise levels above the Category B NAC. The noise analysis determined that six ground floor residential dwelling units at the Benning Pond Apartment complex would experience design year noise levels above the Category B NAC.

The receptors located in NSA 3 are generally situated at a similar elevation to US 33. One noise barrier wall location, along the EOS was evaluated for NSA 3. As shown in Figure 5, noise barrier wall NSA 3 would begin along the US 33 EOS about $\frac{1}{2}$ mile west of Hamilton Road and would extend west a distance of approximately 1,580 feet to the west. The efficiency of noise barrier wall NSA 3 at various heights is shown in Table 5.

		Table 5.		
		Barrier Wall NSA	.3	
	Noise Barrier W	all Located along the US 33 \	Westbound Edge of	f Shoulder
Hoight (ft)	Longth (ft)	Total cost	Benefited	Cost per
Height (ft)	Length (ft)	Total cost	receptors	benefited receptor
17	1,730	\$1,178,500	16	\$73,500
16	1,730	\$1,109,000	16	\$69,300
15	1,730	\$1,040,000	16	\$65,000
14	1,730	\$970,500	16	\$60,500
13	1,730	\$901,500	13	\$69,300
12	1,730	\$899,500	11	\$81,800

As shown in Table 5 the most efficient noise barrier wall for NSA 3 would be at an average height of 14 feet with a distance of approximately 1,730 feet. At an average cost of \$64,700 per benefited receptor, the noise barrier is higher than the \$56,000 cost reasonable criterion. Noise barrier wall NSA 3 is not a feasible and reasonable noise abatement measure and **no noise barrier wall is recommended for construction at NSA 3.**

CMCox

RUN:

22 October 2024

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT:

FRA-US33-24.76 (121811) Design Year 2050 NSA 3

BARRIER DESIGN:

Noise barrier NSA3 14' NR

Average pavement type shall be used unless

a State highway agency substantiates the use of a different type with approval of FHWA.

ATMOSPHERICS:

68 deg F, 50% RH

Receiver

Name	No.	#DUs	Existing	No Barrier					With Barrie	r			
				LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Reduction			
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
NSA3-1	68	2	59.0	61.2	66	2.2	10	_	53.4	7.8	4	3.3	
NSA3-2	69	2	65.1	67.4	66	2.3	10	Snd Lvl	57.8	9.6	4	5.1	
NSA3-3	70	2	49.3	50.6	66	1.3	10	_	48.5	2.1	4	-2.4	
NSA3-4	71	2	50.3	51.9	66	1.6	10		50.6	1.3	4	-3.2	
NSA3-5	72	2	53.6	55.8	66	2.2	10	_	50.3	5.5	4	1.0	
NSA3-6	73	2	47.9	49.3	66	1.4	10	_	47.5	1.8	4	-2.7	
NSA3-7	75	2	54.7	56.7	66	2.0	10		50.5	6.2	4	1.7	
NSA3-8	76	2	52.1	53.9	66	1.8	10		49.1	4.8	4	0.3	
NSA3-9	77	2	65.1	66.3	66	1.2	10	Snd Lvl	61.1	5.2	4	0.7	
NSA3-10	78	2	66.6	67.3	66	0.7	10	Snd Lvl	62.6	4.7	4	0.2	
NSA3-11	79	1	62.3	64.4	66	2.1	10		59.1	5.3	4	0.8	
NSA3-12	80	1	62.3	64.3	66	2.0	10	_	60.0	4.3	4	-0.2	

Dwelling Units	# DUs	Noise Re	Noise Reduction				
		Min	A∨g	Max			
		dB	dB	dB			
All Selected	22	1.3	4.9	9.6			
All Impacted	6	4.7	6.5	9.6			
All that meet NR Goal	15	4.7	6.1	9.6			

NSA 4 - Residential dwelling units located in NSA 4 are currently shielded from noise on US 33 by a noise barrier wall located along the edge of shoulder of US 33. A noise analysis for the Design Year 2050 was run for NSA 4 using updated traffic volumes and the existing noise barrier wall. The analysis showed that the existing noise barrier wall would continue to provide a high level of noise abatement for the receivers in NSA 4. At least 10 dwelling units would continue to receive a 10 dB or greater noise reduction and all but two impacted receivers would be benefited by the noise barrier wall. As shown on Figure 6, the **existing noise barrier wall at NSA 4 will continue to provide a comparable level of noise abatement in the design year 2050 with no addition or modification to the barrier.**

NSA 5 – Dwelling units at eight receiver locations in NSA 5 were predicted to experience noise levels above the Category B NAC in the design year with construction of the proposed project. A noise barrier wall located along the edge of clear zone was evaluated for NSA 5.

	Table 6.											
Barrier Wall NSA 5												
Noise Barrier Wall Located along the US 33 Westbound Edge of Clear Zone												
Height (ft)	Length (ft)	Total cost	Benefited	Cost per								
neight (it)	Length (It)	Total cost	receptors	benefited receptor								
15	1,426	\$855,300	42	\$20,364								
14	1,426	\$798,800	42	\$19,000								

		Table 6.										
	Barrier Wall NSA 5											
Noise Barrier Wall Located along the US 33 Westbound Edge of Clear Zone												
Hoight (ft)	Longth (ft)	Total cost	Benefited	Cost per								
Height (ft)	Length (ft)	Total cost	receptors	benefited receptor								
13	1,426	\$741,300	36	\$20,600								
12	1,426	\$684,300	30	\$22,810								
11	1,426	\$571,800	24	\$23,800								

As shown on Figure 7 and in the table above, a noise barrier wall at a height of 14 feet and a length of 1,426 feet is a reasonable and feasible noise abatement measure and is recommended for construction as part of the project.

CMCox

22 October 2024 TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: RUN:

FRA US33 24.76 (121811) Design Year 2050 NSA5

BARRIER DESIGN:

Noise Barrier NSA5 at 14'

Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.

ATMOSPHERICS:

68 deg F, 50% RH

Receiver

Name	No.	#DUs	Existing	No Barrier					With Barrie	r			
			LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Redu	ction		
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calc minu Goal	
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB	
NSA5-1	128	6	66.7	68.5	66	1.8	10	Snd Lvl	63.6	4.9		4	0.4
NSA5-2	263	6	69.5	71.1	66	1.6	10	Snd Lvl	63.9	7.2		4	2.7
NSA5-3	264	6	71.6	74.1	66	2.5	10	Snd Lvl	66.4	7.7		4	3.2
NSA5-4	265	6	70.3	72.1	66	1.8	10	Snd Lvl	64.5	7.6		4	3.1
NSA5-5	266	6	61.7	62.9	66	1.2	10	_	60.5	2.4		4	-2.1
NSA5-6	267	6	63.9	65.0	66	1.1	10	_	61.8	3.2		4	-1.3
NSA5-7	268	6	67.3	68.7	66	1.4	10	Snd Lvl	63.5	5.2		4	0.7
NSA5-8	269	6	64.3	65.3	66	1.0	10	_	61.4	3.9		4	-0.6
NSA5-9	270	6	69.9	71.2	66	1.3	10	Snd Lvl	64.0	7.2		4	2.7
NSA5-10	271	6	66.9	68.2	66	1.3	10	Snd Lvl	62.4	5.8		4	1.3
NSA5-11	272	: 6	64.2	65.8	66	1.6	10	_	61.8	4.0		4	-0.5
NSA5-12	273	6	62.6	64.3	66	1.7	10	_	61.2	3.1		4	-1.4
NSA5-13	274	6	58.2	59.5	66	1.3	10	_	58.1	1.4		4	-3.1
NSA5-14	275	6	56.1	57.3	66	1.2	10	_	56.4	0.9		4	-3.6
NSA5-15	276	6	58.6	60.0	66	1.4	10	_	58.3	1.7		4	-2.8
NSA5-16	277	6	56.9	58.3	66	1.4	10	_	57.2	1.1		4	-3.4

Dwelling Units	# DUs	# DUs Noise Reduction				
		Min	A∨g	Max		
		dB	dB	dB		
All Selected	96	0.9	4.2	7.7		
All Impacted	42	4.9	6.5	7.7		
All that meet NR Goal	42	4.9	6.5	7.7		

NSA 6 — Residential dwelling units located in NSA 6 are currently shielded from noise on US 33 by a noise barrier wall located along the edge of shoulder of US 33. A noise analysis for the Design Year 2050 was run for NSA 4 using updated traffic volumes and the existing noise barrier wall. The analysis showed that the existing noise barrier wall would continue to provide a high level of noise abatement for the receivers in NSA 6. All of the impacted receivers would continue to be benefited by the noise barrier wall. As shown on Figure 8, **the existing noise barrier wall at NSA 6 will continue to provide a comparable level of noise abatement in the design year 2050 with no addition or modification to the barrier.**

NSA 7 - Dwelling units at three receiver locations in NSA 7 were predicted to experience noise levels above the Category B NAC in the design year with construction of the proposed project. A noise barrier wall located along the ROW was evaluate at a length 964 feet. Result of the noise barrier wall at various heights is shown in the table below.

		Table 7. Barrier Wall NSA		
	Noise Barrier	Wall Located along the US 3		•
Height (ft)	Length (ft)	Total cost	Benefited	Cost per
ricigite (it)	Length (it)	Total cost	receptors	benefited receptor
18	964	\$694,000	30	\$23,100
17	964	\$655,300	30	\$21,800
16	964	\$616,800	30	\$20,500
15	964	\$578,200	20	\$28,900
14	964	\$569,700	20	\$28,500

As shown in the table above, a noise barrier wall at a height of 16 feet and a length of 964 feet would be the most efficient reasonable and feasible noise barrier configuration. The noise barrier is a reasonable and feasible noise abatement measure and is recommended for construction as part of the project.

The proposed noise barrier wall NSA 7 is shown on Figure 9.

CCox

22 October 2024 TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: RUN:

FRA-US 33-24.76 [121811] Design Year 2050 NSA 7

BARRIER DESIGN:

Noise Barrier NSA 7 17'

ATMOSPHERICS:

68 deg F, 50% RH

Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.

Receiver		#D11	F	N D .								
Name	No.	#DUs		No Barrier		,			With Barrie			
			LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
NSA7-1	24	10	57.5	59.3	66	1.8	10	_	58.5	0.8	4	-3.7
NSA7-2	25	10	61.1	62.0	66	0.9	10	_	60.4	1.6	4	-2.9
NSA7-3	26	10	67.0	69.2	66	2.2	10	Snd Lvl	63.1	6.1	4	1.6
NSA7-4	27	10	64.5	66.7	66	2.2	10	Snd Lvl	61.6	5.1	4	0.6
NSA7-5	28	10	67.1	69.2	66	2.1	10	Snd Lvl	62.0	7.2	4	2.7
NSA7-6	29	10	59.0	60.3	66	1.3	10	_	58.0	2.3	4	-2.2
NSA7-7	30	10	57.0	58.2	66	1.2	10	_	56.5	1.7	4	-2.8
NSA7-8	31	10	57.9	59.2	66	1.3	10	_	56.9	2.3	4	-2.2
NSA7-9	32	10	60.9	62.4	66	1.5	10	_	58.7	3.7	4	-0.8

Dwelling Units	# DUs	# DUs Noise Reduction				
		Min	A∨g	Max		
		dB	dB	dB		
All Selected	90	0.8	3.4	7.2		
All Impacted	30	5.1	6.1	7.2		
All that meet NR Goal	30	5.1	6.1	7.2		

NSA 8 - Residential dwelling units located in NSA 8 are currently shielded from noise on US 33 by a noise barrier wall located along the edge of shoulder of US 33. The noise barrier is 2,174 feet in length and a height of 15 feet. A noise analysis for the Design Year 2050 was run for NSA 8 using updated traffic volumes for Design Year 2050 and the existing noise barrier wall. The results showed that the existing noise barrier wall would continue to provide a similar level of noise abatement that it currently provides to the receivers within the development. All of the impacted receptors will continue to be benefited by the barrier wall. As shown on Figure 10, the existing noise barrier wall at NSA 8 will continue to provide a high level of noise abatement for receivers in the NSA and no additional modifications or additions to the noise barrier wall would be required.

NSA 9 - Dwelling units at eight receiver locations in NSA 9 were predicted to experience noise levels above the Category B NAC in the design year with construction of the proposed project. A noise barrier wall located along the ROW was evaluate at a length 950 feet was evaluated for the receivers in NSA 9. Result of the noise barrier wall at various heights is shown in the table below.

		Table 8. Barrier Wall NSA	0	
	Noise Barrier	Wall Located along the US 3		of Way
Lloight /ft\			Benefited	Cost per
Height (ft)	Length (ft)	Total cost	receptors	benefited receptor
18	950	\$684,000	5	\$136,800
17	950	\$646,000	5	\$129,000
16	950	\$602,000	3	\$200,500
15	950	\$564,300	3	\$188,000
14	950	\$526,700	3	\$175,500
13	950	\$489,000	2	\$244,500

As shown on Figure 11 and in the above table, the most efficient noise barrier wall for NSA 9 would be at a height of 17 feet with a length of 950 feet. At an average cost of \$129,000 per benefited receptor, the noise barrier is higher than the \$56,000 cost reasonable criterion. Noise barrier wall NSA 9 is not a feasible and reasonable noise abatement measure and **no noise barrier wall is recommended for construction at NSA 9.**

CMCox

22 October 2024

TNM 2.5

Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: RUN:

FAI-US 33-24.76 PID 121811 Design Year 2050 NSA 9

BARRIER DESIGN:

NSA 9 17' NR

Average pavement type shall be used unless a State highway agency substantiates the use

of a different type with approval of FHWA.

ATMOSPHERICS:

68 deg F, 50% RH

				-						F F		
Receiver												
Name	No.	#DUs	Existing	No Barrier					With Barrie	Г		
			LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
9-1	377	1	60.8	62.8	66	2.0	10	_	61.8	1.0		-3.5
9-2	378	1	61.5	63.5	66	2.0	10	_	61.9	1.6		1 -2.9
9-3	379	1	62.6	64.7	66	2.1	10	_	61.5	3.2		1 -1.3
9-4	380	1	63.7	66.0	66	2.3	10	Snd Lvl	61.4	4.6		0.1
9-5	381	1	65.6	68.1	66	2.5	10	Snd Lvl	61.9	6.2		1.7
9-6	382	1	68.9	71.7	66	2.8	10	Snd Lyl	62.9	8.8		4.3
9-7	383	1	71.0	74.0	66	3.0	10	Snd Lvl	63.7	10.3		5.8
9-8	384	1	63.0	65.0	66	2.0	10	_	60.4	4.6		0.1
9-9 cemetery	385	1	60.7	63.2	66	2.5	10	_	63.0	0.2		-4.3
Dwelling Units		# DUs	Noise Re	duction								
			Min	A∨g	Max							
			dB	dB	dB							
All Selected		9	0.2	4.5	10.3							
All Impacted		4	4.6	7.5	10.3							
All that meet NR Goal		5	4.6	6.9	10.3							

NSA 10 – A total of 28 residential dwelling units were predicted to experience Design Year 2050 traffic noise levels that would exceed the Activity Category B NAC with construction of the proposed project. A noise barrier wall located along the ROW was evaluate at a length 3,500 feet was evaluated for the receivers in NSA 10. Results of the noise barrier wall at various heights is shown in the table below.

		Table 9.		
		Barrier Wall NSA	10	
	Noise Barrier	Wall Located along the US 3	3 Eastbound Right	of Way
Hoight (ft)	Longth (ft)	Total cost	Benefited	Cost per
Height (ft)	Length (ft)	Total cost	receptors	benefited receptor
18	3,500	\$2,519,000	102	\$24,700
17	3,500	\$2,379,000	101	\$23,600
16	3,500	\$2,239,000	99	\$22,500
15	3,500	\$2,099,000	86	\$24,400
14	3,500	\$1,959,500	76	\$25,800
13	3,500	\$1,859,500	59	\$30,800

As shown in the table above, a noise barrier wall at a height of 16 feet and a length of 3,500 feet is the most efficient reasonable and feasible noise abatement measure for NSA 10 and is recommended for construction as part of the project.

Lawhon & Assoc. CMCox

22 October 2024 **TNM 2.5** Calculated with TNM 2.5

RESULTS: SOUND LEVELS

PROJECT/CONTRACT: RUN:

FAI-33-24.26 PID 98111 Design Year 2050 NSA 10

BARRIER DESIGN:

ATMOSPHERICS:

Noise Barrier NSA 10 16'

68 deg F, 50% RH

Average pavement type shall be used unless a State highway agency substantiates the use of a different type with approval of FHWA.

Receiver												
Name	No.	#DUs	Existing	No Barrier		With Barrier						
			LAeq1h	LAeq1h		Increase ove	r existing	Туре	Calculated	Noise Redu	ction	
				Calculated	Crit'n	Calculated	Crit'n Sub'l Inc	Impact	LAeq1h	Calculated	Goal	Calculated minus Goal
			dBA	dBA	dBA	dB	dB		dBA	dB	dB	dB
10-1	323	1	66.1	66.6	66	0.5	10	Snd Lvl	62.5	4.1	4	-0.4
10-2	324	3	68.4	68.6	66	0.2	10	Snd Lvl	60.2	8.4	4	3.9
10-3	325	3	68.4	68.3	66	-0.1	10	Snd Lvl	59.7	8.6	4	4.1
10-4	326	3	68.4	67.4	66	-1.0	10	Snd Lvl	58.7	8.7	4	4.2
10-5	327	3	67.4	65.8	66	-1.6	10		58.1	7.7	4	3.2
10-6	328	3	68.0	66.1	66	-1.9	10	Snd Lvl	57.8	8.3	4	3.8
10-7	329	2	67.2	65.5	66	-1.7	10		57.7	7.8	4	3.3
10-8	330	2	65.8	64.6	66	-1.2	10		57.7	6.9	4	2.4
10-9	331	3	67.8	66.3	66	-1.5	10	Snd Lvl	58.4	7.9	4	
10-10	332	1	70.2	68.8	66	-1.4	10	Snd Lvl	58.1	10.7	4	6.2
10-11	333	1	69.9	68.9	66	-1.0	10	Snd Lvl	58.9	10.0	4	5.9
10-12	334	1	64.9	64.3	66	-0.6	10	_	58.6	5.7	4	1.2
10-13	335	2	62.6	62.0	66	-0.6	10	_	56.8	5.2	4	0.7
10-14	336	2	62.4	61.5	66	-0.9	10	_	56.3	5.2	4	0.7
10-15	337	2	60.9	60.7	66	-0.2	10	_	55.2	5.5	4	1.0
10-16	338	1	63.2	64.1	66	0.9	10	_	61.0	3.1	4	-1.4
10-17	339	2	60.8	62.2	66	1.4	10	_	59.4	2.8	4	-1.7
10-18	340	2	61.2	61.6	66	0.4	10	_	58.1	3.5	4	-1.0
10-19	341	3	61.5	61.6	66	0.1	10	_	56.9	4.7	4	0.2
10-20	342	3	61.2	61.1	66	-0.1	10	_	56.2	4.9	4	0.4
10-21	343	3	61.5	60.9	66	-0.6	10	_	55.8	5.1	4	0.6
10-22	344	2	61.7	61.0	66	-0.7	10	_	55.7	5.3	4	0.8
10-23	345	2	61.0	60.5	66	-0.5	10	_	55.0	5.5	4	1.0

10-27	10-22	344	2	61.7	61.0	66	-0.7	10	_	55.7	5.3	4	8.0
10-25	10-23	345	2	61.0	60.5	66	-0.5	10	_	55.0	5.5	4	1.0
10-26	10-24	346	1	59.9	60.0	66	0.1	10	_	53.8	6.2	4	1.7
10-27	10-25	347	1	57.5	58.3	66	0.8	10	_	53.3	5.0	4	0.5
10-28 350	10-26	348	3	56.9	57.3	66	0.4	10	_	53.3	4.0	4	-0.5
10-29	10-27	349	2	58.1	58.2	66	0.1	10	_	53.6	4.6	4	0.1
10-30 352 1 58.5 59.1 66 0.6 10 53.3 5.8 4 10-31 353 3 57.8 58.3 66 0.5 10 52.8 5.5 4 10-32 354 2 57.3 57.9 66 0.6 10 53.8 4.1 4 10-33 355 1 57.0 57.4 66 0.4 10 52.9 4.5 4 10-34 356 1 56.7 57.0 66 0.3 10 52.6 4.4 4 10-35 357 2 63.9 63.4 66 -0.5 10 57.4 6.0 4 10-37 359 4 67.8 66.9 66 -1.9 10 58.0 7.7 4 10-38 360 4 67.8 66.3 66 -1.5 10 Snd Lvl 58.5 7.8 4 10-40 362 2 67.3 66.2 66 -1.1 10 Snd Lvl 58.5 7.8 4 10-40 362 2 67.3 66.2 66 -1.1 10 Snd Lvl 58.5 7.7 4 10-41 363 2 65.1 64.2 66 -0.9 10 55.4 5.3 4 10-44 366 4 62.6 62.9 66 0.3 10 56.4 5.3 4 10-45 367 4 63.1 66.2 66 -1.1 10 Snd Lvl 58.5 7.7 4 10-44 366 4 62.6 62.9 66 0.3 10 56.6 6.3 4 10-46 368 4 65.2 63.5 66 -1.7 10 56.6 6.3 4 10-46 368 4 65.2 63.5 66 -1.7 10 56.6 6.3 4 10-46 368 4 65.2 63.5 66 -1.7 10 56.2 5.3 4 10-47 369 4 60.6 60.9 66 0.3 10 57.7 5.1 4 10-40 370 4 59.8 60.2 66 0.3 10 57.7 5.1 4 10-40 361 370 4 59.8 60.2 66 0.3 10 57.7 5.1 4 10-40 361 370 4 59.8 60.2 66 0.3 10 57.5 3.3 4 10-48 370 4 59.8 60.2 66 0.4 10 55.4 5.0 4 10-40 371 4 58.9 59.3 66 0.4 10 57.2 3.3 4 10-50 372 4 59.9 60.4 66 0.5 10 57.2 3.3 4 10-50 372 4 59.9 60.4 66 0.5 10 57.2 3.3 4 10-50 372 4 59.9 60.4 66 0.2 10 57.2 3.3 4 10-50 373 2 60.3 60.5 66 0.2 10 57.2 3.3 4 10-50 375 2 62.3 60.5 66 0.2 10 57.2 3.3 4 10-50 375 2	10-28	350	1	61.3	61.3	66	0.0	10	_	56.4	4.9	4	0.4
10-31 353 3 57.8 58.3 66 0.5 10 52.8 5.5 4 10-32 354 2 57.3 57.9 66 0.6 10 53.8 4.1 4 10-33 355 1 57.0 57.4 66 0.4 10 52.9 4.5 4 10-34 356 1 56.7 57.0 66 0.3 10 52.9 4.5 4 4 10-35 357 2 63.9 63.4 66 -0.5 10 57.4 6.0 4 10-36 358 2 67.6 65.7 66 -1.9 10 58.0 7.7 4 10-36 358 2 67.6 65.7 66 -1.9 10 58.0 7.7 4 10-38 360 4 67.8 66.3 66 -1.5 10 Snd Lvl 58.5 7.8 4 10-39 361 4 68.1 66.7 66 -1.4 10 Snd Lvl 58.5 7.8 4 10-40 362 2 67.3 66.2 66 -1.1 10 Snd Lvl 58.6 8.1 4 10-40 362 2 65.1 64.2 66 -0.9 10 56.4 5.3 4 10-42 364 2 61.3 61.7 66 0.4 10 56.0 6.0 4 10-43 365 2 61.5 62.0 66 0.5 10 56.0 6.0 4 10-44 366 4 62.6 62.9 66 0.3 10 56.0 6.0 4 10-47 369 4 66.2 62.9 66 0.3 10 57.7 5.1 4 10-46 368 4 65.2 63.5 66 6.3 10 57.7 5.1 4 10-47 369 4 60.6 60.9 66 0.3 10 57.7 5.1 3.8 4 10-49 371 4 58.9 59.3 66 0.4 10 55.4 5.0 4 10-49 371 4 58.9 59.3 66 0.4 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 55.2 5.5 5.0 4 10-50 373 2 60.3 60.5 66 0.2 10	10-29	351	1	60.6	61.1	66	0.5	10	_	56.3	4.8	4	0.3
10-32 354 2 57.3 57.9 66 0.6 10 — 53.8 4.1 4 10-33 355 1 57.0 57.4 66 0.4 10 — 52.9 4.5 4 10-34 356 1 56.7 57.0 66 0.3 10 — 52.6 4.4 4 4 10-36 355 2 63.9 63.4 66 0.5 10 — 57.4 6.0 4 10-36 358 2 67.6 65.7 66 -1.9 10 — 58.0 7.7 4 10-37 359 4 67.8 65.9 66 -1.9 10 — 58.1 7.8 4 10-38 360 4 67.8 66.3 66 -1.5 10 Snd Lv 58.5 7.8 4 10-39 361 4 68.1 66.7 66 -1.4 10 Snd Lv 58.5 7.7 4 10-40 362 2 67.3 66.2 66 -1.1 10 Snd Lv 58.5 7.7 4 10-41 363 2 65.1 64.2 66 -0.9 10 — 59.5 4.7 4 10-42 364 2 61.3 61.7 66 0.4 10 — 56.4 5.3 4 10-44 366 4 62.6 62.9 66 0.3 10 — 56.6 6.3 4 10-45 367 4 63.1 62.8 66 -0.3 10 — 56.6 6.3 4 10-47 369 4 60.6 60.9 66 0.3 10 — 57.7 5.1 4 10-46 368 4 65.2 63.5 66 60.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 55.4 4.5 4 10-49 371 4 58.9 59.3 66 0.4 10 — 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.2 2.9 4 10-50 375 2 62.3 61.4 66 -0.2 10 — 59.9 1.5 4 10-53 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4 10-53 10-53 375 2 62.3 61.4 66 -0.2 10 — 59.9 1.5 4 10-53 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4 10-53 10-559 1.5 4 10-53 10-559 1.5 4 10-53 10-559 1.5 4 10-559 1.5 4 10-559 1.5 4 10-559 1.5 4 10-559 1.5 4 10-559 1.5 4 10-559 1.5 4	10-30	352	1	58.5	59.1	66	0.6	10	_	53.3	5.8	4	1.3
10-33 355	10-31	353	3	57.8	58.3	66	0.5	10	_	52.8	5.5	4	1.0
10-34	10-32	354	2	57.3	57.9	66	0.6	10	_	53.8	4.1	4	-0.4
10-35 357 2 63.9 63.4 66 -0.5 10 — 57.4 6.0 4 10-36 358 2 67.6 65.7 66 -1.9 10 — 58.0 7.7 4 10-37 359 4 67.8 65.9 66 -1.9 10 — 58.1 7.8 4 10-38 360 4 67.8 66.3 66 -1.5 10 Snd Lvl 58.5 7.8 4 10-39 361 4 68.1 66.7 66 -1.4 10 Snd Lvl 58.5 7.7 4 10-40 362 2 67.3 66.2 66 -1.1 10 Snd Lvl 58.5 7.7 4 10-41 363 2 65.1 64.2 66 -0.9 10 — 59.5 4.7 4 10-42 364 2 61.3 61.7 66 0.4 10 — 56.0 6.0 4 10-43 365 <t< td=""><td>10-33</td><td>355</td><td>1</td><td>57.0</td><td>57.4</td><td>66</td><td>0.4</td><td>10</td><td>_</td><td>52.9</td><td>4.5</td><td>4</td><td>0.0</td></t<>	10-33	355	1	57.0	57.4	66	0.4	10	_	52.9	4.5	4	0.0
10-36	10-34	356	1	56.7	57.0	66	0.3	10	_	52.6	4.4	4	-0.1
10-37	10-35	357	2	63.9	63.4	66	-0.5	10	_	57.4	6.0	4	1.5
10-38	10-36	358	2	67.6	65.7	66	-1.9	10	_	58.0	7.7	4	3.2
10-39 361 4 68.1 66.7 66 -1.4 10 Snd Lvl 58.6 8.1 4 10-40 362 2 67.3 66.2 66 -1.1 10 Snd Lvl 58.5 7.7 4 10-41 363 2 65.1 64.2 66 -0.9 10 — 59.5 4.7 4 10-42 364 2 61.3 61.7 66 0.4 10 — 56.4 5.3 4 10-43 365 2 61.5 62.0 66 0.5 10 — 56.0 6.0 4 10-43 366 4 62.6 62.9 66 0.3 10 — 56.6 6.0 4 10-44 366 4 62.6 62.9 66 0.3 10 — 57.7 5.1 4 10-45 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4	10-37	359	4	67.8	65.9	66	-1.9	10	_	58.1	7.8	4	3.3
10-40 362 2 67.3 66.2 66 -1.1 10 Snd Lvl 58.5 7.7 4 10-41 363 2 65.1 64.2 66 -0.9 10 — 59.5 4.7 4 10-42 364 2 61.3 61.7 66 0.4 10 — 56.4 5.3 4 10-43 365 2 61.5 62.0 66 0.5 10 — 56.0 6.0 4 10-43 366 4 62.6 62.9 66 0.5 10 — 56.6 6.3 4 10-44 366 4 62.6 62.9 66 0.3 10 — 56.6 6.3 4 10-45 367 4 63.1 62.8 66 -0.3 10 — 57.7 5.1 4 10-46 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4	10-38	360	4	67.8	66.3	66	-1.5	10	Snd Lvl	58.5	7.8	4	3.3
10-41 363 2 65.1 64.2 66 -0.9 10 — 59.5 4.7 4 10-42 364 2 61.3 61.7 66 0.4 10 — 56.4 5.3 4 10-43 365 2 61.5 62.0 66 0.5 10 — 56.0 6.0 4 10-44 366 4 62.6 62.9 66 0.3 10 — 56.6 6.3 4 10-45 367 4 63.1 62.8 66 -0.3 10 — 57.7 5.1 4 10-46 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4 60.6 60.9 66 0.3 10 — 57.1 3.8 4 10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.	10-39	361	4	68.1	66.7	66	-1.4	10	Snd Lvl	58.6	8.1	4	3.6
10-42 364 2 61.3 61.7 66 0.4 10 — 56.4 5.3 4 10-43 365 2 61.5 62.0 66 0.5 10 — 56.0 6.0 4 10-44 366 4 62.6 62.9 66 0.3 10 — 56.6 6.3 4 10-45 367 4 63.1 62.8 66 -0.3 10 — 57.7 5.1 4 10-46 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4 60.6 60.9 66 0.3 10 — 57.1 3.8 4 10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9	10-40	362	2	67.3	66.2	66	-1.1	10	Snd Lvl	58.5	7.7	4	3.2
10-43 365 2 61.5 62.0 66 0.5 10 — 56.0 6.0 4 10-44 366 4 62.6 62.9 66 0.3 10 — 56.6 6.3 4 10-45 367 4 63.1 62.8 66 -0.3 10 — 57.7 5.1 4 10-46 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4 60.6 60.9 66 0.3 10 — 57.1 3.8 4 10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3	10-41	363	2	65.1	64.2	66	-0.9	10	_	59.5	4.7	4	0.2
10-44 366 4 62.6 62.9 66 0.3 10 — 56.6 6.3 4 10-45 367 4 63.1 62.8 66 -0.3 10 — 57.7 5.1 4 10-46 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4 60.6 60.9 66 0.3 10 — 57.1 3.8 4 10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3	10-42	364	2	61.3	61.7	66	0.4	10	_	56.4	5.3	4	0.8
10-45 367 4 63.1 62.8 66 -0.3 10 — 57.7 5.1 4 10-46 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4 60.6 60.9 66 0.3 10 — 57.1 3.8 4 10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.	10-43	365	2	61.5	62.0	66	0.5	10	_	56.0	6.0	4	1.5
10-46 368 4 65.2 63.5 66 -1.7 10 — 58.2 5.3 4 10-47 369 4 60.6 60.9 66 0.3 10 — 57.1 3.8 4 10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4	10-44	366	4	62.6	62.9	66	0.3	10	_	56.6	6.3	4	1.8
10-47 369 4 60.6 60.9 66 0.3 10 — 57.1 3.8 4 10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4	10-45	367	4	63.1	62.8	66	-0.3	10	_	57.7	5.1	4	0.6
10-48 370 4 59.8 60.2 66 0.4 10 — 55.9 4.3 4 10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4	10-46	368	4	65.2	63.5	66	-1.7	10	_	58.2	5.3	4	0.8
10-49 371 4 58.9 59.3 66 0.4 10 — 54.8 4.5 4 10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4	10-47	369	4	60.6	60.9	66	0.3	10	_	57.1	3.8	4	-0.7
10-50 372 4 59.9 60.4 66 0.5 10 — 55.4 5.0 4 10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4	10-48	370	4	59.8	60.2	66	0.4	10	_	55.9	4.3	4	-0.2
10-51 373 2 60.3 60.5 66 0.2 10 — 57.2 3.3 4 10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4	10-49	371	4	58.9	59.3	66	0.4	10	_	54.8	4.5	4	0.0
10-52 374 1 61.3 61.1 66 -0.2 10 — 58.2 2.9 4 10-53 375 2 62.3 61.4 66 -0.9 10 — 59.9 1.5 4	10-50	372	4	59.9	60.4	66	0.5	10	_	55.4	5.0	4	0.5
10-53 375 2 62.3 61.4 66 -0.9 10 - 59.9 1.5 4	10-51	373	2	60.3	60.5	66	0.2	10	_	57.2	3.3	4	-1.2
	10-52	374	1	61.3	61.1	66	-0.2	10	_	58.2	2.9	4	-1.6
	10-53	375	2	62.3	61.4	66	-0.9	10	_	59.9	1.5	4	-3.0
10-54 376 1 64.3 63.0 66 -1.3 10 — 62.2 0.8 4	10-54	376	1	64.3	63.0	66	-1.3	10	_	62.2	0.8	4	-3.7

oise Reduction	# DUs	Dwelling Units
n Avg Max	ĺ	
B dB dB		
0.8 5.6 10.7	125	All Selected
4.1 8.2 10.7	28	All Impacted

NSA 11 - NSA 11 is a large residential development located on the south side of US 33 and situated just east of the North High Street intersection at US 33. The NSA extends a distance of approximately 1,700 feet east of North High Street and ending just north of Jennings Drive. Within the NSA is an existing noise barrier wall located along the US 33 ROW that begins just east of North Main Street. According to the ODOT TIMS, the existing noise barrier is 1,676 feet in length and a height of 18 feet. The existing noise barrier wall was re-evaluated using the updated traffic volumes for Design Year 2050. In its existing configuration, results showed that the noise barrier wall would continue to provide a similar level of noise abatement that it currently provides to the receivers within the NSA. All of the impacted receptors, except for two receivers located on the far west end where the noise barrier cannot be extended further west due to the location of North Main Street, will continue to be benefited by the barrier wall. **The existing noise barrier wall at NSA 11 will continue to provide a high level of noise abatement for receivers in the NSA and no additional modifications or additions to the noise barrier wall would be required.**

NSA 12 - As part of the analysis for NSA 11, it is proposed that the existing noise barrier wall be extended further east, from the point where the noise barrier currently ends, a distance of 1,900 feet. This noise barrier extension and the dwelling units left unshielded by noise barrier NSA 11 will be called NSA 12. The extended barrier, at a length of 1,900 feet is shown at various heights in the table below.

Table 10.										
	of Noise Barrier Wall NSA 12									
	Noise Barrier	Wall Located along the US 3	3 Eastbound Right	of Way						
Hoight (ft)	Longth (ft)	Total cost	Benefited	Cost per						
Height (ft)	Length (ft)	Total cost	receptors	benefited receptor						
18	1,900	\$1,368,000	43	\$31,800						
17	1,900	\$1,292,000	43	\$30,000						
16	1,900	\$1,216,000	43	\$28,000						
15	1,900	\$1,140,000	33	\$34,500						
14	14 1,900 \$1,064,000 25 \$44,500									
13										

As shown in the table above, a noise barrier wall at a height of 16 feet and a length of 1,900 feet is the most efficient reasonable and feasible noise abatement measure. With the additional length, the noise barrier will benefit 43 more receivers. Adding 1,900 feet to the existing noise barrier wall will be a reasonable and feasible noise abatement measure and is recommended for construction as part of the project.

	1									
			dBA	dBA	dBA	dB	dB		dBA	dB
12-23	399	2	0.0	69.7	66		10	Snd Lvl	61.2	<u> </u>
12-22	398	1	0.0	65.3	66				59.6	
12-24	400									
12-25	401	2	0.0	64.9					59.4	
12-26	402	1							58.6	
12-27	403	2	0.0						60.0	
12-28	404	1								
12-29	405	1								
12-30	406									
12-31	407	1								
12-32	408								58.5	
12-33	409								58.5	
12-34	410								59.3	
12-35	411	1								
12-36	412									
12-37	413									
12-39	415									
12-40	416									
12-41	417	2								
12-42	418									
12-43	419									
12-44	420	_								
12-45	421	1								
12-47	423	-							59.4	
12-48	424								59.0	
12-49	425								58.7	
12-50	426								58.8	
12-51	427	2							58.1	
12-52	428								57.8	
12-53	429								57.6	
Dwelling Units		# DUs							-	!
- · · J	j	1	Min	A∨g	Max					
			dB	dB	dB	1				
All Selected		43	-			1				
All Impacted		22								
All Illipacicu			0.4	3.3	13.3	_				

NWPPP Summary

Twelve NSAs were identified as being located within the project limits. Four of the twelve NSAs currently have noise barrier walls constructed as part of previous projects. The noise analysis included the evaluation of the existing noise barrier walls and determined that all existing noise barriers would continue to provide a similar level of noise abatement in the Design Year 2050 with the increase in traffic volume as a result of the proposed project.

The noise analysis also determined that noise sensitive receptors located within eight of the NSAs without existing noise barriers would experience traffic noise levels above the applicable FHWA Noise Abatement Criteria (NAC) in the design year with construction of the proposed project. Noise abatement, in the form of noise barrier walls, was considered at all eight NSAs. Noise barrier walls were determined to be both a feasible and reasonable noise abatement measure at four of the NSAs. Noise abatement considered for all 12 NSAs is summarized on Table 11. The four noise barrier walls recommended for construction as part of the project are summarized in Table 12.

	Table 11. Noise Barrier Evaluation Summary											
Barrier	Barrier Length	Barrier Height	Square Footage of	Maximum Insertion	Benefitted Properties b	Barrier Cost c	Cost per benefited		tiveness	Barrier	Barrier	
	(feet)	(feet)	Barrier	Lossa (dB)	r Toperties -	Cost	receptor	Feasible d	Reasonable e	Location f	Recommended g	
NSA 1 Scenario 1	1,850	17	31,450	9.7	5	\$1,258,000	\$251,600	Yes	No	EOS	No	
NSA 1 Scenario 2	2,244	16	35,904	8.8	6	\$1,436,000	\$239,360	Yes	No	ROW/EOS	No	
	1	1			1	1				1	I	
NSA 2 Scenario 1	1,482	17	23,712	9.2	7	\$879,500	\$125,500	Yes	No	EOS	No	
NSA 2 Scenario 2	1089	18	19,602	4.9	6	\$857,500	\$128,500	No	No	ROW	No	
	1	1			T	1000 000	100	.,				
NSA 3	1,730	14	24,220	9.6	15	\$970,500	\$60,500	Yes	No	EOS	No	
NSA 4	1,884	14	26,375	11.5	49	\$1,055,000	\$21,531	Yes	Yes	EOS	Existing	
	,		,				, ,					
NSA 5	1,426	14	19,964	7.7	42	\$798,000	\$19,000	Yes	Yes	EOS	Yes	
NSA 6	580	16	9,280	8.2	10	\$371,200	\$37,120	Yes	Yes	ROW	Existing	
NSA 7	964	16	15,424	7.2	30	\$616,800	\$20,500	Yes	Yes	ROW	Yes	
NSA 8	2,174	15	32,610	9.7	24	\$1,304,000	\$54,300	Yes	Yes	ROW	Existing	
NSA 9	950	17	16,150	10.3	5	\$639,500	\$128,000	Yes	No	ROW	No	
NSA 10	3,500	16	56,000	8.5	53	\$2,240,000	\$42,300	Yes	Yes	ROW	Yes	
NSA 11	1,676	18	30,168	9.6	14	\$1,206,700	\$86,200	Yes	No	ROW	Existing	
NSA12	1,900	16	30,400	12.3	43	\$1,216,000	\$28,000	Yes	Yes	ROW	Yes	

^a Insertion Loss (IL) is the maximum noise reduction provided by the noise barrier.

^b A receptor is considered benefited by the noise barrier if the IL is 5dB or greater.

^c Cost is based on \$40 per square foot of noise barrier constructed on ground and \$100 per square foot constructed on structure.

d A noise barrier is considered feasible if it can provide a substantial noise reduction of at least 7dB at one receptor location.

^e A noise barrier is considered cost reasonable if the cost per benefited receptor is less than \$56,000.

f The location of the noise barrier wall: ROW=noise barrier is located along the right of way line; EOS=noise barrier is located along the edge of shoulder.

⁹ Noise barrier recommendation is based on the number of benefited receptors and the relative cost per benefited receptor.

Table 12. **Recommended Noise Barrier Walls** Barrier Barrier Square Maximum Benefitted **Effectiveness Barrier Barrier** Cost per **Barrier** Barrier Height Properties b Cost c benefited Length Footage of Insertion Feasible d Reasonable e Location f Recommended ^g (feet) Barrier Lossa (dB) receptor (feet) NSA 5 19,964 7.7 42 \$798,000 \$19,000 1,426 14 Yes Yes EOS Yes NSA 7 7.2 ROW 964 16 15,424 30 \$20,500 Yes \$616,800 Yes Yes **NSA 10** 3,500 16 56,000 8.5 53 \$2,240,000 \$42,300 ROW Yes Yes Yes NSA12 1,900 16 30,400 12.3 43 \$1,216,000 \$28,000 ROW Yes Yes Yes

^a Insertion Loss (IL) is the maximum noise reduction provided by the noise barrier.

^b A receptor is considered benefited by the noise barrier if the IL is 5dB or greater.

^c Cost is based on \$25 per square foot of noise barrier constructed on ground and \$100 per square foot constructed on structure..

^d A noise barrier is considered feasible if it can provide a substantial noise reduction of at least 7dB at one receptor location.

^e A noise barrier is considered cost reasonable if the cost per benefited receptor is less than \$35,000.

The location of the noise barrier wall: ROW=noise barrier is located along the right of way line; EOS=noise barrier is located along the edge of shoulder.

⁹ Noise barrier recommendation is based on the number of benefited receptors and the relative cost per benefited receptor.

		FRA-33-2476 PID 119387				
		INSIDE WIDENING	TO	IAL		
		COST ESTIMATE				
LINE NO.	ODOT ITEM	DESCRIPTION	UNIT	UNIT COST	ESTIMATED QUANTITY	TOTAL COST
		Roadway				
1	201	Clearing and Grubbing	LS	\$ 500,000.00	1	\$ 500,000
2	202	Guardrail removed	FT	\$ 3.00	29048	\$ 87,144
3	202	Pavement removed (Widening Section)	SY	\$ 9.00	59707	\$ 537,363
4	202	Pavement removed (Existing Lane Section)	SY	\$ 8.00	441571	\$ 3,532,568
5	203	Excavation	CY	\$ 18.00	75000	\$ 1,350,000
6	203	Embankment	CY	\$ 15.00	250000	\$ 3,750,000
7	204	Subgrade compaction (Widening Section)	SY	\$ 2.25	294296	\$ 662,166
8	204	Subgrade compaction (Existing Lane Section)	SY	\$ 2.25	458833	\$ 1,032,374
9	206	Cement Stabilized Subgrade 12 Inches Deep (Widening Section)	SY	\$ 5.00	294296	\$ 1,471,480
10	206	Cement Stabilized Subgrade 12 Inches Deep (Existing Lane Section)	SY	\$ 5.00	458833	\$ 2,294,165
11	605	6" Shallow Pipe Underdrains	FT	\$ 10.00	285120	\$ 2,851,200
12	606	Guardrail, Type MGS	FT	\$ 20.00	36341	\$ 726,820
13	622	Concrete Barrier, Single Slope, Type C1	FT	\$ 90.00	48085	\$ 4,327,618
		Erosion Control				
14	832	Storm Water Pollution Prevention Plan	LS	\$ 100,000.00	1	\$ 100,000
15	832	Erosion Control	EA	\$ 500,000.00	1	\$ 500,000
		Drainage				
16	611	18" conduit, Type B	FT	\$ 130.00	17820	\$ 2,316,600
17	611	Manhole, No. 3	EA	\$ 4,000.00	119	\$ 475,200
18	SPEC	вмР	LS	\$ 400,000.00	1	\$ 400,000
19	611	Inlet, No 3 For Single Slope Barrier, Type C1	EA	\$ 8,000.00	238	\$ 1,900,800
		Pavement For Widening Section				
20	302	Asphalt Concrete Base Course	CY	\$ 150.00	69487	\$ 10,422,983
21	304	Aggregate Base Course	CY	\$ 60.00	65399	\$ 3,923,947
22	442	Asphalt Concrete Surface Course, 12.5mm, Type A, (447)	CY	\$ 200.00	12262	\$ 2,452,467
23	442	Asphalt Concrete Intermediate Course, 19MM, Type A (446)	CY	\$ 210.00	18394	\$ 3,862,635
		Pavement For Existing Lanes				

		FRA-33-2476 PID 119387						
	INSIDE WIDENING							
		COST ESTIMATE						
LINE NO.	ODOT ITEM	DESCRIPTION	UNIT		UNIT COST	ESTIMATED QUANTITY	Т	OTAL COST
24	302	Asphalt Concrete Base Course	CY	\$	150.00	107065	\$	16,059,701
25	304	Aggregate Base Course	CY	\$	60.00	76472	\$	4,588,329
26	442	Asphalt Concrete Surface Course, 12.5mm, Type A, (447)	CY	\$	215.00	18744	\$	4,030,014
27	442	Asphalt Concrete Intermediate Course, 19MM, Type A (446)	CY	\$	210.00	28116	\$	5,904,439
		Lighting						
28	SPEC	Lighting work	LS	\$	8,650,000.00	1	\$	8,650,000
		Traffic Control						
29	SPEC	Pavement Markings and Ground Mounted Signing	LS	\$	1,750,000.00	1	\$	1,750,000
30	SPEC	Major Overhead Sign Work	LS	\$	152,000.00	1	\$	152,000
		ITS Devices						
31	SPEC	ITS Devices/Communication Infrastructure	LS	\$	3,301,692.00	1	\$	3,301,692
		Retaining Walls						
31	SPEC	Retaining Wall	SF	\$	100.00	8750	\$	875,000
		Bridge Work						
32	SPEC	FRA-33-25.03 L Over Walnut Creek Overflow	LS	\$		0	\$	-
33	SPEC	FRA-33-25.03 R Over Walnut Creek Overflow	LS	\$	1,180,645.00	1	\$	1,180,645
34	SPEC	FRA-33-25.09 R Over Big Walnut Creek Overflow	LS	\$		0	\$	-
35	SPEC	FRA-33-25.09 R Over Big Walnut Creek Overflow	LS	\$	3,913,513.00	1	\$	3,913,513
36	SPEC	FRA-317-9.14 (Or FRA-33-26.32) Hamilton Road Overpass	LS	\$	-	0	\$	-
37	SPEC	FRA-33-26.49 L Over Blacklick Creek	LS	\$		0	\$	-
38	SPEC	FRA-33-26.49 R Over Blacklick Creek	LS	\$	2,094,058.00	1	\$	2,094,058
39	SPEC	FRA-33-26.60 Bike Path Overpass	LS	\$	22,000.00	1	\$	22,000
40	SPEC	FRA-CR118-5.71 Ebright Road Overpass	LS	\$	22,000.00	1	\$	22,000
41	SPEC	FRA-33-27.51 L Over Cable Bowman Ditch	LS	\$	-	0	\$	-
42	SPEC	FRA-33-27.51 R Over Cable Bowman Ditch	LS	\$	935,000.00	1	\$	935,000
43	SPEC	FRA-33-29.00 L Over George Creek	LS	\$	-	0	\$	-
44	SPEC	FRA-33-29.00 R Over George Creek	LS	\$	830,007.00	1	\$	830,007
45	SPEC	FRA-222-2.25 Gender Road Overpass	LS	\$	-	0	\$	-
				4				

		FRA-33-2476 PID 119387	_			
		INSIDE WIDENING COST ESTIMATE	то	TAL		
LINE NO.	ODOT ITEM	DESCRIPTION	UNIT	UNIT COST	ESTIMATED QUANTITY	TOTAL COST
46	SPEC	FRA-33-30.30 Over Tussing-Bachman Ditch	LS	\$ -	0	\$ -
47	SPEC	FAI-33-02.292 Over Sycamore Creek	LS	\$ -	0	\$ -
		Noise Wall		<u> </u>		
48	SPEC	Noise Barrier	SF	\$ 40.00	120,024	\$ 4,800,960
		Maintenance of Traffic		T		
49	615	Pavement for Maintaining Traffic	SY	\$ 65.00	101494	\$ 6,597,110
50	622	Portable Barrier	FT	\$ 20.00	194304	\$ 3,886,080
			CONS	RUCTION COST		\$ 119,070,077
		MAINTE	NANCE (OF TRAFFIC (5%)		\$ 5,953,504
				TINGENCY (30%)		\$ 35,721,023
		TOTA	L CONS	TRUCTION COST		\$ 160,744,604
		PRELIMINA	ARY ENG	SINEERING (15%)		\$ 24,111,691
		RIGHT OF WAY (PERMANENT)	AC	\$ 200,000.00	0	\$ -
		RIGHT OF WAY (TEMPORARY)	AC	\$ 40,000.00	0	\$ -
		CONSTRUCT		SINEERING (10%)		\$ 16,074,460
				NFLATION (5.2%)		\$ 10,448,399
				TOTAL		\$ 211,379,154

		FRA-33-2476 PID 119387				
			то	TAL		
		OUTSIDE WIDENING				
		COST ESTIMATE				
LINE NO.	ODOT ITEM	DESCRIPTION	ESTIMATED QUANTITY	TOTAL COST		
		Roadway				
1	201	Clearing and Grubbing	LS	\$ 2,000,000.00	1	\$ 2,000,000
2	202	Guardrail removed	FT	\$ 3.00	31568	\$ 94,705
3	202	Pavement removed (Widening Section)	SY	\$ 9.00	139642	\$ 1,256,778
4	202	Pavement removed (Existing Lane Section)	SY	\$ 8.00	356189	\$ 2,849,512
5	203	Excavation	CY	\$ 18.00	60000	\$ 1,080,000
6	203	Embankment	CY	\$ 15.00	200000	\$ 3,000,000
7	204	Subgrade compaction (Widening Section)	SY	\$ 2.25	283071	\$ 636,909
8	204	Subgrade compaction (Existing Lane Section)	SY	\$ 2.25	414519	\$ 932,667
9	206	Cement Stabilized Subgrade 12 Inches Deep (Widening Section)	SY	\$ 5.00	283071	\$ 1,415,353
10	206	Cement Stabilized Subgrade 12 Inches Deep (Existing Lane Section)	SY	\$ 5.00	403566	\$ 2,017,831
11	605	6" Shallow Pipe Underdrains	FT	\$ 10.00	285120	\$ 2,851,200
12	606	Guardrail, Type MGS	FT	\$ 20.00	31768	\$ 635,360
		Erosion Control				
13	832	Storm Water Pollution Prevention Plan	LS	\$ 100,000.00	1	\$ 100,000
14	832	Erosion Control	EA	\$ 1.00	1000000	\$ 1,000,000
		Drainage	•			
15	611	18" conduit, Type B	FT	\$ 130.00	7128	\$ 926,640
16	611	24" conduit, Type C	FT	\$ 150.00	10000	\$ 1,500,000
17	607	ВМР	LS	\$ 400,000.00	1	\$ 400,000
18	611	Catch Basin, 2-3	EA	\$ 3,500.00	20	\$ 70,000
19	611	Manhole, No. 3	EA	\$ 4,000.00	100	\$ 400,000
		Pavement For Widening Section				
20	302	Asphalt Concrete Base Course	CY	\$ 150.00	65112	\$ 9,766,823
21	304	Aggregate Base Course	CY	\$ 60.00	62499	\$ 3,749,937
22	442	Asphalt Concrete Surface Course, 12.5mm, Type A, (447)	CY	\$ 200.00	11338	\$ 2,267,653

	FRA-33-2476 PID 119387							
	OUTSIDE WIDENING							-
		COST ESTIMATE						
LINE NO.	ODOT ITEM	DESCRIPTION	UNIT		UNIT COST	ESTIMATED QUANTITY	7	TOTAL COST
23	442	Asphalt Concrete Intermediate Course, 19MM, Type A (446)	CY	\$	210.00	17007	\$	3,571,553
		Pavement For Existing Lanes						
24	302	Asphalt Concrete Base Course	CY	\$	150.00	96148	\$	14,422,269
25	304	Aggregate Base Course	CY	\$	60.00	68782	\$	4,126,932
26	442	Asphalt Concrete Surface Course, 12.5mm, Type A, (447)	CY	\$	215.00	16815	\$	3,615,281
27	442	Asphalt Concrete Intermediate Course, 19MM, Type A (446)	CY	\$	200.00	25223	\$	5,044,578
		Lighting						
28	SPEC	Lighting Work	LS	\$	6,650,000.00	1	\$	6,650,000
	•	Traffic Control						
29	SPEC	Pavement Markings and Ground Mounted Signing	LS	\$	2,000,000.00	1	\$	2,000,000
30	SPEC	Major Overhead Sign Work	LS	\$	950,000.00	1	\$	950,000
		ITS Devices						
31	SPEC	ITS Devices/Communication Infrastructure	LS	\$	3,754,664.00	1	\$	3,754,664
		Retaining Walls						
31	SPEC	Retaining Wall	SF	\$	100.00	21000	\$	2,100,000
		Bridge Work						
32	SPEC	FRA-33-25.03 L Over Walnut Creek Overflow	LS	\$	-	0	\$	-
33	SPEC	FRA-33-25.03 R Over Walnut Creek Overflow	LS	\$	689,358.00	1	\$	689,358
34	SPEC	FRA-33-25.09 R Over Big Walnut Creek Overflow	LS	\$	-	0	\$	-
35	SPEC	FRA-33-25.09 R Over Big Walnut Creek Overflow	LS	\$	3,100,903.00	1	\$	3,100,903
36	SPEC	FRA-317-9.14 (Or FRA-33-26.32) Hamilton Road Overpass	LS	\$	7,759,500.00	1	\$	7,759,500
37	SPEC	FRA-33-26.49 L Over Blacklick Creek	LS	\$	-	0	\$	-
38	SPEC	FRA-33-26.49 R Over Blacklick Creek	LS	\$	1,607,194.00	1	\$	1,607,194
39	SPEC	FRA-33-26.60 Bike Path Overpass	LS	\$	22,000.00	1	\$	22,000
40	SPEC	FRA-CR118-5.71 Ebright Road Overpass	LS	\$	22,000.00	1	\$	22,000
41	SPEC	FRA-33-27.51 L Over Cable Bowman Ditch	LS	\$	-	0	\$	-

		FRA-33-2476 PID 119387				
		OUTSIDE WIDENING			10	TAL
		COST ESTIMATE				
LINE NO.	ODOT ITEM	DESCRIPTION	UNIT	UNIT COST	ESTIMATED QUANTITY	TOTAL COST
42	SPEC	FRA-33-27.51 R Over Cable Bowman Ditch	LS	\$ 1,182,500.00	1	\$ 1,182,500
43	SPEC	FRA-33-29.00 L Over George Creek	LS	\$ -	0	\$ -
44	SPEC	FRA-33-29.00 R Over George Creek	LS	\$ 775,508.00	1	\$ 775,508
45	SPEC	FRA-222-2.25 Gender Road Overpass	LS	\$ 7,020,900.00	1	\$ 7,020,900
46	SPEC	FRA-33-30.30 Over Tussing-Bachman Ditch	LS	\$ 22,000.00	1	\$ 22,000
47	SPEC	FAI-33-02.292 Over Sycamore Creek	LS	\$ -	0	\$ -
		Noise Wall				
48	SPEC	Noise Barrier	SF	\$ 40.00	120,024	\$ 4,800,960
		Maintenance of Traffic				
49	615	Pavement for Maintaining Traffic	SY	\$ 65.00	177468	\$ 11,535,420
50	622	Portable Barrier	FT	\$ 20.00	97152	\$ 1,943,040
					Ti.	
				TRUCTION COST		\$ 125,667,927
		MAINTE		OF TRAFFIC (7%)		\$ 8,796,755
			CON	TINGENCY (30%)		\$ 37,700,378
				RUCTION COST		\$ 172,165,060
			1	INEERING (15%)		\$ 25,824,759
		RIGHT OF WAY (PERMANENT)	AC	\$ 200,000.00	4.6	\$ 920,000
		RIGHT OF WAY (TEMPORARY)	AC	\$ 40,000.00	20	\$ 800,000
		CONSTRUCT		INEERING (10%)		\$ 17,216,506
			li T	NFLATION (5.2%)		\$ 11,280,169
				TOTAL		\$ 228,206,494