Presentation Brent Spence Bridge Replacement/Rehabilitation Project PID No. 75119 HAM-71/75-0.00/0.22 KYTC Project Item No. 6-17

U.S. Department of Transportation Federal Highway Administration

Project Aesthetics Committee Meeting #5 • April 15, 2010

- Meeting Purpose / Goals
- Project Update
- Role of Project Aesthetic Committee (PAC)
- Bridge Type Selection Key Design Criteria
- Bridge Type Alternatives Presentation
- Bridge Type Alternatives Evaluation

Goals for Meeting

- Key Visual and Aesthetic Criteria
 - Review of New Bridge Key Criteria
- Solicit Feedback on Bridge Alternatives
 - Develop Pros and Cons for Evaluation of Bridge Type Alternatives to aid in the selection of Final 3 Bridge Alternatives

- Refine Design Plans for Preferred Alternatives
- Perform Environmental Field Studies and Refine Impacts based on refined engineering work
- Perform Main River Bridge Structure Type Study
- Draft Aesthetic Design Guidelines Document
- Assessment of Feasible Alternatives Report
 - Recommend Preferred Roadway Alternative
 - Selection of Final 3 Bridge Alternatives
- NEPA Document
 - Environmental Elements
 - Finalize Environmental Document

Bridge Type Selection Process

New River Bridge River Zone Context

Bridge Type Selection Constraints

Bridge Type Selection Key Design Criteria

- Construction Cost
- Constructability
- Maintenance and Durability
- Major Rehabilitation Feasibility
- Aesthetics

U.S. Department of Transportation Federal Highway Administration

	Criteria						
	Bridge Type Alternatives	Construction Cost	Constructability	Maintenance and Durability	Major Rehabilitation Feasibility		
1		KY: \$450 M OH: \$60 M Total: \$510 M	Construction will be complicated by the inclined arch and slowed by the requirement to maintain river traffic.	Items included in M&D will be: 1. Standard Inspections 2. Overlay Replacement 3. Painting of Steel	Items included in rehab will be: 1. Deck replacement 2. Future Widening 3. Hanger Replacement		
2		KY: \$580 M OH: \$60 M Total: \$640 M	Construction will be complicated by the continous arch and slowed by the requirement to maintain river traffic.	Items included in M&D will be: 1. Standard Inspections 2. Overlay Replacement 3. Painting of Steel	Items included in rehab will be: 1. Deck replacement 2. Future Widening 3. Hanger Replacement		
3		KY: \$480 M OH: \$100 M Total: \$580 M	Cantilever construction of the superstructure will minimize interference to river traffic.	Items included in M&D will be: 1. High-Tech Inspections 2. Overlay Replacement 3. Painting of Steel	Items included in rehab will be: 1. Deck replacement 2. Future Widening 3. Stay-Cable Replacement		
4		KY: \$500 M OH: \$120 M Total: \$620 M	Inclined tower complicates construction. Cantilever construction of the superstructure will minimize interference to river traffic.	Items included in M&D will be: 1. High-Tech Inspections 2. Overlay Replacement 3. Painting of Steel	Items included in rehab will be: 1. Deck replacement 2. Future Widening 3. Stay-Cable Replacement		
5		KY: \$520 M OH: \$130 M Total: \$650 M	Inclined tower complicates construction. Cantilever construction of the superstructure will minimize interference to river traffic.	Items included in M&D will be: 1. High-Tech Inspections 2. Overlay Replacement 3. Painting of Steel	Items included in rehab will be: 1. Deck replacement 2. Future Widening 3. Stay-Cable Replacement		
6		KY: \$470 M OH: \$160 M Total: \$630 M	Cantilever construction of the superstructure will minimize interference to river traffic.	Items included in M&D will be: 1. High-Tech Inspections 2. Overlay Replacement 3. Painting of Steel	Items included in rehab will be: 1. Deck replacement 2. Future Widening 3. Stay-Cable Replacement		

U.S. Department of Transportation Federal Highway Administration Bridge Type Selection Key Visual and Aesthetic Criteria

Key Criteria:

- 1. The new bridge should be visually attractive.
- 2. The new bridge needs to be visible looking "through" the existing bridge (from the east).
- 3. As much as possible, crossing the new bridge should allow views of the surrounding context (unlike existing bridge).
- 4. The new bridge should have distinctive characteristics that identify it as a local landmark.
- 5. The new bridge should have a visual relationship with the existing bridge.

Additional Criteria:

- The new bridge colors, textures, landscaping, etc. need to be aesthetically pleasing.
- The existing bridge needs to be maintained / repainted to blend in with the new bridge.

Bridge Type Selection Aesthetic Criteria Table

Key Visual and Aesthetic Criteria										
Visually Visible from Validation Validation Validation Confext Bisting Bisting										
Arch Alternatives										
1										
2										
Cable-Stayed Alternatives										
3										
4										
5										
6										

Bridge Type Selection Aesthetic Elements - Fixed

Double Deck Bridge:

 Constructed on west side of existing Brent Spence Bridge.

Bridge Lighting:

- Necessary roadway and navigation channel lighting.
- Lighting will be provided on the lower deck.

Bridge Type Selection Aesthetic Elements - Variable

Bridge Type:

Arch or Cable-Stayed

Bridge Treatments:

- Shape
- Pattern
- Color
- Texture
- Lighting
- Landscaping

Bridge Components:

Bridge Type Selection Variable Components: Arch

Bridge Type Selection Variable Components: Cable-Stayed Variable Components: Cable-Stayed

Step 2: Development of Bridge Type Alternatives

Bridge Type Selection Alternative 1 U.S. Department of Transportation Federal Highway Administration

Bridge Type Selection Alternatives Overview - -

Bridge Type Selection Aesthetic Criteria Table

Key Visual and Aesthetic Criteria						
Visually Visible from Visible from Vantages Views of Context C						
Arch Alternatives						
1						
2						
Cable-Stayed Alternatives						
3						
4						
5						
6						

Bridge Type Selection (BTS) Process Key Dates

- First PAC BTS Meeting September 25, 2009
 - Identify Key Aesthetic Criteria for Development of 18
 Preliminary Bridge Concepts
- Second PAC BTS Meeting January 29, 2010
 - Input on Selection of 6 Bridge Type Alternatives
- Third PAC BTS Meeting April 15, 2010
 - Input on Selection of Final 3 Bridge Alternatives
 - Feedback due by April 23, 2010
 - Final 3 Bridge Alternatives Selection May 2010
- Public Hearing Meeting February 2011
 - Presentation of Final 3 Bridge Alternatives

- Feedback Options
 - Project Website
 - Fax
 - US Mail
- Feedback due by April 23, 2010

