## LOAD RATING REPORT BRIDGE NO: BEL-00040-23.265, SFN 0701599

Blaine Hill Viaduct U.S. 40 over Wheeling Creek, C.R. 10, and Abandoned R.R.



Blaine, Ohio Submitted: October 5, 2023





## LOAD RATING REPORT

BEL-40-23.37, SFN 0701599

## Table of Contents

| INTRODUCTION<br>DESCRIPTION OF MODELING ANALYSIS AND APPROACH     | . 4 |
|-------------------------------------------------------------------|-----|
| Box Beam, Slab Beam, and Slab Span Analysis and Load Rating       | . 5 |
| Arch Rib, Spandrel Column, and Floorbeam Analysis and Load Rating | . 6 |
| LOAD RATING RESULTS                                               | . 9 |
| Slab Span                                                         | . 9 |
| Box and Slab Beams                                                | 10  |
| Spandrel Columns and Arch Ribs                                    | 12  |
| Floorbeams                                                        | 15  |
| LINK SLAB EVALUATION                                              | 17  |
| SUMMARY                                                           |     |

## APPENDICES

ODOT BR-100 Bridge Load Rating Summary Report Color Coded Selection of Box Beam and Slab Beam Spans for Load Rating Slab Beam B126 Load Rating Memo Pier 5 Floorbeam Cantilever Load Rating Memo





## **INTRODUCTION**

Michael Baker International (Michael Baker) was tasked by ODOT District 11 to perform a load rating of the Blaine Hill Viaduct Bridge (BEL-40-23.37). Constructed in 1932 as open spandrel concrete arch bridge, the bridge underwent a major rehabilitation in 1982 that replaced the integral concrete deck and floorbeams with a composite, adjacent box-beam superstructure atop new floorbeams. The approximately 754' long structure is composed of four unique arch spans which support slab beams, one slab span, and six box beam spans which together with the slab span comprise the approach spans. The elements of the superstructure which required load ratings include the box beams and slab beams, the slab span, the floorbeams, spandrel columns, and arch ribs. The arch ribs and spandrel columns date to the original structure, built in 1932, whereas the floorbeams, box beams, and slab beams and slab span were constructed in 1982. Both the slab beams and box beams are composite with a 5" thick reinforced concrete deck. The cross section of the bridge deck consists of a 36" wide slab beam or box beam at the center of the deck with five 48" wide box beams or slab beams on each side (see Figures A and B).

Per the ODOT Bridge Design Manual (BDM) 919.3.1(H), if the load rating indicates posting is necessary, then the bridge shall be analyzed by both LFR and LRFR and the larger rating factor used to determine if posting can be avoided. Typically, this process involves rating first using the LRFR method, and if legal vehicles' LRFR ratings indicate a need for load posting, then switching to the (LFR) to compute rating factors. This procedure of initially rating in LRFR and using LFR if needed, was followed.

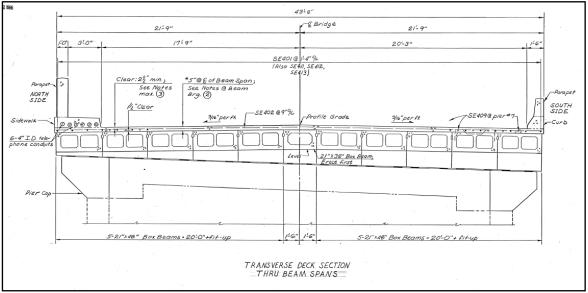



Figure A. Typical Section of Box Beam Approach Spans





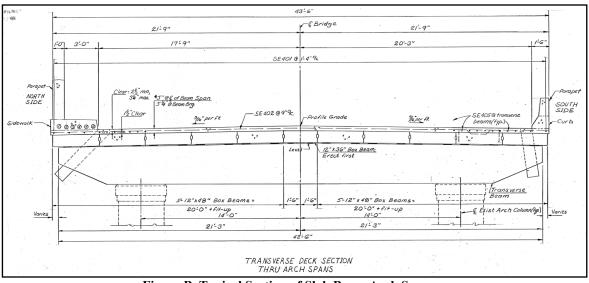



Figure B. Typical Section of Slab Beam Arch Spans

## DESCRIPTION OF MODELING ANALYSIS AND APPROACH

Per BDM 920.1, AASHTOWare BrR (BrR) is used for load rating purposes whenever possible. While the slab span, slab beams and box beams on the bridge can be efficiently rated using BrR, the software is not capable of rating the floorbeams, spandrel columns, and arch ribs. To accurately compute load ratings for these members, a 3D finite element model (FEM) was created using Midas Civil to generate forces and moments in the arch ribs, spandrel columns, and floorbeams which were then analyzed using spreadsheets to calculate the members' capacity and then rating factors.

The material strengths provided in the 1982 rehabilitation plans were used for load rating the box beams, slab beams, and floorbeams. However, the concrete strength of the arch ribs and spandrel columns, cast in 1932, was unknown. Typical practice is to consult the ODOT Bridge Design Manual (BDM) Table 926-1, which provides a material strength based upon year of construction. While these material strengths provided are conservative and intended to keep engineers from overestimating the capacity of older structures, modeling a lower concrete compressive strength in the 3D FEM model may underestimate members' moments and forces. This is because FEM models distribute load based upon the relative stiffness of each member in the model, and the modulus of elasticity for concrete is dependent upon its compressive strength. Thus, cores from the original bridge piers were tested to better match both the stiffness of the concrete and its compressive strength. Concrete cores were taken from pier 3, 4 and 5 bases on July 19, 2023. Refer to observed compressive strengths in Figure C. With a small sample size (3 cores), it can be unconservative to draw statistical conclusions assuming the data follows a normal distribution. This is because a normal distribution treats sample statistics with the same confidence, whether derived from 3 samples or 30. Another distribution, Student's t-distribution, is more appropriate to use with small sample sizes (common rule





of thumb is less than 30 samples). Using the 3 core samples and t-distribution, conservative sample statistics could be determined. It was estimated with 90% confidence that the true mean of compressive strength was equal to or greater than 5400 psi. In other words, if we were to take many more core samples, we're very confident that the new mean calculated from the new data would be greater than 5400 psi. This lower bound estimate of compressive strength was assigned to arch rib and spandrel column material properties thereby more accurately modeling the relative stiffness of the structure.

| Core No. | Location<br>on Bridge | Unconfined Concrete<br>Compressive Strength (psi) |
|----------|-----------------------|---------------------------------------------------|
| C-1      | Pier 3 Base           | 5,418                                             |
| C-2      | Pier 4 Base           | 7,028                                             |
| C-3      | Pier 5 Base           | 7,822                                             |

Figure C. Concrete Core Sample Data

## Box Beam, Slab Beam, and Slab Span Analysis and Load Rating

For efficiency, the box beam spans were separated into groups to focus on controlling BrR rating model cases. The six box beam spans are composed of two unique box beam configurations: Beam Spans B, F, and G utilize the same construction as do Beam Spans C, D, E. Because Beam Span B has no skew, it was modeled separately from Beam Spans F and G which have significant skew. Since Beam Span F is slightly longer than Beam Span G, only Beam Span F was modeled and any deterioration found during the inspection in Beam Span G was included in the Beam Span F model, which is conservative. Likewise, for Beam Spans C, D, E, only the longest span was modeled (Beam Span E) and all deterioration from these three spans noted during the inspection was included in the Beam Span E model. See the Appendix for a color coded map identifying and grouping the similar box beam and slab beam spans for analysis.

The deck above the arch spans consists of slab beams composite with the reinforced concrete deck. In general, as the spandrel column spacing is consistent throughout the four arches, the span lengths for the slab beams are also consistent, and only two different prestressed strand patterns are used in the spans. Since the loading does not change along the length of the bridge, only the longest two slab beam spans were rated. Field noted deterioration was accounted for by deducting strands as necessary. Since the slab beams nearest the expansion joints were the longest spanning slab beams and had the worst deterioration, those slab beam spans were rated in each span.

The field inspection found numerous prestressed strands exposed or broken, typically at expansion joint locations. Because the damage was always confined to a beam end and based upon Michael Baker's previous prestressed beam rating experience, it was decided





to deduct from the beam cross section broken strands and estimate a debonded length for strands exposed at beam ends.

The slab span has a high skew (~48 degrees) at the rear abutment and no skew at pier 1. Due to this difference in skew, it was primarily detailed as a triangular slab, however it was necessary to modify the triangular shape of the slab to allow BrR to rate it. A rectangular slab was modeled using the longest length of the triangular slab beam within the vehicular travelway as the span length of the slab. As the 1982 plans show that the rebar size and spacing varies along the width of the triangular slab, the total reinforcing area was added together and then evenly distributed across the BrR modeled rectangular slab.

## Arch Rib, Spandrel Column, and Floorbeam Analysis and Load Rating

From previous experience with similar arch bridges, modeling the construction sequence is important to accurately capturing dead load effects throughout the bridge. This was accomplished using Midas Civil's Construction Sequencing, which closely followed the actual construction procedure utilized when the bridge was constructed and rehabilitated. The construction sequencing allows the bridge elements to deflect together as additional elements and loads are applied prior to the deck curing, which then adds rigidity to the structure. If construction sequencing was not considered, the model would assume the deck was cast simultaneously with the arch ribs and spandrel columns, which could cause erroneous dead load moments in these supporting elements. Thus, details of the original construction sequence and the 1982 rehabilitation were included in the analysis approach.

As mentioned above, the 3D FEM model is sensitive to the relative stiffness of the defined bridge members. One aspect that affects the relative stiffness is the 7% longitudinal grade. Along this grade, tapered spandrel column heights differ, so modeling included this grade to better represent column stiffnesses. The model also accounts for each span's arch ribs having a unique span length, radius, and tapering thickness. The pier bases, to which the arch ribs are anchored, were also included in the model with fixed supports at their footings.

The load path from the deck to the spandrel column was modeled as shown in Figure D.





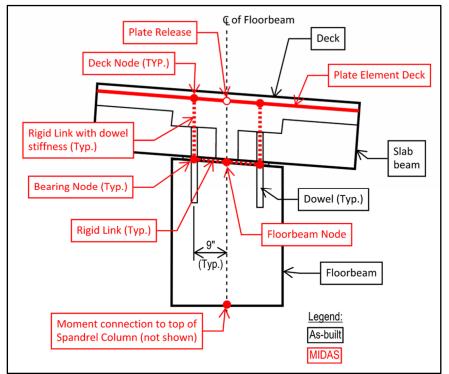



Figure D. Elevation View of Deck to Floorbeam Connection

The floorbeams were modeled as beam elements with a moment connection to the top of the spandrel columns to match the details shown in the plans. Since the slab beams were rated using BrR and independent of the Midas model, the slab beams and deck were modeled as a single plane of plate elements with a defined thickness equal to the deck thickness for accurate transverse load distribution. The plate element deck included releases at the expansion joint locations to simulate deck discontinuity at the joints.

Based upon the 1982 rehabilitation plans and 2010 rehabilitation plans, there is only about 5" of deck concrete, reinforced longitudinally by a single row of #4's at 7" spacing. It is realistic to expect that beyond deck discontinuity at joints, the deck will also crack in negative moment over its supports. Observed transverse deck cracking at pier 3 supports this assumption. Accordingly, plate element releases were also assigned to the deck elements over the floorbeams to allow the deck to hinge.

As seen in Figure D, the slab beams are simply supported and their  $\pounds$  of bearing is located 9" away from the  $\pounds$  of the floorbeam. To replicate this condition in the model, nodes were placed 9" from the  $\pounds$  of the floorbeam to receive the slab beam reaction, and rigid links were used to connect these nodes to the  $\pounds$  of the floorbeam. Per the 1982 rehabilitation plans, the slab beams are anchored to the floorbeam using a single dowel, so a dowel stiffness was computed and assigned to the rigid link connecting the slab beam plate elements to the floorbeam.





Midas Civil's live load function can operate on either surface lanes or line lanes. Since creation of a permit tool is part of Michael Baker's scope of services, the line lanes were chosen to allow for generation of influence lines which will be used to create the permit tool. All live loads shown on the BR100 rating form were input into the model, and appropriate impact and multiple presence factors assigned. Since the bridge deck width can fit up to three lanes of vehicles at a time, lanes were assigned that maximized load on either edge of the bridge deck or the center of the deck using Midas Civil's Moving Load Cases to determine the governing loading on each element of the bridge. The Moving Load Cases use multiple presences factors in conjunction with varying numbers of vehicles to produce that governing load. Particularly for the arch rib and spandrel column elements, which are governed by a combination of axial force and flexure, the concurrent force option was activated in Midas Civil so that concurrent forces, instead of a force envelope, could be used for generating rating factors. The 3D model is shown in isometric view in Figure E.

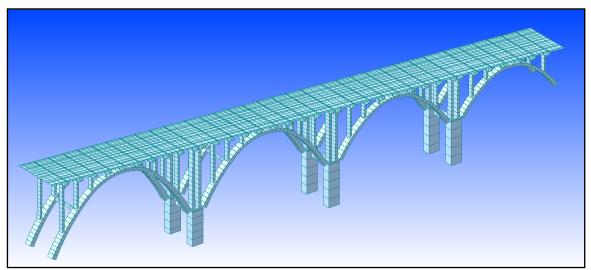



Figure E. Isometric View of Arch Spans' 3D Model





## LOAD RATING RESULTS

Given the complexity of the bridge, different approaches were taken to load rate various elements of the bridge. See Figure F for a visual representation of what was load rated and for which force effects. Further explanation of the process is provided below.

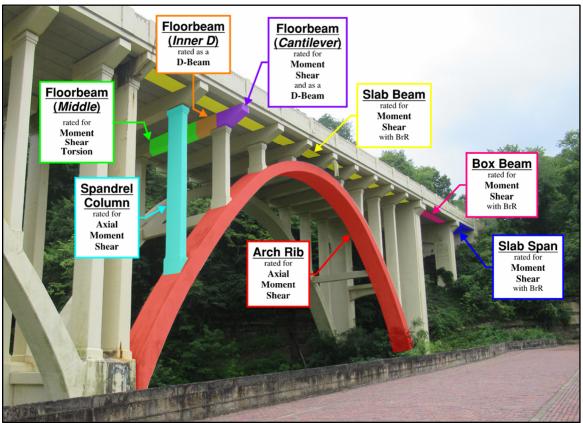



Figure F. Representative Graphic with Location and Type of Load Ratings

## Slab Span

As mentioned previously, the triangular slab span was modeled as a rectangle to allow for BrR input and load rating. The slab is governed by midspan flexure for all vehicles, and the LRFR rating factors shown in Figure G were obtained from the BrR slab model.





| SLAB SPAN |                |  |  |  |  |
|-----------|----------------|--|--|--|--|
| TRUCK     | RATING FACTORS |  |  |  |  |
| HL-93 INV | 0.801          |  |  |  |  |
| HL-93 OP  | 1.039          |  |  |  |  |
| 2F1       | 2.354          |  |  |  |  |
| 3F1       | 1.691          |  |  |  |  |
| 5C1       | 1.804          |  |  |  |  |
| Type 3    | 1.804          |  |  |  |  |
| Type 3-3  | 2.19           |  |  |  |  |
| Type 3S2  | 1.923          |  |  |  |  |
| SU4       | 1.519          |  |  |  |  |
| SU5       | 1.409          |  |  |  |  |
| SU6       | 1.315          |  |  |  |  |
| SU7       | 1.315          |  |  |  |  |
| EV2       | 1.522          |  |  |  |  |
| EV3       | 1.169          |  |  |  |  |
| RPL 60T   | 1.729          |  |  |  |  |
| RPL 65T   | 1.625          |  |  |  |  |

Figure G. Summary of Slab Span Load Rating Factors

## **Box and Slab Beams**

For clarity, box beams without voids are referred to as "slab beams" for this report. Following the creation of the BrR models for the box beam and slab beam spans, rating factors were compiled. In Arch Span B, slab beam B126 was found to have very little capacity remaining after deduction of broken strands and debonding of exposed strands. Since ODOT took action to restrict traffic from this portion of the bridge, slab beam B126 is not included in the rating results. See the Appendix for slab beam B126 calculations and memo. The following tables in Figure H show governing rating factors for the remaining slab beams and box beams which continue to see live load following the lane closure.



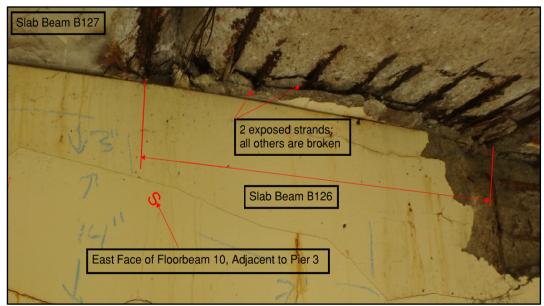



Photo: Western End of Slab Beam B126 at Pier 3

| BOX BEAM SPAN |                   |                       |  |  |  |  |
|---------------|-------------------|-----------------------|--|--|--|--|
| TRUCK         | RATING<br>FACTORS | GOVERNING<br>LOCATION |  |  |  |  |
| HL-93 INV     | 1.401             | Beam Span C, B396     |  |  |  |  |
| HL-93 OP      | 1.955             | Beam Span F, B429     |  |  |  |  |
| 2F1           | 4.591             | Beam Span C, B396     |  |  |  |  |
| 3F1           | 3.156             | Beam Span C, B396     |  |  |  |  |
| 5C1           | 3.280             | Beam Span C, B396     |  |  |  |  |
| Type 3        | 3.235             | Beam Span F, B429     |  |  |  |  |
| Type 3-3      | 3.616             | Beam Span F, B429     |  |  |  |  |
| Type 3S2      | 3.397             | Beam Span F, B429     |  |  |  |  |
| SU4           | 2.870             | Beam Span C, B396     |  |  |  |  |
| SU5           | 2.649             | Beam Span C, B396     |  |  |  |  |
| SU6           | 2.476             | Beam Span C, B396     |  |  |  |  |
| SU7           | 2.339             | Beam Span C, B396     |  |  |  |  |
| EV2           | 2.714             | Beam Span F, B429     |  |  |  |  |
| EV3           | 2.240             | Beam Span F, B429     |  |  |  |  |
| RPL 60T       | 3.240             | Beam Span F, B429     |  |  |  |  |
| RPL 65T       | 2.716             | Beam Span F, B429     |  |  |  |  |

| SLAB BEAM SPAN |                   |                       |  |  |  |  |  |
|----------------|-------------------|-----------------------|--|--|--|--|--|
| TRUCK          | RATING<br>FACTORS | GOVERNING<br>LOCATION |  |  |  |  |  |
| HL-93 INV      | 1.090             | Arch C, B227          |  |  |  |  |  |
| HL-93 OP       | 1.413             | Arch C, B227          |  |  |  |  |  |
| 2F1            | 3.171             | Arch C, B227          |  |  |  |  |  |
| 3F1            | 2.394             | Arch C, B227          |  |  |  |  |  |
| 5C1            | 2.394             | Arch C, B227          |  |  |  |  |  |
| Type 3         | 2.394             | Arch C, B227          |  |  |  |  |  |
| Type 3-3       | 2.908             | Arch C, B227          |  |  |  |  |  |
| Type 3S2       | 2.626             | Arch C, B227          |  |  |  |  |  |
| SU4            | 2.074             | Arch C, B227          |  |  |  |  |  |
| SU5            | 2.000             | Arch C, B227          |  |  |  |  |  |
| SU6            | 1.930             | Arch C, B227          |  |  |  |  |  |
| SU7            | 1.930             | Arch C, B227          |  |  |  |  |  |
| EV2            | 1.940             | Arch C, B227          |  |  |  |  |  |
| EV3            | 1.862             | Arch C, B227          |  |  |  |  |  |
| RPL 60T        | 2.124             | Arch C, B227          |  |  |  |  |  |
| RPL 65T        | 1.968             | Arch C, B227          |  |  |  |  |  |

Figure H: Summary of Box Beam and Slab Beam Rating Factors





## Spandrel Columns and Arch Ribs

The load rating of spandrel columns and arch ribs was performed as an iterative process, evaluating relative stiffnesses in the 3D FEM model. Michael Baker initially rated the spandrel columns' axial forces and moments assuming uncracked section properties to establish a baseline load rating. Low rating factors were initially calculated for many of the shorter, stiffer spandrel columns near the crown of the arch. This was predictable as these modeled sections attracted load as a stiff uncracked section, but had capacity defined by a fully cracked section. In experience, these stiff elements crack, lowering their relative stiffness, and load is redistributed to other elements.

The next step in the analysis is to develop a relationship between load and stiffness to account for the cycle of high load, cracking and load redistribution per updated relative stiffnesses. This nonlinear relationship between load and stiffness can be defined using moment curvature analysis. For reinforced concrete, this relationship has important points such as first cracking, first yield of tension steel, complete yield of steel and hinging. While bridges of this type should not be posted for first cracking, it was decided the columns should not be allowed to hinge either, as this presents a serviceability concern. Therefore, an effective stiffness representing 30% of the uncracked spandrel column section was chosen, limiting deformations to just beyond first yield of the tension steel. Note that this partially cracked stiffness reduces the load, while capacity is still conservatively calculated assuming the section is fully cracked. This partially cracked stiffness results in all legal and permit loads to pass rating, while also limiting serviceability issues, i.e. the extreme level of cracking associated with hinging. Michael Baker utilized Midas General Section Designer's Moment Curvature function to perform this nonlinear analysis. For spandrel columns failing in the baseline model, this reduction in stiffness was applied to the FEM model using the Section Stiffness Scale function in Midas. The updated model was reanalyzed, and results were used to compute new rating factors for the spandrel columns. As predicted, the reduction in stiffness of the shorter spandrel columns, which had produced low rating factors in the uncracked baseline model, resulted in these members attracting less load as some of their load was distributed to stiffer elements. A comparison of these short column elements' rating factors in the baseline condition vs. the cracked condition simulated using the moment curvature analysis is shown in Figure I.



| SPANDREL COLUMNS |               |         |  |  |  |  |  |
|------------------|---------------|---------|--|--|--|--|--|
| Baseline         | (Uncracked) A | nalysis |  |  |  |  |  |
|                  | Controlling   |         |  |  |  |  |  |
| Truck            | Rating        | Element |  |  |  |  |  |
|                  | Factors       |         |  |  |  |  |  |
| HL-93 INV        | 0.378         | 25_I    |  |  |  |  |  |
| HL-93 OP         | 0.489         | 25_I    |  |  |  |  |  |
| Controlling      | 0.591         | 25 I    |  |  |  |  |  |
| Legal (SU7)      | 0.591         | 25_1    |  |  |  |  |  |
| EV3              | 0.574         | 25_I    |  |  |  |  |  |
| RPL 60T          | 0.612         | 25_l    |  |  |  |  |  |
| RPL 65T          | 0.562         | 25_I    |  |  |  |  |  |

| SPANDREL COLUMNS                                                                                                      |       |      |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------|------|--|--|--|--|--|--|
| Refined (Cracked) Analysis         Controlling         Truck       Rating       Element         Factors       Factors |       |      |  |  |  |  |  |  |
| HL-93 INV                                                                                                             | 0.701 | 25_I |  |  |  |  |  |  |
| HL-93 OP                                                                                                              | 0.909 | 25_I |  |  |  |  |  |  |
| Controlling<br>Legal (SU7)                                                                                            | 1.116 | 25_I |  |  |  |  |  |  |
| EV3                                                                                                                   | 1.081 | 25_I |  |  |  |  |  |  |
| RPL 60T                                                                                                               | 1.129 | 25_I |  |  |  |  |  |  |
| RPL 65T                                                                                                               | 1.060 | 25_I |  |  |  |  |  |  |

Figure I. Comparison of Uncracked and Cracked Spandrel Column Rating Factors Note: Element 25\_I is a short column in Arch Span A

Following the reduced stiffness for select spandrel columns, the redistribution of spandrel column forces resulted in legal and permit load rating factors greater than 1.0. However, there was one arch rib element, near the crown of arch span B, that had legal and permit load rating factors below 1.0. Moment curvature analysis was performed on this arch rib element, and it was determined that the effective stiffness of this arch rib element could be bounded by using 36% of the uncracked arch rib section stiffness without serviceability concerns. Once this arch rib element's stiffness had been updated in the FEM model using the Section Stiffness Scale, the model was reanalyzed, and rating factors were generated for both the arch ribs and the spandrel columns. Through this iterative approach to evaluate cracking, simulated using stiffness reduction of select members, LRFR rating factors were above 1.0 for all legal vehicles and it was not necessary to simulate further cracking.

Results from the baseline and refined model were also used to calculate shear rating factors for spandrel columns and arch ribs but were found not to control in any case. Torsion was not rated for arch ribs nor spandrel columns. These elements were not likely explicitly designed for torsion. Given the minimal stirrup reinforcement (#4s @ 1'-6" in columns, #5s @2'-0" in arch ribs), they likely would fail the current AASHTO LRFD capacity equations for design. The current design equations assume the section has significantly cracked and only steel resists torsion. For bridges with two ribs, like this bridge, papers such as "Arch Bridges" by Douglas A. Nettleton, note that "live load eccentricity is carried by an increase in vertical load to the ribs on the side of the eccentricity and a decrease to the other ribs" and torsion is not of concern in this region. With no obvious torsional cracking visible, the assumption that only steel resists torsion is considered overly conservative.

Figure J below shows an elevation view Arch Span B with the results from the refined analysis. Spandrel column and arch rib elements that were modeled to be cracked are





highlighted in red. The three other arch spans also have cracking at similar spandrel column locations where the column frames into the arch rib.

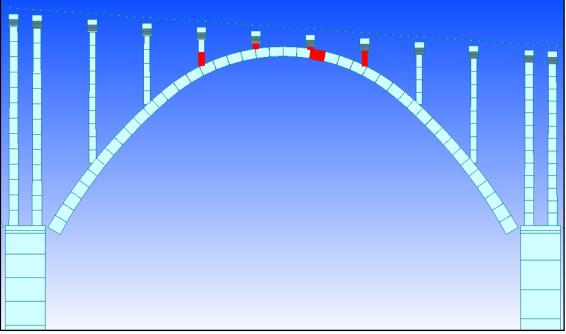



Figure J. Arch Span B with cracked arch rib and spandrel column elements in red

Due to the bridge's general appraisal rating of 5, a condition factor of 0.95 was applied to all spandrel column and arch rib capacities for all load effects. The summary of rating factors for the governing spandrel columns and arch ribs are shown in Figure K.





| SPANDREL COLUMNS |                |       | ARCH RIB  |              |       |
|------------------|----------------|-------|-----------|--------------|-------|
|                  | RATING FACTORS |       |           | RATING FACTO |       |
| TRUCK            | P-M            | SHEAR | TRUCK     | P-M          | SHEAR |
| HL-93 INV        | 0.701          | 1.540 | HL-93 INV | 0.738        | 3.712 |
| HL-93 OP         | 0.909          | 2.332 | HL-93 OP  | 0.960        | 4.811 |
| 2F1              | 2.649          | 5.656 | 2F1       | 1.986        | 9.793 |
| 3F1              | 1.403          | 4.518 | 3F1       | 1.446        | 6.955 |
| 5C1              | 1.442          | 4.462 | 5C1       | 1.471        | 7.099 |
| Type 3           | 1.461          | 4.664 | Type 3    | 1.454        | 7.125 |
| Type 3-3         | 1.765          | 5.491 | Type 3-3  | 1.745        | 8.533 |
| Type 3S2         | 1.579          | 4.673 | Type 3S2  | 1.603        | 7.802 |
| SU4              | 1.320          | 4.048 | SU4       | 1.287        | 6.193 |
| SU5              | 1.316          | 3.770 | SU5       | 1.189        | 5.670 |
| SU6              | 1.212          | 3.608 | SU6       | 1.096        | 5.263 |
| SU7              | 1.116          | 3.448 | SU7       | 1.071        | 4.940 |
| EV2              | 1.135          | 3.672 | EV2       | 1.252        | 5.964 |
| EV3              | 1.081          | 3.413 | EV3       | 1.066        | 5.268 |
| RPL 60T          | 1.129          | 3.229 | RPL 60T   | 1.050        | 5.324 |
| RPL 65T          | 1.060          | 2.474 | RPL 65T   | 0.969        | 4.732 |

Figure K. Summary of Spandrel Column and Arch Rib Rating Factors

While the arch ribs and spandrel columns do not meet HL-93 design loadings, they do rate for all Ohio legal loads as well as all AASHTO vehicles. Only the RPL 65T doesn't pass, which was rated to 97% of demand.

## Floorbeams

As can be seen in Figure F, the analysis of the floorbeam was divided into three regions. The first region is labeled the "cantilever" region. During the 8/24 post-inspection meeting with ODOT, there was concern over the condition of the floorbeam at Pier 5 (pictured below) and rating this region was elevated to a top priority.





Photo: Southeast face of Floorbeam at Pier 5

Floorbeams, such as the one identified in the above photograph, are located at deck joints. The floorbeams at deck joints exhibit high levels of deterioration compared to other floorbeams. Deterioration was most extreme at the cantilever region. Section and reinforcement loss was modeled in this location and a condition factor of 0.85 was applied. This region was first modeled as a B-Beam (traditional beam which assumes linear strain profile) and was found to have adequate capacity for STR I moment, shear, and torsion. The region was then modeled as a D-Beam (beam regions where a linear strain profile is inappropriate to assume) and rated using a Strut-and-Tie model. Due to the geometry and loading in this area, as discussed in AASHTO 5.5.1.2.1, this region of the floorbeam is a D-Beam and use of Strut-and-Tie in this region is appropriate. Ratings for all legal loads pass. Given its location and severe degradation, this cantilever was considered the worst case. Therefore, this floorbeam cantilever was considered to envelope the behavior for all floorbeam cantilevers for load rating purposes, as documented in Pier 5 Floorbeam Cantilever Load Rating Memo.

After the cantilever was deemed not to be an immediate concern, a second "inner D" model was created. This model captured the D-Beam behavior of the floorbeam to the inside of the support for a distance approximately equal to the depth of the floorbeam beyond the face of support. Since this region was generally in better condition than the cantilever, no section or reinforcement loss was assumed. However, a condition factor of 0.95 was applied to acknowledge deterioration that had occurred in this region.

Finally, the middle section of the floorbeam was modeled as a B-beam since it was sufficiently far away from the supports. Shear, moment, and torsion was rated for this



| FLOORBEAM RATINGS |                   |       |       |                      |                   |  |  |
|-------------------|-------------------|-------|-------|----------------------|-------------------|--|--|
| Truck             | Cantilever<br>S&T |       |       | Controlling<br>Model | Controlling<br>RF |  |  |
| HL-93 INV         | 0.926             | 0.690 | 0.645 | Middle B-Beam        | 0.645             |  |  |
| HL-93 OP          | 1.200             | 0.897 | 0.944 | Inner D S&T          | 0.897             |  |  |
| 2F1               | 2.717             | 1.972 | 2.619 | Inner D S&T          | 1.972             |  |  |
| 3F1               | 1.821             | 1.353 | 1.521 | Inner D S&T          | 1.353             |  |  |
| 5C1               | 1.913             | 1.322 | 1.565 | Inner D S&T          | 1.322             |  |  |
| Type 3            | 1.945             | 1.419 | 1.631 | Inner D S&T          | 1.419             |  |  |
| Type 3-3          | 2.089             | 1.657 | 2.059 | Inner D S&T          | 1.657             |  |  |
| Type 3S2          | 2.366             | 1.606 | 1.776 | Inner D S&T          | 1.606             |  |  |
| SU4               | 1.639             | 1.224 | 1.437 | Inner D S&T          | 1.224             |  |  |
| SU5               | 1.538             | 1.168 | 1.430 | Inner D S&T          | 1.168             |  |  |
| SU6               | 1.390             | 1.089 | 1.287 | Inner D S&T          | 1.089             |  |  |
| SU7               | 1.287             | 1.007 | 1.203 | Inner D S&T          | 1.007             |  |  |
| EV2               | 1.582             | 1.140 | 1.352 | Inner D S&T          | 1.140             |  |  |
| EV3               | 1.458             | 1.006 | 1.054 | Inner D S&T          | 1.006             |  |  |
| RPL 60T           | 1.363             | 0.986 | 1.071 | Inner D S&T          | 0.986             |  |  |
| RPL 65T           | 1.253             | 0.878 | 0.972 | Inner D S&T          | 0.878             |  |  |

region and a condition factor of 0.95 was applied. The summary of rating factors for the floorbeams are shown in Figure L.

## Figure L: Summary of Floorbeam Rating Factors

While the floorbeams do not meet HL-93 design loadings, they do rate for all Ohio legal loads as well as all AASHTO vehicles. Both routine permit loads don't pass, which rate to 88% of demand.

## LINK SLAB EVALUATION

As part of the arch analysis and load rating, Michael Baker evaluated the potential impacts of incorporating link slabs which might be included in rehabilitation strategies to eliminate deck joints. Use of link slabs are increasing across multiple states to cost effectively connect previously discontinuous bridge deck slabs and eliminate expansion joints on bridges. This elimination of expansion joints can prevent premature corrosion to superstructure elements underneath the deck. Generally, link slabs are designed to support wheel loads and the bending moment due to girder end rotations without transmitting live load effects from one span to another. This discontinuity between girders is often accompanied by debonding the link slab from the ends of the girders.

As most of the bridge deterioration noted during the bridge inspection was located directly below the expansion joints, Michael Baker was tasked with investigating the





potential consequences of installing link slabs to protect the prestressed beams and precast floorbeams from future deterioration.

Link slabs do not create continuous girders but do increase the length of bridge superstructure that will expand and contract due to temperature change or other loading. Ensuring that the bridge unit, formerly consisting of simple spans and now consisting of a single, joined unit, will behave without bridge damage, is paramount. During the iterative load rating process for the spandrel columns and arch ribs, it was noted that the spandrel columns were sensitive to moments induced from horizontal loads applied at the deck level. To examine the effect that the link slabs would have on these spandrel columns, link slabs were simulated at the three expansion joints between the four arch spans by removing the plate end releases assigned at each deck interface between the arch spans. For the comparison, the final iteration of the model used for load rating the arch ribs and spandrel columns was 'saved as' and the link slabs simulated. The model was then run, and the spandrel column rating factors were compared between the two models. The spandrel columns' ratings plummeted, as can be seen in the below Figure M. From this investigation it is likely that the implementation of link slabs would cause significant loading changes to the spandrel columns which could result in new cracking and deformations. Some of the loading changes could possibly be mitigated through use of Teflon sliding bearings, but the bridge's steep longitudinal slope presents additional challenges. Therefore, the feasibility of using link slabs will be dependent on the rehabilitation approach selected and will require additional analysis to determine how they can be incorporated without negative effects to the arch and spandrel ratings.



| AXIAL MOMENT RATINGS OF<br>SPANDREL COLUMNS |                                  |               |                |  |  |  |  |  |
|---------------------------------------------|----------------------------------|---------------|----------------|--|--|--|--|--|
|                                             | Without Link Slab With Link Slab |               |                |  |  |  |  |  |
| Truck                                       | Controlling RF                   |               | Controlling RF |  |  |  |  |  |
| HL-93 INV                                   | 0.701                            | $\rightarrow$ | 0.240          |  |  |  |  |  |
| HL-93 OP                                    | 0.909                            | $\rightarrow$ | 0.324          |  |  |  |  |  |
| 2F1                                         | 2.649                            | $\rightarrow$ | 0.764          |  |  |  |  |  |
| 3F1                                         | 1.403                            | $\rightarrow$ | 0.520          |  |  |  |  |  |
| 5C1                                         | 1.442                            | $\rightarrow$ | 0.520          |  |  |  |  |  |
| Type 3                                      | 1.461                            | $\rightarrow$ | 0.520          |  |  |  |  |  |
| Type 3-3                                    | 1.765                            | $\rightarrow$ | 0.635          |  |  |  |  |  |
| Type 3S2                                    | 1.579                            | $\rightarrow$ | 0.572          |  |  |  |  |  |
| SU4                                         | 1.320                            | $\rightarrow$ | 0.445          |  |  |  |  |  |
| SU5                                         | 1.316                            | $\rightarrow$ | 0.416          |  |  |  |  |  |
| SU6                                         | 1.212                            | $\rightarrow$ | 0.388          |  |  |  |  |  |
| SU7                                         | 1.116                            | $\rightarrow$ | 0.388          |  |  |  |  |  |
| EV2                                         | 1.135                            | $\rightarrow$ | 0.502          |  |  |  |  |  |
| EV3                                         | 1.081                            | $\rightarrow$ | 0.367          |  |  |  |  |  |
| RPL 60T                                     | 1.129                            | $\rightarrow$ | 0.339          |  |  |  |  |  |
| RPL 65T                                     | 1.060                            | $\rightarrow$ | 0.319          |  |  |  |  |  |

Figure M: Summary of Lower Rating Factors with Introduction of Link Slabs





## <u>SUMMARY</u>

Initial load ratings identified an individual box beam with substandard load carrying capacity due to broken and corroded prestressing strands. ODOT has subsequently restricted traffic access from these portions of the bridge with temporary traffic control devices. Thus, in evaluation of the remainder of elements subject to current traffic, the Blaine Hill Viaduct rates satisfactorily for all Ohio legal loads, specialized hauling vehicles, and emergency vehicles. The bridge does not satisfy the HL-93 Inventory or Operating ratings; however, this is a modern notional load (design case) that didn't exist when the original structure was designed and doesn't affect consideration of load-carrying capacity or posting. Since traffic control has been implemented to restrict vehicles from driving atop the deteriorated box beam, the Blaine Hill Viaduct has sufficient capacity for all Ohio legal loads, specialized hauling vehicles, and emergency vehicles, and does not require any load posting at this time. The controlling ratings for each vehicle are summarized in Figure N.

| Truck     | Governing<br>Bridge Rating<br>Factors | Controlling<br>Location |
|-----------|---------------------------------------|-------------------------|
| HL-93 INV | 0.645                                 | Floorbeam               |
| HL-93 OP  | 0.897                                 | Floorbeam               |
| 2F1       | 1.972                                 | Floorbeam               |
| 3F1       | 1.353                                 | Floorbeam               |
| 5C1       | 1.322                                 | Floorbeam               |
| Type 3    | 1.419                                 | Floorbeam               |
| Type 3-3  | 1.657                                 | Floorbeam               |
| Type 3S2  | 1.579                                 | Spandrel Column         |
| SU4       | 1.224                                 | Floorbeam               |
| SU5       | 1.168                                 | Floorbeam               |
| SU6       | 1.089                                 | Floorbeam               |
| SU7       | 1.007                                 | Floorbeam               |
| EV2       | 1.135                                 | Spandrel Column         |
| EV3       | 1.006                                 | Floorbeam               |
| RPL 60T   | 0.986                                 | Floorbeam               |
| RPL 65T   | 0.878                                 | Floorbeam               |

Figure N: Summary of Controlling Rating Factors for Each Vehicle





# ODOT BR-100 BRIDGE LOAD RATING SUMMARY REPORT



## BRIDGE LOAD RATING SUMMARY REPORT OFFICE OF STRUCTURAL ENGINEERING OHIO DEPARTMENT OF TRANSPORTATION

| OFTRANS                             | OHIO DEPARTMENT OF TRANSPORTATION                                                                 |             |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|---------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                     | SFN                                                                                               |             | Bridge N                                                                                                                                                          | lumber                                                                                                                                              | DISTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRICT GPS COORDINATES |                          |                                             |               |                                                                                                                                                           |  |
|                                     | 0701599                                                                                           |             | BEL-0004                                                                                                                                                          | 0-23265                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 40.066619 -80.821422     |                                             |               |                                                                                                                                                           |  |
| C                                   | RIGINAL<br>AR BUILT                                                                               |             | YEAR REBUILT                                                                                                                                                      | TOTAL BR                                                                                                                                            | IDGE LENGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H FEATURE INTERSE     |                          |                                             | TERSECTED (   | RSECTED (Below)                                                                                                                                           |  |
|                                     | 1932                                                                                              |             | 1982                                                                                                                                                              | 754 ft                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | WHLNG CR,CR.10 & ABND.RR |                                             | ND.RR         |                                                                                                                                                           |  |
|                                     | Modeled in October 2023 from original plans (1932) and rehabilitation plans (1981, 2010). AASHTOV |             |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
|                                     | ASSUMPTIONS<br>DMMENTS                                                                            |             | were used for load<br>thick and 43'-6" O/<br>right. The bridge is<br>of microsilica conco<br>Pier 5 in arch C abo<br>the center lane of t<br>this lane closure ar | rating of slab spa<br>O. The roadway is<br>on a tangent aligr<br>rete overlay per 20<br>ve the left spandr<br>the bridge on 8/25<br>e not included. | pan, box beams, slab beams, floorbeams, spandrel columns, and arch ribs. The deck is 5<br>y is 38'-0" F/F of curb and has a 3'-0" sidewalk on the left and a deflector parapet on the<br>ignment and has a skew that varies from 0 to 34.65 degress RF. The wearing surface is 3<br>2010 rehabilitation plans. The controlling location for legal loads is the floorbeam abov<br>idrel column. The rating is controlled by the strut to node interface limit state. ODOT clo<br>25/23 based on a memo from Michael Baker dated 8/24/23. Ratings for members with |                       |                          |                                             |               | ch ribs. The deck is 5"<br>ector parapet on the<br>e wearing surface is 1.25"<br>the floorbeam above<br>limit state. ODOT closed<br>gs for members within |  |
|                                     |                                                                                                   |             | Please type or sele                                                                                                                                               | ect on right using o                                                                                                                                | drop down a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | irrow                 |                          | <b></b>                                     |               |                                                                                                                                                           |  |
| LOAD RATING                         | PURPOSE:                                                                                          |             | 7 - Not Applicable                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             | TEOFO         | 110                                                                                                                                                       |  |
| GENERAL APPR                        | AISAL (0-9):                                                                                      |             | 5                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          | 11151                                       | ATE           |                                                                                                                                                           |  |
| LOAD RATING                         | SOFTWARE:                                                                                         |             | 7 - Combination                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
| SOFTWARE VER                        | RSION:                                                                                            |             | AASHTOWare BrR                                                                                                                                                    | 7.4.1.3001 and Mi                                                                                                                                   | das Civil 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 v1.2                |                          | UNIT DE | BAZNIK        |                                                                                                                                                           |  |
| ROUTINE PERM                        | IIT LOAD (RPL)                                                                                    | :           | N - Agency doesno                                                                                                                                                 | t issue routine per                                                                                                                                 | mits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                          | PRE                                         | 78469         | · M LE                                                                                                                                                    |  |
| RATING SOURC                        | :Е:                                                                                               |             | 1 - Plan informatio                                                                                                                                               | n available for load                                                                                                                                | d rating anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ysis                  |                          | 10162                                       | han og        |                                                                                                                                                           |  |
| LOAD RATING                         | METHOD:                                                                                           |             | LRFR - Load & Resis                                                                                                                                               | RFR - Load & Resistance Factor Rating (RF) - Code 8                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             | NGUIN         |                                                                                                                                                           |  |
| DESIGN LOADII                       | NG:                                                                                               |             | 5 - HS20                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             | 1111111       |                                                                                                                                                           |  |
|                                     |                                                                                                   |             |                                                                                                                                                                   | STRUCTU                                                                                                                                             | RE RATING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUMMA                 | RY                       | •                                           |               |                                                                                                                                                           |  |
|                                     | OHIO & A                                                                                          | ASHTO I     | LEGAL VEHICLES                                                                                                                                                    |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | De                       | esign Inventory and Ope                     | rating Rating | js                                                                                                                                                        |  |
| Legal Load                          | GVW (Tons)                                                                                        | No of       | Rating Factor                                                                                                                                                     | Safe Weight                                                                                                                                         | Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ing Type              |                          |                                             | Rating by RI  |                                                                                                                                                           |  |
| 2F1                                 | 15                                                                                                | Axles<br>2  | RF<br>1.972                                                                                                                                                       | (Tons)<br>15.00                                                                                                                                     | ні 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Loading               |                          | Inventory<br>0.645                          |               | Operating<br>0.897                                                                                                                                        |  |
| 3F1                                 | 23                                                                                                | 3           | 1.353                                                                                                                                                             | 23.00                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nendatio              | n                        |                                             | osting is Rec |                                                                                                                                                           |  |
| 5C1                                 | 40                                                                                                | 5           | 1.322                                                                                                                                                             | 40.00                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          | -                                           | ŭ             |                                                                                                                                                           |  |
| Туре 3                              | 25                                                                                                | 3           | 1.419                                                                                                                                                             | 25.00                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
| Type 3-3                            | 40                                                                                                | 6           | 1.657                                                                                                                                                             | 40.00                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
| Type 3S2                            | 36                                                                                                | 5           | 1.579                                                                                                                                                             | 36.00                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
|                                     | SPECIALIZED                                                                                       | HAULIN      | IG VEHICLES (SHV)                                                                                                                                                 |                                                                                                                                                     | Sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Posting               |                          |                                             |               |                                                                                                                                                           |  |
| SU4/4F1                             | 27                                                                                                | 4           | 1.224                                                                                                                                                             | 27.00                                                                                                                                               | Recomm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nendatio              | n:                       |                                             |               |                                                                                                                                                           |  |
| SU5                                 | 31                                                                                                | 5           | 1.168                                                                                                                                                             | 31.00                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
| SU6<br>SU7                          | 34.75<br>38.75                                                                                    | 6<br>7      | 1.089<br>1.007                                                                                                                                                    | 34.75<br>38.75                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
| 307                                 | 30.73                                                                                             | /           | 1.007                                                                                                                                                             | 30.75                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
|                                     | EMERC                                                                                             | SENCY V     | EHICLES (EV)                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | P                        | ermit Load (PL) Analys                      | is (optional  | )                                                                                                                                                         |  |
|                                     | Check b                                                                                           | ox if ratii | ng for EV3                                                                                                                                                        | <b>~</b>                                                                                                                                            | Loading<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GVW<br>(Tons)         | No<br>of                 | Rating Factor                               | r             | Safe Load (Tons)                                                                                                                                          |  |
| EV2                                 | 28.75                                                                                             | 2           | 1.135                                                                                                                                                             | 28.75                                                                                                                                               | PL 60T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                    | 6                        | 0.986                                       |               | 59.16                                                                                                                                                     |  |
| EV3                                 | 43                                                                                                | 3           | 1.006                                                                                                                                                             | 43.00                                                                                                                                               | PL 65T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65                    | 7                        | 0.878                                       |               | 57.07                                                                                                                                                     |  |
|                                     |                                                                                                   |             |                                                                                                                                                                   |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                          |                                             |               |                                                                                                                                                           |  |
| Controlling Legal Load RF 100% 1.00 |                                                                                                   |             |                                                                                                                                                                   | 1.00                                                                                                                                                | PL Analysis Method Load & Resistance Factor Rating (LRFR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                          |                                             | Rating (LRFR) |                                                                                                                                                           |  |
| AGENCY/FIRM/OFFICE                  |                                                                                                   |             |                                                                                                                                                                   |                                                                                                                                                     | Mic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hael Bake             | er Inte                  | ernational                                  |               |                                                                                                                                                           |  |
|                                     | Na                                                                                                | me          | PE<br>Number                                                                                                                                                      | Phone Nu                                                                                                                                            | one Number Email Report Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                          | 2023-10-05                                  |               |                                                                                                                                                           |  |
| Rated By                            | John                                                                                              | Carey       | 81773                                                                                                                                                             | 216-776-                                                                                                                                            | 6-776-6638 John.Carey@mbakerintl.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                          |                                             |               |                                                                                                                                                           |  |
| Reviewed By                         | Edward                                                                                            | d Baznik    | 78469                                                                                                                                                             | 216-776-                                                                                                                                            | 216-776-6637 ebaznik@mbakerintl.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                          |                                             |               |                                                                                                                                                           |  |

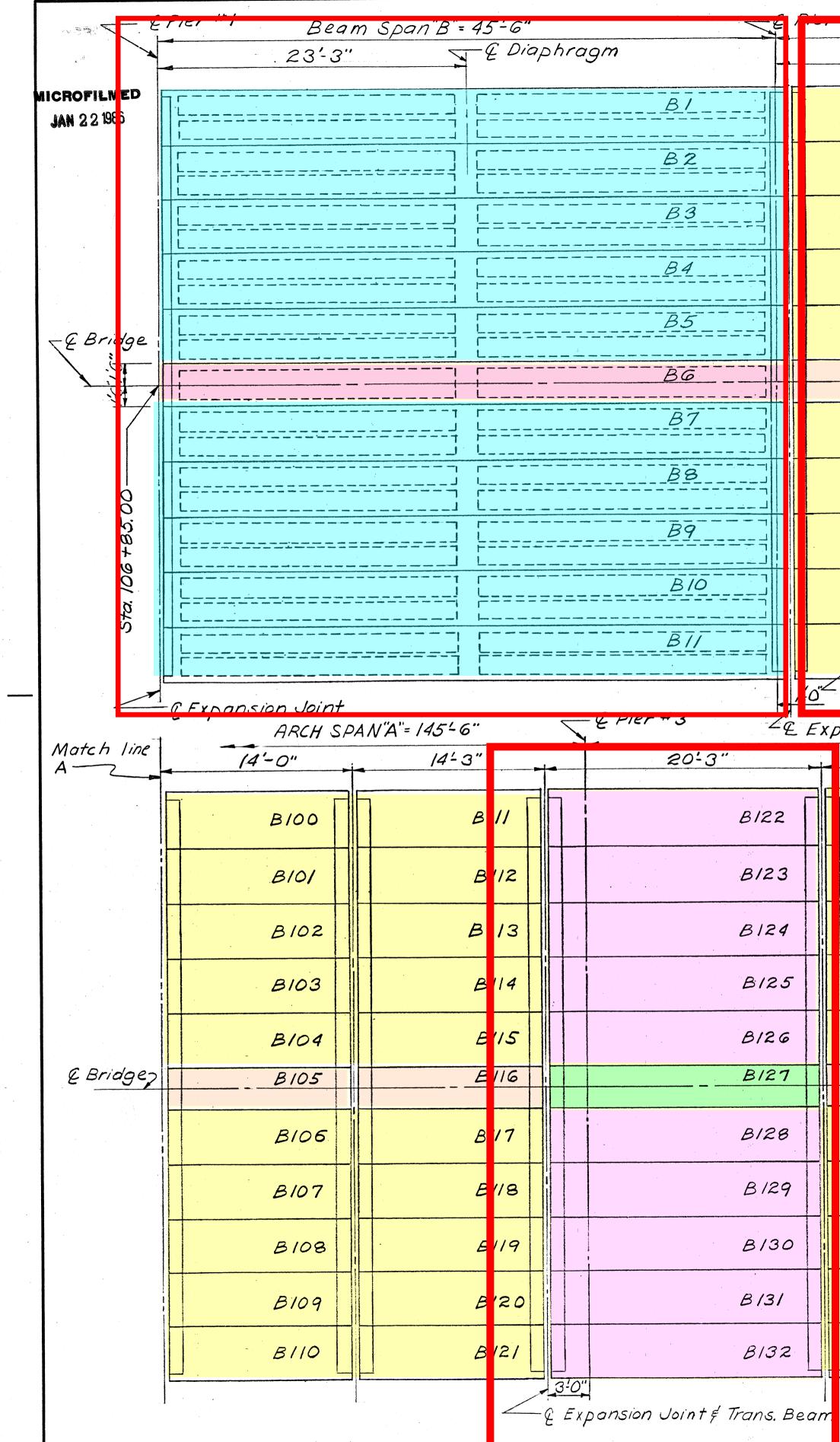
## COLOR CODED SELECTION OF BOX BEAM AND SLAB BEAM SPANS FOR LOAD RATING

## BEAM SPAN B MODELED

 $\widehat{}$ 

71

 $\cdot$ 


ž

ĸ

*gi* 

Ċ,

 $\bigcirc$ 



ARCH SPAN B MODELED

|               |           | • *                                                                            | ARCH SPAN A M                                                                                                                                         |                                                                               |                                                                              |                                                                      |
|---------------|-----------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
|               | 1         | 6-3"<br>E Beam Spe                                                             | 14'-0"                                                                                                                                                | 14'-0"                                                                        | 1 SPAN 'A" = 145-6"<br>14-0"                                                 | 14:0"                                                                |
|               |           | BI2                                                                            | B23                                                                                                                                                   | B34                                                                           | B45                                                                          | B56                                                                  |
|               |           | B13                                                                            | B24                                                                                                                                                   | B35                                                                           | B46                                                                          | B57                                                                  |
|               |           | B14                                                                            | B25                                                                                                                                                   | B36                                                                           | B47                                                                          | B 5 8                                                                |
|               |           | B15                                                                            | B26                                                                                                                                                   | B37                                                                           | <i>B4</i> 8                                                                  | B 5 9                                                                |
|               |           | B16                                                                            | B27                                                                                                                                                   | ВЗВ                                                                           | B49                                                                          | B60                                                                  |
|               |           | B17                                                                            | B28                                                                                                                                                   | B39                                                                           | B50                                                                          | BG/                                                                  |
|               |           | BIB                                                                            | B29                                                                                                                                                   | B40                                                                           | B51                                                                          | B62                                                                  |
|               |           | B19                                                                            | B30                                                                                                                                                   | B41                                                                           | B52                                                                          | B63                                                                  |
|               |           | B20                                                                            | B31                                                                                                                                                   | B42                                                                           | B53                                                                          | B64                                                                  |
|               |           | -3" B21                                                                        | B32                                                                                                                                                   | B43                                                                           | B54                                                                          | B65                                                                  |
|               |           | B22                                                                            | B 3 3                                                                                                                                                 | B44                                                                           | B55                                                                          | B66                                                                  |
| <u>ح</u><br>ک | - Q Tie H | Rods (typ.);                                                                   |                                                                                                                                                       |                                                                               | (typ)                                                                        |                                                                      |
| ĒX            | pansio    | <ul> <li>A start constraints and start constraints</li> </ul>                  |                                                                                                                                                       |                                                                               |                                                                              |                                                                      |
|               |           |                                                                                |                                                                                                                                                       | N "B"=132-6"                                                                  | 11' 0"                                                                       | 11:0"                                                                |
| -             |           | A UDINT<br>14-0"                                                               | ARCH SPA<br>14'-0"                                                                                                                                    | N "B"=/32-6"<br>/4-0"                                                         | 14'-0"                                                                       | 14'-0"                                                               |
|               |           |                                                                                |                                                                                                                                                       |                                                                               | 14'-0"<br>B166                                                               |                                                                      |
|               |           | 14'-0"<br>B133                                                                 | 14'-0"                                                                                                                                                |                                                                               |                                                                              |                                                                      |
| -             | -         | 14'-0"<br>B133                                                                 | 14'-0"<br>B144                                                                                                                                        | 14'-0"<br>B155                                                                | B166                                                                         | BI11<br>BI12                                                         |
|               | -         | 14'-0"<br>B133<br>B134                                                         | 14'-0"<br>B144<br>B145                                                                                                                                | 14'-0"<br>B155<br>B156                                                        | B166<br>B167                                                                 | BI11<br>BI12                                                         |
|               |           | 14'-0"<br>B133<br>B134<br>B135                                                 | 14'-0"<br>B144<br>B145<br>B146                                                                                                                        | 14'-0"<br>B155<br>B156<br>B157                                                | B166<br>B167<br>B168                                                         | B177<br>B178<br>B179                                                 |
| -             |           | 14'-0"<br>B133<br>B134<br>B135<br>B136                                         | 14'-0"<br>B144<br>B145<br>B146<br>B147                                                                                                                | 14'-0"<br>B155<br>B156<br>B157<br>B158                                        | B166<br>B167<br>B168<br>B169                                                 | B177<br>B178<br>B178<br>B180                                         |
|               |           | 14'-0"<br>B133<br>B134<br>B135<br>B136<br>B137                                 | 14'-0"<br>B144<br>B145<br>B146<br>B147<br>B148                                                                                                        | 14'-0"<br>B155<br>B156<br>B157<br>B158<br>B159                                | B166<br>B167<br>B168<br>B169<br>B170                                         | BI77<br>BI77<br>BI78<br>BI79<br>BI80<br>BI80                         |
|               |           | 14'-0"<br>B133<br>B134<br>B135<br>B136<br>B137<br>B138                         | 14'-0"<br>B144<br>B145<br>B146<br>B147<br>B148<br>B149                                                                                                | 14'-0"<br>B155<br>B156<br>B157<br>B158<br>B159<br>B160                        | B166<br>B167<br>B168<br>B169<br>B170<br>B171                                 | BI77<br>BI77<br>BI78<br>BI80<br>BI80<br>BI81                         |
|               |           | 14'-0"<br>B133<br>B134<br>B135<br>B136<br>B137<br>B138<br>B139                 | 14'-0"<br>B144<br>B145<br>B146<br>B146<br>B147<br>B148<br>B149<br>B149<br>B150                                                                        | 14'-0"<br>B155<br>B156<br>B157<br>B158<br>B159<br>B160<br>B161                | B166<br>B167<br>B168<br>B169<br>B170<br>B171<br>B172                         | BITT<br>BITT<br>BITE<br>BITE<br>BITE<br>BITE<br>BITE<br>BITE         |
|               |           | 14'-0"<br>B133<br>B134<br>B135<br>B136<br>B137<br>B138<br>B139<br>B140         | 14'-0"<br>B144<br>B145<br>B145<br>B146<br>B147<br>B148<br>B149<br>B149<br>B150<br>B151                                                                | 14'-0"<br>B155<br>B156<br>B157<br>B158<br>B159<br>B160<br>B161<br>B162        | BIGG<br>BIG7<br>BIG8<br>BIG9<br>BI70<br>BI70<br>BI71<br>BI72<br>BI73         | BI77<br>BI77<br>BI78<br>BI80<br>BI80<br>BI81<br>BI81<br>BI81<br>BI81 |
|               |           | 14'-0"<br>B133<br>B134<br>B135<br>B136<br>B137<br>B138<br>B139<br>B140<br>B141 | 14'-0"         B144         B145         B145         B146         B147         B148         B149         B149         B150         B151         B152 | 14-0"<br>B155<br>B156<br>B157<br>B158<br>B159<br>B160<br>B160<br>B162<br>B163 | B/66<br>BI67<br>BI68<br>BI69<br>BI70<br>BI70<br>BI71<br>BI72<br>BI73<br>BI74 | BITT<br>BITT<br>BITT<br>BITT<br>BITT<br>BITT<br>BITT<br>BITT         |

PRESTRESSED CONCRETE BEAM PLAN

|     | BEL-40-23,38 FHWA STATE PROJECT                   |                             |                     |                               |                                   |                                                     |
|-----|---------------------------------------------------|-----------------------------|---------------------|-------------------------------|-----------------------------------|-----------------------------------------------------|
|     | 14'-0"                                            | 14-0"                       | REGIO               | OHIO                          | PROJECT                           | $\left(\begin{array}{c} 1 \\ 74 \end{array}\right)$ |
|     |                                                   |                             |                     | 4                             |                                   |                                                     |
| 6   | B67                                               | B78                         |                     |                               | 14-0"<br>B89                      |                                                     |
| 7   | BGB                                               | B79                         |                     |                               | B90                               |                                                     |
| з   | B69                                               | B80                         |                     |                               | B91                               | <del>.</del>                                        |
| 7   | B 70                                              | B81                         |                     |                               | B92                               |                                                     |
| 0   | B 71                                              | B92                         |                     |                               | B9 <b>3</b>                       | Щ                                                   |
|     | B 72                                              | BB3                         |                     |                               | B94                               |                                                     |
| s   | B73                                               | B84                         |                     |                               | B95                               |                                                     |
| 3   | B 74                                              | B85                         |                     |                               | B96                               |                                                     |
| 4   | B 75                                              | B86                         |                     |                               | B97                               |                                                     |
| 5   | B 76                                              | B87                         |                     |                               | B98                               |                                                     |
| 6   | B77                                               | B88                         |                     |                               | B99                               | Match line A                                        |
|     | C Precast tra                                     | nsverse beams<              |                     |                               |                                   |                                                     |
|     |                                                   |                             |                     |                               |                                   |                                                     |
|     | 14-0"                                             |                             |                     |                               | •                                 |                                                     |
| 77  | B188                                              |                             |                     |                               |                                   |                                                     |
| 78  | B189                                              | 4                           |                     |                               | •                                 |                                                     |
| 7.9 | B190                                              |                             |                     | •                             | •<br>• •                          |                                                     |
| 80  | B191                                              |                             |                     |                               | <br>                              |                                                     |
| 81  | B192                                              |                             |                     |                               | NOTES:                            |                                                     |
| 82  | B193                                              |                             |                     |                               | am detail                         | 's see sheet                                        |
| 83  | B194                                              |                             | or:                 |                               | structure c                       | details see<br>18/72 and                            |
| 84  | B195                                              |                             |                     |                               | 72 +hru 3<br>50/72                | bjiz ona                                            |
| 85  | B196                                              |                             |                     | Tansve<br>+ 14/72             |                                   | plan see                                            |
| 86  | B197                                              | Г                           |                     | ~ 7                           | STATE OF OHI<br>PARTMENT OF TRANS | O 18 72                                             |
| 87  | B198                                              | ZMatch line B;<br>see sheet |                     | BUREAU                        | OF BRIDGES AND ST                 | LAYOUT                                              |
|     | NOTES.<br>Box beams shall i<br>same identificatio | :(conit)<br>have the        | E<br>O              | 3 <i>RIDG</i><br>VER 7<br>AND | E NO. BE<br>HE B.¢O.<br>WHEELIN   | L-40-2338<br>RAILROAD<br>G CREEK                    |
| C   | on the shop drawin<br>the project plans           | ac oc on                    | esigned<br>I. A. M. | DRAWN<br>J.A.M.               | TRACED CHECKED                    | NJJ 12-1-80                                         |

C PIER #4 ARCH SP ARCH SPAN"B"= 132-6" MICROFILMED 14-0" 14-3" 20'-3" JAN 221986 Match line B; see sheet B199 BZK BZZI 18 72 B200 BZII B222 B201 BZI B223 BZK B202 B224 CE Bridge ! B203 B214 B225 B204 B215 B226 ie. マ B205 B214 B227 B206 B217 B22B B207 BZIB B229 B208 B219 B230 B209 ·B224 B231 -----E Expansion Spint, 3-0" and Transverse Q Pier #5 beam-ARCI 20'-3" 14'-0" 14'-0" -----Match B309 B320 B331 line C  $\sim$ B310 B321 B332 · B311 B322 B333 B312 B323 B334 B3/3 B324 B335 CE Bridge B314 B325 B336 B315 B326 B337 B316 B327 B338 B317 *B*328 B339 B318 B329 B340 ·B319 B330 B341 3-0" ARCH SPAN D MODELED

~

 $\bigcirc$ 

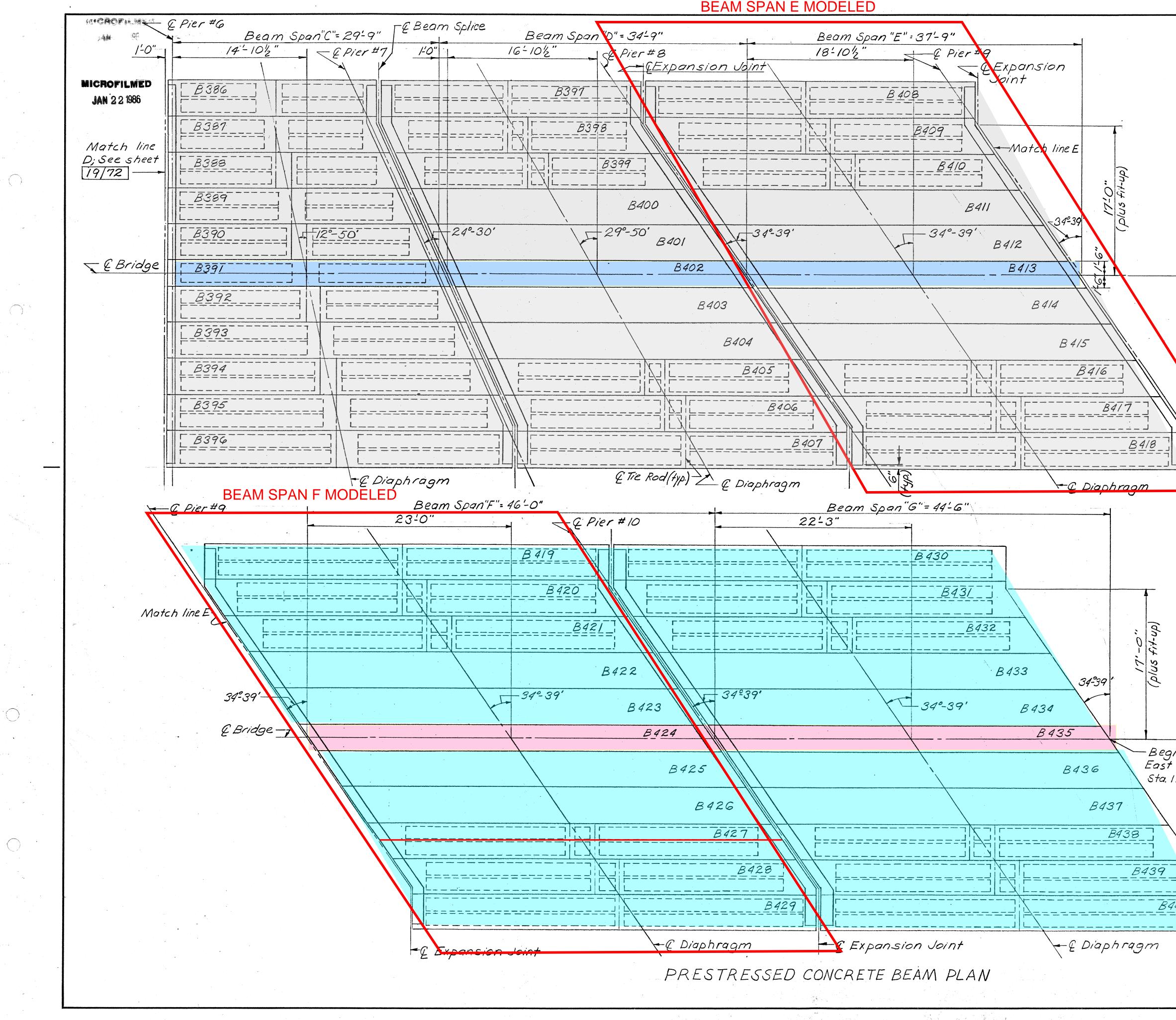
. .

•

 $\bigcirc$ 

~

 $\bigcirc$ 


6 **•** 

The second s

| SP/   | N C MODELED      |                            |                     | 1                 |                            |                   |                                                                                                  | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|-------|------------------|----------------------------|---------------------|-------------------|----------------------------|-------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| JI /  |                  |                            | H SPAN "C" = 118'-6 |                   |                            |                   |                                                                                                  | FHWA<br>REGION STATE                  | PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20          |
|       | 14'-0"           | 14'-0"                     | 14'-0"              | 14'-0"            | 14'-0"                     | 14-0"             | 14'-3"                                                                                           | 5 OHIO                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B232             | B243                       | B254                | B265              | B276                       | B 287             | B298                                                                                             |                                       | :L-40-23.38<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|       | B233             | B244                       | B255                | B266              | B277                       | B288              | B299                                                                                             | Q PI                                  | er # 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|       | B234             | B245                       | B256                | B 2G 7            | B278                       | B289              | B300                                                                                             |                                       | Ц<br>Ф                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|       | B235             | B246                       | B257                | B268              | B279                       | B 2.90            | B30/                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B236<br>B237     | B247<br>B248               | B258<br>B259        | B269              | B280                       | B29/              | B302                                                                                             |                                       | Щ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|       |                  | D240                       |                     | B2.70             | B281                       | B292              | B303                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B238             | B249                       | B260                | B271              | B282                       | B293              | B304                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B239             | B250                       | B261                | B272              | B283                       | B294              | B305                                                                                             |                                       | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|       | B240             | B251                       | 8262                | B273              | B284                       | B295              | B306                                                                                             | c 4 110                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B241             | B252                       | B263                | B274              | B285                       | B296              | B307                                                                                             | -Mat                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B242             | B253                       | B264                | B275              | B286                       | B297              | B308                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| C I I | SPAN "D" = 103-0 | c″/                        | 1 2 0 C             | E Pier #6         | E Precast                  | Trans. Beam(typ.) | <u> <u> <u> </u> <u> </u></u></u> | ion 3:0"<br>Beam                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | 14'-0"           | o<br>14'-0"                | 14'-0"              | 15-3"             | 1-0"                       |                   |                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       |                  |                            |                     |                   |                            |                   | ł                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B342             | B353                       | B364                | B375              | Match line<br>D; see sheet |                   |                                                                                                  | •<br>•                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B343             | B 354                      | B365                | B376              | 20/72                      |                   |                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B344             | B355                       | B366                | B377              |                            |                   |                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B345             | B356                       | B367                | B378              |                            |                   |                                                                                                  |                                       | a construction of the second se |             |
|       | B 346<br>B 347   | <u>B357</u><br><u>B358</u> | B368<br>B369        | B379<br>B380      |                            |                   | •                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B348             | B359                       | B370                | B381              |                            |                   |                                                                                                  | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|       | B349             | B360                       | B371                | B 382             |                            |                   |                                                                                                  |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|       | B350             | B361                       | B372                | B383              |                            |                   | F                                                                                                | FOR notes see                         | e sheet 18/72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|       | B351             | B362                       | B373                | B384              |                            |                   |                                                                                                  | DEPARTMEN                             | ATE OF OHIO<br>T. OF TRANSPORTATION<br>GES AND STRUCTURAL DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 72<br>gn |
|       | B352             | B363                       | B374                | B385              |                            |                   |                                                                                                  | BOX BE.                               | AM LAYO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UT          |
|       |                  |                            |                     | E Expansion Joint |                            |                   |                                                                                                  | BRIDGE N                              | 0. BEL-40-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 338         |

PRESTRESSED CONCRETE BEAM PLAN

|                    | 1070              | 25 Se    | e 5/1 | eer <u>[18]</u>                      | <u> </u>              |        |
|--------------------|-------------------|----------|-------|--------------------------------------|-----------------------|--------|
|                    |                   | DEPARTME |       | OHIO<br>ANSPORTATION<br>STRUCTURAL D | 19<br>Design          | 72     |
| E                  | зох               | BE       | AM    | LAY                                  | OUT                   | Τ.     |
|                    |                   |          |       | EL-40-<br>0. RAIL                    |                       |        |
|                    | AND               | WH       | EELI  | NG CR                                | EEK                   |        |
| designed<br>J.A.M. | drawn<br>J. A. M. |          |       | reviewed<br>WJJ 12                   | DATE<br>- <i>1-80</i> | REVISE |



Ċ



|                        | · .        |         | FHWA<br>REGION STATE<br>5 OHIO | PROJECT                                                      |                    |
|------------------------|------------|---------|--------------------------------|--------------------------------------------------------------|--------------------|
|                        |            |         |                                | )-23,38                                                      |                    |
| $\varphi$              | •          |         |                                |                                                              |                    |
|                        |            |         |                                |                                                              |                    |
| Щ                      |            |         |                                |                                                              |                    |
|                        |            |         |                                |                                                              |                    |
|                        |            |         |                                |                                                              |                    |
|                        | <b>,</b> . |         | •                              |                                                              |                    |
| :.c                    |            |         |                                |                                                              |                    |
| 17-0<br>plus fit-0     |            |         |                                |                                                              | · · ·              |
| e<br>e                 |            |         |                                |                                                              | •                  |
|                        |            |         |                                |                                                              |                    |
|                        |            | •       |                                |                                                              |                    |
|                        | •          |         |                                | 3                                                            |                    |
|                        |            |         |                                |                                                              |                    |
|                        |            |         |                                |                                                              |                    |
|                        |            | -<br>-  |                                |                                                              |                    |
|                        |            |         |                                |                                                              |                    |
|                        |            |         |                                | •<br>•                                                       |                    |
|                        |            |         |                                |                                                              |                    |
| App. Slob,<br>but ment |            |         | •                              |                                                              |                    |
| 1+23.25                |            |         |                                |                                                              |                    |
| 17:0"                  |            |         | For notes se                   | pe choot 187                                                 | 72                 |
| 10/                    | • .        | · · · · |                                | !                                                            |                    |
|                        |            |         | DEPAR<br>Bureau of             | STATE OF OHIO<br>TMENT OF TRANSPORTA<br>BRIDGES AND STRUCTUR | TION<br>RAL DESIGN |
| 0                      | •          |         |                                | EAM LA                                                       | 1                  |
| •                      | •          |         | OVER TH                        | NO. BEL-4<br>E B.¢O. RA<br>HEELING (                         | 11LRCAD            |
|                        |            |         |                                | ED CHECKED REVIEW                                            | ED water a         |

## **SLAB BEAM B126 LOAD RATING MEMO**

| PROJECT : BEL-40-23.38 over | Wheeling Creek (SFN 070159 | 9)                  | Michael Baker    |
|-----------------------------|----------------------------|---------------------|------------------|
| TASK : As-Inspected Rating  |                            | PROJECT NO : 195987 |                  |
| SUBJECT : Slab Beams B122-E | 3132                       |                     |                  |
| CALCULATED BY : ETB         | DATE : 8/24/2023           | CHECKED BY : CDC    | DATE : 8/25/2027 |

#### **DESCRIPTION:**

LRFR (and LFR where necessary) Load Rating of Bridge BEL-40-23.38 Slab Beams B122 - B132 and supporting documentation. For the purpose of identifying the slab beams, their numbering designation, as provided in the 1980 rehab plans, is used throughout the calculations.

#### **REFERENCES:**

| Title                                                               |                                                                     |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| AASHTO LRFD I                                                       | AASHTO LRFD Design Specifications, 9th Edition, 2020                |  |  |
| AASHTO Manua                                                        | AASHTO Manual for Bridge Evaluation, 3rd Edition, 2018              |  |  |
| ODOT Bridge D                                                       | ODOT Bridge Design Manual 2020 Edition, July 2023                   |  |  |
| "D11-22815-BE                                                       | "D11-22815-BEL-00040-23.38-2010-00.pdf" (2010 rehabilitation plans) |  |  |
| "BEL 40 2338 1981 Box Beam Install.pdf" (1980 rehabilitation plans) |                                                                     |  |  |
| PSBD-1-71                                                           |                                                                     |  |  |

#### **CRITICAL FIND**

The composite slab beam B126, which was originally cast with 10 prestressing strands, currently has 8 broken strands and the remaining two strands are exposed per the July 2023 inspection.

| Slab Beam B127 | Alis                                        |  |
|----------------|---------------------------------------------|--|
| 1-3"           | 2 exposed strands;<br>all others are broken |  |
| 2 A            | Slab Beam B126                              |  |
| East Face of F | loorbeam 10, Adjacent to Pier 3             |  |

| PROJECT : BEL-40-23.38 over | Wheeling Creek (SFN 070159 | 9)                 | Michael Baker    |
|-----------------------------|----------------------------|--------------------|------------------|
| TASK : As-Inspected Rating  |                            | PROJECT NO: 195987 |                  |
| SUBJECT : Slab Beams B122-B | 132                        |                    | INTERNATIONAL    |
| CALCULATED BY : ETB         | DATE : 8/24/2023           | CHECKED BY : CDC   | DATE : 8/25/2027 |

#### ASSUMPTIONS

-Rating is initially performed using Load and Resistance Factor Rating (LRFR) to conform to current ODOT Rating Practices. If any legal vehicle's rating factor is found to be less than 1.0, the rating is then re-calculated using Load Factor Rating (LFR) to determine if the member can avoid posting.

-Based on discussion with Baker load rating staff, and ODOT precedent, the exposed (but unbroken) strands were analyzed as debonded strands and the broken strands were deducted from the beam. To calculate a debonding length, 36" was added to the exposed strand length to estimate the loss of prestressing force in those exposed strands.

-The slab beams are modeled as composite with the reinforced concrete deck as per the 1980 rehabilitation plans. These plans show a deck thickness varying between 5" and 5.75". Additionally, the 2010 rehab plans show a removal of 1/2" of deck concrete prior to placement of the overlay. The deck thickness used for composite action was calculated as: 5.375" - 1/2" = 4.875"

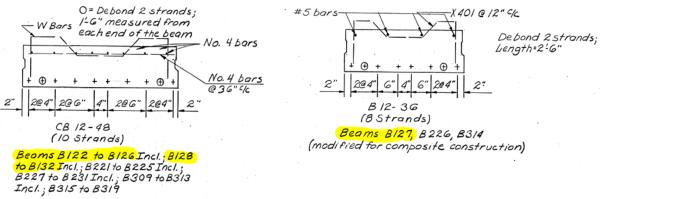
-It is a typical ODOT practice to code concrete type overlays as DC2 instead of DW. The 2010 rehab plans show a microsilica overlay thickness of 1.25". Therefore this overlay is applied as a DC2 load.

-For any slab beam information not shown in the plans, ODOT Standard Drawing PSBD-1-71 was consulted and used per the reference to this standard drawing in the "Box Beam Details" sheet in the 1980 rehab plans.

-It is typical practice to include a 5% "Additional Self Load" factor in the BrR model in the "Member Alternative Description" to account for unknowns. However, this conservatism has been removed to obtain a more accurate load rating.

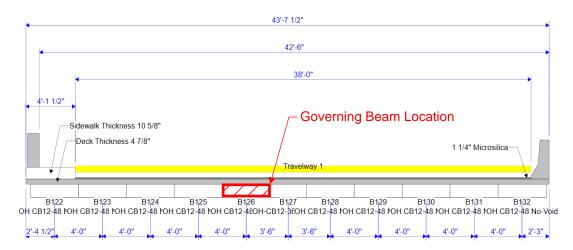
-All dead loads are calculated by BrR except for the sidewalk weight, which is shown below.

-Typically, the DC2 dead loads are distributed evenly to all beams. Since the beams with the worst strand deterioration are in the center of the cross section, furthest from the sidewalks and parapets, the Stage 2 DL Distribution function in BrR has been changed from "Evenly to all girders" to "By tributary area" to remove that DC2 load from the center beams with the most deterioration.


#### **DEAD LOAD CALCULATIONS**

#### Sidewalk Parapet Weight

| Concrete density:  | 150.00 | nof    |
|--------------------|--------|--------|
| concrete density.  | 120.00 | pcf    |
| Total Height:      | 42.00  | in     |
| Total Width:       | 12.00  | in     |
| Area of concrete:  | 504.00 | in     |
| Weight of parapet: | 0.525  | kip/ft |


| PROJECT : BEL-40-23.38 over | Wheeling Creek (SFN 070159 | 9)                  | Michael Baker    |
|-----------------------------|----------------------------|---------------------|------------------|
| TASK : As-Inspected Rating  |                            | PROJECT NO : 195987 |                  |
| SUBJECT : Slab Beams B122-B | 132                        |                     | INTERNATIONAL    |
| CALCULATED BY : ETB         | DATE : 8/24/2023           | CHECKED BY : CDC    | DATE : 8/25/2027 |

#### **ORIGINAL SLAB BEAM PRESTRESSING PATTERNS**



#### STRAND DETERIORATION BY SLAB BEAM

| Beam | Slab Beams B122-B132 Strand Deterioration (Observed at West End of Slab Beam)               |
|------|---------------------------------------------------------------------------------------------|
| B122 | -                                                                                           |
| B123 | 1 exterior strand broken (removed)                                                          |
| B124 | 1 exterior strand exposed (debonded for 3 ft + 36")                                         |
| B125 | -                                                                                           |
| B126 | 2 interior strands exposed (debonded for 3 ft + 36") & remaining 8 strands broken (removed) |
| B127 | 2 exterior strands broken (removed) and one interior strand broken (removed)                |
| B128 | -                                                                                           |
| B129 | -                                                                                           |
| B130 | -                                                                                           |
| B131 | -                                                                                           |
| B132 | -                                                                                           |



| PROJECT : BEL-40-23.38 over Wheeling Creek (SFN 0701599) |                  |                     | Michael Baker    |
|----------------------------------------------------------|------------------|---------------------|------------------|
| TASK : As-Inspected Rating                               |                  | PROJECT NO : 195987 |                  |
| SUBJECT : Slab Beams B122-I                              | 8132             |                     | INTERNATIONAL    |
| CALCULATED BY : ETB                                      | DATE : 8/24/2023 | CHECKED BY : CDC    | DATE : 8/25/2027 |
|                                                          |                  |                     |                  |

#### AS-INSPECTED RATING FACTORS BY BEAM

-LRFR rating factors are provided for each beam (grouped where appropriate). If any of a beam's legal load rating factors are below 1.0, an LRF rating is also provided.

| B122      | LRFR RF | LFR RF |
|-----------|---------|--------|
| HL-93 INV | 18.999  | -      |
| HL-93 OPR | 24.628  | -      |
| 2F1       | 55.269  | -      |
| 3F1       | 41.737  | -      |
| 5C1       | 41.737  | -      |
| RPL 60T   | 36.729  | -      |
| RPL 65T   | 34.031  | -      |
| SU4       | 35.869  | -      |
| SU5       | 34.575  | -      |
| SU6       | 33.370  | -      |
| SU7       | 33.370  | -      |
| Туре 3    | 41.737  | -      |
| Type 3-3  | 50.681  | -      |
| Type 3S2  | 45.776  | -      |
| EV2       | 33.549  | -      |
| EV3       | 32.460  | -      |

| B123      | LRFR RF | LFR RF |
|-----------|---------|--------|
| HL-93 INV | 1.230   | -      |
| HL-93 OPR | 1.595   | -      |
| 2F1       | 3.580   | -      |
| 3F1       | 2.703   | -      |
| 5C1       | 2.703   | -      |
| RPL 60T   | 2.394   | -      |
| RPL 65T   | 2.218   | -      |
| SU4       | 2.338   | -      |
| SU5       | 2.254   | -      |
| SU6       | 2.175   | -      |
| SU7       | 2.175   | -      |
| Туре 3    | 2.703   | -      |
| Type 3-3  | 3.282   | -      |
| Type 3S2  | 2.965   | -      |
| EV2       | 2.187   | -      |
| EV3       | 2.102   | -      |

| B124      | LRFR RF | LFR RF |
|-----------|---------|--------|
| HL-93 INV | 1.300   | -      |
| HL-93 OPR | 1.686   | -      |
| 2F1       | 3.783   | -      |
| 3F1       | 2.856   | -      |
| 5C1       | 2.856   | -      |
| RPL 60T   | 2.560   | -      |
| RPL 65T   | 2.372   | -      |
| SU4       | 2.501   | -      |
| SU5       | 2.410   | -      |
| SU6       | 2.326   | -      |
| SU7       | 2.326   | -      |
| Туре 3    | 2.856   | -      |
| Type 3-3  | 3.469   | -      |
| Type 3S2  | 3.133   | -      |
| EV2       | 2.339   | -      |
| EV3       | 2.222   | -      |

| B125, B129-31 | LRFR RF | LFR RF |
|---------------|---------|--------|
| HL-93 INV     | 1.357   | -      |
| HL-93 OPR     | 1.758   | -      |
| 2F1           | 3.946   | -      |
| 3F1           | 2.980   | -      |
| 5C1           | 2.980   | -      |
| RPL 60T       | 2.637   | -      |
| RPL 65T       | 2.443   | -      |
| SU4           | 2.575   | -      |
| SU5           | 2.482   | -      |
| SU6           | 2.395   | -      |
| SU7           | 2.395   | -      |
| Туре 3        | 2.980   | -      |
| Type 3-3      | 3.619   | -      |
| Type 3S2      | 3.269   | -      |
| EV2           | 2.408   | -      |
| EV3           | 2.318   | -      |

| B126      | LRFR RF | LFR RF |
|-----------|---------|--------|
| HL-93 INV | 0.000   | 0.000  |
| HL-93 OPR | 0.000   | 0.096  |
| 2F1       | 0.000   | 0.102  |
| 3F1       | 0.000   | 0.079  |
| 5C1       | 0.000   | 0.079  |
| RPL 60T   | 0.000   | 0.056  |
| RPL 65T   | 0.000   | 0.054  |
| SU4       | 0.000   | 0.071  |
| SU5       | 0.000   | 0.069  |
| SU6       | 0.000   | 0.066  |
| SU7       | 0.000   | 0.066  |
| Type 3    | 0.000   | 0.079  |
| Type 3-3  | 0.000   | 0.096  |
| Type 3S2  | 0.000   | 0.087  |
| EV2       | 0.000   | 0.068  |
| EV3       | 0.000   | 0.051  |

| B127      | LRFR RF | LFR RF |
|-----------|---------|--------|
| HL-93 INV | 0.720   | -      |
| HL-93 OPR | 0.934   | -      |
| 2F1       | 2.096   | -      |
| 3F1       | 1.583   | -      |
| 5C1       | 1.583   | -      |
| RPL 60T   | 1.398   | -      |
| RPL 65T   | 1.295   | -      |
| SU4       | 1.365   | -      |
| SU5       | 1.316   | -      |
| SU6       | 1.270   | -      |
| SU7       | 1.270   | -      |
| Туре 3    | 1.583   | -      |
| Type 3-3  | 1.922   | -      |
| Type 3S2  | 1.736   | -      |
| EV2       | 1.277   | -      |
| EV3       | 1.231   | -      |

| PROJECT : BEL-40-23.38 over Wheeling Creek (SFN 0701599) |                  |                    | Michael Baker    |
|----------------------------------------------------------|------------------|--------------------|------------------|
| TASK : As-Inspected Rating                               |                  | PROJECT NO: 195987 |                  |
| SUBJECT : Slab Beams B122-B1                             | 132              |                    | INTERNATIONAL    |
| CALCULATED BY : ETB                                      | DATE : 8/24/2023 | CHECKED BY : CDC   | DATE : 8/25/2027 |

| B128      | LRFR RF | LFR RF |
|-----------|---------|--------|
| HL-93 INV | 1.341   | -      |
| HL-93 OPR | 1.738   | -      |
| 2F1       | 3.900   | -      |
| 3F1       | 2.945   | -      |
| 5C1       | 2.945   | -      |
| RPL 60T   | 2.602   | -      |
| RPL 65T   | 2.411   | -      |
| SU4       | 2.541   | -      |
| SU5       | 2.449   | -      |
| SU6       | 2.364   | -      |
| SU7       | 2.364   | -      |
| Туре 3    | 2.945   | -      |
| Type 3-3  | 3.577   | -      |
| Type 3S2  | 3.231   | -      |
| EV2       | 2.376   | -      |
| EV3       | 2.291   | -      |

| B132      | LRFR RF | LFR RF |
|-----------|---------|--------|
| HL-93 INV | 1.876   | -      |
| HL-93 OPR | 2.432   | -      |
| 2F1       | 5.459   | -      |
| 3F1       | 4.122   | -      |
| 5C1       | 4.122   | -      |
| RPL 60T   | 3.639   | -      |
| RPL 65T   | 3.372   | -      |
| SU4       | 3.554   | -      |
| SU5       | 3.426   | -      |
| SU6       | 3.306   | -      |
| SU7       | 3.306   | -      |
| Type 3    | 4.122   | -      |
| Type 3-3  | 5.006   | -      |
| Type 3S2  | 4.521   | -      |
| EV2       | 3.324   | -      |
| EV3       | 2.996   | -      |

#### CONCLUSIONS AND RECOMMENDATIONS

-Beam B126's legal ratings for both LRFR and LFR are well below 1.0. It is recommended that a lane closure be implemented to keep traffic off B126. -The controlling ratings for Beam B126 are the result of implenting best practices and recommendations from the ODOT prestressed box beam tutorials with respect to damaged strands. It is recognized that there is some conservatism built into these methods which, if removed, would increase the rating factors. Additionally, there are contributions to the capacity of this system that are not easily quantified which would also increase the rating factors. The reinforced concrete deck and tie rods provide a level of redundancy as well. Therefore, this load rating is the product of appropriate procedures but it is acknowledged that the actual capacity of the slab beam is greater than what the rating factors indicate.

# PIER 5 FLOORBEAM CANTILEVER LOAD RATING MEMO

| PROJECT : BEL-40-23.37      |                |                     | Michael Baker |
|-----------------------------|----------------|---------------------|---------------|
| TASK : Rating               |                | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                |                     | INTERNATIONAL |
|                             | DATE 10/2/2022 | CUECKED DX FTP      | DATE          |

CALCULATED BY : JCC

DATE : 10/3/2023

CHECKED BY: ETB

DATE : --

GENERAL

#### **DESCRIPTION:**

Documentation of pier cap check with loss of concrete and exposed reinforcement.

#### **SUMMARY**

| Vehicle   | Туре   | RF    |
|-----------|--------|-------|
| HL-93 INV | Design | 0.926 |
| HL-93 OPR | Design | 1.200 |
| 2F1       | Legal  | 2.717 |
| 3F1       | Legal  | 1.821 |
| 4F1       | Legal  | 1.620 |
| 5C1       | Legal  | 1.913 |
| Type3     | Legal  | 1.945 |
| Type3S2   | Legal  | 2.366 |
| Type3-3   | Legal  | 2.089 |
| SU4       | Legal  | 1.639 |
| SU5       | Legal  | 1.538 |
| SU6       | Legal  | 1.390 |
| SU7       | Legal  | 1.287 |
| EV2       | Legal  | 1.582 |
| EV3       | Permit | 1.458 |
| RPL 60T   | Permit | 1.363 |
| RPL 65T   | Permit | 1.253 |

Traffic restrictions at the pier cap is not currently required.

The controlling rating is from the vertical ties at the exposed stirrups. Ignoring more stirrup reinforcement may result in a load posting rating.

## **REFERENCES:**

(1) AASHTO LRFD 9th Ed. 2020

(2) AASHTO MBE 3rd Ed. 2018

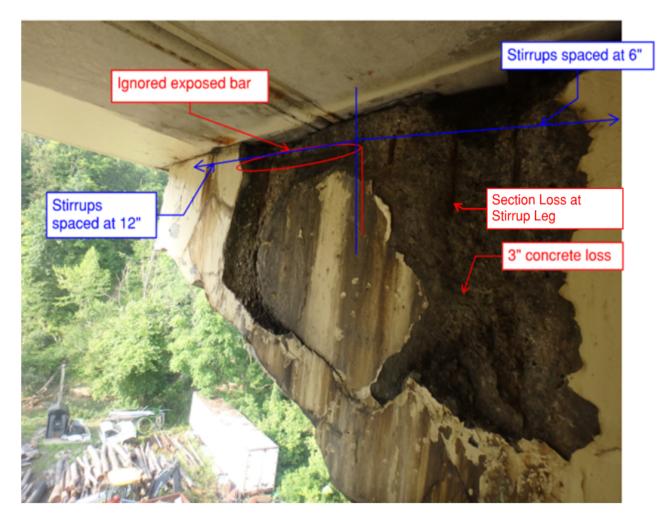
(3) ODOT BDM 2020 Ed. July 2023 Release

(4) FHWA-NHI-17-071 Strut-and-Tie Modeling(STM) for Concrete Structures

(5) ACI 318-14 Building Code Requirements for Structural Concrete

#### SUPPORTING FILES

Overall ModelBelmont 40 Open Spandrel Arch Bridge Model 082923.mcbStrut and Tie ModelCantilever STM.mcbSTM Supporting CADScaling Sketches.dgn


| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

### GENERAL

#### **GENERAL PROCEDURE**

The pier cap at pier 5, at the south end was found to have significant amounts of concrete spalled and exposed reinforcement during the recent inspection by Michael Baker International.

The below photo includes the noted section loss.



Discussion with ODOT District 11 staff indicate that this has progressed since their last inspection.

| Cap Rating  | 2023 10 02 JCC.xlsm |  |
|-------------|---------------------|--|
| cup nuting_ | _2023 10 02 300:815 |  |

#### **CURRENT RATINGS**

This calculation will calculate rating factors given the current state of the structure by checking:

1. Check of the cantilever using beam capacity calculations.

2. Strut-and-Tie check of this region.

3. Combined shear and torsion check of this region.

As noted in AASHTO, beam theory is not accurate in regions close to supports, but was likely how this pier cap was design. It is included for comparison with the likely design capacity and as a check of the strut-and-tie method.

These ratings are done using output from a FEM model for both Design and Legal vehicles. While the ODOT BDM was used, additional conversations with both District 11 and Central Office staff has been used to fully define elements of this complex structure not explicitly defined in the BDM.

Rating Factors < 1.00 for legal vehicles would indicate restrictions on traffic including lane closures and load posting may be warranted.

Where the bridge is shown to be adequate for design loading, no rating factors were calculated.

#### **SENSITIVITY**

The most sensitive part of the cap are the stirrups that are currently exposed with some section loss.

As noted in the summary, the governing ratings come from under the interior beam bearing. Currently loss of 0.5 stirrup legs are accounted for, but additional section loss would very likely result in a posting rating.

#### ACCOUNTING FOR SECTION LOSS

The following were done to account for section loss in these calculations.

1. Assume crack control reinforcement is not provided for per AASHTO 5.8.2.6-1 which reduces concrete efficiency in the Strut-and-Tie modeling.

2. The exposed top bar was ignored in all checks.

3. 3" of width was ignored for the full height of the cap beam.

4. One half of a stirrup was ignored for strut and tie modeling. A full stirrup was conservatively discounted for the B-beam checks

bw =

27.00

in

5. Development length of reinforcement was increased due to lack of confinement from exposed stirrups and concrete section loss.

6. A condition factor of 0.85 was used based on MBE 6A.4.2.3-1.

7. Confinement modification factor as defined in AASHTO 5.6.5 is not increased above 1.00 under the bearings.



INTERNATIONAL

DATE : --

PROJECT : BEL-40-23.37 TASK : Rating

SUBJECT : Pier 5 Cap Rating

CALCULATED BY : JCC DA

DATE : 10/3/2023

CHECKED BY : ETB

**PROJECT NO: 195987** 

GENERAL

| PROJECT : BEL-40-23.37      | Michael Baker    |                     |               |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

## GENERAL

### MONITORING

While this calculation calculates rating factors for this pier cap based on recent inspection findings, the structure could continue to rapidly deteriorate.

Michael Baker International recommends a visual inspection of this beam cap at an interval of 3 months.

While the list below is not exhaustive, any of the following would be reason to update this calculation:

- 1. Additional spalling of the pier cap
- 2. Additional exposed reinforcement or section loss of the exposed reinforcement.
- 3. Widening of the flexure crack noted below.



| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

### STRUT-AND-TIE MODELING

#### CRACK CONTROL REINFORCEMENT

-Because of the heavy spalling and exposed reinforcement, the cap concrete is not considered to have crack control reinforcement per AASHTO 5.8.2.6.

#### Concrete efficiency factor

v =

0.45

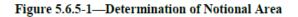
AASHTO 5.8.2.5.3a-1

I

GENERAL

- v = concrete efficiency factor:
  - 0.45 for structures that do not contain crack control reinforcement as specified in Article 5.8.2.6
  - as shown in Table 5.8.2.5.3a-1 for structures with crack control reinforcement as specified in Article 5.8.2.6

#### **CENTROID OF REINFORCEMENT**


-This is used to determine both the truss node locations and back face height of CCT nodes.

| Top Reinforcement                  |      |                 |                                 |               | <u> </u> | Beam                                |
|------------------------------------|------|-----------------|---------------------------------|---------------|----------|-------------------------------------|
| Top cover                          |      | 2 in            |                                 | •             |          | BBOI                                |
| Stirrup diameter                   |      | 0.625 in        | Elevation vie                   | ws drawn here |          | / /                                 |
| Cross slope adjustment at ce       | nter | 1.05 in         | -<br>Ignc                       | ored bar      |          | -l"Clear                            |
| Bars                               | Ce   | enter to Face ( | in] <i>O1</i>                   | <u>8</u> 802  | مأفرا با |                                     |
| Top Row                            | 3    | 4.175 in        | 601                             |               |          | B601                                |
| Bottom Row                         | 2    | 6.175 in        | 007                             | B602          |          | ·                                   |
| Centroid                           |      | 4.975 in        | 3505                            | B603          | <b>h</b> | B503                                |
| Bottom Reinforcement<br>Bottom Row |      | 3.3125 in       | 1 <u>103</u><br>1"Cleor<br>1101 |               | 2"       | 2" (+yp)                            |
|                                    |      |                 | pottom                          |               | <u> </u> | <u>2" (</u> +yp.)<br>top and bottom |
|                                    |      |                 | •                               | a             | SECTION  | NB-B                                |

| PROJECT : BEL-40-23.37      | Michael Baker    |                     |               |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |
|                             |                  |                     |               |

Because the soundness of concrete around the bearings is deteriorated, the bearing confinement modification factor is assumed to be unity under bearings.



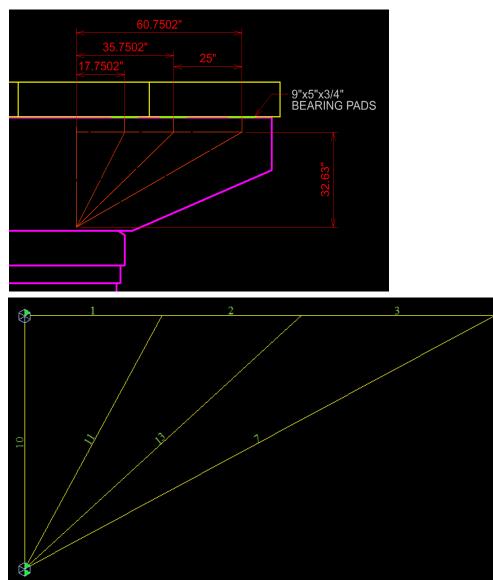


Nodes 7 & 8 are smeared nodes and do not need to be checked as described in FHWA and AASHTO C5.8.2.2.

GENERAL

| PROJECT : BEL-40-23.37      | Michael Baker    |                  |               |
|-----------------------------|------------------|------------------|---------------|
| TASK : Rating               |                  |                  |               |
| SUBJECT : Pier 5 Cap Rating |                  |                  | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB | DATE :        |

# GENERAL


## MODELING

A model by others was previously completed of the full bridge. Reactions at the beam ends loading the cantilevered portion of this beam cap were used to load a strut and tie model.

The strut-and-tie model was created using the centroid of reinforcement calculated above and additional nodes at the bearings under each bearing.

| Total Beam Depth               | d <sub>beam</sub> =  | 38.75 in |
|--------------------------------|----------------------|----------|
| Centroid of Top Bar Area       | y <sub>top</sub> =   | 4.975 in |
| 1/2 Depth of Compression Block | a/2 =                | 1.147 in |
| Depth of Truss                 | d <sub>truss</sub> = | 32.63 in |

(calculated in Beam-Full Depth Tab)



| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |
|                             |                  |                     |               |

## **BEAM CHECKS**

-Beam checks were performed at the face of support and at the first interior beam bearing. -Beam analysis shows that the critical points in the cap have adequate shear, moment, and torsional strength for STR I loading. -Because this is a higher loading than Legal Posting loads, no rating factors were generated.



GENERAL

| PROJECT : BEL-40-23.37            |                                |                      | Michael Baker           |
|-----------------------------------|--------------------------------|----------------------|-------------------------|
| TASK : Rating                     |                                | PROJECT NO : 195987  |                         |
| SUBJECT : Pier 5 Cap Rating       |                                |                      | INTERNATIONAL           |
| CALCULATED BY : JCC               | DATE : 10/3/2023               | CHECKED BY : ETB     | DATE :                  |
|                                   |                                |                      | DEVELOPMEN              |
| DESCRIPTION:                      |                                |                      |                         |
| Calculate development lengths f   | or reinforcement in the pier c | ap.                  |                         |
| MATERIALS                         |                                |                      |                         |
|                                   |                                |                      |                         |
| Concrete strength                 |                                | f'c = <b>4.50</b>    | ksi                     |
| Reinforcement yield stress        |                                | fy = 60.00           | ksi                     |
| TOP HOOKED BARS - B801            |                                |                      |                         |
| Bar size                          |                                | # 8                  |                         |
| Bar diameter                      |                                | db = 1.0             | 00 in                   |
| Bar area                          |                                | Ab = 0.7             | 79 in^2                 |
| 90 degree standard hook length    |                                | lhook = 12*db = 1    | .2 in AASHTO 5.10.2.    |
| Bar hook is 13", so hook is adequ | uate.                          |                      |                         |
| Hook development length           |                                | lhb = 17.9           | 01 in AASHTO 5.10.8.2.4 |
| Normal weight concrete            |                                | Lam = 1.00           |                         |
| Cap bars are not epoxy coated     |                                | Lam.cw = <b>1.00</b> |                         |
| No confinement due to loss of co  | over                           | Lam.rc = 1.00        |                         |
| Assume need full reinforcement    |                                | Lam.er = 1.00        |                         |
| Development length                |                                | ldh = 18.0           | NO in                   |

|                            | Michael Baker |
|----------------------------|---------------|
| PROJECT NO : 195987        |               |
|                            | INTERNATIONAL |
| 10/3/2023 CHECKED BY : ETB | DATE :        |
| : 2                        |               |

#### 5.10.8.2.4a—Basic Hook Development Length

The modified development length,  $\ell_{dh}$ , in in., for deformed bars in tension terminating in a standard hook specified in Article 5.10.2.1 shall be determined as the basic development length of standard hook in tension,  $\ell_{hb}$ , adjusted by the applicable modification factors specified in Article 5.10.8.2.4b, but shall not be taken less than the greater of the following:

- 8.0 bar diameters; and
- 6.0 in.

The modified development length,  $\ell_{dh}$ , of a standard hook in tension shall be taken as:

$$\ell_{dh} = \ell_{hb} \times \left( \frac{\lambda_{rc} \lambda_{cw} \lambda_{er}}{\lambda} \right)$$
(5.10.8.2.4a-1)

in which:

$$\ell_{hb} = \frac{38.0d_b}{60.0} \left( \frac{f_y}{\sqrt{f_c'}} \right)$$
(5.10.8.2.4a-2)

where:

$$\ell_{hb}$$
 = basic development length (in.)

 $\lambda_{rc}$  = reinforcement confinement factor

 $\lambda_{cw} = \text{coating factor}$ 

- $\lambda_{er}$  = excess reinforcement factor
- λ = concrete density modification factor as specified in Article 5.4.2.8

C5.10.8.2.4a

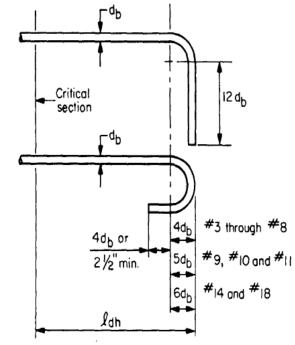



Figure C5.10.8.2.4a-1—Hooked Bar Details for Development of Standard Hooks (ACI Committee 318 2011)

DEVELOPMENT

| Michael Bakel |  |
|---------------|--|
| Michael Baker |  |
|               |  |
| -             |  |

#### **STRAIGHT TOP BAR - B802**

| Bar size                               |          | # 8   |      |
|----------------------------------------|----------|-------|------|
| Bar diameter                           | db =     | 1.00  | in   |
| Bar area                               | Ab =     | 0.79  | in^2 |
| Basic development length               | ldb =    | 67.88 | in   |
| Normal weight concrete                 | Lam =    | 1.00  |      |
| Horizontal reinforcement               | Lam.rl = | 1.30  |      |
| Cap bars are not epoxy coated          | Lam.cf = | 1.00  |      |
| Assume need full reinforcement         | Lam.er = | 1.00  |      |
| Confinement factor (calculated below)  | Lam.rc = | 0.50  |      |
| 5.10.8.2.1a—Tension Development Length | Ld =     | 45.00 | in   |

The modified tension development length,  $\ell_d$ , shall not be less than the basic tension development length,  $\ell_{db}$ , specified herein adjusted by the modification factor or factors specified in Articles 5.10.8.2.1b and 5.10.8.2.1c. The tension development length shall not be less than 12.0 in., except for development of shear reinforcement specified in Article 5.10.8.2.6.

The modified tension development length,  $\ell_d$ , in in. shall be taken as:

$$\ell_{a} = \ell_{a} \times \left( \frac{\lambda_{a} \times \lambda_{a} \times \lambda_{a} \times \lambda_{a}}{\lambda} \right)$$
(5.10.8.2.1a-1)

in which:

$$\ell_{db} = 2.4d_b \frac{f_y}{\sqrt{f_c'}} \tag{5.10.8.2.1a-2}$$

where:

- $\ell_{db}$  = basic development length (in.)
- $\lambda_{rl}$  = reinforcement location factor
- $\lambda_{cf}$  = coating factor
- $\lambda_{rc}$  = reinforcement confinement factor
- $\lambda_{er}$  = excess reinforcement factor
- λ = concrete density modification factor as specified in Article 5.4.2.8
- db = nominal diameter of reinforcing bar or wire (in.)
- fy = specified minimum yield strength of reinforcement (ksi)
- f'c = compressive strength of concrete for use in design (ksi)

DEVELOPMENT

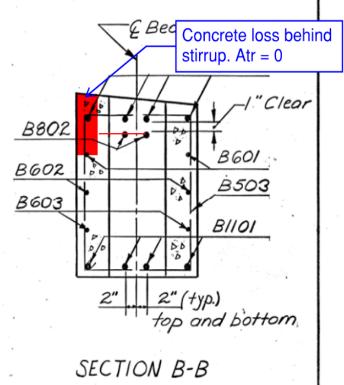
| PROJECT : BEL-40-23.37      |                |                     | Michael Baker |
|-----------------------------|----------------|---------------------|---------------|
| TASK : Rating               |                | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                |                     | INTERNATIONAL |
|                             | DATE 10/2/2022 |                     | DATE          |

DATE: 10/3/2023

CHECKED BY : EIB

DATE : --

Because stirrups are exposed, assume transverse reinforcement


A vertical assumed crack would still have transverse reinforcement

and require a lower development

area is 0.

length.

#### DEVELOPMENT



For reinforcement being developed in the length under consideration,  $\lambda_{rc}$  shall satisfy the following:

 $0.4 \leq \lambda_{rc} \leq 1.0$ (5.10.8.2.1c-1)

in which:

 $\lambda_{rc} = \frac{d_b}{c_b + k_{tr}}$ (5.10.8.2.1c-2)

 $k_{tr} = 40A_{tr}/(sn)$ (5.10.8.2.1c-3)

where:

the smaller of the distance from center of bar Ch= or wire being developed to the nearest concrete surface and one-half the center-to-center spacing of the bars or wires being developed (in.)

transverse reinforcement index k<sub>tr</sub> =

total cross-sectional area of all transverse  $A_{tr} =$ reinforcement which is within the spacing s and which crosses the potential plane of splitting through the reinforcement being developed  $(in.^2)$ 

maximum center-to-center spacing of = transverse reinforcement within  $\ell_d$  (in.)

number of bars or wires developed along plane = of splitting

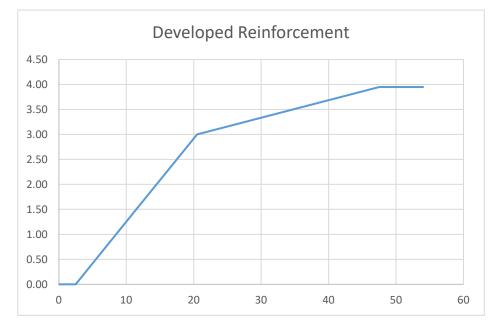
| Atr =           | 0 in^2    |
|-----------------|-----------|
| ktr =           | 0         |
|                 |           |
| db =            | 1.00 in^2 |
| cb =            | 2 in      |
| -Half of B802 s | spacing.  |
|                 |           |

Lam.rc = 0.5

S

n

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |


DEVELOPMENT

# **REINFORCEMENT ALONG CANTILEVER**

Remaining top bars Remaining 2nd layer bars

| <br>3.00 |
|----------|
| 2.00     |

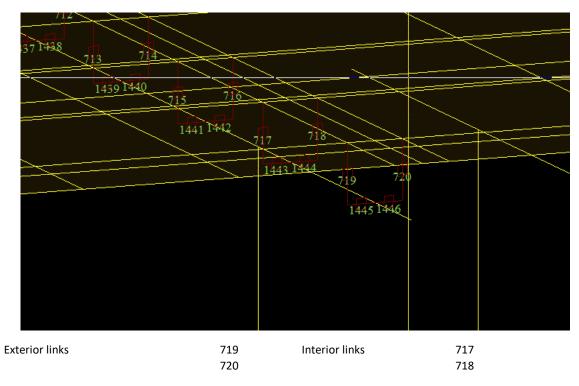
| Location | Distance<br>from Edge<br>in | Description        | Develope<br>d Length<br>in | Develope<br>d Area<br>in^2 |
|----------|-----------------------------|--------------------|----------------------------|----------------------------|
|          |                             |                    |                            |                            |
| 1        | 0                           | Edge               | 0                          | 0.00                       |
| 2        | 2.5                         | Start of Reinforce | ement 0                    | 0.00                       |
| 3        | 11                          | STM Node           | 8.5                        | 1.42                       |
| 4        | 20.5                        | B801 develop       | ed 18                      | 3.00                       |
| 5        | 36                          | STM Node           | 33.5                       | 3.55                       |
| 6        | 47.5                        | B802 develop       | ed 45                      | 3.95                       |
| 7        | 54                          | STM Node           | 51.5                       | 3.95                       |



| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

LOADS

#### **DESCRIPTION:**


Determine loading from two outside beams on the cantilevered pier cap.

### **FULL STRUCTURE MODEL**

Each beam end is modeled with a single link. Forces on cantilever are taken by summing both beam ends supported by this cap beam.

Only 1 of 2 bearings from the interior beam are outside the cap support.

#### Model:



| PROJECT : BEL-40-23.37      | Michael Baker    |                     |               |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

LOADS

### DC & DW LOADS

Taken from construction stages

|        |                        |         |             |              | Shear-y  | Shear-z | Torsion   | Moment-y  | Moment-z  |
|--------|------------------------|---------|-------------|--------------|----------|---------|-----------|-----------|-----------|
| No.    | Stage Step             | Load    | Node        | Axial (kips) | (kips)   | (kips)  | (ft*kips) | (ft*kips) | (ft*kips) |
|        | 717 Columns Hi 001(las | :) Dead | Load 1380   | ) -2.9       | -1.99    | 0.01    | 0         | 0         | 0         |
|        | 717 Columns Hi 001(las | :) Dead | Load 137    | 7 -2.9       | -1.99    | 0.01    | 0         | 0         | 0         |
|        | 718 Columns Hi 001(las | :) Dead | Load 1379   | -4.78        | -1.9     | 0.05    | 0         | 0         | 0         |
|        | 718 Columns Hi 001(las | :) Dead | Load 137    | 5 -4.78      | -1.9     | 0.05    | 0         | 0         | 0         |
|        | 719 Columns Hi 001(las | :) Dead | Load 158    | -13.43       | -4.63    | 0.03    | 0         | 0         | 0         |
|        | 719 Columns Hi 001(las | :) Dead | Load 1583   | -13.43       | -4.63    | 0.03    | 0         | 0         | 0         |
|        | 720 Columns Hi 001(las | :) Dead | Load 158    | -19.42       | -4.69    | 0.06    | 0         | 0         | 0         |
|        | 720 Columns Hi 001(las | :) Dead | Load 1582   | -19.42       | -4.69    | 0.06    | 0         | 0         | 0         |
|        | 717 Columns Hi 001(las | :) DW   | 1380        | -0.49        | -0.03    | 0       | 0         | 0         | 0         |
|        | 717 Columns Hi 001(las | :) DW   | 137         | -0.49        | -0.03    | 0       | 0         | 0         | 0         |
|        | 718 Columns Hi 001(las | :) DW   | 1379        | -0.67        | -0.01    | 0       | 0         | 0         | 0         |
|        | 718 Columns Hi 001(las | :) DW   | 1376        | -0.67        | -0.01    | 0       | 0         | 0         | 0         |
|        | 719 Columns Hi 001(las | :) DW   | 1586        | -0.46        | -0.14    | 0       | 0         | 0         | 0         |
|        | 719 Columns Hi 001(las | :) DW   | 1583        | -0.46        | -0.14    | 0       | 0         | 0         | 0         |
|        | 720 Columns Hi 001(las | :) DW   | 158         | -0.73        | -0.12    | 0       | 0         | 0         | 0         |
|        | 720 Columns Hi 001(las | :) DW   | 1582        | -0.73        | -0.12    | 0       | 0         | 0         | 0         |
|        | 717 Columns Hi 001(las | :) Sumr | nation 1380 | ) -3.39      | -2.02    | 0.01    | 0         | 0         | 0         |
|        | 717 Columns Hi 001(las | :) Sumr | nation 137  | -3.39        | -2.02    | 0.01    | 0         | 0         | 0         |
|        | 718 Columns Hi 001(las | :) Sumr | nation 1379 | -5.44        | -1.91    | 0.06    | 0         | 0         | 0         |
|        | 718 Columns Hi 001(las | :) Sumr | nation 1376 |              | -        | 0.06    | 0         | 0         | 0         |
|        | 719 Columns Hi 001(las | :) Sumr | nation 1586 | -13.89       | -4.77    | 0.03    | 0         | 0         | 0         |
|        | 719 Columns Hi 001(las | :) Sumr | nation 1583 | -13.89       | -4.77    | 0.03    | 0         | 0         | 0         |
|        | 720 Columns Hi 001(las | :) Sumr | nation 158  | -20.15       | -4.8     | 0.07    | 0         | 0         | 0         |
|        | 720 Columns Hi 001(las | :) Sumr | nation 1582 | -20.15       | -4.8     | 0.07    | 0         | 0         | 0         |
|        |                        |         |             |              |          |         |           |           |           |
|        | DC                     | DW      | 0.46.1      |              |          |         | DC        | DW        |           |
| Exteri |                        | 13.43   | 0.46 kip    |              | Interior | 717     |           | 0.49      | •         |
|        | 720                    | 19.42   | 0.73 kip    |              |          | 718     | 4.78      | 0.67      | кір       |

| 720                  | 15.42  | 0.75 KIP  | /18                  | 4.70 |
|----------------------|--------|-----------|----------------------|------|
| Total Exterior       | 32.85  | 1.19 kip  | Total Interior       | 7.68 |
| Exterior/bearing pad | 16.425 | 0.595 kip | Interior/bearing pad | 3.84 |

1.16 kip 0.58 kip

| PROJECT : BEL-40-23.37      |       |                     | Michael Baker  |
|-----------------------------|-------|---------------------|----------------|
| TASK : Rating               |       | PROJECT NO : 195987 |                |
| SUBJECT : Pier 5 Cap Rating |       |                     | IN TERNATIONAL |
|                             | / . / |                     |                |

DATE: 10/3/2023

CHECKED BY : ETB

DATE : --

LOADS

### LIVE LOADS

Static load case taken which maximizes negative bending on the cantilever.

| No. | Load                  | Node | Axial (kips) | Shear-y (kir | Shear-z (kip | Torsion (ft* | Moment-y I | Moment-z (ft*kips) |
|-----|-----------------------|------|--------------|--------------|--------------|--------------|------------|--------------------|
|     | 717 MinHl-93_I_My1115 | 1380 | -28.28       | -4.49        | -0.09        | 0            | 0          | 0                  |
|     | 717 MinHl-93_l_My1115 | 1377 | -28.28       | -4.49        | -0.09        | 0            | 0          | 0                  |
|     | 718 MinHl-93_I_My1115 | 1379 | -6.75        | -4.56        | 0            | 0            | 0          | 0                  |
|     | 718 MinHl-93_I_My1115 | 1376 | -6.75        | -4.56        | 0            | 0            | 0          | 0                  |
|     | 719 MinHl-93_I_My1115 | 1586 | -16.96       | -6.78        | -0.07        | 0            | 0          | 0                  |
|     | 719 MinHl-93_I_My1115 | 1583 | -16.96       | -6.78        | -0.07        | 0            | 0          | 0                  |
|     | 720 MinHl-93_I_My1115 | 1585 | -20.83       | -7.14        | 0.01         | 0            | 0          | 0                  |
|     | 720 MinHl-93_l_My1115 | 1582 | -20.83       | -7.14        | 0.01         | 0            | 0          | 0                  |
|     | 717 Min2F1_I_My1115   | 1380 | -35.96       | -2.43        | -0.04        | 0            | 0          | 0                  |
|     | 717 Min2F1_I_My1115   | 1377 | -35.96       | -2.43        | -0.04        | 0            | 0          | 0                  |
|     | 718 Min2F1_I_My1115   | 1379 | -2.05        | -2.45        | -0.09        | 0            | 0          | 0                  |
|     | 718 Min2F1_I_My1115   | 1376 | -2.05        | -2.45        | -0.09        | 0            | 0          | 0                  |
|     | 719 Min2F1_I_My1115   | 1586 | -5.75        | -2.74        | -0.03        | 0            | 0          | 0                  |
|     | 719 Min2F1_I_My1115   | 1583 | -5.75        | -2.74        | -0.03        | 0            | 0          | 0                  |
|     | 720 Min2F1_I_My1115   | 1585 | -5.45        | -2.83        | -0.09        | 0            | 0          | 0                  |
|     | 720 Min2F1_I_My1115   | 1582 | -5.45        | -2.83        | -0.09        | 0            | 0          | 0                  |
|     | 717 Min3F1_I_My1115   | 1380 | -15.87       | -3.38        | 0.07         | 0            | 0          | 0                  |
|     | 717 Min3F1_I_My1115   | 1377 | -15.87       | -3.38        | 0.07         | 0            | 0          | 0                  |
|     | 718 Min3F1_I_My1115   | 1379 | -31.95       | -3.51        | 0            | 0            | 0          | 0                  |
|     | 718 Min3F1_I_My1115   | 1376 | -31.95       | -3.51        | 0            | 0            | 0          | 0                  |
|     | 719 Min3F1_I_My1115   | 1586 | -9.41        | -4.05        | 0.09         | 0            | 0          | 0                  |
|     | 719 Min3F1_I_My1115   | 1583 | -9.41        | -4.05        | 0.09         | 0            | 0          | 0                  |
|     | 720 Min3F1_I_My1115   | 1585 | -8.94        | -4.34        | 0            | 0            | 0          | 0                  |
|     | 720 Min3F1_I_My1115   | 1582 | -8.94        | -4.34        | 0            | 0            | 0          | 0                  |
|     | 717 Min4F1_I_My1115   | 1380 | -32.68       | -3.81        | 0.01         | 0            | 0          | 0                  |
|     | 717 Min4F1_I_My1115   | 1377 | -32.68       | -3.81        | 0.01         | 0            | 0          | 0                  |
|     | 718 Min4F1_I_My1115   | 1379 | -17.85       | -3.9         | -0.08        | 0            | 0          | 0                  |
|     | 718 Min4F1_I_My1115   | 1376 | -17.85       | -3.9         | -0.08        | 0            | 0          | 0                  |
|     | 719 Min4F1_I_My1115   | 1586 | -10.96       | -4.63        | 0.03         | 0            | 0          | 0                  |
|     | 719 Min4F1_I_My1115   | 1583 | -10.96       | -4.63        | 0.03         | 0            | 0          | 0                  |
|     | 720 Min4F1_I_My1115   | 1585 | -10.25       | -4.88        | -0.09        | 0            | 0          | 0                  |
|     | 720 Min4F1_I_My1115   | 1582 | -10.25       | -4.88        | -0.09        | 0            | 0          | 0                  |
|     | 717 Min5C1_I_My1115   | 1380 | -15.53       | -3.28        | 0.07         | 0            | 0          | 0                  |
|     | 717 Min5C1_I_My1115   | 1377 | -15.53       | -3.28        | 0.07         | 0            | 0          | 0                  |
|     | 718 Min5C1_I_My1115   | 1379 | -31.83       | -3.39        | 0            | 0            | 0          | 0                  |
|     | 718 Min5C1_I_My1115   | 1376 | -31.83       | -3.39        | 0            | 0            | 0          | 0                  |
|     | 719 Min5C1_I_My1115   | 1586 |              | -3.85        | 0.09         | 0            | 0          | 0                  |
|     | 719 Min5C1_I_My1115   | 1583 |              | -3.85        | 0.09         | 0            | 0          | 0                  |
|     | 720 Min5C1_I_My1115   | 1585 |              | -4.11        | -0.01        | 0            | 0          | 0                  |
|     | 720 Min5C1_I_My1115   | 1582 |              | -4.11        | -0.01        | 0            | 0          | 0                  |
|     | 717 MinEV2_I_My1115   | 1380 |              | -3.67        | -0.02        | 0            | 0          | 0                  |
|     | 717 MinEV2_I_My1115   | 1377 |              | -3.67        | -0.02        | 0            | 0          | 0                  |
|     | 718 MinEV2_I_My1115   | 1379 |              | -3.72        | -0.14        | 0            | 0          | 0                  |
|     | 718 MinEV2_I_My1115   | 1376 |              | -3.72        | -0.14        | 0            | 0          | 0                  |
|     | 719 MinEV2_I_My1115   | 1586 | -14.1        | -4.86        | 0            | 0            | 0          | 0                  |
|     |                       |      |              |              |              |              |            |                    |

| PROJECT : BEL-40-23.37<br>TASK : Rating    |              | PROJEC           | PROJECT NO : 195987 |                |        | Michael Baker |        |  |
|--------------------------------------------|--------------|------------------|---------------------|----------------|--------|---------------|--------|--|
| UBJECT : Pier 5 Cap Rating                 |              |                  |                     |                |        | ATIONAL       |        |  |
| CALCULATED BY : JCC DATE : 10/3            | /2023        | CHECKE           | D BY : ET           | 3              | DATE : |               |        |  |
|                                            |              |                  |                     |                |        |               | L      |  |
|                                            |              |                  |                     |                |        |               |        |  |
| 719 MinEV2_I_My1115                        | 1583         | -14.1            | -4.86               | 0              | 0      | 0             | 0      |  |
| 720 MinEV2_I_My1115                        | 1585         | -10.07           | -5.06               | -0.15          | 0      | 0             | 0      |  |
| 720 MinEV2_I_My1115                        | 1582         | -10.07           | -5.06               | -0.15          | 0      | 0             | 0      |  |
| 717 MinEV3_I_My1115                        | 1380         | -73.74           | -5.61               | -0.11          | 0      | 0             | 0      |  |
| 717 MinEV3_I_My1115                        | 1377         | -73.74           | -5.61               | -0.11          | 0      | 0             | 0      |  |
| 718 MinEV3_I_My1115                        | 1379         | -2.04            | -5.79               | -0.27          | 0      | 0             | 0      |  |
| 718 MinEV3_I_My1115                        | 1376         | -2.04            | -5.79               | -0.27          | 0      | 0             | 0      |  |
| 719 MinEV3_I_My1115                        | 1586         | -24              | -6.81               | -0.09          | 0      | 0             | 0      |  |
| 719 MinEV3_I_My1115                        | 1583         | -24              | -6.81               | -0.09          | 0      | 0             | 0      |  |
| 720 MinEV3_I_My1115                        | 1585         | -6.75            | -7.1                | -0.3           | 0      | 0             | 0      |  |
| 720 MinEV3_I_My1115                        | 1582         | -6.75            | -7.1                | -0.3           | 0      | 0             | 0      |  |
| 717 MinRPL 60T_I_My1115                    | 1380         | -26.38           | -4.43               | 0.05           | 0      | 0             | 0      |  |
| 717 MinRPL 60T_I_My1115                    | 1377         | -26.38           | -4.43               | 0.05           | 0      | 0             | 0      |  |
| 718 MinRPL 60T_I_My1115                    | 1379         | -32.88           | -4.66               | 0.02           | 0      | 0             | 0      |  |
| 718 MinRPL 60T_I_My1115                    | 1376         | -32.88           | -4.66               | 0.02           | 0      | 0             | 0      |  |
| 719 MinRPL 60T_I_My1115                    | 1586         | -7.26            | -5.57               | 0.08           | 0      | 0             | 0      |  |
| 719 MinRPL 60T_I_My1115                    | 1583         | -7.26            | -5.57               | 0.08           | 0      | 0             | 0      |  |
| 720 MinRPL 60T_I_My1115                    | 1585         | -19.4            | -6.05               | 0.03           | 0      | 0             | 0      |  |
| 720 MinRPL 60T_I_My1115                    | 1582         | -19.4            | -6.05               | 0.03           | 0      | 0             | 0      |  |
| 717 MinRPL 65T_I_My1115                    | 1380         | -47              | -5.12               | 0              | 0      | 0             | 0      |  |
| 717 MinRPL 65T_I_My1115                    | 1377         | -47              | -5.12               | 0              | 0      | 0             | 0      |  |
| 718 MinRPL 65T_I_My1115                    | 1379         | -25.1            | -5.31               | -0.12          | 0      | 0             | 0      |  |
| 718 MinRPL 65T_I_My1115                    | 1376         | -25.1            | -5.31               | -0.12          | 0      | 0             | 0      |  |
| 719 MinRPL 65T_I_My1115                    | 1586         | -15.54           | -6.13               | 0.02           | 0      | 0             | 0      |  |
| 719 MinRPL 65T_I_My1115                    | 1583         | -15.54           | -6.13               | 0.02           | 0      | 0             | 0      |  |
| 720 MinRPL 65T_I_My1115                    | 1585         | -12.05           | -6.51               | -0.13          | 0      | 0             | 0      |  |
| 720 MinRPL 65T_I_My1115                    | 1582         | -12.05           | -6.51               | -0.13          | 0      | 0             | 0      |  |
| 717 MinSU4_L_My1115                        | 1380<br>1377 | -40.12           | -3.75               | -0.03<br>-0.03 | 0      | 0             | 0      |  |
| 717 MinSU4_I_My1115                        |              | -40.12           | -3.75               |                | 0      | 0             | 0      |  |
| 718 MinSU4_L_My1115                        | 1379<br>1376 | -10.76<br>-10.76 | -3.88<br>-3.88      | -0.12<br>-0.12 | 0      | 0             | 0      |  |
| 718 MinSU4_L_My1115                        | 1586         | -10.76           | -3.88<br>-4.56      | -0.12          | 0      | 0             | 0<br>0 |  |
| 719 MinSU4_L_My1115                        |              |                  |                     |                | 0      | 0             |        |  |
| 719 MinSU4_I_My1115                        | 1583<br>1585 | -13.21<br>-7.58  | -4.56<br>-4.8       | -0.01<br>-0.14 | 0<br>0 | 0<br>0        | 0<br>0 |  |
| 720 MinSU4_I_My1115<br>720 MinSU4_I_My1115 | 1585         | -7.58            | -4.8<br>-4.8        | -0.14<br>-0.14 | 0      | 0             | 0      |  |
| 720 MinS04_1_My1115<br>717 MinSU5_1_My1115 | 1382         | -40.01           | -4.8<br>-4.06       | -0.14<br>-0.01 | 0      | 0             | 0      |  |
| 717 MinSUS_1_My1115<br>717 MinSUS_1_My1115 | 1380         | -40.01           | -4.06               | -0.01          | 0      | 0             | 0      |  |
| 717 Minsus_1_My1115<br>718 MinSU5_I_My1115 | 1377         | -12.24           | -4.00               | -0.01          | 0      | 0             | 0      |  |
| 718 MinSUS_1_My1115<br>718 MinSUS_1_My1115 | 1379         | -12.24<br>-12.24 | -4.12               | -0.12          | 0      | 0             | 0      |  |
| 719 MinSU5_I_My1115                        | 1586         | -13.14           | -4.94               | 0.01           | 0      | 0             | 0      |  |
| 719 MinSUS_1_My1115<br>719 MinSUS_1_My1115 | 1580         | -13.14           | -4.94<br>-4.94      | 0.01           | 0      | 0             | 0      |  |
| 720 MinSU5_I_My1115                        | 1585         | -9.38            | -5.15               | -0.14          | 0      | 0             | 0      |  |
| 720 MinSUS_I_My1115<br>720 MinSUS_I_My1115 | 1585         | -9.38            | -5.15               | -0.14          | 0      | 0             | 0      |  |
| 717 MinSU6_I_My1115                        | 1382         | -32.61           | -4.39               | 0.04           | 0      | 0             | 0      |  |
| 717 MinSU6_I_My1115                        | 1377         | -32.61           | -4.39               | 0.04           | 0      | 0             | 0      |  |
| 718 MinSU6_I_My1115                        | 1377         | -24.73           | -4.39               | -0.04          | 0      | 0             | 0      |  |
| 718 MinSU6_I_My1115<br>718 MinSU6_I_My1115 | 1379         | -24.73           | -4.47               | -0.04          | 0      | 0             | 0      |  |
| 719 MinSU6_I_My1115<br>719 MinSU6_I_My1115 | 1586         | -24.73<br>-9.2   | -4.47               | -0.04          | 0      | 0             | 0      |  |
|                                            | 1586         | -9.2<br>-9.2     | -5.39               | 0.07           | 0      | 0             | 0      |  |
| 719 MinSU6_I_My1115                        | 1583         | -9.2<br>-15.81   | -5.39<br>-5.71      | -0.07          | 0      | 0             | 0      |  |
| 720 MinSU6_I_My1115                        |              |                  |                     |                |        |               |        |  |

| TASK : Rating               | PROJEC   | T NO : 19 | 5987      |       | el Baker |         |    |
|-----------------------------|----------|-----------|-----------|-------|----------|---------|----|
| SUBJECT : Pier 5 Cap Rating |          |           |           |       |          | ATIONAI | -  |
| · -                         | 0/3/2023 | CHECKE    | D BY : ET | В     | DATE :   |         | -  |
|                             |          |           |           |       |          |         | -  |
|                             |          |           |           |       |          |         | LC |
|                             |          |           |           |       |          |         |    |
| 717 MinSU7_I_My1115         | 1380     | -35.59    | -4.65     | 0.04  | 0        | 0       | 0  |
| 717 MinSU7_I_My1115         | 1377     | -35.59    | -4.65     | 0.04  | 0        | 0       | 0  |
| 718 MinSU7_I_My1115         | 1379     | -23.44    | -4.84     | -0.07 | 0        | 0       | 0  |
| 718 MinSU7_I_My1115         | 1376     | -23.44    | -4.84     | -0.07 | 0        | 0       | 0  |
| 719 MinSU7_I_My1115         | 1586     | -11.49    | -5.81     | 0.07  | 0        | 0       | 0  |
| 719 MinSU7_I_My1115         | 1583     | -11.49    | -5.81     | 0.07  | 0        | 0       | 0  |
| 720 MinSU7_I_My1115         | 1585     | -16.07    | -6.23     | -0.08 | 0        | 0       | 0  |
| 720 MinSU7_I_My1115         | 1582     | -16.07    | -6.23     | -0.08 | 0        | 0       | 0  |
| 717 MinType 3_I_My1115      | 1380     | -40.33    | -3.19     | -0.05 | 0        | 0       | 0  |
| 717 MinType 3_I_My1115      | 1377     | -40.33    | -3.19     | -0.05 | 0        | 0       | 0  |
| 718 MinType 3_I_My1115      | 1379     | -1.25     | -3.26     | -0.15 | 0        | 0       | 0  |
| 718 MinType 3_I_My1115      | 1376     | -1.25     | -3.26     | -0.15 | 0        | 0       | 0  |
| 719 MinType 3_I_My1115      | 1586     | -13.2     | -3.9      | -0.04 | 0        | 0       | 0  |
| 719 MinType 3_I_My1115      | 1583     | -13.2     | -3.9      | -0.04 | 0        | 0       | 0  |
| 720 MinType 3_1_My1115      | 1585     | -4.56     | -4.05     | -0.17 | 0        | 0       | 0  |
| 720 MinType 3_1_My1115      | 1582     | -4.56     | -4.05     | -0.17 | 0        | 0       | 0  |
| 717 MinType 3-3_1_My1115    | 5 1380   | -31.2     | -2.63     | -0.03 | 0        | 0       | 0  |
| 717 MinType 3-3_1_My1115    | 5 1377   | -31.2     | -2.63     | -0.03 | 0        | 0       | 0  |
| 718 MinType 3-3_I_My1115    | 5 1379   | -0.82     | -2.66     | -0.13 | 0        | 0       | 0  |
| 718 MinType 3-3_I_My1115    | 5 1376   | -0.82     | -2.66     | -0.13 | 0        | 0       | 0  |
| 719 MinType 3-3_I_My1115    | 5 1586   | -11.21    | -3.25     | -0.02 | 0        | 0       | 0  |
| 719 MinType 3-3_I_My1115    | 5 1583   | -11.21    | -3.25     | -0.02 | 0        | 0       | 0  |
| 720 MinType 3-3_I_My1115    | 5 1585   | -3.79     | -3.35     | -0.14 | 0        | 0       | 0  |
| 720 MinType 3-3_I_My1115    | 5 1582   | -3.79     | -3.35     | -0.14 | 0        | 0       | 0  |
| 717 MinType 3S2_I_My111     | 5 1380   | -15.07    | -3.01     | 0.06  | 0        | 0       | 0  |
| 717 MinType 3S2_I_My111     | 5 1377   | -15.07    | -3.01     | 0.06  | 0        | 0       | 0  |
| 718 MinType 3S2_I_My111     | 5 1379   | -28.77    | -3.12     | 0     | 0        | 0       | 0  |
| 718 MinType 3S2_I_My111     | 5 1376   | -28.77    | -3.12     | 0     | 0        | 0       | 0  |
| 719 MinType 3S2_I_My111     |          | -7.87     | -3.53     | 0.08  | 0        | 0       | 0  |
| 719 MinType 3S2_I_My111     |          | -7.87     | -3.53     | 0.08  | 0        | 0       | 0  |
| 720 MinType 3S2_I_My111     |          | -7.73     | -3.77     | -0.01 | 0        | 0       | 0  |
| 720 MinType 3S2_I_My111     |          | -7.73     | -3.77     | -0.01 | 0        | 0       | 0  |

| PROJECT : BEL-40-23.37      |                     | Michael Baker |
|-----------------------------|---------------------|---------------|
| TASK : Rating               | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                     | INTERNATIONAL |

DATE : 10/3/2023 CHI

CHECKED BY : ETB

DATE : --

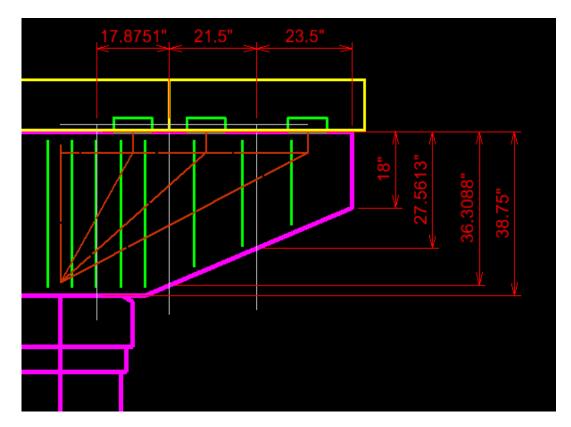
LOADS

|         | Live Load bearing reactions that maximize bending in cantilever cap |          |        |          |        |        |        |         |  |  |
|---------|---------------------------------------------------------------------|----------|--------|----------|--------|--------|--------|---------|--|--|
|         |                                                                     | Exterior |        | Interior |        |        |        |         |  |  |
|         | Links                                                               |          | Total  | Per Pad  | Links  |        | Total  | Per Pad |  |  |
|         | 719                                                                 | 720      | kip    | kip      | 717    | 718    | kip    | kip     |  |  |
| HL-93   | -16.96                                                              | -20.83   | -37.79 | -18.9    | -28.28 | -6.75  | -35.03 | -17.5   |  |  |
| 2F1     | -5.75                                                               | -5.45    | -11.2  | -5.6     | -35.96 | -2.05  | -38.01 | -19.0   |  |  |
| 3F1     | -9.41                                                               | -8.94    | -18.35 | -9.2     | -15.87 | -31.95 | -47.82 | -23.9   |  |  |
| 4F1     | -10.96                                                              | -10.25   | -21.21 | -10.6    | -32.68 | -17.85 | -50.53 | -25.3   |  |  |
| 5C1     | -9.98                                                               | -7.14    | -17.12 | -8.6     | -15.53 | -31.83 | -47.36 | -23.7   |  |  |
| EV2     | -14.1                                                               | -10.07   | -24.17 | -12.1    | -37.06 | -1.4   | -38.46 | -19.2   |  |  |
| EV3     | -24                                                                 | -6.75    | -30.75 | -15.4    | -73.74 | -2.04  | -75.78 | -37.9   |  |  |
| RPL_60T | -7.26                                                               | -19.4    | -26.66 | -13.3    | -26.38 | -32.88 | -59.26 | -29.6   |  |  |
| RPL_65T | -15.54                                                              | -12.05   | -27.59 | -13.8    | -47    | -25.1  | -72.1  | -36.1   |  |  |
| SU4     | -13.21                                                              | -7.58    | -20.79 | -10.4    | -40.12 | -10.76 | -50.88 | -25.4   |  |  |
| SU5     | -13.14                                                              | -9.38    | -22.52 | -11.3    | -40.01 | -12.24 | -52.25 | -26.1   |  |  |
| SU6     | -9.2                                                                | -15.81   | -25.01 | -12.5    | -32.61 | -24.73 | -57.34 | -28.7   |  |  |
| SU7     | -11.49                                                              | -16.07   | -27.56 | -13.8    | -35.59 | -23.44 | -59.03 | -29.5   |  |  |
| Type3   | -13.2                                                               | -4.56    | -17.76 | -8.9     | -40.33 | -1.25  | -41.58 | -20.8   |  |  |
| Type3S2 | -11.21                                                              | -3.79    | -15    | -7.5     | -31.2  | -0.82  | -32.02 | -16.01  |  |  |
| Type3-3 | -7.87                                                               | -7.73    | -15.6  | -7.8     | -15.07 | -28.77 | -43.84 | -21.92  |  |  |

HL-93 live load reactions that maximize bending in cantilever cap

|                                  | LL+IM |                         |                                        | LL· | L+IM                    |  |  |
|----------------------------------|-------|-------------------------|----------------------------------------|-----|-------------------------|--|--|
| Exterior                         | 719   | 16.96 kip               | Interior 7                             | 717 | 28.28 kip               |  |  |
|                                  | 720   | 20.83 kip               | 7                                      | 718 | 6.75 kip                |  |  |
| Total Exterior<br>Exterior/beari |       | 37.79 kip<br>18.895 kip | Total Interior<br>Interior/bearing pac | ł   | 35.03 kip<br>17.515 kip |  |  |

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |


LOADS

### **PIER CAP SELF WEIGHT**

-Additional load from concrete self weight is applied as concentrated loads by tributary area. -No reduction in width for spalling when calculating weight. **2.50** ft

Width

| Bearing | Trib. Len. | Left Depth (ft) | <b>Right Depth</b> | Avg. Depth | Load | Total DC |
|---------|------------|-----------------|--------------------|------------|------|----------|
|         | ft         | ft              | ft                 | ft         | kip  | kip      |
| 1       | 1.49       | 3.23            | 3.03               | 3.13       | 1.75 | 5.59     |
| 2       | 1.79       | 3.03            | 2.30               | 2.66       | 1.79 | 18.21    |
| 3       | 1.96       | 2.30            | 1.50               | 1.90       | 1.39 | 17.82    |



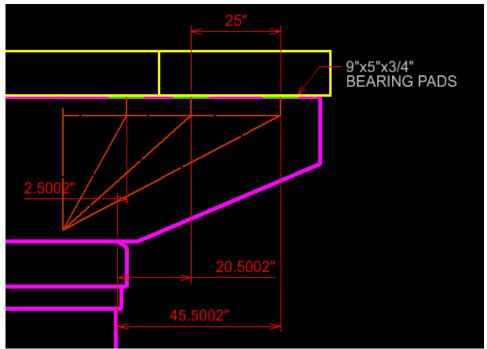
| PROJECT : BEL-40-23.37      |                     | - Michael Baker             |
|-----------------------------|---------------------|-----------------------------|
| TASK : Rating               | PROJECT NO : 195987 |                             |
| SUBJECT : Pier 5 Cap Rating |                     | - I N T E R N A T I O N A L |

CHECKED BY : ETB

DATE : --

LOADS

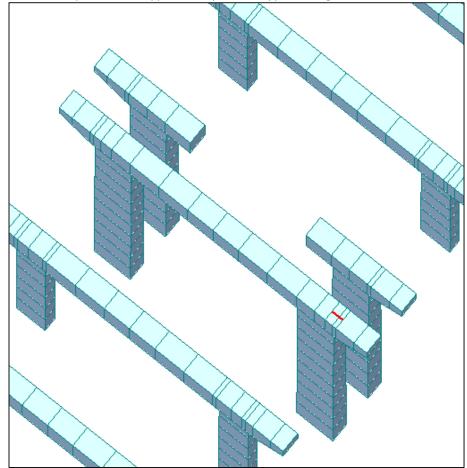
### LOAD COMBINATIONS


-Design loading (HL-93)

-E1 is from the center of a bearing to face of support and E2 is at the first interior beam bearing. -E2 is from the the most outside bearing to the second most interior bearing.

DATE: 10/3/2023

|         | DC    | DW   | LL+IM | STR 1 | E1    | M1       | E2    | M2       | Location    |
|---------|-------|------|-------|-------|-------|----------|-------|----------|-------------|
| Bearing | kip   | kip  | kip   | kip   | in    | kip-in   | in    | kip-in   |             |
| 1       | 5.59  | 0.58 | 17.52 | 38.50 | 2.50  | 96.26    |       | 0.00     | Int. Beam   |
| 2       | 18.21 | 0.60 | 18.90 | 56.73 | 20.50 | 1,162.86 |       | 0.00     | Ext. Beam 1 |
| 3       | 17.82 | 0.60 | 18.90 | 56.23 | 45.50 | 2,558.59 | 25.00 | 1,405.82 | Ext. Beam 2 |


Total



| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

## **TORSION CHECK BEAM ELEMENT**

-Torsion check performed at approximately face of support, erring towards over the column which is conservative



| PROJECT : BEL-40-2.<br>TASK : Rating | 5.37          |          |         | DD       | OJECT      | NO ·   | 10508  | 27    | — Mie             | chael B              | aker      |                       |
|--------------------------------------|---------------|----------|---------|----------|------------|--------|--------|-------|-------------------|----------------------|-----------|-----------------------|
| —                                    | Patina        |          |         |          | UJLUT      | NO .   | 19390  | /     | IN T              | ERNATI               | ONAL      |                       |
| SUBJECT : Pier 5 Cap                 |               | 10/2     | /2022   |          |            |        |        |       |                   | _                    |           |                       |
| CALCULATED BY : J                    | LL DA         | TE: 10/3 | /2023   | CH       | ECKED      | BY : 4 | I B    |       | DAT               | E:                   |           |                       |
|                                      |               |          |         |          |            |        |        |       |                   |                      |           |                       |
|                                      |               |          |         |          |            |        |        |       |                   |                      |           | LOADS                 |
| Element 1116_i                       |               |          |         |          |            |        |        |       |                   |                      |           |                       |
| _                                    |               |          |         |          |            |        |        |       |                   |                      |           |                       |
|                                      |               |          |         |          |            |        | Chaar  |       | Cheer -           | Tomion               |           |                       |
| Elem Load                            | Stage         | Ste      | 'n      | Part     | Axial (    |        | Shear- | -у    | Shear-z<br>(kips) | Torsion<br>(ft*kips) | (ft*kips) | Moment-z<br>(ft*kips) |
| 1116 Dead Load                       | -             |          | 1(last) | I[1375]  |            | -9.32  |        | -0.09 | -38.71            | -4.35                |           |                       |
|                                      | Columns Hinge |          | 1(last) | I[1375]  |            | -0.25  |        | 0.05  |                   | -0.19                |           |                       |
|                                      |               |          |         |          |            |        |        |       |                   |                      |           |                       |
|                                      |               |          |         |          |            |        | Shear  | -y    |                   | Torsion              | Moment-y  | Moment-z              |
|                                      | Elem          | Loa      |         | Part     | Axial (    |        | (kips) |       |                   | (ft*kips)            | (ft*kips) | (ft*kips)             |
|                                      |               | 1116 Hl- |         |          |            | 6.77   |        | 0.7   | 14.34             | 16.95                | -         | 2.95                  |
|                                      |               | 1116 HI- | 93(min) | I[1375]  | - <u>-</u> | 15.19  |        | -0.7  | -39.85            | -22.87               | -136.37   | -2.68                 |
|                                      |               |          |         | Factored | Loads      |        |        |       |                   |                      |           |                       |
|                                      |               |          |         | Pu =     | :          | L1.85  | kip    |       |                   |                      |           |                       |
|                                      |               |          |         | Vu =     | -12        | 19.91  | kip    |       |                   |                      |           |                       |
|                                      |               |          |         | Mu =     | -4(        | 9.07   | kip-ft |       |                   |                      |           |                       |
|                                      |               |          |         | Tu =     |            |        | kip-ft |       |                   |                      |           |                       |

Tension is conservative. Compression ignored for Axial forces.

| PROJECT : BEL-40-23.37      |               |                 | Michael Baker |
|-----------------------------|---------------|-----------------|---------------|
| TASK : Rating               |               | PROJECT NO: 195 | 987           |
| SUBJECT : Pier 5 Cap Rating |               |                 |               |
|                             | <br>10/2/2022 |                 |               |

DATE : 10/3/2023

CHECKED BY: ETB

DATE : --

**BEAM-HALF DEPTH** 

## **DESCRIPTION:**

Use B-Beam assumptions to check design level bending and shear in cap at exterior bearing, as a parallel check to the strut and tie model.

Shown to be adequate at the design level so no rating factors were generated.

### **DESIGN CHECKS**

-Shown to be adequate for design checks so no rating factors were calculated

| Check   | Сарас | ity | Units  |   | Demand | Units  |  | OK/NG |
|---------|-------|-----|--------|---|--------|--------|--|-------|
| Bending | 262   | .38 | kip-ft | ≥ | 117.15 | kip-ft |  | ОК    |
| Shear   | 129   | .29 | kip    | ≥ | 112.96 | kip    |  | ОК    |

## MATERIAL PROPERTIES, SECTION GEOMETRY, AND GENERAL INPUTS:

#### **MATERIAL PROPERTIES:**

| Concrete compressive strength              | f'c = <b>4.50</b>              | ksi |                   |
|--------------------------------------------|--------------------------------|-----|-------------------|
| Elastic modulus of concrete                | Ec = 1,820 √(f'c) = 3861       | ksi | AASHTO C5.4.2.4-1 |
| Stress block factor                        | <b>α1</b> = 0.85               |     | AASHTO 5.6.2.2    |
| Effective to total compression depth ratio | β <sub>1</sub> = 0.83          |     | AASHTO 5.6.2.2    |
| Concrete compressive strain                | ε <sub>c</sub> = 0.003         |     | AASHTO 5.7.2.1    |
| Lightweight concrete factor                | λ = 1.00                       |     | AASHTO 5.4.2.8    |
| Reinforcement yielding                     | fy = 60.00                     | ksi |                   |
| Elastic modulus of reinforcement           | Es = <b>29,000.00</b>          | ksi |                   |
| Tension limit reinforcement strain         | ε <sub>tl</sub> = <b>0.005</b> |     | AASHTO 5.7.2.1    |
| Compression limit reinforcement strain     | ε <sub>tl</sub> = <b>0.002</b> |     | AASHTO 5.7.2.1    |

| PROJECT : BEL-40-23.37<br>TASK : Rating<br>SUBJECT : Pier 5 Cap Rating |                  | PROJECT NO : 195987 | Michael Baker   |
|------------------------------------------------------------------------|------------------|---------------------|-----------------|
| CALCULATED BY : JCC                                                    | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :          |
|                                                                        |                  |                     | BEAM-HALF DEPTH |

| SECTION GEOMETRY:<br>Section height<br>Section width<br>Bottom clear cover<br>Side clear cover | h =<br>b =<br>c =<br>c <sub>s</sub> = | 27.00 in<br>2.00 in |
|------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|
|                                                                                                | 9"x5"x3<br>BEARIN                     | /4"<br>IG PADS      |
|                                                                                                | 32.6471"                              |                     |

| REINFORCEMENT:Location along cap2.125 ftBottom bar size# 8Row 1 Bars0Row 2 bars (ignored because not fully developed)0Row spacingspa = 2.00Bars3Bar AreaAbar = 0.79 in²Bar Diameterdbar = 1 inTotal reinforcement areaAs = 2.37 in²Width for spacingbs = 27.00 inBar Sarcings = 11.50 inRow 1 depthd1 = h - c - dv - dbar/2 = 29.52 inRow 2 depthd2 = d1 - spa = 27.52 inAverage depthd = (d1*n1 + d2*n2) / (n1 + n2) = 29.52 inStirupsSizeSize# 5AreaA <sub>v</sub> = 0.31 in²Diameterdv = 0.625 inSpacing at max shear (ignored first stirrup in 6" spacing)s = 18.00 inLegs at max shearn <sub>Hegs</sub> = 2Extreme reinforcement depthd = h - c - dv - dbar/2 = 29.5221 inReDUCTION FACTORSFlexure - Tension controlledFlexure - Compression controlled $\phi_b = 0.75$ Compression controlled reinforcement strain $\varepsilon_{c1} = 0.002$ Tension controlled reinforcement strain $\varepsilon_{c1} = 0.005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TE :            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Location along cap<br>Bottom bar size<br>Row 1 Bars<br>Row 2 bars (ignored because not fully developed)<br>Row spacing<br>Bars<br>Bar Area<br>Bar Area<br>Bar Area<br>Bar Area<br>Compression controlled<br>Compression controlled real component of the comp | BEAM-HALF DEPTH |
| Bottom bar size<br>Row 1 Bars<br>Row 2 bars (ignored because not fully developed)<br>Row spacing<br>Bars<br>Bar Area<br>Abar = 0.79 in <sup>2</sup><br>Bar Diameter<br>Total reinforcement area<br>Width for spacing<br>Bar Sacing<br>Bar Sacing<br>Substitution<br>Row 1 depth<br>At the space of the space o   |                 |
| Row 1 Bars3Row 2 bars (ignored because not fully developed) $spa = 2.00$ Row spacing $spa = 2.00$ Bars3Bar AreaAbar =Bar Diameterdbar =1 in1 inTotal reinforcement areaAs = $2.37$ in <sup>2</sup> Width for spacingbs =Bar Sars $s = 2.37$ in <sup>2</sup> Width for spacings = $8ar Spacing$ s = $8ar Spacing$ s = $8ar Varage depth$ $d1 = h - c - dv - dbar/2 =29.52 ind2 = d1 - spa =Row 1 depthd1 = h - c - dv - dbar/2 =29.52 ind2 = d1 - spa =27.52 ind2 = d1 - spa =27.52 ind = (d1*n1 + d2*n2) / (n1 + n2) =29.52 ind = (d1*n1 + d2*n2) / (n1 + n2) =29.52 ind = h - c - d_v - d_{bar}/2 =29.52 ina = 18.00Stirrupss =Sizes =2a = 100000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| Row 2 bars (ignored because not fully developed)<br>Row spacing<br>Bars $0$ Row spacing<br>Bars $\mathbf{spa} = \begin{bmatrix} 0\\ 2.00 \end{bmatrix}$ in<br>and<br>BarsBar AreaAbar = $0.79 \ln^2$<br>In<br>Bar DiameterBar Diameterdbar = $1 \ln$<br>In<br>Total reinforcement areaAs = $2.37 \ln^2$<br>Width for spacing<br>Bar SpacingWidth for spacing<br>Bar Spacing $\mathbf{bs} = 27.00 \ln$<br>S = $27.00 \ln$<br>Bar Spacing<br>Row 1 depthRow 1 depthd1 = h - c - dv - dbar/2 = 29.52 in<br>Average depthAverage depthd = (d1*n1 + d2*n2) / (n1 + n2) = 29.52 inStirrups<br>Size $\# 5$<br>AreaArea $A_v = 0.31 \ln^2$<br>DiameterDiameterdv = $0.625 \ln$<br>Spacing at max shear (ignored first stirrup in 6" spacing)Spacing at max shear $n_{legs} = \frac{2}{2}$ Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221 \ln$ REDUCTION FACTORS<br>Flexure - Tension controlled $\Phi_b = \frac{0.90}{0.75}$<br>0.002Flexure - Compression controlled $\Phi_b = \frac{0.90}{0.75}$<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Row spacing<br>Barsspa = $2.00$ in<br>3Bar AreaAbar = $0.79 \text{ in}^2$<br>and the spacing $3$ Bar AreaAbar = $0.79 \text{ in}^2$<br>dbar = $1 \text{ in}$ Total reinforcement areaAs = $2.37 \text{ in}^2$ Width for spacingbs = $27.00 \text{ in}$<br>Bar Spacing $s =Bar Spacings =11.50 \text{ in}Row 1 depthd1 = h - c - dv - dbar/2 =29.52 \text{ in}Row 2 depthd = (d1*n1 + d2*n2) / (n1 + n2) =29.52 \text{ in}Average depthd = (d1*n1 + d2*n2) / (n1 + n2) =29.52 \text{ in}StirrupsSize#5AreaAv =0.31 \text{ in}^2Diameterdv =0.625 \text{ in}Spacing at max shear (ignored first stirrup in 6" spacing)s =18.00Legs at max shearnlegs =2Extreme reinforcement depthd = h - c - d_v - d_{bar}/2 =29.5221 \text{ in}REDUCTION FACTORSFlexure - Tension controlled\Phi_b =0.75Compression controlled\Phi_b =0.750.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| Bars 3<br>Bar Area Abar = $0.79 \text{ in}^2$<br>Bar Diameter dbar = $1 \text{ in}$<br>Total reinforcement area As = $2.37 \text{ in}^2$<br>Width for spacing bs = $27.00 \text{ in}$<br>Bar Spacing s = $11.50 \text{ in}$<br>Row 1 depth d1 = $h - c - dv - dbar/2$ = $29.52 \text{ in}$<br>Row 2 depth d2 = d1 - spa = $27.52 \text{ in}$<br>Average depth d = $(d1*n1 + d2*n2) / (n1 + n2)$ = $29.52 \text{ in}$<br>Stirrups<br>Size $\#5$<br>Area A <sub>v</sub> = $0.31 \text{ in}^2$<br>Diameter dv = $0.625 \text{ in}$<br>Spacing at max shear (ignored first stirrup in 6" spacing) s = $18.00 \text{ in}$<br>Legs at max shear $n_{\text{legs}} = 2$<br>Extreme reinforcement depth $d = h - c - d_v - d_{\text{bar}}/2 = 29.5221 \text{ in}$<br>REDUCTION FACTORS<br>Flexure - Tension controlled $\varphi_b = 0.90  0.75  0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| Bar Area Abar = $0.79 \text{ in}^2$<br>Bar Diameter dbar = $1 \text{ in}$<br>Total reinforcement area As = $2.37 \text{ in}^2$<br>Width for spacing bs = $27.00 \text{ in}$<br>Bar Spacing s = $11.50 \text{ in}$<br>Row 1 depth $d1 = h - c - dv - dbar/2 = 29.52 \text{ in}$<br>Row 2 depth $d2 = d1 - \text{spa} = 27.52 \text{ in}$<br>Average depth $d = (d1*n1 + d2*n2) / (n1 + n2) = 29.52 \text{ in}$<br>Stirrups<br>Size $\#5$<br>Area $A_v = 0.31 \text{ in}^2$<br>Diameter $dv = 0.625 \text{ in}$<br>Spacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$<br>in Legs at max shear $n_{\text{legs}} = 2$<br>Extreme reinforcement depth $d = h - c - d_v - d_{\text{bar}}/2 = 29.5221 \text{ in}$<br><b>REDUCTION FACTORS</b><br>Flexure - Tension controlled $\Phi_b = 0.90$<br>Flexure - Compression controlled $\Phi_b = 0.75$<br>Compression controlled reinforcement strain $\varepsilon_{cd} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| Bar Diameter dbar = 1 in<br>Total reinforcement area As = 2.37 in <sup>2</sup><br>Width for spacing bs = 27.00 in<br>Bar Spacing s = 11.50 in<br>Row 1 depth dl = h - c - dv - dbar/2 = 29.52 in<br>Row 2 depth dl = h - c - dv - dbar/2 = 29.52 in<br>Average depth d = (d1*n1 + d2*n2) / (n1 + n2) = 29.52 in<br>Stirrups<br>Size $\frac{\#5}{2}$<br>Area A <sub>v</sub> = 0.31 in <sup>2</sup><br>Diameter dv = 0.625 in<br>Spacing at max shear (ignored first stirrup in 6" spacing) s = 18.00 in<br>Legs at max shear (ignored first stirrup in 6" spacing) s = 2<br>Extreme reinforcement depth d = h - c - d <sub>v</sub> - d <sub>bar</sub> /2 = 29.5221 in<br><b>REDUCTION FACTORS</b><br>Flexure - Tension controlled $\phi_b = 0.90$<br>Flexure - Compression controlled $\phi_b = 0.75$<br>Compression controlled reinforcement strain $\varepsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| Total reinforcement area $As = 2.37 \text{ in}^2$<br>Width for spacing $bs = 27.00 \text{ in}$<br>Bar Spacing $s = 11.50 \text{ in}$<br>Row 1 depth $d1 = h - c - dv - dbar/2 = 29.52 \text{ in}$<br>Row 2 depth $d2 = d1 - spa = 27.52 \text{ in}$<br>Average depth $d = (d1*n1 + d2*n2) / (n1 + n2) = 29.52 \text{ in}$<br>Stirrups<br>Size $\#5$<br>Area $A_v = 0.31 \text{ in}^2$<br>Diameter $dv = 0.625 \text{ in}$<br>Spacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$ in<br>Legs at max shear $n_{legs} = 2$<br>Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221$ in<br><b>REDUCTION FACTORS</b><br>Flexure - Tension controlled $\varphi_b = 0.90$<br>Flexure - Compression controlled $\varphi_b = 0.75$<br>Compression controlled reinforcement strain $\varepsilon_{c1} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| Width for spacingbs =27.00 inBar Spacings =11.50 inRow 1 depthd1 = h - c - dv - dbar/2 =29.52 inRow 2 depthd2 = d1 - spa =27.52 inAverage depthd = (d1*n1 + d2*n2) / (n1 + n2) =29.52 inStirrupsSize# 5AreaDiameterSpacing at max shear (ignored first stirrup in 6" spacing)s =18.00inExtreme reinforcement depthd = h - c - d <sub>v</sub> - d <sub>bar</sub> /2 =29.5221 inREDUCTION FACTORSFlexure - Tension controlled $\phi_b =$ 0.90Gompression controlled $\phi_b =$ 0.900Gompression controlled reinforcement strain $\varepsilon_{cl} =$ 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| Bar Spacing $s = 11.50$ in<br>Row 1 depth $d1 = h - c - dv - dbar/2 = 29.52$ in<br>Row 2 depth $d2 = d1 - spa = 27.52$ in<br>Average depth $d = (d1*n1 + d2*n2) / (n1 + n2) = 29.52$ in<br>Stirrups<br>Size $\#5$<br>Area $A_v = 0.31$ in <sup>2</sup><br>Diameter $dv = 0.625$ in<br>Spacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$ in<br>Legs at max shear $n_{legs} = 2$<br>Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221$ in<br>REDUCTION FACTORS<br>Flexure - Tension controlled $\Phi_b = 0.90$<br>Flexure - Compression controlled $\Phi_b = 0.75$<br>Compression controlled reinforcement strain $\varepsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| Bar Spacing $s = 11.50$ in<br>Row 1 depth $d1 = h - c - dv - dbar/2 = 29.52$ in<br>Row 2 depth $d2 = d1 - spa = 27.52$ in<br>Average depth $d = (d1*n1 + d2*n2) / (n1 + n2) = 29.52$ in<br>Stirrups<br>Size $\# 5$<br>Area $A_v = 0.31$ in <sup>2</sup><br>Diameter $dv = 0.625$ in<br>Spacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$ in<br>Legs at max shear $n_{legs} = 2$<br>Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221$ in<br>REDUCTION FACTORS<br>Flexure - Tension controlled $\Phi_b = 0.90$<br>Flexure - Compression controlled $\Phi_b = 0.75$<br>Compression controlled reinforcement strain $\varepsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| Row 1 depth<br>Row 2 depth<br>Average depth<br>Average depth<br>d = (d1*n1 + d2*n2) / (n1 + n2) = 29.52 in<br>Stirrups<br>Size<br>Area<br>Diameter<br>Spacing at max shear (ignored first stirrup in 6" spacing)<br>Legs at max shear<br>Extreme reinforcement depth<br>REDUCTION FACTORS<br>Flexure - Tension controlled<br>Flexure - Compression controlled<br>Flexure - Compression controlled<br>Flexure - Compression controlled<br>Flexure - Compression controlled<br>Compression controlled reinforcement strain<br>d1 = h - c - dv - dbar/2 = 29.5221 in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>$d = h - c - dv - d_{bar}/2 = 29.5221$ in<br>d = h - c - dv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| Row 2 depth $d2 = d1 - spa =$ $27.52$ inAverage depth $d = (d1^*n1 + d2^*n2) / (n1 + n2) =$ $29.52$ inStirrups $f = 0.31$ in <sup>2</sup> Size $\# 5$ Area $A_v =$ $0.31$ in <sup>2</sup> Diameter $dv =$ $0.625$ inSpacing at max shear (ignored first stirrup in 6" spacing) $s =$ $18.00$ inLegs at max shear $n_{legs} =$ $2$ Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 =$ $29.5221$ inREDUCTION FACTORSFlexure - Tension controlled $\varphi_b =$ $0.90$ Flexure - Compression controlled $\varphi_b =$ $0.75$ Compression controlled reinforcement strain $\varepsilon_{cl} =$ $0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| Average depth $d = (d1*n1 + d2*n2) / (n1 + n2) = 29.52$ inStirrupsSize#5Area $A_v = 0.31$ in²Diameter $dv = 0.625$ inSpacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$ inLegs at max shear $n_{legs} = 2$ Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221$ inREDUCTION FACTORSFlexure - Tension controlled $\Phi_b = 0.90$ Flexure - Compression controlled $\Phi_b = 0.75$ Compression controlled reinforcement strain $\varepsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| Size# 5Area $A_v = 0.31 \text{ in}^2$ Diameter $dv = 0.625 \text{ in}$ Spacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$ Legs at max shear $n_{legs} = 2$ Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221$ in <b>REDUCTION FACTORS</b> Flexure - Tension controlledFlexure - Compression controlled $\phi_b = 0.90$ Flexure - Compression controlled $\phi_b = 0.75$ Compression controlled reinforcement strain $\varepsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| Area $A_v = 0.31 \text{ in}^2$ Diameter $dv = 0.625 \text{ in}$ Spacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$ Legs at max shear $n_{legs} = 2$ Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221$ in <b>REDUCTION FACTORS</b> Flexure - Tension controlledFlexure - Compression controlled $\phi_b = 0.90$ Flexure - Compression controlled $\phi_b = 0.75$ Compression controlled reinforcement strain $\epsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Diameter $dv = 0.625$ in<br>$s = 18.00$ in<br>$n_{legs} = 2$ Spacing at max shear (ignored first stirrup in 6" spacing) $s = 18.00$ in<br>$n_{legs} = 2$ Legs at max shear $d = h - c - d_v - d_{bar}/2 = 29.5221$ inExtreme reinforcement depth $d = h - c - d_v - d_{bar}/2 = 29.5221$ in <b>REDUCTION FACTORS</b><br>Flexure - Tension controlled $\phi_b = 0.90$<br>$\phi_b = 0.75$<br>Compression controlled reinforcement strainExtreme reinforcement strain $\varepsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| Spacing at max shear (ignored first stirrup in 6" spacing) $s =$ 18.00inLegs at max shear $n_{legs} =$ 2Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 =$ 29.5221 in <b>REDUCTION FACTORS</b> Flexure - Tension controlled $\phi_b =$ 0.90Flexure - Compression controlled $\phi_b =$ 0.75Compression controlled reinforcement strain $\epsilon_{cl} =$ 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Spacing at max shear (ignored first stirrup in 6" spacing) $s =$ 18.00inLegs at max shear $n_{legs} =$ 2Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 =$ 29.5221 in <b>REDUCTION FACTORS</b> Flexure - Tension controlled $\phi_b =$ 0.90Flexure - Compression controlled $\phi_b =$ 0.75Compression controlled reinforcement strain $\epsilon_{cl} =$ 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| Legs at max shear $n_{legs} =$ 2Extreme reinforcement depth $d = h - c - d_v - d_{bar}/2 =$ 29.5221 in <b>REDUCTION FACTORS</b> Flexure - Tension controlled $\phi_b =$ 0.90Flexure - Compression controlled $\phi_b =$ 0.75Compression controlled reinforcement strain $\epsilon_{cl} =$ 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| <b>REDUCTION FACTORS</b> Flexure - Tension controlled $\phi_b = 0.90$ Flexure - Compression controlled $\phi_b = 0.75$ Compression controlled reinforcement strain $\epsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| Flexure - Tension controlled $\phi_b$ =0.90Flexure - Compression controlled $\phi_b$ =0.75Compression controlled reinforcement strain $\varepsilon_{cl}$ =0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Flexure - Compression controlled $\phi_b =$ 0.75Compression controlled reinforcement strain $\epsilon_{cl} =$ 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| Flexure - Compression controlled $\phi_b =$ 0.75Compression controlled reinforcement strain $\varepsilon_{cl} =$ 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AASHTO 5.5.4.2  |
| Compression controlled reinforcement strain $\varepsilon_{cl} = 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AASHTO 5.5.4.2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AASHTO 5.6.2.1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AASHTO 5.6.2.1  |
| Shear $\phi_v = 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AASHTO 5.5.4.2  |
| Poor condition factor $\phi_c = 0.85$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MBE 6A.4.2.3-1  |

**PROJECT NO : 195987** 

PROJECT : BEL-40-23.37

SUBJECT : Pier 5 Cap Rating

TASK : Rating

**Michael Baker** 

INTERNATIONAL

| <b>PROJECT</b> : <i>BEL-40-23.37</i>                     | 7                                                    |                                                                                                    |                           | Michael Delver           |
|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|--------------------------|
| TASK : Rating                                            |                                                      | PROJECT NO :                                                                                       | 195987                    | Michael Baker            |
| SUBJECT : Pier 5 Cap Ra                                  | ting                                                 |                                                                                                    | 1                         | NTERNATIONAL             |
| CALCULATED BY : JCC                                      | DATE : 10/3/20.                                      | 23 CHECKED BY :                                                                                    | ЕТВ                       | DATE :                   |
|                                                          |                                                      |                                                                                                    |                           | BEAM-HALF DEPTH          |
| DESIGN LOADING                                           |                                                      |                                                                                                    |                           |                          |
| Maximum moment                                           |                                                      | Mu =                                                                                               | 117.15 kip-ft             |                          |
| Shear                                                    |                                                      | Vu =                                                                                               | 112.96 kip                |                          |
| Moment concurrent with sh<br>Axial force concurrent with |                                                      | Mu =<br>Nu =                                                                                       | 117.15 kip-ft<br>0.00 kip |                          |
| Axial force concurrent with                              | silear (tension is positive)                         | Nu –                                                                                               | <b>0.00</b> kip           |                          |
| FLEXURE                                                  |                                                      |                                                                                                    |                           | AASHTO 5.6.3             |
| Compression depth                                        |                                                      | $c = \frac{A_s f_y}{\alpha_1 f_c' \beta_1 b} =$                                                    | 1.66 in                   | AASHTO 5.6.3.1.2-4       |
| Effective compression dept                               | h                                                    | $a = \beta_1 c =$                                                                                  | 1.38 in                   | AASHTO 5.6.3.2.3         |
| Flexure capacity                                         |                                                      | $M_n = \left[A_s f_y \left(d - \frac{a}{2}\right)\right] =$                                        | 4,100.14 kip-in           | AASHTO 5.6.3.2.2-1       |
|                                                          |                                                      |                                                                                                    | •                         |                          |
| Reinforcement strain                                     |                                                      | $\varepsilon_c\left(\frac{d}{c}-1\right) =$                                                        |                           |                          |
| $\phi =$                                                 | $= \max\left(0.75, \min\left(0.9, 0.1\right)\right)$ | $75 + \frac{0.15(\varepsilon_t - \varepsilon_{cl})}{\varepsilon_{tl} - \varepsilon_{cl}} \bigg) =$ | 0.90                      | AASHTO Figure C5.5.4.2-1 |
|                                                          |                                                      | Mr = φφcMn =                                                                                       | 261.38                    |                          |
| Factored moment                                          |                                                      | Mu =                                                                                               | 117.15 kip-ft             | ОК                       |
|                                                          |                                                      |                                                                                                    |                           |                          |
|                                                          |                                                      |                                                                                                    |                           |                          |

| PROJECT : BEL-40-23.37               |                                                                        |                      | Michael Baker      |
|--------------------------------------|------------------------------------------------------------------------|----------------------|--------------------|
| TASK : Rating                        | PROJECT NO :                                                           | 195987               |                    |
| SUBJECT : Pier 5 Cap Rating          |                                                                        |                      |                    |
| CALCULATED BY : JCC DATE : 10        | /3/2023 CHECKED BY : 4                                                 | ЕТВ                  | DATE :             |
|                                      |                                                                        |                      | BEAM-HALF DEPTH    |
| SHEAR                                |                                                                        |                      | AASHTO 5.7.3       |
| Shear depth                          | d - a/2 =                                                              | 28.83 in             |                    |
|                                      | 0.9de = 0.9d =                                                         | 26.57 in             |                    |
|                                      |                                                                        | 23.50591 in          |                    |
|                                      | dv =                                                                   | 28.83 in             | AASHTO 5.7.2.8     |
| Concrete shear width                 | bv =                                                                   | 27.00 in             |                    |
| Lightweight modification factor      | λ =                                                                    | 1.00                 |                    |
| Concrete compressive strength        | f'c =                                                                  | 4.50 ksi             |                    |
| Reinforcement strength               | fy =                                                                   | 60.00 ksi            |                    |
| Shear area                           | Av =                                                                   | 0.62 in^2            |                    |
| Spacing                              | s =                                                                    | 18.00 in             |                    |
| General procedure (AASHTO 5.7.3.4.2) |                                                                        |                      |                    |
| Factored shear                       | Vu =                                                                   | 112.96 kip           |                    |
| Concurrent moment                    | Mu =                                                                   | 117.15 kip-f         | t                  |
| Concurrent axial force               | Nu =                                                                   | 0.00 kip             |                    |
| Elastic modulus of reinforcement     | Es =                                                                   | 29000 ksi            |                    |
| Total reinforcement area             | As =                                                                   | 2.37 in <sup>2</sup> |                    |
|                                      | $\frac{ M_u }{d} + 0.5N_u +  V_u $                                     |                      |                    |
|                                      | $\varepsilon_s = \frac{\frac{ M_u }{d_v} + 0.5N_u +  V_u }{E_s A_s} =$ | 0.002353             | AASHTO 5.7.3.4.2-4 |
|                                      | $\theta = 29 + 3500\varepsilon_s =$                                    | 37.24 deg            | AASHTO 5.7.3.4.2-3 |
|                                      | $\beta = \frac{4.8}{1 + 750\varepsilon_s} =$                           | 1.74                 | AASHTO 5.7.3.4.2-1 |
|                                      | $V_c = 0.0316\beta\lambda\sqrt{f_c'}b_v d_v =$                         | 90.61 kip            | AASHTO 5.7.3.3-3   |
|                                      | $V_{\rm s} = \frac{A_{\rm v} f_{\rm y} d_{\rm v} \cot \theta}{s} =$    | 78.41 kip            |                    |
| Maximum shear                        | $V_{nmax} = 0.25 f_c' b_v d_v =$                                       | 875.82 kip           | AASHTO 5.7.3.3-2   |
|                                      | $V_n = \min(V_{nmax}, V_c + V_s) =$                                    | 169.01 kip           |                    |
|                                      | Vr = φvVn =                                                            | 129.29 kip           |                    |
|                                      |                                                                        |                      |                    |

| <b>PROJECT :</b> <i>BEL-40-23.37</i> |                  |                     | Michael Baker |
|--------------------------------------|------------------|---------------------|---------------|
| TASK : Rating                        |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating          |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC                  | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |
| CALCULATED BY : JCC                  | DATE: 10/3/2023  | CHECKED BY : ETB    | DATE:         |

## **DESCRIPTION:**

Use B-Beam assumptions to check design level bending and shear in cap at exterior bearing, as a parallel check to the strut and tie model.

Shown to be adequate at the design level so no rating factors were generated.

## MATERIAL PROPERTIES, SECTION GEOMETRY, AND GENERAL INPUTS:

| MATERIAL PROPERTIES:                       |                                   |                      |                   |
|--------------------------------------------|-----------------------------------|----------------------|-------------------|
| Concrete compressive strength              | f'c =                             | 4.50 ksi             |                   |
| Elastic modulus of concrete                | Ec = 1,820 √(f'c) =               | 3861 ksi             | AASHTO C5.4.2.4-1 |
| Stress block factor                        | α1 =                              | 0.85                 | AASHTO 5.6.2.2    |
| Effective to total compression depth ratio | β <sub>1</sub> =                  | 0.83                 | AASHTO 5.6.2.2    |
| Concrete compressive strain                | ε <sub>c</sub> =                  | 0.003                | AASHTO 5.7.2.1    |
| Lightweight concrete factor                | λ =                               | 1.00                 | AASHTO 5.4.2.8    |
|                                            |                                   |                      |                   |
| Reinforcement yielding                     | fy =                              | 60.00 ksi            |                   |
| Elastic modulus of reinforcement           | Es =                              | 29,000.00 ksi        |                   |
| Tension limit reinforcement strain         | $\varepsilon_{tl} =$              | 0.005                | AASHTO 5.7.2.1    |
| Compression limit reinforcement strain     | ε <sub>tl</sub> =                 | 0.002                | AASHTO 5.7.2.1    |
|                                            | _                                 |                      |                   |
| SECTION GEOMETRY:                          |                                   |                      |                   |
| Section height                             | h =                               | <b>38.75</b> in      |                   |
| Section width                              | b =                               | <b>27.00</b> in      |                   |
| Bottom clear cover                         | C =                               | <b>2.00</b> in       |                   |
| Side clear cover                           | c <sub>s</sub> =                  | <b>2.00</b> in       |                   |
|                                            |                                   |                      |                   |
| REINFORCEMENT:                             | -                                 |                      |                   |
| Bottom bar size                            | -                                 | # 8                  |                   |
| Row 1 Bars                                 | -                                 | 3                    |                   |
| Row 2 bars                                 | _                                 | 2                    |                   |
| Row spacing                                | spa =                             | <b>2.00</b> in       |                   |
| Bars                                       |                                   | 5                    |                   |
| Bar Area                                   | Abar =                            | 0.79 in <sup>2</sup> |                   |
| Bar Diameter                               | dbar =                            | 1 in                 |                   |
| Total reinforcement area                   | As =                              | 3.95 in <sup>2</sup> |                   |
| Width for spacing                          | bs =                              | 27.00 in             |                   |
| Bar Spacing                                | S =                               | 11.50 in             |                   |
| Row 1 depth                                | d1 = h - c - dv - dbar/2 =        | 35.63 in             |                   |
| Row 2 depth                                | d2 = d1 - spa =                   | 33.63 in             |                   |
| Average depth                              | d = (d1*n1 + d2*n2) / (n1 + n2) = | 34.83 in             |                   |
|                                            |                                   |                      |                   |

**BEAM-FULL DEPTH** 

| TASK : Rating                   |                  | <b>PROJECT NO : 19598</b>           |                      |
|---------------------------------|------------------|-------------------------------------|----------------------|
| SUBJECT : Pier 5 Cap Rating     | 1                |                                     |                      |
| CALCULATED BY : JCC             | DATE : 10/3/2023 | CHECKED BY : ETB                    | DATE :               |
|                                 |                  |                                     | BEAM-FULL DEPT       |
| Stirrups                        |                  |                                     |                      |
| Size                            |                  | # 5                                 |                      |
| Area                            |                  | $A_v = 0$                           | ).31 in <sup>2</sup> |
| Diameter                        |                  | dv =0.                              | 625_in               |
| Spacing at max shear (ignored 1 | . stirrup leg)   | s = <b>12.0</b>                     | <b>0</b> in          |
| Legs at max shear               |                  | n <sub>legs</sub> = 2               |                      |
| Extreme reinforcement depth     |                  | $d = h - c - d_v - d_{bar}/2 = 35.$ | 625 in               |
| REDUCTION FACTORS               |                  |                                     |                      |
| Flexure - Tension controlled    |                  | φ <sub>b</sub> = 0.90               | AASHTO 5.5.4         |
| Flexure - Compression controlle | d                | φ <sub>b</sub> = 0.75               | AASHTO 5.5.4         |
| Compression controlled reinfor  | cement strain    | ε <sub>cl</sub> = <b>0.00</b>       | 2 AASHTO 5.6.2       |
| Tension controlled reinforceme  | nt strain        | ε <sub>tl</sub> = <b>0.00</b>       | 5 AASHTO 5.6.2       |
| Shear                           |                  | φ <sub>v</sub> = 0.90               | AASHTO 5.5.4         |
| Poor condition factor           |                  | φ <sub>c</sub> = 0.85               | MBE 6A.4.2.3         |

## LOADING

| Maximum moment                                          | Mu = | 318.14 | kip-ft |
|---------------------------------------------------------|------|--------|--------|
| Shear                                                   | Vu = | 151.46 | kip    |
| Moment concurrent with shear                            | Mu = | 318.14 | kip-ft |
| Axial force concurrent with shear (tension is positive) | Nu = | 0.00   | kip    |

|                  |                     | Michael Baker |
|------------------|---------------------|---------------|
|                  | PROJECT NO : 195987 |               |
|                  |                     | INTERNATIONAL |
| DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |
| •                | DATE : 10/3/2023    |               |

| FLEXURE                     |                                                 |         | AASHTO 5.6.3       |
|-----------------------------|-------------------------------------------------|---------|--------------------|
| Compression depth           | $c = \frac{A_s f_y}{\alpha_1 f_c' \beta_1 b} =$ | 2.76 in | AASHTO 5.6.3.1.2-4 |
| Effective compression depth | $a = \beta_1 c =$                               | 2.29 in | AASHTO 5.6.3.2.3   |

| Flexure capacity     | $M_n = \left[A_s f_y \left(d - \frac{a}{2}\right)\right] =$                                                                                       | 7,981.59 kip-in<br>665.13 kip-ft | AASHTO 5.6.3.2.2-1       |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|
| Reinforcement strain | $\varepsilon_c\left(\frac{d}{c}-1\right) =$                                                                                                       |                                  |                          |
|                      | $\phi = \max\left(0.75, \min\left(0.9, 0.75 + \frac{0.15(\varepsilon_t - \varepsilon_{cl})}{\varepsilon_{tl} - \varepsilon_{cl}}\right)\right) =$ | 0.90                             | AASHTO Figure C5.5.4.2-1 |
|                      | Mr = φφcMn =                                                                                                                                      | 508.83                           |                          |
| Factored moment      | Mu =                                                                                                                                              | 318.14 kip-ft                    | ОК                       |

**BEAM-FULL DEPTH** 

| PROJECT : BEL-40-23.37               |                                              |                                              |                      | Michael Baker      |
|--------------------------------------|----------------------------------------------|----------------------------------------------|----------------------|--------------------|
| TASK : Rating                        |                                              | PROJECT NO : 1                               | 195987               |                    |
| SUBJECT : Pier 5 Cap Rating          |                                              |                                              |                      |                    |
| CALCULATED BY : JCC DATE :           | 10/3/2023                                    | CHECKED BY : E                               | ТВ                   | DATE :             |
|                                      |                                              |                                              |                      | BEAM-FULL DEPTH    |
| SHEAR                                |                                              |                                              |                      | AASHTO 5.7.3       |
| Shear depth                          |                                              | d - a/2 =                                    | 33.68 in             |                    |
|                                      |                                              | 0.9de = 0.9d =                               | 31.34 in             |                    |
|                                      |                                              | 0.72h =                                      | 27.9 in              |                    |
|                                      |                                              | dv =                                         | 33.68 in             | AASHTO 5.7.2.8     |
| Concrete shear width                 |                                              | bv =                                         | 27.00 in             |                    |
| Lightweight modification factor      |                                              | λ =                                          | 1.00                 |                    |
| Concrete compressive strength        |                                              | f'c =                                        | 4.50 ksi             |                    |
| Reinforcement strength               |                                              | fy =                                         | 60.00 ksi            |                    |
| Shear area                           |                                              | Av =                                         | 0.62 in^2            |                    |
| Spacing                              |                                              | s =                                          | 12.00 in             |                    |
| General procedure (AASHTO 5.7.3.4.2) |                                              |                                              |                      |                    |
| Factored shear                       |                                              | Vu =                                         | 151.46 kip           |                    |
| Concurrent moment                    |                                              | Mu =                                         | 3,817.71 kip-ii      | n                  |
| Concurrent axial force               |                                              | Nu =                                         | 0.00 kip             |                    |
| Elastic modulus of reinforcement     |                                              | Es =                                         | 29000 ksi            |                    |
| Total reinforcement area             |                                              | As =                                         | 3.95 in <sup>2</sup> |                    |
|                                      | $\frac{ M_{u} }{d}$                          | $\frac{ u }{2} + 0.5N_u +  V_u }{E_u} =$     |                      |                    |
|                                      | $\varepsilon_s = -\frac{\omega_l}{\omega_l}$ | $=$ $E_s A_s$ $=$                            | 0.002312             | AASHTO 5.7.3.4.2-4 |
|                                      | 6                                            | $\theta = 29 + 3500\varepsilon_s =$          | 37.09 deg            | AASHTO 5.7.3.4.2-3 |
|                                      |                                              | $\beta = \frac{4.8}{1 + 750\varepsilon_s} =$ | 1.76                 | AASHTO 5.7.3.4.2-1 |
|                                      | $V_{c} = 0.0$                                | $0316\beta\lambda\sqrt{f_c'}b_vd_v =$        | 107.02 kip           | AASHTO 5.7.3.3-3   |
|                                      | $V_s$                                        | $=\frac{A_v f_y d_v \cot \theta}{s} =$       | 138.08 kip           |                    |
| Maximum shear                        | $V_{nm}$                                     | $_{ax} = 0.25 f_c' b_v d_v =$                | 1,022.96 kip         | AASHTO 5.7.3.3-2   |
|                                      | $V_n = \min$                                 | $n(V_{nmax}, V_c + V_s) =$                   | 245.10 kip           |                    |
|                                      |                                              | Vr = φνφcVn =                                | 187.50 kip           |                    |
| Factored shear                       |                                              | Vu =                                         | 151.46 kip           | ОК                 |

| PROJECT : BEL-40-23.37      |                |                     | Michael Baker |
|-----------------------------|----------------|---------------------|---------------|
| TASK : Rating               |                | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                |                     | INTERNATIONAL |
|                             | DATE 10/2/2022 | CUECKED DV FTP      | DATE          |

DATE : 10/3/2023

CHECKED BY: ETB

DATE : --

**TORSION CHECK** 

# **DESCRIPTION:**

Check shear & torsion using combined check from AASHTO 5.7.3.4.2 & 5.7.3.6. -Checked at the center of support which is conservative. Shown to be adequate at the design level so no rating factors were generated.

## **DESIGN CHECKS**

-Shown to be adequate for design checks so no rating factors were calculated

| Check       |          | Capacity | Units  |   | Demand | Units  |  | OK/NG |
|-------------|----------|----------|--------|---|--------|--------|--|-------|
| Shear       |          | 183.15   | kip    | ≥ | 127.39 | kip    |  | ОК    |
| Torsion     |          | 2,619.48 | kip-in | ≥ | 548.94 | kip-in |  | ОК    |
| Longitudina | l Reinf. | 560.68   | kip    | ≥ | 319.52 | kip    |  | ОК    |

# MATERIAL PROPERTIES, SECTION GEOMETRY, AND GENERAL INPUTS:

| MATERIAL PROPERTIES:                                |                                |        |                   |
|-----------------------------------------------------|--------------------------------|--------|-------------------|
| Concrete compressive strength                       | f'c = <b>4.50</b>              | ksi    |                   |
| Elastic modulus of concrete                         | Ec = 1,820 √(f'c) = 3861       | ksi    | AASHTO C5.4.2.4-1 |
| Stress block factor                                 | <b>α1</b> = 0.85               |        | AASHTO 5.6.2.2    |
| Effective to total compression depth ratio          | β <sub>1</sub> =0.83           |        | AASHTO 5.6.2.2    |
| Concrete compressive strain                         | ε <sub>c</sub> = <b>0.003</b>  |        | AASHTO 5.7.2.1    |
| Lightweight concrete factor                         | λ = 1.00                       |        | AASHTO 5.4.2.8    |
|                                                     |                                |        |                   |
| Reinforcement yielding                              | fy = <b>60.00</b>              | ksi    |                   |
| Elastic modulus of reinforcement                    | Es = <b>29,000.0</b>           | 0 ksi  |                   |
| Tension limit reinforcement strain                  | ε <sub>tl</sub> = <b>0.005</b> |        | AASHTO 5.7.2.1    |
| Compression limit reinforcement strain              | ε <sub>tl</sub> = <b>0.002</b> |        | AASHTO 5.7.2.1    |
|                                                     |                                |        |                   |
| SECTION GEOMETRY:                                   |                                |        |                   |
| Section height                                      | h = <b>38.75</b>               | in     |                   |
| Section width                                       | b = <b>27.00</b>               | in     |                   |
| Bottom clear cover                                  | c = <b>2.00</b>                | in     |                   |
| Side clear cover                                    | c <sub>s</sub> = <b>2.00</b>   | in     |                   |
| Concrete area                                       | Acp = h*b = 1046.2             | 5 in^2 |                   |
| Length of outside perimeter of the concrete section | pc = 2*(h+b) = 131             | 5 in   |                   |

| PROJECT : BEL-40-23.37                        |                                                  |                          | Michael Baker  |
|-----------------------------------------------|--------------------------------------------------|--------------------------|----------------|
| TASK : Rating                                 | PROJECT NO                                       | <b>)</b> : 195987        |                |
| SUBJECT : Pier 5 Cap Rating                   |                                                  |                          | -INTERNATIONAL |
| CALCULATED BY : JCC DATE                      | : 10/3/2023 CHECKED B                            | <b>(</b> : ETB           | DATE :         |
|                                               |                                                  |                          |                |
|                                               |                                                  |                          | TORSION CHECK  |
|                                               |                                                  |                          |                |
| REINFORCEMENT:                                |                                                  |                          |                |
| Top bar size                                  |                                                  | # 8                      |                |
| Row 1 Bars                                    |                                                  | 3                        |                |
| Row 2 bars                                    |                                                  | 2                        |                |
| Row spacing                                   | spa                                              | a = <b>2.00</b> in       |                |
| Bars                                          |                                                  | 5                        |                |
| Bar Area                                      | Abai                                             | $r = 0.79 \text{ in}^2$  |                |
| Bar Diameter                                  | dbai                                             |                          |                |
| Total reinforcement area                      |                                                  | $s = 3.95 \text{ in}^2$  |                |
| Width for spacing                             |                                                  | s = 27.00 in             |                |
| Bar Spacing                                   |                                                  | s = 11.50 in             |                |
| Row 1 depth                                   | d1 = h - c - dv - dbar/2                         | 2 = 35.63 in             |                |
| Row 2 depth                                   | d2 = d1 - spa                                    | a = 33.63 in             |                |
| Average depth                                 | d = (d1*n1 + d2*n2) / (n1 + n2)                  | ) = 34.83 in             |                |
| Bottom bar size                               |                                                  | # 11                     |                |
| Bottom bars                                   |                                                  | 4                        |                |
| Bar Area                                      | Abai                                             | $r = 1.56 \text{ in}^2$  |                |
| Bar Diameter                                  | dbai                                             |                          |                |
| Bottom bar area                               | Abot                                             | $t = 6.24 \text{ in}^2$  |                |
| Side bar size                                 |                                                  | # 6                      |                |
| Side bars                                     |                                                  | 6                        |                |
| Bar Area                                      | Abai                                             |                          |                |
| Bar Diameter                                  | dbai                                             |                          |                |
| Side bar area                                 | Aside                                            |                          |                |
|                                               |                                                  |                          |                |
| Total longitudinal reinforcement              | Al = As + Abot + Aside                           | e = 12.83 in^2           | 2              |
| Stirrups                                      |                                                  |                          |                |
| Size                                          |                                                  | # 5                      |                |
| Area                                          | A                                                | , = 0.31 in <sup>2</sup> |                |
| Diameter                                      | dv                                               | / = 0.625 in             |                |
| Spacing at max shear (ignored 1 stirrup leg)  | 5                                                | s = <b>12.00</b> in      |                |
| Legs at max shear                             | n <sub>leg</sub> .                               | <sub>s</sub> = 2         |                |
| Extreme reinforcement depth                   | d = h - c - d <sub>v</sub> - d <sub>bar</sub> /2 | 2 = 35.625 in            |                |
| Area enclosed by stirrups                     | $Aoh = 2^{*}((h - 2c - dv)^{*}(b - 2c - dv))$    |                          | 2              |
| Area enclosed by shear flow path              | Ao = 0.85Aoh                                     |                          |                |
| -Based on ACI 318-14 22.7.6.1.1.              |                                                  |                          |                |
| Perimeter of the centerline of the closed tra | nsverse torsion reinforcement                    |                          |                |
|                                               | ph = 2*((h - 2c - dv)+(b 2c - dv)                | )= 113.00 in             |                |

| PROJECT : BEL-40-23.37           |                          |                   |                | Michael Baker  |
|----------------------------------|--------------------------|-------------------|----------------|----------------|
| TASK : Rating                    | PROJECT NO : 195987      |                   |                |                |
| SUBJECT : Pier 5 Cap Rating      | 1                        |                   |                |                |
| CALCULATED BY : JCC              | DATE : 10/3/2023         | CHECKED BY :      | ЕТВ            | DATE :         |
|                                  |                          |                   |                | TORSION CHECK  |
| <b>REDUCTION FACTORS</b>         |                          |                   |                |                |
| Flexure - Tension controlled     |                          | $\phi_{b} =$      | 0.90           | AASHTO 5.5.4.2 |
| Flexure - Compression controlle  | φ <sub>b</sub> =         | 0.75              | AASHTO 5.5.4.2 |                |
| Compression controlled reinfor   | ε <sub>cl</sub> =        | 0.002             | AASHTO 5.6.2.1 |                |
| Tension controlled reinforceme   | nt strain                | ε <sub>tl</sub> = | 0.005          | AASHTO 5.6.2.1 |
| Shear & Torsion                  |                          | φ <sub>v</sub> =  | 0.90           | AASHTO 5.5.4.2 |
| Poor condition factor            |                          | φ <sub>c</sub> =  | 0.85           | MBE 6A.4.2.3-1 |
| LOADING                          |                          |                   |                |                |
| Maximum moment                   |                          | Mu =              | 409.07         | kip-ft         |
| Shear                            |                          | Vu =              | 119.91         | kip            |
| Moment concurrent with shear     |                          | Mu =              | 409.07         | kip-ft         |
| Axial force concurrent with shea | ar (tension is positive) | Nu =              | 11.85          | kip            |
| Torsion                          |                          | Tu =              | 45.75          | kip-ft         |
| -Taken from MIDAS model, elen    | nent 1115i, STR I        |                   |                |                |

| PROJECT : BEL-40-2    | 23.37                                                   |                                                             |                         | Michael Baker            |
|-----------------------|---------------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------|
| TASK : Rating         |                                                         | PROJECT NO :                                                | 195987                  |                          |
| SUBJECT : Pier 5 Co   | ıp Rating                                               |                                                             | 1                       | NIERNAIIUNAL             |
| CALCULATED BY :       | JCC DATE : 10/3/20                                      | CHECKED BY : E                                              | ТВ                      | DATE :                   |
|                       |                                                         |                                                             |                         | TORSION CHECK            |
| FLEXURE               |                                                         |                                                             |                         | AASHTO 5.7.2.1-6         |
| -Check                |                                                         |                                                             |                         |                          |
| Compression depth     |                                                         | $c = \frac{A_s f_y}{\alpha_1 f_c' \beta_1 b} =$             | 2.76 in                 | AASHTO 5.6.3.1.2-4       |
| Effective compression | depth                                                   | $a = \beta_1 c =$                                           | 2.29 in                 | AASHTO 5.6.3.2.3         |
| Flexure capacity      |                                                         | $M_n = \left[A_s f_y \left(d - \frac{a}{2}\right)\right] =$ | 7,981.59 kip-in         | AASHTO 5.6.3.2.2-1       |
|                       |                                                         | _                                                           | 665.13 kip-ft           |                          |
| Reinforcement strain  |                                                         | $\varepsilon_c\left(\frac{d}{c}-1\right) =$                 | 0.036                   |                          |
|                       | $\phi = \max\left(0.75, \min\left(0.9, 0\right)\right)$ | <i>ti ti //</i>                                             | 0.90                    | AASHTO Figure C5.5.4.2-1 |
| Factored moment       |                                                         | Mr = φφcMn =<br>Mu =                                        | 508.83<br>409.07 kip-ft | ОК                       |

| d - a/2 =<br>9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Michael Baker                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d - a/2 =<br>.9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av = | 33.68 in<br>31.34 in<br>27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE :<br>TORSION CHECK<br>AASHTO 5.7.3                                                                                                                                                                                                                                                                                                                                                                                                                     |
| d - a/2 =<br>.9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av = | 33.68 in<br>31.34 in<br>27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TORSION CHECK                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =               | 31.34 in<br>27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =               | 31.34 in<br>27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =               | 31.34 in<br>27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =               | 31.34 in<br>27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.2.8                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9de = 0.9d =<br>0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =               | 31.34 in<br>27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.2.8                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.72h =<br>dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =                               | 27.9 in<br>33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AASHTO 5.7.2.8                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dv =<br>bv =<br>λ =<br>f'c =<br>fy =<br>Av =                                          | 33.68 in<br>27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AASHTO 5.7.2.8                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| bv =<br>λ =<br>f'c =<br>fy =<br>Av =                                                  | 27.00 in<br>1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AASHTO 5.7.2.8                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| λ =<br>f'c =<br>fy =<br>Av =                                                          | 1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| λ =<br>f'c =<br>fy =<br>Av =                                                          | 1.00<br>4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f'c =<br>fy =<br>Av =                                                                 | 4.50 ksi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| fy =<br>Av =                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Av =                                                                                  | 00.00 K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                       | 0.62 in^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| с —                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $Vu =$ $Mu =$ $Nu =$ $Es =$ $As =$ $Tu =$ $\overline{9p_hT_u}^2 =$                    | 119.91 kip<br>4,908.78 kip-in<br>11.85 kip<br>29000 ksi<br>3.95 in <sup>2</sup><br>548.94 kip-in<br>127.39 kip                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ''s                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.3.4.2-4                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.3.4.2-3                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.3.4.2-1                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AASHTO 5.7.3.3-3                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{a_v \cot \theta}{s} =$                                                         | 135.93 kip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $25f_c'b_vd_v =$                                                                      | 1,022.96 kip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AASHTO 5.7.3.3-2                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                       | $s = ph = Ao =$ $Vu = Mu = Nu =$ $Ru = Es = As = Tu =$ $\overline{\frac{9p_hT_u}{2A_o}}^2 =$ $\overline{\frac{9p_hT_u}{2A_o}}^2 =$ $\overline{\frac{9p_hT_u}{2A_o}}^2 =$ $\overline{\frac{9p_hT_u}{2A_o}} =$ | $Av = 0.62 \text{ in}^{2}$ $s = 12.00 \text{ in}$ $ph = 113.00 \text{ in}$ $Ao = 649.01 \text{ in}^{2}$ $Vu = 119.91 \text{ kip}$ $Mu = 4,908.78 \text{ kip-ir}$ $Nu = 11.85 \text{ kip}$ $Es = 29000 \text{ ksi}$ $As = 3.95 \text{ in}^{2}$ $Tu = 548.94 \text{ kip-ir}$ $\overline{9p_{h}T_{u}}^{2} = 127.39 \text{ kip}$ $\overline{6N_{u} +  V_{u} } = 0.002436$ $+ 3500\varepsilon_{s} = 37.53 \text{ deg}$ $\frac{4.8}{1+750\varepsilon_{s}} = 1.70$ |

 $V_n = \min(V_{nmax}, V_c + V_s) = 239.41 \text{ kip}$ 

| PROJECT : BEL-40-23.37<br>TASK : Rating |                  | PROJECT NO:1   | 95987      | Michael Baker  |   |
|-----------------------------------------|------------------|----------------|------------|----------------|---|
| SUBJECT : Pier 5 Cap Rating             |                  |                |            | -INTERNATIONAL |   |
| CALCULATED BY : JCC                     | DATE : 10/3/2023 | CHECKED BY : E | ТВ         | DATE :         |   |
|                                         |                  |                |            | TORSION CHECI  | K |
|                                         |                  | Vr = φνφcVn =  | 183.15 kip |                |   |
| Factored shear                          |                  | Veff =         | 127.39 kip | OI             | K |

| PROJECT : BEL-40-23.37                              |                    |              |                          | Michael Baker               |
|-----------------------------------------------------|--------------------|--------------|--------------------------|-----------------------------|
| TASK : Rating                                       |                    | PROJECT NO : | 195987                   |                             |
| SUBJECT : Pier 5 Cap Rating                         |                    |              |                          | - I N T E R N A T I O N A L |
| CALCULATED BY : JCC                                 | DATE : 10/3/2023   | CHECKED BY : | ETB                      | DATE :                      |
|                                                     |                    |              |                          | TORSION CHECK               |
| TORSION CHECK                                       |                    |              |                          | AASHTO 5.7.3.6.2            |
| Area enclosed by the shear flow                     |                    |              |                          |                             |
| Alea enclosed by the shear now                      | r path             | Ao =         | 649.01 in^2              |                             |
| Area of one leg of closed transv                    | •                  | Ao =<br>At = | 649.01 in^2<br>0.31 in^2 |                             |
| •                                                   | •                  |              |                          |                             |
| Area of one leg of closed transve                   | erse reinforcement | At =         | 0.31 in^2                |                             |
| Area of one leg of closed transve<br>Yield strength | erse reinforcement | At =<br>fy = | 0.31 in^2<br>60.00 ksi   |                             |

| $2A_{o}$ | $A_t f_v \cot \theta$ |                    |                 |                    |
|----------|-----------------------|--------------------|-----------------|--------------------|
| $T_n =$  | Uy                    | $\lambda_{duct} =$ | 2619.476 kip-in | AASHTO 5.7.3.6.2-1 |
| 10       | S                     | uuce               |                 |                    |

Tu = 548.94 kip-in

Factored torsion

Nominal shear resistance

ОК

| SUBJECT : Pier 5 Cap Rating        |                           |                 |                 | INTERNATIONAL    |
|------------------------------------|---------------------------|-----------------|-----------------|------------------|
| CALCULATED BY : JCC                | DATE : 10/3/2023          | CHECKED BY : E7 | ГВ              | DATE :           |
|                                    |                           |                 |                 | TORSION CHEC     |
|                                    |                           |                 |                 |                  |
| LONGITUDINAL REINFORCEI            |                           |                 |                 | AASHTO 5.7.3.6.3 |
| Calculate reinforcement            |                           |                 |                 |                  |
| Top bar area                       |                           | Abar =          | 0.79 in^2       |                  |
| Top bars                           |                           | ntop =          | 3               |                  |
| Flexure demand/capacity ratio      |                           | D/C =           | 0.80            |                  |
| Top bar area remaining for longitu | dinal reinforcement check | Atop =          | 0.46 in^2       |                  |
| Bottom & side bars                 |                           |                 |                 |                  |
| Bottom bar area                    |                           | Abot =          | 6.24 in^2       |                  |
| Side bar area                      |                           | Aside =         | 2.64 in^2       |                  |
| Longitudinal reinforcement check   | area                      | As =            | 9.34 in^2       |                  |
| Yield strength                     |                           | fy =            | 60.00 ksi       |                  |
| Absolute value of factored momer   | ıt                        | Mu  =           | 4908.78 kip-in  |                  |
| Shear depth                        |                           | dv =            | 33.68 in        |                  |
| Combined resistance factor         |                           | φ =             | 0.765           |                  |
| Factored axial force               |                           | Nu =            | 11.85 kip       |                  |
| Shear angle of inclination         |                           | θ =             | 37.53 deg       |                  |
| Factored shear force               |                           | Vu =            | 119.91 kip      |                  |
| Prestress steel shear resistance   |                           | Vp =            | <b>0.00</b> kip |                  |
|                                    |                           |                 | 125.02.1        |                  |

**PROJECT NO: 195987** 

Vs =

ph =

Tu =

Ao =

Asfy =

135.93 kip

113.00 in

560.68 kip

548.94 kip-in 649.01 in^2

Capacity

Factored torsion

Reinforcement shear resistance

Area enclosed by shear flow path

Perimeter of closed transverse torsion reinforcement

Demand

 $\frac{|M_u|}{\phi d_v} + \frac{0.5N_u}{\phi} + \cot(\theta) \sqrt{\left(\left|\frac{V_u}{\phi} - V_p\right| - 0.5V_s\right)^2 + \left(\frac{0.45p_hT_u}{2A_o\phi}\right)^2} = 319.52 \text{ kip}$ 

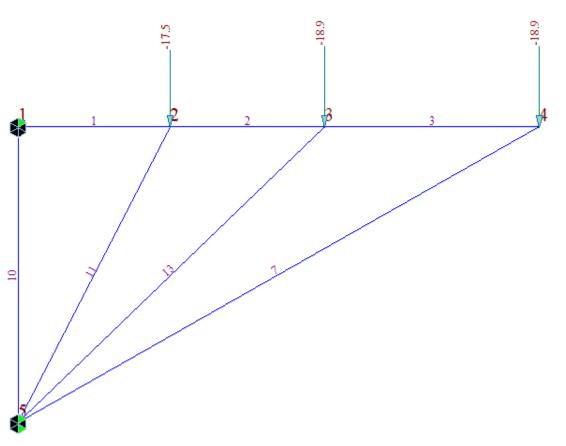
ОК

Michael Baker

INTERNATIONAL

PROJECT : BEL-40-23.37 **TASK** : Rating

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |


### ELEMENTS 1, 2, 3 (TOP TIES)

#### **DESCRIPTION:**

Check ties in the strut-and-tie model

#### REINFORCEMENT

#### MODEL:



Resistance factor for tension in strut-and-tie models Condition factor for poor condition

| Element |   | As (in^2) | Pn (kip) | Pr (kip) |
|---------|---|-----------|----------|----------|
|         | 1 | 3.95      | 237.00   | 181.31   |
|         | 2 | 3.55      | 212.77   | 162.77   |
|         | 3 | 1.42      | 85.06    | 65.07    |

AASHTO 5.5.4.2

MBE

60 ksi

0.90

0.85

fy =

Phi =

Phi.c =

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

ELEMENTS 1, 2, 3 (TOP TIES)

#### **MIDAS FORCES**

| -    |           |          |                |
|------|-----------|----------|----------------|
| Elem | Load      |          | Force-J (kips) |
|      | 1 DC      | 56.79589 |                |
|      | 2 DC      | 53.72109 | 53.72109       |
|      | 3 DC      | 33.54721 |                |
|      | 1 DW      | 2.098322 |                |
|      | 2 DW      | 1.779292 | 1.779292       |
|      | 3 DW      | 1.120123 | 1.120123       |
|      | 1 HL-93   | 66.13789 |                |
|      | 2 HL-93   | 56.50372 | 56.50372       |
|      | 3 HL-93   | 35.57097 |                |
|      | 1 2F1     | 27.20003 | 27.20003       |
|      | 2 2F1     | 16.74627 | 16.74627       |
|      | 3 2F1     | 10.54233 | 10.54233       |
|      | 1 3F1     | 40.58873 | 40.58873       |
|      | 2 3F1     | 27.43698 | 27.43698       |
|      | 3 3F1     | 17.27249 | 17.27249       |
|      | 1 4F1     | 45.61034 | 45.61034       |
|      | 2 4F1     | 31.71326 | 31.71326       |
|      | 3 4F1     | 19.96455 | 19.96455       |
|      | 1 5C1     | 38.62312 | 38.62312       |
|      | 2 5C1     | 25.59788 | 25.59788       |
|      | 3 5C1     | 16.11471 | 16.11471       |
|      | 1 Type3   | 37.9904  | 37.9904        |
|      | 2 Type3   | 26.55481 | 26.55481       |
|      | 3 ТуреЗ   | 16.71713 | 16.71713       |
|      | 1 Type3S2 | 31.23439 | 31.23439       |
|      | 2 Type3S2 | 22.42805 | 22.42805       |
|      | 3 Type3S2 | 14.1192  | 14.1192        |
|      | 1 Type3-3 | 35.38232 | 35.38232       |
|      | 2 Type3-3 | 23.32517 | 23.32517       |
|      | 3 Type3-3 | 14.68397 | 14.68397       |
|      | 1 SU4     | 45.07861 | 45.07861       |
|      | 2 SU4     | 31.08527 | 31.08527       |
|      | 3 SU4     | 19.56921 | 19.56921       |
|      | 1 SU5     | 48.0421  | 48.0421        |
|      | 2 SU5     | 33.67197 | 33.67197       |
|      | 3 SU5     | 21.19762 | 21.19762       |
|      | 1 SU6     | 53.16504 | 53.16504       |
|      | 2 SU6     | 37.39503 | 37.39503       |
|      | 3 SU6     | 23.54141 | 23.54141       |
|      | 1 SU7     | 57.4426  | 57.4426        |
|      | 2 SU7     | 41.20779 | 41.20779       |
|      | 3 SU7     | 25.94167 |                |
|      | 1 EV2     | 46.71657 |                |
|      |           |          |                |

| PROJECT : BEL-40-23.37      |                   |                     | Michael Baker              |
|-----------------------------|-------------------|---------------------|----------------------------|
| TASK : Rating               |                   | PROJECT NO : 195987 |                            |
| SUBJECT : Pier 5 Cap Rating |                   |                     | INTERNATIONAL              |
| CALCULATED BY : JCC         | DATE : 10/3/2023  | CHECKED BY : ETB    | DATE :                     |
|                             |                   |                     |                            |
|                             |                   |                     | ELEMENTS 1, 2, 3 (TOP TIES |
| 2 5/2                       | 26 12006 26 12006 |                     |                            |
| 2 EV2                       | 36.13906 36.13906 |                     |                            |
| 3 EV2                       | 22.75073 22.75073 |                     |                            |
| 1 EV3                       | 66.81899 66.81899 |                     |                            |
| 2 EV3                       | 45.97749 45.97749 |                     |                            |
| 3 EV3                       | 28.94436 28.94436 |                     |                            |
| 1 RPL 60T                   | 56.16017 56.16017 |                     |                            |
| 2 RPL 60T                   | 39.86211 39.86211 |                     |                            |
| 3 RPL 60T                   | 25.09452 25.09452 |                     |                            |
| 1 RPL 65T                   | 61.08205 61.08205 |                     |                            |
| 2 RPL 65T                   | 41.25265 41.25265 |                     |                            |
| 3 RPL 65T                   | 25.96991 25.96991 |                     |                            |

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |  |
|-----------------------------|------------------|---------------------|---------------|--|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |  |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |  |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |  |

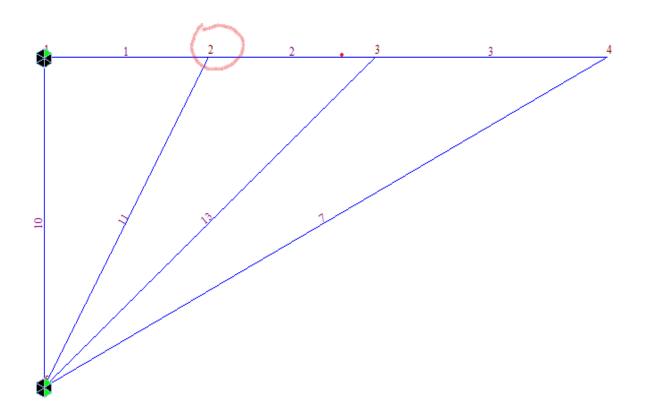
### RATINGS

| Element     |          | 1       |          |      |
|-------------|----------|---------|----------|------|
| Factored re | sistance | 181.305 |          |      |
|             | Load L   | F       | Factored | RF   |
| DC          | 56.8     | 1.25    | 71.0     |      |
| DW          | 2.1      | 1.5     | 3.1      |      |
| HL-93 INV   | 66.1     | 1.75    | 115.7    | 0.93 |
| HL-93 OPR   | 66.1     | 1.35    | 89.3     | 1.20 |
| 2F1         | 27.2     | 1.45    | 39.4     | 2.72 |
| 3F1         | 40.6     | 1.45    | 58.9     | 1.82 |
| 4F1         | 45.6     | 1.45    | 66.1     | 1.62 |
| 5C1         | 38.6     | 1.45    | 56.0     | 1.91 |
| Туре3       | 38.0     | 1.45    | 55.1     | 1.95 |
| Type3S2     | 31.2     | 1.45    | 45.3     | 2.37 |
| Туре3-3     | 35.4     | 1.45    | 51.3     | 2.09 |
| SU4         | 45.1     | 1.45    | 65.4     | 1.64 |
| SU5         | 48.0     | 1.45    | 69.7     | 1.54 |
| SU6         | 53.2     | 1.45    | 77.1     | 1.39 |
| SU7         | 57.4     | 1.45    | 83.3     | 1.29 |
| EV2         | 46.7     | 1.45    | 67.7     | 1.58 |
| EV3         | 66.8     | 1.1     | 73.5     | 1.46 |
| RPL 60T     | 56.2     | 1.4     | 78.6     | 1.36 |
| RPL 65T     | 61.1     | 1.4     | 85.5     | 1.25 |
|             |          |         |          |      |
| Element     |          | 2       |          |      |
| Factored re | sistance | 162.77  | kip      |      |
|             | Load L   | F       | Factored | RF   |
| DC          | 53.7     | 1.25    | 67.2     |      |
| DW          | 1.8      | 1.5     | 2.7      |      |
| HL-93 INV   | 56.5     | 1.75    | 98.9     | 0.94 |
| HL-93 OPR   | 56.5     | 1.35    | 76.3     | 1.22 |
| 2F1         | 16.7     | 1.45    | 24.3     | 3.83 |

| HL-93 INV | 56.5 | 1.75 | 98.9 | 0.94 |
|-----------|------|------|------|------|
| HL-93 OPR | 56.5 | 1.35 | 76.3 | 1.22 |
| 2F1       | 16.7 | 1.45 | 24.3 | 3.83 |
| 3F1       | 27.4 | 1.45 | 39.8 | 2.34 |
| 4F1       | 31.7 | 1.45 | 46.0 | 2.02 |
| 5C1       | 25.6 | 1.45 | 37.1 | 2.50 |
| Туре3     | 26.6 | 1.45 | 38.5 | 2.41 |
| Type3S2   | 22.4 | 1.45 | 32.5 | 2.86 |
| Туре3-3   | 23.3 | 1.45 | 33.8 | 2.75 |
| SU4       | 31.1 | 1.45 | 45.1 | 2.06 |
| SU5       | 33.7 | 1.45 | 48.8 | 1.90 |
| SU6       | 37.4 | 1.45 | 54.2 | 1.71 |
| SU7       | 41.2 | 1.45 | 59.8 | 1.56 |
| EV2       | 36.1 | 1.45 | 52.4 | 1.77 |
| EV3       | 46.0 | 1.1  | 50.6 | 1.84 |
| RPL 60T   | 39.9 | 1.4  | 55.8 | 1.67 |
|           |      |      |      |      |

ELEMENTS 1, 2, 3 (TOP TIES)

| TASK : Ratin  | na                         |       |                 |                    | PROJECT NO : 195987 | Michael Baker            |
|---------------|----------------------------|-------|-----------------|--------------------|---------------------|--------------------------|
|               | JBJECT : Pier 5 Cap Rating |       |                 | PROJECT NO: 193987 |                     |                          |
| CALCULATE     |                            | ing   | DATE : 10/3/202 | 23                 | CHECKED BY : ETB    | DATE :                   |
|               |                            |       |                 |                    |                     |                          |
|               |                            |       |                 |                    |                     | ELEMENTS 1, 2, 3 (TOP TI |
| RPL 65T       | 41.3                       | 1.4   | 57.8            |                    | 1.61                |                          |
| Element       |                            | 3     |                 |                    |                     |                          |
| actored resis | tance                      | 65.07 | kip             |                    |                     |                          |
| Lo            | ad LF                      |       | Factored        | RF                 |                     |                          |
| C             | 33.5                       | 1.25  | 41.9            |                    |                     |                          |
| SW            | 1.1                        | 1.5   | 1.7             |                    |                     |                          |
| HL-93 INV     | 35.6                       | 1.75  | 62.2            |                    | 2.21                |                          |
| HL-93 OPR     | 35.6                       | 1.35  | 48.0            |                    | 2.87                |                          |
| 2F1           | 10.5                       | 1.45  | 15.3            |                    | 9.01                |                          |
| BF1           | 17.3                       | 1.45  | 25.0            |                    | 5.50                |                          |
| IF1           | 20.0                       | 1.45  | 28.9            |                    | 4.76                |                          |
| 5C1           | 16.1                       | 1.45  | 23.4            |                    | 5.89                |                          |
| ГуреЗ         | 16.7                       | 1.45  | 24.2            |                    | 5.68                |                          |
| ype3S2        | 14.1                       | 1.45  | 20.5            |                    | 6.73                |                          |
| ype3-3        | 14.7                       | 1.45  | 21.3            |                    | 6.47                |                          |
| 5U4           | 19.6                       | 1.45  | 28.4            |                    | 4.85                |                          |
| SU5           | 21.2                       | 1.45  | 30.7            |                    | 4.48                |                          |
| 5U6           | 23.5                       | 1.45  | 34.1            |                    | 4.03                |                          |
| 507           | 25.9                       | 1.45  | 37.6            |                    | 3.66                |                          |
| EV2           | 22.8                       | 1.45  | 33.0            |                    | 4.17                |                          |
| EV3           | 28.9                       | 1.1   | 31.8            |                    | 4.32                |                          |
| RPL 60T       | 25.1                       | 1.4   | 35.1            |                    | 3.92                |                          |
| RPL 65T       | 26.0                       | 1.4   | 36.4            |                    | 3.79                |                          |
| Governing     |                            |       |                 |                    |                     |                          |
| HL-93 INV     | 0.93                       |       |                 |                    |                     |                          |
| HL-93 OPR     | 1.20                       |       |                 |                    |                     |                          |
| 2F1           | 2.72                       |       |                 |                    |                     |                          |
| BF1           | 1.82                       |       |                 |                    |                     |                          |
| IF1           | 1.62                       |       |                 |                    |                     |                          |
| 5C1           | 1.91                       |       |                 |                    |                     |                          |
| туре3         | 1.95                       |       |                 |                    |                     |                          |
| Type3S2       | 2.37                       |       |                 |                    |                     |                          |
| уре3-3        | 2.09                       |       |                 |                    |                     |                          |
| U4            | 1.64                       |       |                 |                    |                     |                          |
| U5            | 1.54                       |       |                 |                    |                     |                          |
| U6            | 1.39                       |       |                 |                    |                     |                          |
| 5U7           | 1.29                       |       |                 |                    |                     |                          |
| EV2           | 1.58                       |       |                 |                    |                     |                          |
| EV3           | 1.46                       |       |                 |                    |                     |                          |
| RPL 60T       | 1.36                       |       |                 |                    |                     |                          |
| RPL 65T       | 1.25                       |       |                 |                    |                     |                          |


| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

NODE 2 (CTT)

### **DESCRIPTION:**

CTT check at Node 2. Ties checked separately.

# GEOMETRY



| TASK : Rating                       | Pl                  | ROJECT NO: 19                     | 95987            | Michael Baker |
|-------------------------------------|---------------------|-----------------------------------|------------------|---------------|
| SUBJECT : Pier 5 Cap Rating         |                     |                                   |                  |               |
| CALCULATED BY : JCC                 | DATE : 10/3/2023 CI | HECKED BY : E7                    | ГВ               | DATE :        |
|                                     |                     |                                   |                  | NODE 2 (CT    |
| CAPACITY                            |                     |                                   |                  |               |
| CAPACITY                            |                     |                                   |                  |               |
| RESISTANCE FACTORS                  |                     |                                   |                  |               |
| Compression in strut-and-tie models | 5                   | Phi.c1 =                          | 0.70             | AASHTO 5.5.4  |
| Poor condition factor               |                     | Phi.c2 =                          | 0.85             | MBE 6A.4.2.3  |
| MATERIALS                           |                     |                                   |                  |               |
| Compressive strength of concrete    |                     | f'c =                             | 4.50 ksi         |               |
| Concrete efficiency factor          |                     | v =                               | 0.45             |               |
| Confinement modification factor     |                     | m =                               | 1.00             |               |
| Node face compressive stress        |                     | fcu = mvf'c =                     | 2.03 ksi         |               |
| <u>GEOMETRY</u>                     |                     |                                   |                  |               |
| Bearing face length                 |                     | lb =                              | 9 in             |               |
| Back face height                    | ha = 2*Reinforce    | ment Centroid                     | 9.95 in          |               |
| Angle to horizontal tie             |                     | θ =                               | <b>61.45</b> deg |               |
| Strut-Node Interface                | s = ha*cos(         | $\theta$ ) + lb*sin( $\theta$ ) = | 12.66 in         |               |
| Concrete width                      |                     | bw =                              | 27.00 in         |               |
| STRUT CAPACITY                      |                     |                                   |                  |               |
| Node face concrete area             |                     | Acn = s*bw =                      | 341.84 in^2      |               |
| Nominal Resistance                  |                     | Pn = fcu*Acn =                    | 692.22 kip       |               |
| Factored resistance                 | Pr = Phi.c          | :1*Phi.c2*Pn =                    | 411.87 kip       |               |
| BEARING CAPACITY                    |                     |                                   |                  |               |
| Area                                |                     | A1 =                              | 45 in^2          |               |
| Factored resistance                 | Pr = Phi c1*P       | hi.c2*A1*fcu =                    | 54.22 kip        |               |

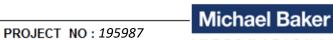
Cap Rating\_2023 10 02 JCC.xlsm

| er 5 Cap Rating |                  |
|-----------------|------------------|
| BY : JCC        | DATE : 10/3/2023 |
|                 |                  |

CHECKED BY : ETB

INTERNATIONAL

DATE : --


# LOADS

Vertical Forces:

| Node | Load Case | FX (kips) | FY (kips) | FZ (kips) | MX (in*kip: N | 1Y (in*kips MZ (in*k | ips Group |
|------|-----------|-----------|-----------|-----------|---------------|----------------------|-----------|
|      | 2 DC      | C         | 0         | -5.59     | 0             | 0                    | 0 Default |
|      | 2 DW      | C         | 0 0       | -0.58     | 0             | 0                    | 0 Default |
|      | 2 HL-93   | C         | 0 0       | -17.52    | 0             | 0                    | 0 Default |
|      | 2 2F1     | C         | 0 0       | -19       | 0             | 0                    | 0 Default |
|      | 2 3F1     | C         | 0 0       | -23.91    | 0             | 0                    | 0 Default |
|      | 2 4F1     | C         | 0 0       | -25.27    | 0             | 0                    | 0 Default |
|      | 2 5C1     | C         | 0 0       | -23.68    | 0             | 0                    | 0 Default |
|      | 2 Type3   | C         | 0         | -20.79    | 0             | 0                    | 0 Default |
|      | 2 Type3S2 | C         | 0         | -16.01    | 0             | 0                    | 0 Default |
|      | 2 Type3-3 | C         | 0         | -21.92    | 0             | 0                    | 0 Default |
|      | 2 SU4     | C         | 0         | -25.44    | 0             | 0                    | 0 Default |
|      | 2 SU5     | C         | 0         | -26.13    | 0             | 0                    | 0 Default |
|      | 2 SU6     | C         | 0 0       | -28.67    | 0             | 0                    | 0 Default |
|      | 2 SU7     | C         | 0         | -29.52    | 0             | 0                    | 0 Default |
|      | 2 EV2     | C         | 0 0       | -19.23    | 0             | 0                    | 0 Default |
|      | 2 EV3     | C         | 0         | -37.89    | 0             | 0                    | 0 Default |
|      | 2 RPL 60T | C         | 0         | -29.63    | 0             | 0                    | 0 Default |
|      | 2 RPL 65T | C         | 0         | -36.05    | 0             | 0                    | 0 Default |

#### Element outputs

| Elem   | Load       | Force-I (kip Force-J (kip | nc) |
|--------|------------|---------------------------|-----|
| LICIII |            |                           |     |
|        | 11 DC      | -6.379848 -6.379848       |     |
|        | 11 DW      | -0.661952 -0.661952       |     |
|        | 11 HL-93   | -19.98981 -19.98981       |     |
|        | 11 2F1     | -21.69034 -21.69034       |     |
|        | 11 3F1     | -27.2884 -27.2884         |     |
|        | 11 4F1     | -28.83486 -28.83486       |     |
|        | 11 5C1     | -27.0259 -27.0259         |     |
|        | 11 Type3   | -23.72756 -23.72756       |     |
|        | 11 Type3S2 | -18.27216 -18.27216       |     |
|        | 11 Type3-3 | -25.01722 -25.01722       |     |
|        | 11 SU4     | -29.03459 -29.03459       |     |
|        | 11 SU5     | -29.81637 -29.81637       |     |
|        | 11 SU6     | -32.72097 -32.72097       |     |
|        | 11 SU7     | -33.68537 -33.68537       |     |
|        | 11 EV2     | -21.94713 -21.94713       |     |
|        | 11 EV3     | -43.24373 -43.24373       |     |
|        | 11 RPL 60T | -33.81662 -33.81662       |     |
|        | 11 RPL 65T | -41.14374 -41.14374       |     |



PROJECT : BEL-40-23.37

TASK : Rating

**SUBJECT** : Pier

CALCULATED

NODE 2 (CTT)

| PROJECT : BEL-40-23.37      |                     | — Michael Baker |
|-----------------------------|---------------------|-----------------|
| TASK : Rating               | PROJECT NO : 195987 |                 |
| SUBJECT : Pier 5 Cap Rating |                     | INTERNATIONAL   |

CALCULATED BY : JCC

DATE : 10/3/2023

CHECKED BY : ETB

DATE : --

NODE 2 (CTT)

# **STRUT CHECK**

| Element        | 11         | Case      | Load | L.F. | Fact | ored R | F     |
|----------------|------------|-----------|------|------|------|--------|-------|
| Factored Resis | stance     | DC        | 6.3  | 8 1  | 1.25 | 7.97   |       |
| Pr =           | 411.87 kip | DW        | 0.6  | 6    | 1.5  | 0.99   |       |
|                |            | HL-93 INV | 19.9 | 91   | 1.75 | 34.98  | 11.52 |
|                |            | HL-93 OPR | 19.9 | 9 1  | 1.35 | 26.99  | 14.93 |
|                |            | 2F1       | 21.6 | 9 1  | 1.45 | 31.45  | 12.81 |
|                |            | 3F1       | 27.2 | 9 1  | 1.45 | 39.57  | 10.18 |
|                |            | 4F1       | 28.8 | 3 1  | 1.45 | 41.81  | 9.64  |
|                |            | 5C1       | 27.0 | 3 1  | 1.45 | 39.19  | 10.28 |
|                |            | Туре3     | 23.7 | 3 1  | 1.45 | 34.40  | 11.71 |
|                |            | Type3S2   | 18.2 | 7 1  | 1.45 | 26.49  | 15.21 |
|                |            | Type3-3   | 25.0 | 2 1  | 1.45 | 36.27  | 11.11 |
|                |            | SU4       | 29.0 | 31   | 1.45 | 42.10  | 9.57  |
|                |            | SU5       | 29.8 | 2 1  | 1.45 | 43.23  | 9.32  |
|                |            | SU6       | 32.7 | 2 1  | 1.45 | 47.45  | 8.49  |
|                |            | SU7       | 33.6 | 91   | 1.45 | 48.84  | 8.25  |
|                |            | EV2       | 21.9 | 51   | 1.45 | 31.82  | 12.66 |
|                |            | EV3       | 43.2 | 4    | 1.1  | 47.57  | 8.47  |
|                |            | RPL 60T   | 33.8 | 2    | 1.4  | 47.34  | 8.51  |
|                |            | RPL 65T   | 41.1 | 4    | 1.4  | 57.60  | 6.99  |

#### **BEARING**

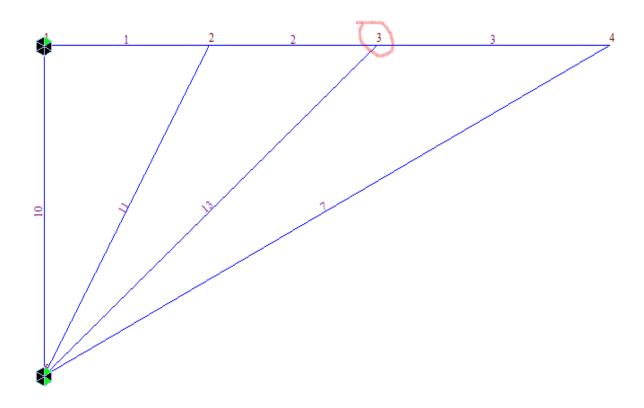
| Node             | 2                   | Case      | Load L.F. | Fac  | ctored RF |      |
|------------------|---------------------|-----------|-----------|------|-----------|------|
| Factored Resist  | ance                | DC        | 2.80      | 1.25 | 3.49      |      |
| Pr =             | 54.22 kip           | DW        | 0.29      | 1.5  | 0.44      |      |
|                  |                     | HL-93 INV | 8.76      | 1.75 | 15.33     | 3.28 |
| -Use half of app | lied force to check | HL-93 OPR | 8.76      | 1.35 | 11.83     | 4.25 |
| only under one   | beam end.           | 2F1       | 9.50      | 1.45 | 13.78     | 3.65 |
|                  |                     | 3F1       | 11.96     | 1.45 | 17.33     | 2.90 |
|                  |                     | 4F1       | 12.64     | 1.45 | 18.32     | 2.75 |
|                  |                     | 5C1       | 11.84     | 1.45 | 17.17     | 2.93 |
|                  |                     | Туре3     | 10.40     | 1.45 | 15.07     | 3.34 |
|                  |                     | Type3S2   | 8.01      | 1.45 | 11.61     | 4.33 |
|                  |                     | Type3-3   | 10.96     | 1.45 | 15.89     | 3.16 |
|                  |                     | SU4       | 12.72     | 1.45 | 18.44     | 2.73 |
|                  |                     | SU5       | 13.07     | 1.45 | 18.94     | 2.65 |
|                  |                     | SU6       | 14.34     | 1.45 | 20.79     | 2.42 |
|                  |                     | SU7       | 14.76     | 1.45 | 21.40     | 2.35 |
|                  |                     | EV2       | 9.62      | 1.45 | 13.94     | 3.61 |
|                  |                     | EV3       | 18.95     | 1.1  | 20.84     | 2.41 |
|                  |                     | RPL 60T   | 14.82     | 1.4  | 20.74     | 2.42 |
|                  |                     | RPL 65T   | 18.03     | 1.4  | 25.24     | 1.99 |

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

NODE 2 (CTT)

### **GOVERNING RATING FACTOR**

| HL-93 INV | 3.28 |
|-----------|------|
| HL-93 OPR | 4.25 |
| 2F1       | 3.65 |
| 3F1       | 2.90 |
| 4F1       | 2.75 |
| 5C1       | 2.93 |
| Туре3     | 3.34 |
| Type3S2   | 4.33 |
| Type3-3   | 3.16 |
| SU4       | 2.73 |
| SU5       | 2.65 |
| SU6       | 2.42 |
| SU7       | 2.35 |
| EV2       | 3.61 |
| EV3       | 2.41 |
| RPL 60T   | 2.42 |
| RPL 65T   | 1.99 |
|           |      |


| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

NODE 3 (CTT)

### **DESCRIPTION:**

CTT check at Node 3. Ties checked separately.

# GEOMETRY



| PROJECT : BEL-40-23.37               |                                         |                | Michael Baker  |
|--------------------------------------|-----------------------------------------|----------------|----------------|
| TASK : Rating                        | PROJECT NO : 2                          | 195987         |                |
| SUBJECT : Pier 5 Cap Rating          |                                         |                |                |
| CALCULATED BY : JCC DAT              | E: 10/3/2023 CHECKED BY: E              | ТВ             | DATE :         |
|                                      |                                         |                |                |
|                                      |                                         |                | NODE 3 (CTT)   |
| CAPACITY                             |                                         |                |                |
| RESISTANCE FACTORS                   |                                         |                |                |
| Compression in strut-and-tie models  | Phi.c1 =                                | 0.70           | AASHTO 5.5.4.2 |
| Poor condition factor                | Phi.c2 =                                | 0.85           | MBE 6A.4.2.3-1 |
| MATERIALS                            |                                         |                |                |
| Compressive strength of concrete     | f'c =                                   | 4.50 ksi       |                |
| Concrete efficiency factor           | v =                                     | 0.45           |                |
| ,<br>Confinement modification factor | m =                                     | 1.00           |                |
| Node face compressive stress         | fcu = mvf'c =                           | 2.03 ksi       |                |
| GEOMETRY                             |                                         |                |                |
| Bearing face length                  | lb =                                    | <b>9.00</b> in |                |
| Back face height                     | ha = 2*Reinforcement Centroid           | 9.95 in        |                |
| Angle to horizontal tie              | θ =                                     | 42.39 deg      |                |
| Strut-Node Interface                 | $s = ha*cos(\theta) + lb*sin(\theta) =$ | 13.42 in       |                |
| Concrete width                       | bw =                                    | 27.00 in       |                |
| STRUT CAPACITY                       |                                         |                |                |
| Node face concrete area              | Acn = s*bw =                            | 362.24 in^2    | <u>,</u>       |
| Nominal Resistance                   | Pn = fcu*Acn =                          | 733.54 kip     |                |
| Factored resistance                  | Pr = Phi.c1*Phi.c2*Pn =                 | 436.46 kip     |                |
| BEARING CAPACITY                     |                                         |                |                |
| Area                                 | A1 =                                    | 45 in^2        | <u>}</u>       |
| Factored resistance                  | Pr = Phi.c1*Phi.c2*A1*fcu =             | 54.22 kip      |                |

Cap Rating\_2023 10 02 JCC.xlsm

| PROJECT : BEL-40-23.37 |  |
|------------------------|--|

TASK : Rating

SUBJECT : Pier 5 Cap Rating

CALCULATED BY : JCC

DATE: 10/3/2023

CHECKED BY : ETB

**PROJECT NO : 195987** 

- -

NODE 3 (CTT)

# LOADS

Vertical Forces:

| Node | Load Case | FX (kips) | FY (kips) | FZ (kips) | MX (in*kip: MY | ′ (in*kips MZ (in* | kips Group* |
|------|-----------|-----------|-----------|-----------|----------------|--------------------|-------------|
|      | 3 DC      | 0         | 0         | -18.21    | 0              | 0                  | 0 Default   |
|      | 3 DW      | 0         | 0         | -0.59     | 0              | 0                  | 0 Default   |
|      | 3 HL-93   | 0         | 0         | -18.89    | 0              | 0                  | 0 Default   |
|      | 3 2F1     | 0         | 0         | -5.6      | 0              | 0                  | 0 Default   |
|      | 3 3F1     | 0         | 0         | -9.18     | 0              | 0                  | 0 Default   |
|      | 3 4F1     | 0         | 0         | -10.61    | 0              | 0                  | 0 Default   |
|      | 3 5C1     | 0         | 0         | -8.56     | 0              | 0                  | 0 Default   |
|      | 3 ТуреЗ   | 0         | 0         | -8.88     | 0              | 0                  | 0 Default   |
|      | 3 Type3S2 | 0         | 0         | -7.5      | 0              | 0                  | 0 Default   |
|      | 3 Type3-3 | 0         | 0         | -7.8      | 0              | 0                  | 0 Default   |
|      | 3 SU4     | 0         | 0         | -10.39    | 0              | 0                  | 0 Default   |
|      | 3 SU5     | 0         | 0         | -11.26    | 0              | 0                  | 0 Default   |
|      | 3 SU6     | 0         | 0         | -12.51    | 0              | 0                  | 0 Default   |
|      | 3 SU7     | 0         | 0         | -13.78    | 0              | 0                  | 0 Default   |
|      | 3 EV2     | 0         | 0         | -12.09    | 0              | 0                  | 0 Default   |
|      | 3 EV3     | 0         | 0         | -15.38    | 0              | 0                  | 0 Default   |
|      | 3 RPL 60T | 0         | 0         | -13.33    | 0              | 0                  | 0 Default   |
|      | 3 RPL 65T | 0         | 0         | -13.79    | 0              | 0                  | 0 Default   |
|      |           |           |           |           |                |                    |             |

#### Element outputs

| Elem | Load       | Force-I (kip Force-J (kips) |
|------|------------|-----------------------------|
| Liem | 13 DC      | -27.17701 -27.17701         |
|      | 13 DW      | -0.887991 -0.887991         |
|      | -          |                             |
|      | 13 HL-93   | -28.19931 -28.19931         |
|      | 13 2F1     | -8.357563 -8.357563         |
|      | 13 3F1     | -13.69297 -13.69297         |
|      | 13 4F1     | -15.82714 -15.82714         |
|      | 13 5C1     | -12.77513 -12.77513         |
|      | 13 Type3   | -13.25271 -13.25271         |
|      | 13 Type3S2 | -11.19317 -11.19317         |
|      | 13 Type3-3 | -11.64089 -11.64089         |
|      | 13 SU4     | -15.51373 -15.51373         |
|      | 13 SU5     | -16.80467 -16.80467         |
|      | 13 SU6     | -18.66274 -18.66274         |
|      | 13 SU7     | -20.56558 -20.56558         |
|      | 13 EV2     | -18.03592 -18.03592         |
|      | 13 EV3     | -22.94599 -22.94599         |
|      | 13 RPL 60T | -19.89399 -19.89399         |
|      | 13 RPL 65T | -20.58796 -20.58796         |



**Michael Baker** 

| PROJECT : BEL-40-23.37      |                     | <ul> <li>Michael Baker</li> </ul> |
|-----------------------------|---------------------|-----------------------------------|
| TASK : Rating               | PROJECT NO : 195987 |                                   |
| SUBJECT : Pier 5 Cap Rating |                     | INTERNATIONAL                     |

CALCULATED BY : JCC

DATE : 10/3/2023

CHECKED BY : ETB

DATE : --

### NODE 3 (CTT)

### **STRUT CHECK**

| Element        | 13         | Case      | Load  | L.F.  | Factored | RF    |
|----------------|------------|-----------|-------|-------|----------|-------|
| Factored Resis | tance      | DC        | 27.18 | 3 1.2 | 5 33.97  | ,     |
| Pr =           | 436.46 kip | DW        | 0.89  | ) 1.  | 5 1.33   |       |
|                |            | HL-93 INV | 28.20 | ) 1.7 | 5 49.35  | 8.13  |
|                |            | HL-93 OPR | 28.20 | ) 1.3 | 5 38.07  | 10.54 |
|                |            | 2F1       | 8.36  | 5 1.4 | 5 12.12  | 33.10 |
|                |            | 3F1       | 13.69 | 9 1.4 | 5 19.85  | 20.20 |
|                |            | 4F1       | 15.83 | 3 1.4 | 5 22.95  | 17.48 |
|                |            | 5C1       | 12.78 | 3 1.4 | 5 18.52  | 21.66 |
|                |            | Туре3     | 13.25 | 5 1.4 | 5 19.22  | 20.88 |
|                |            | Type3S2   | 11.19 | 9 1.4 | 5 16.23  | 24.72 |
|                |            | Type3-3   | 11.64 | 1.4   | 5 16.88  | 23.77 |
|                |            | SU4       | 15.52 | 1.4   | 5 22.49  | 17.83 |
|                |            | SU5       | 16.80 | 0 1.4 | 5 24.37  | 16.46 |
|                |            | SU6       | 18.66 | 5 1.4 | 5 27.06  | 14.82 |
|                |            | SU7       | 20.57 | 7 1.4 | 5 29.82  | 13.45 |
|                |            | EV2       | 18.04 | 1.4   | 5 26.15  | 15.34 |
|                |            | EV3       | 22.95 | 5 1.  | 1 25.24  | 15.89 |
|                |            | RPL 60T   | 19.89 | 9 1.  | 4 27.85  | 14.40 |
|                |            | RPL 65T   | 20.59 | 9 1.  | 4 28.82  | 13.92 |

#### **BEARING**

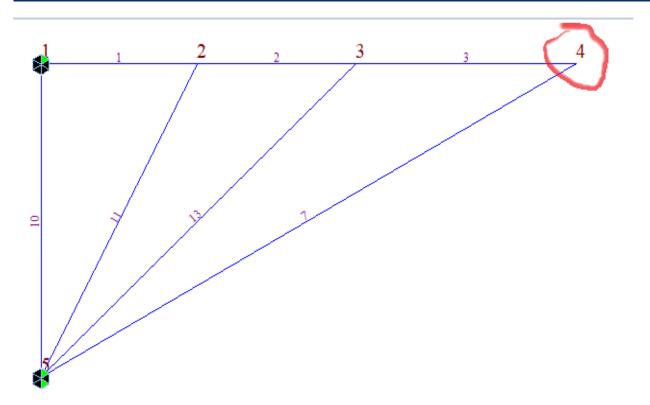
| Node             | 3                   | Case      | Load | L.   | .F.  | Factored | RF    |
|------------------|---------------------|-----------|------|------|------|----------|-------|
| Factored Resist  | ance                | DC        |      | 9.11 | 1.25 | 11.38    |       |
| Pr =             | 54.22 kip           | DW        |      | 0.30 | 1.5  | 0.44     |       |
|                  |                     | HL-93 INV |      | 9.45 | 1.75 | 16.53    | 2.56  |
| -Use half of app | lied force to check | HL-93 OPR |      | 9.45 | 1.35 | 12.75    | 3.32  |
| only under one   | beam end.           | 2F1       |      | 2.80 | 1.45 | 4.06     | 10.44 |
|                  |                     | 3F1       |      | 4.59 | 1.45 | 6.66     | 6.37  |
|                  |                     | 4F1       |      | 5.31 | 1.45 | 7.69     | 5.51  |
|                  |                     | 5C1       |      | 4.28 | 1.45 | 6.21     | 6.83  |
|                  |                     | Туре3     |      | 4.44 | 1.45 | 6.44     | 6.59  |
|                  |                     | Type3S2   |      | 3.75 | 1.45 | 5.44     | 7.80  |
|                  |                     | Туре3-3   |      | 3.90 | 1.45 | 5.66     | 7.50  |
|                  |                     | SU4       |      | 5.20 | 1.45 | 7.53     | 5.63  |
|                  |                     | SU5       |      | 5.63 | 1.45 | 8.16     | 5.19  |
|                  |                     | SU6       |      | 6.26 | 1.45 | 9.07     | 4.67  |
|                  |                     | SU7       |      | 6.89 | 1.45 | 9.99     | 4.24  |
|                  |                     | EV2       |      | 6.05 | 1.45 | 8.77     | 4.84  |
|                  |                     | EV3       |      | 7.69 | 1.1  | 8.46     | 5.01  |
|                  |                     | RPL 60T   |      | 6.67 | 1.4  | 9.33     | 4.54  |
|                  |                     | RPL 65T   |      | 6.90 | 1.4  | 9.65     | 4.39  |

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

NODE 3 (CTT)

### **GOVERNING RATING FACTOR**

| HL-93 INV | 2.56  |
|-----------|-------|
| HL-93 OPR | 3.32  |
| 2F1       | 10.44 |
| 3F1       | 6.37  |
| 4F1       | 5.51  |
| 5C1       | 6.83  |
| Туре3     | 6.59  |
| Type3S2   | 7.80  |
| Туре3-3   | 7.50  |
| SU4       | 5.63  |
| SU5       | 5.19  |
| SU6       | 4.67  |
| SU7       | 4.24  |
| EV2       | 4.84  |
| EV3       | 5.01  |
| RPL 60T   | 4.54  |
| RPL 65T   | 4.39  |
|           |       |


| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |  |  |
|-----------------------------|------------------|---------------------|---------------|--|--|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |  |  |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |  |  |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |  |  |

NODE 4 (CCT)

### **DESCRIPTION:**

CCT Node at Node 4 Ties checked separately.

# GEOMETRY



| TASK : Rating                       | <u>P</u>         | ROJECT NO: 19                 | 95987            | Michael Bak |         |
|-------------------------------------|------------------|-------------------------------|------------------|-------------|---------|
| SUBJECT : Pier 5 Cap Rating         |                  |                               |                  | INTERNATION | AL      |
| CALCULATED BY : JCC                 | DATE : 10/3/2023 | HECKED BY : E7                | ГВ               | DATE :      |         |
|                                     |                  |                               |                  |             |         |
|                                     |                  |                               |                  | NODE 4      | (CCT    |
| CAPACITY                            |                  |                               |                  |             |         |
| RESISTANCE FACTORS                  |                  |                               |                  |             |         |
| Compression in strut-and-tie models | 5                | Phi.c1 =                      | 0.70             | AASHTO 5    | 5.5.4.2 |
| Poor condition factor               |                  | Phi.c2 =                      | 0.85             | MBE 6A.4    | 1.2.3-: |
| MATERIALS                           |                  |                               |                  |             |         |
| Compressive strength of concrete    |                  | f'c =                         | 4.50 ksi         |             |         |
| Concrete efficiency factor          |                  | v =                           | 0.45             |             |         |
| Confinement modification factor     |                  | m =                           | 1.00             |             |         |
| Node face compressive stress        |                  | fcu = mvf'c =                 | 2.03 ksi         |             |         |
| <u>GEOMETRY</u>                     |                  |                               |                  |             |         |
| Bearing face length                 |                  | lb =                          | 9 in             |             |         |
| Back face height                    | ha = 2*Reinforce | ement Centroid                | 9.95 in          |             |         |
| Angle to horizontal tie             |                  | θ =                           | <b>28.24</b> deg |             |         |
| Strut-Node Interface                | s = ha*cos       | $(\theta) + lb*sin(\theta) =$ | 13.02 in         |             |         |
| Concrete width                      |                  | bw =                          | 27.00 in         |             |         |
| STRUT CAPACITY                      |                  |                               |                  |             |         |
| Node face concrete area             |                  | Acn = s*bw =                  | 351.65 in^2      |             |         |
| Nominal Resistance                  |                  | Pn = fcu*Acn =                | 712.10 kip       |             |         |
| Factored resistance                 | Pr = Phi         | .c1*Phi.c2*Pn =               | 423.70 kip       |             |         |
| BEARING CAPACITY                    |                  |                               |                  |             |         |
| Area                                |                  | A1 =                          | 45 in^2          |             |         |
| Factored resistance                 | Pr = Phi.c1*I    | Phi.c2*A1*fcu =               | 54.22 kip        |             |         |

| Cap Rating | _2023 | 10 02 . | JCC.xls | m |
|------------|-------|---------|---------|---|

DATE : 10/3/2023

# CHECKED BY : ETB

**PROJECT NO : 195987** 

### DATE : --

# LOADS

Vertical Forces:

| 4 DC         0         0         -17.82         0         0         0 Default           4 DW         0         0         -0.59         0         0         0 Default           4 HL-93         0         0         -18.89         0         0         0 Default           4 2F1         0         0         -5.6         0         0         0 Default | roup   | ips G | MZ (in*ki | *kips/ | MY (in* | ۰*kip؛ M | MX (in | kips)  | FZ |   | FY (kips) |   | FX (kips) | se | Load Ca |   | Node |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----------|--------|---------|----------|--------|--------|----|---|-----------|---|-----------|----|---------|---|------|
| 4 HL-93 0 0 -18.89 0 0 0 Default                                                                                                                                                                                                                                                                                                                       | efault | 0 D   |           | 0      |         | 0        |        | -17.82 |    | 0 | 1         | 0 |           |    | DC      | 4 |      |
|                                                                                                                                                                                                                                                                                                                                                        | efault | 0 D   |           | 0      |         | 0        |        | -0.59  |    | 0 | 1         | 0 |           |    | DW      | 4 |      |
| 4 2F1 0 0 -5.6 0 0 0 Default                                                                                                                                                                                                                                                                                                                           | efault | 0 D   |           | 0      |         | 0        |        | -18.89 |    | 0 | 1         | 0 |           |    | HL-93   | 4 |      |
|                                                                                                                                                                                                                                                                                                                                                        | efault | 0 D   |           | 0      |         | 0        |        | -5.6   |    | 0 | 1         | 0 |           |    | 2F1     | 4 |      |
| 4 3F1 0 0 -9.18 0 0 0 Default                                                                                                                                                                                                                                                                                                                          | efault | 0 D   |           | 0      |         | 0        |        | -9.18  |    | 0 | 1         | 0 |           |    | 3F1     | 4 |      |
| 4 4F1 0 0 -10.61 0 0 0 Default                                                                                                                                                                                                                                                                                                                         | efault | 0 D   |           | 0      |         | 0        |        | -10.61 |    | 0 | 1         | 0 |           |    | 4F1     | 4 |      |
| 4 5C1 0 0 -8.56 0 0 0 Default                                                                                                                                                                                                                                                                                                                          | efault | 0 D   |           | 0      |         | 0        |        | -8.56  |    | 0 | 1         | 0 |           |    | 5C1     | 4 |      |
| 4 Type3 0 0 -8.88 0 0 0 Default                                                                                                                                                                                                                                                                                                                        | efault | 0 D   |           | 0      |         | 0        |        | -8.88  |    | 0 |           | 0 |           |    | Туре3   | 4 |      |
| 4 Type3S2 0 0 -7.5 0 0 0 Default                                                                                                                                                                                                                                                                                                                       | efault | 0 D   |           | 0      |         | 0        |        | -7.5   |    | 0 |           | 0 |           | 2  | Type3S2 | 4 |      |
| 4 Type3-3 0 0 -7.8 0 0 0 Default                                                                                                                                                                                                                                                                                                                       | efault | 0 D   |           | 0      |         | 0        |        | -7.8   |    | 0 | 1         | 0 |           |    | Type3-3 | 4 |      |
| 4 SU4 0 0 -10.39 0 0 0 Default                                                                                                                                                                                                                                                                                                                         | efault | 0 D   |           | 0      |         | 0        |        | -10.39 |    | 0 | 1         | 0 |           |    | SU4     | 4 |      |
| 4 SU5 0 0 -11.26 0 0 0 Default                                                                                                                                                                                                                                                                                                                         | efault | 0 D   |           | 0      |         | 0        |        | -11.26 |    | 0 | 1         | 0 |           |    | SU5     | 4 |      |
| 4 SU6 0 0 -12.51 0 0 0 Default                                                                                                                                                                                                                                                                                                                         | efault | 0 D   |           | 0      |         | 0        |        | -12.51 |    | 0 | 1         | 0 |           |    | SU6     | 4 |      |
| 4 SU7 0 0 -13.78 0 0 0 Default                                                                                                                                                                                                                                                                                                                         | efault | 0 D   |           | 0      |         | 0        |        | -13.78 |    | 0 | 1         | 0 |           |    | SU7     | 4 |      |
| 4 EV2 0 0 -12.09 0 0 0 Default                                                                                                                                                                                                                                                                                                                         | efault | 0 D   |           | 0      |         | 0        |        | -12.09 |    | 0 | 1         | 0 |           |    | EV2     | 4 |      |
| 4 EV3 0 0 -15.38 0 0 0 Default                                                                                                                                                                                                                                                                                                                         | efault | 0 D   |           | 0      |         | 0        |        | -15.38 |    | 0 |           | 0 |           |    | EV3     | 4 |      |
| 4 RPL 60T 0 0 -13.33 0 0 0 Default                                                                                                                                                                                                                                                                                                                     | efault | 0 D   |           | 0      |         | 0        |        | -13.33 |    | 0 |           | 0 |           |    | RPL 60T | 4 |      |
| 4 RPL 65T 0 0 -13.79 0 0 0 Default                                                                                                                                                                                                                                                                                                                     | efault | 0 D   |           | 0      |         | 0        |        | -13.79 |    | 0 |           | 0 |           |    | RPL 65T | 4 |      |

### PROJECT : BEL-40-23.37 TASK : Rating

SUBJECT : Pier 5 Cap Rating CALCULATED BY : JCC INTERNATIONAL

\_\_\_\_



NODE 4 (CCT)

| PROJECT : BEL-40-23.37<br>TASK : Rating<br>SUBJECT : Pier 5 Cap Rating |       |         |                 | PROJECT NO : 195987 | Michael Baker |
|------------------------------------------------------------------------|-------|---------|-----------------|---------------------|---------------|
|                                                                        |       |         |                 |                     | INTERNATIONAL |
|                                                                        |       | -       | 40/2/2022       |                     |               |
| CALCULATED BY                                                          | (:)(( | DATE    | : 10/3/2023     | CHECKED BY : ETB    | DATE :        |
|                                                                        |       |         |                 |                     |               |
|                                                                        |       |         |                 |                     | NODE 4 (CC1   |
| Element outputs                                                        |       |         |                 |                     |               |
|                                                                        | Elem  | Load    | Force-I (kip Fc | prce-J (kips)       |               |
|                                                                        |       | 3 DC    |                 | 33.54721            |               |
|                                                                        |       | 7 DC    | -37.98642 -3    | 37.98642            |               |
|                                                                        |       | 3 DW    | 1.120123        | 1.120123            |               |
|                                                                        |       | 7 DW    | -1.268346 -2    | 1.268346            |               |
|                                                                        |       | 3 HL-93 | 35.57097        | 35.57097            |               |
|                                                                        |       | 7 HL-93 | -40.27797 -4    | 40.27797            |               |
|                                                                        |       | 3 2F1   | 10.54233        | 10.54233            |               |
|                                                                        |       | 7 2F1   | -11.93737 -2    | 11.93737            |               |
|                                                                        |       | 3 3F1   | 17.27249        | 17.27249            |               |
|                                                                        |       | 7 3F1   | -19.5581        | -19.5581            |               |
|                                                                        |       | 3 4F1   | 19.96455        | 19.96455            |               |
|                                                                        |       | 7 4F1   | -22.6064        | -22.6064            |               |
|                                                                        |       | 3 5C1   | 16.11471        | 16.11471            |               |
|                                                                        |       | 7 5C1   | -18.24712 -2    | 18.24712            |               |

16.71713 16.71713

-18.92926 -18.92926

-15.98755 -15.98755

14.68397 14.68397

-16.62705 -16.62705

19.56921 19.56921

-22.15874 -22.15874

21.19762 21.19762

-24.00264 -24.00264

23.54141 23.54141

-26.65657 -26.65657 25.94167 25.94167

-29.37446 -29.37446

22.75073 22.75073

-25.76127 -25.76127

28.94436 28.94436

-32.77448 -32.77448

25.09452 25.09452

-28.4152 -28.4152

25.96991 25.96991

-29.40643 -29.40643

14.1192

14.1192

3 Type3

7 Type3

3 Type3S2

7 Type3S2

3 Type3-3

7 Type3-3

3 SU4

7 SU4

3 SU5

7 SU5

3 SU6

7 SU6

3 SU7 7 SU7

3 EV2

7 EV2

3 EV3

7 EV3

3 RPL 60T

7 RPL 60T

3 RPL 65T

7 RPL 65T

| PROJECT : BEL-40-23.37      |                     | Michael Baker |
|-----------------------------|---------------------|---------------|
| TASK : Rating               | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                     | INTERNATIONAL |

CALCULATED BY : JCC

DATE : 10/3/2023

CHECKED BY : ETB

DATE : --

NODE 4 (CCT)

# **STRUT CHECK**

| Element        | 7          | Case      | Load  | L.F.  | Factored | RF    |
|----------------|------------|-----------|-------|-------|----------|-------|
| Factored Resis | tance      | DC        | 37.99 | 1.2   | 5 47.48  |       |
| Pr =           | 423.70 kip | DW        | 1.27  | 1.    | 5 1.90   |       |
|                |            | HL-93 INV | 40.28 | 1.7   | 5 70.49  | 5.31  |
|                |            | HL-93 OPR | 40.28 | 1.3   | 5 54.38  | 6.88  |
|                |            | 2F1       | 11.94 | 1.4   | 5 17.31  | 21.63 |
|                |            | 3F1       | 19.56 | 1.4   | 5 28.36  | 13.20 |
|                |            | 4F1       | 22.61 | 1.4   | 5 32.78  | 11.42 |
|                |            | 5C1       | 18.25 | 1.4   | 5 26.46  | 14.15 |
|                |            | Туре3     | 18.93 | 1.4   | 5 27.45  | 13.64 |
|                |            | Type3S2   | 15.99 | 1.4   | 5 23.18  | 16.15 |
|                |            | Type3-3   | 16.63 | 1.4   | 5 24.11  | 15.53 |
|                |            | SU4       | 22.16 | 1.4   | 5 32.13  | 11.65 |
|                |            | SU5       | 24.00 | 1.4   | 5 34.80  | 10.75 |
|                |            | SU6       | 26.66 | 1.4   | 5 38.65  | 9.68  |
|                |            | SU7       | 29.37 | 1.4   | 5 42.59  | 8.79  |
|                |            | EV2       | 25.76 | 1.4   | 5 37.35  | 10.02 |
|                |            | EV3       | 32.77 | 1.    | 1 36.05  | 10.38 |
|                |            | RPL 60T   | 28.42 | 1.    | 4 39.78  | 9.41  |
|                |            | RPL 65T   | 29.41 | . 1.4 | 4 41.17  | 9.09  |

#### **BEARING**

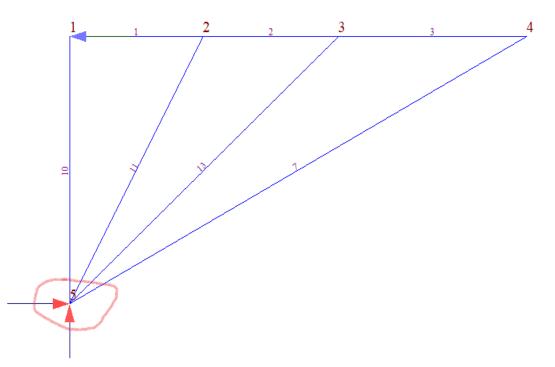
| No | ode            | 4                   | Case      | Load | 1    |          | Factored | RF |       |
|----|----------------|---------------------|-----------|------|------|----------|----------|----|-------|
|    | ctored Resista |                     | DC        | Louu | 8.91 | <br>1.25 | 11.14    |    |       |
|    |                |                     |           |      |      |          |          |    |       |
| Pr | =              | 54.22 kip           | DW        |      | 0.30 | 1.5      | 0.44     |    |       |
|    |                |                     | HL-93 INV |      | 9.45 | 1.75     | 16.53    |    | 2.58  |
| -U | se half of app | lied force to check | HL-93 OPR |      | 9.45 | 1.35     | 12.75    |    | 3.34  |
| on | ly under one   | beam end.           | 2F1       |      | 2.80 | 1.45     | 4.06     |    | 10.50 |
|    |                |                     | 3F1       |      | 4.59 | 1.45     | 6.66     |    | 6.41  |
|    |                |                     | 4F1       |      | 5.31 | 1.45     | 7.69     |    | 5.54  |
|    |                |                     | 5C1       |      | 4.28 | 1.45     | 6.21     |    | 6.87  |
|    |                |                     | Туре3     |      | 4.44 | 1.45     | 6.44     |    | 6.62  |
|    |                |                     | Type3S2   |      | 3.75 | 1.45     | 5.44     |    | 7.84  |
|    |                |                     | Type3-3   |      | 3.90 | 1.45     | 5.66     |    | 7.54  |
|    |                |                     | SU4       |      | 5.20 | 1.45     | 7.53     |    | 5.66  |
|    |                |                     | SU5       |      | 5.63 | 1.45     | 8.16     |    | 5.22  |
|    |                |                     | SU6       |      | 6.26 | 1.45     | 9.07     |    | 4.70  |
|    |                |                     | SU7       |      | 6.89 | 1.45     | 9.99     |    | 4.27  |
|    |                |                     | EV2       |      | 6.05 | 1.45     | 8.77     |    | 4.86  |
|    |                |                     | EV3       |      | 7.69 | 1.1      | 8.46     |    | 5.04  |
|    |                |                     | RPL 60T   |      | 6.67 | 1.4      | 9.33     |    | 4.57  |
|    |                |                     | RPL 65T   |      | 6.90 | 1.4      | 9.65     |    | 4.42  |
|    |                |                     |           |      |      |          |          |    |       |

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |  |
|-----------------------------|------------------|---------------------|---------------|--|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |  |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |  |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |  |

NODE 4 (CCT)

### **GOVERNING RATING FACTOR**

| HL-93 INV | 2.58  |
|-----------|-------|
| HL-93 OPR | 3.34  |
| 2F1       | 10.50 |
| 3F1       | 6.41  |
| 4F1       | 5.54  |
| 5C1       | 6.87  |
| Туре3     | 6.62  |
| Type3S2   | 7.84  |
| Type3-3   | 7.54  |
| SU4       | 5.66  |
| SU5       | 5.22  |
| SU6       | 4.70  |
| SU7       | 4.27  |
| EV2       | 4.86  |
| EV3       | 5.04  |
| RPL 60T   | 4.57  |
| RPL 65T   | 4.42  |
|           |       |


| PROJECT : BEL-40-23.37      | Michael Baker    |                  |        |  |
|-----------------------------|------------------|------------------|--------|--|
| TASK : Rating               |                  |                  |        |  |
| SUBJECT : Pier 5 Cap Rating |                  |                  |        |  |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB | DATE : |  |

NODE 5 (CCC)

#### **DESCRIPTION:**

CCC Node at Node 5

#### **GEOMETRY**



-Elements 7,11 & 13 are both struts and a resultant force is calculated from them.

-This requires the angle between strut/horizontal, strut angle, strut face area, and capacity dependent on the loading.

| TASK : Rating                      |                             | PROJECT NO:1           | 95987           | Michael Baker |  |
|------------------------------------|-----------------------------|------------------------|-----------------|---------------|--|
| SUBJECT : Pier 5 Cap Rating        |                             |                        |                 | INTERNATIONAL |  |
| CALCULATED BY : JCC                | DATE : 10/3/2023            | CHECKED BY : E         | ТВ              | DATE :        |  |
|                                    |                             |                        |                 |               |  |
|                                    |                             |                        |                 | NODE 5 (C     |  |
| CAPACITY                           |                             |                        |                 |               |  |
| RESISTANCE FACTORS                 |                             |                        |                 |               |  |
| Compression in strut-and-tie mode  | els                         | Phi.c1 =               | 0.70            | AASHTO 5.5.   |  |
| Poor condition factor              |                             | Phi.c2 =               | 0.85            | MBE 6A.4.2.   |  |
| MATERIALS                          |                             |                        |                 |               |  |
| Compressive strength of concrete   |                             | f'c =                  | 4.50 ksi        |               |  |
| Concrete efficiency factor         |                             | v =                    | 0.45            |               |  |
| Confinement modification factor    |                             | m =                    | 1.00            |               |  |
| Node face compressive stress       |                             | fcu = mvf'c =          | 2.03 ksi        |               |  |
| <u>GEOMETRY</u>                    |                             |                        |                 |               |  |
| Depth of back face is determined u | ising conventional flexure  | calculations per AASHT | 0 5.8.2.5.2.    |               |  |
| Bearing face length                |                             | lb =                   | <b>30.50</b> in |               |  |
| -Taken as half the column width su | pporting the cap            |                        |                 |               |  |
| Back face height                   |                             | ha = a =               | 2.29 in         |               |  |
| Taken as compression depth calcu   | lated in the full depth ber |                        |                 |               |  |
| Concrete width                     |                             | bw =                   | 27.00 in        |               |  |
| BEARING CAPACITY                   |                             |                        |                 |               |  |
| Area                               |                             | A1 = Ib * bw =         | 823.5 in^2      |               |  |
| Factored resistance                | Pr = Ph                     | i.c1*Phi.c2*A1*fcu =   | 992.21 kip      |               |  |
|                                    |                             |                        |                 |               |  |
|                                    |                             |                        |                 |               |  |
|                                    |                             |                        |                 |               |  |
|                                    |                             |                        |                 |               |  |

| PROJECT : BEL-40-23.37      |                  |                     | — Michael Baker |
|-----------------------------|------------------|---------------------|-----------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |                 |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL   |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :          |
| oneocentee err              |                  |                     | bille !         |

# LOADS

| Element | outputs |
|---------|---------|
|---------|---------|

| Elem | Load       | Force-I (kip | Force-J (kips) |
|------|------------|--------------|----------------|
|      | 7 DC       | -37.98642    | -37.98642      |
|      | 11 DC      | -6.379848    | -6.379848      |
|      | 13 DC      | -27.17701    | -27.17701      |
|      | 7 DW       | -1.268346    | -1.268346      |
|      | 11 DW      | -0.661952    | -0.661952      |
|      | 13 DW      | -0.887991    | -0.887991      |
|      | 7 HL-93    | -40.27797    | -40.27797      |
|      | 11 HL-93   | -19.98981    | -19.98981      |
|      | 13 HL-93   | -28.19931    | -28.19931      |
|      | 7 2F1      | -11.93737    | -11.93737      |
|      | 11 2F1     | -21.69034    | -21.69034      |
|      | 13 2F1     | -8.357563    | -8.357563      |
|      | 7 3F1      | -19.5581     | -19.5581       |
|      | 11 3F1     | -27.2884     | -27.2884       |
|      | 13 3F1     | -13.69297    | -13.69297      |
|      | 7 4F1      | -22.6064     | -22.6064       |
|      | 11 4F1     | -28.83486    | -28.83486      |
|      | 13 4F1     | -15.82714    | -15.82714      |
|      | 7 5C1      | -18.24712    | -18.24712      |
|      | 11 5C1     | -27.0259     |                |
|      | 13 5C1     | -12.77513    |                |
|      | 7 Type3    | -18.92926    | -18.92926      |
|      | 11 Type3   | -23.72756    | -23.72756      |
|      | 13 Type3   | -13.25271    | -13.25271      |
|      | 7 Type3S2  | -15.98755    | -15.98755      |
|      | 11 Type3S2 | -18.27216    | -18.27216      |
|      | 13 Type3S2 | -11.19317    |                |
|      | 7 Type3-3  | -16.62705    | -16.62705      |
|      | 11 Type3-3 | -25.01722    | -25.01722      |
|      | 13 Type3-3 | -11.64089    | -11.64089      |
|      | 7 SU4      | -22.15874    | -22.15874      |
|      | 11 SU4     | -29.03459    | -29.03459      |
|      | 13 SU4     | -15.51373    | -15.51373      |
|      | 7 SU5      | -24.00264    | -24.00264      |
|      | 11 SU5     | -29.81637    | -29.81637      |
|      | 13 SU5     | -16.80467    | -16.80467      |
|      | 7 SU6      | -26.65657    | -26.65657      |
|      | 11 SU6     | -32.72097    | -32.72097      |
|      | 13 SU6     | -18.66274    | -18.66274      |
|      | 7 SU7      | -29.37446    | -29.37446      |
|      | 11 SU7     | -33.68537    | -33.68537      |
|      | 13 SU7     | -20.56558    | -20.56558      |

NODE 5 (CCC)

| PROJECT : BEL-40-23.37   |            |           |                     | Michael Baker |
|--------------------------|------------|-----------|---------------------|---------------|
| TASK : Rating            |            |           | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rat | ing        |           |                     | INTERNATIONAL |
| CALCULATED BY : JCC      | DATE :     | 10/3/2023 | CHECKED BY : ETB    | DATE :        |
|                          |            |           |                     |               |
|                          |            |           |                     | NODE 5 (CCC)  |
|                          | 7 EV2      | -25.76127 | -25 76127           |               |
|                          | 11 EV2     | -21.94713 |                     |               |
|                          | 13 EV2     | -18.03592 | -18.03592           |               |
|                          | 7 EV3      | -32.77448 | -32.77448           |               |
|                          | 11 EV3     | -43.24373 | -43.24373           |               |
|                          | 13 EV3     | -22.94599 | -22.94599           |               |
|                          | 7 RPL 60T  | -28.4152  | -28.4152            |               |
|                          | 11 RPL 60T | -33.81662 | -33.81662           |               |
|                          | 13 RPL 60T | -19.89399 | -19.89399           |               |
|                          | 7 RPL 65T  | -29.40643 | -29.40643           |               |
|                          | 11 RPL 65T | -41.14374 | -41.14374           |               |
|                          | 13 RPL 65T | -20.58796 | -20.58796           |               |

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |  |
|-----------------------------|------------------|---------------------|---------------|--|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |  |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |  |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |  |
|                             |                  |                     |               |  |

# **STRUT CHECK**

Element 7 angle to horizontal

28.24 deg

| Element   | 7     | ,      |          |       |       |
|-----------|-------|--------|----------|-------|-------|
| Case      | Load  | L.F.   | Factored | Horz. | Vert. |
| DC        | 37.99 | ) 1.25 | 47.48    | 41.83 | 22.47 |
| DW        | 1.27  | 1.5    | 1.90     | 1.68  | 0.90  |
| HL-93 INV | 40.28 | 3 1.75 | 70.49    | 62.10 | 33.35 |
| HL-93 OPR | 40.28 | 3 1.35 | 54.38    | 47.90 | 25.73 |
| 2F1       | 11.94 | 1.45   | 17.31    | 15.25 | 8.19  |
| 3F1       | 19.56 | 5 1.45 | 28.36    | 24.98 | 13.42 |
| 4F1       | 22.61 | . 1.45 | 32.78    | 28.88 | 15.51 |
| 5C1       | 18.25 | 5 1.45 | 26.46    | 23.31 | 12.52 |
| Туре3     | 18.93 | 3 1.45 | 27.45    | 24.18 | 12.99 |
| Type3S2   | 15.99 | 1.45   | 23.18    | 20.42 | 10.97 |
| Туре3-3   | 16.63 | 3 1.45 | 24.11    | 21.24 | 11.41 |
| SU4       | 22.16 | 5 1.45 | 32.13    | 28.31 | 15.20 |
| SU5       | 24.00 | ) 1.45 | 34.80    | 30.66 | 16.47 |
| SU6       | 26.66 | 5 1.45 | 38.65    | 34.05 | 18.29 |
| SU7       | 29.37 | 1.45   | 42.59    | 37.52 | 20.15 |
| EV2       | 25.76 | 5 1.45 | 37.35    | 32.91 | 17.68 |
| EV3       | 32.77 | 1.1    | 36.05    | 31.76 | 17.06 |
| RPL 60T   | 28.42 | 2 1.4  | 39.78    | 35.05 | 18.82 |
| RPL 65T   | 29.41 | 1.4    | 41.17    | 36.27 | 19.48 |

Element 11 angle to horizontal

61.45 deg

| Element   | 11    |      |          |       |       |
|-----------|-------|------|----------|-------|-------|
| Case      | Load  | L.F. | Factored | Horz. | Vert. |
| DC        | 6.38  | 1.25 | 7.97     | 3.81  | 7.01  |
| DW        | 0.66  | 1.5  | 0.99     | 0.47  | 0.87  |
| HL-93 INV | 19.99 | 1.75 | 34.98    | 16.72 | 30.73 |
| HL-93 OPR | 19.99 | 1.35 | 26.99    | 12.90 | 23.71 |
| 2F1       | 21.69 | 1.45 | 31.45    | 15.03 | 27.63 |
| 3F1       | 27.29 | 1.45 | 39.57    | 18.91 | 34.76 |
| 4F1       | 28.83 | 1.45 | 41.81    | 19.98 | 36.73 |
| 5C1       | 27.03 | 1.45 | 39.19    | 18.73 | 34.42 |
| Туре3     | 23.73 | 1.45 | 34.40    | 16.44 | 30.22 |
| Type3S2   | 18.27 | 1.45 | 26.49    | 12.66 | 23.27 |
| Туре3-3   | 25.02 | 1.45 | 36.27    | 17.33 | 31.87 |
| SU4       | 29.03 | 1.45 | 42.10    | 20.12 | 36.98 |
| SU5       | 29.82 | 1.45 | 43.23    | 20.66 | 37.98 |
| SU6       | 32.72 | 1.45 | 47.45    | 22.67 | 41.68 |
| SU7       | 33.69 | 1.45 | 48.84    | 23.34 | 42.91 |
| EV2       | 21.95 | 1.45 | 31.82    | 15.21 | 27.95 |

NODE 5 (CCC)

| TASK : Rati | ing                         |       |            |         | PROJECT NO : 195987 | — Michael Baker |
|-------------|-----------------------------|-------|------------|---------|---------------------|-----------------|
| SUBJECT :   | SUBJECT : Pier 5 Cap Rating |       |            |         |                     |                 |
| CALCULAT    | ED BY : JCC                 |       | DATE : 10/ | 3/2023  | CHECKED BY : ETB    | DATE :          |
|             |                             |       |            |         |                     |                 |
|             |                             |       |            |         |                     | NODE 5 (C       |
|             | 40.04                       |       |            |         | 44.70               |                 |
| EV3         | 43.24                       | 1.1   | 47.57      | 22.73   | 41.79               |                 |
| RPL 60T     | 33.82                       | 1.4   | 47.34      | 22.62   | 41.59               |                 |
| PL 65T      | 41.14                       | 1.4   | 57.60      | 27.53   | 50.60               |                 |
| lement 13 a | ngle to horizo              | ontal | 42.39 de   | g       |                     |                 |
| lement      | 13                          |       |            |         |                     |                 |
| Case L      | oad L.F.                    | . Fa  | ictored He | orz. Ve | ert.                |                 |
| DC          | 27.18                       | 1.25  | 33.97      | 25.09   | 22.90               |                 |
| W           | 0.89                        | 1.5   | 1.33       | 0.98    | 0.90                |                 |
| IL-93 INV   | 28.20                       | 1.75  | 49.35      | 36.45   | 33.27               |                 |
| IL-93 OPR   | 28.20                       | 1.35  | 38.07      | 28.12   | 25.66               |                 |
| F1          | 8.36                        | 1.45  | 12.12      | 8.95    | 8.17                |                 |
| F1          | 13.69                       | 1.45  | 19.85      | 14.66   | 13.38               |                 |
| F1          | 15.83                       | 1.45  | 22.95      | 16.95   | 15.47               |                 |
| C1          | 12.78                       | 1.45  | 18.52      | 13.68   | 12.49               |                 |
| уре3        | 13.25                       | 1.45  | 19.22      | 14.19   | 12.95               |                 |
| ype3S2      | 11.19                       | 1.45  | 16.23      | 11.99   | 10.94               |                 |
| ype3-3      | 11.64                       | 1.45  | 16.88      | 12.47   | 11.38               |                 |
| U4          | 15.51                       | 1.45  | 22.49      | 16.61   | 15.16               |                 |
| U5          | 16.80                       | 1.45  | 24.37      | 18.00   | 16.43               |                 |
| U6          | 18.66                       | 1.45  | 27.06      | 19.99   | 18.24               |                 |
| U7          | 20.57                       | 1.45  | 29.82      | 22.03   | 20.10               |                 |
| V2          | 18.04                       | 1.45  | 26.15      | 19.32   | 17.63               |                 |
| V3          | 22.95                       | 1.1   | 25.24      | 18.64   | 17.02               |                 |
| RPL 60T     | 19.89                       | 1.4   | 27.85      | 20.57   | 18.78               |                 |
| PL 65T      | 20.59                       | 1.4   | 28.82      | 21.29   | 19.43               |                 |

| PROJECT : BEL-40-23.37      |                |                     | Michael Baker |
|-----------------------------|----------------|---------------------|---------------|
| TASK : Rating               |                | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                |                     | INTERNATIONAL |
|                             | DATE 10/2/2022 |                     | D 4 7 5       |

CALCULATED BY : JCC

DATE : 10/3/2023

CHECKED BY : ETB

DATE : --

NODE 5 (CCC)

-Capacity calculated using resultant total force

| ha =     | 2.29 in  | $s = ha*cos(\theta) + lb*sin(\theta)$ |
|----------|----------|---------------------------------------|
| lb =     | 30.50 in |                                       |
| bw =     | 27.00 in | Acn = s*bw                            |
| fcu =    | 2.03 ksi |                                       |
|          |          |                                       |
| Phi.c1 = | 0.70     |                                       |
| Phi.c2 = | 0.85     |                                       |

#### Total factored loads used to determine capacity.

| Case      | Horz.  | Vert.  | Resultant | Angle | S     | Acn      | Pn       | Pr     |
|-----------|--------|--------|-----------|-------|-------|----------|----------|--------|
| HL-93 INV | 189.13 | 152.40 | 242.89    | 38.86 | 20.92 | 2 564.94 | 1,144.00 | 680.68 |
| HL-93 OPR | 162.78 | 130.14 | 208.41    | 38.64 | 20.84 | 4 562.63 | 1,139.33 | 677.90 |
| 2F1       | 113.10 | 99.03  | 150.33    | 41.21 | 21.82 | 2 589.12 | 1,192.97 | 709.82 |
| 3F1       | 132.42 | 116.61 | 176.45    | 41.37 | 21.8  | 3 590.73 | 1,196.22 | 711.75 |
| 4F1       | 139.67 | 122.75 | 185.95    | 41.31 | 21.8  | 5 590.17 | 1,195.10 | 711.08 |
| 5C1       | 129.58 | 114.48 | 172.91    | 41.46 | 21.9  | 1 591.65 | 1,198.09 | 712.86 |
| Туре3     | 128.68 | 111.21 | 170.08    | 40.83 | 21.6  | 3 585.35 | 1,185.33 | 705.27 |
| Type3S2   | 118.94 | 100.23 | 155.54    | 40.12 | 21.4  | 1 578.05 | 1,170.55 | 696.47 |
| Type3-3   | 124.91 | 109.70 | 166.24    | 41.29 | 21.8  | 5 589.96 | 1,194.68 | 710.83 |
| SU4       | 138.91 | 122.40 | 185.14    | 41.38 | 21.8  | 9 590.91 | 1,196.60 | 711.98 |
| SU5       | 143.19 | 125.92 | 190.68    | 41.33 | 21.8  | 5 590.35 | 1,195.46 | 711.30 |
| SU6       | 150.58 | 133.26 | 201.07    | 41.51 | 21.93 | 3 592.15 | 1,199.10 | 713.47 |
| SU7       | 156.76 | 138.21 | 208.98    | 41.40 | 21.8  | 9 591.09 | 1,196.95 | 712.19 |
| EV2       | 141.30 | 118.31 | 184.29    | 39.94 | 21.34 | 4 576.17 | 1,166.74 | 694.21 |
| EV3       | 147.00 | 130.91 | 196.84    | 41.69 | 22.00 | 593.93   | 1,202.71 | 715.61 |
| RPL 60T   | 152.11 | 134.23 | 202.87    | 41.43 | 21.9  | 591.35   | 1,197.48 | 712.50 |
| RPL 65T   | 158.95 | 144.56 | 214.85    | 42.28 | 22.22 | 2 599.90 | 1,214.80 | 722.81 |

| PROJECT : BEL-40-23.37      |                  |                     | Michael Baker |
|-----------------------------|------------------|---------------------|---------------|
| TASK : Rating               |                  | PROJECT NO : 195987 |               |
| SUBJECT : Pier 5 Cap Rating |                  |                     | INTERNATIONAL |
| CALCULATED BY : JCC         | DATE : 10/3/2023 | CHECKED BY : ETB    | DATE :        |

NODE 5 (CCC)

| Case      | Horz.  | Vert. | Resultant | RF    |
|-----------|--------|-------|-----------|-------|
| DC        | 70.73  | 52.37 | 88.01     |       |
| DW        | 3.13   | 2.67  | 4.12      |       |
| HL-93 INV | 115.26 | 97.35 | 150.87    | 3.90  |
| HL-93 OPR | 88.92  | 75.10 | 116.39    | 5.03  |
| 2F1       | 39.23  | 43.99 | 58.94     | 10.48 |
| 3F1       | 58.56  | 61.56 | 84.96     | 7.29  |
| 4F1       | 65.81  | 67.71 | 94.42     | 6.56  |
| 5C1       | 55.72  | 59.43 | 81.46     | 7.62  |
| Туре3     | 54.81  | 56.16 | 78.48     | 7.81  |
| Type3S2   | 45.07  | 45.18 | 63.82     | 9.47  |
| Type3-3   | 51.04  | 54.65 | 74.78     | 8.27  |
| SU4       | 65.04  | 67.35 | 93.63     | 6.62  |
| SU5       | 69.32  | 70.87 | 99.14     | 6.25  |
| SU6       | 76.71  | 78.21 | 109.55    | 5.67  |
| SU7       | 82.89  | 83.16 | 117.42    | 5.28  |
| EV2       | 67.43  | 63.26 | 92.46     | 6.51  |
| EV3       | 73.13  | 75.86 | 105.37    | 5.92  |
| RPL 60T   | 78.24  | 79.19 | 111.32    | 5.57  |
| RPL 65T   | 85.08  | 89.51 | 123.50    | 5.11  |

### **BEARING & BACK FACE**

No Section loss at connection between column and cap. No rating factors calculated.

### **GOVERNING RATING FACTOR**

| 3.90  |
|-------|
| 5.03  |
| 10.48 |
| 7.29  |
| 6.56  |
| 7.62  |
| 7.81  |
| 9.47  |
| 8.27  |
| 6.62  |
| 6.25  |
| 5.67  |
| 5.28  |
| 6.51  |
| 5.92  |
| 5.57  |
| 5.11  |
|       |