

August 13, 2007

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Bearing Capacity and Settlement Evaluation (Culvert at STA. 383+50 TW234 Ramp B) SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03 Document #0066

Dear Mr. Weeks:

This letter presents the findings of preliminary evaluations of the proposed culvert at Station 383+50 (TW 234 Ramp B) on the above-referenced project. The findings of other culvert and embankment evaluations will be submitted in separate documents.

It is our understanding that a new culvert will be constructed at Station 383+50 (TW 234 Ramp B) for the above referenced project. The culvert will be a 30-inch Type A conduit in accordance with ODOT Item 707.01 (Metallic Coated Corrugated Steel Conduits and Underdrains). Preliminary plans indicate the flow line of the culvert will be close to and nearly parallel to existing grade. It is therefore anticipated that the culvert will be constructed in accordance with ODOT CMS Item 603.05 Method B. The maximum cover over the culvert at this location is approximately eight feet. The inlet and outlet of the culvert will be supported by headwalls flush with the face of the pipe. At the time of preparing this letter no further information was available regarding the culvert.

It should be noted that this preliminary evaluation is based upon the findings of two borings (C-43 and C-44) located along the proposed alignment of the culvert. The borings were advanced to depths of 15 and 22 feet below the ground surface. Logs of the borings, a plan and profile drawing showing the approximate locations of the borings, a legend of the boring log terminology and general information regarding the drilling procedures are attached. The surveyed ground elevations at the boring locations are reported on the logs.

Exploration Findings

The borings generally encountered 8.5 to 17.0 feet of soil overlying sandstone bedrock. In boring C-43, the soil consisted of very stiff silt and clay (A-6a). However, in boring C-44, granular soils (A-3a, A-2-4) were encountered below 8.0 feet of hard silt and clay to the top of

Michael D. Weeks, P.E., P.S. August 13, 2007 Page 2

rock at a depth of 17.5 feet. The bedrock was generally slightly weathered and slightly to moderately fractured.

Bearing Capacity Evaluation

The preliminary plans indicate that the invert elevations at the inlet and outlet of the proposed culvert are 656.00 and 647.00, respectively. The bottoms of the headwall footings were assumed to be 4 feet below the invert elevations to place them below the frost zone and prevent scour of the headwall (Ohio BDM Section 200). Based on the results of the borings, footings at these elevations will bear in very stiff to hard silt and clay (A-6a). Footings bearing in the very stiff or better material at this location may be designed based on an allowable bearing capacity of up to 5,000 pounds per square foot (psf).

Settlement Evaluation

Soil parameters for use in the settlement calculations were estimated using correlations with moisture content and Atterberg limits. Settlement below the centerline of the embankment was evaluated using the maximum cover of the embankment (approximately 8.0 feet) as the surcharge load and using the soil profile encountered in boring C-43.

The settlement analysis indicated that the soil below the embankment will yield total primary settlement of 0.9 inches. Secondary compression of the foundation soils is expected to be negligible. Settlement at the ends of the culvert, due to the embankment loading, is also expected to be insignificant. Based on these analyses, differential settlement between the center of the embankment and the ends of the culvert is expected to be approximately 0.9 inches. The settlement analysis is attached.

Michael D. Weeks, P.E., P.S. August 13, 2007 Page 3

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted,

DLZ OHIO, INC.

Kasaw

Wael Alkasawneh, P.E. Geotechnical Engineer

Brean With

Bryan Wilson, P.E. Senior Geotechnical Engineer

...

Encl: As noted.

cc: J. Greg Brown, P.E. (TranSystems Corporation), File

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a soils engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Dept\Geotech\Misc\Legends\Geninfo.eng

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

Depth (in feet) - refers to distance below the ground surface.

- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
 - Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
 - The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.

Soil Description

1.

3.

4

6.

9.

a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot Standard
Terms	Penetration
Very Loose	0-4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Cohesive Soils - Consistency

Term	Unconfined Compression tons/sg.ft.	Blows/Foot Standard Penetration	Hand Manipulation
Very Soft less th	an 0.25	below 2	Easily penetrated by fist
Soft	0.25 - 0.50	2 - 4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.00	4 - 8	Penetrated by thumb w/ moderate effort
Stiff	1.0 - 2.0	8 - 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 - 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

b. Color - If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

c. Texture is based on the ODOT Classification System. Soil particle size definitions are as follows:

Description	<u>Size</u>	Description	Size
Boulders	Larger than 8"	Sand-Coarse	2.00 mm. to 0.42 mm.
Cobbles	8" to 3"	-Fine	0.42 mm. to 0.074 mm.
Gravel-Coarse	3" to 3/4"	Silt	0.074 mm. to 0.005 mm.
-Fine	3/4" to 2.00" mm.	Clay	Smaller than 0.005 mm.

d.

The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes. e. - 0 to 10% trace - 10 to 20% little - 20 to 35% some "and" - 35 to 50% The moisture content of cohesive soils (silts and clays) is expressed relative to plastic properties. f. Relative Moisture or Appearance <u>Term</u> Powdery Dry Moisture content slightly below plastic limit Damp Moisture content above plastic limit, but below liquid limit Moist Moisture content above liquid limit Wet Moisture content of cohesionless soils (sands and gravels) is described as follows: g. Relative Moisture or Appearance <u>Term</u> No moisture present Dry Internal moisture, but none to little surface moisture Damp Moist Free water on surface Voids filled with free water Wet Rock hardness and rock quality description. 10. The following terms are used to describe the relative hardness of the bedrock. a. Description Term Very Soft Difficult to indent with thumb nails; resembles hard soil but has rock structure Resists indentation with thumb nail but can be abraded and pierced to a shallow depth by a pencil point. Soft Resists pencil point, but can be scratched with a knife blade. Medium Hard Hard Can be deformed or broken by light to moderate hammer blows. Can be broken only by heavy blows, and in some rocks, by repeated hammer blows. Very Hard Rock Quality Designation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by b. summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core run. Gradation - when tests are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c). 11. 12. When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated graphically. The standard penetration (N) value in blows per foot is indicated graphically. 13. S:\Dept\Geotech\Legends Manuals Misc\Legends\Legeng.odt

	Client:	FranSy	stems	, Inc.	_			Project: SCI-823-0.00								lob No.	0121	-3070.	03
F	LOG C	F: Bo	ring	C-43			ocation: Sta	a. 383+50.8, 85.5 ft. RT of TR 234 Ramp B BL Date Drilled: 8/	18/0				to	8	8/18/06				
					Samj No		Hand	WATER OBSERVATIONS: Water seepage at: None	-	GF	RAD								
			er 6"	(ii) X		Core	Penetro- meter	Water level at completion: None (prior to coring) 3.0' (includes drilling water)	gate	pu	Sand	g						RATION tent, %	
	Depth (ft)	<i>Elev.</i> <i>(ft)</i> 648.1	Blows per (Recovery	Drive	Press / I	(tsf)	DESCRIPTION	% Aggregate	% C. Sand	Ň	% F. Sand	% Silt	% Clay		⊢ Blows pe 20			L O
	0 —			<u> </u>				Topsoil - 9"			••		-		1 1 1 1		/ 3 ! ! ! !		
		-6 47.1 -	710	18	1		3.0	Very stiff light brown SILT AND CLAY (A-6a), "and" fine sand, trace coarse sand; contains roots; moist.	0	2		46	25	27		Ģ			
:	-3.5 5	644.6	7 7 9	15	2		3.0	Very stiff mottled brown and gray SILT AND CLAY (A-6a), little to some fine sand, trace coarse sand; moist.							E I E I E I E I E I E I E I E I E I E I D E I E I	d d			
	-		5 5 20	18	3		3.0		0	5		32	28	35					
ŀ		639.6-	50/3	3	4			Very soft to soft gray SANDSTONE; very fine grained,	1						F 1 1 1 C 1 6 1 C 1 6 1	1 1 1 1 1 1 1 1 1 1 1 1			
- -	-10.0-	638.1-						decomposed.											$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	-		Core 60"	Rec 59"	RQD 95%	R-1		Medium hard gray SANDSTONE; fine grained, slightly weathered, medium bedded to thickly bedded, slightly fractured.											
ŀ	—15.0— _	-633.1-	 					Bottom of Boring - 15.0'							1 L J I 1 4 1 5 1 7 1 7 1 6 1 6 2 6 1 6 1 6 1 7 1 6	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e h # f f f f f f f h h f f h h f f h h f f h h f f h h f f h h f f h h f f h h		
4/20/2007 10:14 AM]	- - 20 -																		
FILE: 0121-3070-03 {	- 25 — - -																1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	- 30	 													1 1 2 1 1 1 2 1 1 1 5 1 1 1 6 1	L C L C	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 4 \\ 1 \end{array}$	1 1 1 1	1.1.1.1

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

Client:	FranSy	stems	, Inc.				Project: SCI-823-0.00							Job No. 0121-3070.03
LOG C					L	ocation: Sta	a. 383+50.9, 60.6 ft. LT of TR 234 Ramp B BL Date Drilled: 08	/21	/06					
				Sam No			WATER OBSERVATIONS: Water seepage at: 9.0'-12.5', 16.0'-16.5'	<u> </u>	GF	RAD.		N		
Depth (ft)	Elev. (ft) 658.1	Blows per 6"	Recovery (in)	Drive	Press / Core	Hand Penetro- meter (tsf)	Water level at completion: 11.0' (prior to coring) 5.6' (includes drilling water)	% Aggregate	% C. Sand	% M. Sand	% F. Sand	% Sitt	% Clay	STANDARD PENETRATION (N) Natural Moisture Content, % - • PL I LL Blows per foot - () 10 20 30 40
0.6	657.5						Topsoil - 7"	ŀ				-	-	
-		7 8 9	46	1		4.0	Hard brown SILT AND CLAY (A-6a), little to some fine to coarse sand; damp to moist.							
		6 7	16	2		4.5+	@ 3.5'-7.5', "and" fine to coarse sand.	0	5		57	5	33	
5		5 7												ϕ
	-650.1-		15	3		4.5+	Medium dense brown FINE SAND (A-3), trace silty clay, trace							Ą.
10-		9 8 8	18	4		-	coarse sand, trace gravel; wet.					-		, ,
	•	2 1 2	18	5		-	@ 11.0'-12.5', very loose.	1	9		82	8		Non Plastic
-	-644.5-	1 2 2	18	6A 6B	P-1	1.0 0.25	@ 13.0'-13.6', sandy silt seam. Very soft to soft gray CLAY (A-7-6), trace silt; moist to wet.							Y
	642.6-	10 _50/5	9			_	Very dense brown GRAVEL WITH SAND AND SILT (A-2-4),							0
	-641.1-	Core 60"	Rec 60"	7A \ <u>7B</u> RQD 96%	R-1	-	some fine to coarse sand, little silt, trace clay; moist to wet. Medium hard to hard gray SANDSTONE; very fine to fine grained, slightly weathered, argillaceous, thinly bedded to medium bedded, moderately fractured.							507∓(
- 22.0	-636.1 -						Bottom of Boring - 22.0'				•			
25 —														1 1
		-												1 1
														1 1

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

JENT	I ranSystems Inc.
ROJECT	Portsmouth Bypass
IBJECT	Culvert at Station 383+50 TW 234 Ramp B
	Bearing Capacity Analysis

JOB NUMBER	01	21-3070	0-03
SHEET NO.	1	OF	1
COMP. BY	BEW	DATE	8/13/2007
CHECKED BY		DATE	

Base analysis on results of borings C-43 and C-44.

From hand penetrometer measurements at and below footing elevation:

 $q_u = 3.0$ tsf for stiff to very stiff cohesive soil

c = 3000 psf

Factor of Safety (FS) = 3 (ODOT BDM 202.2.3.1)

For cohesive foundation soil:

Meyerhof's Method

q_u=c*N_c*s_c+q*N_q

 $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ft

Since footing dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$

 $q_a = q_u/FS = 5140 \text{ psf}$

Use **q**a < 5140 psf

EDLZ

Client TranSystems Inc. Project Portsmouth Bypass Item Culvert at STA. 383+50

JOB NUMBER	0121-3070.03	
SHEET NO.	1	OF
COMP. BY	WMA	DATE
CHECKED BY	BÉW	DATE

8/7/07 8/13/07

Calculations Data

•

Boring	Sample	w	PL	LL	PI	Cc1	Cr ²	e, '
C-43	1	14	12	24	12	0.16	0.031	0.9467
C-43	3	18	13	25	12	0.16	0.032	0.9652
C-44	2	16	16	29	13	0,18	0.037	* 0.9545
							1 1	
					1	Γ	1 - L -	1:
		11				1		1
	·	1					1.1	1
					-	1		
								in le
		·	A		Average	0.17	0.033	0.9555
					Maximum	0.18	0.037	0.9652

Boring	Sample	L	C,*(ft ^z /day)	C _v *(ft ² /sec)
C-43	1	24	F 1.07	1.24E-05
C-43	3	25	ar 6 0.96 - 2	522c1.11E-05
C-44	2	29	te-0.63	7.24E-06
	1		C. Armit	
	1		38. gr 64	an dere a
			$\phi \gtrsim -e^{-2/3}$	8.2
	1		N. C. Martin	
			ALT CALL	
		·		1.0
		Minmum	0.63	7.24E-06
		Average	0.89	1.02E-05
		Maximum	1.07	1.24E-05

*Cv(ft2/day) = 9343.5*LL*(-2.8542) (Kuthawy and Mayne- 1990)

2)Cr=0.000463xLLxGs

3) Based on CR below

Source: Holtz and Kovacs (198 Mesri (1995)	1)/ Terzaghi, I
Soil	C°\C'
Organic Silts	0.035-0.06
Amorphous and Fibrous Peal	0.035-0.085
Organic Clays and Silts	0.04-0.05
Granular Soils	0.01-0.03
Shale and mudstones	0.02-0.04
Silty Clay	0.03-0.06
Peat	0.05-0.07

Boring	Sample	w	PL	ĻL	PI_	LI LI	Consolidation*
C-43	1	14	12	24	12	0.17	Overconsolidated
C-43	3	18	13	25	12	0.42	Overconsolidated
C-44	2	16	16	29	13	0.00	Overconsolidated
							<u>, 1</u>
				1			1

*Overconsolidated when LI<0.7

Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.11)

Correlation Values-Source: Lamb and Whitman (1969)

w%	CR=(C_/1+e_)
9.983	2.389
11,785	2.547
14.487	3.016
17.099	3.825
19.816	4.892
25.352	6.931
28.328	8.079
34,174	10,369
42.400	13.490
51.139	16.388
79.829	23.326
152.740	33.469
341.288	46,114
501.494	52.174

Correlation; CR=-4E-09w^4 + 5E-06w^3 - 0.0021w^2 + 0.4695w - 3.1337 R²=0.9992

.

SUBJECT		Client TranSystems, Inc.			JOB NUMBER 0121-3070.03					
	Project SCI-823-0.00			SHEET NO.		2			OF	2
	Item Culvert at STA.383+50 TW 234 Ramp B			COMP. BY		WMA			DATE	08/07/
	Based or	Based on Boring C-43			CHECKED BY			DATE		08/13/
	SETTLE		NALYSIS - EMBAN	NKMEN	IT		<u> </u>			
Embankment Informaiton:			Groundwater Table:	D=	60.0	ft				
	• بد	-1	Embankment Height:	H =	8	ft				
	- - - - - - - - - - - - - -	<u>]</u>	Fill Unit Weight:	γ _{emb} =	120	pcf	q =	- 96	50 psf	
	\mathbf{i}	4	Width of Slope:	a =	50	•				
			Top half-width of Emb); b=	23					
a A	La'/	× ×	Distance from CL:	x =	0					
	$\left[\right]$		Output Range:	 z =	0	to	30	ft		
			output Kunge.	2	Ū		20			
			(~)							
	(#+ 4+ # >	□ _v (:	$z) := \left(\frac{q}{\pi a}\right) (a \cdot (\alpha(z) + i))$	δ(z) + α.	'(z)) + 1	b·(α(z)	+ œ'(z))) + × ((α(z) –	α'(z))
•			()							
$\beta(z) := \operatorname{atan}\left[\frac{(b-x)}{z}\right] + \operatorname{atan}\left[\frac{(b+x)}{z}\right]$	α'(z)	:≠ atan (a+	$\frac{(b-x)}{-}$ = atan $\frac{(b-x)}{-}$	α(z)	:= atar	ا رة +	<u>o - xj</u>	- at	an 🕒	$\frac{+ x_j}{\pi}$
							<i>.</i>	J	L	ر ۲
Reference:	US Army Co	orps of Engine	eers EM 1110- <u>1-1904 "Settlem</u>	ent Analys						
					C	ohesionl		0.1	· 0	•1
Soil Properties: Settlement is calcula				~' I		Soi C'			esive So C _c	
b. Bot. of Layer Soil Type γ_s	_{soil} (pct)	$\sigma_{\rm c}$ (pst)	σ'_{o} (psf) $\Delta\sigma z$ (psf))			eo
8.5 ft Silt and Clay 12	20	1,500	510 959	1,4	69	0.0) ().04	0.18	0.950
2 0.0										
									·····	
	0	0				0.0) ().00	0.00	0.00
0.0	0	0				0.0) ().00	0.00	0.00
3 0.0 (4 0.0 (0.0) ().00	0.00	0.000
0.0 0 0.0 0 0.0 0 0.0 0	0	0				0.0) ().00	0.00	0.000
3 0.0 0 4 0.0 0 5 0.0 0 5 0.0 0	0	0				0.0) ().00	0.00	0.00(
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0	0 0 0 0 0	0 0 0 0				0.0) ().00	0.00	0.00(
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 3 0.0 0	0 0 0 0 0 0	0 0 0 0 0				0.0) ().00	0.00	0.000
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 3 0.0 0 9 0.0 0	0 0 0 0 0 0	0 0 0 0 0 0				0.0) ().00	0.00	0.000
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 8 0.0 0 9 0.0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	Reference: Contechnical Evalu	poring De	nciplos an				0.00	0.00(
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 3 0.0 0 9 0.0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	Reference: Geotechnical Engin Overconsolidated Soils			d Practice	s; Coduto		0.00	0.000
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 3 0.0 0 0 0.0 0 0 0.0 0	0 0 0 0 0 0		Overconsolidated Soils	- Case I		d Practice	s; Coduto		0.00	0.000
3 0.0 6 4 0.0 6 5 0.0 6 5 0.0 6 7 0.0 6 3 0.0 6 7 0.0 6 9 0.0 6 0 0.0 6 0 0.0 6 0 0.0 6 0.5 Settlement: Total Settlement	0 0 0 0 0 0		Overconsolidated Soils	- Case I		d Practice	s; Coduto		0.00	0.000
3 0.0 0 4 0.0 0 5 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 8 0.0 0 9 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log e_0$	- Case I $\left(\frac{\sigma'_f}{\sigma'_0}\right)$	(σ'₀<σ	d Practice	s; Coduto n:11.24	, 1999	0.00	0.000
3 0.0 6 4 0.0 6 5 0.0 6 5 0.0 6 7 0.0 6 8 0.0 6 9 0.0 6 0 0.0 6 0 0.0 6 0 0.0 6 0 0.0 6 0 0.0 6 0 0.0 6	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ull} = \sum \frac{C_r}{1 + e_0} H \log Overconsolidated Soils$	- Case I $\left(\frac{\sigma'_f}{\sigma'_0}\right)$ - Case I	(σ' ₀ <σ	d Practice τ'ε) Equ σ'ε<στ)	s; Coduto n:11.24 Eqn:1	, 1999	0.00	0.000
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 8 0.0 0 9 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ull} = \sum \frac{C_r}{1 + e_0} H \log Overconsolidated Soils$	- Case I $\left(\frac{\sigma'_f}{\sigma'_0}\right)$ - Case I	(σ' ₀ <σ	d Practice τ'ε) Equ σ'ε<στ)	s; Coduto n:11.24 Eqn:1	, 1999	0.00	0.000
3 0.0 0.0 0.0 $4 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $7 0.0$ 0.0 0.0 $8 0.0$ 0.0 0.0 $9 0.0$ 0.0 0.0 $0 0.0$ 0.0 0.0 $0 0.0$ 0.074 ft $1 0.074$ ft 0.074 ft $3 4$ 0.074 ft	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log \theta$ Overconsolidated Soils $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1 + e_0} H \log \left(\frac{2}{3} \right) \right]$	- Case I $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ - Case I $\frac{\sigma'_{c}}{\sigma'_{0}} + \frac{1}{1}$	$(\sigma'_0 < \sigma$ $I(\sigma'_0 < \sigma$ $\frac{C_c}{r+e_0}H$ le	$d Practice$ $T'_{c} Eqt$ $\sigma'_{c} < \sigma_{f}$ $\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	s; Coduto n:11.24 Eqn:1	, 1999	0.00	0.000
3 0.0 0 4 0.0 0 5 0.0 0 6 0.0 0 7 0.0 0 8 0.0 0 9 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log Q$ Overconsolidated Soils $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1+e_0} H \log Q \right]$ Normally Consolidated	- Case I $\left(\frac{\sigma'_f}{\sigma'_0}\right)$ - Case I $\frac{\sigma'_c}{\sigma'_0} + \frac{1}{1}$ Soils (c	$(\sigma'_0 < \sigma$ $I(\sigma'_0 < \sigma$ $\frac{C_c}{r+e_0}H$ le	$d Practice$ $T'_{c} Eqt$ $\sigma'_{c} < \sigma_{f}$ $\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	s; Coduto n:11.24 Eqn:1	, 1999	0.00	0.000
3 0.0 0.0 0.0 $4 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $7 0.0$ 0.0 0.0 $8 0.0$ 0.0 0.0 $9 0.0$ 0.0 0.0 $0 0.0$ 0.0 0.0 $0 0.0$ 0.074 ft $1 0.074$ ft 0.074 ft $3 4$ 0.074 ft	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log Q$ Overconsolidated Soils $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1+e_0} H \log Q \right]$ Normally Consolidated	- Case I $\left(\frac{\sigma'_f}{\sigma'_0}\right)$ - Case I $\frac{\sigma'_c}{\sigma'_0} + \frac{1}{1}$ Soils (c	$(\sigma'_0 < \sigma$ $I(\sigma'_0 < \sigma$ $\frac{C_c}{r+e_0}H$ le	$d Practice$ $T'_{c} Eqt$ $\sigma'_{c} < \sigma_{f}$ $\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	s; Coduto n:11.24 Eqn:1	, 1999	0.00	0.000
3 0.0 0.0 0.0 $4 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $7 0.0$ 0.0 0.0 $8 0.0$ 0.0 0.0 $9 0.0$ 0.0 0.0 $0 0.0$ 0.0 0.0 $0 0.0$ 0.074 ft $1 0.074$ ft 0.074 ft $3 4$ 0.074 ft	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log \theta$ Overconsolidated Soils $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1 + e_0} H \log \left(\frac{2}{3} \right) \right]$	- Case I $\left(\frac{\sigma'_f}{\sigma'_0}\right)$ - Case I $\frac{\sigma'_c}{\sigma'_0} + \frac{1}{1}$ Soils (c	$(\sigma'_0 < \sigma$ $I(\sigma'_0 < \sigma$ $\frac{C_c}{r+e_0}H$ le	$d Practice$ $T'_{c} Eqt$ $\sigma'_{c} < \sigma_{f}$ $\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	s; Coduto n:11.24 Eqn:1	, 1999	0.00	
3 0.0 0.0 0.0 $4 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $7 0.0$ 0.0 0.0 $8 0.0$ 0.0 0.0 $9 0.0$ 0.0 0.0 $0 0.0$ 0.0 0.0 $0 0.0$ 0.074 ft $1 0.074$ ft 0.074 ft $3 4$ 0.074 ft	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log Q$ Overconsolidated Soils $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1 + e_0} H \log \left(\frac{1}{2} + \frac{C_0}{1 + e_0} \right) \right]$ Normally Consolidated $(\delta_c)_{ult} = \sum \frac{C_c}{1 + e_0} H \log Q$	- Case I $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ - Case I $\frac{\sigma'_{c}}{\sigma'_{0}} + \frac{1}{1}$ Soils (α $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$	$(\sigma'_0 < \sigma$ $I(\sigma'_0 < \sigma$ $\frac{C_c}{r+e_0}H$ le	$d Practice$ $T'_{c} Eqt$ $\sigma'_{c} < \sigma_{f}$ $\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	s; Coduto n:11.24 Eqn:1	, 1999	0.00	0.000
3 0.0 0.0 0.0 $4 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $5 0.0$ 0.0 0.0 $7 0.0$ 0.0 0.0 $8 0.0$ 0.0 0.0 $9 0.0$ 0.0 0.0 $0 0.0$ 0.0 0.0 $0 0.0$ 0.074 ft $1 0.074$ ft 0.074 ft $3 4$ 0.074 ft	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1+e_0} H \log Q$ Overconsolidated Soils $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1+e_0} H \log Q \right]$ Normally Consolidated	- Case I $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ - Case I $\frac{\sigma'_{c}}{\sigma'_{0}} + \frac{1}{1}$ Soils (α $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$	$(\sigma'_0 < \sigma$ $I(\sigma'_0 < \sigma$ $\frac{C_c}{r+e_0}H$ le	$d Practice$ $T'_{c} Eqt$ $\sigma'_{c} < \sigma_{f}$ $\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	s; Coduto n:11.24 Eqn:1	, 1999	0.00	0.000
$\begin{array}{c} 3 & 0.0 & (4 \\ 4 & 0.0 & (6 \\ 5 & 0.0 & (6 \\ 5 & 0.0 & (6 \\ 5 & 0.0 & (6 \\ 7 & 0.0 & (6 \\ 8 & 0.0 & (6 \\ 9 & 0.0 & (6 \\$	0 0 0 0 0 0		Overconsolidated Soils $(\delta_c)_{ult} = \sum \frac{C_r}{1 + e_0} H \log Q$ Overconsolidated Soils $(\delta_c)_{ult} = \sum \left[\frac{C_r}{1 + e_0} H \log \left(\frac{1}{2} + \frac{C_0}{1 + e_0} \right) \right]$ Normally Consolidated $(\delta_c)_{ult} = \sum \frac{C_c}{1 + e_0} H \log Q$	- Case I $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ - Case I $\frac{\sigma'_{c}}{\sigma'_{0}} + \frac{1}{1}$ Soils (σ'_{f} $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$ = σ'_{0})	$(\sigma'_0 < \sigma$ $I(\sigma'_0 < \sigma$ $\frac{C_c}{r+e_0}H$ le	$d Practice$ $T'_{c} Eqt$ $\sigma'_{c} < \sigma_{f}$ $\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	s; Coduto n:11.24 Eqn:1	, 1999	0.00	