

August 20, 2007

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Bearing Capacity and Settlement Evaluation (Culvert at STA. 534+30 Ramp A) SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03 Document #0081

Dear Mr. Weeks:

This letter presents the findings of the preliminary evaluation of the proposed culvert and embankment at Station 534+30 (Ramp A) on the above-referenced project. The findings of other culvert and embankment evaluations will be submitted in separate documents.

It is our understanding that a new culvert will be constructed at Station 534+30 (Ramp A) for the above referenced project. The culvert will be a 30-inch Type A conduit in accordance with ODOT Item 707.01 (Metallic Coated Corrugated Steel Conduits and Underdrains). Preliminary plans indicate the flow line of the culvert is at or slightly below and nearly parallel to existing grade along its 222-foot length. It is therefore anticipated that the culvert will be constructed in accordance with ODOT CMS Item 603.05 Method B. The maximum cover over the culvert at this location is approximately nine feet. The inlet and outlet of the culvert will be supported by headwalls flush with the face of the pipe at each end. At the time of preparing this letter no further information was available regarding the culvert.

It should be noted that the results of this evaluation are based upon the findings of three culvert borings (C-55 through C-57) located along the proposed alignment of the culvert. The borings were advanced to depths ranging between 54.5 and 56.5 feet below the ground surface. Logs of the borings, a plan and profile drawing showing the approximate locations of the borings, a legend of the boring log terminology and general information regarding the drilling procedures are attached. The surveyed ground elevations at the boring locations are reported on the logs.

Exploration Findings

The borings encountered 47.5 to 51.5 feet of predominantly cohesive soil (A-4b. A-6a, A-6b, A-7-5, A-7-6) overlying siltstone bedrock. The upper 18 to 20 feet of material was generally stiff to very stiff but at greater depth was soft to medium stiff. The underlying siltstone was soft to medium hard, moderately weathered and highly fractured.

Michael D. Weeks, P.E., P.S. August 20, 2007 Page 2

Bearing Capacity Evaluation

The preliminary plans indicate that the invert elevations at the inlet and outlet of the proposed culvert are 718.9 and 715.9, respectively. The bottoms of the headwall footings were assumed to be 4 feet below the invert elevations to place them below the frost zone and prevent scour of the headwall (Ohio BDM Section 200). Based on the results of the borings, footings at this depth will bear in stiff to very stiff cohesive soils. Footings bearing in these materials may be designed based on an allowable bearing capacity of up to 4,000 pounds per square foot (psf).

Settlement Evaluation

Soil parameters for use in the settlement calculations were estimated using correlations with moisture content and Atterberg limits. Settlement below the centerline of the embankment was evaluated using the maximum cover of the embankment (approximately 9 feet) as the surcharge load and using the soil profile encountered in boring C-55. The settlement analysis indicated that the soil below the embankment will yield a total settlement of 4.0 inches. The analysis indicated that 80% of the consolidation settlement (3.2 inches) will occur over a period of approximately five years after construction of the embankment.

Secondary compression of the foundation soils is expected to be negligible. Settlement at the ends of the culvert, due to the embankment loading, is also expected to be insignificant. Based on this analysis, differential settlement between the center of the new embankment fill and the ends of the culvert is expected to be approximately 4.0 inches. The settlement analysis is attached.

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted,

DLZ OHIO, INC.

Wael Alkasawneh, P.E. Geotechnical Engineer

Bryan Wilson, P.E. Senior Geotechnical Engineer

Encl: As noted. cc: J. Greg Brown, P.E. (TranSystems Corporation), File

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a soils engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Dept\Geotech\Misc\Legends\Geninfo.eng

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
 - Soil Description

4.

9.

a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot Standard
Tems	Penetration
Very Loose	0-4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Cohesive Soils - Consistency

Term	Unconfined Compression tons/sq.ft.	Blows/Foot Standard Penetration	Hand Manipulation
Very Soft less th	an 0.25	below 2	Easily penetrated by fist
Soft	0.25 - 0.50	2-4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.00	4 - 8	Penetrated by thumb w/ moderate effort
Stiff	1.0 - 2.0	8 - 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 - 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

b. Color - If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

c.

Texture is based on the ODOT Classification System. Soil particle size definitions are as follows:

Description	Size	Description	Size
Boulders	Larger than 8"	Sand-Coarse	2.00 mm. to 0.42 mm.
Cobbles	8" to 3"	-Fine	0.42 mm. to 0.074 mm.
Gravel-Coarse	3" to 3/4"	Silt	0.074 mm. to 0.005 mm.
-Fine	3/4" to 2.00" mm.	Clay	Smaller than 0.005 mm.

d. The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

	e.	Modifiers to main soil descri	ptions are indicated as a percentage by weight of particle sizes.
		trace - 0 to 1	
		little - 10 to 2	
		some - 20 to 3	
		"and" - 35 to 9	50%
	f.	The moisture content of coh	esive soils (silts and clays) is expressed relative to plastic properties.
		Term	Relative Moisture or Appearance
		Dry	Powdery
		Damp	Moisture content slightly below plastic limit
		Moist	Moisture content above plastic limit, but below liquid limit
		Wet	Moisture content above liquid limit
	g	Moisture content of cohesio	nless soils (sands and gravels) is described as follows:
		Term	Relative Moisture or Appearance
		Dry	No moisture present
		Damp	Internal moisture, but none to little surface moisture
		Moist	Free water on surface
		Wet	Voids filled with free water
10.	Rock h	ardness and rock quality desc	ription.
	а.	The following terms are use	to describe the relative hardness of the bedrock.
		Term	Description
		Very Soft	Difficult to indent with thumb nails; resembles hard soil but has rock structure
		Soft	Resists indentation with thumb nail but can be abraded and pierced to a shallow depth by a pencil point.
		Medium Hard	Resists pencil point, but can be scratched with a knife blade.
		Hard	Can be deformed or broken by light to moderate hammer blows.
		Very Hard	Can be broken only by heavy blows, and in some rocks, by repeated hammer blows.
	b.	Rock Quality Designation, F summing the total length of a run.	RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by all core pieces which are at least four inches long, and then dividing this sum by the total length of the core
11.	Gradati	ion - when tests are performed,	, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).
12.		a test is performed to determine is indicated graphically.	e the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture
13.	The sta	indard penetration (N) value in	blows per foot is indicated graphically.
S:\Dept	\Geotech\	Legends Manuals Misc\Legend	ls\Legeng.odt

I

	TranSy DF: Bo				٦.		Project: SCI-823-0.00 1. 535+13.6, 95.8 ft. LT of SR 728 Ramp A BL Date Drilled: 00	2/20	106		_			Job Ne	<u>. 0121</u>	-3070.03
_060	л. <u>Бо</u>	nng	C-55	Sam		ocation: Sta	1. 535+13.6, 95.8 ft. LT of SR 728 Ramp A BL Date Drilled: 08	<u>730</u>			ATIC)N				
Depth (ft)	Elev. (ft)	Blows per 6"	Recovery (in)	No	/ Core	Hand Penetro- meter (Isf)	OBSERVATIONS: Water seepage at: 47.0'-51.5' Water level at completion: 39.7' (prior to coring) 22.3' (includes drilling water)	% Aggregate.	C. Sand	Sand	nď	Silt	Clay	STANDARI Natural Mois PL ⊢──	ture Cont	tent, % - LL
<u>م</u>	720.5	_	Rec	Drive	Press.		DESCRIPTION	1%	%	V %	% F	%	%		2 <u>0 3</u>	
0.3 -	720.2-	2 2 3	18	1		1.0	Topsoil - 4" Medium stiff to stiff light brown SILT (A-4b), trace to little clay, trace fine sand; damp to moist.							Ģ		
5		2 2 3	18	2		1.0										
-5.5	-715.0-	3 5 6	18	3		1.5	Stiff to very stiff mottled brown and gray SILTY CLAY (A-6b), trace fine to coarse sand; moist.							Х Р		
- 10 	-	3 4 6	18	4		2.5	-	0	0		6	46	48	0		
-	-	8 9 8		5		3.0	@ 10.5'-13.0', little fine to coarse sand, trace to little gravel; contains sandstone fragments.							Х.		
-13.0 - 15	-707.5-	2 4 6	18	6		2.25	Stiff to very stiff brown CLAY (A-7-6), some silt, trace fine to coarse sand, trace gravel; moist.							d'		
-		2 4 5	18	7		1.5	@ 15.5', mottled brown and gray, contains trace organic material.	4	2		6	25	63			
- 20 —		3 4 5	18	8		2.5		i							1 1 4 1 1 1 4 4 1 1 4 4 1 1 4 1 1 1 4 1 1 1 4 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 4
-20.5 - -	- 700.0-	1 2 2	18	9		0.25-0.5	Soft to medium stiff brownish gray CLAY (A-7-6), trace silt, trace fine sand; moist.	1						ő		
 25		2 2 2	18	10		0.25		0	0		0	1	99	Ģ	1 1 1 1 1	
-	-	WOH 2	18	11		0.5								6		
- 	1	1 3	18	12		0.75										

<u>0G 0</u>	F: Bo	ring (2-55	Samp		ocation: Sta	b. 535+13.6, 95.8 ft. LT of SR 728 Ramp A BL Date Drilled: 0 WATER	3/30			ATI	NC	- 1					
Depth (ft)	Elev. (ft) 690.5	Blows per 6"	Recovery (in)	Drive		Hand Penetro- meter (tsf)	OBSERVATIONS: Water seepage at: 47.0'-51.5' Water level at completion: 39.7' (prior to coring) 22.3' (includes drilling water) DESCRIPTION	% Aggregate		W. Sand	ind	Silt	% Clay	Natu F	ıral Mois PL ⊢—	ture Cor per foot		-
30 — - - 35 —		1 2 2	18	13		0.5	Medium stiff brownish gray CLAY (A-7-6), trace silt, trace fine sand; moist.		-					Υ Ι Ι				
- - 40		1 2 3	18	14		0.5												
- - 45		2 3 5	18	15		1.0	@ 43.5'-45.0, little to some silt.											
50 —	-671.5-	6 12 15	18	16		-	Medium dense gray SILT (A-4b), little clay, trace to little fine sand, some gravel; damp.									Х О		
	-669.0-	Core 60*	Rec 56"	RQD 86%	R-1		Medium hard gray SILTSTONE; moderately weathered, micaceous, argillaceous, thinly bedded to medium bedded, highly fractured. @ 51.5'-51.9', decomposed zone. @ 54.8'-55.2', clay seam.											
56.5 	-664.0-						Bottom of Boring - 56.5'										1 1 7 1 1 1 7 1 1 1 7 1	

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

000)F: Bo	ring	C-56		L	ocation: Sta	a. 534+43.9, 14.6 ft. LT of SR 728 Ramp A BL Date Drilled: 08	124/	_			t <u>o</u>	<u> </u>)8/29/06	
Depth (fl)	Elev. (fl)	Blows per 6"	Recovery (in)	Samı No.		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 14.5'-20.5', 41.0'-48.0' Water level at completion: 37.6' (prior to coring) 23.3' (includes drilling water) DESCRIPTION	% Aggragale	C. Sand	Sand	% F. Sand	% Sit	% Clay	Natural Mois PL ⊱—	D PENETRATION (f iture Content, % - LL per foot - 20 30 40
-0.3—	7 <u>18,4</u> 718,1-	- 40	<u> </u>				Topsoil - 4"	<u>~`</u>	e,	<i>。</i>	<u>~</u>	<u>^</u>	<u>~</u>		
-		1 2 3	18	1		2.0	Very stiff brown SILT (A-4b), little clay, trace fine sand; damp to moist.							0	
- - -5.5		2 3 7	18	2		4.0	@ 3.5'-5.0', trace fine to coarse sand, contains trace organic material.	-							
-	712.9	10 15 21	18	3		4.5+	Hard reddish brown SILT AND CLAY (A-6a), trace fine sand, trace to little coarse sand, trace to little gravel; damp.								, , , , , , , , , , , , , , , , , , ,
-8.0	-710,4-	5 8 14	18	4		4.5+	Very stiff to hard mottled brown and gray CLAY (A-7-6), "and" silt, trace fine sand; moist.								¢
-		7 7 14	18	5		2.0		0	0		2	52	46		
- - 15 —	-	3 6 9	18	6A 6B		2.0	 @ 13.5'-14.5', reddish brown, little to some fine to coarse sand. @ 14.5'-15.0', moist to wet. 							J	1 1
_	-	6 5 6	18	7		-									
- - 20 —		10 20 14	10	8		1.0	@ 18.5'-20.0', medium stiff to stiff; little to some gravel.								
20 — 20.5 — -	-697.9-	3 6 11	18	9		1.75	Stiff gray CLAY (A-7-6), trace to little silt, trace fine sand; damp to moist.	4	0		0	4	.92		
	-	WOH	. 18	10		<0.25	@ 23.5'-30.0', very soft, moist to wet.								
25 — -		WOH 1 2	18	11		<0.25								Q	1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-	-	1 2													1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client: T	ranSys	stems	, Inc.				Project: SCI-823-0.00							Job No	o. 0121	-3070.03
LOG O				_	L	ocation: Sta	. 534+43.9, 14.6 ft. LT of SR 728 Ramp A BL Date Drilled: 08	3/24	/06			to	08/29	/06		
		!		Samı No.		linge	WATER OBSERVATIONS: Water seepage at: 14.5'-20.5', 41.0'-48.0'	L	GI	RAD	ATIC	<u>N</u>				
Depth (ft)	Elev. (ft) 688.4	Blows per 6"	Recovery (in)	Drive	Press / Core	Hand Penetro- meter (tsf)	Water level at completion: 37.6' (prior to coring) 23.3' (includes drilling water) DESCRIPTION	% Aggregate	% C. Sand	% M. Sand	% F. Sand	% Sitt	% Clay %	tural Mois PL ነ───	ture Cor per foot	LL
30 —							Medium stiff gray (A-7-6), trace to little silt, trace fine sand; moist.									
35 — - -		¹ 2 <u>3</u>	18_	13		0.5										
- 40		1 2 3	18	14		1.0							Ö	1 1		
-42.0 45	-676.4-	WОН 1 2	10	15		-	Very loose light gray SILT (A-4b), little to some fine sand, wet.									
	671.4-						Hard gray SILT (A-4b), trace fine sand, little clay; damp.							/	,,	/
 	-668.4-	20 50/3	15	16		4.5+										
		Core 60*	Rec 60"	RQD 91%	R-1		Soft to medium hard gray SILTSTONE; moderately weathered, argillaceous, micaceous, thinly bedded to medium bedded, highly fractured. @ 50.0'-50.3', decomposed zone.							1 2 3 1 1 1 2 1 1 1 1 2 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 3 4 1 3 4 3 4 4 1 4 4 4 4 4 4 4 4 5 4 4 4 4 6 1 4 4 4		
	-663.4-						Bottom of Boring - 55.0'						. 1			

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

Client: T	ranSy	stems	, Inc.		 	Project: SCI-823-0.00							Job No	. 0121-3070.03
LOG O	F: Bo	ring	C-57		ocation: Sta	1. 533+67.7, 75.0 ft. RT of SR 728 Ramp A BL Date Drilled: 08	/29/						<u>-</u> .	
Depth (ft)	Elev. (ft) 716.3	Blows per 6"	Recovery (in)	Sam No. 9,EQ	Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 42.0'-47.0' Water level at completion: 34.8' (prior to coring) 23.9' (includes drilling water) DESCRIPTION	% Aggregate	C. Sand	Sand	% F. Sand	Sit	% Clay	Natural Mois PL I Blows J	PENETRATION (N) ture Content, % -
0.4 	-715.9-	3 3 3	18	1	1.0	Topsoil - 5" Stiff to very stiff brown SILT (A-4b), trace to little clay, trace fine to coarse sand, contains trace organic meterial; damp.							Ģ	
- 5		2 3 6	18	2	3.0								8	
5.5 	-710.8	3 6 10	18	3	2.5	Very stiff mottled reddish brown and gray SILT AND CLAY (A-6a), trace to little fine to coarse sand; damp to moist .	0	1		9	65	25	Ň	
- 10 —		5 12 10	18	4	2.5	- -								6
	-705.8-	3 4 7	18	5	2.25	Very stiff mottled brown and gray CLAY (A-7-6), little to some silt, trace fine sand, contains trace organic material; moist.							ζ.	
- 15 —		4 6 10	18	6	3.0		0	0	-	4	17	79	Ъ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-		4 6 10	18	7	2.5	@ 16.0'-17.5', little organic material.								
	-698.3-	3 3 5	18	8	1.5	Medium stiff to stiff brownish gray ELASTIC CLAY (A-7-5), trace silt, (varved); moist.							ø	
	693.3-	1 3	18	9	0.5		0	0	-	0	1	99	¢.	
	053.3	WOH	18	10	0.2505	Soft to medium stiff brownish gray CLAY (A-7-6), trace silt, (varved); moist.							I Q in Linner	
-		WOН 2 2	18	11	0.75								1 1 1 7 7 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1	
- 30		W ठ्म 2	18	12	0.75									4 4 6 8 1 1 7 8 1 2 4 5 7 1 1 6 7 7 4 1 7 1 1 6 7 7 4 1 2 7 1 1 6 7

.

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

Client:	TranSy	stems,	Inc.				Project: SCI-823-0.00							Job No.	0121-3	3070.03
LOG					-	ocation: Sta	a. 533+67.7, 75.0 ft. RT of SR 728 Ramp A BL Date Drilled: 08	/29/								
Depth (ft)	Elev. (ft) 686.3	Blows per 6"	Recovery (in)	Samt No. Duive		Hand Penetro- meter (tst)	WATER OBSERVATIONS: Water seepage at: 42.0'-47.0' Water level at completion: 34.8' (prior to coring) 23.9' (includes drilling water) DESCRIPTION	% Aggregate	% C. Sand	M. Sand		Sitt	% Clay	STANDARD Natural Moistu PL Blows po 1020	er foot -	nt, % - ● → LL ○
30		1 2 3	18	13		0.5	Soft to medium stiff brownish gray CLAY (A-7-6), trace silt, (varved); moist.									
40-	-674.2	1 3 4	18	14		0.5					-			9		
42.0 45	674.3- - 	4 13 . 31	18	15		-	Dense brown COARSE AND FINE SAND (A-3a), little to some silty clay, little gravel; damp.									, , , , , , , , , , , , , , , , , , ,
47.5	668.8 666.8	30	9	16		-	Soft gray SILTSTONE; highly weathered to decomposed, arenacous.							I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>		λ 50+
- 00	-	Core 60"	Rec 60"	RQD 90%	R-1		Medium hard gray SILTSTONE interbedded with SANDSTONE very fine grained, moderately weathered, thinly bedded to medium bedded, highly fractured. @ 51.2', high angle fracture.									
<u>54.5</u> 55 - - - -	-661.8						Bottom of Boring - 54.5'				-					4 7 4 1 1 8 8 7 4 1 1 1 9 8 7 6 1 1 1 1 1 1 1 1 1 3 6 1 1 1 1 1 1 3 6 1 1 1 1 1 1 3 6 1 1 1 1 1 1 3 6 1 <

.

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-004	DLZ OHIO INC. *	6121 HUNTLEY ROAD.	COLUMBUS, OH	O 43229 *	(614)888-0040
--	-----------------	--------------------	--------------	-----------	---------------

nate stage water stage water state state state state state state state state state state. State state

Specific User of control is pressed in the control in the control is presse		CLIENT	TranSystems Inc.	JOB NUMBER	01	21-3070-03	
Subject = Curver at statuon 534*30 Colors of Bearing Capacity Analysis CHECKED BY DATE Bearing Capacity Analysis CHECKED BY DATE DATE DATE DATE DATE DATE DATE DATE	2]]] / / /	PROJECT	Portsmouth Bypass	SHEET NO.	1	OF	1
Base analysis on results of borings C-55 and C-57. From hand penetrometer measurements: $q_u = 2.4$ tsf c = 2400 psf Factor of Safety (FS) = 3 (ODOT BDM 202.2.3.1) For cohesive foundation soil: <u>Meverhof's Method</u> $q_u=S_u^*c^*N_u^+q^*N_q$ $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ft Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_u=q_u/FS= 4112$ psf Use $q_u < 4112$ psf					BEW		/200
From hand penetrometer measurements: $q_u = 2.4$ tsf c = 2400 psf Factor of Safety (FS) = 3 (ODOT BDM 202.2.3.1) For cohesive foundation soil: <u>Meyerhof's Method</u> $q_u=S_c^*c^*N_c+q^*N_q$ $q=y^*D$ Can be neglected since footing depth is less than 5 ft Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_s=q_u/FS= 4112$ psf Use $q_s < 4112$ psf		<u> </u>	Bearing Capacity Analysis	CHECKED BY		DATE	
From hand penetrometer measurements: $q_{u} = 2.4$ tsf c = 2400 psf Factor of Safety (FS) = 3 (ODOT BDM 202.2.3.1) For cohesive foundation soil: <u>Meverhof's Method</u> $q_{u}=S_{c}^{*}c^{*}N_{c}+q^{*}N_{q}$ $q=\gamma^{*}D$ Can be neglected since footing depth is less than 5 ft Since footing Dimensions are not known assume $S_{c}=1.0$. For $\phi = 0$, use $N_{c} = 5.14$ and $N_{q} = 1$ $q_{u}=q_{u}/FS= 4112$ psf Use $q_{u} < 4112$ psf			0 55 and 0 57				
$\begin{array}{rll} q_u &=& 2.4 & tsf \\ c &=& 2400 & psf \end{array}$ Factor of Safety (FS) = 3 (ODOT BDM 202.2.3.1) For cohesive foundation soil: $\begin{array}{rll} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Base analysis on resul	is of borings	C-55 and C-57.				
c = 2400 psf Factor of Safety (FS) = 3 (ODOT BDM 202.2.3.1) For cohesive foundation soil: $\frac{Meyerhof's Method}{q_u = S_e^*c^*N_e^+q^*N_q} q = \gamma^*D Can be neglected since footing depth is less than 5 ft Since footing Dimensions are not known assume S_e=1.0. For \phi = 0, use N_e = 5.14 and N_q = 1q_a = q_u/FS = 4112 \text{ psf}Use q_a < 4112 \text{ psf}$	From hand penetrome	er measure	nents:				
Factor of Safety (FS) = 3 (ODOT BDM 202.2.3.1) For cohesive foundation soil: $\frac{Meverhof's Method}{q_u = S_c^* c^* N_c^+ q^* N_q} q = \gamma^* D Can be neglected since footing depth is less than 5 ft$ Since footing Dimensions are not known assume $S_c = 1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a = q_u/FS = 4112$ psf Use $q_a < 4112$ psf	qu	= 2.4 ts	f				
For cohesive foundation soil: $\frac{Meyerhofs Method}{q_u=S_c^*c^*N_c+q^*N_q} \qquad q=\gamma^*D \qquad Can be neglected since footing depth is less than 5 ft$ Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS= 4112 \text{ psf}$ Use $q_a < 4112 \text{ psf}$	C	= 2400 ps	sf		•		
Meyerhof's Method $q_u=S_c^*c^*N_c+q^*N_q$ $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ftSince footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS=4112$ psfUse $q_a < 4112$ psf	Factor of Safety (FS)	= 3 (C	DOT BDM 202.2.3.1)				
Meyerhof's Method $q_u=S_c^*c^*N_c+q^*N_q$ $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ftSince footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS=4112$ psfUse $q_a < 4112$ psf							
Meyerhof's Method $q_u=S_c^*c^*N_c^+q^*N_q$ $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ftSince footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS=$ 4112 psfUse $q_a < 4112$ psf							
$q_u=S_c^*c^*N_c+q^*N_q$ $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ft Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS= 4112$ psf Use $q_a < 4112$ psf	For cohesive foundatio	n soil:					
$q_u=S_c^*c^*N_c+q^*N_q$ $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ft Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS= 4112$ psf Use $q_a < 4112$ psf							
$q_u=S_c^*c^*N_c+q^*N_q$ $q=\gamma^*D$ Can be neglected since footing depth is less than 5 ft Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS= 4112$ psf Use $q_a < 4112$ psf	Meverhof's Method						
Since footing Dimensions are not known assume $S_c=1.0$. For $\phi = 0$, use $N_c = 5.14$ and $N_q = 1$ $q_a=q_u/FS= 4112$ psf Use $q_a < 4112$ psf		q=γ*D	Can be neglected since foo	ting depth is less than 5 ft			
	q _a =q _u /FS	= 4112 ps	sf				
		Use q a < 4	112 psf				

.

EDLZ

 Client
 TranSystems Inc.

 Project
 Portsmouth Bypass

 Item
 Culvert at STA. 534+30

JOB NUMBER	0121-3070.03		
SHEET NO.	1	OF	
COMP. BY	WMA	DATE	4/2
CHECKED BY	BEW	DATE	8/2

3 //24/2007 //20/2007

Calculations Data

Boring	Sample	w	PL.	LĿ	PI	Cc1		e, `
C-55	4	21	16	36	20	0.27	0.046	0.9538
C-55	7	26	21	42	21	0.28	0.053	0,9633
C-55	10	42	29	83	54	0;73	0.106	0.9449
C-56	5	22	18	48	30	0.41	0.061	0.9349
C-56	9	28	28	63	35	0.47	0.080	0.9442
C-57	3	21	22	34	12	0,16	0.043	0.9723
C-57	6	27	23	50	27	0,36	0.064	0,9550
C-57	9	41	30	73	43	0.58	0.093	0.9550
					Average	0.41	1 0.068	0.9529
					Maximum	0,73	0.106	0.9723
1)Cc=Pl/74								
2)Cr=0.000463xLLxGs								•
3) Based on CR below								

Boring	Sample	LL	C,*(ft²/day)	C, *(ft ^z /sec)
C-55	4	36	0.34	3.91E-06
C-55	7	42	0.22	2.52E-06
C-55	10	83	0.03	3.60E-07
Ç-56	5	48	0.15	1.72E-06
C-56	9	63	0.07	7.91E-07
C-57	3	34	0.40	4.60E-06
C-57	C-57 6 50		0.13	1.53E-06
C-57	9	73	0.04	5.20E-07
	<u> </u>	j Minmum Average	0.03	3.60E-07 1.99E-06
		Maximum	0.40	4.602-06
Cv(ft2/day)	= 9343.5	LL^(-2.8542) (Kulhawy	and Mayne- 1990)

Typical Values Source: Holtz and Kovacs (1981)/ Terzaghi, Peck and Mesri (1995) C'C' Soil 0.035-0.06 Organic Silts 0.035-0.085 Amorphous and Fibrous Peat Organic Clays and Silts 0.04-0.06 0.01-0.03 Granular Soits Shale and mudstones 0.02-0.04 0.03-0.06 Silty Clay 0.05-0.07 Peat

w%	CR=(C_/1+e_)	
9.983	2.389	
11.785	2.547	
14.487	3.016	
17,099	3.825	
19.816	4,892	
25.352	6.931	
28.328	8.079	
34.174	10.369	
42.400	13,490	
51,139	16.388	
79.829	23.326	
152.740	33,469	
341,288	46.114	
501,494	52.174	

Boring	Sample	w	PL	u	PI	u	Consolidation*
C-55	4	21	16	36	20	0.25	Overconsolidated
C-55	. 7	26	21	42	21	0.24	Overconsolidated
C-55	10	42	29	83	54	0.24	Overconsolidated
C-56	5	22	18	48	30	0.13	Overconsolidated
C-56	9	28	28	63	35	0.00	Overconsolidated
C-57	3	21	22	34	12	-0.08	Overconsolidated
C-57	6	27	23	50	27	0.15	Overconsolidated
C-57	9	41	30	73	43	0.26	Overconsolidated

*Overconsolidated when Li<0.7

Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.11)

			SUBJECT	r Cli	ent TranSystems	, Inc.		JOB N	UMBER	0121-3070	.03		
			Project SCI-823-0.00					SHEE	T NO.		2	OF	3
				Iter	m Culvert at ST	A.534+30		сомі	. вү	W	MA	DATE	04/24/07
				Bas	sed on C-55 throug	h C-57	······	CHEC	KED BY	BI	EW	DATE	08/20/0
L								-			· · · ·	,	
				SET	TLEMENT A	NALYSIS	- EMBA	NKMEN	IT				
1	Embankı	nent In	<u>formaiton:</u>			Groundwat	ter Table:	D=	23.0	ft	-		
-	<u>e</u> 9		• • •	ملم	• ا	Embankme	nt Height:	H =	9	ft			
		Ţ				Fill Unit W	•	γ _{emb} ≔	120	pcf	q = 1	l,080 psf	
						Width of S	lope:	a =	71				
							ridth of Emb	b: h=	40				
		~~~		La	. / *	Distance fr		x =	0				
		X		$\neg \frown$	$\checkmark$			z =	0	to	49 [,] ft		
			$\sim$			Output Ra	-		U	10	., -н		
				$\mathcal{N}$			ata output Atta						
				₩( _н , у,		$z) := \left(\frac{\mathbf{q}}{\pi \mathbf{a}}\right) \zeta$				•			
I	β(z) := at	$n\left[\frac{(b-7)}{7}\right]$	$\frac{x}{z}$ + atan $\frac{(b+x)}{z}$	]	$\alpha^{i}(z) := \operatorname{atan}\left[\frac{(a+1)}{2}\right]$	$\left[\frac{b-x}{z}\right]$ - atan	$\left[\frac{(b-x)}{z}\right]$	α(z)	:= atan	$\begin{bmatrix} \frac{(a+b)}{z} \end{bmatrix}$	<u>+ x)</u> ]-	atan	$\frac{+x}{z}$
		ι -	, Refere	nce: US Ari	my Corps of Engine	ers EM 1110-1	-1904 "Settlem	ent Analys	is", Table (	C-1			
•										hesionless	<b>5</b> [°]		
	Soit Prop	erties:	Settlement is car	Iculated at i	mid-point of layer	•				Soils	С	ohesive So	oils
	Bot. of La		Soil Type	γ _{soil} (p		σ'。(psf)	$\Delta \sigma z$ (psf)	$\sigma'_{f}$	(psf)		Cr	C _c	eo
1	10.0	ft	Silty Clay/Clay	120	5,000	600	1,080	1,6	80	0.0	0.05	0.30	0.950
2	20.0	ft	Silty Clay/Clay	120	5,000	1,800	1,075	2,8	75	0.0	0.05	0.30	0.950
3	30.0	ft	Clay	120	5,000	2,875	1,058	3,9		0.0	0.09	0.59	0.950
4	40.0		Clay	120	5,000	3,451	1.031	4,4		-0.0	0.09	0.59	0.950
<u>-</u>	49.0	ft	Clay	120	5,000	3,998	997	4,9		0.0	0.09	0.59	0.950
<u>-</u> 6	0.0			0	0								
7			<u></u>	0	0				·	× <b></b>			
<u> </u>	0.0			0	0				<u> </u>				
8	0.0		·····		0							·, ·	
9	0.0			0			<u></u>						
<u>10</u>	0.0			0	0					J.D., 191 - 1	7. J	20	
						Reference: Geol Overconsoli	-	-	-			'Y	
										U = 1			
		nt:	Total Settlement	I	(	$\left(\delta_{c}\right)_{utt} = \sum \frac{1}{1}$	$\frac{\sim}{+e}$ H log	$\left \frac{\tau}{\sigma'}\right $					
No.	Settleme					-	v	< v /					
1	0.122	ft	<u> </u>	FI		Overconsoli	dated Soils	- Case	llfσ' <b>.&lt;</b> α	J'.<0) Ε	Can:11.2	5	
No. 1 2	0.122 0.055	ft ft	0.337 f	t		Dverconsoli ר					Cqn:11.2	5	
1	0.122 0.055 0.065	ft	0.337 f	ť		_					Cqn:11.2	5	
1	0.122 0.055 0.065 0.054	ft ft	L	_	(	$\left(\delta_{c}\right)_{uu} = \sum \left[\frac{1}{1}\right]$	$\frac{C_r}{H \log}$	$\left(\frac{\sigma'_{c}}{\sigma'_{0}}\right) + \frac{1}{1}$	$\frac{C_c}{+e_0}H$ lo	$\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	- -		
1	0.122 0.055 0.065	ft ft ft	0.337 f	_	)	_	$\frac{C_r}{+e_0} H \log \left( \frac{1}{1 + e_0} \right)$	$\left(\frac{\sigma'_{c}}{\sigma'_{0}}\right) + \frac{1}{1}$ I Soils (c	$\frac{C_c}{+e_0}H$ lo	$\log\left(\frac{\sigma'_{f}}{\sigma'_{c}}\right)$	- -		

 $(\delta_c)_{ult} = \sum \frac{C_c}{1+e_0} H \log \left(\frac{\sigma'_f}{\sigma'_0}\right)$ 

8

9 10 Cohesionless Soils  $(\sigma'_0 = \sigma'_c)$  $(\delta_c)_{ult} = \sum \frac{1}{C'} H \log \left(\frac{\sigma'_f}{\sigma'_0}\right)$ 

