

August 22, 2007

Michael D. Weeks, P.E., P.S. TranSystems Corporation 5747 Perimeter Drive, Suite 240 Dublin, OH 43017

Re: Bearing Capacity and Settlement Evaluation (Culvert at STA. 535+50) SCI-823-0.00 Portsmouth Bypass DLZ Job No.: 0121-3070.03 Document #0083

Dear Mr. Weeks:

This letter presents the findings of the preliminary evaluation of the proposed culvert and embankment at Station 535+50 on the above-referenced project. The findings of other culvert and embankment evaluations will be submitted in separate documents.

It is our understanding that a new culvert will be constructed at Station 535+50 for the above referenced project. The culvert will be a 90-inch Type A conduit in accordance with ODOT Item 707.03 (Structural Plate Corrugated Steel Structures). Preliminary plans indicate the flow line of the culvert varies from approximately 11 to 18 feet below existing grade. The maximum cover over the culvert at this location is approximately 42 feet and the maximum embankment height above existing grade is approximately 36 feet. The inlet and outlet of the culvert will be supported by headwalls flush with the face of the pipe at each end. At the time of preparing this letter no further information was available regarding the culvert.

It should be noted that the results of this evaluation are based upon the findings of two borings (C-22 and C-23) located along the proposed alignment of the culvert. The borings were advanced to depths ranging between 44 and 54 feet below the ground surface. Logs of the borings, a plan and profile drawing showing the approximate locations of the borings, a legend of the boring log terminology and general information regarding the drilling procedures are attached. The surveyed ground elevations at the boring locations are reported on the logs.

Exploration Findings

The borings encountered 38.5 to 48.5 feet of overburden underlain by decomposed sandstone and shale bedrock. The overburden consisted mainly of cohesive soils (A-6a, A-6b, A-7-6). These soils ranged in consistency from medium stiff to hard but were predominantly stiff to very stiff.

Michael D. Weeks, P.E., P.S. August 22, 2007 Page 2

Bearing Capacity Evaluation

The preliminary plans indicate that the invert elevations at the inlet and outlet of the proposed culvert are 705.44 and 702.86, respectively. The bottoms of the headwall footings were assumed to be 4 feet below the invert elevations to place them below the frost zone and prevent scour of the headwall (Ohio BDM Section 200). Based on the results of the borings, footings at this depth will bear in stiff to very stiff clay (A-7-6). Footings bearing in the stiff or better clay may be designed based on allowable bearing capacity of up to 2,500 pounds per square foot (psf).

Settlement Evaluation

Soil parameters for use in the settlement calculations were selected based on the results of consolidation tests and estimates made using correlations with moisture content and Atterberg limits. Settlement below the centerline of the embankment was evaluated using the maximum height of the embankment above existing grade (36 feet) as the surcharge load and using the soil profile encountered in boring C-22.

The settlement analysis indicated that the soil below the embankment will yield primary settlement of 15.4 inches. In addition, the analysis indicated that 80% of the consolidation settlement (12.3 inches) will occur within approximately four years after the end of the embankment construction while the time required to achieve the total consolidation settlement (15.4 inches) will be approximately 20 years. Secondary compression of the foundation soils beneath the embankment is estimated to produce approximately 3.4 inches of additional settlement in the years following completion of the primary consolidation. Consolidation times can be shortened by means of wick drains installed through the compressible foundation layers within the embankment footprint prior to construction of the embankment.

Settlement at the ends of the culvert due to the embankment loading is expected to be insignificant. Based on the preceding information, and including the secondary consolidation estimate, differential settlement between the center of the embankment and the inlet and outlet of the culvert is expected to be approximately 18.8 inches. Since appreciable settlement is anticipated, the flow line of the culvert should be cambered. The settlement analyses are attached.

Michael D. Weeks, P.E., P.S. August 22, 2007 Page 3

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning our preliminary findings.

Respectfully submitted,

DLZ OHIO, INC.

WEasan

Wael Alkasawneh, P.E. Geotechnical Engineer

Rumh

Bryan Wilson, P.E. Senior Geotechnical Engineer

Encl: As noted.

cc: J. Greg Brown, P.E. (TranSystems Corporation), File

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a soils engineer. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period of six months. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Dept\Geotech\Misc\Legends\Geninfo.eng

LEGEND - BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n - indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
 - Soil Description

4.

9.

The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils - Compactness

	Blows/Foot Standard
Terms	Penetration
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Cohesive Soils - Consistency

	Unconfined Compression	Blows/Foot Standard	Hand
Term	tons/sq.ft.	Penetration	Manipulation
Very Soft less th	an 0.25	below 2	Easily penetrated by fist
Soft	0.25 - 0.50	2 - 4	Easily penetrated by thumb
Medium Stiff	0.50 - 1.00	4 - 8	Penetrated by thumb w/ moderate effort
Stiff	1.0 - 2.0	8 - 15	Readily indented by thumb but not penetrated
Very Stiff	2.0 - 4.0	15 - 30	Readily indented by thumb nail
Hard	over 4.0	over 30	Indented with difficulty by thumb nail

Color - If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

d

c. Texture is based on the ODOT Classification System. Soil particle size definitions are as follows:

Description	Size	Description	<u>Size</u>
Boulders	Larger than 8"	Sand-Coarse	2.00 mm. to 0.42 mm.
Cobbles	8" to 3"	-Fine	0.42 mm. to 0.074 mm.
Gravel-Coarse	3" to 3/4"	Silt	0.074 mm. to 0.005 mm.
-Fine	3/4" to 2.00" mm.	Clay	Smaller than 0.005 mm.

d.

The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.

	e.	Modifiers to main so	il descriptions are indicated as a percentage by weight of particle sizes.
		t-+++	
			- 0 to 10%
			- 10 to 20%
			- 20 to 35%
		"and"	- 35 to 50%
	f.	The moisture conten	nt of cohesive soils (silts and clays) is expressed relative to plastic properties.
		Term	Relative Moisture or Appearance
		D	Powdery
		Dry	Moisture content slightly below plastic limit
		Damp	Moisture content above plastic limit, but below liquid limit
		Moist	
		Wet	Moisture content above liquid limit
	g.	Moisture content of a	cohesionless soils (sands and gravels) is described as follows:
		Term	Relative Moisture or Appearance
		Dry	No moisture present
		Damp	Internal moisture, but none to little surface moisture
		Moist	Free water on surface
		Wet	Voids filled with free water
10.	Rock I	hardness and rock quali	ty description.
	а.	The following terms	are used to describe the relative hardness of the bedrock.
		<u>Term</u>	Description
		Very Soft	Difficult to indent with thumb nails; resembles hard soil but has rock structure
		Soft	Resists indentation with thumb nail but can be abraded and pierced to a shallow depth by a pencil point.
		Medium Hard	Resists pencil point; but can be scratched with a knife blade.
		Hard	Can be deformed or broken by light to moderate hammer blows.
		Very Hard	Can be broken only by heavy blows, and in some rocks, by repeated hammer blows.
	b.		nation, RQD - This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by ngth of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core
11.	Grada	tion - when tests are per	formed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).
12.		a test is performed to de it is indicated graphically	etermine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture /.
13.	The st	andard penetration (N) v	value in blows per foot is indicated graphically.
S:\Dep	ot\Geotech	Legends Manuals Misc	\Legends\Legeng.odt
ľ			

F

. ت

]	Client: T	[ranSys	sterns	s, Inc.		_		Project: SCI-823-0.00								lob No	0121	-3070.	03
[LOG O	F: Bo	ring	C-22			ocation: Sta	a. 535+49.4, 165.7 ft. RT of SR 823 CL Date Drilled: 7/2	25/2							_			
					Sam No		Hand	WATER OBSERVATIONS: Water seepage at: 11.0'-12.5', 43.5'-45.0'		GF	RADA	4 <i>TIO</i>	<u>N</u>	-					
			.9	(ij)		Core	Penetro- meter	Water level at completion: 37.4' (inside hollowstem augers)	ate	_	ъ							RATION	
	Depth	Elev.	s per	Very		\sim			greg	Sand	Sand	Sand		ž		I Moist ⊢−−−	ure Coi	ntent, % ───┤ L	
	(ft)	(ft) 720.0	Blows per 6"	Recovery	Drive	Press .	(tsf)	DESCRIPTION	% Aggregate	% C.	% M.	Ψ	% Sitt	% Cl	E10		er foot 0		0
	-0.6	-719.4-	_					Topsoil - 7"							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·		· · · · ·
	_		1	2 13	1		1.5	Stiff to very stiff brown and gray SILTY CLAY (A-6b), trace fine sand; damp to moist.								1: J I U I I J I I I I V I I I V I I I V) () ()) () ()] () ()] () () ()] () () ()		
	5 —		7 11 1	2 18	2		4.5+	@ 3.5'-5.0', hard.									$\dot{\rho}$		
	-		6 7	3 16	3		1.25		0	0		8	48	44		ď			
	- 10 —	700.0		5_12	4		2.25	-											
	—11.0— — —13.0—	-709.0-		7 13	5			Medium dense brown SANDY SILT (A-4a), little to some clay, trace gravel; moist.								\ Q			
	- 15 —		7 9 _ 1	14	6		2.5	Stiff to very stiff brown and gray CLAY (A-7-6), trace to some silt, trace fine to coarse sand; damp to moist.	0	0		0	20	80			 ••• -		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	-		4 1	1 18	7		4.0									ģ			
10:14 AM	- 20 —		2	5 18	8		2.0								Ŕ				
4/20/2007	-		3 4	18	9	P-1	. 1.5 2.25		0	0	 	0	10	90	þ	1 2 7 1 1 3 1 1 1 1 1 1			59
3070-03 [25		3 3	5 18	10	\vdash	1.25								þ				
FILE: 0121-3070	-		33	17	11	P-2	1.25		0				31			1111		1111 1111 1111 1111	
ГЧ	_		3 4		12	–	1.0 1.5		ľ	ľ	-		31	09		$\begin{array}{c} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \end{array}$) 	111+
	30			<u>18</u>		1	·		1	L.	<u> </u>				Li H	1111		1111	1 1 1 1

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040	DLZ OHIO INC. *	6121 HUNTLEY ROAD,	COLUMBUS, OHIO 43229	(614)888-0040
---	-----------------	--------------------	----------------------	---------------

ning and the state state with many state and state and state and t

ĺ

•

Clien	t: T	ranSys	stems	Ілс.				Project: SCI-823-0.00			_					Job N	o. 012	1-3070).03
LOG	G OI	F: Bo	ring I	C-22			ocation: Sta	. 535+49.4, 165.7 ft. RT of SR 823 CL Date Drilled: 7/2	25/2				_						
					Sam No	ole	Hand	WATER OBSERVATIONS: Water seepage at: 11.0'-12.5', 43.5'-45.0'		GF	DAS	<u>4710</u>							
			.9	(ui)		9,0	Penetro- meter	Water level at completion: 37.4' (inside hollowstern augers)	ate	q	ō	7						TRATIO	
Dep		Elev.	ber	лөл		Ŏ			greg	San	Sand	Sand		ž		nanmois ₽L ┝──		ontent, %	
(ft)		(ft) _690.0	Blows per 6°	Recovery	Drive	Press / Core	(tsf)	DESCRIPTION	% Ag	% C. Sand	% M.	u,	% Sitt	% Clay			per foo 20	t - O	40
30	_							Stiff brown and gray CLAY (A-7-6), trace to some silt, trace fine to coarse sand; damp to moist.										1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1	
	-																1 1 1 1 1 1 1 1 1 1 1 1		
			3 3		13	P-3	1.5 1.5		0	0	-	1	9	90	ΗĘ				
35	∍┥		4	18			1.5								ģ			, , , , , , , , , , , , , , , , , , , ,	
	_														1 4 1 4 1 5 1 1 1 1 1 1				1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1
	4														1111	XI	111	1 6 1 6 1 6 9 9 1 1 6 6 9 9 1	
40			3 4 14	18	14		1.25								• • • • •	L }		4 4 4 4 4 1 1 4 5 7 4 1 4 5 7 3 4 5 6 7	
	´ -														1111			1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1	1 6 1 8 6 t 1 1 1 8 i 5 1 9 1
	-														 	1 7 7 7 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1 1 7 7 1	IN.		r ()))) () () () ()) () () ()
— 43.	5	676.5	14		15			Dense gray SANDY SILT (A-4a), trace gravel; moist to wet.	1						1 1 1 1				
45	;		18	14											<pre>+ 1 1 1 + 1 1 + 1 1 + 1 1 + 1 1 + 1 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +</pre>			Q,	
	_	•							ŀ										
48.	5	-671.5-	22	ļ					ļ						1 1 1 1 1 1 1 1 1 4 1 1 1 4 1 1)
50	,	- 671. 5 -	28 50	15	16			Very dense gray GRAVEL WITH SAND AND SILT (A-2-4); (decomposed sandstone); moist to wet.										1 0 1 1 1 1 1 1 1 1 0 0 0 1 0	078-
	-														1 1 1 1 1 1 1 1	, 1 1 4 1 1 5 4 1 1 6 4 1 1 6 5 1		$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$, , , , , , , , , , , , , , , , , , ,
	_															1			
53. 54.	5 - 0-	-666.5- -666.0-	50+	6	17	┢	2.75	Very stiff gray SILT AND CLAY (A-6a); (decomposed shale);	1										50+
55	;							L damp. Bottom of Boring - 54.0'	1						1 1 1 1		1 1 1 1 2		1 2 1 1 1 1 1 1 1 1
	_														$\begin{array}{c} 1 & 1 & 1 \\ 1 & + & 1 \\ 1 & + & 1 \end{array}$	• • 1 • 1 • • 1 • 1 • • 1 • 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-			1												: : : : :		1 1 1 1 1 1 1 2 2 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 3 1 1 3 4	1111
60	、1														1 1 1 1 1 1 1 1 1	1 + 1 4			1 4 4 4 4

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

		ranSy				_		Project: SCI-823-0.00								Job No	. 012	1-3070	.03
Ľ	.0G 0	F: Bo	ring	C-23	- C		ocation: Sta	a. 535+51.6, 173.0 ft. LT of SR 823 CL Date Drilled: 7/2	24/2			- T/C							
	Depth (ft)	Elev. (ft) 714.0	Blows per 6"	Recovery (in)	Sam, No evind		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 38.5'-39.0' Water level at completion: 42.0' (inside hollowstem augers) DESCRIPTION	% Aggregate	Sand	% W. Sand	Sand		% Clay	Natui Pl	al Mois . Blows	ure Co ber foot	TRATIO ntent, % 	. ●
-	-0.4	-713.6-	2 3 2	,18	1		2.25	Topsoil - 5" Stiff to very stiff brown and gray SILT AND CLAY (A-6a), trace fine to coarse sand; damp to moist.							0				
	5		WOH 1	14	2		1.25		0	2		7	55	36					
	-		4 6 0	15	3		4.5+	@ 6.0'-7.5', hard.								$\tilde{\mathbf{v}}$			
-	-10.0	-704.0-	3 4 	<u>18</u>	4		3.75	Stiff to very stiff brown and gray CLAY (A-7-6), trace to "and"							Ϋ́	5			
			234	18	5		2.75	silt, trace fine sand, trace gravel; moist.	1	0		1	22	76	Ó				· · · 52
			4 E	18	6		2.5								ξ				
AH)	-		334	18	7		2.5								Ó	<pre>(()) () () () () () () () ()</pre>		7 5 7 1 4 1 5 1 4 1 4 1 4 1 4 1 4 1 4 1	
07 10:14	20		2	18	8	P-1	1.0 1.0		0	0		0	4	96	Ó				
[4/20/20	-		2 3 ·	18	9		1.25	@ 23.0'-24.0', medium stiff.							Ŏ				
£0-070£.15	 25 		2	18	10	P-2	0.75 1.5		0	0	-	0	40	60	Q			1 8 8 9 9 1 4.3 5 1 1 5 8 7 8 1 7 7 8 3	
FILE: 0121-3070			2	18	11		1.25								Ó				
	30		² 3	18	12	P-3	1.0 1.5		0	0		0	25	75					

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

		ranSys				_		Project: SCI-823-0.00							Job No. 0121-3070.03
LO	DG O	F: Bo	ring	C-23		_	ocation: Sta	a. 535+51.6, 173.0 ft. LT of SR 823 CL Date Drilled: 7/	24/2	_					
	əpth (ft)	Elev. (ft)	Blows per 6"	Recavery (in)	Samı No.		Hand Penetro- meter (tsf)	WATER OBSERVATIONS: Water seepage at: 38.5'-39.0' Water level at completion: 42.0' (inside hollowstem augers) DESCRIPTION	% Aggregate		M. Sand	and		Clay	STANDARD PENETRATION (N) Natural Moisture Content, % - ● PL
	30 —	684.0	Bic	Re Re	Drive	ă				%	%	%	%	%	<u>10 20 30 40</u>
	1 1		3					Stiff brown and gray CLAY (A-7-6), trace to "and" silt, trace fine sand, trace gravel; moist.							
	35 —		4	18	13		1.5								0, 7, 7,
	8.5	675.5	23 49 50/4	13	14			Very dense gray GRAVEL WITH SAND AND SILT (A-2-4); (decomposed sandstone); damp.							50+
-4	3.5 4.0 45 -	-670. 5- -670.0-	50/3	3	15		4.5+	Hard gray SILT AND CLAY (A-6a); (decomposed shale); damp. Bottom of Boring - 44.0'							50+
[4/20/2007 10:14 AM	- 50 — - -														
FILE: 0121-3070-03															I I <tdi< td=""> <tdi< td=""> <tdi< td=""></tdi<></tdi<></tdi<>

DLZ OHIO INC. * 6121 HUNTLEY ROAD, COLUMBUS, OHIO 43229 * (614)888-0040

	CLIENT	TranSystems Inc.	JOB NUMBER	U	21-3070	-03
DLZ	PROJECT	Portsmouth Bypass	SHEET NO.	1	OF	1
	SUBJECT	Culvert at Station 535+50	COMP. BY	BEW	DATE	8/22/200
		Bearing Capacity Analysis	CHECKED BY	·	DATE	
Base analysis on resu	Its of borings	C-22 and C-23.	,			
Dase analysis on rood	no or bornige					
From hand penetrome	ter measure	ments at and below the bearing eleva	tion:			
qu						
•	= 1500 pt					
Factor of Safety (FS)	= 3 (0	DOT BDM 202.2.3.1)				
For cohesive foundation	on soil:					
<u>Meyerhof's Method</u>						
q _u =S _c *c*N _c +q*N _q	q=γ*D	Can be neglected since footing o	depth is less than 5 ft			
Since footing Dimensi	ons are not k	known assume $S_c=1.0$. For $\phi = 0$, use	$N_c = 5.14$ and $N_q = 1$			
-						
a,≓a./FS	S= 2570 p:	sf		•		
Ya ⁻ Yu [,] ' Y	2010 p	51				
		,				
Г		2570				
L	Use q a <	2570 psi				
			•			

.

-

,

JOB NUMBER 0121-3070.03 Client TranSystems Inc. DLZ SHEET NO. 1 OF Project Portsmouth Bypass Item Culvert at STA 535+50 COMP. BY WMA DATE 8/10/07 BEW CHECKED BY DATE 8/22/07

Calculations Data

Boring	Sample	¥	PL	L	PI	Cc1	Cr ²	e,³
C-22	3	25	15	39	.24	0.32	0.050	0.9560
C-22	6	25	23	52	29	0.39	0.066	0.9468
C-22	P-1	34	25	59	34	0.46	0.075	0.9566
C-22	P+2	31	21	48	27	0.36	0.061	0.9618
C-22	P-3	35	22	47	25	0,34	0.060	0.9691
C-23	2	25	1B	32	14	0.19	0.041	0.9743
C-23	5	29	23	52	29	0.39	0.066	0.9556
C-23	P-1	39	27	77	50	0.68	0.098	0.9449
C-23	P-2	29	20	43	23	0.31	0.055	0.9648
C-23	P-3	34	23	50	27	0.36	0.064	0.9656
<u></u>	·				Average	0.38	0.064	0.9596
					Maximum	0,68	860,0	0.9743

Boring	Sample	LL	C (ft*/day)	C _v *(ft ² /sec)
C-22	3	39	0.27	3.11E-06
C-22	6	52	0,12	1.37E-06
C-22	P-1	59	0.08	9.54E-07
C-22	P-2	48	0.15	1.72E-06
C-22	P-3	47	0.16	1.83E-06
C-23	2	32	0.47	5.47E-06
C-23	5	52	0.12	1.37E-06
C-23	P-1	77	0.04	4.46E-07
C-23	P-2	43	0.20	2.35E-08
C-23	P-3	50	0.13	1.53E-06
		Minmum	0.04	4,46E-07
		Average	0.17	2.01E-06
		Maximum	0.47	5.47E-06
*Cv(ft2/day)	= 9343 54			5.47E-06 and Mayne- 1990)

3) Based on CR below

Typical Values Source: Holtz and Kovacs (198 Mesri (1995)	1)/ Terzaghi, Peo	sk a
Soll		
Organic Silts	0.035-0.06	
Amorphous and Fibrous Peat	0.035-0.085	
Organic Clays and Slits	0.04-0.06	
Granular Soils	0.01-0.03	
Shale and mudstones	0.02-0.04	
Silty Clay	0.03-0.06	
Peal	0,05-0.07	

Boring	Sample	w	PL	<u> </u>	PI	<u> </u>	Consolidation*
C-22	3	25	15	39	24	0.42	Overconsolidated
C-22	6	25	23	52	29	0.07	Overconsolidated
C-22	P-1	34	25	59	34	0.26	Overconsolidated
C-22	P-2	31	21	48	27	0,37	Overconsolidated
C-22	P-3	35	22	47	25	0.52	Overconsolidate
C-23	2	25	18	32	14	0.50	Overconsolidate
C-23	5	29	23	52	29	é0.21o	Overconsolidate
C-23	P-1	39	27	77	50 -	0.24	Overconsolidate
C-23	P-2	29	20	43	23	0.39	Overconsolidate
C-23	P-3	34	23	50	27	0.41	Overconsolidate

Overconsolidated when LI<0.7

Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.11)

Correlation Values-Source: Lamb and Whitman (1969)

CUITERATION	Values-Oource, carno e
w%	CR=(C_/1+e_)
9,983	2.389
11.765	2.547
14.487	3.016
17,099	3.825
19.816	4.892
25.352	6.931
28.328	8.079
34,174	10,369
42.400	13.490
51,139	16.388
79.829	23.326
152,740	33.469
341.288	46.114
501,494	52.174

Correlation: CR=-4E-09w^4 + 5E-06w^3 - 0.0021w^2 + 0.4695w - 3.1337 R²=0.9992

Û		T	SUBJECT	Clien	t TranSystems	, Inc.		JOB N	UMBER	0121-3070).03		
	2]		SUBJECT	Proje	ct SCI-823-0.00			SHEE	ΓNO.		2	· OF	4
				Item	Culvert at ST	A.535+50		COM	. BY	W	MA	DATE	08/10/
				Based	on Boring C-22			CHEC	KED BY	B	EW	DATE	08/22
<u>]</u>	Embankı	ment II	nformaiton:	SETTI		Groundwa Embankme Fill Unit W Width of S	ter Table: ent Height: /eight:	$D=$ $H =$ $\gamma_{emb} =$ $a =$	IT 10.0 36 120 72 73	ft ft pcf	q= 4	,320 psf	
			a	- / °		Distance fr Output Rat *See Do		x = z = hed	0 0	to	45 . ft		
-	3(z) :≃ et	an [(b -	$\left[\frac{-x}{z}\right] + \operatorname{atan}\left[\frac{(b+x)}{z}\right]$,	$r = \frac{(a + a)}{(a + b)}$ $Corps of Engine$	$\left[\frac{b-x}{z}\right] - atan$		a(z)	:= atan is", Table ([<u>(a+b</u> z	<u>+ x)</u>]-		
									Co	hesionles	s		
1	Soil Prog	erties:	Settlement is cal							Soils		ohesive So	-
lo.	Bot. of L	ayer	Soil Type	γ _{soil} (pcf)	σ'_{c} (psf)	σ'₀ (psf)	$\Delta \sigma z$ (psf)	σ' _f (psf)	C'	Cr	C _c	e,
1	13.0	ft	Silt and Clay	120	6,000	780	4,320	5,1	00	0.0	0.05	0.26	1.030
2	23.0	ft	Clay	120	8,284	1,661	4,310	5,9	71	0.0	0.13	0.25	0.79
3	33.0	ft	Clay	120	8,284	2,237	4,285	6,5	22	0.0	0.13	0.25	0.79
4	43.5	ft	Clay	120	8,284	2,827	4,237	7,0	64	0.0	0.13	0.25	0.79
5	0.0			0	0	,							
б	0.0			0	0								
7	0.0			0	0								
8	0.0		<u></u>	0	0								
9	0.0			0	0				•		· <u> · · · · · · · · · · · ·</u> ·		
0	0.0			0	0		· · · · · · · · · · · · · · · · · · ·						
<u></u> .					R	Overconsoli	echnical Engine dated Soils -	Case 1	•			9	
		nt:	Total Settlement		(.	$(\delta_c)_{uh} = \sum_{n=1}^{\infty}$	$\frac{C_r}{+e_0}H\log$	$\left \frac{\sigma}{\sigma}\right $		•			
0.	Settleme	_					+ e _o dated Soils -		1 (π'- <r< td=""><td>ו ג<u>ו</u>א יז</td><td>Ean • 11 24</td><td>:</td><td></td></r<>	ו ג <u>ו</u> א יז	Ean • 11 24	:	
lo. 1	0.238	ft	1 707 5	គ	() (- enco ()/113				- yn (1 1 1 4 -		
lo. 1 2	0.238 0.404	ft ft	1.282 f	Ð		_	~ /	1					
lo. 1 2 3	0.238 0.404 0.338	ft ft ft	1.282 f	Ð		_	$\frac{C_r}{H} H \log \left(\frac{q}{r}\right)$, ,)+ ,	$\frac{C_c}{L_a}$ H lo	$\left[\frac{\sigma_{f}}{\sigma}\right]$			
io. 1 2 3 4	0.238 0.404	ft ft	L	J	($(\delta_c)_{\mu h} = \sum \left[\frac{1}{1}\right]$	$\frac{C_{r}}{H} H \log \left(\frac{a}{a}\right)$	- /	U		12		
No. 1 2 3 4 5	0.238 0.404 0.338	ft ft ft	1.282 fr	J	() ר	$(\delta_c)_{uh} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{$	onsolidated	Soils (C	U		.23		
10. 1 2 3 4 5 6 7	0.238 0.404 0.338	ft ft ft	L	J	() ר	$(\delta_c)_{uh} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{$	• •	Soils (C	U		.23		
No. 1 2 3 4 5 6 7 8 9	0.238 0.404 0.338	ft ft ft	L	J	(, 	$\delta_{c} \Big _{uh} = \sum \left[\frac{1}{1} \right]$ Normally Control $\delta_{c} \Big _{uh} = \sum \frac{1}{1}$ Cohesionless	onsolidated	Soils (σ'_{f} $\left(\frac{\sigma'_{f}}{\sigma'_{0}}\right)$	U		.23		

|--|

Client	TranSystems Inc.	JOB NUMBER	0121-3007.03			
Project	Portsmouth Bypass	SHEET NO.	4	OF	4	
Item	Culvert at STA: 535+50	COMP. BY	WMA	DATE	08/10/07	
Based on	boring C-22	CHECKED BY	BEW	DATE	08/22/07	

SECONDARY SETTLEMENT ANALYSIS - EMBANKMENT

Time to end of primary consolidation $\beta = 20.2$ yrs

1	No.	Soil	H(ft)	w(%)	c,	S(inch)
	1	Silt and Clay	43.5	30	0.0064	3.4
1	2					
	3					

Total Secondary Settlement = 3.4

Secondary Settlement*

 $\left(\delta_{secondar}\right) = C_{\alpha}H$

inches

$$t_p = \frac{T.H^2}{c_v} Assume \ U= 0.999$$

* Ref: Soils and Foundations Workshop Reference Manual- NHI-00-045 (p. 6.14)

